Skip to content
78 changes: 0 additions & 78 deletions examples/api/colorbar_only.py

This file was deleted.

109 changes: 109 additions & 0 deletions tutorials/colors/colorbar_only.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
"""
=============================
Customized Colorbars Tutorial
=============================

This tutorial shows how to build colorbars without an attached plot.

Customized Colorbars
====================

:class:`~matplotlib.colorbar.ColorbarBase` derives from
:mod:`~matplotlib.cm.ScalarMappable` and puts a colorbar in a specified axes,
so it has everything needed for a standalone colorbar. It can be used as is to
make a colorbar for a given colormap and does not need a mappable object like
an image. In this tutorial we will explore what can be done with standalone
colorbar.

Basic continuous colorbar
-------------------------

Set the colormap and norm to correspond to the data for which the colorbar
will be used. Then create the colorbar by calling
:class:`~matplotlib.colorbar.ColorbarBase` and specify axis, colormap, norm
and orientation as parameters. Here we create a basic continuous colorbar
with ticks and labels. More information on colorbar api can be found
`here <https://matplotlib.org/api/colorbar_api.html>`.
"""

import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots()

cmap = mpl.cm.cool
norm = mpl.colors.Normalize(vmin=5, vmax=10)

cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
orientation='horizontal')
cb1.set_label('Some Units')
fig.show()

###############################################################################
# Discrete intervals colorbar
# ---------------------------
#
# The second example illustrates the use of a
# :class:`~matplotlib.colors.ListedColormap` which generates a colormap from a
# set of listed colors, :func:`colors.BoundaryNorm` which generates a colormap
# index based on discrete intervals and extended ends to show the "over" and
# "under" value colors. Over and under are used to display data outside of the
# normalized [0,1] range. Here we pass colors as gray shades as a string
# encoding a float in the 0-1 range.
#
# If a :class:`~matplotlib.colors.ListedColormap` is used, the length of the
# bounds array must be one greater than the length of the color list. The
# bounds must be monotonically increasing.
#
# This time we pass some more arguments in addition to previous arguments to
# :class:`~matplotlib.colorbar.ColorbarBase`. For the out-of-range values to
# display on the colorbar, we have to use the *extend* keyword argument. To use
# *extend*, you must specify two extra boundaries. Finally spacing argument
# ensures that intervals are shown on colorbar proportionally.

fig, ax = plt.subplots()

cmap = mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])
cmap.set_over('0.25')
cmap.set_under('0.75')

bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb2 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
boundaries=[0] + bounds + [13],
extend='both',
ticks=bounds,
spacing='proportional',
orientation='horizontal')
cb2.set_label('Discrete intervals, some other units')
fig.show()

###############################################################################
# Colorbar with custom extension lengths
# --------------------------------------
#
# Here we illustrate the use of custom length colorbar extensions, used on a
# colorbar with discrete intervals. To make the length of each extension same
# as the length of the interior colors, use ``extendfrac='auto'``.

fig, ax = plt.subplots()

cmap = mpl.colors.ListedColormap(['royalblue', 'cyan',
'yellow', 'orange'])
cmap.set_over('red')
cmap.set_under('blue')

bounds = [-1.0, -0.5, 0.0, 0.5, 1.0]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cb3 = mpl.colorbar.ColorbarBase(ax, cmap=cmap,
norm=norm,
boundaries=[-10] + bounds + [10],
extend='both',
extendfrac='auto',
ticks=bounds,
spacing='uniform',
orientation='horizontal')
cb3.set_label('Custom extension lengths, some other units')
fig.show()