Skip to content

PiecewiseLinearNorm #5061

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions doc/users/whats_new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,13 @@ Added a :code:`pivot` kwarg to :func:`~mpl_toolkits.mplot3d.Axes3D.quiver`
that controls the pivot point around which the quiver line rotates. This also
determines the placement of the arrow head along the quiver line.

Offset Normalizers for Colormaps
````````````````````````````````
Paul Hobson/Geosyntec Consultants added a new :class:`matplotlib.colors.PiecewiseLinearNorm`
class with the help of Till Stensitzki. This is particularly useful when using a
diverging colormap on data that are asymetrically centered around a logical value
(e.g., 0 when data range from -2 to 4).

New backend selection
---------------------

Expand Down
164 changes: 164 additions & 0 deletions lib/matplotlib/colors.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
import numpy as np
from numpy import ma
import matplotlib.cbook as cbook
import operator

cnames = {
'aliceblue': '#F0F8FF',
Expand Down Expand Up @@ -225,6 +226,7 @@ def rgb2hex(rgb):
a = '#%02x%02x%02x' % tuple([int(np.round(val * 255)) for val in rgb[:3]])
return a


hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z")


Expand Down Expand Up @@ -963,6 +965,168 @@ def scaled(self):
return (self.vmin is not None and self.vmax is not None)


class PiecewiseLinearNorm(Normalize):
"""
A subclass of matplotlib.colors.Normalize.

Normalizes data into the ``[0.0, 1.0]`` interval.
"""
# TODO rewrite the internals of this class once we support OrderedDicts
# i.e. after we drop support for python 2.6
def __init__(self, stops=None):
"""Normalize data linearly between the defined stop points.
Use this as more generic form of ``DivergingNorm``

Parameters
----------
stops : dict-like, optional
Accepts a dictionary or anything that can get converted to a
dictionary which maps the space [0.0, 1.0] to data point, i.e. key
value pairs.

Examples
--------
Note this example is equivalent to the DivergingNorm example.
>>> import matplotlib.colors as mcolors
>>> offset = mcolors.PiecewiseLinearNorm({0.: -2., 0.5: 0., 1.=4.})
>>> data = [-2., -1., 0., 1., 2., 3., 4.]
>>> offset(data)
array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0])

"""
self._set_stops(stops)

@property
def vmin(self):
try:
if self._stops[0][0] == 0:
return self._stops[0][1]
except IndexError:
return None

@vmin.setter
def vmin(self, vmin):
try:
if self._stops[0][0] == 0:
self._stops[0] = (self._stops[0][0], vmin)
return
except IndexError:
pass
self.append_stop(0., vmin)

@property
def vmax(self):
try:
if self._stops[-1][0] == 1:
return self._stops[-1][1]
except IndexError:
return None

@vmax.setter
def vmax(self, vmax):
try:
if self._stops[-1][0] == 1:
self._stops[-1] = (self._stops[-1][0], vmax)
return
except IndexError:
pass
self.append_stop(1., vmax)

# TODO Change this to a property when we drop 2.6 and use Ordered Dicts
def _set_stops(self, stops):
if not stops:
self._stops = []
return

stops = dict(stops)
self._stops = sorted(stops.items(), key=operator.itemgetter(0))
map_points, data_points = zip(*self._stops)
if not np.all(np.diff(data_points) > 0):
raise ValueError("stops must increase monotonically")

def append_stop(self, cmap_fraction, data_value):
i = -1
for i, (map_point, data_point) in enumerate(self._stops):
if map_point >= cmap_fraction:
d1 = data_point # the current index
break
else:
i += 1 # the index to insert before
d1 = np.inf

if i > 0:
d0 = self._stops[i-1][1]
else:
d0 = -np.inf

if not (d0 < data_value < d1):
raise ValueError(('Stops must increase monotonically, due to the '
+ 'stops already set, the cmap_fraction specified'
+ ' (%f) means that the data_value must lie '
+ 'between %f and %f, but %f given') %
(cmap_fraction, d0, d1, data_value))

self._stops.insert(i, (cmap_fraction, data_value))

def __call__(self, value, clip=None):
"""Map value to the interval [0, 1]. The clip argument is unused."""

result, is_scalar = self.process_value(value)
self.autoscale_None(result)

map_points, data_points = zip(*self._stops)
result = ma.masked_array(np.interp(result, data_points, map_points),
mask=ma.getmask(result))
if is_scalar:
result = np.atleast_1d(result)[0]
return result

def autoscale_None(self, A):
"""Ensures we have the upper and lower bounds set, using the data A"""
if len(self._stops) == 0 or self._stops[0][0] != 0:
self.append_stop(0., ma.min(A))
if self._stops[-1][0] != 1:
self.append_stop(1., ma.max(A))


class DivergingNorm(PiecewiseLinearNorm):
def __init__(self, vmin=None, vcenter=None, vmax=None):
"""Normalize data with an offset midpoint

Useful when mapping data unequally centered around a conceptual
center, e.g., data that range from -2 to 4, with 0 as the midpoint.

Parameters
----------
vmin : float, optional
The data value that defines ``0.0`` in the normalized data.
Defaults to the min value of the dataset.

vcenter : float, optional
The data value that defines ``0.5`` in the normalized data.
Defaults to halfway between *vmin* and *vmax*.

vmax : float, optional
The data value that defines ``1.0`` in the normalized data.
Defaults to the the max value of the dataset.

Examples
--------
>>> import matplotlib.colors as mcolors
>>> offset = mcolors.PiecewiseLinearNorm(vmin=-2., vcenter=0., vmax=4.)
>>> data = [-2., -1., 0., 1., 2., 3., 4.]
>>> offset(data)
array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0])
stops = {}
if vmin is not None:
stops[0.] = vmin
if vcenter is not None:
stops[0.5] = vcenter
if vmax is not None:
stops[1.] = vmax
super(DivergingNorm, self).__init__(stops)


class LogNorm(Normalize):
"""
Normalize a given value to the 0-1 range on a log scale
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading