Skip to content

Commit 0f67a6c

Browse files
madinakMadina Kasymovaadrinjalali
authored andcommitted
DOC Ensures that roc_auc_score passes numpydoc validation (scikit-learn#23505)
* DOC Ensures that roc_auc_score passes numpydoc validation * apply review Co-authored-by: Madina Kasymova <madina.kasymova@dida.do> Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
1 parent 3abb368 commit 0f67a6c

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

sklearn/metrics/_ranking.py

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -372,7 +372,7 @@ def roc_auc_score(
372372
multi_class="raise",
373373
labels=None,
374374
):
375-
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
375+
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) \
376376
from prediction scores.
377377
378378
Note: this implementation can be used with binary, multiclass and
@@ -471,6 +471,16 @@ class scores must correspond to the order of ``labels``,
471471
Returns
472472
-------
473473
auc : float
474+
Area Under the Curve score.
475+
476+
See Also
477+
--------
478+
average_precision_score : Area under the precision-recall curve.
479+
roc_curve : Compute Receiver operating characteristic (ROC) curve.
480+
RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
481+
(ROC) curve given an estimator and some data.
482+
RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
483+
(ROC) curve given the true and predicted values.
474484
475485
References
476486
----------
@@ -493,15 +503,6 @@ class scores must correspond to the order of ``labels``,
493503
Machine Learning, 45(2), 171-186.
494504
<http://link.springer.com/article/10.1023/A:1010920819831>`_
495505
496-
See Also
497-
--------
498-
average_precision_score : Area under the precision-recall curve.
499-
roc_curve : Compute Receiver operating characteristic (ROC) curve.
500-
RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
501-
(ROC) curve given an estimator and some data.
502-
RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
503-
(ROC) curve given the true and predicted values.
504-
505506
Examples
506507
--------
507508
Binary case:

sklearn/tests/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,6 @@
4040
"sklearn.metrics._plot.precision_recall_curve.plot_precision_recall_curve",
4141
"sklearn.metrics._ranking.coverage_error",
4242
"sklearn.metrics._ranking.dcg_score",
43-
"sklearn.metrics._ranking.roc_auc_score",
4443
"sklearn.metrics._ranking.roc_curve",
4544
"sklearn.metrics._ranking.top_k_accuracy_score",
4645
"sklearn.metrics._regression.mean_pinball_loss",

0 commit comments

Comments
 (0)