Skip to content

Doc: follow up on histogram normalization example #27459

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
268 changes: 73 additions & 195 deletions galleries/examples/statistics/histogram_normalization.py
Original file line number Diff line number Diff line change
@@ -1,255 +1,133 @@
"""
.. redirect-from:: /gallery/statistics/histogram_features
=======================
Histogram normalization
=======================

===================================
Histogram bins, density, and weight
===================================
Histogram normalization rescales data into probabilities and therefore is a popular
technique for comparing populations of different sizes or histograms computed using
different bin edges. For more information on using `.Axes.hist` see
:ref:`histogram_features`.

The `.Axes.hist` method can flexibly create histograms in a few different ways,
which is flexible and helpful, but can also lead to confusion. In particular,
you can:
Irregularly spaced bins
-----------------------
In this example, the bins below ``x=-1.25`` are six times wider than the rest of the
bins ::

- bin the data as you want, either with an automatically chosen number of
bins, or with fixed bin edges,
- normalize the histogram so that its integral is one,
- and assign weights to the data points, so that each data point affects the
count in its bin differently.
dx = 0.1
xbins = np.hstack([np.arange(-4, -1.25, 6*dx), np.arange(-1.25, 4, dx)])

The Matplotlib ``hist`` method calls `numpy.histogram` and plots the results,
therefore users should consult the numpy documentation for a definitive guide.

Histograms are created by defining bin edges, and taking a dataset of values
and sorting them into the bins, and counting or summing how much data is in
each bin. In this simple example, 9 numbers between 1 and 4 are sorted into 3
bins:
By normalizing by density, we preserve the shape of the distribution, whereas if we do
not, then the wider bins have much higher counts than the thinner bins:
"""

import matplotlib.pyplot as plt
import numpy as np

rng = np.random.default_rng(19680801)

xdata = np.array([1.2, 2.3, 3.3, 3.1, 1.7, 3.4, 2.1, 1.25, 1.3])
xbins = np.array([1, 2, 3, 4])

# changing the style of the histogram bars just to make it
# very clear where the boundaries of the bins are:
style = {'facecolor': 'none', 'edgecolor': 'C0', 'linewidth': 3}

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)

# plot the xdata locations on the x axis:
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=1.0)')

# %%
# Modifying bins
# ==============
#
# Changing the bin size changes the shape of this sparse histogram, so its a
# good idea to choose bins with some care with respect to your data. Here we
# make the bins half as wide.

xbins = np.arange(1, 4.5, 0.5)

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, **style)
ax.plot(xdata, 0*xdata, 'd')
ax.set_ylabel('Number per bin')
ax.set_xlabel('x bins (dx=0.5)')

# %%
# We can also let numpy (via Matplotlib) choose the bins automatically, or
# specify a number of bins to choose automatically:

fig, ax = plt.subplot_mosaic([['auto', 'n4']],
sharex=True, sharey=True, layout='constrained')

ax['auto'].hist(xdata, **style)
ax['auto'].plot(xdata, 0*xdata, 'd')
ax['auto'].set_ylabel('Number per bin')
ax['auto'].set_xlabel('x bins (auto)')

ax['n4'].hist(xdata, bins=4, **style)
ax['n4'].plot(xdata, 0*xdata, 'd')
ax['n4'].set_xlabel('x bins ("bins=4")')

# %%
# Normalizing histograms: density and weight
# ==========================================
#
# Counts-per-bin is the default length of each bar in the histogram. However,
# we can also normalize the bar lengths as a probability density function using
# the ``density`` parameter:

fig, ax = plt.subplots()
ax.hist(xdata, bins=xbins, density=True, **style)
ax.set_ylabel('Probability density [$V^{-1}$])')
ax.set_xlabel('x bins (dx=0.5 $V$)')

# %%
# This normalization can be a little hard to interpret when just exploring the
# data. The value attached to each bar is divided by the total number of data
# points *and* the width of the bin, and thus the values _integrate_ to one
# when integrating across the full range of data.
# e.g. ::
#
# density = counts / (sum(counts) * np.diff(bins))
# np.sum(density * np.diff(bins)) == 1
#
# This normalization is how `probability density functions
# <https://en.wikipedia.org/wiki/Probability_density_function>`_ are defined in
# statistics. If :math:`X` is a random variable on :math:`x`, then :math:`f_X`
# is is the probability density function if :math:`P[a<X<b] = \int_a^b f_X dx`.
# If the units of x are Volts, then the units of :math:`f_X` are :math:`V^{-1}`
# or probability per change in voltage.
#
# The usefulness of this normalization is a little more clear when we draw from
# a known distribution and try to compare with theory. So, choose 1000 points
# from a `normal distribution
# <https://en.wikipedia.org/wiki/Normal_distribution>`_, and also calculate the
# known probability density function:

xdata = rng.normal(size=1000)
xpdf = np.arange(-4, 4, 0.1)
pdf = 1 / (np.sqrt(2 * np.pi)) * np.exp(-xpdf**2 / 2)

# %%
# If we don't use ``density=True``, we need to scale the expected probability
# distribution function by both the length of the data and the width of the
# bins:
dx = 0.1
xbins = np.hstack([np.arange(-4, -1.25, 6*dx), np.arange(-1.25, 4, dx)])

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.arange(-4, 4, dx)
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')

# scale and plot the expected pdf:
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].legend()
fig.suptitle("Histogram with irregularly spaced bins")


ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x_0$',
alpha=.5)

ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend()
ax['True'].plot(xpdf, pdf, label='$f_X(x)$', alpha=.5)

# %%
# One advantage of using the density is therefore that the shape and amplitude
# of the histogram does not depend on the size of the bins. Consider an
# extreme case where the bins do not have the same width. In this example, the
# bins below ``x=-1.25`` are six times wider than the rest of the bins. By
# normalizing by density, we preserve the shape of the distribution, whereas if
# we do not, then the wider bins have much higher counts than the thinner bins:

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')
dx = 0.1
xbins = np.hstack([np.arange(-4, -1.25, 6*dx), np.arange(-1.25, 4, dx)])
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label='Counts')
ax['False'].plot(xpdf, pdf * len(xdata) * dx, label=r'$N\,f_X(x)\,\delta x_0$')
ax['False'].set_ylabel('Count per bin')
ax['False'].set_xlabel('x bins [V]')
ax['False'].set(xlabel='x [V]', ylabel='Count per bin', title="density=False")

# add the bin widths on the minor axes to highlight irregularity
ax['False'].set_xticks(xbins, minor=True)
ax['False'].legend()

ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label='density')
ax['True'].plot(xpdf, pdf, label='$f_X(x)$')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].set(xlabel='x [$V$]', ylabel='Probability density [$V^{-1}$]',
title="density=True")
ax['False'].set_xticks(xbins, minor=True)
ax['True'].legend()


# %%
# Similarly, if we want to compare histograms with different bin widths, we may
# want to use ``density=True``:
# Different bin widths
# --------------------
#
# Here we use normalization to compare histograms with binwidths of 0.1, 0.4, and 1.2:

fig, ax = plt.subplot_mosaic([['False', 'True']], layout='constrained')

fig.suptitle("Comparing histograms with different bin widths")
# expected PDF
ax['True'].plot(xpdf, pdf, '--', label='$f_X(x)$', color='k')

for nn, dx in enumerate([0.1, 0.4, 1.2]):
xbins = np.arange(-4, 4, dx)
# expected histogram:
ax['False'].plot(xpdf, pdf*1000*dx, '--', color=f'C{nn}')
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step')

ax['True'].hist(xdata, bins=xbins, density=True, histtype='step', label=dx)
ax['False'].plot(xpdf, pdf*1000*dx, '--', color=f'C{nn}', alpha=.5)
ax['False'].hist(xdata, bins=xbins, density=False, histtype='step', label=dx)

# Labels:
ax['False'].set_xlabel('x bins [$V$]')
ax['False'].set_ylabel('Count per bin')
ax['True'].set_ylabel('Probability density [$V^{-1}$]')
ax['True'].set_xlabel('x bins [$V$]')
ax['True'].legend(fontsize='small', title='bin width:')
ax['True'].hist(xdata, bins=xbins, density=True, histtype='step')

ax['False'].set(xlabel='x [$V$]', ylabel='Count per bin',
title="density=False")
ax['True'].set(xlabel='x [$V$]', ylabel='Probability density [$V^{-1}$]',
title='density=True')
ax['False'].legend(fontsize='small', title='bin width:')
# %%
# Sometimes people want to normalize so that the sum of counts is one. This is
# analogous to a `probability mass function
# <https://en.wikipedia.org/wiki/Probability_mass_function>`_ for a discrete
# variable where the sum of probabilities for all the values equals one. Using
# ``hist``, we can get this normalization if we set the *weights* to 1/N.
# Note that the amplitude of this normalized histogram still depends on
# width and/or number of the bins:
# Populations of different sizes
# ------------------------------
#
# Here we compare the distribution of ``xdata`` with a population of 1000, and
# ``xdata2`` with 100 members. We demonstrate using *density* to generate the
# probability density function(`pdf`_) and *weight* to generate an analog to the
# probability mass function (`pmf`_).
#
# .. _pdf: https://en.wikipedia.org/wiki/Probability_density_function
# .. _pmf: https://en.wikipedia.org/wiki/Probability_mass_function

fig, ax = plt.subplots(layout='constrained', figsize=(3.5, 3))
xdata2 = rng.normal(size=100)

for nn, dx in enumerate([0.1, 0.4, 1.2]):
xbins = np.arange(-4, 4, dx)
ax.hist(xdata, bins=xbins, weights=1/len(xdata) * np.ones(len(xdata)),
histtype='step', label=f'{dx}')
ax.set_xlabel('x bins [$V$]')
ax.set_ylabel('Bin count / N')
ax.legend(fontsize='small', title='bin width:')
fig, ax = plt.subplot_mosaic([['no_norm', 'density', 'weight']], layout='constrained')

# %%
# The value of normalizing histograms is comparing two distributions that have
# different sized populations. Here we compare the distribution of ``xdata``
# with a population of 1000, and ``xdata2`` with 100 members.
fig.suptitle("Comparing histograms of populations of different sizes")

xdata2 = rng.normal(size=100)
xbins = np.arange(-4, 4, 0.25)

fig, ax = plt.subplot_mosaic([['no_norm', 'density', 'weight']],
layout='constrained', figsize=(8, 4))
for xd in [xdata, xdata2]:
ax['no_norm'].hist(xd, bins=xbins, histtype='step')
ax['density'].hist(xd, bins=xbins, histtype='step', density=True)
ax['weight'].hist(xd, bins=xbins, histtype='step', weights=np.ones(len(xd))/len(xd),
label=f'N={len(xd)}')

xbins = np.arange(-4, 4, 0.25)

ax['no_norm'].hist(xdata, bins=xbins, histtype='step')
ax['no_norm'].hist(xdata2, bins=xbins, histtype='step')
ax['no_norm'].set_ylabel('Counts')
ax['no_norm'].set_xlabel('x bins [$V$]')
ax['no_norm'].set_title('No normalization')

ax['density'].hist(xdata, bins=xbins, histtype='step', density=True)
ax['density'].hist(xdata2, bins=xbins, histtype='step', density=True)
ax['density'].set_ylabel('Probability density [$V^{-1}$]')
ax['density'].set_title('Density=True')
ax['density'].set_xlabel('x bins [$V$]')

ax['weight'].hist(xdata, bins=xbins, histtype='step',
weights=1 / len(xdata) * np.ones(len(xdata)),
label='N=1000')
ax['weight'].hist(xdata2, bins=xbins, histtype='step',
weights=1 / len(xdata2) * np.ones(len(xdata2)),
label='N=100')
ax['weight'].set_xlabel('x bins [$V$]')
ax['weight'].set_ylabel('Counts / N')
ax['no_norm'].set(xlabel='x [$V$]', ylabel='Counts', title='No normalization')
ax['density'].set(xlabel='x [$V$]',
ylabel='Probability density [$V^{-1}$]', title='Density=True')
ax['weight'].set(xlabel='x bins [$V$]', ylabel='Counts / N', title='Weight = 1/N')

ax['weight'].legend(fontsize='small')
ax['weight'].set_title('Weight = 1/N')

plt.show()

# %%
#
# .. tags:: plot-type: histogram
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.axes.Axes.hist` / `matplotlib.pyplot.hist`
# - `matplotlib.axes.Axes.set_title`
# - `matplotlib.axes.Axes.set_xlabel`
# - `matplotlib.axes.Axes.set_ylabel`
# - `matplotlib.axes.Axes.set`
# - `matplotlib.axes.Axes.legend`
#
Loading