Skip to content

Colorbar only tut #8600

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
May 29, 2017
78 changes: 0 additions & 78 deletions examples/api/colorbar_only.py

This file was deleted.

109 changes: 109 additions & 0 deletions tutorials/colors/colorbar_only.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
"""
=============================
Customized Colorbars Tutorial
=============================

This tutorial shows how to build colorbars without an attached plot.

Customized Colorbars
====================

:class:`~matplotlib.colorbar.ColorbarBase` derives from
:mod:`~matplotlib.cm.ScalarMappable` and puts a colorbar in a specified axes,
so it has everything needed for a standalone colorbar. It can be used as is to
make a colorbar for a given colormap and does not need a mappable object like
an image. In this tutorial we will explore what can be done with standalone
colorbar.

Basic continuous colorbar
-------------------------

Set the colormap and norm to correspond to the data for which the colorbar
will be used. Then create the colorbar by calling
:class:`~matplotlib.colorbar.ColorbarBase` and specify axis, colormap, norm
and orientation as parameters. Here we create a basic continuous colorbar
with ticks and labels. More information on colorbar api can be found
`here <https://matplotlib.org/api/colorbar_api.html>`.
"""

import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots()

cmap = mpl.cm.cool
norm = mpl.colors.Normalize(vmin=5, vmax=10)

cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
orientation='horizontal')
cb1.set_label('Some Units')
fig.show()

###############################################################################
# Discrete intervals colorbar
# ---------------------------
#
# The second example illustrates the use of a
# :class:`~matplotlib.colors.ListedColormap` which generates a colormap from a
# set of listed colors, :func:`colors.BoundaryNorm` which generates a colormap
# index based on discrete intervals and extended ends to show the "over" and
# "under" value colors. Over and under are used to display data outside of the
# normalized [0,1] range. Here we pass colors as gray shades as a string
# encoding a float in the 0-1 range.
#
# If a :class:`~matplotlib.colors.ListedColormap` is used, the length of the
# bounds array must be one greater than the length of the color list. The
# bounds must be monotonically increasing.
#
# This time we pass some more arguments in addition to previous arguments to
# :class:`~matplotlib.colorbar.ColorbarBase`. For the out-of-range values to
# display on the colorbar, we have to use the *extend* keyword argument. To use
# *extend*, you must specify two extra boundaries. Finally spacing argument
# ensures that intervals are shown on colorbar proportionally.

fig, ax = plt.subplots()

cmap = mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])
cmap.set_over('0.25')
cmap.set_under('0.75')

bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb2 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
boundaries=[0] + bounds + [13],
extend='both',
ticks=bounds,
spacing='proportional',
orientation='horizontal')
cb2.set_label('Discrete intervals, some other units')
fig.show()

###############################################################################
# Colorbar with custom extension lengths
# --------------------------------------
#
# Here we illustrate the use of custom length colorbar extensions, used on a
# colorbar with discrete intervals. To make the length of each extension same
# as the length of the interior colors, use ``extendfrac='auto'``.

fig, ax = plt.subplots()

cmap = mpl.colors.ListedColormap(['royalblue', 'cyan',
'yellow', 'orange'])
cmap.set_over('red')
cmap.set_under('blue')

bounds = [-1.0, -0.5, 0.0, 0.5, 1.0]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb3 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
boundaries=[-10] + bounds + [10],
extend='both',
extendfrac='auto',
ticks=bounds,
spacing='uniform',
orientation='horizontal')
cb3.set_label('Custom extension lengths, some other units')
fig.show()