Skip to content

Backport PR #29407 on branch v3.10.x (DOC: Improve log scale example) #29436

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 65 additions & 29 deletions galleries/examples/scales/log_demo.py
Original file line number Diff line number Diff line change
@@ -1,47 +1,83 @@
"""
========
Log Demo
========
=========
Log scale
=========

Examples of plots with logarithmic axes.

You can set the x/y axes to be logarithmic by passing "log" to `~.Axes.set_xscale` /
`~.Axes.set_yscale`.

Convenience functions ``semilogx``, ``semilogy``, and ``loglog``
----------------------------------------------------------------
Since plotting data on semi-logarithmic or double-logarithmic scales is very common,
the functions `~.Axes.semilogx`, `~.Axes.semilogy`, and `~.Axes.loglog` are shortcuts
for setting the scale and plotting data; e.g. ``ax.semilogx(x, y)`` is equivalent to
``ax.set_xscale('log'); ax.plot(x, y)``.
"""

import matplotlib.pyplot as plt
import numpy as np

# Data for plotting
t = np.arange(0.01, 20.0, 0.01)

# Create figure
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

# log y axis
ax1.semilogy(t, np.exp(-t / 5.0))
ax1.set(title='semilogy')
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, layout='constrained', figsize=(7, 7/3))
# log x axis
t = np.arange(0.01, 10.0, 0.01)
ax1.semilogx(t, np.sin(2 * np.pi * t))
ax1.set(title='semilogx')
ax1.grid()
ax1.grid(which="minor", color="0.9")

# log x axis
ax2.semilogx(t, np.sin(2 * np.pi * t))
ax2.set(title='semilogx')
# log y axis
x = np.arange(4)
ax2.semilogy(4*x, 10**x, 'o--')
ax2.set(title='semilogy')
ax2.grid()
ax2.grid(which="minor", color="0.9")

# log x and y axis
ax3.loglog(t, 20 * np.exp(-t / 10.0))
ax3.set_xscale('log', base=2)
ax3.set(title='loglog base 2 on x')
x = np.array([1, 10, 100, 1000])
ax3.loglog(x, 5 * x, 'o--')
ax3.set(title='loglog')
ax3.grid()
ax3.grid(which="minor", color="0.9")

# %%
# Logarithms with other bases
# ---------------------------
# By default, the log scale is to the base 10. One can change this via the *base*
# parameter.
fig, ax = plt.subplots()
ax.bar(["L1 cache", "L2 cache", "L3 cache", "RAM", "SSD"],
[32, 1_000, 32_000, 16_000_000, 512_000_000])
ax.set_yscale('log', base=2)
ax.set_yticks([1, 2**10, 2**20, 2**30], labels=['kB', 'MB', 'GB', 'TB'])
ax.set_title("Typical memory sizes")
ax.yaxis.grid()

# %%
# Dealing with negative values
# ----------------------------
# Non-positive values cannot be displayed on a log scale. The scale has two options
# to handle these. Either mask the values so that they are ignored, or clip them
# to a small positive value. Which one is more suited depends on the type of the
# data and the visualization.
#
# The following example contains errorbars going negative. If we mask these values,
# the bar vanishes, which is not desirable. In contrast, clipping makes the value
# small positive (but well below the used scale) so that the error bar is drawn
# to the edge of the Axes.
x = np.linspace(0.0, 2.0, 10)
y = 10**x
yerr = 1.75 + 0.75*y

# With errorbars: clip non-positive values
# Use new data for plotting
x = 10.0**np.linspace(0.0, 2.0, 20)
y = x**2.0
fig, (ax1, ax2) = plt.subplots(1, 2, layout="constrained", figsize=(6, 3))
fig.suptitle("errorbars going negative")
ax1.set_yscale("log", nonpositive='mask')
ax1.set_title('nonpositive="mask"')
ax1.errorbar(x, y, yerr=yerr, fmt='o', capsize=5)

ax4.set_xscale("log", nonpositive='clip')
ax4.set_yscale("log", nonpositive='clip')
ax4.set(title='Errorbars go negative')
ax4.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y)
# ylim must be set after errorbar to allow errorbar to autoscale limits
ax4.set_ylim(bottom=0.1)
ax2.set_yscale("log", nonpositive='clip')
ax2.set_title('nonpositive="clip"')
ax2.errorbar(x, y, yerr=yerr, fmt='o', capsize=5)

fig.tight_layout()
plt.show()
23 changes: 0 additions & 23 deletions galleries/examples/scales/semilogx_demo.py

This file was deleted.

Loading