Skip to content

πŸ“¦ BRoadly Useful Convenient and Efficient R functions that BRing Users Concise and Elegant R data analyses.

License

Notifications You must be signed in to change notification settings

psychbruce/bruceR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

bruceR

BRoadly Useful Convenient and Efficient R functions that BRing Users Concise and Elegant R data analyses.

This package includes easy-to-use functions for:

  1. Basic R programming (e.g., set working directory to the path of currently opened file; import/export data from/to files in any format; print tables to Microsoft Word);
  2. Multivariate computation (e.g., compute scale sums/means/... with reverse scoring);
  3. Reliability analyses and factor analyses (PCA, EFA, CFA);
  4. Descriptive statistics and correlation analyses;
  5. t-test, multi-factor analysis of variance (ANOVA), simple-effect analysis, and post-hoc multiple comparison;
  6. Tidy report of statistical models (to R Console and Microsoft Word);
  7. Mediation and moderation analyses (PROCESS);
  8. Additional toolbox for statistics and graphics.

CRAN-Version GitHub-Version R-CMD-check CRAN-Downloads GitHub-Stars

Author

Han-Wu-Shuang (Bruce) Bao εŒ…ε―’ε΄ιœœ

πŸ“¬ baohws@foxmail.com

πŸ“‹ psychbruce.github.io

Citation

  • Bao, H.-W.-S. (2021). bruceR: Broadly useful convenient and efficient R functions. https://CRAN.R-project.org/package=bruceR
    • Note: This is the original citation. Please refer to the information when you library(bruceR) for the APA-7 format of the version you installed.

User Guide

NEWS (Changelog)

Chinese Documentation for bruceR: I. Overview

Chinese Documentation for bruceR: II. FAQ

Installation

Please always set dep=TRUE to install ALL package dependencies for FULL features!

## Method 1: Install from CRAN
install.packages("bruceR", dep=TRUE)  # dependencies=TRUE

## Method 2: Install from GitHub
install.packages("devtools")
devtools::install_github("psychbruce/bruceR", dep=TRUE, force=TRUE)

Tips:

  • Good practices:
    • Restart RStudio before installation.
    • Update R to the latest version (v4.0+).
    • Install Rtools.exe (it is not an R package) on Windows system.
  • If you see "Do you want to restart R prior to install?", choose "Yes" for the first time and then choose "No".
  • If you fail to install, please carefully read the warning messages and find out the R package(s) causing the failure, manually uninstall and reinstall these R package(s), and then retry the main installation.

Package Dependency

bruceR depends on many important R packages.

Loading bruceR with library(bruceR) will also load these R packages for you:

  • [Data]:

    • data.table: Advanced data.frame with higher efficiency.
    • dplyr: Data manipulation and processing.
    • tidyr: Data cleaning and reshaping.
    • stringr: Toolbox for string operation (with regular expressions).
    • ggplot2: Data visualization.
  • [Stat]:

    • emmeans: Estimates of marginal means and multiple contrasts.
    • lmerTest: Linear mixed effects modeling (multilevel modeling).
    • effectsize: Effect sizes and standardized parameters.
    • performance: Performance of regression models.
    • interactions: Interaction and simple effect analyses.

Main Functions in bruceR

  1. Basic R Programming

    • cc() (suggested)
    • set.wd() (alias: set_wd()) (suggested)
    • import(), export() (suggested)
    • pkg_depend(), pkg_install_suggested()
    • formatF(), formatN()
    • print_table()
    • Print(), Glue(), Run()
    • %^%
    • %notin%
    • %allin%, %anyin%, %nonein%, %partin%
  2. Multivariate Computation

    • add(), added() (suggested)
    • .sum(), .mean() (suggested)
    • SUM(), MEAN(), STD(), MODE(), COUNT(), CONSEC()
    • RECODE(), RESCALE()
    • LOOKUP()
  3. Reliability and Factor Analyses

    • Alpha()
    • EFA() / PCA()
    • CFA()
  4. Descriptive Statistics and Correlation Analyses

    • Describe()
    • Freq()
    • Corr()
    • cor_diff()
    • cor_multilevel()
  5. T-Test, Multi-Factor ANOVA, Simple-Effect Analysis, and Post-Hoc Multiple Comparison

    • TTEST()
    • MANOVA()
    • EMMEANS()
  6. Tidy Report of Regression Models

    • model_summary() (suggested)
    • lavaan_summary()
    • GLM_summary()
    • HLM_summary()
    • HLM_ICC_rWG()
    • regress()
  7. Mediation and Moderation Analyses

    • PROCESS() (suggested)
    • med_summary()
  8. Additional Toolbox for Statistics and Graphics

    • grand_mean_center()
    • group_mean_center()
    • ccf_plot()
    • granger_test()
    • granger_causality()
    • theme_bruce()
    • show_colors()

Function Output

For some functions, the results can be saved to Microsoft Word using the file argument.

bruceR Function Output: R Console Output: MS Word
print_table() √ √ (basic usage)
Describe() √ √
Freq() √ √
Corr() √ √ (suggested)
Alpha() √ (unnecessary)
EFA() / PCA() √ √
CFA() √ √
TTEST() √ √
MANOVA() √ √
EMMEANS() √ √
PROCESS() √ √ (partial)
model_summary() √ √ (suggested)
med_summary() √ √
lavaan_summary() √ √
GLM_summary() √
HLM_summary() √
HLM_ICC_rWG() √ (unnecessary)
granger_test() √ √
granger_causality() √ √

Examples:

## Correlation analysis (and descriptive statistics)
Corr(airquality, file="cor.doc")

## Regression analysis
lm1 = lm(Temp ~ Month + Day, data=airquality)
lm2 = lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(list(lm1, lm2), file="reg.doc")
model_summary(list(lm1, lm2), std=TRUE, file="reg_std.doc")

Learn More From Help Pages

library(bruceR)

## Overview
help("bruceR")
help(bruceR)
?bruceR

## See help pages of functions
## (use `?function` or `help(function)`)
?cc
?add
?.mean
?set.wd
?import
?export
?Describe
?Freq
?Corr
?Alpha
?MEAN
?RECODE
?TTEST
?MANOVA
?EMMEANS
?PROCESS
?model_summary
?lavaan_summary
?GLM_summary
?HLM_summary
...

Releases

No releases published

Packages

No packages published

Languages