A reasonable mental model for `count_nonzero` is `(x != 0).sum(...)`. But if fails in this case: ``` >>> x = np.arange(3) >>> (x != 0).sum(axis=()) array([0, 1, 1]) >>> np.count_nonzero(x != 0, axis=()) 2 ``` `axis == ()` should mean `(x == 0).astype(int)`