@@ -372,7 +372,7 @@ def roc_auc_score(
372
372
multi_class = "raise" ,
373
373
labels = None ,
374
374
):
375
- """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
375
+ """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) \
376
376
from prediction scores.
377
377
378
378
Note: this implementation can be used with binary, multiclass and
@@ -471,6 +471,16 @@ class scores must correspond to the order of ``labels``,
471
471
Returns
472
472
-------
473
473
auc : float
474
+ Area Under the Curve score.
475
+
476
+ See Also
477
+ --------
478
+ average_precision_score : Area under the precision-recall curve.
479
+ roc_curve : Compute Receiver operating characteristic (ROC) curve.
480
+ RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
481
+ (ROC) curve given an estimator and some data.
482
+ RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
483
+ (ROC) curve given the true and predicted values.
474
484
475
485
References
476
486
----------
@@ -493,15 +503,6 @@ class scores must correspond to the order of ``labels``,
493
503
Machine Learning, 45(2), 171-186.
494
504
<http://link.springer.com/article/10.1023/A:1010920819831>`_
495
505
496
- See Also
497
- --------
498
- average_precision_score : Area under the precision-recall curve.
499
- roc_curve : Compute Receiver operating characteristic (ROC) curve.
500
- RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
501
- (ROC) curve given an estimator and some data.
502
- RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
503
- (ROC) curve given the true and predicted values.
504
-
505
506
Examples
506
507
--------
507
508
Binary case:
0 commit comments