From 21789c05f93ae8dd94cc62945eba0b9637d8b97f Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 8 Jan 2024 10:22:40 +0100 Subject: [PATCH 0001/1641] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#28081) Co-authored-by: Lock file bot --- ...latest_conda_forge_mkl_linux-64_conda.lock | 16 +++++----- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 24 +++++++------- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 6 ++-- ...st_pip_openblas_pandas_linux-64_conda.lock | 8 ++--- ...pylatest_pip_scipy_dev_linux-64_conda.lock | 12 +++---- ...onda_defaults_openblas_linux-64_conda.lock | 4 +-- .../pymin_conda_forge_mkl_win-64_conda.lock | 12 +++---- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 14 ++++---- build_tools/circle/doc_linux-64_conda.lock | 32 +++++++++---------- .../doc_min_dependencies_linux-64_conda.lock | 12 +++---- 10 files changed, 70 insertions(+), 70 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 188936db093a6..422dc6f1f9626 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 06a1abd91fe199d0e020e5ac38efba4bc3d4a7752e01cf91e4b046c5d0ba8a93 +# input_hash: 7aa55d66dfbd0f6267a9aff8c750d1e9f42cd339726c8f9c4d1299341b064849 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -52,7 +52,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.3-h59595ed_0.conda#b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda#7dbaa197d7ba6032caf7ae7f32c1efa0 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.0-hd590300_1.conda#603827b39ea2b835268adb8c821b8570 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.42.2-h59595ed_0.conda#700edd63ccd5fc66b70b1c028cea9a68 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.0-h59595ed_0.conda#6b4b43013628634b6cfdee6b74fd696b https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rdma-core-28.9-h59595ed_1.conda#aeffb7c06b5f65e55e6c637408dc4100 https://conda.anaconda.org/conda-forge/linux-64/re2-2023.03.02-h8c504da_0.conda#206f8fa808748f6e90599c3368a1114e @@ -152,7 +152,7 @@ https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b46 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.11.0-h00ab1b0_0.conda#fde515afbbe6e36eb4564965c20b1058 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.2.0-pyha21a80b_0.conda#978d03388b62173b8e6f79162cf52b86 @@ -175,31 +175,31 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.7-default_hb11cfb5 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.12.0-hac9eb74_1.conda#0dee716254497604762957076ac76540 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-h5d7e998_0.conda#d8edd0e29db6fb6b6988e1a28d35d994 https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.2.1-h84fe81f_16997.conda#a7ce56d5757f5b57e7daabe703ade5bb -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.1.0-py311ha6c5da5_0.conda#83a988daf5c49e57f7d2086fb6781fe8 +https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py311ha6c5da5_0.conda#a5ccd7f2271f28b7d2de0b02b64e3796 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda#ac902ff3c1c6d750dd0dfc93a974ab74 https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2#dd999d1cc9f79e67dbb855c8924c7984 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py311hb755f60_0.conda#02336abab4cb5dd794010ef53c54bd09 https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.3.14-hf3aad02_1.conda#a968ffa7e9fe0c257628033d393e512f https://conda.anaconda.org/conda-forge/linux-64/blas-1.0-mkl.tar.bz2#349aef876b1d8c9dccae01de20d5b385 -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_0.conda#a068fe1588dda3d29f568d536eeebae7 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_1.conda#1b52a89485ab573a5bb83a5225ff706e https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py311hb755f60_5.conda#e4d262cc3600e70b505a6761d29f6207 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.1.0-pyhd8ed1ab_0.conda#06eb685a3a0b146347a58dda979485da https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.21.0-hb942446_5.conda#07d92ed5403ad7b5c66ffd7d5b8f7e57 -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_0.conda#307cf29b6c19238c17182f30ddaf1a50 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.10.57-h85b1a90_19.conda#0605d3d60857fc07bd6a11e878fe0f08 -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.2-py311h64a7726_0.conda#fd2f142dcd680413b5ede5d0fb799205 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py311h64a7726_0.conda#231eef4f33640338f64ef9ab690ba08d https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-h82b777d_17.conda#4f01e33dbb406085a16a2813ab067e95 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py311h9547e67_0.conda#40828c5b36ef52433e21f89943e09f33 https://conda.anaconda.org/conda-forge/linux-64/libarrow-12.0.1-hb87d912_8_cpu.conda#3f3b11398fe79b578e3c44dd00a44e4a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.conda#e44ccb61b6621bf3f8053ae66eba7397 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.2-py311hf926cbc_0.conda#18f12d27741769ae5432dacce21acc93 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.3-py311h2bb2bab_1.conda#dfde94fef0b419cad560023fa277ef9e https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/linux-64/pytorch-1.13.1-cpu_py311h410fd25_1.conda#ddd2fadddf89e3dc3d541a2537fce010 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.4-py311h64a7726_0.conda#9ac5334f1b5ed072d3dbc342503d7868 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 3f1ea3d25b2ce..d412beaf30789 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: osx-64 -# input_hash: 1c061d421872c406aaefcd63aa475f5decae7806dd07d710dc5d742da72de61a +# input_hash: 02abef27514db5e5119c3cdc253e84a06374c1b308495298b46bdb14dcc52ae9 @EXPLICIT https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h10d778d_5.conda#6097a6ca9ada32699b5fc4312dd6ef18 https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2023.11.17-h8857fd0_0.conda#c687e9d14c49e3d3946d50a413cdbf16 @@ -55,7 +55,7 @@ https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h0dc2134_1.conda#9272 https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda#1442db8f03517834843666c422238c9b https://conda.anaconda.org/conda-forge/osx-64/ld64_osx-64-609-ha20a434_15.conda#4709e6e1ce59f92f822470e16253bae1 https://conda.anaconda.org/conda-forge/osx-64/libcblas-3.9.0-20_osx64_mkl.conda#51089a4865eb4aec2bc5c7468bd07f9f -https://conda.anaconda.org/conda-forge/osx-64/libclang-cpp16-16.0.6-default_h6b1ee41_3.conda#2fc3e465e5c10d3c11e4017cdd1ee5ae +https://conda.anaconda.org/conda-forge/osx-64/libclang-cpp16-16.0.6-default_h6b1ee41_4.conda#0eea849d8d0b489bae1b9ae8656b62fb https://conda.anaconda.org/conda-forge/osx-64/libhiredis-1.0.2-h2beb688_0.tar.bz2#524282b2c46c9dedf051b3bc2ae05494 https://conda.anaconda.org/conda-forge/osx-64/liblapack-3.9.0-20_osx64_mkl.conda#58f08e12ad487fac4a08f90ff0b87aec https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-16.0.6-hbedff68_3.conda#e9356b0807462e8f84c1384a8da539a5 @@ -65,7 +65,7 @@ https://conda.anaconda.org/conda-forge/osx-64/python-3.12.1-h9f0c242_1_cpython.c https://conda.anaconda.org/conda-forge/osx-64/ccache-4.8.1-h28e096f_0.conda#dcc8cc97fdab7a5fad9e1a6bbad9ed0e https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-973.0.1-ha1c5b94_15.conda#c9dbe505cd17a5a4a6a787dbceea2dba https://conda.anaconda.org/conda-forge/noarch/certifi-2023.11.17-pyhd8ed1ab_0.conda#2011bcf45376341dd1d690263fdbc789 -https://conda.anaconda.org/conda-forge/osx-64/clang-16-16.0.6-default_h6b1ee41_3.conda#07654411a331ea916e6f93ae0d8363b7 +https://conda.anaconda.org/conda-forge/osx-64/clang-16-16.0.6-default_h6b1ee41_4.conda#ac26df83ef19d580af4674d46ea68bd8 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 https://conda.anaconda.org/conda-forge/osx-64/cython-3.0.7-py312hede676d_0.conda#89a76a23df8d704d26a3f27e0a1c372d @@ -77,15 +77,15 @@ https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.5-py312h49ebfd2_1.c https://conda.anaconda.org/conda-forge/osx-64/ld64-609-ha02d983_15.conda#1bd5c0a940ecc8946dbe2a5b84290049 https://conda.anaconda.org/conda-forge/osx-64/liblapacke-3.9.0-20_osx64_mkl.conda#124ae8e384268a8da66f1d64114a1eda https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/osx-64/numpy-1.26.2-py312hfd3bce2_0.conda#aba72e40976485051b7567b567336319 +https://conda.anaconda.org/conda-forge/osx-64/numpy-1.26.3-py312he3a82b2_0.conda#cc7cfa90fc5c70a62b788daa71b782ef https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 -https://conda.anaconda.org/conda-forge/osx-64/pillow-10.1.0-py312h0c70c2f_0.conda#50fc3446a464ff986aa4496e1eebf60b +https://conda.anaconda.org/conda-forge/osx-64/pillow-10.2.0-py312h0c70c2f_0.conda#0cc3674239ad12c6836cb4174f106c92 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.2.0-pyha21a80b_0.conda#978d03388b62173b8e6f79162cf52b86 https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 @@ -93,7 +93,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5 https://conda.anaconda.org/conda-forge/osx-64/tornado-6.3.3-py312h104f124_1.conda#6835d4940d6fbd41e1a32d58dfae8f06 https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.conda#cc3260179093918b801e373c6e888e02 https://conda.anaconda.org/conda-forge/osx-64/cctools-973.0.1-h40f6528_15.conda#bc85aa6ab5eea61c47f39015dbe34a88 -https://conda.anaconda.org/conda-forge/osx-64/clang-16.0.6-hac416ee_3.conda#b143a7f213c0d25ced055089a2baef46 +https://conda.anaconda.org/conda-forge/osx-64/clang-16.0.6-hac416ee_4.conda#8c9109ae105a10984b9077899100167a https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.2.0-py312hbf0bb39_0.conda#74190e06053cda7139a0cb71f3e618fd https://conda.anaconda.org/conda-forge/osx-64/coverage-7.4.0-py312h41838bb_0.conda#8fdd619940b64e33b0702cb46d701f6e https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.47.0-py312h41838bb_0.conda#73605f0b5026ee8445b68fceafb53941 @@ -102,7 +102,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2#dd999d1cc9f79e67dbb855c8924c7984 https://conda.anaconda.org/conda-forge/osx-64/scipy-1.11.4-py312heccc6a5_0.conda#b7b422b49ae2e5c8276bffd05f3ba63c https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 -https://conda.anaconda.org/conda-forge/osx-64/clangxx-16.0.6-default_h6b1ee41_3.conda#0cd1aaa751aa374141fa4c802b88674a +https://conda.anaconda.org/conda-forge/osx-64/clangxx-16.0.6-default_h6b1ee41_4.conda#c5ed5a7857f12a3b8117f743e081286f https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.2-py312h302682c_0.conda#6a3b7c29d663a9cda13afb8f2638cc46 https://conda.anaconda.org/conda-forge/osx-64/pandas-2.1.4-py312haf8ecfc_0.conda#cb889a75192ef98a17c3f431f6518dd2 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.0.1-py312h674694f_1.conda#e5b9c0f8b5c367467425ff34353ef761 @@ -112,12 +112,12 @@ https://conda.anaconda.org/conda-forge/noarch/compiler-rt_osx-64-16.0.6-ha38d28d https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.2-py312hb401068_0.conda#926f479dcab7d6d26bba7fe39f67e3b2 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-16.0.6-ha38d28d_2.conda#3b9e8c5c63b8e86234f499490acd85c2 -https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_7.conda#f93823bbbe0302466f65b8ae6094dfd7 -https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_7.conda#fc6c3256ab948da5fa0b34b47bf90d27 +https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_8.conda#2e694b8880599d19aec8e489eb01580f +https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_8.conda#831779e455d39ed7e8911be6e7d02814 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.7.0-h282daa2_0.conda#4652f33fe8d895f61177e2783b289377 -https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-16.0.6-h6d92fbe_7.conda#d142c2ab0739a3991585ae9615ba0f87 +https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-16.0.6-h6d92fbe_8.conda#f2f85938b8d78c2380657efd92194490 https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-12.3.0-h18f7dce_1.conda#436af2384c47aedb94af78a128e174f1 -https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-16.0.6-hb91bd55_7.conda#1d7cf5384b8fc42ec6c19659fa8ec1f8 +https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-16.0.6-hb91bd55_8.conda#abc99f4ac92e65c4f829e4320ea200f8 https://conda.anaconda.org/conda-forge/osx-64/gfortran-12.3.0-h2c809b3_1.conda#c48adbaa8944234b80ef287c37e329b0 https://conda.anaconda.org/conda-forge/osx-64/cxx-compiler-1.7.0-h7728843_0.conda#8abaa2694c1fba2b6bd3753d00a60415 https://conda.anaconda.org/conda-forge/osx-64/fortran-compiler-1.7.0-h6c2ab21_0.conda#2c11db8b46df0a547997116f0fd54b8e diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index a89638ebbdd83..63ccdf725e7dc 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: osx-64 -# input_hash: c8fdd08f1a9a3d91ec09f211e4444ef33921a111f684fa63428591be5ca1eb68 +# input_hash: 03f7604aefb9752d2367c457bdf4e4923158be96db35ac0dd1d5dc60a9981cd1 @EXPLICIT https://repo.anaconda.com/pkgs/main/osx-64/blas-1.0-mkl.conda#cb2c87e85ac8e0ceae776d26d4214c8a https://repo.anaconda.com/pkgs/main/osx-64/bzip2-1.0.8-h1de35cc_0.conda#19fcb113b170fe2a0be96b47801fed7d @@ -14,7 +14,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/libffi-3.4.4-hecd8cb5_0.conda#c20b268 https://repo.anaconda.com/pkgs/main/osx-64/libwebp-base-1.3.2-h6c40b1e_0.conda#d8fd9f599dd4e012694e69d119016442 https://repo.anaconda.com/pkgs/main/osx-64/llvm-openmp-14.0.6-h0dcd299_0.conda#b5804d32b87dc61ca94561ade33d5f2d https://repo.anaconda.com/pkgs/main/osx-64/ncurses-6.4-hcec6c5f_0.conda#0214d1ee980e217fabc695f1e40662aa -https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023c-h04d1e81_0.conda#29db02adf8808f7c64642cead3e28acd +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023d-h04d1e81_0.conda#fdb319536f351b2b828a350ffd1a35a1 https://repo.anaconda.com/pkgs/main/osx-64/xz-5.4.5-h6c40b1e_0.conda#351c5d33fe551018a2068e7a2ca8a6c1 https://repo.anaconda.com/pkgs/main/osx-64/zlib-1.2.13-h4dc903c_0.conda#d0202dd912bfb45d3422786531717882 https://repo.anaconda.com/pkgs/main/osx-64/ccache-3.7.9-hf120daa_0.conda#a01515a32e721c51d631283f991bc8ea @@ -37,7 +37,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/sqlite-3.41.2-h6c40b1e_0.conda#6947a5 https://repo.anaconda.com/pkgs/main/osx-64/zstd-1.5.5-hc035e20_0.conda#5e0b7ddb1b7dc6b630e1f9a03499c19c https://repo.anaconda.com/pkgs/main/osx-64/brotli-1.0.9-hca72f7f_7.conda#68e54d12ec67591deb2ffd70348fb00f https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-hcec6c5f_0.conda#e127a800ffd9d300ed7d5e1b026944ec -https://repo.anaconda.com/pkgs/main/osx-64/python-3.11.5-hf27a42d_0.conda#f088169d190325a14aaa0dcb53a9864f +https://repo.anaconda.com/pkgs/main/osx-64/python-3.11.7-hf27a42d_0.conda#fe0cfacb8965d0a06f8098464d5a8402 https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.2.2-py311h6c40b1e_0.conda#e15605553450156cf75c3ae38a920475 https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab https://repo.anaconda.com/pkgs/main/osx-64/cython-3.0.6-py311h6c40b1e_0.conda#6c8a140209eb4814de054f52627f543c diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 5a314f7a7df3b..4d5e662a2d0f5 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -1,11 +1,11 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 51f374bd6034467b82c190398f401712163436d283f9536c2e5a1d07e9f7b1e2 +# input_hash: d01d23bd27bcd50d2b3643492f966c8e390822d72b69f31bf66c2fe98a265a4c @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.12.12-h06a4308_0.conda#12bf7315c3f5ca50300e8b48d1b4ef2e https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.38-h1181459_1.conda#68eedfd9c06f2b0e6888d8db345b7f5b -https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023c-h04d1e81_0.conda#29db02adf8808f7c64642cead3e28acd +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023d-h04d1e81_0.conda#fdb319536f351b2b828a350ffd1a35a1 https://repo.anaconda.com/pkgs/main/linux-64/libgomp-11.2.0-h1234567_1.conda#b372c0eea9b60732fdae4b817a63c8cd https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.conda#57623d10a70e09e1d048c2b2b6f4e2dd https://repo.anaconda.com/pkgs/main/linux-64/_openmp_mutex-5.1-1_gnu.conda#71d281e9c2192cb3fa425655a8defb85 @@ -23,7 +23,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/python-3.9.18-h955ad1f_0.conda#65fb https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py39h06a4308_0.conda#5b42cae5548732ae5c167bb1066085de https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.41.2-py39h06a4308_0.conda#ec1b8213c3585defaa6042ed2f95861d https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685007e3dae59d211620f19926577bd6 -# pip alabaster @ https://files.pythonhosted.org/packages/64/88/c7083fc61120ab661c5d0b82cb77079fc1429d3f913a456c1c82cf4658f7/alabaster-0.7.13-py3-none-any.whl#sha256=1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3 +# pip alabaster @ https://files.pythonhosted.org/packages/a8/11/a3159174442867ea12826e60a9f1d6f6299c2ae3f896d2a47566ab826686/alabaster-0.7.15-py3-none-any.whl#sha256=d99c6fd0f7a86fca68ecc5231c9de45227991c10ee6facfb894cf6afb953b142 # pip babel @ https://files.pythonhosted.org/packages/0d/35/4196b21041e29a42dc4f05866d0c94fa26c9da88ce12c38c2265e42c82fb/Babel-2.14.0-py3-none-any.whl#sha256=efb1a25b7118e67ce3a259bed20545c29cb68be8ad2c784c83689981b7a57287 # pip certifi @ https://files.pythonhosted.org/packages/64/62/428ef076be88fa93716b576e4a01f919d25968913e817077a386fcbe4f42/certifi-2023.11.17-py3-none-any.whl#sha256=e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474 # pip charset-normalizer @ https://files.pythonhosted.org/packages/98/69/5d8751b4b670d623aa7a47bef061d69c279e9f922f6705147983aa76c3ce/charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796 @@ -41,7 +41,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685 # pip lazy-loader @ https://files.pythonhosted.org/packages/a1/c3/65b3814e155836acacf720e5be3b5757130346670ac454fee29d3eda1381/lazy_loader-0.3-py3-none-any.whl#sha256=1e9e76ee8631e264c62ce10006718e80b2cfc74340d17d1031e0f84af7478554 # pip markupsafe @ https://files.pythonhosted.org/packages/de/63/cb7e71984e9159ec5f45b5e81e896c8bdd0e45fe3fc6ce02ab497f0d790e/MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e # pip networkx @ https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl#sha256=f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2 -# pip numpy @ https://files.pythonhosted.org/packages/2f/75/f007cc0e6a373207818bef17f463d3305e9dd380a70db0e523e7660bf21f/numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818 +# pip numpy @ https://files.pythonhosted.org/packages/ea/ee/7a93594b78d7834d14ff49e74ba79e3f26b85604a542a790db81b1dd2326/numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137 # pip packaging @ https://files.pythonhosted.org/packages/ec/1a/610693ac4ee14fcdf2d9bf3c493370e4f2ef7ae2e19217d7a237ff42367d/packaging-23.2-py3-none-any.whl#sha256=8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7 # pip pillow @ https://files.pythonhosted.org/packages/87/0d/8f5136a5481731c342a901ff155c587ce7804114db069345e1894ab4978a/pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl#sha256=b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13 # pip pluggy @ https://files.pythonhosted.org/packages/05/b8/42ed91898d4784546c5f06c60506400548db3f7a4b3fb441cba4e5c17952/pluggy-1.3.0-py3-none-any.whl#sha256=d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7 diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 53dee069acde5..dd8c6560f66c7 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -3,9 +3,9 @@ # input_hash: 28ec764eefc982520846833c9ea571cf6ea5a0593dee76d7a7560b34e341e35b @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 -https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.08.22-h06a4308_0.conda#243d5065a09a3e85ab888c05f5b6445a +https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.12.12-h06a4308_0.conda#12bf7315c3f5ca50300e8b48d1b4ef2e https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.38-h1181459_1.conda#68eedfd9c06f2b0e6888d8db345b7f5b -https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023c-h04d1e81_0.conda#29db02adf8808f7c64642cead3e28acd +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023d-h04d1e81_0.conda#fdb319536f351b2b828a350ffd1a35a1 https://repo.anaconda.com/pkgs/main/linux-64/libgomp-11.2.0-h1234567_1.conda#b372c0eea9b60732fdae4b817a63c8cd https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.conda#57623d10a70e09e1d048c2b2b6f4e2dd https://repo.anaconda.com/pkgs/main/linux-64/_openmp_mutex-5.1-1_gnu.conda#71d281e9c2192cb3fa425655a8defb85 @@ -21,15 +21,15 @@ https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6f https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.12-h1ccaba5_0.conda#fa10ff4aa631fa4aa090a6234d7770b9 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.41.2-h5eee18b_0.conda#c7086c9ceb6cfe1c4c729a774a2d88a5 -https://repo.anaconda.com/pkgs/main/linux-64/python-3.11.5-h955ad1f_0.conda#3fd62f043c124c7aad747122e3a9edf2 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.11.7-h955ad1f_0.conda#721e0e84035214979d06e677d5afa9f4 https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py311h06a4308_0.conda#264aaac990aa82ff86442ad8249787a3 https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.41.2-py311h06a4308_0.conda#2d4ff85d3dfb7749ae0485ee148d4ea5 https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py311h06a4308_0.conda#6fdb2a3c731f093b0014450a071c7f7f -# pip alabaster @ https://files.pythonhosted.org/packages/64/88/c7083fc61120ab661c5d0b82cb77079fc1429d3f913a456c1c82cf4658f7/alabaster-0.7.13-py3-none-any.whl#sha256=1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3 +# pip alabaster @ https://files.pythonhosted.org/packages/a8/11/a3159174442867ea12826e60a9f1d6f6299c2ae3f896d2a47566ab826686/alabaster-0.7.15-py3-none-any.whl#sha256=d99c6fd0f7a86fca68ecc5231c9de45227991c10ee6facfb894cf6afb953b142 # pip babel @ https://files.pythonhosted.org/packages/0d/35/4196b21041e29a42dc4f05866d0c94fa26c9da88ce12c38c2265e42c82fb/Babel-2.14.0-py3-none-any.whl#sha256=efb1a25b7118e67ce3a259bed20545c29cb68be8ad2c784c83689981b7a57287 # pip certifi @ https://files.pythonhosted.org/packages/64/62/428ef076be88fa93716b576e4a01f919d25968913e817077a386fcbe4f42/certifi-2023.11.17-py3-none-any.whl#sha256=e036ab49d5b79556f99cfc2d9320b34cfbe5be05c5871b51de9329f0603b0474 # pip charset-normalizer @ https://files.pythonhosted.org/packages/40/26/f35951c45070edc957ba40a5b1db3cf60a9dbb1b350c2d5bef03e01e61de/charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8 -# pip coverage @ https://files.pythonhosted.org/packages/ce/9f/20406e0dc07f6bba211a0ae40bb7a716daebdb715ba03ce6f611d01cb79d/coverage-7.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=ff4800783d85bff132f2cc7d007426ec698cdce08c3062c8d501ad3f4ea3d16c +# pip coverage @ https://files.pythonhosted.org/packages/3b/35/c5aa0de6a3c40f42b7702298de7b0a67c96bfe0c44ed9d0a953d069b23dc/coverage-7.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=485e9f897cf4856a65a57c7f6ea3dc0d4e6c076c87311d4bc003f82cfe199d25 # pip docutils @ https://files.pythonhosted.org/packages/26/87/f238c0670b94533ac0353a4e2a1a771a0cc73277b88bff23d3ae35a256c1/docutils-0.20.1-py3-none-any.whl#sha256=96f387a2c5562db4476f09f13bbab2192e764cac08ebbf3a34a95d9b1e4a59d6 # pip execnet @ https://files.pythonhosted.org/packages/e8/9c/a079946da30fac4924d92dbc617e5367d454954494cf1e71567bcc4e00ee/execnet-2.0.2-py3-none-any.whl#sha256=88256416ae766bc9e8895c76a87928c0012183da3cc4fc18016e6f050e025f41 # pip idna @ https://files.pythonhosted.org/packages/c2/e7/a82b05cf63a603df6e68d59ae6a68bf5064484a0718ea5033660af4b54a9/idna-3.6-py3-none-any.whl#sha256=c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f @@ -48,7 +48,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py311h06a4308_0.conda#6f # pip threadpoolctl @ https://files.pythonhosted.org/packages/81/12/fd4dea011af9d69e1cad05c75f3f7202cdcbeac9b712eea58ca779a72865/threadpoolctl-3.2.0-py3-none-any.whl#sha256=2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032 # pip urllib3 @ https://files.pythonhosted.org/packages/96/94/c31f58c7a7f470d5665935262ebd7455c7e4c7782eb525658d3dbf4b9403/urllib3-2.1.0-py3-none-any.whl#sha256=55901e917a5896a349ff771be919f8bd99aff50b79fe58fec595eb37bbc56bb3 # pip jinja2 @ https://files.pythonhosted.org/packages/bc/c3/f068337a370801f372f2f8f6bad74a5c140f6fda3d9de154052708dd3c65/Jinja2-3.1.2-py3-none-any.whl#sha256=6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61 -# pip pytest @ https://files.pythonhosted.org/packages/f3/8c/f16efd81ca8e293b2cc78f111190a79ee539d0d5d36ccd49975cb3beac60/pytest-7.4.3-py3-none-any.whl#sha256=0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac +# pip pytest @ https://files.pythonhosted.org/packages/51/ff/f6e8b8f39e08547faece4bd80f89d5a8de68a38b2d179cc1c4490ffa3286/pytest-7.4.4-py3-none-any.whl#sha256=b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8 # pip python-dateutil @ https://files.pythonhosted.org/packages/36/7a/87837f39d0296e723bb9b62bbb257d0355c7f6128853c78955f57342a56d/python_dateutil-2.8.2-py2.py3-none-any.whl#sha256=961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9 # pip requests @ https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl#sha256=58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f # pip pooch @ https://files.pythonhosted.org/packages/1a/a5/5174dac3957ac412e80a00f30b6507031fcab7000afc9ea0ac413bddcff2/pooch-1.8.0-py3-none-any.whl#sha256=1bfba436d9e2ad5199ccad3583cca8c241b8736b5bb23fe67c213d52650dbb66 diff --git a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock index 7cdaba97d29c6..159ab024cc0c1 100644 --- a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock @@ -1,13 +1,13 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: c63ec98efe67f85fd681c6634249719a3658c65049b5eeb017b5f0259990901a +# input_hash: b4bfe38c127d42c34beb5fbcbb6d7a983e7063f8a6ec415182acb410dfc68d8d @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/blas-1.0-openblas.conda#9ddfcaef10d79366c90128f5dc444be8 https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.12.12-h06a4308_0.conda#12bf7315c3f5ca50300e8b48d1b4ef2e https://repo.anaconda.com/pkgs/main/linux-64/ld_impl_linux-64-2.38-h1181459_1.conda#68eedfd9c06f2b0e6888d8db345b7f5b https://repo.anaconda.com/pkgs/main/linux-64/libgfortran5-11.2.0-h1234567_1.conda#36a01a8c30e0cadf0d3e842c50b73f3b -https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023c-h04d1e81_0.conda#29db02adf8808f7c64642cead3e28acd +https://repo.anaconda.com/pkgs/main/noarch/tzdata-2023d-h04d1e81_0.conda#fdb319536f351b2b828a350ffd1a35a1 https://repo.anaconda.com/pkgs/main/linux-64/libgfortran-ng-11.2.0-h00389a5_1.conda#7429b67ab7b1d7cb99b9d1f3ddaec6e3 https://repo.anaconda.com/pkgs/main/linux-64/libgomp-11.2.0-h1234567_1.conda#b372c0eea9b60732fdae4b817a63c8cd https://repo.anaconda.com/pkgs/main/linux-64/libstdcxx-ng-11.2.0-h1234567_1.conda#57623d10a70e09e1d048c2b2b6f4e2dd diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index f0f5a1834d75b..10b0d4ec2291f 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: win-64 -# input_hash: 74fe5aa9801e09d66b9a87902cfa12e2e9343f9b8337d0126093f48d00544ab6 +# input_hash: af544b6135127d0b6abf1eedcc8ba32a4d5e2e1d2904d4592abc7f3dba338569 @EXPLICIT https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2023.11.17-h56e8100_0.conda#1163114b483f26761f993c709e65271f https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2023.2.0-h57928b3_50497.conda#a401f3cae152deb75bbed766a90a6312 @@ -65,7 +65,7 @@ https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd715 https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2#a1f820480193ea83582b13249a7e7bd9 https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.2.0-pyha21a80b_0.conda#978d03388b62173b8e6f79162cf52b86 https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 @@ -93,19 +93,19 @@ https://conda.anaconda.org/conda-forge/win-64/fonttools-4.47.0-py39ha55989b_0.co https://conda.anaconda.org/conda-forge/win-64/glib-2.78.3-h12be248_0.conda#a14440f1d004a2ddccd9c1354dbeffdf https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/win-64/mkl-2023.2.0-h6a75c08_50497.conda#064cea9f45531e7b53584acf4bd8b044 -https://conda.anaconda.org/conda-forge/win-64/pillow-10.1.0-py39h368b509_0.conda#131540ebb3d6b88d9a190ce39aeecc50 +https://conda.anaconda.org/conda-forge/win-64/pillow-10.2.0-py39h368b509_0.conda#706d6e5bbc4b5d2ac7b8a6077319294d https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.12.2-py39h99910a6_5.conda#dffbcea794c524c471772a5f697c2aea https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.1.0-pyhd8ed1ab_0.conda#06eb685a3a0b146347a58dda979485da https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 -https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.22.8-hb4038d2_0.conda#498ec8375c067d237a6c85771f395138 +https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.22.8-hb4038d2_1.conda#d24ef655de29ac3b1e14aae9cc2eb66b https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-20_win64_mkl.conda#6cad6cd2fbdeef4d651b8f752a4da960 https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2023.2.0-h57928b3_50497.conda#0d52cfab24361c77268b54920c11903c https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e -https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.22.8-h001b923_0.conda#4871a223a0b53452cbd34fd4c0c518e6 +https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.22.8-h001b923_1.conda#abe4d4f0820e367987d2ba73a84cf328 https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-20_win64_mkl.conda#e6d36cfcb2f2dff0f659d2aa0813eb2d https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-20_win64_mkl.conda#9510d07424d70fcac553d86b3e4a7c14 https://conda.anaconda.org/conda-forge/win-64/liblapacke-3.9.0-20_win64_mkl.conda#960008cd6e9827a5c9b68e77fdf3d29f -https://conda.anaconda.org/conda-forge/win-64/numpy-1.26.2-py39hddb5d58_0.conda#59f29cc03dd8a2768749cf73e8b1ce58 +https://conda.anaconda.org/conda-forge/win-64/numpy-1.26.3-py39hddb5d58_0.conda#5cd2960dafe35dbaf816b7c79d6c8178 https://conda.anaconda.org/conda-forge/win-64/qt-main-5.15.8-h9e85ed6_18.conda#8427460072b90560c0675c37c30386ef https://conda.anaconda.org/conda-forge/win-64/blas-devel-3.9.0-20_win64_mkl.conda#40f21d1e894795983dec1036847e7460 https://conda.anaconda.org/conda-forge/win-64/contourpy-1.2.0-py39h1f6ef14_0.conda#9eeea323eacb6549cbb3df3d81181cb2 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index c864e4e354f2e..a6893000d1871 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: dfda5c3b73321eb2a8bdc6c50490846e4a7a71dc4c8229f1f1b7a175acd8de80 +# input_hash: d70964a380150a9fdd34471eab9c13547ec7744156a6719ec0e4b97fc7d298fa @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -44,7 +44,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.3-h59595ed_0.conda#b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda#7dbaa197d7ba6032caf7ae7f32c1efa0 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.0-hd590300_1.conda#603827b39ea2b835268adb8c821b8570 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.42.2-h59595ed_0.conda#700edd63ccd5fc66b70b1c028cea9a68 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.0-h59595ed_0.conda#6b4b43013628634b6cfdee6b74fd696b https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 @@ -133,7 +133,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 @@ -160,23 +160,23 @@ https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-20_linux64_openbl https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.7-default_hb11cfb5_4.conda#c90f4cbb57839c98fef8f830e4b9972f https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-hd429924_1.conda#1dbcc04604fdf1e526e6d1b0b6938396 -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.1.0-py39had0adad_0.conda#eeaa413fddccecb2ab7f747bdb55b07f +https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py39had0adad_0.conda#2972754dc054bb079d1d121918b5126f https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda#ac902ff3c1c6d750dd0dfc93a974ab74 https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2#dd999d1cc9f79e67dbb855c8924c7984 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/noarch/urllib3-2.1.0-pyhd8ed1ab_0.conda#f8ced8ee63830dec7ecc1be048d1470a -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_0.conda#a068fe1588dda3d29f568d536eeebae7 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_1.conda#1b52a89485ab573a5bb83a5225ff706e https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.2-py39h474f0d3_0.conda#459a58eda3e74dd5e3d596c618e7f20a +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h474f0d3_0.conda#a1f1ad2d8ebf63f13f45fb21b7f49dfb https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py39h7633fee_0.conda#ed71ad3e30eb03da363fb797419cce98 -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_0.conda#307cf29b6c19238c17182f30ddaf1a50 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py39hddac248_0.conda#dcfd2f15c6f8f0bbf234412b18a2a5d0 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.4-py39h474f0d3_0.conda#4b401c1516417b4b14aa1249d2f7929d diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index ba98b2e05d26b..e72fe4615571b 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 2220bb165ad69a88fcb9db817451817fe8405e7de686ad25121b4e4239916e10 +# input_hash: f0d8179a97f73d1dd3fcaabd7b81b8f4ee3eeb0b07c038be883b60160b96c3e9 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -60,7 +60,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.3-h59595ed_0.conda#b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda#7dbaa197d7ba6032caf7ae7f32c1efa0 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.0-hd590300_1.conda#603827b39ea2b835268adb8c821b8570 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.42.2-h59595ed_0.conda#700edd63ccd5fc66b70b1c028cea9a68 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.0-h59595ed_0.conda#6b4b43013628634b6cfdee6b74fd696b https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-h9fff704_0.conda#e6d228cd0bb74a51dd18f5bfce0b4115 @@ -169,7 +169,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 @@ -203,7 +203,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang-15.0.7-default_hb11cfb5 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openblas.conda#6fabc51f5e647d09cc010c40061557e0 https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-hd429924_1.conda#1dbcc04604fdf1e526e6d1b0b6938396 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.1.0-py39had0adad_0.conda#eeaa413fddccecb2ab7f747bdb55b07f +https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py39had0adad_0.conda#2972754dc054bb079d1d121918b5126f https://conda.anaconda.org/conda-forge/noarch/pip-23.3.2-pyhd8ed1ab_0.conda#8591c748f98dcc02253003533bc2e4b1 https://conda.anaconda.org/conda-forge/noarch/plotly-5.18.0-pyhd8ed1ab_0.conda#9f6a8664f1fe752f79473eeb9bf33a60 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda#ac902ff3c1c6d750dd0dfc93a974ab74 @@ -212,22 +212,22 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/noarch/urllib3-2.1.0-pyhd8ed1ab_0.conda#f8ced8ee63830dec7ecc1be048d1470a https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_0.conda#81458b3aed8ab8711951ec3c0c04e097 -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_0.conda#a068fe1588dda3d29f568d536eeebae7 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_1.conda#1b52a89485ab573a5bb83a5225ff706e https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.2-py39h474f0d3_0.conda#459a58eda3e74dd5e3d596c618e7f20a +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h474f0d3_0.conda#a1f1ad2d8ebf63f13f45fb21b7f49dfb https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py39h7633fee_0.conda#ed71ad3e30eb03da363fb797419cce98 -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_0.conda#307cf29b6c19238c17182f30ddaf1a50 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.1.1-py39hf9b8f0e_0.conda#9ddd29852457d1152ca235eb87bc74fb https://conda.anaconda.org/conda-forge/noarch/imageio-2.33.1-pyh8c1a49c_0.conda#1c34d58ac469a34e7e96832861368bce https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py39hddac248_0.conda#dcfd2f15c6f8f0bbf234412b18a2a5d0 https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.4-pyhd8ed1ab_0.conda#1184267eddebb57e47f8e1419c225595 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.2-py39h90d8ae4_0.conda#8e63cf0a9bfbdb45c794de1aa6ff6806 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.3-py39h927a070_1.conda#9228d65338fc75b9f7040c30465cd84b https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.0-pyhd8ed1ab_0.conda#134b2b57b7865d2316a7cce1915a51ed https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.4.1-py39h44dd56e_1.conda#d037c20e3da2e85f03ebd20ad480c359 @@ -240,9 +240,9 @@ https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_ https://conda.anaconda.org/conda-forge/noarch/tifffile-2023.12.9-pyhd8ed1ab_0.conda#454bc0aff84f35fa53ba9e0369737a9b https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.22.0-py39hddac248_2.conda#8d502a4d2cbe5a45ff35ca8af8cbec0a -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.0-pyhd8ed1ab_0.conda#082666331726b2438986cfe33ae9a8ee +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.1-pyhd8ed1ab_0.conda#c1c0e175f993a4677c3163b26652b96c https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.2-py39hf3d152e_0.conda#18d40a5ada9a801cabaf5d47c15c6282 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.0-hd8ed1ab_0.conda#ebd31a95a7008b7e164dad9dbbb5bb5a +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.1-hd8ed1ab_0.conda#8d9b6f5e94b7840210b2b9ed235068c7 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.6.0-pyhd8ed1ab_0.conda#191b8a622191a403700d16a2008e4e29 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.15.0-pyhd8ed1ab_0.conda#1a49ca9515ef9a96edff2eea06143dc6 @@ -276,8 +276,8 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip send2trash @ https://files.pythonhosted.org/packages/a9/78/e4df1e080ed790acf3a704edf521006dd96b9841bd2e2a462c0d255e0565/Send2Trash-1.8.2-py3-none-any.whl#sha256=a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679 # pip sniffio @ https://files.pythonhosted.org/packages/c3/a0/5dba8ed157b0136607c7f2151db695885606968d1fae123dc3391e0cfdbf/sniffio-1.3.0-py3-none-any.whl#sha256=eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384 # pip soupsieve @ https://files.pythonhosted.org/packages/4c/f3/038b302fdfbe3be7da016777069f26ceefe11a681055ea1f7817546508e3/soupsieve-2.5-py3-none-any.whl#sha256=eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7 -# pip traitlets @ https://files.pythonhosted.org/packages/a7/1d/7d07e1b152b419a8a9c7f812eeefd408a0610d869489ee2e86973486713f/traitlets-5.14.0-py3-none-any.whl#sha256=f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33 -# pip types-python-dateutil @ https://files.pythonhosted.org/packages/1c/af/5af2e2a02bc464c1c7818c260606343020b96c0d5b64f637d9e91aee24fe/types_python_dateutil-2.8.19.14-py3-none-any.whl#sha256=f977b8de27787639986b4e28963263fd0e5158942b3ecef91b9335c130cb1ce9 +# pip traitlets @ https://files.pythonhosted.org/packages/45/34/5dc77fdc7bb4bd198317eea5679edf9cc0a186438b5b19dbb9062fb0f4d5/traitlets-5.14.1-py3-none-any.whl#sha256=2e5a030e6eff91737c643231bfcf04a65b0132078dad75e4936700b213652e74 +# pip types-python-dateutil @ https://files.pythonhosted.org/packages/28/50/8ed67814241e2684369f4b8b881c7d31a0816e76c8690ea8518017a35b7e/types_python_dateutil-2.8.19.20240106-py3-none-any.whl#sha256=efbbdc54590d0f16152fa103c9879c7d4a00e82078f6e2cf01769042165acaa2 # pip uri-template @ https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl#sha256=a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 # pip webcolors @ https://files.pythonhosted.org/packages/d5/e1/3e9013159b4cbb71df9bd7611cbf90dc2c621c8aeeb677fc41dad72f2261/webcolors-1.13-py3-none-any.whl#sha256=29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf # pip webencodings @ https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl#sha256=a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 @@ -288,8 +288,8 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip bleach @ https://files.pythonhosted.org/packages/ea/63/da7237f805089ecc28a3f36bca6a21c31fcbc2eb380f3b8f1be3312abd14/bleach-6.1.0-py3-none-any.whl#sha256=3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6 # pip cffi @ https://files.pythonhosted.org/packages/ea/ac/e9e77bc385729035143e54cc8c4785bd480eaca9df17565963556b0b7a93/cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098 # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a -# pip jupyter-core @ https://files.pythonhosted.org/packages/9d/27/38fa0cac8acc54a202dd432f98553ddd1826da9633fe875e72b09a9e2b98/jupyter_core-5.6.1-py3-none-any.whl#sha256=3d16aec2e1ec84b69f7794e49c32830c1d950ad149526aec954c100047c5f3a7 -# pip referencing @ https://files.pythonhosted.org/packages/b4/11/d121780c173336c9bc3a5b8240ed31f518957cc22f6311c76259cb0fcf32/referencing-0.32.0-py3-none-any.whl#sha256=bdcd3efb936f82ff86f993093f6da7435c7de69a3b3a5a06678a6050184bee99 +# pip jupyter-core @ https://files.pythonhosted.org/packages/4f/64/c15b7ac8915f7cae6c64718a6ffbb5e75fd398cda05d0a8aca2f570f0ed5/jupyter_core-5.7.0-py3-none-any.whl#sha256=16eea462f7dad23ba9f86542bdf17f830804e2028eb48d609b6134d91681e983 +# pip referencing @ https://files.pythonhosted.org/packages/14/2a/0a9f649354cd2d40f6c4f16eadabd9727377e3b9bc2ccec6cb630d9a6765/referencing-0.32.1-py3-none-any.whl#sha256=7e4dc12271d8e15612bfe35792f5ea1c40970dadf8624602e33db2758f7ee554 # pip rfc3339-validator @ https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl#sha256=24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa # pip terminado @ https://files.pythonhosted.org/packages/69/df/deebc9fb14a49062a3330f673e80b100e665b54d998163b3f62620b6240c/terminado-0.18.0-py3-none-any.whl#sha256=87b0d96642d0fe5f5abd7783857b9cab167f221a39ff98e3b9619a788a3c0f2e # pip tinycss2 @ https://files.pythonhosted.org/packages/da/99/fd23634d6962c2791fb8cb6ccae1f05dcbfc39bce36bba8b1c9a8d92eae8/tinycss2-1.2.1-py3-none-any.whl#sha256=2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847 @@ -297,7 +297,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip isoduration @ https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl#sha256=b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042 # pip jsonschema-specifications @ https://files.pythonhosted.org/packages/ee/07/44bd408781594c4d0a027666ef27fab1e441b109dc3b76b4f836f8fd04fe/jsonschema_specifications-2023.12.1-py3-none-any.whl#sha256=87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c # pip jupyter-server-terminals @ https://files.pythonhosted.org/packages/13/50/9e4688558eb1a20d16e99171af9026be27d31a8b212c241595241736811a/jupyter_server_terminals-0.5.1-py3-none-any.whl#sha256=5e63e947ddd97bb2832db5ef837a258d9ccd4192cd608c1270850ad947ae5dd7 -# pip jupyterlite-core @ https://files.pythonhosted.org/packages/2f/0b/58eb568cbce3bbaa8702c6ce297870402828b222598a1db10e23e7190f52/jupyterlite_core-0.2.1-py3-none-any.whl#sha256=3f6161c4ad609bca913a42598005ff577611daae8dce448292fbb2c15db6b393 +# pip jupyterlite-core @ https://files.pythonhosted.org/packages/93/62/4387ca1578447027560863e8a4ebabd5d919ac990c99dc124a45a45846b2/jupyterlite_core-0.2.2-py3-none-any.whl#sha256=1f1babdbe630d429f631a508f0e3b3ffb4dfa005aeb748831e854c24025e766f # pip pyzmq @ https://files.pythonhosted.org/packages/76/8b/6fca99e22c6316917de32b17be299dea431544209d619da16b6d9ec85c83/pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl#sha256=c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add # pip argon2-cffi @ https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl#sha256=c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea # pip jsonschema @ https://files.pythonhosted.org/packages/0f/ed/0058234d8dd2b1fc6beeea8eab945191a05e9d391a63202f49fe23327586/jsonschema-4.20.0-py3-none-any.whl#sha256=ed6231f0429ecf966f5bc8dfef245998220549cbbcf140f913b7464c52c3b6b3 @@ -307,6 +307,6 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip nbformat @ https://files.pythonhosted.org/packages/f4/e7/ef30a90b70eba39e675689b9eaaa92530a71d7435ab8f9cae520814e0caf/nbformat-5.9.2-py3-none-any.whl#sha256=1c5172d786a41b82bcfd0c23f9e6b6f072e8fb49c39250219e4acfff1efe89e9 # pip nbclient @ https://files.pythonhosted.org/packages/6b/3a/607149974149f847125c38a62b9ea2b8267eb74823bbf8d8c54ae0212a00/nbclient-0.9.0-py3-none-any.whl#sha256=a3a1ddfb34d4a9d17fc744d655962714a866639acd30130e9be84191cd97cd15 # pip nbconvert @ https://files.pythonhosted.org/packages/7f/ba/3a8a9870a8b42e63e8f5e770adedd191d5adc2348f3097fc0e7c83a39439/nbconvert-7.14.0-py3-none-any.whl#sha256=483dde47facdaa4875903d651305ad53cd76e2255ae3c61efe412a95f2d22a24 -# pip jupyter-server @ https://files.pythonhosted.org/packages/ed/20/2437a3865083360103b0218e82a910c4c35f3bf7248c5cdae6934ba4d01c/jupyter_server-2.12.1-py3-none-any.whl#sha256=fd030dd7be1ca572e4598203f718df6630c12bd28a599d7f1791c4d7938e1010 +# pip jupyter-server @ https://files.pythonhosted.org/packages/0c/3b/24a511c81b580a038aca06c91fc89df0464815903044bae1c85145cdf03c/jupyter_server-2.12.2-py3-none-any.whl#sha256=abcfa33f98a959f908c8733aa2d9fa0101d26941cbd49b148f4cef4d3046fc61 # pip jupyterlab-server @ https://files.pythonhosted.org/packages/a2/97/abbbe35fc67b6f9423309988f2e411f7cb117b08321866d3d8b720f4c0d4/jupyterlab_server-2.25.2-py3-none-any.whl#sha256=5b1798c9cc6a44f65c757de9f97fc06fc3d42535afbf47d2ace5e964ab447aaf # pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/9c/bd/1695eebeb376315c9fc5cbd41c54fb84bb69c68e69651bfc6f03aa4fe659/jupyterlite_sphinx-0.11.0-py3-none-any.whl#sha256=2a0762167e89ec6acd267c73bb90b528728fdba5e30390ea4fe37ddcec277191 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index b105d3629d947..4c0b70b6b260e 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 38f0008ad0777e0e6c0aed8337cd71641123af41d0a9025d70195fbb550b1f6f +# input_hash: 63e92fdc759dcf030bf7e6d4a5d86bec102c98562cfb7ebd4d3d4991c895678b @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -52,7 +52,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.3-h59595ed_0.conda#b https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda#7dbaa197d7ba6032caf7ae7f32c1efa0 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.0-hd590300_1.conda#603827b39ea2b835268adb8c821b8570 -https://conda.anaconda.org/conda-forge/linux-64/pixman-0.42.2-h59595ed_0.conda#700edd63ccd5fc66b70b1c028cea9a68 +https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.0-h59595ed_0.conda#6b4b43013628634b6cfdee6b74fd696b https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 @@ -184,7 +184,7 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-20_linux64_openb https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.6.0-hd429924_1.conda#1dbcc04604fdf1e526e6d1b0b6938396 https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/partd-1.4.1-pyhd8ed1ab_0.conda#acf4b7c0bcd5fa3b0e05801c4d2accd6 -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.1.0-py39had0adad_0.conda#eeaa413fddccecb2ab7f747bdb55b07f +https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py39had0adad_0.conda#2972754dc054bb079d1d121918b5126f https://conda.anaconda.org/conda-forge/noarch/pip-23.3.2-pyhd8ed1ab_0.conda#8591c748f98dcc02253003533bc2e4b1 https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-16.1-hb77b528_5.conda#ac902ff3c1c6d750dd0dfc93a974ab74 @@ -193,7 +193,7 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/noarch/urllib3-2.1.0-pyhd8ed1ab_0.conda#f8ced8ee63830dec7ecc1be048d1470a https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_0.conda#81458b3aed8ab8711951ec3c0c04e097 -https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_0.conda#a068fe1588dda3d29f568d536eeebae7 +https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.22.8-h98fc4e7_1.conda#1b52a89485ab573a5bb83a5225ff706e https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.0.1-hd8ed1ab_0.conda#4a2f43a20fa404b998859c6a470ba316 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae @@ -203,12 +203,12 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.c https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/noarch/dask-core-2023.12.1-pyhd8ed1ab_0.conda#bf6ad72d882bc3f04e6a0fb50fd2cce8 -https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_0.conda#307cf29b6c19238c17182f30ddaf1a50 +https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-lite-2019.12.3-py39hd257fcd_5.tar.bz2#32dba66d6abc2b4b5b019c9e54307312 https://conda.anaconda.org/conda-forge/noarch/imageio-2.33.1-pyh8c1a49c_0.conda#1c34d58ac469a34e7e96832861368bce https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.5-pyhd8ed1ab_0.conda#f266f66ba1dcae0dbcc771a491acbea4 +https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/polars-0.19.12-py39h90d8ae4_0.conda#191828961c95f8d59fa2b86a590f9905 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.0-pyhd8ed1ab_0.conda#134b2b57b7865d2316a7cce1915a51ed https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e From f2a7d39159a85c9488eaa7c604e8f9dd0490191f Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 8 Jan 2024 10:23:11 +0100 Subject: [PATCH 0002/1641] :lock: :robot: CI Update lock files for pypy CI build(s) :lock: :robot: (#28080) Co-authored-by: Lock file bot --- build_tools/azure/pypy3_linux-64_conda.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/build_tools/azure/pypy3_linux-64_conda.lock b/build_tools/azure/pypy3_linux-64_conda.lock index 5fd5f84fcf17e..d5f5f842033c0 100644 --- a/build_tools/azure/pypy3_linux-64_conda.lock +++ b/build_tools/azure/pypy3_linux-64_conda.lock @@ -68,14 +68,14 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py39ha90811c_1.conda#25edffabcb0760fc1821597c4ce920db https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.2-py39h6dedee3_0.conda#be8411b206cee82a218fd8fc219d1ae9 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h6dedee3_0.conda#fcab766baac334344078d0aaf0945ec4 https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.1.0-py39hcf8a34e_0.conda#2bcde78b6e284e4266eee50ed5d0897d +https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py39hcf8a34e_0.conda#8a406ee5a979c2591f4c734d6fe4a958 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/pypy-7.3.13-0_pypy39.conda#0973de0664d1bd004c1bc64a7aab8f2e -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.2.0-pyha21a80b_0.conda#978d03388b62173b8e6f79162cf52b86 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 From 3c1aecec8dd24948d490fcdbe424fb953f5efe5c Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 8 Jan 2024 10:23:41 +0100 Subject: [PATCH 0003/1641] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#28079) Co-authored-by: Lock file bot --- .../cirrus/pymin_conda_forge_linux-aarch64_conda.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index d622189ad1ac3..c8e8d0baf5236 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -62,7 +62,7 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb -https://conda.anaconda.org/conda-forge/noarch/setuptools-68.2.2-pyhd8ed1ab_0.conda#fc2166155db840c634a1291a5c35a709 +https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.2.0-pyha21a80b_0.conda#978d03388b62173b8e6f79162cf52b86 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 @@ -75,13 +75,13 @@ https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1 https://conda.anaconda.org/conda-forge/noarch/joblib-1.3.2-pyhd8ed1ab_0.conda#4da50d410f553db77e62ab62ffaa1abc https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-20_linuxaarch64_openblas.conda#b41e55ae2cb9d3518da2cbe3677b3b3b https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-20_linuxaarch64_openblas.conda#e7412a592d9ee7c92026eb1189687271 -https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-10.1.0-py39h8ce38d7_0.conda#afedc0abb518dac535cb861f24585160 +https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-10.2.0-py39h8ce38d7_0.conda#cf4745fb7f7cb5d0b90c476116c7d8ac https://conda.anaconda.org/conda-forge/noarch/pip-23.3.2-pyhd8ed1ab_0.conda#8591c748f98dcc02253003533bc2e4b1 https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0.tar.bz2#dd999d1cc9f79e67dbb855c8924c7984 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-20_linuxaarch64_openblas.conda#1b8192f036a2dc41fec67700bb8bacef -https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.2-py39h91c28bb_0.conda#fc8077e28f5f86b80f6f0d86263ce72d +https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.3-py39h91c28bb_0.conda#9e10c6f9e309c2ada0d41c945e0f9b56 https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-20_linuxaarch64_openblas.conda#211c74d7600d8d1dec226daf5e28e2dc https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.2.0-py39hd16970a_0.conda#dc11a4a2e020d1d71350baa7cb4980e4 From eecc66ecab9a1e3f43660f312bcef085df431582 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 8 Jan 2024 11:27:57 +0100 Subject: [PATCH 0004/1641] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#28016) Co-authored-by: Lock file bot From 3b212bdbc324188c68a05c58d857b116aad3697b Mon Sep 17 00:00:00 2001 From: Franck Charras <29153872+fcharras@users.noreply.github.com> Date: Tue, 9 Jan 2024 11:52:25 +0100 Subject: [PATCH 0005/1641] Small cleaning of `_atol_for_dtype` and `get_namespace` usage for consistency (#28057) Co-authored-by: Olivier Grisel --- sklearn/discriminant_analysis.py | 2 +- sklearn/metrics/cluster/_unsupervised.py | 4 +++- sklearn/preprocessing/_data.py | 6 +++--- sklearn/utils/_array_api.py | 17 ++++++++++------- sklearn/utils/estimator_checks.py | 13 ++++++------- 5 files changed, 23 insertions(+), 19 deletions(-) diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py index 29146ca857694..46cb96ddd2886 100644 --- a/sklearn/discriminant_analysis.py +++ b/sklearn/discriminant_analysis.py @@ -697,7 +697,7 @@ def predict_proba(self, X): xp, is_array_api_compliant = get_namespace(X) decision = self.decision_function(X) if size(self.classes_) == 2: - proba = _expit(decision) + proba = _expit(decision, xp) return xp.stack([1 - proba, proba], axis=1) else: return softmax(decision) diff --git a/sklearn/metrics/cluster/_unsupervised.py b/sklearn/metrics/cluster/_unsupervised.py index 10749c23dacbe..ccbe473a5f645 100644 --- a/sklearn/metrics/cluster/_unsupervised.py +++ b/sklearn/metrics/cluster/_unsupervised.py @@ -14,6 +14,7 @@ from ...preprocessing import LabelEncoder from ...utils import _safe_indexing, check_random_state, check_X_y +from ...utils._array_api import _atol_for_type from ...utils._param_validation import ( Interval, StrOptions, @@ -263,7 +264,8 @@ def silhouette_samples(X, labels, *, metric="euclidean", **kwds): "elements on the diagonal. Use np.fill_diagonal(X, 0)." ) if X.dtype.kind == "f": - atol = np.finfo(X.dtype).eps * 100 + atol = _atol_for_type(X.dtype) + if np.any(np.abs(X.diagonal()) > atol): raise error_msg elif np.any(X.diagonal() != 0): # integral dtype diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py index 9120384588ef2..4cbae0e1d3591 100644 --- a/sklearn/preprocessing/_data.py +++ b/sklearn/preprocessing/_data.py @@ -483,8 +483,8 @@ def partial_fit(self, X, y=None): force_all_finite="allow-nan", ) - data_min = _array_api._nanmin(X, axis=0) - data_max = _array_api._nanmax(X, axis=0) + data_min = _array_api._nanmin(X, axis=0, xp=xp) + data_max = _array_api._nanmax(X, axis=0, xp=xp) if first_pass: self.n_samples_seen_ = X.shape[0] @@ -1234,7 +1234,7 @@ def partial_fit(self, X, y=None): mins, maxs = min_max_axis(X, axis=0, ignore_nan=True) max_abs = np.maximum(np.abs(mins), np.abs(maxs)) else: - max_abs = _array_api._nanmax(xp.abs(X), axis=0) + max_abs = _array_api._nanmax(xp.abs(X), axis=0, xp=xp) if first_pass: self.n_samples_seen_ = X.shape[0] diff --git a/sklearn/utils/_array_api.py b/sklearn/utils/_array_api.py index 0c386a843bffb..1131cb3560287 100644 --- a/sklearn/utils/_array_api.py +++ b/sklearn/utils/_array_api.py @@ -396,8 +396,9 @@ def get_namespace(*arrays): return namespace, is_array_api_compliant -def _expit(X): - xp, _ = get_namespace(X) +def _expit(X, xp=None): + if xp is None: + xp = get_namespace(X) if _is_numpy_namespace(xp): return xp.asarray(special.expit(numpy.asarray(X))) @@ -464,10 +465,11 @@ def _weighted_sum(sample_score, sample_weight, normalize=False, xp=None): return float(xp.sum(sample_score)) -def _nanmin(X, axis=None): +def _nanmin(X, axis=None, xp=None): # TODO: refactor once nan-aware reductions are standardized: # https://github.com/data-apis/array-api/issues/621 - xp, _ = get_namespace(X) + if xp is None: + xp, _ = get_namespace(X) if _is_numpy_namespace(xp): return xp.asarray(numpy.nanmin(X, axis=axis)) @@ -481,10 +483,11 @@ def _nanmin(X, axis=None): return X -def _nanmax(X, axis=None): +def _nanmax(X, axis=None, xp=None): # TODO: refactor once nan-aware reductions are standardized: # https://github.com/data-apis/array-api/issues/621 - xp, _ = get_namespace(X) + if xp is None: + xp, _ = get_namespace(X) if _is_numpy_namespace(xp): return xp.asarray(numpy.nanmax(X, axis=axis)) @@ -571,5 +574,5 @@ def _estimator_with_converted_arrays(estimator, converter): def _atol_for_type(dtype): - """Return the absolute tolerance for a given dtype.""" + """Return the absolute tolerance for a given numpy dtype.""" return numpy.finfo(dtype).eps * 100 diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py index 4d87357d6882d..b3135d30b362a 100644 --- a/sklearn/utils/estimator_checks.py +++ b/sklearn/utils/estimator_checks.py @@ -51,13 +51,12 @@ from ..random_projection import BaseRandomProjection from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..utils._array_api import ( + _atol_for_type, _convert_to_numpy, get_namespace, yield_namespace_device_dtype_combinations, ) -from ..utils._array_api import ( - device as array_device, -) +from ..utils._array_api import device as array_device from ..utils._param_validation import ( InvalidParameterError, generate_invalid_param_val, @@ -922,7 +921,7 @@ def check_array_api_input( attribute, est_xp_param_np, err_msg=f"{key} not the same", - atol=np.finfo(X.dtype).eps * 100, + atol=_atol_for_type(X.dtype), ) else: assert attribute.shape == est_xp_param_np.shape @@ -952,7 +951,7 @@ def check_array_api_input( assert isinstance(result, float) assert isinstance(result_xp, float) if check_values: - assert abs(result - result_xp) < np.finfo(X.dtype).eps * 100 + assert abs(result - result_xp) < _atol_for_type(X.dtype) continue else: result = method(X) @@ -974,7 +973,7 @@ def check_array_api_input( result, result_xp_np, err_msg=f"{method} did not the return the same result", - atol=np.finfo(X.dtype).eps * 100, + atol=_atol_for_type(X.dtype), ) else: if hasattr(result, "shape"): @@ -999,7 +998,7 @@ def check_array_api_input( inverse_result, invese_result_xp_np, err_msg="inverse_transform did not the return the same result", - atol=np.finfo(X.dtype).eps * 100, + atol=_atol_for_type(X.dtype), ) else: assert inverse_result.shape == invese_result_xp_np.shape From 71deeb83d31222b74f0446c32524b94d9f1d58dc Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Tue, 9 Jan 2024 17:17:42 +0100 Subject: [PATCH 0006/1641] FIX unstable test_pca_mle_array_api_compliance with PyTorch / CPU / float32 on macOS (#28067) --- sklearn/decomposition/tests/test_pca.py | 62 +++++++++++++++++++++++-- 1 file changed, 58 insertions(+), 4 deletions(-) diff --git a/sklearn/decomposition/tests/test_pca.py b/sklearn/decomposition/tests/test_pca.py index 83f71381c0ba7..44281b9038697 100644 --- a/sklearn/decomposition/tests/test_pca.py +++ b/sklearn/decomposition/tests/test_pca.py @@ -8,7 +8,7 @@ from sklearn import config_context, datasets from sklearn.base import clone -from sklearn.datasets import load_iris +from sklearn.datasets import load_iris, make_classification from sklearn.decomposition import PCA from sklearn.decomposition._pca import _assess_dimension, _infer_dimension from sklearn.utils._array_api import ( @@ -16,10 +16,10 @@ _convert_to_numpy, yield_namespace_device_dtype_combinations, ) +from sklearn.utils._array_api import device as array_device from sklearn.utils._testing import _array_api_for_tests, assert_allclose from sklearn.utils.estimator_checks import ( _get_check_estimator_ids, - check_array_api_input, check_array_api_input_and_values, ) from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS @@ -882,14 +882,17 @@ def test_pca_array_api_compliance( ) @pytest.mark.parametrize( "check", - [check_array_api_input, check_array_api_get_precision], + [check_array_api_get_precision], ids=_get_check_estimator_ids, ) @pytest.mark.parametrize( "estimator", [ # PCA with mle cannot use check_array_api_input_and_values because of - # rounding errors in the noisy (low variance) components. + # rounding errors in the noisy (low variance) components. Even checking + # the shape of the `components_` is problematic because the number of + # components depends on trimming threshold of the mle algorithm which + # can depend on device-specific rounding errors. PCA(n_components="mle", svd_solver="full"), ], ids=_get_check_estimator_ids, @@ -900,6 +903,57 @@ def test_pca_mle_array_api_compliance( name = estimator.__class__.__name__ check(name, estimator, array_namespace, device=device, dtype_name=dtype_name) + # Simpler variant of the generic check_array_api_input checker tailored for + # the specific case of PCA with mle-trimmed components. + xp = _array_api_for_tests(array_namespace, device) + + X, y = make_classification(random_state=42) + X = X.astype(dtype_name, copy=False) + atol = _atol_for_type(X.dtype) + + est = clone(estimator) + + X_xp = xp.asarray(X, device=device) + y_xp = xp.asarray(y, device=device) + + est.fit(X, y) + + components_np = est.components_ + explained_variance_np = est.explained_variance_ + + est_xp = clone(est) + with config_context(array_api_dispatch=True): + est_xp.fit(X_xp, y_xp) + components_xp = est_xp.components_ + assert array_device(components_xp) == array_device(X_xp) + components_xp_np = _convert_to_numpy(components_xp, xp=xp) + + explained_variance_xp = est_xp.explained_variance_ + assert array_device(explained_variance_xp) == array_device(X_xp) + explained_variance_xp_np = _convert_to_numpy(explained_variance_xp, xp=xp) + + assert components_xp_np.dtype == components_np.dtype + assert components_xp_np.shape[1] == components_np.shape[1] + assert explained_variance_xp_np.dtype == explained_variance_np.dtype + + # Check that the explained variance values match for the + # common components: + min_components = min(components_xp_np.shape[0], components_np.shape[0]) + assert_allclose( + explained_variance_xp_np[:min_components], + explained_variance_np[:min_components], + atol=atol, + ) + + # If the number of components differ, check that the explained variance of + # the trimmed components is very small. + if components_xp_np.shape[0] != components_np.shape[0]: + reference_variance = explained_variance_np[-1] + extra_variance_np = explained_variance_np[min_components:] + extra_variance_xp_np = explained_variance_xp_np[min_components:] + assert all(np.abs(extra_variance_np - reference_variance) < atol) + assert all(np.abs(extra_variance_xp_np - reference_variance) < atol) + def test_array_api_error_and_warnings_on_unsupported_params(): pytest.importorskip("array_api_compat") From 5ad8e458e4cb14c68609390bc0293d7b5458d74a Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Tue, 9 Jan 2024 19:57:59 +0100 Subject: [PATCH 0007/1641] FIX more precise log loss gradient and hessian (#28048) --- doc/whats_new/v1.4.rst | 11 +++ sklearn/_loss/_loss.pyx.tp | 62 +++++++++----- sklearn/_loss/tests/test_loss.py | 140 ++++++++++++++++++++++++++----- 3 files changed, 172 insertions(+), 41 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index d2de5ee433f94..a932391b732cd 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -220,6 +220,17 @@ See :ref:`array_api` for more details. - :class:`preprocessing.MinMaxScaler` in :pr:`26243` by `Tim Head`_; - :class:`preprocessing.Normalizer` in :pr:`27558` by :user:`Edoardo Abati `. +Private Loss Function Module +---------------------------- + +- |FIX| The gradient computation of the binomial log loss is now numerically + more stable for very large, in absolute value, input (raw predictions). Before, it + could result in `np.nan`. Among the models that profit from this change are + :class:`ensemble.GradientBoostingClassifier`, + :class:`ensemble.HistGradientBoostingClassifier` and + :class:`linear_model.LogisticRegression`. + :pr:`28048` by :user:`Christian Lorentzen `. + Changelog --------- diff --git a/sklearn/_loss/_loss.pyx.tp b/sklearn/_loss/_loss.pyx.tp index 0ce653de84310..da974a3c3f4fd 100644 --- a/sklearn/_loss/_loss.pyx.tp +++ b/sklearn/_loss/_loss.pyx.tp @@ -695,9 +695,8 @@ cdef inline double cgradient_half_binomial( double y_true, double raw_prediction ) noexcept nogil: - # y_pred - y_true = expit(raw_prediction) - y_true - # Numerically more stable, see - # http://fa.bianp.net/blog/2019/evaluate_logistic/ + # gradient = y_pred - y_true = expit(raw_prediction) - y_true + # Numerically more stable, see http://fa.bianp.net/blog/2019/evaluate_logistic/ # if raw_prediction < 0: # exp_tmp = exp(raw_prediction) # return ((1 - y_true) * exp_tmp - y_true) / (1 + exp_tmp) @@ -708,12 +707,22 @@ cdef inline double cgradient_half_binomial( # return expit(raw_prediction) - y_true # i.e. no "if else" and an own inline implementation of expit instead of # from scipy.special.cython_special cimport expit - # The case distinction raw_prediction < 0 in the stable implementation - # does not provide significant better precision. Therefore we go without - # it. + # The case distinction raw_prediction < 0 in the stable implementation does not + # provide significant better precision apart from protecting overflow of exp(..). + # The branch (if else), however, can incur runtime costs of up to 30%. + # Instead, we help branch prediction by almost always ending in the first if clause + # and making the second branch (else) a bit simpler. This has the exact same + # precision but is faster than the stable implementation. + # As branching criteria, we use the same cutoff as in log1pexp. Note that the + # maximal value to get gradient = -1 with y_true = 1 is -37.439198610162731 + # (based on mpmath), and scipy.special.logit(np.finfo(float).eps) ~ -36.04365. cdef double exp_tmp - exp_tmp = exp(-raw_prediction) - return ((1 - y_true) - y_true * exp_tmp) / (1 + exp_tmp) + if raw_prediction > -37: + exp_tmp = exp(-raw_prediction) + return ((1 - y_true) - y_true * exp_tmp) / (1 + exp_tmp) + else: + # expit(raw_prediction) = exp(raw_prediction) for raw_prediction <= -37 + return exp(raw_prediction) - y_true cdef inline double_pair closs_grad_half_binomial( @@ -721,21 +730,24 @@ cdef inline double_pair closs_grad_half_binomial( double raw_prediction ) noexcept nogil: cdef double_pair lg - if raw_prediction <= 0: + # Same if else conditions as in log1pexp. + if raw_prediction <= -37: lg.val2 = exp(raw_prediction) # used as temporary - if raw_prediction <= -37: - lg.val1 = lg.val2 - y_true * raw_prediction # loss - else: - lg.val1 = log1p(lg.val2) - y_true * raw_prediction # loss + lg.val1 = lg.val2 - y_true * raw_prediction # loss + lg.val2 -= y_true # gradient + elif raw_prediction <= -2: + lg.val2 = exp(raw_prediction) # used as temporary + lg.val1 = log1p(lg.val2) - y_true * raw_prediction # loss lg.val2 = ((1 - y_true) * lg.val2 - y_true) / (1 + lg.val2) # gradient + elif raw_prediction <= 18: + lg.val2 = exp(-raw_prediction) # used as temporary + # log1p(exp(x)) = log(1 + exp(x)) = x + log1p(exp(-x)) + lg.val1 = log1p(lg.val2) + (1 - y_true) * raw_prediction # loss + lg.val2 = ((1 - y_true) - y_true * lg.val2) / (1 + lg.val2) # gradient else: lg.val2 = exp(-raw_prediction) # used as temporary - if raw_prediction <= 18: - # log1p(exp(x)) = log(1 + exp(x)) = x + log1p(exp(-x)) - lg.val1 = log1p(lg.val2) + (1 - y_true) * raw_prediction # loss - else: - lg.val1 = lg.val2 + (1 - y_true) * raw_prediction # loss - lg.val2 = ((1 - y_true) - y_true * lg.val2) / (1 + lg.val2) # gradient + lg.val1 = lg.val2 + (1 - y_true) * raw_prediction # loss + lg.val2 = ((1 - y_true) - y_true * lg.val2) / (1 + lg.val2) # gradient return lg @@ -747,9 +759,15 @@ cdef inline double_pair cgrad_hess_half_binomial( # hessian = y_pred * (1 - y_pred) = exp( raw) / (1 + exp( raw))**2 # = exp(-raw) / (1 + exp(-raw))**2 cdef double_pair gh - gh.val2 = exp(-raw_prediction) # used as temporary - gh.val1 = ((1 - y_true) - y_true * gh.val2) / (1 + gh.val2) # gradient - gh.val2 = gh.val2 / (1 + gh.val2)**2 # hessian + # See comment in cgradient_half_binomial. + if raw_prediction > -37: + gh.val2 = exp(-raw_prediction) # used as temporary + gh.val1 = ((1 - y_true) - y_true * gh.val2) / (1 + gh.val2) # gradient + gh.val2 = gh.val2 / (1 + gh.val2)**2 # hessian + else: + gh.val2 = exp(raw_prediction) + gh.val1 = gh.val2 - y_true + gh.val2 *= (1 - gh.val2) return gh diff --git a/sklearn/_loss/tests/test_loss.py b/sklearn/_loss/tests/test_loss.py index c018bb7147ce9..9c8bba4d717d1 100644 --- a/sklearn/_loss/tests/test_loss.py +++ b/sklearn/_loss/tests/test_loss.py @@ -224,48 +224,150 @@ def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail): @pytest.mark.parametrize( - "loss, y_true, raw_prediction, loss_true", + "loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true", [ - (HalfSquaredError(), 1.0, 5.0, 8), - (AbsoluteError(), 1.0, 5.0, 4), - (PinballLoss(quantile=0.5), 1.0, 5.0, 2), - (PinballLoss(quantile=0.25), 1.0, 5.0, 4 * (1 - 0.25)), - (PinballLoss(quantile=0.25), 5.0, 1.0, 4 * 0.25), - (HuberLoss(quantile=0.5, delta=3), 1.0, 5.0, 3 * (4 - 3 / 2)), - (HuberLoss(quantile=0.5, delta=3), 1.0, 3.0, 0.5 * 2**2), - (HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4)), - (HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4), - (HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2), - (HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2)), - (HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2), - (HalfTweedieLossIdentity(power=3), 2.0, 4.0, -1 / 4 + 1 / 4**2 + 1 / 2 / 2), - (HalfBinomialLoss(), 0.25, np.log(4), np.log(5) - 0.25 * np.log(4)), + (HalfSquaredError(), 1.0, 5.0, 8, 4, 1), + (AbsoluteError(), 1.0, 5.0, 4.0, 1.0, None), + (PinballLoss(quantile=0.5), 1.0, 5.0, 2, 0.5, None), + (PinballLoss(quantile=0.25), 1.0, 5.0, 4 * (1 - 0.25), 1 - 0.25, None), + (PinballLoss(quantile=0.25), 5.0, 1.0, 4 * 0.25, -0.25, None), + (HuberLoss(quantile=0.5, delta=3), 1.0, 5.0, 3 * (4 - 3 / 2), None, None), + (HuberLoss(quantile=0.5, delta=3), 1.0, 3.0, 0.5 * 2**2, None, None), + (HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4), 4 - 2, 4), + (HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4, 1 - 2 / 4, 2 / 4), + (HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2, None, None), + (HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2), None, None), + (HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2, None, None), + ( + HalfTweedieLossIdentity(power=3), + 2.0, + 4.0, + -1 / 4 + 1 / 4**2 + 1 / 2 / 2, + None, + None, + ), + ( + HalfBinomialLoss(), + 0.25, + np.log(4), + np.log1p(4) - 0.25 * np.log(4), + None, + None, + ), + # Extreme log loss cases, checked with mpmath: + # import mpmath as mp + # + # # Stolen from scipy + # def mpf2float(x): + # return float(mp.nstr(x, 17, min_fixed=0, max_fixed=0)) + # + # def mp_logloss(y_true, raw): + # with mp.workdps(100): + # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw)) + # out = mp.log1p(mp.exp(raw)) - y_true * raw + # return mpf2float(out) + # + # def mp_gradient(y_true, raw): + # with mp.workdps(100): + # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw)) + # out = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw)) - y_true + # return mpf2float(out) + # + # def mp_hessian(y_true, raw): + # with mp.workdps(100): + # y_true, raw = mp.mpf(float(y_true)), mp.mpf(float(raw)) + # p = mp.mpf(1) / (mp.mpf(1) + mp.exp(-raw)) + # out = p * (mp.mpf(1) - p) + # return mpf2float(out) + # + # y, raw = 0.0, 37. + # mp_logloss(y, raw), mp_gradient(y, raw), mp_hessian(y, raw) + (HalfBinomialLoss(), 0.0, -1e20, 0, 0, 0), + (HalfBinomialLoss(), 1.0, -1e20, 1e20, -1, 0), + (HalfBinomialLoss(), 0.0, -1e3, 0, 0, 0), + (HalfBinomialLoss(), 1.0, -1e3, 1e3, -1, 0), + (HalfBinomialLoss(), 1.0, -37.5, 37.5, -1, 0), + (HalfBinomialLoss(), 1.0, -37.0, 37, 1e-16 - 1, 8.533047625744065e-17), + (HalfBinomialLoss(), 0.0, -37.0, *[8.533047625744065e-17] * 3), + (HalfBinomialLoss(), 1.0, -36.9, 36.9, 1e-16 - 1, 9.430476078526806e-17), + (HalfBinomialLoss(), 0.0, -36.9, *[9.430476078526806e-17] * 3), + (HalfBinomialLoss(), 0.0, 37.0, 37, 1 - 1e-16, 8.533047625744065e-17), + (HalfBinomialLoss(), 1.0, 37.0, *[8.533047625744066e-17] * 3), + (HalfBinomialLoss(), 0.0, 37.5, 37.5, 1, 5.175555005801868e-17), + (HalfBinomialLoss(), 0.0, 232.8, 232.8, 1, 1.4287342391028437e-101), + (HalfBinomialLoss(), 1.0, 1e20, 0, 0, 0), + (HalfBinomialLoss(), 0.0, 1e20, 1e20, 1, 0), + ( + HalfBinomialLoss(), + 1.0, + 232.8, + 0, + -1.4287342391028437e-101, + 1.4287342391028437e-101, + ), + (HalfBinomialLoss(), 1.0, 232.9, 0, 0, 0), + (HalfBinomialLoss(), 1.0, 1e3, 0, 0, 0), + (HalfBinomialLoss(), 0.0, 1e3, 1e3, 1, 0), ( HalfMultinomialLoss(n_classes=3), 0.0, [0.2, 0.5, 0.3], logsumexp([0.2, 0.5, 0.3]) - 0.2, + None, + None, ), ( HalfMultinomialLoss(n_classes=3), 1.0, [0.2, 0.5, 0.3], logsumexp([0.2, 0.5, 0.3]) - 0.5, + None, + None, ), ( HalfMultinomialLoss(n_classes=3), 2.0, [0.2, 0.5, 0.3], logsumexp([0.2, 0.5, 0.3]) - 0.3, + None, + None, + ), + ( + HalfMultinomialLoss(n_classes=3), + 2.0, + [1e4, 0, 7e-7], + logsumexp([1e4, 0, 7e-7]) - (7e-7), + None, + None, ), ], ids=loss_instance_name, ) -def test_loss_on_specific_values(loss, y_true, raw_prediction, loss_true): - """Test losses at specific values.""" - assert loss( +def test_loss_on_specific_values( + loss, y_true, raw_prediction, loss_true, gradient_true, hessian_true +): + """Test losses, gradients and hessians at specific values.""" + loss1 = loss(y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])) + grad1 = loss.gradient( + y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction]) + ) + loss2, grad2 = loss.loss_gradient( + y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction]) + ) + grad3, hess = loss.gradient_hessian( y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction]) - ) == approx(loss_true, rel=1e-11, abs=1e-12) + ) + + assert loss1 == approx(loss_true, rel=1e-15, abs=1e-15) + assert loss2 == approx(loss_true, rel=1e-15, abs=1e-15) + + if gradient_true is not None: + assert grad1 == approx(gradient_true, rel=1e-15, abs=1e-15) + assert grad2 == approx(gradient_true, rel=1e-15, abs=1e-15) + assert grad3 == approx(gradient_true, rel=1e-15, abs=1e-15) + + if hessian_true is not None: + assert hess == approx(hessian_true, rel=1e-15, abs=1e-15) @pytest.mark.parametrize("loss", ALL_LOSSES) From 60f3882c3be3b060c69580fd0ae26080d4d06c48 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 9 Jan 2024 21:05:11 +0100 Subject: [PATCH 0008/1641] MNT Remove some pins from lock files (#28082) --- ...latest_conda_forge_mkl_linux-64_conda.lock | 6 ++---- ...t_conda_forge_mkl_linux-64_environment.yml | 2 +- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 6 ++---- ...est_conda_forge_mkl_osx-64_environment.yml | 2 +- ...latest_conda_mkl_no_openmp_environment.yml | 2 +- ...test_conda_mkl_no_openmp_osx-64_conda.lock | 6 ++---- ...latest_pip_openblas_pandas_environment.yml | 2 +- ...st_pip_openblas_pandas_linux-64_conda.lock | 6 ++---- .../pylatest_pip_scipy_dev_environment.yml | 2 +- ...pylatest_pip_scipy_dev_linux-64_conda.lock | 6 ++---- ...in_conda_defaults_openblas_environment.yml | 2 +- ...onda_defaults_openblas_linux-64_conda.lock | 6 ++---- .../pymin_conda_forge_mkl_environment.yml | 2 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 6 ++---- ...forge_openblas_ubuntu_2204_environment.yml | 2 +- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 6 ++---- build_tools/azure/pypy3_environment.yml | 2 +- build_tools/azure/pypy3_linux-64_conda.lock | 6 ++---- build_tools/azure/test_script.sh | 12 +++++------- build_tools/azure/ubuntu_atlas_lock.txt | 7 +------ .../azure/ubuntu_atlas_requirements.txt | 2 +- build_tools/circle/doc_environment.yml | 3 +-- build_tools/circle/doc_linux-64_conda.lock | 8 +++----- .../doc_min_dependencies_environment.yml | 2 +- .../doc_min_dependencies_linux-64_conda.lock | 6 ++---- .../cirrus/pymin_conda_forge_environment.yml | 2 +- ...pymin_conda_forge_linux-aarch64_conda.lock | 6 ++---- .../update_environments_and_lock_files.py | 19 ++++++------------- 28 files changed, 50 insertions(+), 89 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 422dc6f1f9626..4171e34d5b5d1 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 7aa55d66dfbd0f6267a9aff8c750d1e9f42cd339726c8f9c4d1299341b064849 +# input_hash: 0e751f4212c4e51710aad471314a8b385a5e12fe3536c2a766f949da61eabb88 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -148,7 +148,6 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-h488ebb8_3.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd71531943440fbfe3b6b5727 -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 @@ -187,12 +186,11 @@ https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda# https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py311hb755f60_5.conda#e4d262cc3600e70b505a6761d29f6207 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.1.0-pyhd8ed1ab_0.conda#06eb685a3a0b146347a58dda979485da -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.21.0-hb942446_5.conda#07d92ed5403ad7b5c66ffd7d5b8f7e57 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-16_linux64_mkl.tar.bz2#361bf757b95488de76c4f123805742d3 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-16_linux64_mkl.tar.bz2#a2f166748917d6d6e4707841ca1f519e -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.10.57-h85b1a90_19.conda#0605d3d60857fc07bd6a11e878fe0f08 https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py311h64a7726_0.conda#231eef4f33640338f64ef9ab690ba08d https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-h82b777d_17.conda#4f01e33dbb406085a16a2813ab067e95 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_environment.yml b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_environment.yml index 07ec7bb7ff206..107ad5b3d6f8b 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_environment.yml +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_environment.yml @@ -15,7 +15,7 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index d412beaf30789..e7fda548f5985 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: osx-64 -# input_hash: 02abef27514db5e5119c3cdc253e84a06374c1b308495298b46bdb14dcc52ae9 +# input_hash: 8d19b3cb048dd1e254e00f21d81841feddd52c98a15661153cb472e9903b5cb3 @EXPLICIT https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h10d778d_5.conda#6097a6ca9ada32699b5fc4312dd6ef18 https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2023.11.17-h8857fd0_0.conda#c687e9d14c49e3d3946d50a413cdbf16 @@ -81,7 +81,6 @@ https://conda.anaconda.org/conda-forge/osx-64/numpy-1.26.3-py312he3a82b2_0.conda https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 https://conda.anaconda.org/conda-forge/osx-64/pillow-10.2.0-py312h0c70c2f_0.conda#0cc3674239ad12c6836cb4174f106c92 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2023.4-pyhd8ed1ab_0.conda#c79cacf8a06a51552fc651652f170208 https://conda.anaconda.org/conda-forge/noarch/pytz-2023.3.post1-pyhd8ed1ab_0.conda#c93346b446cd08c169d843ae5fc0da97 @@ -107,10 +106,9 @@ https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.2-py312h302682 https://conda.anaconda.org/conda-forge/osx-64/pandas-2.1.4-py312haf8ecfc_0.conda#cb889a75192ef98a17c3f431f6518dd2 https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.0.1-py312h674694f_1.conda#e5b9c0f8b5c367467425ff34353ef761 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.1.0-pyhd8ed1ab_0.conda#06eb685a3a0b146347a58dda979485da -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/noarch/compiler-rt_osx-64-16.0.6-ha38d28d_2.conda#7a46507edc35c6c8818db0adaf8d787f https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.2-py312hb401068_0.conda#926f479dcab7d6d26bba7fe39f67e3b2 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-16.0.6-ha38d28d_2.conda#3b9e8c5c63b8e86234f499490acd85c2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_8.conda#2e694b8880599d19aec8e489eb01580f https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_8.conda#831779e455d39ed7e8911be6e7d02814 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_environment.yml b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_environment.yml index 4ddb80c7cae3d..8535baec11c4d 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_environment.yml +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_environment.yml @@ -15,7 +15,7 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_environment.yml b/build_tools/azure/pylatest_conda_mkl_no_openmp_environment.yml index 64a33fe7d7522..6bc77eef6ed64 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_environment.yml +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_environment.yml @@ -15,7 +15,7 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index 63ccdf725e7dc..9bdd868dbf1f9 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: osx-64 -# input_hash: 03f7604aefb9752d2367c457bdf4e4923158be96db35ac0dd1d5dc60a9981cd1 +# input_hash: 9eaf961c53a9a025d43e8f2e3c17586b0ff793daddfbde53625c4b098de328ff @EXPLICIT https://repo.anaconda.com/pkgs/main/osx-64/blas-1.0-mkl.conda#cb2c87e85ac8e0ceae776d26d4214c8a https://repo.anaconda.com/pkgs/main/osx-64/bzip2-1.0.8-h1de35cc_0.conda#19fcb113b170fe2a0be96b47801fed7d @@ -52,7 +52,6 @@ https://repo.anaconda.com/pkgs/main/noarch/munkres-1.1.4-py_0.conda#148362ba07f9 https://repo.anaconda.com/pkgs/main/osx-64/openjpeg-2.4.0-h66ea3da_0.conda#882833bd7befc5e60e6fba9c518c1b79 https://repo.anaconda.com/pkgs/main/osx-64/packaging-23.1-py311hecd8cb5_0.conda#4f5c491cd2de9d61f61c0ea3340ab46a https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.0.0-py311hecd8cb5_1.conda#98e4da64cd934965a0caf4136280ff35 -https://repo.anaconda.com/pkgs/main/noarch/py-1.11.0-pyhd3eb1b0_0.conda#7205a898ed2abbf6e9b903dff6abe08e https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.0.9-py311hecd8cb5_0.conda#a4262f849ecc82af69f58da0cbcaaf04 https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.conda#479c037de0186d114b9911158427624e https://repo.anaconda.com/pkgs/main/osx-64/pytz-2023.3.post1-py311hecd8cb5_0.conda#32d107281d133e3935dfb6935153e438 @@ -67,8 +66,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/pillow-10.0.1-py311h7d39338_0.conda#0 https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.0-py311hecd8cb5_0.conda#8c5496a4a1f36160ac5556495faa4a24 https://repo.anaconda.com/pkgs/main/noarch/python-dateutil-2.8.2-pyhd3eb1b0_0.conda#211ee00320b08a1ac9fea6677649f6c9 https://repo.anaconda.com/pkgs/main/osx-64/pytest-cov-4.1.0-py311hecd8cb5_1.conda#b1e41a8eda3f119b39b13f3a4d0c5bf5 -https://repo.anaconda.com/pkgs/main/osx-64/pytest-forked-1.6.0-py311hecd8cb5_0.conda#b1154a9887bee381b3405ec37f8b13f3 -https://repo.anaconda.com/pkgs/main/noarch/pytest-xdist-2.5.0-pyhd3eb1b0_0.conda#d15cdc4207bcf8ca920822597f1d138d +https://repo.anaconda.com/pkgs/main/osx-64/pytest-xdist-3.5.0-py311hecd8cb5_0.conda#e892e4359ea4f0987e8268f7e7869680 https://repo.anaconda.com/pkgs/main/osx-64/bottleneck-1.3.5-py311hb9e55a9_0.conda#5aa1b58b421d4608b16184f8468253ef https://repo.anaconda.com/pkgs/main/osx-64/contourpy-1.2.0-py311ha357a0b_0.conda#c9189b40e5b4be360aef22be336a4838 https://repo.anaconda.com/pkgs/main/osx-64/matplotlib-3.8.0-py311hecd8cb5_0.conda#f720f09a9d1bb976aa92a13180cf7133 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml b/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml index ddbc75c1d9110..6167ca6e63748 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml +++ b/build_tools/azure/pylatest_pip_openblas_pandas_environment.yml @@ -17,7 +17,7 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist==2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 4d5e662a2d0f5..593c5571ece8b 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: d01d23bd27bcd50d2b3643492f966c8e390822d72b69f31bf66c2fe98a265a4c +# input_hash: 11d8952d04302b85207df163f6a5b20d8680e2eb067f9fb492d381a2b74c3a8f @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.12.12-h06a4308_0.conda#12bf7315c3f5ca50300e8b48d1b4ef2e @@ -45,7 +45,6 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685 # pip packaging @ https://files.pythonhosted.org/packages/ec/1a/610693ac4ee14fcdf2d9bf3c493370e4f2ef7ae2e19217d7a237ff42367d/packaging-23.2-py3-none-any.whl#sha256=8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7 # pip pillow @ https://files.pythonhosted.org/packages/87/0d/8f5136a5481731c342a901ff155c587ce7804114db069345e1894ab4978a/pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl#sha256=b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13 # pip pluggy @ https://files.pythonhosted.org/packages/05/b8/42ed91898d4784546c5f06c60506400548db3f7a4b3fb441cba4e5c17952/pluggy-1.3.0-py3-none-any.whl#sha256=d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7 -# pip py @ https://files.pythonhosted.org/packages/f6/f0/10642828a8dfb741e5f3fbaac830550a518a775c7fff6f04a007259b0548/py-1.11.0-py2.py3-none-any.whl#sha256=607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378 # pip pygments @ https://files.pythonhosted.org/packages/97/9c/372fef8377a6e340b1704768d20daaded98bf13282b5327beb2e2fe2c7ef/pygments-2.17.2-py3-none-any.whl#sha256=b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c # pip pyparsing @ https://files.pythonhosted.org/packages/39/92/8486ede85fcc088f1b3dba4ce92dd29d126fd96b0008ea213167940a2475/pyparsing-3.1.1-py3-none-any.whl#sha256=32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb # pip pytz @ https://files.pythonhosted.org/packages/32/4d/aaf7eff5deb402fd9a24a1449a8119f00d74ae9c2efa79f8ef9994261fc2/pytz-2023.3.post1-py2.py3-none-any.whl#sha256=ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7 @@ -74,9 +73,8 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685 # pip pandas @ https://files.pythonhosted.org/packages/bc/f8/2aa75ae200bdb9dc6967712f26628a06bf45d3ad94cbbf6fb4962ada15a3/pandas-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=1ebfd771110b50055712b3b711b51bee5d50135429364d0498e1213a7adc2be8 # pip pyamg @ https://files.pythonhosted.org/packages/35/1c/8b2aa6fbb2bae258ab6cdb35b09635bf50865ac2bcdaf220db3d972cc0d8/pyamg-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=1332acec6d5ede9440c8ced0ef20952f5b766387116f254b79880ce29fdecee7 # pip pytest-cov @ https://files.pythonhosted.org/packages/a7/4b/8b78d126e275efa2379b1c2e09dc52cf70df16fc3b90613ef82531499d73/pytest_cov-4.1.0-py3-none-any.whl#sha256=6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a -# pip pytest-forked @ https://files.pythonhosted.org/packages/f4/af/9c0bda43e486a3c9bf1e0f876d0f241bc3f229d7d65d09331a0868db9629/pytest_forked-1.6.0-py3-none-any.whl#sha256=810958f66a91afb1a1e2ae83089d8dc1cd2437ac96b12963042fbb9fb4d16af0 +# pip pytest-xdist @ https://files.pythonhosted.org/packages/50/37/125fe5ec459321e2d48a0c38672cfc2419ad87d580196fd894e5f25230b0/pytest_xdist-3.5.0-py3-none-any.whl#sha256=d075629c7e00b611df89f490a5063944bee7a4362a5ff11c7cc7824a03dfce24 # pip scikit-image @ https://files.pythonhosted.org/packages/a3/7e/4cd853a855ac34b4ef3ef6a5c3d1c2e96eaca1154fc6be75db55ffa87393/scikit_image-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=3b7a6c89e8d6252332121b58f50e1625c35f7d6a85489c0b6b7ee4f5155d547a -# pip pytest-xdist @ https://files.pythonhosted.org/packages/21/08/b1945d4b4986eb1aa10cf84efc5293bba39da80a2f95db3573dd90678408/pytest_xdist-2.5.0-py3-none-any.whl#sha256=6fe5c74fec98906deb8f2d2b616b5c782022744978e7bd4695d39c8f42d0ce65 # pip numpydoc @ https://files.pythonhosted.org/packages/9c/94/09c437fd4a5fb5adf0468c0865c781dbc11d399544b55f1163d5d4414afb/numpydoc-1.6.0-py3-none-any.whl#sha256=b6ddaa654a52bdf967763c1e773be41f1c3ae3da39ee0de973f2680048acafaa # pip sphinxcontrib-applehelp @ https://files.pythonhosted.org/packages/c0/0c/261c0949083c0ac635853528bb0070c89e927841d4e533ba0b5563365c06/sphinxcontrib_applehelp-1.0.7-py3-none-any.whl#sha256=094c4d56209d1734e7d252f6e0b3ccc090bd52ee56807a5d9315b19c122ab15d # pip sphinxcontrib-devhelp @ https://files.pythonhosted.org/packages/c0/03/010ac733ec7b7f71c1dc88e7115743ee466560d6d85373b56fb9916e4586/sphinxcontrib_devhelp-1.0.5-py3-none-any.whl#sha256=fe8009aed765188f08fcaadbb3ea0d90ce8ae2d76710b7e29ea7d047177dae2f diff --git a/build_tools/azure/pylatest_pip_scipy_dev_environment.yml b/build_tools/azure/pylatest_pip_scipy_dev_environment.yml index 2d3de7b1e1ed4..63987809e6ddd 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_environment.yml +++ b/build_tools/azure/pylatest_pip_scipy_dev_environment.yml @@ -10,7 +10,7 @@ dependencies: - pip: - threadpoolctl - pytest - - pytest-xdist==2.5.0 + - pytest-xdist - setuptools - pytest-cov - coverage diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index dd8c6560f66c7..a3c3af5613906 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 28ec764eefc982520846833c9ea571cf6ea5a0593dee76d7a7560b34e341e35b +# input_hash: 4ef027bae3f3dd18c4b010f99e6cc898037a9e17722412580463a65b352072ea @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/ca-certificates-2023.12.12-h06a4308_0.conda#12bf7315c3f5ca50300e8b48d1b4ef2e @@ -39,7 +39,6 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py311h06a4308_0.conda#6f # pip packaging @ https://files.pythonhosted.org/packages/ec/1a/610693ac4ee14fcdf2d9bf3c493370e4f2ef7ae2e19217d7a237ff42367d/packaging-23.2-py3-none-any.whl#sha256=8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7 # pip platformdirs @ https://files.pythonhosted.org/packages/be/53/42fe5eab4a09d251a76d0043e018172db324a23fcdac70f77a551c11f618/platformdirs-4.1.0-py3-none-any.whl#sha256=11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380 # pip pluggy @ https://files.pythonhosted.org/packages/05/b8/42ed91898d4784546c5f06c60506400548db3f7a4b3fb441cba4e5c17952/pluggy-1.3.0-py3-none-any.whl#sha256=d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7 -# pip py @ https://files.pythonhosted.org/packages/f6/f0/10642828a8dfb741e5f3fbaac830550a518a775c7fff6f04a007259b0548/py-1.11.0-py2.py3-none-any.whl#sha256=607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378 # pip pygments @ https://files.pythonhosted.org/packages/97/9c/372fef8377a6e340b1704768d20daaded98bf13282b5327beb2e2fe2c7ef/pygments-2.17.2-py3-none-any.whl#sha256=b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c # pip six @ https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl#sha256=8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 # pip snowballstemmer @ https://files.pythonhosted.org/packages/ed/dc/c02e01294f7265e63a7315fe086dd1df7dacb9f840a804da846b96d01b96/snowballstemmer-2.2.0-py2.py3-none-any.whl#sha256=c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a @@ -53,8 +52,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py311h06a4308_0.conda#6f # pip requests @ https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl#sha256=58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f # pip pooch @ https://files.pythonhosted.org/packages/1a/a5/5174dac3957ac412e80a00f30b6507031fcab7000afc9ea0ac413bddcff2/pooch-1.8.0-py3-none-any.whl#sha256=1bfba436d9e2ad5199ccad3583cca8c241b8736b5bb23fe67c213d52650dbb66 # pip pytest-cov @ https://files.pythonhosted.org/packages/a7/4b/8b78d126e275efa2379b1c2e09dc52cf70df16fc3b90613ef82531499d73/pytest_cov-4.1.0-py3-none-any.whl#sha256=6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a -# pip pytest-forked @ https://files.pythonhosted.org/packages/f4/af/9c0bda43e486a3c9bf1e0f876d0f241bc3f229d7d65d09331a0868db9629/pytest_forked-1.6.0-py3-none-any.whl#sha256=810958f66a91afb1a1e2ae83089d8dc1cd2437ac96b12963042fbb9fb4d16af0 -# pip pytest-xdist @ https://files.pythonhosted.org/packages/21/08/b1945d4b4986eb1aa10cf84efc5293bba39da80a2f95db3573dd90678408/pytest_xdist-2.5.0-py3-none-any.whl#sha256=6fe5c74fec98906deb8f2d2b616b5c782022744978e7bd4695d39c8f42d0ce65 +# pip pytest-xdist @ https://files.pythonhosted.org/packages/50/37/125fe5ec459321e2d48a0c38672cfc2419ad87d580196fd894e5f25230b0/pytest_xdist-3.5.0-py3-none-any.whl#sha256=d075629c7e00b611df89f490a5063944bee7a4362a5ff11c7cc7824a03dfce24 # pip numpydoc @ https://files.pythonhosted.org/packages/9c/94/09c437fd4a5fb5adf0468c0865c781dbc11d399544b55f1163d5d4414afb/numpydoc-1.6.0-py3-none-any.whl#sha256=b6ddaa654a52bdf967763c1e773be41f1c3ae3da39ee0de973f2680048acafaa # pip sphinxcontrib-applehelp @ https://files.pythonhosted.org/packages/c0/0c/261c0949083c0ac635853528bb0070c89e927841d4e533ba0b5563365c06/sphinxcontrib_applehelp-1.0.7-py3-none-any.whl#sha256=094c4d56209d1734e7d252f6e0b3ccc090bd52ee56807a5d9315b19c122ab15d # pip sphinxcontrib-devhelp @ https://files.pythonhosted.org/packages/c0/03/010ac733ec7b7f71c1dc88e7115743ee466560d6d85373b56fb9916e4586/sphinxcontrib_devhelp-1.0.5-py3-none-any.whl#sha256=fe8009aed765188f08fcaadbb3ea0d90ce8ae2d76710b7e29ea7d047177dae2f diff --git a/build_tools/azure/pymin_conda_defaults_openblas_environment.yml b/build_tools/azure/pymin_conda_defaults_openblas_environment.yml index 69de346c4fff0..a93498d23e537 100644 --- a/build_tools/azure/pymin_conda_defaults_openblas_environment.yml +++ b/build_tools/azure/pymin_conda_defaults_openblas_environment.yml @@ -14,7 +14,7 @@ dependencies: - matplotlib=3.3.4 # min - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock index 159ab024cc0c1..4543307280a3b 100644 --- a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: b4bfe38c127d42c34beb5fbcbb6d7a983e7063f8a6ec415182acb410dfc68d8d +# input_hash: 82d3fc4a221c5788b1501ed52f4700a43ac387e29dba2eccc9f2fd6521c878ff @EXPLICIT https://repo.anaconda.com/pkgs/main/linux-64/_libgcc_mutex-0.1-main.conda#c3473ff8bdb3d124ed5ff11ec380d6f9 https://repo.anaconda.com/pkgs/main/linux-64/blas-1.0-openblas.conda#9ddfcaef10d79366c90128f5dc444be8 @@ -72,7 +72,6 @@ https://repo.anaconda.com/pkgs/main/linux-64/packaging-23.1-py39h06a4308_0.conda https://repo.anaconda.com/pkgs/main/linux-64/pillow-10.0.1-py39ha6cbd5a_0.conda#a16f050efc583049a46accd497525967 https://repo.anaconda.com/pkgs/main/linux-64/pluggy-1.0.0-py39h06a4308_1.conda#fb4fed11ed43cf727dbd51883cc1d9fa https://repo.anaconda.com/pkgs/main/linux-64/ply-3.11-py39h06a4308_0.conda#6c89bf6d2fdf6d24126e34cb83fd10f1 -https://repo.anaconda.com/pkgs/main/noarch/py-1.11.0-pyhd3eb1b0_0.conda#7205a898ed2abbf6e9b903dff6abe08e https://repo.anaconda.com/pkgs/main/linux-64/pyparsing-3.0.9-py39h06a4308_0.conda#3a0537468e59760404f63b4f04369828 https://repo.anaconda.com/pkgs/main/linux-64/pyqt5-sip-12.13.0-py39h5eee18b_0.conda#256840c3841b52346ea5743be8490ede https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py39h06a4308_0.conda#5b42cae5548732ae5c167bb1066085de @@ -90,8 +89,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/sip-6.7.12-py39h6a678d5_0.conda#698 https://repo.anaconda.com/pkgs/main/linux-64/matplotlib-base-3.3.4-py39h62a2d02_0.conda#dbab28222c740af8e21a3e5e2882c178 https://repo.anaconda.com/pkgs/main/linux-64/pyqt-5.15.10-py39h6a678d5_0.conda#52da5ff9b1144b078d2f41bab0b213f2 https://repo.anaconda.com/pkgs/main/linux-64/pytest-cov-4.1.0-py39h06a4308_1.conda#8f41fce21670b120bf7fa8a7883380d9 -https://repo.anaconda.com/pkgs/main/linux-64/pytest-forked-1.6.0-py39h06a4308_0.conda#f0a6e858c06dc4d2ae5c9644630a6a83 +https://repo.anaconda.com/pkgs/main/linux-64/pytest-xdist-3.5.0-py39h06a4308_0.conda#e1d7ffcb1ee2ed9a84800f5c4bbbd7ae https://repo.anaconda.com/pkgs/main/linux-64/scipy-1.7.3-py39hf838250_2.conda#0667ea5ac14d35e26da19a0f068739da https://repo.anaconda.com/pkgs/main/linux-64/matplotlib-3.3.4-py39h06a4308_0.conda#384fc5e01ebfcf30e7161119d3029b5a https://repo.anaconda.com/pkgs/main/linux-64/pyamg-4.2.3-py39h79cecc1_0.conda#afc634da8b81dc504179d53d334e6e55 -https://repo.anaconda.com/pkgs/main/noarch/pytest-xdist-2.5.0-pyhd3eb1b0_0.conda#d15cdc4207bcf8ca920822597f1d138d diff --git a/build_tools/azure/pymin_conda_forge_mkl_environment.yml b/build_tools/azure/pymin_conda_forge_mkl_environment.yml index 125c169ddc95f..a3b8b75363a46 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_environment.yml +++ b/build_tools/azure/pymin_conda_forge_mkl_environment.yml @@ -13,7 +13,7 @@ dependencies: - threadpoolctl - matplotlib - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pytest-cov diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 10b0d4ec2291f..e709d540b60d6 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: win-64 -# input_hash: af544b6135127d0b6abf1eedcc8ba32a4d5e2e1d2904d4592abc7f3dba338569 +# input_hash: 2f4b1d16d553e6307f97867b796d97131fd60899af1e29931840dbbc1b00d7b9 @EXPLICIT https://conda.anaconda.org/conda-forge/win-64/ca-certificates-2023.11.17-h56e8100_0.conda#1163114b483f26761f993c709e65271f https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2023.2.0-h57928b3_50497.conda#a401f3cae152deb75bbed766a90a6312 @@ -63,7 +63,6 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd71531943440fbfe3b6b5727 https://conda.anaconda.org/conda-forge/win-64/pthread-stubs-0.4-hcd874cb_1001.tar.bz2#a1f820480193ea83582b13249a7e7bd9 -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 @@ -96,11 +95,10 @@ https://conda.anaconda.org/conda-forge/win-64/mkl-2023.2.0-h6a75c08_50497.conda# https://conda.anaconda.org/conda-forge/win-64/pillow-10.2.0-py39h368b509_0.conda#706d6e5bbc4b5d2ac7b8a6077319294d https://conda.anaconda.org/conda-forge/win-64/pyqt5-sip-12.12.2-py39h99910a6_5.conda#dffbcea794c524c471772a5f697c2aea https://conda.anaconda.org/conda-forge/noarch/pytest-cov-4.1.0-pyhd8ed1ab_0.conda#06eb685a3a0b146347a58dda979485da -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/win-64/gstreamer-1.22.8-hb4038d2_1.conda#d24ef655de29ac3b1e14aae9cc2eb66b https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-20_win64_mkl.conda#6cad6cd2fbdeef4d651b8f752a4da960 https://conda.anaconda.org/conda-forge/win-64/mkl-devel-2023.2.0-h57928b3_50497.conda#0d52cfab24361c77268b54920c11903c -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/win-64/gst-plugins-base-1.22.8-h001b923_1.conda#abe4d4f0820e367987d2ba73a84cf328 https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-20_win64_mkl.conda#e6d36cfcb2f2dff0f659d2aa0813eb2d https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-20_win64_mkl.conda#9510d07424d70fcac553d86b3e4a7c14 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_environment.yml b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_environment.yml index de366a19e740d..51fe4e3308868 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_environment.yml +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_environment.yml @@ -15,7 +15,7 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - sphinx diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index a6893000d1871..55ed5154a3d12 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: d70964a380150a9fdd34471eab9c13547ec7744156a6719ec0e4b97fc7d298fa +# input_hash: c5b0ca4d81a3951a78ce653cf958c09f523e7579537cf5f6f0c709eb3691bc3d @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -127,7 +127,6 @@ https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-h488ebb8_3.conda# https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd71531943440fbfe3b6b5727 -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda#140a7f159396547e9799aa98f9f0742e https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 @@ -172,13 +171,12 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h474f0d3_0.conda#a1f1ad2d8ebf63f13f45fb21b7f49dfb https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py39h7633fee_0.conda#ed71ad3e30eb03da363fb797419cce98 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c_1.conda#3926dab94fe06d88ade0e716d77b8cf8 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py39hddac248_0.conda#dcfd2f15c6f8f0bbf234412b18a2a5d0 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.4-py39h474f0d3_0.conda#4b401c1516417b4b14aa1249d2f7929d https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.2-py39he9076e7_0.conda#6085411aa2f0b2b801d3b46e1d3b83c5 diff --git a/build_tools/azure/pypy3_environment.yml b/build_tools/azure/pypy3_environment.yml index d4f0d22e96042..45a0d0e8ffebb 100644 --- a/build_tools/azure/pypy3_environment.yml +++ b/build_tools/azure/pypy3_environment.yml @@ -15,6 +15,6 @@ dependencies: - matplotlib - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - setuptools - ccache diff --git a/build_tools/azure/pypy3_linux-64_conda.lock b/build_tools/azure/pypy3_linux-64_conda.lock index d5f5f842033c0..136b85b5395b8 100644 --- a/build_tools/azure/pypy3_linux-64_conda.lock +++ b/build_tools/azure/pypy3_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 296e0e62aa19cfbc6aa6d615c86db2d06be56b4b5f76bf148152aff936fcddf5 +# input_hash: 231e6765d0906ea65daa71dd10e672c1afde9ae87cba2e958a8744a6a38a4e7b @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -72,7 +72,6 @@ https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h6dedee3_0.cond https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py39hcf8a34e_0.conda#8a406ee5a979c2591f4c734d6fe4a958 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/pypy-7.3.13-0_pypy39.conda#0973de0664d1bd004c1bc64a7aab8f2e https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b @@ -93,7 +92,6 @@ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.4-py39h6dedee3_0.cond https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.0.1-py39h5fd064f_1.conda#e364cfb3ffb590ccef24b5a92389e751 -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.2-py39h4e7d633_0.conda#a60f8c577d2db485f0b92bef480d6277 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.2-py39h4162558_0.conda#24444011be733e7bde8617eb8fe725e1 diff --git a/build_tools/azure/test_script.sh b/build_tools/azure/test_script.sh index a45fa3dd49842..0b378675eebde 100755 --- a/build_tools/azure/test_script.sh +++ b/build_tools/azure/test_script.sh @@ -51,17 +51,15 @@ fi if [[ -n "$CHECK_WARNINGS" ]]; then TEST_CMD="$TEST_CMD -Werror::DeprecationWarning -Werror::FutureWarning -Werror::sklearn.utils.fixes.VisibleDeprecationWarning" - # numpy's 1.19.0's tostring() deprecation is ignored until scipy and joblib - # removes its usage - TEST_CMD="$TEST_CMD -Wignore:tostring:DeprecationWarning" - - # Ignore distutils deprecation warning, used by joblib internally - TEST_CMD="$TEST_CMD -Wignore:distutils\ Version\ classes\ are\ deprecated:DeprecationWarning" - # Ignore pkg_resources deprecation warnings triggered by pyamg TEST_CMD="$TEST_CMD -W 'ignore:pkg_resources is deprecated as an API:DeprecationWarning'" TEST_CMD="$TEST_CMD -W 'ignore:Deprecated call to \`pkg_resources:DeprecationWarning'" + # pytest-cov issue https://github.com/pytest-dev/pytest-cov/issues/557 not + # fixed although it has been closed. https://github.com/pytest-dev/pytest-cov/pull/623 + # would probably fix it. + TEST_CMD="$TEST_CMD -W 'ignore:The --rsyncdir command line argument and rsyncdirs config variable are deprecated.:DeprecationWarning'" + # In some case, exceptions are raised (by bug) in tests, and captured by pytest, # but not raised again. This is for instance the case when Cython directives are # activated: IndexErrors (which aren't fatal) are raised on out-of-bound accesses. diff --git a/build_tools/azure/ubuntu_atlas_lock.txt b/build_tools/azure/ubuntu_atlas_lock.txt index 680f90207abe8..42e63264193af 100644 --- a/build_tools/azure/ubuntu_atlas_lock.txt +++ b/build_tools/azure/ubuntu_atlas_lock.txt @@ -18,16 +18,11 @@ packaging==23.2 # via pytest pluggy==1.3.0 # via pytest -py==1.11.0 - # via pytest-forked pytest==7.4.4 # via # -r build_tools/azure/ubuntu_atlas_requirements.txt - # pytest-forked # pytest-xdist -pytest-forked==1.6.0 - # via pytest-xdist -pytest-xdist==2.5.0 +pytest-xdist==3.5.0 # via -r build_tools/azure/ubuntu_atlas_requirements.txt threadpoolctl==2.0.0 # via -r build_tools/azure/ubuntu_atlas_requirements.txt diff --git a/build_tools/azure/ubuntu_atlas_requirements.txt b/build_tools/azure/ubuntu_atlas_requirements.txt index b4fad825466a7..7bca99cc63cf2 100644 --- a/build_tools/azure/ubuntu_atlas_requirements.txt +++ b/build_tools/azure/ubuntu_atlas_requirements.txt @@ -5,4 +5,4 @@ cython==0.29.33 # min joblib==1.2.0 # min threadpoolctl==2.0.0 # min pytest -pytest-xdist==2.5.0 +pytest-xdist diff --git a/build_tools/circle/doc_environment.yml b/build_tools/circle/doc_environment.yml index 5789d2dfeabd1..22400c45091bb 100644 --- a/build_tools/circle/doc_environment.yml +++ b/build_tools/circle/doc_environment.yml @@ -15,12 +15,11 @@ dependencies: - pandas - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - scikit-image - seaborn - - patsy=0.5.4 - memory_profiler - compilers - sphinx diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index e72fe4615571b..77565ab07e476 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: f0d8179a97f73d1dd3fcaabd7b81b8f4ee3eeb0b07c038be883b60160b96c3e9 +# input_hash: e9ce7b66471a75e2156a32c83078c9688bbda241cd62e3d881989eae546ee2e9 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -163,7 +163,6 @@ https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.1.0-pyhd8ed1ab_0.co https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd71531943440fbfe3b6b5727 https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.7-py39hd1e30aa_0.conda#34d2731732bc7de6269657d5d9fd6e79 -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda#140a7f159396547e9799aa98f9f0742e https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 @@ -218,7 +217,7 @@ https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1 https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.3-py39h474f0d3_0.conda#a1f1ad2d8ebf63f13f45fb21b7f49dfb https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.0-py39h7633fee_0.conda#ed71ad3e30eb03da363fb797419cce98 @@ -226,10 +225,9 @@ https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.22.8-h8e1006c https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.1.1-py39hf9b8f0e_0.conda#9ddd29852457d1152ca235eb87bc74fb https://conda.anaconda.org/conda-forge/noarch/imageio-2.33.1-pyh8c1a49c_0.conda#1c34d58ac469a34e7e96832861368bce https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py39hddac248_0.conda#dcfd2f15c6f8f0bbf234412b18a2a5d0 -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.4-pyhd8ed1ab_0.conda#1184267eddebb57e47f8e1419c225595 +https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.3-py39h927a070_1.conda#9228d65338fc75b9f7040c30465cd84b https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.0-pyhd8ed1ab_0.conda#134b2b57b7865d2316a7cce1915a51ed -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.4.1-py39h44dd56e_1.conda#d037c20e3da2e85f03ebd20ad480c359 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.11.4-py39h474f0d3_0.conda#4b401c1516417b4b14aa1249d2f7929d https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 diff --git a/build_tools/circle/doc_min_dependencies_environment.yml b/build_tools/circle/doc_min_dependencies_environment.yml index 539187723c01e..3a8320a7f8dd0 100644 --- a/build_tools/circle/doc_min_dependencies_environment.yml +++ b/build_tools/circle/doc_min_dependencies_environment.yml @@ -15,7 +15,7 @@ dependencies: - pandas=1.1.5 # min - pyamg - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - scikit-image=0.17.2 # min diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 4c0b70b6b260e..b0848d8fbea6f 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 63e92fdc759dcf030bf7e6d4a5d86bec102c98562cfb7ebd4d3d4991c895678b +# input_hash: a58a98732e5815c15757bc1def8ddc0d87f20f11edcf6e7b408594bf948cbb3e @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2023.11.17-hbcca054_0.conda#01ffc8d36f9eba0ce0b3c1955fa780ee @@ -146,7 +146,6 @@ https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.1.0-pyhd8ed1ab_0.co https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d https://conda.anaconda.org/conda-forge/noarch/ply-3.11-py_1.tar.bz2#7205635cd71531943440fbfe3b6b5727 https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.7-py39hd1e30aa_0.conda#34d2731732bc7de6269657d5d9fd6e79 -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pygments-2.17.2-pyhd8ed1ab_0.conda#140a7f159396547e9799aa98f9f0742e https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 @@ -199,7 +198,7 @@ https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.0.1-hd8ed1ab_ https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-20_linux64_openblas.conda#05c5862c7dc25e65ba6c471d96429dae https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-20_linux64_openblas.conda#9932a1d4e9ecf2d35fb19475446e361e https://conda.anaconda.org/conda-forge/noarch/dask-core-2023.12.1-pyhd8ed1ab_0.conda#bf6ad72d882bc3f04e6a0fb50fd2cce8 @@ -211,7 +210,6 @@ https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar. https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/polars-0.19.12-py39h90d8ae4_0.conda#191828961c95f8d59fa2b86a590f9905 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.0-pyhd8ed1ab_0.conda#134b2b57b7865d2316a7cce1915a51ed -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.3.0-py39hd257fcd_1.tar.bz2#c4b698994b2d8d2e659ae02202e6abe4 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 https://conda.anaconda.org/conda-forge/linux-64/blas-2.120-openblas.conda#c8f6916a81a340650078171b1d852574 diff --git a/build_tools/cirrus/pymin_conda_forge_environment.yml b/build_tools/cirrus/pymin_conda_forge_environment.yml index 70aedd73bf883..67a163d2bd46b 100644 --- a/build_tools/cirrus/pymin_conda_forge_environment.yml +++ b/build_tools/cirrus/pymin_conda_forge_environment.yml @@ -13,7 +13,7 @@ dependencies: - threadpoolctl - matplotlib - pytest - - pytest-xdist=2.5.0 + - pytest-xdist - pillow - setuptools - pip diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index c8e8d0baf5236..fa842def2d8d2 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-aarch64 -# input_hash: 26cb8d771d4d1ecc00c0fc477f3a4b364e4bd7558f3d18ecd50c0d1b440ffe7f +# input_hash: dc7e28d3993d445e2d092c8e0962c7c7b4861c3413f40ab9e1f017be338abb90 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2023.11.17-hcefe29a_0.conda#695a28440b58e3ba920bcac4ac7c73c6 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.40-h2d8c526_0.conda#16246d69e945d0b1969a6099e7c5d457 @@ -60,7 +60,6 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/openblas-0.3.25-pthreads_h3 https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.0-h0d9d63b_3.conda#123f5df3bc7f0e23c6950fddb97d1f43 https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda#79002079284aa895f883c6b7f3f88fd6 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.3.0-pyhd8ed1ab_0.conda#2390bd10bed1f3fdc7a537fb5a447d8d -https://conda.anaconda.org/conda-forge/noarch/py-1.11.0-pyh6c4a22f_0.tar.bz2#b4613d7e7a493916d867842a6a148054 https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.1-pyhd8ed1ab_0.conda#176f7d56f0cfe9008bdf1bccd7de02fb https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda#40695fdfd15a92121ed2922900d0308b https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 @@ -82,10 +81,9 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.8.2-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.1.1-pyhd8ed1ab_0.conda#d04bd1b5bed9177dd7c3cef15e2b6710 https://conda.anaconda.org/conda-forge/linux-aarch64/liblapacke-3.9.0-20_linuxaarch64_openblas.conda#1b8192f036a2dc41fec67700bb8bacef https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.3-py39h91c28bb_0.conda#9e10c6f9e309c2ada0d41c945e0f9b56 -https://conda.anaconda.org/conda-forge/noarch/pytest-forked-1.6.0-pyhd8ed1ab_0.conda#a46947638b6e005b63d2d6271da529b0 +https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-20_linuxaarch64_openblas.conda#211c74d7600d8d1dec226daf5e28e2dc https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.2.0-py39hd16970a_0.conda#dc11a4a2e020d1d71350baa7cb4980e4 -https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-2.5.0-pyhd8ed1ab_0.tar.bz2#1fdd1f3baccf0deb647385c677a1a48e https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.11.3-py39h91c28bb_1.conda#216b118cdb919665ad7d9d2faff412df https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.120-openblas.conda#4354e2978d15f5b29b1557792e5c5c63 https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.8.2-py39h8e43113_0.conda#0dd681b8d2a93b799954714481761fe0 diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index b344785ad01ca..6625c88affe29 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -5,8 +5,11 @@ Two scenarios where this script can be useful: - make sure that the latest versions of all the dependencies are used in the CI. - We can run this script regularly and open a PR with the changes to the lock - files. This workflow will eventually be automated with a bot in the future. + There is a scheduled workflow that does this, see + .github/workflows/update-lock-files.yml. This is still useful to run this + script when when the automated PR fails and for example some packages need to + be pinned. You can add the pins to this script, run it, and open a PR with + the changes. - bump minimum dependencies in sklearn/_min_dependencies.py. Running this script will update both the CI environment files and associated lock files. You can then open a PR with the changes. @@ -78,11 +81,7 @@ docstring_test_dependencies = ["sphinx", "numpydoc"] -default_package_constraints = { - # XXX: pin pytest-xdist to workaround: - # https://github.com/pytest-dev/pytest-xdist/issues/840 - "pytest-xdist": "2.5.0", -} +default_package_constraints = {} def remove_from(alist, to_remove): @@ -296,8 +295,6 @@ def remove_from(alist, to_remove): "conda_dependencies": common_dependencies_without_coverage + [ "scikit-image", "seaborn", - # TODO Remove when patsy pin is not needed anymore, see below - "patsy", "memory_profiler", "compilers", "sphinx", @@ -313,10 +310,6 @@ def remove_from(alist, to_remove): "pip_dependencies": ["jupyterlite-sphinx", "jupyterlite-pyodide-kernel"], "package_constraints": { "python": "3.9", - # TODO: Remove pin when issue is fixed in patsy, see - # https://github.com/pydata/patsy/issues/198. patsy 0.5.5 - # introduced a DeprecationWarning at import-time. - "patsy": "0.5.4", }, }, { From 91d273ae892851ec3bdc4a21cffe163fbaed40f0 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Wed, 10 Jan 2024 12:09:15 +0100 Subject: [PATCH 0009/1641] MAINT avoid commit containing doc/sg_execution_times.rst (#28088) --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index 199c2bd85d997..770f0b84f074a 100644 --- a/.gitignore +++ b/.gitignore @@ -13,6 +13,7 @@ sklearn/**/*.html dist/ MANIFEST +doc/sg_execution_times.rst doc/_build/ doc/auto_examples/ doc/modules/generated/ From 8234a8cf85edcbf8a12717698cb0f108067f290a Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Wed, 10 Jan 2024 18:02:37 +0100 Subject: [PATCH 0010/1641] DOC fix some doctring for numpydoc compliance (#27983) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- sklearn/base.py | 3 +- sklearn/utils/_random.pyx | 81 +++++++++++++++++++++------------------ 2 files changed, 45 insertions(+), 39 deletions(-) diff --git a/sklearn/base.py b/sklearn/base.py index 56a0ad3233a73..e7361c331617a 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -1079,9 +1079,10 @@ def fit_predict(self, X, y=None, **kwargs): class MetaEstimatorMixin: - _required_parameters = ["estimator"] """Mixin class for all meta estimators in scikit-learn.""" + _required_parameters = ["estimator"] + class MultiOutputMixin: """Mixin to mark estimators that support multioutput.""" diff --git a/sklearn/utils/_random.pyx b/sklearn/utils/_random.pyx index d063f4dfe7ff1..2ffe47d38bd33 100644 --- a/sklearn/utils/_random.pyx +++ b/sklearn/utils/_random.pyx @@ -228,6 +228,49 @@ cdef _sample_without_replacement(default_int n_population, random_state=None): """Sample integers without replacement. + Private function for the implementation, see sample_without_replacement + documentation for more details. + """ + _sample_without_replacement_check_input(n_population, n_samples) + + all_methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") + + ratio = n_samples / n_population if n_population != 0.0 else 1.0 + + # Check ratio and use permutation unless ratio < 0.01 or ratio > 0.99 + if method == "auto" and ratio > 0.01 and ratio < 0.99: + rng = check_random_state(random_state) + return rng.permutation(n_population)[:n_samples] + + if method == "auto" or method == "tracking_selection": + # TODO the pool based method can also be used. + # however, it requires special benchmark to take into account + # the memory requirement of the array vs the set. + + # The value 0.2 has been determined through benchmarking. + if ratio < 0.2: + return _sample_without_replacement_with_tracking_selection( + n_population, n_samples, random_state) + else: + return _sample_without_replacement_with_reservoir_sampling( + n_population, n_samples, random_state) + + elif method == "reservoir_sampling": + return _sample_without_replacement_with_reservoir_sampling( + n_population, n_samples, random_state) + + elif method == "pool": + return _sample_without_replacement_with_pool(n_population, n_samples, + random_state) + else: + raise ValueError('Expected a method name in %s, got %s. ' + % (all_methods, method)) + + +def sample_without_replacement( + object n_population, object n_samples, method="auto", random_state=None): + """Sample integers without replacement. + Select n_samples integers from the set [0, n_population) without replacement. @@ -276,44 +319,6 @@ cdef _sample_without_replacement(default_int n_population, The sampled subsets of integer. The subset of selected integer might not be randomized, see the method argument. """ - _sample_without_replacement_check_input(n_population, n_samples) - - all_methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") - - ratio = n_samples / n_population if n_population != 0.0 else 1.0 - - # Check ratio and use permutation unless ratio < 0.01 or ratio > 0.99 - if method == "auto" and ratio > 0.01 and ratio < 0.99: - rng = check_random_state(random_state) - return rng.permutation(n_population)[:n_samples] - - if method == "auto" or method == "tracking_selection": - # TODO the pool based method can also be used. - # however, it requires special benchmark to take into account - # the memory requirement of the array vs the set. - - # The value 0.2 has been determined through benchmarking. - if ratio < 0.2: - return _sample_without_replacement_with_tracking_selection( - n_population, n_samples, random_state) - else: - return _sample_without_replacement_with_reservoir_sampling( - n_population, n_samples, random_state) - - elif method == "reservoir_sampling": - return _sample_without_replacement_with_reservoir_sampling( - n_population, n_samples, random_state) - - elif method == "pool": - return _sample_without_replacement_with_pool(n_population, n_samples, - random_state) - else: - raise ValueError('Expected a method name in %s, got %s. ' - % (all_methods, method)) - - -def sample_without_replacement( - object n_population, object n_samples, method="auto", random_state=None): cdef: cnp.intp_t n_pop_intp, n_samples_intp long n_pop_long, n_samples_long From 173e9d95594d366e5206361b0c5cab3d2933ed85 Mon Sep 17 00:00:00 2001 From: Connor Boyle Date: Thu, 11 Jan 2024 01:50:46 -0800 Subject: [PATCH 0011/1641] DOC update the formula regarding the computation of the F1-score (#27936) Co-authored-by: Joel Nothman Co-authored-by: Guillaume Lemaitre --- doc/modules/model_evaluation.rst | 29 +++++++++++++--- .../model_selection/plot_precision_recall.py | 7 ++-- sklearn/metrics/_classification.py | 34 +++++++++++-------- 3 files changed, 47 insertions(+), 23 deletions(-) diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index a88a92604767e..271e5f6c1c661 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -886,22 +886,41 @@ following table: | | Missing result | Correct absence of result| +-------------------+---------------------+--------------------------+ -In this context, we can define the notions of precision, recall and F-measure: +In this context, we can define the notions of precision and recall: .. math:: - \text{precision} = \frac{tp}{tp + fp}, + \text{precision} = \frac{\text{tp}}{\text{tp} + \text{fp}}, .. math:: - \text{recall} = \frac{tp}{tp + fn}, + \text{recall} = \frac{\text{tp}}{\text{tp} + \text{fn}}, +(Sometimes recall is also called ''sensitivity'') + +F-measure is the weighted harmonic mean of precision and recall, with precision's contribution to the mean weighted by +some parameter :math:`\beta`: +F-measure is the weighted harmonic mean of precision and recall, with precision's +contribution to the mean weighted by some parameter :math:`\beta`: .. math:: - F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}. + F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}} + +To avoid division by zero when precision and recall are zero, Scikit-Learn calculates F-measure with this +otherwise-equivalent formula: +To avoid division by zero when precision and recall are zero, we can define the +F-measure with this otherwise-equivalent formula: +.. math:: -Sometimes recall is also called ''sensitivity''. + F_\beta = \frac{(1 + \beta^2) \text{tp}}{(1 + \beta^2) \text{tp} + \text{fp} + \beta^2 \text{fn}}. +Note that this formula is still undefined when there are no true positives, false positives, nor false negatives. By +default, F-1 for a set of exclusively true negatives is calculated as 0, however this behavior can be changed using the +`zero_division` parameter. +Note that this formula is still undefined when there are no true positives, false +positives, nor false negatives. By default, F-1 for a set of exclusively true negatives +is calculated as 0, however this behavior can be changed using the `zero_division` +parameter. Here are some small examples in binary classification:: >>> from sklearn import metrics diff --git a/examples/model_selection/plot_precision_recall.py b/examples/model_selection/plot_precision_recall.py index 2e48495f96a16..03b273de66b7f 100644 --- a/examples/model_selection/plot_precision_recall.py +++ b/examples/model_selection/plot_precision_recall.py @@ -37,10 +37,11 @@ :math:`R = \\frac{T_p}{T_p + F_n}` -These quantities are also related to the (:math:`F_1`) score, which is defined -as the harmonic mean of precision and recall. +These quantities are also related to the :math:`F_1` score, which is the +harmonic mean of precision and recall. Thus, we can compute the :math:`F_1` +using the following formula: -:math:`F1 = 2\\frac{P \\times R}{P+R}` +:math:`F_1 = \\frac{2T_p}{2T_p + F_p + F_n}` Note that the precision may not decrease with recall. The definition of precision (:math:`\\frac{T_p}{T_p + F_p}`) shows that lowering diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index f0a13f8a04830..5b8a024e6e5fc 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -1116,7 +1116,12 @@ def f1_score( The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: - F1 = 2 * (precision * recall) / (precision + recall) + F1 = 2 * TP / (2 * TP + FN + FP) + + Where "TP" is the number of true positives, "FN" is the number of false + negatives, and "FP" is the number of false positives. F1 is by default + calculated as 0.0 when there are no true positives, false negatives, nor + false positives. Support beyond term:`binary` targets is achieved by treating :term:`multiclass` and :term:`multilabel` data as a collection of binary problems, one for each @@ -1211,12 +1216,11 @@ def f1_score( Notes ----- - When ``true positive + false positive == 0``, precision is undefined. - When ``true positive + false negative == 0``, recall is undefined. - In such cases, by default the metric will be set to 0, as will f-score, - and ``UndefinedMetricWarning`` will be raised. This behavior can be - modified with ``zero_division``. Note that if `zero_division` is np.nan, - scores being `np.nan` will be ignored for averaging. + When ``true positive + false positive + false negative == 0`` (i.e. a class + is completely absent from both ``y_true`` or ``y_pred``), f-score is + undefined. In such cases, by default f-score will be set to 0.0, and + ``UndefinedMetricWarning`` will be raised. This behavior can be modified by + setting the ``zero_division`` parameter. References ---------- @@ -1404,10 +1408,9 @@ def fbeta_score( Notes ----- - When ``true positive + false positive == 0`` or - ``true positive + false negative == 0``, f-score returns 0 and raises - ``UndefinedMetricWarning``. This behavior can be - modified with ``zero_division``. + When ``true positive + false positive + false negative == 0``, f-score + returns 0.0 and raises ``UndefinedMetricWarning``. This behavior can be + modified by setting ``zero_division``. References ---------- @@ -1699,10 +1702,11 @@ def precision_recall_fscore_support( Notes ----- When ``true positive + false positive == 0``, precision is undefined. - When ``true positive + false negative == 0``, recall is undefined. - In such cases, by default the metric will be set to 0, as will f-score, - and ``UndefinedMetricWarning`` will be raised. This behavior can be - modified with ``zero_division``. + When ``true positive + false negative == 0``, recall is undefined. When + ``true positive + false negative + false positive == 0``, f-score is + undefined. In such cases, by default the metric will be set to 0, and + ``UndefinedMetricWarning`` will be raised. This behavior can be modified + with ``zero_division``. References ---------- From 55f4a3ab94cf1e8480bbcdc1793d8675713e27ec Mon Sep 17 00:00:00 2001 From: Mohammed Hamdy <62081584+mmhamdy@users.noreply.github.com> Date: Thu, 11 Jan 2024 12:31:39 +0200 Subject: [PATCH 0012/1641] DOC Add links to decomposition examples in docstrings and user guide (#26932) Co-authored-by: Guillaume Lemaitre Co-authored-by: Adrin Jalali --- doc/conf.py | 3 + doc/modules/decomposition.rst | 1 + .../unsupervised_learning.rst | 76 +++++++------- examples/decomposition/plot_pca_3d.py | 99 ------------------- sklearn/decomposition/_incremental_pca.py | 3 + sklearn/decomposition/_kernel_pca.py | 3 + sklearn/decomposition/_pca.py | 3 + sklearn/decomposition/_sparse_pca.py | 3 + 8 files changed, 57 insertions(+), 134 deletions(-) delete mode 100644 examples/decomposition/plot_pca_3d.py diff --git a/doc/conf.py b/doc/conf.py index c5e87442abe1f..20181c0a84769 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -303,6 +303,9 @@ "auto_examples/ensemble/plot_adaboost_hastie_10_2": ( "auto_examples/ensemble/plot_adaboost_multiclass" ), + "auto_examples/decomposition/plot_pca_3d": ( + "auto_examples/decomposition/plot_pca_iris" + ), } html_context["redirects"] = redirects for old_link in redirects: diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index a151eda636e7b..223985c6579f0 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -53,6 +53,7 @@ data based on the amount of variance it explains. As such it implements a .. topic:: Examples: + * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py` * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` diff --git a/doc/tutorial/statistical_inference/unsupervised_learning.rst b/doc/tutorial/statistical_inference/unsupervised_learning.rst index f96ac343a4882..e385eccaf592c 100644 --- a/doc/tutorial/statistical_inference/unsupervised_learning.rst +++ b/doc/tutorial/statistical_inference/unsupervised_learning.rst @@ -204,51 +204,57 @@ Decompositions: from a signal to components and loadings Principal component analysis: PCA ----------------------------------- -:ref:`PCA` selects the successive components that -explain the maximum variance in the signal. +:ref:`PCA` selects the successive components that explain the maximum variance in the +signal. Let's create a synthetic 3-dimensional dataset. -.. |pca_3d_axis| image:: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_001.png - :target: ../../auto_examples/decomposition/plot_pca_3d.html - :scale: 70 - -.. |pca_3d_aligned| image:: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_002.png - :target: ../../auto_examples/decomposition/plot_pca_3d.html - :scale: 70 +.. np.random.seed(0) -.. rst-class:: centered +:: - |pca_3d_axis| |pca_3d_aligned| + >>> # Create a signal with only 2 useful dimensions + >>> x1 = np.random.normal(size=(100, 1)) + >>> x2 = np.random.normal(size=(100, 1)) + >>> x3 = x1 + x2 + >>> X = np.concatenate([x1, x2, x3], axis=1) The point cloud spanned by the observations above is very flat in one -direction: one of the three univariate features can almost be exactly -computed using the other two. PCA finds the directions in which the data is -not *flat* +direction: one of the three univariate features (i.e. z-axis) can almost be exactly +computed using the other two. -When used to *transform* data, PCA can reduce the dimensionality of the -data by projecting on a principal subspace. +.. plot:: + :context: close-figs + :align: center -.. np.random.seed(0) + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> ax = fig.add_subplot(111, projection='3d') + >>> ax.scatter(X[:, 0], X[:, 1], X[:, 2]) + <...> + >>> _ = ax.set(xlabel="x", ylabel="y", zlabel="z") + + +PCA finds the directions in which the data is not *flat*. :: - >>> # Create a signal with only 2 useful dimensions - >>> x1 = np.random.normal(size=100) - >>> x2 = np.random.normal(size=100) - >>> x3 = x1 + x2 - >>> X = np.c_[x1, x2, x3] - - >>> from sklearn import decomposition - >>> pca = decomposition.PCA() - >>> pca.fit(X) - PCA() - >>> print(pca.explained_variance_) # doctest: +SKIP - [ 2.18565811e+00 1.19346747e+00 8.43026679e-32] - - >>> # As we can see, only the 2 first components are useful - >>> pca.n_components = 2 - >>> X_reduced = pca.fit_transform(X) - >>> X_reduced.shape - (100, 2) + >>> from sklearn import decomposition + >>> pca = decomposition.PCA() + >>> pca.fit(X) + PCA() + >>> print(pca.explained_variance_) # doctest: +SKIP + [ 2.18565811e+00 1.19346747e+00 8.43026679e-32] + +Looking at the explained variance, we see that only the first two components +are useful. PCA can be used to reduce dimensionality while preserving +most of the information. It will project the data on the principal subspace. + +:: + + >>> pca.set_params(n_components=2) + PCA(n_components=2) + >>> X_reduced = pca.fit_transform(X) + >>> X_reduced.shape + (100, 2) .. Eigenfaces here? diff --git a/examples/decomposition/plot_pca_3d.py b/examples/decomposition/plot_pca_3d.py deleted file mode 100644 index 61ce5dde75c89..0000000000000 --- a/examples/decomposition/plot_pca_3d.py +++ /dev/null @@ -1,99 +0,0 @@ -""" -========================================================= -Principal components analysis (PCA) -========================================================= - -These figures aid in illustrating how a point cloud -can be very flat in one direction--which is where PCA -comes in to choose a direction that is not flat. - -""" - -# Authors: Gael Varoquaux -# Jaques Grobler -# Kevin Hughes -# License: BSD 3 clause - -# %% -# Create the data -# --------------- - -import numpy as np -from scipy import stats - -e = np.exp(1) -np.random.seed(4) - - -def pdf(x): - return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) - - -y = np.random.normal(scale=0.5, size=(30000)) -x = np.random.normal(scale=0.5, size=(30000)) -z = np.random.normal(scale=0.1, size=len(x)) - -density = pdf(x) * pdf(y) -pdf_z = pdf(5 * z) - -density *= pdf_z - -a = x + y -b = 2 * y -c = a - b + z - -norm = np.sqrt(a.var() + b.var()) -a /= norm -b /= norm - - -# %% -# Plot the figures -# ---------------- - -import matplotlib.pyplot as plt - -# unused but required import for doing 3d projections with matplotlib < 3.2 -import mpl_toolkits.mplot3d # noqa: F401 - -from sklearn.decomposition import PCA - - -def plot_figs(fig_num, elev, azim): - fig = plt.figure(fig_num, figsize=(4, 3)) - plt.clf() - ax = fig.add_subplot(111, projection="3d", elev=elev, azim=azim) - ax.set_position([0, 0, 0.95, 1]) - - ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker="+", alpha=0.4) - Y = np.c_[a, b, c] - - # Using SciPy's SVD, this would be: - # _, pca_score, Vt = scipy.linalg.svd(Y, full_matrices=False) - - pca = PCA(n_components=3) - pca.fit(Y) - V = pca.components_.T - - x_pca_axis, y_pca_axis, z_pca_axis = 3 * V - x_pca_plane = np.r_[x_pca_axis[:2], -x_pca_axis[1::-1]] - y_pca_plane = np.r_[y_pca_axis[:2], -y_pca_axis[1::-1]] - z_pca_plane = np.r_[z_pca_axis[:2], -z_pca_axis[1::-1]] - x_pca_plane.shape = (2, 2) - y_pca_plane.shape = (2, 2) - z_pca_plane.shape = (2, 2) - ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) - ax.xaxis.set_ticklabels([]) - ax.yaxis.set_ticklabels([]) - ax.zaxis.set_ticklabels([]) - - -elev = -40 -azim = -80 -plot_figs(1, elev, azim) - -elev = 30 -azim = 20 -plot_figs(2, elev, azim) - -plt.show() diff --git a/sklearn/decomposition/_incremental_pca.py b/sklearn/decomposition/_incremental_pca.py index f05e2dacc66b2..1089b2c54e086 100644 --- a/sklearn/decomposition/_incremental_pca.py +++ b/sklearn/decomposition/_incremental_pca.py @@ -39,6 +39,9 @@ class IncrementalPCA(_BasePCA): computations to get the principal components, versus 1 large SVD of complexity ``O(n_samples * n_features ** 2)`` for PCA. + For a usage example, see + :ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py`. + Read more in the :ref:`User Guide `. .. versionadded:: 0.16 diff --git a/sklearn/decomposition/_kernel_pca.py b/sklearn/decomposition/_kernel_pca.py index eb73ced3527c8..8fc4aa26a6dfb 100644 --- a/sklearn/decomposition/_kernel_pca.py +++ b/sklearn/decomposition/_kernel_pca.py @@ -41,6 +41,9 @@ class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator components to extract. It can also use a randomized truncated SVD by the method proposed in [3]_, see `eigen_solver`. + For a usage example, see + :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`. + Read more in the :ref:`User Guide `. Parameters diff --git a/sklearn/decomposition/_pca.py b/sklearn/decomposition/_pca.py index 5fe8d666d8e0b..d121c5e5c186f 100644 --- a/sklearn/decomposition/_pca.py +++ b/sklearn/decomposition/_pca.py @@ -136,6 +136,9 @@ class PCA(_BasePCA): Notice that this class does not support sparse input. See :class:`TruncatedSVD` for an alternative with sparse data. + For a usage example, see + :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` + Read more in the :ref:`User Guide `. Parameters diff --git a/sklearn/decomposition/_sparse_pca.py b/sklearn/decomposition/_sparse_pca.py index f544b710fd073..b14df8c5f4d22 100644 --- a/sklearn/decomposition/_sparse_pca.py +++ b/sklearn/decomposition/_sparse_pca.py @@ -342,6 +342,9 @@ class MiniBatchSparsePCA(_BaseSparsePCA): the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha. + For an example comparing sparse PCA to PCA, see + :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` + Read more in the :ref:`User Guide `. Parameters From 22c2983cb516fe9ee3ed796aa0d9c84cfcd8c198 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Thu, 11 Jan 2024 22:07:09 +0100 Subject: [PATCH 0013/1641] MNT set to None for easier reading in HGBT (#28069) --- sklearn/ensemble/_hist_gradient_boosting/binning.py | 2 +- sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/ensemble/_hist_gradient_boosting/binning.py b/sklearn/ensemble/_hist_gradient_boosting/binning.py index 8786e866d7be3..3ab90aadcb6bb 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/binning.py +++ b/sklearn/ensemble/_hist_gradient_boosting/binning.py @@ -144,7 +144,7 @@ class _BinMapper(TransformerMixin, BaseEstimator): missing_values_bin_idx_ : np.uint8 The index of the bin where missing values are mapped. This is a constant across all features. This corresponds to the last bin, and - it is always equal to ``n_bins - 1``. Note that if ``n_bins_missing_`` + it is always equal to ``n_bins - 1``. Note that if ``n_bins_non_missing_`` is less than ``n_bins - 1`` for a given feature, then there are empty (and unused) bins. """ diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py index a83b1dbd0f4b9..0837d19407030 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py @@ -272,7 +272,7 @@ def _preprocess_X(self, X, *, reset): if self.is_categorical_ is None: self._preprocessor = None - self._is_categorical_remapped = self.is_categorical_ + self._is_categorical_remapped = None X = self._validate_data(X, **check_X_kwargs) return X, None From 28bdc932e88de6a3c7c4eb25230892b75bbe8d1e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Thu, 11 Jan 2024 22:09:47 +0100 Subject: [PATCH 0014/1641] MNT Add ability to select by build tag to the lock-file update script (#28068) --- .github/workflows/update-lock-files.yml | 8 +- .../update_environments_and_lock_files.py | 125 ++++++++++++------ 2 files changed, 85 insertions(+), 48 deletions(-) diff --git a/.github/workflows/update-lock-files.yml b/.github/workflows/update-lock-files.yml index 4d8e98c01442e..b259617494e9c 100644 --- a/.github/workflows/update-lock-files.yml +++ b/.github/workflows/update-lock-files.yml @@ -17,16 +17,16 @@ jobs: matrix: include: - name: main - update_script_args: "--skip-build 'scipy-dev|^pymin_conda_forge$|pypy'" + update_script_args: "--select-build-tag main-ci" additional_commit_message: "[doc build]" - name: scipy-dev - update_script_args: "--select-build scipy_dev" + update_script_args: "--select-build-tag scipy-dev" additional_commit_message: "[scipy-dev]" - name: cirrus-arm - update_script_args: "--select-build '^pymin_conda_forge$'" + update_script_args: "--select-build-tag arm" additional_commit_message: "[cirrus arm]" - name: pypy - update_script_args: "--select-build pypy" + update_script_args: "--select-build-tag pypy" additional_commit_message: "[pypy]" steps: diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 6625c88affe29..1115e89408dd9 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -88,9 +88,11 @@ def remove_from(alist, to_remove): return [each for each in alist if each not in to_remove] -conda_build_metadata_list = [ +build_metadata_list = [ { - "build_name": "pylatest_conda_forge_mkl_linux-64", + "name": "pylatest_conda_forge_mkl_linux-64", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "linux-64", "channel": "conda-forge", @@ -108,7 +110,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pylatest_conda_forge_mkl_osx-64", + "name": "pylatest_conda_forge_mkl_osx-64", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "osx-64", "channel": "conda-forge", @@ -122,7 +126,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pylatest_conda_mkl_no_openmp", + "name": "pylatest_conda_mkl_no_openmp", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "osx-64", "channel": "defaults", @@ -136,7 +142,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pymin_conda_defaults_openblas", + "name": "pymin_conda_defaults_openblas", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "linux-64", "channel": "defaults", @@ -152,7 +160,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pymin_conda_forge_openblas_ubuntu_2204", + "name": "pymin_conda_forge_openblas_ubuntu_2204", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "linux-64", "channel": "conda-forge", @@ -167,7 +177,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pylatest_pip_openblas_pandas", + "name": "pylatest_pip_openblas_pandas", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "linux-64", "channel": "defaults", @@ -182,7 +194,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pylatest_pip_scipy_dev", + "name": "pylatest_pip_scipy_dev", + "type": "conda", + "tag": "scipy-dev", "folder": "build_tools/azure", "platform": "linux-64", "channel": "defaults", @@ -219,7 +233,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pypy3", + "name": "pypy3", + "type": "conda", + "tag": "pypy", "folder": "build_tools/azure", "platform": "linux-64", "channel": "conda-forge", @@ -236,7 +252,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pymin_conda_forge_mkl", + "name": "pymin_conda_forge_mkl", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/azure", "platform": "win-64", "channel": "conda-forge", @@ -250,7 +268,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "doc_min_dependencies", + "name": "doc_min_dependencies", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/circle", "platform": "linux-64", "channel": "conda-forge", @@ -288,7 +308,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "doc", + "name": "doc", + "type": "conda", + "tag": "main-ci", "folder": "build_tools/circle", "platform": "linux-64", "channel": "conda-forge", @@ -313,7 +335,9 @@ def remove_from(alist, to_remove): }, }, { - "build_name": "pymin_conda_forge", + "name": "pymin_conda_forge", + "type": "conda", + "tag": "arm", "folder": "build_tools/cirrus", "platform": "linux-aarch64", "channel": "conda-forge", @@ -324,12 +348,10 @@ def remove_from(alist, to_remove): "python": "3.9", }, }, -] - - -pip_build_metadata_list = [ { - "build_name": "debian_atlas_32bit", + "name": "debian_atlas_32bit", + "type": "pip", + "tag": "main-ci", "folder": "build_tools/azure", "pip_dependencies": [ "cython", @@ -350,7 +372,9 @@ def remove_from(alist, to_remove): "python_version": "3.9.2", }, { - "build_name": "ubuntu_atlas", + "name": "ubuntu_atlas", + "type": "pip", + "tag": "main-ci", "folder": "build_tools/azure", "pip_dependencies": [ "cython", @@ -444,7 +468,7 @@ def get_conda_environment_content(build_metadata): def write_conda_environment(build_metadata): content = get_conda_environment_content(build_metadata) - build_name = build_metadata["build_name"] + build_name = build_metadata["name"] folder_path = Path(build_metadata["folder"]) output_path = folder_path / f"{build_name}_environment.yml" logger.debug(output_path) @@ -465,7 +489,7 @@ def conda_lock(environment_path, lock_file_path, platform): def create_conda_lock_file(build_metadata): - build_name = build_metadata["build_name"] + build_name = build_metadata["name"] folder_path = Path(build_metadata["folder"]) environment_path = folder_path / f"{build_name}_environment.yml" platform = build_metadata["platform"] @@ -479,7 +503,7 @@ def create_conda_lock_file(build_metadata): def write_all_conda_lock_files(build_metadata_list): for build_metadata in build_metadata_list: - logger.info(f"# Locking dependencies for {build_metadata['build_name']}") + logger.info(f"# Locking dependencies for {build_metadata['name']}") create_conda_lock_file(build_metadata) @@ -495,7 +519,7 @@ def get_pip_requirements_content(build_metadata): def write_pip_requirements(build_metadata): - build_name = build_metadata["build_name"] + build_name = build_metadata["name"] content = get_pip_requirements_content(build_metadata) folder_path = Path(build_metadata["folder"]) output_path = folder_path / f"{build_name}_requirements.txt" @@ -514,7 +538,7 @@ def pip_compile(pip_compile_path, requirements_path, lock_file_path): def write_pip_lock_file(build_metadata): - build_name = build_metadata["build_name"] + build_name = build_metadata["name"] python_version = build_metadata["python_version"] environment_name = f"pip-tools-python{python_version}" # To make sure that the Python used to create the pip lock file is the same @@ -544,7 +568,7 @@ def write_pip_lock_file(build_metadata): def write_all_pip_lock_files(build_metadata_list): for build_metadata in build_metadata_list: - logger.info(f"# Locking dependencies for {build_metadata['build_name']}") + logger.info(f"# Locking dependencies for {build_metadata['name']}") write_pip_lock_file(build_metadata) @@ -583,7 +607,7 @@ def check_conda_version(): "--select-build", default="", help=( - "Regex to restrict the builds we want to update environment and lock files. By" + "Regex to filter the builds we want to update environment and lock files. By" " default all the builds are selected." ), ) @@ -592,6 +616,14 @@ def check_conda_version(): default=None, help="Regex to skip some builds from the builds selected by --select-build", ) +@click.option( + "--select-tag", + default=None, + help=( + "Tag to filter the builds, e.g. 'main-ci' or 'scipy-dev'. " + "This is an additional filtering on top of --select-build." + ), +) @click.option( "-v", "--verbose", @@ -604,7 +636,7 @@ def check_conda_version(): is_flag=True, help="Print output of commands executed by the script", ) -def main(verbose, very_verbose, select_build, skip_build): +def main(select_build, skip_build, select_tag, verbose, very_verbose): if verbose: logger.setLevel(logging.DEBUG) if very_verbose: @@ -613,18 +645,32 @@ def main(verbose, very_verbose, select_build, skip_build): check_conda_lock_version() check_conda_version() - filtered_conda_build_metadata_list = [ - each - for each in conda_build_metadata_list - if re.search(select_build, each["build_name"]) + filtered_build_metadata_list = [ + each for each in build_metadata_list if re.search(select_build, each["name"]) ] + if select_tag is not None: + filtered_build_metadata_list = [ + each for each in build_metadata_list if each["tag"] == select_tag + ] if skip_build is not None: - filtered_conda_build_metadata_list = [ + filtered_build_metadata_list = [ each - for each in filtered_conda_build_metadata_list - if not re.search(skip_build, each["build_name"]) + for each in filtered_build_metadata_list + if not re.search(skip_build, each["name"]) ] + selected_build_info = "\n".join( + f" - {each['name']}, type: {each['type']}, tag: {each['tag']}" + for each in filtered_build_metadata_list + ) + selected_build_message = ( + f"# {len(filtered_build_metadata_list)} selected builds\n{selected_build_info}" + ) + logger.info(selected_build_message) + + filtered_conda_build_metadata_list = [ + each for each in filtered_build_metadata_list if each["type"] == "conda" + ] if filtered_conda_build_metadata_list: logger.info("# Writing conda environments") write_all_conda_environments(filtered_conda_build_metadata_list) @@ -632,17 +678,8 @@ def main(verbose, very_verbose, select_build, skip_build): write_all_conda_lock_files(filtered_conda_build_metadata_list) filtered_pip_build_metadata_list = [ - each - for each in pip_build_metadata_list - if re.search(select_build, each["build_name"]) + each for each in filtered_build_metadata_list if each["type"] == "pip" ] - if skip_build is not None: - filtered_pip_build_metadata_list = [ - each - for each in filtered_pip_build_metadata_list - if not re.search(skip_build, each["build_name"]) - ] - if filtered_pip_build_metadata_list: logger.info("# Writing pip requirements") write_all_pip_requirements(filtered_pip_build_metadata_list) From aacca244a69cce5f3719c861e9bdc400c3945a6c Mon Sep 17 00:00:00 2001 From: Harmanan Kohli <17681934+Harmanankohli@users.noreply.github.com> Date: Fri, 12 Jan 2024 02:40:09 +0530 Subject: [PATCH 0015/1641] DOC add example in docstring of f_regression (#28104) Co-authored-by: Guillaume Lemaitre --- sklearn/feature_selection/_univariate_selection.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/sklearn/feature_selection/_univariate_selection.py b/sklearn/feature_selection/_univariate_selection.py index f019d128e4d53..96b6b93332091 100644 --- a/sklearn/feature_selection/_univariate_selection.py +++ b/sklearn/feature_selection/_univariate_selection.py @@ -436,6 +436,19 @@ def f_regression(X, y, *, center=True, force_finite=True): SelectFwe: Select features based on family-wise error rate. SelectPercentile: Select features based on percentile of the highest scores. + + Examples + -------- + >>> from sklearn.datasets import make_regression + >>> from sklearn.feature_selection import f_regression + >>> X, y = make_regression( + ... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42 + ... ) + >>> f_statistic, p_values = f_regression(X, y) + >>> f_statistic + array([1.2...+00, 2.6...+13, 2.6...+00]) + >>> p_values + array([2.7..., 1.5..., 1.0...]) """ correlation_coefficient = r_regression( X, y, center=center, force_finite=force_finite From fee76cc5405c01e283a3b079dcb865f3017d5007 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pierre=20de=20Fr=C3=A9minville?= <6165084+pidefrem@users.noreply.github.com> Date: Thu, 11 Jan 2024 22:25:38 +0100 Subject: [PATCH 0016/1641] EFF Optimize function utils.validation._check_pos_label_consistency (#28051) Co-authored-by: Thomas J. Fan --- doc/whats_new/v1.5.rst | 13 +++++++++++++ sklearn/utils/validation.py | 24 +++++++++++------------- 2 files changed, 24 insertions(+), 13 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index f7a521ca4f0d0..0e3e37caeeb05 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -44,3 +44,16 @@ TODO: update at the time of the release. - |Feature| A fitted :class:`compose.ColumnTransformer` now implements `__getitem__` which returns the fitted transformers by name. :pr:`27990` by `Thomas Fan`_. + + +:mod:`sklearn.metrics` +...................... + +- |Efficiency| Improve efficiency of functions :func:`~metrics.brier_score_loss`, + :func:`~metrics.calibration_curve`, :func:`~metrics.det_curve`, :func:`~metrics.precision_recall_curve`, + :func:`~metrics.roc_curve` when `pos_label` argument is specified. + Also improve efficiency of methods `from_estimator` + and `from_predictions` in :class:`~metrics.RocCurveDisplay`, + :class:`~metrics.PrecisionRecallDisplay`, :class:`~metrics.DetCurveDisplay`, + :class:`~calibration.CalibrationDisplay`. + :pr:`28051` by :user:`Pierre de Fréminville ` diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index ebaf11aa5f90a..283d24a431fbd 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -2298,24 +2298,22 @@ def _check_pos_label_consistency(pos_label, y_true): # classes.dtype.kind in ('O', 'U', 'S') is required to avoid # triggering a FutureWarning by calling np.array_equal(a, b) # when elements in the two arrays are not comparable. - classes = np.unique(y_true) - if pos_label is None and ( - classes.dtype.kind in "OUS" - or not ( + if pos_label is None: + # Compute classes only if pos_label is not specified: + classes = np.unique(y_true) + if classes.dtype.kind in "OUS" or not ( np.array_equal(classes, [0, 1]) or np.array_equal(classes, [-1, 1]) or np.array_equal(classes, [0]) or np.array_equal(classes, [-1]) or np.array_equal(classes, [1]) - ) - ): - classes_repr = ", ".join([repr(c) for c in classes.tolist()]) - raise ValueError( - f"y_true takes value in {{{classes_repr}}} and pos_label is not " - "specified: either make y_true take value in {0, 1} or " - "{-1, 1} or pass pos_label explicitly." - ) - elif pos_label is None: + ): + classes_repr = ", ".join([repr(c) for c in classes.tolist()]) + raise ValueError( + f"y_true takes value in {{{classes_repr}}} and pos_label is not " + "specified: either make y_true take value in {0, 1} or " + "{-1, 1} or pass pos_label explicitly." + ) pos_label = 1 return pos_label From 06865e1c4090abd70ffbf78fe34bd456def45867 Mon Sep 17 00:00:00 2001 From: ldwy4 <59212418+ldwy4@users.noreply.github.com> Date: Thu, 11 Jan 2024 14:39:53 -0800 Subject: [PATCH 0017/1641] DOC Added docstring examples for utils.sparsefuncs (#28035) Co-authored-by: Guillaume Lemaitre --- sklearn/utils/sparsefuncs.py | 147 +++++++++++++++++++++++++++++++++++ 1 file changed, 147 insertions(+) diff --git a/sklearn/utils/sparsefuncs.py b/sklearn/utils/sparsefuncs.py index 9eccb8c07676f..a46e9e4d9ed93 100644 --- a/sklearn/utils/sparsefuncs.py +++ b/sklearn/utils/sparsefuncs.py @@ -53,6 +53,28 @@ def inplace_csr_column_scale(X, scale): scale : ndarray of shape (n_features,), dtype={np.float32, np.float64} Array of precomputed feature-wise values to use for scaling. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 3, 4, 4, 4]) + >>> indices = np.array([0, 1, 2, 2]) + >>> data = np.array([8, 1, 2, 5]) + >>> scale = np.array([2, 3, 2]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 1, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.inplace_csr_column_scale(csr, scale) + >>> csr.todense() + matrix([[16, 3, 4], + [ 0, 0, 10], + [ 0, 0, 0], + [ 0, 0, 0]]) """ assert scale.shape[0] == X.shape[1] X.data *= scale.take(X.indices, mode="clip") @@ -111,6 +133,24 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False): sum_weights : ndarray of shape (n_features,), dtype=floating Returned if `return_sum_weights` is `True`. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 3, 4, 4, 4]) + >>> indices = np.array([0, 1, 2, 2]) + >>> data = np.array([8, 1, 2, 5]) + >>> scale = np.array([2, 3, 2]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 1, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.mean_variance_axis(csr, axis=0) + (array([2. , 0.25, 1.75]), array([12. , 0.1875, 4.1875])) """ _raise_error_wrong_axis(axis) @@ -195,6 +235,27 @@ def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=Non Notes ----- NaNs are ignored in the algorithm. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 3, 4, 4, 4]) + >>> indices = np.array([0, 1, 2, 2]) + >>> data = np.array([8, 1, 2, 5]) + >>> scale = np.array([2, 3, 2]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 1, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.incr_mean_variance_axis( + ... csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2 + ... ) + (array([1.3..., 0.1..., 1.1...]), array([8.8..., 0.1..., 3.4...]), + array([6., 6., 6.])) """ _raise_error_wrong_axis(axis) @@ -244,6 +305,28 @@ def inplace_column_scale(X, scale): scale : ndarray of shape (n_features,), dtype={np.float32, np.float64} Array of precomputed feature-wise values to use for scaling. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 3, 4, 4, 4]) + >>> indices = np.array([0, 1, 2, 2]) + >>> data = np.array([8, 1, 2, 5]) + >>> scale = np.array([2, 3, 2]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 1, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.inplace_column_scale(csr, scale) + >>> csr.todense() + matrix([[16, 3, 4], + [ 0, 0, 10], + [ 0, 0, 0], + [ 0, 0, 0]]) """ if sp.issparse(X) and X.format == "csc": inplace_csr_row_scale(X.T, scale) @@ -266,6 +349,28 @@ def inplace_row_scale(X, scale): scale : ndarray of shape (n_features,), dtype={np.float32, np.float64} Array of precomputed sample-wise values to use for scaling. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 2, 3, 4, 5]) + >>> indices = np.array([0, 1, 2, 3, 3]) + >>> data = np.array([8, 1, 2, 5, 6]) + >>> scale = np.array([2, 3, 4, 5]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 1, 0, 0], + [0, 0, 2, 0], + [0, 0, 0, 5], + [0, 0, 0, 6]]) + >>> sparsefuncs.inplace_row_scale(csr, scale) + >>> csr.todense() + matrix([[16, 2, 0, 0], + [ 0, 0, 6, 0], + [ 0, 0, 0, 20], + [ 0, 0, 0, 30]]) """ if sp.issparse(X) and X.format == "csc": inplace_csr_column_scale(X.T, scale) @@ -382,6 +487,27 @@ def inplace_swap_row(X, m, n): n : int Index of the row of X to be swapped. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 2, 3, 3, 3]) + >>> indices = np.array([0, 2, 2]) + >>> data = np.array([8, 2, 5]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 0, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.inplace_swap_row(csr, 0, 1) + >>> csr.todense() + matrix([[0, 0, 5], + [8, 0, 2], + [0, 0, 0], + [0, 0, 0]]) """ if sp.issparse(X) and X.format == "csc": inplace_swap_row_csc(X, m, n) @@ -406,6 +532,27 @@ def inplace_swap_column(X, m, n): n : int Index of the column of X to be swapped. + + Examples + -------- + >>> from sklearn.utils import sparsefuncs + >>> from scipy import sparse + >>> import numpy as np + >>> indptr = np.array([0, 2, 3, 3, 3]) + >>> indices = np.array([0, 2, 2]) + >>> data = np.array([8, 2, 5]) + >>> csr = sparse.csr_matrix((data, indices, indptr)) + >>> csr.todense() + matrix([[8, 0, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) + >>> sparsefuncs.inplace_swap_column(csr, 0, 1) + >>> csr.todense() + matrix([[0, 8, 2], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0]]) """ if m < 0: m += X.shape[1] From f1e89363f6777155a25b3574db9f0fc5c21a8c51 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Fri, 12 Jan 2024 00:09:11 +0100 Subject: [PATCH 0018/1641] DOC Add approximate nearest neighbors example to Notes subsection to TSNE and KNeighborsTransformer (#28052) --- sklearn/manifold/_t_sne.py | 6 ++++++ sklearn/neighbors/_graph.py | 6 ++++++ 2 files changed, 12 insertions(+) diff --git a/sklearn/manifold/_t_sne.py b/sklearn/manifold/_t_sne.py index 6a90b1c43bbba..e280671ee2752 100644 --- a/sklearn/manifold/_t_sne.py +++ b/sklearn/manifold/_t_sne.py @@ -728,6 +728,12 @@ class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. SpectralEmbedding : Spectral embedding for non-linear dimensionality. + Notes + ----- + For an example of using :class:`~sklearn.manifold.TSNE` in combination with + :class:`~sklearn.neighbors.KNeighborsTransformer` see + :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`. + References ---------- diff --git a/sklearn/neighbors/_graph.py b/sklearn/neighbors/_graph.py index 5fd9be4766c6e..2ff27d07514e0 100644 --- a/sklearn/neighbors/_graph.py +++ b/sklearn/neighbors/_graph.py @@ -362,6 +362,12 @@ class KNeighborsTransformer( RadiusNeighborsTransformer : Transform X into a weighted graph of neighbors nearer than a radius. + Notes + ----- + For an example of using :class:`~sklearn.neighbors.KNeighborsTransformer` + in combination with :class:`~sklearn.manifold.TSNE` see + :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`. + Examples -------- >>> from sklearn.datasets import load_wine From 1b1f0eaa2e89817cc70736f7fdd135631c78768c Mon Sep 17 00:00:00 2001 From: Raj Pulapakura Date: Fri, 12 Jan 2024 22:06:51 +1100 Subject: [PATCH 0019/1641] DOC Add a docstring example for feature selection functions (#28033) Co-authored-by: Guillaume Lemaitre --- sklearn/feature_selection/_mutual_info.py | 22 +++++++++ .../_univariate_selection.py | 45 +++++++++++++++++++ 2 files changed, 67 insertions(+) diff --git a/sklearn/feature_selection/_mutual_info.py b/sklearn/feature_selection/_mutual_info.py index 1845447a24623..821ef889e7ed9 100644 --- a/sklearn/feature_selection/_mutual_info.py +++ b/sklearn/feature_selection/_mutual_info.py @@ -396,6 +396,16 @@ def mutual_info_regression( Data Sets". PLoS ONE 9(2), 2014. .. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy of a Random Vector", Probl. Peredachi Inf., 23:2 (1987), 9-16 + + Examples + -------- + >>> from sklearn.datasets import make_regression + >>> from sklearn.feature_selection import mutual_info_regression + >>> X, y = make_regression( + ... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42 + ... ) + >>> mutual_info_regression(X, y) + array([0.1..., 2.6... , 0.0...]) """ return _estimate_mi(X, y, discrete_features, False, n_neighbors, copy, random_state) @@ -487,6 +497,18 @@ def mutual_info_classif( Data Sets". PLoS ONE 9(2), 2014. .. [4] L. F. Kozachenko, N. N. Leonenko, "Sample Estimate of the Entropy of a Random Vector:, Probl. Peredachi Inf., 23:2 (1987), 9-16 + + Examples + -------- + >>> from sklearn.datasets import make_classification + >>> from sklearn.feature_selection import mutual_info_classif + >>> X, y = make_classification( + ... n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1, + ... shuffle=False, random_state=42 + ... ) + >>> mutual_info_classif(X, y) + array([0.58..., 0.10..., 0.19..., 0.09... , 0. , + 0. , 0. , 0. , 0. , 0. ]) """ check_classification_targets(y) return _estimate_mi(X, y, discrete_features, True, n_neighbors, copy, random_state) diff --git a/sklearn/feature_selection/_univariate_selection.py b/sklearn/feature_selection/_univariate_selection.py index 96b6b93332091..df1b5072ce741 100644 --- a/sklearn/feature_selection/_univariate_selection.py +++ b/sklearn/feature_selection/_univariate_selection.py @@ -149,6 +149,24 @@ def f_classif(X, y): -------- chi2 : Chi-squared stats of non-negative features for classification tasks. f_regression : F-value between label/feature for regression tasks. + + Examples + -------- + >>> from sklearn.datasets import make_classification + >>> from sklearn.feature_selection import f_classif + >>> X, y = make_classification( + ... n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1, + ... shuffle=False, random_state=42 + ... ) + >>> f_statistic, p_values = f_classif(X, y) + >>> f_statistic + array([2.2...e+02, 7.0...e-01, 1.6...e+00, 9.3...e-01, + 5.4...e+00, 3.2...e-01, 4.7...e-02, 5.7...e-01, + 7.5...e-01, 8.9...e-02]) + >>> p_values + array([7.1...e-27, 4.0...e-01, 1.9...e-01, 3.3...e-01, + 2.2...e-02, 5.7...e-01, 8.2...e-01, 4.5...e-01, + 3.8...e-01, 7.6...e-01]) """ X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"]) args = [X[safe_mask(X, y == k)] for k in np.unique(y)] @@ -220,6 +238,23 @@ def chi2(X, y): Notes ----- Complexity of this algorithm is O(n_classes * n_features). + + Examples + -------- + >>> import numpy as np + >>> from sklearn.feature_selection import chi2 + >>> X = np.array([[1, 1, 3], + ... [0, 1, 5], + ... [5, 4, 1], + ... [6, 6, 2], + ... [1, 4, 0], + ... [0, 0, 0]]) + >>> y = np.array([1, 1, 0, 0, 2, 2]) + >>> chi2_stats, p_values = chi2(X, y) + >>> chi2_stats + array([15.3..., 6.5 , 8.9...]) + >>> p_values + array([0.0004..., 0.0387..., 0.0116... ]) """ # XXX: we might want to do some of the following in logspace instead for @@ -314,6 +349,16 @@ def r_regression(X, y, *, center=True, force_finite=True): mutual_info_regression: Mutual information for a continuous target. f_classif: ANOVA F-value between label/feature for classification tasks. chi2: Chi-squared stats of non-negative features for classification tasks. + + Examples + -------- + >>> from sklearn.datasets import make_regression + >>> from sklearn.feature_selection import r_regression + >>> X, y = make_regression( + ... n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42 + ... ) + >>> r_regression(X, y) + array([-0.15..., 1. , -0.22...]) """ X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"], dtype=np.float64) n_samples = X.shape[0] From 95d20178775548d06ffa55cf07a3619481bdd48c Mon Sep 17 00:00:00 2001 From: Michael Higgins <55243596+Higgs32584@users.noreply.github.com> Date: Fri, 12 Jan 2024 07:05:43 -0500 Subject: [PATCH 0020/1641] DOC improve docstring of BaseEstimator, ClassifierMixin, and RegressorMixin (#28030) Co-authored-by: Guillaume Lemaitre --- sklearn/base.py | 98 ++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 96 insertions(+), 2 deletions(-) diff --git a/sklearn/base.py b/sklearn/base.py index e7361c331617a..c48a5f2d99628 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -137,11 +137,45 @@ def _clone_parametrized(estimator, *, safe=True): class BaseEstimator(_HTMLDocumentationLinkMixin, _MetadataRequester): """Base class for all estimators in scikit-learn. + Inheriting from this class provides default implementations of: + + - setting and getting parameters used by `GridSearchCV` and friends; + - textual and HTML representation displayed in terminals and IDEs; + - estimator serialization; + - parameters validation; + - data validation; + - feature names validation. + + Read more in the :ref:`User Guide `. + + Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator + >>> class MyEstimator(BaseEstimator): + ... def __init__(self, *, param=1): + ... self.param = param + ... def fit(self, X, y=None): + ... self.is_fitted_ = True + ... return self + ... def predict(self, X): + ... return np.full(shape=X.shape[0], fill_value=self.param) + >>> estimator = MyEstimator(param=2) + >>> estimator.get_params() + {'param': 2} + >>> X = np.array([[1, 2], [2, 3], [3, 4]]) + >>> y = np.array([1, 0, 1]) + >>> estimator.fit(X, y).predict(X) + array([2, 2, 2]) + >>> estimator.set_params(param=3).fit(X, y).predict(X) + array([3, 3, 3]) """ @classmethod @@ -652,7 +686,37 @@ def _repr_mimebundle_(self, **kwargs): class ClassifierMixin: - """Mixin class for all classifiers in scikit-learn.""" + """Mixin class for all classifiers in scikit-learn. + + This mixin defines the following functionality: + + - `_estimator_type` class attribute defaulting to `"classifier"`; + - `score` method that default to :func:`~sklearn.metrics.accuracy_score`. + - enforce that `fit` requires `y` to be passed through the `requires_y` tag. + + Read more in the :ref:`User Guide `. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, ClassifierMixin + >>> # Mixin classes should always be on the left-hand side for a correct MRO + >>> class MyEstimator(ClassifierMixin, BaseEstimator): + ... def __init__(self, *, param=1): + ... self.param = param + ... def fit(self, X, y=None): + ... self.is_fitted_ = True + ... return self + ... def predict(self, X): + ... return np.full(shape=X.shape[0], fill_value=self.param) + >>> estimator = MyEstimator(param=1) + >>> X = np.array([[1, 2], [2, 3], [3, 4]]) + >>> y = np.array([1, 0, 1]) + >>> estimator.fit(X, y).predict(X) + array([1, 1, 1]) + >>> estimator.score(X, y) + 0.66... + """ _estimator_type = "classifier" @@ -689,7 +753,37 @@ def _more_tags(self): class RegressorMixin: - """Mixin class for all regression estimators in scikit-learn.""" + """Mixin class for all regression estimators in scikit-learn. + + This mixin defines the following functionality: + + - `_estimator_type` class attribute defaulting to `"regressor"`; + - `score` method that default to :func:`~sklearn.metrics.r2_score`. + - enforce that `fit` requires `y` to be passed through the `requires_y` tag. + + Read more in the :ref:`User Guide `. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, RegressorMixin + >>> # Mixin classes should always be on the left-hand side for a correct MRO + >>> class MyEstimator(RegressorMixin, BaseEstimator): + ... def __init__(self, *, param=1): + ... self.param = param + ... def fit(self, X, y=None): + ... self.is_fitted_ = True + ... return self + ... def predict(self, X): + ... return np.full(shape=X.shape[0], fill_value=self.param) + >>> estimator = MyEstimator(param=0) + >>> X = np.array([[1, 2], [2, 3], [3, 4]]) + >>> y = np.array([-1, 0, 1]) + >>> estimator.fit(X, y).predict(X) + array([0, 0, 0]) + >>> estimator.score(X, y) + 0.0 + """ _estimator_type = "regressor" From 55c6679ada73344ad83b07166ed05aa0877dbff4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Fri, 12 Jan 2024 15:44:41 +0100 Subject: [PATCH 0021/1641] TST Tweak tests to facilitate Meson usage (#28094) Co-authored-by: Olivier Grisel Co-authored-by: Guillaume Lemaitre --- .../test_enable_hist_gradient_boosting.py | 5 ++-- .../tests/test_enable_iterative_imputer.py | 24 ++++++++++++------- .../tests/test_enable_successive_halving.py | 24 ++++++++++++------- sklearn/tests/test_common.py | 9 ++++--- sklearn/tests/test_docstring_parameters.py | 3 ++- sklearn/tests/test_min_dependencies_readme.py | 4 ++-- sklearn/utils/_testing.py | 23 +++++++++++++----- sklearn/utils/tests/test_testing.py | 24 +++++++++++++++++++ 8 files changed, 86 insertions(+), 30 deletions(-) diff --git a/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py b/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py index 6e0b50c18e0ae..0a90d63fcb37c 100644 --- a/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py +++ b/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py @@ -5,7 +5,7 @@ import pytest from sklearn.utils import _IS_WASM -from sklearn.utils._testing import assert_run_python_script +from sklearn.utils._testing import assert_run_python_script_without_output @pytest.mark.xfail(_IS_WASM, reason="cannot start subprocess") @@ -15,4 +15,5 @@ def test_import_raises_warning(): with pytest.warns(UserWarning, match="it is not needed to import"): from sklearn.experimental import enable_hist_gradient_boosting # noqa """ - assert_run_python_script(textwrap.dedent(code)) + pattern = "it is not needed to import enable_hist_gradient_boosting anymore" + assert_run_python_script_without_output(textwrap.dedent(code), pattern=pattern) diff --git a/sklearn/experimental/tests/test_enable_iterative_imputer.py b/sklearn/experimental/tests/test_enable_iterative_imputer.py index 3044a52daf0ce..617d921eb8f88 100644 --- a/sklearn/experimental/tests/test_enable_iterative_imputer.py +++ b/sklearn/experimental/tests/test_enable_iterative_imputer.py @@ -5,7 +5,7 @@ import pytest from sklearn.utils import _IS_WASM -from sklearn.utils._testing import assert_run_python_script +from sklearn.utils._testing import assert_run_python_script_without_output @pytest.mark.xfail(_IS_WASM, reason="cannot start subprocess") @@ -16,28 +16,36 @@ def test_imports_strategies(): # for every test case. Else, the tests would not be independent # (manually removing the imports from the cache (sys.modules) is not # recommended and can lead to many complications). - + pattern = "IterativeImputer is experimental" good_import = """ from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer """ - assert_run_python_script(textwrap.dedent(good_import)) + assert_run_python_script_without_output( + textwrap.dedent(good_import), pattern=pattern + ) good_import_with_ensemble_first = """ import sklearn.ensemble from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer """ - assert_run_python_script(textwrap.dedent(good_import_with_ensemble_first)) + assert_run_python_script_without_output( + textwrap.dedent(good_import_with_ensemble_first), + pattern=pattern, + ) - bad_imports = """ + bad_imports = f""" import pytest - with pytest.raises(ImportError, match='IterativeImputer is experimental'): + with pytest.raises(ImportError, match={pattern!r}): from sklearn.impute import IterativeImputer import sklearn.experimental - with pytest.raises(ImportError, match='IterativeImputer is experimental'): + with pytest.raises(ImportError, match={pattern!r}): from sklearn.impute import IterativeImputer """ - assert_run_python_script(textwrap.dedent(bad_imports)) + assert_run_python_script_without_output( + textwrap.dedent(bad_imports), + pattern=pattern, + ) diff --git a/sklearn/experimental/tests/test_enable_successive_halving.py b/sklearn/experimental/tests/test_enable_successive_halving.py index 8c0d5ef869680..0abbf07eced00 100644 --- a/sklearn/experimental/tests/test_enable_successive_halving.py +++ b/sklearn/experimental/tests/test_enable_successive_halving.py @@ -5,7 +5,7 @@ import pytest from sklearn.utils import _IS_WASM -from sklearn.utils._testing import assert_run_python_script +from sklearn.utils._testing import assert_run_python_script_without_output @pytest.mark.xfail(_IS_WASM, reason="cannot start subprocess") @@ -16,13 +16,15 @@ def test_imports_strategies(): # for every test case. Else, the tests would not be independent # (manually removing the imports from the cache (sys.modules) is not # recommended and can lead to many complications). - + pattern = "Halving(Grid|Random)SearchCV is experimental" good_import = """ from sklearn.experimental import enable_halving_search_cv from sklearn.model_selection import HalvingGridSearchCV from sklearn.model_selection import HalvingRandomSearchCV """ - assert_run_python_script(textwrap.dedent(good_import)) + assert_run_python_script_without_output( + textwrap.dedent(good_import), pattern=pattern + ) good_import_with_model_selection_first = """ import sklearn.model_selection @@ -30,16 +32,22 @@ def test_imports_strategies(): from sklearn.model_selection import HalvingGridSearchCV from sklearn.model_selection import HalvingRandomSearchCV """ - assert_run_python_script(textwrap.dedent(good_import_with_model_selection_first)) + assert_run_python_script_without_output( + textwrap.dedent(good_import_with_model_selection_first), + pattern=pattern, + ) - bad_imports = """ + bad_imports = f""" import pytest - with pytest.raises(ImportError, match='HalvingGridSearchCV is experimental'): + with pytest.raises(ImportError, match={pattern!r}): from sklearn.model_selection import HalvingGridSearchCV import sklearn.experimental - with pytest.raises(ImportError, match='HalvingRandomSearchCV is experimental'): + with pytest.raises(ImportError, match={pattern!r}): from sklearn.model_selection import HalvingRandomSearchCV """ - assert_run_python_script(textwrap.dedent(bad_imports)) + assert_run_python_script_without_output( + textwrap.dedent(bad_imports), + pattern=pattern, + ) diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index 256cb7e209381..6dbf54b203e4c 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -14,6 +14,7 @@ from functools import partial from inspect import isgenerator, signature from itertools import chain, product +from pathlib import Path import numpy as np import pytest @@ -167,7 +168,7 @@ def test_configure(): # is installed in editable mode by pip build isolation enabled. pytest.importorskip("Cython") cwd = os.getcwd() - setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], "..")) + setup_path = Path(sklearn.__file__).parent.parent setup_filename = os.path.join(setup_path, "setup.py") if not os.path.exists(setup_filename): pytest.skip("setup.py not available") @@ -211,10 +212,11 @@ def test_class_weight_balanced_linear_classifiers(name, Classifier): @pytest.mark.xfail(_IS_WASM, reason="importlib not supported for Pyodide packages") @ignore_warnings def test_import_all_consistency(): + sklearn_path = [os.path.dirname(sklearn.__file__)] # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages( - path=sklearn.__path__, prefix="sklearn.", onerror=lambda _: None + path=sklearn_path, prefix="sklearn.", onerror=lambda _: None ) submods = [modname for _, modname, _ in pkgs] for modname in submods + ["sklearn"]: @@ -236,9 +238,10 @@ def test_import_all_consistency(): def test_root_import_all_completeness(): + sklearn_path = [os.path.dirname(sklearn.__file__)] EXCEPTIONS = ("utils", "tests", "base", "setup", "conftest") for _, modname, _ in pkgutil.walk_packages( - path=sklearn.__path__, onerror=lambda _: None + path=sklearn_path, onerror=lambda _: None ): if "." in modname or modname.startswith("_") or modname in EXCEPTIONS: continue diff --git a/sklearn/tests/test_docstring_parameters.py b/sklearn/tests/test_docstring_parameters.py index e97646f4a701c..52a383e4ca602 100644 --- a/sklearn/tests/test_docstring_parameters.py +++ b/sklearn/tests/test_docstring_parameters.py @@ -4,6 +4,7 @@ import importlib import inspect +import os import warnings from inspect import signature from pkgutil import walk_packages @@ -40,7 +41,7 @@ with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) # mypy error: Module has no attribute "__path__" - sklearn_path = sklearn.__path__ # type: ignore # mypy issue #1422 + sklearn_path = [os.path.dirname(sklearn.__file__)] PUBLIC_MODULES = set( [ pckg[1] diff --git a/sklearn/tests/test_min_dependencies_readme.py b/sklearn/tests/test_min_dependencies_readme.py index 9f9718d292699..2cc4d25d25a12 100644 --- a/sklearn/tests/test_min_dependencies_readme.py +++ b/sklearn/tests/test_min_dependencies_readme.py @@ -28,7 +28,7 @@ def test_min_dependencies_readme(): + r"( [0-9]+\.[0-9]+(\.[0-9]+)?)" ) - readme_path = Path(sklearn.__path__[0]).parents[0] + readme_path = Path(sklearn.__file__).parent.parent readme_file = readme_path / "README.rst" if not os.path.exists(readme_file): @@ -58,7 +58,7 @@ def test_min_dependencies_pyproject_toml(): # tomllib is available in Python 3.11 tomllib = pytest.importorskip("tomllib") - root_directory = Path(sklearn.__path__[0]).parent + root_directory = Path(sklearn.__file__).parent.parent pyproject_toml_path = root_directory / "pyproject.toml" if not pyproject_toml_path.exists(): diff --git a/sklearn/utils/_testing.py b/sklearn/utils/_testing.py index 5411c4dacf766..b49622627c7ae 100644 --- a/sklearn/utils/_testing.py +++ b/sklearn/utils/_testing.py @@ -66,7 +66,7 @@ "assert_array_less", "assert_approx_equal", "assert_allclose", - "assert_run_python_script", + "assert_run_python_script_without_output", "assert_no_warnings", "SkipTest", ] @@ -669,11 +669,11 @@ def check_docstring_parameters(func, doc=None, ignore=None): return incorrect -def assert_run_python_script(source_code, timeout=60): +def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60): """Utility to check assertions in an independent Python subprocess. - The script provided in the source code should return 0 and not print - anything on stderr or stdout. + The script provided in the source code should return 0 and the stdtout + + stderr should not match the pattern `pattern`. This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle @@ -681,6 +681,9 @@ def assert_run_python_script(source_code, timeout=60): ---------- source_code : str The Python source code to execute. + pattern : str + Pattern that the stdout + stderr should not match. By default, unless + stdout + stderr are both empty, an error will be raised. timeout : int, default=60 Time in seconds before timeout. """ @@ -710,8 +713,16 @@ def assert_run_python_script(source_code, timeout=60): raise RuntimeError( "script errored with output:\n%s" % e.output.decode("utf-8") ) - if out != b"": - raise AssertionError(out.decode("utf-8")) + + out = out.decode("utf-8") + if re.search(pattern, out): + if pattern == ".+": + expectation = "Expected no output" + else: + expectation = f"The output was not supposed to match {pattern!r}" + + message = f"{expectation}, got the following output instead: {out!r}" + raise AssertionError(message) except TimeoutExpired as e: raise RuntimeError( "script timeout, output so far:\n%s" % e.output.decode("utf-8") diff --git a/sklearn/utils/tests/test_testing.py b/sklearn/utils/tests/test_testing.py index f25bdc54be4d8..7a4b02aeec224 100644 --- a/sklearn/utils/tests/test_testing.py +++ b/sklearn/utils/tests/test_testing.py @@ -20,6 +20,7 @@ assert_raise_message, assert_raises, assert_raises_regex, + assert_run_python_script_without_output, check_docstring_parameters, create_memmap_backed_data, ignore_warnings, @@ -820,3 +821,26 @@ def test_float32_aware_assert_allclose(): with pytest.raises(AssertionError): assert_allclose(np.array([1e-5], dtype=np.float32), 0.0) assert_allclose(np.array([1e-5], dtype=np.float32), 0.0, atol=2e-5) + + +def test_assert_run_python_script_without_output(): + code = "x = 1" + assert_run_python_script_without_output(code) + + code = "print('something to stdout')" + with pytest.raises(AssertionError, match="Expected no output"): + assert_run_python_script_without_output(code) + + code = "print('something to stdout')" + with pytest.raises( + AssertionError, + match="output was not supposed to match.+got.+something to stdout", + ): + assert_run_python_script_without_output(code, pattern="to.+stdout") + + code = "\n".join(["import sys", "print('something to stderr', file=sys.stderr)"]) + with pytest.raises( + AssertionError, + match="output was not supposed to match.+got.+something to stderr", + ): + assert_run_python_script_without_output(code, pattern="to.+stderr") From e1559a8c9946e7440989c03a5c7e59818ff1af1a Mon Sep 17 00:00:00 2001 From: Cindy Liang <67083541+cindy-x-liang@users.noreply.github.com> Date: Fri, 12 Jan 2024 09:46:36 -0500 Subject: [PATCH 0022/1641] DOC added examples in validation functions (#28023) Co-authored-by: Guillaume Lemaitre --- sklearn/utils/validation.py | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index 283d24a431fbd..a7553993f7ded 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -1241,6 +1241,12 @@ def column_or_1d(y, *, dtype=None, warn=False): ------ ValueError If `y` is not a 1D array or a 2D array with a single row or column. + + Examples + -------- + >>> from sklearn.utils.validation import column_or_1d + >>> column_or_1d([1, 1]) + array([1, 1]) """ xp, _ = get_namespace(y) y = check_array( @@ -1355,6 +1361,21 @@ def check_symmetric(array, *, tol=1e-10, raise_warning=True, raise_exception=Fal Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.utils.validation import check_symmetric + >>> symmetric_array = np.array([[0, 1, 2], [1, 0, 1], [2, 1, 0]]) + >>> check_symmetric(symmetric_array) + array([[0, 1, 2], + [1, 0, 1], + [2, 1, 0]]) + >>> from scipy.sparse import csr_matrix + >>> sparse_symmetric_array = csr_matrix(symmetric_array) + >>> check_symmetric(sparse_symmetric_array) + <3x3 sparse matrix of type '' + with 6 stored elements in Compressed Sparse Row format> """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError( From 9b0446844c2c99fb880bba538269fff1deba79f4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Fri, 12 Jan 2024 16:00:58 +0100 Subject: [PATCH 0023/1641] DOC Add docstring examples to some functions from metrics package (#28022) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/_classification.py | 8 ++++++++ sklearn/metrics/_scorer.py | 23 +++++++++++++++++++++++ sklearn/metrics/cluster/_supervised.py | 8 ++++++++ 3 files changed, 39 insertions(+) diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index 5b8a024e6e5fc..a92e165e150cc 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -679,6 +679,14 @@ class labels [2]_. `_. .. [3] `Wikipedia entry for the Cohen's kappa `_. + + Examples + -------- + >>> from sklearn.metrics import cohen_kappa_score + >>> y1 = ["negative", "positive", "negative", "neutral", "positive"] + >>> y2 = ["negative", "positive", "negative", "neutral", "negative"] + >>> cohen_kappa_score(y1, y2) + 0.6875 """ confusion = confusion_matrix(y1, y2, labels=labels, sample_weight=sample_weight) n_classes = confusion.shape[0] diff --git a/sklearn/metrics/_scorer.py b/sklearn/metrics/_scorer.py index 37f0fa044455c..3e55b627ee08a 100644 --- a/sklearn/metrics/_scorer.py +++ b/sklearn/metrics/_scorer.py @@ -379,6 +379,18 @@ def get_scorer(scoring): When passed a string, this function always returns a copy of the scorer object. Calling `get_scorer` twice for the same scorer results in two separate scorer objects. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.dummy import DummyClassifier + >>> from sklearn.metrics import get_scorer + >>> X = np.reshape([0, 1, -1, -0.5, 2], (-1, 1)) + >>> y = np.array([0, 1, 1, 0, 1]) + >>> classifier = DummyClassifier(strategy="constant", constant=0).fit(X, y) + >>> accuracy = get_scorer("accuracy") + >>> accuracy(classifier, X, y) + 0.4 """ if isinstance(scoring, str): try: @@ -839,6 +851,17 @@ def get_scorer_names(): ------- list of str Names of all available scorers. + + Examples + -------- + >>> from sklearn.metrics import get_scorer_names + >>> all_scorers = get_scorer_names() + >>> type(all_scorers) + + >>> all_scorers[:3] + ['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score'] + >>> "roc_auc" in all_scorers + True """ return sorted(_SCORERS.keys()) diff --git a/sklearn/metrics/cluster/_supervised.py b/sklearn/metrics/cluster/_supervised.py index b8c80e6292b31..4e2b05e9d1946 100644 --- a/sklearn/metrics/cluster/_supervised.py +++ b/sklearn/metrics/cluster/_supervised.py @@ -867,6 +867,14 @@ def mutual_info_score(labels_true, labels_pred, *, contingency=None): Notes ----- The logarithm used is the natural logarithm (base-e). + + Examples + -------- + >>> from sklearn.metrics import mutual_info_score + >>> labels_true = [0, 1, 1, 0, 1, 0] + >>> labels_pred = [0, 1, 0, 0, 1, 1] + >>> mutual_info_score(labels_true, labels_pred) + 0.056... """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) From b05b5090005dfee1a4311d89ce8eed47f4160d9d Mon Sep 17 00:00:00 2001 From: Sandip Dutta Date: Fri, 12 Jan 2024 20:45:34 +0530 Subject: [PATCH 0024/1641] DOC add docstring example for clear_data_home and fetch_covtype (#28027) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Guillaume Lemaitre Co-authored-by: Loïc Estève --- sklearn/conftest.py | 12 +++++++++--- sklearn/datasets/_base.py | 5 +++++ sklearn/datasets/_covtype.py | 12 ++++++++++++ 3 files changed, 26 insertions(+), 3 deletions(-) diff --git a/sklearn/conftest.py b/sklearn/conftest.py index d2f44f6912b62..d14afddc3773d 100644 --- a/sklearn/conftest.py +++ b/sklearn/conftest.py @@ -134,10 +134,16 @@ def pytest_collection_modifyitems(config, items): datasets_to_download = set() for item in items: - if not hasattr(item, "fixturenames"): + if isinstance(item, DoctestItem) and "fetch_" in item.name: + fetcher_function_name = item.name.split(".")[-1] + dataset_fetchers_key = f"{fetcher_function_name}_fxt" + dataset_to_fetch = set([dataset_fetchers_key]) & dataset_features_set + elif not hasattr(item, "fixturenames"): continue - item_fixtures = set(item.fixturenames) - dataset_to_fetch = item_fixtures & dataset_features_set + else: + item_fixtures = set(item.fixturenames) + dataset_to_fetch = item_fixtures & dataset_features_set + if not dataset_to_fetch: continue diff --git a/sklearn/datasets/_base.py b/sklearn/datasets/_base.py index e062bf381b393..ab2b8bd3f5110 100644 --- a/sklearn/datasets/_base.py +++ b/sklearn/datasets/_base.py @@ -85,6 +85,11 @@ def clear_data_home(data_home=None): data_home : str or path-like, default=None The path to scikit-learn data directory. If `None`, the default path is `~/scikit_learn_data`. + + Examples + ---------- + >>> from sklearn.datasets import clear_data_home + >>> clear_data_home() # doctest: +SKIP """ data_home = get_data_home(data_home) shutil.rmtree(data_home) diff --git a/sklearn/datasets/_covtype.py b/sklearn/datasets/_covtype.py index 7620e08c5ec92..4e1b1d7961f2e 100644 --- a/sklearn/datasets/_covtype.py +++ b/sklearn/datasets/_covtype.py @@ -156,6 +156,18 @@ def fetch_covtype( ndarray of shape (n_samples,) containing the target samples. .. versionadded:: 0.20 + + Examples + -------- + >>> from sklearn.datasets import fetch_covtype + >>> cov_type = fetch_covtype() + >>> cov_type.data.shape + (581012, 54) + >>> cov_type.target.shape + (581012,) + >>> # Let's check the 4 first feature names + >>> cov_type.feature_names[:4] + ['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology'] """ data_home = get_data_home(data_home=data_home) covtype_dir = join(data_home, "covertype") From c56d74a603859fc1b1cc7766a6c35121b9a17b16 Mon Sep 17 00:00:00 2001 From: Advik Sinha Date: Fri, 12 Jan 2024 20:47:05 +0530 Subject: [PATCH 0025/1641] DOC Add examples to docstring for sklearn.isotonic functions (#28020) Co-authored-by: Guillaume Lemaitre --- sklearn/isotonic.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py index 2ed99c0532b58..04456b1763791 100644 --- a/sklearn/isotonic.py +++ b/sklearn/isotonic.py @@ -58,6 +58,16 @@ def check_increasing(x, y): ---------- Fisher transformation. Wikipedia. https://en.wikipedia.org/wiki/Fisher_transformation + + Examples + -------- + >>> from sklearn.isotonic import check_increasing + >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10] + >>> check_increasing(x, y) + True + >>> y = [10, 8, 6, 4, 2] + >>> check_increasing(x, y) + False """ # Calculate Spearman rho estimate and set return accordingly. @@ -133,6 +143,13 @@ def isotonic_regression( ---------- "Active set algorithms for isotonic regression; A unifying framework" by Michael J. Best and Nilotpal Chakravarti, section 3. + + Examples + -------- + >>> from sklearn.isotonic import isotonic_regression + >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4]) + array([2.75 , 2.75 , 2.75 , 2.75 , 7.33..., + 7.33..., 7.33..., 7.33..., 7.33..., 7.33...]) """ order = np.s_[:] if increasing else np.s_[::-1] y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32]) From a7b2dc36be3ab3dde649f13ead6533d38bde3873 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Fri, 12 Jan 2024 16:46:29 +0100 Subject: [PATCH 0026/1641] DOC Add examples to docstring to functions from the preprocessing package (#28019) Co-authored-by: Guillaume Lemaitre --- sklearn/preprocessing/_data.py | 65 +++++++++++++++++++++++++++++++++- 1 file changed, 64 insertions(+), 1 deletion(-) diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py index 4cbae0e1d3591..7fc03ccd7ab36 100644 --- a/sklearn/preprocessing/_data.py +++ b/sklearn/preprocessing/_data.py @@ -205,7 +205,18 @@ def scale(X, *, axis=0, with_mean=True, with_std=True, copy=True): :class:`~sklearn.preprocessing.StandardScaler` within a :ref:`Pipeline ` in order to prevent most risks of data leaking: `pipe = make_pipeline(StandardScaler(), LogisticRegression())`. - """ # noqa + + Examples + -------- + >>> from sklearn.preprocessing import scale + >>> X = [[-2, 1, 2], [-1, 0, 1]] + >>> scale(X, axis=0) # scaling each column independently + array([[-1., 1., 1.], + [ 1., -1., -1.]]) + >>> scale(X, axis=1) # scaling each row independently + array([[-1.37..., 0.39..., 0.98...], + [-1.22..., 0. , 1.22...]]) + """ X = check_array( X, accept_sparse="csc", @@ -646,6 +657,17 @@ def minmax_scale(X, feature_range=(0, 1), *, axis=0, copy=True): ----- For a comparison of the different scalers, transformers, and normalizers, see: :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`. + + Examples + -------- + >>> from sklearn.preprocessing import minmax_scale + >>> X = [[-2, 1, 2], [-1, 0, 1]] + >>> minmax_scale(X, axis=0) # scale each column independently + array([[0., 1., 1.], + [1., 0., 0.]]) + >>> minmax_scale(X, axis=1) # scale each row independently + array([[0. , 0.75, 1. ], + [0. , 0.5 , 1. ]]) """ # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. @@ -1374,6 +1396,17 @@ def maxabs_scale(X, *, axis=0, copy=True): For a comparison of the different scalers, transformers, and normalizers, see: :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`. + + Examples + -------- + >>> from sklearn.preprocessing import maxabs_scale + >>> X = [[-2, 1, 2], [-1, 0, 1]] + >>> maxabs_scale(X, axis=0) # scale each column independently + array([[-1. , 1. , 1. ], + [-0.5, 0. , 0.5]]) + >>> maxabs_scale(X, axis=1) # scale each row independently + array([[-1. , 0.5, 1. ], + [-1. , 0. , 1. ]]) """ # Unlike the scaler object, this function allows 1d input. @@ -1769,6 +1802,17 @@ def robust_scale( :class:`~sklearn.preprocessing.RobustScaler` within a :ref:`Pipeline ` in order to prevent most risks of data leaking: `pipe = make_pipeline(RobustScaler(), LogisticRegression())`. + + Examples + -------- + >>> from sklearn.preprocessing import robust_scale + >>> X = [[-2, 1, 2], [-1, 0, 1]] + >>> robust_scale(X, axis=0) # scale each column independently + array([[-1., 1., 1.], + [ 1., -1., -1.]]) + >>> robust_scale(X, axis=1) # scale each row independently + array([[-1.5, 0. , 0.5], + [-1. , 0. , 1. ]]) """ X = check_array( X, @@ -1859,6 +1903,17 @@ def normalize(X, norm="l2", *, axis=1, copy=True, return_norm=False): ----- For a comparison of the different scalers, transformers, and normalizers, see: :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`. + + Examples + -------- + >>> from sklearn.preprocessing import normalize + >>> X = [[-2, 1, 2], [-1, 0, 1]] + >>> normalize(X, norm="l1") # L1 normalization each row independently + array([[-0.4, 0.2, 0.4], + [-0.5, 0. , 0.5]]) + >>> normalize(X, norm="l2") # L2 normalization each row independently + array([[-0.66..., 0.33..., 0.66...], + [-0.70..., 0. , 0.70...]]) """ if axis == 0: sparse_format = "csc" @@ -2082,6 +2137,14 @@ def binarize(X, *, threshold=0.0, copy=True): -------- Binarizer : Performs binarization using the Transformer API (e.g. as part of a preprocessing :class:`~sklearn.pipeline.Pipeline`). + + Examples + -------- + >>> from sklearn.preprocessing import binarize + >>> X = [[0.4, 0.6, 0.5], [0.6, 0.1, 0.2]] + >>> binarize(X, threshold=0.5) + array([[0., 1., 0.], + [1., 0., 0.]]) """ X = check_array(X, accept_sparse=["csr", "csc"], copy=copy) if sparse.issparse(X): From e485c39928d8b923b5e4a59743d7af7e104b8368 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Fri, 12 Jan 2024 17:30:02 +0100 Subject: [PATCH 0027/1641] DOC Add examples to docstring to functions of class_weight module (#28014) Co-authored-by: Guillaume Lemaitre --- sklearn/utils/class_weight.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/sklearn/utils/class_weight.py b/sklearn/utils/class_weight.py index d049a2eac569a..55802f780ed41 100644 --- a/sklearn/utils/class_weight.py +++ b/sklearn/utils/class_weight.py @@ -49,6 +49,14 @@ def compute_class_weight(class_weight, *, classes, y): ---------- The "balanced" heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.utils.class_weight import compute_class_weight + >>> y = [1, 1, 1, 1, 0, 0] + >>> compute_class_weight(class_weight="balanced", classes=np.unique(y), y=y) + array([1.5 , 0.75]) """ # Import error caused by circular imports. from ..preprocessing import LabelEncoder @@ -133,6 +141,13 @@ def compute_sample_weight(class_weight, y, *, indices=None): ------- sample_weight_vect : ndarray of shape (n_samples,) Array with sample weights as applied to the original `y`. + + Examples + -------- + >>> from sklearn.utils.class_weight import compute_sample_weight + >>> y = [1, 1, 1, 1, 0, 0] + >>> compute_sample_weight(class_weight="balanced", y=y) + array([0.75, 0.75, 0.75, 0.75, 1.5 , 1.5 ]) """ # Ensure y is 2D. Sparse matrices are already 2D. From 2b07c87e5b748d98322ae6ea4023594681a7ddae Mon Sep 17 00:00:00 2001 From: DUONG <47552931+duongb@users.noreply.github.com> Date: Sat, 13 Jan 2024 00:28:59 +0700 Subject: [PATCH 0028/1641] DOC add examples for sklearn.model_selection (#28013) Co-authored-by: Guillaume Lemaitre --- sklearn/model_selection/_split.py | 8 ++++++ sklearn/model_selection/_validation.py | 37 ++++++++++++++++++++++++++ 2 files changed, 45 insertions(+) diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py index 8bb06356e245e..1f89832daba22 100644 --- a/sklearn/model_selection/_split.py +++ b/sklearn/model_selection/_split.py @@ -2508,6 +2508,14 @@ def check_cv(cv=5, y=None, *, classifier=False): checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. + + Examples + -------- + >>> from sklearn.model_selection import check_cv + >>> check_cv(cv=5, y=None, classifier=False) + KFold(...) + >>> check_cv(cv=5, y=[1, 1, 0, 0, 0, 0], classifier=True) + StratifiedKFold(...) """ cv = 5 if cv is None else cv if isinstance(cv, numbers.Integral): diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py index 07b229b57bf96..75c956f2d38a7 100644 --- a/sklearn/model_selection/_validation.py +++ b/sklearn/model_selection/_validation.py @@ -1636,6 +1636,26 @@ def permutation_test_score( Performance `_. The Journal of Machine Learning Research (2010) vol. 11 + + Examples + -------- + >>> from sklearn.datasets import make_classification + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.model_selection import permutation_test_score + >>> X, y = make_classification(random_state=0) + >>> estimator = LogisticRegression() + >>> score, permutation_scores, pvalue = permutation_test_score( + ... estimator, X, y, random_state=0 + ... ) + >>> print(f"Original Score: {score:.3f}") + Original Score: 0.810 + >>> print( + ... f"Permutation Scores: {permutation_scores.mean():.3f} +/- " + ... f"{permutation_scores.std():.3f}" + ... ) + Permutation Scores: 0.505 +/- 0.057 + >>> print(f"P-value: {pvalue:.3f}") + P-value: 0.010 """ X, y, groups = indexable(X, y, groups) @@ -2254,6 +2274,23 @@ def validation_curve( Notes ----- See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py` + + Examples + -------- + >>> import numpy as np + >>> from sklearn.datasets import make_classification + >>> from sklearn.model_selection import validation_curve + >>> from sklearn.linear_model import LogisticRegression + >>> X, y = make_classification(n_samples=1_000, random_state=0) + >>> logistic_regression = LogisticRegression() + >>> param_name, param_range = "C", np.logspace(-8, 3, 10) + >>> train_scores, test_scores = validation_curve( + ... logistic_regression, X, y, param_name=param_name, param_range=param_range + ... ) + >>> print(f"The average train accuracy is {train_scores.mean():.2f}") + The average train accuracy is 0.81 + >>> print(f"The average test accuracy is {test_scores.mean():.2f}") + The average test accuracy is 0.81 """ X, y, groups = indexable(X, y, groups) From 30fcb45f14e761ad41ce1e8874ee7e33b8fa7f79 Mon Sep 17 00:00:00 2001 From: Adarsh Wase <68223910+AdarshWase@users.noreply.github.com> Date: Fri, 12 Jan 2024 23:56:29 +0530 Subject: [PATCH 0029/1641] DOC added examples in metrics.pairwise functions (#28005) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/pairwise.py | 156 +++++++++++++++++++++++++++++++++--- 1 file changed, 145 insertions(+), 11 deletions(-) diff --git a/sklearn/metrics/pairwise.py b/sklearn/metrics/pairwise.py index 4e5c37dff0091..740c08fe7a2f6 100644 --- a/sklearn/metrics/pairwise.py +++ b/sklearn/metrics/pairwise.py @@ -740,6 +740,17 @@ def pairwise_distances_argmin_min( pairwise_distances : Distances between every pair of samples of X and Y. pairwise_distances_argmin : Same as `pairwise_distances_argmin_min` but only returns the argmins. + + Examples + -------- + >>> from sklearn.metrics.pairwise import pairwise_distances_argmin_min + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> argmin, distances = pairwise_distances_argmin_min(X, Y) + >>> argmin + array([0, 1]) + >>> distances + array([1., 1.]) """ X, Y = check_pairwise_arrays(X, Y) @@ -872,6 +883,14 @@ def pairwise_distances_argmin(X, Y, *, axis=1, metric="euclidean", metric_kwargs pairwise_distances : Distances between every pair of samples of X and Y. pairwise_distances_argmin_min : Same as `pairwise_distances_argmin` but also returns the distances. + + Examples + -------- + >>> from sklearn.metrics.pairwise import pairwise_distances_argmin + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> pairwise_distances_argmin(X, Y) + array([0, 1]) """ if metric_kwargs is None: metric_kwargs = {} @@ -952,7 +971,7 @@ def haversine_distances(X, Y=None): Returns ------- - distance : ndarray of shape (n_samples_X, n_samples_Y) + distances : ndarray of shape (n_samples_X, n_samples_Y) The distance matrix. Notes @@ -1006,7 +1025,7 @@ def manhattan_distances(X, Y=None): Returns ------- - D : ndarray of shape (n_samples_X, n_samples_Y) + distances : ndarray of shape (n_samples_X, n_samples_Y) Pairwise L1 distances. Notes @@ -1068,13 +1087,22 @@ def cosine_distances(X, Y=None): Returns ------- - distance matrix : ndarray of shape (n_samples_X, n_samples_Y) + distances : ndarray of shape (n_samples_X, n_samples_Y) Returns the cosine distance between samples in X and Y. See Also -------- cosine_similarity : Compute cosine similarity between samples in X and Y. scipy.spatial.distance.cosine : Dense matrices only. + + Examples + -------- + >>> from sklearn.metrics.pairwise import cosine_distances + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> cosine_distances(X, Y) + array([[1. , 1. ], + [0.42..., 0.18...]]) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) @@ -1111,6 +1139,14 @@ def paired_euclidean_distances(X, Y): distances : ndarray of shape (n_samples,) Output array/matrix containing the calculated paired euclidean distances. + + Examples + -------- + >>> from sklearn.metrics.pairwise import paired_euclidean_distances + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> paired_euclidean_distances(X, Y) + array([1., 1.]) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) @@ -1189,6 +1225,14 @@ def paired_cosine_distances(X, Y): ----- The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm. + + Examples + -------- + >>> from sklearn.metrics.pairwise import paired_cosine_distances + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> paired_cosine_distances(X, Y) + array([0.5 , 0.18...]) """ X, Y = check_paired_arrays(X, Y) return 0.5 * row_norms(normalize(X) - normalize(Y), squared=True) @@ -1304,8 +1348,17 @@ def linear_kernel(X, Y=None, dense_output=True): Returns ------- - Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The Gram matrix of the linear kernel, i.e. `X @ Y.T`. + + Examples + -------- + >>> from sklearn.metrics.pairwise import linear_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> linear_kernel(X, Y) + array([[0., 0.], + [1., 2.]]) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=dense_output) @@ -1352,8 +1405,17 @@ def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): Returns ------- - Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The polynomial kernel. + + Examples + -------- + >>> from sklearn.metrics.pairwise import polynomial_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> polynomial_kernel(X, Y, degree=2) + array([[1. , 1. ], + [1.77..., 2.77...]]) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: @@ -1402,8 +1464,17 @@ def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): Returns ------- - Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) Sigmoid kernel between two arrays. + + Examples + -------- + >>> from sklearn.metrics.pairwise import sigmoid_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> sigmoid_kernel(X, Y) + array([[0.76..., 0.76...], + [0.87..., 0.93...]]) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: @@ -1450,8 +1521,17 @@ def rbf_kernel(X, Y=None, gamma=None): Returns ------- - kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The RBF kernel. + + Examples + -------- + >>> from sklearn.metrics.pairwise import rbf_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> rbf_kernel(X, Y) + array([[0.71..., 0.51...], + [0.51..., 0.71...]]) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: @@ -1500,8 +1580,17 @@ def laplacian_kernel(X, Y=None, gamma=None): Returns ------- - kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The kernel matrix. + + Examples + -------- + >>> from sklearn.metrics.pairwise import laplacian_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> laplacian_kernel(X, Y) + array([[0.71..., 0.51...], + [0.51..., 0.71...]]) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: @@ -1551,8 +1640,17 @@ def cosine_similarity(X, Y=None, dense_output=True): Returns ------- - kernel matrix : ndarray of shape (n_samples_X, n_samples_Y) + similarities : ndarray of shape (n_samples_X, n_samples_Y) Returns the cosine similarity between samples in X and Y. + + Examples + -------- + >>> from sklearn.metrics.pairwise import cosine_similarity + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> cosine_similarity(X, Y) + array([[0. , 0. ], + [0.57..., 0.81...]]) """ # to avoid recursive import @@ -1598,7 +1696,7 @@ def additive_chi2_kernel(X, Y=None): Returns ------- - kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The kernel matrix. See Also @@ -1620,6 +1718,15 @@ def additive_chi2_kernel(X, Y=None): categories: A comprehensive study International Journal of Computer Vision 2007 https://hal.archives-ouvertes.fr/hal-00171412/document + + Examples + -------- + >>> from sklearn.metrics.pairwise import additive_chi2_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> additive_chi2_kernel(X, Y) + array([[-1., -2.], + [-2., -1.]]) """ X, Y = check_pairwise_arrays(X, Y, accept_sparse=False) if (X < 0).any(): @@ -1668,7 +1775,7 @@ def chi2_kernel(X, Y=None, gamma=1.0): Returns ------- - kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) + kernel : ndarray of shape (n_samples_X, n_samples_Y) The kernel matrix. See Also @@ -1684,6 +1791,15 @@ def chi2_kernel(X, Y=None, gamma=1.0): categories: A comprehensive study International Journal of Computer Vision 2007 https://hal.archives-ouvertes.fr/hal-00171412/document + + Examples + -------- + >>> from sklearn.metrics.pairwise import chi2_kernel + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> chi2_kernel(X, Y) + array([[0.36..., 0.13...], + [0.13..., 0.36...]]) """ K = additive_chi2_kernel(X, Y) K *= gamma @@ -2163,6 +2279,15 @@ def pairwise_distances( order to limit memory usage. sklearn.metrics.pairwise.paired_distances : Computes the distances between corresponding elements of two arrays. + + Examples + -------- + >>> from sklearn.metrics.pairwise import pairwise_distances + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> pairwise_distances(X, Y, metric='sqeuclidean') + array([[1., 2.], + [2., 1.]]) """ if metric == "precomputed": X, _ = check_pairwise_arrays( @@ -2369,6 +2494,15 @@ def pairwise_kernels( Notes ----- If metric is 'precomputed', Y is ignored and X is returned. + + Examples + -------- + >>> from sklearn.metrics.pairwise import pairwise_kernels + >>> X = [[0, 0, 0], [1, 1, 1]] + >>> Y = [[1, 0, 0], [1, 1, 0]] + >>> pairwise_kernels(X, Y, metric='linear') + array([[0., 0.], + [1., 2.]]) """ # import GPKernel locally to prevent circular imports from ..gaussian_process.kernels import Kernel as GPKernel From 9d6384dcbdfd76895c4c62c2d064d9418ac8c711 Mon Sep 17 00:00:00 2001 From: Raj Pulapakura Date: Sat, 13 Jan 2024 06:02:40 +1100 Subject: [PATCH 0030/1641] DOC Add a docstring example for clustering functions (#27989) Co-authored-by: Guillaume Lemaitre --- sklearn/cluster/_affinity_propagation.py | 14 ++++ sklearn/cluster/_agglomerative.py | 18 +++++ sklearn/cluster/_kmeans.py | 17 +++++ sklearn/cluster/_mean_shift.py | 22 ++++++ sklearn/cluster/_optics.py | 86 ++++++++++++++++++++++++ sklearn/cluster/_spectral.py | 13 ++++ 6 files changed, 170 insertions(+) diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py index b3b5869687c22..5587a7fd5aa1f 100644 --- a/sklearn/cluster/_affinity_propagation.py +++ b/sklearn/cluster/_affinity_propagation.py @@ -278,6 +278,20 @@ def affinity_propagation( ---------- Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import affinity_propagation + >>> from sklearn.metrics.pairwise import euclidean_distances + >>> X = np.array([[1, 2], [1, 4], [1, 0], + ... [4, 2], [4, 4], [4, 0]]) + >>> S = -euclidean_distances(X, squared=True) + >>> cluster_centers_indices, labels = affinity_propagation(S, random_state=0) + >>> cluster_centers_indices + array([0, 3]) + >>> labels + array([0, 0, 0, 1, 1, 1]) """ estimator = AffinityPropagation( damping=damping, diff --git a/sklearn/cluster/_agglomerative.py b/sklearn/cluster/_agglomerative.py index 5c803a2ae82bb..884d1605e70c3 100644 --- a/sklearn/cluster/_agglomerative.py +++ b/sklearn/cluster/_agglomerative.py @@ -270,6 +270,24 @@ def ward_tree(X, *, connectivity=None, n_clusters=None, return_distance=False): cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import ward_tree + >>> X = np.array([[1, 2], [1, 4], [1, 0], + ... [4, 2], [4, 4], [4, 0]]) + >>> children, n_connected_components, n_leaves, parents = ward_tree(X) + >>> children + array([[0, 1], + [3, 5], + [2, 6], + [4, 7], + [8, 9]]) + >>> n_connected_components + 1 + >>> n_leaves + 6 """ X = np.asarray(X) if X.ndim == 1: diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py index 59470aae6c13f..0732b75f982b8 100644 --- a/sklearn/cluster/_kmeans.py +++ b/sklearn/cluster/_kmeans.py @@ -425,6 +425,23 @@ def k_means( best_n_iter : int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import k_means + >>> X = np.array([[1, 2], [1, 4], [1, 0], + ... [10, 2], [10, 4], [10, 0]]) + >>> centroid, label, inertia = k_means( + ... X, n_clusters=2, n_init="auto", random_state=0 + ... ) + >>> centroid + array([[10., 2.], + [ 1., 2.]]) + >>> label + array([1, 1, 1, 0, 0, 0], dtype=int32) + >>> inertia + 16.0 """ est = KMeans( n_clusters=n_clusters, diff --git a/sklearn/cluster/_mean_shift.py b/sklearn/cluster/_mean_shift.py index a3ca7efba8743..fae11cca7df23 100644 --- a/sklearn/cluster/_mean_shift.py +++ b/sklearn/cluster/_mean_shift.py @@ -76,6 +76,15 @@ def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_job ------- bandwidth : float The bandwidth parameter. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import estimate_bandwidth + >>> X = np.array([[1, 1], [2, 1], [1, 0], + ... [4, 7], [3, 5], [3, 6]]) + >>> estimate_bandwidth(X, quantile=0.5) + 1.61... """ X = check_array(X) @@ -211,6 +220,19 @@ def mean_shift( ----- For an example, see :ref:`examples/cluster/plot_mean_shift.py `. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import mean_shift + >>> X = np.array([[1, 1], [2, 1], [1, 0], + ... [4, 7], [3, 5], [3, 6]]) + >>> cluster_centers, labels = mean_shift(X, bandwidth=2) + >>> cluster_centers + array([[3.33..., 6. ], + [1.33..., 0.66...]]) + >>> labels + array([1, 1, 1, 0, 0, 0]) """ model = MeanShift( bandwidth=bandwidth, diff --git a/sklearn/cluster/_optics.py b/sklearn/cluster/_optics.py index 87cecfd8a93a6..493b7f40389cb 100755 --- a/sklearn/cluster/_optics.py +++ b/sklearn/cluster/_optics.py @@ -562,6 +562,34 @@ def compute_optics_graph( .. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. "OPTICS: ordering points to identify the clustering structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import compute_optics_graph + >>> X = np.array([[1, 2], [2, 5], [3, 6], + ... [8, 7], [8, 8], [7, 3]]) + >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( + ... X, + ... min_samples=2, + ... max_eps=np.inf, + ... metric="minkowski", + ... p=2, + ... metric_params=None, + ... algorithm="auto", + ... leaf_size=30, + ... n_jobs=None, + ... ) + >>> ordering + array([0, 1, 2, 5, 3, 4]) + >>> core_distances + array([3.16..., 1.41..., 1.41..., 1. , 1. , + 4.12...]) + >>> reachability + array([ inf, 3.16..., 1.41..., 4.12..., 1. , + 5. ]) + >>> predecessor + array([-1, 0, 1, 5, 3, 2]) """ n_samples = X.shape[0] _validate_size(min_samples, n_samples, "min_samples") @@ -720,6 +748,33 @@ def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps): ------- labels_ : array of shape (n_samples,) The estimated labels. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph + >>> X = np.array([[1, 2], [2, 5], [3, 6], + ... [8, 7], [8, 8], [7, 3]]) + >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( + ... X, + ... min_samples=2, + ... max_eps=np.inf, + ... metric="minkowski", + ... p=2, + ... metric_params=None, + ... algorithm="auto", + ... leaf_size=30, + ... n_jobs=None, + ... ) + >>> eps = 4.5 + >>> labels = cluster_optics_dbscan( + ... reachability=reachability, + ... core_distances=core_distances, + ... ordering=ordering, + ... eps=eps, + ... ) + >>> labels + array([0, 0, 0, 1, 1, 1]) """ n_samples = len(core_distances) labels = np.zeros(n_samples, dtype=int) @@ -806,6 +861,37 @@ def cluster_optics_xi( clusters come after such nested smaller clusters. Since ``labels`` does not reflect the hierarchy, usually ``len(clusters) > np.unique(labels)``. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.cluster import cluster_optics_xi, compute_optics_graph + >>> X = np.array([[1, 2], [2, 5], [3, 6], + ... [8, 7], [8, 8], [7, 3]]) + >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( + ... X, + ... min_samples=2, + ... max_eps=np.inf, + ... metric="minkowski", + ... p=2, + ... metric_params=None, + ... algorithm="auto", + ... leaf_size=30, + ... n_jobs=None + ... ) + >>> min_samples = 2 + >>> labels, clusters = cluster_optics_xi( + ... reachability=reachability, + ... predecessor=predecessor, + ... ordering=ordering, + ... min_samples=min_samples, + ... ) + >>> labels + array([0, 0, 0, 1, 1, 1]) + >>> clusters + array([[0, 2], + [3, 5], + [0, 5]]) """ n_samples = len(reachability) _validate_size(min_samples, n_samples, "min_samples") diff --git a/sklearn/cluster/_spectral.py b/sklearn/cluster/_spectral.py index d42b5526f0122..d925a2ff56bc4 100644 --- a/sklearn/cluster/_spectral.py +++ b/sklearn/cluster/_spectral.py @@ -346,6 +346,19 @@ def spectral_clustering( streaming graph challenge (Preliminary version at arXiv.) David Zhuzhunashvili, Andrew Knyazev <10.1109/HPEC.2017.8091045>` + + Examples + -------- + >>> import numpy as np + >>> from sklearn.metrics.pairwise import pairwise_kernels + >>> from sklearn.cluster import spectral_clustering + >>> X = np.array([[1, 1], [2, 1], [1, 0], + ... [4, 7], [3, 5], [3, 6]]) + >>> affinity = pairwise_kernels(X, metric='rbf') + >>> spectral_clustering( + ... affinity=affinity, n_clusters=2, assign_labels="discretize", random_state=0 + ... ) + array([1, 1, 1, 0, 0, 0]) """ clusterer = SpectralClustering( From 71e5271d8b717b77d720f205d4bfdcb1dcc51402 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Sat, 13 Jan 2024 09:56:00 +0100 Subject: [PATCH 0031/1641] TST Skip test using subprocess in Pyodide (#28116) --- sklearn/utils/tests/test_testing.py | 1 + 1 file changed, 1 insertion(+) diff --git a/sklearn/utils/tests/test_testing.py b/sklearn/utils/tests/test_testing.py index 7a4b02aeec224..f24b4de928201 100644 --- a/sklearn/utils/tests/test_testing.py +++ b/sklearn/utils/tests/test_testing.py @@ -823,6 +823,7 @@ def test_float32_aware_assert_allclose(): assert_allclose(np.array([1e-5], dtype=np.float32), 0.0, atol=2e-5) +@pytest.mark.xfail(_IS_WASM, reason="cannot start subprocess") def test_assert_run_python_script_without_output(): code = "x = 1" assert_run_python_script_without_output(code) From f48ee39832537424a7b5379b4826e8f0a0eb21d1 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Sat, 13 Jan 2024 22:36:42 +0800 Subject: [PATCH 0032/1641] FIX dump svmlight when data is read-only (#28111) Co-authored-by: Guillaume Lemaitre --- doc/whats_new/v1.4.rst | 18 ++++++++++++++++++ sklearn/datasets/_svmlight_format_fast.pyx | 2 +- sklearn/datasets/tests/test_svmlight_format.py | 18 ++++++++++++++++++ 3 files changed, 37 insertions(+), 1 deletion(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index a932391b732cd..25a3f600c5446 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -2,6 +2,24 @@ .. currentmodule:: sklearn +.. _changes_1_4_1: + +Version 1.4.1 +============= + +**In Development** + +Changelog +--------- + +:mod:`sklearn.datasets` +....................... + +- |Fix| :func:`datasets.dump_svmlight_file` now does not raise `ValueError` when `X` + is read-only, e.g., a `numpy.memmap` instance. + :pr:`28111` by :user:`Yao Xiao `. + + .. _changes_1_4: Version 1.4.0 diff --git a/sklearn/datasets/_svmlight_format_fast.pyx b/sklearn/datasets/_svmlight_format_fast.pyx index 31530ed55d251..103d43bf88965 100644 --- a/sklearn/datasets/_svmlight_format_fast.pyx +++ b/sklearn/datasets/_svmlight_format_fast.pyx @@ -131,7 +131,7 @@ ctypedef fused int_or_longlong: def get_dense_row_string( - int_or_float[:, :] X, + const int_or_float[:, :] X, Py_ssize_t[:] x_inds, double_or_longlong[:] x_vals, Py_ssize_t row, diff --git a/sklearn/datasets/tests/test_svmlight_format.py b/sklearn/datasets/tests/test_svmlight_format.py index 10b0e29810ef7..5c641dd79cc63 100644 --- a/sklearn/datasets/tests/test_svmlight_format.py +++ b/sklearn/datasets/tests/test_svmlight_format.py @@ -16,6 +16,7 @@ assert_allclose, assert_array_almost_equal, assert_array_equal, + create_memmap_backed_data, fails_if_pypy, ) from sklearn.utils.fixes import CSR_CONTAINERS @@ -596,3 +597,20 @@ def test_multilabel_y_explicit_zeros(tmp_path, csr_container): _, y_load = load_svmlight_file(save_path, multilabel=True) y_true = [(2.0,), (2.0,), (0.0, 1.0)] assert y_load == y_true + + +def test_dump_read_only(tmp_path): + """Ensure that there is no ValueError when dumping a read-only `X`. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/issues/28026 + """ + rng = np.random.RandomState(42) + X = rng.randn(5, 2) + y = rng.randn(5) + + # Convert to memmap-backed which are read-only + X, y = create_memmap_backed_data([X, y]) + + save_path = str(tmp_path / "svm_read_only") + dump_svmlight_file(X, y, save_path) From b3a54c085b6319458da33868957b9a783f7714d2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Sat, 13 Jan 2024 16:07:19 +0100 Subject: [PATCH 0033/1641] TST Tweak one more test to facilitate Meson usage (#28112) --- sklearn/tests/test_common.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index 6dbf54b203e4c..cbd658f25ed28 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -262,9 +262,10 @@ def test_all_tests_are_importable(): "sklearn.datasets.descr", "sklearn.datasets.images", } + sklearn_path = [os.path.dirname(sklearn.__file__)] lookup = { name: ispkg - for _, name, ispkg in pkgutil.walk_packages(sklearn.__path__, prefix="sklearn.") + for _, name, ispkg in pkgutil.walk_packages(sklearn_path, prefix="sklearn.") } missing_tests = [ name From 198908beb9dce5800a3ef78763a8b48afbc5cff4 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Sun, 14 Jan 2024 00:26:08 +0800 Subject: [PATCH 0034/1641] DOC fix wrong indentations in the documentation that lead to undesired blockquotes (#28107) Co-authored-by: Guillaume Lemaitre --- doc/about.rst | 68 ++-- doc/computing/computational_performance.rst | 28 +- doc/computing/parallelism.rst | 20 +- doc/computing/scaling_strategies.rst | 52 +-- doc/developers/bug_triaging.rst | 18 +- doc/developers/contributing.rst | 100 ++--- doc/developers/cython.rst | 28 +- doc/developers/maintainer.rst | 98 ++--- doc/developers/minimal_reproducer.rst | 80 ++-- doc/developers/performance.rst | 54 +-- doc/developers/tips.rst | 168 ++++---- doc/model_persistence.rst | 2 +- doc/modules/clustering.rst | 62 +-- doc/modules/cross_validation.rst | 8 +- doc/modules/decomposition.rst | 56 +-- doc/modules/ensemble.rst | 134 +++---- doc/modules/feature_extraction.rst | 124 +++--- doc/modules/feature_selection.rst | 22 +- doc/modules/gaussian_process.rst | 28 +- doc/modules/grid_search.rst | 16 +- doc/modules/isotonic.rst | 6 +- doc/modules/kernel_approximation.rst | 12 +- doc/modules/linear_model.rst | 84 ++-- doc/modules/metrics.rst | 21 +- doc/modules/mixture.rst | 12 +- doc/modules/multiclass.rst | 58 +-- doc/modules/neighbors.rst | 10 +- doc/modules/neural_networks_supervised.rst | 76 ++-- doc/modules/outlier_detection.rst | 8 +- doc/modules/preprocessing.rst | 40 +- doc/modules/semi_supervised.rst | 8 +- doc/modules/sgd.rst | 142 +++---- doc/modules/svm.rst | 230 +++++------ doc/modules/tree.rst | 348 ++++++++--------- doc/presentations.rst | 26 +- doc/support.rst | 6 +- doc/tutorial/basic/tutorial.rst | 70 ++-- .../statistical_inference/model_selection.rst | 6 +- .../putting_together.rst | 2 +- .../supervised_learning.rst | 8 +- .../unsupervised_learning.rst | 27 +- .../text_analytics/working_with_text_data.rst | 30 +- doc/whats_new/older_versions.rst | 365 +++++++++--------- doc/whats_new/v0.13.rst | 163 ++++---- doc/whats_new/v0.14.rst | 176 ++++----- doc/whats_new/v0.20.rst | 2 +- sklearn/datasets/descr/breast_cancer.rst | 154 ++++---- sklearn/datasets/descr/california_housing.rst | 24 +- sklearn/datasets/descr/covtype.rst | 12 +- sklearn/datasets/descr/diabetes.rst | 34 +- sklearn/datasets/descr/digits.rst | 14 +- sklearn/datasets/descr/iris.rst | 54 +-- sklearn/datasets/descr/kddcup99.rst | 88 ++--- sklearn/datasets/descr/lfw.rst | 14 +- sklearn/datasets/descr/linnerud.rst | 8 +- sklearn/datasets/descr/olivetti_faces.rst | 20 +- sklearn/datasets/descr/rcv1.rst | 38 +- sklearn/datasets/descr/twenty_newsgroups.rst | 12 +- sklearn/datasets/descr/wine_data.rst | 133 ++++--- 59 files changed, 1865 insertions(+), 1842 deletions(-) diff --git a/doc/about.rst b/doc/about.rst index e462963135b58..2ef0718b92f7e 100644 --- a/doc/about.rst +++ b/doc/about.rst @@ -96,44 +96,44 @@ Citing scikit-learn If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper: - `Scikit-learn: Machine Learning in Python - `_, Pedregosa - *et al.*, JMLR 12, pp. 2825-2830, 2011. - - Bibtex entry:: - - @article{scikit-learn, - title={Scikit-learn: Machine Learning in {P}ython}, - author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. - and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. - and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and - Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, - journal={Journal of Machine Learning Research}, - volume={12}, - pages={2825--2830}, - year={2011} - } +`Scikit-learn: Machine Learning in Python +`_, Pedregosa +*et al.*, JMLR 12, pp. 2825-2830, 2011. + +Bibtex entry:: + + @article{scikit-learn, + title={Scikit-learn: Machine Learning in {P}ython}, + author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. + and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. + and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and + Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, + journal={Journal of Machine Learning Research}, + volume={12}, + pages={2825--2830}, + year={2011} + } If you want to cite scikit-learn for its API or design, you may also want to consider the following paper: - :arxiv:`API design for machine learning software: experiences from the scikit-learn - project <1309.0238>`, Buitinck *et al.*, 2013. - - Bibtex entry:: - - @inproceedings{sklearn_api, - author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and - Fabian Pedregosa and Andreas Mueller and Olivier Grisel and - Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort - and Jaques Grobler and Robert Layton and Jake VanderPlas and - Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux}, - title = {{API} design for machine learning software: experiences from the scikit-learn - project}, - booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine Learning}, - year = {2013}, - pages = {108--122}, - } +:arxiv:`API design for machine learning software: experiences from the scikit-learn +project <1309.0238>`, Buitinck *et al.*, 2013. + +Bibtex entry:: + + @inproceedings{sklearn_api, + author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and + Fabian Pedregosa and Andreas Mueller and Olivier Grisel and + Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort + and Jaques Grobler and Robert Layton and Jake VanderPlas and + Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux}, + title = {{API} design for machine learning software: experiences from the scikit-learn + project}, + booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine Learning}, + year = {2013}, + pages = {108--122}, + } Artwork ------- diff --git a/doc/computing/computational_performance.rst b/doc/computing/computational_performance.rst index dd5720630c377..d6864689502c2 100644 --- a/doc/computing/computational_performance.rst +++ b/doc/computing/computational_performance.rst @@ -39,10 +39,11 @@ machine learning toolkit is the latency at which predictions can be made in a production environment. The main factors that influence the prediction latency are - 1. Number of features - 2. Input data representation and sparsity - 3. Model complexity - 4. Feature extraction + +1. Number of features +2. Input data representation and sparsity +3. Model complexity +4. Feature extraction A last major parameter is also the possibility to do predictions in bulk or one-at-a-time mode. @@ -224,9 +225,9 @@ files, tokenizing the text and hashing it into a common vector space) is taking 100 to 500 times more time than the actual prediction code, depending on the chosen model. - .. |prediction_time| image:: ../auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_004.png - :target: ../auto_examples/applications/plot_out_of_core_classification.html - :scale: 80 +.. |prediction_time| image:: ../auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_004.png + :target: ../auto_examples/applications/plot_out_of_core_classification.html + :scale: 80 .. centered:: |prediction_time| @@ -283,10 +284,11 @@ scikit-learn install with the following command:: python -c "import sklearn; sklearn.show_versions()" Optimized BLAS / LAPACK implementations include: - - Atlas (need hardware specific tuning by rebuilding on the target machine) - - OpenBLAS - - MKL - - Apple Accelerate and vecLib frameworks (OSX only) + +- Atlas (need hardware specific tuning by rebuilding on the target machine) +- OpenBLAS +- MKL +- Apple Accelerate and vecLib frameworks (OSX only) More information can be found on the `NumPy install page `_ and in this @@ -364,5 +366,5 @@ sufficient to not generate the relevant features, leaving their columns empty. Links ...... - - :ref:`scikit-learn developer performance documentation ` - - `Scipy sparse matrix formats documentation `_ +- :ref:`scikit-learn developer performance documentation ` +- `Scipy sparse matrix formats documentation `_ diff --git a/doc/computing/parallelism.rst b/doc/computing/parallelism.rst index 0cd02ab5a0449..0fcbf00cd6c04 100644 --- a/doc/computing/parallelism.rst +++ b/doc/computing/parallelism.rst @@ -87,15 +87,15 @@ will use as many threads as possible, i.e. as many threads as logical cores. You can control the exact number of threads that are used either: - - via the ``OMP_NUM_THREADS`` environment variable, for instance when: - running a python script: +- via the ``OMP_NUM_THREADS`` environment variable, for instance when: + running a python script: - .. prompt:: bash $ + .. prompt:: bash $ - OMP_NUM_THREADS=4 python my_script.py + OMP_NUM_THREADS=4 python my_script.py - - or via `threadpoolctl` as explained by `this piece of documentation - `_. +- or via `threadpoolctl` as explained by `this piece of documentation + `_. Parallel NumPy and SciPy routines from numerical libraries .......................................................... @@ -107,15 +107,15 @@ such as MKL, OpenBLAS or BLIS. You can control the exact number of threads used by BLAS for each library using environment variables, namely: - - ``MKL_NUM_THREADS`` sets the number of thread MKL uses, - - ``OPENBLAS_NUM_THREADS`` sets the number of threads OpenBLAS uses - - ``BLIS_NUM_THREADS`` sets the number of threads BLIS uses +- ``MKL_NUM_THREADS`` sets the number of thread MKL uses, +- ``OPENBLAS_NUM_THREADS`` sets the number of threads OpenBLAS uses +- ``BLIS_NUM_THREADS`` sets the number of threads BLIS uses Note that BLAS & LAPACK implementations can also be impacted by `OMP_NUM_THREADS`. To check whether this is the case in your environment, you can inspect how the number of threads effectively used by those libraries is affected when running the following command in a bash or zsh terminal -for different values of `OMP_NUM_THREADS`:: +for different values of `OMP_NUM_THREADS`: .. prompt:: bash $ diff --git a/doc/computing/scaling_strategies.rst b/doc/computing/scaling_strategies.rst index 277d499f4cc13..143643131b0e8 100644 --- a/doc/computing/scaling_strategies.rst +++ b/doc/computing/scaling_strategies.rst @@ -20,9 +20,9 @@ data that cannot fit in a computer's main memory (RAM). Here is a sketch of a system designed to achieve this goal: - 1. a way to stream instances - 2. a way to extract features from instances - 3. an incremental algorithm +1. a way to stream instances +2. a way to extract features from instances +3. an incremental algorithm Streaming instances .................... @@ -62,29 +62,29 @@ balances relevancy and memory footprint could involve some tuning [1]_. Here is a list of incremental estimators for different tasks: - - Classification - + :class:`sklearn.naive_bayes.MultinomialNB` - + :class:`sklearn.naive_bayes.BernoulliNB` - + :class:`sklearn.linear_model.Perceptron` - + :class:`sklearn.linear_model.SGDClassifier` - + :class:`sklearn.linear_model.PassiveAggressiveClassifier` - + :class:`sklearn.neural_network.MLPClassifier` - - Regression - + :class:`sklearn.linear_model.SGDRegressor` - + :class:`sklearn.linear_model.PassiveAggressiveRegressor` - + :class:`sklearn.neural_network.MLPRegressor` - - Clustering - + :class:`sklearn.cluster.MiniBatchKMeans` - + :class:`sklearn.cluster.Birch` - - Decomposition / feature Extraction - + :class:`sklearn.decomposition.MiniBatchDictionaryLearning` - + :class:`sklearn.decomposition.IncrementalPCA` - + :class:`sklearn.decomposition.LatentDirichletAllocation` - + :class:`sklearn.decomposition.MiniBatchNMF` - - Preprocessing - + :class:`sklearn.preprocessing.StandardScaler` - + :class:`sklearn.preprocessing.MinMaxScaler` - + :class:`sklearn.preprocessing.MaxAbsScaler` +- Classification + + :class:`sklearn.naive_bayes.MultinomialNB` + + :class:`sklearn.naive_bayes.BernoulliNB` + + :class:`sklearn.linear_model.Perceptron` + + :class:`sklearn.linear_model.SGDClassifier` + + :class:`sklearn.linear_model.PassiveAggressiveClassifier` + + :class:`sklearn.neural_network.MLPClassifier` +- Regression + + :class:`sklearn.linear_model.SGDRegressor` + + :class:`sklearn.linear_model.PassiveAggressiveRegressor` + + :class:`sklearn.neural_network.MLPRegressor` +- Clustering + + :class:`sklearn.cluster.MiniBatchKMeans` + + :class:`sklearn.cluster.Birch` +- Decomposition / feature Extraction + + :class:`sklearn.decomposition.MiniBatchDictionaryLearning` + + :class:`sklearn.decomposition.IncrementalPCA` + + :class:`sklearn.decomposition.LatentDirichletAllocation` + + :class:`sklearn.decomposition.MiniBatchNMF` +- Preprocessing + + :class:`sklearn.preprocessing.StandardScaler` + + :class:`sklearn.preprocessing.MinMaxScaler` + + :class:`sklearn.preprocessing.MaxAbsScaler` For classification, a somewhat important thing to note is that although a stateless feature extraction routine may be able to cope with new/unseen diff --git a/doc/developers/bug_triaging.rst b/doc/developers/bug_triaging.rst index 3ec628f7e5867..915ea0a9a22b7 100644 --- a/doc/developers/bug_triaging.rst +++ b/doc/developers/bug_triaging.rst @@ -19,18 +19,18 @@ A third party can give useful feedback or even add comments on the issue. The following actions are typically useful: - - documenting issues that are missing elements to reproduce the problem - such as code samples +- documenting issues that are missing elements to reproduce the problem + such as code samples - - suggesting better use of code formatting +- suggesting better use of code formatting - - suggesting to reformulate the title and description to make them more - explicit about the problem to be solved +- suggesting to reformulate the title and description to make them more + explicit about the problem to be solved - - linking to related issues or discussions while briefly describing how - they are related, for instance "See also #xyz for a similar attempt - at this" or "See also #xyz where the same thing happened in - SomeEstimator" provides context and helps the discussion. +- linking to related issues or discussions while briefly describing how + they are related, for instance "See also #xyz for a similar attempt + at this" or "See also #xyz where the same thing happened in + SomeEstimator" provides context and helps the discussion. .. topic:: Fruitful discussions diff --git a/doc/developers/contributing.rst b/doc/developers/contributing.rst index 02e02eb485e8a..26f952b543a03 100644 --- a/doc/developers/contributing.rst +++ b/doc/developers/contributing.rst @@ -291,7 +291,7 @@ The next steps now describe the process of modifying code and submitting a PR: 9. Create a feature branch to hold your development changes: - .. prompt:: bash $ + .. prompt:: bash $ git checkout -b my_feature @@ -529,25 +529,25 @@ Continuous Integration (CI) Please note that if one of the following markers appear in the latest commit message, the following actions are taken. - ====================== =================== - Commit Message Marker Action Taken by CI - ---------------------- ------------------- - [ci skip] CI is skipped completely - [cd build] CD is run (wheels and source distribution are built) - [cd build gh] CD is run only for GitHub Actions - [cd build cirrus] CD is run only for Cirrus CI - [lint skip] Azure pipeline skips linting - [scipy-dev] Build & test with our dependencies (numpy, scipy, etc.) development builds - [nogil] Build & test with the nogil experimental branches of CPython, Cython, NumPy, SciPy, ... - [pypy] Build & test with PyPy - [pyodide] Build & test with Pyodide - [azure parallel] Run Azure CI jobs in parallel - [cirrus arm] Run Cirrus CI ARM test - [float32] Run float32 tests by setting `SKLEARN_RUN_FLOAT32_TESTS=1`. See :ref:`environment_variable` for more details - [doc skip] Docs are not built - [doc quick] Docs built, but excludes example gallery plots - [doc build] Docs built including example gallery plots (very long) - ====================== =================== +====================== =================== +Commit Message Marker Action Taken by CI +---------------------- ------------------- +[ci skip] CI is skipped completely +[cd build] CD is run (wheels and source distribution are built) +[cd build gh] CD is run only for GitHub Actions +[cd build cirrus] CD is run only for Cirrus CI +[lint skip] Azure pipeline skips linting +[scipy-dev] Build & test with our dependencies (numpy, scipy, etc.) development builds +[nogil] Build & test with the nogil experimental branches of CPython, Cython, NumPy, SciPy, ... +[pypy] Build & test with PyPy +[pyodide] Build & test with Pyodide +[azure parallel] Run Azure CI jobs in parallel +[cirrus arm] Run Cirrus CI ARM test +[float32] Run float32 tests by setting `SKLEARN_RUN_FLOAT32_TESTS=1`. See :ref:`environment_variable` for more details +[doc skip] Docs are not built +[doc quick] Docs built, but excludes example gallery plots +[doc build] Docs built including example gallery plots (very long) +====================== =================== Note that, by default, the documentation is built but only the examples that are directly modified by the pull request are executed. @@ -713,30 +713,30 @@ We are glad to accept any sort of documentation: In general have the following in mind: - * Use Python basic types. (``bool`` instead of ``boolean``) - * Use parenthesis for defining shapes: ``array-like of shape (n_samples,)`` - or ``array-like of shape (n_samples, n_features)`` - * For strings with multiple options, use brackets: ``input: {'log', - 'squared', 'multinomial'}`` - * 1D or 2D data can be a subset of ``{array-like, ndarray, sparse matrix, - dataframe}``. Note that ``array-like`` can also be a ``list``, while - ``ndarray`` is explicitly only a ``numpy.ndarray``. - * Specify ``dataframe`` when "frame-like" features are being used, such as - the column names. - * When specifying the data type of a list, use ``of`` as a delimiter: ``list - of int``. When the parameter supports arrays giving details about the - shape and/or data type and a list of such arrays, you can use one of - ``array-like of shape (n_samples,) or list of such arrays``. - * When specifying the dtype of an ndarray, use e.g. ``dtype=np.int32`` after - defining the shape: ``ndarray of shape (n_samples,), dtype=np.int32``. You - can specify multiple dtype as a set: ``array-like of shape (n_samples,), - dtype={np.float64, np.float32}``. If one wants to mention arbitrary - precision, use `integral` and `floating` rather than the Python dtype - `int` and `float`. When both `int` and `floating` are supported, there is - no need to specify the dtype. - * When the default is ``None``, ``None`` only needs to be specified at the - end with ``default=None``. Be sure to include in the docstring, what it - means for the parameter or attribute to be ``None``. + * Use Python basic types. (``bool`` instead of ``boolean``) + * Use parenthesis for defining shapes: ``array-like of shape (n_samples,)`` + or ``array-like of shape (n_samples, n_features)`` + * For strings with multiple options, use brackets: ``input: {'log', + 'squared', 'multinomial'}`` + * 1D or 2D data can be a subset of ``{array-like, ndarray, sparse matrix, + dataframe}``. Note that ``array-like`` can also be a ``list``, while + ``ndarray`` is explicitly only a ``numpy.ndarray``. + * Specify ``dataframe`` when "frame-like" features are being used, such as + the column names. + * When specifying the data type of a list, use ``of`` as a delimiter: ``list + of int``. When the parameter supports arrays giving details about the + shape and/or data type and a list of such arrays, you can use one of + ``array-like of shape (n_samples,) or list of such arrays``. + * When specifying the dtype of an ndarray, use e.g. ``dtype=np.int32`` after + defining the shape: ``ndarray of shape (n_samples,), dtype=np.int32``. You + can specify multiple dtype as a set: ``array-like of shape (n_samples,), + dtype={np.float64, np.float32}``. If one wants to mention arbitrary + precision, use `integral` and `floating` rather than the Python dtype + `int` and `float`. When both `int` and `floating` are supported, there is + no need to specify the dtype. + * When the default is ``None``, ``None`` only needs to be specified at the + end with ``default=None``. Be sure to include in the docstring, what it + means for the parameter or attribute to be ``None``. * Add "See Also" in docstrings for related classes/functions. @@ -809,15 +809,15 @@ details, and give intuition to the reader on what the algorithm does. * Information that can be hidden by default using dropdowns is: - * low hierarchy sections such as `References`, `Properties`, etc. (see for - instance the subsections in :ref:`det_curve`); + * low hierarchy sections such as `References`, `Properties`, etc. (see for + instance the subsections in :ref:`det_curve`); - * in-depth mathematical details; + * in-depth mathematical details; - * narrative that is use-case specific; + * narrative that is use-case specific; - * in general, narrative that may only interest users that want to go beyond - the pragmatics of a given tool. + * in general, narrative that may only interest users that want to go beyond + the pragmatics of a given tool. * Do not use dropdowns for the low level section `Examples`, as it should stay visible to all users. Make sure that the `Examples` section comes right after diff --git a/doc/developers/cython.rst b/doc/developers/cython.rst index 8558169848052..e98501879d50e 100644 --- a/doc/developers/cython.rst +++ b/doc/developers/cython.rst @@ -58,13 +58,13 @@ Tips to ease development * You might find this alias to compile individual Cython extension handy: - .. code-block:: + .. code-block:: - # You might want to add this alias to your shell script config. - alias cythonX="cython -X language_level=3 -X boundscheck=False -X wraparound=False -X initializedcheck=False -X nonecheck=False -X cdivision=True" + # You might want to add this alias to your shell script config. + alias cythonX="cython -X language_level=3 -X boundscheck=False -X wraparound=False -X initializedcheck=False -X nonecheck=False -X cdivision=True" - # This generates `source.c` as if you had recompiled scikit-learn entirely. - cythonX --annotate source.pyx + # This generates `source.c` as if you had recompiled scikit-learn entirely. + cythonX --annotate source.pyx * Using the ``--annotate`` option with this flag allows generating a HTML report of code annotation. This report indicates interactions with the CPython interpreter on a line-by-line basis. @@ -72,10 +72,10 @@ Tips to ease development the computationally intensive sections of the algorithms. For more information, please refer to `this section of Cython's tutorial `_ - .. code-block:: + .. code-block:: - # This generates a HTML report (`source.html`) for `source.c`. - cythonX --annotate source.pyx + # This generates a HTML report (`source.html`) for `source.c`. + cythonX --annotate source.pyx Tips for performance ^^^^^^^^^^^^^^^^^^^^ @@ -107,16 +107,16 @@ Tips for performance the GIL when entering them. You have to do that yourself either by passing ``nogil=True`` to ``cython.parallel.prange`` explicitly, or by using an explicit context manager: - .. code-block:: cython + .. code-block:: cython - cdef inline void my_func(self) nogil: + cdef inline void my_func(self) nogil: - # Some logic interacting with CPython, e.g. allocating arrays via NumPy. + # Some logic interacting with CPython, e.g. allocating arrays via NumPy. - with nogil: - # The code here is run as is it were written in C. + with nogil: + # The code here is run as is it were written in C. - return 0 + return 0 This item is based on `this comment from Stéfan's Benhel `_ diff --git a/doc/developers/maintainer.rst b/doc/developers/maintainer.rst index d2a1d21523f78..048ad5d9906a1 100644 --- a/doc/developers/maintainer.rst +++ b/doc/developers/maintainer.rst @@ -81,16 +81,16 @@ tag under that branch. This is done only once, as the major and minor releases happen on the same branch: - .. prompt:: bash $ +.. prompt:: bash $ - # Assuming upstream is an alias for the main scikit-learn repo: - git fetch upstream main - git checkout upstream/main - git checkout -b 0.99.X - git push --set-upstream upstream 0.99.X + # Assuming upstream is an alias for the main scikit-learn repo: + git fetch upstream main + git checkout upstream/main + git checkout -b 0.99.X + git push --set-upstream upstream 0.99.X - Again, `X` is literal here, and `99` is replaced by the release number. - The branches are called ``0.19.X``, ``0.20.X``, etc. +Again, `X` is literal here, and `99` is replaced by the release number. +The branches are called ``0.19.X``, ``0.20.X``, etc. In terms of including changes, the first RC ideally counts as a *feature freeze*. Each coming release candidate and the final release afterwards will @@ -121,67 +121,67 @@ The minor releases should include bug fixes and some relevant documentation changes only. Any PR resulting in a behavior change which is not a bug fix should be excluded. As an example, instructions are given for the `1.2.2` release. - - Create a branch, **on your own fork** (here referred to as `fork`) for the release - from `upstream/main`. +- Create a branch, **on your own fork** (here referred to as `fork`) for the release + from `upstream/main`. - .. prompt:: bash $ + .. prompt:: bash $ - git fetch upstream/main - git checkout -b release-1.2.2 upstream/main - git push -u fork release-1.2.2:release-1.2.2 + git fetch upstream/main + git checkout -b release-1.2.2 upstream/main + git push -u fork release-1.2.2:release-1.2.2 - - Create a **draft** PR to the `upstream/1.2.X` branch (not to `upstream/main`) - with all the desired changes. +- Create a **draft** PR to the `upstream/1.2.X` branch (not to `upstream/main`) + with all the desired changes. - - Do not push anything on that branch yet. +- Do not push anything on that branch yet. - - Locally rebase `release-1.2.2` from the `upstream/1.2.X` branch using: +- Locally rebase `release-1.2.2` from the `upstream/1.2.X` branch using: - .. prompt:: bash $ + .. prompt:: bash $ - git rebase -i upstream/1.2.X + git rebase -i upstream/1.2.X - This will open an interactive rebase with the `git-rebase-todo` containing all - the latest commit on `main`. At this stage, you have to perform - this interactive rebase with at least someone else (being three people rebasing - is better not to forget something and to avoid any doubt). + This will open an interactive rebase with the `git-rebase-todo` containing all + the latest commit on `main`. At this stage, you have to perform + this interactive rebase with at least someone else (being three people rebasing + is better not to forget something and to avoid any doubt). - - **Do not remove lines but drop commit by replace** ``pick`` **with** ``drop`` + - **Do not remove lines but drop commit by replace** ``pick`` **with** ``drop`` - - Commits to pick for bug-fix release *generally* are prefixed with: `FIX`, `CI`, - `DOC`. They should at least include all the commits of the merged PRs - that were milestoned for this release on GitHub and/or documented as such in - the changelog. It's likely that some bugfixes were documented in the - changelog of the main major release instead of the next bugfix release, - in which case, the matching changelog entries will need to be moved, - first in the `main` branch then backported in the release PR. + - Commits to pick for bug-fix release *generally* are prefixed with: `FIX`, `CI`, + `DOC`. They should at least include all the commits of the merged PRs + that were milestoned for this release on GitHub and/or documented as such in + the changelog. It's likely that some bugfixes were documented in the + changelog of the main major release instead of the next bugfix release, + in which case, the matching changelog entries will need to be moved, + first in the `main` branch then backported in the release PR. - - Commits to drop for bug-fix release *generally* are prefixed with: `FEAT`, - `MAINT`, `ENH`, `API`. Reasons for not including them is to prevent change of - behavior (which only must feature in breaking or major releases). + - Commits to drop for bug-fix release *generally* are prefixed with: `FEAT`, + `MAINT`, `ENH`, `API`. Reasons for not including them is to prevent change of + behavior (which only must feature in breaking or major releases). - - After having dropped or picked commit, **do no exit** but paste the content - of the `git-rebase-todo` message in the PR. - This file is located at `.git/rebase-merge/git-rebase-todo`. + - After having dropped or picked commit, **do no exit** but paste the content + of the `git-rebase-todo` message in the PR. + This file is located at `.git/rebase-merge/git-rebase-todo`. - - Save and exit, starting the interactive rebase. + - Save and exit, starting the interactive rebase. - - Resolve merge conflicts when they happen. + - Resolve merge conflicts when they happen. - - Force push the result of the rebase and the extra release commits to the release PR: +- Force push the result of the rebase and the extra release commits to the release PR: - .. prompt:: bash $ + .. prompt:: bash $ - git push -f fork release-1.2.2:release-1.2.2 + git push -f fork release-1.2.2:release-1.2.2 - - Copy the :ref:`release_checklist` template and paste it in the description of the - Pull Request to track progress. +- Copy the :ref:`release_checklist` template and paste it in the description of the + Pull Request to track progress. - - Review all the commits included in the release to make sure that they do not - introduce any new feature. We should not blindly trust the commit message prefixes. +- Review all the commits included in the release to make sure that they do not + introduce any new feature. We should not blindly trust the commit message prefixes. - - Remove the draft status of the release PR and invite other maintainers to review the - list of included commits. +- Remove the draft status of the release PR and invite other maintainers to review the + list of included commits. .. _making_a_release: diff --git a/doc/developers/minimal_reproducer.rst b/doc/developers/minimal_reproducer.rst index 2cc82d083aaf1..b100bccbaa6b4 100644 --- a/doc/developers/minimal_reproducer.rst +++ b/doc/developers/minimal_reproducer.rst @@ -88,9 +88,9 @@ The following code, while **still not minimal**, is already **much better** because it can be copy-pasted in a Python terminal to reproduce the problem in one step. In particular: - - it contains **all necessary imports statements**; - - it can fetch the public dataset without having to manually download a - file and put it in the expected location on the disk. +- it contains **all necessary imports statements**; +- it can fetch the public dataset without having to manually download a + file and put it in the expected location on the disk. **Improved example** @@ -199,21 +199,21 @@ As already mentioned, the key to communication is the readability of the code and good formatting can really be a plus. Notice that in the previous snippet we: - - try to limit all lines to a maximum of 79 characters to avoid horizontal - scrollbars in the code snippets blocks rendered on the GitHub issue; - - use blank lines to separate groups of related functions; - - place all the imports in their own group at the beginning. +- try to limit all lines to a maximum of 79 characters to avoid horizontal + scrollbars in the code snippets blocks rendered on the GitHub issue; +- use blank lines to separate groups of related functions; +- place all the imports in their own group at the beginning. The simplification steps presented in this guide can be implemented in a different order than the progression we have shown here. The important points are: - - a minimal reproducer should be runnable by a simple copy-and-paste in a - python terminal; - - it should be simplified as much as possible by removing any code steps - that are not strictly needed to reproducing the original problem; - - it should ideally only rely on a minimal dataset generated on-the-fly by - running the code instead of relying on external data, if possible. +- a minimal reproducer should be runnable by a simple copy-and-paste in a + python terminal; +- it should be simplified as much as possible by removing any code steps + that are not strictly needed to reproducing the original problem; +- it should ideally only rely on a minimal dataset generated on-the-fly by + running the code instead of relying on external data, if possible. Use markdown formatting @@ -305,50 +305,50 @@ can be used to create dummy numeric data. - regression - Regressions take continuous numeric data as features and target. + Regressions take continuous numeric data as features and target. - .. code-block:: python + .. code-block:: python - import numpy as np + import numpy as np - rng = np.random.RandomState(0) - n_samples, n_features = 5, 5 - X = rng.randn(n_samples, n_features) - y = rng.randn(n_samples) + rng = np.random.RandomState(0) + n_samples, n_features = 5, 5 + X = rng.randn(n_samples, n_features) + y = rng.randn(n_samples) A similar snippet can be used as synthetic data when testing scaling tools such as :class:`sklearn.preprocessing.StandardScaler`. - classification - If the bug is not raised during when encoding a categorical variable, you can - feed numeric data to a classifier. Just remember to ensure that the target - is indeed an integer. + If the bug is not raised during when encoding a categorical variable, you can + feed numeric data to a classifier. Just remember to ensure that the target + is indeed an integer. - .. code-block:: python + .. code-block:: python - import numpy as np + import numpy as np - rng = np.random.RandomState(0) - n_samples, n_features = 5, 5 - X = rng.randn(n_samples, n_features) - y = rng.randint(0, 2, n_samples) # binary target with values in {0, 1} + rng = np.random.RandomState(0) + n_samples, n_features = 5, 5 + X = rng.randn(n_samples, n_features) + y = rng.randint(0, 2, n_samples) # binary target with values in {0, 1} - If the bug only happens with non-numeric class labels, you might want to - generate a random target with `numpy.random.choice - `_. + If the bug only happens with non-numeric class labels, you might want to + generate a random target with `numpy.random.choice + `_. - .. code-block:: python + .. code-block:: python - import numpy as np + import numpy as np - rng = np.random.RandomState(0) - n_samples, n_features = 50, 5 - X = rng.randn(n_samples, n_features) - y = np.random.choice( - ["male", "female", "other"], size=n_samples, p=[0.49, 0.49, 0.02] - ) + rng = np.random.RandomState(0) + n_samples, n_features = 50, 5 + X = rng.randn(n_samples, n_features) + y = np.random.choice( + ["male", "female", "other"], size=n_samples, p=[0.49, 0.49, 0.02] + ) Pandas ------ diff --git a/doc/developers/performance.rst b/doc/developers/performance.rst index 287262255535f..42687945a2bba 100644 --- a/doc/developers/performance.rst +++ b/doc/developers/performance.rst @@ -46,31 +46,31 @@ Sometimes however an algorithm cannot be expressed efficiently in simple vectorized Numpy code. In this case, the recommended strategy is the following: - 1. **Profile** the Python implementation to find the main bottleneck and - isolate it in a **dedicated module level function**. This function - will be reimplemented as a compiled extension module. - - 2. If there exists a well maintained BSD or MIT **C/C++** implementation - of the same algorithm that is not too big, you can write a - **Cython wrapper** for it and include a copy of the source code - of the library in the scikit-learn source tree: this strategy is - used for the classes :class:`svm.LinearSVC`, :class:`svm.SVC` and - :class:`linear_model.LogisticRegression` (wrappers for liblinear - and libsvm). - - 3. Otherwise, write an optimized version of your Python function using - **Cython** directly. This strategy is used - for the :class:`linear_model.ElasticNet` and - :class:`linear_model.SGDClassifier` classes for instance. - - 4. **Move the Python version of the function in the tests** and use - it to check that the results of the compiled extension are consistent - with the gold standard, easy to debug Python version. - - 5. Once the code is optimized (not simple bottleneck spottable by - profiling), check whether it is possible to have **coarse grained - parallelism** that is amenable to **multi-processing** by using the - ``joblib.Parallel`` class. +1. **Profile** the Python implementation to find the main bottleneck and + isolate it in a **dedicated module level function**. This function + will be reimplemented as a compiled extension module. + +2. If there exists a well maintained BSD or MIT **C/C++** implementation + of the same algorithm that is not too big, you can write a + **Cython wrapper** for it and include a copy of the source code + of the library in the scikit-learn source tree: this strategy is + used for the classes :class:`svm.LinearSVC`, :class:`svm.SVC` and + :class:`linear_model.LogisticRegression` (wrappers for liblinear + and libsvm). + +3. Otherwise, write an optimized version of your Python function using + **Cython** directly. This strategy is used + for the :class:`linear_model.ElasticNet` and + :class:`linear_model.SGDClassifier` classes for instance. + +4. **Move the Python version of the function in the tests** and use + it to check that the results of the compiled extension are consistent + with the gold standard, easy to debug Python version. + +5. Once the code is optimized (not simple bottleneck spottable by + profiling), check whether it is possible to have **coarse grained + parallelism** that is amenable to **multi-processing** by using the + ``joblib.Parallel`` class. When using Cython, use either @@ -187,7 +187,7 @@ us install ``line_profiler`` and wire it to IPython: pip install line_profiler -- **Under IPython 0.13+**, first create a configuration profile: +**Under IPython 0.13+**, first create a configuration profile: .. prompt:: bash $ @@ -265,7 +265,7 @@ install the latest version: Then, setup the magics in a manner similar to ``line_profiler``. -- **Under IPython 0.11+**, first create a configuration profile: +**Under IPython 0.11+**, first create a configuration profile: .. prompt:: bash $ diff --git a/doc/developers/tips.rst b/doc/developers/tips.rst index 3d42626126f8a..f8537236c32d8 100644 --- a/doc/developers/tips.rst +++ b/doc/developers/tips.rst @@ -73,27 +73,25 @@ will run all :term:`common tests` for the ``LogisticRegression`` estimator. When a unit test fails, the following tricks can make debugging easier: - 1. The command line argument ``pytest -l`` instructs pytest to print the local - variables when a failure occurs. +1. The command line argument ``pytest -l`` instructs pytest to print the local + variables when a failure occurs. - 2. The argument ``pytest --pdb`` drops into the Python debugger on failure. To - instead drop into the rich IPython debugger ``ipdb``, you may set up a - shell alias to: +2. The argument ``pytest --pdb`` drops into the Python debugger on failure. To + instead drop into the rich IPython debugger ``ipdb``, you may set up a + shell alias to: -.. prompt:: bash $ + .. prompt:: bash $ - pytest --pdbcls=IPython.terminal.debugger:TerminalPdb --capture no + pytest --pdbcls=IPython.terminal.debugger:TerminalPdb --capture no Other `pytest` options that may become useful include: - - ``-x`` which exits on the first failed test - - ``--lf`` to rerun the tests that failed on the previous run - - ``--ff`` to rerun all previous tests, running the ones that failed first - - ``-s`` so that pytest does not capture the output of ``print()`` - statements - - ``--tb=short`` or ``--tb=line`` to control the length of the logs - - ``--runxfail`` also run tests marked as a known failure (XFAIL) and report - errors. +- ``-x`` which exits on the first failed test, +- ``--lf`` to rerun the tests that failed on the previous run, +- ``--ff`` to rerun all previous tests, running the ones that failed first, +- ``-s`` so that pytest does not capture the output of ``print()`` statements, +- ``--tb=short`` or ``--tb=line`` to control the length of the logs, +- ``--runxfail`` also run tests marked as a known failure (XFAIL) and report errors. Since our continuous integration tests will error if ``FutureWarning`` isn't properly caught, @@ -114,113 +112,135 @@ replies `_ for reviewing: Note that putting this content on a single line in a literal is the easiest way to make it copyable and wrapped on screen. Issue: Usage questions - :: - You are asking a usage question. The issue tracker is for bugs and new features. For usage questions, it is recommended to try [Stack Overflow](https://stackoverflow.com/questions/tagged/scikit-learn) or [the Mailing List](https://mail.python.org/mailman/listinfo/scikit-learn). +:: + + You are asking a usage question. The issue tracker is for bugs and new features. For usage questions, it is recommended to try [Stack Overflow](https://stackoverflow.com/questions/tagged/scikit-learn) or [the Mailing List](https://mail.python.org/mailman/listinfo/scikit-learn). - Unfortunately, we need to close this issue as this issue tracker is a communication tool used for the development of scikit-learn. The additional activity created by usage questions crowds it too much and impedes this development. The conversation can continue here, however there is no guarantee that is will receive attention from core developers. + Unfortunately, we need to close this issue as this issue tracker is a communication tool used for the development of scikit-learn. The additional activity created by usage questions crowds it too much and impedes this development. The conversation can continue here, however there is no guarantee that is will receive attention from core developers. Issue: You're welcome to update the docs - :: - Please feel free to offer a pull request updating the documentation if you feel it could be improved. +:: + + Please feel free to offer a pull request updating the documentation if you feel it could be improved. Issue: Self-contained example for bug - :: - Please provide [self-contained example code](https://scikit-learn.org/dev/developers/minimal_reproducer.html), including imports and data (if possible), so that other contributors can just run it and reproduce your issue. Ideally your example code should be minimal. +:: + + Please provide [self-contained example code](https://scikit-learn.org/dev/developers/minimal_reproducer.html), including imports and data (if possible), so that other contributors can just run it and reproduce your issue. Ideally your example code should be minimal. Issue: Software versions - :: - To help diagnose your issue, please paste the output of: - ```py - import sklearn; sklearn.show_versions() - ``` - Thanks. +:: + + To help diagnose your issue, please paste the output of: + ```py + import sklearn; sklearn.show_versions() + ``` + Thanks. Issue: Code blocks - :: - Readability can be greatly improved if you [format](https://help.github.com/articles/creating-and-highlighting-code-blocks/) your code snippets and complete error messages appropriately. For example: +:: + + Readability can be greatly improved if you [format](https://help.github.com/articles/creating-and-highlighting-code-blocks/) your code snippets and complete error messages appropriately. For example: - ```python - print(something) - ``` - generates: ```python print(something) ``` - And: - - ```pytb - Traceback (most recent call last): - File "", line 1, in - ImportError: No module named 'hello' - ``` - generates: + + generates: + + ```python + print(something) + ``` + + And: + ```pytb Traceback (most recent call last): - File "", line 1, in + File "", line 1, in ImportError: No module named 'hello' ``` - You can edit your issue descriptions and comments at any time to improve readability. This helps maintainers a lot. Thanks! + + generates: + + ```pytb + Traceback (most recent call last): + File "", line 1, in + ImportError: No module named 'hello' + ``` + + You can edit your issue descriptions and comments at any time to improve readability. This helps maintainers a lot. Thanks! Issue/Comment: Linking to code - :: - Friendly advice: for clarity's sake, you can link to code like [this](https://help.github.com/articles/creating-a-permanent-link-to-a-code-snippet/). +:: + + Friendly advice: for clarity's sake, you can link to code like [this](https://help.github.com/articles/creating-a-permanent-link-to-a-code-snippet/). Issue/Comment: Linking to comments - :: - Please use links to comments, which make it a lot easier to see what you are referring to, rather than just linking to the issue. See [this](https://stackoverflow.com/questions/25163598/how-do-i-reference-a-specific-issue-comment-on-github) for more details. +:: + + Please use links to comments, which make it a lot easier to see what you are referring to, rather than just linking to the issue. See [this](https://stackoverflow.com/questions/25163598/how-do-i-reference-a-specific-issue-comment-on-github) for more details. PR-NEW: Better description and title - :: - Thanks for the pull request! Please make the title of the PR more descriptive. The title will become the commit message when this is merged. You should state what issue (or PR) it fixes/resolves in the description using the syntax described [here](https://scikit-learn.org/dev/developers/contributing.html#contributing-pull-requests). +:: + + Thanks for the pull request! Please make the title of the PR more descriptive. The title will become the commit message when this is merged. You should state what issue (or PR) it fixes/resolves in the description using the syntax described [here](https://scikit-learn.org/dev/developers/contributing.html#contributing-pull-requests). PR-NEW: Fix # - :: - Please use "Fix #issueNumber" in your PR description (and you can do it more than once). This way the associated issue gets closed automatically when the PR is merged. For more details, look at [this](https://github.com/blog/1506-closing-issues-via-pull-requests). +:: + + Please use "Fix #issueNumber" in your PR description (and you can do it more than once). This way the associated issue gets closed automatically when the PR is merged. For more details, look at [this](https://github.com/blog/1506-closing-issues-via-pull-requests). PR-NEW or Issue: Maintenance cost - :: - Every feature we include has a [maintenance cost](https://scikit-learn.org/dev/faq.html#why-are-you-so-selective-on-what-algorithms-you-include-in-scikit-learn). Our maintainers are mostly volunteers. For a new feature to be included, we need evidence that it is often useful and, ideally, [well-established](https://scikit-learn.org/dev/faq.html#what-are-the-inclusion-criteria-for-new-algorithms) in the literature or in practice. Also, we expect PR authors to take part in the maintenance for the code they submit, at least initially. That doesn't stop you implementing it for yourself and publishing it in a separate repository, or even [scikit-learn-contrib](https://scikit-learn-contrib.github.io). +:: + + Every feature we include has a [maintenance cost](https://scikit-learn.org/dev/faq.html#why-are-you-so-selective-on-what-algorithms-you-include-in-scikit-learn). Our maintainers are mostly volunteers. For a new feature to be included, we need evidence that it is often useful and, ideally, [well-established](https://scikit-learn.org/dev/faq.html#what-are-the-inclusion-criteria-for-new-algorithms) in the literature or in practice. Also, we expect PR authors to take part in the maintenance for the code they submit, at least initially. That doesn't stop you implementing it for yourself and publishing it in a separate repository, or even [scikit-learn-contrib](https://scikit-learn-contrib.github.io). PR-WIP: What's needed before merge? - :: - Please clarify (perhaps as a TODO list in the PR description) what work you believe still needs to be done before it can be reviewed for merge. When it is ready, please prefix the PR title with `[MRG]`. +:: + + Please clarify (perhaps as a TODO list in the PR description) what work you believe still needs to be done before it can be reviewed for merge. When it is ready, please prefix the PR title with `[MRG]`. PR-WIP: Regression test needed - :: - Please add a [non-regression test](https://en.wikipedia.org/wiki/Non-regression_testing) that would fail at main but pass in this PR. +:: + + Please add a [non-regression test](https://en.wikipedia.org/wiki/Non-regression_testing) that would fail at main but pass in this PR. PR-WIP: PEP8 - :: - You have some [PEP8](https://www.python.org/dev/peps/pep-0008/) violations, whose details you can see in the Circle CI `lint` job. It might be worth configuring your code editor to check for such errors on the fly, so you can catch them before committing. +:: + + You have some [PEP8](https://www.python.org/dev/peps/pep-0008/) violations, whose details you can see in the Circle CI `lint` job. It might be worth configuring your code editor to check for such errors on the fly, so you can catch them before committing. PR-MRG: Patience - :: - Before merging, we generally require two core developers to agree that your pull request is desirable and ready. [Please be patient](https://scikit-learn.org/dev/faq.html#why-is-my-pull-request-not-getting-any-attention), as we mostly rely on volunteered time from busy core developers. (You are also welcome to help us out with [reviewing other PRs](https://scikit-learn.org/dev/developers/contributing.html#code-review-guidelines).) +:: + + Before merging, we generally require two core developers to agree that your pull request is desirable and ready. [Please be patient](https://scikit-learn.org/dev/faq.html#why-is-my-pull-request-not-getting-any-attention), as we mostly rely on volunteered time from busy core developers. (You are also welcome to help us out with [reviewing other PRs](https://scikit-learn.org/dev/developers/contributing.html#code-review-guidelines).) PR-MRG: Add to what's new - :: - Please add an entry to the change log at `doc/whats_new/v*.rst`. Like the other entries there, please reference this pull request with `:pr:` and credit yourself (and other contributors if applicable) with `:user:`. +:: + + Please add an entry to the change log at `doc/whats_new/v*.rst`. Like the other entries there, please reference this pull request with `:pr:` and credit yourself (and other contributors if applicable) with `:user:`. PR: Don't change unrelated - :: - Please do not change unrelated lines. It makes your contribution harder to review and may introduce merge conflicts to other pull requests. +:: + + Please do not change unrelated lines. It makes your contribution harder to review and may introduce merge conflicts to other pull requests. .. highlight:: default @@ -244,19 +264,19 @@ valgrind_. Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps: - 1. Install `valgrind`_ on your system. +1. Install `valgrind`_ on your system. - 2. Download the python valgrind suppression file: `valgrind-python.supp`_. +2. Download the python valgrind suppression file: `valgrind-python.supp`_. - 3. Follow the directions in the `README.valgrind`_ file to customize your - python suppressions. If you don't, you will have spurious output coming - related to the python interpreter instead of your own code. +3. Follow the directions in the `README.valgrind`_ file to customize your + python suppressions. If you don't, you will have spurious output coming + related to the python interpreter instead of your own code. - 4. Run valgrind as follows: +4. Run valgrind as follows: -.. prompt:: bash $ + .. prompt:: bash $ - valgrind -v --suppressions=valgrind-python.supp python my_test_script.py + valgrind -v --suppressions=valgrind-python.supp python my_test_script.py .. _valgrind: https://valgrind.org .. _`README.valgrind`: https://github.com/python/cpython/blob/master/Misc/README.valgrind diff --git a/doc/model_persistence.rst b/doc/model_persistence.rst index 53f01fd019d79..b8da5c8a3961f 100644 --- a/doc/model_persistence.rst +++ b/doc/model_persistence.rst @@ -58,7 +58,7 @@ with:: When an estimator is unpickled with a scikit-learn version that is inconsistent with the version the estimator was pickled with, a :class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning -can be caught to obtain the original version the estimator was pickled with: +can be caught to obtain the original version the estimator was pickled with:: from sklearn.exceptions import InconsistentVersionWarning warnings.simplefilter("error", InconsistentVersionWarning) diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst index 4cd86a0bf70c1..c64b3d9d646c9 100644 --- a/doc/modules/clustering.rst +++ b/doc/modules/clustering.rst @@ -1042,16 +1042,16 @@ efficiently, HDBSCAN first extracts a minimum spanning tree (MST) from the fully -connected mutual reachability graph, then greedily cuts the edges with highest weight. An outline of the HDBSCAN algorithm is as follows: - 1. Extract the MST of :math:`G_{ms}` - 2. Extend the MST by adding a "self edge" for each vertex, with weight equal - to the core distance of the underlying sample. - 3. Initialize a single cluster and label for the MST. - 4. Remove the edge with the greatest weight from the MST (ties are - removed simultaneously). - 5. Assign cluster labels to the connected components which contain the - end points of the now-removed edge. If the component does not have at least - one edge it is instead assigned a "null" label marking it as noise. - 6. Repeat 4-5 until there are no more connected components. +1. Extract the MST of :math:`G_{ms}`. +2. Extend the MST by adding a "self edge" for each vertex, with weight equal + to the core distance of the underlying sample. +3. Initialize a single cluster and label for the MST. +4. Remove the edge with the greatest weight from the MST (ties are + removed simultaneously). +5. Assign cluster labels to the connected components which contain the + end points of the now-removed edge. If the component does not have at least + one edge it is instead assigned a "null" label marking it as noise. +6. Repeat 4-5 until there are no more connected components. HDBSCAN is therefore able to obtain all possible partitions achievable by DBSCAN* for a fixed choice of `min_samples` in a hierarchical fashion. @@ -1233,11 +1233,11 @@ clusters (labels) and the samples are mapped to the global label of the nearest **BIRCH or MiniBatchKMeans?** - - BIRCH does not scale very well to high dimensional data. As a rule of thumb if - ``n_features`` is greater than twenty, it is generally better to use MiniBatchKMeans. - - If the number of instances of data needs to be reduced, or if one wants a - large number of subclusters either as a preprocessing step or otherwise, - BIRCH is more useful than MiniBatchKMeans. +- BIRCH does not scale very well to high dimensional data. As a rule of thumb if + ``n_features`` is greater than twenty, it is generally better to use MiniBatchKMeans. +- If the number of instances of data needs to be reduced, or if one wants a + large number of subclusters either as a preprocessing step or otherwise, + BIRCH is more useful than MiniBatchKMeans. **How to use partial_fit?** @@ -1245,12 +1245,12 @@ clusters (labels) and the samples are mapped to the global label of the nearest To avoid the computation of global clustering, for every call of ``partial_fit`` the user is advised - 1. To set ``n_clusters=None`` initially - 2. Train all data by multiple calls to partial_fit. - 3. Set ``n_clusters`` to a required value using - ``brc.set_params(n_clusters=n_clusters)``. - 4. Call ``partial_fit`` finally with no arguments, i.e. ``brc.partial_fit()`` - which performs the global clustering. +1. To set ``n_clusters=None`` initially +2. Train all data by multiple calls to partial_fit. +3. Set ``n_clusters`` to a required value using + ``brc.set_params(n_clusters=n_clusters)``. +4. Call ``partial_fit`` finally with no arguments, i.e. ``brc.partial_fit()`` + which performs the global clustering. .. image:: ../auto_examples/cluster/images/sphx_glr_plot_birch_vs_minibatchkmeans_001.png :target: ../auto_examples/cluster/plot_birch_vs_minibatchkmeans.html @@ -2196,19 +2196,19 @@ under the true and predicted clusterings. It has the following entries: - :math:`C_{00}` : number of pairs with both clusterings having the samples - not clustered together +:math:`C_{00}` : number of pairs with both clusterings having the samples +not clustered together - :math:`C_{10}` : number of pairs with the true label clustering having the - samples clustered together but the other clustering not having the samples - clustered together +:math:`C_{10}` : number of pairs with the true label clustering having the +samples clustered together but the other clustering not having the samples +clustered together - :math:`C_{01}` : number of pairs with the true label clustering not having - the samples clustered together but the other clustering having the samples - clustered together +:math:`C_{01}` : number of pairs with the true label clustering not having +the samples clustered together but the other clustering having the samples +clustered together - :math:`C_{11}` : number of pairs with both clusterings having the samples - clustered together +:math:`C_{11}` : number of pairs with both clusterings having the samples +clustered together Considering a pair of samples that is clustered together a positive pair, then as in binary classification the count of true negatives is diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst index 53206bce28c8f..24a8e2f2d2acd 100644 --- a/doc/modules/cross_validation.rst +++ b/doc/modules/cross_validation.rst @@ -86,10 +86,10 @@ the training set is split into *k* smaller sets but generally follow the same principles). The following procedure is followed for each of the *k* "folds": - * A model is trained using :math:`k-1` of the folds as training data; - * the resulting model is validated on the remaining part of the data - (i.e., it is used as a test set to compute a performance measure - such as accuracy). +* A model is trained using :math:`k-1` of the folds as training data; +* the resulting model is validated on the remaining part of the data + (i.e., it is used as a test set to compute a performance measure + such as accuracy). The performance measure reported by *k*-fold cross-validation is then the average of the values computed in the loop. diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index 223985c6579f0..e8241a92cfc3b 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -72,11 +72,11 @@ exactly match the results of :class:`PCA` while processing the data in a minibatch fashion. :class:`IncrementalPCA` makes it possible to implement out-of-core Principal Component Analysis either by: - * Using its ``partial_fit`` method on chunks of data fetched sequentially - from the local hard drive or a network database. +* Using its ``partial_fit`` method on chunks of data fetched sequentially + from the local hard drive or a network database. - * Calling its fit method on a memory mapped file using - ``numpy.memmap``. +* Calling its fit method on a memory mapped file using + ``numpy.memmap``. :class:`IncrementalPCA` only stores estimates of component and noise variances, in order update ``explained_variance_ratio_`` incrementally. This is why @@ -358,14 +358,14 @@ components is less than 10 (strict) and the number of samples is more than 200 * *randomized* solver: - * Algorithm 4.3 in - :arxiv:`"Finding structure with randomness: Stochastic - algorithms for constructing approximate matrix decompositions" <0909.4061>` - Halko, et al. (2009) + * Algorithm 4.3 in + :arxiv:`"Finding structure with randomness: Stochastic + algorithms for constructing approximate matrix decompositions" <0909.4061>` + Halko, et al. (2009) - * :arxiv:`"An implementation of a randomized algorithm - for principal component analysis" <1412.3510>` - A. Szlam et al. (2014) + * :arxiv:`"An implementation of a randomized algorithm + for principal component analysis" <1412.3510>` + A. Szlam et al. (2014) * *arpack* solver: `scipy.sparse.linalg.eigsh documentation @@ -636,7 +636,7 @@ does not fit into the memory. computationally efficient and implements on-line learning with a ``partial_fit`` method. - Example: :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py` + Example: :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py` .. currentmodule:: sklearn.decomposition @@ -1008,10 +1008,10 @@ The graphical model of LDA is a three-level generative model: Note on notations presented in the graphical model above, which can be found in Hoffman et al. (2013): - * The corpus is a collection of :math:`D` documents. - * A document is a sequence of :math:`N` words. - * There are :math:`K` topics in the corpus. - * The boxes represent repeated sampling. +* The corpus is a collection of :math:`D` documents. +* A document is a sequence of :math:`N` words. +* There are :math:`K` topics in the corpus. +* The boxes represent repeated sampling. In the graphical model, each node is a random variable and has a role in the generative process. A shaded node indicates an observed variable and an unshaded @@ -1029,21 +1029,21 @@ When modeling text corpora, the model assumes the following generative process for a corpus with :math:`D` documents and :math:`K` topics, with :math:`K` corresponding to `n_components` in the API: - 1. For each topic :math:`k \in K`, draw :math:`\beta_k \sim - \mathrm{Dirichlet}(\eta)`. This provides a distribution over the words, - i.e. the probability of a word appearing in topic :math:`k`. - :math:`\eta` corresponds to `topic_word_prior`. +1. For each topic :math:`k \in K`, draw :math:`\beta_k \sim + \mathrm{Dirichlet}(\eta)`. This provides a distribution over the words, + i.e. the probability of a word appearing in topic :math:`k`. + :math:`\eta` corresponds to `topic_word_prior`. - 2. For each document :math:`d \in D`, draw the topic proportions - :math:`\theta_d \sim \mathrm{Dirichlet}(\alpha)`. :math:`\alpha` - corresponds to `doc_topic_prior`. +2. For each document :math:`d \in D`, draw the topic proportions + :math:`\theta_d \sim \mathrm{Dirichlet}(\alpha)`. :math:`\alpha` + corresponds to `doc_topic_prior`. - 3. For each word :math:`i` in document :math:`d`: +3. For each word :math:`i` in document :math:`d`: - a. Draw the topic assignment :math:`z_{di} \sim \mathrm{Multinomial} - (\theta_d)` - b. Draw the observed word :math:`w_{ij} \sim \mathrm{Multinomial} - (\beta_{z_{di}})` + a. Draw the topic assignment :math:`z_{di} \sim \mathrm{Multinomial} + (\theta_d)` + b. Draw the observed word :math:`w_{ij} \sim \mathrm{Multinomial} + (\beta_{z_{di}})` For parameter estimation, the posterior distribution is: diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 73b4420960717..334e00e35a848 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -285,13 +285,13 @@ model. For a predictor :math:`F` with two features: - - a **monotonic increase constraint** is a constraint of the form: - .. math:: - x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2) +- a **monotonic increase constraint** is a constraint of the form: + .. math:: + x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2) - - a **monotonic decrease constraint** is a constraint of the form: - .. math:: - x_1 \leq x_1' \implies F(x_1, x_2) \geq F(x_1', x_2) +- a **monotonic decrease constraint** is a constraint of the form: + .. math:: + x_1 \leq x_1' \implies F(x_1, x_2) \geq F(x_1', x_2) You can specify a monotonic constraint on each feature using the `monotonic_cst` parameter. For each feature, a value of 0 indicates no @@ -311,8 +311,8 @@ Nevertheless, monotonic constraints only marginally constrain feature effects on For instance, monotonic increase and decrease constraints cannot be used to enforce the following modelling constraint: - .. math:: - x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2') +.. math:: + x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2') Also, monotonic constraints are not supported for multiclass classification. @@ -584,9 +584,9 @@ Regression GBRT regressors are additive models whose prediction :math:`\hat{y}_i` for a given input :math:`x_i` is of the following form: - .. math:: +.. math:: - \hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i) + \hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i) where the :math:`h_m` are estimators called *weak learners* in the context of boosting. Gradient Tree Boosting uses :ref:`decision tree regressors @@ -595,17 +595,17 @@ of boosting. Gradient Tree Boosting uses :ref:`decision tree regressors Similar to other boosting algorithms, a GBRT is built in a greedy fashion: - .. math:: +.. math:: - F_m(x) = F_{m-1}(x) + h_m(x), + F_m(x) = F_{m-1}(x) + h_m(x), where the newly added tree :math:`h_m` is fitted in order to minimize a sum of losses :math:`L_m`, given the previous ensemble :math:`F_{m-1}`: - .. math:: +.. math:: - h_m = \arg\min_{h} L_m = \arg\min_{h} \sum_{i=1}^{n} - l(y_i, F_{m-1}(x_i) + h(x_i)), + h_m = \arg\min_{h} L_m = \arg\min_{h} \sum_{i=1}^{n} + l(y_i, F_{m-1}(x_i) + h(x_i)), where :math:`l(y_i, F(x_i))` is defined by the `loss` parameter, detailed in the next section. @@ -618,12 +618,12 @@ argument. Using a first-order Taylor approximation, the value of :math:`l` can be approximated as follows: - .. math:: +.. math:: - l(y_i, F_{m-1}(x_i) + h_m(x_i)) \approx - l(y_i, F_{m-1}(x_i)) - + h_m(x_i) - \left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} \right]_{F=F_{m - 1}}. + l(y_i, F_{m-1}(x_i) + h_m(x_i)) \approx + l(y_i, F_{m-1}(x_i)) + + h_m(x_i) + \left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} \right]_{F=F_{m - 1}}. .. note:: @@ -640,9 +640,9 @@ differentiable. We will denote it by :math:`g_i`. Removing the constant terms, we have: - .. math:: +.. math:: - h_m \approx \arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i + h_m \approx \arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i This is minimized if :math:`h(x_i)` is fitted to predict a value that is proportional to the negative gradient :math:`-g_i`. Therefore, at each @@ -691,40 +691,40 @@ Loss Functions The following loss functions are supported and can be specified using the parameter ``loss``: - * Regression - - * Squared error (``'squared_error'``): The natural choice for regression - due to its superior computational properties. The initial model is - given by the mean of the target values. - * Absolute error (``'absolute_error'``): A robust loss function for - regression. The initial model is given by the median of the - target values. - * Huber (``'huber'``): Another robust loss function that combines - least squares and least absolute deviation; use ``alpha`` to - control the sensitivity with regards to outliers (see [Friedman2001]_ for - more details). - * Quantile (``'quantile'``): A loss function for quantile regression. - Use ``0 < alpha < 1`` to specify the quantile. This loss function - can be used to create prediction intervals - (see :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`). - - * Classification - - * Binary log-loss (``'log-loss'``): The binomial - negative log-likelihood loss function for binary classification. It provides - probability estimates. The initial model is given by the - log odds-ratio. - * Multi-class log-loss (``'log-loss'``): The multinomial - negative log-likelihood loss function for multi-class classification with - ``n_classes`` mutually exclusive classes. It provides - probability estimates. The initial model is given by the - prior probability of each class. At each iteration ``n_classes`` - regression trees have to be constructed which makes GBRT rather - inefficient for data sets with a large number of classes. - * Exponential loss (``'exponential'``): The same loss function - as :class:`AdaBoostClassifier`. Less robust to mislabeled - examples than ``'log-loss'``; can only be used for binary - classification. +* Regression + + * Squared error (``'squared_error'``): The natural choice for regression + due to its superior computational properties. The initial model is + given by the mean of the target values. + * Absolute error (``'absolute_error'``): A robust loss function for + regression. The initial model is given by the median of the + target values. + * Huber (``'huber'``): Another robust loss function that combines + least squares and least absolute deviation; use ``alpha`` to + control the sensitivity with regards to outliers (see [Friedman2001]_ for + more details). + * Quantile (``'quantile'``): A loss function for quantile regression. + Use ``0 < alpha < 1`` to specify the quantile. This loss function + can be used to create prediction intervals + (see :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`). + +* Classification + + * Binary log-loss (``'log-loss'``): The binomial + negative log-likelihood loss function for binary classification. It provides + probability estimates. The initial model is given by the + log odds-ratio. + * Multi-class log-loss (``'log-loss'``): The multinomial + negative log-likelihood loss function for multi-class classification with + ``n_classes`` mutually exclusive classes. It provides + probability estimates. The initial model is given by the + prior probability of each class. At each iteration ``n_classes`` + regression trees have to be constructed which makes GBRT rather + inefficient for data sets with a large number of classes. + * Exponential loss (``'exponential'``): The same loss function + as :class:`AdaBoostClassifier`. Less robust to mislabeled + examples than ``'log-loss'``; can only be used for binary + classification. .. _gradient_boosting_shrinkage: @@ -1171,17 +1171,17 @@ shallow decision trees). Bagging methods come in many flavours but mostly differ from each other by the way they draw random subsets of the training set: - * When random subsets of the dataset are drawn as random subsets of the - samples, then this algorithm is known as Pasting [B1999]_. +* When random subsets of the dataset are drawn as random subsets of the + samples, then this algorithm is known as Pasting [B1999]_. - * When samples are drawn with replacement, then the method is known as - Bagging [B1996]_. +* When samples are drawn with replacement, then the method is known as + Bagging [B1996]_. - * When random subsets of the dataset are drawn as random subsets of - the features, then the method is known as Random Subspaces [H1998]_. +* When random subsets of the dataset are drawn as random subsets of + the features, then the method is known as Random Subspaces [H1998]_. - * Finally, when base estimators are built on subsets of both samples and - features, then the method is known as Random Patches [LG2012]_. +* Finally, when base estimators are built on subsets of both samples and + features, then the method is known as Random Patches [LG2012]_. In scikit-learn, bagging methods are offered as a unified :class:`BaggingClassifier` meta-estimator (resp. :class:`BaggingRegressor`), @@ -1591,10 +1591,10 @@ concentrate on the examples that are missed by the previous ones in the sequence AdaBoost can be used both for classification and regression problems: - - For multi-class classification, :class:`AdaBoostClassifier` implements - AdaBoost.SAMME [ZZRH2009]_. +- For multi-class classification, :class:`AdaBoostClassifier` implements + AdaBoost.SAMME [ZZRH2009]_. - - For regression, :class:`AdaBoostRegressor` implements AdaBoost.R2 [D1997]_. +- For regression, :class:`AdaBoostRegressor` implements AdaBoost.R2 [D1997]_. Usage ----- diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst index 9653ba9d7b646..7ac538a89849b 100644 --- a/doc/modules/feature_extraction.rst +++ b/doc/modules/feature_extraction.rst @@ -615,7 +615,7 @@ As usual the best way to adjust the feature extraction parameters is to use a cross-validated grid search, for instance by pipelining the feature extractor with a classifier: - * :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` |details-end| @@ -715,18 +715,18 @@ In particular in a **supervised setting** it can be successfully combined with fast and scalable linear models to train **document classifiers**, for instance: - * :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` +* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` In an **unsupervised setting** it can be used to group similar documents together by applying clustering algorithms such as :ref:`k_means`: - * :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py` +* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py` Finally it is possible to discover the main topics of a corpus by relaxing the hard assignment constraint of clustering, for instance by using :ref:`NMF`: - * :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` +* :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` Limitations of the Bag of Words representation @@ -923,19 +923,19 @@ to the vectorizer constructor:: In particular we name: - * ``preprocessor``: a callable that takes an entire document as input (as a - single string), and returns a possibly transformed version of the document, - still as an entire string. This can be used to remove HTML tags, lowercase - the entire document, etc. +* ``preprocessor``: a callable that takes an entire document as input (as a + single string), and returns a possibly transformed version of the document, + still as an entire string. This can be used to remove HTML tags, lowercase + the entire document, etc. - * ``tokenizer``: a callable that takes the output from the preprocessor - and splits it into tokens, then returns a list of these. +* ``tokenizer``: a callable that takes the output from the preprocessor + and splits it into tokens, then returns a list of these. - * ``analyzer``: a callable that replaces the preprocessor and tokenizer. - The default analyzers all call the preprocessor and tokenizer, but custom - analyzers will skip this. N-gram extraction and stop word filtering take - place at the analyzer level, so a custom analyzer may have to reproduce - these steps. +* ``analyzer``: a callable that replaces the preprocessor and tokenizer. + The default analyzers all call the preprocessor and tokenizer, but custom + analyzers will skip this. N-gram extraction and stop word filtering take + place at the analyzer level, so a custom analyzer may have to reproduce + these steps. (Lucene users might recognize these names, but be aware that scikit-learn concepts may not map one-to-one onto Lucene concepts.) @@ -951,53 +951,53 @@ factory methods instead of passing custom functions. Some tips and tricks: - * If documents are pre-tokenized by an external package, then store them in - files (or strings) with the tokens separated by whitespace and pass - ``analyzer=str.split`` - * Fancy token-level analysis such as stemming, lemmatizing, compound - splitting, filtering based on part-of-speech, etc. are not included in the - scikit-learn codebase, but can be added by customizing either the - tokenizer or the analyzer. - Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using - `NLTK `_:: - - >>> from nltk import word_tokenize # doctest: +SKIP - >>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP - >>> class LemmaTokenizer: - ... def __init__(self): - ... self.wnl = WordNetLemmatizer() - ... def __call__(self, doc): - ... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)] - ... - >>> vect = CountVectorizer(tokenizer=LemmaTokenizer()) # doctest: +SKIP - - (Note that this will not filter out punctuation.) - - - The following example will, for instance, transform some British spelling - to American spelling:: - - >>> import re - >>> def to_british(tokens): - ... for t in tokens: - ... t = re.sub(r"(...)our$", r"\1or", t) - ... t = re.sub(r"([bt])re$", r"\1er", t) - ... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t) - ... t = re.sub(r"ogue$", "og", t) - ... yield t - ... - >>> class CustomVectorizer(CountVectorizer): - ... def build_tokenizer(self): - ... tokenize = super().build_tokenizer() - ... return lambda doc: list(to_british(tokenize(doc))) - ... - >>> print(CustomVectorizer().build_analyzer()(u"color colour")) - [...'color', ...'color'] - - for other styles of preprocessing; examples include stemming, lemmatization, - or normalizing numerical tokens, with the latter illustrated in: - - * :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py` +* If documents are pre-tokenized by an external package, then store them in + files (or strings) with the tokens separated by whitespace and pass + ``analyzer=str.split`` +* Fancy token-level analysis such as stemming, lemmatizing, compound + splitting, filtering based on part-of-speech, etc. are not included in the + scikit-learn codebase, but can be added by customizing either the + tokenizer or the analyzer. + Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using + `NLTK `_:: + + >>> from nltk import word_tokenize # doctest: +SKIP + >>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP + >>> class LemmaTokenizer: + ... def __init__(self): + ... self.wnl = WordNetLemmatizer() + ... def __call__(self, doc): + ... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)] + ... + >>> vect = CountVectorizer(tokenizer=LemmaTokenizer()) # doctest: +SKIP + + (Note that this will not filter out punctuation.) + + + The following example will, for instance, transform some British spelling + to American spelling:: + + >>> import re + >>> def to_british(tokens): + ... for t in tokens: + ... t = re.sub(r"(...)our$", r"\1or", t) + ... t = re.sub(r"([bt])re$", r"\1er", t) + ... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t) + ... t = re.sub(r"ogue$", "og", t) + ... yield t + ... + >>> class CustomVectorizer(CountVectorizer): + ... def build_tokenizer(self): + ... tokenize = super().build_tokenizer() + ... return lambda doc: list(to_british(tokenize(doc))) + ... + >>> print(CustomVectorizer().build_analyzer()(u"color colour")) + [...'color', ...'color'] + + for other styles of preprocessing; examples include stemming, lemmatization, + or normalizing numerical tokens, with the latter illustrated in: + + * :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py` Customizing the vectorizer can also be useful when handling Asian languages diff --git a/doc/modules/feature_selection.rst b/doc/modules/feature_selection.rst index 7fcec524e7168..1ae950acdfbb6 100644 --- a/doc/modules/feature_selection.rst +++ b/doc/modules/feature_selection.rst @@ -57,18 +57,18 @@ univariate statistical tests. It can be seen as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the ``transform`` method: - * :class:`SelectKBest` removes all but the :math:`k` highest scoring features +* :class:`SelectKBest` removes all but the :math:`k` highest scoring features - * :class:`SelectPercentile` removes all but a user-specified highest scoring - percentage of features +* :class:`SelectPercentile` removes all but a user-specified highest scoring + percentage of features - * using common univariate statistical tests for each feature: - false positive rate :class:`SelectFpr`, false discovery rate - :class:`SelectFdr`, or family wise error :class:`SelectFwe`. +* using common univariate statistical tests for each feature: + false positive rate :class:`SelectFpr`, false discovery rate + :class:`SelectFdr`, or family wise error :class:`SelectFwe`. - * :class:`GenericUnivariateSelect` allows to perform univariate feature - selection with a configurable strategy. This allows to select the best - univariate selection strategy with hyper-parameter search estimator. +* :class:`GenericUnivariateSelect` allows to perform univariate feature + selection with a configurable strategy. This allows to select the best + univariate selection strategy with hyper-parameter search estimator. For instance, we can use a F-test to retrieve the two best features for a dataset as follows: @@ -87,9 +87,9 @@ These objects take as input a scoring function that returns univariate scores and p-values (or only scores for :class:`SelectKBest` and :class:`SelectPercentile`): - * For regression: :func:`r_regression`, :func:`f_regression`, :func:`mutual_info_regression` +* For regression: :func:`r_regression`, :func:`f_regression`, :func:`mutual_info_regression` - * For classification: :func:`chi2`, :func:`f_classif`, :func:`mutual_info_classif` +* For classification: :func:`chi2`, :func:`f_classif`, :func:`mutual_info_classif` The methods based on F-test estimate the degree of linear dependency between two random variables. On the other hand, mutual information methods can capture diff --git a/doc/modules/gaussian_process.rst b/doc/modules/gaussian_process.rst index 55960e901b166..58e56a557ed73 100644 --- a/doc/modules/gaussian_process.rst +++ b/doc/modules/gaussian_process.rst @@ -11,25 +11,25 @@ to solve *regression* and *probabilistic classification* problems. The advantages of Gaussian processes are: - - The prediction interpolates the observations (at least for regular - kernels). +- The prediction interpolates the observations (at least for regular + kernels). - - The prediction is probabilistic (Gaussian) so that one can compute - empirical confidence intervals and decide based on those if one should - refit (online fitting, adaptive fitting) the prediction in some - region of interest. +- The prediction is probabilistic (Gaussian) so that one can compute + empirical confidence intervals and decide based on those if one should + refit (online fitting, adaptive fitting) the prediction in some + region of interest. - - Versatile: different :ref:`kernels - ` can be specified. Common kernels are provided, but - it is also possible to specify custom kernels. +- Versatile: different :ref:`kernels + ` can be specified. Common kernels are provided, but + it is also possible to specify custom kernels. The disadvantages of Gaussian processes include: - - Our implementation is not sparse, i.e., they use the whole samples/features - information to perform the prediction. +- Our implementation is not sparse, i.e., they use the whole samples/features + information to perform the prediction. - - They lose efficiency in high dimensional spaces -- namely when the number - of features exceeds a few dozens. +- They lose efficiency in high dimensional spaces -- namely when the number + of features exceeds a few dozens. .. _gpr: @@ -386,7 +386,7 @@ Matérn kernel ------------- The :class:`Matern` kernel is a stationary kernel and a generalization of the :class:`RBF` kernel. It has an additional parameter :math:`\nu` which controls -the smoothness of the resulting function. It is parameterized by a length-scale parameter :math:`l>0`, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs :math:`x` (anisotropic variant of the kernel). +the smoothness of the resulting function. It is parameterized by a length-scale parameter :math:`l>0`, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs :math:`x` (anisotropic variant of the kernel). |details-start| **Mathematical implementation of Matérn kernel** diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst index efdde897e841b..01c5a5c72ee52 100644 --- a/doc/modules/grid_search.rst +++ b/doc/modules/grid_search.rst @@ -135,14 +135,14 @@ variate sample) method to sample a value. A call to the ``rvs`` function should provide independent random samples from possible parameter values on consecutive calls. - .. warning:: - - The distributions in ``scipy.stats`` prior to version scipy 0.16 - do not allow specifying a random state. Instead, they use the global - numpy random state, that can be seeded via ``np.random.seed`` or set - using ``np.random.set_state``. However, beginning scikit-learn 0.18, - the :mod:`sklearn.model_selection` module sets the random state provided - by the user if scipy >= 0.16 is also available. +.. warning:: + + The distributions in ``scipy.stats`` prior to version scipy 0.16 + do not allow specifying a random state. Instead, they use the global + numpy random state, that can be seeded via ``np.random.seed`` or set + using ``np.random.set_state``. However, beginning scikit-learn 0.18, + the :mod:`sklearn.model_selection` module sets the random state provided + by the user if scipy >= 0.16 is also available. For continuous parameters, such as ``C`` above, it is important to specify a continuous distribution to take full advantage of the randomization. This way, diff --git a/doc/modules/isotonic.rst b/doc/modules/isotonic.rst index 8967ef18afcb3..c30ee83b74241 100644 --- a/doc/modules/isotonic.rst +++ b/doc/modules/isotonic.rst @@ -9,10 +9,10 @@ Isotonic regression The class :class:`IsotonicRegression` fits a non-decreasing real function to 1-dimensional data. It solves the following problem: - minimize :math:`\sum_i w_i (y_i - \hat{y}_i)^2` - - subject to :math:`\hat{y}_i \le \hat{y}_j` whenever :math:`X_i \le X_j`, +.. math:: + \min \sum_i w_i (y_i - \hat{y}_i)^2 +subject to :math:`\hat{y}_i \le \hat{y}_j` whenever :math:`X_i \le X_j`, where the weights :math:`w_i` are strictly positive, and both `X` and `y` are arbitrary real quantities. diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst index 30c5a71b1417d..0c67c36178e3b 100644 --- a/doc/modules/kernel_approximation.rst +++ b/doc/modules/kernel_approximation.rst @@ -57,10 +57,10 @@ points. where: - * :math:`U` is orthonormal - * :math:`Ʌ` is diagonal matrix of eigenvalues - * :math:`U_1` is orthonormal matrix of samples that were chosen - * :math:`U_2` is orthonormal matrix of samples that were not chosen +* :math:`U` is orthonormal +* :math:`\Lambda` is diagonal matrix of eigenvalues +* :math:`U_1` is orthonormal matrix of samples that were chosen +* :math:`U_2` is orthonormal matrix of samples that were not chosen Given that :math:`U_1 \Lambda U_1^T` can be obtained by orthonormalization of the matrix :math:`K_{11}`, and :math:`U_2 \Lambda U_1^T` can be evaluated (as @@ -215,8 +215,8 @@ function given by: where: - * ``x``, ``y`` are the input vectors - * ``d`` is the kernel degree +* ``x``, ``y`` are the input vectors +* ``d`` is the kernel degree Intuitively, the feature space of the polynomial kernel of degree `d` consists of all possible degree-`d` products among input features, which enables diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst index 13fafaf48c953..e538dde2ed6d5 100644 --- a/doc/modules/linear_model.rst +++ b/doc/modules/linear_model.rst @@ -215,10 +215,10 @@ Cross-Validation. **References** |details-split| - * "Notes on Regularized Least Squares", Rifkin & Lippert (`technical report - `_, - `course slides - `_). +* "Notes on Regularized Least Squares", Rifkin & Lippert (`technical report + `_, + `course slides + `_). |details-end| @@ -587,30 +587,30 @@ between the features. The advantages of LARS are: - - It is numerically efficient in contexts where the number of features - is significantly greater than the number of samples. +- It is numerically efficient in contexts where the number of features + is significantly greater than the number of samples. - - It is computationally just as fast as forward selection and has - the same order of complexity as ordinary least squares. +- It is computationally just as fast as forward selection and has + the same order of complexity as ordinary least squares. - - It produces a full piecewise linear solution path, which is - useful in cross-validation or similar attempts to tune the model. +- It produces a full piecewise linear solution path, which is + useful in cross-validation or similar attempts to tune the model. - - If two features are almost equally correlated with the target, - then their coefficients should increase at approximately the same - rate. The algorithm thus behaves as intuition would expect, and - also is more stable. +- If two features are almost equally correlated with the target, + then their coefficients should increase at approximately the same + rate. The algorithm thus behaves as intuition would expect, and + also is more stable. - - It is easily modified to produce solutions for other estimators, - like the Lasso. +- It is easily modified to produce solutions for other estimators, + like the Lasso. The disadvantages of the LARS method include: - - Because LARS is based upon an iterative refitting of the - residuals, it would appear to be especially sensitive to the - effects of noise. This problem is discussed in detail by Weisberg - in the discussion section of the Efron et al. (2004) Annals of - Statistics article. +- Because LARS is based upon an iterative refitting of the + residuals, it would appear to be especially sensitive to the + effects of noise. This problem is discussed in detail by Weisberg + in the discussion section of the Efron et al. (2004) Annals of + Statistics article. The LARS model can be used via the estimator :class:`Lars`, or its low-level implementation :func:`lars_path` or :func:`lars_path_gram`. @@ -707,11 +707,11 @@ previously chosen dictionary elements. **References** |details-split| - * https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf +* https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf - * `Matching pursuits with time-frequency dictionaries - `_, - S. G. Mallat, Z. Zhang, +* `Matching pursuits with time-frequency dictionaries + `_, + S. G. Mallat, Z. Zhang, |details-end| @@ -743,24 +743,24 @@ estimated from the data. The advantages of Bayesian Regression are: - - It adapts to the data at hand. +- It adapts to the data at hand. - - It can be used to include regularization parameters in the - estimation procedure. +- It can be used to include regularization parameters in the + estimation procedure. The disadvantages of Bayesian regression include: - - Inference of the model can be time consuming. +- Inference of the model can be time consuming. |details-start| **References** |details-split| - * A good introduction to Bayesian methods is given in C. Bishop: Pattern - Recognition and Machine learning +* A good introduction to Bayesian methods is given in C. Bishop: Pattern + Recognition and Machine learning - * Original Algorithm is detailed in the book `Bayesian learning for neural - networks` by Radford M. Neal +* Original Algorithm is detailed in the book `Bayesian learning for neural + networks` by Radford M. Neal |details-end| @@ -827,11 +827,11 @@ is more robust to ill-posed problems. **References** |details-split| - * Section 3.3 in Christopher M. Bishop: Pattern Recognition and Machine Learning, 2006 +* Section 3.3 in Christopher M. Bishop: Pattern Recognition and Machine Learning, 2006 - * David J. C. MacKay, `Bayesian Interpolation `_, 1992. +* David J. C. MacKay, `Bayesian Interpolation `_, 1992. - * Michael E. Tipping, `Sparse Bayesian Learning and the Relevance Vector Machine `_, 2001. +* Michael E. Tipping, `Sparse Bayesian Learning and the Relevance Vector Machine `_, 2001. |details-end| @@ -1372,11 +1372,11 @@ Perceptron The :class:`Perceptron` is another simple classification algorithm suitable for large scale learning. By default: - - It does not require a learning rate. +- It does not require a learning rate. - - It is not regularized (penalized). +- It is not regularized (penalized). - - It updates its model only on mistakes. +- It updates its model only on mistakes. The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the resulting models are @@ -1407,9 +1407,9 @@ For classification, :class:`PassiveAggressiveClassifier` can be used with **References** |details-split| - * `"Online Passive-Aggressive Algorithms" - `_ - K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR 7 (2006) +* `"Online Passive-Aggressive Algorithms" + `_ + K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR 7 (2006) |details-end| diff --git a/doc/modules/metrics.rst b/doc/modules/metrics.rst index 71e914afad192..caea39319e869 100644 --- a/doc/modules/metrics.rst +++ b/doc/modules/metrics.rst @@ -28,9 +28,9 @@ There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let ``D`` be the distance, and ``S`` be the kernel: - 1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing - ``gamma`` is ``1 / num_features`` - 2. ``S = 1. / (D / np.max(D))`` +1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing + ``gamma`` is ``1 / num_features`` +2. ``S = 1. / (D / np.max(D))`` .. currentmodule:: sklearn.metrics @@ -123,8 +123,8 @@ The polynomial kernel is defined as: where: - * ``x``, ``y`` are the input vectors - * ``d`` is the kernel degree +* ``x``, ``y`` are the input vectors +* ``d`` is the kernel degree If :math:`c_0 = 0` the kernel is said to be homogeneous. @@ -143,9 +143,9 @@ activation function). It is defined as: where: - * ``x``, ``y`` are the input vectors - * :math:`\gamma` is known as slope - * :math:`c_0` is known as intercept +* ``x``, ``y`` are the input vectors +* :math:`\gamma` is known as slope +* :math:`c_0` is known as intercept .. _rbf_kernel: @@ -165,14 +165,14 @@ the kernel is known as the Gaussian kernel of variance :math:`\sigma^2`. Laplacian kernel ---------------- -The function :func:`laplacian_kernel` is a variant on the radial basis +The function :func:`laplacian_kernel` is a variant on the radial basis function kernel defined as: .. math:: k(x, y) = \exp( -\gamma \| x-y \|_1) -where ``x`` and ``y`` are the input vectors and :math:`\|x-y\|_1` is the +where ``x`` and ``y`` are the input vectors and :math:`\|x-y\|_1` is the Manhattan distance between the input vectors. It has proven useful in ML applied to noiseless data. @@ -229,4 +229,3 @@ The chi squared kernel is most commonly used on histograms (bags) of visual word categories: A comprehensive study International Journal of Computer Vision 2007 https://hal.archives-ouvertes.fr/hal-00171412/document - diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst index e9cc94b1d493d..df5d8020a1369 100644 --- a/doc/modules/mixture.rst +++ b/doc/modules/mixture.rst @@ -14,13 +14,13 @@ matrices supported), sample them, and estimate them from data. Facilities to help determine the appropriate number of components are also provided. - .. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_pdf_001.png - :target: ../auto_examples/mixture/plot_gmm_pdf.html - :align: center - :scale: 50% +.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_pdf_001.png + :target: ../auto_examples/mixture/plot_gmm_pdf.html + :align: center + :scale: 50% - **Two-component Gaussian mixture model:** *data points, and equi-probability - surfaces of the model.* + **Two-component Gaussian mixture model:** *data points, and equi-probability + surfaces of the model.* A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a finite number of diff --git a/doc/modules/multiclass.rst b/doc/modules/multiclass.rst index beee41e2aea0b..d3a83997c2dd9 100644 --- a/doc/modules/multiclass.rst +++ b/doc/modules/multiclass.rst @@ -147,35 +147,35 @@ Target format Valid :term:`multiclass` representations for :func:`~sklearn.utils.multiclass.type_of_target` (`y`) are: - - 1d or column vector containing more than two discrete values. An - example of a vector ``y`` for 4 samples: - - >>> import numpy as np - >>> y = np.array(['apple', 'pear', 'apple', 'orange']) - >>> print(y) - ['apple' 'pear' 'apple' 'orange'] - - - Dense or sparse :term:`binary` matrix of shape ``(n_samples, n_classes)`` - with a single sample per row, where each column represents one class. An - example of both a dense and sparse :term:`binary` matrix ``y`` for 4 - samples, where the columns, in order, are apple, orange, and pear: - - >>> import numpy as np - >>> from sklearn.preprocessing import LabelBinarizer - >>> y = np.array(['apple', 'pear', 'apple', 'orange']) - >>> y_dense = LabelBinarizer().fit_transform(y) - >>> print(y_dense) - [[1 0 0] - [0 0 1] - [1 0 0] - [0 1 0]] - >>> from scipy import sparse - >>> y_sparse = sparse.csr_matrix(y_dense) - >>> print(y_sparse) - (0, 0) 1 - (1, 2) 1 - (2, 0) 1 - (3, 1) 1 +- 1d or column vector containing more than two discrete values. An + example of a vector ``y`` for 4 samples: + + >>> import numpy as np + >>> y = np.array(['apple', 'pear', 'apple', 'orange']) + >>> print(y) + ['apple' 'pear' 'apple' 'orange'] + +- Dense or sparse :term:`binary` matrix of shape ``(n_samples, n_classes)`` + with a single sample per row, where each column represents one class. An + example of both a dense and sparse :term:`binary` matrix ``y`` for 4 + samples, where the columns, in order, are apple, orange, and pear: + + >>> import numpy as np + >>> from sklearn.preprocessing import LabelBinarizer + >>> y = np.array(['apple', 'pear', 'apple', 'orange']) + >>> y_dense = LabelBinarizer().fit_transform(y) + >>> print(y_dense) + [[1 0 0] + [0 0 1] + [1 0 0] + [0 1 0]] + >>> from scipy import sparse + >>> y_sparse = sparse.csr_matrix(y_dense) + >>> print(y_sparse) + (0, 0) 1 + (1, 2) 1 + (2, 0) 1 + (3, 1) 1 For more information about :class:`~sklearn.preprocessing.LabelBinarizer`, refer to :ref:`preprocessing_targets`. diff --git a/doc/modules/neighbors.rst b/doc/modules/neighbors.rst index 81543be3b494e..b77f1952bece8 100644 --- a/doc/modules/neighbors.rst +++ b/doc/modules/neighbors.rst @@ -59,12 +59,12 @@ The choice of neighbors search algorithm is controlled through the keyword from the training data. For a discussion of the strengths and weaknesses of each option, see `Nearest Neighbor Algorithms`_. - .. warning:: +.. warning:: - Regarding the Nearest Neighbors algorithms, if two - neighbors :math:`k+1` and :math:`k` have identical distances - but different labels, the result will depend on the ordering of the - training data. + Regarding the Nearest Neighbors algorithms, if two + neighbors :math:`k+1` and :math:`k` have identical distances + but different labels, the result will depend on the ordering of the + training data. Finding the Nearest Neighbors ----------------------------- diff --git a/doc/modules/neural_networks_supervised.rst b/doc/modules/neural_networks_supervised.rst index 388f32e7c6925..64b394b2db7c5 100644 --- a/doc/modules/neural_networks_supervised.rst +++ b/doc/modules/neural_networks_supervised.rst @@ -51,22 +51,22 @@ at index :math:`i` represents the bias values added to layer :math:`i+1`. The advantages of Multi-layer Perceptron are: - + Capability to learn non-linear models. ++ Capability to learn non-linear models. - + Capability to learn models in real-time (on-line learning) - using ``partial_fit``. ++ Capability to learn models in real-time (on-line learning) + using ``partial_fit``. The disadvantages of Multi-layer Perceptron (MLP) include: - + MLP with hidden layers have a non-convex loss function where there exists - more than one local minimum. Therefore different random weight - initializations can lead to different validation accuracy. ++ MLP with hidden layers have a non-convex loss function where there exists + more than one local minimum. Therefore different random weight + initializations can lead to different validation accuracy. - + MLP requires tuning a number of hyperparameters such as the number of - hidden neurons, layers, and iterations. ++ MLP requires tuning a number of hyperparameters such as the number of + hidden neurons, layers, and iterations. - + MLP is sensitive to feature scaling. ++ MLP is sensitive to feature scaling. Please see :ref:`Tips on Practical Use ` section that addresses some of these disadvantages. @@ -311,35 +311,35 @@ when the improvement in loss is below a certain, small number. Tips on Practical Use ===================== - * Multi-layer Perceptron is sensitive to feature scaling, so it - is highly recommended to scale your data. For example, scale each - attribute on the input vector X to [0, 1] or [-1, +1], or standardize - it to have mean 0 and variance 1. Note that you must apply the *same* - scaling to the test set for meaningful results. - You can use :class:`~sklearn.preprocessing.StandardScaler` for standardization. - - >>> from sklearn.preprocessing import StandardScaler # doctest: +SKIP - >>> scaler = StandardScaler() # doctest: +SKIP - >>> # Don't cheat - fit only on training data - >>> scaler.fit(X_train) # doctest: +SKIP - >>> X_train = scaler.transform(X_train) # doctest: +SKIP - >>> # apply same transformation to test data - >>> X_test = scaler.transform(X_test) # doctest: +SKIP - - An alternative and recommended approach is to use - :class:`~sklearn.preprocessing.StandardScaler` in a - :class:`~sklearn.pipeline.Pipeline` - - * Finding a reasonable regularization parameter :math:`\alpha` is best done - using :class:`~sklearn.model_selection.GridSearchCV`, usually in the range - ``10.0 ** -np.arange(1, 7)``. - - * Empirically, we observed that `L-BFGS` converges faster and - with better solutions on small datasets. For relatively large - datasets, however, `Adam` is very robust. It usually converges - quickly and gives pretty good performance. `SGD` with momentum or - nesterov's momentum, on the other hand, can perform better than - those two algorithms if learning rate is correctly tuned. +* Multi-layer Perceptron is sensitive to feature scaling, so it + is highly recommended to scale your data. For example, scale each + attribute on the input vector X to [0, 1] or [-1, +1], or standardize + it to have mean 0 and variance 1. Note that you must apply the *same* + scaling to the test set for meaningful results. + You can use :class:`~sklearn.preprocessing.StandardScaler` for standardization. + + >>> from sklearn.preprocessing import StandardScaler # doctest: +SKIP + >>> scaler = StandardScaler() # doctest: +SKIP + >>> # Don't cheat - fit only on training data + >>> scaler.fit(X_train) # doctest: +SKIP + >>> X_train = scaler.transform(X_train) # doctest: +SKIP + >>> # apply same transformation to test data + >>> X_test = scaler.transform(X_test) # doctest: +SKIP + + An alternative and recommended approach is to use + :class:`~sklearn.preprocessing.StandardScaler` in a + :class:`~sklearn.pipeline.Pipeline` + +* Finding a reasonable regularization parameter :math:`\alpha` is best done + using :class:`~sklearn.model_selection.GridSearchCV`, usually in the range + ``10.0 ** -np.arange(1, 7)``. + +* Empirically, we observed that `L-BFGS` converges faster and + with better solutions on small datasets. For relatively large + datasets, however, `Adam` is very robust. It usually converges + quickly and gives pretty good performance. `SGD` with momentum or + nesterov's momentum, on the other hand, can perform better than + those two algorithms if learning rate is correctly tuned. More control with warm_start ============================ diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst index 572674328108d..d003b645eb19c 100644 --- a/doc/modules/outlier_detection.rst +++ b/doc/modules/outlier_detection.rst @@ -411,7 +411,7 @@ Note that ``fit_predict`` is not available in this case to avoid inconsistencies Novelty detection with Local Outlier Factor is illustrated below. - .. figure:: ../auto_examples/neighbors/images/sphx_glr_plot_lof_novelty_detection_001.png - :target: ../auto_examples/neighbors/plot_lof_novelty_detection.html - :align: center - :scale: 75% +.. figure:: ../auto_examples/neighbors/images/sphx_glr_plot_lof_novelty_detection_001.png + :target: ../auto_examples/neighbors/plot_lof_novelty_detection.html + :align: center + :scale: 75% diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst index 475098c0d685c..b619b88110d63 100644 --- a/doc/modules/preprocessing.rst +++ b/doc/modules/preprocessing.rst @@ -1008,9 +1008,9 @@ For each feature, the bin edges are computed during ``fit`` and together with the number of bins, they will define the intervals. Therefore, for the current example, these intervals are defined as: - - feature 1: :math:`{[-\infty, -1), [-1, 2), [2, \infty)}` - - feature 2: :math:`{[-\infty, 5), [5, \infty)}` - - feature 3: :math:`{[-\infty, 14), [14, \infty)}` +- feature 1: :math:`{[-\infty, -1), [-1, 2), [2, \infty)}` +- feature 2: :math:`{[-\infty, 5), [5, \infty)}` +- feature 3: :math:`{[-\infty, 14), [14, \infty)}` Based on these bin intervals, ``X`` is transformed as follows:: @@ -1199,23 +1199,23 @@ below. Some of the advantages of splines over polynomials are: - - B-splines are very flexible and robust if you keep a fixed low degree, - usually 3, and parsimoniously adapt the number of knots. Polynomials - would need a higher degree, which leads to the next point. - - B-splines do not have oscillatory behaviour at the boundaries as have - polynomials (the higher the degree, the worse). This is known as `Runge's - phenomenon `_. - - B-splines provide good options for extrapolation beyond the boundaries, - i.e. beyond the range of fitted values. Have a look at the option - ``extrapolation``. - - B-splines generate a feature matrix with a banded structure. For a single - feature, every row contains only ``degree + 1`` non-zero elements, which - occur consecutively and are even positive. This results in a matrix with - good numerical properties, e.g. a low condition number, in sharp contrast - to a matrix of polynomials, which goes under the name - `Vandermonde matrix `_. - A low condition number is important for stable algorithms of linear - models. +- B-splines are very flexible and robust if you keep a fixed low degree, + usually 3, and parsimoniously adapt the number of knots. Polynomials + would need a higher degree, which leads to the next point. +- B-splines do not have oscillatory behaviour at the boundaries as have + polynomials (the higher the degree, the worse). This is known as `Runge's + phenomenon `_. +- B-splines provide good options for extrapolation beyond the boundaries, + i.e. beyond the range of fitted values. Have a look at the option + ``extrapolation``. +- B-splines generate a feature matrix with a banded structure. For a single + feature, every row contains only ``degree + 1`` non-zero elements, which + occur consecutively and are even positive. This results in a matrix with + good numerical properties, e.g. a low condition number, in sharp contrast + to a matrix of polynomials, which goes under the name + `Vandermonde matrix `_. + A low condition number is important for stable algorithms of linear + models. The following code snippet shows splines in action:: diff --git a/doc/modules/semi_supervised.rst b/doc/modules/semi_supervised.rst index 47e8bfffdd9a7..f8cae0a9ddcdf 100644 --- a/doc/modules/semi_supervised.rst +++ b/doc/modules/semi_supervised.rst @@ -121,11 +121,11 @@ Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance of the algorithms. The following are available: - * rbf (:math:`\exp(-\gamma |x-y|^2), \gamma > 0`). :math:`\gamma` is - specified by keyword gamma. +* rbf (:math:`\exp(-\gamma |x-y|^2), \gamma > 0`). :math:`\gamma` is + specified by keyword gamma. - * knn (:math:`1[x' \in kNN(x)]`). :math:`k` is specified by keyword - n_neighbors. +* knn (:math:`1[x' \in kNN(x)]`). :math:`k` is specified by keyword + n_neighbors. The RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix may be very large and combined with the cost of diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst index b37a0209af24d..a7981e9d4ec28 100644 --- a/doc/modules/sgd.rst +++ b/doc/modules/sgd.rst @@ -36,16 +36,16 @@ different means. The advantages of Stochastic Gradient Descent are: - + Efficiency. ++ Efficiency. - + Ease of implementation (lots of opportunities for code tuning). ++ Ease of implementation (lots of opportunities for code tuning). The disadvantages of Stochastic Gradient Descent include: - + SGD requires a number of hyperparameters such as the regularization - parameter and the number of iterations. ++ SGD requires a number of hyperparameters such as the regularization + parameter and the number of iterations. - + SGD is sensitive to feature scaling. ++ SGD is sensitive to feature scaling. .. warning:: @@ -111,12 +111,12 @@ the coefficients and the input sample, plus the intercept) is given by The concrete loss function can be set via the ``loss`` parameter. :class:`SGDClassifier` supports the following loss functions: - * ``loss="hinge"``: (soft-margin) linear Support Vector Machine, - * ``loss="modified_huber"``: smoothed hinge loss, - * ``loss="log_loss"``: logistic regression, - * and all regression losses below. In this case the target is encoded as -1 - or 1, and the problem is treated as a regression problem. The predicted - class then correspond to the sign of the predicted target. +* ``loss="hinge"``: (soft-margin) linear Support Vector Machine, +* ``loss="modified_huber"``: smoothed hinge loss, +* ``loss="log_loss"``: logistic regression, +* and all regression losses below. In this case the target is encoded as -1 + or 1, and the problem is treated as a regression problem. The predicted + class then correspond to the sign of the predicted target. Please refer to the :ref:`mathematical section below ` for formulas. @@ -136,10 +136,10 @@ Using ``loss="log_loss"`` or ``loss="modified_huber"`` enables the The concrete penalty can be set via the ``penalty`` parameter. SGD supports the following penalties: - * ``penalty="l2"``: L2 norm penalty on ``coef_``. - * ``penalty="l1"``: L1 norm penalty on ``coef_``. - * ``penalty="elasticnet"``: Convex combination of L2 and L1; - ``(1 - l1_ratio) * L2 + l1_ratio * L1``. +* ``penalty="l2"``: L2 norm penalty on ``coef_``. +* ``penalty="l1"``: L1 norm penalty on ``coef_``. +* ``penalty="elasticnet"``: Convex combination of L2 and L1; + ``(1 - l1_ratio) * L2 + l1_ratio * L1``. The default setting is ``penalty="l2"``. The L1 penalty leads to sparse solutions, driving most coefficients to zero. The Elastic Net [#5]_ solves @@ -211,9 +211,9 @@ samples (> 10.000), for other problems we recommend :class:`Ridge`, The concrete loss function can be set via the ``loss`` parameter. :class:`SGDRegressor` supports the following loss functions: - * ``loss="squared_error"``: Ordinary least squares, - * ``loss="huber"``: Huber loss for robust regression, - * ``loss="epsilon_insensitive"``: linear Support Vector Regression. +* ``loss="squared_error"``: Ordinary least squares, +* ``loss="huber"``: Huber loss for robust regression, +* ``loss="epsilon_insensitive"``: linear Support Vector Regression. Please refer to the :ref:`mathematical section below ` for formulas. @@ -327,14 +327,14 @@ Stopping criterion The classes :class:`SGDClassifier` and :class:`SGDRegressor` provide two criteria to stop the algorithm when a given level of convergence is reached: - * With ``early_stopping=True``, the input data is split into a training set - and a validation set. The model is then fitted on the training set, and the - stopping criterion is based on the prediction score (using the `score` - method) computed on the validation set. The size of the validation set - can be changed with the parameter ``validation_fraction``. - * With ``early_stopping=False``, the model is fitted on the entire input data - and the stopping criterion is based on the objective function computed on - the training data. +* With ``early_stopping=True``, the input data is split into a training set + and a validation set. The model is then fitted on the training set, and the + stopping criterion is based on the prediction score (using the `score` + method) computed on the validation set. The size of the validation set + can be changed with the parameter ``validation_fraction``. +* With ``early_stopping=False``, the model is fitted on the entire input data + and the stopping criterion is based on the objective function computed on + the training data. In both cases, the criterion is evaluated once by epoch, and the algorithm stops when the criterion does not improve ``n_iter_no_change`` times in a row. The @@ -345,45 +345,45 @@ stops in any case after a maximum number of iteration ``max_iter``. Tips on Practical Use ===================== - * Stochastic Gradient Descent is sensitive to feature scaling, so it - is highly recommended to scale your data. For example, scale each - attribute on the input vector X to [0,1] or [-1,+1], or standardize - it to have mean 0 and variance 1. Note that the *same* scaling must be - applied to the test vector to obtain meaningful results. This can be easily - done using :class:`~sklearn.preprocessing.StandardScaler`:: - - from sklearn.preprocessing import StandardScaler - scaler = StandardScaler() - scaler.fit(X_train) # Don't cheat - fit only on training data - X_train = scaler.transform(X_train) - X_test = scaler.transform(X_test) # apply same transformation to test data - - # Or better yet: use a pipeline! - from sklearn.pipeline import make_pipeline - est = make_pipeline(StandardScaler(), SGDClassifier()) - est.fit(X_train) - est.predict(X_test) - - If your attributes have an intrinsic scale (e.g. word frequencies or - indicator features) scaling is not needed. - - * Finding a reasonable regularization term :math:`\alpha` is - best done using automatic hyper-parameter search, e.g. - :class:`~sklearn.model_selection.GridSearchCV` or - :class:`~sklearn.model_selection.RandomizedSearchCV`, usually in the - range ``10.0**-np.arange(1,7)``. - - * Empirically, we found that SGD converges after observing - approximately 10^6 training samples. Thus, a reasonable first guess - for the number of iterations is ``max_iter = np.ceil(10**6 / n)``, - where ``n`` is the size of the training set. - - * If you apply SGD to features extracted using PCA we found that - it is often wise to scale the feature values by some constant `c` - such that the average L2 norm of the training data equals one. - - * We found that Averaged SGD works best with a larger number of features - and a higher eta0 +* Stochastic Gradient Descent is sensitive to feature scaling, so it + is highly recommended to scale your data. For example, scale each + attribute on the input vector X to [0,1] or [-1,+1], or standardize + it to have mean 0 and variance 1. Note that the *same* scaling must be + applied to the test vector to obtain meaningful results. This can be easily + done using :class:`~sklearn.preprocessing.StandardScaler`:: + + from sklearn.preprocessing import StandardScaler + scaler = StandardScaler() + scaler.fit(X_train) # Don't cheat - fit only on training data + X_train = scaler.transform(X_train) + X_test = scaler.transform(X_test) # apply same transformation to test data + + # Or better yet: use a pipeline! + from sklearn.pipeline import make_pipeline + est = make_pipeline(StandardScaler(), SGDClassifier()) + est.fit(X_train) + est.predict(X_test) + + If your attributes have an intrinsic scale (e.g. word frequencies or + indicator features) scaling is not needed. + +* Finding a reasonable regularization term :math:`\alpha` is + best done using automatic hyper-parameter search, e.g. + :class:`~sklearn.model_selection.GridSearchCV` or + :class:`~sklearn.model_selection.RandomizedSearchCV`, usually in the + range ``10.0**-np.arange(1,7)``. + +* Empirically, we found that SGD converges after observing + approximately 10^6 training samples. Thus, a reasonable first guess + for the number of iterations is ``max_iter = np.ceil(10**6 / n)``, + where ``n`` is the size of the training set. + +* If you apply SGD to features extracted using PCA we found that + it is often wise to scale the feature values by some constant `c` + such that the average L2 norm of the training data equals one. + +* We found that Averaged SGD works best with a larger number of features + and a higher eta0. .. topic:: References: @@ -454,12 +454,12 @@ misclassification error (Zero-one loss) as shown in the Figure below. Popular choices for the regularization term :math:`R` (the `penalty` parameter) include: - - L2 norm: :math:`R(w) := \frac{1}{2} \sum_{j=1}^{m} w_j^2 = ||w||_2^2`, - - L1 norm: :math:`R(w) := \sum_{j=1}^{m} |w_j|`, which leads to sparse - solutions. - - Elastic Net: :math:`R(w) := \frac{\rho}{2} \sum_{j=1}^{n} w_j^2 + - (1-\rho) \sum_{j=1}^{m} |w_j|`, a convex combination of L2 and L1, where - :math:`\rho` is given by ``1 - l1_ratio``. +- L2 norm: :math:`R(w) := \frac{1}{2} \sum_{j=1}^{m} w_j^2 = ||w||_2^2`, +- L1 norm: :math:`R(w) := \sum_{j=1}^{m} |w_j|`, which leads to sparse + solutions. +- Elastic Net: :math:`R(w) := \frac{\rho}{2} \sum_{j=1}^{n} w_j^2 + + (1-\rho) \sum_{j=1}^{m} |w_j|`, a convex combination of L2 and L1, where + :math:`\rho` is given by ``1 - l1_ratio``. The Figure below shows the contours of the different regularization terms in a 2-dimensional parameter space (:math:`m=2`) when :math:`R(w) = 1`. diff --git a/doc/modules/svm.rst b/doc/modules/svm.rst index 1a8b6d6c5741e..06eee7de50855 100644 --- a/doc/modules/svm.rst +++ b/doc/modules/svm.rst @@ -16,27 +16,27 @@ methods used for :ref:`classification `, The advantages of support vector machines are: - - Effective in high dimensional spaces. +- Effective in high dimensional spaces. - - Still effective in cases where number of dimensions is greater - than the number of samples. +- Still effective in cases where number of dimensions is greater + than the number of samples. - - Uses a subset of training points in the decision function (called - support vectors), so it is also memory efficient. +- Uses a subset of training points in the decision function (called + support vectors), so it is also memory efficient. - - Versatile: different :ref:`svm_kernels` can be - specified for the decision function. Common kernels are - provided, but it is also possible to specify custom kernels. +- Versatile: different :ref:`svm_kernels` can be + specified for the decision function. Common kernels are + provided, but it is also possible to specify custom kernels. The disadvantages of support vector machines include: - - If the number of features is much greater than the number of - samples, avoid over-fitting in choosing :ref:`svm_kernels` and regularization - term is crucial. +- If the number of features is much greater than the number of + samples, avoid over-fitting in choosing :ref:`svm_kernels` and regularization + term is crucial. - - SVMs do not directly provide probability estimates, these are - calculated using an expensive five-fold cross-validation - (see :ref:`Scores and probabilities `, below). +- SVMs do not directly provide probability estimates, these are + calculated using an expensive five-fold cross-validation + (see :ref:`Scores and probabilities `, below). The support vector machines in scikit-learn support both dense (``numpy.ndarray`` and convertible to that by ``numpy.asarray``) and @@ -381,95 +381,95 @@ Tips on Practical Use ===================== - * **Avoiding data copy**: For :class:`SVC`, :class:`SVR`, :class:`NuSVC` and - :class:`NuSVR`, if the data passed to certain methods is not C-ordered - contiguous and double precision, it will be copied before calling the - underlying C implementation. You can check whether a given numpy array is - C-contiguous by inspecting its ``flags`` attribute. - - For :class:`LinearSVC` (and :class:`LogisticRegression - `) any input passed as a numpy - array will be copied and converted to the `liblinear`_ internal sparse data - representation (double precision floats and int32 indices of non-zero - components). If you want to fit a large-scale linear classifier without - copying a dense numpy C-contiguous double precision array as input, we - suggest to use the :class:`SGDClassifier - ` class instead. The objective - function can be configured to be almost the same as the :class:`LinearSVC` - model. - - * **Kernel cache size**: For :class:`SVC`, :class:`SVR`, :class:`NuSVC` and - :class:`NuSVR`, the size of the kernel cache has a strong impact on run - times for larger problems. If you have enough RAM available, it is - recommended to set ``cache_size`` to a higher value than the default of - 200(MB), such as 500(MB) or 1000(MB). - - - * **Setting C**: ``C`` is ``1`` by default and it's a reasonable default - choice. If you have a lot of noisy observations you should decrease it: - decreasing C corresponds to more regularization. - - :class:`LinearSVC` and :class:`LinearSVR` are less sensitive to ``C`` when - it becomes large, and prediction results stop improving after a certain - threshold. Meanwhile, larger ``C`` values will take more time to train, - sometimes up to 10 times longer, as shown in [#3]_. - - * Support Vector Machine algorithms are not scale invariant, so **it - is highly recommended to scale your data**. For example, scale each - attribute on the input vector X to [0,1] or [-1,+1], or standardize it - to have mean 0 and variance 1. Note that the *same* scaling must be - applied to the test vector to obtain meaningful results. This can be done - easily by using a :class:`~sklearn.pipeline.Pipeline`:: - - >>> from sklearn.pipeline import make_pipeline - >>> from sklearn.preprocessing import StandardScaler - >>> from sklearn.svm import SVC - - >>> clf = make_pipeline(StandardScaler(), SVC()) - - See section :ref:`preprocessing` for more details on scaling and - normalization. - - .. _shrinking_svm: - - * Regarding the `shrinking` parameter, quoting [#4]_: *We found that if the - number of iterations is large, then shrinking can shorten the training - time. However, if we loosely solve the optimization problem (e.g., by - using a large stopping tolerance), the code without using shrinking may - be much faster* - - * Parameter ``nu`` in :class:`NuSVC`/:class:`OneClassSVM`/:class:`NuSVR` - approximates the fraction of training errors and support vectors. - - * In :class:`SVC`, if the data is unbalanced (e.g. many - positive and few negative), set ``class_weight='balanced'`` and/or try - different penalty parameters ``C``. - - * **Randomness of the underlying implementations**: The underlying - implementations of :class:`SVC` and :class:`NuSVC` use a random number - generator only to shuffle the data for probability estimation (when - ``probability`` is set to ``True``). This randomness can be controlled - with the ``random_state`` parameter. If ``probability`` is set to ``False`` - these estimators are not random and ``random_state`` has no effect on the - results. The underlying :class:`OneClassSVM` implementation is similar to - the ones of :class:`SVC` and :class:`NuSVC`. As no probability estimation - is provided for :class:`OneClassSVM`, it is not random. - - The underlying :class:`LinearSVC` implementation uses a random number - generator to select features when fitting the model with a dual coordinate - descent (i.e. when ``dual`` is set to ``True``). It is thus not uncommon - to have slightly different results for the same input data. If that - happens, try with a smaller `tol` parameter. This randomness can also be - controlled with the ``random_state`` parameter. When ``dual`` is - set to ``False`` the underlying implementation of :class:`LinearSVC` is - not random and ``random_state`` has no effect on the results. - - * Using L1 penalization as provided by ``LinearSVC(penalty='l1', - dual=False)`` yields a sparse solution, i.e. only a subset of feature - weights is different from zero and contribute to the decision function. - Increasing ``C`` yields a more complex model (more features are selected). - The ``C`` value that yields a "null" model (all weights equal to zero) can - be calculated using :func:`l1_min_c`. +* **Avoiding data copy**: For :class:`SVC`, :class:`SVR`, :class:`NuSVC` and + :class:`NuSVR`, if the data passed to certain methods is not C-ordered + contiguous and double precision, it will be copied before calling the + underlying C implementation. You can check whether a given numpy array is + C-contiguous by inspecting its ``flags`` attribute. + + For :class:`LinearSVC` (and :class:`LogisticRegression + `) any input passed as a numpy + array will be copied and converted to the `liblinear`_ internal sparse data + representation (double precision floats and int32 indices of non-zero + components). If you want to fit a large-scale linear classifier without + copying a dense numpy C-contiguous double precision array as input, we + suggest to use the :class:`SGDClassifier + ` class instead. The objective + function can be configured to be almost the same as the :class:`LinearSVC` + model. + +* **Kernel cache size**: For :class:`SVC`, :class:`SVR`, :class:`NuSVC` and + :class:`NuSVR`, the size of the kernel cache has a strong impact on run + times for larger problems. If you have enough RAM available, it is + recommended to set ``cache_size`` to a higher value than the default of + 200(MB), such as 500(MB) or 1000(MB). + + +* **Setting C**: ``C`` is ``1`` by default and it's a reasonable default + choice. If you have a lot of noisy observations you should decrease it: + decreasing C corresponds to more regularization. + + :class:`LinearSVC` and :class:`LinearSVR` are less sensitive to ``C`` when + it becomes large, and prediction results stop improving after a certain + threshold. Meanwhile, larger ``C`` values will take more time to train, + sometimes up to 10 times longer, as shown in [#3]_. + +* Support Vector Machine algorithms are not scale invariant, so **it + is highly recommended to scale your data**. For example, scale each + attribute on the input vector X to [0,1] or [-1,+1], or standardize it + to have mean 0 and variance 1. Note that the *same* scaling must be + applied to the test vector to obtain meaningful results. This can be done + easily by using a :class:`~sklearn.pipeline.Pipeline`:: + + >>> from sklearn.pipeline import make_pipeline + >>> from sklearn.preprocessing import StandardScaler + >>> from sklearn.svm import SVC + + >>> clf = make_pipeline(StandardScaler(), SVC()) + + See section :ref:`preprocessing` for more details on scaling and + normalization. + +.. _shrinking_svm: + +* Regarding the `shrinking` parameter, quoting [#4]_: *We found that if the + number of iterations is large, then shrinking can shorten the training + time. However, if we loosely solve the optimization problem (e.g., by + using a large stopping tolerance), the code without using shrinking may + be much faster* + +* Parameter ``nu`` in :class:`NuSVC`/:class:`OneClassSVM`/:class:`NuSVR` + approximates the fraction of training errors and support vectors. + +* In :class:`SVC`, if the data is unbalanced (e.g. many + positive and few negative), set ``class_weight='balanced'`` and/or try + different penalty parameters ``C``. + +* **Randomness of the underlying implementations**: The underlying + implementations of :class:`SVC` and :class:`NuSVC` use a random number + generator only to shuffle the data for probability estimation (when + ``probability`` is set to ``True``). This randomness can be controlled + with the ``random_state`` parameter. If ``probability`` is set to ``False`` + these estimators are not random and ``random_state`` has no effect on the + results. The underlying :class:`OneClassSVM` implementation is similar to + the ones of :class:`SVC` and :class:`NuSVC`. As no probability estimation + is provided for :class:`OneClassSVM`, it is not random. + + The underlying :class:`LinearSVC` implementation uses a random number + generator to select features when fitting the model with a dual coordinate + descent (i.e. when ``dual`` is set to ``True``). It is thus not uncommon + to have slightly different results for the same input data. If that + happens, try with a smaller `tol` parameter. This randomness can also be + controlled with the ``random_state`` parameter. When ``dual`` is + set to ``False`` the underlying implementation of :class:`LinearSVC` is + not random and ``random_state`` has no effect on the results. + +* Using L1 penalization as provided by ``LinearSVC(penalty='l1', + dual=False)`` yields a sparse solution, i.e. only a subset of feature + weights is different from zero and contribute to the decision function. + Increasing ``C`` yields a more complex model (more features are selected). + The ``C`` value that yields a "null" model (all weights equal to zero) can + be calculated using :func:`l1_min_c`. .. _svm_kernels: @@ -479,16 +479,16 @@ Kernel functions The *kernel function* can be any of the following: - * linear: :math:`\langle x, x'\rangle`. +* linear: :math:`\langle x, x'\rangle`. - * polynomial: :math:`(\gamma \langle x, x'\rangle + r)^d`, where - :math:`d` is specified by parameter ``degree``, :math:`r` by ``coef0``. +* polynomial: :math:`(\gamma \langle x, x'\rangle + r)^d`, where + :math:`d` is specified by parameter ``degree``, :math:`r` by ``coef0``. - * rbf: :math:`\exp(-\gamma \|x-x'\|^2)`, where :math:`\gamma` is - specified by parameter ``gamma``, must be greater than 0. +* rbf: :math:`\exp(-\gamma \|x-x'\|^2)`, where :math:`\gamma` is + specified by parameter ``gamma``, must be greater than 0. - * sigmoid :math:`\tanh(\gamma \langle x,x'\rangle + r)`, - where :math:`r` is specified by ``coef0``. +* sigmoid :math:`\tanh(\gamma \langle x,x'\rangle + r)`, + where :math:`r` is specified by ``coef0``. Different kernels are specified by the `kernel` parameter:: @@ -530,12 +530,12 @@ python function or by precomputing the Gram matrix. Classifiers with custom kernels behave the same way as any other classifiers, except that: - * Field ``support_vectors_`` is now empty, only indices of support - vectors are stored in ``support_`` +* Field ``support_vectors_`` is now empty, only indices of support + vectors are stored in ``support_`` - * A reference (and not a copy) of the first argument in the ``fit()`` - method is stored for future reference. If that array changes between the - use of ``fit()`` and ``predict()`` you will have unexpected results. +* A reference (and not a copy) of the first argument in the ``fit()`` + method is stored for future reference. If that array changes between the + use of ``fit()`` and ``predict()`` you will have unexpected results. |details-start| diff --git a/doc/modules/tree.rst b/doc/modules/tree.rst index e0a55547f4dea..b54b913573a34 100644 --- a/doc/modules/tree.rst +++ b/doc/modules/tree.rst @@ -23,68 +23,68 @@ the tree, the more complex the decision rules and the fitter the model. Some advantages of decision trees are: - - Simple to understand and to interpret. Trees can be visualized. +- Simple to understand and to interpret. Trees can be visualized. - - Requires little data preparation. Other techniques often require data - normalization, dummy variables need to be created and blank values to - be removed. Some tree and algorithm combinations support - :ref:`missing values `. +- Requires little data preparation. Other techniques often require data + normalization, dummy variables need to be created and blank values to + be removed. Some tree and algorithm combinations support + :ref:`missing values `. - - The cost of using the tree (i.e., predicting data) is logarithmic in the - number of data points used to train the tree. +- The cost of using the tree (i.e., predicting data) is logarithmic in the + number of data points used to train the tree. - - Able to handle both numerical and categorical data. However, the scikit-learn - implementation does not support categorical variables for now. Other - techniques are usually specialized in analyzing datasets that have only one type - of variable. See :ref:`algorithms ` for more - information. +- Able to handle both numerical and categorical data. However, the scikit-learn + implementation does not support categorical variables for now. Other + techniques are usually specialized in analyzing datasets that have only one type + of variable. See :ref:`algorithms ` for more + information. - - Able to handle multi-output problems. +- Able to handle multi-output problems. - - Uses a white box model. If a given situation is observable in a model, - the explanation for the condition is easily explained by boolean logic. - By contrast, in a black box model (e.g., in an artificial neural - network), results may be more difficult to interpret. +- Uses a white box model. If a given situation is observable in a model, + the explanation for the condition is easily explained by boolean logic. + By contrast, in a black box model (e.g., in an artificial neural + network), results may be more difficult to interpret. - - Possible to validate a model using statistical tests. That makes it - possible to account for the reliability of the model. +- Possible to validate a model using statistical tests. That makes it + possible to account for the reliability of the model. - - Performs well even if its assumptions are somewhat violated by - the true model from which the data were generated. +- Performs well even if its assumptions are somewhat violated by + the true model from which the data were generated. The disadvantages of decision trees include: - - Decision-tree learners can create over-complex trees that do not - generalize the data well. This is called overfitting. Mechanisms - such as pruning, setting the minimum number of samples required - at a leaf node or setting the maximum depth of the tree are - necessary to avoid this problem. +- Decision-tree learners can create over-complex trees that do not + generalize the data well. This is called overfitting. Mechanisms + such as pruning, setting the minimum number of samples required + at a leaf node or setting the maximum depth of the tree are + necessary to avoid this problem. - - Decision trees can be unstable because small variations in the - data might result in a completely different tree being generated. - This problem is mitigated by using decision trees within an - ensemble. +- Decision trees can be unstable because small variations in the + data might result in a completely different tree being generated. + This problem is mitigated by using decision trees within an + ensemble. - - Predictions of decision trees are neither smooth nor continuous, but - piecewise constant approximations as seen in the above figure. Therefore, - they are not good at extrapolation. +- Predictions of decision trees are neither smooth nor continuous, but + piecewise constant approximations as seen in the above figure. Therefore, + they are not good at extrapolation. - - The problem of learning an optimal decision tree is known to be - NP-complete under several aspects of optimality and even for simple - concepts. Consequently, practical decision-tree learning algorithms - are based on heuristic algorithms such as the greedy algorithm where - locally optimal decisions are made at each node. Such algorithms - cannot guarantee to return the globally optimal decision tree. This - can be mitigated by training multiple trees in an ensemble learner, - where the features and samples are randomly sampled with replacement. +- The problem of learning an optimal decision tree is known to be + NP-complete under several aspects of optimality and even for simple + concepts. Consequently, practical decision-tree learning algorithms + are based on heuristic algorithms such as the greedy algorithm where + locally optimal decisions are made at each node. Such algorithms + cannot guarantee to return the globally optimal decision tree. This + can be mitigated by training multiple trees in an ensemble learner, + where the features and samples are randomly sampled with replacement. - - There are concepts that are hard to learn because decision trees - do not express them easily, such as XOR, parity or multiplexer problems. +- There are concepts that are hard to learn because decision trees + do not express them easily, such as XOR, parity or multiplexer problems. - - Decision tree learners create biased trees if some classes dominate. - It is therefore recommended to balance the dataset prior to fitting - with the decision tree. +- Decision tree learners create biased trees if some classes dominate. + It is therefore recommended to balance the dataset prior to fitting + with the decision tree. .. _tree_classification: @@ -273,19 +273,19 @@ generalization accuracy of the resulting estimator may often be increased. With regard to decision trees, this strategy can readily be used to support multi-output problems. This requires the following changes: - - Store n output values in leaves, instead of 1; - - Use splitting criteria that compute the average reduction across all - n outputs. +- Store n output values in leaves, instead of 1; +- Use splitting criteria that compute the average reduction across all + n outputs. This module offers support for multi-output problems by implementing this strategy in both :class:`DecisionTreeClassifier` and :class:`DecisionTreeRegressor`. If a decision tree is fit on an output array Y of shape ``(n_samples, n_outputs)`` then the resulting estimator will: - * Output n_output values upon ``predict``; +* Output n_output values upon ``predict``; - * Output a list of n_output arrays of class probabilities upon - ``predict_proba``. +* Output a list of n_output arrays of class probabilities upon + ``predict_proba``. The use of multi-output trees for regression is demonstrated in :ref:`sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py`. In this example, the input @@ -315,10 +315,10 @@ the lower half of those faces. **References** |details-split| - * M. Dumont et al, `Fast multi-class image annotation with random subwindows - and multiple output randomized trees - `_, International Conference on - Computer Vision Theory and Applications 2009 +* M. Dumont et al, `Fast multi-class image annotation with random subwindows + and multiple output randomized trees + `_, International Conference on + Computer Vision Theory and Applications 2009 |details-end| @@ -343,65 +343,65 @@ total cost over the entire trees (by summing the cost at each node) of Tips on practical use ===================== - * Decision trees tend to overfit on data with a large number of features. - Getting the right ratio of samples to number of features is important, since - a tree with few samples in high dimensional space is very likely to overfit. - - * Consider performing dimensionality reduction (:ref:`PCA `, - :ref:`ICA `, or :ref:`feature_selection`) beforehand to - give your tree a better chance of finding features that are discriminative. - - * :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` will help - in gaining more insights about how the decision tree makes predictions, which is - important for understanding the important features in the data. - - * Visualize your tree as you are training by using the ``export`` - function. Use ``max_depth=3`` as an initial tree depth to get a feel for - how the tree is fitting to your data, and then increase the depth. - - * Remember that the number of samples required to populate the tree doubles - for each additional level the tree grows to. Use ``max_depth`` to control - the size of the tree to prevent overfitting. - - * Use ``min_samples_split`` or ``min_samples_leaf`` to ensure that multiple - samples inform every decision in the tree, by controlling which splits will - be considered. A very small number will usually mean the tree will overfit, - whereas a large number will prevent the tree from learning the data. Try - ``min_samples_leaf=5`` as an initial value. If the sample size varies - greatly, a float number can be used as percentage in these two parameters. - While ``min_samples_split`` can create arbitrarily small leaves, - ``min_samples_leaf`` guarantees that each leaf has a minimum size, avoiding - low-variance, over-fit leaf nodes in regression problems. For - classification with few classes, ``min_samples_leaf=1`` is often the best - choice. - - Note that ``min_samples_split`` considers samples directly and independent of - ``sample_weight``, if provided (e.g. a node with m weighted samples is still - treated as having exactly m samples). Consider ``min_weight_fraction_leaf`` or - ``min_impurity_decrease`` if accounting for sample weights is required at splits. - - * Balance your dataset before training to prevent the tree from being biased - toward the classes that are dominant. Class balancing can be done by - sampling an equal number of samples from each class, or preferably by - normalizing the sum of the sample weights (``sample_weight``) for each - class to the same value. Also note that weight-based pre-pruning criteria, - such as ``min_weight_fraction_leaf``, will then be less biased toward - dominant classes than criteria that are not aware of the sample weights, - like ``min_samples_leaf``. - - * If the samples are weighted, it will be easier to optimize the tree - structure using weight-based pre-pruning criterion such as - ``min_weight_fraction_leaf``, which ensure that leaf nodes contain at least - a fraction of the overall sum of the sample weights. - - * All decision trees use ``np.float32`` arrays internally. - If training data is not in this format, a copy of the dataset will be made. - - * If the input matrix X is very sparse, it is recommended to convert to sparse - ``csc_matrix`` before calling fit and sparse ``csr_matrix`` before calling - predict. Training time can be orders of magnitude faster for a sparse - matrix input compared to a dense matrix when features have zero values in - most of the samples. +* Decision trees tend to overfit on data with a large number of features. + Getting the right ratio of samples to number of features is important, since + a tree with few samples in high dimensional space is very likely to overfit. + +* Consider performing dimensionality reduction (:ref:`PCA `, + :ref:`ICA `, or :ref:`feature_selection`) beforehand to + give your tree a better chance of finding features that are discriminative. + +* :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` will help + in gaining more insights about how the decision tree makes predictions, which is + important for understanding the important features in the data. + +* Visualize your tree as you are training by using the ``export`` + function. Use ``max_depth=3`` as an initial tree depth to get a feel for + how the tree is fitting to your data, and then increase the depth. + +* Remember that the number of samples required to populate the tree doubles + for each additional level the tree grows to. Use ``max_depth`` to control + the size of the tree to prevent overfitting. + +* Use ``min_samples_split`` or ``min_samples_leaf`` to ensure that multiple + samples inform every decision in the tree, by controlling which splits will + be considered. A very small number will usually mean the tree will overfit, + whereas a large number will prevent the tree from learning the data. Try + ``min_samples_leaf=5`` as an initial value. If the sample size varies + greatly, a float number can be used as percentage in these two parameters. + While ``min_samples_split`` can create arbitrarily small leaves, + ``min_samples_leaf`` guarantees that each leaf has a minimum size, avoiding + low-variance, over-fit leaf nodes in regression problems. For + classification with few classes, ``min_samples_leaf=1`` is often the best + choice. + + Note that ``min_samples_split`` considers samples directly and independent of + ``sample_weight``, if provided (e.g. a node with m weighted samples is still + treated as having exactly m samples). Consider ``min_weight_fraction_leaf`` or + ``min_impurity_decrease`` if accounting for sample weights is required at splits. + +* Balance your dataset before training to prevent the tree from being biased + toward the classes that are dominant. Class balancing can be done by + sampling an equal number of samples from each class, or preferably by + normalizing the sum of the sample weights (``sample_weight``) for each + class to the same value. Also note that weight-based pre-pruning criteria, + such as ``min_weight_fraction_leaf``, will then be less biased toward + dominant classes than criteria that are not aware of the sample weights, + like ``min_samples_leaf``. + +* If the samples are weighted, it will be easier to optimize the tree + structure using weight-based pre-pruning criterion such as + ``min_weight_fraction_leaf``, which ensure that leaf nodes contain at least + a fraction of the overall sum of the sample weights. + +* All decision trees use ``np.float32`` arrays internally. + If training data is not in this format, a copy of the dataset will be made. + +* If the input matrix X is very sparse, it is recommended to convert to sparse + ``csc_matrix`` before calling fit and sparse ``csr_matrix`` before calling + predict. Training time can be orders of magnitude faster for a sparse + matrix input compared to a dense matrix when features have zero values in + most of the samples. .. _tree_algorithms: @@ -516,36 +516,36 @@ Log Loss or Entropy: H(Q_m) = - \sum_k p_{mk} \log(p_{mk}) |details-start| -Shannon entropy: +**Shannon entropy** |details-split| - The entropy criterion computes the Shannon entropy of the possible classes. It - takes the class frequencies of the training data points that reached a given - leaf :math:`m` as their probability. Using the **Shannon entropy as tree node - splitting criterion is equivalent to minimizing the log loss** (also known as - cross-entropy and multinomial deviance) between the true labels :math:`y_i` - and the probabilistic predictions :math:`T_k(x_i)` of the tree model :math:`T` for class :math:`k`. +The entropy criterion computes the Shannon entropy of the possible classes. It +takes the class frequencies of the training data points that reached a given +leaf :math:`m` as their probability. Using the **Shannon entropy as tree node +splitting criterion is equivalent to minimizing the log loss** (also known as +cross-entropy and multinomial deviance) between the true labels :math:`y_i` +and the probabilistic predictions :math:`T_k(x_i)` of the tree model :math:`T` for class :math:`k`. - To see this, first recall that the log loss of a tree model :math:`T` - computed on a dataset :math:`D` is defined as follows: +To see this, first recall that the log loss of a tree model :math:`T` +computed on a dataset :math:`D` is defined as follows: - .. math:: +.. math:: - \mathrm{LL}(D, T) = -\frac{1}{n} \sum_{(x_i, y_i) \in D} \sum_k I(y_i = k) \log(T_k(x_i)) + \mathrm{LL}(D, T) = -\frac{1}{n} \sum_{(x_i, y_i) \in D} \sum_k I(y_i = k) \log(T_k(x_i)) - where :math:`D` is a training dataset of :math:`n` pairs :math:`(x_i, y_i)`. +where :math:`D` is a training dataset of :math:`n` pairs :math:`(x_i, y_i)`. - In a classification tree, the predicted class probabilities within leaf nodes - are constant, that is: for all :math:`(x_i, y_i) \in Q_m`, one has: - :math:`T_k(x_i) = p_{mk}` for each class :math:`k`. +In a classification tree, the predicted class probabilities within leaf nodes +are constant, that is: for all :math:`(x_i, y_i) \in Q_m`, one has: +:math:`T_k(x_i) = p_{mk}` for each class :math:`k`. - This property makes it possible to rewrite :math:`\mathrm{LL}(D, T)` as the - sum of the Shannon entropies computed for each leaf of :math:`T` weighted by - the number of training data points that reached each leaf: +This property makes it possible to rewrite :math:`\mathrm{LL}(D, T)` as the +sum of the Shannon entropies computed for each leaf of :math:`T` weighted by +the number of training data points that reached each leaf: - .. math:: +.. math:: - \mathrm{LL}(D, T) = \sum_{m \in T} \frac{n_m}{n} H(Q_m) + \mathrm{LL}(D, T) = \sum_{m \in T} \frac{n_m}{n} H(Q_m) |details-end| @@ -605,50 +605,50 @@ the split with all the missing values going to the left node or the right node. Decisions are made as follows: - - By default when predicting, the samples with missing values are classified - with the class used in the split found during training:: +- By default when predicting, the samples with missing values are classified + with the class used in the split found during training:: - >>> from sklearn.tree import DecisionTreeClassifier - >>> import numpy as np + >>> from sklearn.tree import DecisionTreeClassifier + >>> import numpy as np - >>> X = np.array([0, 1, 6, np.nan]).reshape(-1, 1) - >>> y = [0, 0, 1, 1] + >>> X = np.array([0, 1, 6, np.nan]).reshape(-1, 1) + >>> y = [0, 0, 1, 1] - >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) - >>> tree.predict(X) - array([0, 0, 1, 1]) + >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) + >>> tree.predict(X) + array([0, 0, 1, 1]) - - If the criterion evaluation is the same for both nodes, - then the tie for missing value at predict time is broken by going to the - right node. The splitter also checks the split where all the missing - values go to one child and non-missing values go to the other:: +- If the criterion evaluation is the same for both nodes, + then the tie for missing value at predict time is broken by going to the + right node. The splitter also checks the split where all the missing + values go to one child and non-missing values go to the other:: - >>> from sklearn.tree import DecisionTreeClassifier - >>> import numpy as np + >>> from sklearn.tree import DecisionTreeClassifier + >>> import numpy as np - >>> X = np.array([np.nan, -1, np.nan, 1]).reshape(-1, 1) - >>> y = [0, 0, 1, 1] + >>> X = np.array([np.nan, -1, np.nan, 1]).reshape(-1, 1) + >>> y = [0, 0, 1, 1] - >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) + >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) - >>> X_test = np.array([np.nan]).reshape(-1, 1) - >>> tree.predict(X_test) - array([1]) + >>> X_test = np.array([np.nan]).reshape(-1, 1) + >>> tree.predict(X_test) + array([1]) - - If no missing values are seen during training for a given feature, then during - prediction missing values are mapped to the child with the most samples:: +- If no missing values are seen during training for a given feature, then during + prediction missing values are mapped to the child with the most samples:: - >>> from sklearn.tree import DecisionTreeClassifier - >>> import numpy as np + >>> from sklearn.tree import DecisionTreeClassifier + >>> import numpy as np - >>> X = np.array([0, 1, 2, 3]).reshape(-1, 1) - >>> y = [0, 1, 1, 1] + >>> X = np.array([0, 1, 2, 3]).reshape(-1, 1) + >>> y = [0, 1, 1, 1] - >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) + >>> tree = DecisionTreeClassifier(random_state=0).fit(X, y) - >>> X_test = np.array([np.nan]).reshape(-1, 1) - >>> tree.predict(X_test) - array([1]) + >>> X_test = np.array([np.nan]).reshape(-1, 1) + >>> tree.predict(X_test) + array([1]) .. _minimal_cost_complexity_pruning: @@ -693,17 +693,17 @@ be pruned. This process stops when the pruned tree's minimal **References** |details-split| - .. [BRE] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification - and Regression Trees. Wadsworth, Belmont, CA, 1984. +.. [BRE] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification + and Regression Trees. Wadsworth, Belmont, CA, 1984. - * https://en.wikipedia.org/wiki/Decision_tree_learning +* https://en.wikipedia.org/wiki/Decision_tree_learning - * https://en.wikipedia.org/wiki/Predictive_analytics +* https://en.wikipedia.org/wiki/Predictive_analytics - * J.R. Quinlan. C4. 5: programs for machine learning. Morgan - Kaufmann, 1993. +* J.R. Quinlan. C4. 5: programs for machine learning. Morgan + Kaufmann, 1993. - * T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical - Learning, Springer, 2009. +* T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical + Learning, Springer, 2009. |details-end| diff --git a/doc/presentations.rst b/doc/presentations.rst index 47b7f16bd74a0..19fd09218b5fd 100644 --- a/doc/presentations.rst +++ b/doc/presentations.rst @@ -37,40 +37,40 @@ Videos `_ by `Gael Varoquaux`_ at ICML 2010 - A three minute video from a very early stage of scikit-learn, explaining the - basic idea and approach we are following. + A three minute video from a very early stage of scikit-learn, explaining the + basic idea and approach we are following. - `Introduction to statistical learning with scikit-learn `_ by `Gael Varoquaux`_ at SciPy 2011 - An extensive tutorial, consisting of four sessions of one hour. - The tutorial covers the basics of machine learning, - many algorithms and how to apply them using scikit-learn. The - material corresponding is now in the scikit-learn documentation - section :ref:`stat_learn_tut_index`. + An extensive tutorial, consisting of four sessions of one hour. + The tutorial covers the basics of machine learning, + many algorithms and how to apply them using scikit-learn. The + material corresponding is now in the scikit-learn documentation + section :ref:`stat_learn_tut_index`. - `Statistical Learning for Text Classification with scikit-learn and NLTK `_ (and `slides `_) by `Olivier Grisel`_ at PyCon 2011 - Thirty minute introduction to text classification. Explains how to - use NLTK and scikit-learn to solve real-world text classification - tasks and compares against cloud-based solutions. + Thirty minute introduction to text classification. Explains how to + use NLTK and scikit-learn to solve real-world text classification + tasks and compares against cloud-based solutions. - `Introduction to Interactive Predictive Analytics in Python with scikit-learn `_ by `Olivier Grisel`_ at PyCon 2012 - 3-hours long introduction to prediction tasks using scikit-learn. + 3-hours long introduction to prediction tasks using scikit-learn. - `scikit-learn - Machine Learning in Python `_ by `Jake Vanderplas`_ at the 2012 PyData workshop at Google - Interactive demonstration of some scikit-learn features. 75 minutes. + Interactive demonstration of some scikit-learn features. 75 minutes. - `scikit-learn tutorial `_ by `Jake Vanderplas`_ at PyData NYC 2012 - Presentation using the online tutorial, 45 minutes. + Presentation using the online tutorial, 45 minutes. .. _Gael Varoquaux: https://gael-varoquaux.info diff --git a/doc/support.rst b/doc/support.rst index 520bd015ff6da..bb60f49c70716 100644 --- a/doc/support.rst +++ b/doc/support.rst @@ -60,11 +60,11 @@ https://github.com/scikit-learn/scikit-learn/issues Don't forget to include: - - steps (or better script) to reproduce, +- steps (or better script) to reproduce, - - expected outcome, +- expected outcome, - - observed outcome or Python (or gdb) tracebacks +- observed outcome or Python (or gdb) tracebacks To help developers fix your bug faster, please link to a https://gist.github.com holding a standalone minimalistic python script that reproduces your bug and diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst index d983d7806dce6..27dddb4e0e909 100644 --- a/doc/tutorial/basic/tutorial.rst +++ b/doc/tutorial/basic/tutorial.rst @@ -23,41 +23,41 @@ data), it is said to have several attributes or **features**. Learning problems fall into a few categories: - * `supervised learning `_, - in which the data comes with additional attributes that we want to predict - (:ref:`Click here ` - to go to the scikit-learn supervised learning page).This problem - can be either: - - * `classification - `_: - samples belong to two or more classes and we - want to learn from already labeled data how to predict the class - of unlabeled data. An example of a classification problem would - be handwritten digit recognition, in which the aim is - to assign each input vector to one of a finite number of discrete - categories. Another way to think of classification is as a discrete - (as opposed to continuous) form of supervised learning where one has a - limited number of categories and for each of the n samples provided, - one is to try to label them with the correct category or class. - - * `regression `_: - if the desired output consists of one or more - continuous variables, then the task is called *regression*. An - example of a regression problem would be the prediction of the - length of a salmon as a function of its age and weight. - - * `unsupervised learning `_, - in which the training data consists of a set of input vectors x - without any corresponding target values. The goal in such problems - may be to discover groups of similar examples within the data, where - it is called `clustering `_, - or to determine the distribution of data within the input space, known as - `density estimation `_, or - to project the data from a high-dimensional space down to two or three - dimensions for the purpose of *visualization* - (:ref:`Click here ` - to go to the Scikit-Learn unsupervised learning page). +* `supervised learning `_, + in which the data comes with additional attributes that we want to predict + (:ref:`Click here ` + to go to the scikit-learn supervised learning page).This problem + can be either: + + * `classification + `_: + samples belong to two or more classes and we + want to learn from already labeled data how to predict the class + of unlabeled data. An example of a classification problem would + be handwritten digit recognition, in which the aim is + to assign each input vector to one of a finite number of discrete + categories. Another way to think of classification is as a discrete + (as opposed to continuous) form of supervised learning where one has a + limited number of categories and for each of the n samples provided, + one is to try to label them with the correct category or class. + + * `regression `_: + if the desired output consists of one or more + continuous variables, then the task is called *regression*. An + example of a regression problem would be the prediction of the + length of a salmon as a function of its age and weight. + +* `unsupervised learning `_, + in which the training data consists of a set of input vectors x + without any corresponding target values. The goal in such problems + may be to discover groups of similar examples within the data, where + it is called `clustering `_, + or to determine the distribution of data within the input space, known as + `density estimation `_, or + to project the data from a high-dimensional space down to two or three + dimensions for the purpose of *visualization* + (:ref:`Click here ` + to go to the Scikit-Learn unsupervised learning page). .. topic:: Training set and testing set diff --git a/doc/tutorial/statistical_inference/model_selection.rst b/doc/tutorial/statistical_inference/model_selection.rst index dd0cec4de4db0..bf0290c9f7337 100644 --- a/doc/tutorial/statistical_inference/model_selection.rst +++ b/doc/tutorial/statistical_inference/model_selection.rst @@ -98,7 +98,7 @@ scoring method. ... scoring='precision_macro') array([0.96578289, 0.92708922, 0.96681476, 0.96362897, 0.93192644]) - **Cross-validation generators** +**Cross-validation generators** .. list-table:: @@ -185,8 +185,8 @@ scoring method. estimator with a linear kernel as a function of parameter ``C`` (use a logarithmic grid of points, from 1 to 10). - .. literalinclude:: ../../auto_examples/exercises/plot_cv_digits.py - :lines: 13-23 + .. literalinclude:: ../../auto_examples/exercises/plot_cv_digits.py + :lines: 13-23 .. image:: /auto_examples/exercises/images/sphx_glr_plot_cv_digits_001.png :target: ../../auto_examples/exercises/plot_cv_digits.html diff --git a/doc/tutorial/statistical_inference/putting_together.rst b/doc/tutorial/statistical_inference/putting_together.rst index 033bed2e33884..b28ba77bfac33 100644 --- a/doc/tutorial/statistical_inference/putting_together.rst +++ b/doc/tutorial/statistical_inference/putting_together.rst @@ -25,7 +25,7 @@ Face recognition with eigenfaces The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", also known as LFW_: - http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) +http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst index d7477b279662d..45fc4cf5b9bc0 100644 --- a/doc/tutorial/statistical_inference/supervised_learning.rst +++ b/doc/tutorial/statistical_inference/supervised_learning.rst @@ -157,10 +157,10 @@ of the model as small as possible. Linear models: :math:`y = X\beta + \epsilon` - * :math:`X`: data - * :math:`y`: target variable - * :math:`\beta`: Coefficients - * :math:`\epsilon`: Observation noise +* :math:`X`: data +* :math:`y`: target variable +* :math:`\beta`: Coefficients +* :math:`\epsilon`: Observation noise .. image:: /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png :target: ../../auto_examples/linear_model/plot_ols.html diff --git a/doc/tutorial/statistical_inference/unsupervised_learning.rst b/doc/tutorial/statistical_inference/unsupervised_learning.rst index e385eccaf592c..fd827cc75b212 100644 --- a/doc/tutorial/statistical_inference/unsupervised_learning.rst +++ b/doc/tutorial/statistical_inference/unsupervised_learning.rst @@ -12,7 +12,8 @@ Clustering: grouping observations together **clustering task**: split the observations into well-separated group called *clusters*. -.. +:: + >>> # Set the PRNG >>> import numpy as np >>> np.random.seed(1) @@ -100,18 +101,18 @@ A :ref:`hierarchical_clustering` method is a type of cluster analysis that aims to build a hierarchy of clusters. In general, the various approaches of this technique are either: - * **Agglomerative** - bottom-up approaches: each observation starts in its - own cluster, and clusters are iteratively merged in such a way to - minimize a *linkage* criterion. This approach is particularly interesting - when the clusters of interest are made of only a few observations. When - the number of clusters is large, it is much more computationally efficient - than k-means. - - * **Divisive** - top-down approaches: all observations start in one - cluster, which is iteratively split as one moves down the hierarchy. - For estimating large numbers of clusters, this approach is both slow (due - to all observations starting as one cluster, which it splits recursively) - and statistically ill-posed. +* **Agglomerative** - bottom-up approaches: each observation starts in its + own cluster, and clusters are iteratively merged in such a way to + minimize a *linkage* criterion. This approach is particularly interesting + when the clusters of interest are made of only a few observations. When + the number of clusters is large, it is much more computationally efficient + than k-means. + +* **Divisive** - top-down approaches: all observations start in one + cluster, which is iteratively split as one moves down the hierarchy. + For estimating large numbers of clusters, this approach is both slow (due + to all observations starting as one cluster, which it splits recursively) + and statistically ill-posed. Connectivity-constrained clustering ..................................... diff --git a/doc/tutorial/text_analytics/working_with_text_data.rst b/doc/tutorial/text_analytics/working_with_text_data.rst index 0880fe3118e4f..43fd305c3b8b6 100644 --- a/doc/tutorial/text_analytics/working_with_text_data.rst +++ b/doc/tutorial/text_analytics/working_with_text_data.rst @@ -10,14 +10,14 @@ documents (newsgroups posts) on twenty different topics. In this section we will see how to: - - load the file contents and the categories +- load the file contents and the categories - - extract feature vectors suitable for machine learning +- extract feature vectors suitable for machine learning - - train a linear model to perform categorization +- train a linear model to perform categorization - - use a grid search strategy to find a good configuration of both - the feature extraction components and the classifier +- use a grid search strategy to find a good configuration of both + the feature extraction components and the classifier Tutorial setup @@ -38,13 +38,13 @@ The source can also be found `on Github The tutorial folder should contain the following sub-folders: - * ``*.rst files`` - the source of the tutorial document written with sphinx +* ``*.rst files`` - the source of the tutorial document written with sphinx - * ``data`` - folder to put the datasets used during the tutorial +* ``data`` - folder to put the datasets used during the tutorial - * ``skeletons`` - sample incomplete scripts for the exercises +* ``skeletons`` - sample incomplete scripts for the exercises - * ``solutions`` - solutions of the exercises +* ``solutions`` - solutions of the exercises You can already copy the skeletons into a new folder somewhere @@ -180,13 +180,13 @@ Bags of words The most intuitive way to do so is to use a bags of words representation: - 1. Assign a fixed integer id to each word occurring in any document - of the training set (for instance by building a dictionary - from words to integer indices). +1. Assign a fixed integer id to each word occurring in any document + of the training set (for instance by building a dictionary + from words to integer indices). - 2. For each document ``#i``, count the number of occurrences of each - word ``w`` and store it in ``X[i, j]`` as the value of feature - ``#j`` where ``j`` is the index of word ``w`` in the dictionary. +2. For each document ``#i``, count the number of occurrences of each + word ``w`` and store it in ``X[i, j]`` as the value of feature + ``#j`` where ``j`` is the index of word ``w`` in the dictionary. The bags of words representation implies that ``n_features`` is the number of distinct words in the corpus: this number is typically diff --git a/doc/whats_new/older_versions.rst b/doc/whats_new/older_versions.rst index 5a1d6a1c7c13f..12ed10a6206f4 100644 --- a/doc/whats_new/older_versions.rst +++ b/doc/whats_new/older_versions.rst @@ -40,14 +40,14 @@ Changelog People ------ - * 14 `Peter Prettenhofer`_ - * 12 `Gael Varoquaux`_ - * 10 `Andreas Müller`_ - * 5 `Lars Buitinck`_ - * 3 :user:`Virgile Fritsch ` - * 1 `Alexandre Gramfort`_ - * 1 `Gilles Louppe`_ - * 1 `Mathieu Blondel`_ +* 14 `Peter Prettenhofer`_ +* 12 `Gael Varoquaux`_ +* 10 `Andreas Müller`_ +* 5 `Lars Buitinck`_ +* 3 :user:`Virgile Fritsch ` +* 1 `Alexandre Gramfort`_ +* 1 `Gilles Louppe`_ +* 1 `Mathieu Blondel`_ .. _changes_0_12: @@ -194,53 +194,53 @@ API changes summary People ------ - * 267 `Andreas Müller`_ - * 94 `Gilles Louppe`_ - * 89 `Gael Varoquaux`_ - * 79 `Peter Prettenhofer`_ - * 60 `Mathieu Blondel`_ - * 57 `Alexandre Gramfort`_ - * 52 `Vlad Niculae`_ - * 45 `Lars Buitinck`_ - * 44 Nelle Varoquaux - * 37 `Jaques Grobler`_ - * 30 Alexis Mignon - * 30 Immanuel Bayer - * 27 `Olivier Grisel`_ - * 16 Subhodeep Moitra - * 13 Yannick Schwartz - * 12 :user:`@kernc ` - * 11 :user:`Virgile Fritsch ` - * 9 Daniel Duckworth - * 9 `Fabian Pedregosa`_ - * 9 `Robert Layton`_ - * 8 John Benediktsson - * 7 Marko Burjek - * 5 `Nicolas Pinto`_ - * 4 Alexandre Abraham - * 4 `Jake Vanderplas`_ - * 3 `Brian Holt`_ - * 3 `Edouard Duchesnay`_ - * 3 Florian Hoenig - * 3 flyingimmidev - * 2 Francois Savard - * 2 Hannes Schulz - * 2 Peter Welinder - * 2 `Yaroslav Halchenko`_ - * 2 Wei Li - * 1 Alex Companioni - * 1 Brandyn A. White - * 1 Bussonnier Matthias - * 1 Charles-Pierre Astolfi - * 1 Dan O'Huiginn - * 1 David Cournapeau - * 1 Keith Goodman - * 1 Ludwig Schwardt - * 1 Olivier Hervieu - * 1 Sergio Medina - * 1 Shiqiao Du - * 1 Tim Sheerman-Chase - * 1 buguen +* 267 `Andreas Müller`_ +* 94 `Gilles Louppe`_ +* 89 `Gael Varoquaux`_ +* 79 `Peter Prettenhofer`_ +* 60 `Mathieu Blondel`_ +* 57 `Alexandre Gramfort`_ +* 52 `Vlad Niculae`_ +* 45 `Lars Buitinck`_ +* 44 Nelle Varoquaux +* 37 `Jaques Grobler`_ +* 30 Alexis Mignon +* 30 Immanuel Bayer +* 27 `Olivier Grisel`_ +* 16 Subhodeep Moitra +* 13 Yannick Schwartz +* 12 :user:`@kernc ` +* 11 :user:`Virgile Fritsch ` +* 9 Daniel Duckworth +* 9 `Fabian Pedregosa`_ +* 9 `Robert Layton`_ +* 8 John Benediktsson +* 7 Marko Burjek +* 5 `Nicolas Pinto`_ +* 4 Alexandre Abraham +* 4 `Jake Vanderplas`_ +* 3 `Brian Holt`_ +* 3 `Edouard Duchesnay`_ +* 3 Florian Hoenig +* 3 flyingimmidev +* 2 Francois Savard +* 2 Hannes Schulz +* 2 Peter Welinder +* 2 `Yaroslav Halchenko`_ +* 2 Wei Li +* 1 Alex Companioni +* 1 Brandyn A. White +* 1 Bussonnier Matthias +* 1 Charles-Pierre Astolfi +* 1 Dan O'Huiginn +* 1 David Cournapeau +* 1 Keith Goodman +* 1 Ludwig Schwardt +* 1 Olivier Hervieu +* 1 Sergio Medina +* 1 Shiqiao Du +* 1 Tim Sheerman-Chase +* 1 buguen @@ -431,54 +431,55 @@ API changes summary People ------ - * 282 `Andreas Müller`_ - * 239 `Peter Prettenhofer`_ - * 198 `Gael Varoquaux`_ - * 129 `Olivier Grisel`_ - * 114 `Mathieu Blondel`_ - * 103 Clay Woolam - * 96 `Lars Buitinck`_ - * 88 `Jaques Grobler`_ - * 82 `Alexandre Gramfort`_ - * 50 `Bertrand Thirion`_ - * 42 `Robert Layton`_ - * 28 flyingimmidev - * 26 `Jake Vanderplas`_ - * 26 Shiqiao Du - * 21 `Satrajit Ghosh`_ - * 17 `David Marek`_ - * 17 `Gilles Louppe`_ - * 14 `Vlad Niculae`_ - * 11 Yannick Schwartz - * 10 `Fabian Pedregosa`_ - * 9 fcostin - * 7 Nick Wilson - * 5 Adrien Gaidon - * 5 `Nicolas Pinto`_ - * 4 `David Warde-Farley`_ - * 5 Nelle Varoquaux - * 5 Emmanuelle Gouillart - * 3 Joonas Sillanpää - * 3 Paolo Losi - * 2 Charles McCarthy - * 2 Roy Hyunjin Han - * 2 Scott White - * 2 ibayer - * 1 Brandyn White - * 1 Carlos Scheidegger - * 1 Claire Revillet - * 1 Conrad Lee - * 1 `Edouard Duchesnay`_ - * 1 Jan Hendrik Metzen - * 1 Meng Xinfan - * 1 `Rob Zinkov`_ - * 1 Shiqiao - * 1 Udi Weinsberg - * 1 Virgile Fritsch - * 1 Xinfan Meng - * 1 Yaroslav Halchenko - * 1 jansoe - * 1 Leon Palafox + +* 282 `Andreas Müller`_ +* 239 `Peter Prettenhofer`_ +* 198 `Gael Varoquaux`_ +* 129 `Olivier Grisel`_ +* 114 `Mathieu Blondel`_ +* 103 Clay Woolam +* 96 `Lars Buitinck`_ +* 88 `Jaques Grobler`_ +* 82 `Alexandre Gramfort`_ +* 50 `Bertrand Thirion`_ +* 42 `Robert Layton`_ +* 28 flyingimmidev +* 26 `Jake Vanderplas`_ +* 26 Shiqiao Du +* 21 `Satrajit Ghosh`_ +* 17 `David Marek`_ +* 17 `Gilles Louppe`_ +* 14 `Vlad Niculae`_ +* 11 Yannick Schwartz +* 10 `Fabian Pedregosa`_ +* 9 fcostin +* 7 Nick Wilson +* 5 Adrien Gaidon +* 5 `Nicolas Pinto`_ +* 4 `David Warde-Farley`_ +* 5 Nelle Varoquaux +* 5 Emmanuelle Gouillart +* 3 Joonas Sillanpää +* 3 Paolo Losi +* 2 Charles McCarthy +* 2 Roy Hyunjin Han +* 2 Scott White +* 2 ibayer +* 1 Brandyn White +* 1 Carlos Scheidegger +* 1 Claire Revillet +* 1 Conrad Lee +* 1 `Edouard Duchesnay`_ +* 1 Jan Hendrik Metzen +* 1 Meng Xinfan +* 1 `Rob Zinkov`_ +* 1 Shiqiao +* 1 Udi Weinsberg +* 1 Virgile Fritsch +* 1 Xinfan Meng +* 1 Yaroslav Halchenko +* 1 jansoe +* 1 Leon Palafox .. _changes_0_10: @@ -634,37 +635,37 @@ People The following people contributed to scikit-learn since last release: - * 246 `Andreas Müller`_ - * 242 `Olivier Grisel`_ - * 220 `Gilles Louppe`_ - * 183 `Brian Holt`_ - * 166 `Gael Varoquaux`_ - * 144 `Lars Buitinck`_ - * 73 `Vlad Niculae`_ - * 65 `Peter Prettenhofer`_ - * 64 `Fabian Pedregosa`_ - * 60 Robert Layton - * 55 `Mathieu Blondel`_ - * 52 `Jake Vanderplas`_ - * 44 Noel Dawe - * 38 `Alexandre Gramfort`_ - * 24 :user:`Virgile Fritsch ` - * 23 `Satrajit Ghosh`_ - * 3 Jan Hendrik Metzen - * 3 Kenneth C. Arnold - * 3 Shiqiao Du - * 3 Tim Sheerman-Chase - * 3 `Yaroslav Halchenko`_ - * 2 Bala Subrahmanyam Varanasi - * 2 DraXus - * 2 Michael Eickenberg - * 1 Bogdan Trach - * 1 Félix-Antoine Fortin - * 1 Juan Manuel Caicedo Carvajal - * 1 Nelle Varoquaux - * 1 `Nicolas Pinto`_ - * 1 Tiziano Zito - * 1 Xinfan Meng +* 246 `Andreas Müller`_ +* 242 `Olivier Grisel`_ +* 220 `Gilles Louppe`_ +* 183 `Brian Holt`_ +* 166 `Gael Varoquaux`_ +* 144 `Lars Buitinck`_ +* 73 `Vlad Niculae`_ +* 65 `Peter Prettenhofer`_ +* 64 `Fabian Pedregosa`_ +* 60 Robert Layton +* 55 `Mathieu Blondel`_ +* 52 `Jake Vanderplas`_ +* 44 Noel Dawe +* 38 `Alexandre Gramfort`_ +* 24 :user:`Virgile Fritsch ` +* 23 `Satrajit Ghosh`_ +* 3 Jan Hendrik Metzen +* 3 Kenneth C. Arnold +* 3 Shiqiao Du +* 3 Tim Sheerman-Chase +* 3 `Yaroslav Halchenko`_ +* 2 Bala Subrahmanyam Varanasi +* 2 DraXus +* 2 Michael Eickenberg +* 1 Bogdan Trach +* 1 Félix-Antoine Fortin +* 1 Juan Manuel Caicedo Carvajal +* 1 Nelle Varoquaux +* 1 `Nicolas Pinto`_ +* 1 Tiziano Zito +* 1 Xinfan Meng @@ -993,20 +994,20 @@ People that made this release possible preceded by number of commits: - 25 `Peter Prettenhofer`_ - 22 `Nicolas Pinto`_ - 11 :user:`Virgile Fritsch ` - - 7 Lars Buitinck - - 6 Vincent Michel - - 5 `Bertrand Thirion`_ - - 4 Thouis (Ray) Jones - - 4 Vincent Schut - - 3 Jan Schlüter - - 2 Julien Miotte - - 2 `Matthieu Perrot`_ - - 2 Yann Malet - - 2 `Yaroslav Halchenko`_ - - 1 Amit Aides - - 1 `Andreas Müller`_ - - 1 Feth Arezki - - 1 Meng Xinfan +- 7 Lars Buitinck +- 6 Vincent Michel +- 5 `Bertrand Thirion`_ +- 4 Thouis (Ray) Jones +- 4 Vincent Schut +- 3 Jan Schlüter +- 2 Julien Miotte +- 2 `Matthieu Perrot`_ +- 2 Yann Malet +- 2 `Yaroslav Halchenko`_ +- 1 Amit Aides +- 1 `Andreas Müller`_ +- 1 Feth Arezki +- 1 Meng Xinfan .. _changes_0_7: @@ -1175,31 +1176,31 @@ People People that made this release possible preceded by number of commits: - * 207 `Olivier Grisel`_ +* 207 `Olivier Grisel`_ - * 167 `Fabian Pedregosa`_ +* 167 `Fabian Pedregosa`_ - * 97 `Peter Prettenhofer`_ +* 97 `Peter Prettenhofer`_ - * 68 `Alexandre Gramfort`_ +* 68 `Alexandre Gramfort`_ - * 59 `Mathieu Blondel`_ +* 59 `Mathieu Blondel`_ - * 55 `Gael Varoquaux`_ +* 55 `Gael Varoquaux`_ - * 33 Vincent Dubourg +* 33 Vincent Dubourg - * 21 `Ron Weiss`_ +* 21 `Ron Weiss`_ - * 9 Bertrand Thirion +* 9 Bertrand Thirion - * 3 `Alexandre Passos`_ +* 3 `Alexandre Passos`_ - * 3 Anne-Laure Fouque +* 3 Anne-Laure Fouque - * 2 Ronan Amicel +* 2 Ronan Amicel - * 1 `Christian Osendorfer`_ +* 1 `Christian Osendorfer`_ @@ -1304,20 +1305,20 @@ Authors The following is a list of authors for this release, preceded by number of commits: - * 262 Fabian Pedregosa - * 240 Gael Varoquaux - * 149 Alexandre Gramfort - * 116 Olivier Grisel - * 40 Vincent Michel - * 38 Ron Weiss - * 23 Matthieu Perrot - * 10 Bertrand Thirion - * 7 Yaroslav Halchenko - * 9 VirgileFritsch - * 6 Edouard Duchesnay - * 4 Mathieu Blondel - * 1 Ariel Rokem - * 1 Matthieu Brucher +* 262 Fabian Pedregosa +* 240 Gael Varoquaux +* 149 Alexandre Gramfort +* 116 Olivier Grisel +* 40 Vincent Michel +* 38 Ron Weiss +* 23 Matthieu Perrot +* 10 Bertrand Thirion +* 7 Yaroslav Halchenko +* 9 VirgileFritsch +* 6 Edouard Duchesnay +* 4 Mathieu Blondel +* 1 Ariel Rokem +* 1 Matthieu Brucher Version 0.4 =========== @@ -1368,13 +1369,13 @@ Authors The committer list for this release is the following (preceded by number of commits): - * 143 Fabian Pedregosa - * 35 Alexandre Gramfort - * 34 Olivier Grisel - * 11 Gael Varoquaux - * 5 Yaroslav Halchenko - * 2 Vincent Michel - * 1 Chris Filo Gorgolewski +* 143 Fabian Pedregosa +* 35 Alexandre Gramfort +* 34 Olivier Grisel +* 11 Gael Varoquaux +* 5 Yaroslav Halchenko +* 2 Vincent Michel +* 1 Chris Filo Gorgolewski Earlier versions diff --git a/doc/whats_new/v0.13.rst b/doc/whats_new/v0.13.rst index 00be322bf38fc..6c24d1c52b150 100644 --- a/doc/whats_new/v0.13.rst +++ b/doc/whats_new/v0.13.rst @@ -33,21 +33,22 @@ Changelog People ------ List of contributors for release 0.13.1 by number of commits. - * 16 `Lars Buitinck`_ - * 12 `Andreas Müller`_ - * 8 `Gael Varoquaux`_ - * 5 Robert Marchman - * 3 `Peter Prettenhofer`_ - * 2 Hrishikesh Huilgolkar - * 1 Bastiaan van den Berg - * 1 Diego Molla - * 1 `Gilles Louppe`_ - * 1 `Mathieu Blondel`_ - * 1 `Nelle Varoquaux`_ - * 1 Rafael Cunha de Almeida - * 1 Rolando Espinoza La fuente - * 1 `Vlad Niculae`_ - * 1 `Yaroslav Halchenko`_ + +* 16 `Lars Buitinck`_ +* 12 `Andreas Müller`_ +* 8 `Gael Varoquaux`_ +* 5 Robert Marchman +* 3 `Peter Prettenhofer`_ +* 2 Hrishikesh Huilgolkar +* 1 Bastiaan van den Berg +* 1 Diego Molla +* 1 `Gilles Louppe`_ +* 1 `Mathieu Blondel`_ +* 1 `Nelle Varoquaux`_ +* 1 Rafael Cunha de Almeida +* 1 Rolando Espinoza La fuente +* 1 `Vlad Niculae`_ +* 1 `Yaroslav Halchenko`_ .. _changes_0_13: @@ -323,69 +324,69 @@ People ------ List of contributors for release 0.13 by number of commits. - * 364 `Andreas Müller`_ - * 143 `Arnaud Joly`_ - * 137 `Peter Prettenhofer`_ - * 131 `Gael Varoquaux`_ - * 117 `Mathieu Blondel`_ - * 108 `Lars Buitinck`_ - * 106 Wei Li - * 101 `Olivier Grisel`_ - * 65 `Vlad Niculae`_ - * 54 `Gilles Louppe`_ - * 40 `Jaques Grobler`_ - * 38 `Alexandre Gramfort`_ - * 30 `Rob Zinkov`_ - * 19 Aymeric Masurelle - * 18 Andrew Winterman - * 17 `Fabian Pedregosa`_ - * 17 Nelle Varoquaux - * 16 `Christian Osendorfer`_ - * 14 `Daniel Nouri`_ - * 13 :user:`Virgile Fritsch ` - * 13 syhw - * 12 `Satrajit Ghosh`_ - * 10 Corey Lynch - * 10 Kyle Beauchamp - * 9 Brian Cheung - * 9 Immanuel Bayer - * 9 mr.Shu - * 8 Conrad Lee - * 8 `James Bergstra`_ - * 7 Tadej Janež - * 6 Brian Cajes - * 6 `Jake Vanderplas`_ - * 6 Michael - * 6 Noel Dawe - * 6 Tiago Nunes - * 6 cow - * 5 Anze - * 5 Shiqiao Du - * 4 Christian Jauvin - * 4 Jacques Kvam - * 4 Richard T. Guy - * 4 `Robert Layton`_ - * 3 Alexandre Abraham - * 3 Doug Coleman - * 3 Scott Dickerson - * 2 ApproximateIdentity - * 2 John Benediktsson - * 2 Mark Veronda - * 2 Matti Lyra - * 2 Mikhail Korobov - * 2 Xinfan Meng - * 1 Alejandro Weinstein - * 1 `Alexandre Passos`_ - * 1 Christoph Deil - * 1 Eugene Nizhibitsky - * 1 Kenneth C. Arnold - * 1 Luis Pedro Coelho - * 1 Miroslav Batchkarov - * 1 Pavel - * 1 Sebastian Berg - * 1 Shaun Jackman - * 1 Subhodeep Moitra - * 1 bob - * 1 dengemann - * 1 emanuele - * 1 x006 +* 364 `Andreas Müller`_ +* 143 `Arnaud Joly`_ +* 137 `Peter Prettenhofer`_ +* 131 `Gael Varoquaux`_ +* 117 `Mathieu Blondel`_ +* 108 `Lars Buitinck`_ +* 106 Wei Li +* 101 `Olivier Grisel`_ +* 65 `Vlad Niculae`_ +* 54 `Gilles Louppe`_ +* 40 `Jaques Grobler`_ +* 38 `Alexandre Gramfort`_ +* 30 `Rob Zinkov`_ +* 19 Aymeric Masurelle +* 18 Andrew Winterman +* 17 `Fabian Pedregosa`_ +* 17 Nelle Varoquaux +* 16 `Christian Osendorfer`_ +* 14 `Daniel Nouri`_ +* 13 :user:`Virgile Fritsch ` +* 13 syhw +* 12 `Satrajit Ghosh`_ +* 10 Corey Lynch +* 10 Kyle Beauchamp +* 9 Brian Cheung +* 9 Immanuel Bayer +* 9 mr.Shu +* 8 Conrad Lee +* 8 `James Bergstra`_ +* 7 Tadej Janež +* 6 Brian Cajes +* 6 `Jake Vanderplas`_ +* 6 Michael +* 6 Noel Dawe +* 6 Tiago Nunes +* 6 cow +* 5 Anze +* 5 Shiqiao Du +* 4 Christian Jauvin +* 4 Jacques Kvam +* 4 Richard T. Guy +* 4 `Robert Layton`_ +* 3 Alexandre Abraham +* 3 Doug Coleman +* 3 Scott Dickerson +* 2 ApproximateIdentity +* 2 John Benediktsson +* 2 Mark Veronda +* 2 Matti Lyra +* 2 Mikhail Korobov +* 2 Xinfan Meng +* 1 Alejandro Weinstein +* 1 `Alexandre Passos`_ +* 1 Christoph Deil +* 1 Eugene Nizhibitsky +* 1 Kenneth C. Arnold +* 1 Luis Pedro Coelho +* 1 Miroslav Batchkarov +* 1 Pavel +* 1 Sebastian Berg +* 1 Shaun Jackman +* 1 Subhodeep Moitra +* 1 bob +* 1 dengemann +* 1 emanuele +* 1 x006 diff --git a/doc/whats_new/v0.14.rst b/doc/whats_new/v0.14.rst index 4bd04ad180c4e..74ef162e20e5a 100644 --- a/doc/whats_new/v0.14.rst +++ b/doc/whats_new/v0.14.rst @@ -297,91 +297,91 @@ People ------ List of contributors for release 0.14 by number of commits. - * 277 Gilles Louppe - * 245 Lars Buitinck - * 187 Andreas Mueller - * 124 Arnaud Joly - * 112 Jaques Grobler - * 109 Gael Varoquaux - * 107 Olivier Grisel - * 102 Noel Dawe - * 99 Kemal Eren - * 79 Joel Nothman - * 75 Jake VanderPlas - * 73 Nelle Varoquaux - * 71 Vlad Niculae - * 65 Peter Prettenhofer - * 64 Alexandre Gramfort - * 54 Mathieu Blondel - * 38 Nicolas Trésegnie - * 35 eustache - * 27 Denis Engemann - * 25 Yann N. Dauphin - * 19 Justin Vincent - * 17 Robert Layton - * 15 Doug Coleman - * 14 Michael Eickenberg - * 13 Robert Marchman - * 11 Fabian Pedregosa - * 11 Philippe Gervais - * 10 Jim Holmström - * 10 Tadej Janež - * 10 syhw - * 9 Mikhail Korobov - * 9 Steven De Gryze - * 8 sergeyf - * 7 Ben Root - * 7 Hrishikesh Huilgolkar - * 6 Kyle Kastner - * 6 Martin Luessi - * 6 Rob Speer - * 5 Federico Vaggi - * 5 Raul Garreta - * 5 Rob Zinkov - * 4 Ken Geis - * 3 A. Flaxman - * 3 Denton Cockburn - * 3 Dougal Sutherland - * 3 Ian Ozsvald - * 3 Johannes Schönberger - * 3 Robert McGibbon - * 3 Roman Sinayev - * 3 Szabo Roland - * 2 Diego Molla - * 2 Imran Haque - * 2 Jochen Wersdörfer - * 2 Sergey Karayev - * 2 Yannick Schwartz - * 2 jamestwebber - * 1 Abhijeet Kolhe - * 1 Alexander Fabisch - * 1 Bastiaan van den Berg - * 1 Benjamin Peterson - * 1 Daniel Velkov - * 1 Fazlul Shahriar - * 1 Felix Brockherde - * 1 Félix-Antoine Fortin - * 1 Harikrishnan S - * 1 Jack Hale - * 1 JakeMick - * 1 James McDermott - * 1 John Benediktsson - * 1 John Zwinck - * 1 Joshua Vredevoogd - * 1 Justin Pati - * 1 Kevin Hughes - * 1 Kyle Kelley - * 1 Matthias Ekman - * 1 Miroslav Shubernetskiy - * 1 Naoki Orii - * 1 Norbert Crombach - * 1 Rafael Cunha de Almeida - * 1 Rolando Espinoza La fuente - * 1 Seamus Abshere - * 1 Sergey Feldman - * 1 Sergio Medina - * 1 Stefano Lattarini - * 1 Steve Koch - * 1 Sturla Molden - * 1 Thomas Jarosch - * 1 Yaroslav Halchenko +* 277 Gilles Louppe +* 245 Lars Buitinck +* 187 Andreas Mueller +* 124 Arnaud Joly +* 112 Jaques Grobler +* 109 Gael Varoquaux +* 107 Olivier Grisel +* 102 Noel Dawe +* 99 Kemal Eren +* 79 Joel Nothman +* 75 Jake VanderPlas +* 73 Nelle Varoquaux +* 71 Vlad Niculae +* 65 Peter Prettenhofer +* 64 Alexandre Gramfort +* 54 Mathieu Blondel +* 38 Nicolas Trésegnie +* 35 eustache +* 27 Denis Engemann +* 25 Yann N. Dauphin +* 19 Justin Vincent +* 17 Robert Layton +* 15 Doug Coleman +* 14 Michael Eickenberg +* 13 Robert Marchman +* 11 Fabian Pedregosa +* 11 Philippe Gervais +* 10 Jim Holmström +* 10 Tadej Janež +* 10 syhw +* 9 Mikhail Korobov +* 9 Steven De Gryze +* 8 sergeyf +* 7 Ben Root +* 7 Hrishikesh Huilgolkar +* 6 Kyle Kastner +* 6 Martin Luessi +* 6 Rob Speer +* 5 Federico Vaggi +* 5 Raul Garreta +* 5 Rob Zinkov +* 4 Ken Geis +* 3 A. Flaxman +* 3 Denton Cockburn +* 3 Dougal Sutherland +* 3 Ian Ozsvald +* 3 Johannes Schönberger +* 3 Robert McGibbon +* 3 Roman Sinayev +* 3 Szabo Roland +* 2 Diego Molla +* 2 Imran Haque +* 2 Jochen Wersdörfer +* 2 Sergey Karayev +* 2 Yannick Schwartz +* 2 jamestwebber +* 1 Abhijeet Kolhe +* 1 Alexander Fabisch +* 1 Bastiaan van den Berg +* 1 Benjamin Peterson +* 1 Daniel Velkov +* 1 Fazlul Shahriar +* 1 Felix Brockherde +* 1 Félix-Antoine Fortin +* 1 Harikrishnan S +* 1 Jack Hale +* 1 JakeMick +* 1 James McDermott +* 1 John Benediktsson +* 1 John Zwinck +* 1 Joshua Vredevoogd +* 1 Justin Pati +* 1 Kevin Hughes +* 1 Kyle Kelley +* 1 Matthias Ekman +* 1 Miroslav Shubernetskiy +* 1 Naoki Orii +* 1 Norbert Crombach +* 1 Rafael Cunha de Almeida +* 1 Rolando Espinoza La fuente +* 1 Seamus Abshere +* 1 Sergey Feldman +* 1 Sergio Medina +* 1 Stefano Lattarini +* 1 Steve Koch +* 1 Sturla Molden +* 1 Thomas Jarosch +* 1 Yaroslav Halchenko diff --git a/doc/whats_new/v0.20.rst b/doc/whats_new/v0.20.rst index 55c3aa5ef59e2..b295205bbbe57 100644 --- a/doc/whats_new/v0.20.rst +++ b/doc/whats_new/v0.20.rst @@ -53,7 +53,7 @@ The bundled version of joblib was upgraded from 0.13.0 to 0.13.2. restored from a pickle if ``sample_weight`` had been used. :issue:`13772` by :user:`Aditya Vyas `. - .. _changes_0_20_3: +.. _changes_0_20_3: Version 0.20.3 ============== diff --git a/sklearn/datasets/descr/breast_cancer.rst b/sklearn/datasets/descr/breast_cancer.rst index a532ef960737f..ceabd33e14ddc 100644 --- a/sklearn/datasets/descr/breast_cancer.rst +++ b/sklearn/datasets/descr/breast_cancer.rst @@ -5,77 +5,77 @@ Breast cancer wisconsin (diagnostic) dataset **Data Set Characteristics:** - :Number of Instances: 569 - - :Number of Attributes: 30 numeric, predictive attributes and the class - - :Attribute Information: - - radius (mean of distances from center to points on the perimeter) - - texture (standard deviation of gray-scale values) - - perimeter - - area - - smoothness (local variation in radius lengths) - - compactness (perimeter^2 / area - 1.0) - - concavity (severity of concave portions of the contour) - - concave points (number of concave portions of the contour) - - symmetry - - fractal dimension ("coastline approximation" - 1) - - The mean, standard error, and "worst" or largest (mean of the three - worst/largest values) of these features were computed for each image, - resulting in 30 features. For instance, field 0 is Mean Radius, field - 10 is Radius SE, field 20 is Worst Radius. - - - class: - - WDBC-Malignant - - WDBC-Benign - - :Summary Statistics: - - ===================================== ====== ====== - Min Max - ===================================== ====== ====== - radius (mean): 6.981 28.11 - texture (mean): 9.71 39.28 - perimeter (mean): 43.79 188.5 - area (mean): 143.5 2501.0 - smoothness (mean): 0.053 0.163 - compactness (mean): 0.019 0.345 - concavity (mean): 0.0 0.427 - concave points (mean): 0.0 0.201 - symmetry (mean): 0.106 0.304 - fractal dimension (mean): 0.05 0.097 - radius (standard error): 0.112 2.873 - texture (standard error): 0.36 4.885 - perimeter (standard error): 0.757 21.98 - area (standard error): 6.802 542.2 - smoothness (standard error): 0.002 0.031 - compactness (standard error): 0.002 0.135 - concavity (standard error): 0.0 0.396 - concave points (standard error): 0.0 0.053 - symmetry (standard error): 0.008 0.079 - fractal dimension (standard error): 0.001 0.03 - radius (worst): 7.93 36.04 - texture (worst): 12.02 49.54 - perimeter (worst): 50.41 251.2 - area (worst): 185.2 4254.0 - smoothness (worst): 0.071 0.223 - compactness (worst): 0.027 1.058 - concavity (worst): 0.0 1.252 - concave points (worst): 0.0 0.291 - symmetry (worst): 0.156 0.664 - fractal dimension (worst): 0.055 0.208 - ===================================== ====== ====== - - :Missing Attribute Values: None - - :Class Distribution: 212 - Malignant, 357 - Benign - - :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian - - :Donor: Nick Street - - :Date: November, 1995 +:Number of Instances: 569 + +:Number of Attributes: 30 numeric, predictive attributes and the class + +:Attribute Information: + - radius (mean of distances from center to points on the perimeter) + - texture (standard deviation of gray-scale values) + - perimeter + - area + - smoothness (local variation in radius lengths) + - compactness (perimeter^2 / area - 1.0) + - concavity (severity of concave portions of the contour) + - concave points (number of concave portions of the contour) + - symmetry + - fractal dimension ("coastline approximation" - 1) + + The mean, standard error, and "worst" or largest (mean of the three + worst/largest values) of these features were computed for each image, + resulting in 30 features. For instance, field 0 is Mean Radius, field + 10 is Radius SE, field 20 is Worst Radius. + + - class: + - WDBC-Malignant + - WDBC-Benign + +:Summary Statistics: + +===================================== ====== ====== + Min Max +===================================== ====== ====== +radius (mean): 6.981 28.11 +texture (mean): 9.71 39.28 +perimeter (mean): 43.79 188.5 +area (mean): 143.5 2501.0 +smoothness (mean): 0.053 0.163 +compactness (mean): 0.019 0.345 +concavity (mean): 0.0 0.427 +concave points (mean): 0.0 0.201 +symmetry (mean): 0.106 0.304 +fractal dimension (mean): 0.05 0.097 +radius (standard error): 0.112 2.873 +texture (standard error): 0.36 4.885 +perimeter (standard error): 0.757 21.98 +area (standard error): 6.802 542.2 +smoothness (standard error): 0.002 0.031 +compactness (standard error): 0.002 0.135 +concavity (standard error): 0.0 0.396 +concave points (standard error): 0.0 0.053 +symmetry (standard error): 0.008 0.079 +fractal dimension (standard error): 0.001 0.03 +radius (worst): 7.93 36.04 +texture (worst): 12.02 49.54 +perimeter (worst): 50.41 251.2 +area (worst): 185.2 4254.0 +smoothness (worst): 0.071 0.223 +compactness (worst): 0.027 1.058 +concavity (worst): 0.0 1.252 +concave points (worst): 0.0 0.291 +symmetry (worst): 0.156 0.664 +fractal dimension (worst): 0.055 0.208 +===================================== ====== ====== + +:Missing Attribute Values: None + +:Class Distribution: 212 - Malignant, 357 - Benign + +:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian + +:Donor: Nick Street + +:Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 @@ -108,15 +108,15 @@ cd math-prog/cpo-dataset/machine-learn/WDBC/ **References** |details-split| -- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction - for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on +- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction + for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. -- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and - prognosis via linear programming. Operations Research, 43(4), pages 570-577, +- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and + prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques - to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) + to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. -|details-end| \ No newline at end of file +|details-end| diff --git a/sklearn/datasets/descr/california_housing.rst b/sklearn/datasets/descr/california_housing.rst index f5756533b2769..33ff111fef541 100644 --- a/sklearn/datasets/descr/california_housing.rst +++ b/sklearn/datasets/descr/california_housing.rst @@ -5,21 +5,21 @@ California Housing dataset **Data Set Characteristics:** - :Number of Instances: 20640 +:Number of Instances: 20640 - :Number of Attributes: 8 numeric, predictive attributes and the target +:Number of Attributes: 8 numeric, predictive attributes and the target - :Attribute Information: - - MedInc median income in block group - - HouseAge median house age in block group - - AveRooms average number of rooms per household - - AveBedrms average number of bedrooms per household - - Population block group population - - AveOccup average number of household members - - Latitude block group latitude - - Longitude block group longitude +:Attribute Information: + - MedInc median income in block group + - HouseAge median house age in block group + - AveRooms average number of rooms per household + - AveBedrms average number of bedrooms per household + - Population block group population + - AveOccup average number of household members + - Latitude block group latitude + - Longitude block group longitude - :Missing Attribute Values: None +:Missing Attribute Values: None This dataset was obtained from the StatLib repository. https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html diff --git a/sklearn/datasets/descr/covtype.rst b/sklearn/datasets/descr/covtype.rst index 0090b8e4a6b7d..f4b752ade17a7 100644 --- a/sklearn/datasets/descr/covtype.rst +++ b/sklearn/datasets/descr/covtype.rst @@ -14,12 +14,12 @@ while others are discrete or continuous measurements. **Data Set Characteristics:** - ================= ============ - Classes 7 - Samples total 581012 - Dimensionality 54 - Features int - ================= ============ +================= ============ +Classes 7 +Samples total 581012 +Dimensionality 54 +Features int +================= ============ :func:`sklearn.datasets.fetch_covtype` will load the covertype dataset; it returns a dictionary-like 'Bunch' object diff --git a/sklearn/datasets/descr/diabetes.rst b/sklearn/datasets/descr/diabetes.rst index 173d9561bf511..b977c36cf29a0 100644 --- a/sklearn/datasets/descr/diabetes.rst +++ b/sklearn/datasets/descr/diabetes.rst @@ -10,23 +10,23 @@ quantitative measure of disease progression one year after baseline. **Data Set Characteristics:** - :Number of Instances: 442 - - :Number of Attributes: First 10 columns are numeric predictive values - - :Target: Column 11 is a quantitative measure of disease progression one year after baseline - - :Attribute Information: - - age age in years - - sex - - bmi body mass index - - bp average blood pressure - - s1 tc, total serum cholesterol - - s2 ldl, low-density lipoproteins - - s3 hdl, high-density lipoproteins - - s4 tch, total cholesterol / HDL - - s5 ltg, possibly log of serum triglycerides level - - s6 glu, blood sugar level +:Number of Instances: 442 + +:Number of Attributes: First 10 columns are numeric predictive values + +:Target: Column 11 is a quantitative measure of disease progression one year after baseline + +:Attribute Information: + - age age in years + - sex + - bmi body mass index + - bp average blood pressure + - s1 tc, total serum cholesterol + - s2 ldl, low-density lipoproteins + - s3 hdl, high-density lipoproteins + - s4 tch, total cholesterol / HDL + - s5 ltg, possibly log of serum triglycerides level + - s6 glu, blood sugar level Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times the square root of `n_samples` (i.e. the sum of squares of each column totals 1). diff --git a/sklearn/datasets/descr/digits.rst b/sklearn/datasets/descr/digits.rst index 40d819e92b7ab..3b07233721d69 100644 --- a/sklearn/datasets/descr/digits.rst +++ b/sklearn/datasets/descr/digits.rst @@ -5,12 +5,12 @@ Optical recognition of handwritten digits dataset **Data Set Characteristics:** - :Number of Instances: 1797 - :Number of Attributes: 64 - :Attribute Information: 8x8 image of integer pixels in the range 0..16. - :Missing Attribute Values: None - :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr) - :Date: July; 1998 +:Number of Instances: 1797 +:Number of Attributes: 64 +:Attribute Information: 8x8 image of integer pixels in the range 0..16. +:Missing Attribute Values: None +:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr) +:Date: July; 1998 This is a copy of the test set of the UCI ML hand-written digits datasets https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits @@ -47,4 +47,4 @@ L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, - Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000. -|details-end| \ No newline at end of file +|details-end| diff --git a/sklearn/datasets/descr/iris.rst b/sklearn/datasets/descr/iris.rst index 02236dcb1c19f..771c92faa9899 100644 --- a/sklearn/datasets/descr/iris.rst +++ b/sklearn/datasets/descr/iris.rst @@ -5,34 +5,34 @@ Iris plants dataset **Data Set Characteristics:** - :Number of Instances: 150 (50 in each of three classes) - :Number of Attributes: 4 numeric, predictive attributes and the class - :Attribute Information: - - sepal length in cm - - sepal width in cm - - petal length in cm - - petal width in cm - - class: - - Iris-Setosa - - Iris-Versicolour - - Iris-Virginica - - :Summary Statistics: +:Number of Instances: 150 (50 in each of three classes) +:Number of Attributes: 4 numeric, predictive attributes and the class +:Attribute Information: + - sepal length in cm + - sepal width in cm + - petal length in cm + - petal width in cm + - class: + - Iris-Setosa + - Iris-Versicolour + - Iris-Virginica - ============== ==== ==== ======= ===== ==================== - Min Max Mean SD Class Correlation - ============== ==== ==== ======= ===== ==================== - sepal length: 4.3 7.9 5.84 0.83 0.7826 - sepal width: 2.0 4.4 3.05 0.43 -0.4194 - petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) - petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) - ============== ==== ==== ======= ===== ==================== +:Summary Statistics: - :Missing Attribute Values: None - :Class Distribution: 33.3% for each of 3 classes. - :Creator: R.A. Fisher - :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) - :Date: July, 1988 +============== ==== ==== ======= ===== ==================== + Min Max Mean SD Class Correlation +============== ==== ==== ======= ===== ==================== +sepal length: 4.3 7.9 5.84 0.83 0.7826 +sepal width: 2.0 4.4 3.05 0.43 -0.4194 +petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) +petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) +============== ==== ==== ======= ===== ==================== + +:Missing Attribute Values: None +:Class Distribution: 33.3% for each of 3 classes. +:Creator: R.A. Fisher +:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) +:Date: July, 1988 The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken from Fisher's paper. Note that it's the same as in R, but not as in the UCI @@ -64,4 +64,4 @@ latter are NOT linearly separable from each other. conceptual clustering system finds 3 classes in the data. - Many, many more ... -|details-end| \ No newline at end of file +|details-end| diff --git a/sklearn/datasets/descr/kddcup99.rst b/sklearn/datasets/descr/kddcup99.rst index d53a7c878dd17..fe8a0c8f4168c 100644 --- a/sklearn/datasets/descr/kddcup99.rst +++ b/sklearn/datasets/descr/kddcup99.rst @@ -30,50 +30,50 @@ We thus transform the KDD Data set into two different data sets: SA and SF. * http and smtp are two subsets of SF corresponding with third feature equal to 'http' (resp. to 'smtp'). -General KDD structure : - - ================ ========================================== - Samples total 4898431 - Dimensionality 41 - Features discrete (int) or continuous (float) - Targets str, 'normal.' or name of the anomaly type - ================ ========================================== - - SA structure : - - ================ ========================================== - Samples total 976158 - Dimensionality 41 - Features discrete (int) or continuous (float) - Targets str, 'normal.' or name of the anomaly type - ================ ========================================== - - SF structure : - - ================ ========================================== - Samples total 699691 - Dimensionality 4 - Features discrete (int) or continuous (float) - Targets str, 'normal.' or name of the anomaly type - ================ ========================================== - - http structure : - - ================ ========================================== - Samples total 619052 - Dimensionality 3 - Features discrete (int) or continuous (float) - Targets str, 'normal.' or name of the anomaly type - ================ ========================================== - - smtp structure : - - ================ ========================================== - Samples total 95373 - Dimensionality 3 - Features discrete (int) or continuous (float) - Targets str, 'normal.' or name of the anomaly type - ================ ========================================== +General KDD structure: + +================ ========================================== +Samples total 4898431 +Dimensionality 41 +Features discrete (int) or continuous (float) +Targets str, 'normal.' or name of the anomaly type +================ ========================================== + +SA structure: + +================ ========================================== +Samples total 976158 +Dimensionality 41 +Features discrete (int) or continuous (float) +Targets str, 'normal.' or name of the anomaly type +================ ========================================== + +SF structure: + +================ ========================================== +Samples total 699691 +Dimensionality 4 +Features discrete (int) or continuous (float) +Targets str, 'normal.' or name of the anomaly type +================ ========================================== + +http structure: + +================ ========================================== +Samples total 619052 +Dimensionality 3 +Features discrete (int) or continuous (float) +Targets str, 'normal.' or name of the anomaly type +================ ========================================== + +smtp structure: + +================ ========================================== +Samples total 95373 +Dimensionality 3 +Features discrete (int) or continuous (float) +Targets str, 'normal.' or name of the anomaly type +================ ========================================== :func:`sklearn.datasets.fetch_kddcup99` will load the kddcup99 dataset; it returns a dictionary-like object with the feature matrix in the ``data`` member diff --git a/sklearn/datasets/descr/lfw.rst b/sklearn/datasets/descr/lfw.rst index 8105d7d6d633a..f7d80558be373 100644 --- a/sklearn/datasets/descr/lfw.rst +++ b/sklearn/datasets/descr/lfw.rst @@ -6,7 +6,7 @@ The Labeled Faces in the Wild face recognition dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: - http://vis-www.cs.umass.edu/lfw/ +http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier @@ -25,12 +25,12 @@ face detector from various online websites. **Data Set Characteristics:** - ================= ======================= - Classes 5749 - Samples total 13233 - Dimensionality 5828 - Features real, between 0 and 255 - ================= ======================= +================= ======================= +Classes 5749 +Samples total 13233 +Dimensionality 5828 +Features real, between 0 and 255 +================= ======================= |details-start| **Usage** diff --git a/sklearn/datasets/descr/linnerud.rst b/sklearn/datasets/descr/linnerud.rst index 81c970bb6e3e6..108611a4722ad 100644 --- a/sklearn/datasets/descr/linnerud.rst +++ b/sklearn/datasets/descr/linnerud.rst @@ -5,9 +5,9 @@ Linnerrud dataset **Data Set Characteristics:** - :Number of Instances: 20 - :Number of Attributes: 3 - :Missing Attribute Values: None +:Number of Instances: 20 +:Number of Attributes: 3 +:Missing Attribute Values: None The Linnerud dataset is a multi-output regression dataset. It consists of three exercise (data) and three physiological (target) variables collected from @@ -25,4 +25,4 @@ twenty middle-aged men in a fitness club: * Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. -|details-end| \ No newline at end of file +|details-end| diff --git a/sklearn/datasets/descr/olivetti_faces.rst b/sklearn/datasets/descr/olivetti_faces.rst index 4feadcc4b2fb1..060c866213e8e 100644 --- a/sklearn/datasets/descr/olivetti_faces.rst +++ b/sklearn/datasets/descr/olivetti_faces.rst @@ -3,7 +3,7 @@ The Olivetti faces dataset -------------------------- -`This dataset contains a set of face images`_ taken between April 1992 and +`This dataset contains a set of face images`_ taken between April 1992 and April 1994 at AT&T Laboratories Cambridge. The :func:`sklearn.datasets.fetch_olivetti_faces` function is the data fetching / caching function that downloads the data @@ -17,20 +17,20 @@ As described on the original website: subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark - homogeneous background with the subjects in an upright, frontal position + homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement). **Data Set Characteristics:** - ================= ===================== - Classes 40 - Samples total 400 - Dimensionality 4096 - Features real, between 0 and 1 - ================= ===================== +================= ===================== +Classes 40 +Samples total 400 +Dimensionality 4096 +Features real, between 0 and 1 +================= ===================== -The image is quantized to 256 grey levels and stored as unsigned 8-bit -integers; the loader will convert these to floating point values on the +The image is quantized to 256 grey levels and stored as unsigned 8-bit +integers; the loader will convert these to floating point values on the interval [0, 1], which are easier to work with for many algorithms. The "target" for this database is an integer from 0 to 39 indicating the diff --git a/sklearn/datasets/descr/rcv1.rst b/sklearn/datasets/descr/rcv1.rst index afaadbfb45afc..7cf3730a17554 100644 --- a/sklearn/datasets/descr/rcv1.rst +++ b/sklearn/datasets/descr/rcv1.rst @@ -3,20 +3,20 @@ RCV1 dataset ------------ -Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually -categorized newswire stories made available by Reuters, Ltd. for research +Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually +categorized newswire stories made available by Reuters, Ltd. for research purposes. The dataset is extensively described in [1]_. **Data Set Characteristics:** - ============== ===================== - Classes 103 - Samples total 804414 - Dimensionality 47236 - Features real, between 0 and 1 - ============== ===================== +============== ===================== +Classes 103 +Samples total 804414 +Dimensionality 47236 +Features real, between 0 and 1 +============== ===================== -:func:`sklearn.datasets.fetch_rcv1` will load the following +:func:`sklearn.datasets.fetch_rcv1` will load the following version: RCV1-v2, vectors, full sets, topics multilabels:: >>> from sklearn.datasets import fetch_rcv1 @@ -28,32 +28,32 @@ It returns a dictionary-like object, with the following attributes: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in [1]_: The first 23149 samples are -the training set. The last 781265 samples are the testing set. This follows -the official LYRL2004 chronological split. The array has 0.16% of non zero +the training set. The last 781265 samples are the testing set. This follows +the official LYRL2004 chronological split. The array has 0.16% of non zero values:: >>> rcv1.data.shape (804414, 47236) ``target``: -The target values are stored in a scipy CSR sparse matrix, with 804414 samples -and 103 categories. Each sample has a value of 1 in its categories, and 0 in +The target values are stored in a scipy CSR sparse matrix, with 804414 samples +and 103 categories. Each sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:: >>> rcv1.target.shape (804414, 103) ``sample_id``: -Each sample can be identified by its ID, ranging (with gaps) from 2286 +Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:: >>> rcv1.sample_id[:3] array([2286, 2287, 2288], dtype=uint32) ``target_names``: -The target values are the topics of each sample. Each sample belongs to at -least one topic, and to up to 17 topics. There are 103 topics, each -represented by a string. Their corpus frequencies span five orders of +The target values are the topics of each sample. Each sample belongs to at +least one topic, and to up to 17 topics. There are 103 topics, each +represented by a string. Their corpus frequencies span five orders of magnitude, from 5 occurrences for 'GMIL', to 381327 for 'CCAT':: >>> rcv1.target_names[:3].tolist() # doctest: +SKIP @@ -67,6 +67,6 @@ The compressed size is about 656 MB. .. topic:: References - .. [1] Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). - RCV1: A new benchmark collection for text categorization research. + .. [1] Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). + RCV1: A new benchmark collection for text categorization research. The Journal of Machine Learning Research, 5, 361-397. diff --git a/sklearn/datasets/descr/twenty_newsgroups.rst b/sklearn/datasets/descr/twenty_newsgroups.rst index 669e158244134..d1a049869dd7f 100644 --- a/sklearn/datasets/descr/twenty_newsgroups.rst +++ b/sklearn/datasets/descr/twenty_newsgroups.rst @@ -20,12 +20,12 @@ extractor. **Data Set Characteristics:** - ================= ========== - Classes 20 - Samples total 18846 - Dimensionality 1 - Features text - ================= ========== +================= ========== +Classes 20 +Samples total 18846 +Dimensionality 1 +Features text +================= ========== |details-start| **Usage** diff --git a/sklearn/datasets/descr/wine_data.rst b/sklearn/datasets/descr/wine_data.rst index e20efea9ba719..0325af6233c17 100644 --- a/sklearn/datasets/descr/wine_data.rst +++ b/sklearn/datasets/descr/wine_data.rst @@ -5,53 +5,52 @@ Wine recognition dataset **Data Set Characteristics:** - :Number of Instances: 178 - :Number of Attributes: 13 numeric, predictive attributes and the class - :Attribute Information: - - Alcohol - - Malic acid - - Ash - - Alcalinity of ash - - Magnesium - - Total phenols - - Flavanoids - - Nonflavanoid phenols - - Proanthocyanins - - Color intensity - - Hue - - OD280/OD315 of diluted wines - - Proline - +:Number of Instances: 178 +:Number of Attributes: 13 numeric, predictive attributes and the class +:Attribute Information: + - Alcohol + - Malic acid + - Ash + - Alcalinity of ash + - Magnesium + - Total phenols + - Flavanoids + - Nonflavanoid phenols + - Proanthocyanins + - Color intensity + - Hue + - OD280/OD315 of diluted wines + - Proline - class: - - class_0 - - class_1 - - class_2 - - :Summary Statistics: - - ============================= ==== ===== ======= ===== - Min Max Mean SD - ============================= ==== ===== ======= ===== - Alcohol: 11.0 14.8 13.0 0.8 - Malic Acid: 0.74 5.80 2.34 1.12 - Ash: 1.36 3.23 2.36 0.27 - Alcalinity of Ash: 10.6 30.0 19.5 3.3 - Magnesium: 70.0 162.0 99.7 14.3 - Total Phenols: 0.98 3.88 2.29 0.63 - Flavanoids: 0.34 5.08 2.03 1.00 - Nonflavanoid Phenols: 0.13 0.66 0.36 0.12 - Proanthocyanins: 0.41 3.58 1.59 0.57 - Colour Intensity: 1.3 13.0 5.1 2.3 - Hue: 0.48 1.71 0.96 0.23 - OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71 - Proline: 278 1680 746 315 - ============================= ==== ===== ======= ===== - - :Missing Attribute Values: None - :Class Distribution: class_0 (59), class_1 (71), class_2 (48) - :Creator: R.A. Fisher - :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) - :Date: July, 1988 + - class_0 + - class_1 + - class_2 + +:Summary Statistics: + +============================= ==== ===== ======= ===== + Min Max Mean SD +============================= ==== ===== ======= ===== +Alcohol: 11.0 14.8 13.0 0.8 +Malic Acid: 0.74 5.80 2.34 1.12 +Ash: 1.36 3.23 2.36 0.27 +Alcalinity of Ash: 10.6 30.0 19.5 3.3 +Magnesium: 70.0 162.0 99.7 14.3 +Total Phenols: 0.98 3.88 2.29 0.63 +Flavanoids: 0.34 5.08 2.03 1.00 +Nonflavanoid Phenols: 0.13 0.66 0.36 0.12 +Proanthocyanins: 0.41 3.58 1.59 0.57 +Colour Intensity: 1.3 13.0 5.1 2.3 +Hue: 0.48 1.71 0.96 0.23 +OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71 +Proline: 278 1680 746 315 +============================= ==== ===== ======= ===== + +:Missing Attribute Values: None +:Class Distribution: class_0 (59), class_1 (71), class_2 (48) +:Creator: R.A. Fisher +:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) +:Date: July, 1988 This is a copy of UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data @@ -61,10 +60,10 @@ region in Italy by three different cultivators. There are thirteen different measurements taken for different constituents found in the three types of wine. -Original Owners: +Original Owners: -Forina, M. et al, PARVUS - -An Extendible Package for Data Exploration, Classification and Correlation. +Forina, M. et al, PARVUS - +An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy. @@ -72,28 +71,28 @@ Citation: Lichman, M. (2013). UCI Machine Learning Repository [https://archive.ics.uci.edu/ml]. Irvine, CA: University of California, -School of Information and Computer Science. +School of Information and Computer Science. |details-start| **References** |details-split| -(1) S. Aeberhard, D. Coomans and O. de Vel, -Comparison of Classifiers in High Dimensional Settings, -Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of -Mathematics and Statistics, James Cook University of North Queensland. -(Also submitted to Technometrics). - -The data was used with many others for comparing various -classifiers. The classes are separable, though only RDA -has achieved 100% correct classification. -(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) -(All results using the leave-one-out technique) - -(2) S. Aeberhard, D. Coomans and O. de Vel, -"THE CLASSIFICATION PERFORMANCE OF RDA" -Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of -Mathematics and Statistics, James Cook University of North Queensland. +(1) S. Aeberhard, D. Coomans and O. de Vel, +Comparison of Classifiers in High Dimensional Settings, +Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of +Mathematics and Statistics, James Cook University of North Queensland. +(Also submitted to Technometrics). + +The data was used with many others for comparing various +classifiers. The classes are separable, though only RDA +has achieved 100% correct classification. +(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) +(All results using the leave-one-out technique) + +(2) S. Aeberhard, D. Coomans and O. de Vel, +"THE CLASSIFICATION PERFORMANCE OF RDA" +Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of +Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Journal of Chemometrics). -|details-end| \ No newline at end of file +|details-end| From 93e199d517aca98c0eeb222ebfaa2ac99b368e0a Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 15 Jan 2024 01:29:39 +0800 Subject: [PATCH 0035/1641] FIX improve error message in `check_array` when getting a `Series` and expecting a 2D container (#28090) Co-authored-by: Stanislas Furrer --- doc/whats_new/v1.4.rst | 7 ++++++ sklearn/preprocessing/tests/test_encoders.py | 2 +- sklearn/utils/tests/test_validation.py | 15 ++++++++++++ sklearn/utils/validation.py | 25 +++++++++++++++----- 4 files changed, 42 insertions(+), 7 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index 25a3f600c5446..c0261a51384c6 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -19,6 +19,13 @@ Changelog is read-only, e.g., a `numpy.memmap` instance. :pr:`28111` by :user:`Yao Xiao `. +:mod:`sklearn.utils` +.................... + +- |Fix| Fix the function :func:`~utils.check_array` to output the right error message + when the input is Series instead of a DataFrame. + :pr:`28090` by :user:`Stan Furrer ` and :user:`Yao Xiao `. + .. _changes_1_4: diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py index df7e02355db3d..ee5e1152fc710 100644 --- a/sklearn/preprocessing/tests/test_encoders.py +++ b/sklearn/preprocessing/tests/test_encoders.py @@ -387,7 +387,7 @@ def test_X_is_not_1D_pandas(method): X = pd.Series([6, 3, 4, 6]) oh = OneHotEncoder() - msg = "Expected 2D array, got 1D array instead" + msg = f"Expected a 2-dimensional container but got {type(X)} instead." with pytest.raises(ValueError, match=msg): getattr(oh, method)(X) diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py index b627c55a7ef12..ee26772d8731b 100644 --- a/sklearn/utils/tests/test_validation.py +++ b/sklearn/utils/tests/test_validation.py @@ -305,6 +305,21 @@ def test_check_array_force_all_finite_object_unsafe_casting( check_array(X, dtype=int, force_all_finite=force_all_finite) +def test_check_array_series_err_msg(): + """ + Check that we raise a proper error message when passing a Series and we expect a + 2-dimensional container. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/issues/27498 + """ + pd = pytest.importorskip("pandas") + ser = pd.Series([1, 2, 3]) + msg = f"Expected a 2-dimensional container but got {type(ser)} instead." + with pytest.raises(ValueError, match=msg): + check_array(ser, ensure_2d=True) + + @ignore_warnings def test_check_array(): # accept_sparse == False diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index a7553993f7ded..e58fb41501c96 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -802,6 +802,8 @@ def check_array( # DataFrame), and store them. If not, store None. dtypes_orig = None pandas_requires_conversion = False + # track if we have a Series-like object to raise a better error message + type_if_series = None if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"): # throw warning if columns are sparse. If all columns are sparse, then # array.sparse exists and sparsity will be preserved (later). @@ -831,6 +833,7 @@ def is_sparse(dtype): array, "dtype" ): # array is a pandas series + type_if_series = type(array) pandas_requires_conversion = _pandas_dtype_needs_early_conversion(array.dtype) if isinstance(array.dtype, np.dtype): dtype_orig = array.dtype @@ -962,12 +965,22 @@ def is_sparse(dtype): ) # If input is 1D raise error if array.ndim == 1: - raise ValueError( - "Expected 2D array, got 1D array instead:\narray={}.\n" - "Reshape your data either using array.reshape(-1, 1) if " - "your data has a single feature or array.reshape(1, -1) " - "if it contains a single sample.".format(array) - ) + # If input is a Series-like object (eg. pandas Series or polars Series) + if type_if_series is not None: + msg = ( + f"Expected a 2-dimensional container but got {type_if_series} " + "instead. Pass a DataFrame containing a single row (i.e. " + "single sample) or a single column (i.e. single feature) " + "instead." + ) + else: + msg = ( + f"Expected 2D array, got 1D array instead:\narray={array}.\n" + "Reshape your data either using array.reshape(-1, 1) if " + "your data has a single feature or array.reshape(1, -1) " + "if it contains a single sample." + ) + raise ValueError(msg) if dtype_numeric and hasattr(array.dtype, "kind") and array.dtype.kind in "USV": raise ValueError( From be07298637c384f934541ad10e4d9c1fb1d4cacb Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 15 Jan 2024 03:39:37 +0800 Subject: [PATCH 0036/1641] DOC fix the confusing ordering of `whats_new/v1.5.rst` (#28120) --- doc/whats_new/v1.5.rst | 31 ++++++++++++++++--------------- 1 file changed, 16 insertions(+), 15 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 0e3e37caeeb05..6f4778d9784e8 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -25,26 +25,18 @@ Changelog :pr:`123456` by :user:`Joe Bloggs `. where 123455 is the *pull request* number, not the issue number. -:mod:`sklearn.impute` -..................... -- |Enhancement| :class:`impute.SimpleImputer` now supports custom strategies - by passing a function in place of a strategy name. - :pr:`28053` by :user:`Mark Elliot `. - -Code and Documentation Contributors ------------------------------------ - -Thanks to everyone who has contributed to the maintenance and improvement of -the project since version 1.4, including: - -TODO: update at the time of the release. - :mod:`sklearn.compose` ...................... - |Feature| A fitted :class:`compose.ColumnTransformer` now implements `__getitem__` which returns the fitted transformers by name. :pr:`27990` by `Thomas Fan`_. +:mod:`sklearn.impute` +..................... + +- |Enhancement| :class:`impute.SimpleImputer` now supports custom strategies + by passing a function in place of a strategy name. + :pr:`28053` by :user:`Mark Elliot `. :mod:`sklearn.metrics` ...................... @@ -56,4 +48,13 @@ TODO: update at the time of the release. and `from_predictions` in :class:`~metrics.RocCurveDisplay`, :class:`~metrics.PrecisionRecallDisplay`, :class:`~metrics.DetCurveDisplay`, :class:`~calibration.CalibrationDisplay`. - :pr:`28051` by :user:`Pierre de Fréminville ` + :pr:`28051` by :user:`Pierre de Fréminville `. + + +Code and Documentation Contributors +----------------------------------- + +Thanks to everyone who has contributed to the maintenance and improvement of +the project since version 1.4, including: + +TODO: update at the time of the release. From 6f9d565064cecac7d5242e7adcbc9b4524668f63 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 15 Jan 2024 09:15:46 +0800 Subject: [PATCH 0037/1641] FIX `KNeighborsClassifier` raise when all neighbors of some sample have zero weights (#26410) Co-authored-by: Thomas J. Fan --- doc/whats_new/v1.4.rst | 9 ++++++ sklearn/neighbors/_classification.py | 14 +++++++- sklearn/neighbors/tests/test_neighbors.py | 27 ++++++++++++++++ sklearn/utils/arrayfuncs.pyx | 39 ++++++++++++++++++++++- sklearn/utils/tests/test_arrayfuncs.py | 14 +++++++- 5 files changed, 100 insertions(+), 3 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index c0261a51384c6..ba0facf7cdd13 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -19,6 +19,15 @@ Changelog is read-only, e.g., a `numpy.memmap` instance. :pr:`28111` by :user:`Yao Xiao `. +:mod:`sklearn.neighbors` +........................ + +- |Fix| :meth:`neighbors.KNeighborsClassifier.predict` and + :meth:`neighbors.KNeighborsClassifier.predict_proba` now raises an error when the + weights of all neighbors of some sample are zero. This can happen when `weights` + is a user-defined function. + :pr:`26410` by :user:`Yao Xiao `. + :mod:`sklearn.utils` .................... diff --git a/sklearn/neighbors/_classification.py b/sklearn/neighbors/_classification.py index e921ec3a9d165..26ffa273d0a60 100644 --- a/sklearn/neighbors/_classification.py +++ b/sklearn/neighbors/_classification.py @@ -20,6 +20,7 @@ RadiusNeighborsClassMode, ) from ..utils._param_validation import StrOptions +from ..utils.arrayfuncs import _all_with_any_reduction_axis_1 from ..utils.extmath import weighted_mode from ..utils.fixes import _mode from ..utils.validation import _is_arraylike, _num_samples, check_is_fitted @@ -281,6 +282,12 @@ def predict(self, X): n_outputs = len(classes_) n_queries = _num_samples(X) weights = _get_weights(neigh_dist, self.weights) + if weights is not None and _all_with_any_reduction_axis_1(weights, value=0): + raise ValueError( + "All neighbors of some sample is getting zero weights. " + "Please modify 'weights' to avoid this case if you are " + "using a user-defined function." + ) y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): @@ -372,6 +379,12 @@ def predict_proba(self, X): weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) + elif _all_with_any_reduction_axis_1(weights, value=0): + raise ValueError( + "All neighbors of some sample is getting zero weights. " + "Please modify 'weights' to avoid this case if you are " + "using a user-defined function." + ) all_rows = np.arange(n_queries) probabilities = [] @@ -385,7 +398,6 @@ def predict_proba(self, X): # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] - normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) diff --git a/sklearn/neighbors/tests/test_neighbors.py b/sklearn/neighbors/tests/test_neighbors.py index 2be0237cd5f7e..d3fc71478e6f5 100644 --- a/sklearn/neighbors/tests/test_neighbors.py +++ b/sklearn/neighbors/tests/test_neighbors.py @@ -2343,3 +2343,30 @@ def test_nearest_neighbours_works_with_p_less_than_1(): y = neigh.kneighbors(X[0].reshape(1, -1), return_distance=False) assert_allclose(y[0], [0, 1, 2]) + + +def test_KNeighborsClassifier_raise_on_all_zero_weights(): + """Check that `predict` and `predict_proba` raises on sample of all zeros weights. + + Related to Issue #25854. + """ + X = [[0, 1], [1, 2], [2, 3], [3, 4]] + y = [0, 0, 1, 1] + + def _weights(dist): + return np.vectorize(lambda x: 0 if x > 0.5 else 1)(dist) + + est = neighbors.KNeighborsClassifier(n_neighbors=3, weights=_weights) + est.fit(X, y) + + msg = ( + "All neighbors of some sample is getting zero weights. " + "Please modify 'weights' to avoid this case if you are " + "using a user-defined function." + ) + + with pytest.raises(ValueError, match=msg): + est.predict([[1.1, 1.1]]) + + with pytest.raises(ValueError, match=msg): + est.predict_proba([[1.1, 1.1]]) diff --git a/sklearn/utils/arrayfuncs.pyx b/sklearn/utils/arrayfuncs.pyx index d060c7bada92a..59dc43084b3d9 100644 --- a/sklearn/utils/arrayfuncs.pyx +++ b/sklearn/utils/arrayfuncs.pyx @@ -10,8 +10,16 @@ from libc.float cimport DBL_MAX, FLT_MAX from ._cython_blas cimport _copy, _rotg, _rot +ctypedef fused real_numeric: + short + int + long + float + double + + def min_pos(const floating[:] X): - """Find the minimum value of an array over positive values + """Find the minimum value of an array over positive values. Returns the maximum representable value of the input dtype if none of the values are positive. @@ -24,6 +32,35 @@ def min_pos(const floating[:] X): return min_val +def _all_with_any_reduction_axis_1(real_numeric[:, :] array, real_numeric value): + """Check that all values are equal to `value` along a specific axis. + + It is equivalent to `np.any(np.all(X == value, axis=1))`, but it avoids to + materialize the temporary boolean matrices in memory. + + Parameters + ---------- + array: array-like + The array to be checked. + value: short, int, long, float, or double + The value to use for the comparison. + + Returns + ------- + any_all_equal: bool + Whether or not any rows contains all values equal to `value`. + """ + cdef Py_ssize_t i, j + + for i in range(array.shape[0]): + for j in range(array.shape[1]): + if array[i, j] != value: + break + else: # no break + return True + return False + + # General Cholesky Delete. # Remove an element from the cholesky factorization # m = columns diff --git a/sklearn/utils/tests/test_arrayfuncs.py b/sklearn/utils/tests/test_arrayfuncs.py index b0a02e13d1639..1da4dcbc088b5 100644 --- a/sklearn/utils/tests/test_arrayfuncs.py +++ b/sklearn/utils/tests/test_arrayfuncs.py @@ -2,7 +2,7 @@ import pytest from sklearn.utils._testing import assert_allclose -from sklearn.utils.arrayfuncs import min_pos +from sklearn.utils.arrayfuncs import _all_with_any_reduction_axis_1, min_pos def test_min_pos(): @@ -24,3 +24,15 @@ def test_min_pos_no_positive(dtype): X = np.full(100, -1.0).astype(dtype, copy=False) assert min_pos(X) == np.finfo(dtype).max + + +@pytest.mark.parametrize("dtype", [np.int16, np.int32, np.float32, np.float64]) +@pytest.mark.parametrize("value", [0, 1.5, -1]) +def test_all_with_any_reduction_axis_1(dtype, value): + # Check that return value is False when there is no row/column equal to `value` + X = np.arange(12, dtype=dtype).reshape(3, 4) + assert not _all_with_any_reduction_axis_1(X, value=value) + + # Make a row equal to `value` + X[1, :] = value + assert _all_with_any_reduction_axis_1(X, value=value) From 4d8b6d7ea10e5a075676042681678c433b08bf8b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Mon, 15 Jan 2024 11:22:27 +0100 Subject: [PATCH 0038/1641] DOC Add examples section to docstring of functions from the base module. (#28123) --- sklearn/base.py | 37 +++++++++++++++++++++++++++++++++++++ 1 file changed, 37 insertions(+) diff --git a/sklearn/base.py b/sklearn/base.py index c48a5f2d99628..a6313947ba469 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -70,6 +70,21 @@ def clone(estimator, *, safe=True): results. Otherwise, *statistical clone* is returned: the clone might return different results from the original estimator. More details can be found in :ref:`randomness`. + + Examples + -------- + >>> from sklearn.base import clone + >>> from sklearn.linear_model import LogisticRegression + >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]] + >>> y = [0, 0, 1, 1] + >>> classifier = LogisticRegression().fit(X, y) + >>> cloned_classifier = clone(classifier) + >>> hasattr(classifier, "classes_") + True + >>> hasattr(cloned_classifier, "classes_") + False + >>> classifier is cloned_classifier + False """ if hasattr(estimator, "__sklearn_clone__") and not inspect.isclass(estimator): return estimator.__sklearn_clone__() @@ -1208,6 +1223,17 @@ def is_classifier(estimator): ------- out : bool True if estimator is a classifier and False otherwise. + + Examples + -------- + >>> from sklearn.base import is_classifier + >>> from sklearn.svm import SVC, SVR + >>> classifier = SVC() + >>> regressor = SVR() + >>> is_classifier(classifier) + True + >>> is_classifier(regressor) + False """ return getattr(estimator, "_estimator_type", None) == "classifier" @@ -1224,6 +1250,17 @@ def is_regressor(estimator): ------- out : bool True if estimator is a regressor and False otherwise. + + Examples + -------- + >>> from sklearn.base import is_regressor + >>> from sklearn.svm import SVC, SVR + >>> classifier = SVC() + >>> regressor = SVR() + >>> is_regressor(classifier) + False + >>> is_regressor(regressor) + True """ return getattr(estimator, "_estimator_type", None) == "regressor" From fe551922b38f47d1261dab59b98696bed058202d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Filip=20Karlo=20Do=C5=A1ilovi=C4=87?= Date: Mon, 15 Jan 2024 11:26:07 +0100 Subject: [PATCH 0039/1641] DOC Add Examples section to docstrings to functions from utils.discovery module. (#28124) --- sklearn/utils/discovery.py | 43 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) diff --git a/sklearn/utils/discovery.py b/sklearn/utils/discovery.py index 733fe294e3637..c1fdca3beafb2 100644 --- a/sklearn/utils/discovery.py +++ b/sklearn/utils/discovery.py @@ -41,6 +41,34 @@ def all_estimators(type_filter=None): estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actual type of the class. + + Examples + -------- + >>> from sklearn.utils.discovery import all_estimators + >>> estimators = all_estimators() + >>> type(estimators) + + >>> type(estimators[0]) + + >>> estimators[:2] + [('ARDRegression', ), + ('AdaBoostClassifier', + )] + >>> classifiers = all_estimators(type_filter="classifier") + >>> classifiers[:2] + [('AdaBoostClassifier', + ), + ('BaggingClassifier', )] + >>> regressors = all_estimators(type_filter="regressor") + >>> regressors[:2] + [('ARDRegression', ), + ('AdaBoostRegressor', + )] + >>> both = all_estimators(type_filter=["classifier", "regressor"]) + >>> both[:2] + [('ARDRegression', ), + ('AdaBoostClassifier', + )] """ # lazy import to avoid circular imports from sklearn.base from ..base import ( @@ -140,6 +168,13 @@ def all_displays(): displays : list of tuples List of (name, class), where ``name`` is the display class name as string and ``class`` is the actual type of the class. + + Examples + -------- + >>> from sklearn.utils.discovery import all_displays + >>> displays = all_displays() + >>> displays[0] + ('CalibrationDisplay', ) """ # lazy import to avoid circular imports from sklearn.base from ._testing import ignore_warnings @@ -190,6 +225,14 @@ def all_functions(): functions : list of tuples List of (name, function), where ``name`` is the function name as string and ``function`` is the actual function. + + Examples + -------- + >>> from sklearn.utils.discovery import all_functions + >>> functions = all_functions() + >>> name, function = functions[0] + >>> name + 'accuracy_score' """ # lazy import to avoid circular imports from sklearn.base from ._testing import ignore_warnings From fcd22cac49a0f6f40a37334f1072c5a8fadeed61 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Mon, 15 Jan 2024 23:12:02 +0800 Subject: [PATCH 0040/1641] DOC make up for errors in #26410 (#28128) --- sklearn/utils/arrayfuncs.pyx | 2 +- sklearn/utils/tests/test_arrayfuncs.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/utils/arrayfuncs.pyx b/sklearn/utils/arrayfuncs.pyx index 59dc43084b3d9..b005bab896925 100644 --- a/sklearn/utils/arrayfuncs.pyx +++ b/sklearn/utils/arrayfuncs.pyx @@ -33,7 +33,7 @@ def min_pos(const floating[:] X): def _all_with_any_reduction_axis_1(real_numeric[:, :] array, real_numeric value): - """Check that all values are equal to `value` along a specific axis. + """Check whether any row contains all values equal to `value`. It is equivalent to `np.any(np.all(X == value, axis=1))`, but it avoids to materialize the temporary boolean matrices in memory. diff --git a/sklearn/utils/tests/test_arrayfuncs.py b/sklearn/utils/tests/test_arrayfuncs.py index 1da4dcbc088b5..4a80a4c1edefd 100644 --- a/sklearn/utils/tests/test_arrayfuncs.py +++ b/sklearn/utils/tests/test_arrayfuncs.py @@ -29,7 +29,7 @@ def test_min_pos_no_positive(dtype): @pytest.mark.parametrize("dtype", [np.int16, np.int32, np.float32, np.float64]) @pytest.mark.parametrize("value", [0, 1.5, -1]) def test_all_with_any_reduction_axis_1(dtype, value): - # Check that return value is False when there is no row/column equal to `value` + # Check that return value is False when there is no row equal to `value` X = np.arange(12, dtype=dtype).reshape(3, 4) assert not _all_with_any_reduction_axis_1(X, value=value) From 09cc3c1853f84e9e9c1c40b1f3013bac8ae591a2 Mon Sep 17 00:00:00 2001 From: Joel Nothman Date: Tue, 16 Jan 2024 04:17:38 +1100 Subject: [PATCH 0041/1641] FIX _get_doc_link when a _-prefixed package contains a nonprefixed module (#28024) --- doc/whats_new/v1.4.rst | 4 +- sklearn/utils/_estimator_html_repr.py | 13 ++++--- .../utils/tests/test_estimator_html_repr.py | 39 ++++++++++++++----- 3 files changed, 39 insertions(+), 17 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index ba0facf7cdd13..64c7ade810231 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -86,8 +86,8 @@ Changes impacting all modules documentation and is color-coded to denote whether the estimator is fitted or not (unfitted estimators are orange, fitted estimators are blue). :pr:`26616` by :user:`Riccardo Cappuzzo `, - :user:`Ines Ibnukhsein `, :user:`Gael Varoquaux `, and - :user:`Lilian Boulard `. + :user:`Ines Ibnukhsein `, :user:`Gael Varoquaux `, + `Joel Nothman`_ and :user:`Lilian Boulard `. - |Fix| Fixed a bug in most estimators and functions where setting a parameter to a large integer would cause a `TypeError`. diff --git a/sklearn/utils/_estimator_html_repr.py b/sklearn/utils/_estimator_html_repr.py index d259016504685..dd51a8bbb71de 100644 --- a/sklearn/utils/_estimator_html_repr.py +++ b/sklearn/utils/_estimator_html_repr.py @@ -1,4 +1,5 @@ import html +import itertools from contextlib import closing from inspect import isclass from io import StringIO @@ -471,12 +472,14 @@ def _get_doc_link(self): if self._doc_link_url_param_generator is None: estimator_name = self.__class__.__name__ + # Construct the estimator's module name, up to the first private submodule. + # This works because in scikit-learn all public estimators are exposed at + # that level, even if they actually live in a private sub-module. estimator_module = ".".join( - [ - _ - for _ in self.__class__.__module__.split(".") - if not _.startswith("_") - ] + itertools.takewhile( + lambda part: not part.startswith("_"), + self.__class__.__module__.split("."), + ) ) return self._doc_link_template.format( estimator_module=estimator_module, estimator_name=estimator_name diff --git a/sklearn/utils/tests/test_estimator_html_repr.py b/sklearn/utils/tests/test_estimator_html_repr.py index d3a395d5cfe86..d59658998432d 100644 --- a/sklearn/utils/tests/test_estimator_html_repr.py +++ b/sklearn/utils/tests/test_estimator_html_repr.py @@ -433,7 +433,33 @@ def test_html_documentation_link_mixin_sklearn(mock_version): ) -def test_html_documentation_link_mixin_get_doc_link(): +@pytest.mark.parametrize( + "module_path,expected_module", + [ + ("prefix.mymodule", "prefix.mymodule"), + ("prefix._mymodule", "prefix"), + ("prefix.mypackage._mymodule", "prefix.mypackage"), + ("prefix.mypackage._mymodule.submodule", "prefix.mypackage"), + ("prefix.mypackage.mymodule.submodule", "prefix.mypackage.mymodule.submodule"), + ], +) +def test_html_documentation_link_mixin_get_doc_link(module_path, expected_module): + """Check the behaviour of the `_get_doc_link` with various parameter.""" + + class FooBar(_HTMLDocumentationLinkMixin): + pass + + FooBar.__module__ = module_path + est = FooBar() + # if we set `_doc_link`, then we expect to infer a module and name for the estimator + est._doc_link_module = "prefix" + est._doc_link_template = ( + "https://website.com/{estimator_module}.{estimator_name}.html" + ) + assert est._get_doc_link() == f"https://website.com/{expected_module}.FooBar.html" + + +def test_html_documentation_link_mixin_get_doc_link_out_of_library(): """Check the behaviour of the `_get_doc_link` with various parameter.""" mixin = _HTMLDocumentationLinkMixin() @@ -442,16 +468,9 @@ def test_html_documentation_link_mixin_get_doc_link(): mixin._doc_link_module = "xxx" assert mixin._get_doc_link() == "" - # if we set `_doc_link`, then we expect to infer a module and name for the estimator - mixin._doc_link_module = "sklearn" - mixin._doc_link_template = ( - "https://website.com/{estimator_module}.{estimator_name}.html" - ) - assert ( - mixin._get_doc_link() - == "https://website.com/sklearn.utils._HTMLDocumentationLinkMixin.html" - ) +def test_html_documentation_link_mixin_doc_link_url_param_generator(): + mixin = _HTMLDocumentationLinkMixin() # we can bypass the generation by providing our own callable mixin._doc_link_template = ( "https://website.com/{my_own_variable}.{another_variable}.html" From 5aeeeefe31acd5444148fd89f3a8df9443b04889 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 15 Jan 2024 18:24:47 +0100 Subject: [PATCH 0042/1641] MAINT remove deprecated 'full' and 'auto' option from KMeans (#28115) --- sklearn/cluster/_kmeans.py | 23 +++-------------------- sklearn/cluster/tests/test_k_means.py | 15 --------------- 2 files changed, 3 insertions(+), 35 deletions(-) diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py index 0732b75f982b8..178242e60be57 100644 --- a/sklearn/cluster/_kmeans.py +++ b/sklearn/cluster/_kmeans.py @@ -389,16 +389,13 @@ def k_means( `copy_x` is False. If the original data is sparse, but not in CSR format, a copy will be made even if `copy_x` is False. - algorithm : {"lloyd", "elkan", "auto", "full"}, default="lloyd" + algorithm : {"lloyd", "elkan"}, default="lloyd" K-means algorithm to use. The classical EM-style algorithm is `"lloyd"`. The `"elkan"` variation can be more efficient on some datasets with well-defined clusters, by using the triangle inequality. However it's more memory intensive due to the allocation of an extra array of shape `(n_samples, n_clusters)`. - `"auto"` and `"full"` are deprecated and they will be removed in - Scikit-Learn 1.3. They are both aliases for `"lloyd"`. - .. versionchanged:: 0.18 Added Elkan algorithm @@ -1294,16 +1291,13 @@ class KMeans(_BaseKMeans): copy_x is False. If the original data is sparse, but not in CSR format, a copy will be made even if copy_x is False. - algorithm : {"lloyd", "elkan", "auto", "full"}, default="lloyd" + algorithm : {"lloyd", "elkan"}, default="lloyd" K-means algorithm to use. The classical EM-style algorithm is `"lloyd"`. The `"elkan"` variation can be more efficient on some datasets with well-defined clusters, by using the triangle inequality. However it's more memory intensive due to the allocation of an extra array of shape `(n_samples, n_clusters)`. - `"auto"` and `"full"` are deprecated and they will be removed in - Scikit-Learn 1.3. They are both aliases for `"lloyd"`. - .. versionchanged:: 0.18 Added Elkan algorithm @@ -1404,9 +1398,7 @@ class KMeans(_BaseKMeans): _parameter_constraints: dict = { **_BaseKMeans._parameter_constraints, "copy_x": ["boolean"], - "algorithm": [ - StrOptions({"lloyd", "elkan", "auto", "full"}, deprecated={"auto", "full"}) - ], + "algorithm": [StrOptions({"lloyd", "elkan"})], } def __init__( @@ -1439,15 +1431,6 @@ def _check_params_vs_input(self, X): super()._check_params_vs_input(X, default_n_init=10) self._algorithm = self.algorithm - if self._algorithm in ("auto", "full"): - warnings.warn( - ( - f"algorithm='{self._algorithm}' is deprecated, it will be " - "removed in 1.3. Using 'lloyd' instead." - ), - FutureWarning, - ) - self._algorithm = "lloyd" if self._algorithm == "elkan" and self.n_clusters == 1: warnings.warn( ( diff --git a/sklearn/cluster/tests/test_k_means.py b/sklearn/cluster/tests/test_k_means.py index 030f35bb748bb..5b0c7ab9aace8 100644 --- a/sklearn/cluster/tests/test_k_means.py +++ b/sklearn/cluster/tests/test_k_means.py @@ -200,21 +200,6 @@ def test_kmeans_convergence(algorithm, global_random_seed): assert km.n_iter_ < max_iter -@pytest.mark.parametrize("algorithm", ["auto", "full"]) -def test_algorithm_auto_full_deprecation_warning(algorithm): - X = np.random.rand(100, 2) - kmeans = KMeans(algorithm=algorithm) - with pytest.warns( - FutureWarning, - match=( - f"algorithm='{algorithm}' is deprecated, it will " - "be removed in 1.3. Using 'lloyd' instead." - ), - ): - kmeans.fit(X) - assert kmeans._algorithm == "lloyd" - - @pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans]) def test_predict_sample_weight_deprecation_warning(Estimator): X = np.random.rand(100, 2) From 7f131e04b01b43a05846bbc3d0b8c2988e6dd03e Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Mon, 15 Jan 2024 19:06:02 +0100 Subject: [PATCH 0043/1641] MNT support cross 32bit/64bit pickles for HGBT (#28074) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève Co-authored-by: Olivier Grisel --- doc/whats_new/v1.4.rst | 8 ++ .../_hist_gradient_boosting/predictor.py | 29 ++++-- .../tests/test_gradient_boosting.py | 91 ++++++++++++++++++- 3 files changed, 121 insertions(+), 7 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index 64c7ade810231..cb4404c7855d8 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -506,6 +506,14 @@ Changelog support missing values if all `estimators` support missing values. :pr:`27710` by :user:`Guillaume Lemaitre `. +- |Fix| Support loading pickles of :class:`ensemble.HistGradientBoostingClassifier` and + :class:`ensemble.HistGradientBoostingRegressor` when the pickle has + been generated on a platform with a different bitness. A typical example is + to train and pickle the model on 64 bit machine and load the model on a 32 + bit machine for prediction. + :pr:`28074` by :user:`Christian Lorentzen ` and + :user:`Loïc Estève `. + - |API| In :class:`ensemble.AdaBoostClassifier`, the `algorithm` argument `SAMME.R` was deprecated and will be removed in 1.6. :pr:`26830` by :user:`Stefanie Senger `. diff --git a/sklearn/ensemble/_hist_gradient_boosting/predictor.py b/sklearn/ensemble/_hist_gradient_boosting/predictor.py index 600e55e43467f..b939712d18893 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/predictor.py +++ b/sklearn/ensemble/_hist_gradient_boosting/predictor.py @@ -10,7 +10,7 @@ _predict_from_binned_data, _predict_from_raw_data, ) -from .common import Y_DTYPE +from .common import PREDICTOR_RECORD_DTYPE, Y_DTYPE class TreePredictor: @@ -20,15 +20,12 @@ class TreePredictor: ---------- nodes : ndarray of PREDICTOR_RECORD_DTYPE The nodes of the tree. - binned_left_cat_bitsets : ndarray of shape (n_categorical_splits, 8), \ - dtype=uint32 + binned_left_cat_bitsets : ndarray of shape (n_categorical_splits, 8), dtype=uint32 Array of bitsets for binned categories used in predict_binned when a split is categorical. - raw_left_cat_bitsets : ndarray of shape (n_categorical_splits, 8), \ - dtype=uint32 + raw_left_cat_bitsets : ndarray of shape (n_categorical_splits, 8), dtype=uint32 Array of bitsets for raw categories used in predict when a split is categorical. - """ def __init__(self, nodes, binned_left_cat_bitsets, raw_left_cat_bitsets): @@ -68,6 +65,7 @@ def predict(self, X, known_cat_bitsets, f_idx_map, n_threads): The raw predicted values. """ out = np.empty(X.shape[0], dtype=Y_DTYPE) + _predict_from_raw_data( self.nodes, X, @@ -125,3 +123,22 @@ def compute_partial_dependence(self, grid, target_features, out): point. """ _compute_partial_dependence(self.nodes, grid, target_features, out) + + def __setstate__(self, state): + try: + super().__setstate__(state) + except AttributeError: + self.__dict__.update(state) + + # The dtype of feature_idx is np.intp which is platform dependent. Here, we + # make sure that saving and loading on different bitness systems works without + # errors. For instance, on a 64 bit Python runtime, np.intp = np.int64, + # while on 32 bit np.intp = np.int32. + # + # TODO: consider always using platform agnostic dtypes for fitted + # estimator attributes. For this particular estimator, this would + # mean replacing the intp field of PREDICTOR_RECORD_DTYPE by an int32 + # field. Ideally this should be done consistently throughout + # scikit-learn along with a common test. + if self.nodes.dtype != PREDICTOR_RECORD_DTYPE: + self.nodes = self.nodes.astype(PREDICTOR_RECORD_DTYPE, casting="same_kind") diff --git a/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py index 8adc0a19dc483..bdc85eccd6607 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py @@ -1,9 +1,14 @@ +import copyreg +import io +import pickle import re import warnings from unittest.mock import Mock +import joblib import numpy as np import pytest +from joblib.numpy_pickle import NumpyPickler from numpy.testing import assert_allclose, assert_array_equal import sklearn @@ -24,12 +29,13 @@ from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower +from sklearn.ensemble._hist_gradient_boosting.predictor import TreePredictor from sklearn.exceptions import NotFittedError from sklearn.metrics import get_scorer, mean_gamma_deviance, mean_poisson_deviance from sklearn.model_selection import cross_val_score, train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler, OneHotEncoder -from sklearn.utils import shuffle +from sklearn.utils import _IS_32BIT, shuffle from sklearn.utils._openmp_helpers import _openmp_effective_n_threads from sklearn.utils._testing import _convert_container @@ -1580,3 +1586,86 @@ def test_categorical_features_warn(): msg = "The categorical_features parameter will change to 'from_dtype' in v1.6" with pytest.warns(FutureWarning, match=msg): hist.fit(X, y) + + +def get_different_bitness_node_ndarray(node_ndarray): + new_dtype_for_indexing_fields = np.int64 if _IS_32BIT else np.int32 + + # field names in Node struct with np.intp types (see + # sklearn/ensemble/_hist_gradient_boosting/common.pyx) + indexing_field_names = ["feature_idx"] + + new_dtype_dict = { + name: dtype for name, (dtype, _) in node_ndarray.dtype.fields.items() + } + for name in indexing_field_names: + new_dtype_dict[name] = new_dtype_for_indexing_fields + + new_dtype = np.dtype( + {"names": list(new_dtype_dict.keys()), "formats": list(new_dtype_dict.values())} + ) + return node_ndarray.astype(new_dtype, casting="same_kind") + + +def reduce_predictor_with_different_bitness(predictor): + cls, args, state = predictor.__reduce__() + + new_state = state.copy() + new_state["nodes"] = get_different_bitness_node_ndarray(new_state["nodes"]) + + return (cls, args, new_state) + + +def test_different_bitness_pickle(): + X, y = make_classification(random_state=0) + + clf = HistGradientBoostingClassifier(random_state=0, max_depth=3) + clf.fit(X, y) + score = clf.score(X, y) + + def pickle_dump_with_different_bitness(): + f = io.BytesIO() + p = pickle.Pickler(f) + p.dispatch_table = copyreg.dispatch_table.copy() + p.dispatch_table[TreePredictor] = reduce_predictor_with_different_bitness + + p.dump(clf) + f.seek(0) + return f + + # Simulate loading a pickle of the same model trained on a platform with different + # bitness that than the platform it will be used to make predictions on: + new_clf = pickle.load(pickle_dump_with_different_bitness()) + new_score = new_clf.score(X, y) + assert score == pytest.approx(new_score) + + +def test_different_bitness_joblib_pickle(): + # Make sure that a platform specific pickle generated on a 64 bit + # platform can be converted at pickle load time into an estimator + # with Cython code that works with the host's native integer precision + # to index nodes in the tree data structure when the host is a 32 bit + # platform (and vice versa). + # + # This is in particular useful to be able to train a model on a 64 bit Linux + # server and deploy the model as part of a (32 bit) WASM in-browser + # application using pyodide. + X, y = make_classification(random_state=0) + + clf = HistGradientBoostingClassifier(random_state=0, max_depth=3) + clf.fit(X, y) + score = clf.score(X, y) + + def joblib_dump_with_different_bitness(): + f = io.BytesIO() + p = NumpyPickler(f) + p.dispatch_table = copyreg.dispatch_table.copy() + p.dispatch_table[TreePredictor] = reduce_predictor_with_different_bitness + + p.dump(clf) + f.seek(0) + return f + + new_clf = joblib.load(joblib_dump_with_different_bitness()) + new_score = new_clf.score(X, y) + assert score == pytest.approx(new_score) From 8a71b840d3d7f6e5db9f9faf3b6c44f8ed6a3850 Mon Sep 17 00:00:00 2001 From: thebabush <1985669+thebabush@users.noreply.github.com> Date: Tue, 16 Jan 2024 04:12:56 +0900 Subject: [PATCH 0044/1641] ENH ensure no copy if not requested and improve transform performance in TFIDFTransformer (#18843) Co-authored-by: Guillaume Lemaitre --- doc/whats_new/v1.5.rst | 8 ++++ sklearn/feature_extraction/tests/test_text.py | 21 +++++++++ sklearn/feature_extraction/text.py | 46 ++++--------------- 3 files changed, 39 insertions(+), 36 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 6f4778d9784e8..96cbd21021f08 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -31,6 +31,14 @@ Changelog - |Feature| A fitted :class:`compose.ColumnTransformer` now implements `__getitem__` which returns the fitted transformers by name. :pr:`27990` by `Thomas Fan`_. +:mod:`sklearn.feature_extraction` +................................. + +- |Efficiency| :class:`feature_extraction.text.TfidfTransformer` is now faster + and more memory-efficient by using a NumPy vector instead of a sparse matrix + for storing the inverse document frequency. + :pr:`18843` by :user:`Paolo Montesel `. + :mod:`sklearn.impute` ..................... diff --git a/sklearn/feature_extraction/tests/test_text.py b/sklearn/feature_extraction/tests/test_text.py index 7c7cac85ccc6b..06a4f0e805e29 100644 --- a/sklearn/feature_extraction/tests/test_text.py +++ b/sklearn/feature_extraction/tests/test_text.py @@ -1653,3 +1653,24 @@ def test_vectorizers_do_not_have_set_output(Estimator): """Check that vectorizers do not define set_output.""" est = Estimator() assert not hasattr(est, "set_output") + + +@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) +def test_tfidf_transformer_copy(csr_container): + """Check the behaviour of TfidfTransformer.transform with the copy parameter.""" + X = sparse.rand(10, 20000, dtype=np.float64, random_state=42) + X_csr = csr_container(X) + + # keep a copy of the original matrix for later comparison + X_csr_original = X_csr.copy() + + transformer = TfidfTransformer().fit(X_csr) + + X_transform = transformer.transform(X_csr, copy=True) + assert_allclose_dense_sparse(X_csr, X_csr_original) + assert X_transform is not X_csr + + X_transform = transformer.transform(X_csr, copy=False) + assert X_transform is X_csr + with pytest.raises(AssertionError): + assert_allclose_dense_sparse(X_csr, X_csr_original) diff --git a/sklearn/feature_extraction/text.py b/sklearn/feature_extraction/text.py index 29104c29e74ac..cef6f340e83c8 100644 --- a/sklearn/feature_extraction/text.py +++ b/sklearn/feature_extraction/text.py @@ -1679,14 +1679,10 @@ def fit(self, X, y=None): # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. - idf = np.log(n_samples / df) + 1 - self._idf_diag = sp.diags( - idf, - offsets=0, - shape=(n_features, n_features), - format="csr", - dtype=dtype, - ) + self.idf_ = np.log(n_samples / df) + 1.0 + # FIXME: for backward compatibility, we force idf_ to be np.float64 + # In the future, we should preserve the `dtype` of `X`. + self.idf_ = self.idf_.astype(np.float64, copy=False) return self @@ -1700,13 +1696,14 @@ def transform(self, X, copy=True): copy : bool, default=True Whether to copy X and operate on the copy or perform in-place - operations. + operations. `copy=False` will only be effective with CSR sparse matrix. Returns ------- vectors : sparse matrix of shape (n_samples, n_features) Tf-idf-weighted document-term matrix. """ + check_is_fitted(self) X = self._validate_data( X, accept_sparse="csr", dtype=FLOAT_DTYPES, copy=copy, reset=False ) @@ -1717,39 +1714,16 @@ def transform(self, X, copy=True): np.log(X.data, X.data) X.data += 1 - if self.use_idf: - # idf_ being a property, the automatic attributes detection - # does not work as usual and we need to specify the attribute - # name: - check_is_fitted(self, attributes=["idf_"], msg="idf vector is not fitted") - - X = X @ self._idf_diag + if hasattr(self, "idf_"): + # the columns of X (CSR matrix) can be accessed with `X.indices `and + # multiplied with the corresponding `idf` value + X.data *= self.idf_[X.indices] if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X - @property - def idf_(self): - """Inverse document frequency vector, only defined if `use_idf=True`. - - Returns - ------- - ndarray of shape (n_features,) - """ - # if _idf_diag is not set, this will raise an attribute error, - # which means hasattr(self, "idf_") is False - return np.ravel(self._idf_diag.sum(axis=0)) - - @idf_.setter - def idf_(self, value): - value = np.asarray(value, dtype=np.float64) - n_features = value.shape[0] - self._idf_diag = sp.spdiags( - value, diags=0, m=n_features, n=n_features, format="csr" - ) - def _more_tags(self): return {"X_types": ["2darray", "sparse"]} From 6ee983c1b212b63ef0823f101bddd8d3b5ea6f67 Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Tue, 16 Jan 2024 03:42:09 +0800 Subject: [PATCH 0045/1641] DOC solve some sphinx errors when updating to `pydata-sphinx-theme` (#28134) --- doc/modules/ensemble.rst | 2 ++ examples/release_highlights/plot_release_highlights_1_4_0.py | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 334e00e35a848..ee8cac3e715c2 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -286,10 +286,12 @@ model. For a predictor :math:`F` with two features: - a **monotonic increase constraint** is a constraint of the form: + .. math:: x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2) - a **monotonic decrease constraint** is a constraint of the form: + .. math:: x_1 \leq x_1' \implies F(x_1, x_2) \geq F(x_1', x_2) diff --git a/examples/release_highlights/plot_release_highlights_1_4_0.py b/examples/release_highlights/plot_release_highlights_1_4_0.py index d8112699e04ed..0d2924d9e8bb4 100644 --- a/examples/release_highlights/plot_release_highlights_1_4_0.py +++ b/examples/release_highlights/plot_release_highlights_1_4_0.py @@ -155,7 +155,7 @@ # ------------------------ # Many meta-estimators and cross-validation routines now support metadata # routing, which are listed in the :ref:`user guide -# <_metadata_routing_models>`. For instance, this is how you can do a nested +# `. For instance, this is how you can do a nested # cross-validation with sample weights and :class:`~model_selection.GroupKFold`: import sklearn from sklearn.metrics import get_scorer From 0040de8c0be2fe3d7885919b9384c163b7c38c81 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 15 Jan 2024 20:42:24 +0100 Subject: [PATCH 0046/1641] DOC fix underline for Examples section in clear_data_home (#28135) --- sklearn/datasets/_base.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/datasets/_base.py b/sklearn/datasets/_base.py index ab2b8bd3f5110..d5c9a66b76167 100644 --- a/sklearn/datasets/_base.py +++ b/sklearn/datasets/_base.py @@ -87,7 +87,7 @@ def clear_data_home(data_home=None): is `~/scikit_learn_data`. Examples - ---------- + -------- >>> from sklearn.datasets import clear_data_home >>> clear_data_home() # doctest: +SKIP """ From 65c907d31fd4a6e68fbf59d93052521c48556f61 Mon Sep 17 00:00:00 2001 From: Xiao Yuan Date: Tue, 16 Jan 2024 04:56:43 +0800 Subject: [PATCH 0047/1641] DOC add examples in docstring for decomposition (#28131) Co-authored-by: Guillaume Lemaitre --- sklearn/decomposition/_dict_learning.py | 67 +++++++++++++++++++++++++ 1 file changed, 67 insertions(+) diff --git a/sklearn/decomposition/_dict_learning.py b/sklearn/decomposition/_dict_learning.py index 561ffd32a0551..51350aa5e05bd 100644 --- a/sklearn/decomposition/_dict_learning.py +++ b/sklearn/decomposition/_dict_learning.py @@ -338,6 +338,23 @@ def sparse_encode( sklearn.linear_model.Lasso : Train Linear Model with L1 prior as regularizer. SparseCoder : Find a sparse representation of data from a fixed precomputed dictionary. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.decomposition import sparse_encode + >>> X = np.array([[-1, -1, -1], [0, 0, 3]]) + >>> dictionary = np.array( + ... [[0, 1, 0], + ... [-1, -1, 2], + ... [1, 1, 1], + ... [0, 1, 1], + ... [0, 2, 1]], + ... dtype=np.float64 + ... ) + >>> sparse_encode(X, dictionary, alpha=1e-10) + array([[ 0., 0., -1., 0., 0.], + [ 0., 1., 1., 0., 0.]]) """ if check_input: if algorithm == "lasso_cd": @@ -804,6 +821,32 @@ def dict_learning_online( learning algorithm. SparsePCA : Sparse Principal Components Analysis. MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.datasets import make_sparse_coded_signal + >>> from sklearn.decomposition import dict_learning_online + >>> X, _, _ = make_sparse_coded_signal( + ... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10, + ... random_state=42, + ... ) + >>> U, V = dict_learning_online( + ... X, n_components=15, alpha=0.2, max_iter=20, batch_size=3, random_state=42 + ... ) + + We can check the level of sparsity of `U`: + + >>> np.mean(U == 0) + 0.53... + + We can compare the average squared euclidean norm of the reconstruction + error of the sparse coded signal relative to the squared euclidean norm of + the original signal: + + >>> X_hat = U @ V + >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) + 0.05... """ # TODO(1.6): remove in 1.6 if max_iter is None: @@ -982,6 +1025,30 @@ def dict_learning( of the dictionary learning algorithm. SparsePCA : Sparse Principal Components Analysis. MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.datasets import make_sparse_coded_signal + >>> from sklearn.decomposition import dict_learning + >>> X, _, _ = make_sparse_coded_signal( + ... n_samples=30, n_components=15, n_features=20, n_nonzero_coefs=10, + ... random_state=42, + ... ) + >>> U, V, errors = dict_learning(X, n_components=15, alpha=0.1, random_state=42) + + We can check the level of sparsity of `U`: + + >>> np.mean(U == 0) + 0.6... + + We can compare the average squared euclidean norm of the reconstruction + error of the sparse coded signal relative to the squared euclidean norm of + the original signal: + + >>> X_hat = U @ V + >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) + 0.01... """ estimator = DictionaryLearning( n_components=n_components, From 54de8300b2079f71d26137bdb2d62b3b277950cc Mon Sep 17 00:00:00 2001 From: Salim Dohri <104096451+dohrisalim@users.noreply.github.com> Date: Mon, 15 Jan 2024 22:01:01 +0100 Subject: [PATCH 0048/1641] DOC Add a docstring example for the BiclusterMixin class (#28129) Co-authored-by: Guillaume Lemaitre --- sklearn/base.py | 27 ++++++++++++++++++++++++++- 1 file changed, 26 insertions(+), 1 deletion(-) diff --git a/sklearn/base.py b/sklearn/base.py index a6313947ba469..c2b119cbf63e5 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -889,7 +889,32 @@ def _more_tags(self): class BiclusterMixin: - """Mixin class for all bicluster estimators in scikit-learn.""" + """Mixin class for all bicluster estimators in scikit-learn. + + This mixin defines the following functionality: + + - `biclusters_` property that returns the row and column indicators; + - `get_indices` method that returns the row and column indices of a bicluster; + - `get_shape` method that returns the shape of a bicluster; + - `get_submatrix` method that returns the submatrix corresponding to a bicluster. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, BiclusterMixin + >>> class DummyBiClustering(BiclusterMixin, BaseEstimator): + ... def fit(self, X, y=None): + ... self.rows_ = np.ones(shape=(1, X.shape[0]), dtype=bool) + ... self.columns_ = np.ones(shape=(1, X.shape[1]), dtype=bool) + ... return self + >>> X = np.array([[1, 1], [2, 1], [1, 0], + ... [4, 7], [3, 5], [3, 6]]) + >>> bicluster = DummyBiClustering().fit(X) + >>> hasattr(bicluster, "biclusters_") + True + >>> bicluster.get_indices(0) + (array([0, 1, 2, 3, 4, 5]), array([0, 1])) + """ @property def biclusters_(self): From f3b13e5dae57d57e3c455b05e747e0341b755fe2 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Mon, 15 Jan 2024 22:29:03 +0100 Subject: [PATCH 0049/1641] FIX divide by zero in line search of GradientBoostingClassifier (#28095) --- doc/whats_new/v1.4.rst | 2 +- sklearn/ensemble/_gb.py | 15 ++++++--- .../ensemble/tests/test_gradient_boosting.py | 32 +++++++++++++++++-- 3 files changed, 42 insertions(+), 7 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index cb4404c7855d8..ae830dd9346d8 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -470,7 +470,7 @@ Changelog - |Efficiency| :class:`ensemble.GradientBoostingClassifier` is faster, for binary and in particular for multiclass problems thanks to the private loss function module. - :pr:`26278` by :user:`Christian Lorentzen `. + :pr:`26278` and :pr:`28095` by :user:`Christian Lorentzen `. - |Efficiency| Improves runtime and memory usage for :class:`ensemble.GradientBoostingClassifier` and diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py index f478d94a5828f..7c5dd6fbdac3c 100644 --- a/sklearn/ensemble/_gb.py +++ b/sklearn/ensemble/_gb.py @@ -65,16 +65,23 @@ def _safe_divide(numerator, denominator): """Prevents overflow and division by zero.""" - try: + # This is used for classifiers where the denominator might become zero exatly. + # For instance for log loss, HalfBinomialLoss, if proba=0 or proba=1 exactly, then + # denominator = hessian = 0, and we should set the node value in the line search to + # zero as there is no improvement of the loss possible. + # For numerical safety, we do this already for extremely tiny values. + if abs(denominator) < 1e-150: + return 0.0 + else: + # Cast to Python float to trigger Python errors, e.g. ZeroDivisionError, + # without relying on `np.errstate` that is not supported by Pyodide. + result = float(numerator) / float(denominator) # Cast to Python float to trigger a ZeroDivisionError without relying # on `np.errstate` that is not supported by Pyodide. result = float(numerator) / float(denominator) if math.isinf(result): warnings.warn("overflow encountered in _safe_divide", RuntimeWarning) return result - except ZeroDivisionError: - warnings.warn("divide by zero encountered in _safe_divide", RuntimeWarning) - return 0.0 def _init_raw_predictions(X, estimator, loss, use_predict_proba): diff --git a/sklearn/ensemble/tests/test_gradient_boosting.py b/sklearn/ensemble/tests/test_gradient_boosting.py index f721767b96aa7..4bfbf7c2ff6ee 100644 --- a/sklearn/ensemble/tests/test_gradient_boosting.py +++ b/sklearn/ensemble/tests/test_gradient_boosting.py @@ -1452,9 +1452,9 @@ def test_huber_vs_mean_and_median(): def test_safe_divide(): """Test that _safe_divide handles division by zero.""" - with pytest.warns(RuntimeWarning, match="divide"): + with warnings.catch_warnings(): + warnings.simplefilter("error") assert _safe_divide(np.float64(1e300), 0) == 0 - with pytest.warns(RuntimeWarning, match="divide"): assert _safe_divide(np.float64(0.0), np.float64(0.0)) == 0 with pytest.warns(RuntimeWarning, match="overflow"): # np.finfo(float).max = 1.7976931348623157e+308 @@ -1680,3 +1680,31 @@ def test_multinomial_error_exact_backward_compat(): ] ) assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-8) + + +def test_gb_denominator_zero(global_random_seed): + """Test _update_terminal_regions denominator is not zero. + + For instance for log loss based binary classification, the line search step might + become nan/inf as denominator = hessian = prob * (1 - prob) and prob = 0 or 1 can + happen. + Here, we create a situation were this happens (at least with roughly 80%) based + on the random seed. + """ + X, y = datasets.make_hastie_10_2(n_samples=100, random_state=20) + + params = { + "learning_rate": 1.0, + "subsample": 0.5, + "n_estimators": 100, + "max_leaf_nodes": 4, + "max_depth": None, + "random_state": global_random_seed, + "min_samples_leaf": 2, + } + + clf = GradientBoostingClassifier(**params) + # _safe_devide would raise a RuntimeWarning + with warnings.catch_warnings(): + warnings.simplefilter("error") + clf.fit(X, y) From db971d1e63acdac0d00ac1c32636ceec904f48df Mon Sep 17 00:00:00 2001 From: John Cant Date: Mon, 15 Jan 2024 21:30:43 +0000 Subject: [PATCH 0050/1641] FIX return proper instance class in displays classmethod (#27675) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Guillaume Lemaitre Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> --- doc/whats_new/v1.4.rst | 12 +++++ sklearn/inspection/_plot/decision_boundary.py | 2 +- .../inspection/_plot/partial_dependence.py | 2 +- .../tests/test_boundary_decision_display.py | 16 +++++++ .../tests/test_plot_partial_dependence.py | 21 +++++++++ sklearn/metrics/_plot/det_curve.py | 2 +- .../metrics/_plot/precision_recall_curve.py | 2 +- sklearn/metrics/_plot/regression.py | 2 +- sklearn/metrics/_plot/roc_curve.py | 2 +- .../_plot/tests/test_common_curve_display.py | 44 +++++++++++++++++++ sklearn/model_selection/tests/test_plot.py | 23 ++++++++++ 11 files changed, 122 insertions(+), 6 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index ae830dd9346d8..b738c89d5b7d3 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -557,6 +557,11 @@ Changelog both binary and multiclass classifiers. :pr:`27291` by :user:`Guillaume Lemaitre `. +- |Fix| :meth:`inspection.DecisionBoundaryDisplay.from_estimator` and + :class:`inspection.PartialDependenceDisplay.from_estimator` now return the correct + type for subclasses. + :pr:`27675` by :user:`John Cant `. + - |API| :class:`inspection.DecisionBoundaryDisplay` raise an `AttributeError` instead of a `ValueError` when an estimator does not implement the requested response method. :pr:`27291` by :user:`Guillaume Lemaitre `. @@ -646,6 +651,13 @@ Changelog `predict_proba`). Such scorer are specific to classification. :pr:`26840` by :user:`Guillaume Lemaitre `. +- |Fix| :meth:`metrics.DetCurveDisplay.from_predictions`, + :class:`metrics.PrecisionRecallDisplay.from_predictions`, + :class:`metrics.PredictionErrorDisplay.from_predictions`, and + :class:`metrics.RocCurveDisplay.from_predictions` now return the correct type + for subclasses. + :pr:`27675` by :user:`John Cant `. + - |API| Deprecated `needs_threshold` and `needs_proba` from :func:`metrics.make_scorer`. These parameters will be removed in version 1.6. Instead, use `response_method` that accepts `"predict"`, `"predict_proba"` or `"decision_function"` or a list of such diff --git a/sklearn/inspection/_plot/decision_boundary.py b/sklearn/inspection/_plot/decision_boundary.py index a42e744261e0b..12162b25c53ed 100644 --- a/sklearn/inspection/_plot/decision_boundary.py +++ b/sklearn/inspection/_plot/decision_boundary.py @@ -396,7 +396,7 @@ def from_estimator( if ylabel is None: ylabel = X.columns[1] if hasattr(X, "columns") else "" - display = DecisionBoundaryDisplay( + display = cls( xx0=xx0, xx1=xx1, response=response.reshape(xx0.shape), diff --git a/sklearn/inspection/_plot/partial_dependence.py b/sklearn/inspection/_plot/partial_dependence.py index 7414433ed3f56..f640df909e2d4 100644 --- a/sklearn/inspection/_plot/partial_dependence.py +++ b/sklearn/inspection/_plot/partial_dependence.py @@ -744,7 +744,7 @@ def from_estimator( X_col = _safe_indexing(X, fx, axis=1) deciles[fx] = mquantiles(X_col, prob=np.arange(0.1, 1.0, 0.1)) - display = PartialDependenceDisplay( + display = cls( pd_results=pd_results, features=features, feature_names=feature_names, diff --git a/sklearn/inspection/_plot/tests/test_boundary_decision_display.py b/sklearn/inspection/_plot/tests/test_boundary_decision_display.py index 37e8adf3aac2d..7bb38f55445a0 100644 --- a/sklearn/inspection/_plot/tests/test_boundary_decision_display.py +++ b/sklearn/inspection/_plot/tests/test_boundary_decision_display.py @@ -591,3 +591,19 @@ def test_class_of_interest_multiclass(pyplot, response_method): response_method=response_method, class_of_interest=None, ) + + +def test_subclass_named_constructors_return_type_is_subclass(pyplot): + """Check that named constructors return the correct type when subclassed. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/pull/27675 + """ + clf = LogisticRegression().fit(X, y) + + class SubclassOfDisplay(DecisionBoundaryDisplay): + pass + + curve = SubclassOfDisplay.from_estimator(estimator=clf, X=X) + + assert isinstance(curve, SubclassOfDisplay) diff --git a/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py b/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py index e98fdebaeaf03..57fc68d07e887 100644 --- a/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py +++ b/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py @@ -1117,3 +1117,24 @@ def test_partial_dependence_display_with_constant_sample_weight( assert np.array_equal( disp.pd_results[0]["average"], disp_sw.pd_results[0]["average"] ) + + +def test_subclass_named_constructors_return_type_is_subclass( + pyplot, diabetes, clf_diabetes +): + """Check that named constructors return the correct type when subclassed. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/pull/27675 + """ + + class SubclassOfDisplay(PartialDependenceDisplay): + pass + + curve = SubclassOfDisplay.from_estimator( + clf_diabetes, + diabetes.data, + [0, 2, (0, 2)], + ) + + assert isinstance(curve, SubclassOfDisplay) diff --git a/sklearn/metrics/_plot/det_curve.py b/sklearn/metrics/_plot/det_curve.py index 98997e01750bc..e7336b10f5bb6 100644 --- a/sklearn/metrics/_plot/det_curve.py +++ b/sklearn/metrics/_plot/det_curve.py @@ -265,7 +265,7 @@ def from_predictions( sample_weight=sample_weight, ) - viz = DetCurveDisplay( + viz = cls( fpr=fpr, fnr=fnr, estimator_name=name, diff --git a/sklearn/metrics/_plot/precision_recall_curve.py b/sklearn/metrics/_plot/precision_recall_curve.py index a28d69d3b320e..852dbf3981b2c 100644 --- a/sklearn/metrics/_plot/precision_recall_curve.py +++ b/sklearn/metrics/_plot/precision_recall_curve.py @@ -486,7 +486,7 @@ def from_predictions( class_count = Counter(y_true) prevalence_pos_label = class_count[pos_label] / sum(class_count.values()) - viz = PrecisionRecallDisplay( + viz = cls( precision=precision, recall=recall, average_precision=average_precision, diff --git a/sklearn/metrics/_plot/regression.py b/sklearn/metrics/_plot/regression.py index ef0e0c39b1c4e..393a9524e2af4 100644 --- a/sklearn/metrics/_plot/regression.py +++ b/sklearn/metrics/_plot/regression.py @@ -392,7 +392,7 @@ def from_predictions( y_true = _safe_indexing(y_true, indices, axis=0) y_pred = _safe_indexing(y_pred, indices, axis=0) - viz = PredictionErrorDisplay( + viz = cls( y_true=y_true, y_pred=y_pred, ) diff --git a/sklearn/metrics/_plot/roc_curve.py b/sklearn/metrics/_plot/roc_curve.py index cf465392ef5ba..292fb6e2e2f69 100644 --- a/sklearn/metrics/_plot/roc_curve.py +++ b/sklearn/metrics/_plot/roc_curve.py @@ -402,7 +402,7 @@ def from_predictions( ) roc_auc = auc(fpr, tpr) - viz = RocCurveDisplay( + viz = cls( fpr=fpr, tpr=tpr, roc_auc=roc_auc, diff --git a/sklearn/metrics/_plot/tests/test_common_curve_display.py b/sklearn/metrics/_plot/tests/test_common_curve_display.py index 47ac750f9b278..7fe0f0fc6fa7f 100644 --- a/sklearn/metrics/_plot/tests/test_common_curve_display.py +++ b/sklearn/metrics/_plot/tests/test_common_curve_display.py @@ -8,8 +8,10 @@ from sklearn.exceptions import NotFittedError from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( + ConfusionMatrixDisplay, DetCurveDisplay, PrecisionRecallDisplay, + PredictionErrorDisplay, RocCurveDisplay, ) from sklearn.pipeline import make_pipeline @@ -223,3 +225,45 @@ def test_display_curve_error_pos_label(pyplot, data_binary, Display): msg = r"y_true takes value in {10, 11} and pos_label is not specified" with pytest.raises(ValueError, match=msg): Display.from_predictions(y, y_pred) + + +@pytest.mark.parametrize( + "Display", + [ + CalibrationDisplay, + DetCurveDisplay, + PrecisionRecallDisplay, + RocCurveDisplay, + PredictionErrorDisplay, + ConfusionMatrixDisplay, + ], +) +@pytest.mark.parametrize( + "constructor", + ["from_predictions", "from_estimator"], +) +def test_classifier_display_curve_named_constructor_return_type( + pyplot, data_binary, Display, constructor +): + """Check that named constructors return the correct type when subclassed. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/pull/27675 + """ + X, y = data_binary + + # This can be anything - we just need to check the named constructor return + # type so the only requirement here is instantiating the class without error + y_pred = y + + classifier = LogisticRegression().fit(X, y) + + class SubclassOfDisplay(Display): + pass + + if constructor == "from_predictions": + curve = SubclassOfDisplay.from_predictions(y, y_pred) + else: # constructor == "from_estimator" + curve = SubclassOfDisplay.from_estimator(classifier, X, y) + + assert isinstance(curve, SubclassOfDisplay) diff --git a/sklearn/model_selection/tests/test_plot.py b/sklearn/model_selection/tests/test_plot.py index a3dad60f7bf40..1a7268150fd90 100644 --- a/sklearn/model_selection/tests/test_plot.py +++ b/sklearn/model_selection/tests/test_plot.py @@ -570,3 +570,26 @@ def test_validation_curve_xscale_from_param_range_provided_as_a_list( ) assert display.ax_.get_xscale() == xscale + + +@pytest.mark.parametrize( + "Display, params", + [ + (LearningCurveDisplay, {}), + (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), + ], +) +def test_subclassing_displays(pyplot, data, Display, params): + """Check that named constructors return the correct type when subclassed. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/pull/27675 + """ + X, y = data + estimator = DecisionTreeClassifier(random_state=0) + + class SubclassOfDisplay(Display): + pass + + display = SubclassOfDisplay.from_estimator(estimator, X, y, **params) + assert isinstance(display, SubclassOfDisplay) From dcf6c2733fef8dcf22fc1e0593305d00c0ef3fab Mon Sep 17 00:00:00 2001 From: Harmanan Kohli <17681934+Harmanankohli@users.noreply.github.com> Date: Tue, 16 Jan 2024 18:54:57 +0530 Subject: [PATCH 0051/1641] DOC add example in docstring of silhouette_score (#28125) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/cluster/_unsupervised.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/sklearn/metrics/cluster/_unsupervised.py b/sklearn/metrics/cluster/_unsupervised.py index ccbe473a5f645..21d99d950b844 100644 --- a/sklearn/metrics/cluster/_unsupervised.py +++ b/sklearn/metrics/cluster/_unsupervised.py @@ -119,6 +119,16 @@ def silhouette_score( .. [2] `Wikipedia entry on the Silhouette Coefficient `_ + + Examples + -------- + >>> from sklearn.datasets import make_blobs + >>> from sklearn.cluster import KMeans + >>> from sklearn.metrics import silhouette_score + >>> X, y = make_blobs(random_state=42) + >>> kmeans = KMeans(n_clusters=2, random_state=42) + >>> silhouette_score(X, kmeans.fit_predict(X)) + 0.49... """ if sample_size is not None: X, labels = check_X_y(X, labels, accept_sparse=["csc", "csr"]) From 064228769bb3c4b30030cbe42c4d548ea5f4380f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 16 Jan 2024 14:32:27 +0100 Subject: [PATCH 0052/1641] CI Fix lock-file update workflow (#28140) --- .github/workflows/update-lock-files.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/update-lock-files.yml b/.github/workflows/update-lock-files.yml index b259617494e9c..50d62c85d00a6 100644 --- a/.github/workflows/update-lock-files.yml +++ b/.github/workflows/update-lock-files.yml @@ -17,16 +17,16 @@ jobs: matrix: include: - name: main - update_script_args: "--select-build-tag main-ci" + update_script_args: "--select-tag main-ci" additional_commit_message: "[doc build]" - name: scipy-dev - update_script_args: "--select-build-tag scipy-dev" + update_script_args: "--select-tag scipy-dev" additional_commit_message: "[scipy-dev]" - name: cirrus-arm - update_script_args: "--select-build-tag arm" + update_script_args: "--select-tag arm" additional_commit_message: "[cirrus arm]" - name: pypy - update_script_args: "--select-build-tag pypy" + update_script_args: "--select-tag pypy" additional_commit_message: "[pypy]" steps: From 27c3277d0986e550c3dc2b89d3474e605b3edbd6 Mon Sep 17 00:00:00 2001 From: Xiao Yuan Date: Tue, 16 Jan 2024 22:07:14 +0800 Subject: [PATCH 0053/1641] DOC add example in docstring for sklearn.neighbors.sort_graph_by_row_values (#28143) --- sklearn/neighbors/_base.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/sklearn/neighbors/_base.py b/sklearn/neighbors/_base.py index 848c8b7c9dc5a..6df0f2030877e 100644 --- a/sklearn/neighbors/_base.py +++ b/sklearn/neighbors/_base.py @@ -224,6 +224,20 @@ def sort_graph_by_row_values(graph, copy=False, warn_when_not_sorted=True): graph : sparse matrix of shape (n_samples, n_samples) Distance matrix to other samples, where only non-zero elements are considered neighbors. Matrix is in CSR format. + + Examples + -------- + >>> from scipy.sparse import csr_matrix + >>> from sklearn.neighbors import sort_graph_by_row_values + >>> X = csr_matrix( + ... [[0., 3., 1.], + ... [3., 0., 2.], + ... [1., 2., 0.]]) + >>> X.data + array([3., 1., 3., 2., 1., 2.]) + >>> X_ = sort_graph_by_row_values(X) + >>> X_.data + array([1., 3., 2., 3., 1., 2.]) """ if graph.format == "csr" and _is_sorted_by_data(graph): return graph From 9eb5b91143eb316dc6c1058cfc11f951c97c121d Mon Sep 17 00:00:00 2001 From: Claudio Salvatore Arcidiacono <22871978+ClaudioSalvatoreArcidiacono@users.noreply.github.com> Date: Tue, 16 Jan 2024 15:32:33 +0100 Subject: [PATCH 0054/1641] DOC add docstring example to `sklearn.datasets.make_classification` (#28141) Co-authored-by: Guillaume Lemaitre --- sklearn/datasets/_samples_generator.py | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/sklearn/datasets/_samples_generator.py b/sklearn/datasets/_samples_generator.py index cd0bb4b3dbba8..561b22012f69c 100644 --- a/sklearn/datasets/_samples_generator.py +++ b/sklearn/datasets/_samples_generator.py @@ -195,6 +195,17 @@ def make_classification( ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. + + Examples + -------- + >>> from sklearn.datasets import make_classification + >>> X, y = make_classification(random_state=42) + >>> X.shape + (100, 20) + >>> y.shape + (100,) + >>> list(y[:5]) + [0, 0, 1, 1, 0] """ generator = check_random_state(random_state) From 48e2f72dcb9eb0957891f597db42856bf5606b4b Mon Sep 17 00:00:00 2001 From: Claudio Salvatore Arcidiacono <22871978+ClaudioSalvatoreArcidiacono@users.noreply.github.com> Date: Tue, 16 Jan 2024 15:38:15 +0100 Subject: [PATCH 0055/1641] DOC add examples to make_friedman 1 2 and 3 (#28142) Co-authored-by: Guillaume Lemaitre --- sklearn/datasets/_samples_generator.py | 33 ++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/sklearn/datasets/_samples_generator.py b/sklearn/datasets/_samples_generator.py index 561b22012f69c..dd170942eb224 100644 --- a/sklearn/datasets/_samples_generator.py +++ b/sklearn/datasets/_samples_generator.py @@ -1119,6 +1119,17 @@ def make_friedman1(n_samples=100, n_features=10, *, noise=0.0, random_state=None .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. + + Examples + -------- + >>> from sklearn.datasets import make_friedman1 + >>> X, y = make_friedman1(random_state=42) + >>> X.shape + (100, 10) + >>> y.shape + (100,) + >>> list(y[:3]) + [16.8..., 5.8..., 9.4...] """ generator = check_random_state(random_state) @@ -1190,6 +1201,17 @@ def make_friedman2(n_samples=100, *, noise=0.0, random_state=None): .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. + + Examples + -------- + >>> from sklearn.datasets import make_friedman2 + >>> X, y = make_friedman2(random_state=42) + >>> X.shape + (100, 4) + >>> y.shape + (100,) + >>> list(y[:3]) + [1229.4..., 27.0..., 65.6...] """ generator = check_random_state(random_state) @@ -1263,6 +1285,17 @@ def make_friedman3(n_samples=100, *, noise=0.0, random_state=None): .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. + + Examples + -------- + >>> from sklearn.datasets import make_friedman3 + >>> X, y = make_friedman3(random_state=42) + >>> X.shape + (100, 4) + >>> y.shape + (100,) + >>> list(y[:3]) + [1.5..., 0.9..., 0.4...] """ generator = check_random_state(random_state) From b9a7a5e3d911c4e9bd24f1355db1aa59397a6f4b Mon Sep 17 00:00:00 2001 From: Alexis IMBERT <97242148+Alexis-IMBERT@users.noreply.github.com> Date: Tue, 16 Jan 2024 16:09:32 +0100 Subject: [PATCH 0056/1641] DOC Add doc link to SVC reference (#28073) Co-authored-by: Guillaume Lemaitre --- doc/conf.py | 3 ++ .../statistical_inference/model_selection.rst | 49 ++++++++++++++++--- examples/exercises/plot_cv_digits.py | 43 ---------------- sklearn/svm/_classes.py | 3 ++ 4 files changed, 49 insertions(+), 49 deletions(-) delete mode 100644 examples/exercises/plot_cv_digits.py diff --git a/doc/conf.py b/doc/conf.py index 20181c0a84769..c0846cb9ae29e 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -306,6 +306,9 @@ "auto_examples/decomposition/plot_pca_3d": ( "auto_examples/decomposition/plot_pca_iris" ), + "auto_examples/exercises/plot_cv_digits.py": ( + "auto_examples/model_selection/plot_nested_cross_validation_iris.py" + ), } html_context["redirects"] = redirects for old_link in redirects: diff --git a/doc/tutorial/statistical_inference/model_selection.rst b/doc/tutorial/statistical_inference/model_selection.rst index bf0290c9f7337..87423ef1c3925 100644 --- a/doc/tutorial/statistical_inference/model_selection.rst +++ b/doc/tutorial/statistical_inference/model_selection.rst @@ -185,15 +185,52 @@ scoring method. estimator with a linear kernel as a function of parameter ``C`` (use a logarithmic grid of points, from 1 to 10). - .. literalinclude:: ../../auto_examples/exercises/plot_cv_digits.py - :lines: 13-23 + :: - .. image:: /auto_examples/exercises/images/sphx_glr_plot_cv_digits_001.png - :target: ../../auto_examples/exercises/plot_cv_digits.html + >>> import numpy as np + >>> from sklearn import datasets, svm + >>> from sklearn.model_selection import cross_val_score + >>> X, y = datasets.load_digits(return_X_y=True) + >>> svc = svm.SVC(kernel="linear") + >>> C_s = np.logspace(-10, 0, 10) + >>> scores = list() + >>> scores_std = list() + + |details-start| + **Solution** + |details-split| + + .. plot:: + :context: close-figs :align: center - :scale: 90 - **Solution:** :ref:`sphx_glr_auto_examples_exercises_plot_cv_digits.py` + import numpy as np + from sklearn import datasets, svm + from sklearn.model_selection import cross_val_score + X, y = datasets.load_digits(return_X_y=True) + svc = svm.SVC(kernel="linear") + C_s = np.logspace(-10, 0, 10) + scores = list() + scores_std = list() + for C in C_s: + svc.C = C + this_scores = cross_val_score(svc, X, y, n_jobs=1) + scores.append(np.mean(this_scores)) + scores_std.append(np.std(this_scores)) + + import matplotlib.pyplot as plt + + plt.figure() + plt.semilogx(C_s, scores) + plt.semilogx(C_s, np.array(scores) + np.array(scores_std), "b--") + plt.semilogx(C_s, np.array(scores) - np.array(scores_std), "b--") + locs, labels = plt.yticks() + plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) + plt.ylabel("CV score") + plt.xlabel("Parameter C") + plt.ylim(0, 1.1) + plt.show() + |details-end| Grid-search and cross-validated estimators ============================================ diff --git a/examples/exercises/plot_cv_digits.py b/examples/exercises/plot_cv_digits.py deleted file mode 100644 index ebad3a55098b5..0000000000000 --- a/examples/exercises/plot_cv_digits.py +++ /dev/null @@ -1,43 +0,0 @@ -""" -============================================= -Cross-validation on Digits Dataset Exercise -============================================= - -A tutorial exercise using Cross-validation with an SVM on the Digits dataset. - -This exercise is used in the :ref:`cv_generators_tut` part of the -:ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. - -""" - -import numpy as np - -from sklearn import datasets, svm -from sklearn.model_selection import cross_val_score - -X, y = datasets.load_digits(return_X_y=True) - -svc = svm.SVC(kernel="linear") -C_s = np.logspace(-10, 0, 10) - -scores = list() -scores_std = list() -for C in C_s: - svc.C = C - this_scores = cross_val_score(svc, X, y, n_jobs=1) - scores.append(np.mean(this_scores)) - scores_std.append(np.std(this_scores)) - -# Do the plotting -import matplotlib.pyplot as plt - -plt.figure() -plt.semilogx(C_s, scores) -plt.semilogx(C_s, np.array(scores) + np.array(scores_std), "b--") -plt.semilogx(C_s, np.array(scores) - np.array(scores_std), "b--") -locs, labels = plt.yticks() -plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) -plt.ylabel("CV score") -plt.xlabel("Parameter C") -plt.ylim(0, 1.1) -plt.show() diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py index 37a1a4eb302d9..00854f47d9a84 100644 --- a/sklearn/svm/_classes.py +++ b/sklearn/svm/_classes.py @@ -640,6 +640,9 @@ class SVC(BaseSVC): other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. + To learn how to tune SVC's hyperparameters, see the following example: + :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py` + Read more in the :ref:`User Guide `. Parameters From 059de51458d9a7f6140ff822212b4760b0d1a2a9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=B4me=20Dock=C3=A8s?= Date: Tue, 16 Jan 2024 17:44:58 +0100 Subject: [PATCH 0057/1641] API Forbid pd.NA in ColumnTransformer output unless transform output is configured as "pandas" (#27734) Co-authored-by: Guillaume Lemaitre --- doc/whats_new/v1.4.rst | 9 +++++ sklearn/compose/_column_transformer.py | 33 +++++++++++++++++ .../compose/tests/test_column_transformer.py | 35 +++++++++++++++++++ 3 files changed, 77 insertions(+) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index b738c89d5b7d3..f79a15d7a15f0 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -365,6 +365,15 @@ Changelog with `np.int64` indices are not supported. :pr:`27240` by :user:`Yao Xiao `. +- |API| outputs that use pandas extension dtypes and contain `pd.NA` in + :class:`~compose.ColumnTransformer` now result in a `FutureWarning` and will + cause a `ValueError` in version 1.6, unless the output container has been + configured as "pandas" with `set_output(transform="pandas")`. Before, such + outputs resulted in numpy arrays of dtype `object` containing `pd.NA` which + could not be converted to numpy floats and caused errors when passed to other + scikit-learn estimators. + :pr:`27734` by :user:`Jérôme Dockès `. + :mod:`sklearn.covariance` ......................... diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py index 6740bdf4e8993..ee1ee88635516 100644 --- a/sklearn/compose/_column_transformer.py +++ b/sklearn/compose/_column_transformer.py @@ -7,6 +7,7 @@ # Author: Andreas Mueller # Joris Van den Bossche # License: BSD +import warnings from collections import Counter from itertools import chain from numbers import Integral, Real @@ -682,6 +683,38 @@ def _validate_output(self, result): "The output of the '{0}' transformer should be 2D (numpy array, " "scipy sparse array, dataframe).".format(name) ) + if _get_output_config("transform", self)["dense"] == "pandas": + return + try: + import pandas as pd + except ImportError: + return + for Xs, name in zip(result, names): + if not _is_pandas_df(Xs): + continue + for col_name, dtype in Xs.dtypes.to_dict().items(): + if getattr(dtype, "na_value", None) is not pd.NA: + continue + if pd.NA not in Xs[col_name].values: + continue + class_name = self.__class__.__name__ + # TODO(1.6): replace warning with ValueError + warnings.warn( + ( + f"The output of the '{name}' transformer for column" + f" '{col_name}' has dtype {dtype} and uses pandas.NA to" + " represent null values. Storing this output in a numpy array" + " can cause errors in downstream scikit-learn estimators, and" + " inefficiencies. Starting with scikit-learn version 1.6, this" + " will raise a ValueError. To avoid this problem you can (i)" + " store the output in a pandas DataFrame by using" + f" {class_name}.set_output(transform='pandas') or (ii) modify" + f" the input data or the '{name}' transformer to avoid the" + " presence of pandas.NA (for example by using" + " pandas.DataFrame.astype)." + ), + FutureWarning, + ) def _record_output_indices(self, Xs): """ diff --git a/sklearn/compose/tests/test_column_transformer.py b/sklearn/compose/tests/test_column_transformer.py index aa7dfe62fc1a8..fe417e8575e81 100644 --- a/sklearn/compose/tests/test_column_transformer.py +++ b/sklearn/compose/tests/test_column_transformer.py @@ -3,6 +3,7 @@ """ import pickle import re +import warnings import numpy as np import pytest @@ -2275,6 +2276,40 @@ def test_remainder_set_output(): assert isinstance(out, np.ndarray) +# TODO(1.6): replace the warning by a ValueError exception +def test_transform_pd_na(): + """Check behavior when a tranformer's output contains pandas.NA + + It should emit a warning unless the output config is set to 'pandas'. + """ + pd = pytest.importorskip("pandas") + if not hasattr(pd, "Float64Dtype"): + pytest.skip( + "The issue with pd.NA tested here does not happen in old versions that do" + " not have the extension dtypes" + ) + df = pd.DataFrame({"a": [1.5, None]}) + ct = make_column_transformer(("passthrough", ["a"])) + # No warning with non-extension dtypes and np.nan + with warnings.catch_warnings(): + warnings.simplefilter("error") + ct.fit_transform(df) + df = df.convert_dtypes() + # Error with extension dtype and pd.NA + with pytest.warns(FutureWarning, match=r"set_output\(transform='pandas'\)"): + ct.fit_transform(df) + # No warning when output is set to pandas + with warnings.catch_warnings(): + warnings.simplefilter("error") + ct.set_output(transform="pandas") + ct.fit_transform(df) + ct.set_output(transform="default") + # No warning when there are no pd.NA + with warnings.catch_warnings(): + warnings.simplefilter("error") + ct.fit_transform(df.fillna(-1.0)) + + def test_dataframe_different_dataframe_libraries(): """Check fitting and transforming on pandas and polars dataframes.""" pd = pytest.importorskip("pandas") From 4c0b9c4e1d8fc599eb3d631e5961128bb049af26 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Wed, 17 Jan 2024 08:40:14 +0100 Subject: [PATCH 0058/1641] MAINT fix scipy-dev tests by passing 1d vector to unique (#28137) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- sklearn/datasets/tests/test_samples_generator.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/datasets/tests/test_samples_generator.py b/sklearn/datasets/tests/test_samples_generator.py index 6c5d822163e63..9a9cc41d7229c 100644 --- a/sklearn/datasets/tests/test_samples_generator.py +++ b/sklearn/datasets/tests/test_samples_generator.py @@ -136,7 +136,7 @@ def test_make_classification_informative_features(): # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) - signs = signs.view(dtype="|S{0}".format(signs.strides[0])) + signs = signs.view(dtype="|S{0}".format(signs.strides[0])).ravel() unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert ( From 7e72bee19d52064b8b67195781e1c9927f4439ab Mon Sep 17 00:00:00 2001 From: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> Date: Wed, 17 Jan 2024 11:00:23 +0100 Subject: [PATCH 0059/1641] DOC Improve docs of permutation importance on the user guide (#27154) Co-authored-by: ArturoAmorQ Co-authored-by: Guillaume Lemaitre --- .../permuted_non_predictive_feature.png | Bin 0 -> 45027 bytes doc/images/permuted_predictive_feature.png | Bin 0 -> 43181 bytes doc/modules/permutation_importance.rst | 105 +++++++++++++----- .../inspection/plot_permutation_importance.py | 4 +- 4 files changed, 80 insertions(+), 29 deletions(-) create mode 100644 doc/images/permuted_non_predictive_feature.png create mode 100644 doc/images/permuted_predictive_feature.png diff --git a/doc/images/permuted_non_predictive_feature.png b/doc/images/permuted_non_predictive_feature.png new file mode 100644 index 0000000000000000000000000000000000000000..3ba908cbfbe8393fdd83db83753c927ca731d53b GIT binary patch literal 45027 zcmb@uc{rBs+ctVfAymqcN=buEC6YOWA}RA&=7f+TB@&f+hmhD;$u12T_AGBk+F zJS0;nW32t``MvMsjU@PTI+LzIT1r(F>pJqqIEMf6*(qN-tX{Gdt+xP2C^XA0C(SJqaon zAGyFkE}41x%$B&MoIFj}?2nq@hVX{3m+m)Amkf=& z#rLsWF#0gb({bTH+MC!VssHm2^Tza6#lNr8arr(}VJ1JvKUr?^o%+vjXwp3v+4%1p zmAU@6e_3O4@a?vlAD=dikB@hYudnjoKueK!n_3+w<$Ao(d7#{hW7DQhjL~ZL>7CqE z91_l}IqG`q@9y?%qHozKD=RxQ{x!xcJ8UAVPh2%tT*IoNjpfh1wOoGYHp7fe@-q%K zL9D}VX<;3+Y6&v87k>Sqrlg*V@nhxJHC>wfNyo^j=;(NmVp<)rvHgVuXK!zB_xO0I z4dh_Qwqw;bdpy_)29a>cceZ&*OGKBH!n{^`~ml)gT<~BwGR$iF=|R^rWJTL z%v{5gR14KcB_29T*CObaVl&nMdUAGF&s~;}kA9%xJ}u>ajtS?zd-uehdVMOTakBvd z0p-z$ZD;PONl8h$jDOj}ubb8U-T8yPmcgd2TZ5(s8u-83-+6tm{`Kpd&z>D#O?AP; zbp6uOQgfEUp=DR?FB4bm?{Llitm8}^5#i$JXTWFY76^Q`%}M!nMt2t16Jg|%7I;T^ zkECQ#y_8}`Mh4y5wHgn``}-fI#eTnEWG@_%l_ijz@rZ6URe<6y1uJh#eSQ6n?Ck8O z`uO<6^y@`+I~o{xBFRS+vb z{=#lSE@$4Q@V=ml`P^jBO6|->P+VwqgFjoP0jUqpz7x~J(%eJYlJCK(ed)- zW7^s*%gc)n6u0YpgoTB3od;Arw;wxv`^2eJ$GS?dYb46A!L@lzR?zAfI$PfDjEIfR zy7GXd&J6diUwmc%W9lip?l^a&2}zQNe$G?z3mUF)`b^LbSqVL}tgoR^2!84CK>! zEGNL0j1L@cO*xs^6?WFySr}_N`Z+((?z8Y}8X9>XmforjvelpSts)0yU51&WMQo_f zoH-*dA<>f@CR6#$_7ltC-HCUdFC3CxC%!p4JKsu9-n}sMojOo4NhjWOu7`GRVL@Ji zZMU>E2cC^?l-}~!uEI;S_8kQ`OG=K&tSnukxRpiv_^j5>)LpmhE*&eMww#@vKx=C& z%e@Nrs`nXM8hPf&+S}V7;?7<=4+LqJzW-&j@FSwaVe>)k003%UwB{s%58dX z>2;XGyioXxenVH9&Gg_~>}sr(j^QkBufi#|^0!Hu=XPvwzu;g7#a$am-e-7^b-vhK zpof}(Styo~)LUr-tMf?PjT+v$-%sR+B zI-B&};dE*2m9Y*p1WdYC+WKm9p?e36=;fxJ!1SRX zpkZXEP>^l3i}ycx@WA?G)|QK1rMI~h{K~t!IAcWZNihDL8aTjfcf605(tkV|F6Ht|xrz%|-;cx%^xyNf|k(2UJ-k09jlY9UEbs8EP z!|yYgi>{0Xy^Rs;>vSkP_G{$B#_ikJ?VM;*4rbeb=bwLWnN|5!eEqr|o2RO$%Kz}2 zPl#S8te(q{kL!?r6%piYg2o}|-$wV0e8|LZ;dS0Ze)-3zoQ>PIF@*LVyfmolGV*>c zBHA}Hl9ke3ev>*NH1xQf9EJOIY(Qh9s(^kj<@VOYmGjd>JwrojxsAw2l~~Z9KYxmQ zElYbY&s)7LEHtYP*|OFC(_@{?$%S9Gj60;+4GavT#2j`Q7FgdrdH(=H2oFy2`0*sC zzS^iG*F?)o^78UL!aJ~Ick%MBW!QY6T6Sg0JA9woROex{%GIiIlC0P{NAcVomzUfM zE`HrAAt7;W&}n7)kM*Y~+oh$Y=O)HGp4qk+UfSokZku0wyS}vh3>`8}9d4DuNVoI3 zJxM*cw~6hNmOk54g2(*O@Y#i>i9rOX_51XVuU@@6c)pPx3CO&!_V#dl-tOmipKpc9 zF6$3S(l73BI4A5f+`MYv>DclctEibcI6`nAJ^q}Y<#-->_MM`h62Y4Vk3YNcp*c~3 zR^QOjye@S6+*E@gSNQ9LS0_y=HH#(bm-=egxlDZ9j+-6sDw9PfP0}emK_|2;gvtE( zCT8X>lt?f6M0GP`6BCn<&+X5oSW-;AX*cL9#|T@}=RbR9DdzA^Tbc9FdB*(QT+`W! zE~^lsE5prPG&k05m(;c?6n+qr@EpG;BqX%eUJKDgUH&o4pek*kzdx5|-PVJsdcUz8 zyI!1No%ftyoG6w z`Zk4H%laq(x*|Qv4 zIw1{Z6OSJ4k;%qF3t-i4jNO*kbILTP`TF}GqS$?Stm9#L<%;MfS68b9kEyi@qE<~D zG&k%!pWjw%Xly*Elc}p?n98?imewL9PUgCy&DY0!_U;v;WFc>l)&y_%SePhVX`(E)6kwWp#*ZszA7LMpCZIi{#6#}_$usso`-723zNd2?C;qs}QKk-TfO z7he_^CnFj>qOtS+)^86&tfkxWJ<34f>=Y0P@fz#v^A3|)pj-Ss=B>@Q#)9$8bGxJX zM+Li9`|tXCxb$1TUa+x{P&1s^w^=(8tEcI$~YT z9qx;cj*d1bD{WYQhU7W&F*`GN8Mjo~(7>==(xtl%g=%4TBBw=iY9j1~Lsu^zEge1m zt?=;h)@7}sHZ@sa+}BFciEwU8`Ou-gd)I6}a8?dky{EUg@||At@pT0kKF|X+>KYCr zkFgqy*|e^HmmpgQv>@_E3){12V4$Y#32Fr%N1C${vasgW5}P(|aY@M}1Rs5!j=nxS zu5qsTD(!j>xznfDlkDu41;( zTKS`Af9b{h_u7_;j<l!5`CA;?ARr}98Uw!A3 zNDhiz`q@HZO84)vPSX%GbRO)op0C~vJW5UF(-uGM^yB0Hv&C1k>z(N+r{kpqU%nKN zMT*HtFm!h>s+>({c(6=e<5BOrj}SDNJ|1bm`pdFZEKkv%@Xa$h3Sz z85+rcmA02%9|#Bt6sWv2$y0aL!#;bg`pJ*`hhRod=>k30gk8o%e5;5x1sCeb;g9EU z^M%Wpb6()WgE+~{nlHn*Ff(gqnN9i1Cu*jcaEDjCeY*}pqci^?X`ydR5I{X5Ht+He zT>--aI<RqpV}cp#;wbUfm~W15rtPk=0E@ zex919OwJcPecJkcg8Se>CfuJQ;-2B{bm(@eJ8^NhfsOgUoYFq*7+5r5Jsra@@LyZ* zI$58O&usM&EL)NLwA?4qXx6`dyN2R1^?Dxyt@Y6fmFa=9-GF+TKi6IYV40lzX@SVR zsn+oJZOyGU45n6AX(B=QMNcQlWH+Y`R(R9S{h94*DY|T{udiQTSxH4|Arf?wNQB58 z*IvV|{rk%17v<{x?FE%%u4iT-)k=HJshhnVMg>`#X;a&J{aaEE_}`SOJ{%>qV6EWqt534-GjsU!s=FTCkHaOe>8mMvQ--@1+p zv@?nb32A)4G~y}Pu{22Eki$K|%~k!fIgVTY%^d)dNmuhJ+xFbV$`2P#;c3&O;ZiET zGS*z|>fqz+%e8wq_5A}zmB_evV`D>bugU0^hCk=;8+?}#Mp6f;0O1FWDCtUQi-gYA zGf~|3B_o@cBYE_E|Gw7C%jZ8Ti@5WxQEa;jQdHga)siC$*5 z4Ga>s(oXAxA^-((@Y-*?6gR>Hh+O=_j=NI=tl!AQbYq`dd^c8k4mi*8XK&4}S&gFz ziE0!GA;)ex4jB)2gv2dvzM5Y@KIJ*}9bc9>k$vWcAJ9a{3x_cD0O*ZrWdF=CBOD|6 zoc@im_bmlq_V}x(eN?_kU{{%rXvHMu(V4ZBkNP{zH4(aLXv2EY}7VA{^?$V!y%OBD5akB+S z`km4pK#I-+2}VAnv7;keC&$>x>`YJxw@!a&;rX{)bu%>gag#=1KHw{cQ>1Ct1N+4DfsmcM`hW~9i*J}u&^)5(^_yXO}c_#S;Nxpx1VedoQv z8uP)CkvFCDgWH~4Hn7p$_%lD0pwdt;xPSlcm1RI5eL$6B&p(pWzkcnXD!#vA;)v}> zfs|QwQ*k>q1&-YmTeMEh!8MH)6*r$bbj2H$xa*khn0IW&ZR;rOJ(CT7(-tdnDeA=w zF=l$-EMT=!kO=hCj~B-WP?c&cD=VY)1Xv(xpqE^-QkU03U3r zbD~$U&+NdjKlfVkq`846Wry_Dht8ejUka-T)9~f%*9U;Q(^FICV;#>dV#FMDi)H)Y z|G9U`*||Mr%OQRAa#89$=bDpHHp)fizF@D9{t17ArS?Ja~J7u)n;|Psd4C zAi0oT2et*Ro;P+~=62y2@Wn#Mv~70zFlpM|y?b{KPc`q#m?4t8kB^V(pM_ua3a6Oy zNvWZKKZy{`;E~n-PcY4_cVc51L;G^gYv^&id$#{KeQfA;1;h`Ssn@SxOTODonVX+a zM6%ubuJehJR7t=h21%v{}vH6<8qtPgFr(NQqhg?KmQdM=L``5I0d9BzFXEE(|{57HjhPq|=^wv+= zXZ*pn-5xS2^^gEI^u>O)K+u;5$uB`=!3Dzn1 z=~H1B-GI=qFP*5VDi(jN*2^)jd2}M2lt$eCmID@Rvd+9%4}S3DoXR&O$?kyxUrx`t ziu9>tDi;CV3AuYx+bLSqeygPGc$N$8Q&43{q1$}q&0Y(i2-#XAGOZIWGzQKg-K0zg zWV%byms@Q64Si4wZ9QmjN1Xll>hPr$3euL=)rsPX(yAyS3zaB^K8@6I5u00m;^2FM zJ=i7rFPzx3Nx`aO&stykd}$};Q>T2hUk>=Mp<9%*J&4p|Csf%2dZ3K{RxPFG)r(xiOyq*l}fK&KM= zZ&I-n)dPV32uQJU!yPGDTl3&y`a@%=1kH^0Tr0-Q&3K}#EDQu?1-`-9*qE&2DhiN- zJg722GX@YWSoza7TM&WA@OpP|FV(hf+lXKQbfFoI-MOp)z-@-#MO6-A7otMp$(x`IXxxM~<|oUl#(I_o=_QXoTBcy?V7N7!eh>)^lDNww=bgB_7BLxwfAU zd?|Jfdlz2B?>A-f3+*Q1f?Gw0r}PB`OrkHwcu0(d4uN&7uBqYT;h~dHWcv2)8~YLW zf({G5vZV(5_FOKovjA;*=U#70aXW0Zq0Wh2_#EBGCq}_2AV+yv%+V7r{f-xRqC%tU zo0-Xv4xMS+w&2)Uj#nP@o4}&nLZclU7e{vI!CLySg7al+ZlBu#!IoY5yN2fZ#q+J+ z9k23Rr}5;hL_m!>fSDQ4mP+THyLWG*%bZGhx3W$BR|%TifG%S-H8sKr3YwH^7nVU4 z2m;Kg!jr>eijuf=Uc-cy*OH|TyFKlMYJ-}w@!q|A%|1ObT5=v3@Jk)AF*n}@7I76G z3Z1V!$z}is^wZc)JwO}c?lU}PJLcmUE?>9MjbQ85ke$OVZJ$qJ{{rMf!`YJk0X}L2N93>)? ziJhG;QN3O)zh8VkS{KEz9Y?x{hv@(TLO5l2ga}DrouqJHpV`R4!9heViA#elg(j4- zCJAR}=Yyazu`m??ZqJ`Tw{Cs37F1YP?mEOjo?nXrT0MzvoutsR4OnDIJH?aFkmltda$Bf^JI%q}(*2&i(|2%KjA{Z7z_oAaC zv+Lcptz^!)}o;Lf+!-~I%N_-M#Qe2 zX;a{81k^DgO`40j;|}ih=v=_-$xeP+?AG z{z=Io^t`f~S{=xgIJDo_3O21r{ivgg>4|3D!OyBX~6?CW}UtXOV z-uQc>D-1B2zeLvIn>4vNyq&~guIC?jl7OUK#}$!HS5ZhcEA#wAQV=8iK?(%{o_-~c zdEe=36bz<~8*k!Dd$4}`udWI;#UIIZY^*wtv5R>BeQz>T31sgV9H+!q3%PXTuG#hp>QqY`~1H-KWSG_dhwL*PkSJ=AC7r(r`i3+`2RFsXhT7W`3?-sx0z!pwNNhrd z=0Zt+{K1n?;CY$*FM4Pdhl*S$LP5Rup%s}MxNpL=WlP{8tEPv*8qi#80D8$5^;r5@ z=W)!$Qy{Z7$3zxH_9hT@wPIZ!-et=R3=mOXUK!i^{NmTg2OXS34NA-{m67hK%gNGT zi3gQVb7L=AJ4K(h4HV_%E)c#U@5<;j*36}|Vl zy*(EYQf9xjbnGfqu*xmg+Xmd?04WlnU)Q2I^ofUNo0P??Ard61%K;+h3V^K+Q3wz1 z(E&*LpsY-GdV1Ods9dO4|F5oqFs^@h|L)xiw3h6YE9ir3*)59T0Ehm!soIrQzx?)8rGXK1dr&C))WTna{LYN9DUK{X+dcRaX&v#_;giO z#uazi0qEV{zWem){wh<{;=VRbEv*MYUaG9B zGQf(kw9YsQJZ`uz+L=0j^*^LK{o-Ar+Is>9m6Tk_N{_$%zSR(i+?jAMF7EAxk6EwL zBI=($9s2Rds&ZtMViegoWBaeFidi?4)&X%;pN7=@6ter%$;nCiSq6*84e=mv4qdKs zshHT0*3j3_?XdJU^UMMV=q@<<_+uGWGL}R`D(lR6u`B<1@2VTn~+QTcy z@L7;rLsQdvSQAFW)nqgtm?T{zrSH3BYDOO@{*LGNnRil8xji143kV502ZD><1{gt$ zM{od7N&BAfCMVXzH7 z>p|0U%AS4u`cNg8Ja+8ZG5n?QkZi*3+v~gzpBb<8Wq5h{2b;{|=pkvZ<=C!$Afl|% zW&@3;w%Gq%g3f;nTZy{9(-pK}HMBmE9BwjyuoWQk%UfHg>oznA0v+H&drXRpijq_! z`D!{$QcjuFB^^kYj2E--@IkfF&NkHHD*KntUwUj|V-twt{8#8Ox3IVy9UXLOsEO6~ zNKa1>v4|9wmR?`v6Ol^S%h|zhG2Hn=FyTC?BBWU!jzdNNtXxB)RKVjSR|kS=v#r~I z1PQ+loKKnyUwN%8J32b5UuZf9jdRBl_sJZ1N;HtwOYHbtHU!zQw9(g!*jsDG56a54 zwzd7l`uq6%_aUXC)(H->WeiPBgn?L0SrUavf{vGd{x)bmFe`Z$bwOvJq@|_FGi;)z zrJWi1z_7A3y`Zg!A-ZesODxb9U;g=E0_VuMI^9uI(2PFtxW|w=*ZQ7TngI zn3!PP2a8nG=(mz>lu00H{znZHrfeaHie%2842mAIQQotOcl&$ttz$(*$e5XNfry-O z_V|She6rUE-mrSiesvW`Xkja-95kt*s%~fqmURq{(F2#Rou#jlVV{wloLngiq`U!C zh?ZgM659$|4dM-fqy=28Y~zO5(YSgYygx-wRW+nzDK#yv>hos<@BIyJk4`WXDIOwI zE%GsJHQ?#XY2!&c$8(1|e7Ev-!gF{LB3kJ^hoZ-GT2pf@G&XB*e+Q^UyddvsLYL-s z>e||vf$ivtvO;s`(|8f=0){zC->Q`&Z`JujNTHN>cAnuaF@{qJOyh6 z$II7a8&f}A+J+AxdizRg?Bl6wTwkICjgT=(3aj396^a({s)76eFS){|I}B@8y7Zn^ z$8r|T*CZgyJ)Wj?$>URXThJtDe@eEG-599IV^aD`a{+-9+*tOUP~kwP-Dsq*F8h-Fmj^7OAg>& z5xoy^?m@SybHp#RXHyTvKLQ3KpJ)!0$!q=d>hVdddC80)(H>_=!wp>hI992%RA`Fd z56Qd=*hQoGihZefFW&bPhBSC0WapL_Cr(DV8jTBH-uHBk)QKNKrJ=`k3ciZ!)a9#k zE8y7*xsIQWOyJeu$a}#4lUBQfT1=P0vc>Vub(KH+>RKSZi`aLtpvk-C?@tRB?M_rw z`qSO7WZ09Wxr!8ovaj-_mZaIZxeqmMFR=T(3B{>~5W!<(>yV{MfXXgSDrD3?(9Je9 z0~y69yE|toBI5av7SSf_sUsu1nz9V?X%Jb*aSK8h-t!<%D?r(k%6(}lw6;OxSX=P5 zS~j%1j}&g+yeSTbZ0q3*+QVVpAa|}VFG+YVj*0o6zINioiIlr<NvT1DeF~RArdqgc$a^aI5|1z=H|K)j3kwM{df*UJ_j#Q9@I*rwn!-azQ~F;uP*>km(D+pV=r*=%i=0Q?eL_MQeTz?_fmu!Q6xnH% zmG;QRNx%+GD{M$a)VSKDX>OiW+rXpjne`3S1rb)5Ci7%WUlX_zQ1nDbVt)jMeBagisl6-LM0DS$o$yDdr_az1;?+v!DY+jL z)4=&^D*DoLv@@;-rB<77UO<(2LSWH>A``9FP+wpE)Uu%)yxi=BbzAB>tMgD% z@G{H2&CowU9yG=u*#;!9Vc13FqR4mLr=q*j42fSFWaKmj7+4DtOEp0zj`LRG!Kv^c zw|s*{MZTI$$;FiI&)4SD=`fk{h%7LOl?gp|dA{|0Cw;>NJd{7t=JS@^fAAnMBqU_l z{kyo@4g3uK_I2=J^?+pMWGK>CJAo$-&Qm_asJQ6*dLGVXP~zR_b~j`fh;(Sj_&GL|Eln{XXU}h(SN?odD0{R9iQF*$u_Q_4I>!APdd3++hoz`L#DOLW?duL+e}3Js zbXZ&eW0BVS%9m$0Z8VgK<4h4<*&@HiwYVol_M4P)AcN|taEjXL2j1HT$c;KyU02tK zLTdfB=rHz}BXX)8oCatH6hKC|$A>?SD9e zN2XHVKF?^&w^FnF@^T|J?fPoq<(71f-5^*=3%X70Vt>L54R%l+jZs3>AUuf{O%yVu zd(+QPEthiZNiayjXn?jvKi71Xc&LJ@>CP+TUoxH^DOuWMgB1egBbQus`G+60I&<*W z0YO2PRteYrAn`9j)PoyBb3}^;F^x+w#m^^aW_-%Z%HGKAAgmfh3mb6`aNnus6J%AIskJPz8hp^zW2rwi|E|gi>^s*efDU_Y-rmn88CTr}G{|yb8DSk}M zT+w0l{z+g(BZtSY|)V12*ZSEeXHWDuKXsse0>u>Ez>(u#ub z`aRsT+cO>)_7wH<5VQ!$(4XOu1mCx)y}sqFqxkpA^oGo$f%L7%XTU>d0oOIYejNyP zKo|Jy`K6)LDeu04!Mi-%e3P_dSfhOCNk0`@*f^$U(3qQno-)T(TF58fL3VhGhUh7z z>ZxgKNojtI5Tin8-&Lj+6&3W~!L?XY+ED~_F4|Tk-uGJgzK@NGsT}GA%T)G-vV-?t za5Aj-fBb#9=+e;o;D7*Ae4EIq=lk!Mc})9$A%#MHtRdq^DX0Q8jYS;SO4mB4V}>7nuVU8_|{RKl?Jb z9sLse_N*DV%T>}14c=*L34D(-7f#7sUx>I4c-UB5>n9;4m5;1(Wq!&s<>@~36xV-! z&};ngA<~H>P5s*vOmbN;q~IH$!ZG+1uG2`%R_sXw^nVW^4pHX1ZWMKOBHQ(f86&d#qrPHQjYLV19l+5BVn- z+AIH90>rU=>?mP8W*RvzhyMowZR}3pbO*U)UvNyqXHuJ$uXmngK_`A?skgT%E1H9{Z8U0+tFW1q=gmnGvEvZW$r zCxoAy08~970AG5{KP4V*n}_Y%B1YAzOK_m91y_vALF(Zz@f!ak zp?K^Vw$mzTj--GcIQ#OU_kJ$tdwxw6ApscMFaP+M2wN)scQ~kP5b?B$>edfqZ6*K^ zluw+vnUKIqc+lZtYXz%}>OGs*VtcIKIZL2NYni#_cHK?)m;j2l{_;`?{+^ASH`BuOe=L}d z3+ldAQ!FuFxjZwl+^Q4(<|U{|Q*10kj0)`U;#`j`t^n-^YX151FE&;{20{?%X-By&s!D3tu4V8hm%ba;)O6o40S@)^xvk@c`NaI3t7O_Su(-0YDSC1Uw-9 zZSd_88dF9bjzgA04ke|!U9-mk)QAhkw*VY69EFU?lqnc)k(AHNuuE=#G>pecct&p3 zs2jK|o)THlrK?aAh}8z^k(vTLPK~Rmed*Mf3$gn4^r`pBgKm~*(K!8Fn!hyKRhFRE z@cMNH^n{Z{q2|=tL;$q+KVpplY)#Sy$dcD$UVg!^UzO%(L9sc z1$2O@6~`-DX5n871BPht?5sktfeEdH86o0cTgu7J02$>FJP7Q-=L9u6KQ(ey1__sp^#W+Rsk}!X6(bj=de^6%b@Q{A5YnXS z5fv3>7rV&OwZjuu1!D04o&dE;3|BiRMlJvz5#ej!zI`4uElS`Sqbr|cztV;F5t-Bj zMZxjPmBAbVgkc{_9pME;yzuPlkDeHZe~5;Xa+!@=Ol&i7bIVmv3d%j%q{QI$VTg`v zM8htr{m}{I1{J%lqIT@WPAp>6syMJnoHvS!t4++PDDbg>bg)3WHLN?FM1oNqF(P8! zOab}HpYYu3-41w2li}LolVyhf1OSnUKg2fxnVSbTfs zMhAT2vzD3ow^J-rQ&NaR$LTS-YOwKvH=cek?D8L8{+WfBjWn9X4iCnSj09jOXF40B z!2n1iAOwIx5t{+z8oaS}@ABasAbxF76JXS6Qq>YdN#;e9vLuZ*{OErmrpNriebTw! zjg0gqdlg%1>p<~AU@#KTH(tqKLE}mU4)7qWcjkDV0>X3}>o^QbndZ`9BVn}2$kWdS zBz{7TrIbN>^PP{E^$JCrd7ov#3=0y8#ua1G!E6HhV5MkG;ff;|`X)6k;hF&nA$4yg za22iqUsNS7;4EHFqaqi=r$NDPF7xuDl*8HsdFt%w^?BIRC~{yT4@a+H$B;Q0%%#8- zA%tz`+b2@m z{j7+KNXNMNv!xz|`fhvI9Mt3nVJ%D<#bk{gEKQByzQsdg2H}hAGDAj&fqn2_qO-wk z9LR=|at5x<%BkPrG$Rg}7<)p|AP~aR((^S%U+q?X?Wwx2># z=mWe;FuZf##^yD6V%EXnz(Dw?i5(;j?oDE+KW}gUHeTlX8+PKyGb5H2FuIS8hR{ZA zpIc!da>xiGz-R&J~-r)>H09X*QO>wosrC){_q@9pi~>iNVVpBq*c z3s`}N+71}Mst4ix<3r}=1U3X6B^Rt5|A3lj$Y7U42PW1`*RNj>H*9vjTiIMMgDBF$ zb7a5g7e4TP1l>V%p??9MPa0LLYvN;QekO{|L+X$JzIDkn>}Gz+KQ@L1Ij13aRoFK>C3RM;?x%V!_`2y zK}<-WIt1aaCru)>3WG9t!o$7M(@-doq9GzDHj6xZh<6hakbZmQ*ne}p)2CL=^x$qu zH6^6*L?`?aJw(O~38^N87#{7e`_nB-oMy0;sd&xjd|Y({R$BCs+6VeTx%b3epvbAH z&;teBfSI|frp8w-MKLn0w+56pRYR8my*7TE8qMw)4$|H<~Mtr<@ z8Za16{vJE?{;>`N=+D76#GyYjtvLo6=%*P#39eqv^XRow|J|-LI{v5`|AIv2#_?W3J9)G`$8D=Z_b$)$aD?Mg((XBV+n&$~a3p|S3? z1kXz3JoPfq>%Oy(b+dzz;HfA?f5rlk29~&43%0HcWJ=mW($q1bp>~WghCt!&f%Ysg zwZ)h;?C7u#!pcS-3PnBb^!AV)N4CN@bUj0sy78<=N+5+oBm(jv;iNn6;!@DTzY{DK zZ0Hv{&o$(X5N8DP5uqPY4uBx&05OR76Sc-ym0N2r*4Nkf%>dA>sm|S@6x1=kuCi;h zPc(P(1z{eM#2c>F3|1n*;tiPnA&=IsW0phrL$0 z6dn7N!)|Ju8$Q*7nkH{3uKA<(J_zz!ERccIrrCZgq*?w%fvQpkT+@j_U`>I(gl{2$g+Nn zTW(>L!FLvL(f#*mAaX$u0#i$wEQmapGvb}ntwc*T6>UaLq|oU7Rk{BTYQm6fPKJgt z_5trWc1U8xKDX)h=%${{qbt$<{7S)duj=WqMhtEbpTW<4wZ64=SJ%bMi>a_&x^KBS zi~L)OryhdJYYK^-zKUhD|I*^?u2%}%-P-(t`%$ z78(T0R^Jg*Ke5cPc3x?o`UXPgp?OV^M+2Rv@cXntY{rRK@Vt_ei_6uMGQm#Zic}G@ ze8ZA5OGbXo?hohe{!%)Zl@evjgk5qb#H1_~ zUH6m?^eS!kRck3LuL5sX859>5CL-qbi(GiS&P%`vwBH_DSUO4%1b~b?6X06_>z38s zo9;?Rum3^czwRsK#xpR|m?4CG<3)@>WWl67WCDddXyx<(yG4}bWj+ee+5K<3s+GoZ z+i*y-R+~E|c1dt4UL%F(dr(GADjGI(ARv0LslID~>_E)6iIK0+7IXsykRb>!v7iV> zw4AS^qM~*Ut=+Ie34zty*XPtzxrR*k>FVkdi4Kj54_M?xESNP+OzBkCxu4Qw4f zze&>=5~65mxE0VZWk%p1(AWq;#pXqp7L@i}VuxRa_^O34ly^bwbifXEApAXg_sq4HrH(sK6{`>z1Ym1@ z8mH71M$+`)p%Vkx5^O=rs;Y{xi6Dcgwp`h`j@`6c#(eeEh98Dex2lTXfbR`Kb`%1e zHaa$D0C4=5QNwV}oEz+PuSY)Ryn`)adS>PvUONvG5!L`Otn>5#(f1=hYB&b8-9p_1 zT!QYC8MjYD;=w9Y3>SCbx3RTtARb@C7Z=~6ebdKWx<1AcWf?)H*?)WW;Mv8m(cs2~ z(60{m^;JQRHBeCrs+^j@dtkC`1muWP-eZm=WeGM#J4)$8?h}}Z;nyZ)8yN&dkNlVZ zyEu(lC&tPA=g)Pw_WmODABuM4*ROG~mIz@T(O*d2_S<}ntEy;_(^>cH?Cvgrzw;Sq zmr=s>laJpf=4ar$EYyNgWL)~`djHFj8`5GDQn60ciQ|IY+{bN-ryaTgMhxIni~{{Y z*f&68tYF^WllKn7X)*a3xIYr0AQw&UL9k+jqoa*bj@psajjeaA<%&*hR|MP$cOUWN zD7(HWY763n-=tKUc(P#v6p)dLht9vbNIGeIsL*y3iM|5Ju>KC6E3W zmgxV3X^Q$&We;a3q?pxU+#ETqhDTvHet;o&bhU7Fo=|%vc*7jtWA@`t7U7@uqKRnp zJMas>c4h(&3)qK}67$Wpc|xK3#uJ7FToaR{XQrrdz+kci=K7>&1qPSA}u*!wR57ol;y z^N<*F4M80Mc?p9k#Q--w7=ySVdmpn&2r%9ya`uNGo+y*NYD|l6G}L%T3fy|PG*&>C-#nhB|X*VkL?=pXoF;GKNJKn(}3>D?}Cm4ji;ki=Y z^N;yZB$ERAkeft$&CXsI#|l$B$5W)Tq(x{*s9*Vp+|jCfaj;S zYLdAs{0)24o)Wo{9|A8w2djVTTEj+FWU4^NRU7oi-n?0*4dC!L`eZEJSc!$XIq`!N z%n17k@sNQB351Yq0V+sRR^k!=Otp4Po~`?DBJKqtZ6E2J~ z_e$<-9khPy#vj|>BtK?`afCph5Xm(}ohW{dQ8V+~q>e3zer6T~1B z7L|)F_-6$zrzvDh-$6?pG?T8Ku?aKBeA?+ZkjbYfV51|RB0tP9gKs8ub`M?$dVKvF zTsQ7W5u6%~#Xljb^&&LHul*LlAr#bbE}}*1LxZ?9)ZZy=)4JznQBfsGK!8X^gjEA(QgNd>34%BpbK@~SlhC@&-9%3I6 z_pJNO@G97r!N>8xT|p;E6j{PhfxHUt|Nm~%-pKw1WOakO2{0z z3NleaYzdgJFNZ8igSBsr5!--GHr(-ypFDQ7=F>B!QP z7oC~IL2<2nbvGr*`<4_}wSLq|w?`9*SvIH=H;Oju^v7|mJDl_e4O$Dvg>DbMYiggb}s54t0tMz!W)XLV3syzLppcvjDwD#suKFBR-iB%rD}o5RI+3 z7SX=}BUQu9iURmL2mYH9@^5l+XhMjuilD`^F`waR-x~^N7nv9hFYQ=E+ZkCFYRjoP zns}A>C9`~pZ()Se!hsioHi?67HRl@RIDWj(NdB;d&KrZ>M!I~3aGG6ZP?xvu#z{GIW671C#Y6Oc?=H3KL@5f+!&mmOB zo0U}oP~L99JOUAeR%QN`%lAz<>x575Nmi~sIi2T)J+WP*Q-JTq2V>PsIA$VxR8+oz zjdkQ^&5;Yqx4e5l=(s9r1PVT__m-m2kNYrr3#UyfCk%)R?RQDbhzcnTPlkQ1()Om@ zjay-T?l39I{sC`GAzo3i@hJxr)OmdPpx=-qM@U%7F3(Yu=)?>Tk&|&q57Fu;fBmWf z5?Bot9?B9(eZF5uo<4or3yw+a0eARok*_X$!Diot#*TeW%fP_kJKKK>Czky12b(|I z@r=Q1=_f5369R!fAX(NJ3v!Jp`no?%Nua)%({QaMNzLf}y5Fs@UwccxtXugVCSOz> zcx1CLllekphIFe{;VD&Go#>zwZB4DuK2*w zkM2Km5NDFH;ZcD6oPU+xJ2rM37}Ffm8ZiQRLMz6RVI{9Qt$)lH%RQ_rKUopSWG?Vu z*GY}*d>tVv@f;ly8ASuB(){o!HE}!PngNAcJuX<_KBT4%=PB)^2{`U_#7& z%BN2s$9*FkB)v~qOF=Y+;LbQ;TdBnKpn9h6e(CEAEVLVTD55KFMw`mWDZ>FWjo2!1 zVv-~5$8c`{5GeEE$;-WAe^txVa40yf`!t=y83mIHg+9YRYqt#6(2} zpm*qvaVV_-f2skCDH%P&_fS*dAtCcID}QD=;jhEd24o`a=svf-imW%)=@L>-{(3=0 zHjRZD_rTq64ff_U;<~x{!4KTfzHw~dem6dTJut5CEJFQGM8s+gI0q_ zv3F0IpZxaKmvb=pM0{3|!Ost8vHSkBqsnJk%WS~GKxxqr@HP46fZ*+TJ*uhGq2r+< zN%a5r0E2LAMyhM4(;E7|>;npTRN8ba=DKmXwAN_9G9B-B;lR~m+YZxEv}N3=Zh0sS zW5iHMM*AZ3W0CJSd~fjoGOKBLd}~9|-fHcr!Xq1!e_BGV{$@JT}IGpl7Tk_Lj{VK~u*<3Z;CG z)hju+VO_XD+b`pb%*jeE?^pkVtj zcD=jP)5&epi$A;SDudp*m_JQ#J%_WblE^VpXqI|N;2~QIfdY-39_;TQwktVs-~btO z|2##vYAV`6wZn;3wdUFs0g8Mg(>pQ98k?@VZ!m!G6t@ZwOC{z~U|0k%%Y;4?V&oNy zn`;ufvH(IOVxA`*C%sTei6Bq_3yA@{TjcZ@fTtzl6ir?-gGBN)&ho*qnh3j=Krkz#Z3YvzwxvMx8ML~eA&wGPR zIWQRO$9%ZKwV#~bf&)eH81?GY_(FsTO$TuUh>(B`kUI0TK-#xK3YLHSwgXz=+-Uy0 zJ2>X2Ot6gqIm8JoNd7d4_Ng8WUtWL1R|IuZW|vXwe!IPbkF^hgLyTj>eH(E2m|V{x$QnK=DSL4@-k=A~ zK=qLE<`09TXjPTUZEJ;=tWmRY=y8lQS%D?D(pHk|{ zdDge^b9=u1p5J!c)|y>>-Z8HlC$fKCYk^3Kz~Ah2XX^fk^#(cf!e6<5Ji||K${^t` zS?{D{u4Au4bQ2|uKm(5=AV*J}eun)_O##@ZMsz~{*}`#O?7}IiwxpzELlb@zm7kPk zA_h~)>>On2v@2hMsK~(vL@82KRHRVISzEJ4XU|e7&>WV!*J1oL>OayG2JI#jB+%R7 z%)KCRdjiI<*g?mWQ9#N=j3c}RCWFy2QB;sXTAU;B?=c>0;3CGH#C@+70QT-QYAULO zUdtXHb3Oi7F;|T+nVTh!bnu6(C^$YM7}oz@((qiljFU29x2(mCPJ>r1+Gv=hsl`M4 zrWbHT;zP_HsLV^_YRD6T3=LL*QjXOohoaeid$k3_CFMXl#4U}X2v&+ZPCaYWV~k2NRb;8@%Vmk0dMFP%l4LHdGqzO3zZ>HU0kwslk@xTco z8-Y2GVkna3xh%xxu4Mp-t!RG~!1lmk(3BRF|8IYD^y|(7j;Z4uMZSg=b3qp#Y4zh(F?Ih&pV`Mvg;-m=Cgx7%#vF zli^^3-^irMQQ;{u?>_O<83r76PB=5QrfCS86FK<Me&#wJ<3_+_=~ZWX?q*3_x;u;fEjrn-ol#G|U!iq<|*-zbJbTa4y@w5BM^&GD8tU zMpnwm-h1znWMorhiwI?B?=5>pqU=yM*_C8xCz6pUdcT+M|9GC~J>KJZJ9Ol}4}RA? z&-45JtP{=ywE)kGU6DM7e+O0X-xbBBo?=o-aa?0#t|Z_s(;uv`YeXu&5gbB52VC7%X+KU1&jF91g4s zXlKzegK~XgWK0YRy=XKHn%)L|GTdEo#}J~nN$`l6gRXaV{24vW0;uqhqR|g^5Q7I9 zYGqV-2ZROsVSfeu0NbHLX7pE~S-$=IDZBbqt3N%eNCAx91!x(VzXQI-=xf274hEY5 zkZoIlLIi7{sw)IISfn!3u@CtH5?8!A`VdgnMn zsOTLOP=Mk41Q>ffVq#Q;3_U>StoPw^#$B{E1_3d^k~mNeUD@930^u`i8Ab<13Ggx~ zgA*Cqe0&r2tMl8Rfd%Cepzh|7j*A3`rJDJCeAfQoD&>IZ!%ZHBTer8=@+t@ffSX zWSCTAi$b0%k(*b}{G}(97|~c-mM0FY&N2}f``>m<*KQyPMw6$ER^}ZkrZ_IjL;kcJmUexL6cgzQ)R8DyltA}&S3?tBhNJ~6{B(N z|6jm&A~5wZ+k!7#dP7Vxniiwm1=_bljqw2&TBx3i#;ng+xC;?~kPfUOCcqXN9BzP) zO@{(~YUjm=L#c+ZrsQN9vcyaJW39AMy-qY&SK+Jago0HsCMJy5lyAzGl}02HbD(*~*> zMGN}*dB`@w2899i|L5-7{!LleQFAX=K9weycdUN;G+vO*z%nHsL(jOL#&k2phE(ia zABMY!M(qM>h=~AX^c?6y)KZ8d1W-qzaS8weL-Z^yiaJ33@*LETiC4@nKozV|l#UxA z0nrg4>wE((6UxZ`hDf-dFde-ZTmX^`CB7kpEr2HkCgmp(1cmbBz-J{b=fGSK4NElO z)Neq@L2^N?4fvH80917;B&UTJaGM~=afX02!&w?3MId4bWS0bTRT2mU9YRa}h6I|~ zeUrJD%x3Srqf%41ZeMOEp-iWqcB00xzmY!b`+EEtC1=h*H5iB*AQhSjFgd8AE<%$A z0iqE*kNHw<$qDzb&MM-YI79zv;ZKTTK# z5@mvCDWGS7Nsw0DhXU{q-E?SVexXo2U`&uB^pk**=Puw1b;b$^@{st#aIgHS{B|l= zr`h>pkEjy>VNt?A+E_gu6XBqf#OZfkBFxOU7Mx zEa9f2E@!mT0pGwm&MTOK$kVpo38_z9jMN2w9j!djPWAt*I6{eyzlkAeQ-(I(P+017 zd%+z-TQKOKf4~;0a+re+dPznx2emrQnHWW3m9(RJ;9>DgtAzkQ&K+AI8%9I>LD6J4zF`3U;DfC~bR)q%+s7lEeL z^6SUv5KxGN3P1n}heF+S$<^=wwP;~~OAeY67`v#Rt^=KxQJ)on!vs61mj?oyWZ|_L zfkFz+c0m<$b=^>JqS|Vh;ZOtGMPXrT5Tb;%1<^+<;<0D+xuX2LTif%8blQ<&p#1`g zKbl1jgfNKmKf@b^`t#mDuz~ImYOZ)4A2g-agaqmNH$}?WC&(|vSoDTA=2n{An;3JW zrQgCewBnjD2{t+IC`1x|e5t#VKS|vW?fMB$s-N6y9VGx1x?4P~-A>mWfI)ZP4(g50 zE(QuIG5d2DYra!<9q1iVrUZ3Kz#QQW5+xLR27n6%y${mR9vSq8%cw|-06aT|N!Bt- z%J|r%uV~&D%$aj6%P^c}S{;@?st8yxUs~(cByZ3EDA&goh*VYkNIK^2qJW_7yQCs` z>2HBo5Y6^NoZm%YTQ|U`hAqo&G}n{T<#le zI#TT>okK$&(P#a17E$TTduiqW>P%Y~9& z_pcP&y;9?-3)h~tzXAP4R}6j3mDb;9ptAum58WdG#-sV_Q;eS5@%yXR^OBj0S8C=M zs`H9`g6vAv+-sA1V?7RdB`bD1ZLQ}`W3mxs_F6gP)dXocV9_PP%S3e<%i?^zs~@$m zi-@j!_~}r$17)Aq(9$P$I@G+?g;nI#dzGxLePOt*ToPSdKfpbhPJxAD!p~!S+h$spiuX29{#;b; zfCph;GZISJ#U#R1cVm{cpi-C?)0}-e6SaIXPAOvVV9HnW0fuGC?zW_!&jCI5DUDs% zwSwT)@ZTSk==C>bRm9{L3FCS;d9ui(&?2axqwQo2iE0SG_1!+{@n@rVB-* z~AF;-E zJ+bY$B!VBQ@i9+d)GIm?u)!HW{13LkcJI}V6L4W-)-hM8_`Y?^D6{RYTiQ>_hYhaz zGEiP;Jg)O+Q0k?5vpuqYvp%s#9`O7Zd06qJ`FVA5NiVE&SI7!L{q!_~V6W}-g_mT1 zCM5~hHd&hcEjX5HpLYnm$tJPVh5g^I6xV`1-?Pc);et6GMUUosI#1+N=Bnq?OJl{m z)pvw-@i#l}X;G`}K3qTo=Z@UjNA?=P#&EeKr(X|)TL6}SK3p-i1rV3D47lgSPv z>0`2bx8j*(GiR$pN6|mH$m++<`&PyT`h&I(YQP3BNLjOuoKrn_4%_UNMXX24d$*cu z(iOs7H4@=U-Lq$_i0%?hZWSSWeC+y%_qGLj%=oL%Fh-ORve=YIW@l(;j*&Eu6)<7u zl1iwioEM?7CVn}|@`*PjE(tocd&B-fWBe+%CJkeACToAfo0!UHlAV#J)8L4nE?5OD zMqk+1sj5BV;v@I^^s+t6bAzG(?K>z>m^d-6PW7npQZw5Q$+-UDdJ-CH)(;rnGutau z>l3G|xf~uyzsu)MTs3yOalUf=Y4G~B+l+#j2ZkruCB#!E8?7i@1_?oroyzaCT}N#} zC|viAVdY0wb7<~bps!US0da&O!8D!xG7n)n{wXhu>v|z)UM2LlRae7Ti5Q2x4gCsX zK>EsBnA*kH0}4?XNRnoD01SvWVGf#-X>NAz^Lz269J1lwoa-w#@Gd^yvl0OyLq~@F-J1And}MttajmCj|zp7l98-68;_Uu(NrW12QBo}9O_h63L>MQ%7xJ; zWj*Ta@h9Bf>U%}7iO(bf7NIkjwOkwL)zt@&%A( zTS&~joJ`UrA7h5s!+q7f^lAT1MFXJFB7*z0@^F*6x$#;&-w#i))x5nnNR6qV?k>*| zFc3<=JqAHtO(r_D*4}z7GTU(fQ|Uwmv7}ry3?aFK2{R547$t~$3?e0G=pXFzmkovL zdN7A1P|I$P7FfE2k);Oeq{$$3L#q6X{e5pC?je7JVP zQ=WA4mzfYG5SOHFbYui>Ju5ugj-TjbC32{{%?inqCM|C@6D*#pK?LI(XOw3X=(G$|gMcZi-SI~PqBmL;YYVlO ze3!eX4&Bf-ViEl`!$?+x(FST{;B#g}r>7rVlVWT%zTCy15Hs>;AcKK4oG^Dx zbicZEn6pYGQ=CrVpsM+wcRxDAw~vnzuoaV9h9@_@Yz;FpW`{l5ytz8@2 zL$F+U(Il<(1P|w+lz*v>yZxzTh2FGQ=mbToIk&m@^^{R^+RXC=mG3^Y63sJpB(W+U zE%)4rfiGW3ku>N)Wg#r*vg{Qforuv9sbDX5Fe%fVs62m9(vBp*5CRWPN%*5YFSvy z{_>*}4my4S7DCaXI^!2XTzoaFB&4rmiwf6X#i#&ves;ek3TCakLzuO$PvzH6)E-^_ zsNe^yH_Ai7O?Fse3QA2LWs_B&V2DYoB$f%@9gR$KcQW9Q*htS0WN;7WY4+O<%VAx< z3?TF6BUyx16|ZN(jYKl4SKtX5 z#j(}ij)sv-p?fUTn%#OD+vesi%$YiE|EJ3W5~0nUVXW^JvQ8H4SAF!H?Y>z9hoAGb zIW7*SS>G84E}u;2=E-`}rxcGD#4U!!u%a7T+lvv~D0Pw6gEf=sl6P{Zmi#Ku#*2T13H@*$6J6CA;>_;iP zV%>fbOR9%8aF!o6z$}}JCn7j@zSDCLP63a-$;1N zgu)6$S(hQtKtO{_p-}gd_S!pT=U}m{EK->;mnWbf*~=<=@q(Y<;T;~JgxzR|4N)YZ zb$AU;`mhmGSJVi++?;d`VJW z#mv5LG6~kIXcOy~UCZxnRdAxs4jbuSJXzwiH8F!>N0c?ulU2+;l^qJeK~A+v$Lp+U)bpL6uX5y9f}7vJx2Jh5ys z>X=KKAzYUfSNbn~Lc7|ssqwpd8X2@Fi#s)RnXC!9&=#V!H7KNl!L*E$#Xxz7e;NXG z72wynKRZ8uaCg#@%jRA3&%iIGc(%XMzV7!6DSbEGz@ttv6&20i!3xj9w0S^VTsb z1aXL5YNTa*(6sAN(tO*Jj|G(f^|EJb@7n_zLxvj8Vm-m02C#0~Q6#7iwbw+%wa7GRd~f5 zL@M6zpQmwYqY!Pzpq0l*&`lZOHly_c8(Em#)@*YxOhqsmMjIXFqIA@&q2fwNgxj*xx{5BqzmQS-7=|l*K`S^T!9m&u zu%kz^u&(7v5tC?NIPGNk7mP`d#`*dQKQLQ!D=Ol`FEY(B7Xqt{#cfHox7CWR4nCLY5X8uHCwTv^oB~>ippY&LA1o za^V=3h1^2}eKHN|&tEy8KN*07n%^etNKQ5+0)H(a>TiaIG>g-if)d3~UVTzr#5qR{ zACr$zjZ5&{mEHxE4o{y!ySl7l4`Y0jBcL z=v0o?KWG3?)L>D4dpm<}_koW^<4nyHmqO(qm2?FV9fLjvU^dn->lP^`Ck5jk;UY-0 z{|$xLU8HYc_($+?jKRdsV+d6|;j=$`{~4 z+rT1>3jXc9QN{xho4g&uGcsWkMna-vt7xh4Ho411!^EG_(%kX%^+_4?73_VHHRopu z#DQ7lIi}}dRPw8XlLH9nHgG@Q%6gXN3wAnGVv}VPO`6|@uG~Q$S`6Z29df;j24%j7 ziM^g0A2Kot&GRg0%rq26c2N1@g>QY%uhmHOqMIM~#Tlx+WX}*DZSwgkVS&9lWxsldH1Fx$dzmuQGcttC{;iNw%OtyX{O04N@AHL< zML!>QiPNQQZ~JgYbG=Q1xt`w9N>6$EvXWoi_a`Yt2C1w8eFX-=_sT_3!eqK!B*XN) zvr-%tK}NW)0=|;2Crh;gB<@Km^VCC$v-fuhtL_VC`BQIOuec)HI7V&F=L3EZ>aj z_eS00W%ISqd1KaP)=o^EuTCe^BDud07Th>n{mmW|#4v_>u!LxTvSwpv0w>VD&vJDPqDp@UvjiBF^w%L&6qLMc+*rB6-^)5o7f+&=Eqc7b`z_?0tI23Xu`R} zcx4pq68HpMSBE|M%A|k$Y9NSp(y3$zH$?wV58J)|!CD&ANpHL`Vyz1nCRpx6K1Ss3 zzGHP%?plV}y&_3m0mWr?l3(YXxoqpj$Yj(~{!Sg&HHfn>o8Ta9^rBLNBt%!rbo4Ss z|7`RAp73v5j*j?7babvt_j{(k{`2lnT|yS|WFw8E*a!s3z6PqxBkP*nejbq4I06_2uO~id$5%QP7mdOot)5A$K{zJiJbM~mgmAP%w*Grc-dnJlu*Py+2p{$a$ zZ=n490}+3OH`j9kQ`Gj}<}2IPJF%m30K4#2ul$*B9fZBWDFx|6pWKw+IF~mxU;ns_ zB585Z|G1ualT6%41~=jwX$KfgV$k>$NCrmGfXJ_4=Yg4A0W4J@pbLWit)QkdTcH-X zp~KD_ePN*(pXc`Bo&3reTf$NYK?zYMmwWF!_hv|*rTbqHzGgUU)j%76+;h8Ve)cfU zW`GqkriXWcC~Ii(UA_JYz9VS_fAlk}5a01x9Rr^Zi;CaJU1r?U5iW6PXACgyGyrA%h_Y!?xsj9vfYqpZBG= zrb}eFb||Z}S4`H(jqqOEUpLY%i6t5e3Q%B!rV?*PjP0sPFNKx#KxEAI?6*%ZjVF)~ed_0~dlJX*uUwlhiO<5S4EsRDTZ$8F#R&U!?BP{}@76WX@C={pli1+>TTBMi%oqP0@*8;_OY`9IxL7w5vNY~3o=2o&k0?x|a(2eH-SzN3 z%r-9hCG+k?iP)~|JZ(`ElNBiE?wV8OFRR(K*SAL{;&@~G@VZyUe^E7 z>U`ndQzL&hL!_fL_PxiIbvPxAR5n+FRId2!_|UJM(_*dZf>)!bi?Y8BiIsAFxN`oz z(aMW5esD$K0viar6JyJ^Wi@n1cr6bA>ScgdLH5H^|L+&COU`RFVGk@26n=3UuJXs= zr0Fqz)i&*kN_G5cAGW=g_gV+5tVN!XQVsTR{wE9FdK9dG*os&s^4NLADl%3)zJ4SF zQNQkayf?JU)`S3wG3j4cy*pm27oK9S`L`aXQ*d%k= zC0$D&BO!(&rGLI+(In1-o%?~cdW_ejk_Jr1j;9onssYF8wzqE&=Xn32H|?GrSlBKS zWx+JnCrT;imE*W?CVa%XcIpex<2BmaAXpc{0)h`bbr<+$$(E z<>pbM#qKpD_)ZM)rwaGsUJzp0?bad4P#PZq0S{X=!rXYbH<_32ZsW|2zAUdwZXN!< z6ZB%cvX{1hFktr=2ZB8QGmTt&XDQ*%6Y!9_+Hs2Q*~42nNrZt~VG%oLK--h|aOQ^e zu>7ep#u&lBCC%5PorTEx=mbWi>usPlku*8mGjyxMt%h>+v}hSe$o*3XGG^15D2rV=!rY)pVPbMkEL}K<5Zu!zJgEL z-Snh~Ij#QX00>R2Bc&ErPA9RX^Bc}_UDkfEW&WU1>EMFvO_$dXdBrKXMkF0hNh2ju zsz|`WwHZyCcJtFt`g)ovn15wtsvcRL+E!D&=WMll+`=RLh;OS9enf|5LW5|+t_&j; zWd~AFV2iq6`SG|6eW;mmQvS>rB3gxR5u1v!Og{PcZl?x6ov$<_8oAf78*8a^BVvr; zVX9zosDqbA;FGxp`Y>fSj!nDswta7epE4RtQXf)jSeTbxs4r_@b{*v*8F3nvuzKYkBCj+zCfR#F zrouA;195zsV%a?&7xKzgc3|OM-ZH@_z|ILsNGYfso{(cciM%PzdVX^DyI4p?YXCvR zw}trTZT|Xc=g1ARKm*22oVScTLBCguCX!_U6*gJ)m2X70UAO#dYf}**u%5@#N2nNyOAAx%vKv;m+kx0F+ ztG6_HnMoNdq;6sc@C%v0$+mh?LWbn8c3QT5H0M}yby?7mb|)@3gHuI!0D)jh3)qGe zuebRI2U&Ds@e0bEd`cq`Ny}%SD>s>-4h>b)hA7h0)c%H&%xZ~5*oK$-`f>3Pd7kV$f`>h6 zH%@&Te*T)GZz=C{wAdh!mg(wxYe|6ZYE!NJ)odb2S(N9*d4y*R&JN;(CMd zG&|rZ(MDsjj`l>YPd!w2$QJVUmkAE&UDd*}hbgTtrnElwv0n>Vjjo~O7)>MP7*JHZ zc`U?~P?}XSCw%8Pf;_7|IrGE*AFvxAJWzvtnEIVf&x?rI{UVE1RdR}dJ2ox0T)ZgK zG-pFIBll(PckJW$*NQqm{g^fjln~$EJri%%(EI#_!ndA3xn7HZVjT~TxyeJDN6OU> z`l5vM6Vxq;7nfoib?HnJWdXFsHfs%;TOW_Cr6$kijiS(aK)k+b*R@iGllMKV22C zcw4eoUumyXL_HQPW*J4a%mwgzh0N66j#wS9+JdM$xV>edIsv2OV*n(-+e3^Ano$L+ z!ced%$={{E7W5m}@YO|Pf#?N>s^@{gzueTOqjTd82#@ym$7v~Nf>zt{)uqac{UEOK z4u7?6+)53#aqoa@!JLAC+TGKL30>K}hxfGN@o_*UPe|sZ7mByGMcRHeKIml)sCKDV zeru3scS<@!?|K@mt)6vyTo;a;E#urULlvz=*;+78;8Ntuy{os*n?>7vBi@Ce8HoYd ztO?vY+WTZ<#RCZi>KkRL&GcG_Zst2pp+Q8@%JBOZYg@h->7h;CY#pyabkKe;0N_+@sb$_2#aXQX-fFuBi3Tv*>Rb#}ujAz?tF zl;bgcWG*`aE3oY0bn3%EUlW4^g{0@zxdD1qX@nCgSK7}=HEDU}-`*LbT2RFQ-0_)r z|NdnadwxUG(BLH^O5?Zl7E$3+Y(Yb#g#haP*xH7Ju-)jL)`WFjbA!w+Ayw6S*uzP(V#GCTM?ru0z&>q6zbKq~ zble1en3hX_R04B1MXU$Y3 zj+=OE2d~QxS*yGPhvu1OZ6A^5zcwR^?61o3Yz+ZJLo`a#gII5~OXB6@=r*wT!Yj8PY!s=N*$wYX??2H!~l zl{@)vV^2%-$*2E#>9@oG&0nD<`6Bfd%&z8wimuUD zdd4cNl21!6^L+NYWIl$g{jl^tm$(wEPdzAYuJ}4272_`u?pT(p28wAN1To0I;O&>l z&j18ulQlNNusVlPBV-@9AIGGiFpfpiYiW3VmRwSh&+ajPr%+mHW6o7=^B1j#SY0@} z>?x0Fyp+~PeRi99bEzm9JNd^NI1~(v!z%FrpP>`6TfLJ=1=Mp^STjSp^6XUreJ||N zBdkd>>B$D?jhL-7)#Af5GG<;r)Y8wrS|lABQ9jq+7v9V3e&=eiYePvr6Kt3?cQnR} zCuhC?x-&%V?)&;t=7iqeG?In9ZxOL^r?B#0iC71fFtKW1L@}_Zxo*;ZnBLZ_71(MV zbHxYl-jSo8!?|&FJI9ju@gCEe>=gZ?!|1!e#ylAmd!~=xwr}*H{(OkY-S=gh?o zWZ#h`B(j6lOyYNJ4y%IH(2-+lB;T#w`z&(b)XGNr{SMtD=|s;$X9B@C4|8jDeQ|u# zdDt<&gegZb5a9QU-r{+baQ5H2Z=Exr1b76Cc%wfT7_9D>g-9XVc5IUBO3JBfg==6I zLu1MSalf_tG%;0Md?2e*BaH~k0h*WX$Rd%EN_+RYghG}~$@M|a+Ye!17cG!**|(A( zjaBhl^;tjE?o_s@#=c1QTktNgyFf&d^i*7T8t+iRN(HO7y$_h%P$(UBSwJp9S#FJ` z!Ri+Z#t3MEopY{A?;JSZ(b~(|@p%hqFsYltKO<_$SpD+{RE|9Yc5}Jr`&)*$z`y++ z4N{Z@mg`g8e@hZ{c5#(*A)m-EZj+aG&#Xxsn;cY~4O--*PlFAb@1-s?^`h1E?cjqPzCE#WC(|IgTb$0k^X<}Dz zq$lHmC>wH+&Z;pAP?JX_eBxW4Ezh-hRGQe|86{faPVKSN3tJ`Kwsz)yHx_vswU~{+ z#?ZAdDr3-sfSEP|s+=8r2zvoLOFM+Oqw4X;nE7A8ABfk#^;(a%%g4Hp3I;@;9EW_@ zh-Jv&DIV9NGZ`h3OdWVjF?>3uw{|SB2|Z>UfOCUF4z*_y*aM~{4X&r}urUCKek$I` zC3xY0NYU#8RSL?yRM*uhmiYP}d7%j^kVaPMF4HH5B{^R3RDw#EgKvhFz92H+mX3@` z%fRvxHyp;F<(1U5IS&_hCJ=c7z*<3Yr0^rj@s89Bkwz*I;3EwlE_3C;-6KPKrfQ7< z>20~N%-8+cG6B5QH14J5nQMRBFtWedJ~#u$MwYHgMIa!i5; z&R2qWj!rR$brjJJV`GLbdhM>g9=FC!a$${p@XSWpB-8sJy@*T9ry@FAwa8xm^tTT& za%|L80z@q0y$X0kz>uA1-roGn)5)9`HvrWtj&O8LTV-hBoro>0P^ipG&6>7TxnlU6 zK2h`|0LdjCRo-<{Bj$)u+u}lGDL4QysJ899R93$vPJqRwexig2d9n@LHv0Oy7~KHJ zg5rZ4NvL)-KD#hc;>E;OE8}I8EX}_jWjoUA8fL;Q1zJTnS*i3hnORjq-0fy{?h>>;q{sifTTU%DwncE9Qk?ZH3wwgY~wj`f_mCrchJQ z0Ui&wV;{CI+X5bsV%cZnPU`oB-ZLt7XYoebpnVNXy`ShmE&84C{E$!(YI#rPv|s}n zNz`${ns1j9VB?dQZ+!NAoE)odJ@r+a+V<1xzQcn)nM|H*diJ~s+Efso|7`Op1THjW zkeK~pGt=^dVT7UEA|20K!Dn#|E`ftkOWrP6qu{IUotShBXoSRQ<$L^zOj9!+vEbU? z>V0iQy0i=;lpyeC7ADyHnG*tU{$^4!2D$btFcsI5Yk^I}p|{8XSx5vCs{XJaCk7oH z-n@pcAF_U z)S&19e^I_CmD4+7-N_fd|EN+HPumf;Jj-d@-y=r|0W&DEC+G3$y4gjon#s&!IsCB= zwM0k*maSlvmZ(eVrPoc(*3A9br7L!&LeHLKJ@WUL#9aF^nA9&r0u=~P1g7YcG8Epf z8zh7TvakmB3CTpJGzu+jvT-!EN6~CGCqdF|0V%8k6s&*iU>DZ4Q`r*gSTjVU?>IV+ z{%lO&ch=iG=>9(B#NVV$*e@@8CMrp_LZ_MW4fb9AQZ0Y2EaDH;l#eW>S>BbteYc*d z^vYbcZ%dc#fkkkw#dA+7PV3PR4A+CtpUxelC_I&?lVMJ0C-nv=9<~h(0Pl=Zb?@eb zp^2Rb16Ipl=efiVh*y4Pu1sBM3d9iapv4t3UJ=_lIIfByh?$CCdC94!AvJ={JXeOx zb9w*TcL&S2w5^&;?Ktc@@x_j{k1#~mUuVvh2@_W?zMqO!q4UP^)aJ*)cNYtrct;z3 zf2dVckvl|c^ls7e;j*)pyhRZp{Aq@{MCJ8~YFlu}Iksr6a zRO3U&o0CQin+(PU9cKDOE=wGGe;U0(L`&gntDTmR{|28tuU~v=sDEthwe_`Nd|hBSnuXfAZT7#SLf3QYy@Rm+EgtKLUNJlhUPajiCuKr=@hk08=+tOSN6~#X0GXRDNYq zR`tB^*XEoxCe3<@dK4(s&wl)BLs)PoiYF#KsNEseHUE6kREd(%X`fG2`LdH)T7NFg*nRB>-u{6&KCam5sj-M~lN%<(I!Q*-g&4ddS3kM5jY;`B(3E?vJA zuU#ZQB6Ohv!`||HebVF(vU@|(^6ln~*+PPzjHMc~MFEeNOrAXUa`caD_|dd!&s$je zyRd2BzR5(C7ICaD*=RGUy6;}2-p&|bB(d2{4u#v)nfuYdMu=iDsX9Qub{Sjhq9DVs zEj9803AY=TY6Ss9#R;ma`TYp(+uUEA4Hy$adA&G~ry~R1b9ssq`OE`0NOih$Qi|tq z-@X%y@$8}|YiIAT@{Orj^&Q@?d3M!pHi8S>v_75$y^m?dO0xd&DaZ5gdX;;3G)DWA|SeDIYbUd}8baSIny zWarQE5IoRXo=Zrj)XbW2Mt4Os9wss@&rEC3o=Efl>XL%|n@xKS!h2-DIAb5&v`0_E z5?Ld|hZN{TLS>za_;XW#YO9sx<_`~7d1I9qdzqiNb|rc2@IHkzer+MRups~DmY?go zp7N-n=`jmAf!LMN(LDc~K55KrU-xH{Bqduz%_2*d9+BkrBZqC$-ewb ze*5}Stt^7v!}Bf_kq^vl>CCDmt9z2(dJZALEsq4InXm!S$SNZER7whR} z!g99sJ5?VC>Q&k1t31_n7?nAUw=u)u!$J%d^9*?i^`hy_AwXI?mi)woY^H!SUhhioNP>j|t5WWsNN(7J6G^%h>m*c6fE7 z^6-1k(D|u{JgacgmpofnUU~Q3^p(2?V=W&A4X#}a_1N#vP#&%d5ymj>Y>sq)Vuu-E z>JURU;OAEUd3tN)xzlEbvB`bauq#(IC5US=49)$;FHWvle{6ru!1et70F~62cLHCv zE#3CTwId6Oop7xpGFGsQ;ZB8et}HQc6My~R&(@*muIc(n zt$eV!DBi}Jr<4lMrM5>?LRT&&cr_0$yKpXXA-kigj9B_-2+ErF;}4jVf*zjdvodFG zR|!|TT`uuzN5ju&B`e}Z?I&VfDa^0Wx~+EpzIS0k?T1!h9MQiKL3HlkR8l&wza{k5 zFEA>boN@17fh8kx!E1g!dveml{76)!>X@$d)wC!77S*;@{719=Y9G@O{b=rVFt-+~ zayQ690xSmy$0(8D)DzerYl67^TeK&i)4?3pdYziHCqWpc@I9@`XDtfo-?&G(n)OE= zaV$67*V!mTE$;5I5ubXw`awHgsG8X%7jvQ?M&{;1t+((*^MWDb7?f_;e4mP$bI#W*}AI~yN>Mb!#_n)(WqPh1w-~flqVHWQNzK*Q? zYUkh(b6pS37_#zwK=f(|{u_PzJFZu@qiv1EoIKn|^h`|XcD!NN zF7$%H!0z5jX?Q(?0BP*|{;PU<@8$cwsPwvOjmI$$vTI)$VBrSqUGolF7#zkl?LPkW z>P~vft(^S3L!zc`ZZ*vIb5a*(RFf8lG)BG-OuOO`KB>b$ENE=e_G)c5QvYRQ7c(a+9{kcO}<}I-)fF9JF9yNTCiHZKIHfxCeOXdL-YVQvC)5AeAgHFRudWfMO?cM49Wirnfr#?#*|O47<#-B$;Kc5UV$;W7o?ql9U!Q_?dF{Hwx1awiny&NM z^hm*Ab8sN;7SCT9i<7uy8M4KD!O&cz$KmULouqmJ4{&ai${+7X9IFst`09j`l zJoKUcP<_37%+x%W7%aI~lm&13dq{3;SZD}4720i=MAzt^RF}>sE^JEYT<&G?h`jJq zbe|}PIm8qjs~-DTd4HUjMh|{>1(ag6vjg|uHh3Eh;=v^&b8;HJ2}ox952z4yL-hZ5 zAzAI|5n7`=5uDA6h`23e&b<)BZxe=UO5{+UbfOD?Ix-HD%hNM;>x@obbEN8RlpCh^ znE+jFe(NyZMrtfLz@jn&nyW;{UUxnmr0sSO94^u}owtJ>{q2ht6^G;E`%3YH_m-&- zurT_`8WR60mI90$95om;-_-PoR!YI|YpmHsaw(wY%gU1d&rjzkZy|mw)xv>d_|GnW ztH-Ka`9DXbn~r4hP{vF9Y7_a@!`F=bLNZSCfaA#tCcp`5DGDxp*7{m;sx$WqJhzBr z^3|7L4i%zuTK^W(CO;BhHfPtJyEtEk)~g}xf*fa-C-CbNj90L?nVZ9!7l_5i5^vQu zQ8WF5da&2=c9hZV$aoM|6!X6-(K?r3nNrz7E3sZT1M_+@GvJagiys62k;0?^RSts0BJ%&#Zcua23AHqf zO)?^gSWxqVFZ{r8xTK`n$~(teI(SK#dPFzdHoX7GZ=oNWC3nMkZ!OE~%b4gly@HqT zJwZj!r8wh)i&id!pH3FX5o-h)jc8sVxM`0G9}s{IH|t5lkFap=*4e5{%X|n@ssO(c z!HNh$<)Xc?^6c-@k#b~J0j14lg;PimT+BWcCJ3GK&A&^-8=m!y^!CPIO9RYTVOtou z{@^_PfR&euk;^R&`rnn~FbrBB{a`@bH#?MXe zITTf^J4d%DDK9i!d&uX91h_MNtH*`s=N`YXU+Vjj0R|r;_7FzER5l1n|La*-vZbHp zzFAT;D5Cn>Tnn7#`i_nj8?orm+zVQGTm;)L=|cpufxdo{z}=arr@8B;AfR;^Vmq8f z`O%-cF!wXh9zxaACHxwlT8})VsCZ;Rn{M#nL5r!+8p~uZ`c7>jiml@4#(SS$*e6`@ z-Fm$$(mMMLWRJHY7uBV8?9-<*NF7>TfgGnoaSa4H!zhRm&?MYwhwjnvZf2$u656_- z(u>`z0?U7X{VYUZWdnUTX)TUVfbf=E&Rpxd9^E0~N{$H0-gQeD5)#Tdg4OQ>wm5ZaCwLVK{mm)F7IciSCwV;DHyi%j1!kwySHQwD_=2q$k{mv_QMY?TEB zg%4H6N{h40AUbOUf^}_ufng_otKgApx$s zniu$VRp32q=%OvJa)0MRzou3B1-huv%{vPV3zPHQh+W5czG_Ze-uY~K6a5k$so#Yo zHrn+K47~3=XZAEb{rt3ZJ5hXr5_2AW57`6divFRq-}Zk~Ybe9U3iP6Sw2`X5Ctv%G zG#OfKR*dIYm;|3ovb_1&(Or*zrP$r{Nywlz;a467XkK4iI~O)CxeanK@LvbQ-bYU$ zqjK8Q4tlCDD0zo$V(!~FOU-+wMjb-Z5a@bA1}o-qp}2L8-h{jcfeKeLZ@ zAPA%gup0OP#m1K&3r(_CpTYj+?-Yx}@= zB&2VGb;9M~oByBkzCM+t#6&hyyj2K-`~X3eycCYh%%a?<&vFfqxBR%aw6s+E^r_nZ z%>8F?=AA?G1|q#?ycI#;V_MN0B3i~LNKd=P?4pNU3F#`iaNa!m;?GJCI5Q%r` z{l%i6J?h`%G8(IsGYD@w!U@1udgINzqpHhr_@*=%1Z%UctrM^AdrfWJZ8@;1feb`l zLql71>tQ~}PyDb^!`s&5y=R1q*`~eGs-YnvIBth)#TgL%F?ACTo`x^*D4s6m!v_OC z*tFJd+G9KoVnoLI`T0|!j7tNm+Dd49SH<%tq(3^r`5D0mZT5C{S6lxaeN$If4sU=< zQVsW7VP68pW?j>eiP#2dYI(0{W50b};tJ39mLE(|~{$^c|w-Uh9Tnumvn4Q2>a zY)Ye|Q$)-Z1$_g%gmFW7UhfiQVp(!V;~%k&Arpt6FZ59-;<6R=uEOWMp62a`+|H z1EvjLAj8w)Q=FNLqc(Bw1wb2x7KVcLC6-R4aYzI`O2hOFtA3veo~y1t7=jKS~XTFxWEhPz>bjc>yyy| zS!pjJ{Kv#=+JicLq7=3^qvDH>=fCwP=)#bqv*fnU{>hv0nMtrvqs(w*GmLl$`8&Ftlj%iaG_JsG;PqiJ=$pW)aHSDcx=b)`YDifq7$O~gmp?UReo))0K6V1 zXg9}8R&9Ch+O4DxMM zUYiel3VnbLH_aeI?LF*%oBp`(xvM| z-#A9DDV7VXfGK1JegNaqUeoN62IRt)Yz!lYOjqb+o&I@tJ}!m5of_hMdP|Foc95&X zvksZB6|ga5(5xREY!^0;`%+OiGYZk4IfGaExF=jD(CuGg-%0gsG2uq;GvP|{8X{}V z&={)&NvV2wn0h$l&lMIH7LkL+ge1uHH}TqRSV0?)P+~eANGZ8t`Tulwr9n+yQ5dO0 zLF)z-s1~#$iU^cVp;yu;+v$v5rhl40Z<6=s<-T|C{mwb}p7VVz7kgu$(jz7|q43~fpQv|Q z&5nQlY$icG)O@`Kami18g646jCr_RP)ZGQcshgMZ!+&&W;!YbK``0|)AfEpal}ZhC zS6k~urN-gSRxI@Hi=1;Yg(=Esv7Ui?T7Qj?^=67TKjU<~c&fD88@Z9~H~b?--Q|P% z1?c6Elai9W^yZ5PnirGpb*c`ad+F*vc5`*+;w+SC6x!}}7SzHp+_D!A*!J3F+E3;R zg~F78A9KhUmf>&mRQy}>8ozUKX2(VKLuL0N=y*7&fZ#xVME_XriVmnlc64@n#_H0L znan#ct@8cJMZDxR zmDPC#1^NIKYeuShBntvjNbmh(;+{q0CZA8nA~4-SM4R_E3)hVgXkHBhqbDf**tMziDZ-rOTm1 zG+IlBH-swFXKOm%Vm~sT;t?2YWn~ppCT!HK2;*ZG7(i%<+=~W<0cHBSsf71fnWuTU ztl@aZZ+R&sqPnhL_??p_K1e&cKP4JGhRC!7%T2LuE( z?So(i3DUv4j%mLi^@3aw8*!0Uw9t$F?V#RZejbx)0e#LiR^RKK%N`)CdqZ1(h48YMKE#{J;I#$ znW3x;zc5>j`Rh#==f}NORV6HV3F%RtulCAalZu?{xDnXxS2~b-Jo66|kJ644=xRnz ze*QK)MxUTdzt!X>M21fQ9Z9Q3D+FfbK428ffO;wuG-MF}^<(6?I2v!xQ&Ktia*64} zL`V7C?5o)g-k`A!0Wt)(TPfzTSdL(Ba<#NPk98?$3Ob|?E@t=pjAQefx>bI#=(-vQwU8-6S^Mk3 zGu5ed%whNL=mbwRYc;3&&e2Crn(WH8oKet!5~ss-hPp)Jq~%FTXSycULe)Kpdl013 zP7|lmq89VTuqv4C5WL8nL$I_8D=%|l%;x9AswSTuhTwfBA-aN~$Ucl>-N;^75QxTW zs~VlMpqv?Q`}FLKEJ&2tbd{ErXvoV>&h|-47%eZ8vDNxPok^FKl{E;P8A}O5X4@^e z%msolKE?gsDyitXnSQz8=iV;Q6(C!DDRJlk!{Pmc%^|q-k>DM8HMCZ zK>y%+x|-IPMSBn;#68#EvW5S+8pH7*hNBOnR&T<11&IFH{^1}I7q$9q4e1G?h+av5 z(^V}FYTAJrZ`Fw}KwmA+sMvpq&_!iou&BiB+DOeX za>7#K+*1#6HfY>@KzTdxiL6A_?rZ5$W_K3$E4-uufOtr#r;Cnrxm+3wrPOtFS|^6O zTA>77TRHY{dAm6X{T^s&Xy^t92NQpWr&v7`li&%IS=Ym3RgCIIOMRrra6niEY-}|X zHMxb3l;kp*HDQwl9^l$6ydt{e=kD&FoI)Hu?aHxT1P7(CNy57SN|u8HP5C%P-ZBIZ zW@C*3F2jZY@@Pe$Z;)+j{gj6rSC;aQU?MY2rb&DIew{)!yC`!7vmSz^VX2yEE>B<4x9Cp1Nd1q0sA+f2b0q;*BYk1lH4X zC(b)O8~t`mQ@!=?+KIW1_ls!^s<+6U$l%?Uol|_NBk4=KU(1O%Ef+FPOgCq$jU;GY zZeHOP88Q2l`^Gt2OC!^d@!39JKN;Fn)^6@PDeKnVmp--11m3=VD|r1QL(Yc}9{nN#EQe_*6T=PMzkhz&@FnR2b)}VNn$Dfm(}}?` zv%VDXO*>arT8Y>W-%os}#<{StpxaY)XL)2w?}?#a;&oSdA)U*E+Sx4t%yOnMmUzQWSd(qbYt;k(fG-e&K)=b{D=t5j73 zX7ZzLLKxIuh*U5iw&S7Y-0JbR@rdi9?flY`X&%SctzJLByr!l+5jJ0c_Uu_UF?&UG z_FK1Z*$#iEdaaQvknPgm-X5codhOJiGlzzq{M+M`b{{#y^yRfitHY`om3{Za!`DWu z(B8StDl}YOUr%q|p3z(XwUNF40k=Y5e5BjmteC4jA;pc2TOK{C$k#SW9#>Kw;^FjU zUL}F&GW^D7sBVuW=NV;Xg;S?|T5J^*Dy^$7E%2H|DxTyCd91YODAxSm!_WCrO?9^X)ald3K|95Y ztk^_?WYyHRhy+pV(@FjL%@~>TdwIczJjbrCE(TvYS~|M2(Xa2KRrWQvq^j&ov+R{= zeyu^Tm(DC8AmHQYS0eRynK~+}Ti)JY_+qkVu|@35LD3&SelUwW2zGXM?%L)**>c%J zx7=^*o?q%FCMFL?zKd+)RtPG4a@17igT1*=xt^z&SMSFM+^o}Gh3*`YE>r8s?``o_ z$-a4&PrKmCh}G5Xn>!0u7EK)-9gExBSr1;zD=NA}t!rxPFLvu!)aC4(X_=W`;o;le z7Juxe6qWmLZ%DZ+*4EZm)Y`h;v^C|z<+%*wre?_vdjRdzVn>G?6m3`C8af$RuN*i1l;C(*Um34%5Xi{#l^KM zT;QtOQw_&w7F~J10#|d3>gqQAS(;m`VtGwKGmT<5(&DAbckk)b9eR3t6Qf@bXW9u? z2-*xPHYcc3W7QgUWbxz6NCmoV{SyCUyzs9)-mmBT_tkjd&8gZP8@3C4pN?Oy35yK= zIh52MZ`|}ssYhg!H$6v7+iYXp*MFp3jAOqI}T0Hp(5i2fh8=EgJArTQi_G9hEU%qU`Pq3p-ojRrRG(N{hy>?W$#Bu2FEG{_oWuD$dHRN`NB)ba%gpL zZ!fd388c4An>Kv)e&2oWhED5=j zCwuefx@03IUDJ%4cw80+!V@%7+3^u{Q9Z^=AMD5OKYDbpAy%RE+qa!q_vN@vc2%uE zn&Pec%GUiJ>)3wOq*>a;gm=r9EuUX0?YL6lLJH!Z6#ap!Fo%VyJ@Ns}RF4(!d2QGp zbM=FLj>BY3yX4@|5ci=&Tlg<$m36+iS+J`tE1Rg*PzYr83JqoAyOzg1RQJ4evcFQ- zz+eq!e(RI|Un`CoW_aqEW^+}4tomTfzP&7|ezJlmZ|T2mFi<=QRS{4V^vBJ016 zzh_{;>vRZDaYY3Uc@frMy5sbXyro|sw6aw@=j5YRq7;JJMeIkJ?`_<1uct@nN}j`J zspSc3yz@O=$;8O%Q>Ucymbh2+np#?V9a-jNGe@cH6VxlCrNoIH^S7S)dExg+D?Pp) zv#9Mplh%|stw;SB)J_Y@&^D;*>2Xm<%_#5Ql2|)3GE$vuKbDlfiDFjfv)RP>@QoTB zl#0>zOjDB|Av{WY+qP{Rt$QvOAXKr5O{9pDrWz}6oU9S8GSP&W@rjCR#k*>y=}=J@ zT}-`J8$U2Gkba}~iO}WCmuLIR{kP1W-Z5acFcj%NpV5(RaX4MGrptBis-*cuPjO9Y zsfUE)l$`lOf$P$twQJY%gq>m057;U0aGy%&sAzh9@hU0zW!Wt^U#u6WrhYB^6`O>I5{KYZ)sLmTKAwjky(u`6=h=FP>F zG(4{<?l1qD@<1{lR%b&#M-d_^c74)CCGfA=s2-#14KOJap z8uIXA2}RIXuH@IZ50&wM|IBsMQFe&g^F_WAufuIoyIhIe&qB$%QOlb7``d?GujAt5 z;}1uxd?a_%zTn*BLta!WVul+y>X(;Y2FJ(iU0hvp4fV}gvAHRmx#f-i@UiH#MmiU| z{fT(}`T%IJIB`MDCa#Dt?#l<&T z<*Qdwi8=jF&{}-B=PWbDetF(XQmJET2Mfz5la}PfM;DvlC)O{F;o(x!$d{{qJwhJ8 zqw2J{j87NoG^5`>XpC93rd*A?)?E>}qao?S0g>a!dr|I|wE=W?g;y`|nB#M4Dy@J_ zzG!-94IaxSz@ziqw}w=0DaqQZs`at*fif2_K57{}n~RTSDJdzLZ&H$lI*WiEvxf?fl>Rw2^&Z-+89_CuoK&|tPw70dD8*9(h)z|ls zbX}bIk!jj`FE*AN<@v(TKaJjR-tbE<4s)+$s_c_fWB7+rSY?uJ?3xb%Y`#T$Qnm6uY%)|Ni~Vhi?SPM;0}{ zSmJP*plWPt`tpQwvpr+odaqUFFDSdXxvAG~Vv|OBo0u9n>(>23($(+d$5U4d-FD86 zcegrs>^OE)&eBrwXLDk#eGRtPT8fD>%LOUz0rg*4v7Nbg8y-J?9M?YA2jqsLrN&*D zdnJ~ZGi>|OdT!5QesS^6sOXYZ?ZP1Uzkjkn4&DSzq1?t3DrstBtgEY|=|EG@R(*Yu zKTv0VRocgFi*A9LTvM!?2iusKRwthKs|@Cl-Nn$eFg>K1WybP||MDxlomH+Hyh*2@ zzjY7i#STPUlkHc?^ziVI*M2$`W4?6m+_`z6jfGaco4mC2?FyGWckYOqbMM`|c5-s^ zl%ir8n%ozz${&ldxe4_qrS~?P7(aUSC_y#$o>u$JNb7^gkJo8vXuKJ@=ytElCUGL` z%9ShV`{&J8Zg%CZqqu||mjw#D>)}D&lByky3!vU-^rSWF1oi4QYp5tUJ9DTim|vZH z?gzYVa#h*MDObx&eS2%Fb|rT7ndLg_BGm59J9hY^xytZ{CDn%G^Kc#cSy#81cMDxj zRrS1I<E27#t z#l61B=jWux8D5?FYD6}CEc^@VS5R4*9Kn^fPmbdDPy=^%7r1WhI<38Xi}Crit?SoZ zxq20qkM&J;X!Bg{c{#4lPP3!FQY-V+fS8BbC7e9_D}(i0k}oZbSM?u5n+=RVcqaGa z%?taP))PoNJyhSiSdg84?DpL%y`|YP)%bHeYa*pM2##IvMK&G*WX~nFUF$8(yVH}L z0=Yc%2qp6Qv}X0{T?YogO^P7tUk8)WB0<0 z6z#&42f#!}H7{SDmU=lhI*Pr1wsUUkrAyT$z;os+?e-UM!?N~kTA^fFEle2*Ry4P` z19?1u)SY3>h?*>9(Iqaa#1qnsr6f8Oolsv@U!PiLK)q^Jnnkx{hEYRI+vnygn;(la zBMFz@@kFl7Pxfz#T;A{T_)4yAVw=s$?)o7QddVWctq0QF|GHgyZ@nf!sKA(=A{lw{ z;zb$>1-z4GZ^@bri|&Fpaf^-#>+zxSIUx%J={KXWV_bIgyc%k55Ne_YQd{Y_}F#i;Yan z5yCVB^wwY8SgO*-ynfi2*==QE@m-o5f9;j_=+pK2fpBeGt*(+1nf^~-f~8gxT0`EV zb0^Hy9tRRzSy{4>EYY^Y7p8uHC5Ywl4Wqp9$jEw*)J;1@i%?eabz-&L?0oZD5>&ZS z4fKoeu3@b#oOn+!Jyf3{>%9pWxB@qqe1A`G@7G6_ZS3q$0w1Q?{!n`v7iY|;-ENbi z94VRO{({T8F7ZUZ&hLkWgjDt4$J8mg){XZ~y{`VJFEoT;A$4I@luP-l ze#vvR$rKyTeIls4D(mJqKZ26MbZIwikOfT=xR&Rm^i-Jh=+UiUi3$K8larMk`VBEB zbKL%j#>B(`hgkj|R?RT)*aoJwngW8Pi@g#d+BR#pa}xCdYdrcQ;=6LFl{jVk4h zX8hxscTtgahS}FGSV;;uZwe6Ti@)FcmF?^WIl0wfLJS-n!PwWa>hb5&-o7nCJxsUi zm*=~Z!;tSZbJyR0Lq#x0@cg`k?MTZ;vLxTz45gX23YZiDeOj%*A{syB4f6;ak71JPHr5 ztS8HVu;y_oo?fY^45y8il`iPf4Xlgaq0{Hi-FS03`^FYuIquMR!olnkdLA?z^|1I1 zWuounU&`j%XWI9ghc3N$nlZVE2FSC;R}-x$^IpB%@8Qimg!EQV&(7XJX(9M8)1vzY z_F_P!0?S<|5H8kgK!w8~qJh8BhA)D)KcDTdd3-n-7+rB6(;?6|VfPi6H=K_-BwYx) zs~R00Wu{1$*{E_>W|~WhiauFbTuh1sAosT$YY#iUd&^*7UrE7y--aweADY{LW?Hpb zM^t9OfmWv9Wo8=Snem|(nqJ@2A7k4PC=MJyFbma=$^u&bD7GKXy(3?Y)fPNAC zxnEb`EZI*FDhcZpQ3ikgs!L8zj(|Eb((-0U2PCWqm9mKm<4V`Au|Jh?7Jhv>TY%A5 zuIAGxUoS7O^qd@#M~@$Ws?W9?xkx^dXPf_H>}&GM%LOj)>xOvrb0fRUT`TSKX*jXQf)|f$mZ24T|LhrCX6vEHbZ5f_PQKB~ta?)-2XS!N@82KKbve@mlaftz z=y??JN~fAtVa%B>m?-0MwSd|Nh}XeiVT;VHE{x59*`JkmCp3 zQGo@)43G)MXCj*kDxh6WvRth#xOB-l?Re5}oKmpl%ba$X7;yojT^v~oA zsM#q#72e2J`B-!Zjd~ofQq_hwpb~wkYKJY+;PJ!SQMV)Dm)kaMV?xt*@7bd}KhgVN zf{2F&HN|aZ!7!<3$E8cv_JE)ecEWyE$eh$S{z(_HLt9(>`}gnYcva1pIBD#`S!q{W z{9+``-pb0#sOih6?@N}7$l&k)Dygyv_jzc<|n3^h~ms-}jxWHwQZ8LOk`FE4D zL6QiN*#^|rMu$}kXh^ZZ4iEqhs&@;So_}@WS_NMd`0MRgN>90jg3WfY}kMYc1kU= zx%pDUeK{`GxaHpaFJ5dy2~jtUZRV|7NLJamE98^n^Nk+qX=%4L`BKg+?e*c|ZQ?zs z|Hydj`)9fVoO}0HHh=wm+RaUJYHI4AS7u~*YVrx&3De!eb)7NHY*eEzJ0{X>IFdM`8c=qts?YS&l79P@34HlfAQfUiTJ>_z=wMIm|v*qBFP z;6@<8bo()_Ks!QDP$TZWdv`eb%^RX+kG7@D>K9;#MjO_@NJ~$@0~Sm6EVQ^c3yV;U zHgDa!23Q<0lN$me$j3ozDZjT^$5{BFFyYD_d5(v%M4iX;Ao#F4HV!y!{gRb$>AV2gpi>#NGsksF zI5Ixw7c+1D7xb_`^vR~SwX!e#%LmT3x~iwdCrlqdc5FNJ0;s~Cr*_{3*hVeY{C+&{ zj9oqou(ur7ox(z?M|_uJgi=#FdjE&gi>BZs$2HoO|FpYXzcNS{Jjv3^>JBI>x;!Lu zZ=%8#-KMg%w!Rw@!iaaJtG_3)Ufh_{-cs*{v3-$On7$m7@32$+>TdeK>Yx;dmF43V0W8!O78bbl)igAEv!h>C z_A!;Sul+K!0!4=u)G|FG85x-gJZ#gN*VXo+-L-%)dVp`Vw6wQR?e2Se$(qd@T3#=R z79n|nVS;u)&kI&qqRr$@*NLTNXM3Yi4c0!@=(D2wy;S=EH`AhEfd+is($examLS@p z7anKQmwO`U?fR!Jbj*Sj!XdHHC_RvnjJooUzf{`~z19ohkvI**4Y6wp z628^#x}9=AB*X(>z8?x4^HCEf0B9l*vx!(rb4wAq0pDWtwr%&?+BAU|S5`Rzc!Lp) zEFUMpl&z9D6A9Xdl9V32D>?>I6{WhtL?1kR761zeq#9pY$fS86pH>DfZsG~-L(0To zsvf8#r2Ny+vj+?h8^Ot7gS;V!75lU0&Fj|5MqHMwS51v#=Z9Ot7B>w|O<&tx+rE8! zvR3B$Znq_V_-a7Esaf>*#JA6U(m0**ydFx4gwyXLY-K^SHo?_v*Y*Q*&-Z$BSb~f` zU;HlaJWB@va{>y=XCQI2wlpd{D{qy3WqTuCR#BWRhVUHP(sZfigV=llgi7()vG3MW zT(BH1Z{1Qr^C8=ek#hURjd3u2Vu)F zY~K#COjHL=FUM(yNYj>!zl}3({Qsq3JLKbljAz#`{+ zJm@EW#7A<8in99p`VN2laLj(ZD-gQas@q*1rxg`F6?sZQ)?jM&jE>e6&K0la*d-#u z-0eEI(|)w=4!Bgw*RL!DenG?+be=VX$w`AXR@q@u7zq1d#O|5jfe!6FhdY0l3jfMN z@f5TjR>^Z&*iyK%cz}zW+v;cY{v$@8De&ar&lJJJnEdr&d}^!f!29G{-1juS^7X`$ zC5{Ur&t;XB{Z(NH=7DFM2l;D{Ury27`Y?4uZEJ% zubFn6N(Z#6XQ;Za?go@IItme`^#g>wWQwud%W>_GWujF&-0{DbbbSR$rGy;{YH;KP6HSol$+&$r*_=Dy9#6VK14zP)bs zs#)|R<8R$1L$>d3)G}9EjW#Ju4Kz(nPhY}n)|8WzORw}28f$%lR+bhc(BvhRjo;nI z%31{lH2%>|ef?PbuI*j)14EBqyr={98v%cJ?>bb`hT;Hu-DSaAQpqt7*ZwJfU~upd ztm|1giKev&g~UnoJ8b*-A`@_AOQxwt<`LJF`1ZPBfccB>ZYX6EGa%{e!7x32{mg3{ zGI#0^6hPLwY~BUMMG%~bh+vt&(IJEY>+B&91kSuxOSv^YSnHw%m74IXjXQ*!oyDrg zU*+dZoK;qC%`F74>~9JkScfZx9MRtt*1h(NO)*2^adOEwZ>DIq1Bpez30?XgqCB60 zJ80@MzJA=h5q%t92C@d33!we=lr+@S31b5Z!)ofI^-ZNfUP-gLP#SXVMz;MW#1#Ec z8n9;a`zOYggM55+u+&U~kL=m9PU;T?W^u=<)nGe!fm*Gt-?rOBa6~tIsd3Glj-^Cd zOjI-mmj_rz%IW-X-0aeZ232zo`(K^D6BCx`4iA;VMa!|T?>~9sR~>$EdfL&!AqocT zvI}grDC-mql!_-r->%0M7iDH@rX|_?~^*A98Y{@Rj03uT@;UHWb5YBo=w>W~UFzUo+en z{z4#5YD(tvwsK?%P^y+qp*KWCFu#nCCu}^f{TwtEfQ^is7VwTtYBxPOV!Wz?8U3jy z{*tCymx^J0@TrJRCgVfGgxxb z$DN;P{bqLdYXVDWs@8@XpMSMgpy_vX{ml89<&QNrWl%~OHgCQI?~n8F;di0V=Z|2s z0$P}S&&JaN;!~@(_>W;?_5I_6Ev>+9i7j`_y1Llm1s4HQOrV~rnGXRL3_Z=+`pT*6 zKy^sTK)}?J&ai2!m)9CB`rCIeva+zSe5|imz=J<~wT^TwiXh-ertJV@4PG5x|MhLm zprhy(|8my7nIRz|S|5JFS>!%^m=PkDR_g=o9_7D~DCZYPQmuN5sEDm=UQn`~0Y1q} z8Nd0poos9>vGN-Ov*I>w+GMh1iCDl9<3>6C=T!>JMBPVoyxCn42u&++=1a=e%VRUp ztEeaq4Gkv;kKtor1&EGbx&!lxc)mGS{WL_v59bum>|UqM~+D){Lb*ze*dA|gVe{;{T4TkBH2CQMmw+9VV=ur)@{S?g1_|Cl$Pux6@n-x;%#_E@4I)_V}L=53k z;T$pwgFbW|+v$L}ilCGkF z4oH<)&5m9o4mj(r#Pj2yL-(Yfj5{25?&rN%o#DrA2BQ!f(i#G~444Y)MLoA1Y2iPD zJ}@4YW7NQP-N2w1X7>DShedVhEm`)|7`Knxe(g5jhx=?2J6>Qc770570LdFA$Mote z%aboNet$b>)h*##V3;%%z**;oya9nbM&ELe5`OOB;6P+&G=D9zlJK?aSCoBvp(Kc& zf0Z9SGV>cZz^J=G0@|Dh-m$c!V~0#M1F|b+goHO+zXEhY;3B5QAT%uUZR0Jm#Ycy8 zU4riIGlU}?c!zpz3oSXuK{Bs@j%q!J(C5 zq&gbj^Eq19Ve$8Vx4(aGWu9|}`&RMsMmljLAQ1%G8ceT8#b5awcQ(9;SzT;l!@<|1 zwl^&-f`P=CcLzi4AvgzB$O`vurNNvaTx=z?&YaEG@AJwwJ-A1knLIM7)@8@X=9N5g zb*t>aYw^1Bn5nq>g011*2%|)yX2f;RUH=~U~?U@yW4FT+Aj5mxR^ z&;5OT95(@BCd)sIcA2~OKng8EkzN>&eIFyKMAICv%mK@_CPGNIKOaKT%J&N`&n}o& z5jzuvE%0G|ABi@^pL<>cn|C2&bkvMsWj8lBm%l*>_4EJ}n{WojsqH7;U{(Rp((2W# zb$)fe|5#Pk*wzI|cQ&jZ1)vu|oJ2~riwJ77x3`}MT$^X8DOX*|5pYp$@J^{bd+Bph zmcgUy0oKa1k5k_Y`yU9lNl$S3@y?=rU=Fed(T|UGRU_7dU-unBE{;Ue1jW}*22Uhy^Iw>VNkRL|?E1d{r&HXUXR4dxqm0 zxU<_SpM7>ExM&&w8c+;#Y0Lmxfk<$f+ZE2VftJPp3l~5JXruT0cTWISBIhGW2yNg- zL$X2R%hU5?+1;Pt+Zd7`z~Chcfts2c@zV<=X0S!lp_URlN!$}}@3kZr;O-cT(zG)E zcZCoQd1%r?MxS>PWe4|M1lV(QY>Y68{OPYS{0UBHtDIEY0fqT9 zgEhxM8ggQLK6U(Gd>Q)RdkmApe*I89$Opn%I&tCzNio$$N(CEKKbq8iurdAlTWbKK z@vi(y!2Y}aB4lZzvukxU9dO?btoc7#Aq@b7#5+auiGUaM#-K>I#dQGStge0tDG-;E z{QSj>7m$@(+bc`U%h#aK%Y#9}!1|0_&6Rwot;Dz`7n2!9PgKr}M|hil9{@BMnaO~o z16OvqD_@KVKw)8C+HMPLQ1nloJ*$4%5G)x?kVJ`~o0K4X25cjXZP(M^?}0t0U*fqA z%erW4pqj{fsHDT8-Rl^6bWo^p-B}(z{x+~@}09k zP9!7p!#Z++clF>~gKAA&X2_}CHFb4CD15<6&qN+bI85A*9D>`Mj5R{yI?Bq*!d889 zSqOu?;e4{eJ4E1|sw2ONM0<%(SDs@CGMVAK#ml7!%spcGyLxNXDAUU0PCSYO4gkC+YzbrF=NFOAp~ zpD1Z0H}I{sBs$!EVPHEU1vhkcqaVRo@k+njuPMTolu|i@_LdA!RdM$gp<~C62^&-~ zWkDAR><tr`rkPqiA_TDke2}gY9loH zZlH{rP4<`xEf(-! z%Zos!$s0!9KiA|kZwdA8@SDmHX(%-LB?BREqYnjEWlZgB%Ght>cr`U1@YVpJ$WSjm z0=9WNw&6QSj;3sp$Y8!DyirU{j7FN@0=HFH>B$jYIByH{^J%~X+gYryT)xI~fcBUa zWQA?a%pU=0Uth}?HHEVE6xy5Ak&~w@bE7ux)@iTFh%WnLb2hVkDNI+F)Ujr@~0SEKu%UqOPQ|Niwq-Vu5IDWQZ$xuj4) z9VGu+5;_$B3DJ^7^-ueCoSqRPwv^X=T5%}1aM#`U^$CnwZ4r0=SmzY5X*$1&+et*6n>o|f$^w2Kj>oXON6~_WU_9 z;QO(NMEOUChT@y7P=!igo(>`MdE3{oclvXz7tClA{SvMuF(+K%h2kI$eG^h46~tZS zId>uOeb}%LGS2}kM|>oymCr@(?xLr_>inFhD+?o9S|HrCCK3rv(7fXAZjLR!tAW`_ zy+_bVi~WO!!KEjn)MXivgo#@N1d$X6!<2dM*Ef$-yAP?>{k{cO0@bM)vYly5@(C!H zO3&jCg&-^I?@z5Fc>8rU{7Mp_{d|gk{rW@mSyfGN96smTnSu`Jz?lOIDFN`cn(RCI zOw?|@OmteA9RVPag}k)1diyPb4r^XW>;Ny7fe~bhAfLytwVa++du$X2)ILFFC3-Jv zY9BNTFW42J1-?*DN4pC-prukOtxgKK12PglkpNyuplh9-ok>@Wbe&}(+G4V1`rXK5 zaM(aQNEkwLY4oszvvWV>7|lEfA;>H~xRcVmq6~N6lMZ{un}TIWlDeQptIt*+i!TKc zCwlE(Wgy~PiCi`@u4-a0l?UW?6PXKR8$y9y5v3>wWUQ%emLtVeW9KgStB$09{b>MaLD+o!hiB-%n3c!cfgl zkU!29{@r@~FTN-P3kzYI*jai=-0Wj>bq6d$n8oAy^PPZ0s;So`5Xn%{m-yfOt=O{V zEaN8mk)63@Yh&F?pLl8mk((lo>eDSpWS1~p;?pQq~$=>)=WF)fBf2BKm>BXfDp^N zuh!Mn$XQz-0+Kyj(~qvz@aFQdf|At~1iz%QUWCosqNWQ52L?FB#6EnSL$C|*EO~m7 zmUA)I+P7-Y)hUy@frl#l&c7DipO3ULB`UqPBuOJR<)SX{%>}>>3I(GJ&4V)&6BNp+ z-4FG$PuePA4cFnqvD`~73jb8Z1Idt>;&4ZHYKsA|kDzYJY6QMkfi#tYwx%Hg2W_Me zjeFVU^y$;cRF*?3AafUFPU5LWK`{!`k(Pyj1L1G7yGjtnRY5N!bXYW-sv9vcm
    ztzal87G~@}MA~t{`Z%Cj&*0!a&>?p4NTgCvg4#>fBgR6KJBYXGqR9~|LgL|UQf|*8 zhyFEK{(fAB7VV|TBMZtjQOV&x96H_ynz4(MlS;bS%Ni|}c-AC5Ln(qc=}n3RN-P}U zEx6HZv3!1yepMeDtG<2+!kb(_R-UqX0l-)c23&{}M#4YfcT?kFgMIjbG6-veP)*6+ zLpa9=!B;0IQM~Ov2vxmhzKjUTtx;1~KRVU$;g-dzIJFwM*FYg_D9b43m^2Wu(*D(5 z7z`oz$jwg8{(Ojb&%|z>i`OUO4zU4|F$Z&Fl|u8XI5Ds#?CjS3E4)>3OsJU7`_W~( z08DZ+&fh&!+k-Gq``~MMM~CgJ9w=I1wZ0E zuR(xN3%*th8b}4RKHy6-OuS`lAWjI(aA2ETvYqE{2HFlRo(EVFG&MEl3Hdai0a2Oe z_M0p3A1YVZ)*3)lA*iO+*d3&y0?fX+@EUTb?=mv3Bf4rbeG;)7$|$_fp(dvFYew2L z4=}Fx8bupJ)LcH8y%u}(60Yz;2it$6vB$l9DM;Z%q|Ka&EJs>ccJ8bNfLLe^=8(EU z(KItluE>LYWC*0GF7{}>*WIHQUC;2iUw?EtK(%jbJiFUXz52jEYJcWH*ph*TMXJ@a z9Y>6cAXa>Zo3N09l`VKjx(LQmQ9J_YhbVy2ZmbLHFJhA_m7d}yrq86#F!CtsP@01t z2qSE52-We%+yOp}=ADj6Q`2BTC8wh~^)nlA;$Ic6=zCVAdDlP`ISa-g5 zbl}%s{Kz*$l5E4eb-Ebw7{x9!8UI6aDK@sY=f$o;i({RB@HQG4#6p-1AP^4)80p~K zb!Gokn)w^mdQ>++1GJ-$^{*FC%>&9gOnqMmNpubRJH)Ka8H{};W$JEQ??p>bUx_Mt zrsglMB^^K=a|6N3&Zw)!R#zS;YKn-cC>Mm0H;$)t!Cpuv zTg%V@5dt(HI%IWRY;I58fA9cBb5j(AwB>YHeE9#GhdyW}F`hTQ360_PWV}=5Cd$A1 zwcSo^Z^`Z})cbt;Y*v;XN&4l@{>z}24e&=Gi>mAIY>(mEh|pkw5Pq1}=KAr|r`~Bz z;OvV}sp@EBPK{I2Zw>BF!aW$FWTSE)9#T!$R5D+}(u)zzGPy zX~;)l|3Y|yMRj&059wqD$j?|mnFW#mPgS;{_KjNaY!N0|KKtzM2k%F*$u3()s+(lj zWneC#JZzNAhbe)ww-F;P(ZYq&yQEQnzchxbI)(-hO965aZxsCg9&%Yo=6NDBzl)dG zPkRt8*{JcQue=*5(88RotnAqucjL|+E9w9t(z?M~zlb75Et;2?=XX^Zq}gvQAPMs= z7q0Ksf~uWKV%{{AW~jgVT@dDhd=z5U&3o;JWf!>j9XqDcFJWM$;o4z~Qd*s?|M{-1=O0M!%(a{$stMoRG3pQ~R79y-XcmGOCT z1*`qY`q+m^M)WN&Ot-x=q=zrzg_$8vAt8c4RW{6A(qgML{&vi~|DaK6muV3Gv=k&|Z&!=MQl-T3R%n^3>XTlXV zLv-9E;0is2Lxxe|NVa5d3XO3dcViM@zHcP8u*JdsM`Ij91Wm)O9nc;~R%`FMXHjQD z?qH&ovTyh^3nQZks>uf2*n`#uKo6ssQozORo4sp2{FzhSb&(074lzOkjl#41Ns&YVMqB_nFdS3g`FlL7c5l5(aH2bdiV#l>@1RMdWXAoYfP=UcdI#Anvb zwcXG0vk5bZu!O#R40-G8otkR#V8Pzny0N`X*72BPVuBT0sMj0N%k2J<@z{G8waFH=!H^>c*lvJVK_$WlE zUB{2JpxF#Ik<8|{HR~u+gPv14yl_cl2zWu@y=5<7(#TO^#CHi>IdCyqrFst9^#qu` z$r1j2en`lYK#y5>!A=ae3^dJ-cL$^2CI-f#q8vb4@%7Gk0ReP@tA@}J2)@Cf-qH33 zMwtK)vghc^nFbm$5AhkQ7vep-sL97_E=B@-Hu19Gv@ zOH{dQnOgmJdefkCIc*xd;)Pg;9by4pRl}*=E#kZ0rUehe3+(R zxe2Vt%RPxqU?aXAg)NB55gKAcakwvU##{At+*5vXWL@E(*&SpS5ub*g#)4ZY4Ub>g zqU*{iZ6}$z9juQewl7i0fGsrNUSCIIDlK)_Fue)`lFZ-%Ap@gtW@Yt*F-anWMql6V zAub81PYiSia!UvyglyRh8ncJJ5YIptxPkQtB6gS^(f6(1Za`9zo$n6=1KmS)BXclh zc7TnIt+`@)Umd>n9e6jWBk5)5vJs~##=0iCEfOn-7!z^Wa1%ZuC+@Fz$s8fOd}Uk1hCOYv6fjn%6!%&M1ANo0dX=DzX_g6s@P{ z82&B0p}cDEf5Q|e&>PYX%$BeV5N86t(tqUL61ZSYqvK`)I!P|?Q5Mjw$qmwgv2n2|qbB>4bL zI~e>cK*1r#ywR(y6-;Kly_WAJgd`?X$Cp5eI|^Jsw2QaPd_b50H~kWN=wp?A*RiT} zoM%THa_doJp>gXX7(gyquQTjO2+JQD)`efuu8K18U#PKan< zfVwt7Oqp)gouUbY%%;a0$N!YqHSYA+(c-SI7wd8SgAkR8+biEH@?ZR})jTHG&;9q( zUBH>{_|w}1gkbL=I{Op?;BZYz$to?CN+lfc*)$s&@fc*BBX1v{C>5EtiL044{;UM>x_jh~GpP^~guIe$_ zE1y$%m~XYMtPg{pi>(A#*vYVzBl{b6I;p8Pyg$3X!*%~gs}2Efe)WoYM-iXR9TKZm zquF_CSU6uMMUQMwR2<&EozwIDmJbKxbmxD*Gm%oE^yt2#E7gcB|8>@wr|Q36X9j4+ z`<&!vVHUosqv4d_qaj#k{(3 zSk&K>fl(yvVYHQk##ZY4kM@@)hSK#LV7PQo!;H^)`R4e$QRO6S zTUs7P-Uv7$5MJ8&Q1XTh?}y*v7H&~KQ#R=aOB$5hFTNF=Oo=-+;(}YpKI|mN%k9*7 zonpPF^wU%2$-?P5tEs^zYuCC@?W19WOK)WCP??P>_0 zC7@{&4GJ8^aI{eKS*QPkV3Xu1zPcBr3~r36qB9S4*VolmK$%g&lm-bD5M_qoFyQIe zCtdsl1IzEO*+Bd%Wyyur1cQ@X4HXB>Z?ZO5@=edKFFHWvVo-GTy@3*V7 zn}vOoo;Y93X}YyV-=cSQ9^~{4-TTii;8ik+3ZPS;fB*2%A;l7fKt(mHCx}!)`AnEz z#)x3VQPXW`ao%W}R1^#(`;x3SptaTkrCYx`$;aTU(7?%t7I!;3-f*FRgp%(P-5j>fgo~Bk&@m0Nmr|s5`^-h_u@;}5cA#v6Gadwx} zS#!ZY+%rz-+5n(mJ`Uj!5=_5tW@37oWdY(fIA@LmP5=s2oI6m=$&Jfp6PBqtcRpe5 z7Dk@QWN2IcNF=^0-~=QLN@-lz3u_V$^!<6|I*Mlgkmu zEZ8OgE>Ejjgfpo7uAh;1mU8aYygVUltRhn4kv|+Hz*#m-9s*<1k+6p;o3(2=4+W4V zay9qmBYObj0&6(Dt8l^w95G@v}B-_rNM5jaiu?NtDgdIM^Z>Ny( zGhLR{c7ZF>kf?#3C_M-)5EqApod(U@(m26jFkHTnXVgD77N{)shlvys9_1GSaG1S# zm0p&p{W;NC*3ELaaasCPHO-B!M~uru*WUj8YJOoIr`!gQE5Wov)aQ+P_ETNmCKAv^#l(I5{MO*?bsTj9-xkR@1q?)2h(ZVmf|e4E<&B72 z2^KD1NREp^ts-ZkkO^{ead9$Ksrcl`C!M7b1or_@`oU-AaYzR;mqIu#BydHM!obAj zi5*1dBgk!M6*lvM?VyhXL`X6n_JJR%)!_ED>(`e+1hbszIe~Qe4!%N9=I35(%(%3s zn*at5kwvxo!jm(nj~)uhx^{MuiG>G8dqC45f)8iNr-@H{BX#g0q`*kkV^+Hd<~j)* zVRQxBx>0k&W=y@r*geM|<{?Z9nYSPLc>Pdw(uEC#Uw|-dplIT(9umbz8Gs711E+PU zZLqqw4Ru-pAx7dw;dGQ32!Q3Aem=#fM)tYS|6l<*>O~bZjYrJenb0<f8dPdxp-hH>eF)r@1$ibx<_rx<#s*Xrl;iRN!#a3>a8rsVBx9k(I zU(0i#!srYh3S^OMV-h&l1ki)@Fus<*zV{C~u~RbrLZ*rj+u0t;gUr?keXH%Qfq&vV zy=_%an;2tspUAEoH~g8G)R$6tVdu^rz)OLR*WC9zU1QnDU791Na-I1<*pBxAs*F59 z#4vMTkota>Q||jcUSB;CBJM{gODnY1>%5;Szt$?s-5?GR={<7pzOTghX;%6h<}BSj zA+>s3Do9!&^y2)? zedKr?2qrNrgoH#UPyiy&ioCbsD^ij z$}4t=G78?PVU8W@hjEKzjOrt$jxA%MTH_k+ov)p}N+HW*#@&OG|_nV7%mP+emVujhTW!(}rc&j&bu;~5O* zRoeO)9|>e466Ap(q>j$6SIUt=n3%Kfo<(0HbLGQFEKa5jGw2xsP5jaPOwa`9fIqp+ z3r~0x5)$^okL@K9Uo2ulYzH#kGLi?igr*|}lV0fgbXk%zNq&~@h7KY=s^@QOZCcY1 zQS#?`bwPTbna&g0V(n}8Ut1MG2JZiJCkRx;oGzv@pcWmxN6!&NrXyfQKtxGg0-fvy z5P%0tO(6sJ&@GD^8a5-_M2s&aU8+*m1;X_qSX$yh5TF@BWJd&Fb-howoX*2s8L@~a zW@qo6+AV{tb^9};0p1vcunL8OL_S<~Y=u=6NL|20m@}tG>;>Iz1D=OkM;%HS8ro|7 z9ekRk0red?SwiV44eV1`al{-%i(6j8qz5^LN!QSDEoiq3##2ryD-U&RNN$BbPmkI~ zi#LE=$SEPQ6Vnbd7?*)hF^MS_a{k25V8Aau#DGb58`V|_!%l(yuYO{CG9S853r$Q1 zF-813Q5cq&NFN|pCO!-lk{D!Yd;9JG`YyaM_wf!kaO@mBppU6h5xm{dck$01ES|N-_ zR?y=^E*{I6ZzBpZ2~pzom+dePDv_ih_9z-Jn}ib+$}%}?1?6gf09cWXr;@=R^k`Xm zc^YWo!Ft(Z7z-x4fM$l#=9DY%??T8T#~p#>v|*f&LfRdPAK?0^C}^~r@2&Sh^t_8h zcj$q}$`v?VJ>gMN?@Q>!VNlK_K}AAdoU-?Hka#N})Q1~QW`fAc0OaTt_$Vg;&gbW} z^PRk~qI>YhsB{}(oh_VsmIOwk3))DePVG-uAk>rW0Y;yD0Po8XI7`T?!66em#>T$r z6S}zT5mN4wBp#RgF%RCu)6{_Hn2CfCE(6sJbJk*voG#Gu>bq}ZTE+?D5)M(UdOPRKGa*vWGz;$xU)9MchA!DXJu)3z^Iz{uwjaL=U$B!Q$h11KocW=De zj!(6Ed@Th%2amlr8)-ZNeaIPmgIPZS=Y)`45*h12qh6T%*4e2ET2WX7z^w_j2(b=_ zkg?7yJP%H_K~KkTAkUwMLh!=NIC0O>DNxk%T!y+Grox%~|pFOnb7#jRZ)fe^iojV;;!3LxBB{8vrkEGAaS z$yWLS>4}4&>M9g`2kOl7IFJd^1?E zKKW_GkG>hZQ!8QAg>DNPn=De4o$ebN7G6@Yw@-Yl-Z_(<6ss?rv|jeg*_spYuV(u; zgv~CVRen+><2Wa*JYZ#WZU6YspT>Cl6sc%#cer3>dXU zCM?VE(_~x=T5TV;7v=T=jg*7|oXvRD^x~)!bjLu9vJ=D(AGjP+V)Qm>ikNXmpCW{e6Y<8Hn_mnA_3u#nVruIEqhnNO;>rN zbu{yj^6AsPbMC0Fq!wZ3{PuXkQjqfAFmDs}AfA;v8jE($wCl9LmMF!p9MU?Mawlca zSMFR8+v8Ee$ypZgX)E1c3(4}ob={R9qQm?iG4sfLD1=@JoqEvoV8IoGZlQ!FZr&}M$--7? z#ai2kekc>Y&rb5)+qXTvy?1aojq`?vhiRjte0#h(+7!f%8Vlopuk7Q$ET6w`BYHlVBQ5&cL3SXxgu3COg(*qKNK;f)Gc$W zTo1_6AY^U8B)kI`um=NEIsv^POT;4R85`S3q1l*BKFIWYCfI-4XKPi^xXsWZX+c)t z6l{H8hg2y}TGEB^I^3Gdv4xQ_vGKewtsK`p-&K?OtsBfUUS2X)K3D?rh@dG?uL@4b zi2bD#UknpBN^#zhTX5xHzT#VudQamfV4AMVbl%&Dsi+={<-lXc{T6wrk8uMSD_|G> z|FY;Y zvo;E4VrB+MQNYmb<=&>>J!MhGhobs#4_YP-&CMTCq4XB+4M3lOP?D1IPZ z{ZI;^`U`8it=sQ+rI;am>}>_TAjO49Zq2{F84gQ#YsduPz$ydI497q5jlWMiYG?$D zeW=heHxK;38hZ<{uDY*VbW;-2p_BqD4HD8I-Q6XPfP{#I2-4jp-CYVOAp#0mq^Pu% z2vUNGQVIy%xzY3gzVF;~&vSiveO~0pjs_My!dnvSE2XP_XZ zVP>QDJ1*eT1iA{eNE-+Zlv@Z33;PU^(kmFgeqUuDAXd?&7j(XSpn*l96~McP#dzS6 zg1Hq?m+>fb!p4RNwHI$7;hKZ>4OE{fw~78LY&EFC6Rdw1FJFFVwa07#Id7rQk4E+9 zwF(uw{3F@FDZ7wTyFND#=2u7-$lMgd_u2`tNh2d<>1he@RvcKXo{DtE&}f(Eo)dM) zM%NR_-cZj;6qtfXxG?Jw$0Q_l1_c;^J4^u09;y$5Fm%X=4qRJI4;}&21V*k9Yk6!yS%&SPc(&lQ#jd0QtxV1da52cZu#0Qa`Xl2oh{x19GoeIV2+PV`JQx9;iMEd!o z*=@41odeYvhgwKtIv|hJFkM9PyKA?eho2Cn2f!a*h3gGtR!jd3TYdyAK2TfAbf3!K z;msvgAEOLXU9ZQv^pA3fh$OCAn5}z0xVt9Cz*PF@!>`fbZ-2IG#C4YjGoln546w6* zB3}f~=`)`pm+unac!q_bQ5*XzrD z!l<*ugX91MLvW;?>a$yR-ytdbsiGR($6|AXYVn}Dr}stto%P!#=J(iE*omq--#!`I z{xK(q;Dkn3gWKzu*3ZR$pLsdd{rivp1*;YYxNJq18f1J8*fGZs09_72>`^+bD6(vg?e8 zWrVeNa5VhX{kvN)l+;J3W>jjEH2!Mnj&H)LyMHSDqQuA8_PQ|Y%n8G6FiONgfVmEd z?9LHKYjtFys3OKp6OgV;(kQg;A!M7YATzqh0PGm5xzlJoCzXR8`L* z6pTXuZ31v*PM$L?aKJ+Vl2ISuW7COGP+m$4B8E(`*{yGA;Dd603GiEkW#Tn}bdIE2 zf3bzA!OZPF8_2#osfT~7sj6ZkkfNa~QMiMo-s|Y@9ug9wp0&t5I`CM5?RrRz|#~w!zoKnD=CE<$|IJm-^ zr4Hse{8_s)-?!%gKWl6h0HrrAV?|ifOUm~JpC_-$Jl!=Uh5yYI6NijnlPT>&i}l4z z!Yy%$FN!sqmGB5@FWH-356oz5*5B%0@($! z5PV>`0JsMv{DP!pyC-fesYg%z78>?J02(m5dy^m$k7DRWDoE`)Oh0eN=YJ$!9m=Q?k^}6 z0JOh0;A9YkVu>nDm$icFG%C78u`<{VUI98A%G3T^c0-~alx?t~p_};&>Q|6!e1K{z zG$Dj?G1@I2Fsne7UQpAIaujXe8}l&nd;!dD;OlSr94LwVdFQvs={2nMhgQC(Dp9?E#)vMQYA+w&ou)_moPwqJNsQjDfmFX{BJ;Hn0Io)#1N7G|FIYEkIw0OEq_{5RrG%FBxfss;nt zO_XK$35$gcM_MtY-A-G}i;G3TcpyRW?tKC9vm0arsJSsZ2Z7`oZ_R^b1SO`N9Q*n* zB~gnwK&EK{ikAhw7=Y5iDnKD%iPsTeEa)LC&D(^~S}725fk;GUW1ZYasQg(i+oDQv zOEAvxms`loda0W%Xm!M15sY)w`+WBO0ojW;anDH^Za)iGj3b`zsN{Z+seP9fhw zaXXGp4nwU5sf|$OP-(cNe_Wrlg+KTkpt^iC_=6|*HxxeyZxUq-N(MlPN(K@bh^?(5 z!~~KFOaj5B@`33j+(OyoT3}8>_)dM_5g`ok_7MY71X^p0R$xlYSXQxW#gH_+02)Lh z`5QqUWFZ3x2Sg6EADtj3`?v`2UlNBLV-U>7t>IF7JZw_VNSh*CGiG?=mngjv)x zg8+T8`4<8M?1lRLLGdF)`C_Ds>5FWs0AP=RTcO$bAlcgirm&W6x4mN%`7MV?*FU=KkTpkaEGapkmhtUO? zsHjU$`|;5|^?V5$fM^u_{3PHC!8$4&vNSZpLLiUigTf-zCLV-)P-ln(7915`&!Nm0 zMVy|vOq_sxQ0(>s>KR9t@WG`WC3hh(!bc0-K(-YQYQqNuTM*8m>KK#=K(%maStXS0 zDSS_av>v?%l*BcF(XIoZ zU2+j)M^EXoG*($%)&jWQ z^=18mdNErWax81Yy7Lm95GQfGzN>eN8xDikJylcxMbU3?Zl*edBtfp0tw{TAzu{V2 zY0t8oT^?)g!>zCj9Ztgj08HA5!Re!DPfo83VbqOjAH6sKVs)$m%xbFV#VPq0*m3J2 ztmIH~~g>jb;&SZ~1ix+lCi8xM ztSVVr$n`hq)J>syz!>I5|0yAbk#QYfag=_cx~v^7~7#&mFz{ z;YM0gX`w_TdSg(8g?1!?JQ2129#*&48Cmg*B4z9SPf*jKp^GZkn+C_W`d zK>u;7TL;(G=7`!hNwo|hCTRAvs3WOr!qU5+~;p>;s5X{$S7Tv#HlP7yqi(vj3f^|?>|t?5_n zxR;|^;h?(U##6{p7^crxjiW>n=zxc9_Tr;jpWD3N`5W;eMnlxp^aNdQ6< z0tHQCSFiO`NM(zyI5v57w8wTt=OnERt5znw7Uey?GO8P&5ac+XuK$pl&gEg5Zn}p& z#mP)d|4Y;1@NCuxKl5YMV$LpKZS1399eoV>n8M1mNA09Bb;x+A&>%H+7-@+W`jUKx zCuBwFBka04yf~n3%UzY`QL2toSA3lNiunB0cK0O=Jg{cfwfYxW9SI4+i9f!#_A3>A z+Lfh9wA!#iXOc~(tb8)?tDu5pWED+>4iIxyWhA7|Fe@9J%-j03IL!A&+Ii`UZ zP4PHPQ=!D`;hjaaNqdwZDNT4^tpsA=4m_C;@9z9ycspg0^U<$OxtKy&DpK?>#*GE~ zg7ASaeDFdX?IBBUFpbkg=KszLc4kMsV&kU8h$ppiXI8++Bq+x2r8?!Llz$RT60n>N z>WzI$X=-wI+ir+lMoaWmL}*jmn8KB^I$pmWlW*;*_L&kCvdTEt+s?jBeFWF$qzT|} zg_g^l{WPem;4Y{No^#}JvEl-eC{b@*_5rmj?xo>UO{z`R*xVFF>Q3i{?_j8v=NpD3 zFn!N_vcr!I@O@(276DNd|GuEPf*l=sNS7%;13G0gbBl_x(<-$YSb~}5+-7kV-t%y^ z)1VqA2|w#>hErjrFTebK$@KI(%9pD&=(e+K6_ z_*0nRi1Xq?e20#2VQPdNtXT0$}?V+Hog-WUvAwqo^iNRF5%0Yil zGqoU+`CyrG_ZJQI{p}1B`A9vB;d6QGdyQslMKX0?CsW70OqlL7l^NYC-CiXMe~2mA za^{2}eFO#b($Z1~{UQ0VO}tg~k;hNrq!z;)pPxHTle=j-Z}j#Q(wNHKc|}d!4WZY+ zz|Iah`Z+N|lfO<$Pr z61qpejVUU@u2NL)3#JaJZ(@E2H0e@xu|gz;v8il+@(V3G=*<)%%kd_D_Z)%*AN=|{ z+L&00p0QN71kW3s>*X_6+|GMyU`ZFXru|JJ(=fva8N>9QDCZJLb+ahFHS~&|X_+E` zEM?a!F<56sAat5??3WwfPbken^`=DyUIJ z-YKo~B9z8hMDztH$wnp^S!4&cV6CW-D8~LuF_&;(nXug-`0~=1gLCrELWV0VZi_`+ zMXjePjIUi>S-_XG(|8|$Hm<2Om!%vvqE}8UQVSCgK4Gk#OX0~u=yYm8~I`WoB;E&PZ%9860GXsAcNz&|1hc7 z&3lCxeB62Z->y=hRbvbi5lAgyDMN1=Pp7D7;LUTL5(E)E!wt#`{@V$#*I*OiT+g`t z6M|+o%A|bB0WCVOVLLGM26!WIxNEb|G)?y8mzhs!x`1pDAn*yoOSS!WUo_9`ayR%< z{bP@z(gH+XSaFVY#VMq^?9UR&uY(3)BsB=ykrmMw&zWwWDSxM$Oj&2~v#6D-&LRs? zh16^lDaUMZJO&N~^;1A&Z%`VMK5X|eQ({nHjYK1^`a#k3q)s` zqgKff@~9e;$$D+T2cF){NKR+}G7LOM1gAGO3XJ`B)b(Auwtniw8U$*j;pkY18Bk#; zAq<>EtQiaVsRAseeQ+^MAMu%}J1*sL91{Mz=mJ42p{4&B63d>EAqM-te@ngLcOS;I zvmotFdYQVI;1rHu=-zFXwR685^3FL(hb#3eh#@F~egr?^28siZj}$IbfQLFLDlaaj zklK(oNMIl_e#F90TEK&G%UQ;1Z~xuL#<%WMjVE9_f8$K3Eh2(IJX!*Po#5!jGFgE8 zZec1Zx#jMe7f^Bx;8KZ-`YHrm5zfWPdGb~7d**C~sUUg@kg8h&qh#E6ha1|H#8Pn@ zqQ*DixuTHVk0vKT^Zl8H0*3fZTUlijd@h=hPyS(r-VD#Hc+(m{I792bug`}#X7T5$ z_VTI*C@;#PXKo_?ru3ngf~r;5<_19(<#@JWca!}-~XT09!3HI=f zJ(%{nI+h|LF!J!g-r$b?VW}e|l_>qZzq@`KL0cuEBm&T?@=8k1=8AwK%73XQ)%~gN zGqWV7Mevr0EAxCH7HRr1Nf2mj32M#M$i#l-UYqv|TL}fhwE8PEIj;xlti^xKTqcgF zkV1#%TglGspuA(ORkY>K!f2=!P$|>JBN(mZ=He5#}Dysqx3N@md0~7|hw0Xe#QHEV|Z-GJ&MS`Ql4#Z!*l8KAV z;;&in7e&4k<5*kaGrcxrD|z)l*Zrj}xg5RT(+-MzLm3x@&;GI?@z%2)ynxsDd%?JA zda%oCk+@rinz~c#{?L^*)nOn!qQKl^9_2Rxpa2jPT5W}bVz6t( zLXt^iJdxLTNM1n3^8&+(ignTA4ZzBbq+z66rP|WI`vOuoHT6UFGHnY9@_HA0B>ln) zE7t`G_UaKZ*r-_e%m?(9(a*}jidIP;2y!W(B#gb_fo!C_G;1( zos04Q9(C9UiXch)!`7b%?_5=xbE>!^wR2T{`g+9mF?5;s(Me#}`JGZjuXh2&1XTO; zv{b9X5V&|&z<4pSmFiC4n0@gOm)l@rS?=@7Z~Mu{2|jTUXx-RwNThQzqmeQ)Ngj5G^jFz-j)h-K#V^rb4o{u4`o_dKXL{_us7;5u3vJKan zs1-*SZ_ncQndGp7Kot8oR%V$HN?UKeGV72Ao3E^`Djb7`BKE~sGJ^qQO8%@dN1OAN zF5~A;`T~}g@-aVTdS&;MwUYzUJ5Oz=Z3@W~j#GgMad1;pRYQ?VlS*bXmSHNhzPB~J zC)li(eEMVCdI`4NG&i5I$)UawTM3CX&@Qq)#1qut=_HYNCI@g$}|s5Nz6K+_r$L%5G}dcBteM+3IL`0jHKBwXJO z4hG_UhCC>j%qpx-4 zxV!l`wdiubqk>M#BQESmKkv>sdVXW>d{_0EuVu6L{cpOU4}{{EDB!_RY2d@a$C>Sx zyJYkunL479i!v{c-&S;%_k?^MJjNvMq7#ongRYt9uEJcO7k)(duqh9Z$;;f(7=)0b zG?%^P6`u#O`;S#BY~tNp{Ej&32;rci#O>J^wo%XDRRBy`S%59o!jCED5kXs9CZ-6!;Ba-T=VBS@o0Jwq7H?J>!t-uy6cs$ZcYkiy__ zCAD4DEBVHnyMQ{+8@`-JrM#|&Ga(alJ%-&U0Dignwy$CUv+K^%MTDbI7Y8tRQxgA zh3XcSv;NQ9cz5Alpn`fwCGVXIna`Kb>;$epvw4n(%lA;sepCt^dY%mSMbw9_UXHu3 ztbOo}CSZ~+RV#ke!^$r2z1G&(H~O`im_5G6q;HEf3vfTjIPVy}CDQSDg&*#==U1xo zMB`+7gbDpIub#;mLN{`}Ess(Ae=>jp2Z7r#GKwW!bl%=*i%&Rh$@`9gCW^Hkja z*+(_5AN?z3(WlNX_`g7=7;1!A8c1>!4jABr_4UJB0Wq^OIN?N?rbkO;oQ5D#VYr>RBEO-k2SE#T5^~gkP#)lbn#H5=CU6LLkKRHC zk^>v}7rw9P#+?-N-lgx<=%c9#EyS7OaJ*taxmArtqH=9T5RDk)~B6PlhK=;q#*oOgx~tl>`i!LhTbsZ9e^1{ljNe&|L3) z%jH*6%Qn6 zGNAo%_ZnIh1jO@8ATP9`LIh>uU`(hb?z;Ib+&|G>Qx=W=v?W!(^!XAwG`8q0;lw#E znDxKE`{#R(XY=RHsVDXCbv57R2+%nk?(-YCsb7xVF1UgqYhBi#xwuq~i)}uK$v)M{ zwMx0Ub~WxhsMXM($0&awYZvE>6crWy?l?X;dD^f{gr%x8CQDo0Bucn)-+mBZBRH&_ z^xJ-}7CHJC>tgKU(!8dpz;}72(8Z-}G4ZsJPif^Kma~B#IH)X>OW&ymMf5=^M3gOx z9*M@FJ=bw@M~@>DA^RJx2gsh2SDoZv+kRloh1D#!yKA$U;IJt*?%{+Qc<=>8FIT)UEYRvj= z5dpt+8!i|M^8bM4H7a333ps#_%uqUy&(x}YCSUr6m7l$21U9_g)h}c(345KvW4{8w zjaqAf$~gka_E%6?h8_&HnF6JB5m0xF$x0`KSDczbglJ1VPn-%g#MN&jIN8ROK3oaS zalq_|z-x6IxHM%?fMao085AHszCjc#Gie2+7FD!&pMdi-ME-)F7I;i$KU;su=j$_T z*i8}=pb+?}QWt}y_cG~oMMoCshUQijlgN3!?}(>#v&iChn7(J5gakc;=Ez{!Nq12(4lO80_3Gf83cbZfKGU#-Q5JJaY?a>1=S6jZRWz6o3aY*l zY<2EMV+bS3bxS>Jb7W(@B3=CvGiPY`P8J2g+)_CxC z1#ZPVKB?Kjgra4c$nm^Yedu6y9=^dqP%aUy<2dep$75>M<5gyeW%TF5q*Ofbl?R9W ziGPz|zozz?=Z>2nkIlYMyNZwE$B;>eO0o zsz~(f5fjGJx7*bMP-$-sI&x6AIQc9_qQ@|xA{sOQiubTaXL;J>zDo`ts>Vi;*b7}W z%<@LQxFIXhW(TN5U1AehrKnhwKb*TNs~leO-?*%TfR&UXo!!8ePtS0SH4~r&nnUFI zfdFXUPJ>pw8z@FFb~{B!x1+QOZBhA+m*AOPS)7r8rf5k!#{NMr*Uo-fp4+jSF}uT3 zZOM)&^v3@-&7<4A0Ty^wog!*#`V4#_=tlEP2Q@`O6?Whx_Ze1Hr;Xe64nI_fK?m{^ zwAVHO!vKc_J#6H`xe09-|6v`y#n-PbewoZ8Pe<;VB-wwF_Rr$rRe*i``O!^dG>?|Q zK(Sougs#?pl0zdCmHOMY0$`q$swCM61+z40VIQm*=)qA@EtC&}=h*c|3G~QRDYe#Z z4d>7Pc^|OPqTw}3sgr#?kxI|tOkvx82GJ|T{p!F!);0ZcMfnc@^5G^PZ4h9Jloqz{ukf0Re zCD7=o=_6|9geuWN^%-Mk56%0)4S(Sn>UNwzNRZWoCK_cd4XrVQ0Ng>rKF~sEU9t?{ zSgLAg3Cm2E=_@zM#|f;aDr^b9HFSDV)TO!RwAC7>Oq1{$ss7f&Fg`nxoyp#haQyzh z@k2{`-(3OUk35@}uQUbM`5BSm+1VI@9;C<0JC63_X%<{-1%`cE0LOXUqMT18th*A zvv1@WDbv@UC@)rcm-TjaMQn60fV@1XPCN^v6WoIdGp-;Yi0uTK@aPa~tOH>{sB0vt zIV2h%?!GLI!BFl`g-ZX3L9j{nhO~I`R$pjH$KY|h3fTrb@gG%LXo|~JV|s9L;yU&1i}} z-naBLQBsLo`dGyQ{UFPf7Q)AYt1_|TX8>9m)GHJ9XaV`>4@Zb#x}oT7Zh1KpgfgRr zS@#asn?dLm_!;(QIp{+G7Cym%u@wRUd}@Z6snxxSg3hzOzPQaNjMSidJdFO?UT}5p z<=yPU69licLJNyvSmE78D)dqP-7NC%yP`5!b z(2Dr=yT0cXY$J9qzNQDHmPiO3x=hPmMmzUsC$e{tGX6480Ql_3lt#nUO<5R@s5>oK~KokXzab$oVFpz1eTH77)XrTqhY zAQQvc6Z|$R_1Kt_IH?1d$IKr}1CSj>s=HW8tbX9Fdg^5;^EP%gDYyE>ak#!D<W;LD10P4uw~@!yf4!at^@#_jC~;@rcOCYQqW-T#?-kS;A( zmr1=%MGZdeNWQpOW32sX-gAU~`WBGFN#s3LgbmI4;nb^A`q=4&UcOQSI<*i0MgL<+ zb}rkq;jx}?UgsB!c$(2(l~0Vpf>)*d_kI9fEX6)HYcu+ANy}_o!nz*&kHjOY?2%HL z>-bC&-W<$w+~`Cgp`*Cnp)L398IMiFxFL-_zZGOGCy`#FjE`d#u@)T(CbwyYT&t+;dCg>%sjOe}@#84Y&@wGbPl&d<4O7`IufTx!H3saJ9^BwG zi#4prarzp69Um{9JF>%toBkX<*>^1sbbY?~ca@;rnU0iu5nnuH7MVK!L5ZgkH`ePeOe}V8HCasj1$+x?^OI0bVKB%tJ6H$657@ixKw>)EW z&2OTFtTg;o-9Rv2{rI^&VB$WAu!kkN+cJG71v?i+fJ3uyysU+o<_oPUEvO#GbDBGM zmbg3J-Q!ws%5q@s6VseG$W{(7*IHhwufK2na~LkYCzv{6%+QWxOAW|?sK4r;&)*9_ zVZWb|FW=T3#bulR-8uxh+6HZd)sn~HY1q4@3jd;Zw~+Gk zW$`yy-65BaYXAGv&sfRa8o^S>YtlTMpO{4ODh$nk0Z;!=O#=iM73iJzwRw2n)-Xb_ z;^Sd9`T|LQ>NKatjA64RM(aDJC{YNWnbKmbvgvfUBy@|?9F}hcW!D1IBWm8pVUQoN z0GG(IT^g-_qwn1ySk?&MSiZq*8;2gNeDl(Q#_MPEwYRH5SfOknuLUDe@r{1n{?^lX zgQ|-&e;`p&kFLF4$`3NQ|02NwL?{g@Vbv(rMF-`7dOY+^zgM34vteDX?z~1xjFWbS zwj`QVmn>^t@ZAtO@zr~q!(pk0X++H$vrHh(RpuZXCD27>N`$1DMQ&SCqYP9LH;#bP zFTY+pE)uMb_kLqOzEwk(g93d*P(_~Bz4oCPs1qVu(?*FdMMzmaWX44xsbC`Q++T0D z1|m7A^XVvc0-s@(?L4&W!Gy{M2(iMTMhs0Zcw0hfTwEw+t1(-T&J55e#*3PNp|v_HBu@2+})0xA935yGr zhaVTKKO~yV5(cAh7E1G z?O3wpXbkY}Dv8a~Te7iBDkt;_EG_AOl^3Y2lNZt|mWj&-Z6_%@9OmQ%em)a8$Cg!b zyN9a#Eao?C|42aNUP#~h9LZkjaz{9n_F)ukWUoGoE|>(MtIRnf&IV8(4lk80QpB@Um$bh zGP7EBA=R}W^zQiq*fNLYP5<<;v5}0E&c3DmWPc@g@zE%YfnFSG1M6Q^+zAA(>w|Zb zZ3PPwT1*%$(2Rq>Ou<#TbHDKiDf}Y|6TAM)WDC_Np}()Ym-*=UG&@5~F8%cCBmgZQ z-FNUH62F=A?-Zp&e0C7fmxJZov5heqrO?8x1IyrIX z)nNIMp!F$@hMV_Yno`>jzKcUC2H10Co>=GOv9rS6gT90biY9=m)N_bTB8Y?;Wn`T% zkSFO+i}nD7dN9;Q3(k>xMRD*Q9y|I%7>3^+N`*EVM~4SrGAsjv!JY8LLkv#)c4qB} z=Vd2S@(VBmIk?9h=wxBv>e()W`cE7+B1^ z3MVQx23s*3KQ!>`!?*2eyM4bvh@~NLsL^#s4E2+Nx(cxYsPiWQ`Nh%usj0SH59Ond z=LaMS)$PBejwXq&3#;5;j66jiPf!#?S##kfQB<62xR`bp@t8OVQ2@Js^k`qBthH)k zPvVqJM6#vD;|RmYjytDyxrJ+NE<(RD*%d(?Tc#pi6*ql#OzSP%UmnL%CKUB;k0ux# zytn+`ep~p~JJGP=S6|>?@GIcmG8e)q;!c5Fdh+ygHd<%heg2+0_yF7={`#!4`_GD! zl&-)3^Nl<6ucO(N@DXXZ1r|iv<+i`?C(zzQyHN&5NFUq1&L=9NK6X$8F)}^96oBj0_WhV4wmKYPYDl!E1L#|Lr< zIjuiiJzF;Xev%(o?s3SH|$Vtfv@m)LLhH`I&g@!fNcDgRWx_-$D#N33S8@of}bpR$$V zyFi)LyU(5W*DU?}AIlGpT=U9J8K20uw&dceNi^p|FOa_E#_Hm;n?eT9Q!c8s+AG$4 z^B38mf}gC!6<0NzZtpF0?rW7Au{85Y?RKO%7kcr*bCi!t+pVO(EfH=ZN7XuRjhA zaphoz_B3ohO-nBS^zO^xMDwrT>2RtPjIAg4lft`e;{G!sp67NSyz!|GtlDer_lJvN zv@rIWRvjFPO*0sC8k%hO|K*VOZJhgfC%uounLCaEKH>LvO7pTIL$j{Hj;>u=lke|0 zq1DcA-X@kt8)L6{&X>AjBF5b((|>1RAk9VSL5WQ9zTZ(lT*Y>~&y>no&J=vXM@U|?FQtq+lt-rw#&&8KVZSkfCEYr{JFq+DI&?Ho8z@%S`)nIW0YdGzy(=osL! zJ$N_@XY$^QTzZACECzkoo) z-T)%%m6$2pE7)gv&_N5Y`a<8o#rgSeK3!_w*SM8CFhx?v*A3xK(!cWMyw8kZP~?Z# zul}5Uz^um*lkvqcrkvMog6G;ze%hRb)8>-pqPz2=9>IqCD< z-N>-d+=SidxuH@hc1mTpJz0kQ$sMz2za-^ZHjdzU69UFkZQ~qHM7(GBAd!s>esFUuS1md6Rn;(H{Tf=cfmy?pOnKsSADOVOlZ>%nd#B3jF_m#PFID$SF+FHar8izayD3ku zpa)gVY_{_??RIcwNN;d4yX-gO$lBi<$HeVA{S)s4g}hA19ka+-5d;=XFPnE}D!QN2 z9qhc_eQq#PZWr~G+=wYl(AyNdcI8{_V%g5)SR5qi?&41M*Sf%+e=FMj{;Chu4Gj$l z&pw3OBs&KOXQ)i9uCA^Zd-%v_%0)~!`@zMsmdz)8Ok{8oQ4Y7S4sC;?>_KIvGE^@$ zfKNU2m$)$Fvz#a9_xlk)|NNT15bPG87y@H2eO>k5?aR;q%z)I|l5+?j>VRO`4a{0Sw7Ip2%ha1jNZ$&HWe!X)&J11v!diq=2 z?1vAeu|H(*XMYa_4keWwwq68NH8Z)qxcGvBpcyZ8!nEH z^<`xy=T0Gvr^uOw-%xB`B0ayaeSHF&AFMK7UPx9tKL{*U6ENpQH2jxVo*YRIfYplL zzqxRxWBf7JC8XH-uu4rMe)p~!W zYvtbTK|U1r7r_ObKBJzp;3fiJHl#2e&PKu~qq%Ei(F=aQJ)}0-;!y#W?gmCitSas; zW~#9nb6x2T>rzwGsvV6J&EKxQPlJsM2?{$iUa>ska@6s=skBrcY)4uv{pAn0lgesO z|7mZZ;<)9}aCEp*l2Y1V5MX*o(jPl1OynvL?<9-J-@CO^x#w%4yLs1hcl|0l2S4EZ zkmHfSHaOpULlrMp^U1M`W6Btzv*pnXoy*Lyz9W~S!&(-eQb|~p_;*VVzLR5cg7t9W z=RVDz>cH!Cpt|eaDQ)!e00&{DNn#ED@gcG}G?_&T7XO_evAAuN>M8nv zmw9~?yPLmo%j_F1x2+xhJITru4#xz;9$6xYFaF;58$o{vVw(S7admgG6_ zPZa_!qkNBAV6kT+@woG8WAEhz54?Cm68K>d`Iu8`EKgW&IX07(zl$rK^ljc9_oF@g z->)WCRAYIsa-FC8C6!M?In^VQ)~f2Xhe$JHLbzd!S&_qJ%8i}&M$f!m@6MjN~LYO6GcKA-<~774m8 z{qHA?fjM9 z+(Uva;{OidRUun-T}$srCoh58&dyFBh(NwRKL3lR>|wil%67)_!;zH-Jc-I)-+$7s z*X`*u2)3r>O-QP%j*>7=gl!$=e7lkJ`S0xq?`$7th-%1`igb(|*)^qfDY|#u$syRp zRdh>)c}Vj2F)!Q(D?a#xErW)j|9iBFkYb}j@+f zsVy0WF@gkrvvX3~Z#cQQq+Wu?Nhb98$hKyDd_264hLL1OJsOBrjkd@AflGTzK^ApJ z&`(MqtfX9oaz^J~o5{(A!dvb+{~90GK9h5r(}m`LO3*LN(_=zi)Ph1n9MH_+j<`dp z_gIbx#UVTIWS7+B8~Ext-K3`Fp*NH$FtL8eJYa9pFw(jOtX9NQ85&~)(JwWt;K>Lw zmg63c?Fy?KbjLT&qF*8KYwi>bhiFLmFVseFUN6N%gr4K_<@8r`kHk`+%C`MhLcg#T zrx^90*<+U6{Cin{Vh!6a9fmWaL&Zq{U-23G{r_PInSHz|Tj;UGiS$}&dGKTf{CB3NoYanX+pPF6X+6X)r?@CrO zs$3r`DlhLcyE9>D52ElT@b^j3c*IBP)FvP-oC7_Ma@xMP_JgO}_{hje=H{k5cqkN6 zE1fqldeRT1ZrrOmUPv#m2nq@=d3PM-LB}dSxUai$7ZZV|x|0QobPjMbbSm~B?3Zb- ztF09R6Mg%mKYL5yM`RBPJqt7Q8%W>Zuvopu+0?aKKp+1R++qWVu#N!pQxqV8tz*_d zvD+4mI0nFx?DFc*n>TN=T)8s*=g+cKqG43}ib`8!Q&Se0*=8;0-+M<10tY)Af+lk? zm~nvyA5NyGrZ!Z?%(6E#;7}gG2zi?b2Ojxd3HbB7vdgh7Rz+P);%C@ipHcge-3)lg zIfE%G{hJ=rTmNmeTOS!Ov1q_gvq@k-GVY|7LU&!u?E^A$1|N1__xph- z!<9@?H9f+bBE$4V5^9fqB+i2meP#bXc;0-4n`x``=Q4gI4K>;`7V6OtS=Z~qmhJGH zgVZp%CE1V`3BqYdM@N0vYMMQvv>!dGnD2Ha2umv9Zm7a!sXe8fMZy`1E=8 zb2s-;mw@f~)$I>*KzW)9uX!Q;5`6}Q9KeD?%wKFw)WC$hx&0+$KMadcM(yjz?(+dnO?5)&} zs#Y0h?$J;}4Nd}8m)EqQ(FRz_;`)CBXS7D}wtl|1l+y|fW(ke`+wjTDFiVF)ZXpPM z7qen@QUalmA9dsQrq@jEbr<)L$Db@@4~M6*Sq&6&|3am^EogPqqbXR{@;eF z{L_T5$_3~`EIi|R|IWsz^=r#JzD>{*iwZ0z{id}7_w~3f+s$D4rM>Fw$t4?Kr9EYb zw!#6gE9kJtG`mhW`#Zw5ZCwZqK$Jnx@R(4_$#>J2Mk?SLD9BdTMpCvx^Ti1gDE5?; zk%l{tPEM=oeqt%!2jG%cRajW4CayX}ck3D1_90$x_%llCmR>1zs+IRd8@m#GttX2T zhZU@A&Mg!45!s-t$$?Jv+0e}-tF=|kHjWP#AOYxXwSBV##`k`9wv&a=B9-2?Yin(= zJDBdU$}3c^ySHC|E~`_yz6pMKnGm~g^;}HMtghzR0td1jXdb-cI1$P2nTzJxXDjmYZC=`wTEYu5&#V}nLOK>Ka6JQg0F_iuBA-{*qC_-?S$Aj8oQ z+>VX2=Wgm48{dF_ULV)_gs0s?(Q5#agdms{@+H!ZUF5-0blpruCw7(i1NZv_nHCZj zxadB1wlntxI>HM%0gaH5!W(FA5yW@``5=sVf03pC%a0ieA;L}>uwT0)4z6h*4?cm_ z1kmVb1Ck&D3ZKT7w_tdHg^cS#fmSN$fBXHF8R8?cZRig?ztMq>Lbb@^YOeC@(>GDgw)^?``eKG8=UuT1z5Cm1jV3>7D z1;P>EA1`nXEG;(^o)KsmaLsu99oF%0$$%qn0dngP3HUBC_}^#9P&tk6RN z&P!K+O?$NNPC74oiU~qfTC~~p>N*w@b@ktM>HO%HI?|av+HKx}4lT~G*@3xxCir}C zs-R)SC5TF{9&QiQ@?Vdte((T#xk+68`I-WD<@?}uQ~_qyj=d?&uoR?R^8c!4Nx&Wf z9cxyrD)NWog+HyRX@W@vikEtRi5IReE|vv6Sw~SZ0=lJLoPtO3RL&Lir4_Pm3_XIu z-H4BdhNgWAe5Bu=^PaW_>E(po)LDzWFTmCfdwRT|r^DqGG5t!LrLL}x*=3{V^-Eb` zS>b82?B1fTq7u#5m6@GQd$IQ+^gHPn0^^t^cpR(su6vt{<%NZxFC6J2(!~(zL1sch zT0Z64rU7!C-I@12Js&{+RpvS^*Vni8li!vG_)x2Y2V6ca zE$s+&n_c`h2TM%jE$FD&fR2^@`}`VFkEP#Z%}q_vPd5C}3<>%z>xy|Hwiq8z5AGK3 zf6Q(Mo+R4B#eXYj_S=)^5J#a4D!A2N{qy6M>0_I4Xm?i#k}4-qb2&LW;%8?#h-UuukH@1@fh5^S+j8@b-bqq@d-}6!-ql{2(b*jyqdmu z93N>P(<9R4FiuyM2C?N|fEGyruG0MW8>(zR+lX&>+K!;n=Y#rsUFcI#3b$4c+hL7m zhXvTM4TE)Ai9^0mdB0?B>naBry()rH(3nxjzCl?<1t*x_gWRMI?V1@9f(aWkxACLT z#g`{qVOXy2uarQfoy~6-14;f)bH||u7@UrQKUK*nB@!eegHDv4QVzyssxxP@!Q^gg zV*_%Hx8VJ$4*P0vUmriZFo6*5;Rd={3xaNmg`0Z-3JE9v%%AOmH4vn^{!&XpG$EtEsZyEJy~ zmLQn;CTcqa(t*)}A0?5)x11LQ_#c=h&h_6!gYo|#>k9hu|I4!TfBf+giH3y1`2K#z Q2>N3c1x@){S*wu$2X0BDv;Y7A literal 0 HcmV?d00001 diff --git a/doc/modules/permutation_importance.rst b/doc/modules/permutation_importance.rst index f2530aac3a388..368c6a6409aa0 100644 --- a/doc/modules/permutation_importance.rst +++ b/doc/modules/permutation_importance.rst @@ -6,15 +6,45 @@ Permutation feature importance .. currentmodule:: sklearn.inspection -Permutation feature importance is a model inspection technique that can be used -for any :term:`fitted` :term:`estimator` when the data is tabular. This is -especially useful for non-linear or opaque :term:`estimators`. The permutation -feature importance is defined to be the decrease in a model score when a single -feature value is randomly shuffled [1]_. This procedure breaks the relationship -between the feature and the target, thus the drop in the model score is -indicative of how much the model depends on the feature. This technique -benefits from being model agnostic and can be calculated many times with -different permutations of the feature. +Permutation feature importance is a model inspection technique that measures the +contribution of each feature to a :term:`fitted` model's statistical performance +on a given tabular dataset. This technique is particularly useful for non-linear +or opaque :term:`estimators`, and involves randomly shuffling the values of a +single feature and observing the resulting degradation of the model's score +[1]_. By breaking the relationship between the feature and the target, we +determine how much the model relies on such particular feature. + +In the following figures, we observe the effect of permuting features on the correlation +between the feature and the target and consequently on the model statistical +performance. + +.. image:: ../images/permuted_predictive_feature.png + :align: center + +.. image:: ../images/permuted_non_predictive_feature.png + :align: center + +On the top figure, we observe that permuting a predictive feature breaks the +correlation between the feature and the target, and consequently the model +statistical performance decreases. On the bottom figure, we observe that permuting +a non-predictive feature does not significantly degrade the model statistical performance. + +One key advantage of permutation feature importance is that it is +model-agnostic, i.e. it can be applied to any fitted estimator. Moreover, it can +be calculated multiple times with different permutations of the feature, further +providing a measure of the variance in the estimated feature importances for the +specific trained model. + +The figure below shows the permutation feature importance of a +:class:`~sklearn.ensemble.RandomForestClassifier` trained on an augmented +version of the titanic dataset that contains a `random_cat` and a `random_num` +features, i.e. a categrical and a numerical feature that are not correlated in +any way with the target variable: + +.. figure:: ../auto_examples/inspection/images/sphx_glr_plot_permutation_importance_002.png + :target: ../auto_examples/inspection/plot_permutation_importance.html + :align: center + :scale: 70 .. warning:: @@ -74,15 +104,18 @@ highlight which features contribute the most to the generalization power of the inspected model. Features that are important on the training set but not on the held-out set might cause the model to overfit. -The permutation feature importance is the decrease in a model score when a single -feature value is randomly shuffled. The score function to be used for the -computation of importances can be specified with the `scoring` argument, -which also accepts multiple scorers. Using multiple scorers is more computationally -efficient than sequentially calling :func:`permutation_importance` several times -with a different scorer, as it reuses model predictions. +The permutation feature importance depends on the score function that is +specified with the `scoring` argument. This argument accepts multiple scorers, +which is more computationally efficient than sequentially calling +:func:`permutation_importance` several times with a different scorer, as it +reuses model predictions. -An example of using multiple scorers is shown below, employing a list of metrics, -but more input formats are possible, as documented in :ref:`multimetric_scoring`. +|details-start| +**Example of permutation feature importance using multiple scorers** +|details-split| + +In the example below we use a list of metrics, but more input formats are +possible, as documented in :ref:`multimetric_scoring`. >>> scoring = ['r2', 'neg_mean_absolute_percentage_error', 'neg_mean_squared_error'] >>> r_multi = permutation_importance( @@ -116,7 +149,9 @@ The ranking of the features is approximately the same for different metrics even if the scales of the importance values are very different. However, this is not guaranteed and different metrics might lead to significantly different feature importances, in particular for models trained for imbalanced classification problems, -for which the choice of the classification metric can be critical. +for which **the choice of the classification metric can be critical**. + +|details-end| Outline of the permutation importance algorithm ----------------------------------------------- @@ -156,9 +191,9 @@ over low cardinality features such as binary features or categorical variables with a small number of possible categories. Permutation-based feature importances do not exhibit such a bias. Additionally, -the permutation feature importance may be computed performance metric on the -model predictions and can be used to analyze any model class (not -just tree-based models). +the permutation feature importance may be computed with any performance metric +on the model predictions and can be used to analyze any model class (not just +tree-based models). The following example highlights the limitations of impurity-based feature importance in contrast to permutation-based feature importance: @@ -168,13 +203,29 @@ Misleading values on strongly correlated features ------------------------------------------------- When two features are correlated and one of the features is permuted, the model -will still have access to the feature through its correlated feature. This will -result in a lower importance value for both features, where they might -*actually* be important. +still has access to the latter through its correlated feature. This results in a +lower reported importance value for both features, though they might *actually* +be important. + +The figure below shows the permutation feature importance of a +:class:`~sklearn.ensemble.RandomForestClassifier` trained using the +:ref:`breast_cancer_dataset`, which contains strongly correlated features. A +naive interpretation would suggest that all features are unimportant: + +.. figure:: ../auto_examples/inspection/images/sphx_glr_plot_permutation_importance_multicollinear_002.png + :target: ../auto_examples/inspection/plot_permutation_importance_multicollinear.html + :align: center + :scale: 70 + +One way to handle the issue is to cluster features that are correlated and only +keep one feature from each cluster. + +.. figure:: ../auto_examples/inspection/images/sphx_glr_plot_permutation_importance_multicollinear_004.png + :target: ../auto_examples/inspection/plot_permutation_importance_multicollinear.html + :align: center + :scale: 70 -One way to handle this is to cluster features that are correlated and only -keep one feature from each cluster. This strategy is explored in the following -example: +For more details on such strategy, see the example :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py`. .. topic:: Examples: diff --git a/examples/inspection/plot_permutation_importance.py b/examples/inspection/plot_permutation_importance.py index 751413f69b59a..8cf63dd80fd4d 100644 --- a/examples/inspection/plot_permutation_importance.py +++ b/examples/inspection/plot_permutation_importance.py @@ -24,8 +24,6 @@ 2001. <10.1023/A:1010933404324>` """ -# %% -import numpy as np # %% # Data Loading and Feature Engineering @@ -40,6 +38,8 @@ # values as records). # - ``random_cat`` is a low cardinality categorical variable (3 possible # values). +import numpy as np + from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split From 7bbd7499587284fdcb748c54a036c0d2d8686182 Mon Sep 17 00:00:00 2001 From: Michael Higgins <55243596+Higgs32584@users.noreply.github.com> Date: Wed, 17 Jan 2024 06:34:12 -0500 Subject: [PATCH 0060/1641] DOC add example for sklearn.utils.validation, check_memory and check_is_fitted (#28145) Co-authored-by: Higgs32584 Co-authored-by: Guillaume Lemaitre --- sklearn/utils/validation.py | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index e58fb41501c96..6531a9da3404b 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -395,6 +395,12 @@ def check_memory(memory): ------ ValueError If ``memory`` is not joblib.Memory-like. + + Examples + -------- + >>> from sklearn.utils.validation import check_memory + >>> check_memory("caching_dir") + Memory(location=caching_dir/joblib) """ if memory is None or isinstance(memory, str): memory = joblib.Memory(location=memory, verbose=0) @@ -1508,6 +1514,20 @@ def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all): NotFittedError If the attributes are not found. + Examples + -------- + >>> from sklearn.linear_model import LogisticRegression + >>> from sklearn.utils.validation import check_is_fitted + >>> from sklearn.exceptions import NotFittedError + >>> lr = LogisticRegression() + >>> try: + ... check_is_fitted(lr) + ... except NotFittedError as exc: + ... print(f"Model is not fitted yet.") + Model is not fitted yet. + >>> lr.fit([[1, 2], [1, 3]], [1, 0]) + LogisticRegression() + >>> check_is_fitted(lr) """ if isclass(estimator): raise TypeError("{} is a class, not an instance.".format(estimator)) From 7aa7485466be233498b50f9f564b8eb9fceb3702 Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Wed, 17 Jan 2024 13:57:46 +0100 Subject: [PATCH 0061/1641] DOC add the HTML output for the polars dataframe for the 1.4 release highlights (#28149) --- examples/release_highlights/plot_release_highlights_1_4_0.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/examples/release_highlights/plot_release_highlights_1_4_0.py b/examples/release_highlights/plot_release_highlights_1_4_0.py index 0d2924d9e8bb4..d7344e4a9b99f 100644 --- a/examples/release_highlights/plot_release_highlights_1_4_0.py +++ b/examples/release_highlights/plot_release_highlights_1_4_0.py @@ -73,6 +73,9 @@ preprocessor.set_output(transform="polars") df_out = preprocessor.fit_transform(df) +df_out + +# %% print(f"Output type: {type(df_out)}") # %% From fe4ffd233d701cd77eda0d34f6af7343c664a14e Mon Sep 17 00:00:00 2001 From: Julien Jerphanion Date: Wed, 17 Jan 2024 14:00:12 +0100 Subject: [PATCH 0062/1641] DOC 1.4 release highlights: PCA on sparse data improvements (#28138) Signed-off-by: Julien Jerphanion Co-authored-by: jeremie du boisberranger --- .../plot_release_highlights_1_4_0.py | 25 +++++++++++++++++++ 1 file changed, 25 insertions(+) diff --git a/examples/release_highlights/plot_release_highlights_1_4_0.py b/examples/release_highlights/plot_release_highlights_1_4_0.py index d7344e4a9b99f..74f0c881fc4dc 100644 --- a/examples/release_highlights/plot_release_highlights_1_4_0.py +++ b/examples/release_highlights/plot_release_highlights_1_4_0.py @@ -207,3 +207,28 @@ # Setting the flag to the default `False` to avoid interference with other # scripts. sklearn.set_config(enable_metadata_routing=False) + +# %% +# Improved memory and runtime efficiency for PCA on sparse data +# ------------------------------------------------------------- +# PCA is now able to handle sparse matrices natively for the `arpack` +# solver by levaraging `scipy.sparse.linalg.LinearOperator` to avoid +# materializing large sparse matrices when performing the +# eigenvalue decomposition of the data set covariance matrix. +# +from sklearn.decomposition import PCA +import scipy.sparse as sp +from time import time + +X_sparse = sp.random(m=1000, n=1000, random_state=0) +X_dense = X_sparse.toarray() + +t0 = time() +PCA(n_components=10, svd_solver="arpack").fit(X_sparse) +time_sparse = time() - t0 + +t0 = time() +PCA(n_components=10, svd_solver="arpack").fit(X_dense) +time_dense = time() - t0 + +print(f"Speedup: {time_dense / time_sparse:.1f}x") From 6a3517e0ca41fb3bc8e375dd4fea7e1bb2f906ff Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= <34657725+jeremiedbb@users.noreply.github.com> Date: Wed, 17 Jan 2024 14:01:56 +0100 Subject: [PATCH 0063/1641] REL Update what's new and index for 1.4.0 final (#28148) Co-authored-by: Christian Lorentzen --- doc/developers/maintainer.rst | 2 +- doc/templates/index.html | 13 +++--- doc/whats_new/v1.4.rst | 88 +++++++++++++++++++++-------------- 3 files changed, 59 insertions(+), 44 deletions(-) diff --git a/doc/developers/maintainer.rst b/doc/developers/maintainer.rst index 048ad5d9906a1..e82a7993997b2 100644 --- a/doc/developers/maintainer.rst +++ b/doc/developers/maintainer.rst @@ -210,7 +210,7 @@ Making a release - Edit the ``doc/templates/index.html`` to change the 'News' entry of the front page (with the release month as well). Do not forget to remove the old entries (two years or three releases are typically good - enough) + enough) and to update the on-going development entry. 2. On the branch for releasing, update the version number in ``sklearn/__init__.py``, the ``__version__``. diff --git a/doc/templates/index.html b/doc/templates/index.html index a20da900bafcb..460ef9d865046 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -167,20 +167,19 @@

    Machine Learning in

    News

    diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index f79a15d7a15f0..ad3cc404f5930 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -2,46 +2,15 @@ .. currentmodule:: sklearn -.. _changes_1_4_1: - -Version 1.4.1 -============= - -**In Development** - -Changelog ---------- - -:mod:`sklearn.datasets` -....................... - -- |Fix| :func:`datasets.dump_svmlight_file` now does not raise `ValueError` when `X` - is read-only, e.g., a `numpy.memmap` instance. - :pr:`28111` by :user:`Yao Xiao `. - -:mod:`sklearn.neighbors` -........................ - -- |Fix| :meth:`neighbors.KNeighborsClassifier.predict` and - :meth:`neighbors.KNeighborsClassifier.predict_proba` now raises an error when the - weights of all neighbors of some sample are zero. This can happen when `weights` - is a user-defined function. - :pr:`26410` by :user:`Yao Xiao `. - -:mod:`sklearn.utils` -.................... - -- |Fix| Fix the function :func:`~utils.check_array` to output the right error message - when the input is Series instead of a DataFrame. - :pr:`28090` by :user:`Stan Furrer ` and :user:`Yao Xiao `. - - .. _changes_1_4: Version 1.4.0 ============= -**In Development** +**January 2024** + +For a short description of the main highlights of the release, please refer to +:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_4_0.py`. .. include:: changelog_legend.inc @@ -395,6 +364,10 @@ Changelog which returns a dense numpy ndarray as before. :pr:`27438` by :user:`Yao Xiao `. +- |Fix| :func:`datasets.dump_svmlight_file` now does not raise `ValueError` when `X` + is read-only, e.g., a `numpy.memmap` instance. + :pr:`28111` by :user:`Yao Xiao `. + - |API| :func:`datasets.make_sparse_spd_matrix` deprecated the keyword argument ``dim`` in favor of ``n_dim``. ``dim`` will be removed in version 1.6. :pr:`27718` by :user:`Adam Li `. @@ -717,6 +690,12 @@ Changelog when it is invoked with `n_samples=n_neighbors`. :pr:`23317` by :user:`Bharat Raghunathan `. +- |Fix| :meth:`neighbors.KNeighborsClassifier.predict` and + :meth:`neighbors.KNeighborsClassifier.predict_proba` now raises an error when the + weights of all neighbors of some sample are zero. This can happen when `weights` + is a user-defined function. + :pr:`26410` by :user:`Yao Xiao `. + - |API| :class:`neighbors.KNeighborsRegressor` now accepts :class:`metrics.DistanceMetric` objects directly via the `metric` keyword argument allowing for the use of accelerated third-party @@ -810,6 +789,10 @@ Changelog `X.toarray()`. :pr:`27757` by :user:`Lucy Liu `. +- |Fix| Fix the function :func:`~utils.check_array` to output the right error message + when the input is a Series instead of a DataFrame. + :pr:`28090` by :user:`Stan Furrer ` and :user:`Yao Xiao `. + - |API| :func:`sklearn.extmath.log_logistic` is deprecated and will be removed in 1.6. Use `-np.logaddexp(0, -x)` instead. :pr:`27544` by :user:`Christian Lorentzen `. @@ -820,4 +803,37 @@ Code and Documentation Contributors Thanks to everyone who has contributed to the maintenance and improvement of the project since version 1.3, including: -TODO: update at the time of the release. +101AlexMartin, Abhishek Singh Kushwah, Adam Li, Adarsh Wase, Adrin Jalali, +Advik Sinha, Alex, Alexander Al-Feghali, Alexis IMBERT, AlexL, Alex Molas, Anam +Fatima, Andrew Goh, andyscanzio, Aniket Patil, Artem Kislovskiy, Arturo Amor, +ashah002, avm19, Ben Holmes, Ben Mares, Benoit Chevallier-Mames, Bharat +Raghunathan, Binesh Bannerjee, Brendan Lu, Brevin Kunde, Camille Troillard, +Carlo Lemos, Chad Parmet, Christian Clauss, Christian Lorentzen, Christian +Veenhuis, Christos Aridas, Cindy Liang, Claudio Salvatore Arcidiacono, Connor +Boyle, cynthias13w, DaminK, Daniele Ongari, Daniel Schmitz, Daniel Tinoco, +David Brochart, Deborah L. Haar, DevanshKyada27, Dimitri Papadopoulos Orfanos, +Dmitry Nesterov, DUONG, Edoardo Abati, Eitan Hemed, Elabonga Atuo, Elisabeth +Günther, Emma Carballal, Emmanuel Ferdman, epimorphic, Erwan Le Floch, Fabian +Egli, Filip Karlo Došilović, Florian Idelberger, Franck Charras, Gael +Varoquaux, Ganesh Tata, Gleb Levitski, Guillaume Lemaitre, Haoying Zhang, +Harmanan Kohli, Ily, ioangatop, IsaacTrost, Isaac Virshup, Iwona Zdzieblo, +Jakub Kaczmarzyk, James McDermott, Jarrod Millman, JB Mountford, Jérémie du +Boisberranger, Jérôme Dockès, Jiawei Zhang, Joel Nothman, John Cant, John +Hopfensperger, Jona Sassenhagen, Jon Nordby, Julien Jerphanion, Kennedy Waweru, +kevin moore, Kian Eliasi, Kishan Ved, Konstantinos Pitas, Koustav Ghosh, Kushan +Sharma, ldwy4, Linus, Lohit SundaramahaLingam, Loic Esteve, Lorenz, Louis +Fouquet, Lucy Liu, Luis Silvestrin, Lukáš Folwarczný, Lukas Geiger, Malte +Londschien, Marcus Fraaß, Marek Hanuš, Maren Westermann, Mark Elliot, Martin +Larralde, Mateusz Sokół, mathurinm, mecopur, Meekail Zain, Michael Higgins, +Miki Watanabe, Milton Gomez, MN193, Mohammed Hamdy, Mohit Joshi, mrastgoo, +Naman Dhingra, Naoise Holohan, Narendra Singh dangi, Noa Malem-Shinitski, +Nolan, Nurseit Kamchyev, Oleksii Kachaiev, Olivier Grisel, Omar Salman, partev, +Peter Hull, Peter Steinbach, Pierre de Fréminville, Pooja Subramaniam, Puneeth +K, qmarcou, Quentin Barthélemy, Rahil Parikh, Rahul Mahajan, Raj Pulapakura, +Raphael, Ricardo Peres, Riccardo Cappuzzo, Roman Lutz, Salim Dohri, Samuel O. +Ronsin, Sandip Dutta, Sayed Qaiser Ali, scaja, scikit-learn-bot, Sebastian +Berg, Shreesha Kumar Bhat, Shubhal Gupta, Søren Fuglede Jørgensen, Stefanie +Senger, Tamara, Tanjina Afroj, THARAK HEGDE, thebabush, Thomas J. Fan, Thomas +Roehr, Tialo, Tim Head, tongyu, Venkatachalam N, Vijeth Moudgalya, Vincent M, +Vivek Reddy P, Vladimir Fokow, Xiao Yuan, Xuefeng Xu, Yang Tao, Yao Xiao, +Yuchen Zhou, Yuusuke Hiramatsu From 82e1f130580414b439509d3a201b282830039c64 Mon Sep 17 00:00:00 2001 From: Salim Dohri <104096451+dohrisalim@users.noreply.github.com> Date: Wed, 17 Jan 2024 15:16:36 +0100 Subject: [PATCH 0064/1641] DOC Update Mixin classes documentation and examples (#28146) Co-authored-by: Guillaume Lemaitre --- sklearn/base.py | 131 ++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 127 insertions(+), 4 deletions(-) diff --git a/sklearn/base.py b/sklearn/base.py index c2b119cbf63e5..e73ae4c8a180e 100644 --- a/sklearn/base.py +++ b/sklearn/base.py @@ -853,7 +853,23 @@ def _more_tags(self): class ClusterMixin: - """Mixin class for all cluster estimators in scikit-learn.""" + """Mixin class for all cluster estimators in scikit-learn. + + - `_estimator_type` class attribute defaulting to `"clusterer"`; + - `fit_predict` method returning the cluster labels associated to each sample. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, ClusterMixin + >>> class MyClusterer(ClusterMixin, BaseEstimator): + ... def fit(self, X, y=None): + ... self.labels_ = np.ones(shape=(len(X),), dtype=np.int64) + ... return self + >>> X = [[1, 2], [2, 3], [3, 4]] + >>> MyClusterer().fit_predict(X) + array([1, 1, 1]) + """ _estimator_type = "clusterer" @@ -994,6 +1010,11 @@ def get_submatrix(self, i, data): class TransformerMixin(_SetOutputMixin): """Mixin class for all transformers in scikit-learn. + This mixin defines the following functionality: + + - a `fit_transform` method that delegates to `fit` and `transform`; + - a `set_output` method to output `X` as a specific container type. + If :term:`get_feature_names_out` is defined, then :class:`BaseEstimator` will automatically wrap `transform` and `fit_transform` to follow the `set_output` API. See the :ref:`developer_api_set_output` for details. @@ -1001,6 +1022,22 @@ class TransformerMixin(_SetOutputMixin): :class:`OneToOneFeatureMixin` and :class:`ClassNamePrefixFeaturesOutMixin` are helpful mixins for defining :term:`get_feature_names_out`. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, TransformerMixin + >>> class MyTransformer(TransformerMixin, BaseEstimator): + ... def __init__(self, *, param=1): + ... self.param = param + ... def fit(self, X, y=None): + ... return self + ... def transform(self, X): + ... return np.full(shape=len(X), fill_value=self.param) + >>> transformer = MyTransformer() + >>> X = [[1, 2], [2, 3], [3, 4]] + >>> transformer.fit_transform(X) + array([1, 1, 1]) """ def fit_transform(self, X, y=None, **fit_params): @@ -1069,6 +1106,18 @@ class OneToOneFeatureMixin: This mixin assumes there's a 1-to-1 correspondence between input features and output features, such as :class:`~sklearn.preprocessing.StandardScaler`. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import OneToOneFeatureMixin + >>> class MyEstimator(OneToOneFeatureMixin): + ... def fit(self, X, y=None): + ... self.n_features_in_ = X.shape[1] + ... return self + >>> X = np.array([[1, 2], [3, 4]]) + >>> MyEstimator().fit(X).get_feature_names_out() + array(['x0', 'x1'], dtype=object) """ def get_feature_names_out(self, input_features=None): @@ -1106,6 +1155,18 @@ class ClassNamePrefixFeaturesOutMixin: This mixin assumes that a `_n_features_out` attribute is defined when the transformer is fitted. `_n_features_out` is the number of output features that the transformer will return in `transform` of `fit_transform`. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import ClassNamePrefixFeaturesOutMixin + >>> class MyEstimator(ClassNamePrefixFeaturesOutMixin): + ... def fit(self, X, y=None): + ... self._n_features_out = X.shape[1] + ... return self + >>> X = np.array([[1, 2], [3, 4]]) + >>> MyEstimator().fit(X).get_feature_names_out() + array(['myestimator0', 'myestimator1'], dtype=object) """ def get_feature_names_out(self, input_features=None): @@ -1132,7 +1193,24 @@ def get_feature_names_out(self, input_features=None): class DensityMixin: - """Mixin class for all density estimators in scikit-learn.""" + """Mixin class for all density estimators in scikit-learn. + + This mixin defines the following functionality: + + - `_estimator_type` class attribute defaulting to `"DensityEstimator"`; + - `score` method that default that do no-op. + + Examples + -------- + >>> from sklearn.base import DensityMixin + >>> class MyEstimator(DensityMixin): + ... def fit(self, X, y=None): + ... self.is_fitted_ = True + ... return self + >>> estimator = MyEstimator() + >>> hasattr(estimator, "score") + True + """ _estimator_type = "DensityEstimator" @@ -1155,7 +1233,28 @@ def score(self, X, y=None): class OutlierMixin: - """Mixin class for all outlier detection estimators in scikit-learn.""" + """Mixin class for all outlier detection estimators in scikit-learn. + + This mixin defines the following functionality: + + - `_estimator_type` class attribute defaulting to `outlier_detector`; + - `fit_predict` method that default to `fit` and `predict`. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.base import BaseEstimator, OutlierMixin + >>> class MyEstimator(OutlierMixin): + ... def fit(self, X, y=None): + ... self.is_fitted_ = True + ... return self + ... def predict(self, X): + ... return np.ones(shape=len(X)) + >>> estimator = MyEstimator() + >>> X = np.array([[1, 2], [2, 3], [3, 4]]) + >>> estimator.fit_predict(X) + array([1., 1., 1.]) + """ _estimator_type = "outlier_detector" @@ -1213,7 +1312,31 @@ def fit_predict(self, X, y=None, **kwargs): class MetaEstimatorMixin: - """Mixin class for all meta estimators in scikit-learn.""" + """Mixin class for all meta estimators in scikit-learn. + + This mixin defines the following functionality: + + - define `_required_parameters` that specify the mandatory `estimator` parameter. + + Examples + -------- + >>> from sklearn.base import MetaEstimatorMixin + >>> from sklearn.datasets import load_iris + >>> from sklearn.linear_model import LogisticRegression + >>> class MyEstimator(MetaEstimatorMixin): + ... def __init__(self, *, estimator=None): + ... self.estimator = estimator + ... def fit(self, X, y=None): + ... if self.estimator is None: + ... self.estimator_ = LogisticRegression() + ... else: + ... self.estimator_ = self.estimator + ... return self + >>> X, y = load_iris(return_X_y=True) + >>> estimator = MyEstimator().fit(X, y) + >>> estimator.estimator_ + LogisticRegression() + """ _required_parameters = ["estimator"] From b0df1ce5c067c16e5b70e0ea30375517f4c68851 Mon Sep 17 00:00:00 2001 From: Weyb <143994332+klaurent83@users.noreply.github.com> Date: Wed, 17 Jan 2024 15:18:45 +0100 Subject: [PATCH 0065/1641] DOC add example in docstring of ridge_regression (#28122) Co-authored-by: Guillaume Lemaitre --- sklearn/linear_model/_ridge.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index e39af10053c34..c4f52c68e697e 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -549,6 +549,19 @@ def ridge_regression( :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. + + Examples + -------- + >>> from sklearn.datasets import make_regression + >>> from sklearn.linear_model import ridge_regression + >>> X, y = make_regression( + ... n_features=4, n_informative=2, shuffle=False, random_state=0 + ... ) + >>> coef, intercept = ridge_regression(X, y, alpha=1.0, return_intercept=True) + >>> coef + array([20.2..., 33.7..., 0.1..., 0.0...]) + >>> intercept + -0.0... """ return _ridge_regression( X, From 74f4aaa0ba76f4f63bbc079f428bcc7014f88abc Mon Sep 17 00:00:00 2001 From: Saad Mahmood <90573707+SaadMahm00d@users.noreply.github.com> Date: Wed, 17 Jan 2024 13:00:41 -0500 Subject: [PATCH 0066/1641] DOC Add dropdowns to module 9.1 Python specific serialization (#26881) --- doc/model_persistence.rst | 353 ++++++++++++++++++++------------------ 1 file changed, 184 insertions(+), 169 deletions(-) diff --git a/doc/model_persistence.rst b/doc/model_persistence.rst index b8da5c8a3961f..1e0cc36be534d 100644 --- a/doc/model_persistence.rst +++ b/doc/model_persistence.rst @@ -1,169 +1,184 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. _model_persistence: - -================= -Model persistence -================= - -After training a scikit-learn model, it is desirable to have a way to persist -the model for future use without having to retrain. The following sections give -you some hints on how to persist a scikit-learn model. - -Python specific serialization ------------------------------ - -It is possible to save a model in scikit-learn by using Python's built-in -persistence model, namely `pickle -`_:: - - >>> from sklearn import svm - >>> from sklearn import datasets - >>> clf = svm.SVC() - >>> X, y= datasets.load_iris(return_X_y=True) - >>> clf.fit(X, y) - SVC() - - >>> import pickle - >>> s = pickle.dumps(clf) - >>> clf2 = pickle.loads(s) - >>> clf2.predict(X[0:1]) - array([0]) - >>> y[0] - 0 - -In the specific case of scikit-learn, it may be better to use joblib's -replacement of pickle (``dump`` & ``load``), which is more efficient on -objects that carry large numpy arrays internally as is often the case for -fitted scikit-learn estimators, but can only pickle to the disk and not to a -string:: - - >>> from joblib import dump, load - >>> dump(clf, 'filename.joblib') # doctest: +SKIP - -Later you can load back the pickled model (possibly in another Python process) -with:: - - >>> clf = load('filename.joblib') # doctest:+SKIP - -.. note:: - - ``dump`` and ``load`` functions also accept file-like object - instead of filenames. More information on data persistence with Joblib is - available `here - `_. - -When an estimator is unpickled with a scikit-learn version that is inconsistent -with the version the estimator was pickled with, a -:class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning -can be caught to obtain the original version the estimator was pickled with:: - - from sklearn.exceptions import InconsistentVersionWarning - warnings.simplefilter("error", InconsistentVersionWarning) - - try: - est = pickle.loads("model_from_prevision_version.pickle") - except InconsistentVersionWarning as w: - print(w.original_sklearn_version) - -.. _persistence_limitations: - -Security & maintainability limitations -...................................... - -pickle (and joblib by extension), has some issues regarding maintainability -and security. Because of this, - -* Never unpickle untrusted data as it could lead to malicious code being - executed upon loading. -* While models saved using one version of scikit-learn might load in - other versions, this is entirely unsupported and inadvisable. It should - also be kept in mind that operations performed on such data could give - different and unexpected results. - -In order to rebuild a similar model with future versions of scikit-learn, -additional metadata should be saved along the pickled model: - -* The training data, e.g. a reference to an immutable snapshot -* The python source code used to generate the model -* The versions of scikit-learn and its dependencies -* The cross validation score obtained on the training data - -This should make it possible to check that the cross-validation score is in the -same range as before. - -Aside for a few exceptions, pickled models should be portable across -architectures assuming the same versions of dependencies and Python are used. -If you encounter an estimator that is not portable please open an issue on -GitHub. Pickled models are often deployed in production using containers, like -Docker, in order to freeze the environment and dependencies. - -If you want to know more about these issues and explore other possible -serialization methods, please refer to this -`talk by Alex Gaynor -`_. - - -A more secure format: `skops` -............................. - -`skops `__ provides a more secure -format via the :mod:`skops.io` module. It avoids using :mod:`pickle` and only -loads files which have types and references to functions which are trusted -either by default or by the user. The API is very similar to ``pickle``, and -you can persist your models as explain in the `docs -`__ using -:func:`skops.io.dump` and :func:`skops.io.dumps`:: - - import skops.io as sio - obj = sio.dumps(clf) - -And you can load them back using :func:`skops.io.load` and -:func:`skops.io.loads`. However, you need to specify the types which are -trusted by you. You can get existing unknown types in a dumped object / file -using :func:`skops.io.get_untrusted_types`, and after checking its contents, -pass it to the load function:: - - unknown_types = sio.get_untrusted_types(data=obj) - clf = sio.loads(obj, trusted=unknown_types) - -If you trust the source of the file / object, you can pass ``trusted=True``:: - - clf = sio.loads(obj, trusted=True) - -Please report issues and feature requests related to this format on the `skops -issue tracker `__. - -Interoperable formats ---------------------- - -For reproducibility and quality control needs, when different architectures -and environments should be taken into account, exporting the model in -`Open Neural Network -Exchange `_ format or `Predictive Model Markup Language -(PMML) `_ format -might be a better approach than using `pickle` alone. -These are helpful where you may want to use your model for prediction in a -different environment from where the model was trained. - -ONNX is a binary serialization of the model. It has been developed to improve -the usability of the interoperable representation of data models. -It aims to facilitate the conversion of the data -models between different machine learning frameworks, and to improve their -portability on different computing architectures. More details are available -from the `ONNX tutorial `_. -To convert scikit-learn model to ONNX a specific tool `sklearn-onnx -`_ has been developed. - -PMML is an implementation of the `XML -`_ document standard -defined to represent data models together with the data used to generate them. -Being human and machine readable, -PMML is a good option for model validation on different platforms and -long term archiving. On the other hand, as XML in general, its verbosity does -not help in production when performance is critical. -To convert scikit-learn model to PMML you can use for example `sklearn2pmml -`_ distributed under the Affero GPLv3 -license. +.. Places parent toc into the sidebar + +:parenttoc: True + +.. _model_persistence: + +================= +Model persistence +================= + +After training a scikit-learn model, it is desirable to have a way to persist +the model for future use without having to retrain. The following sections give +you some hints on how to persist a scikit-learn model. + +Python specific serialization +----------------------------- + +It is possible to save a model in scikit-learn by using Python's built-in +persistence model, namely `pickle +`_:: + + >>> from sklearn import svm + >>> from sklearn import datasets + >>> clf = svm.SVC() + >>> X, y= datasets.load_iris(return_X_y=True) + >>> clf.fit(X, y) + SVC() + + >>> import pickle + >>> s = pickle.dumps(clf) + >>> clf2 = pickle.loads(s) + >>> clf2.predict(X[0:1]) + array([0]) + >>> y[0] + 0 + +In the specific case of scikit-learn, it may be better to use joblib's +replacement of pickle (``dump`` & ``load``), which is more efficient on +objects that carry large numpy arrays internally as is often the case for +fitted scikit-learn estimators, but can only pickle to the disk and not to a +string:: + + >>> from joblib import dump, load + >>> dump(clf, 'filename.joblib') # doctest: +SKIP + +Later you can load back the pickled model (possibly in another Python process) +with:: + + >>> clf = load('filename.joblib') # doctest:+SKIP + +.. note:: + + ``dump`` and ``load`` functions also accept file-like object + instead of filenames. More information on data persistence with Joblib is + available `here + `_. + +|details-start| +**InconsistentVersionWarning** +|details-split| + +When an estimator is unpickled with a scikit-learn version that is inconsistent +with the version the estimator was pickled with, a +:class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning +can be caught to obtain the original version the estimator was pickled with:: + + from sklearn.exceptions import InconsistentVersionWarning + warnings.simplefilter("error", InconsistentVersionWarning) + + try: + est = pickle.loads("model_from_prevision_version.pickle") + except InconsistentVersionWarning as w: + print(w.original_sklearn_version) + +|details-end| + +.. _persistence_limitations: + +Security & maintainability limitations +...................................... + +pickle (and joblib by extension), has some issues regarding maintainability +and security. Because of this, + +* Never unpickle untrusted data as it could lead to malicious code being + executed upon loading. +* While models saved using one version of scikit-learn might load in + other versions, this is entirely unsupported and inadvisable. It should + also be kept in mind that operations performed on such data could give + different and unexpected results. + +In order to rebuild a similar model with future versions of scikit-learn, +additional metadata should be saved along the pickled model: + +* The training data, e.g. a reference to an immutable snapshot +* The python source code used to generate the model +* The versions of scikit-learn and its dependencies +* The cross validation score obtained on the training data + +This should make it possible to check that the cross-validation score is in the +same range as before. + +Aside for a few exceptions, pickled models should be portable across +architectures assuming the same versions of dependencies and Python are used. +If you encounter an estimator that is not portable please open an issue on +GitHub. Pickled models are often deployed in production using containers, like +Docker, in order to freeze the environment and dependencies. + +If you want to know more about these issues and explore other possible +serialization methods, please refer to this +`talk by Alex Gaynor +`_. + + +A more secure format: `skops` +............................. + +`skops `__ provides a more secure +format via the :mod:`skops.io` module. It avoids using :mod:`pickle` and only +loads files which have types and references to functions which are trusted +either by default or by the user. + +|details-start| +**Using skops** + +|details-split| + +The API is very similar to ``pickle``, and +you can persist your models as explain in the `docs +`__ using +:func:`skops.io.dump` and :func:`skops.io.dumps`:: + + import skops.io as sio + obj = sio.dumps(clf) + +And you can load them back using :func:`skops.io.load` and +:func:`skops.io.loads`. However, you need to specify the types which are +trusted by you. You can get existing unknown types in a dumped object / file +using :func:`skops.io.get_untrusted_types`, and after checking its contents, +pass it to the load function:: + + unknown_types = sio.get_untrusted_types(data=obj) + clf = sio.loads(obj, trusted=unknown_types) + +If you trust the source of the file / object, you can pass ``trusted=True``:: + + clf = sio.loads(obj, trusted=True) + +Please report issues and feature requests related to this format on the `skops +issue tracker `__. + +|details-end| + +Interoperable formats +--------------------- + +For reproducibility and quality control needs, when different architectures +and environments should be taken into account, exporting the model in +`Open Neural Network +Exchange `_ format or `Predictive Model Markup Language +(PMML) `_ format +might be a better approach than using `pickle` alone. +These are helpful where you may want to use your model for prediction in a +different environment from where the model was trained. + +ONNX is a binary serialization of the model. It has been developed to improve +the usability of the interoperable representation of data models. +It aims to facilitate the conversion of the data +models between different machine learning frameworks, and to improve their +portability on different computing architectures. More details are available +from the `ONNX tutorial `_. +To convert scikit-learn model to ONNX a specific tool `sklearn-onnx +`_ has been developed. + +PMML is an implementation of the `XML +`_ document standard +defined to represent data models together with the data used to generate them. +Being human and machine readable, +PMML is a good option for model validation on different platforms and +long term archiving. On the other hand, as XML in general, its verbosity does +not help in production when performance is critical. +To convert scikit-learn model to PMML you can use for example `sklearn2pmml +`_ distributed under the Affero GPLv3 +license. From 8c9505263973480a59234f79ffb292b1db0e4a29 Mon Sep 17 00:00:00 2001 From: Mavs <32366550+tvdboom@users.noreply.github.com> Date: Wed, 17 Jan 2024 23:40:11 +0100 Subject: [PATCH 0067/1641] add feature_names_in_ and n_features_in_ attributes to dummy estimators (#27937) --- doc/whats_new/v1.5.rst | 8 ++++++++ sklearn/dummy.py | 18 ++++++++++++++++++ sklearn/tests/test_dummy.py | 19 ++++++++++++++++++- 3 files changed, 44 insertions(+), 1 deletion(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 96cbd21021f08..4a44bd6666615 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -25,12 +25,20 @@ Changelog :pr:`123456` by :user:`Joe Bloggs `. where 123455 is the *pull request* number, not the issue number. + :mod:`sklearn.compose` ...................... - |Feature| A fitted :class:`compose.ColumnTransformer` now implements `__getitem__` which returns the fitted transformers by name. :pr:`27990` by `Thomas Fan`_. +:mod:`sklearn.dummy` +....................... + +- |Enhancement| :class:`dummy.DummyClassifier` and :class:`dummy.DummyRegressor` now + have the `n_features_in_` and `feature_names_in_` attributes after `fit`. + :pr:`27937` by :user:`Marco vd Boom `. + :mod:`sklearn.feature_extraction` ................................. diff --git a/sklearn/dummy.py b/sklearn/dummy.py index 63318b07ce580..17812fe1b3d05 100644 --- a/sklearn/dummy.py +++ b/sklearn/dummy.py @@ -110,6 +110,13 @@ class prior probabilities. Frequency of each class observed in `y`. For multioutput classification problems, this is computed independently for each output. + n_features_in_ : int + Number of features seen during :term:`fit`. + + feature_names_in_ : ndarray of shape (`n_features_in_`,) + Names of features seen during :term:`fit`. Defined only when `X` has + feature names that are all strings. + n_outputs_ : int Number of outputs. @@ -170,6 +177,8 @@ def fit(self, X, y, sample_weight=None): self : object Returns the instance itself. """ + self._validate_data(X, cast_to_ndarray=False) + self._strategy = self.strategy if self._strategy == "uniform" and sp.issparse(y): @@ -488,6 +497,13 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator): Mean or median or quantile of the training targets or constant value given by the user. + n_features_in_ : int + Number of features seen during :term:`fit`. + + feature_names_in_ : ndarray of shape (`n_features_in_`,) + Names of features seen during :term:`fit`. Defined only when `X` has + feature names that are all strings. + n_outputs_ : int Number of outputs. @@ -545,6 +561,8 @@ def fit(self, X, y, sample_weight=None): self : object Fitted estimator. """ + self._validate_data(X, cast_to_ndarray=False) + y = check_array(y, ensure_2d=False, input_name="y") if len(y) == 0: raise ValueError("y must not be empty.") diff --git a/sklearn/tests/test_dummy.py b/sklearn/tests/test_dummy.py index 14bab1e0ffe97..e398894095b18 100644 --- a/sklearn/tests/test_dummy.py +++ b/sklearn/tests/test_dummy.py @@ -72,6 +72,23 @@ def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_t assert_array_almost_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) +def test_feature_names_in_and_n_features_in_(global_random_seed, n_samples=10): + pd = pytest.importorskip("pandas") + + random_state = np.random.RandomState(seed=global_random_seed) + + X = pd.DataFrame([[0]] * n_samples, columns=["feature_1"]) + y = random_state.rand(n_samples) + + est = DummyRegressor().fit(X, y) + assert hasattr(est, "feature_names_in_") + assert hasattr(est, "n_features_in_") + + est = DummyClassifier().fit(X, y) + assert hasattr(est, "feature_names_in_") + assert hasattr(est, "n_features_in_") + + def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] @@ -376,7 +393,7 @@ def test_quantile_invalid(): def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) - with pytest.raises(ValueError): + with pytest.raises(IndexError): est.fit([], []) From 4b59708ee8cd2d1bfadabaeba6eaec4db948a276 Mon Sep 17 00:00:00 2001 From: Ian Faust Date: Wed, 17 Jan 2024 23:46:45 +0100 Subject: [PATCH 0068/1641] EFF remove superfluous check_array call from LocalOutlierFactor._predict (#28113) --- sklearn/neighbors/_lof.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/sklearn/neighbors/_lof.py b/sklearn/neighbors/_lof.py index 05dfdb13a1cbe..fcf1c1ce990bd 100644 --- a/sklearn/neighbors/_lof.py +++ b/sklearn/neighbors/_lof.py @@ -373,9 +373,9 @@ def _predict(self, X=None): check_is_fitted(self) if X is not None: - X = check_array(X, accept_sparse="csr") - is_inlier = np.ones(X.shape[0], dtype=int) - is_inlier[self.decision_function(X) < 0] = -1 + shifted_opposite_lof_scores = self.decision_function(X) + is_inlier = np.ones(shifted_opposite_lof_scores.shape[0], dtype=int) + is_inlier[shifted_opposite_lof_scores < 0] = -1 else: is_inlier = np.ones(self.n_samples_fit_, dtype=int) is_inlier[self.negative_outlier_factor_ < self.offset_] = -1 From d825fb18ed2f4c4734d7d077c35518411784a0ad Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Thu, 18 Jan 2024 13:53:59 +0800 Subject: [PATCH 0069/1641] MAINT fix `update_environments_and_lock_files` for non-posix systems (#28133) --- .../update_environments_and_lock_files.py | 48 ++++++++++++++----- 1 file changed, 36 insertions(+), 12 deletions(-) diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 1115e89408dd9..27d7d3fe85b31 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -39,7 +39,6 @@ import json import logging import re -import shlex import subprocess import sys from importlib.metadata import version @@ -481,11 +480,21 @@ def write_all_conda_environments(build_metadata_list): def conda_lock(environment_path, lock_file_path, platform): - command = ( - f"conda-lock lock --mamba --kind explicit --platform {platform} " - f"--file {environment_path} --filename-template {lock_file_path}" + execute_command( + [ + "conda-lock", + "lock", + "--mamba", + "--kind", + "explicit", + "--platform", + platform, + "--file", + str(environment_path), + "--filename-template", + str(lock_file_path), + ] ) - execute_command(shlex.split(command)) def create_conda_lock_file(build_metadata): @@ -533,8 +542,15 @@ def write_all_pip_requirements(build_metadata_list): def pip_compile(pip_compile_path, requirements_path, lock_file_path): - command = f"{pip_compile_path} --upgrade {requirements_path} -o {lock_file_path}" - execute_command(shlex.split(command)) + execute_command( + [ + str(pip_compile_path), + "--upgrade", + str(requirements_path), + "-o", + str(lock_file_path), + ] + ) def write_pip_lock_file(build_metadata): @@ -546,13 +562,21 @@ def write_pip_lock_file(build_metadata): # create a conda environment with the correct Python version and # pip-compile and run pip-compile in this environment - command = ( - "conda create -c conda-forge -n" - f" pip-tools-python{python_version} python={python_version} pip-tools -y" + execute_command( + [ + "conda", + "create", + "-c", + "conda-forge", + "-n", + f"pip-tools-python{python_version}", + f"python={python_version}", + "pip-tools", + "-y", + ] ) - execute_command(shlex.split(command)) - json_output = execute_command(shlex.split("conda info --json")) + json_output = execute_command(["conda", "info", "--json"]) conda_info = json.loads(json_output) environment_folder = [ each for each in conda_info["envs"] if each.endswith(environment_name) From b83f206bb3651a91111b670209eafc54c0eb5c96 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Thu, 18 Jan 2024 10:16:40 +0100 Subject: [PATCH 0070/1641] ENH multinomial Cython loss (#28028) --- sklearn/_loss/_loss.pyx.tp | 20 +++++++++----------- sklearn/_loss/tests/test_loss.py | 5 +++-- 2 files changed, 12 insertions(+), 13 deletions(-) diff --git a/sklearn/_loss/_loss.pyx.tp b/sklearn/_loss/_loss.pyx.tp index da974a3c3f4fd..61043162ae51a 100644 --- a/sklearn/_loss/_loss.pyx.tp +++ b/sklearn/_loss/_loss.pyx.tp @@ -271,7 +271,7 @@ cdef inline void sum_exp_minus_max( const floating_in[:, :] raw_prediction, # IN floating_in *p # OUT ) noexcept nogil: - # Thread local buffers are used to stores results of this function via p. + # Thread local buffers are used to store results of this function via p. # The results are stored as follows: # p[k] = exp(raw_prediction_i_k - max_value) for k = 0 to n_classes-1 # p[-2] = max(raw_prediction_i_k, k = 0 to n_classes-1) @@ -1185,10 +1185,9 @@ cdef class CyHalfMultinomialLoss(CyLossFunction): sum_exps = p[n_classes + 1] # p[-1] loss_out[i] = log(sum_exps) + max_value - for k in range(n_classes): - # label decode y_true - if y_true[i] == k: - loss_out[i] -= raw_prediction[i, k] + # label encoded y_true + k = int(y_true[i]) + loss_out[i] -= raw_prediction[i, k] free(p) else: @@ -1201,10 +1200,9 @@ cdef class CyHalfMultinomialLoss(CyLossFunction): sum_exps = p[n_classes + 1] # p[-1] loss_out[i] = log(sum_exps) + max_value - for k in range(n_classes): - # label decode y_true - if y_true[i] == k: - loss_out[i] -= raw_prediction[i, k] + # label encoded y_true + k = int(y_true[i]) + loss_out[i] -= raw_prediction[i, k] loss_out[i] *= sample_weight[i] @@ -1241,7 +1239,7 @@ cdef class CyHalfMultinomialLoss(CyLossFunction): for k in range(n_classes): # label decode y_true - if y_true [i] == k: + if y_true[i] == k: loss_out[i] -= raw_prediction[i, k] p[k] /= sum_exps # p_k = y_pred_k = prob of class k # gradient_k = p_k - (y_true == k) @@ -1260,7 +1258,7 @@ cdef class CyHalfMultinomialLoss(CyLossFunction): for k in range(n_classes): # label decode y_true - if y_true [i] == k: + if y_true[i] == k: loss_out[i] -= raw_prediction[i, k] p[k] /= sum_exps # p_k = y_pred_k = prob of class k # gradient_k = (p_k - (y_true == k)) * sw diff --git a/sklearn/_loss/tests/test_loss.py b/sklearn/_loss/tests/test_loss.py index 9c8bba4d717d1..cf441001d0ccb 100644 --- a/sklearn/_loss/tests/test_loss.py +++ b/sklearn/_loss/tests/test_loss.py @@ -120,7 +120,8 @@ def test_loss_boundary(loss): """Test interval ranges of y_true and y_pred in losses.""" # make sure low and high are always within the interval, used for linspace if loss.is_multiclass: - y_true = np.linspace(0, 9, num=10) + n_classes = 3 # default value + y_true = np.tile(np.linspace(0, n_classes - 1, num=n_classes), 3) else: low, high = _inclusive_low_high(loss.interval_y_true) y_true = np.linspace(low, high, num=10) @@ -136,7 +137,7 @@ def test_loss_boundary(loss): n = y_true.shape[0] low, high = _inclusive_low_high(loss.interval_y_pred) if loss.is_multiclass: - y_pred = np.empty((n, 3)) + y_pred = np.empty((n, n_classes)) y_pred[:, 0] = np.linspace(low, high, num=n) y_pred[:, 1] = 0.5 * (1 - y_pred[:, 0]) y_pred[:, 2] = 0.5 * (1 - y_pred[:, 0]) From fd814a05ab85c6156e25629417aaa06eef87b72d Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Thu, 18 Jan 2024 10:22:10 +0100 Subject: [PATCH 0071/1641] MNT replace Cython loss functions in SGD part 1 (#27999) --- sklearn/linear_model/_sag_fast.pyx.tp | 18 ++++---- sklearn/linear_model/_sgd_fast.pxd | 20 ++++---- sklearn/linear_model/_sgd_fast.pyx.tp | 66 +++++++++++++-------------- 3 files changed, 52 insertions(+), 52 deletions(-) diff --git a/sklearn/linear_model/_sag_fast.pyx.tp b/sklearn/linear_model/_sag_fast.pyx.tp index 97bf3020d6602..9bfeed559bc13 100644 --- a/sklearn/linear_model/_sag_fast.pyx.tp +++ b/sklearn/linear_model/_sag_fast.pyx.tp @@ -85,7 +85,7 @@ cdef {{c_type}} _logsumexp{{name_suffix}}({{c_type}}* arr, int n_classes) noexce {{for name_suffix, c_type, np_type in dtypes}} cdef class MultinomialLogLoss{{name_suffix}}: - cdef {{c_type}} _loss(self, {{c_type}}* prediction, {{c_type}} y, int n_classes, + cdef {{c_type}} _loss(self, {{c_type}} y, {{c_type}}* prediction, int n_classes, {{c_type}} sample_weight) noexcept nogil: r"""Multinomial Logistic regression loss. @@ -100,12 +100,12 @@ cdef class MultinomialLogLoss{{name_suffix}}: Parameters ---------- - prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,) - Prediction of the multinomial classifier, for current sample. - y : {{c_type}}, between 0 and n_classes - 1 Indice of the correct class for current sample (i.e. label encoded). + prediction : pointer to a np.ndarray[{{c_type}}] of shape (n_classes,) + Prediction of the multinomial classifier, for current sample. + n_classes : integer Total number of classes. @@ -129,7 +129,7 @@ cdef class MultinomialLogLoss{{name_suffix}}: loss = (logsumexp_prediction - prediction[int(y)]) * sample_weight return loss - cdef void dloss(self, {{c_type}}* prediction, {{c_type}} y, int n_classes, + cdef void dloss(self, {{c_type}} y, {{c_type}}* prediction, int n_classes, {{c_type}} sample_weight, {{c_type}}* gradient_ptr) noexcept nogil: r"""Multinomial Logistic regression gradient of the loss. @@ -414,9 +414,9 @@ def sag{{name_suffix}}( # compute the gradient for this sample, given the prediction if multinomial: - multiloss.dloss(&prediction[0], y, n_classes, sample_weight, &gradient[0]) + multiloss.dloss(y, &prediction[0], n_classes, sample_weight, &gradient[0]) else: - gradient[0] = loss.dloss(prediction[0], y) * sample_weight + gradient[0] = loss.dloss(y, prediction[0]) * sample_weight # L2 regularization by simply rescaling the weights wscale *= wscale_update @@ -835,10 +835,10 @@ def _multinomial_grad_loss_all_samples( ) # compute the gradient for this sample, given the prediction - multiloss.dloss(&prediction[0], y, n_classes, sample_weight, &gradient[0]) + multiloss.dloss(y, &prediction[0], n_classes, sample_weight, &gradient[0]) # compute the loss for this sample, given the prediction - sum_loss += multiloss._loss(&prediction[0], y, n_classes, sample_weight) + sum_loss += multiloss._loss(y, &prediction[0], n_classes, sample_weight) # update the sum of the gradient for j in range(xnnz): diff --git a/sklearn/linear_model/_sgd_fast.pxd b/sklearn/linear_model/_sgd_fast.pxd index 7ae704eee18db..da7f155c6fa6e 100644 --- a/sklearn/linear_model/_sgd_fast.pxd +++ b/sklearn/linear_model/_sgd_fast.pxd @@ -2,25 +2,25 @@ """Helper to load LossFunction from sgd_fast.pyx to sag_fast.pyx""" cdef class LossFunction: - cdef double loss(self, double p, double y) noexcept nogil - cdef double dloss(self, double p, double y) noexcept nogil + cdef double loss(self, double y, double p) noexcept nogil + cdef double dloss(self, double y, double p) noexcept nogil cdef class Regression(LossFunction): - cdef double loss(self, double p, double y) noexcept nogil - cdef double dloss(self, double p, double y) noexcept nogil + cdef double loss(self, double y, double p) noexcept nogil + cdef double dloss(self, double y, double p) noexcept nogil cdef class Classification(LossFunction): - cdef double loss(self, double p, double y) noexcept nogil - cdef double dloss(self, double p, double y) noexcept nogil + cdef double loss(self, double y, double p) noexcept nogil + cdef double dloss(self, double y, double p) noexcept nogil cdef class Log(Classification): - cdef double loss(self, double p, double y) noexcept nogil - cdef double dloss(self, double p, double y) noexcept nogil + cdef double loss(self, double y, double p) noexcept nogil + cdef double dloss(self, double y, double p) noexcept nogil cdef class SquaredLoss(Regression): - cdef double loss(self, double p, double y) noexcept nogil - cdef double dloss(self, double p, double y) noexcept nogil + cdef double loss(self, double y, double p) noexcept nogil + cdef double dloss(self, double y, double p) noexcept nogil diff --git a/sklearn/linear_model/_sgd_fast.pyx.tp b/sklearn/linear_model/_sgd_fast.pyx.tp index bcd2bd7e5576e..b92d983a1b4b8 100644 --- a/sklearn/linear_model/_sgd_fast.pyx.tp +++ b/sklearn/linear_model/_sgd_fast.pyx.tp @@ -77,15 +77,15 @@ cdef extern from *: cdef class LossFunction: """Base class for convex loss functions""" - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: """Evaluate the loss function. Parameters ---------- - p : double - The prediction, `p = w^T x + intercept`. y : double The true value (aka target). + p : double + The prediction, `p = w^T x + intercept`. Returns ------- @@ -111,7 +111,7 @@ cdef class LossFunction: double The derivative of the loss function with regards to `p`. """ - return self.dloss(p, y) + return self.dloss(y, p) def py_loss(self, double p, double y): """Python version of `loss` for testing. @@ -130,18 +130,18 @@ cdef class LossFunction: double The loss evaluated at `p` and `y`. """ - return self.loss(p, y) + return self.loss(y, p) - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: """Evaluate the derivative of the loss function with respect to the prediction `p`. Parameters ---------- - p : double - The prediction, `p = w^T x`. y : double The true value (aka target). + p : double + The prediction, `p = w^T x`. Returns ------- @@ -154,20 +154,20 @@ cdef class LossFunction: cdef class Regression(LossFunction): """Base class for loss functions for regression""" - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: return 0. - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: return 0. cdef class Classification(LossFunction): """Base class for loss functions for classification""" - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: return 0. - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: return 0. @@ -179,7 +179,7 @@ cdef class ModifiedHuber(Classification): See T. Zhang 'Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent', ICML'04. """ - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double z = p * y if z >= 1.0: return 0.0 @@ -188,7 +188,7 @@ cdef class ModifiedHuber(Classification): else: return -4.0 * z - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double z = p * y if z >= 1.0: return 0.0 @@ -217,13 +217,13 @@ cdef class Hinge(Classification): def __init__(self, double threshold=1.0): self.threshold = threshold - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double z = p * y if z <= self.threshold: return self.threshold - z return 0.0 - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double z = p * y if z <= self.threshold: return -y @@ -249,13 +249,13 @@ cdef class SquaredHinge(Classification): def __init__(self, double threshold=1.0): self.threshold = threshold - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double z = self.threshold - p * y if z > 0: return z * z return 0.0 - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double z = self.threshold - p * y if z > 0: return -2 * y * z @@ -268,7 +268,7 @@ cdef class SquaredHinge(Classification): cdef class Log(Classification): """Logistic regression loss for binary classification with y in {-1, 1}""" - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double z = p * y # approximately equal and saves the computation of the log if z > 18: @@ -277,7 +277,7 @@ cdef class Log(Classification): return -z return log(1.0 + exp(-z)) - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double z = p * y # approximately equal and saves the computation of the log if z > 18.0: @@ -292,10 +292,10 @@ cdef class Log(Classification): cdef class SquaredLoss(Regression): """Squared loss traditional used in linear regression.""" - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: return 0.5 * (p - y) * (p - y) - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: return p - y def __reduce__(self): @@ -316,7 +316,7 @@ cdef class Huber(Regression): def __init__(self, double c): self.c = c - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double r = p - y cdef double abs_r = fabs(r) if abs_r <= self.c: @@ -324,7 +324,7 @@ cdef class Huber(Regression): else: return self.c * abs_r - (0.5 * self.c * self.c) - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double r = p - y cdef double abs_r = fabs(r) if abs_r <= self.c: @@ -349,11 +349,11 @@ cdef class EpsilonInsensitive(Regression): def __init__(self, double epsilon): self.epsilon = epsilon - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double ret = fabs(y - p) - self.epsilon return ret if ret > 0 else 0 - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: if y - p > self.epsilon: return -1 elif p - y > self.epsilon: @@ -376,11 +376,11 @@ cdef class SquaredEpsilonInsensitive(Regression): def __init__(self, double epsilon): self.epsilon = epsilon - cdef double loss(self, double p, double y) noexcept nogil: + cdef double loss(self, double y, double p) noexcept nogil: cdef double ret = fabs(y - p) - self.epsilon return ret * ret if ret > 0 else 0 - cdef double dloss(self, double p, double y) noexcept nogil: + cdef double dloss(self, double y, double p) noexcept nogil: cdef double z z = y - p if z > self.epsilon: @@ -569,7 +569,7 @@ def _plain_sgd{{name_suffix}}( if learning_rate == OPTIMAL: typw = np.sqrt(1.0 / np.sqrt(alpha)) # computing eta0, the initial learning rate - initial_eta0 = typw / max(1.0, loss.dloss(-typw, 1.0)) + initial_eta0 = typw / max(1.0, loss.dloss(1.0, -typw)) # initialize t such that eta at first sample equals eta0 optimal_init = 1.0 / (initial_eta0 * alpha) @@ -598,7 +598,7 @@ def _plain_sgd{{name_suffix}}( eta = eta0 / pow(t, power_t) if verbose or not early_stopping: - sumloss += loss.loss(p, y) + sumloss += loss.loss(y, p) if y > 0.0: class_weight = weight_pos @@ -609,12 +609,12 @@ def _plain_sgd{{name_suffix}}( update = sqnorm(x_data_ptr, x_ind_ptr, xnnz) if update == 0: continue - update = min(C, loss.loss(p, y) / update) + update = min(C, loss.loss(y, p) / update) elif learning_rate == PA2: update = sqnorm(x_data_ptr, x_ind_ptr, xnnz) - update = loss.loss(p, y) / (update + 0.5 / C) + update = loss.loss(y, p) / (update + 0.5 / C) else: - dloss = loss.dloss(p, y) + dloss = loss.dloss(y, p) # clip dloss with large values to avoid numerical # instabilities if dloss < -MAX_DLOSS: From 783643525060c0988570c7400048e08b1e59826e Mon Sep 17 00:00:00 2001 From: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Date: Thu, 18 Jan 2024 19:44:26 +0800 Subject: [PATCH 0072/1641] FIX `AffinityPropagation` assigning multiple clusters for equal points (#28121) --- doc/whats_new/v1.4.rst | 19 +++++++++++++++++++ sklearn/cluster/_affinity_propagation.py | 2 +- .../tests/test_affinity_propagation.py | 11 +++++++++++ 3 files changed, 31 insertions(+), 1 deletion(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index ad3cc404f5930..c674a8619e076 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -2,6 +2,25 @@ .. currentmodule:: sklearn +.. _changes_1_4_1: + +Version 1.4.1 +============= + +**In Development** + +Changelog +--------- + +:mod:`sklearn.cluster` +...................... + +- |Fix| :class:`cluster.AffinityPropagation` now avoids assigning multiple different + clusters for equal points. + :pr:`28121` by :user:`Pietro Peterlongo ` and + :user:`Yao Xiao `. + + .. _changes_1_4: Version 1.4.0 diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py index 5587a7fd5aa1f..f9ae3ae8cb1f4 100644 --- a/sklearn/cluster/_affinity_propagation.py +++ b/sklearn/cluster/_affinity_propagation.py @@ -53,7 +53,7 @@ def _affinity_propagation( "All samples have mutually equal similarities. " "Returning arbitrary cluster center(s)." ) - if preference.flat[0] >= S.flat[n_samples - 1]: + if preference.flat[0] > S.flat[n_samples - 1]: return ( (np.arange(n_samples), np.arange(n_samples), 0) if return_n_iter diff --git a/sklearn/cluster/tests/test_affinity_propagation.py b/sklearn/cluster/tests/test_affinity_propagation.py index 319385635376e..c3138e59111ed 100644 --- a/sklearn/cluster/tests/test_affinity_propagation.py +++ b/sklearn/cluster/tests/test_affinity_propagation.py @@ -308,3 +308,14 @@ def test_sparse_input_for_fit_predict(csr_container): X = csr_container(rng.randint(0, 2, size=(5, 5))) labels = af.fit_predict(X) assert_array_equal(labels, (0, 1, 1, 2, 3)) + + +def test_affinity_propagation_equal_points(): + """Make sure we do not assign multiple clusters to equal points. + + Non-regression test for: + https://github.com/scikit-learn/scikit-learn/pull/20043 + """ + X = np.zeros((8, 1)) + af = AffinityPropagation(affinity="euclidean", damping=0.5, random_state=42).fit(X) + assert np.all(af.labels_ == 0) From 06e566eb86cfd8c6107cf3bc2b477c97b80002a3 Mon Sep 17 00:00:00 2001 From: Neto Date: Thu, 18 Jan 2024 12:48:28 +0100 Subject: [PATCH 0073/1641] ENH add n_jobs to mutual_info_regression and mutual_info_classif (#28085) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Guillaume Lemaitre Co-authored-by: Loïc Estève --- doc/whats_new/v1.5.rst | 8 ++ sklearn/feature_selection/_mutual_info.py | 80 +++++++++++++++++-- .../tests/test_mutual_info.py | 16 ++++ 3 files changed, 97 insertions(+), 7 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 4a44bd6666615..6eec5591c440d 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -54,6 +54,14 @@ Changelog by passing a function in place of a strategy name. :pr:`28053` by :user:`Mark Elliot `. +:mod:`sklearn.feature_selection` +................................ + +- |Enhancement| :func:`feature_selection.mutual_info_regression` and + :func:`feature_selection.mutual_info_classif` now support `n_jobs` parameter. + :pr:`28085` by :user:`Neto Menoci ` and + :user:`Florin Andrei `. + :mod:`sklearn.metrics` ...................... diff --git a/sklearn/feature_selection/_mutual_info.py b/sklearn/feature_selection/_mutual_info.py index 821ef889e7ed9..f3808068f46a5 100644 --- a/sklearn/feature_selection/_mutual_info.py +++ b/sklearn/feature_selection/_mutual_info.py @@ -13,6 +13,7 @@ from ..utils import check_random_state from ..utils._param_validation import Interval, StrOptions, validate_params from ..utils.multiclass import check_classification_targets +from ..utils.parallel import Parallel, delayed from ..utils.validation import check_array, check_X_y @@ -201,11 +202,13 @@ def _iterate_columns(X, columns=None): def _estimate_mi( X, y, + *, discrete_features="auto", discrete_target=False, n_neighbors=3, copy=True, random_state=None, + n_jobs=None, ): """Estimate mutual information between the features and the target. @@ -242,6 +245,16 @@ def _estimate_mi( Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. + n_jobs : int, default=None + The number of jobs to use for computing the mutual information. + The parallelization is done on the columns of `X`. + ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. + ``-1`` means using all processors. See :term:`Glossary ` + for more details. + + .. versionadded:: 1.5 + + Returns ------- mi : ndarray, shape (n_features,) @@ -301,10 +314,10 @@ def _estimate_mi( * rng.standard_normal(size=n_samples) ) - mi = [ - _compute_mi(x, y, discrete_feature, discrete_target, n_neighbors) + mi = Parallel(n_jobs=n_jobs)( + delayed(_compute_mi)(x, y, discrete_feature, discrete_target, n_neighbors) for x, discrete_feature in zip(_iterate_columns(X), discrete_mask) - ] + ) return np.array(mi) @@ -317,11 +330,19 @@ def _estimate_mi( "n_neighbors": [Interval(Integral, 1, None, closed="left")], "copy": ["boolean"], "random_state": ["random_state"], + "n_jobs": [Integral, None], }, prefer_skip_nested_validation=True, ) def mutual_info_regression( - X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None + X, + y, + *, + discrete_features="auto", + n_neighbors=3, + copy=True, + random_state=None, + n_jobs=None, ): """Estimate mutual information for a continuous target variable. @@ -367,6 +388,16 @@ def mutual_info_regression( Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. + n_jobs : int, default=None + The number of jobs to use for computing the mutual information. + The parallelization is done on the columns of `X`. + + ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. + ``-1`` means using all processors. See :term:`Glossary ` + for more details. + + .. versionadded:: 1.5 + Returns ------- mi : ndarray, shape (n_features,) @@ -407,7 +438,16 @@ def mutual_info_regression( >>> mutual_info_regression(X, y) array([0.1..., 2.6... , 0.0...]) """ - return _estimate_mi(X, y, discrete_features, False, n_neighbors, copy, random_state) + return _estimate_mi( + X, + y, + discrete_features=discrete_features, + discrete_target=False, + n_neighbors=n_neighbors, + copy=copy, + random_state=random_state, + n_jobs=n_jobs, + ) @validate_params( @@ -418,11 +458,19 @@ def mutual_info_regression( "n_neighbors": [Interval(Integral, 1, None, closed="left")], "copy": ["boolean"], "random_state": ["random_state"], + "n_jobs": [Integral, None], }, prefer_skip_nested_validation=True, ) def mutual_info_classif( - X, y, *, discrete_features="auto", n_neighbors=3, copy=True, random_state=None + X, + y, + *, + discrete_features="auto", + n_neighbors=3, + copy=True, + random_state=None, + n_jobs=None, ): """Estimate mutual information for a discrete target variable. @@ -468,6 +516,15 @@ def mutual_info_classif( Pass an int for reproducible results across multiple function calls. See :term:`Glossary `. + n_jobs : int, default=None + The number of jobs to use for computing the mutual information. + The parallelization is done on the columns of `X`. + ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. + ``-1`` means using all processors. See :term:`Glossary ` + for more details. + + .. versionadded:: 1.5 + Returns ------- mi : ndarray, shape (n_features,) @@ -511,4 +568,13 @@ def mutual_info_classif( 0. , 0. , 0. , 0. , 0. ]) """ check_classification_targets(y) - return _estimate_mi(X, y, discrete_features, True, n_neighbors, copy, random_state) + return _estimate_mi( + X, + y, + discrete_features=discrete_features, + discrete_target=True, + n_neighbors=n_neighbors, + copy=copy, + random_state=random_state, + n_jobs=n_jobs, + ) diff --git a/sklearn/feature_selection/tests/test_mutual_info.py b/sklearn/feature_selection/tests/test_mutual_info.py index 26367544baa53..4922b7e4e57b3 100644 --- a/sklearn/feature_selection/tests/test_mutual_info.py +++ b/sklearn/feature_selection/tests/test_mutual_info.py @@ -1,6 +1,7 @@ import numpy as np import pytest +from sklearn.datasets import make_classification, make_regression from sklearn.feature_selection import mutual_info_classif, mutual_info_regression from sklearn.feature_selection._mutual_info import _compute_mi from sklearn.utils import check_random_state @@ -252,3 +253,18 @@ def test_mutual_info_regression_X_int_dtype(global_random_seed): expected = mutual_info_regression(X_float, y, random_state=global_random_seed) result = mutual_info_regression(X, y, random_state=global_random_seed) assert_allclose(result, expected) + + +@pytest.mark.parametrize( + "mutual_info_func, data_generator", + [ + (mutual_info_regression, make_regression), + (mutual_info_classif, make_classification), + ], +) +def test_mutual_info_n_jobs(global_random_seed, mutual_info_func, data_generator): + """Check that results are consistent with different `n_jobs`.""" + X, y = data_generator(random_state=global_random_seed) + single_job = mutual_info_func(X, y, random_state=global_random_seed, n_jobs=1) + multi_job = mutual_info_func(X, y, random_state=global_random_seed, n_jobs=2) + assert_allclose(single_job, multi_job) From d418e79a41d5d4de167114d88465a0b47b0d6a2c Mon Sep 17 00:00:00 2001 From: Miki Watanabe <105326591+MikiPWata@users.noreply.github.com> Date: Thu, 18 Jan 2024 08:39:36 -0500 Subject: [PATCH 0074/1641] DOC: Added dropdowns to 4.1 PDPs (#27187) --- doc/modules/partial_dependence.rst | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/doc/modules/partial_dependence.rst b/doc/modules/partial_dependence.rst index 7ce099f2342e9..6fe5a79b51f63 100644 --- a/doc/modules/partial_dependence.rst +++ b/doc/modules/partial_dependence.rst @@ -79,6 +79,10 @@ parameter takes a list of indices, names of the categorical features or a boolea mask. The graphical representation of partial dependence for categorical features is a bar plot or a 2D heatmap. +|details-start| +**PDPs for multi-class classification** +|details-split| + For multi-class classification, you need to set the class label for which the PDPs should be created via the ``target`` argument:: @@ -93,6 +97,8 @@ the PDPs should be created via the ``target`` argument:: The same parameter ``target`` is used to specify the target in multi-output regression settings. +|details-end| + If you need the raw values of the partial dependence function rather than the plots, you can use the :func:`sklearn.inspection.partial_dependence` function:: From fe5ba6ff3bc2baac7a0a776db61c8e27c5094fb8 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Thu, 18 Jan 2024 15:07:59 +0100 Subject: [PATCH 0075/1641] ENH TfidfTransformer perserves np.float32 dtype (#28136) --- doc/whats_new/v1.5.rst | 4 ++++ sklearn/feature_extraction/text.py | 27 +++++++++++++++++---------- 2 files changed, 21 insertions(+), 10 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 6eec5591c440d..159b8029c9137 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -47,6 +47,10 @@ Changelog for storing the inverse document frequency. :pr:`18843` by :user:`Paolo Montesel `. +- |Enhancement| :class:`feature_extraction.text.TfidfTransformer` now preserves + the data type of the input matrix if it is `np.float64` or `np.float32`. + :pr:`28136` by :user:`Guillaume Lemaitre `. + :mod:`sklearn.impute` ..................... diff --git a/sklearn/feature_extraction/text.py b/sklearn/feature_extraction/text.py index cef6f340e83c8..ea6686ef45eaa 100644 --- a/sklearn/feature_extraction/text.py +++ b/sklearn/feature_extraction/text.py @@ -1666,23 +1666,21 @@ def fit(self, X, y=None): ) if not sp.issparse(X): X = sp.csr_matrix(X) - dtype = X.dtype if X.dtype in FLOAT_DTYPES else np.float64 + dtype = X.dtype if X.dtype in (np.float64, np.float32) else np.float64 if self.use_idf: - n_samples, n_features = X.shape + n_samples, _ = X.shape df = _document_frequency(X) df = df.astype(dtype, copy=False) # perform idf smoothing if required - df += int(self.smooth_idf) + df += float(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. + # `np.log` preserves the dtype of `df` and thus `dtype`. self.idf_ = np.log(n_samples / df) + 1.0 - # FIXME: for backward compatibility, we force idf_ to be np.float64 - # In the future, we should preserve the `dtype` of `X`. - self.idf_ = self.idf_.astype(np.float64, copy=False) return self @@ -1705,14 +1703,18 @@ def transform(self, X, copy=True): """ check_is_fitted(self) X = self._validate_data( - X, accept_sparse="csr", dtype=FLOAT_DTYPES, copy=copy, reset=False + X, + accept_sparse="csr", + dtype=[np.float64, np.float32], + copy=copy, + reset=False, ) if not sp.issparse(X): - X = sp.csr_matrix(X, dtype=np.float64) + X = sp.csr_matrix(X, dtype=X.dtype) if self.sublinear_tf: np.log(X.data, X.data) - X.data += 1 + X.data += 1.0 if hasattr(self, "idf_"): # the columns of X (CSR matrix) can be accessed with `X.indices `and @@ -1725,7 +1727,12 @@ def transform(self, X, copy=True): return X def _more_tags(self): - return {"X_types": ["2darray", "sparse"]} + return { + "X_types": ["2darray", "sparse"], + # FIXME: np.float16 could be preserved if _inplace_csr_row_normalize_l2 + # accepted it. + "preserves_dtype": [np.float64, np.float32], + } class TfidfVectorizer(CountVectorizer): From 95b2c9de28ab9c9f5895d5c5115b99f039de0105 Mon Sep 17 00:00:00 2001 From: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> Date: Thu, 18 Jan 2024 16:19:09 +0100 Subject: [PATCH 0076/1641] DOC Fix blank space in dropdown (#28166) Co-authored-by: ArturoAmorQ --- doc/model_persistence.rst | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/doc/model_persistence.rst b/doc/model_persistence.rst index 1e0cc36be534d..0f775c774465a 100644 --- a/doc/model_persistence.rst +++ b/doc/model_persistence.rst @@ -118,11 +118,10 @@ A more secure format: `skops` `skops `__ provides a more secure format via the :mod:`skops.io` module. It avoids using :mod:`pickle` and only loads files which have types and references to functions which are trusted -either by default or by the user. +either by default or by the user. |details-start| **Using skops** - |details-split| The API is very similar to ``pickle``, and From d43d7d61c159a63fd2c8ffebca505b9b3ae41a4e Mon Sep 17 00:00:00 2001 From: Linus Sommer <95619282+linus-md@users.noreply.github.com> Date: Thu, 18 Jan 2024 23:22:43 +0100 Subject: [PATCH 0077/1641] DOC: Added drop down menus to `1.8` Cross Decomposition (#27916) --- doc/modules/cross_decomposition.rst | 21 ++++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/doc/modules/cross_decomposition.rst b/doc/modules/cross_decomposition.rst index 337a7bcd250bb..8f8d217f87144 100644 --- a/doc/modules/cross_decomposition.rst +++ b/doc/modules/cross_decomposition.rst @@ -92,9 +92,9 @@ Step *a)* may be performed in two ways: either by computing the whole SVD of values, or by directly computing the singular vectors using the power method (cf section 11.3 in [1]_), which corresponds to the `'nipals'` option of the `algorithm` parameter. - -Transforming data -^^^^^^^^^^^^^^^^^ +|details-start| +**Transforming data** +|details-split| To transform :math:`X` into :math:`\bar{X}`, we need to find a projection matrix :math:`P` such that :math:`\bar{X} = XP`. We know that for the @@ -106,9 +106,11 @@ training data, :math:`\Xi = XP`, and :math:`X = \Xi \Gamma^T`. Setting Similarly, :math:`Y` can be transformed using the rotation matrix :math:`V(\Delta^T V)^{-1}`, accessed via the `y_rotations_` attribute. +|details-end| -Predicting the targets Y -^^^^^^^^^^^^^^^^^^^^^^^^ +|details-start| +**Predicting the targets Y** +|details-split| To predict the targets of some data :math:`X`, we are looking for a coefficient matrix :math:`\beta \in R^{d \times t}` such that :math:`Y = @@ -125,6 +127,8 @@ P \Delta^T`, and as a result the coefficient matrix :math:`\beta = \alpha P :math:`\beta` can be accessed through the `coef_` attribute. +|details-end| + PLSSVD ------ @@ -180,14 +184,17 @@ Since :class:`CCA` involves the inversion of :math:`X_k^TX_k` and :math:`Y_k^TY_k`, this estimator can be unstable if the number of features or targets is greater than the number of samples. - -.. topic:: Reference: +|details-start| +**Reference** +|details-split| .. [1] `A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case `_ JA Wegelin +|details-end| + .. topic:: Examples: * :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py` From 26dfe833aa5122997a6b66197df0e03629a45e3a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= <34657725+jeremiedbb@users.noreply.github.com> Date: Fri, 19 Jan 2024 06:51:23 +0100 Subject: [PATCH 0078/1641] Fix prevent infinite loop in KMeans (#28165) --- doc/whats_new/v1.4.rst | 3 +++ sklearn/cluster/_k_means_common.pyx | 16 ++++++++++++++++ sklearn/cluster/tests/test_k_means.py | 18 ++++++++++++++++++ 3 files changed, 37 insertions(+) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index c674a8619e076..ee47bae7b1f5b 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -20,6 +20,9 @@ Changelog :pr:`28121` by :user:`Pietro Peterlongo ` and :user:`Yao Xiao `. +- |Fix| Avoid infinite loop in :class:`cluster.KMeans` when the number of clusters is + larger than the number of non-duplicate samples. + :pr:`28165` by :user:`Jérémie du Boisberranger `. .. _changes_1_4: diff --git a/sklearn/cluster/_k_means_common.pyx b/sklearn/cluster/_k_means_common.pyx index 151af55076b7b..7c9c1bb54eaae 100644 --- a/sklearn/cluster/_k_means_common.pyx +++ b/sklearn/cluster/_k_means_common.pyx @@ -192,6 +192,11 @@ cpdef void _relocate_empty_clusters_dense( int new_cluster_id, old_cluster_id, far_idx, idx, k floating weight + if np.max(distances) == 0: + # Happens when there are more clusters than non-duplicate samples. Relocating + # is pointless in this case. + return + for idx in range(n_empty): new_cluster_id = empty_clusters[idx] @@ -241,6 +246,11 @@ cpdef void _relocate_empty_clusters_sparse( X_indices[X_indptr[i]: X_indptr[i + 1]], centers_old[j], centers_squared_norms[j], True) + if np.max(distances) == 0: + # Happens when there are more clusters than non-duplicate samples. Relocating + # is pointless in this case. + return + cdef: int[::1] far_from_centers = np.argpartition(distances, -n_empty)[:-n_empty-1:-1].astype(np.int32) @@ -274,12 +284,18 @@ cdef void _average_centers( int n_features = centers.shape[1] int j, k floating alpha + int argmax_weight = np.argmax(weight_in_clusters) for j in range(n_clusters): if weight_in_clusters[j] > 0: alpha = 1.0 / weight_in_clusters[j] for k in range(n_features): centers[j, k] *= alpha + else: + # For convenience, we avoid setting empty clusters at the origin but place + # them at the location of the biggest cluster. + for k in range(n_features): + centers[j, k] = centers[argmax_weight, k] cdef void _center_shift( diff --git a/sklearn/cluster/tests/test_k_means.py b/sklearn/cluster/tests/test_k_means.py index 5b0c7ab9aace8..4a112a30b29ed 100644 --- a/sklearn/cluster/tests/test_k_means.py +++ b/sklearn/cluster/tests/test_k_means.py @@ -1352,3 +1352,21 @@ def test_sample_weight_zero(init, global_random_seed): # (i.e. be at a distance=0 from it) d = euclidean_distances(X[::2], clusters_weighted) assert not np.any(np.isclose(d, 0)) + + +@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids) +@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"]) +def test_relocating_with_duplicates(algorithm, array_constr): + """Check that kmeans stops when there are more centers than non-duplicate samples + + Non-regression test for issue: + https://github.com/scikit-learn/scikit-learn/issues/28055 + """ + X = np.array([[0, 0], [1, 1], [1, 1], [1, 0], [0, 1]]) + km = KMeans(n_clusters=5, init=X, algorithm=algorithm) + + msg = r"Number of distinct clusters \(4\) found smaller than n_clusters \(5\)" + with pytest.warns(ConvergenceWarning, match=msg): + km.fit(array_constr(X)) + + assert km.n_iter_ == 1 From 2da6d17bb472524b883d81afa4a85bd7a1c89d60 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Fri, 19 Jan 2024 07:32:04 +0100 Subject: [PATCH 0079/1641] CI Remove temporary work-around related to scipy and pandas development wheel installing numpy<2 (#28163) --- build_tools/azure/install.sh | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/build_tools/azure/install.sh b/build_tools/azure/install.sh index 5bd4112a1820b..df20e27b3c068 100755 --- a/build_tools/azure/install.sh +++ b/build_tools/azure/install.sh @@ -47,6 +47,16 @@ pre_python_environment_install() { } +check_packages_dev_version() { + for package in $@; do + package_version=$(python -c "import $package; print($package.__version__)") + if ! [[ $package_version =~ "dev" ]]; then + echo "$package is not a development version: $package_version" + exit 1 + fi + done +} + python_environment_install_and_activate() { if [[ "$DISTRIB" == "conda"* ]]; then # Install/update conda with the libmamba solver because the legacy @@ -71,12 +81,10 @@ python_environment_install_and_activate() { if [[ "$DISTRIB" == "conda-pip-scipy-dev" ]]; then echo "Installing development dependency wheels" dev_anaconda_url=https://pypi.anaconda.org/scientific-python-nightly-wheels/simple - pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url numpy pandas scipy + dev_packages="numpy scipy pandas" + pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url $dev_packages - # XXX: at the time of writing, installing scipy or pandas from the dev - # wheels forces the numpy dependency to be < 2.0.0. Let's force the - # installation of numpy dev wheels instead. - pip install --pre --upgrade --timeout=60 --extra-index $dev_anaconda_url numpy + check_packages_dev_version $dev_packages echo "Installing Cython from latest sources" pip install https://github.com/cython/cython/archive/master.zip From 21fcab7223257d01dab5397424de9057128d5467 Mon Sep 17 00:00:00 2001 From: Andrei Dzis Date: Fri, 19 Jan 2024 13:11:23 +0300 Subject: [PATCH 0080/1641] DOC Added relation between ROC-AUC and Gini in docstring of roc_auc_score (#28156) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/_ranking.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py index 4a2e7aa1b78a3..a117a5427a996 100644 --- a/sklearn/metrics/_ranking.py +++ b/sklearn/metrics/_ranking.py @@ -538,6 +538,21 @@ class scores must correspond to the order of ``labels``, RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values. + Notes + ----- + The Gini Coefficient is a summary measure of the ranking ability of binary + classifiers. It is expressed using the area under of the ROC as follows: + + G = 2 * AUC - 1 + + Where G is the Gini coefficient and AUC is the ROC-AUC score. This normalisation + will ensure that random guessing will yield a score of 0 in expectation, and it is + upper bounded by 1. + + Note that there is another version of the Gini coefficient for regressors of a + continuous positive target variable. In this case, AUC is taken over the Lorenz + curve instead of the ROC [6]_. + References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic @@ -558,6 +573,8 @@ class scores must correspond to the order of ``labels``, Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45(2), 171-186. `_ + .. [6] `Wikipedia entry for the Gini coefficient + `_ Examples -------- From a3c8da18af46da0d0e32027dacb20501647b078a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= <34657725+jeremiedbb@users.noreply.github.com> Date: Fri, 19 Jan 2024 13:01:11 +0100 Subject: [PATCH 0081/1641] MAINT Update SECURITY.md for 1.4.0 (#28182) --- SECURITY.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/SECURITY.md b/SECURITY.md index 721f2041c2b85..3f291e7a566f8 100644 --- a/SECURITY.md +++ b/SECURITY.md @@ -4,8 +4,8 @@ | Version | Supported | | --------- | ------------------ | -| 1.3.2 | :white_check_mark: | -| < 1.3.2 | :x: | +| 1.4.0 | :white_check_mark: | +| < 1.4.0 | :x: | ## Reporting a Vulnerability From 5c7e831306e0a087c2b6af6913fa5b3c402f6d67 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Fri, 19 Jan 2024 13:58:02 +0100 Subject: [PATCH 0082/1641] DOC use list for the ridge_regression docstring (#28168) --- sklearn/linear_model/_ridge.py | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py index c4f52c68e697e..5ce4a8c2fd3b8 100644 --- a/sklearn/linear_model/_ridge.py +++ b/sklearn/linear_model/_ridge.py @@ -552,14 +552,15 @@ def ridge_regression( Examples -------- + >>> import numpy as np >>> from sklearn.datasets import make_regression >>> from sklearn.linear_model import ridge_regression - >>> X, y = make_regression( - ... n_features=4, n_informative=2, shuffle=False, random_state=0 - ... ) + >>> rng = np.random.RandomState(0) + >>> X = rng.randn(100, 4) + >>> y = 2.0 * X[:, 0] - 1.0 * X[:, 1] + 0.1 * rng.standard_normal(100) >>> coef, intercept = ridge_regression(X, y, alpha=1.0, return_intercept=True) - >>> coef - array([20.2..., 33.7..., 0.1..., 0.0...]) + >>> list(coef) + [1.97..., -1.00..., -0.0..., -0.0...] >>> intercept -0.0... """ From 66a6551786c3d257a7b4f0b23a705f52f868c235 Mon Sep 17 00:00:00 2001 From: Andrei Dzis Date: Fri, 19 Jan 2024 23:15:37 +0300 Subject: [PATCH 0083/1641] DOC Fix for roc_auc_score documentation (#28190) --- sklearn/metrics/_ranking.py | 4 ---- 1 file changed, 4 deletions(-) diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py index a117a5427a996..4a960a2f4402a 100644 --- a/sklearn/metrics/_ranking.py +++ b/sklearn/metrics/_ranking.py @@ -549,10 +549,6 @@ class scores must correspond to the order of ``labels``, will ensure that random guessing will yield a score of 0 in expectation, and it is upper bounded by 1. - Note that there is another version of the Gini coefficient for regressors of a - continuous positive target variable. In this case, AUC is taken over the Lorenz - curve instead of the ROC [6]_. - References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic From 2020648edfdbdeb4797465434ed4afd6e79ce2ed Mon Sep 17 00:00:00 2001 From: 101AlexMartin <101071686+101AlexMartin@users.noreply.github.com> Date: Sat, 20 Jan 2024 10:53:07 +0100 Subject: [PATCH 0084/1641] MNT changed order pre-commits hooks following ruff recommendation (#28062) Co-authored-by: Alejandro Martin --- .pre-commit-config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index abffbbe149f2c..506e3ab4fe64e 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,16 +5,16 @@ repos: - id: check-yaml - id: end-of-file-fixer - id: trailing-whitespace -- repo: https://github.com/psf/black - rev: 23.3.0 - hooks: - - id: black - repo: https://github.com/astral-sh/ruff-pre-commit # Ruff version. rev: v0.0.272 hooks: - id: ruff args: ["--fix", "--show-source"] +- repo: https://github.com/psf/black + rev: 23.3.0 + hooks: + - id: black - repo: https://github.com/pre-commit/mirrors-mypy rev: v1.3.0 hooks: From 6a1022353103cefb93258f503b087d821262a1b6 Mon Sep 17 00:00:00 2001 From: Rodrigo Romero <69991220+rromer07@users.noreply.github.com> Date: Sat, 20 Jan 2024 06:48:55 -0500 Subject: [PATCH 0085/1641] DOC add docstring example to `sklearn.metrics.consensus_score` (#28193) --- sklearn/metrics/cluster/_bicluster.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/sklearn/metrics/cluster/_bicluster.py b/sklearn/metrics/cluster/_bicluster.py index b9ca47c9b91aa..713d0bee8fa2e 100644 --- a/sklearn/metrics/cluster/_bicluster.py +++ b/sklearn/metrics/cluster/_bicluster.py @@ -89,6 +89,14 @@ def consensus_score(a, b, *, similarity="jaccard"): * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition `__. + + Examples + -------- + >>> from sklearn.metrics import consensus_score + >>> a = ([[True, False], [False, True]], [[False, True], [True, False]]) + >>> b = ([[False, True], [True, False]], [[True, False], [False, True]]) + >>> consensus_score(a, b, similarity='jaccard') + 1.0 """ if similarity == "jaccard": similarity = _jaccard From 836690a401057572ef7d3478a9a3aa78dfa1447b Mon Sep 17 00:00:00 2001 From: Rodrigo Romero <69991220+rromer07@users.noreply.github.com> Date: Sat, 20 Jan 2024 14:42:16 -0500 Subject: [PATCH 0086/1641] DOC add docstring example to `sklearn.metrics.coverage_error` (#28196) Co-authored-by: Guillaume Lemaitre --- sklearn/metrics/_ranking.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py index 4a960a2f4402a..74ae6dcf04299 100644 --- a/sklearn/metrics/_ranking.py +++ b/sklearn/metrics/_ranking.py @@ -1300,6 +1300,14 @@ def coverage_error(y_true, y_score, *, sample_weight=None): .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. + + Examples + -------- + >>> from sklearn.metrics import coverage_error + >>> y_true = [[1, 0, 0], [0, 1, 1]] + >>> y_score = [[1, 0, 0], [0, 1, 1]] + >>> coverage_error(y_true, y_score) + 1.5 """ y_true = check_array(y_true, ensure_2d=True) y_score = check_array(y_score, ensure_2d=True) From 897c0c570511be4b7912a335052ed479ac5ca1f3 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Sat, 20 Jan 2024 21:08:36 +0100 Subject: [PATCH 0087/1641] ENH improve HGBT predict classes (#27844) Co-authored-by: Guillaume Lemaitre --- doc/whats_new/v1.4.rst | 4 ++++ .../_hist_gradient_boosting/gradient_boosting.py | 16 +++++++++++++--- 2 files changed, 17 insertions(+), 3 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index ee47bae7b1f5b..d832e4b508359 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -494,6 +494,10 @@ Changelog which allows to retrieve the training sample indices used for each tree estimator. :pr:`26736` by :user:`Adam Li `. +- |Efficiency| Improves runtime of `predict` of + :class:`ensemble.HistGradientBoostingClassifier` by avoiding to call `predict_proba`. + :pr:`27844` by :user:`Christian Lorentzen `. + - |Fix| Fixes :class:`ensemble.IsolationForest` when the input is a sparse matrix and `contamination` is set to a float value. :pr:`27645` by :user:`Guillaume Lemaitre `. diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py index 0837d19407030..698fd0629d02e 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py @@ -2137,7 +2137,13 @@ def predict(self, X): The predicted classes. """ # TODO: This could be done in parallel - encoded_classes = np.argmax(self.predict_proba(X), axis=1) + raw_predictions = self._raw_predict(X) + if raw_predictions.shape[1] == 1: + # np.argmax([0.5, 0.5]) is 0, not 1. Therefore "> 0" not ">= 0" to be + # consistent with the multiclass case. + encoded_classes = (raw_predictions.ravel() > 0).astype(int) + else: + encoded_classes = np.argmax(raw_predictions, axis=1) return self.classes_[encoded_classes] def staged_predict(self, X): @@ -2158,8 +2164,12 @@ def staged_predict(self, X): y : generator of ndarray of shape (n_samples,) The predicted classes of the input samples, for each iteration. """ - for proba in self.staged_predict_proba(X): - encoded_classes = np.argmax(proba, axis=1) + for raw_predictions in self._staged_raw_predict(X): + if raw_predictions.shape[1] == 1: + # np.argmax([0, 0]) is 0, not 1, therefor "> 0" not ">= 0" + encoded_classes = (raw_predictions.ravel() > 0).astype(int) + else: + encoded_classes = np.argmax(raw_predictions, axis=1) yield self.classes_.take(encoded_classes, axis=0) def predict_proba(self, X): From b4754ba7eeacf1519fb827392d99207d38011627 Mon Sep 17 00:00:00 2001 From: "Thomas J. Fan" Date: Mon, 22 Jan 2024 02:31:13 -0500 Subject: [PATCH 0088/1641] ENH Checks pandas and polars directly (#28195) --- doc/whats_new/v1.4.rst | 3 +++ sklearn/utils/validation.py | 26 ++++++++++---------------- 2 files changed, 13 insertions(+), 16 deletions(-) diff --git a/doc/whats_new/v1.4.rst b/doc/whats_new/v1.4.rst index d832e4b508359..98bfcd2d96f54 100644 --- a/doc/whats_new/v1.4.rst +++ b/doc/whats_new/v1.4.rst @@ -24,6 +24,9 @@ Changelog larger than the number of non-duplicate samples. :pr:`28165` by :user:`Jérémie du Boisberranger `. +- |Enhancement| Pandas and Polars dataframe are validated directly without ducktyping + checks. :pr:`28195` by `Thomas Fan`_. + .. _changes_1_4: Version 1.4.0 diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index 6531a9da3404b..43f553eb2d2d5 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -2070,26 +2070,20 @@ def _check_method_params(X, params, indices=None): def _is_pandas_df(X): """Return True if the X is a pandas dataframe.""" - if hasattr(X, "columns") and hasattr(X, "iloc"): - # Likely a pandas DataFrame, we explicitly check the type to confirm. - try: - pd = sys.modules["pandas"] - except KeyError: - return False - return isinstance(X, pd.DataFrame) - return False + try: + pd = sys.modules["pandas"] + except KeyError: + return False + return isinstance(X, pd.DataFrame) def _is_polars_df(X): """Return True if the X is a polars dataframe.""" - if hasattr(X, "columns") and hasattr(X, "schema"): - # Likely a polars DataFrame, we explicitly check the type to confirm. - try: - pl = sys.modules["polars"] - except KeyError: - return False - return isinstance(X, pl.DataFrame) - return False + try: + pl = sys.modules["polars"] + except KeyError: + return False + return isinstance(X, pl.DataFrame) def _get_feature_names(X): From 69cef4adc1d689828958328598712e8b2937971d Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Mon, 22 Jan 2024 10:53:04 +0100 Subject: [PATCH 0089/1641] FIX _convert_container should be able to convert from sparse to sparse (#28185) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Loïc Estève --- sklearn/utils/_testing.py | 40 ++++++++++++++++------------- sklearn/utils/tests/test_testing.py | 29 +++++++++++++++++++++ 2 files changed, 51 insertions(+), 18 deletions(-) diff --git a/sklearn/utils/_testing.py b/sklearn/utils/_testing.py index b49622627c7ae..bb4da452712d2 100644 --- a/sklearn/utils/_testing.py +++ b/sklearn/utils/_testing.py @@ -775,8 +775,6 @@ def _convert_container( return tuple(np.asarray(container, dtype=dtype).tolist()) elif constructor_name == "array": return np.asarray(container, dtype=dtype) - elif constructor_name == "sparse": - return sp.sparse.csr_matrix(np.atleast_2d(container), dtype=dtype) elif constructor_name in ("pandas", "dataframe"): pd = pytest.importorskip("pandas", minversion=minversion) result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False) @@ -813,22 +811,28 @@ def _convert_container( return pd.Index(container, dtype=dtype) elif constructor_name == "slice": return slice(container[0], container[1]) - elif constructor_name == "sparse_csr": - return sp.sparse.csr_matrix(np.atleast_2d(container), dtype=dtype) - elif constructor_name == "sparse_csr_array": - if sp_version >= parse_version("1.8"): - return sp.sparse.csr_array(np.atleast_2d(container), dtype=dtype) - raise ValueError( - f"sparse_csr_array is only available with scipy>=1.8.0, got {sp_version}" - ) - elif constructor_name == "sparse_csc": - return sp.sparse.csc_matrix(np.atleast_2d(container), dtype=dtype) - elif constructor_name == "sparse_csc_array": - if sp_version >= parse_version("1.8"): - return sp.sparse.csc_array(np.atleast_2d(container), dtype=dtype) - raise ValueError( - f"sparse_csc_array is only available with scipy>=1.8.0, got {sp_version}" - ) + elif "sparse" in constructor_name: + if not sp.sparse.issparse(container): + # For scipy >= 1.13, sparse array constructed from 1d array may be + # 1d or raise an exception. To avoid this, we make sure that the + # input container is 2d. For more details, see + # https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149 + container = np.atleast_2d(container) + + if "array" in constructor_name and sp_version < parse_version("1.8"): + raise ValueError( + f"{constructor_name} is only available with scipy>=1.8.0, got " + f"{sp_version}" + ) + if constructor_name in ("sparse", "sparse_csr"): + # sparse and sparse_csr are equivalent for legacy reasons + return sp.sparse.csr_matrix(container, dtype=dtype) + elif constructor_name == "sparse_csr_array": + return sp.sparse.csr_array(container, dtype=dtype) + elif constructor_name == "sparse_csc": + return sp.sparse.csc_matrix(container, dtype=dtype) + elif constructor_name == "sparse_csc_array": + return sp.sparse.csc_array(container, dtype=dtype) def raises(expected_exc_type, match=None, may_pass=False, err_msg=None): diff --git a/sklearn/utils/tests/test_testing.py b/sklearn/utils/tests/test_testing.py index f24b4de928201..c6132afd0c1d4 100644 --- a/sklearn/utils/tests/test_testing.py +++ b/sklearn/utils/tests/test_testing.py @@ -845,3 +845,32 @@ def test_assert_run_python_script_without_output(): match="output was not supposed to match.+got.+something to stderr", ): assert_run_python_script_without_output(code, pattern="to.+stderr") + + +@pytest.mark.parametrize( + "constructor_name", + [ + "sparse_csr", + "sparse_csc", + pytest.param( + "sparse_csr_array", + marks=pytest.mark.skipif( + sp_version < parse_version("1.8"), + reason="sparse arrays are available as of scipy 1.8.0", + ), + ), + pytest.param( + "sparse_csc_array", + marks=pytest.mark.skipif( + sp_version < parse_version("1.8"), + reason="sparse arrays are available as of scipy 1.8.0", + ), + ), + ], +) +def test_convert_container_sparse_to_sparse(constructor_name): + """Non-regression test to check that we can still convert a sparse container + from a given format to another format. + """ + X_sparse = sparse.random(10, 10, density=0.1, format="csr") + _convert_container(X_sparse, constructor_name) From 1df773fe12d54beaed1136d7b040571e51f17205 Mon Sep 17 00:00:00 2001 From: Anderson Nelson Date: Mon, 22 Jan 2024 05:16:30 -0500 Subject: [PATCH 0090/1641] DOC Add docstring examples for covariance module (#28192) Co-authored-by: Guillaume Lemaitre --- sklearn/covariance/_shrunk_covariance.py | 37 ++++++++++++++++++++++++ 1 file changed, 37 insertions(+) diff --git a/sklearn/covariance/_shrunk_covariance.py b/sklearn/covariance/_shrunk_covariance.py index 3a79afa30729f..5df229260b03c 100644 --- a/sklearn/covariance/_shrunk_covariance.py +++ b/sklearn/covariance/_shrunk_covariance.py @@ -134,6 +134,18 @@ def shrunk_covariance(emp_cov, shrinkage=0.1): (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features) where `mu = trace(cov) / n_features`. + + Examples + -------- + >>> import numpy as np + >>> from sklearn.datasets import make_gaussian_quantiles + >>> from sklearn.covariance import empirical_covariance, shrunk_covariance + >>> real_cov = np.array([[.8, .3], [.3, .4]]) + >>> rng = np.random.RandomState(0) + >>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=500) + >>> shrunk_covariance(empirical_covariance(X)) + array([[0.73..., 0.25...], + [0.25..., 0.41...]]) """ emp_cov = check_array(emp_cov, allow_nd=True) n_features = emp_cov.shape[-1] @@ -316,6 +328,17 @@ def ledoit_wolf_shrinkage(X, assume_centered=False, block_size=1000): (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features) where mu = trace(cov) / n_features + + Examples + -------- + >>> import numpy as np + >>> from sklearn.covariance import ledoit_wolf_shrinkage + >>> real_cov = np.array([[.4, .2], [.2, .8]]) + >>> rng = np.random.RandomState(0) + >>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=50) + >>> shrinkage_coefficient = ledoit_wolf_shrinkage(X) + >>> shrinkage_coefficient + 0.23... """ X = check_array(X) # for only one feature, the result is the same whatever the shrinkage @@ -419,6 +442,20 @@ def ledoit_wolf(X, *, assume_centered=False, block_size=1000): (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features) where mu = trace(cov) / n_features + + Examples + -------- + >>> import numpy as np + >>> from sklearn.covariance import empirical_covariance, ledoit_wolf + >>> real_cov = np.array([[.4, .2], [.2, .8]]) + >>> rng = np.random.RandomState(0) + >>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=50) + >>> covariance, shrinkage = ledoit_wolf(X) + >>> covariance + array([[0.44..., 0.16...], + [0.16..., 0.80...]]) + >>> shrinkage + 0.23... """ estimator = LedoitWolf( assume_centered=assume_centered, From 55eb8900b44d62cf665444258adf4a3ae29926a1 Mon Sep 17 00:00:00 2001 From: Shubham <134207725+shubhamparmar1@users.noreply.github.com> Date: Mon, 22 Jan 2024 15:51:08 +0530 Subject: [PATCH 0091/1641] DOC Add a docstring examples for utils functions (#28181) Co-authored-by: Guillaume Lemaitre --- sklearn/utils/_estimator_html_repr.py | 7 ++++++ sklearn/utils/estimator_checks.py | 7 ++++++ sklearn/utils/extmath.py | 33 +++++++++++++++++++++++++-- 3 files changed, 45 insertions(+), 2 deletions(-) diff --git a/sklearn/utils/_estimator_html_repr.py b/sklearn/utils/_estimator_html_repr.py index dd51a8bbb71de..5e465234f516b 100644 --- a/sklearn/utils/_estimator_html_repr.py +++ b/sklearn/utils/_estimator_html_repr.py @@ -329,6 +329,13 @@ def estimator_html_repr(estimator): ------- html: str HTML representation of estimator. + + Examples + -------- + >>> from sklearn.utils._estimator_html_repr import estimator_html_repr + >>> from sklearn.linear_model import LogisticRegression + >>> estimator_html_repr(LogisticRegression()) + ' + + + + + + + + + + + + + + + From ffe2c1b857fa1ae1609e9d48c7a5ea25c3856716 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Tue, 7 May 2024 13:49:31 +0200 Subject: [PATCH 0505/1641] DOC Mention the renaming of check_estimator_sparse_data in 1.5 changelog (#28968) --- doc/whats_new/v1.5.rst | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index ede5d5dcbf1ec..e50309a330e39 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -527,6 +527,11 @@ Changelog `axis=0` and supports indexing polars Series. :pr:`28521` by :user:`Yao Xiao `. +- |API| :func:`utils.estimator_checks.check_estimator_sparse_data` was split into two + functions: :func:`utils.estimator_checks.check_estimator_sparse_matrix` and + :func:`utils.estimator_checks.check_estimator_sparse_array`. + :pr:`27576` by :user:`Stefanie Senger `. + .. rubric:: Code and documentation contributors Thanks to everyone who has contributed to the maintenance and improvement of From fa37777ae4f4f40798bafb0842e8916de8a90269 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Tue, 7 May 2024 13:50:46 +0200 Subject: [PATCH 0506/1641] DOC Update release docs (#28965) --- doc/developers/maintainer.rst | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/doc/developers/maintainer.rst b/doc/developers/maintainer.rst index e82a7993997b2..70d132d2af604 100644 --- a/doc/developers/maintainer.rst +++ b/doc/developers/maintainer.rst @@ -105,14 +105,13 @@ in the description of the Pull Request to track progress. This PR will be used to push commits related to the release as explained in :ref:`making_a_release`. -You can also create a second PR from main and targeting main to increment -the ``__version__`` variable in `sklearn/__init__.py` to increment the dev -version. This means while we're in the release candidate period, the latest -stable is two versions behind the main branch, instead of one. In this PR -targeting main you should also include a new file for the matching version -under the ``doc/whats_new/`` folder so PRs that target the next version can -contribute their changelog entries to this file in parallel to the release -process. +You can also create a second PR from main and targeting main to increment the +``__version__`` variable in `sklearn/__init__.py` and in `pyproject.toml` to increment +the dev version. This means while we're in the release candidate period, the latest +stable is two versions behind the main branch, instead of one. In this PR targeting +main you should also include a new file for the matching version under the +``doc/whats_new/`` folder so PRs that target the next version can contribute their +changelog entries to this file in parallel to the release process. Minor version release (also known as bug-fix release) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -212,8 +211,8 @@ Making a release the old entries (two years or three releases are typically good enough) and to update the on-going development entry. -2. On the branch for releasing, update the version number in - ``sklearn/__init__.py``, the ``__version__``. +2. On the branch for releasing, update the version number in ``sklearn/__init__.py``, + the ``__version__`` variable, and in `pyproject.toml`. For major releases, please add a 0 at the end: `0.99.0` instead of `0.99`. From 1fa3c75e17f0327bc7cdc0eec9f132fc968e5b8a Mon Sep 17 00:00:00 2001 From: Omar Salman Date: Tue, 7 May 2024 19:16:11 +0500 Subject: [PATCH 0507/1641] DOC updates for d2_log_loss_score (#28969) --- sklearn/metrics/_classification.py | 6 +++--- sklearn/metrics/tests/test_classification.py | 3 ++- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index 04894a4d7a7e7..b68f1593e317e 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -3277,10 +3277,10 @@ def d2_log_loss_score(y_true, y_pred, *, sample_weight=None, labels=None): :math:`D^2` score function, fraction of log loss explained. Best possible score is 1.0 and it can be negative (because the model can be - arbitrarily worse). A model that always uses the empirical mean of `y_true` as - constant prediction, disregarding the input features, gets a D^2 score of 0.0. + arbitrarily worse). A model that always predicts the per-class proportions + of `y_true`, disregarding the input features, gets a D^2 score of 0.0. - Read more in the :ref:`User Guide `. + Read more in the :ref:`User Guide `. .. versionadded:: 1.5 diff --git a/sklearn/metrics/tests/test_classification.py b/sklearn/metrics/tests/test_classification.py index 40b762bfa7308..b87e76ba2fb42 100644 --- a/sklearn/metrics/tests/test_classification.py +++ b/sklearn/metrics/tests/test_classification.py @@ -3048,7 +3048,8 @@ def test_d2_log_loss_score(): def test_d2_log_loss_score_raises(): - """Test that d2_log_loss raises error on invalid input.""" + """Test that d2_log_loss_score raises the appropriate errors on + invalid inputs.""" y_true = [0, 1, 2] y_pred = [[0.2, 0.8], [0.5, 0.5], [0.4, 0.6]] err = "contain different number of classes" From e12f192c581ff78b25a6cac723a99782c9ee480d Mon Sep 17 00:00:00 2001 From: Thomas Li <47963215+lithomas1@users.noreply.github.com> Date: Wed, 8 May 2024 02:21:27 -0400 Subject: [PATCH 0508/1641] ENH Use Array API in mean_tweedie_deviance (#28106) --- doc/modules/array_api.rst | 1 + doc/whats_new/v1.6.rst | 18 ++++++++++++++ sklearn/metrics/_regression.py | 21 +++++++++-------- sklearn/metrics/tests/test_common.py | 35 +++++++++++++++++++++++++++- sklearn/utils/_array_api.py | 3 +++ 5 files changed, 67 insertions(+), 11 deletions(-) diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index 7a21274a7250f..dadae86689e08 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -106,6 +106,7 @@ Metrics ------- - :func:`sklearn.metrics.accuracy_score` +- :func:`sklearn.metrics.mean_tweedie_deviance` - :func:`sklearn.metrics.r2_score` - :func:`sklearn.metrics.zero_one_loss` diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index b90394c75b6ff..6eda6717b3d1b 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -22,6 +22,24 @@ Version 1.6.0 **In Development** +Support for Array API +--------------------- + +Additional estimators and functions have been updated to include support for all +`Array API `_ compliant inputs. + +See :ref:`array_api` for more details. + +**Functions:** + +- :func:`sklearn.metrics.mean_tweedie_deviance` now supports Array API compatible + inputs. + :pr:`28106` by :user:`Thomas Li ` + +**Classes:** + +- + Changelog --------- diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py index b5605f18803ab..596a45dd3eaed 100644 --- a/sklearn/metrics/_regression.py +++ b/sklearn/metrics/_regression.py @@ -1276,13 +1276,14 @@ def max_error(y_true, y_pred): def _mean_tweedie_deviance(y_true, y_pred, sample_weight, power): """Mean Tweedie deviance regression loss.""" + xp, _ = get_namespace(y_true, y_pred) p = power if p < 0: # 'Extreme stable', y any real number, y_pred > 0 dev = 2 * ( - np.power(np.maximum(y_true, 0), 2 - p) / ((1 - p) * (2 - p)) - - y_true * np.power(y_pred, 1 - p) / (1 - p) - + np.power(y_pred, 2 - p) / (2 - p) + xp.pow(xp.where(y_true > 0, y_true, 0), 2 - p) / ((1 - p) * (2 - p)) + - y_true * xp.pow(y_pred, 1 - p) / (1 - p) + + xp.pow(y_pred, 2 - p) / (2 - p) ) elif p == 0: # Normal distribution, y and y_pred any real number @@ -1292,15 +1293,14 @@ def _mean_tweedie_deviance(y_true, y_pred, sample_weight, power): dev = 2 * (xlogy(y_true, y_true / y_pred) - y_true + y_pred) elif p == 2: # Gamma distribution - dev = 2 * (np.log(y_pred / y_true) + y_true / y_pred - 1) + dev = 2 * (xp.log(y_pred / y_true) + y_true / y_pred - 1) else: dev = 2 * ( - np.power(y_true, 2 - p) / ((1 - p) * (2 - p)) - - y_true * np.power(y_pred, 1 - p) / (1 - p) - + np.power(y_pred, 2 - p) / (2 - p) + xp.pow(y_true, 2 - p) / ((1 - p) * (2 - p)) + - y_true * xp.pow(y_pred, 1 - p) / (1 - p) + + xp.pow(y_pred, 2 - p) / (2 - p) ) - - return np.average(dev, weights=sample_weight) + return float(_average(dev, weights=sample_weight)) @validate_params( @@ -1363,8 +1363,9 @@ def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0): >>> mean_tweedie_deviance(y_true, y_pred, power=1) 1.4260... """ + xp, _ = get_namespace(y_true, y_pred) y_type, y_true, y_pred, _ = _check_reg_targets( - y_true, y_pred, None, dtype=[np.float64, np.float32] + y_true, y_pred, None, dtype=[xp.float64, xp.float32] ) if y_type == "continuous-multioutput": raise ValueError("Multioutput not supported in mean_tweedie_deviance") diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index 886f870da6adf..f00af5e160858 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1824,6 +1824,35 @@ def check_array_api_multiclass_classification_metric( def check_array_api_regression_metric(metric, array_namespace, device, dtype_name): + y_true_np = np.array([2, 0, 1, 4], dtype=dtype_name) + y_pred_np = np.array([0.5, 0.5, 2, 2], dtype=dtype_name) + + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + y_true_np=y_true_np, + y_pred_np=y_pred_np, + sample_weight=None, + ) + + sample_weight = np.array([0.1, 2.0, 1.5, 0.5], dtype=dtype_name) + + check_array_api_metric( + metric, + array_namespace, + device, + dtype_name, + y_true_np=y_true_np, + y_pred_np=y_pred_np, + sample_weight=sample_weight, + ) + + +def check_array_api_regression_metric_multioutput( + metric, array_namespace, device, dtype_name +): y_true_np = np.array([[1, 3], [1, 2]], dtype=dtype_name) y_pred_np = np.array([[1, 4], [1, 1]], dtype=dtype_name) @@ -1859,7 +1888,11 @@ def check_array_api_regression_metric(metric, array_namespace, device, dtype_nam check_array_api_binary_classification_metric, check_array_api_multiclass_classification_metric, ], - r2_score: [check_array_api_regression_metric], + mean_tweedie_deviance: [check_array_api_regression_metric], + r2_score: [ + check_array_api_regression_metric, + check_array_api_regression_metric_multioutput, + ], } diff --git a/sklearn/utils/_array_api.py b/sklearn/utils/_array_api.py index 7c3fd12ad4dee..a8b0363c0af38 100644 --- a/sklearn/utils/_array_api.py +++ b/sklearn/utils/_array_api.py @@ -427,6 +427,9 @@ def reshape(self, x, shape, *, copy=None): def isdtype(self, dtype, kind): return isdtype(dtype, kind, xp=self) + def pow(self, x1, x2): + return numpy.power(x1, x2) + _NUMPY_API_WRAPPER_INSTANCE = _NumPyAPIWrapper() From 1a54a11b7f2fdc09aa06057689df1a196e9fdd3c Mon Sep 17 00:00:00 2001 From: Abdulaziz Aloqeely <52792999+Aloqeely@users.noreply.github.com> Date: Fri, 10 May 2024 01:11:16 +0300 Subject: [PATCH 0509/1641] Update supported python versions in docs (#28986) --- doc/install.rst | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/doc/install.rst b/doc/install.rst index c4a3548016021..89851171f4588 100644 --- a/doc/install.rst +++ b/doc/install.rst @@ -166,7 +166,8 @@ purpose. Scikit-learn 0.22 supported Python 3.5-3.8. Scikit-learn 0.23 - 0.24 require Python 3.6 or newer. Scikit-learn 1.0 supported Python 3.7-3.10. - Scikit-learn 1.1 and later requires Python 3.8 or newer. + Scikit-learn 1.1, 1.2 and 1.3 support Python 3.8-3.12 + Scikit-learn 1.4 requires Python 3.9 or newer. .. _install_by_distribution: From 5e5cc3477025794c5b2ee6056a223d91adbfe925 Mon Sep 17 00:00:00 2001 From: Conrad Stevens Date: Sun, 12 May 2024 07:29:55 +1000 Subject: [PATCH 0510/1641] DOC fix gp predic doc typo (#28987) Co-authored-by: Conrad --- sklearn/gaussian_process/_gpr.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/gaussian_process/_gpr.py b/sklearn/gaussian_process/_gpr.py index 67bba2e29c857..829c1e2fad2d8 100644 --- a/sklearn/gaussian_process/_gpr.py +++ b/sklearn/gaussian_process/_gpr.py @@ -384,7 +384,7 @@ def predict(self, X, return_std=False, return_cov=False): Returns ------- y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets) - Mean of predictive distribution a query points. + Mean of predictive distribution at query points. y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional Standard deviation of predictive distribution at query points. @@ -392,7 +392,7 @@ def predict(self, X, return_std=False, return_cov=False): y_cov : ndarray of shape (n_samples, n_samples) or \ (n_samples, n_samples, n_targets), optional - Covariance of joint predictive distribution a query points. + Covariance of joint predictive distribution at query points. Only returned when `return_cov` is True. """ if return_std and return_cov: From 2d51510780a25a0186032b11fa8929d5e010eff3 Mon Sep 17 00:00:00 2001 From: Nathan Goldbaum Date: Mon, 13 May 2024 01:53:27 -0600 Subject: [PATCH 0511/1641] MAINT: specify C17 as C standard in meson.build (#28980) --- meson.build | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/meson.build b/meson.build index 3835a5099abb0..52c7deb962277 100644 --- a/meson.build +++ b/meson.build @@ -6,7 +6,7 @@ project( meson_version: '>= 1.1.0', default_options: [ 'buildtype=debugoptimized', - 'c_std=c99', + 'c_std=c17', 'cpp_std=c++14', ], ) From 2d6e1be005affcea8812b46b5d403a548df14b17 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Mon, 13 May 2024 09:58:57 +0200 Subject: [PATCH 0512/1641] MNT remove author and license in GLM files (#28799) --- .../plot_poisson_regression_non_normal_loss.py | 7 ++----- .../plot_tweedie_regression_insurance_claims.py | 7 ++----- sklearn/linear_model/_glm/__init__.py | 4 ++-- sklearn/linear_model/_glm/_newton_solver.py | 5 ++--- sklearn/linear_model/_glm/glm.py | 6 ++---- sklearn/linear_model/_glm/tests/__init__.py | 3 ++- sklearn/linear_model/_glm/tests/test_glm.py | 6 ++---- 7 files changed, 14 insertions(+), 24 deletions(-) diff --git a/examples/linear_model/plot_poisson_regression_non_normal_loss.py b/examples/linear_model/plot_poisson_regression_non_normal_loss.py index 2a80c3db0ff40..180ee3b70671c 100644 --- a/examples/linear_model/plot_poisson_regression_non_normal_loss.py +++ b/examples/linear_model/plot_poisson_regression_non_normal_loss.py @@ -1,3 +1,5 @@ +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause """ ====================================== Poisson regression and non-normal loss @@ -36,11 +38,6 @@ """ -# Authors: Christian Lorentzen -# Roman Yurchak -# Olivier Grisel -# License: BSD 3 clause - import matplotlib.pyplot as plt import numpy as np import pandas as pd diff --git a/examples/linear_model/plot_tweedie_regression_insurance_claims.py b/examples/linear_model/plot_tweedie_regression_insurance_claims.py index 96e32ee031190..31a91fb37c766 100644 --- a/examples/linear_model/plot_tweedie_regression_insurance_claims.py +++ b/examples/linear_model/plot_tweedie_regression_insurance_claims.py @@ -1,3 +1,5 @@ +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause """ ====================================== Tweedie regression on insurance claims @@ -37,11 +39,6 @@ `_ """ -# Authors: Christian Lorentzen -# Roman Yurchak -# Olivier Grisel -# License: BSD 3 clause - # %% from functools import partial diff --git a/sklearn/linear_model/_glm/__init__.py b/sklearn/linear_model/_glm/__init__.py index 1b82bbd77bcf9..199b938b023d0 100644 --- a/sklearn/linear_model/_glm/__init__.py +++ b/sklearn/linear_model/_glm/__init__.py @@ -1,5 +1,5 @@ -# License: BSD 3 clause - +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause from .glm import ( GammaRegressor, PoissonRegressor, diff --git a/sklearn/linear_model/_glm/_newton_solver.py b/sklearn/linear_model/_glm/_newton_solver.py index 20df35e6b48c2..b2be604d931c5 100644 --- a/sklearn/linear_model/_glm/_newton_solver.py +++ b/sklearn/linear_model/_glm/_newton_solver.py @@ -1,10 +1,9 @@ +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause """ Newton solver for Generalized Linear Models """ -# Author: Christian Lorentzen -# License: BSD 3 clause - import warnings from abc import ABC, abstractmethod diff --git a/sklearn/linear_model/_glm/glm.py b/sklearn/linear_model/_glm/glm.py index 4cac889a4da51..14caa4fd733c2 100644 --- a/sklearn/linear_model/_glm/glm.py +++ b/sklearn/linear_model/_glm/glm.py @@ -1,11 +1,9 @@ +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause """ Generalized Linear Models with Exponential Dispersion Family """ -# Author: Christian Lorentzen -# some parts and tricks stolen from other sklearn files. -# License: BSD 3 clause - from numbers import Integral, Real import numpy as np diff --git a/sklearn/linear_model/_glm/tests/__init__.py b/sklearn/linear_model/_glm/tests/__init__.py index 588cf7e93eef0..67dd18fb94b59 100644 --- a/sklearn/linear_model/_glm/tests/__init__.py +++ b/sklearn/linear_model/_glm/tests/__init__.py @@ -1 +1,2 @@ -# License: BSD 3 clause +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause diff --git a/sklearn/linear_model/_glm/tests/test_glm.py b/sklearn/linear_model/_glm/tests/test_glm.py index 26f6bdc08d254..7f6ec64c15ad4 100644 --- a/sklearn/linear_model/_glm/tests/test_glm.py +++ b/sklearn/linear_model/_glm/tests/test_glm.py @@ -1,7 +1,5 @@ -# Authors: Christian Lorentzen -# -# License: BSD 3 clause - +# Authors: The scikit-learn developers +# SPDX-License-Identifier: BSD-3-Clause import itertools import warnings from functools import partial From 61281cf61c9fc94900fbfa280a91d3b5c0da4abb Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Mon, 13 May 2024 10:38:29 +0200 Subject: [PATCH 0513/1641] FEA metadata routing for `StackingClassifier` and `StackingRegressor` (#28701) Co-authored-by: Adrin Jalali Co-authored-by: Omar Salman --- doc/metadata_routing.rst | 6 +- doc/modules/ensemble.rst | 4 +- doc/whats_new/v1.6.rst | 14 +- sklearn/ensemble/_base.py | 2 +- sklearn/ensemble/_stacking.py | 228 +++++++++++++++--- sklearn/ensemble/tests/test_stacking.py | 120 +++++++++ sklearn/tests/metadata_routing_common.py | 13 +- .../test_metaestimators_metadata_routing.py | 4 - 8 files changed, 335 insertions(+), 56 deletions(-) diff --git a/doc/metadata_routing.rst b/doc/metadata_routing.rst index d319b311dddd7..0ada6ef6c4dbe 100644 --- a/doc/metadata_routing.rst +++ b/doc/metadata_routing.rst @@ -277,6 +277,8 @@ Meta-estimators and functions supporting metadata routing: - :class:`sklearn.calibration.CalibratedClassifierCV` - :class:`sklearn.compose.ColumnTransformer` - :class:`sklearn.covariance.GraphicalLassoCV` +- :class:`sklearn.ensemble.StackingClassifier` +- :class:`sklearn.ensemble.StackingRegressor` - :class:`sklearn.ensemble.VotingClassifier` - :class:`sklearn.ensemble.VotingRegressor` - :class:`sklearn.ensemble.BaggingClassifier` @@ -316,13 +318,9 @@ Meta-estimators and tools not supporting metadata routing yet: - :class:`sklearn.compose.TransformedTargetRegressor` - :class:`sklearn.ensemble.AdaBoostClassifier` - :class:`sklearn.ensemble.AdaBoostRegressor` -- :class:`sklearn.ensemble.StackingClassifier` -- :class:`sklearn.ensemble.StackingRegressor` - :class:`sklearn.feature_selection.RFE` - :class:`sklearn.feature_selection.RFECV` - :class:`sklearn.feature_selection.SequentialFeatureSelector` -- :class:`sklearn.impute.IterativeImputer` -- :class:`sklearn.linear_model.RANSACRegressor` - :class:`sklearn.model_selection.learning_curve` - :class:`sklearn.model_selection.permutation_test_score` - :class:`sklearn.model_selection.validation_curve` diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 4237d023973f7..58c9127850f6a 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -1581,8 +1581,8 @@ availability, tested in the order of preference: `predict_proba`, `decision_function` and `predict`. A :class:`StackingRegressor` and :class:`StackingClassifier` can be used as -any other regressor or classifier, exposing a `predict`, `predict_proba`, and -`decision_function` methods, e.g.:: +any other regressor or classifier, exposing a `predict`, `predict_proba`, or +`decision_function` method, e.g.:: >>> y_pred = reg.predict(X_test) >>> from sklearn.metrics import r2_score diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 6eda6717b3d1b..5000866b59c03 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -38,7 +38,19 @@ See :ref:`array_api` for more details. **Classes:** -- +- + +Metadata Routing +---------------- + +The following models now support metadata routing in one or more of their +methods. Refer to the :ref:`Metadata Routing User Guide ` for +more details. + +- |Feature| :class:`ensemble.StackingClassifier` and + :class:`ensemble.StackingRegressor` now support metadata routing and pass + ``**fit_params`` to the underlying estimators via their `fit` methods. + :pr:`28701` by :user:`Stefanie Senger `. Changelog --------- diff --git a/sklearn/ensemble/_base.py b/sklearn/ensemble/_base.py index 5483206de51d5..18079b02c49f1 100644 --- a/sklearn/ensemble/_base.py +++ b/sklearn/ensemble/_base.py @@ -21,7 +21,7 @@ def _fit_single_estimator( estimator, X, y, fit_params, message_clsname=None, message=None ): """Private function used to fit an estimator within a job.""" - # TODO(SLEP6): remove if condition for unrouted sample_weight when metadata + # TODO(SLEP6): remove if-condition for unrouted sample_weight when metadata # routing can't be disabled. if not _routing_enabled() and "sample_weight" in fit_params: try: diff --git a/sklearn/ensemble/_stacking.py b/sklearn/ensemble/_stacking.py index a18803d507ffa..9dc93b6c35975 100644 --- a/sklearn/ensemble/_stacking.py +++ b/sklearn/ensemble/_stacking.py @@ -27,8 +27,11 @@ from ..utils._estimator_html_repr import _VisualBlock from ..utils._param_validation import HasMethods, StrOptions from ..utils.metadata_routing import ( - _raise_for_unsupported_routing, - _RoutingNotSupportedMixin, + MetadataRouter, + MethodMapping, + _raise_for_params, + _routing_enabled, + process_routing, ) from ..utils.metaestimators import available_if from ..utils.multiclass import check_classification_targets, type_of_target @@ -36,6 +39,7 @@ from ..utils.validation import ( _check_feature_names_in, _check_response_method, + _deprecate_positional_args, check_is_fitted, column_or_1d, ) @@ -171,7 +175,7 @@ def _method_name(name, estimator, method): # estimators in Stacking*.estimators are not validated yet prefer_skip_nested_validation=False ) - def fit(self, X, y, sample_weight=None): + def fit(self, X, y, **fit_params): """Fit the estimators. Parameters @@ -183,14 +187,13 @@ def fit(self, X, y, sample_weight=None): y : array-like of shape (n_samples,) Target values. - sample_weight : array-like of shape (n_samples,) or default=None - Sample weights. If None, then samples are equally weighted. - Note that this is supported only if all underlying estimators - support sample weights. + **fit_params : dict + Dict of metadata, potentially containing sample_weight as a + key-value pair. If sample_weight is not present, then samples are + equally weighted. Note that sample_weight is supported only if all + underlying estimators support sample weights. - .. versionchanged:: 0.23 - when not None, `sample_weight` is passed to all underlying - estimators + .. versionadded:: 1.6 Returns ------- @@ -201,16 +204,19 @@ def fit(self, X, y, sample_weight=None): names, all_estimators = self._validate_estimators() self._validate_final_estimator() - # FIXME: when adding support for metadata routing in Stacking*. - # This is a hotfix to make StackingClassifier and StackingRegressor - # pass the tests despite not supporting metadata routing but sharing - # the same base class with VotingClassifier and VotingRegressor. - fit_params = dict() - if sample_weight is not None: - fit_params["sample_weight"] = sample_weight - stack_method = [self.stack_method] * len(all_estimators) + if _routing_enabled(): + routed_params = process_routing(self, "fit", **fit_params) + else: + routed_params = Bunch() + for name in names: + routed_params[name] = Bunch(fit={}) + if "sample_weight" in fit_params: + routed_params[name].fit["sample_weight"] = fit_params[ + "sample_weight" + ] + if self.cv == "prefit": self.estimators_ = [] for estimator in all_estimators: @@ -222,8 +228,10 @@ def fit(self, X, y, sample_weight=None): # base estimators will be used in transform, predict, and # predict_proba. They are exposed publicly. self.estimators_ = Parallel(n_jobs=self.n_jobs)( - delayed(_fit_single_estimator)(clone(est), X, y, fit_params) - for est in all_estimators + delayed(_fit_single_estimator)( + clone(est), X, y, routed_params[name]["fit"] + ) + for name, est in zip(names, all_estimators) if est != "drop" ) @@ -269,10 +277,10 @@ def fit(self, X, y, sample_weight=None): cv=deepcopy(cv), method=meth, n_jobs=self.n_jobs, - params=fit_params, + params=routed_params[name]["fit"], verbose=self.verbose, ) - for est, meth in zip(all_estimators, self.stack_method_) + for name, est, meth in zip(names, all_estimators, self.stack_method_) if est != "drop" ) @@ -370,7 +378,7 @@ def predict(self, X, **predict_params): Parameters to the `predict` called by the `final_estimator`. Note that this may be used to return uncertainties from some estimators with `return_std` or `return_cov`. Be aware that it will only - accounts for uncertainty in the final estimator. + account for uncertainty in the final estimator. Returns ------- @@ -392,8 +400,43 @@ def _sk_visual_block_with_final_estimator(self, final_estimator): ) return _VisualBlock("serial", (parallel, final_block), dash_wrapped=False) + def get_metadata_routing(self): + """Get metadata routing of this object. + + Please check :ref:`User Guide ` on how the routing + mechanism works. + + .. versionadded:: 1.6 + + Returns + ------- + routing : MetadataRouter + A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating + routing information. + """ + router = MetadataRouter(owner=self.__class__.__name__) + + # `self.estimators` is a list of (name, est) tuples + for name, estimator in self.estimators: + router.add( + **{name: estimator}, + method_mapping=MethodMapping().add(callee="fit", caller="fit"), + ) + + try: + final_estimator_ = self.final_estimator_ + except AttributeError: + final_estimator_ = self.final_estimator + + router.add( + final_estimator_=final_estimator_, + method_mapping=MethodMapping().add(caller="predict", callee="predict"), + ) + + return router + -class StackingClassifier(_RoutingNotSupportedMixin, ClassifierMixin, _BaseStacking): +class StackingClassifier(ClassifierMixin, _BaseStacking): """Stack of estimators with a final classifier. Stacked generalization consists in stacking the output of individual @@ -528,7 +571,7 @@ class StackingClassifier(_RoutingNotSupportedMixin, ClassifierMixin, _BaseStacki ----- When `predict_proba` is used by each estimator (i.e. most of the time for `stack_method='auto'` or specifically for `stack_method='predict_proba'`), - The first column predicted by each estimator will be dropped in the case + the first column predicted by each estimator will be dropped in the case of a binary classification problem. Indeed, both feature will be perfectly collinear. @@ -629,7 +672,11 @@ def _validate_estimators(self): return names, estimators - def fit(self, X, y, sample_weight=None): + # TODO(1.7): remove `sample_weight` from the signature after deprecation + # cycle; pop it from `fit_params` before the `_raise_for_params` check and + # reinsert afterwards, for backwards compatibility + @_deprecate_positional_args(version="1.7") + def fit(self, X, y, *, sample_weight=None, **fit_params): """Fit the estimators. Parameters @@ -649,12 +696,22 @@ def fit(self, X, y, sample_weight=None): Note that this is supported only if all underlying estimators support sample weights. + **fit_params : dict + Parameters to pass to the underlying estimators. + + .. versionadded:: 1.6 + + Only available if `enable_metadata_routing=True`, which can be + set by using ``sklearn.set_config(enable_metadata_routing=True)``. + See :ref:`Metadata Routing User Guide ` for + more details. + Returns ------- self : object Returns a fitted instance of estimator. """ - _raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight) + _raise_for_params(fit_params, self, "fit") check_classification_targets(y) if type_of_target(y) == "multilabel-indicator": self._label_encoder = [LabelEncoder().fit(yk) for yk in y.T] @@ -669,7 +726,10 @@ def fit(self, X, y, sample_weight=None): self._label_encoder = LabelEncoder().fit(y) self.classes_ = self._label_encoder.classes_ y_encoded = self._label_encoder.transform(y) - return super().fit(X, y_encoded, sample_weight) + + if sample_weight is not None: + fit_params["sample_weight"] = sample_weight + return super().fit(X, y_encoded, **fit_params) @available_if(_estimator_has("predict")) def predict(self, X, **predict_params): @@ -685,14 +745,33 @@ def predict(self, X, **predict_params): Parameters to the `predict` called by the `final_estimator`. Note that this may be used to return uncertainties from some estimators with `return_std` or `return_cov`. Be aware that it will only - accounts for uncertainty in the final estimator. + account for uncertainty in the final estimator. + + - If `enable_metadata_routing=False` (default): + Parameters directly passed to the `predict` method of the + `final_estimator`. + + - If `enable_metadata_routing=True`: Parameters safely routed to + the `predict` method of the `final_estimator`. See :ref:`Metadata + Routing User Guide ` for more details. + + .. versionchanged:: 1.6 + `**predict_params` can be routed via metadata routing API. Returns ------- y_pred : ndarray of shape (n_samples,) or (n_samples, n_output) Predicted targets. """ - y_pred = super().predict(X, **predict_params) + if _routing_enabled(): + routed_params = process_routing(self, "predict", **predict_params) + else: + # TODO(SLEP6): remove when metadata routing cannot be disabled. + routed_params = Bunch() + routed_params.final_estimator_ = Bunch(predict={}) + routed_params.final_estimator_.predict = predict_params + + y_pred = super().predict(X, **routed_params.final_estimator_["predict"]) if isinstance(self._label_encoder, list): # Handle the multilabel-indicator case y_pred = np.array( @@ -775,7 +854,7 @@ def _sk_visual_block_(self): return super()._sk_visual_block_with_final_estimator(final_estimator) -class StackingRegressor(_RoutingNotSupportedMixin, RegressorMixin, _BaseStacking): +class StackingRegressor(RegressorMixin, _BaseStacking): """Stack of estimators with a final regressor. Stacked generalization consists in stacking the output of individual @@ -944,7 +1023,11 @@ def _validate_final_estimator(self): ) ) - def fit(self, X, y, sample_weight=None): + # TODO(1.7): remove `sample_weight` from the signature after deprecation + # cycle; pop it from `fit_params` before the `_raise_for_params` check and + # reinsert afterwards, for backwards compatibility + @_deprecate_positional_args(version="1.7") + def fit(self, X, y, *, sample_weight=None, **fit_params): """Fit the estimators. Parameters @@ -961,14 +1044,26 @@ def fit(self, X, y, sample_weight=None): Note that this is supported only if all underlying estimators support sample weights. + **fit_params : dict + Parameters to pass to the underlying estimators. + + .. versionadded:: 1.6 + + Only available if `enable_metadata_routing=True`, which can be + set by using ``sklearn.set_config(enable_metadata_routing=True)``. + See :ref:`Metadata Routing User Guide ` for + more details. + Returns ------- self : object Returns a fitted instance. """ - _raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight) + _raise_for_params(fit_params, self, "fit") y = column_or_1d(y, warn=True) - return super().fit(X, y, sample_weight) + if sample_weight is not None: + fit_params["sample_weight"] = sample_weight + return super().fit(X, y, **fit_params) def transform(self, X): """Return the predictions for X for each estimator. @@ -986,7 +1081,11 @@ def transform(self, X): """ return self._transform(X) - def fit_transform(self, X, y, sample_weight=None): + # TODO(1.7): remove `sample_weight` from the signature after deprecation + # cycle; pop it from `fit_params` before the `_raise_for_params` check and + # reinsert afterwards, for backwards compatibility + @_deprecate_positional_args(version="1.7") + def fit_transform(self, X, y, *, sample_weight=None, **fit_params): """Fit the estimators and return the predictions for X for each estimator. Parameters @@ -1003,12 +1102,69 @@ def fit_transform(self, X, y, sample_weight=None): Note that this is supported only if all underlying estimators support sample weights. + **fit_params : dict + Parameters to pass to the underlying estimators. + + .. versionadded:: 1.6 + + Only available if `enable_metadata_routing=True`, which can be + set by using ``sklearn.set_config(enable_metadata_routing=True)``. + See :ref:`Metadata Routing User Guide ` for + more details. + Returns ------- y_preds : ndarray of shape (n_samples, n_estimators) Prediction outputs for each estimator. """ - return super().fit_transform(X, y, sample_weight=sample_weight) + _raise_for_params(fit_params, self, "fit") + if sample_weight is not None: + fit_params["sample_weight"] = sample_weight + return super().fit_transform(X, y, **fit_params) + + @available_if(_estimator_has("predict")) + def predict(self, X, **predict_params): + """Predict target for X. + + Parameters + ---------- + X : {array-like, sparse matrix} of shape (n_samples, n_features) + Training vectors, where `n_samples` is the number of samples and + `n_features` is the number of features. + + **predict_params : dict of str -> obj + Parameters to the `predict` called by the `final_estimator`. Note + that this may be used to return uncertainties from some estimators + with `return_std` or `return_cov`. Be aware that it will only + account for uncertainty in the final estimator. + + - If `enable_metadata_routing=False` (default): + Parameters directly passed to the `predict` method of the + `final_estimator`. + + - If `enable_metadata_routing=True`: Parameters safely routed to + the `predict` method of the `final_estimator`. See :ref:`Metadata + Routing User Guide ` for more details. + + .. versionchanged:: 1.6 + `**predict_params` can be routed via metadata routing API. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) or (n_samples, n_output) + Predicted targets. + """ + if _routing_enabled(): + routed_params = process_routing(self, "predict", **predict_params) + else: + # TODO(SLEP6): remove when metadata routing cannot be disabled. + routed_params = Bunch() + routed_params.final_estimator_ = Bunch(predict={}) + routed_params.final_estimator_.predict = predict_params + + y_pred = super().predict(X, **routed_params.final_estimator_["predict"]) + + return y_pred def _sk_visual_block_(self): # If final_estimator's default changes then this should be diff --git a/sklearn/ensemble/tests/test_stacking.py b/sklearn/ensemble/tests/test_stacking.py index 300b011f661d4..1c038cd469216 100644 --- a/sklearn/ensemble/tests/test_stacking.py +++ b/sklearn/ensemble/tests/test_stacking.py @@ -3,6 +3,7 @@ # Authors: Guillaume Lemaitre # License: BSD 3 clause +import re from unittest.mock import Mock import numpy as np @@ -38,6 +39,12 @@ from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import scale from sklearn.svm import SVC, LinearSVC, LinearSVR +from sklearn.tests.metadata_routing_common import ( + ConsumingClassifier, + ConsumingRegressor, + _Registry, + check_recorded_metadata, +) from sklearn.utils._mocking import CheckingClassifier from sklearn.utils._testing import ( assert_allclose, @@ -888,3 +895,116 @@ def test_stacking_final_estimator_attribute_error(): clf.fit(X, y).decision_function(X) assert isinstance(exec_info.value.__cause__, AttributeError) assert inner_msg in str(exec_info.value.__cause__) + + +# Metadata Routing Tests +# ====================== + + +@pytest.mark.parametrize( + "Estimator, Child", + [ + (StackingClassifier, ConsumingClassifier), + (StackingRegressor, ConsumingRegressor), + ], +) +def test_routing_passed_metadata_not_supported(Estimator, Child): + """Test that the right error message is raised when metadata is passed while + not supported when `enable_metadata_routing=False`.""" + + with pytest.raises( + ValueError, match="is only supported if enable_metadata_routing=True" + ): + Estimator(["clf", Child()]).fit( + X_iris, y_iris, sample_weight=[1, 1, 1, 1, 1], metadata="a" + ) + + +@pytest.mark.usefixtures("enable_slep006") +@pytest.mark.parametrize( + "Estimator, Child", + [ + (StackingClassifier, ConsumingClassifier), + (StackingRegressor, ConsumingRegressor), + ], +) +def test_get_metadata_routing_without_fit(Estimator, Child): + # Test that metadata_routing() doesn't raise when called before fit. + est = Estimator([("sub_est", Child())]) + est.get_metadata_routing() + + +@pytest.mark.usefixtures("enable_slep006") +@pytest.mark.parametrize( + "Estimator, Child", + [ + (StackingClassifier, ConsumingClassifier), + (StackingRegressor, ConsumingRegressor), + ], +) +@pytest.mark.parametrize( + "prop, prop_value", [("sample_weight", np.ones(X_iris.shape[0])), ("metadata", "a")] +) +def test_metadata_routing_for_stacking_estimators(Estimator, Child, prop, prop_value): + """Test that metadata is routed correctly for Stacking*.""" + + est = Estimator( + [ + ( + "sub_est1", + Child(registry=_Registry()).set_fit_request(**{prop: True}), + ), + ( + "sub_est2", + Child(registry=_Registry()).set_fit_request(**{prop: True}), + ), + ], + final_estimator=Child(registry=_Registry()).set_predict_request(**{prop: True}), + ) + + est.fit(X_iris, y_iris, **{prop: prop_value}) + est.fit_transform(X_iris, y_iris, **{prop: prop_value}) + + est.predict(X_iris, **{prop: prop_value}) + + for estimator in est.estimators: + # access sub-estimator in (name, est) with estimator[1]: + registry = estimator[1].registry + assert len(registry) + for sub_est in registry: + check_recorded_metadata( + obj=sub_est, method="fit", split_params=(prop), **{prop: prop_value} + ) + # access final_estimator: + registry = est.final_estimator_.registry + assert len(registry) + check_recorded_metadata( + obj=registry[-1], method="predict", split_params=(prop), **{prop: prop_value} + ) + + +@pytest.mark.usefixtures("enable_slep006") +@pytest.mark.parametrize( + "Estimator, Child", + [ + (StackingClassifier, ConsumingClassifier), + (StackingRegressor, ConsumingRegressor), + ], +) +def test_metadata_routing_error_for_stacking_estimators(Estimator, Child): + """Test that the right error is raised when metadata is not requested.""" + sample_weight, metadata = np.ones(X_iris.shape[0]), "a" + + est = Estimator([("sub_est", Child())]) + + error_message = ( + "[sample_weight, metadata] are passed but are not explicitly set as requested" + f" or not requested for {Child.__name__}.fit" + ) + + with pytest.raises(ValueError, match=re.escape(error_message)): + est.fit(X_iris, y_iris, sample_weight=sample_weight, metadata=metadata) + + +# End of Metadata Routing Tests +# ============================= diff --git a/sklearn/tests/metadata_routing_common.py b/sklearn/tests/metadata_routing_common.py index 889524bc05ddb..5091569e434a3 100644 --- a/sklearn/tests/metadata_routing_common.py +++ b/sklearn/tests/metadata_routing_common.py @@ -257,16 +257,13 @@ def predict(self, X, sample_weight="default", metadata="default"): record_metadata_not_default( self, "predict", sample_weight=sample_weight, metadata=metadata ) - return np.zeros(shape=(len(X),)) + return np.zeros(shape=(len(X),), dtype="int8") def predict_proba(self, X, sample_weight="default", metadata="default"): - pass # pragma: no cover - - # uncomment when needed - # record_metadata_not_default( - # self, "predict_proba", sample_weight=sample_weight, metadata=metadata - # ) - # return np.asarray([[0.0, 1.0]] * len(X)) + record_metadata_not_default( + self, "predict_proba", sample_weight=sample_weight, metadata=metadata + ) + return np.asarray([[0.0, 1.0]] * len(X)) def predict_log_proba(self, X, sample_weight="default", metadata="default"): pass # pragma: no cover diff --git a/sklearn/tests/test_metaestimators_metadata_routing.py b/sklearn/tests/test_metaestimators_metadata_routing.py index aa6af5bd09aac..38168f3f0261f 100644 --- a/sklearn/tests/test_metaestimators_metadata_routing.py +++ b/sklearn/tests/test_metaestimators_metadata_routing.py @@ -14,8 +14,6 @@ AdaBoostRegressor, BaggingClassifier, BaggingRegressor, - StackingClassifier, - StackingRegressor, ) from sklearn.exceptions import UnsetMetadataPassedError from sklearn.experimental import ( @@ -408,8 +406,6 @@ def enable_slep006(): RFECV(ConsumingClassifier()), SelfTrainingClassifier(ConsumingClassifier()), SequentialFeatureSelector(ConsumingClassifier()), - StackingClassifier(ConsumingClassifier()), - StackingRegressor(ConsumingRegressor()), TransformedTargetRegressor(), ] From c3d4c5165e55871d6c2d0202350d10111db42d2f Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Mon, 13 May 2024 18:49:23 +1000 Subject: [PATCH 0514/1641] DOC Update warm start example in ensemble user guide (#28998) --- doc/modules/ensemble.rst | 17 ++++++++++++++++- 1 file changed, 16 insertions(+), 1 deletion(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 58c9127850f6a..8cee8c8d403c7 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -603,7 +603,22 @@ fitted model. :: - >>> _ = est.set_params(n_estimators=200, warm_start=True) # set warm_start and new nr of trees + >>> import numpy as np + >>> from sklearn.metrics import mean_squared_error + >>> from sklearn.datasets import make_friedman1 + >>> from sklearn.ensemble import GradientBoostingRegressor + + >>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0) + >>> X_train, X_test = X[:200], X[200:] + >>> y_train, y_test = y[:200], y[200:] + >>> est = GradientBoostingRegressor( + ... n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, + ... loss='squared_error' + ... ) + >>> est = est.fit(X_train, y_train) # fit with 100 trees + >>> mean_squared_error(y_test, est.predict(X_test)) + 5.00... + >>> _ = est.set_params(n_estimators=200, warm_start=True) # set warm_start and increase num of trees >>> _ = est.fit(X_train, y_train) # fit additional 100 trees to est >>> mean_squared_error(y_test, est.predict(X_test)) 3.84... From c8070926d3ba8d41ca38b34039a8ece901ab1fbf Mon Sep 17 00:00:00 2001 From: Christian Veenhuis <124370897+ChVeen@users.noreply.github.com> Date: Mon, 13 May 2024 11:43:52 +0200 Subject: [PATCH 0515/1641] MAINT fix redirected link for `Matthews Correlation Coefficient` (#28991) --- sklearn/metrics/_classification.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py index b68f1593e317e..1fb4c1d694be0 100644 --- a/sklearn/metrics/_classification.py +++ b/sklearn/metrics/_classification.py @@ -967,8 +967,8 @@ def matthews_corrcoef(y_true, y_pred, *, sample_weight=None): accuracy of prediction algorithms for classification: an overview. <10.1093/bioinformatics/16.5.412>` - .. [2] `Wikipedia entry for the Matthews Correlation Coefficient - `_. + .. [2] `Wikipedia entry for the Matthews Correlation Coefficient (phi coefficient) + `_. .. [3] `Gorodkin, (2004). Comparing two K-category assignments by a K-category correlation coefficient From 45ca0a764b298d205567d7fb00c48c977caf54b8 Mon Sep 17 00:00:00 2001 From: Ivan Wiryadi <44887783+strivn@users.noreply.github.com> Date: Mon, 13 May 2024 17:01:45 +0700 Subject: [PATCH 0516/1641] DOC Add links to digit denoising examples in docs and the user guide (#28929) --- doc/modules/decomposition.rst | 2 ++ sklearn/decomposition/_kernel_pca.py | 8 ++++++-- 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index e8241a92cfc3b..e34818a322c7d 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -291,6 +291,8 @@ prediction (kernel dependency estimation). :class:`KernelPCA` supports both .. topic:: Examples: * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py` + * :ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py` + .. topic:: References: diff --git a/sklearn/decomposition/_kernel_pca.py b/sklearn/decomposition/_kernel_pca.py index edfd49c2e87a0..0f45bc7c9239c 100644 --- a/sklearn/decomposition/_kernel_pca.py +++ b/sklearn/decomposition/_kernel_pca.py @@ -30,7 +30,7 @@ class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): - """Kernel Principal component analysis (KPCA) [1]_. + """Kernel Principal Component Analysis (KPCA) [1]_. Non-linear dimensionality reduction through the use of kernels (see :ref:`metrics`). @@ -41,9 +41,13 @@ class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator components to extract. It can also use a randomized truncated SVD by the method proposed in [3]_, see `eigen_solver`. - For a usage example, see + For a usage example and comparison between + Principal Components Analysis (PCA) and its kernelized version (KPCA), see :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`. + For a usage example in denoising images using KPCA, see + :ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py`. + Read more in the :ref:`User Guide `. Parameters From e2c3793f9517c3ebcb08a0e6bb1a30c14d87bb8a Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 13 May 2024 12:22:35 +0200 Subject: [PATCH 0517/1641] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#29003) --- .../pymin_conda_forge_linux-aarch64_conda.lock | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 585a75c078d8c..660bc9de9ecda 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -4,25 +4,25 @@ @EXPLICIT https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2024.2.2-hcefe29a_0.conda#57c226edb90c4e973b9b7503537dd339 https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.40-hba4e955_0.conda#b55c1cb33c63d23b542fa53f24541e56 -https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-13.2.0-h3f4de04_6.conda#dfe2ae16945dc08f163307a6bb3e70e0 +https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-13.2.0-h3f4de04_7.conda#2a54872c7fab2db99b0074212d8efe64 https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.9-4_cp39.conda#c191905a08694e4a5cb1238e90233878 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#98a1185182fec3c434069fa74e6473d6 -https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-13.2.0-he277a41_6.conda#5ca8651e635390d41004c847f03c2d3c +https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-13.2.0-he277a41_7.conda#01c5b27ce46f50abab2dc8454842c792 https://conda.anaconda.org/conda-forge/linux-aarch64/bzip2-1.0.8-h31becfc_5.conda#a64e35f01e0b7a2a152eca87d33b9c87 https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2#1a0ffc65e03ce81559dbcb0695ad1476 https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h31becfc_1.conda#1b219fd801eddb7a94df5bd001053ad9 https://conda.anaconda.org/conda-forge/linux-aarch64/libdeflate-1.20-h31becfc_0.conda#018592a3d691662f451f89d0de474a20 https://conda.anaconda.org/conda-forge/linux-aarch64/libffi-3.4.2-h3557bc0_5.tar.bz2#dddd85f4d52121fab0a8b099c5e06501 -https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-13.2.0-h87d9d71_6.conda#a3fdb6378e561e73c735ec30207daa15 +https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran5-13.2.0-h87d9d71_7.conda#423eb7de085dd6b46928723edf5f8767 https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda#ed24e702928be089d9ba3f05618515c6 https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda#c14f32510f694e3185704d89967ec422 https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda#000e30b09db0b7c775b21695dff30969 https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda#5fd7ab3e5f382c70607fbac6335e6e19 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda#b4df5d7d4b63579d081fd3a4cf99740e https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.2.13-h31becfc_5.conda#b213aa87eea9491ef7b129179322e955 -https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.4.20240210-h0425590_0.conda#c1a1612ddaee95c83abfa0b2ec858626 -https://conda.anaconda.org/conda-forge/linux-aarch64/ninja-1.12.0-h2a328a1_0.conda#c0f3f508baf69c8db8142466beaa0ccc +https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-h0425590_0.conda#38362af7bfac0efef69675acee564458 +https://conda.anaconda.org/conda-forge/linux-aarch64/ninja-1.12.1-h70be974_0.conda#216635cea46498d8045c7cf0f03eaf72 https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.3.0-h31becfc_0.conda#36ca60a3afaf2ea2c460daeebd67430e https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-hb9de7d4_1001.tar.bz2#d0183ec6ce0b5aaa3486df25fa5f0ded https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h31becfc_0.conda#13de34f69cb73165dbe08c1e9148bedb @@ -30,7 +30,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.3-h3557bc https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2#83baad393a31d59c20b63ba4da6592df https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h31becfc_1.conda#8db7cff89510bec0b863a0a8ee6a7bce https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlienc-1.1.0-h31becfc_1.conda#ad3d3a826b5848d99936e4466ebbaa26 -https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran-ng-13.2.0-he9431aa_6.conda#c8ab19934c000ea8cc9cf1fc6c2aa83d +https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran-ng-13.2.0-he9431aa_7.conda#d714db6ba9d67d55d21cf96316714ec8 https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.43-h194ca79_0.conda#1123e504d9254dd9494267ab9aba95f0 https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.45.3-h194ca79_0.conda#fb35b8afbe9e92467ac7b5608d60b775 https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.15-h2a766a3_0.conda#eb3d8c8170e3d03f2564ed2024aa00c8 @@ -42,7 +42,7 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2. https://conda.anaconda.org/conda-forge/linux-aarch64/libhiredis-1.0.2-h05efe27_0.tar.bz2#a87f068744fd20334cd41489eb163bee https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.27-pthreads_h5a5ec62_0.conda#ffecca8f4f31cd50b92c0e6e6bfe4416 https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.6.0-hf980d43_3.conda#b6f3abf5726ae33094bee238b4eb492f -https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-18.1.4-h767c9be_0.conda#2572130272fb725d825c9b52e5ce096b +https://conda.anaconda.org/conda-forge/linux-aarch64/llvm-openmp-18.1.5-h767c9be_0.conda#a9c2771c36671707f1992e4d0c32aa54 https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.9.19-h4ac3b42_0_cpython.conda#1501507cd9451472ec8900d587ce872f https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-1.1.0-h31becfc_1.conda#e41f5862ac746428407f3fd44d2ed01f https://conda.anaconda.org/conda-forge/linux-aarch64/ccache-4.9.1-h6552966_0.conda#758b202f61f6bbfd2c6adf0fde043276 From 0967ec4f5ebfea1b046d6d2012b14df24193c7d0 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 13 May 2024 12:23:28 +0200 Subject: [PATCH 0518/1641] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#29005) --- ...latest_conda_forge_mkl_linux-64_conda.lock | 26 ++++----- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 38 ++++++------ ...test_conda_mkl_no_openmp_osx-64_conda.lock | 10 ++-- ...st_pip_openblas_pandas_linux-64_conda.lock | 10 ++-- ...onda_defaults_openblas_linux-64_conda.lock | 14 ++--- .../pymin_conda_forge_mkl_win-64_conda.lock | 8 +-- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 26 ++++----- build_tools/circle/doc_linux-64_conda.lock | 58 +++++++++---------- .../doc_min_dependencies_linux-64_conda.lock | 50 ++++++++-------- 9 files changed, 120 insertions(+), 120 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 932fc6ad670f7..3d895fda71bc3 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -9,13 +9,13 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h55db66e_0.conda#10569984e7db886e4f1abc2b47ad79a1 -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_6.conda#2f18345bbc433c8a1ed887d7161e86a6 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_7.conda#53ebd4c833fa01cb2c6353e99f905406 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda#d786502c97404c94d7d58d258a445a65 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_6.conda#4398809ac84d0b8c28beebaaa83277f5 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_7.conda#72ec1b1b04c4d15d4204ece1ecea5978 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.11-hd590300_1.conda#0bb492cca54017ea314b809b1ee3a176 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.0-hd590300_0.conda#71b89db63b5b504e7afc8ad901172e1e @@ -37,7 +37,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172b https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h43f5ff8_6.conda#e54a5ddc67e673f9105cf2a2e9c070b0 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-hca663fb_7.conda#c0bd771f09a326fdcd95a60b617795bf https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 @@ -51,8 +51,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda#f36c115f1ee199da648e0597ec2047ad https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.6-h59595ed_0.conda#9160cdeb523a1b20cf8d2a0bf821f45d -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4.20240210-h59595ed_0.conda#97da8860a0da5413c7c98a3b3838a645 -https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.0-h00ab1b0_0.conda#b048701d52e7cbb5f59ddd4d3b17bbf5 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.0-hd590300_0.conda#c0f3abb4a16477208bbd43a39bd56f18 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 @@ -83,7 +83,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_6.conda#3666a850342f8f3be88f9a93d948d027 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_7.conda#1b84f26d9f4f6026e179e7805d5a15cd https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-3.21.12-hfc55251_2.conda#e3a7d4ba09b8dc939b98fef55f539220 @@ -106,7 +106,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.0.9-h166bdaf_9.cond https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd95826dbd331ed1be26bdf401432844 -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.0-hf2295e7_6.conda#9342e7c44c38bea649490f72d92c382d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.54.3-hb20ce57_0.conda#7af7c59ab24db007dfd82e0a3a343f66 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h2fb2949_1000.conda#7e3726e647a619c6ce5939014dfde86d @@ -114,9 +114,9 @@ https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.cond https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.18.1-h8fd135c_2.conda#bbf65f7688512872f063810623b755dc https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.4-ha31de31_0.conda#48b9991e66abc186a7ad7975e97bd4d0 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.5-ha31de31_0.conda#b923cdb6e567ada84f991ffcc5848afb https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.3.0-hca2cd23_4.conda#1b50eebe2a738a3146c154d2eceaa8b6 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.98-h1d7d5a4_0.conda#54b56c2fdf973656b748e0378900ec13 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.100-hca3bf56_0.conda#949c4a82290ee58b3c970cef4bcfd4ad https://conda.anaconda.org/conda-forge/linux-64/orc-1.9.0-h2f23424_1.conda#9571eb3eb0f7fe8b59956a7786babbcd https://conda.anaconda.org/conda-forge/linux-64/python-3.11.9-hb806964_0_cpython.conda#ac68acfa8b558ed406c75e98d3428d7b https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda#9bfac7ccd94d54fd21a0501296d60424 @@ -137,7 +137,7 @@ https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#e https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.0-hde27a5a_6.conda#a9d23c02485c5cf055f9ac90eb9c9c63 +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda#a965aeaf060289528a3fbe09326edae2 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py311h9547e67_1.conda#2c65bdf442b0d37aad080c8a4e0d452f https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 @@ -147,7 +147,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.7.1-hca28451_0.conda#755c7f876815003337d2c61ff5d047e5 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda#dfcfd72c7a430d3616763ecfbefe4ca9 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.2-h33b98f1_1.conda#9e49ec2a61d02623b379dc332eb6889d +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 @@ -174,7 +174,7 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.9.3-hb447be9_1.cond https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e https://conda.anaconda.org/conda-forge/linux-64/coverage-7.5.1-py311h331c9d8_0.conda#9f35e13e3b9e05e153b78f42662061f6 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.51.0-py311h459d7ec_0.conda#17e1997cc17c571d5ad27bd0159f616c -https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.0-hf2295e7_6.conda#a1e026a82a562b443845db5614ca568a +https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.2-hf974151_0.conda#d427988dc3dbd0a4c136f52db356cc6a https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda#32d16ad533c59bb0a3c5ffaf16110829 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.12.0-hac9eb74_1.conda#0dee716254497604762957076ac76540 @@ -210,7 +210,7 @@ https://conda.anaconda.org/conda-forge/noarch/array-api-strict-1.1.1-pyhd8ed1ab_ https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 https://conda.anaconda.org/conda-forge/linux-64/libarrow-12.0.1-hb87d912_8_cpu.conda#3f3b11398fe79b578e3c44dd00a44e4a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py311h320fe9a_0.conda#c79e96ece4110fdaf2657c9f8e16f749 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.23-py311h00856b1_0.conda#c000e1629d890ad00bb8c20963028d9f +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.25-py311h00856b1_0.conda#84ad7fa8742f6d34784a961337622c55 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/linux-64/pytorch-1.13.1-cpu_py311h410fd25_1.conda#ddd2fadddf89e3dc3d541a2537fce010 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.0-py311h517d4fd_1.conda#a86b8bea39e292a23b2cf9a750f49ea1 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index 7f3e749a5728d..ce2d5e2c383a3 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -6,7 +6,6 @@ https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-h10d778d_5.conda#6097a https://conda.anaconda.org/conda-forge/osx-64/ca-certificates-2024.2.2-h8857fd0_0.conda#f2eacee8c33c43692f1ccfd33d0f50b1 https://conda.anaconda.org/conda-forge/osx-64/icu-73.2-hf5e326d_0.conda#5cc301d759ec03f28328428e28f65591 https://conda.anaconda.org/conda-forge/osx-64/libbrotlicommon-1.1.0-h0dc2134_1.conda#9e6c31441c9aa24e41ace40d6151aab6 -https://conda.anaconda.org/conda-forge/osx-64/libcxx-16.0.6-hd57cbcb_0.conda#7d6972792161077908b62971802f289a https://conda.anaconda.org/conda-forge/osx-64/libdeflate-1.20-h49d49c5_0.conda#d46104f6a896a0bc6a1d37b88b2edf5c https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.6.2-h73e2aa4_0.conda#3d1d51c8f716d97c864d12f7af329526 https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.2-h0d85af4_5.tar.bz2#ccb34fb14960ad8b125962d3d79b31a9 @@ -16,39 +15,38 @@ https://conda.anaconda.org/conda-forge/osx-64/libjpeg-turbo-3.0.0-h0dc2134_1.con https://conda.anaconda.org/conda-forge/osx-64/libwebp-base-1.4.0-h10d778d_0.conda#b2c0047ea73819d992484faacbbe1c24 https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.2.13-h8a1eda9_5.conda#4a3ad23f6e16f99c04e166767193d700 https://conda.anaconda.org/conda-forge/osx-64/mkl-include-2023.2.0-h6bab518_50500.conda#835abb8ded5e26f23ea6996259c7972e -https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.4.20240210-h73e2aa4_0.conda#50f28c512e9ad78589e3eab34833f762 +https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h5846eda_0.conda#02a888433d165c99bf09784a7b14d900 https://conda.anaconda.org/conda-forge/osx-64/pthread-stubs-0.4-hc929b4f_1001.tar.bz2#addd19059de62181cd11ae8f4ef26084 https://conda.anaconda.org/conda-forge/osx-64/python_abi-3.12-4_cp312.conda#87201ac4314b911b74197e588cca3639 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/osx-64/xorg-libxau-1.0.11-h0dc2134_0.conda#9566b4c29274125b0266d0177b5eb97b https://conda.anaconda.org/conda-forge/osx-64/xorg-libxdmcp-1.1.3-h35c211d_0.tar.bz2#86ac76d6bf1cbb9621943eb3bd9ae36e https://conda.anaconda.org/conda-forge/osx-64/xz-5.2.6-h775f41a_0.tar.bz2#a72f9d4ea13d55d745ff1ed594747f10 -https://conda.anaconda.org/conda-forge/osx-64/gmp-6.3.0-h73e2aa4_1.conda#92f8d748d95d97f92fc26cfac9bb5b6e -https://conda.anaconda.org/conda-forge/osx-64/isl-0.26-imath32_h2e86a7b_101.conda#d06222822a9144918333346f145b68c6 -https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2#f9d6a4c82889d5ecedec1d90eb673c55 https://conda.anaconda.org/conda-forge/osx-64/libbrotlidec-1.1.0-h0dc2134_1.conda#9ee0bab91b2ca579e10353738be36063 https://conda.anaconda.org/conda-forge/osx-64/libbrotlienc-1.1.0-h0dc2134_1.conda#8a421fe09c6187f0eb5e2338a8a8be6d +https://conda.anaconda.org/conda-forge/osx-64/libcxx-17.0.6-h88467a6_0.conda#0fe355aecb8d24b8bc07c763209adbd9 https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.43-h92b6c6a_0.conda#65dcddb15965c9de2c0365cb14910532 https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.45.3-h92b6c6a_0.conda#68e462226209f35182ef66eda0f794ff https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.15-hb7f2c08_0.conda#5513f57e0238c87c12dffedbcc9c1a4a https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.12.6-hc0ae0f7_2.conda#50b997370584f2c83ca0c38e9028eab9 -https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-18.1.4-h2c61cee_0.conda#0619a2dda8b7e25b78abc0b3d872744f -https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.0-h7728843_0.conda#1ac079f6ecddd2c336f3acb7b371851f +https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-18.1.5-h39e0ece_0.conda#ee12a644568269838b91f901b2537425 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.3.0-hd75f5a5_0.conda#eb8c33aa7929a7714eab8b90c1d88afe https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda#f17f77f2acf4d344734bda76829ce14e -https://conda.anaconda.org/conda-forge/osx-64/tapi-1100.0.11-h9ce4665_0.tar.bz2#f9ff42ccf809a21ba6f8607f8de36108 https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-h1abcd95_1.conda#bf830ba5afc507c6232d4ef0fb1a882d https://conda.anaconda.org/conda-forge/osx-64/zlib-1.2.13-h8a1eda9_5.conda#75a8a98b1c4671c5d2897975731da42d https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.6-h915ae27_0.conda#4cb2cd56f039b129bb0e491c1164167e https://conda.anaconda.org/conda-forge/osx-64/brotli-bin-1.1.0-h0dc2134_1.conda#ece565c215adcc47fc1db4e651ee094b https://conda.anaconda.org/conda-forge/osx-64/freetype-2.12.1-h60636b9_2.conda#25152fce119320c980e5470e64834b50 +https://conda.anaconda.org/conda-forge/osx-64/gmp-6.3.0-h73e2aa4_1.conda#92f8d748d95d97f92fc26cfac9bb5b6e +https://conda.anaconda.org/conda-forge/osx-64/isl-0.26-imath32_h2e86a7b_101.conda#d06222822a9144918333346f145b68c6 +https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2#f9d6a4c82889d5ecedec1d90eb673c55 https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.conda#e4fb4d23ec2870ff3c40d10afe305aec https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.10.0-default_h1321489_1000.conda#6f5fe4374d1003e116e2573022178da6 https://conda.anaconda.org/conda-forge/osx-64/libllvm16-16.0.6-hbedff68_3.conda#8fd56c0adc07a37f93bd44aa61a97c90 -https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.6.0-h129831d_3.conda#568593071d2e6cea7b5fc1f75bfa10ca -https://conda.anaconda.org/conda-forge/osx-64/mpfr-4.2.1-h4f6b447_1.conda#b90df08f0deb2f58631447c1462c92a7 +https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.1-h3c5361c_0.conda#a0ebabd021c8191aeb82793fe43cfdcb https://conda.anaconda.org/conda-forge/osx-64/python-3.12.3-h1411813_0_cpython.conda#df1448ec6cbf8eceb03d29003cf72ae6 https://conda.anaconda.org/conda-forge/osx-64/sigtool-0.1.3-h88f4db0_0.tar.bz2#fbfb84b9de9a6939cb165c02c69b1865 +https://conda.anaconda.org/conda-forge/osx-64/tapi-1100.0.11-h9ce4665_0.tar.bz2#f9ff42ccf809a21ba6f8607f8de36108 https://conda.anaconda.org/conda-forge/osx-64/brotli-1.1.0-h0dc2134_1.conda#9272dd3b19c4e8212f8542cefd5c3d67 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda#0876280e409658fc6f9e75d035960333 https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 @@ -58,14 +56,13 @@ https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2. https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/osx-64/kiwisolver-1.4.5-py312h49ebfd2_1.conda#21f174a5cfb5964069c374171a979157 -https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda#1442db8f03517834843666c422238c9b https://conda.anaconda.org/conda-forge/osx-64/ld64_osx-64-711-ha20a434_0.conda#a8b41eb97c8a9d618243a79ba78fdc3c https://conda.anaconda.org/conda-forge/osx-64/libclang-cpp16-16.0.6-default_h7151d67_6.conda#7eaad118ab797d1427f8745c861d1925 https://conda.anaconda.org/conda-forge/osx-64/libgfortran-5.0.0-13_2_0_h97931a8_3.conda#0b6e23a012ee7a9a5f6b244f5a92c1d5 +https://conda.anaconda.org/conda-forge/osx-64/libtiff-4.6.0-h129831d_3.conda#568593071d2e6cea7b5fc1f75bfa10ca https://conda.anaconda.org/conda-forge/osx-64/llvm-tools-16.0.6-hbedff68_3.conda#e9356b0807462e8f84c1384a8da539a5 -https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h81bd1dd_0.conda#c752c0eb6c250919559172c011e5f65b +https://conda.anaconda.org/conda-forge/osx-64/mpfr-4.2.1-h4f6b447_1.conda#b90df08f0deb2f58631447c1462c92a7 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 -https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda#05a14cc9d725dd74995927968d6547e3 https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.2-pyhd8ed1ab_0.conda#b9a4dacf97241704529131a0dfc0494f @@ -83,13 +80,14 @@ https://conda.anaconda.org/conda-forge/osx-64/cctools_osx-64-986-ha1c5b94_0.cond https://conda.anaconda.org/conda-forge/osx-64/clang-16-16.0.6-default_h7151d67_6.conda#1c298568c30efe7d9369c7c15b748461 https://conda.anaconda.org/conda-forge/osx-64/coverage-7.5.1-py312h520dd33_0.conda#afc8c7b237683760a3c35e49bcc04deb https://conda.anaconda.org/conda-forge/osx-64/fonttools-4.51.0-py312h41838bb_0.conda#ebe40134b860cf704ddaf81f684f95a5 -https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-12.3.0-hc328e78_3.conda#b3d751dc7073bbfdfa9d863e39b9685d https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f +https://conda.anaconda.org/conda-forge/osx-64/lcms2-2.16-ha2f27b4_0.conda#1442db8f03517834843666c422238c9b https://conda.anaconda.org/conda-forge/osx-64/ld64-711-ha02d983_0.conda#3ae4930ec076735cce481e906f5192e0 https://conda.anaconda.org/conda-forge/osx-64/libhiredis-1.0.2-h2beb688_0.tar.bz2#524282b2c46c9dedf051b3bc2ae05494 https://conda.anaconda.org/conda-forge/noarch/meson-1.4.0-pyhd8ed1ab_0.conda#52a0660cfa40b45bf254ecc3374cb2e0 https://conda.anaconda.org/conda-forge/osx-64/mkl-2023.2.0-h54c2260_50500.conda#0a342ccdc79e4fcd359245ac51941e7b -https://conda.anaconda.org/conda-forge/osx-64/pillow-10.3.0-py312h0c923fa_0.conda#6f0591ae972e9b815739da3392fbb3c3 +https://conda.anaconda.org/conda-forge/osx-64/mpc-1.3.1-h81bd1dd_0.conda#c752c0eb6c250919559172c011e5f65b +https://conda.anaconda.org/conda-forge/osx-64/openjpeg-2.5.2-h7310d3a_0.conda#05a14cc9d725dd74995927968d6547e3 https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.8.0-pyhd8ed1ab_0.conda#573fe09d7bd0cd4bcc210d8369b5ca47 https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 @@ -97,9 +95,11 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/osx-64/ccache-4.9.1-h41adc32_0.conda#45aaf96b67840bd98a928de8679098fa https://conda.anaconda.org/conda-forge/osx-64/cctools-986-h40f6528_0.conda#b7a2ca0062a6ee8bc4e83ec887bef942 https://conda.anaconda.org/conda-forge/osx-64/clang-16.0.6-hdae98eb_6.conda#884e7b24306e4f21b7ee08dabadb2ecc +https://conda.anaconda.org/conda-forge/osx-64/gfortran_impl_osx-64-12.3.0-hc328e78_3.conda#b3d751dc7073bbfdfa9d863e39b9685d https://conda.anaconda.org/conda-forge/osx-64/libblas-3.9.0-20_osx64_mkl.conda#160fdc97a51d66d51dc782fb67d35205 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 https://conda.anaconda.org/conda-forge/osx-64/mkl-devel-2023.2.0-h694c41f_50500.conda#1b4d0235ef253a1e19459351badf4f9f +https://conda.anaconda.org/conda-forge/osx-64/pillow-10.3.0-py312h0c923fa_0.conda#6f0591ae972e9b815739da3392fbb3c3 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/osx-64/clangxx-16.0.6-default_h7151d67_6.conda#cc8c007a529a7cfaa5d29d8599df3fe6 @@ -114,15 +114,15 @@ https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.2.1-py312h9230928_0.co https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.2-py312h83c8a23_0.conda#b422a5d39ff0cd72923aef807f280145 https://conda.anaconda.org/conda-forge/osx-64/scipy-1.13.0-py312h741d2f9_1.conda#c416453a8ea3b38d823fe8dcecdb6a12 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 -https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_12.conda#fe1a78dddda2c0b32fac9fbd7fa05c5f +https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_14.conda#fc1a7d3f1bf236f63c58bab6e36844cb https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.4-py312h1fe5000_0.conda#3e3097734a5042cb6d2675e69bf1fc5a https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.1.0-py312h3db3e91_0.conda#c6d6248b99fc11b15c9becea581a1462 -https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_12.conda#4ef6f9a82654ad497e2334471832e774 +https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_14.conda#3d0d9c725912bb0cb4cd301d2a5d31d7 https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.4-py312hb401068_0.conda#187ee42addd449b4899b55c304012436 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.7.0-h282daa2_1.conda#d27411cb82bc1b76b9f487da6ae97f1d -https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-16.0.6-h6d92fbe_12.conda#c1b8987b40123346ee3fe120c3b66b3d +https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-16.0.6-h6d92fbe_14.conda#66b9f06d5f0d0ea47ffcb3a9ca65774a https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-12.3.0-h18f7dce_1.conda#436af2384c47aedb94af78a128e174f1 -https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-16.0.6-hb91bd55_12.conda#4e8cca2283e843a8df8b2e747d36226d +https://conda.anaconda.org/conda-forge/osx-64/clangxx_osx-64-16.0.6-hb91bd55_14.conda#a4504c1a7beab8875d6f765941e77248 https://conda.anaconda.org/conda-forge/osx-64/gfortran-12.3.0-h2c809b3_1.conda#c48adbaa8944234b80ef287c37e329b0 https://conda.anaconda.org/conda-forge/osx-64/cxx-compiler-1.7.0-h7728843_1.conda#e04cb15a20553b973dd068c2dc81d682 https://conda.anaconda.org/conda-forge/osx-64/fortran-compiler-1.7.0-h6c2ab21_1.conda#48319058089f492d5059e04494b81ed9 diff --git a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock index c687f8fb76fb1..ec92612048448 100644 --- a/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_mkl_no_openmp_osx-64_conda.lock @@ -29,7 +29,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/ninja-base-1.10.2-haf03e11_5.conda#c8 https://repo.anaconda.com/pkgs/main/osx-64/openssl-3.0.13-hca72f7f_1.conda#e526d7e2e79132a11b4746cf305c45b5 https://repo.anaconda.com/pkgs/main/osx-64/readline-8.2-hca72f7f_0.conda#971667436260e523f6f7355fdfa238bf https://repo.anaconda.com/pkgs/main/osx-64/tbb-2021.8.0-ha357a0b_0.conda#fb48530a3eea681c11dafb95b3387c0f -https://repo.anaconda.com/pkgs/main/osx-64/tk-8.6.12-h5d9f67b_0.conda#047f0af5486d19163e37fd7f8ae3d29f +https://repo.anaconda.com/pkgs/main/osx-64/tk-8.6.14-h4d00af3_0.conda#a2c03940c2ae54614301ec82e6a98d75 https://repo.anaconda.com/pkgs/main/osx-64/brotli-bin-1.0.9-h6c40b1e_8.conda#11053f9c6b8d8a8348d0c33450c23ce9 https://repo.anaconda.com/pkgs/main/osx-64/freetype-2.12.1-hd8bbffd_0.conda#1f276af321375ee7fe8056843044fa76 https://repo.anaconda.com/pkgs/main/osx-64/libgfortran-5.0.0-11_3_0_hecd8cb5_28.conda#2eb13b680803f1064e53873ae0aaafb3 @@ -38,7 +38,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/sqlite-3.45.3-h6c40b1e_0.conda#2edf90 https://repo.anaconda.com/pkgs/main/osx-64/zstd-1.5.5-hc035e20_2.conda#c033bf68c12f8c71fd916f000f3dc118 https://repo.anaconda.com/pkgs/main/osx-64/brotli-1.0.9-h6c40b1e_8.conda#10f89677a3898d0113dc354adf643df3 https://repo.anaconda.com/pkgs/main/osx-64/libtiff-4.5.1-hcec6c5f_0.conda#e127a800ffd9d300ed7d5e1b026944ec -https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.3-hd58486a_0.conda#1a287cfa37c5a92972f5f527b6af7eed +https://repo.anaconda.com/pkgs/main/osx-64/python-3.12.3-hd58486a_1.conda#cdc61e8f6c2d77b3b263e720048c4b54 https://repo.anaconda.com/pkgs/main/osx-64/coverage-7.2.2-py312h6c40b1e_0.conda#b6e4b9fba325047c07f3c9211ae91d1c https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab https://repo.anaconda.com/pkgs/main/noarch/execnet-1.9.0-pyhd3eb1b0_0.conda#f895937671af67cebb8af617494b3513 @@ -54,7 +54,7 @@ https://repo.anaconda.com/pkgs/main/osx-64/pluggy-1.0.0-py312hecd8cb5_1.conda#64 https://repo.anaconda.com/pkgs/main/osx-64/pyparsing-3.0.9-py312hecd8cb5_0.conda#d85cf2b81c6d9326a57a6418e14db258 https://repo.anaconda.com/pkgs/main/noarch/python-tzdata-2023.3-pyhd3eb1b0_0.conda#479c037de0186d114b9911158427624e https://repo.anaconda.com/pkgs/main/osx-64/pytz-2024.1-py312hecd8cb5_0.conda#2b28ec0e0d07f5c0c701f75200b1e8b6 -https://repo.anaconda.com/pkgs/main/osx-64/setuptools-68.2.2-py312hecd8cb5_0.conda#64235f0c451427d86808c70c1c31cb8b +https://repo.anaconda.com/pkgs/main/osx-64/setuptools-69.5.1-py312hecd8cb5_0.conda#5c7c7ef1e0762e3ca1f543d28310946f https://repo.anaconda.com/pkgs/main/noarch/six-1.16.0-pyhd3eb1b0_1.conda#34586824d411d36af2fa40e799c172d0 https://repo.anaconda.com/pkgs/main/noarch/toml-0.10.2-pyhd3eb1b0_0.conda#cda05f5f6d8509529d1a2743288d197a https://repo.anaconda.com/pkgs/main/osx-64/tornado-6.3.3-py312h6c40b1e_0.conda#49173b5a36c9134865221f29d4a73fb6 @@ -64,10 +64,10 @@ https://repo.anaconda.com/pkgs/main/osx-64/fonttools-4.51.0-py312h6c40b1e_0.cond https://repo.anaconda.com/pkgs/main/osx-64/meson-1.3.1-py312hecd8cb5_0.conda#43963a2b38becce4caa95434b8c96837 https://repo.anaconda.com/pkgs/main/osx-64/numpy-base-1.26.4-py312h6f81483_0.conda#87f73efbf26ab2e2ea7c32481a71bd47 https://repo.anaconda.com/pkgs/main/osx-64/pillow-10.3.0-py312h6c40b1e_0.conda#fe883fa4247d35fe6de49f713529ca02 -https://repo.anaconda.com/pkgs/main/osx-64/pip-23.3.1-py312hecd8cb5_0.conda#efc3db40cac09f74bb480d28d3a0b260 +https://repo.anaconda.com/pkgs/main/osx-64/pip-24.0-py312hecd8cb5_0.conda#7a8e0b1d3742ddf1c8aa97fbaa158039 https://repo.anaconda.com/pkgs/main/osx-64/pyproject-metadata-0.7.1-py312hecd8cb5_0.conda#e91ce37477d24dcdf7e0a8b93c5e72fd https://repo.anaconda.com/pkgs/main/osx-64/pytest-7.4.0-py312hecd8cb5_0.conda#b816a2439ba9b87524aec74d58e55b0a -https://repo.anaconda.com/pkgs/main/noarch/python-dateutil-2.8.2-pyhd3eb1b0_0.conda#211ee00320b08a1ac9fea6677649f6c9 +https://repo.anaconda.com/pkgs/main/osx-64/python-dateutil-2.9.0post0-py312hecd8cb5_0.conda#b3ed54eb118325785284dd18bfceca19 https://repo.anaconda.com/pkgs/main/osx-64/meson-python-0.15.0-py312h6c40b1e_0.conda#688ab56b9d8e5a2e3f018ca3ce34e061 https://repo.anaconda.com/pkgs/main/osx-64/pytest-cov-4.1.0-py312hecd8cb5_1.conda#a33a24eb20359f464938e75b2f57e23a https://repo.anaconda.com/pkgs/main/osx-64/pytest-xdist-3.5.0-py312hecd8cb5_0.conda#d1ecfb3691cceecb1f16bcfdf0b67bb5 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index c497709ca347e..46fd0d308eaa2 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -17,12 +17,12 @@ https://repo.anaconda.com/pkgs/main/linux-64/xz-5.4.6-h5eee18b_1.conda#1562802f8 https://repo.anaconda.com/pkgs/main/linux-64/zlib-1.2.13-h5eee18b_1.conda#92e42d8310108b0a440fb2e60b2b2a25 https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6fc681c273bb7bd0c67d1a591365e https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb -https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.12-h1ccaba5_0.conda#fa10ff4aa631fa4aa090a6234d7770b9 +https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.45.3-h5eee18b_0.conda#acf93d6aceb74d6110e20b44cc45939e -https://repo.anaconda.com/pkgs/main/linux-64/python-3.9.19-h955ad1f_0.conda#33cb019c40e3409df392c99e3c34f352 -https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py39h06a4308_0.conda#5b42cae5548732ae5c167bb1066085de +https://repo.anaconda.com/pkgs/main/linux-64/python-3.9.19-h955ad1f_1.conda#4b453281859c293c9d577271f3b18a0d +https://repo.anaconda.com/pkgs/main/linux-64/setuptools-69.5.1-py39h06a4308_0.conda#3eb144d481b39c0fbbced789dd9b76b3 https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.43.0-py39h06a4308_0.conda#40bb60408c7433d767fd8c65b35bc4a0 -https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685007e3dae59d211620f19926577bd6 +https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py39h06a4308_0.conda#7f8ce3af15cfecd12e4dda8c5cef5fb7 # pip alabaster @ https://files.pythonhosted.org/packages/32/34/d4e1c02d3bee589efb5dfa17f88ea08bdb3e3eac12bc475462aec52ed223/alabaster-0.7.16-py3-none-any.whl#sha256=b46733c07dce03ae4e150330b975c75737fa60f0a7c591b6c8bf4928a28e2c92 # pip babel @ https://files.pythonhosted.org/packages/27/45/377f7e32a5c93d94cd56542349b34efab5ca3f9e2fd5a68c5e93169aa32d/Babel-2.15.0-py3-none-any.whl#sha256=08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb # pip certifi @ https://files.pythonhosted.org/packages/ba/06/a07f096c664aeb9f01624f858c3add0a4e913d6c96257acb4fce61e7de14/certifi-2024.2.2-py3-none-any.whl#sha256=dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1 @@ -75,7 +75,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685 # pip python-dateutil @ https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl#sha256=a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 # pip requests @ https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl#sha256=58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f # pip scipy @ https://files.pythonhosted.org/packages/c6/ba/a778e6c0020d728c119b0379805a357135fe8c9bc87fdb7e0750ca11319f/scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=28e286bf9ac422d6beb559bc61312c348ca9b0f0dae0d7c5afde7f722d6ea13d -# pip tifffile @ https://files.pythonhosted.org/packages/c1/cf/dd1cdf85db58c811816377afd6ba8a240f4611e16f4085201598fb2d5578/tifffile-2024.5.3-py3-none-any.whl#sha256=cac4d939156ff7f16d65fd689637808a7b5b3ad58f9c73327fc009b0aa32c7d5 +# pip tifffile @ https://files.pythonhosted.org/packages/c1/79/29d0fa40017f7b749ce344759dcc21e2ec9bbb81fc69ca2ce06e261f83f0/tifffile-2024.5.10-py3-none-any.whl#sha256=4154f091aa24d4e75bfad9ab2d5424a68c70e67b8220188066dc61946d4551bd # pip lightgbm @ https://files.pythonhosted.org/packages/ba/11/cb8b67f3cbdca05b59a032bb57963d4fe8c8d18c3870f30bed005b7f174d/lightgbm-4.3.0-py3-none-manylinux_2_28_x86_64.whl#sha256=104496a3404cb2452d3412cbddcfbfadbef9c372ea91e3a9b8794bcc5183bf07 # pip matplotlib @ https://files.pythonhosted.org/packages/5e/2c/513395a63a9e1124a5648addbf73be23cc603f955af026b04416da98dc96/matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9 # pip meson-python @ https://files.pythonhosted.org/packages/91/c0/104cb6244c83fe6bc3886f144cc433db0c0c78efac5dc00e409a5a08c87d/meson_python-0.16.0-py3-none-any.whl#sha256=842dc9f5dc29e55fc769ff1b6fe328412fe6c870220fc321060a1d2d395e69e8 diff --git a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock index ff7bcd028c7f6..6e46719df47c4 100644 --- a/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_defaults_openblas_linux-64_conda.lock @@ -39,7 +39,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/libpng-1.6.39-h5eee18b_0.conda#f6ae https://repo.anaconda.com/pkgs/main/linux-64/libxml2-2.10.4-hfdd30dd_2.conda#ff7a0e3b92afb3c99b82c9f0ba8b5670 https://repo.anaconda.com/pkgs/main/linux-64/pcre2-10.42-hebb0a14_1.conda#727e15c3cfa02b032da4eb0c1123e977 https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb -https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.12-h1ccaba5_0.conda#fa10ff4aa631fa4aa090a6234d7770b9 +https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/zstd-1.5.5-hc292b87_2.conda#3b7fe809e5b429b4f90fe064842a2370 https://repo.anaconda.com/pkgs/main/linux-64/freetype-2.12.1-h4a9f257_0.conda#bdc7b5952e9c5dca01bc2f4ccef2f974 https://repo.anaconda.com/pkgs/main/linux-64/krb5-1.20.1-h143b758_1.conda#cf1accc86321fa25d6b978cc748039ae @@ -55,7 +55,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/lcms2-2.12-h3be6417_0.conda#719db47 https://repo.anaconda.com/pkgs/main/linux-64/libclang-14.0.6-default_hc6dbbc7_1.conda#8f12583c4027b2861cff470f6b8837c4 https://repo.anaconda.com/pkgs/main/linux-64/libpq-12.17-hdbd6064_0.conda#6bed363e25859faff66bf546a11c10e8 https://repo.anaconda.com/pkgs/main/linux-64/openjpeg-2.4.0-h3ad879b_0.conda#86baecb47ecaa7f7ff2657a1f03b90c9 -https://repo.anaconda.com/pkgs/main/linux-64/python-3.9.19-h955ad1f_0.conda#33cb019c40e3409df392c99e3c34f352 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.9.19-h955ad1f_1.conda#4b453281859c293c9d577271f3b18a0d https://repo.anaconda.com/pkgs/main/linux-64/certifi-2024.2.2-py39h06a4308_0.conda#2bc1db9166ecbb968f61252e6f08c2ce https://repo.anaconda.com/pkgs/main/noarch/cycler-0.11.0-pyhd3eb1b0_0.conda#f5e365d2cdb66d547eb8c3ab93843aab https://repo.anaconda.com/pkgs/main/linux-64/cython-3.0.10-py39h5eee18b_0.conda#1419a658ed2b4d5c3ac1964f33143b64 @@ -66,14 +66,14 @@ https://repo.anaconda.com/pkgs/main/noarch/iniconfig-1.1.1-pyhd3eb1b0_0.tar.bz2# https://repo.anaconda.com/pkgs/main/linux-64/joblib-1.2.0-py39h06a4308_0.conda#ac1f5687d70aa1128cbecb26bc9e559d https://repo.anaconda.com/pkgs/main/linux-64/kiwisolver-1.4.4-py39h6a678d5_0.conda#3d57aedbfbd054ce57fb3c1e4448828c https://repo.anaconda.com/pkgs/main/linux-64/mysql-5.7.24-h721c034_2.conda#dfc19ca2466d275c4c1f73b62c57f37b -https://repo.anaconda.com/pkgs/main/linux-64/numpy-base-1.21.6-py39h375b286_0.conda#4ceaa5d6e6307fe06961d555f78b266f +https://repo.anaconda.com/pkgs/main/linux-64/numpy-base-1.21.6-py39h375b286_1.conda#0061d9193658774ab79fc85d143a94fc https://repo.anaconda.com/pkgs/main/linux-64/packaging-23.2-py39h06a4308_0.conda#b3f88f45f31bde016e49be3e941e5272 https://repo.anaconda.com/pkgs/main/linux-64/pillow-10.3.0-py39h5eee18b_0.conda#b346d6c71267c1553b6c18d3db5fdf6d https://repo.anaconda.com/pkgs/main/linux-64/pluggy-1.0.0-py39h06a4308_1.conda#fb4fed11ed43cf727dbd51883cc1d9fa https://repo.anaconda.com/pkgs/main/linux-64/ply-3.11-py39h06a4308_0.conda#6c89bf6d2fdf6d24126e34cb83fd10f1 https://repo.anaconda.com/pkgs/main/linux-64/pyparsing-3.0.9-py39h06a4308_0.conda#3a0537468e59760404f63b4f04369828 https://repo.anaconda.com/pkgs/main/linux-64/pyqt5-sip-12.13.0-py39h5eee18b_0.conda#256840c3841b52346ea5743be8490ede -https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py39h06a4308_0.conda#5b42cae5548732ae5c167bb1066085de +https://repo.anaconda.com/pkgs/main/linux-64/setuptools-69.5.1-py39h06a4308_0.conda#3eb144d481b39c0fbbced789dd9b76b3 https://repo.anaconda.com/pkgs/main/noarch/six-1.16.0-pyhd3eb1b0_1.conda#34586824d411d36af2fa40e799c172d0 https://repo.anaconda.com/pkgs/main/noarch/toml-0.10.2-pyhd3eb1b0_0.conda#cda05f5f6d8509529d1a2743288d197a https://repo.anaconda.com/pkgs/main/linux-64/tomli-2.0.1-py39h06a4308_0.conda#b06dffe7ddca2645ed72f5116f0a087d @@ -82,10 +82,10 @@ https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.43.0-py39h06a4308_0.conda#4 https://repo.anaconda.com/pkgs/main/linux-64/coverage-7.2.2-py39h5eee18b_0.conda#e9da151b7e1f56be2cb569c65949a1d2 https://repo.anaconda.com/pkgs/main/linux-64/dbus-1.13.18-hb2f20db_0.conda#6a6a6f1391f807847404344489ef6cf4 https://repo.anaconda.com/pkgs/main/linux-64/gstreamer-1.14.1-h5eee18b_1.conda#f2f26e6f869b5d87f41bd059fae47c3e -https://repo.anaconda.com/pkgs/main/linux-64/numpy-1.21.6-py39hac523dd_0.conda#a03c1fe16cf2558bca3838062c334d7d -https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py39h06a4308_0.conda#685007e3dae59d211620f19926577bd6 +https://repo.anaconda.com/pkgs/main/linux-64/numpy-1.21.6-py39hac523dd_1.conda#f379f92039f666828a193fadd18c9819 +https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py39h06a4308_0.conda#7f8ce3af15cfecd12e4dda8c5cef5fb7 https://repo.anaconda.com/pkgs/main/linux-64/pytest-7.4.0-py39h06a4308_0.conda#99d92a7a39f7e615de84f8cc5606c49a -https://repo.anaconda.com/pkgs/main/noarch/python-dateutil-2.8.2-pyhd3eb1b0_0.conda#211ee00320b08a1ac9fea6677649f6c9 +https://repo.anaconda.com/pkgs/main/linux-64/python-dateutil-2.9.0post0-py39h06a4308_0.conda#bb2c65e53e610ec258e03771cd79ad17 https://repo.anaconda.com/pkgs/main/linux-64/sip-6.7.12-py39h6a678d5_0.conda#6988a3e12fcacfedcac523c1e4c3167c https://repo.anaconda.com/pkgs/main/linux-64/gst-plugins-base-1.14.1-h6a678d5_1.conda#afd9cbe949d670d24cc0a007aaec1fe1 https://repo.anaconda.com/pkgs/main/linux-64/matplotlib-base-3.3.4-py39h62a2d02_0.conda#dbab28222c740af8e21a3e5e2882c178 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 88bc53dd94e1a..d95e56378ae56 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -28,7 +28,7 @@ https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.45.3-hcfcfb64_0.conda# https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda#abd61d0ab127ec5cd68f62c2969e6f34 https://conda.anaconda.org/conda-forge/win-64/libzlib-1.2.13-hcfcfb64_5.conda#5fdb9c6a113b6b6cb5e517fd972d5f41 https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libgfortran-5.3.0-6.tar.bz2#066552ac6b907ec6d72c0ddab29050dc -https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.0-h91493d7_0.conda#e67ab00f4d2c089864c2b8dcccf4dc58 +https://conda.anaconda.org/conda-forge/win-64/ninja-1.12.1-hc790b64_0.conda#a557dde55343e03c68cd7e29e7f87279 https://conda.anaconda.org/conda-forge/win-64/openssl-3.3.0-hcfcfb64_0.conda#a6c544c9f060740c625dbf6d92cf3495 https://conda.anaconda.org/conda-forge/win-64/pthreads-win32-2.9.1-hfa6e2cd_3.tar.bz2#e2da8758d7d51ff6aa78a14dfb9dbed4 https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h5226925_1.conda#fc048363eb8f03cd1737600a5d08aafe @@ -55,7 +55,7 @@ https://conda.anaconda.org/conda-forge/win-64/freetype-2.12.1-hdaf720e_2.conda#3 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.5-py39h1f6ef14_1.conda#4fc5bd0a7b535252028c647cc27d6c87 https://conda.anaconda.org/conda-forge/win-64/libclang13-18.1.5-default_hf64faad_0.conda#8a662434c6be1f40e2d5d2506d05a41d -https://conda.anaconda.org/conda-forge/win-64/libglib-2.80.0-h39d0aa6_6.conda#cd5c6efbe213c089f78575c98ab9a0ed +https://conda.anaconda.org/conda-forge/win-64/libglib-2.80.2-h0df6a38_0.conda#ef9ae80bb2a15aee7a30180c057678ea https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.10.0-default_h2fffb23_1000.conda#ee944f0d41d9e2048f9d7492c1623ca3 https://conda.anaconda.org/conda-forge/win-64/libintl-devel-0.22.5-h5728263_2.conda#a2ad82fae23975e4ccbfab2847d31d48 https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-hddb2be6_3.conda#6d1828c9039929e2f185c5fa9d133018 @@ -78,7 +78,7 @@ https://conda.anaconda.org/conda-forge/win-64/xorg-libxdmcp-1.1.3-hcd874cb_0.tar https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda#2e4d6bc0b14e10f895fc6791a7d9b26a https://conda.anaconda.org/conda-forge/win-64/brotli-1.1.0-hcfcfb64_1.conda#f47f6db2528e38321fb00ae31674c133 https://conda.anaconda.org/conda-forge/win-64/coverage-7.5.1-py39ha55e580_0.conda#e8f43ea91f0f17d92d5575cfab41a42f -https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.80.0-h0a98069_6.conda#40d452e4012c00f644b1dd6319fcdbcf +https://conda.anaconda.org/conda-forge/win-64/glib-tools-2.80.2-h2f9d560_0.conda#42fc785d9db7ab051a206fbf882ecf2e https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/win-64/lcms2-2.16-h67d730c_0.conda#d3592435917b62a8becff3a60db674f6 @@ -92,7 +92,7 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/win-64/sip-6.7.12-py39h99910a6_0.conda#0cc5774390ada632ed7975203057c91c https://conda.anaconda.org/conda-forge/win-64/tbb-2021.12.0-h91493d7_0.conda#21745fdd12f01b41178596143cbecffd https://conda.anaconda.org/conda-forge/win-64/fonttools-4.51.0-py39ha55989b_0.conda#5d19302bab29e347116b743e793aa7d6 -https://conda.anaconda.org/conda-forge/win-64/glib-2.80.0-h39d0aa6_6.conda#a4036d0bc6f499ebe9fef7b887f3ca0f +https://conda.anaconda.org/conda-forge/win-64/glib-2.80.2-h0df6a38_0.conda#a728ca6f04c33ecb0f39eeda5fbd0e23 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 https://conda.anaconda.org/conda-forge/win-64/mkl-2024.1.0-h66d3029_692.conda#b43ec7ed045323edeff31e348eea8652 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index abdaeaee81527..231cd528ecd0e 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -9,13 +9,13 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h55db66e_0.conda#10569984e7db886e4f1abc2b47ad79a1 -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_6.conda#2f18345bbc433c8a1ed887d7161e86a6 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_7.conda#53ebd4c833fa01cb2c6353e99f905406 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-4_cp39.conda#bfe4b3259a8ac6cdf0037752904da6a7 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_6.conda#4398809ac84d0b8c28beebaaa83277f5 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_7.conda#72ec1b1b04c4d15d4204ece1ecea5978 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.11-hd590300_1.conda#0bb492cca54017ea314b809b1ee3a176 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 @@ -31,7 +31,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.20-hd590300_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h43f5ff8_6.conda#e54a5ddc67e673f9105cf2a2e9c070b0 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-hca663fb_7.conda#c0bd771f09a326fdcd95a60b617795bf https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 @@ -43,8 +43,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.cond https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda#f36c115f1ee199da648e0597ec2047ad https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.6-h59595ed_0.conda#9160cdeb523a1b20cf8d2a0bf821f45d -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4.20240210-h59595ed_0.conda#97da8860a0da5413c7c98a3b3838a645 -https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.0-h00ab1b0_0.conda#b048701d52e7cbb5f59ddd4d3b17bbf5 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.0-hd590300_0.conda#c0f3abb4a16477208bbd43a39bd56f18 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 @@ -66,7 +66,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_6.conda#3666a850342f8f3be88f9a93d948d027 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_7.conda#1b84f26d9f4f6026e179e7805d5a15cd https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 @@ -83,15 +83,15 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.cond https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd95826dbd331ed1be26bdf401432844 -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.0-hf2295e7_6.conda#9342e7c44c38bea649490f72d92c382d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda#8a35df3cbc0c8b12cc8af9473ae75eef https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_h413a1c8_0.conda#a356024784da6dfd4683dc5ecf45b155 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.4-ha31de31_0.conda#48b9991e66abc186a7ad7975e97bd4d0 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.5-ha31de31_0.conda#b923cdb6e567ada84f991ffcc5848afb https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.3.0-hca2cd23_4.conda#1b50eebe2a738a3146c154d2eceaa8b6 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.98-h1d7d5a4_0.conda#54b56c2fdf973656b748e0378900ec13 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.100-hca3bf56_0.conda#949c4a82290ee58b3c970cef4bcfd4ad https://conda.anaconda.org/conda-forge/linux-64/python-3.9.19-h0755675_0_cpython.conda#d9ee3647fbd9e8595b8df759b2bbefb8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda#9bfac7ccd94d54fd21a0501296d60424 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h8ee46fc_1.conda#632413adcd8bc16b515cab87a2932913 @@ -112,7 +112,7 @@ https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.0-hde27a5a_6.conda#a9d23c02485c5cf055f9ac90eb9c9c63 +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda#a965aeaf060289528a3fbe09326edae2 https://conda.anaconda.org/conda-forge/noarch/idna-3.7-pyhd8ed1ab_0.conda#c0cc1420498b17414d8617d0b9f506ca https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 @@ -124,7 +124,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang13-18.1.5-default_h5d682 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda#dfcfd72c7a430d3616763ecfbefe4ca9 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.2-h33b98f1_1.conda#9e49ec2a61d02623b379dc332eb6889d +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py39hd1e30aa_0.conda#9a9a22eb1f83c44953319ee3b027769f https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.27-pthreads_h7a3da1a_0.conda#4b422ebe8fc6a5320d0c1c22e5a46032 @@ -156,10 +156,10 @@ https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda#2e4 https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.51.0-py39hd1e30aa_0.conda#79f5dd8778873faa54e8f7b2729fe8a6 -https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.0-hf2295e7_6.conda#a1e026a82a562b443845db5614ca568a +https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.2-hf974151_0.conda#d427988dc3dbd0a4c136f52db356cc6a https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.1.0-pyha770c72_0.conda#0896606848b2dc5cebdf111b6543aa04 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda#e7d8df6509ba635247ff9aea31134262 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_openblas.conda#4b31699e0ec5de64d5896e580389c9a1 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda#32d16ad533c59bb0a3c5ffaf16110829 diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 7ca02c7cdb159..e2584c2d27333 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -10,22 +10,22 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77 https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-2.6.32-he073ed8_17.conda#d731b543793afc0433c4fd593e693fce https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h55db66e_0.conda#10569984e7db886e4f1abc2b47ad79a1 -https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-12.3.0-h0223996_106.conda#304f58c690e7ba23b67a4b5c8e99a062 -https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-12.3.0-h0223996_106.conda#dfb9aac785d6b25b46be7850d974a72e -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_6.conda#2f18345bbc433c8a1ed887d7161e86a6 +https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-12.3.0-h0223996_107.conda#851e9651c9e4cd5dc19f80398eba9a1c +https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-12.3.0-h0223996_107.conda#167a1f5d77d8f3c2a638f7eb418429f1 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_7.conda#53ebd4c833fa01cb2c6353e99f905406 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-4_cp39.conda#bfe4b3259a8ac6cdf0037752904da6a7 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_6.conda#e733e0573651a1f0639fa8ce066a286e +https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_7.conda#abf3fec87c2563697defa759dec3d639 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.12-he073ed8_17.conda#595db67e32b276298ff3d94d07d47fbf https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha885e6a_0.conda#800a4c872b5bc06fa83888d112fe6c4f https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/binutils-2.40-h4852527_0.conda#a05c7712be80622934f7011e0a1d43fc https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.40-hdade7a5_3.conda#2d9a60578bc28469d9aeef9aea5520c3 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_6.conda#4398809ac84d0b8c28beebaaa83277f5 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_7.conda#72ec1b1b04c4d15d4204ece1ecea5978 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.11-hd590300_1.conda#0bb492cca54017ea314b809b1ee3a176 -https://conda.anaconda.org/conda-forge/linux-64/aom-3.8.2-h59595ed_0.conda#625e1fed28a5139aed71b3a76117ef84 +https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.0-hac33072_0.conda#93a3bf248e5bc729807db198a9c89f07 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 @@ -45,14 +45,14 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.20-hd590300_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h43f5ff8_6.conda#e54a5ddc67e673f9105cf2a2e9c070b0 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-hca663fb_7.conda#c0bd771f09a326fdcd95a60b617795bf https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.4-h7f98852_1.tar.bz2#6e8cc2173440d77708196c5b93771680 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f -https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-12.3.0-hb8811af_6.conda#a9a764e2e753ed038da59343560d8a66 +https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-12.3.0-hb8811af_7.conda#ee573415c47ce17f65101d0b3fba396d https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc @@ -60,8 +60,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda# https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.6-h59595ed_0.conda#9160cdeb523a1b20cf8d2a0bf821f45d -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4.20240210-h59595ed_0.conda#97da8860a0da5413c7c98a3b3838a645 -https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.0-h00ab1b0_0.conda#b048701d52e7cbb5f59ddd4d3b17bbf5 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.0-hd590300_0.conda#c0f3abb4a16477208bbd43a39bd56f18 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 @@ -81,16 +81,16 @@ https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161 https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h59595ed_0.conda#fd486bffbf0d6841cf1456a8f2e3a995 https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.0.7-h0b41bf4_0.conda#49e8329110001f04923fe7e864990b0c https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 -https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-12.3.0-h58ffeeb_6.conda#53914a98926ce169b83726cb78366a6c +https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-12.3.0-h58ffeeb_7.conda#95f78565a09852783d3e90e0389cfa5f https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-hd9d6309_2.conda#a8c65cba5f77abc1f2e85ab9a0e614aa +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-hfa3d5b6_3.conda#3518d00de414c39b46d87dcc1ff65661 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_6.conda#3666a850342f8f3be88f9a93d948d027 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_7.conda#1b84f26d9f4f6026e179e7805d5a15cd https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 @@ -107,21 +107,21 @@ https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.5-hc2324a3_1.conda#11 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda#39f910d205726805a958da408ca194ba https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.14.4-hb4ffafa_1.conda#84eb54e92644c328e087e1c725773317 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/gcc-12.3.0-h915e2ae_6.conda#ec683e084ea08ef94528f15d30fa1e03 +https://conda.anaconda.org/conda-forge/linux-64/gcc-12.3.0-h915e2ae_7.conda#84b1c5cebd0a0443f3d7f90a4be93fc6 https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-12.3.0-h6477408_3.conda#7a53f84c45bdf4656ba27b9e9ed68b3d https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 -https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-12.3.0-h1645026_6.conda#664d4e904674f1173752580ffdc24d46 -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-12.3.0-h2a574ab_6.conda#aab48c86452d78a416992deeee901a52 +https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-12.3.0-h1645026_7.conda#2d9d4058c433c9ce2a811c76658c4efd +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-12.3.0-h2a574ab_7.conda#265caa78b979f112fc241cecd0015c91 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd95826dbd331ed1be26bdf401432844 -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.0-hf2295e7_6.conda#9342e7c44c38bea649490f72d92c382d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.10.2-hcae5a98_0.conda#901db891e1e21afd8524cd636a8c8e3b https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda#8a35df3cbc0c8b12cc8af9473ae75eef https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_h413a1c8_0.conda#a356024784da6dfd4683dc5ecf45b155 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.4-ha31de31_0.conda#48b9991e66abc186a7ad7975e97bd4d0 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.5-ha31de31_0.conda#b923cdb6e567ada84f991ffcc5848afb https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.3.0-hca2cd23_4.conda#1b50eebe2a738a3146c154d2eceaa8b6 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.98-h1d7d5a4_0.conda#54b56c2fdf973656b748e0378900ec13 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.100-hca3bf56_0.conda#949c4a82290ee58b3c970cef4bcfd4ad https://conda.anaconda.org/conda-forge/linux-64/python-3.9.19-h0755675_0_cpython.conda#d9ee3647fbd9e8595b8df759b2bbefb8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda#9bfac7ccd94d54fd21a0501296d60424 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h8ee46fc_1.conda#632413adcd8bc16b515cab87a2932913 @@ -142,10 +142,10 @@ https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d -https://conda.anaconda.org/conda-forge/linux-64/gfortran-12.3.0-h915e2ae_6.conda#84b517f4f53e56256dbd65133aae04ac +https://conda.anaconda.org/conda-forge/linux-64/gfortran-12.3.0-h915e2ae_7.conda#8efa768f7f74085629f3e1090e7f0569 https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-12.3.0-h617cb40_3.conda#3a9e5b8a6f651ff14e74d896d8f04ab6 -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.0-hde27a5a_6.conda#a9d23c02485c5cf055f9ac90eb9c9c63 -https://conda.anaconda.org/conda-forge/linux-64/gxx-12.3.0-h915e2ae_6.conda#0d977804df65082e17c860600ca2894b +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda#a965aeaf060289528a3fbe09326edae2 +https://conda.anaconda.org/conda-forge/linux-64/gxx-12.3.0-h915e2ae_7.conda#721c5433122a02bf3a081db10a2e68e2 https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-12.3.0-h4a1b8e8_3.conda#9ec22c7c544f4a4f6d660f0a3b0fd15c https://conda.anaconda.org/conda-forge/noarch/idna-3.7-pyhd8ed1ab_0.conda#c0cc1420498b17414d8617d0b9f506ca https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 @@ -158,7 +158,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang13-18.1.5-default_h5d682 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda#dfcfd72c7a430d3616763ecfbefe4ca9 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.2-h33b98f1_1.conda#9e49ec2a61d02623b379dc332eb6889d +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py39hd1e30aa_0.conda#9a9a22eb1f83c44953319ee3b027769f https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda#425fce3b531bed6ec3c74fab3e5f0a1c @@ -179,7 +179,7 @@ https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb -https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda#1482e77f87c6a702a7e05ef22c9b197b +https://conda.anaconda.org/conda-forge/noarch/tenacity-8.3.0-pyhd8ed1ab_0.conda#216cfa8e32bcd1447646768351df6059 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 @@ -198,10 +198,10 @@ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f9 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.7.0-h00ab1b0_1.conda#28de2e073db9ca9b72858bee9fb6f571 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.51.0-py39hd1e30aa_0.conda#79f5dd8778873faa54e8f7b2729fe8a6 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.7.0-heb67821_1.conda#cf4b0e7c4c78bb0662aed9b27c414a3c -https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.0-hf2295e7_6.conda#a1e026a82a562b443845db5614ca568a +https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.2-hf974151_0.conda#d427988dc3dbd0a4c136f52db356cc6a https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.1.0-pyha770c72_0.conda#0896606848b2dc5cebdf111b6543aa04 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda#e7d8df6509ba635247ff9aea31134262 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_openblas.conda#4b31699e0ec5de64d5896e580389c9a1 https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda#32d16ad533c59bb0a3c5ffaf16110829 @@ -237,7 +237,7 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.1.1-py39ha98d97 https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.1-pyh4b66e23_0.conda#bcf6a6f4c6889ca083e8d33afbafb8d5 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hddac248_0.conda#259c4e76e6bda8888aefc098ae1ba749 https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.23-py39ha963410_0.conda#4871f09d653e979d598d2d4cd5fa868d +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.25-py39ha963410_0.conda#d14227f0e141af743374d845fd4f5ccd https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.1-pyhd8ed1ab_0.conda#d15917f33140f8d2ac9ca44db7ec8a25 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.4.1-py39h44dd56e_1.conda#d037c20e3da2e85f03ebd20ad480c359 @@ -247,7 +247,7 @@ https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39he9076 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39hda80f44_0.conda#f225666c47726329201b604060f1436c https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc9dc06e_21.conda#b325046180590c868ce0dbf267b82eb8 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.5.3-pyhd8ed1ab_0.conda#0658fd78a808b6f3508917ba66b20f75 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.5.10-pyhd8ed1ab_0.conda#125438a8b679e4c08ee8f244177216c9 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.22.0-py39hddac248_2.conda#8d502a4d2cbe5a45ff35ca8af8cbec0a https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 @@ -282,7 +282,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip python-json-logger @ https://files.pythonhosted.org/packages/35/a6/145655273568ee78a581e734cf35beb9e33a370b29c5d3c8fee3744de29f/python_json_logger-2.0.7-py3-none-any.whl#sha256=f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd # pip pyyaml @ https://files.pythonhosted.org/packages/7d/39/472f2554a0f1e825bd7c5afc11c817cd7a2f3657460f7159f691fbb37c51/PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c # pip rfc3986-validator @ https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl#sha256=2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9 -# pip rpds-py @ https://files.pythonhosted.org/packages/fd/ea/92231b62681961812e9fbd8ef9be7137856784406bf6a384976bb7b46472/rpds_py-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=ddc2f4dfd396c7bfa18e6ce371cba60e4cf9d2e5cdb71376aa2da264605b60b9 +# pip rpds-py @ https://files.pythonhosted.org/packages/97/b1/12238bd8cdf3cef71e85188af133399bfde1bddf319007361cc869d6f6a7/rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab # pip send2trash @ https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl#sha256=0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9 # pip sniffio @ https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl#sha256=2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2 # pip soupsieve @ https://files.pythonhosted.org/packages/4c/f3/038b302fdfbe3be7da016777069f26ceefe11a681055ea1f7817546508e3/soupsieve-2.5-py3-none-any.whl#sha256=eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index dd291f8882efb..e08a14c235079 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -10,21 +10,21 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77 https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-2.6.32-he073ed8_17.conda#d731b543793afc0433c4fd593e693fce https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h55db66e_0.conda#10569984e7db886e4f1abc2b47ad79a1 -https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-12.3.0-h0223996_106.conda#304f58c690e7ba23b67a4b5c8e99a062 -https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-12.3.0-h0223996_106.conda#dfb9aac785d6b25b46be7850d974a72e -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_6.conda#2f18345bbc433c8a1ed887d7161e86a6 +https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-12.3.0-h0223996_107.conda#851e9651c9e4cd5dc19f80398eba9a1c +https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-12.3.0-h0223996_107.conda#167a1f5d77d8f3c2a638f7eb418429f1 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_7.conda#53ebd4c833fa01cb2c6353e99f905406 https://conda.anaconda.org/conda-forge/linux-64/mkl-include-2024.1.0-ha957f24_692.conda#b35af3f0f25498f4e9fc4c471910346c https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-4_cp39.conda#bfe4b3259a8ac6cdf0037752904da6a7 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_6.conda#e733e0573651a1f0639fa8ce066a286e +https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_7.conda#abf3fec87c2563697defa759dec3d639 https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.12-he073ed8_17.conda#595db67e32b276298ff3d94d07d47fbf https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha885e6a_0.conda#800a4c872b5bc06fa83888d112fe6c4f https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/binutils-2.40-h4852527_0.conda#a05c7712be80622934f7011e0a1d43fc https://conda.anaconda.org/conda-forge/linux-64/binutils_linux-64-2.40-hdade7a5_3.conda#2d9a60578bc28469d9aeef9aea5520c3 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_6.conda#4398809ac84d0b8c28beebaaa83277f5 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_7.conda#72ec1b1b04c4d15d4204ece1ecea5978 https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.11-hd590300_1.conda#0bb492cca54017ea314b809b1ee3a176 https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2#d9c69a24ad678ffce24c6543a0176b00 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 @@ -39,21 +39,21 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.20-hd590300_0.conda https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h43f5ff8_6.conda#e54a5ddc67e673f9105cf2a2e9c070b0 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-hca663fb_7.conda#c0bd771f09a326fdcd95a60b617795bf https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.4-h7f98852_1.tar.bz2#6e8cc2173440d77708196c5b93771680 https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2#15345e56d527b330e1cacbdf58676e8f -https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-12.3.0-hb8811af_6.conda#a9a764e2e753ed038da59343560d8a66 +https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-12.3.0-hb8811af_7.conda#ee573415c47ce17f65101d0b3fba396d https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda#f36c115f1ee199da648e0597ec2047ad https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.6-h59595ed_0.conda#9160cdeb523a1b20cf8d2a0bf821f45d -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4.20240210-h59595ed_0.conda#97da8860a0da5413c7c98a3b3838a645 -https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.0-h00ab1b0_0.conda#b048701d52e7cbb5f59ddd4d3b17bbf5 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.0-hd590300_0.conda#c0f3abb4a16477208bbd43a39bd56f18 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 @@ -69,13 +69,13 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007 https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 -https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-12.3.0-h58ffeeb_6.conda#53914a98926ce169b83726cb78366a6c +https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-12.3.0-h58ffeeb_7.conda#95f78565a09852783d3e90e0389cfa5f https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_6.conda#3666a850342f8f3be88f9a93d948d027 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_7.conda#1b84f26d9f4f6026e179e7805d5a15cd https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 @@ -89,20 +89,20 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.cond https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-hd590300_5.conda#68c34ec6149623be41a1933ab996a209 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/gcc-12.3.0-h915e2ae_6.conda#ec683e084ea08ef94528f15d30fa1e03 +https://conda.anaconda.org/conda-forge/linux-64/gcc-12.3.0-h915e2ae_7.conda#84b1c5cebd0a0443f3d7f90a4be93fc6 https://conda.anaconda.org/conda-forge/linux-64/gcc_linux-64-12.3.0-h6477408_3.conda#7a53f84c45bdf4656ba27b9e9ed68b3d https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 -https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-12.3.0-h1645026_6.conda#664d4e904674f1173752580ffdc24d46 -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-12.3.0-h2a574ab_6.conda#aab48c86452d78a416992deeee901a52 +https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-12.3.0-h1645026_7.conda#2d9d4058c433c9ce2a811c76658c4efd +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-12.3.0-h2a574ab_7.conda#265caa78b979f112fc241cecd0015c91 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd95826dbd331ed1be26bdf401432844 -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.0-hf2295e7_6.conda#9342e7c44c38bea649490f72d92c382d +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h2fb2949_1000.conda#7e3726e647a619c6ce5939014dfde86d https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda#8a35df3cbc0c8b12cc8af9473ae75eef https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.4-ha31de31_0.conda#48b9991e66abc186a7ad7975e97bd4d0 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.5-ha31de31_0.conda#b923cdb6e567ada84f991ffcc5848afb https://conda.anaconda.org/conda-forge/linux-64/mysql-libs-8.3.0-hca2cd23_4.conda#1b50eebe2a738a3146c154d2eceaa8b6 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.98-h1d7d5a4_0.conda#54b56c2fdf973656b748e0378900ec13 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.100-hca3bf56_0.conda#949c4a82290ee58b3c970cef4bcfd4ad https://conda.anaconda.org/conda-forge/linux-64/python-3.9.19-h0755675_0_cpython.conda#d9ee3647fbd9e8595b8df759b2bbefb8 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-0.4.0-hd590300_1.conda#9bfac7ccd94d54fd21a0501296d60424 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-keysyms-0.4.0-h8ee46fc_1.conda#632413adcd8bc16b515cab87a2932913 @@ -125,10 +125,10 @@ https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2. https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.3.1-pyhca7485f_0.conda#b7f0662ef2c9d4404f0af9eef5ed2fde -https://conda.anaconda.org/conda-forge/linux-64/gfortran-12.3.0-h915e2ae_6.conda#84b517f4f53e56256dbd65133aae04ac +https://conda.anaconda.org/conda-forge/linux-64/gfortran-12.3.0-h915e2ae_7.conda#8efa768f7f74085629f3e1090e7f0569 https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-12.3.0-h617cb40_3.conda#3a9e5b8a6f651ff14e74d896d8f04ab6 -https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.0-hde27a5a_6.conda#a9d23c02485c5cf055f9ac90eb9c9c63 -https://conda.anaconda.org/conda-forge/linux-64/gxx-12.3.0-h915e2ae_6.conda#0d977804df65082e17c860600ca2894b +https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda#a965aeaf060289528a3fbe09326edae2 +https://conda.anaconda.org/conda-forge/linux-64/gxx-12.3.0-h915e2ae_7.conda#721c5433122a02bf3a081db10a2e68e2 https://conda.anaconda.org/conda-forge/linux-64/gxx_linux-64-12.3.0-h4a1b8e8_3.conda#9ec22c7c544f4a4f6d660f0a3b0fd15c https://conda.anaconda.org/conda-forge/noarch/idna-3.7-pyhd8ed1ab_0.conda#c0cc1420498b17414d8617d0b9f506ca https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 @@ -140,7 +140,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libclang13-18.1.5-default_h5d682 https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-h4637d8d_4.conda#d4529f4dff3057982a7617c7ac58fde3 https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda#ee48bf17cc83a00f59ca1494d5646869 https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda#dfcfd72c7a430d3616763ecfbefe4ca9 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.2-h33b98f1_1.conda#9e49ec2a61d02623b379dc332eb6889d +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py39hd1e30aa_0.conda#9a9a22eb1f83c44953319ee3b027769f https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 @@ -160,7 +160,7 @@ https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h00ab1b0_0.conda#f1b776cff1b426e7e7461a8502a3b731 -https://conda.anaconda.org/conda-forge/noarch/tenacity-8.2.3-pyhd8ed1ab_0.conda#1482e77f87c6a702a7e05ef22c9b197b +https://conda.anaconda.org/conda-forge/noarch/tenacity-8.3.0-pyhd8ed1ab_0.conda#216cfa8e32bcd1447646768351df6059 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 @@ -178,9 +178,9 @@ https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f9 https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.7.0-h00ab1b0_1.conda#28de2e073db9ca9b72858bee9fb6f571 https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py39hd1e30aa_0.conda#dc0fb8e157c7caba4c98f1e1f9d2e5f4 https://conda.anaconda.org/conda-forge/linux-64/fortran-compiler-1.7.0-heb67821_1.conda#cf4b0e7c4c78bb0662aed9b27c414a3c -https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.0-hf2295e7_6.conda#a1e026a82a562b443845db5614ca568a +https://conda.anaconda.org/conda-forge/linux-64/glib-2.80.2-hf974151_0.conda#d427988dc3dbd0a4c136f52db356cc6a https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.1.0-pyha770c72_0.conda#0896606848b2dc5cebdf111b6543aa04 -https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda#e7d8df6509ba635247ff9aea31134262 +https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda#32d16ad533c59bb0a3c5ffaf16110829 https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda#ef1910918dd895516a769ed36b5b3a4e @@ -188,7 +188,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxkbcommon-1.7.0-h662e7e4_0.co https://conda.anaconda.org/conda-forge/noarch/memory_profiler-0.61.0-pyhd8ed1ab_0.tar.bz2#8b45f9f2b2f7a98b0ec179c8991a4a9b https://conda.anaconda.org/conda-forge/noarch/meson-1.4.0-pyhd8ed1ab_0.conda#52a0660cfa40b45bf254ecc3374cb2e0 https://conda.anaconda.org/conda-forge/linux-64/mkl-2024.1.0-ha957f24_692.conda#e7f5c5cda17c6f5047db27d44367c19d -https://conda.anaconda.org/conda-forge/noarch/partd-1.4.1-pyhd8ed1ab_0.conda#acf4b7c0bcd5fa3b0e05801c4d2accd6 +https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.3.0-py39h90c7501_0.conda#1e3b6af9592be71ce19f0a6aae05d97b https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 https://conda.anaconda.org/conda-forge/noarch/plotly-5.14.0-pyhd8ed1ab_0.conda#6a7bcc42ef58dd6cf3da9333ea102433 From bca36349a108b9c6b372c6257d4a9837704d5a01 Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Mon, 13 May 2024 13:28:17 +0200 Subject: [PATCH 0519/1641] FIX 1d sparse array validation (#28988) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger Co-authored-by: Christian Lorentzen --- doc/whats_new/v1.5.rst | 4 ++++ sklearn/preprocessing/tests/test_data.py | 4 ++++ sklearn/utils/tests/test_validation.py | 8 ++++++++ sklearn/utils/validation.py | 7 +++++++ 4 files changed, 23 insertions(+) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index e50309a330e39..55a5546453f5f 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -67,6 +67,10 @@ Changes impacting many modules :class:`pipeline.Pipeline` and :class:`preprocessing.KBinsDiscretizer`. :pr:`28756` by :user:`Will Dean `. +- |Fix| Raise `ValueError` with an informative error message when passing 1D + sparse arrays to methods that expect 2D sparse inputs. + :pr:`28988` by :user:`Olivier Grisel `. + Support for Array API --------------------- diff --git a/sklearn/preprocessing/tests/test_data.py b/sklearn/preprocessing/tests/test_data.py index b7e8e4e40686e..3810e485ae301 100644 --- a/sklearn/preprocessing/tests/test_data.py +++ b/sklearn/preprocessing/tests/test_data.py @@ -595,6 +595,10 @@ def test_standard_scaler_partial_fit_numerical_stability(sparse_container): scaler_incr = StandardScaler(with_mean=False) for chunk in X: + if chunk.ndim == 1: + # Sparse arrays can be 1D (in scipy 1.14 and later) while old + # sparse matrix instances are always 2D. + chunk = chunk.reshape(1, -1) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py index 4b4eed2522102..92fff950e875e 100644 --- a/sklearn/utils/tests/test_validation.py +++ b/sklearn/utils/tests/test_validation.py @@ -361,6 +361,14 @@ def test_check_array(): with pytest.raises(ValueError, match="Expected 2D array, got scalar array instead"): check_array(10, ensure_2d=True) + # ensure_2d=True with 1d sparse array + if hasattr(sp, "csr_array"): + sparse_row = next(iter(sp.csr_array(X))) + if sparse_row.ndim == 1: + # In scipy 1.14 and later, sparse row is 1D while it was 2D before. + with pytest.raises(ValueError, match="Expected 2D input, got"): + check_array(sparse_row, accept_sparse=True, ensure_2d=True) + # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) with pytest.raises(ValueError): diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index 5fac2ae6ae6c2..cdda749ec70a2 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -973,6 +973,13 @@ def is_sparse(dtype): estimator_name=estimator_name, input_name=input_name, ) + if ensure_2d and array.ndim < 2: + raise ValueError( + f"Expected 2D input, got input with shape {array.shape}.\n" + "Reshape your data either using array.reshape(-1, 1) if " + "your data has a single feature or array.reshape(1, -1) " + "if it contains a single sample." + ) else: # If np.array(..) gives ComplexWarning, then we convert the warning # to an error. This is needed because specifying a non complex From 4449ded95bdc7468f7465a3e89ea1b90b1426dfd Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 13 May 2024 15:19:29 +0200 Subject: [PATCH 0520/1641] :lock: :robot: CI Update lock files for scipy-dev CI build(s) :lock: :robot: (#29004) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Jérémie du Boisberranger --- .../azure/pylatest_pip_scipy_dev_linux-64_conda.lock | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index 8324d1edb36b7..c1a50c7c8c140 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -20,12 +20,12 @@ https://repo.anaconda.com/pkgs/main/linux-64/xz-5.4.6-h5eee18b_1.conda#1562802f8 https://repo.anaconda.com/pkgs/main/linux-64/zlib-1.2.13-h5eee18b_1.conda#92e42d8310108b0a440fb2e60b2b2a25 https://repo.anaconda.com/pkgs/main/linux-64/ccache-3.7.9-hfe4627d_0.conda#bef6fc681c273bb7bd0c67d1a591365e https://repo.anaconda.com/pkgs/main/linux-64/readline-8.2-h5eee18b_0.conda#be42180685cce6e6b0329201d9f48efb -https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.12-h1ccaba5_0.conda#fa10ff4aa631fa4aa090a6234d7770b9 +https://repo.anaconda.com/pkgs/main/linux-64/tk-8.6.14-h39e8969_0.conda#78dbc5e3c69143ebc037fc5d5b22e597 https://repo.anaconda.com/pkgs/main/linux-64/sqlite-3.45.3-h5eee18b_0.conda#acf93d6aceb74d6110e20b44cc45939e -https://repo.anaconda.com/pkgs/main/linux-64/python-3.12.3-h996f2a0_0.conda#77af2bd351a8311d1e780bcfa7819bb8 -https://repo.anaconda.com/pkgs/main/linux-64/setuptools-68.2.2-py312h06a4308_0.conda#83ba634cde4f30d9e0b88e4ac9716ca4 +https://repo.anaconda.com/pkgs/main/linux-64/python-3.12.3-h996f2a0_1.conda#0e22ed7e6df024e4f7467e75c8575301 +https://repo.anaconda.com/pkgs/main/linux-64/setuptools-69.5.1-py312h06a4308_0.conda#ce85d9a864a73e0b12d31a97733c9fca https://repo.anaconda.com/pkgs/main/linux-64/wheel-0.43.0-py312h06a4308_0.conda#18d5f3b68a175c72576876db4afc9e9e -https://repo.anaconda.com/pkgs/main/linux-64/pip-23.3.1-py312h06a4308_0.conda#e1d44bca4a257e84af33503233491107 +https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py312h06a4308_0.conda#6d9697bb8b9f3212be10b3b8e01a12b9 # pip alabaster @ https://files.pythonhosted.org/packages/32/34/d4e1c02d3bee589efb5dfa17f88ea08bdb3e3eac12bc475462aec52ed223/alabaster-0.7.16-py3-none-any.whl#sha256=b46733c07dce03ae4e150330b975c75737fa60f0a7c591b6c8bf4928a28e2c92 # pip babel @ https://files.pythonhosted.org/packages/27/45/377f7e32a5c93d94cd56542349b34efab5ca3f9e2fd5a68c5e93169aa32d/Babel-2.15.0-py3-none-any.whl#sha256=08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb # pip certifi @ https://files.pythonhosted.org/packages/ba/06/a07f096c664aeb9f01624f858c3add0a4e913d6c96257acb4fce61e7de14/certifi-2024.2.2-py3-none-any.whl#sha256=dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1 From 64884f92ff38365e2df05da5fb011ee65e71dd08 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Mon, 13 May 2024 16:34:37 +0200 Subject: [PATCH 0521/1641] CI Fix wheel builder windows (#29006) --- .github/workflows/wheels.yml | 2 -- build_tools/github/repair_windows_wheels.sh | 1 + 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/.github/workflows/wheels.yml b/.github/workflows/wheels.yml index d30f85ff3d1e6..8bd7ffc17beca 100644 --- a/.github/workflows/wheels.yml +++ b/.github/workflows/wheels.yml @@ -53,8 +53,6 @@ jobs: matrix: include: # Window 64 bit - # Note: windows-2019 is needed for older Python versions: - # https://github.com/scikit-learn/scikit-learn/issues/22530 - os: windows-latest python: 39 platform_id: win_amd64 diff --git a/build_tools/github/repair_windows_wheels.sh b/build_tools/github/repair_windows_wheels.sh index cdd0c0c79d8c4..8f51a34d4039b 100755 --- a/build_tools/github/repair_windows_wheels.sh +++ b/build_tools/github/repair_windows_wheels.sh @@ -8,6 +8,7 @@ DEST_DIR=$2 # By default, the Windows wheels are not repaired. # In this case, we need to vendor VCRUNTIME140.dll +pip install wheel wheel unpack "$WHEEL" WHEEL_DIRNAME=$(ls -d scikit_learn-*) python build_tools/github/vendor.py "$WHEEL_DIRNAME" From 63f71ee41149899cac99c3e95f25c5496377c214 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Mon, 13 May 2024 16:40:26 +0200 Subject: [PATCH 0522/1641] DOC persistence page revamp (#28889) --- doc/model_persistence.rst | 643 +++++++++++++++++++++----------------- 1 file changed, 349 insertions(+), 294 deletions(-) diff --git a/doc/model_persistence.rst b/doc/model_persistence.rst index afd492d805e58..0c11349a68e22 100644 --- a/doc/model_persistence.rst +++ b/doc/model_persistence.rst @@ -1,294 +1,349 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. _model_persistence: - -================= -Model persistence -================= - -After training a scikit-learn model, it is desirable to have a way to persist -the model for future use without having to retrain. This can be accomplished -using `pickle `_, `joblib -`_, `skops -`_, `ONNX `_, -or `PMML `_. In most cases -`pickle` can be used to persist a trained scikit-learn model. Once all -transitive scikit-learn dependencies have been pinned, the trained model can -then be loaded and executed under conditions similar to those in which it was -originally pinned. The following sections will give you some hints on how to -persist a scikit-learn model and will provide details on what each alternative -can offer. - -Workflow Overview ------------------ - -In this section we present a general workflow on how to persist a -scikit-learn model. We will demonstrate this with a simple example using -Python's built-in persistence module, namely `pickle -`_. - -Storing the model in an artifact -................................ - -Once the model training process in completed, the trained model can be stored -as an artifact with the help of `pickle`. The model can be saved using the -process of serialization, where the Python object hierarchy is converted into -a byte stream. We can persist a trained model in the following manner:: - - >>> from sklearn import svm - >>> from sklearn import datasets - >>> import pickle - >>> clf = svm.SVC() - >>> X, y = datasets.load_iris(return_X_y=True) - >>> clf.fit(X, y) - SVC() - >>> s = pickle.dumps(clf) - -Replicating the training environment in production -.................................................. - -The versions of the dependencies used may differ from training to production. -This may result in unexpected behaviour and errors while using the trained -model. To prevent such situations it is recommended to use the same -dependencies and versions in both the training and production environment. -These transitive dependencies can be pinned with the help of `pip`, `conda`, -`poetry`, `conda-lock`, `pixi`, etc. - -.. note:: - - To execute a pickled scikit-learn model in a reproducible environment it is - advisable to pin all transitive scikit-learn dependencies. This prevents - any incompatibility issues that may arise while trying to load the pickled - model. You can read more about persisting models with `pickle` over - :ref:`here `. - -Loading the model artifact -.......................... - -The saved scikit-learn model can be loaded using `pickle` for future use -without having to re-train the entire model from scratch. The saved model -artifact can be unpickled by converting the byte stream into an object -hierarchy. This can be done with the help of `pickle` as follows:: - - >>> clf2 = pickle.loads(s) # doctest:+SKIP - >>> clf2.predict(X[0:1]) # doctest:+SKIP - array([0]) - >>> y[0] # doctest:+SKIP - 0 - -Serving the model artifact -.......................... - -The last step after training a scikit-learn model is serving the model. -Once the trained model is successfully loaded it can be served to manage -different prediction requests. This can involve deploying the model as a -web service using containerization, or other model deployment strategies, -according to the specifications. In the next sections, we will explore -different approaches to persist a trained scikit-learn model. - -.. _persisting_models_with_pickle: - -Persisting models with pickle ------------------------------ - -As demonstrated in the previous section, `pickle` uses serialization and -deserialization to persist scikit-learn models. Instead of using `dumps` and -`loads`, `dump` and `load` can also be used in the following way:: - - >>> from sklearn.tree import DecisionTreeClassifier - >>> from sklearn import datasets - >>> clf = DecisionTreeClassifier() - >>> X, y = datasets.load_iris(return_X_y=True) - >>> clf.fit(X, y) - DecisionTreeClassifier() - >>> from pickle import dump, load - >>> with open('filename.pkl', 'wb') as f: dump(clf, f) # doctest:+SKIP - >>> with open('filename.pkl', 'rb') as f: clf2 = load(f) # doctest:+SKIP - >>> clf2.predict(X[0:1]) # doctest:+SKIP - array([0]) - >>> y[0] - 0 - -For applications that involve writing and loading the serialized object to or -from a file, `dump` and `load` can be used instead of `dumps` and `loads`. When -file operations are not required the pickled representation of the object can -be returned as a bytes object with the help of the `dumps` function. The -reconstituted object hierarchy of the pickled data can then be returned using -the `loads` function. - -Persisting models with joblib ------------------------------ - -In the specific case of scikit-learn, it may be better to use joblib's -replacement of pickle (``dump`` & ``load``), which is more efficient on -objects that carry large numpy arrays internally as is often the case for -fitted scikit-learn estimators, but can only pickle to the disk and not to a -string:: - - >>> from joblib import dump, load - >>> dump(clf, 'filename.joblib') # doctest:+SKIP - -Later you can load back the pickled model (possibly in another Python process) -with:: - - >>> clf = load('filename.joblib') # doctest:+SKIP - -.. note:: - - ``dump`` and ``load`` functions also accept file-like object - instead of filenames. More information on data persistence with Joblib is - available `here - `_. - -|details-start| -**InconsistentVersionWarning** -|details-split| - -When an estimator is unpickled with a scikit-learn version that is inconsistent -with the version the estimator was pickled with, a -:class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning -can be caught to obtain the original version the estimator was pickled with:: - - from sklearn.exceptions import InconsistentVersionWarning - warnings.simplefilter("error", InconsistentVersionWarning) - - try: - est = pickle.loads("model_from_prevision_version.pickle") - except InconsistentVersionWarning as w: - print(w.original_sklearn_version) - -|details-end| - -.. _persistence_limitations: - -Security & maintainability limitations for pickle and joblib ------------------------------------------------------------- - -pickle (and joblib by extension), has some issues regarding maintainability -and security. Because of this, - -* Never unpickle untrusted data as it could lead to malicious code being - executed upon loading. -* While models saved using one version of scikit-learn might load in - other versions, this is entirely unsupported and inadvisable. It should - also be kept in mind that operations performed on such data could give - different and unexpected results. - -In order to rebuild a similar model with future versions of scikit-learn, -additional metadata should be saved along the pickled model: - -* The training data, e.g. a reference to an immutable snapshot -* The python source code used to generate the model -* The versions of scikit-learn and its dependencies -* The cross validation score obtained on the training data - -This should make it possible to check that the cross-validation score is in the -same range as before. - -Aside for a few exceptions, pickled models should be portable across -architectures assuming the same versions of dependencies and Python are used. -If you encounter an estimator that is not portable please open an issue on -GitHub. Pickled models are often deployed in production using containers, like -Docker, in order to freeze the environment and dependencies. - -If you want to know more about these issues and explore other possible -serialization methods, please refer to this -`talk by Alex Gaynor -`_. - -Persisting models with a more secure format using skops -------------------------------------------------------- - -`skops `__ provides a more secure -format via the :mod:`skops.io` module. It avoids using :mod:`pickle` and only -loads files which have types and references to functions which are trusted -either by default or by the user. - -|details-start| -**Using skops** -|details-split| - -The API is very similar to ``pickle``, and -you can persist your models as explain in the `docs -`__ using -:func:`skops.io.dump` and :func:`skops.io.dumps`:: - - import skops.io as sio - obj = sio.dumps(clf) - -And you can load them back using :func:`skops.io.load` and -:func:`skops.io.loads`. However, you need to specify the types which are -trusted by you. You can get existing unknown types in a dumped object / file -using :func:`skops.io.get_untrusted_types`, and after checking its contents, -pass it to the load function:: - - unknown_types = sio.get_untrusted_types(data=obj) - clf = sio.loads(obj, trusted=unknown_types) - -If you trust the source of the file / object, you can pass ``trusted=True``:: - - clf = sio.loads(obj, trusted=True) - -Please report issues and feature requests related to this format on the `skops -issue tracker `__. - -|details-end| - -Persisting models with interoperable formats --------------------------------------------- - -For reproducibility and quality control needs, when different architectures -and environments should be taken into account, exporting the model in -`Open Neural Network -Exchange `_ format or `Predictive Model Markup Language -(PMML) `_ format -might be a better approach than using `pickle` alone. -These are helpful where you may want to use your model for prediction in a -different environment from where the model was trained. - -ONNX is a binary serialization of the model. It has been developed to improve -the usability of the interoperable representation of data models. -It aims to facilitate the conversion of the data -models between different machine learning frameworks, and to improve their -portability on different computing architectures. More details are available -from the `ONNX tutorial `_. -To convert scikit-learn model to ONNX a specific tool `sklearn-onnx -`_ has been developed. - -PMML is an implementation of the `XML -`_ document standard -defined to represent data models together with the data used to generate them. -Being human and machine readable, -PMML is a good option for model validation on different platforms and -long term archiving. On the other hand, as XML in general, its verbosity does -not help in production when performance is critical. -To convert scikit-learn model to PMML you can use for example `sklearn2pmml -`_ distributed under the Affero GPLv3 -license. - -Summarizing the keypoints -------------------------- - -Based on the different approaches for model persistence, the keypoints for each -approach can be summarized as follows: - -* `pickle`: It is native to Python and any Python object can be serialized and - deserialized using `pickle`, including custom Python classes and objects. - While `pickle` can be used to easily save and load scikit-learn models, - unpickling of untrusted data might lead to security issues. -* `joblib`: Efficient storage and memory mapping techniques make it faster - when working with large machine learning models or large numpy arrays. However, - it may trigger the execution of malicious code while loading untrusted data. -* `skops`: Trained scikit-learn models can be easily shared and put into - production using `skops`. It is more secure compared to alternate approaches - as it allows users to load data from trusted sources. It however, does not - allow for persistence of arbitrary Python code. -* `ONNX`: It provides a uniform format for persisting any machine learning - or deep learning model (other than scikit-learn) and is useful - for model inference. It can however, result in compatibility issues with - different frameworks. -* `PMML`: Platform independent format that can be used to persist models - and reduce the risk of vendor lock-ins. The complexity and verbosity of - this format might make it harder to use for larger models. \ No newline at end of file +.. Places parent toc into the sidebar + +:parenttoc: True + +.. _model_persistence: + +================= +Model persistence +================= + +After training a scikit-learn model, it is desirable to have a way to persist +the model for future use without having to retrain. Based on your use-case, +there are a few different ways to persist a scikit-learn model, and here we +help you decide which one suits you best. In order to make a decision, you need +to answer the following questions: + +1. Do you need the Python object after persistence, or do you only need to + persist in order to serve the model and get predictions out of it? + +If you only need to serve the model and no further investigation on the Python +object itself is required, then :ref:`ONNX ` might be the +best fit for you. Note that not all models are supported by ONNX. + +In case ONNX is not suitable for your use-case, the next question is: + +2. Do you absolutely trust the source of the model, or are there any security + concerns regarding where the persisted model comes from? + +If you have security concerns, then you should consider using :ref:`skops.io +` which gives you back the Python object, but unlike +`pickle` based persistence solutions, loading the persisted model doesn't +automatically allow arbitrary code execution. Note that this requires manual +investigation of the persisted file, which :mod:`skops.io` allows you to do. + +The other solutions assume you absolutely trust the source of the file to be +loaded, as they are all susceptible to arbitrary code execution upon loading +the persisted file since they all use the pickle protocol under the hood. + +3. Do you care about the performance of loading the model, and sharing it + between processes where a memory mapped object on disk is beneficial? + +If yes, then you can consider using :ref:`joblib `. If this +is not a major concern for you, then you can use the built-in :mod:`pickle` +module. + +4. Did you try :mod:`pickle` or :mod:`joblib` and found that the model cannot + be persisted? It can happen for instance when you have user defined + functions in your model. + +If yes, then you can use `cloudpickle`_ which can serialize certain objects +which cannot be serialized by :mod:`pickle` or :mod:`joblib`. + + +Workflow Overview +----------------- + +In a typical workflow, the first step is to train the model using scikit-learn +and scikit-learn compatible libraries. Note that support for scikit-learn and +third party estimators varies across the different persistence methods. + +Train and Persist the Model +........................... + +Creating an appropriate model depends on your use-case. As an example, here we +train a :class:`sklearn.ensemble.HistGradientBoostingClassifier` on the iris +dataset:: + + >>> from sklearn import ensemble + >>> from sklearn import datasets + >>> clf = ensemble.HistGradientBoostingClassifier() + >>> X, y = datasets.load_iris(return_X_y=True) + >>> clf.fit(X, y) + HistGradientBoostingClassifier() + +Once the model is trained, you can persist it using your desired method, and +then you can load the model in a separate environment and get predictions from +it given input data. Here there are two major paths depending on how you +persist and plan to serve the model: + +- :ref:`ONNX `: You need an `ONNX` runtime and an environment + with appropriate dependencies installed to load the model and use the runtime + to get predictions. This environment can be minimal and does not necessarily + even require `python` to be installed. + +- :mod:`skops.io`, :mod:`pickle`, :mod:`joblib`, `cloudpickle`_: You need a + Python environment with the appropriate dependencies installed to load the + model and get predictions from it. This environment should have the same + **packages** and the same **versions** as the environment where the model was + trained. Note that none of these methods support loading a model trained with + a different version of scikit-learn, and possibly different versions of other + dependencies such as `numpy` and `scipy`. Another concern would be running + the persisted model on a different hardware, and in most cases you should be + able to load your persisted model on a different hardware. + + +.. _onnx_persistence: + +ONNX +---- + +`ONNX`, or `Open Neural Network Exchange `__ format is best +suitable in use-cases where one needs to persist the model and then use the +persisted artifact to get predictions without the need to load the Python +object itself. It is also useful in cases where the serving environment needs +to be lean and minimal, since the `ONNX` runtime does not require `python`. + +`ONNX` is a binary serialization of the model. It has been developed to improve +the usability of the interoperable representation of data models. It aims to +facilitate the conversion of the data models between different machine learning +frameworks, and to improve their portability on different computing +architectures. More details are available from the `ONNX tutorial +`__. To convert scikit-learn model to `ONNX` +`sklearn-onnx `__ has been developed. However, +not all scikit-learn models are supported, and it is limited to the core +scikit-learn and does not support most third party estimators. One can write a +custom converter for third party or custom estimators, but the documentation to +do that is sparse and it might be challenging to do so. + +|details-start| +**Using ONNX** +|details-split| + +To convert the model to `ONNX` format, you need to give the converter some +information about the input as well, about which you can read more `here +`__:: + + from skl2onnx import to_onnx + onx = to_onnx(clf, X[:1].astype(numpy.float32), target_opset=12) + with open("filename.onnx", "wb") as f: + f.write(onx.SerializeToString()) + +You can load the model in Python and use the `ONNX` runtime to get +predictions:: + + from onnxruntime import InferenceSession + with open("filename.onnx", "rb") as f: + onx = f.read() + sess = InferenceSession(onx, providers=["CPUExecutionProvider"]) + pred_ort = sess.run(None, {"X": X_test.astype(numpy.float32)})[0] + + +|details-end| + +.. _skops_persistence: + +`skops.io` +---------- + +:mod:`skops.io` avoids using :mod:`pickle` and only loads files which have types +and references to functions which are trusted either by default or by the user. +Therefore it provides a more secure format than :mod:`pickle`, :mod:`joblib`, +and `cloudpickle`_. + + +|details-start| +**Using skops** +|details-split| + +The API is very similar to :mod:`pickle`, and you can persist your models as +explained in the `documentation +`__ using +:func:`skops.io.dump` and :func:`skops.io.dumps`:: + + import skops.io as sio + obj = sio.dump(clf, "filename.skops") + +And you can load them back using :func:`skops.io.load` and +:func:`skops.io.loads`. However, you need to specify the types which are +trusted by you. You can get existing unknown types in a dumped object / file +using :func:`skops.io.get_untrusted_types`, and after checking its contents, +pass it to the load function:: + + unknown_types = sio.get_untrusted_types(file="filename.skops") + # investigate the contents of unknown_types, and only load if you trust + # everything you see. + clf = sio.load("filename.skops", trusted=unknown_types) + +Please report issues and feature requests related to this format on the `skops +issue tracker `__. + +|details-end| + +.. _pickle_persistence: + +`pickle`, `joblib`, and `cloudpickle` +------------------------------------- + +These three modules / packages, use the `pickle` protocol under the hood, but +come with slight variations: + +- :mod:`pickle` is a module from the Python Standard Library. It can serialize + and deserialize any Python object, including custom Python classes and + objects. +- :mod:`joblib` is more efficient than `pickle` when working with large machine + learning models or large numpy arrays. +- `cloudpickle`_ can serialize certain objects which cannot be serialized by + :mod:`pickle` or :mod:`joblib`, such as user defined functions and lambda + functions. This can happen for instance, when using a + :class:`~sklearn.preprocessing.FunctionTransformer` and using a custom + function to transform the data. + +|details-start| +**Using** ``pickle``, ``joblib``, **or** ``cloudpickle`` +|details-split| + +Depending on your use-case, you can choose one of these three methods to +persist and load your scikit-learn model, and they all follow the same API:: + + # Here you can replace pickle with joblib or cloudpickle + from pickle import dump + with open('filename.pkl', 'wb') as f: dump(clf, f) + +And later when needed, you can load the same object from the persisted file:: + + # Here you can replace pickle with joblib or cloudpickle + from pickle import load + with open('filename.pkl', 'rb') as f: clf = load(f) + +|details-end| + +.. _persistence_limitations: + +Security & Maintainability Limitations +-------------------------------------- + +:mod:`pickle` (and :mod:`joblib` and :mod:`clouldpickle` by extension), has +many documented security vulnerabilities and should only be used if the +artifact, i.e. the pickle-file, is coming from a trusted and verified source. + +Also note that arbitrary computations can be represented using the `ONNX` +format, and therefore a sandbox used to serve models using `ONNX` also needs to +safeguard against computational and memory exploits. + +Also note that there are no supported ways to load a model trained with a +different version of scikit-learn. While using :mod:`skops.io`, :mod:`joblib`, +:mod:`pickle`, or `cloudpickle`_, models saved using one version of +scikit-learn might load in other versions, however, this is entirely +unsupported and inadvisable. It should also be kept in mind that operations +performed on such data could give different and unexpected results, or even +crash your Python process. + +In order to rebuild a similar model with future versions of scikit-learn, +additional metadata should be saved along the pickled model: + +* The training data, e.g. a reference to an immutable snapshot +* The Python source code used to generate the model +* The versions of scikit-learn and its dependencies +* The cross validation score obtained on the training data + +This should make it possible to check that the cross-validation score is in the +same range as before. + +Aside for a few exceptions, persisted models should be portable across +operating systems and hardware architectures assuming the same versions of +dependencies and Python are used. If you encounter an estimator that is not +portable, please open an issue on GitHub. Persisted models are often deployed +in production using containers like Docker, in order to freeze the environment +and dependencies. + +If you want to know more about these issues, please refer to these talks: + +- `Adrin Jalali: Let's exploit pickle, and skops to the rescue! | PyData + Amsterdam 2023 `__. +- `Alex Gaynor: Pickles are for Delis, not Software - PyCon 2014 + `__. + + +.. _serving_environment: + +Replicating the training environment in production +.................................................. + +If the versions of the dependencies used may differ from training to +production, it may result in unexpected behaviour and errors while using the +trained model. To prevent such situations it is recommended to use the same +dependencies and versions in both the training and production environment. +These transitive dependencies can be pinned with the help of package management +tools like `pip`, `mamba`, `conda`, `poetry`, `conda-lock`, `pixi`, etc. + +It is not always possible to load an model trained with older versions of the +scikit-learn library and its dependencies in an updated software environment. +Instead, you might need to retrain the model with the new versions of the all +the libraries. So when training a model, it is important to record the training +recipe (e.g. a Python script) and training set information, and metadata about +all the dependencies to be able to automatically reconstruct the same training +environment for the updated software. + +|details-start| +**InconsistentVersionWarning** +|details-split| + +When an estimator is loaded with a scikit-learn version that is inconsistent +with the version the estimator was pickled with, a +:class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning +can be caught to obtain the original version the estimator was pickled with:: + + from sklearn.exceptions import InconsistentVersionWarning + warnings.simplefilter("error", InconsistentVersionWarning) + + try: + est = pickle.loads("model_from_prevision_version.pickle") + except InconsistentVersionWarning as w: + print(w.original_sklearn_version) + +|details-end| + + +Serving the model artifact +.......................... + +The last step after training a scikit-learn model is serving the model. +Once the trained model is successfully loaded, it can be served to manage +different prediction requests. This can involve deploying the model as a +web service using containerization, or other model deployment strategies, +according to the specifications. + + +Summarizing the key points +-------------------------- + +Based on the different approaches for model persistence, the key points for +each approach can be summarized as follows: + +* `ONNX`: It provides a uniform format for persisting any machine learning or + deep learning model (other than scikit-learn) and is useful for model + inference (predictions). It can however, result in compatibility issues with + different frameworks. +* :mod:`skops.io`: Trained scikit-learn models can be easily shared and put + into production using :mod:`skops.io`. It is more secure compared to + alternate approaches based on :mod:`pickle` because it does not load + arbitrary code unless explicitly asked for by the user. +* :mod:`joblib`: Efficient memory mapping techniques make it faster when using + the same persisted model in multiple Python processes. It also gives easy + shortcuts to compress and decompress the persisted object without the need + for extra code. However, it may trigger the execution of malicious code while + untrusted data as any other pickle-based persistence mechanism. +* :mod:`pickle`: It is native to Python and any Python object can be serialized + and deserialized using :mod:`pickle`, including custom Python classes and + objects. While :mod:`pickle` can be used to easily save and load scikit-learn + models, it may trigger the execution of malicious code while loading + untrusted data. +* `cloudpickle`_: It is slower than :mod:`pickle` and :mod:`joblib`, and is + more insecure than :mod:`pickle` and :mod:`joblib` since it can serialize + arbitrary code. However, in certain cases it might be a last resort to + persist certain models. Note that this is discouraged by `cloudpickle`_ + itself since there are no forward compatibility guarantees and you might need + the same version of `cloudpickle`_ to load the persisted model. + +.. _cloudpickle: https://github.com/cloudpipe/cloudpickle From 68b7598fe03f9b12284f94d47ea59f18b47f0dff Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Mon, 13 May 2024 18:06:05 +0200 Subject: [PATCH 0523/1641] DOC Mention that Meson is the main supported way to build scikit-learn (#29008) Co-authored-by: Tim Head --- doc/whats_new/v1.5.rst | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 55a5546453f5f..5fdc0707ffbee 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -95,12 +95,16 @@ See :ref:`array_api` for more details. Support for building with Meson ------------------------------- -Meson is now supported as a build backend, see :ref:`Building from source -` for more details. +From scikit-learn 1.5 onwards, Meson is the main supported way to build +scikit-learn, see :ref:`Building from source ` for more +details. -:pr:`28040` by :user:`Loïc Estève ` +Unless we discover a major blocker, setuptools support will be dropped in +scikit-learn 1.6. The 1.5.x releases will support building scikit-learn with +setuptools. -TODO Fill more details before the 1.5 release, when the Meson story has settled down. +Meson support for building scikit-learn was added in :pr:`28040` by :user:`Loïc +Estève ` Metadata Routing ---------------- From 94ad8f307d8632a702725cd1ca90ac807868c633 Mon Sep 17 00:00:00 2001 From: Olivier Grisel Date: Tue, 14 May 2024 12:17:05 +0200 Subject: [PATCH 0524/1641] DOC More improvements to the documentation on model persistence (#29011) Co-authored-by: Adrin Jalali --- doc/model_persistence.rst | 72 ++++++++++++++++++++++++++------------- 1 file changed, 48 insertions(+), 24 deletions(-) diff --git a/doc/model_persistence.rst b/doc/model_persistence.rst index 0c11349a68e22..0bc7384ec3d46 100644 --- a/doc/model_persistence.rst +++ b/doc/model_persistence.rst @@ -80,7 +80,9 @@ persist and plan to serve the model: - :ref:`ONNX `: You need an `ONNX` runtime and an environment with appropriate dependencies installed to load the model and use the runtime to get predictions. This environment can be minimal and does not necessarily - even require `python` to be installed. + even require Python to be installed to load the model and compute + predictions. Also note that `onnxruntime` typically requires much less RAM + than Python to to compute predictions from small models. - :mod:`skops.io`, :mod:`pickle`, :mod:`joblib`, `cloudpickle`_: You need a Python environment with the appropriate dependencies installed to load the @@ -208,13 +210,20 @@ persist and load your scikit-learn model, and they all follow the same API:: # Here you can replace pickle with joblib or cloudpickle from pickle import dump - with open('filename.pkl', 'wb') as f: dump(clf, f) + with open("filename.pkl", "wb") as f: + dump(clf, f, protocol=5) + +Using `protocol=5` is recommended to reduce memory usage and make it faster to +store and load any large NumPy array stored as a fitted attribute in the model. +You can alternatively pass `protocol=pickle.HIGHEST_PROTOCOL` which is +equivalent to `protocol=5` in Python 3.8 and later (at the time of writing). And later when needed, you can load the same object from the persisted file:: # Here you can replace pickle with joblib or cloudpickle from pickle import load - with open('filename.pkl', 'rb') as f: clf = load(f) + with open("filename.pkl", "rb") as f: + clf = load(f) |details-end| @@ -224,12 +233,14 @@ Security & Maintainability Limitations -------------------------------------- :mod:`pickle` (and :mod:`joblib` and :mod:`clouldpickle` by extension), has -many documented security vulnerabilities and should only be used if the -artifact, i.e. the pickle-file, is coming from a trusted and verified source. +many documented security vulnerabilities by design and should only be used if +the artifact, i.e. the pickle-file, is coming from a trusted and verified +source. You should never load a pickle file from an untrusted source, similarly +to how you should never execute code from an untrusted source. Also note that arbitrary computations can be represented using the `ONNX` -format, and therefore a sandbox used to serve models using `ONNX` also needs to -safeguard against computational and memory exploits. +format, and it is therefore recommended to serve models using `ONNX` in a +sandboxed environment to safeguard against computational and memory exploits. Also note that there are no supported ways to load a model trained with a different version of scikit-learn. While using :mod:`skops.io`, :mod:`joblib`, @@ -298,7 +309,8 @@ can be caught to obtain the original version the estimator was pickled with:: warnings.simplefilter("error", InconsistentVersionWarning) try: - est = pickle.loads("model_from_prevision_version.pickle") + with open("model_from_prevision_version.pickle", "rb") as f: + est = pickle.load(f) except InconsistentVersionWarning as w: print(w.original_sklearn_version) @@ -328,22 +340,34 @@ each approach can be summarized as follows: * :mod:`skops.io`: Trained scikit-learn models can be easily shared and put into production using :mod:`skops.io`. It is more secure compared to alternate approaches based on :mod:`pickle` because it does not load - arbitrary code unless explicitly asked for by the user. + arbitrary code unless explicitly asked for by the user. Such code needs to be + packaged and importable in the target Python environment. * :mod:`joblib`: Efficient memory mapping techniques make it faster when using - the same persisted model in multiple Python processes. It also gives easy - shortcuts to compress and decompress the persisted object without the need - for extra code. However, it may trigger the execution of malicious code while - untrusted data as any other pickle-based persistence mechanism. -* :mod:`pickle`: It is native to Python and any Python object can be serialized - and deserialized using :mod:`pickle`, including custom Python classes and - objects. While :mod:`pickle` can be used to easily save and load scikit-learn - models, it may trigger the execution of malicious code while loading - untrusted data. -* `cloudpickle`_: It is slower than :mod:`pickle` and :mod:`joblib`, and is - more insecure than :mod:`pickle` and :mod:`joblib` since it can serialize - arbitrary code. However, in certain cases it might be a last resort to - persist certain models. Note that this is discouraged by `cloudpickle`_ - itself since there are no forward compatibility guarantees and you might need - the same version of `cloudpickle`_ to load the persisted model. + the same persisted model in multiple Python processes when using + `mmap_mode="r"`. It also gives easy shortcuts to compress and decompress the + persisted object without the need for extra code. However, it may trigger the + execution of malicious code when loading a model from an untrusted source as + any other pickle-based persistence mechanism. +* :mod:`pickle`: It is native to Python and most Python objects can be + serialized and deserialized using :mod:`pickle`, including custom Python + classes and functions as long as they are defined in a package that can be + imported in the target environment. While :mod:`pickle` can be used to easily + save and load scikit-learn models, it may trigger the execution of malicious + code while loading a model from an untrusted source. :mod:`pickle` can also + be very efficient memorywise if the model was persisted with `protocol=5` but + it does not support memory mapping. +* `cloudpickle`_: It has comparable loading efficiency as :mod:`pickle` and + :mod:`joblib` (without memory mapping), but offers additional flexibility to + serialize custom Python code such as lambda expressions and interactively + defined functions and classes. It might be a last resort to persist pipelines + with custom Python components such as a + :class:`sklearn.preprocessing.FunctionTransformer` that wraps a function + defined in the training script itself or more generally outside of any + importable Python package. Note that `cloudpickle`_ offers no forward + compatibility guarantees and you might need the same version of + `cloudpickle`_ to load the persisted model along with the same version of all + the libraries used to define the model. As the other pickle-based persistence + mechanisms, it may trigger the execution of malicious code while loading + a model from an untrusted source. .. _cloudpickle: https://github.com/cloudpipe/cloudpickle From 3ca9fc1ad4df1b60e5652a44b8d4dc88addb79e7 Mon Sep 17 00:00:00 2001 From: Lucy Liu Date: Tue, 14 May 2024 22:30:17 +1000 Subject: [PATCH 0525/1641] DOC Add warm start section for tree ensembles (#29001) --- doc/modules/ensemble.rst | 37 +++++++++++++++++++++++++++++++++++++ sklearn/ensemble/_forest.py | 10 +++++----- 2 files changed, 42 insertions(+), 5 deletions(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 8cee8c8d403c7..40e3894a836fc 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -1247,6 +1247,43 @@ estimation. representations of feature space, also these approaches focus also on dimensionality reduction. +.. _tree_ensemble_warm_start: + +Fitting additional trees +------------------------ + +RandomForest, Extra-Trees and :class:`RandomTreesEmbedding` estimators all support +``warm_start=True`` which allows you to add more trees to an already fitted model. + +:: + + >>> from sklearn.datasets import make_classification + >>> from sklearn.ensemble import RandomForestClassifier + + >>> X, y = make_classification(n_samples=100, random_state=1) + >>> clf = RandomForestClassifier(n_estimators=10) + >>> clf = clf.fit(X, y) # fit with 10 trees + >>> len(clf.estimators_) + 10 + >>> # set warm_start and increase num of estimators + >>> _ = clf.set_params(n_estimators=20, warm_start=True) + >>> _ = clf.fit(X, y) # fit additional 10 trees + >>> len(clf.estimators_) + 20 + +When ``random_state`` is also set, the internal random state is also preserved +between ``fit`` calls. This means that training a model once with ``n`` estimators is +the same as building the model iteratively via multiple ``fit`` calls, where the +final number of estimators is equal to ``n``. + +:: + + >>> clf = RandomForestClassifier(n_estimators=20) # set `n_estimators` to 10 + 10 + >>> _ = clf.fit(X, y) # fit `estimators_` will be the same as `clf` above + +Note that this differs from the usual behavior of :term:`random_state` in that it does +*not* result in the same result across different calls. + .. _bagging: Bagging meta-estimator diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index 6b1b842f5367b..28c404c3e406b 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -1308,7 +1308,7 @@ class RandomForestClassifier(ForestClassifier): When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`Glossary ` and - :ref:`gradient_boosting_warm_start` for details. + :ref:`tree_ensemble_warm_start` for details. class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \ default=None @@ -1710,7 +1710,7 @@ class RandomForestRegressor(ForestRegressor): When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`Glossary ` and - :ref:`gradient_boosting_warm_start` for details. + :ref:`tree_ensemble_warm_start` for details. ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The @@ -2049,7 +2049,7 @@ class ExtraTreesClassifier(ForestClassifier): When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`Glossary ` and - :ref:`gradient_boosting_warm_start` for details. + :ref:`tree_ensemble_warm_start` for details. class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \ default=None @@ -2434,7 +2434,7 @@ class ExtraTreesRegressor(ForestRegressor): When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`Glossary ` and - :ref:`gradient_boosting_warm_start` for details. + :ref:`tree_ensemble_warm_start` for details. ccp_alpha : non-negative float, default=0.0 Complexity parameter used for Minimal Cost-Complexity Pruning. The @@ -2727,7 +2727,7 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest): When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`Glossary ` and - :ref:`gradient_boosting_warm_start` for details. + :ref:`tree_ensemble_warm_start` for details. Attributes ---------- From 00db4dfeb65a276d144b0d0b93e779eb0966634d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20Est=C3=A8ve?= Date: Tue, 14 May 2024 17:26:53 +0200 Subject: [PATCH 0526/1641] MNT Use c11 rather than c17 in meson.build to work-around Pyodide issue (#29015) --- meson.build | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/meson.build b/meson.build index 52c7deb962277..b6b3652a82268 100644 --- a/meson.build +++ b/meson.build @@ -6,7 +6,7 @@ project( meson_version: '>= 1.1.0', default_options: [ 'buildtype=debugoptimized', - 'c_std=c17', + 'c_std=c11', 'cpp_std=c++14', ], ) From 28c9f50991d04a3d00913dfa19048d095446bc73 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Tue, 14 May 2024 22:02:20 +0200 Subject: [PATCH 0527/1641] DOC fix dollar sign to euro sign (#29020) Co-authored-by: Guillaume Lemaitre --- .../plot_cost_sensitive_learning.py | 22 +++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/examples/model_selection/plot_cost_sensitive_learning.py b/examples/model_selection/plot_cost_sensitive_learning.py index 7b64af48139f2..be0900d50e4ba 100644 --- a/examples/model_selection/plot_cost_sensitive_learning.py +++ b/examples/model_selection/plot_cost_sensitive_learning.py @@ -489,7 +489,7 @@ def plot_roc_pr_curves(vanilla_model, tuned_model, *, title): _, ax = plt.subplots() ax.hist(amount_fraud, bins=100) ax.set_title("Amount of fraud transaction") -_ = ax.set_xlabel("Amount ($)") +_ = ax.set_xlabel("Amount (€)") # %% # Addressing the problem with a business metric @@ -501,8 +501,8 @@ def plot_roc_pr_curves(vanilla_model, tuned_model, *, title): # transaction result in a loss of the amount of the transaction. As stated in [2]_, the # gain and loss related to refusals (of fraudulent and legitimate transactions) are not # trivial to define. Here, we define that a refusal of a legitimate transaction is -# estimated to a loss of $5 while the refusal of a fraudulent transaction is estimated -# to a gain of $50 dollars and the amount of the transaction. Therefore, we define the +# estimated to a loss of 5€ while the refusal of a fraudulent transaction is estimated +# to a gain of 50€ and the amount of the transaction. Therefore, we define the # following function to compute the total benefit of a given decision: @@ -557,22 +557,22 @@ def business_metric(y_true, y_pred, amount): benefit_cost = business_scorer( easy_going_classifier, data_test, target_test, amount=amount_test ) -print(f"Benefit/cost of our easy-going classifier: ${benefit_cost:,.2f}") +print(f"Benefit/cost of our easy-going classifier: {benefit_cost:,.2f}€") # %% # A classifier that predict all transactions as legitimate would create a profit of -# around $220,000. We make the same evaluation for a classifier that predicts all +# around 220,000.€ We make the same evaluation for a classifier that predicts all # transactions as fraudulent. intolerant_classifier = DummyClassifier(strategy="constant", constant=1) intolerant_classifier.fit(data_train, target_train) benefit_cost = business_scorer( intolerant_classifier, data_test, target_test, amount=amount_test ) -print(f"Benefit/cost of our intolerant classifier: ${benefit_cost:,.2f}") +print(f"Benefit/cost of our intolerant classifier: {benefit_cost:,.2f}€") # %% -# Such a classifier create a loss of around $670,000. A predictive model should allow -# us to make a profit larger than $220,000. It is interesting to compare this business +# Such a classifier create a loss of around 670,000.€ A predictive model should allow +# us to make a profit larger than 220,000.€ It is interesting to compare this business # metric with another "standard" statistical metric such as the balanced accuracy. from sklearn.metrics import get_scorer @@ -607,7 +607,7 @@ def business_metric(y_true, y_pred, amount): print( "Benefit/cost of our logistic regression: " - f"${business_scorer(model, data_test, target_test, amount=amount_test):,.2f}" + f"{business_scorer(model, data_test, target_test, amount=amount_test):,.2f}€" ) print( "Balanced accuracy of our logistic regression: " @@ -645,7 +645,7 @@ def business_metric(y_true, y_pred, amount): # %% print( "Benefit/cost of our logistic regression: " - f"${business_scorer(tuned_model, data_test, target_test, amount=amount_test):,.2f}" + f"{business_scorer(tuned_model, data_test, target_test, amount=amount_test):,.2f}€" ) print( "Balanced accuracy of our logistic regression: " @@ -691,7 +691,7 @@ def business_metric(y_true, y_pred, amount): business_score = business_scorer( model_fixed_threshold, data_test, target_test, amount=amount_test ) -print(f"Benefit/cost of our logistic regression: ${business_score:,.2f}") +print(f"Benefit/cost of our logistic regression: {business_score:,.2f}€") print( "Balanced accuracy of our logistic regression: " f"{balanced_accuracy_scorer(model_fixed_threshold, data_test, target_test):.3f}" From 9f44f1ff3085467cbe268deb782333ad98084fcb Mon Sep 17 00:00:00 2001 From: Edoardo Abati <29585319+EdAbati@users.noreply.github.com> Date: Wed, 15 May 2024 12:26:15 +0200 Subject: [PATCH 0528/1641] ENH Add Array API compatibility to `mean_absolute_error` (#27736) --- doc/modules/array_api.rst | 1 + doc/whats_new/v1.6.rst | 1 + sklearn/metrics/_regression.py | 26 +++++++++++++++++++++----- sklearn/metrics/tests/test_common.py | 11 +++++++++++ 4 files changed, 34 insertions(+), 5 deletions(-) diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index dadae86689e08..3a21304a39a3e 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -106,6 +106,7 @@ Metrics ------- - :func:`sklearn.metrics.accuracy_score` +- :func:`sklearn.metrics.mean_absolute_error` - :func:`sklearn.metrics.mean_tweedie_deviance` - :func:`sklearn.metrics.r2_score` - :func:`sklearn.metrics.zero_one_loss` diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 5000866b59c03..b4d26e07dffc0 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -35,6 +35,7 @@ See :ref:`array_api` for more details. - :func:`sklearn.metrics.mean_tweedie_deviance` now supports Array API compatible inputs. :pr:`28106` by :user:`Thomas Li ` +- :func:`sklearn.metrics.mean_absolute_error` :pr:`27736` by :user:`Edoardo Abati `. **Classes:** diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py index 596a45dd3eaed..61bb1caa2d9da 100644 --- a/sklearn/metrics/_regression.py +++ b/sklearn/metrics/_regression.py @@ -189,7 +189,7 @@ def mean_absolute_error( Returns ------- - loss : float or ndarray of floats + loss : float or array of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the @@ -213,11 +213,19 @@ def mean_absolute_error( >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) 0.85... """ - y_type, y_true, y_pred, multioutput = _check_reg_targets( - y_true, y_pred, multioutput + input_arrays = [y_true, y_pred, sample_weight, multioutput] + xp, _ = get_namespace(*input_arrays) + + dtype = _find_matching_floating_dtype(y_true, y_pred, sample_weight, xp=xp) + + _, y_true, y_pred, multioutput = _check_reg_targets( + y_true, y_pred, multioutput, dtype=dtype, xp=xp ) check_consistent_length(y_true, y_pred, sample_weight) - output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) + + output_errors = _average( + xp.abs(y_pred - y_true), weights=sample_weight, axis=0, xp=xp + ) if isinstance(multioutput, str): if multioutput == "raw_values": return output_errors @@ -225,7 +233,15 @@ def mean_absolute_error( # pass None as weights to np.average: uniform mean multioutput = None - return np.average(output_errors, weights=multioutput) + # Average across the outputs (if needed). + mean_absolute_error = _average(output_errors, weights=multioutput) + + # Since `y_pred.ndim <= 2` and `y_true.ndim <= 2`, the second call to _average + # should always return a scalar array that we convert to a Python float to + # consistently return the same eager evaluated value, irrespective of the + # Array API implementation. + assert mean_absolute_error.shape == () + return float(mean_absolute_error) @validate_params( diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index f00af5e160858..ae47ffe3d6a56 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1879,6 +1879,13 @@ def check_array_api_regression_metric_multioutput( ) +def check_array_api_multioutput_regression_metric( + metric, array_namespace, device, dtype_name +): + metric = partial(metric, multioutput="raw_values") + check_array_api_regression_metric(metric, array_namespace, device, dtype_name) + + array_api_metric_checkers = { accuracy_score: [ check_array_api_binary_classification_metric, @@ -1893,6 +1900,10 @@ def check_array_api_regression_metric_multioutput( check_array_api_regression_metric, check_array_api_regression_metric_multioutput, ], + mean_absolute_error: [ + check_array_api_regression_metric, + check_array_api_multioutput_regression_metric, + ], } From 025d4b0baff58e7333ca88bb40691973cf09524d Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Wed, 15 May 2024 14:01:27 +0200 Subject: [PATCH 0529/1641] TST check compatibility with metadata routing for *ThresholdClassifier* (#29021) --- .../_classification_threshold.py | 19 ++++++++++------- sklearn/tests/metadata_routing_common.py | 20 ++++++++++++++---- .../test_metaestimators_metadata_routing.py | 21 +++++++++++++++++++ 3 files changed, 48 insertions(+), 12 deletions(-) diff --git a/sklearn/model_selection/_classification_threshold.py b/sklearn/model_selection/_classification_threshold.py index d5a864da10653..1f891577b4680 100644 --- a/sklearn/model_selection/_classification_threshold.py +++ b/sklearn/model_selection/_classification_threshold.py @@ -106,6 +106,14 @@ def __init__(self, estimator, *, response_method="auto"): self.estimator = estimator self.response_method = response_method + def _get_response_method(self): + """Define the response method.""" + if self.response_method == "auto": + response_method = ["predict_proba", "decision_function"] + else: + response_method = self.response_method + return response_method + @_fit_context( # *ThresholdClassifier*.estimator is not validated yet prefer_skip_nested_validation=False @@ -140,11 +148,6 @@ def fit(self, X, y, **params): f"Only binary classification is supported. Unknown label type: {y_type}" ) - if self.response_method == "auto": - self._response_method = ["predict_proba", "decision_function"] - else: - self._response_method = self.response_method - self._fit(X, y, **params) if hasattr(self.estimator_, "n_features_in_"): @@ -374,7 +377,7 @@ def predict(self, X): y_score, _, response_method_used = _get_response_values_binary( self.estimator_, X, - self._response_method, + self._get_response_method(), pos_label=self.pos_label, return_response_method_used=True, ) @@ -954,7 +957,7 @@ def predict(self, X): y_score, _ = _get_response_values_binary( self.estimator_, X, - self._response_method, + self._get_response_method(), pos_label=pos_label, ) @@ -995,6 +998,6 @@ def _get_curve_scorer(self): """Get the curve scorer based on the objective metric used.""" scoring = check_scoring(self.estimator, scoring=self.scoring) curve_scorer = _CurveScorer.from_scorer( - scoring, self._response_method, self.thresholds + scoring, self._get_response_method(), self.thresholds ) return curve_scorer diff --git a/sklearn/tests/metadata_routing_common.py b/sklearn/tests/metadata_routing_common.py index 5091569e434a3..6fba2f037fd15 100644 --- a/sklearn/tests/metadata_routing_common.py +++ b/sklearn/tests/metadata_routing_common.py @@ -194,7 +194,10 @@ def decision_function(self, X): return self.predict(X) def predict(self, X): - return np.ones(len(X)) + y_pred = np.empty(shape=(len(X),)) + y_pred[: len(X) // 2] = 0 + y_pred[len(X) // 2 :] = 1 + return y_pred class NonConsumingRegressor(RegressorMixin, BaseEstimator): @@ -257,13 +260,19 @@ def predict(self, X, sample_weight="default", metadata="default"): record_metadata_not_default( self, "predict", sample_weight=sample_weight, metadata=metadata ) - return np.zeros(shape=(len(X),), dtype="int8") + y_score = np.empty(shape=(len(X),), dtype="int8") + y_score[len(X) // 2 :] = 0 + y_score[: len(X) // 2] = 1 + return y_score def predict_proba(self, X, sample_weight="default", metadata="default"): record_metadata_not_default( self, "predict_proba", sample_weight=sample_weight, metadata=metadata ) - return np.asarray([[0.0, 1.0]] * len(X)) + y_proba = np.empty(shape=(len(X), 2)) + y_proba[: len(X) // 2, :] = np.asarray([1.0, 0.0]) + y_proba[len(X) // 2 :, :] = np.asarray([0.0, 1.0]) + return y_proba def predict_log_proba(self, X, sample_weight="default", metadata="default"): pass # pragma: no cover @@ -278,7 +287,10 @@ def decision_function(self, X, sample_weight="default", metadata="default"): record_metadata_not_default( self, "predict_proba", sample_weight=sample_weight, metadata=metadata ) - return np.zeros(shape=(len(X),)) + y_score = np.empty(shape=(len(X),)) + y_score[len(X) // 2 :] = 0 + y_score[: len(X) // 2] = 1 + return y_score # uncomment when needed # def score(self, X, y, sample_weight="default", metadata="default"): diff --git a/sklearn/tests/test_metaestimators_metadata_routing.py b/sklearn/tests/test_metaestimators_metadata_routing.py index 38168f3f0261f..8bfb7b0663c18 100644 --- a/sklearn/tests/test_metaestimators_metadata_routing.py +++ b/sklearn/tests/test_metaestimators_metadata_routing.py @@ -41,10 +41,12 @@ RidgeCV, ) from sklearn.model_selection import ( + FixedThresholdClassifier, GridSearchCV, HalvingGridSearchCV, HalvingRandomSearchCV, RandomizedSearchCV, + TunedThresholdClassifierCV, ) from sklearn.multiclass import ( OneVsOneClassifier, @@ -75,6 +77,7 @@ N, M = 100, 4 X = rng.rand(N, M) y = rng.randint(0, 3, size=N) +y_binary = (y >= 1).astype(int) classes = np.unique(y) y_multi = rng.randint(0, 3, size=(N, 3)) classes_multi = [np.unique(y_multi[:, i]) for i in range(y_multi.shape[1])] @@ -198,6 +201,24 @@ def enable_slep006(): "cv_name": "cv", "cv_routing_methods": ["fit"], }, + { + "metaestimator": FixedThresholdClassifier, + "estimator_name": "estimator", + "estimator": "classifier", + "X": X, + "y": y_binary, + "estimator_routing_methods": ["fit"], + "preserves_metadata": "subset", + }, + { + "metaestimator": TunedThresholdClassifierCV, + "estimator_name": "estimator", + "estimator": "classifier", + "X": X, + "y": y_binary, + "estimator_routing_methods": ["fit"], + "preserves_metadata": "subset", + }, { "metaestimator": OneVsRestClassifier, "estimator_name": "estimator", From 5c28a8e09a3956283f6e4ea6c5ece00fd33f0ae0 Mon Sep 17 00:00:00 2001 From: Christian Lorentzen Date: Wed, 15 May 2024 15:08:17 +0200 Subject: [PATCH 0530/1641] ENH use Scipy isotonic_regression (#28897) --- benchmarks/bench_isotonic.py | 6 +++--- sklearn/isotonic.py | 24 +++++++++++++++++------- sklearn/tests/test_isotonic.py | 32 +++++++++++++++++++------------- 3 files changed, 39 insertions(+), 23 deletions(-) diff --git a/benchmarks/bench_isotonic.py b/benchmarks/bench_isotonic.py index 556c452fa3323..be2ff6548cb92 100644 --- a/benchmarks/bench_isotonic.py +++ b/benchmarks/bench_isotonic.py @@ -13,7 +13,7 @@ import argparse import gc -from datetime import datetime +from timeit import default_timer import matplotlib.pyplot as plt import numpy as np @@ -52,9 +52,9 @@ def bench_isotonic_regression(Y): """ gc.collect() - tstart = datetime.now() + tstart = default_timer() isotonic_regression(Y) - return (datetime.now() - tstart).total_seconds() + return default_timer() - tstart if __name__ == "__main__": diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py index 04456b1763791..f1c7f48966946 100644 --- a/sklearn/isotonic.py +++ b/sklearn/isotonic.py @@ -8,13 +8,14 @@ from numbers import Real import numpy as np -from scipy import interpolate +from scipy import interpolate, optimize from scipy.stats import spearmanr from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique from .base import BaseEstimator, RegressorMixin, TransformerMixin, _fit_context from .utils import check_array, check_consistent_length from .utils._param_validation import Interval, StrOptions, validate_params +from .utils.fixes import parse_version, sp_base_version from .utils.validation import _check_sample_weight, check_is_fitted __all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"] @@ -151,13 +152,22 @@ def isotonic_regression( array([2.75 , 2.75 , 2.75 , 2.75 , 7.33..., 7.33..., 7.33..., 7.33..., 7.33..., 7.33...]) """ - order = np.s_[:] if increasing else np.s_[::-1] y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32]) - y = np.array(y[order], dtype=y.dtype) - sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True) - sample_weight = np.ascontiguousarray(sample_weight[order]) + if sp_base_version >= parse_version("1.12.0"): + res = optimize.isotonic_regression( + y=y, weights=sample_weight, increasing=increasing + ) + y = np.asarray(res.x, dtype=y.dtype) + else: + # TODO: remove this branch when Scipy 1.12 is the minimum supported version + # Also remove _inplace_contiguous_isotonic_regression. + order = np.s_[:] if increasing else np.s_[::-1] + y = np.array(y[order], dtype=y.dtype) + sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True) + sample_weight = np.ascontiguousarray(sample_weight[order]) + _inplace_contiguous_isotonic_regression(y, sample_weight) + y = y[order] - _inplace_contiguous_isotonic_regression(y, sample_weight) if y_min is not None or y_max is not None: # Older versions of np.clip don't accept None as a bound, so use np.inf if y_min is None: @@ -165,7 +175,7 @@ def isotonic_regression( if y_max is None: y_max = np.inf np.clip(y, y_min, y_max, y) - return y[order] + return y class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator): diff --git a/sklearn/tests/test_isotonic.py b/sklearn/tests/test_isotonic.py index 93df0221236b8..90598b48f6434 100644 --- a/sklearn/tests/test_isotonic.py +++ b/sklearn/tests/test_isotonic.py @@ -227,7 +227,13 @@ def test_isotonic_regression_with_ties_in_differently_sized_groups(): def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) + y_result = np.array([10, 9.5, 9.5, 7, 6.05, 6.05, 5]) + + y_iso = isotonic_regression(y, increasing=False) + assert_allclose(y_iso, y_result) + y_ = IsotonicRegression(increasing=False).fit_transform(np.arange(len(y)), y) + assert_allclose(y_, y_result) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) @@ -502,25 +508,25 @@ def test_isotonic_copy_before_fit(): copy.copy(ir) -def test_isotonic_dtype(): +@pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64]) +def test_isotonic_dtype(dtype): y = [2, 1, 4, 3, 5] weights = np.array([0.9, 0.9, 0.9, 0.9, 0.9], dtype=np.float64) reg = IsotonicRegression() - for dtype in (np.int32, np.int64, np.float32, np.float64): - for sample_weight in (None, weights.astype(np.float32), weights): - y_np = np.array(y, dtype=dtype) - expected_dtype = check_array( - y_np, dtype=[np.float64, np.float32], ensure_2d=False - ).dtype + for sample_weight in (None, weights.astype(np.float32), weights): + y_np = np.array(y, dtype=dtype) + expected_dtype = check_array( + y_np, dtype=[np.float64, np.float32], ensure_2d=False + ).dtype - res = isotonic_regression(y_np, sample_weight=sample_weight) - assert res.dtype == expected_dtype + res = isotonic_regression(y_np, sample_weight=sample_weight) + assert res.dtype == expected_dtype - X = np.arange(len(y)).astype(dtype) - reg.fit(X, y_np, sample_weight=sample_weight) - res = reg.predict(X) - assert res.dtype == expected_dtype + X = np.arange(len(y)).astype(dtype) + reg.fit(X, y_np, sample_weight=sample_weight) + res = reg.predict(X) + assert res.dtype == expected_dtype @pytest.mark.parametrize("y_dtype", [np.int32, np.int64, np.float32, np.float64]) From 25cb305e8c14d94fc33489c83cb4c5452e99f9c3 Mon Sep 17 00:00:00 2001 From: Aswathavicky Date: Thu, 16 May 2024 10:01:37 +0200 Subject: [PATCH 0531/1641] DOC add link to sklearn_example_ensemeble_plot_adboost_twoclass (#29023) --- sklearn/ensemble/_weight_boosting.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sklearn/ensemble/_weight_boosting.py b/sklearn/ensemble/_weight_boosting.py index 0461a397983be..6bbac0613de71 100644 --- a/sklearn/ensemble/_weight_boosting.py +++ b/sklearn/ensemble/_weight_boosting.py @@ -482,6 +482,10 @@ class AdaBoostClassifier( For a detailed example of using AdaBoost to fit a sequence of DecisionTrees as weaklearners, please refer to :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py`. + + For a detailed example of using AdaBoost to fit a non-linearly seperable + classification dataset composed of two Gaussian quantiles clusters, please + refer to :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py`. """ # TODO(1.6): Modify _parameter_constraints for "algorithm" to only check From 945273d297c8c3dd578a9556b74b5e46d2270675 Mon Sep 17 00:00:00 2001 From: Tialo <65392801+Tialo@users.noreply.github.com> Date: Thu, 16 May 2024 11:11:54 +0300 Subject: [PATCH 0532/1641] DOC Fix default value of n in check_cv (#29024) --- sklearn/model_selection/_split.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py index 53c11a665ccf4..1f9d78d3e4cbd 100644 --- a/sklearn/model_selection/_split.py +++ b/sklearn/model_selection/_split.py @@ -2596,7 +2596,7 @@ def check_cv(cv=5, y=None, *, classifier=False): Parameters ---------- - cv : int, cross-validation generator or an iterable, default=None + cv : int, cross-validation generator, iterable or None, default=5 Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, From acd2d90e50852ba2afbf30b8a06b7a21431ee98a Mon Sep 17 00:00:00 2001 From: Omar Salman Date: Thu, 16 May 2024 18:47:35 +0500 Subject: [PATCH 0533/1641] ENH Array API support for LabelEncoder (#27381) Co-authored-by: Omar Salman Co-authored-by: Olivier Grisel --- doc/whats_new/v1.6.rst | 3 +- sklearn/preprocessing/_label.py | 23 ++-- sklearn/preprocessing/tests/test_label.py | 52 ++++++++- sklearn/utils/_array_api.py | 123 ++++++++++++++++++++++ sklearn/utils/_encode.py | 62 ++++++----- sklearn/utils/tests/test_array_api.py | 36 +++++++ 6 files changed, 261 insertions(+), 38 deletions(-) diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index b4d26e07dffc0..aff2ea2b011da 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -39,7 +39,8 @@ See :ref:`array_api` for more details. **Classes:** -- +- :class:`preprocessing.LabelEncoder` now supports Array API compatible inputs. + :pr:`27381` by :user:`Omar Salman `. Metadata Routing ---------------- diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py index 301dc19bb1985..ecf0c400a2c2f 100644 --- a/sklearn/preprocessing/_label.py +++ b/sklearn/preprocessing/_label.py @@ -17,6 +17,7 @@ from ..base import BaseEstimator, TransformerMixin, _fit_context from ..utils import column_or_1d +from ..utils._array_api import _setdiff1d, device, get_namespace from ..utils._encode import _encode, _unique from ..utils._param_validation import Interval, validate_params from ..utils.multiclass import type_of_target, unique_labels @@ -129,10 +130,11 @@ def transform(self, y): Labels as normalized encodings. """ check_is_fitted(self) + xp, _ = get_namespace(y) y = column_or_1d(y, dtype=self.classes_.dtype, warn=True) # transform of empty array is empty array if _num_samples(y) == 0: - return np.array([]) + return xp.asarray([]) return _encode(y, uniques=self.classes_) @@ -141,7 +143,7 @@ def inverse_transform(self, y): Parameters ---------- - y : ndarray of shape (n_samples,) + y : array-like of shape (n_samples,) Target values. Returns @@ -150,19 +152,24 @@ def inverse_transform(self, y): Original encoding. """ check_is_fitted(self) + xp, _ = get_namespace(y) y = column_or_1d(y, warn=True) # inverse transform of empty array is empty array if _num_samples(y) == 0: - return np.array([]) + return xp.asarray([]) - diff = np.setdiff1d(y, np.arange(len(self.classes_))) - if len(diff): + diff = _setdiff1d( + ar1=y, + ar2=xp.arange(self.classes_.shape[0], device=device(y)), + xp=xp, + ) + if diff.shape[0]: raise ValueError("y contains previously unseen labels: %s" % str(diff)) - y = np.asarray(y) - return self.classes_[y] + y = xp.asarray(y) + return xp.take(self.classes_, y, axis=0) def _more_tags(self): - return {"X_types": ["1dlabels"]} + return {"X_types": ["1dlabels"], "array_api_support": True} class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None): diff --git a/sklearn/preprocessing/tests/test_label.py b/sklearn/preprocessing/tests/test_label.py index e438805df1254..90e3aa210eebb 100644 --- a/sklearn/preprocessing/tests/test_label.py +++ b/sklearn/preprocessing/tests/test_label.py @@ -2,7 +2,7 @@ import pytest from scipy.sparse import issparse -from sklearn import datasets +from sklearn import config_context, datasets from sklearn.preprocessing._label import ( LabelBinarizer, LabelEncoder, @@ -11,7 +11,16 @@ _inverse_binarize_thresholding, label_binarize, ) -from sklearn.utils._testing import assert_array_equal, ignore_warnings +from sklearn.utils._array_api import ( + _convert_to_numpy, + get_namespace, + yield_namespace_device_dtype_combinations, +) +from sklearn.utils._testing import ( + _array_api_for_tests, + assert_array_equal, + ignore_warnings, +) from sklearn.utils.fixes import ( COO_CONTAINERS, CSC_CONTAINERS, @@ -697,3 +706,42 @@ def test_label_encoders_do_not_have_set_output(encoder): y_encoded_with_kwarg = encoder.fit_transform(y=["a", "b", "c"]) y_encoded_positional = encoder.fit_transform(["a", "b", "c"]) assert_array_equal(y_encoded_with_kwarg, y_encoded_positional) + + +@pytest.mark.parametrize( + "array_namespace, device, dtype", yield_namespace_device_dtype_combinations() +) +@pytest.mark.parametrize( + "y", + [ + np.array([2, 1, 3, 1, 3]), + np.array([1, 1, 4, 5, -1, 0]), + np.array([3, 5, 9, 5, 9, 3]), + ], +) +def test_label_encoder_array_api_compliance(y, array_namespace, device, dtype): + xp = _array_api_for_tests(array_namespace, device) + xp_y = xp.asarray(y, device=device) + with config_context(array_api_dispatch=True): + xp_label = LabelEncoder() + np_label = LabelEncoder() + xp_label = xp_label.fit(xp_y) + xp_transformed = xp_label.transform(xp_y) + xp_inv_transformed = xp_label.inverse_transform(xp_transformed) + np_label = np_label.fit(y) + np_transformed = np_label.transform(y) + assert get_namespace(xp_transformed)[0].__name__ == xp.__name__ + assert get_namespace(xp_inv_transformed)[0].__name__ == xp.__name__ + assert get_namespace(xp_label.classes_)[0].__name__ == xp.__name__ + assert_array_equal(_convert_to_numpy(xp_transformed, xp), np_transformed) + assert_array_equal(_convert_to_numpy(xp_inv_transformed, xp), y) + assert_array_equal(_convert_to_numpy(xp_label.classes_, xp), np_label.classes_) + + xp_label = LabelEncoder() + np_label = LabelEncoder() + xp_transformed = xp_label.fit_transform(xp_y) + np_transformed = np_label.fit_transform(y) + assert get_namespace(xp_transformed)[0].__name__ == xp.__name__ + assert get_namespace(xp_label.classes_)[0].__name__ == xp.__name__ + assert_array_equal(_convert_to_numpy(xp_transformed, xp), np_transformed) + assert_array_equal(_convert_to_numpy(xp_label.classes_, xp), np_label.classes_) diff --git a/sklearn/utils/_array_api.py b/sklearn/utils/_array_api.py index a8b0363c0af38..8374dc35ff4f0 100644 --- a/sklearn/utils/_array_api.py +++ b/sklearn/utils/_array_api.py @@ -406,6 +406,11 @@ def unique_counts(self, x): def unique_values(self, x): return numpy.unique(x) + def unique_all(self, x): + return numpy.unique( + x, return_index=True, return_inverse=True, return_counts=True + ) + def concat(self, arrays, *, axis=None): return numpy.concatenate(arrays, axis=axis) @@ -839,3 +844,121 @@ def indexing_dtype(xp): # TODO: once sufficiently adopted, we might want to instead rely on the # newer inspection API: https://github.com/data-apis/array-api/issues/640 return xp.asarray(0).dtype + + +def _searchsorted(xp, a, v, *, side="left", sorter=None): + # Temporary workaround needed as long as searchsorted is not widely + # adopted by implementers of the Array API spec. This is a quite + # recent addition to the spec: + # https://data-apis.org/array-api/latest/API_specification/generated/array_api.searchsorted.html # noqa + if hasattr(xp, "searchsorted"): + return xp.searchsorted(a, v, side=side, sorter=sorter) + + a_np = _convert_to_numpy(a, xp=xp) + v_np = _convert_to_numpy(v, xp=xp) + indices = numpy.searchsorted(a_np, v_np, side=side, sorter=sorter) + return xp.asarray(indices, device=device(a)) + + +def _setdiff1d(ar1, ar2, xp, assume_unique=False): + """Find the set difference of two arrays. + + Return the unique values in `ar1` that are not in `ar2`. + """ + if _is_numpy_namespace(xp): + return xp.asarray( + numpy.setdiff1d( + ar1=ar1, + ar2=ar2, + assume_unique=assume_unique, + ) + ) + + if assume_unique: + ar1 = xp.reshape(ar1, (-1,)) + else: + ar1 = xp.unique_values(ar1) + ar2 = xp.unique_values(ar2) + return ar1[_in1d(ar1=ar1, ar2=ar2, xp=xp, assume_unique=True, invert=True)] + + +def _isin(element, test_elements, xp, assume_unique=False, invert=False): + """Calculates ``element in test_elements``, broadcasting over `element` + only. + + Returns a boolean array of the same shape as `element` that is True + where an element of `element` is in `test_elements` and False otherwise. + """ + if _is_numpy_namespace(xp): + return xp.asarray( + numpy.isin( + element=element, + test_elements=test_elements, + assume_unique=assume_unique, + invert=invert, + ) + ) + + original_element_shape = element.shape + element = xp.reshape(element, (-1,)) + test_elements = xp.reshape(test_elements, (-1,)) + return xp.reshape( + _in1d( + ar1=element, + ar2=test_elements, + xp=xp, + assume_unique=assume_unique, + invert=invert, + ), + original_element_shape, + ) + + +# Note: This is a helper for the functions `_isin` and +# `_setdiff1d`. It is not meant to be called directly. +def _in1d(ar1, ar2, xp, assume_unique=False, invert=False): + """Checks whether each element of an array is also present in a + second array. + + Returns a boolean array the same length as `ar1` that is True + where an element of `ar1` is in `ar2` and False otherwise. + + This function has been adapted using the original implementation + present in numpy: + https://github.com/numpy/numpy/blob/v1.26.0/numpy/lib/arraysetops.py#L524-L758 + """ + xp, _ = get_namespace(ar1, ar2, xp=xp) + + # This code is run to make the code significantly faster + if ar2.shape[0] < 10 * ar1.shape[0] ** 0.145: + if invert: + mask = xp.ones(ar1.shape[0], dtype=xp.bool, device=device(ar1)) + for a in ar2: + mask &= ar1 != a + else: + mask = xp.zeros(ar1.shape[0], dtype=xp.bool, device=device(ar1)) + for a in ar2: + mask |= ar1 == a + return mask + + if not assume_unique: + ar1, rev_idx = xp.unique_inverse(ar1) + ar2 = xp.unique_values(ar2) + + ar = xp.concat((ar1, ar2)) + device_ = device(ar) + # We need this to be a stable sort. + order = xp.argsort(ar, stable=True) + reverse_order = xp.argsort(order, stable=True) + sar = xp.take(ar, order, axis=0) + if invert: + bool_ar = sar[1:] != sar[:-1] + else: + bool_ar = sar[1:] == sar[:-1] + flag = xp.concat((bool_ar, xp.asarray([invert], device=device_))) + ret = xp.take(flag, reverse_order, axis=0) + + if assume_unique: + return ret[: ar1.shape[0]] + else: + return xp.take(ret, rev_idx, axis=0) diff --git a/sklearn/utils/_encode.py b/sklearn/utils/_encode.py index a468af43f857d..3fd4d45f522e6 100644 --- a/sklearn/utils/_encode.py +++ b/sklearn/utils/_encode.py @@ -4,6 +4,13 @@ import numpy as np +from ._array_api import ( + _isin, + _searchsorted, + _setdiff1d, + device, + get_namespace, +) from ._missing import is_scalar_nan @@ -51,31 +58,29 @@ def _unique(values, *, return_inverse=False, return_counts=False): def _unique_np(values, return_inverse=False, return_counts=False): """Helper function to find unique values for numpy arrays that correctly accounts for nans. See `_unique` documentation for details.""" - uniques = np.unique( - values, return_inverse=return_inverse, return_counts=return_counts - ) + xp, _ = get_namespace(values) inverse, counts = None, None - if return_counts: - *uniques, counts = uniques - - if return_inverse: - *uniques, inverse = uniques - - if return_counts or return_inverse: - uniques = uniques[0] + if return_inverse and return_counts: + uniques, _, inverse, counts = xp.unique_all(values) + elif return_inverse: + uniques, inverse = xp.unique_inverse(values) + elif return_counts: + uniques, counts = xp.unique_counts(values) + else: + uniques = xp.unique_values(values) # np.unique will have duplicate missing values at the end of `uniques` # here we clip the nans and remove it from uniques if uniques.size and is_scalar_nan(uniques[-1]): - nan_idx = np.searchsorted(uniques, np.nan) + nan_idx = _searchsorted(xp, uniques, xp.nan) uniques = uniques[: nan_idx + 1] if return_inverse: inverse[inverse > nan_idx] = nan_idx if return_counts: - counts[nan_idx] = np.sum(counts[nan_idx:]) + counts[nan_idx] = xp.sum(counts[nan_idx:]) counts = counts[: nan_idx + 1] ret = (uniques,) @@ -161,8 +166,9 @@ def __missing__(self, key): def _map_to_integer(values, uniques): """Map values based on its position in uniques.""" + xp, _ = get_namespace(values, uniques) table = _nandict({val: i for i, val in enumerate(uniques)}) - return np.array([table[v] for v in values]) + return xp.asarray([table[v] for v in values], device=device(values)) def _unique_python(values, *, return_inverse, return_counts): @@ -220,7 +226,8 @@ def _encode(values, *, uniques, check_unknown=True): encoded : ndarray Encoded values """ - if values.dtype.kind in "OUS": + xp, _ = get_namespace(values, uniques) + if not xp.isdtype(values.dtype, "numeric"): try: return _map_to_integer(values, uniques) except KeyError as e: @@ -230,7 +237,7 @@ def _encode(values, *, uniques, check_unknown=True): diff = _check_unknown(values, uniques) if diff: raise ValueError(f"y contains previously unseen labels: {str(diff)}") - return np.searchsorted(uniques, values) + return _searchsorted(xp, uniques, values) def _check_unknown(values, known_values, return_mask=False): @@ -258,9 +265,10 @@ def _check_unknown(values, known_values, return_mask=False): Additionally returned if ``return_mask=True``. """ + xp, _ = get_namespace(values, known_values) valid_mask = None - if values.dtype.kind in "OUS": + if not xp.isdtype(values.dtype, "numeric"): values_set = set(values) values_set, missing_in_values = _extract_missing(values_set) @@ -282,9 +290,9 @@ def is_valid(value): if return_mask: if diff or nan_in_diff or none_in_diff: - valid_mask = np.array([is_valid(value) for value in values]) + valid_mask = xp.array([is_valid(value) for value in values]) else: - valid_mask = np.ones(len(values), dtype=bool) + valid_mask = xp.ones(len(values), dtype=xp.bool) diff = list(diff) if none_in_diff: @@ -292,21 +300,21 @@ def is_valid(value): if nan_in_diff: diff.append(np.nan) else: - unique_values = np.unique(values) - diff = np.setdiff1d(unique_values, known_values, assume_unique=True) + unique_values = xp.unique_values(values) + diff = _setdiff1d(unique_values, known_values, xp, assume_unique=True) if return_mask: if diff.size: - valid_mask = np.isin(values, known_values) + valid_mask = _isin(values, known_values, xp) else: - valid_mask = np.ones(len(values), dtype=bool) + valid_mask = xp.ones(len(values), dtype=xp.bool) # check for nans in the known_values - if np.isnan(known_values).any(): - diff_is_nan = np.isnan(diff) - if diff_is_nan.any(): + if xp.any(xp.isnan(known_values)): + diff_is_nan = xp.isnan(diff) + if xp.any(diff_is_nan): # removes nan from valid_mask if diff.size and return_mask: - is_nan = np.isnan(values) + is_nan = xp.isnan(values) valid_mask[is_nan] = 1 # remove nan from diff diff --git a/sklearn/utils/tests/test_array_api.py b/sklearn/utils/tests/test_array_api.py index d0b368cd7fe91..30fc88c539fc8 100644 --- a/sklearn/utils/tests/test_array_api.py +++ b/sklearn/utils/tests/test_array_api.py @@ -15,6 +15,7 @@ _convert_to_numpy, _estimator_with_converted_arrays, _is_numpy_namespace, + _isin, _nanmax, _nanmin, _NumPyAPIWrapper, @@ -27,6 +28,7 @@ ) from sklearn.utils._testing import ( _array_api_for_tests, + assert_array_equal, skip_if_array_api_compat_not_configured, ) from sklearn.utils.fixes import _IS_32BIT @@ -504,3 +506,37 @@ def test_indexing_dtype(namespace, _device, _dtype): assert indexing_dtype(xp) == xp.int32 else: assert indexing_dtype(xp) == xp.int64 + + +@pytest.mark.parametrize( + "array_namespace, device, _", yield_namespace_device_dtype_combinations() +) +@pytest.mark.parametrize("invert", [True, False]) +@pytest.mark.parametrize("assume_unique", [True, False]) +@pytest.mark.parametrize("element_size", [6, 10, 14]) +@pytest.mark.parametrize("int_dtype", ["int16", "int32", "int64", "uint8"]) +def test_isin( + array_namespace, device, _, invert, assume_unique, element_size, int_dtype +): + xp = _array_api_for_tests(array_namespace, device) + r = element_size // 2 + element = 2 * numpy.arange(element_size).reshape((r, 2)).astype(int_dtype) + test_elements = numpy.array(numpy.arange(14), dtype=int_dtype) + element_xp = xp.asarray(element, device=device) + test_elements_xp = xp.asarray(test_elements, device=device) + expected = numpy.isin( + element=element, + test_elements=test_elements, + assume_unique=assume_unique, + invert=invert, + ) + with config_context(array_api_dispatch=True): + result = _isin( + element=element_xp, + test_elements=test_elements_xp, + xp=xp, + assume_unique=assume_unique, + invert=invert, + ) + + assert_array_equal(_convert_to_numpy(result, xp=xp), expected) From e82550268fce38b38c09d90483cdef8c9bde846f Mon Sep 17 00:00:00 2001 From: raisadz <34237447+raisadz@users.noreply.github.com> Date: Fri, 17 May 2024 09:13:51 +0100 Subject: [PATCH 0534/1641] DOC replace pandas with Polars in examples/gaussian_process/plot_gpr_co2.py (#28804) Co-authored-by: raisa <> Co-authored-by: Adrin Jalali --- ...latest_conda_forge_mkl_linux-64_conda.lock | 6 +-- ...pylatest_conda_forge_mkl_osx-64_conda.lock | 2 +- ...pylatest_pip_scipy_dev_linux-64_conda.lock | 2 +- .../pymin_conda_forge_mkl_win-64_conda.lock | 2 +- ...e_openblas_ubuntu_2204_linux-64_conda.lock | 4 +- build_tools/azure/pypy3_linux-64_conda.lock | 34 +++++++-------- build_tools/circle/doc_linux-64_conda.lock | 8 ++-- .../doc_min_dependencies_environment.yml | 2 +- .../doc_min_dependencies_linux-64_conda.lock | 10 ++--- examples/gaussian_process/plot_gpr_co2.py | 41 ++++++++++--------- pyproject.toml | 4 +- sklearn/_min_dependencies.py | 2 +- sklearn/tests/test_base.py | 2 +- 13 files changed, 61 insertions(+), 58 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index 3d895fda71bc3..bf5bcd3daff08 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -91,7 +91,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.cond https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.6-h232c23b_2.conda#9a3a42df8a95f65334dfc7b80da1195d +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_0.conda#5d801a4906adc712d480afc362623b59 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.3.0-hf1915f5_4.conda#784a4df6676c581ca624fbe460703a6d https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.43-hcad00b1_0.conda#8292dea9e022d9610a11fce5e0896ed8 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -191,7 +191,7 @@ https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py311hb755f60_0.conda https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.3.14-hf3aad02_1.conda#a968ffa7e9fe0c257628033d393e512f https://conda.anaconda.org/conda-forge/linux-64/blas-1.0-mkl.tar.bz2#349aef876b1d8c9dccae01de20d5b385 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.4.0-h3d44ed6_0.conda#27f46291a6aaa3c2a4f798ebd35a7ddb +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.5.0-hfac3d4d_0.conda#f5126317dd0ce0ba26945e411ecc6960 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-16_linux64_mkl.tar.bz2#85f61af03fd291dae33150ffe89dc09a https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda#3366af27f0b593544a6cd453c7932ac5 https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 @@ -210,7 +210,7 @@ https://conda.anaconda.org/conda-forge/noarch/array-api-strict-1.1.1-pyhd8ed1ab_ https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 https://conda.anaconda.org/conda-forge/linux-64/libarrow-12.0.1-hb87d912_8_cpu.conda#3f3b11398fe79b578e3c44dd00a44e4a https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py311h320fe9a_0.conda#c79e96ece4110fdaf2657c9f8e16f749 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.25-py311h00856b1_0.conda#84ad7fa8742f6d34784a961337622c55 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py311h00856b1_0.conda#d9002441c9b75b188f9cdc51bf4f22c7 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/linux-64/pytorch-1.13.1-cpu_py311h410fd25_1.conda#ddd2fadddf89e3dc3d541a2537fce010 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.0-py311h517d4fd_1.conda#a86b8bea39e292a23b2cf9a750f49ea1 diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index ce2d5e2c383a3..c0e54faa37bc6 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -28,7 +28,7 @@ https://conda.anaconda.org/conda-forge/osx-64/libcxx-17.0.6-h88467a6_0.conda#0fe https://conda.anaconda.org/conda-forge/osx-64/libpng-1.6.43-h92b6c6a_0.conda#65dcddb15965c9de2c0365cb14910532 https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.45.3-h92b6c6a_0.conda#68e462226209f35182ef66eda0f794ff https://conda.anaconda.org/conda-forge/osx-64/libxcb-1.15-hb7f2c08_0.conda#5513f57e0238c87c12dffedbcc9c1a4a -https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.12.6-hc0ae0f7_2.conda#50b997370584f2c83ca0c38e9028eab9 +https://conda.anaconda.org/conda-forge/osx-64/libxml2-2.12.7-h3e169fe_0.conda#4c04ba47fdd2ebecc1d3b6a77534d9ef https://conda.anaconda.org/conda-forge/osx-64/llvm-openmp-18.1.5-h39e0ece_0.conda#ee12a644568269838b91f901b2537425 https://conda.anaconda.org/conda-forge/osx-64/openssl-3.3.0-hd75f5a5_0.conda#eb8c33aa7929a7714eab8b90c1d88afe https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h9e318b2_1.conda#f17f77f2acf4d344734bda76829ce14e diff --git a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock index c1a50c7c8c140..e4305c97b76bc 100644 --- a/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_scipy_dev_linux-64_conda.lock @@ -40,7 +40,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py312h06a4308_0.conda#6d96 # pip meson @ https://files.pythonhosted.org/packages/33/75/b1a37fa7b2dbca8c0dbb04d5cdd7e2720c8ef6febe41b4a74866350e041c/meson-1.4.0-py3-none-any.whl#sha256=476a458d51fcfa322a6bdc64da5138997c542d08e6b2e49b9fa68c46fd7c4475 # pip ninja @ https://files.pythonhosted.org/packages/6d/92/8d7aebd4430ab5ff65df2bfee6d5745f95c004284db2d8ca76dcbfd9de47/ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl#sha256=84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b # pip packaging @ https://files.pythonhosted.org/packages/49/df/1fceb2f8900f8639e278b056416d49134fb8d84c5942ffaa01ad34782422/packaging-24.0-py3-none-any.whl#sha256=2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5 -# pip platformdirs @ https://files.pythonhosted.org/packages/b0/15/1691fa5aaddc0c4ea4901c26f6137c29d5f6673596fe960a0340e8c308e1/platformdirs-4.2.1-py3-none-any.whl#sha256=17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1 +# pip platformdirs @ https://files.pythonhosted.org/packages/68/13/2aa1f0e1364feb2c9ef45302f387ac0bd81484e9c9a4c5688a322fbdfd08/platformdirs-4.2.2-py3-none-any.whl#sha256=2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee # pip pluggy @ https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl#sha256=44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669 # pip pygments @ https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl#sha256=b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a # pip six @ https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl#sha256=8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index d95e56378ae56..8f0a473c031ca 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -39,7 +39,7 @@ https://conda.anaconda.org/conda-forge/win-64/libbrotlienc-1.1.0-hcfcfb64_1.cond https://conda.anaconda.org/conda-forge/win-64/libintl-0.22.5-h5728263_2.conda#aa622c938af057adc119f8b8eecada01 https://conda.anaconda.org/conda-forge/win-64/libpng-1.6.43-h19919ed_0.conda#77e398acc32617a0384553aea29e866b https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2#e1a22282de0169c93e4ffe6ce6acc212 -https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.6-hc3477c8_2.conda#ac7af7a949db01dae61ddc48f4a93d79 +https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_0.conda#1451be68a5549561979125c1827b79ed https://conda.anaconda.org/conda-forge/win-64/m2w64-gcc-libs-5.3.0-7.tar.bz2#fe759119b8b3bfa720b8762c6fdc35de https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda#d0485b8aa2cedb141a7bd27b4efa4c9c https://conda.anaconda.org/conda-forge/win-64/python-3.9.19-h4de0772_0_cpython.conda#b6999bc275e0e6beae7b1c8ea0be1e85 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 231cd528ecd0e..1a4d0feae1773 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -71,7 +71,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#0 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.6-h232c23b_2.conda#9a3a42df8a95f65334dfc7b80da1195d +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_0.conda#5d801a4906adc712d480afc362623b59 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.3.0-hf1915f5_4.conda#784a4df6676c581ca624fbe460703a6d https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.43-hcad00b1_0.conda#8292dea9e022d9610a11fce5e0896ed8 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -175,7 +175,7 @@ https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda#08807a87fa7af10754d46f63b368e016 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.4.0-h3d44ed6_0.conda#27f46291a6aaa3c2a4f798ebd35a7ddb +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.5.0-hfac3d4d_0.conda#f5126317dd0ce0ba26945e411ecc6960 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-22_linux64_openblas.conda#1fd156abd41a4992835952f6f4d951d0 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda#3366af27f0b593544a6cd453c7932ac5 diff --git a/build_tools/azure/pypy3_linux-64_conda.lock b/build_tools/azure/pypy3_linux-64_conda.lock index 23710cfe35cb8..ab6a908edf340 100644 --- a/build_tools/azure/pypy3_linux-64_conda.lock +++ b/build_tools/azure/pypy3_linux-64_conda.lock @@ -4,24 +4,24 @@ @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda#2f4327a1cbe7f022401b236e915a5fef -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-h7e041cc_5.conda#f6f6600d18a4047b54f803cf708b868a +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_7.conda#53ebd4c833fa01cb2c6353e99f905406 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.9-4_pypy39_pp73.conda#c1b2f29111681a4036ed21eaa3f44620 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2#562b26ba2e19059551a811e72ab7f793 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h807b86a_5.conda#d4ff227c46917d3b4565302a2bbb276b +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_7.conda#72ec1b1b04c4d15d4204ece1ecea5978 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda#aec6c91c7371c26392a06708a73c70e5 https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.20-hd590300_0.conda#8e88f9389f1165d7c0936fe40d9a9a79 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-ha4646dd_5.conda#7a6bd7a12a4bd359e2afe6c0fa1acace +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-hca663fb_7.conda#c0bd771f09a326fdcd95a60b617795bf https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_1.conda#049b7df8bae5e184d1de42cdf64855f8 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda#f36c115f1ee199da648e0597ec2047ad -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4.20240210-h59595ed_0.conda#97da8860a0da5413c7c98a3b3838a645 -https://conda.anaconda.org/conda-forge/linux-64/ninja-1.11.1-h924138e_0.conda#73a4953a2d9c115bdc10ff30a52f675f -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.1-hd590300_1.conda#9d731343cff6ee2e5a25c4a091bf8e2a +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 +https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda#3aa1c7e292afeff25a0091ddd7c69b72 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.0-hd590300_0.conda#c0f3abb4a16477208bbd43a39bd56f18 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda#2c80dc38fface310c9bd81b17037fee5 @@ -32,22 +32,22 @@ https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_5.conda#e73e9cfd1191783392131e6238bdb3e9 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_7.conda#1b84f26d9f4f6026e179e7805d5a15cd https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.2-h2797004_0.conda#866983a220e27a80cb75e85cb30466a1 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/zlib-1.2.13-hd590300_5.conda#68c34ec6149623be41a1933ab996a209 -https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.5-hfc55251_0.conda#04b88013080254850d6c01ed54810589 +https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda#39f910d205726805a958da408ca194ba https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/gdbm-1.18-h0a1914f_2.tar.bz2#b77bc399b07a19c00fe12fdc95ee0297 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_h413a1c8_0.conda#a356024784da6dfd4683dc5ecf45b155 https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 -https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.3-h4dfa4b3_0.conda#d39965123dffcad4d750989be65bcb7c -https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.45.2-h2c6b66d_0.conda#1423efca06ed343c1da0fc429bae0779 +https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-18.1.5-ha31de31_0.conda#b923cdb6e567ada84f991ffcc5848afb +https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.45.3-h2c6b66d_0.conda#be7d70f2db41b674733667bdd69bd000 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hd590300_1.conda#f27a24d46e3ea7b70a1f98e50c62508f https://conda.anaconda.org/conda-forge/linux-64/ccache-4.9.1-h1fcd64f_0.conda#3620f564bcf28c3524951b6f64f5c5ac @@ -72,12 +72,12 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py39h6dedee3_0.conda#557d64563e84ff21b14f586c7f662b7f https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.3.0-py39h90a76f3_0.conda#799e6519cfffe2784db27b1db2ef33f3 -https://conda.anaconda.org/conda-forge/noarch/pluggy-1.4.0-pyhd8ed1ab_0.conda#139e9feb65187e916162917bb2484976 +https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.2-pyhd8ed1ab_0.conda#b9a4dacf97241704529131a0dfc0494f https://conda.anaconda.org/conda-forge/noarch/pypy-7.3.15-1_pypy39.conda#a418a6c16bd6f7ed56b92194214791a0 https://conda.anaconda.org/conda-forge/noarch/setuptools-69.5.1-pyhd8ed1ab_0.conda#7462280d81f639363e6e63c81276bd9e https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 -https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.4.0-pyhc1e730c_0.conda#b296278eef667c673bf51de6535bad88 +https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4-py39hf860d4a_0.conda#e7fded713fb466e1e0670afce1761b47 https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py39hf860d4a_0.conda#f699157518d28d00c87542b4ec1273be @@ -87,16 +87,16 @@ https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-22_linux64_open https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39ha90811c_0.conda#07ed14c8326da42356514bcbc0b04802 https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.51.0-py39hf860d4a_0.conda#63421b4dd7222fad555e34ec9af015a1 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d -https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.0-pyhd8ed1ab_0.conda#e0ed1bf13ce3a440e022157bf4764465 +https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f https://conda.anaconda.org/conda-forge/noarch/meson-1.4.0-pyhd8ed1ab_0.conda#52a0660cfa40b45bf254ecc3374cb2e0 https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 -https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.7.1-pyhd8ed1ab_0.conda#dcb27826ffc94d5f04e241322239983b +https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.8.0-pyhd8ed1ab_0.conda#573fe09d7bd0cd4bcc210d8369b5ca47 https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/scipy-1.12.0-py39h6dedee3_2.conda#6c5d74bac41838f4377dfd45085e1fec https://conda.anaconda.org/conda-forge/linux-64/blas-2.122-openblas.conda#5065468105542a8b23ea47bd8b6fa55f https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e -https://conda.anaconda.org/conda-forge/noarch/meson-python-0.15.0-pyh0c530f3_0.conda#3bc64565ca78ce3bb80248d09926d8f9 +https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39h5fd064f_0.conda#04676d2a49da3cb608af77e04b796ce1 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h4e7d633_0.conda#58272019e595dde98d0844ae3ebf0cfe diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index e2584c2d27333..34ec64ad5863b 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -95,7 +95,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#0 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.6-h232c23b_2.conda#9a3a42df8a95f65334dfc7b80da1195d +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_0.conda#5d801a4906adc712d480afc362623b59 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.3.0-hf1915f5_4.conda#784a4df6676c581ca624fbe460703a6d https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.43-hcad00b1_0.conda#8292dea9e022d9610a11fce5e0896ed8 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -165,7 +165,7 @@ https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/linux-64/openblas-0.3.27-pthreads_h7a3da1a_0.conda#4b422ebe8fc6a5320d0c1c22e5a46032 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.1-pyhd8ed1ab_0.conda#d478a8a3044cdff1aa6e62f9269cefe0 +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda#6f6cf28bf8e021933869bae3f84b8fc9 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.8-py39hd1e30aa_0.conda#ec86403fde8793ac1c36f8afa3d15902 @@ -220,7 +220,7 @@ https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda# https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda#08807a87fa7af10754d46f63b368e016 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_1.conda#d8d07866ac3b5b6937213c89a1874f08 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.4.0-h3d44ed6_0.conda#27f46291a6aaa3c2a4f798ebd35a7ddb +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.5.0-hfac3d4d_0.conda#f5126317dd0ce0ba26945e411ecc6960 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_0.conda#a284ff318fbdb0dd83928275b4b6087c https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-22_linux64_openblas.conda#1fd156abd41a4992835952f6f4d951d0 @@ -237,7 +237,7 @@ https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.1.1-py39ha98d97 https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.1-pyh4b66e23_0.conda#bcf6a6f4c6889ca083e8d33afbafb8d5 https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hddac248_0.conda#259c4e76e6bda8888aefc098ae1ba749 https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.25-py39ha963410_0.conda#d14227f0e141af743374d845fd4f5ccd +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py39ha963410_0.conda#d138679a254e4e0918cfc1114c928bb8 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.1-pyhd8ed1ab_0.conda#d15917f33140f8d2ac9ca44db7ec8a25 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.4.1-py39h44dd56e_1.conda#d037c20e3da2e85f03ebd20ad480c359 diff --git a/build_tools/circle/doc_min_dependencies_environment.yml b/build_tools/circle/doc_min_dependencies_environment.yml index 298a60e8ec4ff..14f4485295455 100644 --- a/build_tools/circle/doc_min_dependencies_environment.yml +++ b/build_tools/circle/doc_min_dependencies_environment.yml @@ -30,7 +30,7 @@ dependencies: - numpydoc=1.2.0 # min - sphinx-prompt=1.3.0 # min - plotly=5.14.0 # min - - polars=0.19.12 # min + - polars=0.20.23 # min - pooch - pip - pip: diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index e08a14c235079..043587152c63b 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 32601810330a8200864f7908d07d870a3a58931be4f833691b2b5c7937f2d330 +# input_hash: 08b61aae27c59a8d35d008fa2f947440f3cbcbc41622112e33e68f90d69b621c @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda#2f4327a1cbe7f022401b236e915a5fef @@ -80,7 +80,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#0 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.3-h2797004_0.conda#b3316cbe90249da4f8e84cd66e1cc55b https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2#309dec04b70a3cc0f1e84a4013683bc0 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.6-h232c23b_2.conda#9a3a42df8a95f65334dfc7b80da1195d +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_0.conda#5d801a4906adc712d480afc362623b59 https://conda.anaconda.org/conda-forge/linux-64/mysql-common-8.3.0-hf1915f5_4.conda#784a4df6676c581ca624fbe460703a6d https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.43-hcad00b1_0.conda#8292dea9e022d9610a11fce5e0896ed8 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 @@ -146,7 +146,7 @@ https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py39hd1e30aa_0. https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.1-pyhd8ed1ab_0.conda#d478a8a3044cdff1aa6e62f9269cefe0 +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda#6f6cf28bf8e021933869bae3f84b8fc9 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.8-py39hd1e30aa_0.conda#ec86403fde8793ac1c36f8afa3d15902 @@ -199,7 +199,7 @@ https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda# https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda#08807a87fa7af10754d46f63b368e016 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_1.conda#d8d07866ac3b5b6937213c89a1874f08 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.4.0-h3d44ed6_0.conda#27f46291a6aaa3c2a4f798ebd35a7ddb +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.5.0-hfac3d4d_0.conda#f5126317dd0ce0ba26945e411ecc6960 https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.1.0-hd8ed1ab_0.conda#6ef2b72d291b39e479d7694efa2b2b98 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-22_linux64_mkl.conda#eb6deb4ba6f92ea3f31c09cb8b764738 https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda#3366af27f0b593544a6cd453c7932ac5 @@ -223,7 +223,7 @@ https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.1-pyh4b66e23_0.conda# https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.19.12-py39h90d8ae4_0.conda#191828961c95f8d59fa2b86a590f9905 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.23-py39ha963410_0.conda#4871f09d653e979d598d2d4cd5fa868d https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.3.0-py39hd257fcd_1.tar.bz2#c4b698994b2d8d2e659ae02202e6abe4 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.6.0-py39hee8e79c_0.tar.bz2#3afcb78281836e61351a2924f3230060 diff --git a/examples/gaussian_process/plot_gpr_co2.py b/examples/gaussian_process/plot_gpr_co2.py index 33b0ab7271549..b3da30daa0f6d 100644 --- a/examples/gaussian_process/plot_gpr_co2.py +++ b/examples/gaussian_process/plot_gpr_co2.py @@ -33,24 +33,25 @@ # We will derive a dataset from the Mauna Loa Observatory that collected air # samples. We are interested in estimating the concentration of CO2 and # extrapolate it for further year. First, we load the original dataset available -# in OpenML. +# in OpenML as a pandas dataframe. This will be replaced with Polars +# once `fetch_openml` adds a native support for it. from sklearn.datasets import fetch_openml co2 = fetch_openml(data_id=41187, as_frame=True) co2.frame.head() # %% -# First, we process the original dataframe to create a date index and select -# only the CO2 column. -import pandas as pd +# First, we process the original dataframe to create a date column and select +# it along with the CO2 column. +import polars as pl -co2_data = co2.frame -co2_data["date"] = pd.to_datetime(co2_data[["year", "month", "day"]]) -co2_data = co2_data[["date", "co2"]].set_index("date") +co2_data = pl.DataFrame(co2.frame[["year", "month", "day", "co2"]]).select( + pl.date("year", "month", "day"), "co2" +) co2_data.head() # %% -co2_data.index.min(), co2_data.index.max() +co2_data["date"].min(), co2_data["date"].max() # %% # We see that we get CO2 concentration for some days from March, 1958 to @@ -58,7 +59,8 @@ # understanding. import matplotlib.pyplot as plt -co2_data.plot() +plt.plot(co2_data["date"], co2_data["co2"]) +plt.xlabel("date") plt.ylabel("CO$_2$ concentration (ppm)") _ = plt.title("Raw air samples measurements from the Mauna Loa Observatory") @@ -67,15 +69,14 @@ # for which no measurements were collected. Such a processing will have an # smoothing effect on the data. -try: - co2_data_resampled_monthly = co2_data.resample("ME") -except ValueError: - # pandas < 2.2 uses M instead of ME - co2_data_resampled_monthly = co2_data.resample("M") - - -co2_data = co2_data_resampled_monthly.mean().dropna(axis="index", how="any") -co2_data.plot() +co2_data = ( + co2_data.sort(by="date") + .group_by_dynamic("date", every="1mo") + .agg(pl.col("co2").mean()) + .drop_nulls() +) +plt.plot(co2_data["date"], co2_data["co2"]) +plt.xlabel("date") plt.ylabel("Monthly average of CO$_2$ concentration (ppm)") _ = plt.title( "Monthly average of air samples measurements\nfrom the Mauna Loa Observatory" @@ -88,7 +89,9 @@ # # As a first step, we will divide the data and the target to estimate. The data # being a date, we will convert it into a numeric. -X = (co2_data.index.year + co2_data.index.month / 12).to_numpy().reshape(-1, 1) +X = co2_data.select( + pl.col("date").dt.year() + pl.col("date").dt.month() / 12 +).to_numpy() y = co2_data["co2"].to_numpy() # %% diff --git a/pyproject.toml b/pyproject.toml index 468a6a1aaf53a..0c4e4c17c68e4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -62,7 +62,7 @@ docs = [ "sphinx-prompt>=1.3.0", "sphinxext-opengraph>=0.4.2", "plotly>=5.14.0", - "polars>=0.19.12" + "polars>=0.20.23" ] examples = [ "matplotlib>=3.3.4", @@ -82,7 +82,7 @@ tests = [ "black>=24.3.0", "mypy>=1.9", "pyamg>=4.0.0", - "polars>=0.19.12", + "polars>=0.20.23", "pyarrow>=12.0.0", "numpydoc>=1.2.0", "pooch>=1.6.0", diff --git a/sklearn/_min_dependencies.py b/sklearn/_min_dependencies.py index 00315f31d4c3f..0b1a96748a588 100644 --- a/sklearn/_min_dependencies.py +++ b/sklearn/_min_dependencies.py @@ -33,7 +33,7 @@ "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), - "polars": ("0.19.12", "docs, tests"), + "polars": ("0.20.23", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("6.0.0", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), diff --git a/sklearn/tests/test_base.py b/sklearn/tests/test_base.py index 3bbc236e703df..a1cd3b8fc8c7b 100644 --- a/sklearn/tests/test_base.py +++ b/sklearn/tests/test_base.py @@ -834,7 +834,7 @@ class Estimator(BaseEstimator, WithSlots): [ ("dataframe", "1.5.0"), ("pyarrow", "12.0.0"), - ("polars", "0.19.12"), + ("polars", "0.20.23"), ], ) def test_dataframe_protocol(constructor_name, minversion): From b461547fc2f089c5f21a233c17304034f1258d8f Mon Sep 17 00:00:00 2001 From: Edoardo Abati <29585319+EdAbati@users.noreply.github.com> Date: Fri, 17 May 2024 12:37:59 +0200 Subject: [PATCH 0535/1641] ENH Add Array API compatibility to `cosine_similarity` (#29014) --- doc/modules/array_api.rst | 1 + doc/whats_new/v1.6.rst | 6 ++- sklearn/metrics/pairwise.py | 11 ++++- sklearn/metrics/tests/test_common.py | 64 ++++++++++++++++++---------- 4 files changed, 56 insertions(+), 26 deletions(-) diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index 3a21304a39a3e..310df6b12a6ec 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -108,6 +108,7 @@ Metrics - :func:`sklearn.metrics.accuracy_score` - :func:`sklearn.metrics.mean_absolute_error` - :func:`sklearn.metrics.mean_tweedie_deviance` +- :func:`sklearn.metrics.pairwise.cosine_similarity`` - :func:`sklearn.metrics.r2_score` - :func:`sklearn.metrics.zero_one_loss` diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index aff2ea2b011da..601868a9a9581 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -34,8 +34,10 @@ See :ref:`array_api` for more details. - :func:`sklearn.metrics.mean_tweedie_deviance` now supports Array API compatible inputs. - :pr:`28106` by :user:`Thomas Li ` -- :func:`sklearn.metrics.mean_absolute_error` :pr:`27736` by :user:`Edoardo Abati `. + :pr:`28106` by :user:`Thomas Li `; +- :func:`sklearn.metrics.mean_absolute_error` :pr:`27736` by :user:`Edoardo Abati `; +- :func:`sklearn.metrics.pairwise.cosine_similarity` :pr:`29014` by :user:`Edoardo Abati `. + **Classes:** diff --git a/sklearn/metrics/pairwise.py b/sklearn/metrics/pairwise.py index d30c1775823a5..ff158825cc0f9 100644 --- a/sklearn/metrics/pairwise.py +++ b/sklearn/metrics/pairwise.py @@ -25,6 +25,11 @@ gen_batches, gen_even_slices, ) +from ..utils._array_api import ( + _find_matching_floating_dtype, + _is_numpy_namespace, + get_namespace, +) from ..utils._chunking import get_chunk_n_rows from ..utils._mask import _get_mask from ..utils._missing import is_scalar_nan @@ -154,7 +159,11 @@ def check_pairwise_arrays( An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ - X, Y, dtype_float = _return_float_dtype(X, Y) + xp, _ = get_namespace(X, Y) + if any([issparse(X), issparse(Y)]) or _is_numpy_namespace(xp): + X, Y, dtype_float = _return_float_dtype(X, Y) + else: + dtype_float = _find_matching_floating_dtype(X, Y, xp=xp) estimator = "check_pairwise_arrays" if dtype == "infer_float": diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index ae47ffe3d6a56..9e94b9241de7a 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -51,6 +51,7 @@ zero_one_loss, ) from sklearn.metrics._base import _average_binary_score +from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import LabelBinarizer from sklearn.utils import shuffle from sklearn.utils._array_api import ( @@ -1743,20 +1744,22 @@ def test_metrics_pos_label_error_str(metric, y_pred_threshold, dtype_y_str): def check_array_api_metric( - metric, array_namespace, device, dtype_name, y_true_np, y_pred_np, sample_weight + metric, array_namespace, device, dtype_name, a_np, b_np, **metric_kwargs ): xp = _array_api_for_tests(array_namespace, device) - y_true_xp = xp.asarray(y_true_np, device=device) - y_pred_xp = xp.asarray(y_pred_np, device=device) + a_xp = xp.asarray(a_np, device=device) + b_xp = xp.asarray(b_np, device=device) - metric_np = metric(y_true_np, y_pred_np, sample_weight=sample_weight) + metric_np = metric(a_np, b_np, **metric_kwargs) - if sample_weight is not None: - sample_weight = xp.asarray(sample_weight, device=device) + if metric_kwargs.get("sample_weight") is not None: + metric_kwargs["sample_weight"] = xp.asarray( + metric_kwargs["sample_weight"], device=device + ) with config_context(array_api_dispatch=True): - metric_xp = metric(y_true_xp, y_pred_xp, sample_weight=sample_weight) + metric_xp = metric(a_xp, b_xp, **metric_kwargs) assert_allclose( _convert_to_numpy(xp.asarray(metric_xp), xp), @@ -1776,8 +1779,8 @@ def check_array_api_binary_classification_metric( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=None, ) @@ -1788,8 +1791,8 @@ def check_array_api_binary_classification_metric( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=sample_weight, ) @@ -1805,8 +1808,8 @@ def check_array_api_multiclass_classification_metric( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=None, ) @@ -1817,8 +1820,8 @@ def check_array_api_multiclass_classification_metric( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=sample_weight, ) @@ -1832,8 +1835,8 @@ def check_array_api_regression_metric(metric, array_namespace, device, dtype_nam array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=None, ) @@ -1844,8 +1847,8 @@ def check_array_api_regression_metric(metric, array_namespace, device, dtype_nam array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=sample_weight, ) @@ -1861,8 +1864,8 @@ def check_array_api_regression_metric_multioutput( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=None, ) @@ -1873,8 +1876,8 @@ def check_array_api_regression_metric_multioutput( array_namespace, device, dtype_name, - y_true_np=y_true_np, - y_pred_np=y_pred_np, + a_np=y_true_np, + b_np=y_pred_np, sample_weight=sample_weight, ) @@ -1886,6 +1889,20 @@ def check_array_api_multioutput_regression_metric( check_array_api_regression_metric(metric, array_namespace, device, dtype_name) +def check_array_api_metric_pairwise(metric, array_namespace, device, dtype_name): + + X_np = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=dtype_name) + Y_np = np.array([[0.2, 0.3, 0.4], [0.5, 0.6, 0.7]], dtype=dtype_name) + + metric_kwargs = {} + if "dense_output" in signature(metric).parameters: + metric_kwargs["dense_output"] = True + + check_array_api_metric( + metric, array_namespace, device, dtype_name, a_np=X_np, b_np=Y_np + ) + + array_api_metric_checkers = { accuracy_score: [ check_array_api_binary_classification_metric, @@ -1900,6 +1917,7 @@ def check_array_api_multioutput_regression_metric( check_array_api_regression_metric, check_array_api_regression_metric_multioutput, ], + cosine_similarity: [check_array_api_metric_pairwise], mean_absolute_error: [ check_array_api_regression_metric, check_array_api_multioutput_regression_metric, From 77fc72c39834ddc3ff404e0eb0306406801bc4a8 Mon Sep 17 00:00:00 2001 From: Stefanie Senger <91849487+StefanieSenger@users.noreply.github.com> Date: Fri, 17 May 2024 14:44:37 +0200 Subject: [PATCH 0536/1641] FEA SLEP006: Metadata routing for `learning_curve` (#28975) --- doc/metadata_routing.rst | 4 +- doc/whats_new/v1.6.rst | 4 + sklearn/model_selection/_validation.py | 133 ++++++++++++++---- .../model_selection/tests/test_validation.py | 93 ++++++++---- sklearn/utils/_metadata_requests.py | 5 +- sklearn/utils/validation.py | 2 +- 6 files changed, 182 insertions(+), 59 deletions(-) diff --git a/doc/metadata_routing.rst b/doc/metadata_routing.rst index 0ada6ef6c4dbe..27000a192ab21 100644 --- a/doc/metadata_routing.rst +++ b/doc/metadata_routing.rst @@ -292,6 +292,7 @@ Meta-estimators and functions supporting metadata routing: - :class:`sklearn.linear_model.LogisticRegressionCV` - :class:`sklearn.linear_model.MultiTaskElasticNetCV` - :class:`sklearn.linear_model.MultiTaskLassoCV` +- :class:`sklearn.linear_model.OrthogonalMatchingPursuitCV` - :class:`sklearn.linear_model.RANSACRegressor` - :class:`sklearn.linear_model.RidgeClassifierCV` - :class:`sklearn.linear_model.RidgeCV` @@ -302,13 +303,13 @@ Meta-estimators and functions supporting metadata routing: - :func:`sklearn.model_selection.cross_validate` - :func:`sklearn.model_selection.cross_val_score` - :func:`sklearn.model_selection.cross_val_predict` +- :class:`sklearn.model_selection.learning_curve` - :class:`sklearn.multiclass.OneVsOneClassifier` - :class:`sklearn.multiclass.OneVsRestClassifier` - :class:`sklearn.multiclass.OutputCodeClassifier` - :class:`sklearn.multioutput.ClassifierChain` - :class:`sklearn.multioutput.MultiOutputClassifier` - :class:`sklearn.multioutput.MultiOutputRegressor` -- :class:`sklearn.linear_model.OrthogonalMatchingPursuitCV` - :class:`sklearn.multioutput.RegressorChain` - :class:`sklearn.pipeline.FeatureUnion` - :class:`sklearn.pipeline.Pipeline` @@ -321,7 +322,6 @@ Meta-estimators and tools not supporting metadata routing yet: - :class:`sklearn.feature_selection.RFE` - :class:`sklearn.feature_selection.RFECV` - :class:`sklearn.feature_selection.SequentialFeatureSelector` -- :class:`sklearn.model_selection.learning_curve` - :class:`sklearn.model_selection.permutation_test_score` - :class:`sklearn.model_selection.validation_curve` - :class:`sklearn.semi_supervised.SelfTrainingClassifier` diff --git a/doc/whats_new/v1.6.rst b/doc/whats_new/v1.6.rst index 601868a9a9581..0e6844155c6fa 100644 --- a/doc/whats_new/v1.6.rst +++ b/doc/whats_new/v1.6.rst @@ -51,6 +51,10 @@ The following models now support metadata routing in one or more of their methods. Refer to the :ref:`Metadata Routing User Guide ` for more details. +- |Feature| :func:`model_selection.learning_curve` now supports metadata routing for the + `fit` method of its estimator and for its underlying CV splitter and scorer. + :pr:`28975` by :user:`Stefanie Senger `. + - |Feature| :class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor` now support metadata routing and pass ``**fit_params`` to the underlying estimators via their `fit` methods. diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py index 176627ace91d4..83d289d36efb2 100644 --- a/sklearn/model_selection/_validation.py +++ b/sklearn/model_selection/_validation.py @@ -58,21 +58,22 @@ ] -def _check_params_groups_deprecation(fit_params, params, groups): +def _check_params_groups_deprecation(fit_params, params, groups, version): """A helper function to check deprecations on `groups` and `fit_params`. - To be removed when set_config(enable_metadata_routing=False) is not possible. + # TODO(SLEP6): To be removed when set_config(enable_metadata_routing=False) is not + # possible. """ if params is not None and fit_params is not None: raise ValueError( "`params` and `fit_params` cannot both be provided. Pass parameters " "via `params`. `fit_params` is deprecated and will be removed in " - "version 1.6." + f"version {version}." ) elif fit_params is not None: warnings.warn( ( - "`fit_params` is deprecated and will be removed in version 1.6. " + "`fit_params` is deprecated and will be removed in version {version}. " "Pass parameters via `params` instead." ), FutureWarning, @@ -346,7 +347,7 @@ def cross_validate( >>> print(scores['train_r2']) [0.28009951 0.3908844 0.22784907] """ - params = _check_params_groups_deprecation(fit_params, params, groups) + params = _check_params_groups_deprecation(fit_params, params, groups, "1.6") X, y = indexable(X, y) @@ -602,10 +603,8 @@ def cross_val_score( ``cross_val_score(..., params={'groups': groups})``. scoring : str or callable, default=None - A str (see model evaluation documentation) or - a scorer callable object / function with signature - ``scorer(estimator, X, y)`` which should return only - a single value. + A str (see :ref:`scoring_parameter`) or a scorer callable object / function with + signature ``scorer(estimator, X, y)`` which should return only a single value. Similar to :func:`cross_validate` but only a single metric is permitted. @@ -1206,7 +1205,7 @@ def cross_val_predict( >>> lasso = linear_model.Lasso() >>> y_pred = cross_val_predict(lasso, X, y, cv=3) """ - params = _check_params_groups_deprecation(fit_params, params, groups) + params = _check_params_groups_deprecation(fit_params, params, groups, "1.6") X, y = indexable(X, y) if _routing_enabled(): @@ -1718,6 +1717,7 @@ def _shuffle(y, groups, random_state): "error_score": [StrOptions({"raise"}), Real], "return_times": ["boolean"], "fit_params": [dict, None], + "params": [dict, None], }, prefer_skip_nested_validation=False, # estimator is not validated yet ) @@ -1739,6 +1739,7 @@ def learning_curve( error_score=np.nan, return_times=False, fit_params=None, + params=None, ): """Learning curve. @@ -1773,6 +1774,13 @@ def learning_curve( train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`GroupKFold`). + .. versionchanged:: 1.6 + ``groups`` can only be passed if metadata routing is not enabled + via ``sklearn.set_config(enable_metadata_routing=True)``. When routing + is enabled, pass ``groups`` alongside other metadata via the ``params`` + argument instead. E.g.: + ``learning_curve(..., params={'groups': groups})``. + train_sizes : array-like of shape (n_ticks,), \ default=np.linspace(0.1, 1.0, 5) Relative or absolute numbers of training examples that will be used to @@ -1780,7 +1788,7 @@ def learning_curve( fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. - Note that for classification the number of samples usually have to + Note that for classification the number of samples usually has to be big enough to contain at least one sample from each class. cv : int, cross-validation generator or an iterable, default=None @@ -1804,9 +1812,8 @@ def learning_curve( ``cv`` default value if None changed from 3-fold to 5-fold. scoring : str or callable, default=None - A str (see model evaluation documentation) or - a scorer callable object / function with signature - ``scorer(estimator, X, y)``. + A str (see :ref:`scoring_parameter`) or a scorer callable object / function with + signature ``scorer(estimator, X, y)``. exploit_incremental_learning : bool, default=False If the estimator supports incremental learning, this will be @@ -1849,7 +1856,22 @@ def learning_curve( fit_params : dict, default=None Parameters to pass to the fit method of the estimator. - .. versionadded:: 0.24 + .. deprecated:: 1.6 + This parameter is deprecated and will be removed in version 1.6. Use + ``params`` instead. + + params : dict, default=None + Parameters to pass to the `fit` method of the estimator and to the scorer. + + - If `enable_metadata_routing=False` (default): + Parameters directly passed to the `fit` method of the estimator. + + - If `enable_metadata_routing=True`: + Parameters safely routed to the `fit` method of the estimator. + See :ref:`Metadata Routing User Guide ` for more + details. + + .. versionadded:: 1.6 Returns ------- @@ -1903,14 +1925,69 @@ def learning_curve( "An estimator must support the partial_fit interface " "to exploit incremental learning" ) + + params = _check_params_groups_deprecation(fit_params, params, groups, "1.8") + X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) - # Store it as list as we will be iterating over the list multiple times - cv_iter = list(cv.split(X, y, groups)) scorer = check_scoring(estimator, scoring=scoring) + if _routing_enabled(): + router = ( + MetadataRouter(owner="learning_curve") + .add( + estimator=estimator, + # TODO(SLEP6): also pass metadata to the predict method for + # scoring? + method_mapping=MethodMapping() + .add(caller="fit", callee="fit") + .add(caller="fit", callee="partial_fit"), + ) + .add( + splitter=cv, + method_mapping=MethodMapping().add(caller="fit", callee="split"), + ) + .add( + scorer=scorer, + method_mapping=MethodMapping().add(caller="fit", callee="score"), + ) + ) + + try: + routed_params = process_routing(router, "fit", **params) + except UnsetMetadataPassedError as e: + # The default exception would mention `fit` since in the above + # `process_routing` code, we pass `fit` as the caller. However, + # the user is not calling `fit` directly, so we change the message + # to make it more suitable for this case. + unrequested_params = sorted(e.unrequested_params) + raise UnsetMetadataPassedError( + message=( + f"{unrequested_params} are passed to `learning_curve` but are not" + " explicitly set as requested or not requested for learning_curve's" + f" estimator: {estimator.__class__.__name__}. Call" + " `.set_fit_request({{metadata}}=True)` on the estimator for" + f" each metadata in {unrequested_params} that you" + " want to use and `metadata=False` for not using it. See the" + " Metadata Routing User guide" + " for more" + " information." + ), + unrequested_params=e.unrequested_params, + routed_params=e.routed_params, + ) + + else: + routed_params = Bunch() + routed_params.estimator = Bunch(fit=params, partial_fit=params) + routed_params.splitter = Bunch(split={"groups": groups}) + routed_params.scorer = Bunch(score={}) + + # Store cv as list as we will be iterating over the list multiple times + cv_iter = list(cv.split(X, y, **routed_params.splitter.split)) + n_max_training_samples = len(cv_iter[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we @@ -1940,7 +2017,8 @@ def learning_curve( scorer, return_times, error_score=error_score, - fit_params=fit_params, + fit_params=routed_params.estimator.partial_fit, + score_params=routed_params.scorer.score, ) for train, test in cv_iter ) @@ -1961,9 +2039,8 @@ def learning_curve( test=test, verbose=verbose, parameters=None, - fit_params=fit_params, - # TODO(SLEP6): support score params here - score_params=None, + fit_params=routed_params.estimator.fit, + score_params=routed_params.scorer.score, return_train_score=True, error_score=error_score, return_times=return_times, @@ -2069,6 +2146,7 @@ def _incremental_fit_estimator( return_times, error_score, fit_params, + score_params, ): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores, fit_times, score_times = [], [], [], [] @@ -2079,6 +2157,9 @@ def _incremental_fit_estimator( partial_fit_func = partial(estimator.partial_fit, **fit_params) else: partial_fit_func = partial(estimator.partial_fit, classes=classes, **fit_params) + score_params = score_params if score_params is not None else {} + score_params_train = _check_method_params(X, params=score_params, indices=train) + score_params_test = _check_method_params(X, params=score_params, indices=test) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] @@ -2095,14 +2176,13 @@ def _incremental_fit_estimator( start_score = time.time() - # TODO(SLEP6): support score params in the following two calls test_scores.append( _score( estimator, X_test, y_test, scorer, - score_params=None, + score_params=score_params_test, error_score=error_score, ) ) @@ -2112,7 +2192,7 @@ def _incremental_fit_estimator( X_train, y_train, scorer, - score_params=None, + score_params=score_params_train, error_score=error_score, ) ) @@ -2220,9 +2300,8 @@ def validation_curve( ``cv`` default value if None changed from 3-fold to 5-fold. scoring : str or callable, default=None - A str (see model evaluation documentation) or - a scorer callable object / function with signature - ``scorer(estimator, X, y)``. + A str (see :ref:`scoring_parameter`) or a scorer callable object / function with + signature ``scorer(estimator, X, y)``. n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and computing diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py index a1a860b243249..679c0052e3956 100644 --- a/sklearn/model_selection/tests/test_validation.py +++ b/sklearn/model_selection/tests/test_validation.py @@ -1535,7 +1535,7 @@ def test_learning_curve_with_shuffle(): ) -def test_learning_curve_fit_params(): +def test_learning_curve_params(): X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_sample_weight=True) @@ -1547,14 +1547,14 @@ def test_learning_curve_fit_params(): err_msg = r"sample_weight.shape == \(1,\), expected \(2,\)!" with pytest.raises(ValueError, match=err_msg): learning_curve( - clf, X, y, error_score="raise", fit_params={"sample_weight": np.ones(1)} + clf, X, y, error_score="raise", params={"sample_weight": np.ones(1)} ) learning_curve( - clf, X, y, error_score="raise", fit_params={"sample_weight": np.ones(10)} + clf, X, y, error_score="raise", params={"sample_weight": np.ones(10)} ) -def test_learning_curve_incremental_learning_fit_params(): +def test_learning_curve_incremental_learning_params(): X, y = make_classification( n_samples=30, n_features=1, @@ -1587,7 +1587,7 @@ def test_learning_curve_incremental_learning_fit_params(): exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10), error_score="raise", - fit_params={"sample_weight": np.ones(3)}, + params={"sample_weight": np.ones(3)}, ) learning_curve( @@ -1598,7 +1598,7 @@ def test_learning_curve_incremental_learning_fit_params(): exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10), error_score="raise", - fit_params={"sample_weight": np.ones(2)}, + params={"sample_weight": np.ones(2)}, ) @@ -2481,34 +2481,34 @@ def test_cross_validate_return_indices(global_random_seed): assert_array_equal(test_indices[split_idx], expected_test_idx) -# Tests for metadata routing in cross_val* -# ======================================== +# Tests for metadata routing in cross_val* and learning_curve +# =========================================================== -# TODO(1.6): remove this test in 1.6 -def test_cross_validate_fit_param_deprecation(): +# TODO(1.6): remove `cross_validate` and `cross_val_predict` from this test in 1.6 and +# `learning_curve` in 1.8 +@pytest.mark.parametrize("func", [cross_validate, cross_val_predict, learning_curve]) +def test_fit_param_deprecation(func): """Check that we warn about deprecating `fit_params`.""" with pytest.warns(FutureWarning, match="`fit_params` is deprecated"): - cross_validate(estimator=ConsumingClassifier(), X=X, y=y, cv=2, fit_params={}) + func(estimator=ConsumingClassifier(), X=X, y=y, cv=2, fit_params={}) with pytest.raises( ValueError, match="`params` and `fit_params` cannot both be provided" ): - cross_validate( - estimator=ConsumingClassifier(), X=X, y=y, fit_params={}, params={} - ) + func(estimator=ConsumingClassifier(), X=X, y=y, fit_params={}, params={}) @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( - "cv_method", [cross_validate, cross_val_score, cross_val_predict] + "func", [cross_validate, cross_val_score, cross_val_predict, learning_curve] ) -def test_groups_with_routing_validation(cv_method): +def test_groups_with_routing_validation(func): """Check that we raise an error if `groups` are passed to the cv method instead of `params` when metadata routing is enabled. """ with pytest.raises(ValueError, match="`groups` can only be passed if"): - cv_method( + func( estimator=ConsumingClassifier(), X=X, y=y, @@ -2518,14 +2518,14 @@ def test_groups_with_routing_validation(cv_method): @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( - "cv_method", [cross_validate, cross_val_score, cross_val_predict] + "func", [cross_validate, cross_val_score, cross_val_predict, learning_curve] ) -def test_passed_unrequested_metadata(cv_method): +def test_passed_unrequested_metadata(func): """Check that we raise an error when passing metadata that is not requested.""" err_msg = re.escape("but are not explicitly set as requested or not requested") with pytest.raises(ValueError, match=err_msg): - cv_method( + func( estimator=ConsumingClassifier(), X=X, y=y, @@ -2535,9 +2535,9 @@ def test_passed_unrequested_metadata(cv_method): @pytest.mark.usefixtures("enable_slep006") @pytest.mark.parametrize( - "cv_method", [cross_validate, cross_val_score, cross_val_predict] + "func", [cross_validate, cross_val_score, cross_val_predict, learning_curve] ) -def test_cross_validate_routing(cv_method): +def test_validation_functions_routing(func): """Check that the respective cv method is properly dispatching the metadata to the consumer.""" scorer_registry = _Registry() @@ -2552,6 +2552,7 @@ def test_cross_validate_routing(cv_method): estimator = ConsumingClassifier(registry=estimator_registry).set_fit_request( sample_weight="fit_sample_weight", metadata="fit_metadata" ) + n_samples = _num_samples(X) rng = np.random.RandomState(0) score_weights = rng.rand(n_samples) @@ -2563,8 +2564,9 @@ def test_cross_validate_routing(cv_method): extra_params = { cross_validate: dict(scoring=dict(my_scorer=scorer, accuracy="accuracy")), - # cross_val_score doesn't support multiple scorers + # cross_val_score and learning_curve don't support multiple scorers: cross_val_score: dict(scoring=scorer), + learning_curve: dict(scoring=scorer), # cross_val_predict doesn't need a scorer cross_val_predict: dict(), } @@ -2576,22 +2578,22 @@ def test_cross_validate_routing(cv_method): fit_metadata=fit_metadata, ) - if cv_method is not cross_val_predict: + if func is not cross_val_predict: params.update( score_weights=score_weights, score_metadata=score_metadata, ) - cv_method( + func( estimator, X=X, y=y, cv=splitter, - **extra_params[cv_method], + **extra_params[func], params=params, ) - if cv_method is not cross_val_predict: + if func is not cross_val_predict: # cross_val_predict doesn't need a scorer assert len(scorer_registry) for _scorer in scorer_registry: @@ -2623,5 +2625,42 @@ def test_cross_validate_routing(cv_method): ) +@pytest.mark.usefixtures("enable_slep006") +def test_learning_curve_exploit_incremental_learning_routing(): + """Test that learning_curve routes metadata to the estimator correctly while + partial_fitting it with `exploit_incremental_learning=True`.""" + + n_samples = _num_samples(X) + rng = np.random.RandomState(0) + fit_sample_weight = rng.rand(n_samples) + fit_metadata = rng.rand(n_samples) + + estimator_registry = _Registry() + estimator = ConsumingClassifier( + registry=estimator_registry + ).set_partial_fit_request( + sample_weight="fit_sample_weight", metadata="fit_metadata" + ) + + learning_curve( + estimator, + X=X, + y=y, + cv=ConsumingSplitter(), + exploit_incremental_learning=True, + params=dict(fit_sample_weight=fit_sample_weight, fit_metadata=fit_metadata), + ) + + assert len(estimator_registry) + for _estimator in estimator_registry: + check_recorded_metadata( + obj=_estimator, + method="partial_fit", + split_params=("sample_weight", "metadata"), + sample_weight=fit_sample_weight, + metadata=fit_metadata, + ) + + # End of metadata routing tests # ============================= diff --git a/sklearn/utils/_metadata_requests.py b/sklearn/utils/_metadata_requests.py index f730539621177..02a79bb8a6f20 100644 --- a/sklearn/utils/_metadata_requests.py +++ b/sklearn/utils/_metadata_requests.py @@ -999,8 +999,9 @@ def _route_params(self, *, params, method, parent, caller): def route_params(self, *, caller, params): """Return the input parameters requested by child objects. - The output of this method is a bunch, which includes the metadata for all - methods of each child object that is used in the router's `caller` method. + The output of this method is a :class:`~sklearn.utils.Bunch`, which includes the + metadata for all methods of each child object that is used in the router's + `caller` method. If the router is also a consumer, it also checks for warnings of `self`'s/consumer's requested metadata. diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py index cdda749ec70a2..4e25750290a7a 100644 --- a/sklearn/utils/validation.py +++ b/sklearn/utils/validation.py @@ -488,7 +488,7 @@ def indexable(*iterables): Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting - non-interable objects to arrays. + non-iterable objects to arrays. Parameters ---------- From 87ceec2f159da0d2f0860ce0cd2ec302f1d371a2 Mon Sep 17 00:00:00 2001 From: Guillaume Lemaitre Date: Fri, 17 May 2024 15:14:33 +0200 Subject: [PATCH 0537/1641] FIX add long long for int32/int64 windows compat in NumPy 2.0 (#29029) --- sklearn/utils/arrayfuncs.pyx | 1 + sklearn/utils/tests/test_arrayfuncs.py | 4 +++- 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/sklearn/utils/arrayfuncs.pyx b/sklearn/utils/arrayfuncs.pyx index 346531d325ca5..1ad5804770358 100644 --- a/sklearn/utils/arrayfuncs.pyx +++ b/sklearn/utils/arrayfuncs.pyx @@ -16,6 +16,7 @@ ctypedef fused real_numeric: short int long + long long float double diff --git a/sklearn/utils/tests/test_arrayfuncs.py b/sklearn/utils/tests/test_arrayfuncs.py index 4a80a4c1edefd..a5c99427cbd00 100644 --- a/sklearn/utils/tests/test_arrayfuncs.py +++ b/sklearn/utils/tests/test_arrayfuncs.py @@ -26,7 +26,9 @@ def test_min_pos_no_positive(dtype): assert min_pos(X) == np.finfo(dtype).max -@pytest.mark.parametrize("dtype", [np.int16, np.int32, np.float32, np.float64]) +@pytest.mark.parametrize( + "dtype", [np.int16, np.int32, np.int64, np.float32, np.float64] +) @pytest.mark.parametrize("value", [0, 1.5, -1]) def test_all_with_any_reduction_axis_1(dtype, value): # Check that return value is False when there is no row equal to `value` From e796d0ae6801486ec65c31a386846d0bd56a201a Mon Sep 17 00:00:00 2001 From: Akihiro Kuno Date: Fri, 17 May 2024 23:57:47 +0900 Subject: [PATCH 0538/1641] FIX convergence criterion of MeanShift (#28951) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Olivier Grisel Co-authored-by: Jérémie du Boisberranger --- doc/whats_new/v1.5.rst | 3 +++ sklearn/cluster/_mean_shift.py | 2 +- sklearn/cluster/tests/test_mean_shift.py | 9 +++++++++ 3 files changed, 13 insertions(+), 1 deletion(-) diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 5fdc0707ffbee..6dc76ceefaf5f 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -183,6 +183,9 @@ Changelog :mod:`sklearn.cluster` ...................... +- |Fix| The :class:`cluster.MeanShift` class now properly converges for constant data. + :pr:`28951` by :user:`Akihiro Kuno `. + - |FIX| Create copy of precomputed sparse matrix within the `fit` method of :class:`~cluster.OPTICS` to avoid in-place modification of the sparse matrix. :pr:`28491` by :user:`Thanh Lam Dang `. diff --git a/sklearn/cluster/_mean_shift.py b/sklearn/cluster/_mean_shift.py index fae11cca7df23..a99a607f3cf0d 100644 --- a/sklearn/cluster/_mean_shift.py +++ b/sklearn/cluster/_mean_shift.py @@ -122,7 +122,7 @@ def _mean_shift_single_seed(my_mean, X, nbrs, max_iter): my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if ( - np.linalg.norm(my_mean - my_old_mean) < stop_thresh + np.linalg.norm(my_mean - my_old_mean) <= stop_thresh or completed_iterations == max_iter ): break diff --git a/sklearn/cluster/tests/test_mean_shift.py b/sklearn/cluster/tests/test_mean_shift.py index 265c72d0c4ce1..d2d73ba11a3ec 100644 --- a/sklearn/cluster/tests/test_mean_shift.py +++ b/sklearn/cluster/tests/test_mean_shift.py @@ -25,6 +25,15 @@ ) +def test_convergence_of_1d_constant_data(): + # Test convergence using 1D constant data + # Non-regression test for: + # https://github.com/scikit-learn/scikit-learn/issues/28926 + model = MeanShift() + n_iter = model.fit(np.ones(10).reshape(-1, 1)).n_iter_ + assert n_iter < model.max_iter + + def test_estimate_bandwidth(): # Test estimate_bandwidth bandwidth = estimate_bandwidth(X, n_samples=200) From 48669a514d076e6a0407ca67c8edcfa566fdc6cf Mon Sep 17 00:00:00 2001 From: Omar Salman Date: Fri, 17 May 2024 21:08:24 +0500 Subject: [PATCH 0539/1641] Fix codecov in tests for array api in pairwise metrics (#29036) --- sklearn/metrics/tests/test_common.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index 9e94b9241de7a..096fc82ae56e3 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1896,6 +1896,10 @@ def check_array_api_metric_pairwise(metric, array_namespace, device, dtype_name) metric_kwargs = {} if "dense_output" in signature(metric).parameters: + metric_kwargs["dense_output"] = False + check_array_api_metric( + metric, array_namespace, device, dtype_name, a_np=X_np, b_np=Y_np + ) metric_kwargs["dense_output"] = True check_array_api_metric( From d88b41324ff507b610463f045d57823b6f215af5 Mon Sep 17 00:00:00 2001 From: jpienaar-tuks <112702520+jpienaar-tuks@users.noreply.github.com> Date: Sat, 18 May 2024 14:46:56 +0200 Subject: [PATCH 0540/1641] DOC Fix time complexity of MLP (#28592) Co-authored-by: Johann --- doc/modules/neural_networks_supervised.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/modules/neural_networks_supervised.rst b/doc/modules/neural_networks_supervised.rst index 95d0a1be38238..7ee2387068c81 100644 --- a/doc/modules/neural_networks_supervised.rst +++ b/doc/modules/neural_networks_supervised.rst @@ -229,7 +229,7 @@ Complexity Suppose there are :math:`n` training samples, :math:`m` features, :math:`k` hidden layers, each containing :math:`h` neurons - for simplicity, and :math:`o` output neurons. The time complexity of backpropagation is -:math:`O(n\cdot m \cdot h^k \cdot o \cdot i)`, where :math:`i` is the number +:math:`O(i \cdot n \cdot (m \cdot h + (k - 1) \cdot h \cdot h + h \cdot o))`, where :math:`i` is the number of iterations. Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and few hidden layers for training. From 18c1972eb9637034b8e9fbd0df966c10058770f5 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Sun, 19 May 2024 21:14:50 +0200 Subject: [PATCH 0541/1641] DOC remove obsolete SVM example (#27108) --- doc/conf.py | 1 + examples/svm/plot_svm_kernels.py | 59 +++++++++++++++++++++++------- examples/svm/plot_svm_nonlinear.py | 45 ----------------------- 3 files changed, 46 insertions(+), 59 deletions(-) delete mode 100644 examples/svm/plot_svm_nonlinear.py diff --git a/doc/conf.py b/doc/conf.py index 9d77fc68d0f71..0587e98130118 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -301,6 +301,7 @@ "auto_examples/decomposition/plot_beta_divergence": ( "auto_examples/applications/plot_topics_extraction_with_nmf_lda" ), + "auto_examples/svm/plot_svm_nonlinear": "auto_examples/svm/plot_svm_kernels", "auto_examples/ensemble/plot_adaboost_hastie_10_2": ( "auto_examples/ensemble/plot_adaboost_multiclass" ), diff --git a/examples/svm/plot_svm_kernels.py b/examples/svm/plot_svm_kernels.py index d801e2477e682..a63de6765f083 100644 --- a/examples/svm/plot_svm_kernels.py +++ b/examples/svm/plot_svm_kernels.py @@ -110,12 +110,15 @@ from sklearn.inspection import DecisionBoundaryDisplay -def plot_training_data_with_decision_boundary(kernel): +def plot_training_data_with_decision_boundary( + kernel, ax=None, long_title=True, support_vectors=True +): # Train the SVC clf = svm.SVC(kernel=kernel, gamma=2).fit(X, y) # Settings for plotting - _, ax = plt.subplots(figsize=(4, 3)) + if ax is None: + _, ax = plt.subplots(figsize=(4, 3)) x_min, x_max, y_min, y_max = -3, 3, -3, 3 ax.set(xlim=(x_min, x_max), ylim=(y_min, y_max)) @@ -136,20 +139,26 @@ def plot_training_data_with_decision_boundary(kernel): linestyles=["--", "-", "--"], ) - # Plot bigger circles around samples that serve as support vectors - ax.scatter( - clf.support_vectors_[:, 0], - clf.support_vectors_[:, 1], - s=250, - facecolors="none", - edgecolors="k", - ) + if support_vectors: + # Plot bigger circles around samples that serve as support vectors + ax.scatter( + clf.support_vectors_[:, 0], + clf.support_vectors_[:, 1], + s=150, + facecolors="none", + edgecolors="k", + ) + # Plot samples by color and add legend - ax.scatter(X[:, 0], X[:, 1], c=y, s=150, edgecolors="k") + ax.scatter(X[:, 0], X[:, 1], c=y, s=30, edgecolors="k") ax.legend(*scatter.legend_elements(), loc="upper right", title="Classes") - ax.set_title(f" Decision boundaries of {kernel} kernel in SVC") + if long_title: + ax.set_title(f" Decision boundaries of {kernel} kernel in SVC") + else: + ax.set_title(kernel) - _ = plt.show() + if ax is None: + plt.show() # %% @@ -237,7 +246,6 @@ def plot_training_data_with_decision_boundary(kernel): # using the hyperbolic tangent function (:math:`\tanh`). The kernel function # scales and possibly shifts the dot product of the two points # (:math:`\mathbf{x}_1` and :math:`\mathbf{x}_2`). - plot_training_data_with_decision_boundary("sigmoid") # %% @@ -271,3 +279,26 @@ def plot_training_data_with_decision_boundary(kernel): # parameters using techniques such as # :class:`~sklearn.model_selection.GridSearchCV` is recommended to capture the # underlying structures within the data. + +# %% +# XOR dataset +# ----------- +# A classical example of a dataset which is not linearly separable is the XOR +# pattern. HEre we demonstrate how different kernels work on such a dataset. + +xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) +np.random.seed(0) +X = np.random.randn(300, 2) +y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) + +_, ax = plt.subplots(2, 2, figsize=(8, 8)) +args = dict(long_title=False, support_vectors=False) +plot_training_data_with_decision_boundary("linear", ax[0, 0], **args) +plot_training_data_with_decision_boundary("poly", ax[0, 1], **args) +plot_training_data_with_decision_boundary("rbf", ax[1, 0], **args) +plot_training_data_with_decision_boundary("sigmoid", ax[1, 1], **args) +plt.show() + +# %% +# As you can see from the plots above, only the `rbf` kernel can find a +# reasonable decision boundary for the above dataset. diff --git a/examples/svm/plot_svm_nonlinear.py b/examples/svm/plot_svm_nonlinear.py deleted file mode 100644 index 4990e509661a1..0000000000000 --- a/examples/svm/plot_svm_nonlinear.py +++ /dev/null @@ -1,45 +0,0 @@ -""" -============== -Non-linear SVM -============== - -Perform binary classification using non-linear SVC -with RBF kernel. The target to predict is a XOR of the -inputs. - -The color map illustrates the decision function learned by the SVC. - -""" - -import matplotlib.pyplot as plt -import numpy as np - -from sklearn import svm - -xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) -np.random.seed(0) -X = np.random.randn(300, 2) -Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) - -# fit the model -clf = svm.NuSVC(gamma="auto") -clf.fit(X, Y) - -# plot the decision function for each datapoint on the grid -Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) -Z = Z.reshape(xx.shape) - -plt.imshow( - Z, - interpolation="nearest", - extent=(xx.min(), xx.max(), yy.min(), yy.max()), - aspect="auto", - origin="lower", - cmap=plt.cm.PuOr_r, -) -contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linestyles="dashed") -plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors="k") -plt.xticks(()) -plt.yticks(()) -plt.axis([-3, 3, -3, 3]) -plt.show() From 3a023b07eddf4e29abba923760ded10cc3a9e2b0 Mon Sep 17 00:00:00 2001 From: Edoardo Abati <29585319+EdAbati@users.noreply.github.com> Date: Mon, 20 May 2024 11:20:21 +0200 Subject: [PATCH 0542/1641] Fix use metric_kwargs in check_array_api_metric_pairwise (#29045) --- sklearn/metrics/tests/test_common.py | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py index 096fc82ae56e3..42f2a36445642 100644 --- a/sklearn/metrics/tests/test_common.py +++ b/sklearn/metrics/tests/test_common.py @@ -1898,12 +1898,24 @@ def check_array_api_metric_pairwise(metric, array_namespace, device, dtype_name) if "dense_output" in signature(metric).parameters: metric_kwargs["dense_output"] = False check_array_api_metric( - metric, array_namespace, device, dtype_name, a_np=X_np, b_np=Y_np + metric, + array_namespace, + device, + dtype_name, + a_np=X_np, + b_np=Y_np, + **metric_kwargs, ) metric_kwargs["dense_output"] = True check_array_api_metric( - metric, array_namespace, device, dtype_name, a_np=X_np, b_np=Y_np + metric, + array_namespace, + device, + dtype_name, + a_np=X_np, + b_np=Y_np, + **metric_kwargs, ) From d03c351780d32d06be592cec612a6223b962c459 Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 20 May 2024 11:46:54 +0200 Subject: [PATCH 0543/1641] :lock: :robot: CI Update lock files for main CI build(s) :lock: :robot: (#29053) Co-authored-by: Lock file bot --- ...ylatest_conda_forge_mkl_linux-64_conda.lock | 14 +++++++------- .../pylatest_conda_forge_mkl_osx-64_conda.lock | 12 ++++++------ ...est_pip_openblas_pandas_linux-64_conda.lock | 4 ++-- .../pymin_conda_forge_mkl_win-64_conda.lock | 8 ++++---- ...ge_openblas_ubuntu_2204_linux-64_conda.lock | 8 ++++---- build_tools/circle/doc_linux-64_conda.lock | 18 +++++++++--------- .../doc_min_dependencies_linux-64_conda.lock | 10 +++++----- 7 files changed, 37 insertions(+), 37 deletions(-) diff --git a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock index bf5bcd3daff08..752e32b1d6220 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_linux-64_conda.lock @@ -109,7 +109,7 @@ https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd9 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.54.3-hb20ce57_0.conda#7af7c59ab24db007dfd82e0a3a343f66 https://conda.anaconda.org/conda-forge/linux-64/libhiredis-1.0.2-h2cc385e_0.tar.bz2#b34907d3a81a3cd8095ee83d174c074a -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h2fb2949_1000.conda#7e3726e647a619c6ce5939014dfde86d +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h5622ce7_1001.conda#fc2d5b79c2d3f8568fbab31db7ae02f3 https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda#8a35df3cbc0c8b12cc8af9473ae75eef https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.18.1-h8fd135c_2.conda#bbf65f7688512872f063810623b755dc @@ -158,7 +158,7 @@ https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-69.5.1-pyhd8ed1ab_0.conda#7462280d81f639363e6e63c81276bd9e https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h00ab1b0_0.conda#f1b776cff1b426e7e7461a8502a3b731 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h297d8ca_1.conda#3ff978d8994f591818a506640c6a7071 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 @@ -209,13 +209,13 @@ https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc9dc06e_21.conda https://conda.anaconda.org/conda-forge/noarch/array-api-strict-1.1.1-pyhd8ed1ab_0.conda#941bbcd64d1a7b44aeb497f468fc85b4 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 https://conda.anaconda.org/conda-forge/linux-64/libarrow-12.0.1-hb87d912_8_cpu.conda#3f3b11398fe79b578e3c44dd00a44e4a -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py311h320fe9a_0.conda#c79e96ece4110fdaf2657c9f8e16f749 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py311h00856b1_0.conda#d9002441c9b75b188f9cdc51bf4f22c7 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py311h14de704_1.conda#84e2dd379d4edec4dd6382861486104d +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py311h00856b1_1.conda#4d1715777d0485d6e455b64f72794aa4 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py311hf0fb5b6_5.conda#ec7e45bc76d9d0b69a74a2075932b8e8 https://conda.anaconda.org/conda-forge/linux-64/pytorch-1.13.1-cpu_py311h410fd25_1.conda#ddd2fadddf89e3dc3d541a2537fce010 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.0-py311h517d4fd_1.conda#a86b8bea39e292a23b2cf9a750f49ea1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py311h54ef318_0.conda#150186110f111b458f86c04361351337 -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py311h92ebd52_0.conda#2d415a805458e93fcf5551760fd2d287 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py311ha4ca890_2.conda#0848e2084cbb57014f232f48568561af +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py311h5510f57_1.conda#734865cccfb0a27b433ea31bd178d0e3 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-12.0.1-py311h39c9aba_8_cpu.conda#587370a25bb2c50cce90909ce20d38b8 https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-1.13.1-cpu_py311hdb170b5_1.conda#a805d5f103e493f207613283d8acbbe1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py311h38be061_0.conda#fd6fc4385d0eb6b00c46c4c0d28f5c48 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py311h38be061_2.conda#7667100b9559c1b7a40c728cd72dabdf diff --git a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock index c0e54faa37bc6..5e83abb9667a2 100644 --- a/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock +++ b/build_tools/azure/pylatest_conda_forge_mkl_osx-64_conda.lock @@ -41,7 +41,7 @@ https://conda.anaconda.org/conda-forge/osx-64/gmp-6.3.0-h73e2aa4_1.conda#92f8d74 https://conda.anaconda.org/conda-forge/osx-64/isl-0.26-imath32_h2e86a7b_101.conda#d06222822a9144918333346f145b68c6 https://conda.anaconda.org/conda-forge/osx-64/lerc-4.0.0-hb486fe8_0.tar.bz2#f9d6a4c82889d5ecedec1d90eb673c55 https://conda.anaconda.org/conda-forge/osx-64/libgfortran5-13.2.0-h2873a65_3.conda#e4fb4d23ec2870ff3c40d10afe305aec -https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.10.0-default_h1321489_1000.conda#6f5fe4374d1003e116e2573022178da6 +https://conda.anaconda.org/conda-forge/osx-64/libhwloc-2.10.0-default_h456cccd_1001.conda#d2dc768b14cdf226a30a8eab15641305 https://conda.anaconda.org/conda-forge/osx-64/libllvm16-16.0.6-hbedff68_3.conda#8fd56c0adc07a37f93bd44aa61a97c90 https://conda.anaconda.org/conda-forge/osx-64/ninja-1.12.1-h3c5361c_0.conda#a0ebabd021c8191aeb82793fe43cfdcb https://conda.anaconda.org/conda-forge/osx-64/python-3.12.3-h1411813_0_cpython.conda#df1448ec6cbf8eceb03d29003cf72ae6 @@ -70,7 +70,7 @@ https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/noarch/setuptools-69.5.1-pyhd8ed1ab_0.conda#7462280d81f639363e6e63c81276bd9e https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 -https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.12.0-h7728843_0.conda#e4fb6f4700d8890c36cbf317c2c6d0cb +https://conda.anaconda.org/conda-forge/osx-64/tbb-2021.12.0-h3c5361c_1.conda#e23dd312f13ffe470cc4fdeaddc7a32e https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 @@ -111,14 +111,14 @@ https://conda.anaconda.org/conda-forge/osx-64/numpy-1.26.4-py312he3a82b2_0.conda https://conda.anaconda.org/conda-forge/osx-64/blas-devel-3.9.0-20_osx64_mkl.conda#cc3260179093918b801e373c6e888e02 https://conda.anaconda.org/conda-forge/osx-64/compiler-rt-16.0.6-ha38d28d_2.conda#3b9e8c5c63b8e86234f499490acd85c2 https://conda.anaconda.org/conda-forge/osx-64/contourpy-1.2.1-py312h9230928_0.conda#079df34ce7c71259cfdd394645370891 -https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.2-py312h83c8a23_0.conda#b422a5d39ff0cd72923aef807f280145 +https://conda.anaconda.org/conda-forge/osx-64/pandas-2.2.2-py312h1171441_1.conda#240737937f1f046b0e03ecc11ac4ec98 https://conda.anaconda.org/conda-forge/osx-64/scipy-1.13.0-py312h741d2f9_1.conda#c416453a8ea3b38d823fe8dcecdb6a12 https://conda.anaconda.org/conda-forge/osx-64/blas-2.120-mkl.conda#b041a7677a412f3d925d8208936cb1e2 https://conda.anaconda.org/conda-forge/osx-64/clang_impl_osx-64-16.0.6-h8787910_14.conda#fc1a7d3f1bf236f63c58bab6e36844cb -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.4-py312h1fe5000_0.conda#3e3097734a5042cb6d2675e69bf1fc5a -https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.1.0-py312h3db3e91_0.conda#c6d6248b99fc11b15c9becea581a1462 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-base-3.8.4-py312hb6d62fa_2.conda#6c5cf505d118f4b58961191fd5e0d030 +https://conda.anaconda.org/conda-forge/osx-64/pyamg-5.1.0-py312h44e70fa_1.conda#ffbfe3b3d5e9675541ee516badfb7729 https://conda.anaconda.org/conda-forge/osx-64/clang_osx-64-16.0.6-hb91bd55_14.conda#3d0d9c725912bb0cb4cd301d2a5d31d7 -https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.4-py312hb401068_0.conda#187ee42addd449b4899b55c304012436 +https://conda.anaconda.org/conda-forge/osx-64/matplotlib-3.8.4-py312hb401068_2.conda#456c057a3e2dcac3d02f4b9d25e277f5 https://conda.anaconda.org/conda-forge/osx-64/c-compiler-1.7.0-h282daa2_1.conda#d27411cb82bc1b76b9f487da6ae97f1d https://conda.anaconda.org/conda-forge/osx-64/clangxx_impl_osx-64-16.0.6-h6d92fbe_14.conda#66b9f06d5f0d0ea47ffcb3a9ca65774a https://conda.anaconda.org/conda-forge/osx-64/gfortran_osx-64-12.3.0-h18f7dce_1.conda#436af2384c47aedb94af78a128e174f1 diff --git a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock index 46fd0d308eaa2..afccc559e409a 100644 --- a/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock +++ b/build_tools/azure/pylatest_pip_openblas_pandas_linux-64_conda.lock @@ -62,7 +62,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py39h06a4308_0.conda#7f8ce # pip tomli @ https://files.pythonhosted.org/packages/97/75/10a9ebee3fd790d20926a90a2547f0bf78f371b2f13aa822c759680ca7b9/tomli-2.0.1-py3-none-any.whl#sha256=939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc # pip tzdata @ https://files.pythonhosted.org/packages/65/58/f9c9e6be752e9fcb8b6a0ee9fb87e6e7a1f6bcab2cdc73f02bb7ba91ada0/tzdata-2024.1-py2.py3-none-any.whl#sha256=9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252 # pip urllib3 @ https://files.pythonhosted.org/packages/a2/73/a68704750a7679d0b6d3ad7aa8d4da8e14e151ae82e6fee774e6e0d05ec8/urllib3-2.2.1-py3-none-any.whl#sha256=450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d -# pip zipp @ https://files.pythonhosted.org/packages/c2/0a/ba9d0ee9536d3ef73a3448e931776e658b36f128d344e175bc32b092a8bf/zipp-3.18.1-py3-none-any.whl#sha256=206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b +# pip zipp @ https://files.pythonhosted.org/packages/da/55/a03fd7240714916507e1fcf7ae355bd9d9ed2e6db492595f1a67f61681be/zipp-3.18.2-py3-none-any.whl#sha256=dce197b859eb796242b0622af1b8beb0a722d52aa2f57133ead08edd5bf5374e # pip contourpy @ https://files.pythonhosted.org/packages/31/a2/2f12e3a6e45935ff694654b710961b03310b0e1ec997ee9f416d3c873f87/contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445 # pip coverage @ https://files.pythonhosted.org/packages/c1/50/b7d6f236c20334b0378ed88078e830640a64ad8eb9f11f818b2af34d00c0/coverage-7.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=d21918e9ef11edf36764b93101e2ae8cc82aa5efdc7c5a4e9c6c35a48496d601 # pip imageio @ https://files.pythonhosted.org/packages/a3/b6/39c7dad203d9984225f47e0aa39ac3ba3a47c77a02d0ef2a7be691855a06/imageio-2.34.1-py3-none-any.whl#sha256=408c1d4d62f72c9e8347e7d1ca9bc11d8673328af3913868db3b828e28b40a4c @@ -77,7 +77,7 @@ https://repo.anaconda.com/pkgs/main/linux-64/pip-24.0-py39h06a4308_0.conda#7f8ce # pip scipy @ https://files.pythonhosted.org/packages/c6/ba/a778e6c0020d728c119b0379805a357135fe8c9bc87fdb7e0750ca11319f/scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=28e286bf9ac422d6beb559bc61312c348ca9b0f0dae0d7c5afde7f722d6ea13d # pip tifffile @ https://files.pythonhosted.org/packages/c1/79/29d0fa40017f7b749ce344759dcc21e2ec9bbb81fc69ca2ce06e261f83f0/tifffile-2024.5.10-py3-none-any.whl#sha256=4154f091aa24d4e75bfad9ab2d5424a68c70e67b8220188066dc61946d4551bd # pip lightgbm @ https://files.pythonhosted.org/packages/ba/11/cb8b67f3cbdca05b59a032bb57963d4fe8c8d18c3870f30bed005b7f174d/lightgbm-4.3.0-py3-none-manylinux_2_28_x86_64.whl#sha256=104496a3404cb2452d3412cbddcfbfadbef9c372ea91e3a9b8794bcc5183bf07 -# pip matplotlib @ https://files.pythonhosted.org/packages/5e/2c/513395a63a9e1124a5648addbf73be23cc603f955af026b04416da98dc96/matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9 +# pip matplotlib @ https://files.pythonhosted.org/packages/d3/6d/45837c5b3d0005a5a9b04729b218a16bf3aa195701c6b33b2cc39ae943b6/matplotlib-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=81c40af649d19c85f8073e25e5806926986806fa6d54be506fbf02aef47d5a89 # pip meson-python @ https://files.pythonhosted.org/packages/91/c0/104cb6244c83fe6bc3886f144cc433db0c0c78efac5dc00e409a5a08c87d/meson_python-0.16.0-py3-none-any.whl#sha256=842dc9f5dc29e55fc769ff1b6fe328412fe6c870220fc321060a1d2d395e69e8 # pip pandas @ https://files.pythonhosted.org/packages/bb/30/f6f1f1ac36250f50c421b1b6af08c35e5a8b5a84385ef928625336b93e6f/pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921 # pip pyamg @ https://files.pythonhosted.org/packages/68/a9/aed9f557e7eb779d2cb4fa090663f8540979e0c04dadd16e9a0bdc9632c5/pyamg-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=5817d4567fb240dab4779bb1630bbb3035b3827731fcdaeb9ecc9c8814319995 diff --git a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock index 8f0a473c031ca..206a72f334f6e 100644 --- a/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_mkl_win-64_conda.lock @@ -56,7 +56,7 @@ https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/win-64/kiwisolver-1.4.5-py39h1f6ef14_1.conda#4fc5bd0a7b535252028c647cc27d6c87 https://conda.anaconda.org/conda-forge/win-64/libclang13-18.1.5-default_hf64faad_0.conda#8a662434c6be1f40e2d5d2506d05a41d https://conda.anaconda.org/conda-forge/win-64/libglib-2.80.2-h0df6a38_0.conda#ef9ae80bb2a15aee7a30180c057678ea -https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.10.0-default_h2fffb23_1000.conda#ee944f0d41d9e2048f9d7492c1623ca3 +https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.10.0-default_h8125262_1001.conda#e761885eb4c181074d172220d46319a0 https://conda.anaconda.org/conda-forge/win-64/libintl-devel-0.22.5-h5728263_2.conda#a2ad82fae23975e4ccbfab2847d31d48 https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-hddb2be6_3.conda#6d1828c9039929e2f185c5fa9d133018 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 @@ -90,7 +90,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.8.0-pyhd8ed1a https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/win-64/sip-6.7.12-py39h99910a6_0.conda#0cc5774390ada632ed7975203057c91c -https://conda.anaconda.org/conda-forge/win-64/tbb-2021.12.0-h91493d7_0.conda#21745fdd12f01b41178596143cbecffd +https://conda.anaconda.org/conda-forge/win-64/tbb-2021.12.0-hc790b64_1.conda#e98333643abc739ebea1bac97a479828 https://conda.anaconda.org/conda-forge/win-64/fonttools-4.51.0-py39ha55989b_0.conda#5d19302bab29e347116b743e793aa7d6 https://conda.anaconda.org/conda-forge/win-64/glib-2.80.2-h0df6a38_0.conda#a728ca6f04c33ecb0f39eeda5fbd0e23 https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e @@ -114,5 +114,5 @@ https://conda.anaconda.org/conda-forge/win-64/contourpy-1.2.1-py39h1f6ef14_0.con https://conda.anaconda.org/conda-forge/win-64/pyqt-5.15.9-py39hb77abff_5.conda#5ed899124a51958336371ff01482b8fd https://conda.anaconda.org/conda-forge/win-64/scipy-1.13.0-py39h1a10956_1.conda#5624ccefd670072fc86b2cd4ffdc6c44 https://conda.anaconda.org/conda-forge/win-64/blas-2.122-mkl.conda#aee642435696de144ddf91dc02101cf8 -https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.8.4-py39hf19769e_0.conda#7836c3dc5814f6d55a7392657c576e88 -https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.8.4-py39hcbf5309_0.conda#cc66c372d5eb745665da06ce56b7d72b +https://conda.anaconda.org/conda-forge/win-64/matplotlib-base-3.8.4-py39he1095e7_2.conda#5c813b5da86f186d8026b6de6429c212 +https://conda.anaconda.org/conda-forge/win-64/matplotlib-3.8.4-py39hcbf5309_2.conda#1ecee90b529cb69ec4e95add23323110 diff --git a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock index 1a4d0feae1773..d0f35d5f79808 100644 --- a/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock +++ b/build_tools/azure/pymin_conda_forge_openblas_ubuntu_2204_linux-64_conda.lock @@ -187,15 +187,15 @@ https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-22_linux64_openblas.conda#63ddb593595c9cf5eb08d3de54d66df8 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.conda#bdc188e59857d6efab332714e0d01d93 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.3-h9ad1361_0.conda#8fb0e954c616bb0f9389efac4b4ed44b -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hddac248_0.conda#259c4e76e6bda8888aefc098ae1ba749 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hfc16268_1.conda#8b23d2b425035a7468d17e6fe1d54124 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.0-py39haf93ffa_1.conda#57ce54e228e3fbc60e42fa368eff3251 https://conda.anaconda.org/conda-forge/linux-64/blas-2.122-openblas.conda#5065468105542a8b23ea47bd8b6fa55f -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39he9076e7_0.conda#1919384a8420e7bb25f6c3a582e0857c -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39hda80f44_0.conda#f225666c47726329201b604060f1436c +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39h85c637f_1.conda#b2b15112d019e27e62f9433e31607d08 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc9dc06e_21.conda#b325046180590c868ce0dbf267b82eb8 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_0.conda#c66d2da2669fddc657b679bccab95775 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.7.0-pyhd8ed1ab_0.conda#1ad3afced398492586ca1bef70328be4 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 34ec64ad5863b..3483e48208b45 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -68,7 +68,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#7 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.0-hdb0a2a9_1.conda#843bbb8ace1d64ac50d64639ff38b014 -https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.0.0-h59595ed_0.conda#207e01ffa0eb2d2efb83fb6f46365a21 +https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.1.0-hac33072_0.conda#2a08edb7cd75e56623f2712292a97325 https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda#2c80dc38fface310c9bd81b17037fee5 @@ -83,7 +83,7 @@ https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.0.7-h0b41bf4_0.conda#4 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-12.3.0-h58ffeeb_7.conda#95f78565a09852783d3e90e0389cfa5f https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-hfa3d5b6_3.conda#3518d00de414c39b46d87dcc1ff65661 +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-hd2f8ffe_4.conda#cb911b3e0d863ca9caafd767525f7cac https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda#25cb5999faa414e5ccb2c1388f62d3d5 @@ -235,23 +235,23 @@ https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py39h7633fee_0.c https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.3-h9ad1361_0.conda#8fb0e954c616bb0f9389efac4b4ed44b https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.1.1-py39ha98d97a_6.conda#9ada409e8a8202f848abfed8e4e3f6be https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.1-pyh4b66e23_0.conda#bcf6a6f4c6889ca083e8d33afbafb8d5 -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hddac248_0.conda#259c4e76e6bda8888aefc098ae1ba749 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py39hfc16268_1.conda#8b23d2b425035a7468d17e6fe1d54124 https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py39ha963410_0.conda#d138679a254e4e0918cfc1114c928bb8 +https://conda.anaconda.org/conda-forge/linux-64/polars-0.20.26-py39ha963410_1.conda#da14fdc7c8400f6b6505b710dd129636 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.1-pyhd8ed1ab_0.conda#d15917f33140f8d2ac9ca44db7ec8a25 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.4.1-py39h44dd56e_1.conda#d037c20e3da2e85f03ebd20ad480c359 https://conda.anaconda.org/conda-forge/linux-64/scipy-1.13.0-py39haf93ffa_1.conda#57ce54e228e3fbc60e42fa368eff3251 https://conda.anaconda.org/conda-forge/linux-64/blas-2.122-openblas.conda#5065468105542a8b23ea47bd8b6fa55f -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39he9076e7_0.conda#1919384a8420e7bb25f6c3a582e0857c -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39hda80f44_0.conda#f225666c47726329201b604060f1436c +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h10d1fc8_2.conda#c9fb6571b93b1dd490ea627af7344f36 +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39h85c637f_1.conda#b2b15112d019e27e62f9433e31607d08 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc9dc06e_21.conda#b325046180590c868ce0dbf267b82eb8 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.1-py39h44dd56e_0.conda#dc565186b972bd87e49b9c35390ddd8c +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py39hd92a3bb_0.conda#2f6c03d60e71f13d92d511b06193f007 https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.5.10-pyhd8ed1ab_0.conda#125438a8b679e4c08ee8f244177216c9 https://conda.anaconda.org/conda-forge/linux-64/pyqt-5.15.9-py39h52134e7_5.conda#e1f148e57d071b09187719df86f513c1 https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.22.0-py39hddac248_2.conda#8d502a4d2cbe5a45ff35ca8af8cbec0a https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_0.conda#c66d2da2669fddc657b679bccab95775 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.7.0-pyhd8ed1ab_0.conda#1ad3afced398492586ca1bef70328be4 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 @@ -319,4 +319,4 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip nbconvert @ https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl#sha256=05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3 # pip jupyter-server @ https://files.pythonhosted.org/packages/07/46/6bb926b3bf878bf687b952fb6a4c09d014b4575a25960f2cd1a61793763f/jupyter_server-2.14.0-py3-none-any.whl#sha256=fb6be52c713e80e004fac34b35a0990d6d36ba06fd0a2b2ed82b899143a64210 # pip jupyterlab-server @ https://files.pythonhosted.org/packages/2f/b9/ed4ecad7cf1863a64920dc4c19b0376628b5d6bd28d2ec1e00cbac4ba2fb/jupyterlab_server-2.27.1-py3-none-any.whl#sha256=f5e26156e5258b24d532c84e7c74cc212e203bff93eb856f81c24c16daeecc75 -# pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/7c/c7/5c0f4dc5408122881a32b1809529d1d7adcc60cb176c7b50725910c328cc/jupyterlite_sphinx-0.14.0-py3-none-any.whl#sha256=144edf37e8a77f49b249dd57e3a22ce19ff87805ed79b460e831dc90bf38c269 +# pip jupyterlite-sphinx @ https://files.pythonhosted.org/packages/71/2c/bd797dc46a7281d43444c79ff312d4f8d27d41a0de05f48cad81c7939966/jupyterlite_sphinx-0.15.0-py3-none-any.whl#sha256=344d1f9ee5a20b141a4a4139874eae30a68216f0c995d03ea2e3b3e9d29c4cd5 diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 043587152c63b..8bc3e84fde36f 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -96,7 +96,7 @@ https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-12.3.0-h1 https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-12.3.0-h2a574ab_7.conda#265caa78b979f112fc241cecd0015c91 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.2-h659d440_0.conda#cd95826dbd331ed1be26bdf401432844 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda#72724f6a78ecb15559396966226d5838 -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h2fb2949_1000.conda#7e3726e647a619c6ce5939014dfde86d +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.10.0-default_h5622ce7_1001.conda#fc2d5b79c2d3f8568fbab31db7ae02f3 https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda#8a35df3cbc0c8b12cc8af9473ae75eef https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.5-hb77312f_0.conda#efd221d3668077ca067a206269418dec https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda#66f03896ffbe1a110ffda05c7a856504 @@ -124,7 +124,7 @@ https://conda.anaconda.org/conda-forge/linux-64/docutils-0.19-py39hf3d152e_1.tar https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.3.1-pyhca7485f_0.conda#b7f0662ef2c9d4404f0af9eef5ed2fde +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.5.0-pyhff2d567_0.conda#d73e9932511ef7670b2cc0ebd9dfbd30 https://conda.anaconda.org/conda-forge/linux-64/gfortran-12.3.0-h915e2ae_7.conda#8efa768f7f74085629f3e1090e7f0569 https://conda.anaconda.org/conda-forge/linux-64/gfortran_linux-64-12.3.0-h617cb40_3.conda#3a9e5b8a6f651ff14e74d896d8f04ab6 https://conda.anaconda.org/conda-forge/linux-64/glib-tools-2.80.2-hb6ce0ca_0.conda#a965aeaf060289528a3fbe09326edae2 @@ -159,7 +159,7 @@ https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h00ab1b0_0.conda#f1b776cff1b426e7e7461a8502a3b731 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h297d8ca_1.conda#3ff978d8994f591818a506640c6a7071 https://conda.anaconda.org/conda-forge/noarch/tenacity-8.3.0-pyhd8ed1ab_0.conda#216cfa8e32bcd1447646768351df6059 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 @@ -208,7 +208,7 @@ https://conda.anaconda.org/conda-forge/linux-64/mkl-devel-2024.1.0-ha770c72_692. https://conda.anaconda.org/conda-forge/linux-64/pyqt5-sip-12.12.2-py39h3d6467e_5.conda#93aff412f3e49fdb43361c0215cbd72d https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda#a30144e4156cdbb236f99ebb49828f8b -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.5.0-pyhd8ed1ab_0.conda#8472f598970b9af96ca8106fa243ab67 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.5.1-pyhd8ed1ab_0.conda#d4f60ccc5421472d2583efd9ce39d8b1 https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.3-h9ad1361_0.conda#8fb0e954c616bb0f9389efac4b4ed44b https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_mkl.conda#d6f942423116553f068b2f2d93ffea2e https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-22_linux64_mkl.conda#4edf2e7ce63920e4f539d12e32fb478e @@ -218,7 +218,7 @@ https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-22_linux64_mkl. https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 https://conda.anaconda.org/conda-forge/linux-64/qt-main-5.15.8-hc9dc06e_21.conda#b325046180590c868ce0dbf267b82eb8 https://conda.anaconda.org/conda-forge/linux-64/blas-devel-3.9.0-22_linux64_mkl.conda#3cb0e51433c88d2f4cdfb50c5c08a683 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-lite-2019.12.3-py39hd257fcd_5.tar.bz2#32dba66d6abc2b4b5b019c9e54307312 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-lite-2019.12.3-py39hd92a3bb_8.conda#5eb64443d4d973c31e179a498e1bb4a2 https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.1-pyh4b66e23_0.conda#bcf6a6f4c6889ca083e8d33afbafb8d5 https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.3.4-py39h2fa2bec_0.tar.bz2#9ec0b2186fab9121c54f4844f93ee5b7 https://conda.anaconda.org/conda-forge/linux-64/pandas-1.1.5-py39hde0f152_0.tar.bz2#79fc4b5b3a865b90dd3701cecf1ad33c From 751829cbb007c39a43f88fe90769af9559fb56ac Mon Sep 17 00:00:00 2001 From: scikit-learn-bot Date: Mon, 20 May 2024 11:47:21 +0200 Subject: [PATCH 0544/1641] :lock: :robot: CI Update lock files for cirrus-arm CI build(s) :lock: :robot: (#29052) Co-authored-by: Lock file bot --- build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock index 660bc9de9ecda..8db59cbb2c373 100644 --- a/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock +++ b/build_tools/cirrus/pymin_conda_forge_linux-aarch64_conda.lock @@ -90,5 +90,5 @@ https://conda.anaconda.org/conda-forge/linux-aarch64/blas-devel-3.9.0-22_linuxaa https://conda.anaconda.org/conda-forge/linux-aarch64/contourpy-1.2.1-py39hd16970a_0.conda#66b9718539ecdd38876b0176c315bcad https://conda.anaconda.org/conda-forge/linux-aarch64/scipy-1.13.0-py39hb921187_1.conda#2717303c0d13a5646308b3763bf4daa4 https://conda.anaconda.org/conda-forge/linux-aarch64/blas-2.122-openblas.conda#65bc48b3bc85f8eeeab54311443a83aa -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.8.4-py39h8e43113_0.conda#f397ddfe5c551732de61a92106a14cf3 -https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.8.4-py39ha65689a_0.conda#d501bb96ff505fdd431fd8fdac8efbf9 +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-base-3.8.4-py39hf44f4b6_2.conda#fadf734d38ed608c9f0b5c91fe79cfb4 +https://conda.anaconda.org/conda-forge/linux-aarch64/matplotlib-3.8.4-py39ha65689a_2.conda#c0472e3c4b3f007de6d643317c30963b From be5316fb57ac5dfe429d7a994a4ef34aaa0d79c7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Mon, 20 May 2024 14:31:55 +0200 Subject: [PATCH 0545/1641] DOC Release highlights 1.5 (#29007) Co-authored-by: Tim Head Co-authored-by: Guillaume Lemaitre Co-authored-by: Christian Lorentzen --- .../plot_release_highlights_1_5_0.py | 183 ++++++++++++++++++ 1 file changed, 183 insertions(+) create mode 100644 examples/release_highlights/plot_release_highlights_1_5_0.py diff --git a/examples/release_highlights/plot_release_highlights_1_5_0.py b/examples/release_highlights/plot_release_highlights_1_5_0.py new file mode 100644 index 0000000000000..0acc6fda6589d --- /dev/null +++ b/examples/release_highlights/plot_release_highlights_1_5_0.py @@ -0,0 +1,183 @@ +# ruff: noqa +""" +======================================= +Release Highlights for scikit-learn 1.5 +======================================= + +.. currentmodule:: sklearn + +We are pleased to announce the release of scikit-learn 1.5! Many bug fixes +and improvements were added, as well as some key new features. Below we +detail the highlights of this release. **For an exhaustive list of +all the changes**, please refer to the :ref:`release notes `. + +To install the latest version (with pip):: + + pip install --upgrade scikit-learn + +or with conda:: + + conda install -c conda-forge scikit-learn + +""" + +# %% +# FixedThresholdClassifier: Setting the decision threshold of a binary classifier +# ------------------------------------------------------------------------------- +# All binary classifiers of scikit-learn use a fixed decision threshold of 0.5 to +# convert probability estimates (i.e. output of `predict_proba`) into class +# predictions. However, 0.5 is almost never the desired threshold for a given problem. +# :class:`~model_selection.FixedThresholdClassifier` allows to wrap any binary +# classifier and set a custom decision threshold. +from sklearn.datasets import make_classification +from sklearn.linear_model import LogisticRegression +from sklearn.metrics import confusion_matrix + +X, y = make_classification(n_samples=1_000, weights=[0.9, 0.1], random_state=0) +classifier = LogisticRegression(random_state=0).fit(X, y) + +print("confusion matrix:\n", confusion_matrix(y, classifier.predict(X))) + +# %% +# Lowering the threshold, i.e. allowing more samples to be classified as the positive +# class, increases the number of true positives at the cost of more false positives +# (as is well known from the concavity of the ROC curve). +from sklearn.model_selection import FixedThresholdClassifier + +wrapped_classifier = FixedThresholdClassifier(classifier, threshold=0.1).fit(X, y) + +print("confusion matrix:\n", confusion_matrix(y, wrapped_classifier.predict(X))) + +# %% +# TunedThresholdClassifierCV: Tuning the decision threshold of a binary classifier +# -------------------------------------------------------------------------------- +# The decision threshold of a binary classifier can be tuned to optimize a given +# metric, using :class:`~model_selection.TunedThresholdClassifierCV`. +from sklearn.metrics import balanced_accuracy_score + +# Due to the class imbalance, the balanced accuracy is not optimal for the default +# threshold. The classifier tends to over predict the majority class. +print(f"balanced accuracy: {balanced_accuracy_score(y, classifier.predict(X)):.2f}") + +# %% +# Tuning the threshold to optimize the balanced accuracy gives a smaller threshold +# that allows more samples to be classified as the positive class. +from sklearn.model_selection import TunedThresholdClassifierCV + +tuned_classifier = TunedThresholdClassifierCV( + classifier, cv=5, scoring="balanced_accuracy" +).fit(X, y) + +print(f"new threshold: {tuned_classifier.best_threshold_:.4f}") +print( + f"balanced accuracy: {balanced_accuracy_score(y, tuned_classifier.predict(X)):.2f}" +) + +# %% +# :class:`~model_selection.TunedThresholdClassifierCV` also benefits from the +# metadata routing support (:ref:`Metadata Routing User Guide`) +# allowing to optimze complex business metrics, detailed +# in :ref:`Post-tuning the decision threshold for cost-sensitive learning +# `. + +# %% +# Performance improvements in PCA +# ------------------------------- +# :class:`~decomposition.PCA` has a new solver, "covariance_eigh", which is faster +# and more memory efficient than the other solvers for datasets with a large number +# of samples and a small number of features. +from sklearn.datasets import make_low_rank_matrix +from sklearn.decomposition import PCA + +X = make_low_rank_matrix( + n_samples=10_000, n_features=100, tail_strength=0.1, random_state=0 +) + +pca = PCA(n_components=10).fit(X) + +print(f"explained variance: {pca.explained_variance_ratio_.sum():.2f}") + +# %% +# The "full" solver has also been improved to use less memory and allows to +# transform faster. The "auto" option for the solver takes advantage of the +# new solver and is now able to select an appropriate solver for sparse +# datasets. +from scipy.sparse import random + +X = random(10000, 100, format="csr", random_state=0) + +pca = PCA(n_components=10, svd_solver="auto").fit(X) + +# %% +# ColumnTransformer is subscriptable +# ---------------------------------- +# The transformers of a :class:`~compose.ColumnTransformer` can now be directly +# accessed using indexing by name. +import numpy as np +from sklearn.compose import ColumnTransformer +from sklearn.preprocessing import StandardScaler, OneHotEncoder + +X = np.array([[0, 1, 2], [3, 4, 5]]) +column_transformer = ColumnTransformer( + [("std_scaler", StandardScaler(), [0]), ("one_hot", OneHotEncoder(), [1, 2])] +) + +column_transformer.fit(X) + +print(column_transformer["std_scaler"]) +print(column_transformer["one_hot"]) + +# %% +# Custom imputation strategies for the SimpleImputer +# -------------------------------------------------- +# :class:`~impute.SimpleImputer` now supports custom strategies for imputation, +# using a callable that computes a scalar value from the non missing values of +# a column vector. +from sklearn.impute import SimpleImputer + +X = np.array( + [ + [-1.1, 1.1, 1.1], + [3.9, -1.2, np.nan], + [np.nan, 1.3, np.nan], + [-0.1, -1.4, -1.4], + [-4.9, 1.5, -1.5], + [np.nan, 1.6, 1.6], + ] +) + + +def smallest_abs(arr): + """Return the smallest absolute value of a 1D array.""" + return np.min(np.abs(arr)) + + +imputer = SimpleImputer(strategy=smallest_abs) + +imputer.fit_transform(X) + +# %% +# Pairwise distances with non-numeric arrays +# ------------------------------------------ +# :func:`~metrics.pairwise_distances` can now compute distances between +# non-numeric arrays using a callable metric. +from sklearn.metrics import pairwise_distances + +X = ["cat", "dog"] +Y = ["cat", "fox"] + + +def levenshtein_distance(x, y): + """Return the Levenshtein distance between two strings.""" + if x == "" or y == "": + return max(len(x), len(y)) + if x[0] == y[0]: + return levenshtein_distance(x[1:], y[1:]) + return 1 + min( + levenshtein_distance(x[1:], y), + levenshtein_distance(x, y[1:]), + levenshtein_distance(x[1:], y[1:]), + ) + + +pairwise_distances(X, Y, metric=levenshtein_distance) From 0e0033a385ccc50b90be169d249cebc0338210b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jo=C3=A3o=20Morais?= <15629444+ojoaomorais@users.noreply.github.com> Date: Mon, 20 May 2024 11:05:26 -0300 Subject: [PATCH 0546/1641] DOC Add plot face recognition example to API docs (#29049) --- sklearn/datasets/_lfw.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/sklearn/datasets/_lfw.py b/sklearn/datasets/_lfw.py index cb62288646d23..be72baa981da7 100644 --- a/sklearn/datasets/_lfw.py +++ b/sklearn/datasets/_lfw.py @@ -281,6 +281,9 @@ def fetch_lfw_people( Features real, between 0 and 255 ================= ======================= + For a usage example of this dataset, see + :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py`. + Read more in the :ref:`User Guide `. Parameters From 5a6ad81946cae496892a36e0b26c3f468fa8088a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9mie=20du=20Boisberranger?= Date: Mon, 20 May 2024 16:13:08 +0200 Subject: [PATCH 0547/1641] MAINT Reoder what's new for 1.5 (#29039) --- doc/templates/index.html | 10 +-- doc/whats_new/v1.5.rst | 143 +++++++++++++++++++++++---------------- 2 files changed, 88 insertions(+), 65 deletions(-) diff --git a/doc/templates/index.html b/doc/templates/index.html index 5b3a61a5b98bb..74816a4b473d3 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -167,7 +167,9 @@

    Machine Learning in

    News

    • On-going development: - scikit-learn 1.5 (Changelog) + scikit-learn 1.6 (Changelog) +
    • +
    • May 2024. scikit-learn 1.5.0 is available for download (Changelog).
    • April 2024. scikit-learn 1.4.2 is available for download (Changelog).
    • @@ -175,12 +177,6 @@

      News

    • January 2024. scikit-learn 1.4.0 is available for download (Changelog).
    • -
    • October 2023. scikit-learn 1.3.2 is available for download (Changelog). -
    • -
    • September 2023. scikit-learn 1.3.1 is available for download (Changelog). -
    • -
    • June 2023. scikit-learn 1.3.0 is available for download (Changelog). -
    • All releases: What's new (Changelog)
    • diff --git a/doc/whats_new/v1.5.rst b/doc/whats_new/v1.5.rst index 6dc76ceefaf5f..c2c64e24ba9e0 100644 --- a/doc/whats_new/v1.5.rst +++ b/doc/whats_new/v1.5.rst @@ -8,10 +8,8 @@ Version 1.5 =========== -.. - -- UNCOMMENT WHEN 1.5.0 IS RELEASED -- - For a short description of the main highlights of the release, please refer to - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_5_0.py`. +For a short description of the main highlights of the release, please refer to +:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_5_0.py`. .. include:: changelog_legend.inc @@ -20,7 +18,7 @@ Version 1.5 Version 1.5.0 ============= -**In Development** +**May 2024** Security -------- @@ -59,6 +57,10 @@ Changed models Changes impacting many modules ------------------------------ +- |Fix| Raise `ValueError` with an informative error message when passing 1D + sparse arrays to methods that expect 2D sparse inputs. + :pr:`28988` by :user:`Olivier Grisel `. + - |API| The name of the input of the `inverse_transform` method of estimators has been standardized to `X`. As a consequence, `Xt` is deprecated and will be removed in version 1.7 in the following estimators: :class:`cluster.FeatureAgglomeration`, @@ -67,10 +69,6 @@ Changes impacting many modules :class:`pipeline.Pipeline` and :class:`preprocessing.KBinsDiscretizer`. :pr:`28756` by :user:`Will Dean `. -- |Fix| Raise `ValueError` with an informative error message when passing 1D - sparse arrays to methods that expect 2D sparse inputs. - :pr:`28988` by :user:`Olivier Grisel `. - Support for Array API --------------------- @@ -82,8 +80,8 @@ See :ref:`array_api` for more details. **Functions:** - :func:`sklearn.metrics.r2_score` now supports Array API compliant inputs. - :pr:`27904` by :user:`Eric Lindgren `, `Franck Charras `, - `Olivier Grisel ` and `Tim Head `. + :pr:`27904` by :user:`Eric Lindgren `, :user:`Franck Charras `, + :user:`Olivier Grisel ` and :user:`Tim Head `. **Classes:** @@ -103,8 +101,8 @@ Unless we discover a major blocker, setuptools support will be dropped in scikit-learn 1.6. The 1.5.x releases will support building scikit-learn with setuptools. -Meson support for building scikit-learn was added in :pr:`28040` by :user:`Loïc -Estève ` +Meson support for building scikit-learn was added in :pr:`28040` by +:user:`Loïc Estève ` Metadata Routing ---------------- @@ -120,7 +118,8 @@ more details. now support metadata routing. The fit methods now accept ``**fit_params`` which are passed to the underlying estimators via their `fit` methods. - :pr:`28432` by :user:`Adam Li ` and :user:`Benjamin Bossan `. + :pr:`28432` by :user:`Adam Li ` and + :user:`Benjamin Bossan `. - |Feature| :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV` now support metadata routing in @@ -144,8 +143,8 @@ more details. - |Feature| :class:`pipeline.FeatureUnion` now supports metadata routing in its ``fit`` and ``fit_transform`` methods and route metadata to the underlying - transformers' ``fit`` and ``fit_transform``. :pr:`28205` by :user:`Stefanie - Senger `. + transformers' ``fit`` and ``fit_transform``. + :pr:`28205` by :user:`Stefanie Senger `. - |Fix| Fix an issue when resolving default routing requests set via class attributes. @@ -156,8 +155,8 @@ more details. :pr:`28651` by `Adrin Jalali`_. - |FIX| Prevent a `RecursionError` when estimators with the default `scoring` - param (`None`) route metadata. :pr:`28712` by :user:`Stefanie Senger - `. + param (`None`) route metadata. + :pr:`28712` by :user:`Stefanie Senger `. Changelog --------- @@ -217,7 +216,13 @@ Changelog :mod:`sklearn.cross_decomposition` .................................. -- |API| Deprecates `Y` in favor of `y` in the methods fit, transform and inverse_transform of: +- |Fix| The `coef_` fitted attribute of :class:`cross_decomposition.PLSRegression` + now takes into account both the scale of `X` and `Y` when `scale=True`. Note that + the previous predicted values were not affected by this bug. + :pr:`28612` by :user:`Guillaume Lemaitre `. + +- |API| Deprecates `Y` in favor of `y` in the methods fit, transform and + inverse_transform of: :class:`cross_decomposition.PLSRegression`. :class:`cross_decomposition.PLSCanonical`, :class:`cross_decomposition.CCA`, @@ -225,11 +230,6 @@ Changelog `Y` will be removed in version 1.7. :pr:`28604` by :user:`David Leon `. -- |Fix| The `coef_` fitted attribute of :class:`cross_decomposition.PLSRegression` - now takes into account both the scale of `X` and `Y` when `scale=True`. Note that - the previous predicted values were not affected by this bug. - :pr:`28612` by :user:`Guillaume Lemaitre `. - :mod:`sklearn.datasets` ....................... @@ -245,7 +245,8 @@ Changelog :func:`datasets.fetch_rcv1`, and :func:`datasets.fetch_species_distributions`. By default, the functions will retry up to 3 times in case of network failures. - :pr:`28160` by :user:`Zhehao Liu ` and :user:`Filip Karlo Došilović `. + :pr:`28160` by :user:`Zhehao Liu ` and + :user:`Filip Karlo Došilović `. :mod:`sklearn.decomposition` ............................ @@ -350,13 +351,8 @@ Changelog - |Fix| :class:`linear_model.ElasticNet`, :class:`linear_model.ElasticNetCV`, :class:`linear_model.Lasso` and :class:`linear_model.LassoCV` now explicitly don't - accept large sparse data formats. :pr:`27576` by :user:`Stefanie Senger - `. - -- |API| :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV` - will now allow `alpha=0` when `cv != None`, which is consistent with - :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`. - :pr:`28425` by :user:`Lucy Liu `. + accept large sparse data formats. + :pr:`27576` by :user:`Stefanie Senger `. - |Fix| :class:`linear_model.RidgeCV` and :class:`RidgeClassifierCV` correctly pass `sample_weight` to the underlying scorer when `cv` is None. @@ -366,6 +362,11 @@ Changelog will now always be `None` when `tol` is set, as `n_nonzero_coefs` is ignored in this case. :pr:`28557` by :user:`Lucy Liu `. +- |API| :class:`linear_model.RidgeCV` and :class:`linear_model.RidgeClassifierCV` + will now allow `alpha=0` when `cv != None`, which is consistent with + :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`. + :pr:`28425` by :user:`Lucy Liu `. + - |API| Passing `average=0` to disable averaging is deprecated in :class:`linear_model.PassiveAggressiveClassifier`, :class:`linear_model.PassiveAggressiveRegressor`, @@ -382,7 +383,8 @@ Changelog :pr:`28703` by :user:`Christian Lorentzen `. - |API| `store_cv_values` and `cv_values_` are deprecated in favor of - `store_cv_results` and `cv_results_` in `RidgeCV` and `RidgeClassifierCV`. + `store_cv_results` and `cv_results_` in `~linear_model.RidgeCV` and + `~linear_model.RidgeClassifierCV`. :pr:`28915` by :user:`Lucy Liu `. :mod:`sklearn.manifold` @@ -401,8 +403,15 @@ Changelog :pr:`27456` by :user:`Venkatachalam N `, :user:`Kshitij Mathur ` and :user:`Julian Libiseller-Egger `. +- |Feature| :func:`sklearn.metrics.check_scoring` now returns a multi-metric scorer + when `scoring` as a `dict`, `set`, `tuple`, or `list`. :pr:`28360` by `Thomas Fan`_. + +- |Feature| :func:`metrics.d2_log_loss_score` has been added which + calculates the D^2 score for the log loss. + :pr:`28351` by :user:`Omar Salman `. + - |Efficiency| Improve efficiency of functions :func:`~metrics.brier_score_loss`, - :func:`~metrics.calibration_curve`, :func:`~metrics.det_curve`, + :func:`~calibration.calibration_curve`, :func:`~metrics.det_curve`, :func:`~metrics.precision_recall_curve`, :func:`~metrics.roc_curve` when `pos_label` argument is specified. Also improve efficiency of methods `from_estimator` @@ -411,9 +420,6 @@ Changelog :class:`~calibration.CalibrationDisplay`. :pr:`28051` by :user:`Pierre de Fréminville `. -- |Feature| :func:`sklearn.metrics.check_scoring` now returns a multi-metric scorer - when `scoring` as a `dict`, `set`, `tuple`, or `list`. :pr:`28360` by `Thomas Fan`_. - - |Fix|:class:`metrics.classification_report` now shows only accuracy and not micro-average when input is a subset of labels. :pr:`28399` by :user:`Vineet Joshi `. @@ -422,8 +428,8 @@ Changelog computation. This is likely to affect neighbor-based algorithms. :pr:`28692` by :user:`Loïc Estève `. -- |API| :func:`metrics.precision_recall_curve` deprecated the keyword argument `probas_pred` - in favor of `y_score`. `probas_pred` will be removed in version 1.7. +- |API| :func:`metrics.precision_recall_curve` deprecated the keyword argument + `probas_pred` in favor of `y_score`. `probas_pred` will be removed in version 1.7. :pr:`28092` by :user:`Adam Li `. - |API| :func:`metrics.brier_score_loss` deprecated the keyword argument `y_prob` @@ -434,10 +440,6 @@ Changelog is deprecated and will raise an error in v1.7. :pr:`18555` by :user:`Kaushik Amar Das `. -- |Feature| :func:`metrics.d2_log_loss_score` has been added which - calculates the D^2 score for the log loss. - :pr:`28351` by :user:`Omar Salman `. - :mod:`sklearn.mixture` ...................... @@ -460,22 +462,22 @@ Changelog raises a warning when groups are passed in to :term:`split`. :pr:`28210` by `Thomas Fan`_. +- |Enhancement| The HTML diagram representation of + :class:`~model_selection.GridSearchCV`, + :class:`~model_selection.RandomizedSearchCV`, + :class:`~model_selection.HalvingGridSearchCV`, and + :class:`~model_selection.HalvingRandomSearchCV` will show the best estimator when + `refit=True`. :pr:`28722` by :user:`Yao Xiao ` and `Thomas Fan`_. + - |Fix| the ``cv_results_`` attribute (of :class:`model_selection.GridSearchCV`) now returns masked arrays of the appropriate NumPy dtype, as opposed to always returning dtype ``object``. :pr:`28352` by :user:`Marco Gorelli`. -- |Fix| :func:`sklearn.model_selection.train_test_score` works with Array API inputs. +- |Fix| :func:`model_selection.train_test_split` works with Array API inputs. Previously indexing was not handled correctly leading to exceptions when using strict implementations of the Array API like CuPY. :pr:`28407` by :user:`Tim Head `. -- |Enhancement| The HTML diagram representation of - :class:`~model_selection.GridSearchCV`, - :class:`~model_selection.RandomizedSearchCV`, - :class:`~model_selection.HalvingGridSearchCV`, and - :class:`~model_selection.HalvingRandomSearchCV` will show the best estimator when - `refit=True`. :pr:`28722` by :user:`Yao Xiao ` and `Thomas Fan`_. - :mod:`sklearn.multioutput` .......................... @@ -518,6 +520,10 @@ Changelog :mod:`sklearn.utils` .................... +- |Fix| :func:`~utils._safe_indexing` now works correctly for polars DataFrame when + `axis=0` and supports indexing polars Series. + :pr:`28521` by :user:`Yao Xiao `. + - |API| :data:`utils.IS_PYPY` is deprecated and will be removed in version 1.7. :pr:`28768` by :user:`Jérémie du Boisberranger `. @@ -529,15 +535,11 @@ Changelog `joblib.register_parallel_backend` instead. :pr:`28847` by :user:`Jérémie du Boisberranger `. -- |API| Raise informative warning message in :func:`type_of_target` when - represented as bytes. For classifiers and classification metrics, labels encoded +- |API| Raise informative warning message in :func:`~utils.multiclass.type_of_target` + when represented as bytes. For classifiers and classification metrics, labels encoded as bytes is deprecated and will raise an error in v1.7. :pr:`18555` by :user:`Kaushik Amar Das `. -- |Fix| :func:`~utils._safe_indexing` now works correctly for polars DataFrame when - `axis=0` and supports indexing polars Series. - :pr:`28521` by :user:`Yao Xiao `. - - |API| :func:`utils.estimator_checks.check_estimator_sparse_data` was split into two functions: :func:`utils.estimator_checks.check_estimator_sparse_matrix` and :func:`utils.estimator_checks.check_estimator_sparse_array`. @@ -548,4 +550,29 @@ Changelog Thanks to everyone who has contributed to the maintenance and improvement of the project since version 1.4, including: -TODO: update at the time of the release. +101AlexMartin, Abdulaziz Aloqeely, Adam J. Stewart, Adam Li, Adarsh Wase, Adrin +Jalali, Advik Sinha, Akash Srivastava, Akihiro Kuno, Alan Guedes, Alexis +IMBERT, Ana Paula Gomes, Anderson Nelson, Andrei Dzis, Arnaud Capitaine, Arturo +Amor, Aswathavicky, Bharat Raghunathan, Brendan Lu, Bruno, Cemlyn, Christian +Lorentzen, Christian Veenhuis, Cindy Liang, Claudio Salvatore Arcidiacono, +Connor Boyle, Conrad Stevens, crispinlogan, davidleon123, DerWeh, Dipan Banik, +Duarte São José, DUONG, Eddie Bergman, Edoardo Abati, Egehan Gunduz, Emad +Izadifar, Erich Schubert, Filip Karlo Došilović, Franck Charras, Gael +Varoquaux, Gönül Aycı, Guillaume Lemaitre, Gyeongjae Choi, Harmanan Kohli, +Hong Xiang Yue, Ian Faust, itsaphel, Ivan Wiryadi, Jack Bowyer, Javier Marin +Tur, Jérémie du Boisberranger, Jérôme Dockès, Jiawei Zhang, Joel Nothman, +Johanna Bayer, John Cant, John Hopfensperger, jpcars, jpienaar-tuks, Julian +Libiseller-Egger, Julien Jerphanion, KanchiMoe, Kaushik Amar Das, keyber, +Koustav Ghosh, kraktus, Krsto Proroković, ldwy4, LeoGrin, lihaitao, Linus +Sommer, Loic Esteve, Lucy Liu, Lukas Geiger, manasimj, Manuel Labbé, Manuel +Morales, Marco Edward Gorelli, Maren Westermann, Marija Vlajic, Mark Elliot, +Mateusz Sokół, Mavs, Michael Higgins, Michael Mayer, miguelcsilva, Miki +Watanabe, Mohammed Hamdy, myenugula, Nathan Goldbaum, Naziya Mahimkar, Neto, +Olivier Grisel, Omar Salman, Patrick Wang, Pierre de Fréminville, Priyash +Shah, Puneeth K, Rahil Parikh, raisadz, Raj Pulapakura, Ralf Gommers, Ralph +Urlus, Randolf Scholz, Reshama Shaikh, Richard Barnes, Rodrigo Romero, Saad +Mahmood, Salim Dohri, Sandip Dutta, SarahRemus, scikit-learn-bot, Shaharyar +Choudhry, Shubham, sperret6, Stefanie Senger, Suha Siddiqui, Thanh Lam DANG, +thebabush, Thomas J. Fan, Thomas Lazarus, Thomas Li, Tialo, Tim Head, Tuhin +Sharma, VarunChaduvula, Vineet Joshi, virchan, Waël Boukhobza, Weyb, Will +Dean, Xavier Beltran, Xiao Yuan, Xuefeng Xu, Yao Xiao From 34db65a3addfc83d99e64ec55d5e6896ecfbb940 Mon Sep 17 00:00:00 2001 From: Adrin Jalali Date: Mon, 20 May 2024 19:36:54 +0200 Subject: [PATCH 0548/1641] DOC use pydata-sphinx-theme for the website (#29038) Co-authored-by: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Co-authored-by: Thomas J. Fan Co-authored-by: Guillaume Lemaitre --- .gitignore | 4 + .pre-commit-config.yaml | 7 + build_tools/azure/pypy3_linux-64_conda.lock | 6 +- build_tools/circle/build_doc.sh | 8 +- build_tools/circle/doc_environment.yml | 4 + build_tools/circle/doc_linux-64_conda.lock | 13 +- .../doc_min_dependencies_environment.yml | 14 +- .../doc_min_dependencies_linux-64_conda.lock | 25 +- build_tools/circle/list_versions.py | 64 +- .../update_environments_and_lock_files.py | 24 +- doc/Makefile | 8 + doc/about.rst | 656 +- doc/api/deprecated.rst.template | 24 + doc/api/index.rst.template | 77 + doc/api/module.rst.template | 46 + doc/api_reference.py | 1336 ++++ doc/common_pitfalls.rst | 71 +- doc/computing.rst | 6 - doc/computing/computational_performance.rst | 4 - doc/computing/parallelism.rst | 4 - doc/computing/scaling_strategies.rst | 4 - doc/conf.py | 401 +- doc/contents.rst | 24 - doc/css/.gitkeep | 0 doc/data_transforms.rst | 6 - doc/datasets.rst | 6 - doc/datasets/loading_other_datasets.rst | 23 +- doc/datasets/real_world.rst | 4 - doc/datasets/sample_generators.rst | 4 - doc/datasets/toy_dataset.rst | 4 - doc/developers/contributing.rst | 520 +- doc/developers/index.rst | 7 - doc/developers/maintainer.rst | 5 +- doc/dispatching.rst | 6 - doc/faq.rst | 46 +- doc/images/ml_map.png | Bin 761071 -> 0 bytes doc/images/ml_map.svg | 4 + doc/includes/big_toc_css.rst | 40 - doc/includes/bigger_toc_css.rst | 60 - doc/index.rst.template | 25 + doc/inspection.rst | 10 +- doc/install.rst | 301 +- doc/js/scripts/api-search.js | 12 + doc/js/scripts/dropdown.js | 61 + doc/js/scripts/vendor/svg-pan-zoom.min.js | 31 + doc/js/scripts/version-switcher.js | 40 + doc/make.bat | 27 +- doc/min_dependency_substitutions.rst.template | 3 + doc/min_dependency_table.rst.template | 13 + doc/model_persistence.rst | 142 +- doc/model_selection.rst | 6 - doc/modules/array_api.rst | 4 - doc/modules/biclustering.rst | 42 +- doc/modules/calibration.rst | 96 +- doc/modules/classes.rst | 1916 ------ doc/modules/clustering.rst | 1015 ++- doc/modules/compose.rst | 215 +- doc/modules/covariance.rst | 103 +- doc/modules/cross_decomposition.rst | 70 +- doc/modules/cross_validation.rst | 140 +- doc/modules/decomposition.rst | 426 +- doc/modules/density.rst | 47 +- doc/modules/ensemble.rst | 671 +- doc/modules/feature_extraction.rst | 481 +- doc/modules/feature_selection.rst | 145 +- doc/modules/gaussian_process.rst | 225 +- doc/modules/grid_search.rst | 83 +- doc/modules/impute.rst | 12 +- doc/modules/isotonic.rst | 4 +- doc/modules/kernel_approximation.rst | 70 +- doc/modules/kernel_ridge.rst | 10 +- doc/modules/lda_qda.rst | 34 +- doc/modules/learning_curve.rst | 8 +- doc/modules/linear_model.rst | 890 ++- doc/modules/manifold.rst | 586 +- doc/modules/metrics.rst | 20 +- doc/modules/mixture.rst | 278 +- doc/modules/model_evaluation.rst | 863 ++- doc/modules/multiclass.rst | 35 +- doc/modules/naive_bayes.rst | 114 +- doc/modules/neighbors.rst | 375 +- doc/modules/neural_networks_supervised.rst | 180 +- doc/modules/neural_networks_unsupervised.rst | 22 +- doc/modules/outlier_detection.rst | 110 +- doc/modules/partial_dependence.rst | 63 +- doc/modules/permutation_importance.rst | 92 +- doc/modules/preprocessing.rst | 387 +- doc/modules/random_projection.rst | 57 +- doc/modules/semi_supervised.rst | 40 +- doc/modules/sgd.rst | 169 +- doc/modules/svm.rst | 337 +- doc/modules/tree.rst | 278 +- doc/modules/unsupervised_reduction.rst | 14 +- doc/preface.rst | 32 - doc/scss/api-search.scss | 114 + doc/scss/api.scss | 52 + doc/scss/colors.scss | 51 + doc/scss/custom.scss | 192 + doc/scss/index.scss | 175 + doc/scss/install.scss | 33 + doc/sphinxext/add_toctree_functions.py | 160 - doc/sphinxext/autoshortsummary.py | 53 + doc/sphinxext/dropdown_anchors.py | 78 + doc/sphinxext/move_gallery_links.py | 193 + doc/sphinxext/override_pst_pagetoc.py | 84 + doc/supervised_learning.rst | 6 - doc/templates/base.rst | 36 + doc/templates/class.rst | 17 - doc/templates/class_with_call.rst | 21 - doc/templates/deprecated_class.rst | 28 - doc/templates/deprecated_class_with_call.rst | 29 - .../deprecated_class_without_init.rst | 24 - doc/templates/deprecated_function.rst | 24 - doc/templates/display_all_class_methods.rst | 19 - doc/templates/display_only_from_estimator.rst | 18 - doc/templates/function.rst | 17 - doc/templates/generate_deprecated.sh | 8 - doc/templates/index.html | 369 +- doc/testimonials/testimonials.rst | 1285 ++-- .../scikit-learn-modern/javascript.html | 56 - doc/themes/scikit-learn-modern/layout.html | 150 - doc/themes/scikit-learn-modern/nav.html | 102 - doc/themes/scikit-learn-modern/search.html | 8 - .../scikit-learn-modern/static/css/theme.css | 1412 ---- .../static/css/vendor/bootstrap.min.css | 6 - .../static/js/details-permalink.js | 47 - .../static/js/vendor/bootstrap.min.js | 6 - .../static/js/vendor/jquery-3.6.3.slim.min.js | 2 - doc/themes/scikit-learn-modern/theme.conf | 10 - doc/tune_toc.rst | 131 - doc/tutorial/index.rst | 12 - .../machine_learning_map/ML_MAPS_README.txt | 93 - doc/tutorial/machine_learning_map/README.md | 17 + doc/tutorial/machine_learning_map/index.rst | 102 +- .../machine_learning_map/parse_path.py | 192 - .../machine_learning_map/pyparsing.py | 5715 ----------------- .../machine_learning_map/svg2imagemap.py | 111 - doc/tutorial/statistical_inference/index.rst | 10 +- .../statistical_inference/model_selection.rst | 67 +- .../supervised_learning.rst | 11 +- doc/unsupervised_learning.rst | 6 - doc/user_guide.rst | 12 - doc/visualizations.rst | 16 +- doc/whats_new/_contributors.rst | 12 +- doc/whats_new/older_versions.rst | 1 - examples/README.txt | 5 + .../applications/plot_digits_denoising.py | 10 +- .../covariance/plot_mahalanobis_distances.py | 18 +- examples/ensemble/plot_adaboost_multiclass.py | 22 +- examples/ensemble/plot_hgbt_regression.py | 11 +- examples/gaussian_process/plot_gpr_co2.py | 11 +- .../inspection/plot_permutation_importance.py | 6 +- examples/linear_model/plot_lasso_lars_ic.py | 10 +- .../plot_cost_sensitive_learning.py | 24 +- .../model_selection/plot_grid_search_stats.py | 48 +- .../plot_nested_cross_validation_iris.py | 12 +- ...ot_permutation_tests_for_classification.py | 10 +- .../plot_release_highlights_1_1_0.py | 4 +- .../plot_release_highlights_1_3_0.py | 8 +- pyproject.toml | 16 +- setup.cfg | 2 +- sklearn/__init__.py | 5 +- sklearn/_min_dependencies.py | 12 +- sklearn/base.py | 2 +- sklearn/calibration.py | 2 +- sklearn/cluster/__init__.py | 5 +- sklearn/compose/__init__.py | 6 +- sklearn/covariance/__init__.py | 11 +- sklearn/covariance/_shrunk_covariance.py | 4 +- sklearn/cross_decomposition/__init__.py | 2 + sklearn/datasets/__init__.py | 6 +- sklearn/datasets/descr/breast_cancer.rst | 28 +- sklearn/datasets/descr/california_housing.rst | 6 +- sklearn/datasets/descr/digits.rst | 28 +- sklearn/datasets/descr/iris.rst | 36 +- sklearn/datasets/descr/kddcup99.rst | 18 +- sklearn/datasets/descr/lfw.rst | 136 +- sklearn/datasets/descr/linnerud.rst | 10 +- sklearn/datasets/descr/rcv1.rst | 8 +- .../datasets/descr/species_distributions.rst | 8 +- sklearn/datasets/descr/twenty_newsgroups.rst | 396 +- sklearn/datasets/descr/wine_data.rst | 42 +- sklearn/decomposition/__init__.py | 8 +- sklearn/decomposition/_kernel_pca.py | 6 +- sklearn/discriminant_analysis.py | 4 +- sklearn/dummy.py | 2 + sklearn/ensemble/__init__.py | 5 +- sklearn/exceptions.py | 5 +- sklearn/experimental/__init__.py | 10 +- sklearn/feature_extraction/__init__.py | 6 +- sklearn/feature_extraction/image.py | 5 +- sklearn/feature_extraction/text.py | 6 +- sklearn/feature_selection/__init__.py | 8 +- sklearn/gaussian_process/__init__.py | 7 +- sklearn/gaussian_process/kernels.py | 5 +- sklearn/impute/__init__.py | 2 +- sklearn/inspection/__init__.py | 2 +- sklearn/isotonic.py | 2 + sklearn/kernel_approximation.py | 6 +- sklearn/kernel_ridge.py | 2 +- sklearn/linear_model/__init__.py | 4 +- sklearn/linear_model/_least_angle.py | 8 +- sklearn/manifold/__init__.py | 4 +- sklearn/metrics/__init__.py | 5 +- sklearn/metrics/cluster/__init__.py | 9 +- sklearn/metrics/cluster/_supervised.py | 4 +- sklearn/metrics/pairwise.py | 2 + sklearn/mixture/__init__.py | 4 +- sklearn/model_selection/__init__.py | 2 + sklearn/multiclass.py | 11 +- sklearn/multioutput.py | 3 +- sklearn/naive_bayes.py | 6 +- sklearn/neighbors/__init__.py | 5 +- sklearn/neighbors/_binary_tree.pxi.tp | 5 +- sklearn/neural_network/__init__.py | 5 +- sklearn/pipeline.py | 5 +- sklearn/preprocessing/__init__.py | 5 +- sklearn/random_projection.py | 7 +- sklearn/semi_supervised/__init__.py | 9 +- sklearn/svm/__init__.py | 4 +- sklearn/tree/__init__.py | 5 +- sklearn/utils/__init__.py | 4 +- sklearn/utils/arrayfuncs.pyx | 5 +- sklearn/utils/class_weight.py | 5 +- sklearn/utils/discovery.py | 5 +- sklearn/utils/estimator_checks.py | 5 +- sklearn/utils/extmath.py | 5 +- sklearn/utils/graph.py | 4 +- sklearn/utils/metadata_routing.py | 5 +- sklearn/utils/metaestimators.py | 4 +- sklearn/utils/multiclass.py | 6 +- sklearn/utils/parallel.py | 4 +- sklearn/utils/random.py | 4 +- sklearn/utils/sparsefuncs.py | 5 +- sklearn/utils/sparsefuncs_fast.pyx | 5 +- sklearn/utils/validation.py | 5 +- 236 files changed, 9384 insertions(+), 18266 deletions(-) create mode 100644 doc/api/deprecated.rst.template create mode 100644 doc/api/index.rst.template create mode 100644 doc/api/module.rst.template create mode 100644 doc/api_reference.py delete mode 100644 doc/contents.rst create mode 100644 doc/css/.gitkeep delete mode 100644 doc/images/ml_map.png create mode 100644 doc/images/ml_map.svg delete mode 100644 doc/includes/big_toc_css.rst delete mode 100644 doc/includes/bigger_toc_css.rst create mode 100644 doc/index.rst.template create mode 100644 doc/js/scripts/api-search.js create mode 100644 doc/js/scripts/dropdown.js create mode 100644 doc/js/scripts/vendor/svg-pan-zoom.min.js create mode 100644 doc/js/scripts/version-switcher.js create mode 100644 doc/min_dependency_substitutions.rst.template create mode 100644 doc/min_dependency_table.rst.template delete mode 100644 doc/modules/classes.rst delete mode 100644 doc/preface.rst create mode 100644 doc/scss/api-search.scss create mode 100644 doc/scss/api.scss create mode 100644 doc/scss/colors.scss create mode 100644 doc/scss/custom.scss create mode 100644 doc/scss/index.scss create mode 100644 doc/scss/install.scss delete mode 100644 doc/sphinxext/add_toctree_functions.py create mode 100644 doc/sphinxext/autoshortsummary.py create mode 100644 doc/sphinxext/dropdown_anchors.py create mode 100644 doc/sphinxext/move_gallery_links.py create mode 100644 doc/sphinxext/override_pst_pagetoc.py create mode 100644 doc/templates/base.rst delete mode 100644 doc/templates/class.rst delete mode 100644 doc/templates/class_with_call.rst delete mode 100644 doc/templates/deprecated_class.rst delete mode 100644 doc/templates/deprecated_class_with_call.rst delete mode 100644 doc/templates/deprecated_class_without_init.rst delete mode 100644 doc/templates/deprecated_function.rst delete mode 100644 doc/templates/display_all_class_methods.rst delete mode 100644 doc/templates/display_only_from_estimator.rst delete mode 100644 doc/templates/function.rst delete mode 100755 doc/templates/generate_deprecated.sh delete mode 100644 doc/themes/scikit-learn-modern/javascript.html delete mode 100644 doc/themes/scikit-learn-modern/layout.html delete mode 100644 doc/themes/scikit-learn-modern/nav.html delete mode 100644 doc/themes/scikit-learn-modern/search.html delete mode 100644 doc/themes/scikit-learn-modern/static/css/theme.css delete mode 100644 doc/themes/scikit-learn-modern/static/css/vendor/bootstrap.min.css delete mode 100644 doc/themes/scikit-learn-modern/static/js/details-permalink.js delete mode 100644 doc/themes/scikit-learn-modern/static/js/vendor/bootstrap.min.js delete mode 100644 doc/themes/scikit-learn-modern/static/js/vendor/jquery-3.6.3.slim.min.js delete mode 100644 doc/themes/scikit-learn-modern/theme.conf delete mode 100644 doc/tune_toc.rst delete mode 100644 doc/tutorial/machine_learning_map/ML_MAPS_README.txt create mode 100644 doc/tutorial/machine_learning_map/README.md delete mode 100644 doc/tutorial/machine_learning_map/parse_path.py delete mode 100644 doc/tutorial/machine_learning_map/pyparsing.py delete mode 100644 doc/tutorial/machine_learning_map/svg2imagemap.py diff --git a/.gitignore b/.gitignore index 9f3b453bbfd74..61c89bcb96491 100644 --- a/.gitignore +++ b/.gitignore @@ -15,9 +15,13 @@ dist/ MANIFEST doc/sg_execution_times.rst doc/_build/ +doc/api/*.rst doc/auto_examples/ +doc/css/* +!doc/css/.gitkeep doc/modules/generated/ doc/datasets/generated/ +doc/index.rst doc/min_dependency_table.rst doc/min_dependency_substitutions.rst *.pdf diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 31af43b6bbab0..abe14acc7778c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -27,3 +27,10 @@ repos: # TODO: add the double-quote-cython-strings hook when it's usability has improved: # possibility to pass a directory and use it as a check instead of auto-formatter. - id: cython-lint +- repo: https://github.com/pre-commit/mirrors-prettier + rev: v2.7.1 + hooks: + - id: prettier + files: ^doc/scss/|^doc/js/scripts/ + exclude: ^doc/js/scripts/vendor/ + types_or: ["scss", "javascript"] diff --git a/build_tools/azure/pypy3_linux-64_conda.lock b/build_tools/azure/pypy3_linux-64_conda.lock index ab6a908edf340..520a4935c8af5 100644 --- a/build_tools/azure/pypy3_linux-64_conda.lock +++ b/build_tools/azure/pypy3_linux-64_conda.lock @@ -97,7 +97,7 @@ https://conda.anaconda.org/conda-forge/linux-64/scipy-1.12.0-py39h6dedee3_2.cond https://conda.anaconda.org/conda-forge/linux-64/blas-2.122-openblas.conda#5065468105542a8b23ea47bd8b6fa55f https://conda.anaconda.org/conda-forge/noarch/importlib-resources-6.4.0-pyhd8ed1ab_0.conda#dcbadab7a68738a028e195ab68ab2d2e https://conda.anaconda.org/conda-forge/noarch/meson-python-0.16.0-pyh0c530f3_0.conda#e16f0dbf502da873be9f9adb0dc52547 -https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39h5fd064f_0.conda#04676d2a49da3cb608af77e04b796ce1 +https://conda.anaconda.org/conda-forge/linux-64/pyamg-5.1.0-py39h3c335be_1.conda#7278eb55a7e97a0ba2376a6c608e7c46 https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.5.0-pyhd8ed1ab_0.conda#d5f595da2daead898ca958ac62f0307b -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h4e7d633_0.conda#58272019e595dde98d0844ae3ebf0cfe -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39h4162558_0.conda#b0f7702a174422ff1db58190495fd766 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.8.4-py39h6fb8a73_2.conda#3212f51613e10b3ee319f3f2bf8ee5a8 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39h4162558_2.conda#05babd7bae196648bfc6b7e3d9ea7630 diff --git a/build_tools/circle/build_doc.sh b/build_tools/circle/build_doc.sh index 35fee3ae50b65..c569f4913d4d8 100755 --- a/build_tools/circle/build_doc.sh +++ b/build_tools/circle/build_doc.sh @@ -190,17 +190,13 @@ export OMP_NUM_THREADS=1 if [[ "$CIRCLE_BRANCH" =~ ^main$ && -z "$CI_PULL_REQUEST" ]] then # List available documentation versions if on main - python build_tools/circle/list_versions.py > doc/versions.rst + python build_tools/circle/list_versions.py --json doc/js/versions.json --rst doc/versions.rst fi # The pipefail is requested to propagate exit code set -o pipefail && cd doc && make $make_args 2>&1 | tee ~/log.txt -# Insert the version warning for deployment -find _build/html/stable -name "*.html" | xargs sed -i '/<\/body>/ i \ -\ ' - cd - set +o pipefail @@ -244,7 +240,7 @@ then ( echo '
        ' echo "$affected" | sed 's|.*|
      • & [dev, stable]
      • |' - echo '

      General: Home | API Reference | Examples

      ' + echo '

    General: Home | API Reference | Examples

    ' echo 'Sphinx Warnings in affected files
      ' echo "$warnings" | sed 's/\/home\/circleci\/project\//
    • /g' echo '
    ' diff --git a/build_tools/circle/doc_environment.yml b/build_tools/circle/doc_environment.yml index 4df22341635a3..bc4405983a1b6 100644 --- a/build_tools/circle/doc_environment.yml +++ b/build_tools/circle/doc_environment.yml @@ -33,7 +33,11 @@ dependencies: - polars - pooch - sphinxext-opengraph + - sphinx-remove-toctrees + - sphinx-design + - pydata-sphinx-theme - pip - pip: - jupyterlite-sphinx - jupyterlite-pyodide-kernel + - sphinxcontrib-sass diff --git a/build_tools/circle/doc_linux-64_conda.lock b/build_tools/circle/doc_linux-64_conda.lock index 3483e48208b45..b959b3250c851 100644 --- a/build_tools/circle/doc_linux-64_conda.lock +++ b/build_tools/circle/doc_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: b57888763997b08b2f240b5ff1ed6afcf88685f3d8c791ea8eba4d80483c43d0 +# input_hash: beab3d7262ec74c4ef8c9050098de8b9fe7910606e7bd4ff52687972bff35868 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda#2f4327a1cbe7f022401b236e915a5fef @@ -177,6 +177,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3ee https://conda.anaconda.org/conda-forge/noarch/setuptools-69.5.1-pyhd8ed1ab_0.conda#7462280d81f639363e6e63c81276bd9e https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e +https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/noarch/tabulate-0.9.0-pyhd8ed1ab_1.tar.bz2#4759805cce2d914c38472f70bf4d8bcb https://conda.anaconda.org/conda-forge/noarch/tenacity-8.3.0-pyhd8ed1ab_0.conda#216cfa8e32bcd1447646768351df6059 @@ -192,7 +193,9 @@ https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.41-hd590300_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda#2e4d6bc0b14e10f895fc6791a7d9b26a +https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.4-pyhd8ed1ab_0.conda#46a2e6e3dfa718ce3492018d5a110dd6 https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.7.0-h00ab1b0_1.conda#28de2e073db9ca9b72858bee9fb6f571 @@ -217,6 +220,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.8.0-pyhd8ed1a https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb +https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.11.0-hd8ed1ab_0.conda#471e3988f8ca5e9eb3ce6be7eac3bcee https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda#08807a87fa7af10754d46f63b368e016 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_1.conda#d8d07866ac3b5b6937213c89a1874f08 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 @@ -254,9 +258,12 @@ https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.c https://conda.anaconda.org/conda-forge/linux-64/matplotlib-3.8.4-py39hf3d152e_2.conda#bd956c7563b6a6b27521b83623c74e22 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.7.0-pyhd8ed1ab_0.conda#1ad3afced398492586ca1bef70328be4 +https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.2-pyhd8ed1ab_0.conda#ce99859070b0e17ccc63234ca58f3ed8 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 +https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.5.0-pyhd8ed1ab_0.conda#264b3c697fa9cdade87eb0abe4440d54 https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.16.0-pyhd8ed1ab_0.conda#add28691ee89e875b190eda07929d5d4 https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 +https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.5-pyhd8ed1ab_0.conda#7e1e7437273682ada2ed5e9e9714b140 @@ -272,6 +279,7 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip json5 @ https://files.pythonhosted.org/packages/8a/3c/4f8791ee53ab9eeb0b022205aa79387119a74cc9429582ce04098e6fc540/json5-0.9.25-py3-none-any.whl#sha256=34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f # pip jsonpointer @ https://files.pythonhosted.org/packages/12/f6/0232cc0c617e195f06f810534d00b74d2f348fe71b2118009ad8ad31f878/jsonpointer-2.4-py2.py3-none-any.whl#sha256=15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a # pip jupyterlab-pygments @ https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl#sha256=841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 +# pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 # pip mistune @ https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl#sha256=71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205 # pip overrides @ https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl#sha256=c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49 # pip pandocfilters @ https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl#sha256=93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc @@ -285,7 +293,6 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip rpds-py @ https://files.pythonhosted.org/packages/97/b1/12238bd8cdf3cef71e85188af133399bfde1bddf319007361cc869d6f6a7/rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab # pip send2trash @ https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl#sha256=0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9 # pip sniffio @ https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl#sha256=2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2 -# pip soupsieve @ https://files.pythonhosted.org/packages/4c/f3/038b302fdfbe3be7da016777069f26ceefe11a681055ea1f7817546508e3/soupsieve-2.5-py3-none-any.whl#sha256=eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7 # pip traitlets @ https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl#sha256=b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f # pip types-python-dateutil @ https://files.pythonhosted.org/packages/c7/1b/af4f4c4f3f7339a4b7eb3c0ab13416db98f8ac09de3399129ee5fdfa282b/types_python_dateutil-2.9.0.20240316-py3-none-any.whl#sha256=6b8cb66d960771ce5ff974e9dd45e38facb81718cc1e208b10b1baccbfdbee3b # pip uri-template @ https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl#sha256=a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 @@ -294,13 +301,13 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxext-opengraph-0.9.1-pyhd8ed1 # pip websocket-client @ https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl#sha256=17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526 # pip anyio @ https://files.pythonhosted.org/packages/14/fd/2f20c40b45e4fb4324834aea24bd4afdf1143390242c0b33774da0e2e34f/anyio-4.3.0-py3-none-any.whl#sha256=048e05d0f6caeed70d731f3db756d35dcc1f35747c8c403364a8332c630441b8 # pip arrow @ https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl#sha256=c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80 -# pip beautifulsoup4 @ https://files.pythonhosted.org/packages/b1/fe/e8c672695b37eecc5cbf43e1d0638d88d66ba3a44c4d321c796f4e59167f/beautifulsoup4-4.12.3-py3-none-any.whl#sha256=b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed # pip bleach @ https://files.pythonhosted.org/packages/ea/63/da7237f805089ecc28a3f36bca6a21c31fcbc2eb380f3b8f1be3312abd14/bleach-6.1.0-py3-none-any.whl#sha256=3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6 # pip cffi @ https://files.pythonhosted.org/packages/ea/ac/e9e77bc385729035143e54cc8c4785bd480eaca9df17565963556b0b7a93/cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098 # pip doit @ https://files.pythonhosted.org/packages/44/83/a2960d2c975836daa629a73995134fd86520c101412578c57da3d2aa71ee/doit-0.36.0-py3-none-any.whl#sha256=ebc285f6666871b5300091c26eafdff3de968a6bd60ea35dd1e3fc6f2e32479a # pip jupyter-core @ https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl#sha256=4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409 # pip referencing @ https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl#sha256=eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de # pip rfc3339-validator @ https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl#sha256=24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa +# pip sphinxcontrib-sass @ https://files.pythonhosted.org/packages/2e/87/7c2eb08e3ca1d6baae32c0a5e005330fe1cec93a36aa085e714c3b3a3c7d/sphinxcontrib_sass-0.3.4-py2.py3-none-any.whl#sha256=a0c79a44ae8b8935c02dc340ebe40c9e002c839331201c899dc93708970c355a # pip terminado @ https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl#sha256=a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0 # pip tinycss2 @ https://files.pythonhosted.org/packages/2c/4d/0db5b8a613d2a59bbc29bc5bb44a2f8070eb9ceab11c50d477502a8a0092/tinycss2-1.3.0-py3-none-any.whl#sha256=54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7 # pip argon2-cffi-bindings @ https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl#sha256=b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae diff --git a/build_tools/circle/doc_min_dependencies_environment.yml b/build_tools/circle/doc_min_dependencies_environment.yml index 14f4485295455..8148ee330bb35 100644 --- a/build_tools/circle/doc_min_dependencies_environment.yml +++ b/build_tools/circle/doc_min_dependencies_environment.yml @@ -24,14 +24,18 @@ dependencies: - seaborn - memory_profiler - compilers - - sphinx=6.0.0 # min - - sphinx-gallery=0.15.0 # min + - sphinx=7.3.7 # min + - sphinx-gallery=0.16.0 # min - sphinx-copybutton=0.5.2 # min - numpydoc=1.2.0 # min - - sphinx-prompt=1.3.0 # min + - sphinx-prompt=1.4.0 # min - plotly=5.14.0 # min - polars=0.20.23 # min - - pooch + - pooch=1.6.0 # min + - sphinx-remove-toctrees=1.0.0.post1 # min + - sphinx-design=0.5.0 # min + - pydata-sphinx-theme=0.15.2 # min - pip - pip: - - sphinxext-opengraph==0.4.2 # min + - sphinxext-opengraph==0.9.1 # min + - sphinxcontrib-sass==0.3.4 # min diff --git a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock index 8bc3e84fde36f..f0d02542f4b98 100644 --- a/build_tools/circle/doc_min_dependencies_linux-64_conda.lock +++ b/build_tools/circle/doc_min_dependencies_linux-64_conda.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 08b61aae27c59a8d35d008fa2f947440f3cbcbc41622112e33e68f90d69b621c +# input_hash: 6c9ff93ed18fe7c2e8387a4c3d7104701555959a32e797c1cb83593137afe155 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda#2f4327a1cbe7f022401b236e915a5fef @@ -110,6 +110,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xcb-util-renderutil-0.3.9-hd5903 https://conda.anaconda.org/conda-forge/linux-64/xcb-util-wm-0.4.1-h8ee46fc_1.conda#90108a432fb5c6150ccfee3f03388656 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb +https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2#5f095bc6454094e96f146491fd03633b https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py39h3d6467e_1.conda#c48418c8b35f1d59ae9ae1174812b40a https://conda.anaconda.org/conda-forge/linux-64/c-compiler-1.7.0-hd590300_1.conda#e9dffe1056994133616378309f932d77 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda#0876280e409658fc6f9e75d035960333 @@ -120,7 +121,7 @@ https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.10-py39h3d6467e_0.conda#76b5d215fb735a6dc43010ffbe78040e https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2#ecfff944ba3960ecb334b9a2663d708d -https://conda.anaconda.org/conda-forge/linux-64/docutils-0.19-py39hf3d152e_1.tar.bz2#adb733ec2ee669f6d010758d054da60f +https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d @@ -146,7 +147,6 @@ https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py39hd1e30aa_0. https://conda.anaconda.org/conda-forge/noarch/networkx-3.2-pyhd8ed1ab_0.conda#cec8cc498664cc00a070676aa89e69a7 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/noarch/packaging-24.0-pyhd8ed1ab_0.conda#248f521b64ce055e7feae3105e7abeb8 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda#6f6cf28bf8e021933869bae3f84b8fc9 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/noarch/ply-3.11-pyhd8ed1ab_2.conda#18c6deb6f9602e32446398203c8f0e91 https://conda.anaconda.org/conda-forge/linux-64/psutil-5.9.8-py39hd1e30aa_0.conda#ec86403fde8793ac1c36f8afa3d15902 @@ -158,6 +158,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py39hd1e30aa_1.cond https://conda.anaconda.org/conda-forge/linux-64/setuptools-59.8.0-py39hf3d152e_1.tar.bz2#4252d0c211566a9f65149ba7f6e87aa4 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e +https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h297d8ca_1.conda#3ff978d8994f591818a506640c6a7071 https://conda.anaconda.org/conda-forge/noarch/tenacity-8.3.0-pyhd8ed1ab_0.conda#216cfa8e32bcd1447646768351df6059 @@ -173,7 +174,9 @@ https://conda.anaconda.org/conda-forge/linux-64/xkeyboard-config-2.41-hd590300_0 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda#2e4d6bc0b14e10f895fc6791a7d9b26a +https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.4-pyhd8ed1ab_0.conda#46a2e6e3dfa718ce3492018d5a110dd6 https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e +https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e https://conda.anaconda.org/conda-forge/linux-64/cxx-compiler-1.7.0-h00ab1b0_1.conda#28de2e073db9ca9b72858bee9fb6f571 https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py39hd1e30aa_0.conda#dc0fb8e157c7caba4c98f1e1f9d2e5f4 @@ -196,6 +199,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject-metadata-0.8.0-pyhd8ed1a https://conda.anaconda.org/conda-forge/noarch/pytest-7.4.4-pyhd8ed1ab_0.conda#a9d145de8c5f064b5fa68fb34725d9f4 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/linux-64/sip-6.7.12-py39h3d6467e_0.conda#e667a3ab0df62c54e60e1843d2e6defb +https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.11.0-hd8ed1ab_0.conda#471e3988f8ca5e9eb3ce6be7eac3bcee https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.1-pyhd8ed1ab_0.conda#08807a87fa7af10754d46f63b368e016 https://conda.anaconda.org/conda-forge/linux-64/compilers-1.7.0-ha770c72_1.conda#d8d07866ac3b5b6937213c89a1874f08 https://conda.anaconda.org/conda-forge/linux-64/gstreamer-1.24.3-haf2f30d_0.conda#f3df87cc9ef0b5113bff55aefcbcafd5 @@ -212,7 +216,7 @@ https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.5.1-pyhd8ed1ab_0.co https://conda.anaconda.org/conda-forge/linux-64/gst-plugins-base-1.24.3-h9ad1361_0.conda#8fb0e954c616bb0f9389efac4b4ed44b https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_mkl.conda#d6f942423116553f068b2f2d93ffea2e https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-22_linux64_mkl.conda#4edf2e7ce63920e4f539d12e32fb478e -https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.1-pyhd8ed1ab_0.conda#d15917f33140f8d2ac9ca44db7ec8a25 +https://conda.anaconda.org/conda-forge/noarch/pooch-1.6.0-pyhd8ed1ab_0.tar.bz2#6429e1d1091c51f626b5dcfdd38bf429 https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda#07f45f1be1c25345faddb8db0de8039b https://conda.anaconda.org/conda-forge/linux-64/liblapacke-3.9.0-22_linux64_mkl.conda#aa0a5a70e1c957d5911e76ac98e471e1 https://conda.anaconda.org/conda-forge/linux-64/numpy-1.19.5-py39hd249d9e_3.tar.bz2#0cf333996ebdeeba8d1c8c1c0ee9eff9 @@ -236,13 +240,18 @@ https://conda.anaconda.org/conda-forge/noarch/tifffile-2020.6.3-py_0.tar.bz2#1fb https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.17.2-py39hde0f152_4.tar.bz2#2a58a7e382317b03f023b2fddf40f8a1 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.12.2-hd8ed1ab_0.conda#50847a47c07812f88581081c620f5160 https://conda.anaconda.org/conda-forge/noarch/numpydoc-1.2-pyhd8ed1ab_0.tar.bz2#025ad7ca2c7f65007ab6b6f5d93a56eb +https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.2-pyhd8ed1ab_0.conda#ce99859070b0e17ccc63234ca58f3ed8 https://conda.anaconda.org/conda-forge/noarch/sphinx-copybutton-0.5.2-pyhd8ed1ab_0.conda#ac832cc43adc79118cf6e23f1f9b8995 -https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.15.0-pyhd8ed1ab_0.conda#1a49ca9515ef9a96edff2eea06143dc6 -https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.3.0-py_0.tar.bz2#9363002e2a134a287af4e32ff0f26cdc +https://conda.anaconda.org/conda-forge/noarch/sphinx-design-0.5.0-pyhd8ed1ab_0.conda#264b3c697fa9cdade87eb0abe4440d54 +https://conda.anaconda.org/conda-forge/noarch/sphinx-gallery-0.16.0-pyhd8ed1ab_0.conda#add28691ee89e875b190eda07929d5d4 +https://conda.anaconda.org/conda-forge/noarch/sphinx-prompt-1.4.0-pyhd8ed1ab_0.tar.bz2#88ee91e8679603f2a5bd036d52919cc2 +https://conda.anaconda.org/conda-forge/noarch/sphinx-remove-toctrees-1.0.0.post1-pyhd8ed1ab_0.conda#6dee8412218288a17f99f2cfffab334d https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.5-pyhd8ed1ab_0.conda#7e1e7437273682ada2ed5e9e9714b140 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-1.0.7-pyhd8ed1ab_0.conda#26acae54b06f178681bfb551760f5dd1 -https://conda.anaconda.org/conda-forge/noarch/sphinx-6.0.0-pyhd8ed1ab_2.conda#ac1d3b55da1669ee3a56973054fd7efb +https://conda.anaconda.org/conda-forge/noarch/sphinx-7.3.7-pyhd8ed1ab_0.conda#7b1465205e28d75d2c0e1a868ee00a67 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e -# pip sphinxext-opengraph @ https://files.pythonhosted.org/packages/50/ac/c105ed3e0a00b14b28c0aa630935af858fd8a32affeff19574b16e2c6ae8/sphinxext_opengraph-0.4.2-py3-none-any.whl#sha256=a51f2604f9a5b6c0d25d3a88e694d5c02e20812dc0e482adf96c8628f9109357 +# pip libsass @ https://files.pythonhosted.org/packages/fd/5a/eb5b62641df0459a3291fc206cf5bd669c0feed7814dded8edef4ade8512/libsass-0.23.0-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.whl#sha256=4a218406d605f325d234e4678bd57126a66a88841cb95bee2caeafdc6f138306 +# pip sphinxcontrib-sass @ https://files.pythonhosted.org/packages/2e/87/7c2eb08e3ca1d6baae32c0a5e005330fe1cec93a36aa085e714c3b3a3c7d/sphinxcontrib_sass-0.3.4-py2.py3-none-any.whl#sha256=a0c79a44ae8b8935c02dc340ebe40c9e002c839331201c899dc93708970c355a +# pip sphinxext-opengraph @ https://files.pythonhosted.org/packages/92/0a/970b80b4fa1feeb6deb6f2e22d4cb14e388b27b315a1afdb9db930ff91a4/sphinxext_opengraph-0.9.1-py3-none-any.whl#sha256=b3b230cc6a5b5189139df937f0d9c7b23c7c204493b22646273687969dcb760e diff --git a/build_tools/circle/list_versions.py b/build_tools/circle/list_versions.py index 345e08b4bece4..e1f8d54b84ec5 100755 --- a/build_tools/circle/list_versions.py +++ b/build_tools/circle/list_versions.py @@ -1,6 +1,11 @@ #!/usr/bin/env python3 -# List all available versions of the documentation +# Write the available versions page (--rst) and the version switcher JSON (--json). +# Version switcher see: +# https://pydata-sphinx-theme.readthedocs.io/en/stable/user_guide/version-dropdown.html +# https://pydata-sphinx-theme.readthedocs.io/en/stable/user_guide/announcements.html#announcement-banners + +import argparse import json import re import sys @@ -52,14 +57,19 @@ def get_file_size(version): return human_readable_data_quantity(path_details["size"], 1000) -print(":orphan:") -print() -heading = "Available documentation for Scikit-learn" -print(heading) -print("=" * len(heading)) -print() -print("Web-based documentation is available for versions listed below:") -print() +parser = argparse.ArgumentParser() +parser.add_argument("--rst", type=str, required=True) +parser.add_argument("--json", type=str, required=True) +args = parser.parse_args() + +heading = "Available documentation for scikit-learn" +json_content = [] +rst_content = [ + ":orphan:\n", + heading, + "=" * len(heading) + "\n", + "Web-based documentation is available for versions listed below:\n", +] ROOT_URL = ( "https://api.github.com/repos/scikit-learn/scikit-learn.github.io/contents/" # noqa @@ -93,8 +103,9 @@ def get_file_size(version): # Output in order: dev, stable, decreasing other version seen = set() -for name in NAMED_DIRS + sorted( - (k for k in dirs if k[:1].isdigit()), key=parse_version, reverse=True +for i, name in enumerate( + NAMED_DIRS + + sorted((k for k in dirs if k[:1].isdigit()), key=parse_version, reverse=True) ): version_num, file_size = dirs[name] if version_num in seen: @@ -102,17 +113,32 @@ def get_file_size(version): continue else: seen.add(version_num) - name_display = "" if name[:1].isdigit() else " (%s)" % name - path = "https://scikit-learn.org/%s/" % name - out = "* `Scikit-learn %s%s documentation <%s>`_" % ( - version_num, - name_display, - path, - ) + + full_name = f"{version_num}" if name[:1].isdigit() else f"{version_num} ({name})" + path = f"https://scikit-learn.org/{name}/" + + # Update JSON for the version switcher; only keep the 8 latest versions to avoid + # overloading the version switcher dropdown + if i < 8: + info = {"name": full_name, "version": version_num, "url": path} + if name == "stable": + info["preferred"] = True + json_content.append(info) + + # Printout for the historical version page + out = f"* `scikit-learn {full_name} documentation <{path}>`_" if file_size is not None: file_extension = get_file_extension(version_num) out += ( f" (`{file_extension.upper()} {file_size} <{path}/" f"_downloads/scikit-learn-docs.{file_extension}>`_)" ) - print(out) + rst_content.append(out) + +with open(args.rst, "w", encoding="utf-8") as f: + f.write("\n".join(rst_content) + "\n") +print(f"Written {args.rst}") + +with open(args.json, "w", encoding="utf-8") as f: + json.dump(json_content, f, indent=2) +print(f"Written {args.json}") diff --git a/build_tools/update_environments_and_lock_files.py b/build_tools/update_environments_and_lock_files.py index 86da119ec4547..bf086e21716e3 100644 --- a/build_tools/update_environments_and_lock_files.py +++ b/build_tools/update_environments_and_lock_files.py @@ -307,8 +307,14 @@ def remove_from(alist, to_remove): "plotly", "polars", "pooch", + "sphinx-remove-toctrees", + "sphinx-design", + "pydata-sphinx-theme", + ], + "pip_dependencies": [ + "sphinxext-opengraph", + "sphinxcontrib-sass", ], - "pip_dependencies": ["sphinxext-opengraph"], "package_constraints": { "python": "3.9", "numpy": "min", @@ -325,6 +331,11 @@ def remove_from(alist, to_remove): "sphinxext-opengraph": "min", "plotly": "min", "polars": "min", + "pooch": "min", + "sphinx-design": "min", + "sphinxcontrib-sass": "min", + "sphinx-remove-toctrees": "min", + "pydata-sphinx-theme": "min", }, }, { @@ -349,8 +360,15 @@ def remove_from(alist, to_remove): "polars", "pooch", "sphinxext-opengraph", + "sphinx-remove-toctrees", + "sphinx-design", + "pydata-sphinx-theme", + ], + "pip_dependencies": [ + "jupyterlite-sphinx", + "jupyterlite-pyodide-kernel", + "sphinxcontrib-sass", ], - "pip_dependencies": ["jupyterlite-sphinx", "jupyterlite-pyodide-kernel"], "package_constraints": { "python": "3.9", }, @@ -426,7 +444,7 @@ def execute_command(command_list): ) out, err = proc.communicate() - out, err = out.decode(), err.decode() + out, err = out.decode(errors="replace"), err.decode(errors="replace") if proc.returncode != 0: command_str = " ".join(command_list) diff --git a/doc/Makefile b/doc/Makefile index 44f02585f6205..f84d3c78b8051 100644 --- a/doc/Makefile +++ b/doc/Makefile @@ -47,9 +47,17 @@ help: clean: -rm -rf $(BUILDDIR)/* + @echo "Removed $(BUILDDIR)/*" -rm -rf auto_examples/ + @echo "Removed auto_examples/" -rm -rf generated/* + @echo "Removed generated/" -rm -rf modules/generated/ + @echo "Removed modules/generated/" + -rm -rf css/styles/ + @echo "Removed css/styles/" + -rm -rf api/*.rst + @echo "Removed api/*.rst" # Default to SPHINX_NUMJOBS=1 for full documentation build. Using # SPHINX_NUMJOBS!=1 may actually slow down the build, or cause weird issues in diff --git a/doc/about.rst b/doc/about.rst index 035bddb0ea4dc..47d57e4737318 100644 --- a/doc/about.rst +++ b/doc/about.rst @@ -13,8 +13,8 @@ this project as part of his thesis. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the project and made the first public release, February the 1st 2010. Since then, several releases have appeared -following a ~ 3-month cycle, and a thriving international community has -been leading the development. +following an approximately 3-month cycle, and a thriving international +community has been leading the development. Governance ---------- @@ -28,7 +28,7 @@ out in the :ref:`governance document `. .. _authors: The people behind scikit-learn -------------------------------- +------------------------------ Scikit-learn is a community project, developed by a large group of people, all across the world. A few teams, listed below, have central @@ -44,14 +44,16 @@ consolidating scikit-learn's development and maintenance: .. include:: maintainers.rst -Please do not email the authors directly to ask for assistance or report issues. -Instead, please see `What's the best way to ask questions about scikit-learn -`_ -in the FAQ. +.. note:: + + Please do not email the authors directly to ask for assistance or report issues. + Instead, please see `What's the best way to ask questions about scikit-learn + `_ + in the FAQ. .. seealso:: - :ref:`How you can contribute to the project ` + How you can :ref:`contribute to the project `. Documentation Team .................. @@ -77,9 +79,8 @@ The following people help with :ref:`communication around scikit-learn .. include:: communication_team.rst - Emeritus Core Developers ------------------------- +........................ The following people have been active contributors in the past, but are no longer active in the project: @@ -87,7 +88,7 @@ longer active in the project: .. include:: maintainers_emeritus.rst Emeritus Communication Team ---------------------------- +........................... The following people have been active in the communication team in the past, but no longer have communication responsibilities: @@ -95,7 +96,7 @@ past, but no longer have communication responsibilities: .. include:: communication_team_emeritus.rst Emeritus Contributor Experience Team ------------------------------------- +.................................... The following people have been active in the contributor experience team in the past: @@ -157,488 +158,305 @@ High quality PNG and SVG logos are available in the `doc/logos/ source directory. .. image:: images/scikit-learn-logo-notext.png - :align: center + :align: center Funding ------- -Scikit-Learn is a community driven project, however institutional and private + +Scikit-learn is a community driven project, however institutional and private grants help to assure its sustainability. The project would like to thank the following funders. ................................... +.. div:: sk-text-image-grid-small -.. raw:: html - -
    -
    - -`:probabl. `_ funds Adrin Jalali, Arturo Amor, -François Goupil, Guillaume Lemaitre, Jérémie du Boisberranger, Olivier Grisel, and -Stefanie Senger. + .. div:: text-box -.. raw:: html - -
    - -
    - -.. image:: images/probabl.png - :width: 75pt - :align: center - :target: https://probabl.ai + `:probabl. `_ funds Adrin Jalali, Arturo Amor, François Goupil, + Guillaume Lemaitre, Jérémie du Boisberranger, Olivier Grisel, and Stefanie Senger. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/probabl.png + :target: https://probabl.ai .......... -.. raw:: html - -
    -
    - -The `Members `_ of -the `Scikit-Learn Consortium at Inria Foundation -`_ help at maintaining and -improving the project through their financial support. - -.. raw:: html - -
    - .. |chanel| image:: images/chanel.png - :width: 55pt - :target: https://www.chanel.com + :target: https://www.chanel.com .. |axa| image:: images/axa.png - :width: 40pt - :target: https://www.axa.fr/ + :target: https://www.axa.fr/ .. |bnp| image:: images/bnp.png - :width: 120pt - :target: https://www.bnpparibascardif.com/ + :target: https://www.bnpparibascardif.com/ .. |dataiku| image:: images/dataiku.png - :width: 55pt - :target: https://www.dataiku.com/ + :target: https://www.dataiku.com/ .. |hf| image:: images/huggingface_logo-noborder.png - :width: 55pt - :target: https://huggingface.co + :target: https://huggingface.co .. |nvidia| image:: images/nvidia.png - :width: 55pt - :target: https://www.nvidia.com + :target: https://www.nvidia.com .. |inria| image:: images/inria-logo.jpg - :width: 75pt - :target: https://www.inria.fr - - -.. raw:: html - -
    - -.. table:: - :class: sk-sponsor-table - - +----------+-----------+ - | |chanel| | - +----------+-----------+ - | | - +----------+-----------+ - | |axa| | |bnp| | - +----------+-----------+ - | | - +----------+-----------+ - | |nvidia| | |hf| | - +----------+-----------+ - | | - +----------+-----------+ - | |dataiku| | - +----------+-----------+ - | | - +----------+-----------+ - | |inria| | - +----------+-----------+ + :target: https://www.inria.fr .. raw:: html -
    -
    + -.. raw:: html +.. div:: sk-text-image-grid-small -
    + .. div:: text-box -
    + The `Members `_ of + the `Scikit-learn Consortium at Inria Foundation + `_ help at maintaining and + improving the project through their financial support. -.. image:: images/nvidia.png - :width: 55pt - :align: center - :target: https://nvidia.com + .. div:: image-box -.. raw:: html + .. table:: + :class: image-subtable -
    - + +----------+-----------+ + | |chanel| | + +----------+-----------+ + | |axa| | |bnp| | + +----------+-----------+ + | |nvidia| | |hf| | + +----------+-----------+ + | |dataiku| | + +----------+-----------+ + | |inria| | + +----------+-----------+ .......... -.. raw:: html - -
    -
    +.. div:: sk-text-image-grid-small -`Microsoft `_ funds Andreas Müller since 2020. + .. div:: text-box -.. raw:: html - -
    + `NVidia `_ funds Tim Head since 2022 + and is part of the scikit-learn consortium at Inria. -
    + .. div:: image-box -.. image:: images/microsoft.png - :width: 100pt - :align: center - :target: https://www.microsoft.com/ + .. image:: images/nvidia.png + :target: https://nvidia.com -.. raw:: html +.......... -
    -
    +.. div:: sk-text-image-grid-small -........... + .. div:: text-box -.. raw:: html + `Microsoft `_ funds Andreas Müller since 2020. -
    -
    + .. div:: image-box -`Quansight Labs `_ funds Lucy Liu since 2022. + .. image:: images/microsoft.png + :target: https://microsoft.com -.. raw:: html +........... -
    +.. div:: sk-text-image-grid-small -
    + .. div:: text-box -.. image:: images/quansight-labs.png - :width: 100pt - :align: center - :target: https://labs.quansight.org + `Quansight Labs `_ funds Lucy Liu since 2022. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/quansight-labs.png + :target: https://labs.quansight.org ........... -.. raw:: html - -
    -
    - -`Tidelift `_ supports the project via their service -agreement. +.. div:: sk-text-image-grid-small -.. raw:: html + .. div:: text-box -
    + `Tidelift `_ supports the project via their service + agreement. -
    + .. div:: image-box -.. image:: images/Tidelift-logo-on-light.svg - :width: 100pt - :align: center - :target: https://tidelift.com/ + .. image:: images/Tidelift-logo-on-light.svg + :target: https://tidelift.com/ -.. raw:: html +........... -
    -
    Past Sponsors ............. -.. raw:: html - -
    -
    - -`Quansight Labs `_ funded Meekail Zain in 2022 and 2023 and, -funded Thomas J. Fan from 2021 to 2023. - -.. raw:: html - -
    +.. div:: sk-text-image-grid-small -
    + .. div:: text-box -.. image:: images/quansight-labs.png - :width: 100pt - :align: center - :target: https://labs.quansight.org + `Quansight Labs `_ funded Meekail Zain in 2022 and 2023, + and funded Thomas J. Fan from 2021 to 2023. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/quansight-labs.png + :target: https://labs.quansight.org ........... -.. raw:: html - -
    -
    +.. div:: sk-text-image-grid-small -`Columbia University `_ funded Andreas Müller -(2016-2020). + .. div:: text-box -.. raw:: html - -
    - -
    - -.. image:: images/columbia.png - :width: 50pt - :align: center - :target: https://www.columbia.edu/ + `Columbia University `_ funded Andreas Müller + (2016-2020). -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/columbia.png + :target: https://columbia.edu ........ -.. raw:: html - -
    -
    +.. div:: sk-text-image-grid-small -`The University of Sydney `_ funded Joel Nothman -(2017-2021). + .. div:: text-box -.. raw:: html + `The University of Sydney `_ funded Joel Nothman + (2017-2021). -
    + .. div:: image-box -
    - -.. image:: images/sydney-primary.jpeg - :width: 100pt - :align: center - :target: https://sydney.edu.au/ - -.. raw:: html - -
    -
    + .. image:: images/sydney-primary.jpeg + :target: https://sydney.edu.au/ ........... -.. raw:: html - -
    -
    - -Andreas Müller received a grant to improve scikit-learn from the -`Alfred P. Sloan Foundation `_ . -This grant supported the position of Nicolas Hug and Thomas J. Fan. - -.. raw:: html - -
    +.. div:: sk-text-image-grid-small -
    + .. div:: text-box -.. image:: images/sloan_banner.png - :width: 100pt - :align: center - :target: https://sloan.org/ + Andreas Müller received a grant to improve scikit-learn from the + `Alfred P. Sloan Foundation `_ . + This grant supported the position of Nicolas Hug and Thomas J. Fan. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/sloan_banner.png + :target: https://sloan.org/ ............. -.. raw:: html - -
    -
    - -`INRIA `_ actively supports this project. It has -provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler -(2012-2013) and Olivier Grisel (2013-2017) to work on this project -full-time. It also hosts coding sprints and other events. - -.. raw:: html - -
    +.. div:: sk-text-image-grid-small -
    + .. div:: text-box -.. image:: images/inria-logo.jpg - :width: 100pt - :align: center - :target: https://www.inria.fr + `INRIA `_ actively supports this project. It has + provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler + (2012-2013) and Olivier Grisel (2013-2017) to work on this project + full-time. It also hosts coding sprints and other events. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/inria-logo.jpg + :target: https://www.inria.fr ..................... -.. raw:: html - -
    -
    +.. div:: sk-text-image-grid-small -`Paris-Saclay Center for Data Science -`_ -funded one year for a developer to work on the project full-time -(2014-2015), 50% of the time of Guillaume Lemaitre (2016-2017) and 50% of the -time of Joris van den Bossche (2017-2018). + .. div:: text-box -.. raw:: html - -
    -
    + `Paris-Saclay Center for Data Science `_ + funded one year for a developer to work on the project full-time (2014-2015), 50% + of the time of Guillaume Lemaitre (2016-2017) and 50% of the time of Joris van den + Bossche (2017-2018). -.. image:: images/cds-logo.png - :width: 100pt - :align: center - :target: http://www.datascience-paris-saclay.fr/ - -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/cds-logo.png + :target: http://www.datascience-paris-saclay.fr/ .......................... -.. raw:: html - -
    -
    - -`NYU Moore-Sloan Data Science Environment `_ -funded Andreas Mueller (2014-2016) to work on this project. The Moore-Sloan -Data Science Environment also funds several students to work on the project -part-time. - -.. raw:: html +.. div:: sk-text-image-grid-small -
    -
    + .. div:: text-box -.. image:: images/nyu_short_color.png - :width: 100pt - :align: center - :target: https://cds.nyu.edu/mooresloan/ + `NYU Moore-Sloan Data Science Environment `_ + funded Andreas Mueller (2014-2016) to work on this project. The Moore-Sloan + Data Science Environment also funds several students to work on the project + part-time. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/nyu_short_color.png + :target: https://cds.nyu.edu/mooresloan/ ........................ -.. raw:: html +.. div:: sk-text-image-grid-small -
    -
    + .. div:: text-box -`Télécom Paristech `_ funded Manoj Kumar -(2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot -(2016-2017) and Albert Thomas (2017) to work on scikit-learn. + `Télécom Paristech `_ funded Manoj Kumar + (2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot + (2016-2017) and Albert Thomas (2017) to work on scikit-learn. -.. raw:: html + .. div:: image-box -
    -
    - -.. image:: images/telecom.png - :width: 50pt - :align: center - :target: https://www.telecom-paristech.fr/ - -.. raw:: html - -
    -
    + .. image:: images/telecom.png + :target: https://www.telecom-paristech.fr/ ..................... -.. raw:: html - -
    -
    - -`The Labex DigiCosme `_ funded Nicolas Goix -(2015-2016), Tom Dupré la Tour (2015-2016 and 2017-2018), Mathurin Massias -(2018-2019) to work part time on scikit-learn during their PhDs. It also -funded a scikit-learn coding sprint in 2015. - -.. raw:: html +.. div:: sk-text-image-grid-small -
    -
    + .. div:: text-box -.. image:: images/digicosme.png - :width: 100pt - :align: center - :target: https://digicosme.lri.fr + `The Labex DigiCosme `_ funded Nicolas Goix + (2015-2016), Tom Dupré la Tour (2015-2016 and 2017-2018), Mathurin Massias + (2018-2019) to work part time on scikit-learn during their PhDs. It also + funded a scikit-learn coding sprint in 2015. -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/digicosme.png + :target: https://digicosme.lri.fr ..................... -.. raw:: html - -
    -
    +.. div:: sk-text-image-grid-small -`The Chan-Zuckerberg Initiative `_ funded Nicolas -Hug to work full-time on scikit-learn in 2020. + .. div:: text-box -.. raw:: html - -
    -
    + `The Chan-Zuckerberg Initiative `_ funded Nicolas + Hug to work full-time on scikit-learn in 2020. -.. image:: images/czi_logo.svg - :width: 100pt - :align: center - :target: https://chanzuckerberg.com - -.. raw:: html + .. div:: image-box -
    -
    + .. image:: images/czi_logo.svg + :target: https://chanzuckerberg.com ...................... @@ -649,9 +467,9 @@ program. - 2007 - David Cournapeau - 2011 - `Vlad Niculae`_ -- 2012 - `Vlad Niculae`_, Immanuel Bayer. +- 2012 - `Vlad Niculae`_, Immanuel Bayer - 2013 - Kemal Eren, Nicolas Trésegnie -- 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar. +- 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar - 2015 - `Raghav RV `_, Wei Xue - 2016 - `Nelson Liu `_, `YenChen Lin `_ @@ -670,86 +488,112 @@ The following organizations funded the scikit-learn consortium at Inria in the past: .. |msn| image:: images/microsoft.png - :width: 100pt - :target: https://www.microsoft.com/ + :target: https://www.microsoft.com/ .. |bcg| image:: images/bcg.png - :width: 100pt - :target: https://www.bcg.com/beyond-consulting/bcg-gamma/default.aspx + :target: https://www.bcg.com/beyond-consulting/bcg-gamma/default.aspx .. |fujitsu| image:: images/fujitsu.png - :width: 100pt - :target: https://www.fujitsu.com/global/ + :target: https://www.fujitsu.com/global/ .. |aphp| image:: images/logo_APHP_text.png - :width: 150pt - :target: https://aphp.fr/ + :target: https://aphp.fr/ +.. raw:: html + + + +.. grid:: 2 2 4 4 + :class-row: image-subgrid + :gutter: 1 + + .. grid-item:: + :class: sd-text-center + :child-align: center + + |msn| + + .. grid-item:: + :class: sd-text-center + :child-align: center + + |bcg| + + .. grid-item:: + :class: sd-text-center + :child-align: center -|bcg| |msn| |fujitsu| |aphp| + |fujitsu| + + .. grid-item:: + :class: sd-text-center + :child-align: center + + |aphp| Sprints ------- -The International 2019 Paris sprint was kindly hosted by `AXA `_. -Also some participants could attend thanks to the support of the `Alfred P. -Sloan Foundation `_, the `Python Software -Foundation `_ (PSF) and the `DATAIA Institute -`_. - -..................... +- The International 2019 Paris sprint was kindly hosted by `AXA `_. + Also some participants could attend thanks to the support of the `Alfred P. + Sloan Foundation `_, the `Python Software + Foundation `_ (PSF) and the `DATAIA Institute + `_. -The 2013 International Paris Sprint was made possible thanks to the support of -`Télécom Paristech `_, `tinyclues -`_, the `French Python Association -`_ and the `Fonds de la Recherche Scientifique -`_. +- The 2013 International Paris Sprint was made possible thanks to the support of + `Télécom Paristech `_, `tinyclues + `_, the `French Python Association + `_ and the `Fonds de la Recherche Scientifique + `_. -.............. +- The 2011 International Granada sprint was made possible thanks to the support + of the `PSF `_ and `tinyclues + `_. -The 2011 International Granada sprint was made possible thanks to the support -of the `PSF `_ and `tinyclues -`_. Donating to the project -....................... +----------------------- If you are interested in donating to the project or to one of our code-sprints, please donate via the `NumFOCUS Donations Page `_. -.. raw :: html - - -
    +.. raw:: html -All donations will be handled by `NumFOCUS -`_, a non-profit-organization which is -managed by a board of `Scipy community members -`_. NumFOCUS's mission is to foster -scientific computing software, in particular in Python. As a fiscal home -of scikit-learn, it ensures that money is available when needed to keep -the project funded and available while in compliance with tax regulations. +

    + + Help us, donate! + +

    -The received donations for the scikit-learn project mostly will go towards -covering travel-expenses for code sprints, as well as towards the organization -budget of the project [#f1]_. +All donations will be handled by `NumFOCUS `_, a non-profit +organization which is managed by a board of `Scipy community members +`_. NumFOCUS's mission is to foster scientific +computing software, in particular in Python. As a fiscal home of scikit-learn, it +ensures that money is available when needed to keep the project funded and available +while in compliance with tax regulations. +The received donations for the scikit-learn project mostly will go towards covering +travel-expenses for code sprints, as well as towards the organization budget of the +project [#f1]_. .. rubric:: Notes .. [#f1] Regarding the organization budget, in particular, we might use some of - the donated funds to pay for other project expenses such as DNS, - hosting or continuous integration services. + the donated funds to pay for other project expenses such as DNS, + hosting or continuous integration services. + Infrastructure support ---------------------- -- We would also like to thank `Microsoft Azure - `_, `Cirrus Cl `_, - `CircleCl `_ for free CPU time on their Continuous - Integration servers, and `Anaconda Inc. `_ for the - storage they provide for our staging and nightly builds. +We would also like to thank `Microsoft Azure `_, +`Cirrus Cl `_, `CircleCl `_ for free CPU +time on their Continuous Integration servers, and `Anaconda Inc. `_ +for the storage they provide for our staging and nightly builds. diff --git a/doc/api/deprecated.rst.template b/doc/api/deprecated.rst.template new file mode 100644 index 0000000000000..a48f0180f76ed --- /dev/null +++ b/doc/api/deprecated.rst.template @@ -0,0 +1,24 @@ +:html_theme.sidebar_secondary.remove: + +.. _api_depr_ref: + +Recently Deprecated +=================== + +.. currentmodule:: sklearn + +{% for ver, objs in DEPRECATED_API_REFERENCE %} +.. _api_depr_ref-{{ ver|replace(".", "-") }}: + +.. rubric:: To be removed in {{ ver }} + +.. autosummary:: + :nosignatures: + :toctree: ../modules/generated/ + :template: base.rst + +{% for obj in objs %} + {{ obj }} +{%- endfor %} + +{% endfor %} diff --git a/doc/api/index.rst.template b/doc/api/index.rst.template new file mode 100644 index 0000000000000..a9f3209d350de --- /dev/null +++ b/doc/api/index.rst.template @@ -0,0 +1,77 @@ +:html_theme.sidebar_secondary.remove: + +.. _api_ref: + +============= +API Reference +============= + +This is the class and function reference of scikit-learn. Please refer to the +:ref:`full user guide ` for further details, as the raw specifications of +classes and functions may not be enough to give full guidelines on their uses. For +reference on concepts repeated across the API, see :ref:`glossary`. + +.. toctree:: + :maxdepth: 2 + :hidden: + +{% for module, _ in API_REFERENCE %} + {{ module }} +{%- endfor %} +{%- if DEPRECATED_API_REFERENCE %} + deprecated +{%- endif %} + +.. list-table:: + :header-rows: 1 + :class: apisearch-table + + * - Object + - Description + +{% for module, module_info in API_REFERENCE %} +{% for section in module_info["sections"] %} +{% for obj in section["autosummary"] %} +{% set parts = obj.rsplit(".", 1) %} +{% if parts|length > 1 %} +{% set full_module = module + "." + parts[0] %} +{% else %} +{% set full_module = module %} +{% endif %} + * - :obj:`~{{ module }}.{{ obj }}` + + - .. div:: sk-apisearch-desc + + .. currentmodule:: {{ full_module }} + + .. autoshortsummary:: {{ module }}.{{ obj }} + + .. div:: caption + + :mod:`{{ full_module }}` +{% endfor %} +{% endfor %} +{% endfor %} + +{% for ver, objs in DEPRECATED_API_REFERENCE %} +{% for obj in objs %} +{% set parts = obj.rsplit(".", 1) %} +{% if parts|length > 1 %} +{% set full_module = "sklearn." + parts[0] %} +{% else %} +{% set full_module = "sklearn" %} +{% endif %} + * - :obj:`~sklearn.{{ obj }}` + + - .. div:: sk-apisearch-desc + + .. currentmodule:: {{ full_module }} + + .. autoshortsummary:: sklearn.{{ obj }} + + .. div:: caption + + :mod:`{{ full_module }}` + :bdg-ref-danger-line:`Deprecated in version {{ ver }} ` +{% endfor %} +{% endfor %} diff --git a/doc/api/module.rst.template b/doc/api/module.rst.template new file mode 100644 index 0000000000000..1980f27aad158 --- /dev/null +++ b/doc/api/module.rst.template @@ -0,0 +1,46 @@ +:html_theme.sidebar_secondary.remove: + +{% if module == "sklearn" -%} +{%- set module_hook = "sklearn" -%} +{%- elif module.startswith("sklearn.") -%} +{%- set module_hook = module[8:] -%} +{%- else -%} +{%- set module_hook = None -%} +{%- endif -%} + +{% if module_hook %} +.. _{{ module_hook }}_ref: +{% endif %} + +{{ module }} +{{ "=" * module|length }} + +.. automodule:: {{ module }} + +{% if module_info["description"] %} +{{ module_info["description"] }} +{% endif %} + +{% for section in module_info["sections"] %} +{% if section["title"] and module_hook %} +.. _{{ module_hook }}_ref-{{ section["title"]|lower|replace(" ", "-") }}: +{% endif %} + +{% if section["title"] %} +{{ section["title"] }} +{{ "-" * section["title"]|length }} +{% endif %} + +{% if section["description"] %} +{{ section["description"] }} +{% endif %} + +.. autosummary:: + :nosignatures: + :toctree: ../modules/generated/ + :template: base.rst + +{% for obj in section["autosummary"] %} + {{ obj }} +{%- endfor %} +{% endfor %} diff --git a/doc/api_reference.py b/doc/api_reference.py new file mode 100644 index 0000000000000..c8a22ebc2d5b3 --- /dev/null +++ b/doc/api_reference.py @@ -0,0 +1,1336 @@ +"""Configuration for the API reference documentation.""" + + +def _get_guide(*refs, is_developer=False): + """Get the rst to refer to user/developer guide. + + `refs` is several references that can be used in the :ref:`...` directive. + """ + if len(refs) == 1: + ref_desc = f":ref:`{refs[0]}` section" + elif len(refs) == 2: + ref_desc = f":ref:`{refs[0]}` and :ref:`{refs[1]}` sections" + else: + ref_desc = ", ".join(f":ref:`{ref}`" for ref in refs[:-1]) + ref_desc += f", and :ref:`{refs[-1]}` sections" + + guide_name = "Developer" if is_developer else "User" + return f"**{guide_name} guide.** See the {ref_desc} for further details." + + +def _get_submodule(module_name, submodule_name): + """Get the submodule docstring and automatically add the hook. + + `module_name` is e.g. `sklearn.feature_extraction`, and `submodule_name` is e.g. + `image`, so we get the docstring and hook for `sklearn.feature_extraction.image` + submodule. `module_name` is used to reset the current module because autosummary + automatically changes the current module. + """ + lines = [ + f".. automodule:: {module_name}.{submodule_name}", + f".. currentmodule:: {module_name}", + ] + return "\n\n".join(lines) + + +""" +CONFIGURING API_REFERENCE +========================= + +API_REFERENCE maps each module name to a dictionary that consists of the following +components: + +short_summary (required) + The text to be printed on the index page; it has nothing to do the API reference + page of each module. +description (required, `None` if not needed) + The additional description for the module to be placed under the module + docstring, before the sections start. +sections (required) + A list of sections, each of which consists of: + - title (required, `None` if not needed): the section title, commonly it should + not be `None` except for the first section of a module, + - description (optional): the optional additional description for the section, + - autosummary (required): an autosummary block, assuming current module is the + current module name. + +Essentially, the rendered page would look like the following: + +|---------------------------------------------------------------------------------| +| {{ module_name }} | +| ================= | +| {{ module_docstring }} | +| {{ description }} | +| | +| {{ section_title_1 }} <-------------- Optional if one wants the first | +| --------------------- section to directly follow | +| {{ section_description_1 }} without a second-level heading. | +| {{ section_autosummary_1 }} | +| | +| {{ section_title_2 }} | +| --------------------- | +| {{ section_description_2 }} | +| {{ section_autosummary_2 }} | +| | +| More sections... | +|---------------------------------------------------------------------------------| + +Hooks will be automatically generated for each module and each section. For a module, +e.g., `sklearn.feature_extraction`, the hook would be `feature_extraction_ref`; for a +section, e.g., "From text" under `sklearn.feature_extraction`, the hook would be +`feature_extraction_ref-from-text`. However, note that a better way is to refer using +the :mod: directive, e.g., :mod:`sklearn.feature_extraction` for the module and +:mod:`sklearn.feature_extraction.text` for the section. Only in case that a section +is not a particular submodule does the hook become useful, e.g., the "Loaders" section +under `sklearn.datasets`. +""" + +API_REFERENCE = { + "sklearn": { + "short_summary": "Settings and information tools.", + "description": None, + "sections": [ + { + "title": None, + "autosummary": [ + "config_context", + "get_config", + "set_config", + "show_versions", + ], + }, + ], + }, + "sklearn.base": { + "short_summary": "Base classes and utility functions.", + "description": None, + "sections": [ + { + "title": None, + "autosummary": [ + "BaseEstimator", + "BiclusterMixin", + "ClassNamePrefixFeaturesOutMixin", + "ClassifierMixin", + "ClusterMixin", + "DensityMixin", + "MetaEstimatorMixin", + "OneToOneFeatureMixin", + "OutlierMixin", + "RegressorMixin", + "TransformerMixin", + "clone", + "is_classifier", + "is_regressor", + ], + } + ], + }, + "sklearn.calibration": { + "short_summary": "Probability calibration.", + "description": _get_guide("calibration"), + "sections": [ + { + "title": None, + "autosummary": ["CalibratedClassifierCV", "calibration_curve"], + }, + { + "title": "Visualization", + "autosummary": ["CalibrationDisplay"], + }, + ], + }, + "sklearn.cluster": { + "short_summary": "Clustering.", + "description": _get_guide("clustering", "biclustering"), + "sections": [ + { + "title": None, + "autosummary": [ + "AffinityPropagation", + "AgglomerativeClustering", + "Birch", + "BisectingKMeans", + "DBSCAN", + "FeatureAgglomeration", + "HDBSCAN", + "KMeans", + "MeanShift", + "MiniBatchKMeans", + "OPTICS", + "SpectralBiclustering", + "SpectralClustering", + "SpectralCoclustering", + "affinity_propagation", + "cluster_optics_dbscan", + "cluster_optics_xi", + "compute_optics_graph", + "dbscan", + "estimate_bandwidth", + "k_means", + "kmeans_plusplus", + "mean_shift", + "spectral_clustering", + "ward_tree", + ], + }, + ], + }, + "sklearn.compose": { + "short_summary": "Composite estimators.", + "description": _get_guide("combining_estimators"), + "sections": [ + { + "title": None, + "autosummary": [ + "ColumnTransformer", + "TransformedTargetRegressor", + "make_column_selector", + "make_column_transformer", + ], + }, + ], + }, + "sklearn.covariance": { + "short_summary": "Covariance estimation.", + "description": _get_guide("covariance"), + "sections": [ + { + "title": None, + "autosummary": [ + "EllipticEnvelope", + "EmpiricalCovariance", + "GraphicalLasso", + "GraphicalLassoCV", + "LedoitWolf", + "MinCovDet", + "OAS", + "ShrunkCovariance", + "empirical_covariance", + "graphical_lasso", + "ledoit_wolf", + "ledoit_wolf_shrinkage", + "oas", + "shrunk_covariance", + ], + }, + ], + }, + "sklearn.cross_decomposition": { + "short_summary": "Cross decomposition.", + "description": _get_guide("cross_decomposition"), + "sections": [ + { + "title": None, + "autosummary": ["CCA", "PLSCanonical", "PLSRegression", "PLSSVD"], + }, + ], + }, + "sklearn.datasets": { + "short_summary": "Datasets.", + "description": _get_guide("datasets"), + "sections": [ + { + "title": "Loaders", + "autosummary": [ + "clear_data_home", + "dump_svmlight_file", + "fetch_20newsgroups", + "fetch_20newsgroups_vectorized", + "fetch_california_housing", + "fetch_covtype", + "fetch_kddcup99", + "fetch_lfw_pairs", + "fetch_lfw_people", + "fetch_olivetti_faces", + "fetch_openml", + "fetch_rcv1", + "fetch_species_distributions", + "get_data_home", + "load_breast_cancer", + "load_diabetes", + "load_digits", + "load_files", + "load_iris", + "load_linnerud", + "load_sample_image", + "load_sample_images", + "load_svmlight_file", + "load_svmlight_files", + "load_wine", + ], + }, + { + "title": "Sample generators", + "autosummary": [ + "make_biclusters", + "make_blobs", + "make_checkerboard", + "make_circles", + "make_classification", + "make_friedman1", + "make_friedman2", + "make_friedman3", + "make_gaussian_quantiles", + "make_hastie_10_2", + "make_low_rank_matrix", + "make_moons", + "make_multilabel_classification", + "make_regression", + "make_s_curve", + "make_sparse_coded_signal", + "make_sparse_spd_matrix", + "make_sparse_uncorrelated", + "make_spd_matrix", + "make_swiss_roll", + ], + }, + ], + }, + "sklearn.decomposition": { + "short_summary": "Matrix decomposition.", + "description": _get_guide("decompositions"), + "sections": [ + { + "title": None, + "autosummary": [ + "DictionaryLearning", + "FactorAnalysis", + "FastICA", + "IncrementalPCA", + "KernelPCA", + "LatentDirichletAllocation", + "MiniBatchDictionaryLearning", + "MiniBatchNMF", + "MiniBatchSparsePCA", + "NMF", + "PCA", + "SparseCoder", + "SparsePCA", + "TruncatedSVD", + "dict_learning", + "dict_learning_online", + "fastica", + "non_negative_factorization", + "sparse_encode", + ], + }, + ], + }, + "sklearn.discriminant_analysis": { + "short_summary": "Discriminant analysis.", + "description": _get_guide("lda_qda"), + "sections": [ + { + "title": None, + "autosummary": [ + "LinearDiscriminantAnalysis", + "QuadraticDiscriminantAnalysis", + ], + }, + ], + }, + "sklearn.dummy": { + "short_summary": "Dummy estimators.", + "description": _get_guide("model_evaluation"), + "sections": [ + { + "title": None, + "autosummary": ["DummyClassifier", "DummyRegressor"], + }, + ], + }, + "sklearn.ensemble": { + "short_summary": "Ensemble methods.", + "description": _get_guide("ensemble"), + "sections": [ + { + "title": None, + "autosummary": [ + "AdaBoostClassifier", + "AdaBoostRegressor", + "BaggingClassifier", + "BaggingRegressor", + "ExtraTreesClassifier", + "ExtraTreesRegressor", + "GradientBoostingClassifier", + "GradientBoostingRegressor", + "HistGradientBoostingClassifier", + "HistGradientBoostingRegressor", + "IsolationForest", + "RandomForestClassifier", + "RandomForestRegressor", + "RandomTreesEmbedding", + "StackingClassifier", + "StackingRegressor", + "VotingClassifier", + "VotingRegressor", + ], + }, + ], + }, + "sklearn.exceptions": { + "short_summary": "Exceptions and warnings.", + "description": None, + "sections": [ + { + "title": None, + "autosummary": [ + "ConvergenceWarning", + "DataConversionWarning", + "DataDimensionalityWarning", + "EfficiencyWarning", + "FitFailedWarning", + "InconsistentVersionWarning", + "NotFittedError", + "UndefinedMetricWarning", + ], + }, + ], + }, + "sklearn.experimental": { + "short_summary": "Experimental tools.", + "description": None, + "sections": [ + { + "title": None, + "autosummary": ["enable_halving_search_cv", "enable_iterative_imputer"], + }, + ], + }, + "sklearn.feature_extraction": { + "short_summary": "Feature extraction.", + "description": _get_guide("feature_extraction"), + "sections": [ + { + "title": None, + "autosummary": ["DictVectorizer", "FeatureHasher"], + }, + { + "title": "From images", + "description": _get_submodule("sklearn.feature_extraction", "image"), + "autosummary": [ + "image.PatchExtractor", + "image.extract_patches_2d", + "image.grid_to_graph", + "image.img_to_graph", + "image.reconstruct_from_patches_2d", + ], + }, + { + "title": "From text", + "description": _get_submodule("sklearn.feature_extraction", "text"), + "autosummary": [ + "text.CountVectorizer", + "text.HashingVectorizer", + "text.TfidfTransformer", + "text.TfidfVectorizer", + ], + }, + ], + }, + "sklearn.feature_selection": { + "short_summary": "Feature selection.", + "description": _get_guide("feature_selection"), + "sections": [ + { + "title": None, + "autosummary": [ + "GenericUnivariateSelect", + "RFE", + "RFECV", + "SelectFdr", + "SelectFpr", + "SelectFromModel", + "SelectFwe", + "SelectKBest", + "SelectPercentile", + "SelectorMixin", + "SequentialFeatureSelector", + "VarianceThreshold", + "chi2", + "f_classif", + "f_regression", + "mutual_info_classif", + "mutual_info_regression", + "r_regression", + ], + }, + ], + }, + "sklearn.gaussian_process": { + "short_summary": "Gaussian processes.", + "description": _get_guide("gaussian_process"), + "sections": [ + { + "title": None, + "autosummary": [ + "GaussianProcessClassifier", + "GaussianProcessRegressor", + ], + }, + { + "title": "Kernels", + "description": _get_submodule("sklearn.gaussian_process", "kernels"), + "autosummary": [ + "kernels.CompoundKernel", + "kernels.ConstantKernel", + "kernels.DotProduct", + "kernels.ExpSineSquared", + "kernels.Exponentiation", + "kernels.Hyperparameter", + "kernels.Kernel", + "kernels.Matern", + "kernels.PairwiseKernel", + "kernels.Product", + "kernels.RBF", + "kernels.RationalQuadratic", + "kernels.Sum", + "kernels.WhiteKernel", + ], + }, + ], + }, + "sklearn.impute": { + "short_summary": "Imputation.", + "description": _get_guide("impute"), + "sections": [ + { + "title": None, + "autosummary": [ + "IterativeImputer", + "KNNImputer", + "MissingIndicator", + "SimpleImputer", + ], + }, + ], + }, + "sklearn.inspection": { + "short_summary": "Inspection.", + "description": _get_guide("inspection"), + "sections": [ + { + "title": None, + "autosummary": ["partial_dependence", "permutation_importance"], + }, + { + "title": "Plotting", + "autosummary": ["DecisionBoundaryDisplay", "PartialDependenceDisplay"], + }, + ], + }, + "sklearn.isotonic": { + "short_summary": "Isotonic regression.", + "description": _get_guide("isotonic"), + "sections": [ + { + "title": None, + "autosummary": [ + "IsotonicRegression", + "check_increasing", + "isotonic_regression", + ], + }, + ], + }, + "sklearn.kernel_approximation": { + "short_summary": "Isotonic regression.", + "description": _get_guide("kernel_approximation"), + "sections": [ + { + "title": None, + "autosummary": [ + "AdditiveChi2Sampler", + "Nystroem", + "PolynomialCountSketch", + "RBFSampler", + "SkewedChi2Sampler", + ], + }, + ], + }, + "sklearn.kernel_ridge": { + "short_summary": "Kernel ridge regression.", + "description": _get_guide("kernel_ridge"), + "sections": [ + { + "title": None, + "autosummary": ["KernelRidge"], + }, + ], + }, + "sklearn.linear_model": { + "short_summary": "Generalized linear models.", + "description": ( + _get_guide("linear_model") + + "\n\nThe following subsections are only rough guidelines: the same " + "estimator can fall into multiple categories, depending on its parameters." + ), + "sections": [ + { + "title": "Linear classifiers", + "autosummary": [ + "LogisticRegression", + "LogisticRegressionCV", + "PassiveAggressiveClassifier", + "Perceptron", + "RidgeClassifier", + "RidgeClassifierCV", + "SGDClassifier", + "SGDOneClassSVM", + ], + }, + { + "title": "Classical linear regressors", + "autosummary": ["LinearRegression", "Ridge", "RidgeCV", "SGDRegressor"], + }, + { + "title": "Regressors with variable selection", + "description": ( + "The following estimators have built-in variable selection fitting " + "procedures, but any estimator using a L1 or elastic-net penalty " + "also performs variable selection: typically " + ":class:`~linear_model.SGDRegressor` or " + ":class:`~sklearn.linear_model.SGDClassifier` with an appropriate " + "penalty." + ), + "autosummary": [ + "ElasticNet", + "ElasticNetCV", + "Lars", + "LarsCV", + "Lasso", + "LassoCV", + "LassoLars", + "LassoLarsCV", + "LassoLarsIC", + "OrthogonalMatchingPursuit", + "OrthogonalMatchingPursuitCV", + ], + }, + { + "title": "Bayesian regressors", + "autosummary": ["ARDRegression", "BayesianRidge"], + }, + { + "title": "Multi-task linear regressors with variable selection", + "description": ( + "These estimators fit multiple regression problems (or tasks)" + " jointly, while inducing sparse coefficients. While the inferred" + " coefficients may differ between the tasks, they are constrained" + " to agree on the features that are selected (non-zero" + " coefficients)." + ), + "autosummary": [ + "MultiTaskElasticNet", + "MultiTaskElasticNetCV", + "MultiTaskLasso", + "MultiTaskLassoCV", + ], + }, + { + "title": "Outlier-robust regressors", + "description": ( + "Any estimator using the Huber loss would also be robust to " + "outliers, e.g., :class:`~linear_model.SGDRegressor` with " + "``loss='huber'``." + ), + "autosummary": [ + "HuberRegressor", + "QuantileRegressor", + "RANSACRegressor", + "TheilSenRegressor", + ], + }, + { + "title": "Generalized linear models (GLM) for regression", + "description": ( + "These models allow for response variables to have error " + "distributions other than a normal distribution." + ), + "autosummary": [ + "GammaRegressor", + "PoissonRegressor", + "TweedieRegressor", + ], + }, + { + "title": "Miscellaneous", + "autosummary": [ + "PassiveAggressiveRegressor", + "enet_path", + "lars_path", + "lars_path_gram", + "lasso_path", + "orthogonal_mp", + "orthogonal_mp_gram", + "ridge_regression", + ], + }, + ], + }, + "sklearn.manifold": { + "short_summary": "Manifold learning.", + "description": _get_guide("manifold"), + "sections": [ + { + "title": None, + "autosummary": [ + "Isomap", + "LocallyLinearEmbedding", + "MDS", + "SpectralEmbedding", + "TSNE", + "locally_linear_embedding", + "smacof", + "spectral_embedding", + "trustworthiness", + ], + }, + ], + }, + "sklearn.metrics": { + "short_summary": "Metrics.", + "description": _get_guide("model_evaluation", "metrics"), + "sections": [ + { + "title": "Model selection interface", + "description": _get_guide("scoring_parameter"), + "autosummary": [ + "check_scoring", + "get_scorer", + "get_scorer_names", + "make_scorer", + ], + }, + { + "title": "Classification metrics", + "description": _get_guide("classification_metrics"), + "autosummary": [ + "accuracy_score", + "auc", + "average_precision_score", + "balanced_accuracy_score", + "brier_score_loss", + "class_likelihood_ratios", + "classification_report", + "cohen_kappa_score", + "confusion_matrix", + "d2_log_loss_score", + "dcg_score", + "det_curve", + "f1_score", + "fbeta_score", + "hamming_loss", + "hinge_loss", + "jaccard_score", + "log_loss", + "matthews_corrcoef", + "multilabel_confusion_matrix", + "ndcg_score", + "precision_recall_curve", + "precision_recall_fscore_support", + "precision_score", + "recall_score", + "roc_auc_score", + "roc_curve", + "top_k_accuracy_score", + "zero_one_loss", + ], + }, + { + "title": "Regression metrics", + "description": _get_guide("regression_metrics"), + "autosummary": [ + "d2_absolute_error_score", + "d2_pinball_score", + "d2_tweedie_score", + "explained_variance_score", + "max_error", + "mean_absolute_error", + "mean_absolute_percentage_error", + "mean_gamma_deviance", + "mean_pinball_loss", + "mean_poisson_deviance", + "mean_squared_error", + "mean_squared_log_error", + "mean_tweedie_deviance", + "median_absolute_error", + "r2_score", + "root_mean_squared_error", + "root_mean_squared_log_error", + ], + }, + { + "title": "Multilabel ranking metrics", + "description": _get_guide("multilabel_ranking_metrics"), + "autosummary": [ + "coverage_error", + "label_ranking_average_precision_score", + "label_ranking_loss", + ], + }, + { + "title": "Clustering metrics", + "description": ( + _get_submodule("sklearn.metrics", "cluster") + + "\n\n" + + _get_guide("clustering_evaluation") + ), + "autosummary": [ + "adjusted_mutual_info_score", + "adjusted_rand_score", + "calinski_harabasz_score", + "cluster.contingency_matrix", + "cluster.pair_confusion_matrix", + "completeness_score", + "davies_bouldin_score", + "fowlkes_mallows_score", + "homogeneity_completeness_v_measure", + "homogeneity_score", + "mutual_info_score", + "normalized_mutual_info_score", + "rand_score", + "silhouette_samples", + "silhouette_score", + "v_measure_score", + ], + }, + { + "title": "Biclustering metrics", + "description": _get_guide("biclustering_evaluation"), + "autosummary": ["consensus_score"], + }, + { + "title": "Distance metrics", + "autosummary": ["DistanceMetric"], + }, + { + "title": "Pairwise metrics", + "description": ( + _get_submodule("sklearn.metrics", "pairwise") + + "\n\n" + + _get_guide("metrics") + ), + "autosummary": [ + "pairwise.additive_chi2_kernel", + "pairwise.chi2_kernel", + "pairwise.cosine_distances", + "pairwise.cosine_similarity", + "pairwise.distance_metrics", + "pairwise.euclidean_distances", + "pairwise.haversine_distances", + "pairwise.kernel_metrics", + "pairwise.laplacian_kernel", + "pairwise.linear_kernel", + "pairwise.manhattan_distances", + "pairwise.nan_euclidean_distances", + "pairwise.paired_cosine_distances", + "pairwise.paired_distances", + "pairwise.paired_euclidean_distances", + "pairwise.paired_manhattan_distances", + "pairwise.pairwise_kernels", + "pairwise.polynomial_kernel", + "pairwise.rbf_kernel", + "pairwise.sigmoid_kernel", + "pairwise_distances", + "pairwise_distances_argmin", + "pairwise_distances_argmin_min", + "pairwise_distances_chunked", + ], + }, + { + "title": "Plotting", + "description": _get_guide("visualizations"), + "autosummary": [ + "ConfusionMatrixDisplay", + "DetCurveDisplay", + "PrecisionRecallDisplay", + "PredictionErrorDisplay", + "RocCurveDisplay", + ], + }, + ], + }, + "sklearn.mixture": { + "short_summary": "Gaussian mixture models.", + "description": _get_guide("mixture"), + "sections": [ + { + "title": None, + "autosummary": ["BayesianGaussianMixture", "GaussianMixture"], + }, + ], + }, + "sklearn.model_selection": { + "short_summary": "Model selection.", + "description": _get_guide("cross_validation", "grid_search", "learning_curve"), + "sections": [ + { + "title": "Splitters", + "autosummary": [ + "GroupKFold", + "GroupShuffleSplit", + "KFold", + "LeaveOneGroupOut", + "LeaveOneOut", + "LeavePGroupsOut", + "LeavePOut", + "PredefinedSplit", + "RepeatedKFold", + "RepeatedStratifiedKFold", + "ShuffleSplit", + "StratifiedGroupKFold", + "StratifiedKFold", + "StratifiedShuffleSplit", + "TimeSeriesSplit", + "check_cv", + "train_test_split", + ], + }, + { + "title": "Hyper-parameter optimizers", + "autosummary": [ + "GridSearchCV", + "HalvingGridSearchCV", + "HalvingRandomSearchCV", + "ParameterGrid", + "ParameterSampler", + "RandomizedSearchCV", + ], + }, + { + "title": "Post-fit model tuning", + "autosummary": [ + "FixedThresholdClassifier", + "TunedThresholdClassifierCV", + ], + }, + { + "title": "Model validation", + "autosummary": [ + "cross_val_predict", + "cross_val_score", + "cross_validate", + "learning_curve", + "permutation_test_score", + "validation_curve", + ], + }, + { + "title": "Visualization", + "autosummary": ["LearningCurveDisplay", "ValidationCurveDisplay"], + }, + ], + }, + "sklearn.multiclass": { + "short_summary": "Multiclass classification.", + "description": _get_guide("multiclass_classification"), + "sections": [ + { + "title": None, + "autosummary": [ + "OneVsOneClassifier", + "OneVsRestClassifier", + "OutputCodeClassifier", + ], + }, + ], + }, + "sklearn.multioutput": { + "short_summary": "Multioutput regression and classification.", + "description": _get_guide( + "multilabel_classification", + "multiclass_multioutput_classification", + "multioutput_regression", + ), + "sections": [ + { + "title": None, + "autosummary": [ + "ClassifierChain", + "MultiOutputClassifier", + "MultiOutputRegressor", + "RegressorChain", + ], + }, + ], + }, + "sklearn.naive_bayes": { + "short_summary": "Naive Bayes.", + "description": _get_guide("naive_bayes"), + "sections": [ + { + "title": None, + "autosummary": [ + "BernoulliNB", + "CategoricalNB", + "ComplementNB", + "GaussianNB", + "MultinomialNB", + ], + }, + ], + }, + "sklearn.neighbors": { + "short_summary": "Nearest neighbors.", + "description": _get_guide("neighbors"), + "sections": [ + { + "title": None, + "autosummary": [ + "BallTree", + "KDTree", + "KNeighborsClassifier", + "KNeighborsRegressor", + "KNeighborsTransformer", + "KernelDensity", + "LocalOutlierFactor", + "NearestCentroid", + "NearestNeighbors", + "NeighborhoodComponentsAnalysis", + "RadiusNeighborsClassifier", + "RadiusNeighborsRegressor", + "RadiusNeighborsTransformer", + "kneighbors_graph", + "radius_neighbors_graph", + "sort_graph_by_row_values", + ], + }, + ], + }, + "sklearn.neural_network": { + "short_summary": "Neural network models.", + "description": _get_guide( + "neural_networks_supervised", "neural_networks_unsupervised" + ), + "sections": [ + { + "title": None, + "autosummary": ["BernoulliRBM", "MLPClassifier", "MLPRegressor"], + }, + ], + }, + "sklearn.pipeline": { + "short_summary": "Pipeline.", + "description": _get_guide("combining_estimators"), + "sections": [ + { + "title": None, + "autosummary": [ + "FeatureUnion", + "Pipeline", + "make_pipeline", + "make_union", + ], + }, + ], + }, + "sklearn.preprocessing": { + "short_summary": "Preprocessing and normalization.", + "description": _get_guide("preprocessing"), + "sections": [ + { + "title": None, + "autosummary": [ + "Binarizer", + "FunctionTransformer", + "KBinsDiscretizer", + "KernelCenterer", + "LabelBinarizer", + "LabelEncoder", + "MaxAbsScaler", + "MinMaxScaler", + "MultiLabelBinarizer", + "Normalizer", + "OneHotEncoder", + "OrdinalEncoder", + "PolynomialFeatures", + "PowerTransformer", + "QuantileTransformer", + "RobustScaler", + "SplineTransformer", + "StandardScaler", + "TargetEncoder", + "add_dummy_feature", + "binarize", + "label_binarize", + "maxabs_scale", + "minmax_scale", + "normalize", + "power_transform", + "quantile_transform", + "robust_scale", + "scale", + ], + }, + ], + }, + "sklearn.random_projection": { + "short_summary": "Random projection.", + "description": _get_guide("random_projection"), + "sections": [ + { + "title": None, + "autosummary": [ + "GaussianRandomProjection", + "SparseRandomProjection", + "johnson_lindenstrauss_min_dim", + ], + }, + ], + }, + "sklearn.semi_supervised": { + "short_summary": "Semi-supervised learning.", + "description": _get_guide("semi_supervised"), + "sections": [ + { + "title": None, + "autosummary": [ + "LabelPropagation", + "LabelSpreading", + "SelfTrainingClassifier", + ], + }, + ], + }, + "sklearn.svm": { + "short_summary": "Support vector machines.", + "description": _get_guide("svm"), + "sections": [ + { + "title": None, + "autosummary": [ + "LinearSVC", + "LinearSVR", + "NuSVC", + "NuSVR", + "OneClassSVM", + "SVC", + "SVR", + "l1_min_c", + ], + }, + ], + }, + "sklearn.tree": { + "short_summary": "Decision trees.", + "description": _get_guide("tree"), + "sections": [ + { + "title": None, + "autosummary": [ + "DecisionTreeClassifier", + "DecisionTreeRegressor", + "ExtraTreeClassifier", + "ExtraTreeRegressor", + ], + }, + { + "title": "Exporting", + "autosummary": ["export_graphviz", "export_text"], + }, + { + "title": "Plotting", + "autosummary": ["plot_tree"], + }, + ], + }, + "sklearn.utils": { + "short_summary": "Utilities.", + "description": _get_guide("developers-utils", is_developer=True), + "sections": [ + { + "title": None, + "autosummary": [ + "Bunch", + "_safe_indexing", + "as_float_array", + "assert_all_finite", + "deprecated", + "estimator_html_repr", + "gen_batches", + "gen_even_slices", + "indexable", + "murmurhash3_32", + "resample", + "safe_mask", + "safe_sqr", + "shuffle", + ], + }, + { + "title": "Input and parameter validation", + "description": _get_submodule("sklearn.utils", "validation"), + "autosummary": [ + "check_X_y", + "check_array", + "check_consistent_length", + "check_random_state", + "check_scalar", + "validation.check_is_fitted", + "validation.check_memory", + "validation.check_symmetric", + "validation.column_or_1d", + "validation.has_fit_parameter", + ], + }, + { + "title": "Meta-estimators", + "description": _get_submodule("sklearn.utils", "metaestimators"), + "autosummary": ["metaestimators.available_if"], + }, + { + "title": "Weight handling based on class labels", + "description": _get_submodule("sklearn.utils", "class_weight"), + "autosummary": [ + "class_weight.compute_class_weight", + "class_weight.compute_sample_weight", + ], + }, + { + "title": "Dealing with multiclass target in classifiers", + "description": _get_submodule("sklearn.utils", "multiclass"), + "autosummary": [ + "multiclass.is_multilabel", + "multiclass.type_of_target", + "multiclass.unique_labels", + ], + }, + { + "title": "Optimal mathematical operations", + "description": _get_submodule("sklearn.utils", "extmath"), + "autosummary": [ + "extmath.density", + "extmath.fast_logdet", + "extmath.randomized_range_finder", + "extmath.randomized_svd", + "extmath.safe_sparse_dot", + "extmath.weighted_mode", + ], + }, + { + "title": "Working with sparse matrices and arrays", + "description": _get_submodule("sklearn.utils", "sparsefuncs"), + "autosummary": [ + "sparsefuncs.incr_mean_variance_axis", + "sparsefuncs.inplace_column_scale", + "sparsefuncs.inplace_csr_column_scale", + "sparsefuncs.inplace_row_scale", + "sparsefuncs.inplace_swap_column", + "sparsefuncs.inplace_swap_row", + "sparsefuncs.mean_variance_axis", + ], + }, + { + "title": None, + "description": _get_submodule("sklearn.utils", "sparsefuncs_fast"), + "autosummary": [ + "sparsefuncs_fast.inplace_csr_row_normalize_l1", + "sparsefuncs_fast.inplace_csr_row_normalize_l2", + ], + }, + { + "title": "Working with graphs", + "description": _get_submodule("sklearn.utils", "graph"), + "autosummary": ["graph.single_source_shortest_path_length"], + }, + { + "title": "Random sampling", + "description": _get_submodule("sklearn.utils", "random"), + "autosummary": ["random.sample_without_replacement"], + }, + { + "title": "Auxiliary functions that operate on arrays", + "description": _get_submodule("sklearn.utils", "arrayfuncs"), + "autosummary": ["arrayfuncs.min_pos"], + }, + { + "title": "Metadata routing", + "description": ( + _get_submodule("sklearn.utils", "metadata_routing") + + "\n\n" + + _get_guide("metadata_routing") + ), + "autosummary": [ + "metadata_routing.MetadataRequest", + "metadata_routing.MetadataRouter", + "metadata_routing.MethodMapping", + "metadata_routing.get_routing_for_object", + "metadata_routing.process_routing", + ], + }, + { + "title": "Discovering scikit-learn objects", + "description": _get_submodule("sklearn.utils", "discovery"), + "autosummary": [ + "discovery.all_displays", + ], + }, + { + "title": "API compatibility checkers", + "description": _get_submodule("sklearn.utils", "estimator_checks"), + "autosummary": [ + "estimator_checks.check_estimator", + "estimator_checks.parametrize_with_checks", + ], + }, + { + "title": "Parallel computing", + "description": _get_submodule("sklearn.utils", "parallel"), + "autosummary": [ + "parallel.Parallel", + "parallel.delayed", + ], + }, + ], + }, +} + + +""" +CONFIGURING DEPRECATED_API_REFERENCE +==================================== + +DEPRECATED_API_REFERENCE maps each deprecation target version to a corresponding +autosummary block. It will be placed at the bottom of the API index page under the +"Recently deprecated" section. Essentially, the rendered section would look like the +following: + +|------------------------------------------| +| To be removed in {{ version_1 }} | +| -------------------------------- | +| {{ autosummary_1 }} | +| | +| To be removed in {{ version_2 }} | +| -------------------------------- | +| {{ autosummary_2 }} | +| | +| More versions... | +|------------------------------------------| + +Note that the autosummary here assumes that the current module is `sklearn`, i.e., if +`sklearn.utils.Memory` is deprecated, one should put `utils.Memory` in the "entries" +slot of the autosummary block. + +Example: + +DEPRECATED_API_REFERENCE = { + "0.24": [ + "model_selection.fit_grid_point", + "utils.safe_indexing", + ], +} +""" + +DEPRECATED_API_REFERENCE = { + "1.6": [ + "utils.parallel_backend", + "utils.register_parallel_backend", + ], + "1.7": [ + "utils.discovery.all_estimators", + "utils.discovery.all_functions", + ], +} # type: ignore diff --git a/doc/common_pitfalls.rst b/doc/common_pitfalls.rst index 41eb16665a612..c16385943f9ad 100644 --- a/doc/common_pitfalls.rst +++ b/doc/common_pitfalls.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _common_pitfalls: ========================================= @@ -414,43 +408,40 @@ it will allow the estimator RNG to vary for each fold. illustration purpose: what matters is what we pass to the :class:`~sklearn.ensemble.RandomForestClassifier` estimator. -|details-start| -**Cloning** -|details-split| +.. dropdown:: Cloning -Another subtle side effect of passing `RandomState` instances is how -:func:`~sklearn.base.clone` will work:: + Another subtle side effect of passing `RandomState` instances is how + :func:`~sklearn.base.clone` will work:: - >>> from sklearn import clone - >>> from sklearn.ensemble import RandomForestClassifier - >>> import numpy as np + >>> from sklearn import clone + >>> from sklearn.ensemble import RandomForestClassifier + >>> import numpy as np + + >>> rng = np.random.RandomState(0) + >>> a = RandomForestClassifier(random_state=rng) + >>> b = clone(a) + + Since a `RandomState` instance was passed to `a`, `a` and `b` are not clones + in the strict sense, but rather clones in the statistical sense: `a` and `b` + will still be different models, even when calling `fit(X, y)` on the same + data. Moreover, `a` and `b` will influence each-other since they share the + same internal RNG: calling `a.fit` will consume `b`'s RNG, and calling + `b.fit` will consume `a`'s RNG, since they are the same. This bit is true for + any estimators that share a `random_state` parameter; it is not specific to + clones. + + If an integer were passed, `a` and `b` would be exact clones and they would not + influence each other. + + .. warning:: + Even though :func:`~sklearn.base.clone` is rarely used in user code, it is + called pervasively throughout scikit-learn codebase: in particular, most + meta-estimators that accept non-fitted estimators call + :func:`~sklearn.base.clone` internally + (:class:`~sklearn.model_selection.GridSearchCV`, + :class:`~sklearn.ensemble.StackingClassifier`, + :class:`~sklearn.calibration.CalibratedClassifierCV`, etc.). - >>> rng = np.random.RandomState(0) - >>> a = RandomForestClassifier(random_state=rng) - >>> b = clone(a) - -Since a `RandomState` instance was passed to `a`, `a` and `b` are not clones -in the strict sense, but rather clones in the statistical sense: `a` and `b` -will still be different models, even when calling `fit(X, y)` on the same -data. Moreover, `a` and `b` will influence each-other since they share the -same internal RNG: calling `a.fit` will consume `b`'s RNG, and calling -`b.fit` will consume `a`'s RNG, since they are the same. This bit is true for -any estimators that share a `random_state` parameter; it is not specific to -clones. - -If an integer were passed, `a` and `b` would be exact clones and they would not -influence each other. - -.. warning:: - Even though :func:`~sklearn.base.clone` is rarely used in user code, it is - called pervasively throughout scikit-learn codebase: in particular, most - meta-estimators that accept non-fitted estimators call - :func:`~sklearn.base.clone` internally - (:class:`~sklearn.model_selection.GridSearchCV`, - :class:`~sklearn.ensemble.StackingClassifier`, - :class:`~sklearn.calibration.CalibratedClassifierCV`, etc.). - -|details-end| CV splitters ............ diff --git a/doc/computing.rst b/doc/computing.rst index 6732b754918b0..9f166432006b2 100644 --- a/doc/computing.rst +++ b/doc/computing.rst @@ -1,13 +1,7 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - ============================ Computing with scikit-learn ============================ -.. include:: includes/big_toc_css.rst - .. toctree:: :maxdepth: 2 diff --git a/doc/computing/computational_performance.rst b/doc/computing/computational_performance.rst index d6864689502c2..a7b6d3a37001e 100644 --- a/doc/computing/computational_performance.rst +++ b/doc/computing/computational_performance.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _computational_performance: .. currentmodule:: sklearn diff --git a/doc/computing/parallelism.rst b/doc/computing/parallelism.rst index 53cef5603c5be..5c15cd9db440e 100644 --- a/doc/computing/parallelism.rst +++ b/doc/computing/parallelism.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - Parallelism, resource management, and configuration =================================================== diff --git a/doc/computing/scaling_strategies.rst b/doc/computing/scaling_strategies.rst index 143643131b0e8..286a1e79d0a8c 100644 --- a/doc/computing/scaling_strategies.rst +++ b/doc/computing/scaling_strategies.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _scaling_strategies: Strategies to scale computationally: bigger data diff --git a/doc/conf.py b/doc/conf.py index 0587e98130118..f025c77dcce0c 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -15,7 +15,6 @@ import sys import warnings from datetime import datetime -from io import StringIO from pathlib import Path from sklearn.externals._packaging.version import parse @@ -25,8 +24,10 @@ # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. +sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.abspath("sphinxext")) +import jinja2 import sphinx_gallery from github_link import make_linkcode_resolve from sphinx_gallery.notebook import add_code_cell, add_markdown_cell @@ -56,14 +57,21 @@ "sphinx.ext.intersphinx", "sphinx.ext.imgconverter", "sphinx_gallery.gen_gallery", - "sphinx_issues", - "add_toctree_functions", "sphinx-prompt", "sphinx_copybutton", "sphinxext.opengraph", - "doi_role", - "allow_nan_estimators", "matplotlib.sphinxext.plot_directive", + "sphinxcontrib.sass", + "sphinx_remove_toctrees", + "sphinx_design", + # See sphinxext/ + "allow_nan_estimators", + "autoshortsummary", + "doi_role", + "dropdown_anchors", + "move_gallery_links", + "override_pst_pagetoc", + "sphinx_issues", ] # Specify how to identify the prompt when copying code snippets @@ -96,8 +104,12 @@ plot_html_show_formats = False plot_html_show_source_link = False -# this is needed for some reason... -# see https://github.com/numpy/numpydoc/issues/69 +# We do not need the table of class members because `sphinxext/override_pst_pagetoc.py` +# will show them in the secondary sidebar +numpydoc_show_class_members = False +numpydoc_show_inherited_class_members = False + +# We want in-page toc of class members instead of a separate page for each entry numpydoc_class_members_toctree = False @@ -111,8 +123,6 @@ extensions.append("sphinx.ext.mathjax") mathjax_path = "https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js" -autodoc_default_options = {"members": True, "inherited-members": True} - # Add any paths that contain templates here, relative to this directory. templates_path = ["templates"] @@ -123,10 +133,10 @@ source_suffix = ".rst" # The encoding of source files. -# source_encoding = 'utf-8' +source_encoding = "utf-8" # The main toctree document. -root_doc = "contents" +root_doc = "index" # General information about the project. project = "scikit-learn" @@ -160,7 +170,12 @@ # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. -exclude_patterns = ["_build", "templates", "includes", "themes"] +exclude_patterns = [ + "_build", + "templates", + "includes", + "**/sg_execution_times.rst", +] # The reST default role (used for this markup: `text`) to use for all # documents. @@ -177,9 +192,6 @@ # output. They are ignored by default. # show_authors = False -# The name of the Pygments (syntax highlighting) style to use. -pygments_style = "sphinx" - # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] @@ -188,21 +200,89 @@ # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. -html_theme = "scikit-learn-modern" +html_theme = "pydata_sphinx_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { - "legacy_google_analytics": True, - "analytics": True, - "mathjax_path": mathjax_path, - "link_to_live_contributing_page": not parsed_version.is_devrelease, + # -- General configuration ------------------------------------------------ + "sidebar_includehidden": True, + "use_edit_page_button": True, + "external_links": [], + "icon_links_label": "Icon Links", + "icon_links": [ + { + "name": "GitHub", + "url": "https://github.com/scikit-learn/scikit-learn", + "icon": "fa-brands fa-square-github", + "type": "fontawesome", + }, + ], + "analytics": { + "plausible_analytics_domain": "scikit-learn.org", + "plausible_analytics_url": "https://views.scientific-python.org/js/script.js", + }, + # If "prev-next" is included in article_footer_items, then setting show_prev_next + # to True would repeat prev and next links. See + # https://github.com/pydata/pydata-sphinx-theme/blob/b731dc230bc26a3d1d1bb039c56c977a9b3d25d8/src/pydata_sphinx_theme/theme/pydata_sphinx_theme/layout.html#L118-L129 + "show_prev_next": False, + "search_bar_text": "Search the docs ...", + "navigation_with_keys": False, + "collapse_navigation": False, + "navigation_depth": 2, + "show_nav_level": 1, + "show_toc_level": 1, + "navbar_align": "left", + "header_links_before_dropdown": 5, + "header_dropdown_text": "More", + # The switcher requires a JSON file with the list of documentation versions, which + # is generated by the script `build_tools/circle/list_versions.py` and placed under + # the `js/` static directory; it will then be copied to the `_static` directory in + # the built documentation + "switcher": { + "json_url": "https://scikit-learn.org/dev/_static/versions.json", + "version_match": release, + }, + # check_switcher may be set to False if docbuild pipeline fails. See + # https://pydata-sphinx-theme.readthedocs.io/en/stable/user_guide/version-dropdown.html#configure-switcher-json-url + "check_switcher": True, + "pygment_light_style": "tango", + "pygment_dark_style": "monokai", + "logo": { + "alt_text": "scikit-learn homepage", + "image_relative": "logos/scikit-learn-logo-small.png", + "image_light": "logos/scikit-learn-logo-small.png", + "image_dark": "logos/scikit-learn-logo-small.png", + }, + "surface_warnings": True, + # -- Template placement in theme layouts ---------------------------------- + "navbar_start": ["navbar-logo"], + # Note that the alignment of navbar_center is controlled by navbar_align + "navbar_center": ["navbar-nav"], + "navbar_end": ["theme-switcher", "navbar-icon-links", "version-switcher"], + # navbar_persistent is persistent right (even when on mobiles) + "navbar_persistent": ["search-button"], + "article_header_start": ["breadcrumbs"], + "article_header_end": [], + "article_footer_items": ["prev-next"], + "content_footer_items": [], + # Use html_sidebars that map page patterns to list of sidebar templates + "primary_sidebar_end": [], + "footer_start": ["copyright"], + "footer_center": [], + "footer_end": [], + # When specified as a dictionary, the keys should follow glob-style patterns, as in + # https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-exclude_patterns + # In particular, "**" specifies the default for all pages + # Use :html_theme.sidebar_secondary.remove: for file-wide removal + "secondary_sidebar_items": {"**": ["page-toc", "sourcelink"]}, + "show_version_warning_banner": True, + "announcement": None, } # Add any paths that contain custom themes here, relative to this directory. -html_theme_path = ["themes"] - +# html_theme_path = ["themes"] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". @@ -211,10 +291,6 @@ # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "scikit-learn" -# The name of an image file (relative to this directory) to place at the top -# of the sidebar. -html_logo = "logos/scikit-learn-logo-small.png" - # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. @@ -223,19 +299,77 @@ # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ["images"] +html_static_path = ["images", "css", "js"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # Custom sidebar templates, maps document names to template names. -# html_sidebars = {} +# Workaround for removing the left sidebar on pages without TOC +# A better solution would be to follow the merge of: +# https://github.com/pydata/pydata-sphinx-theme/pull/1682 +html_sidebars = { + "install": [], + "getting_started": [], + "glossary": [], + "faq": [], + "support": [], + "related_projects": [], + "roadmap": [], + "governance": [], + "about": [], +} # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = {"index": "index.html"} +# Additional files to copy +# html_extra_path = [] + +# Additional JS files +html_js_files = [ + "scripts/dropdown.js", + "scripts/version-switcher.js", +] + +# Compile scss files into css files using sphinxcontrib-sass +sass_src_dir, sass_out_dir = "scss", "css/styles" +sass_targets = { + f"{file.stem}.scss": f"{file.stem}.css" + for file in Path(sass_src_dir).glob("*.scss") +} + +# Additional CSS files, should be subset of the values of `sass_targets` +html_css_files = ["styles/colors.css", "styles/custom.css"] + + +def add_js_css_files(app, pagename, templatename, context, doctree): + """Load additional JS and CSS files only for certain pages. + + Note that `html_js_files` and `html_css_files` are included in all pages and + should be used for the ones that are used by multiple pages. All page-specific + JS and CSS files should be added here instead. + """ + if pagename == "api/index": + # External: jQuery and DataTables + app.add_js_file("https://code.jquery.com/jquery-3.7.0.js") + app.add_js_file("https://cdn.datatables.net/2.0.0/js/dataTables.min.js") + app.add_css_file( + "https://cdn.datatables.net/2.0.0/css/dataTables.dataTables.min.css" + ) + # Internal: API search intialization and styling + app.add_js_file("scripts/api-search.js") + app.add_css_file("styles/api-search.css") + elif pagename == "index": + app.add_css_file("styles/index.css") + elif pagename == "install": + app.add_css_file("styles/install.css") + elif pagename.startswith("modules/generated/"): + app.add_css_file("styles/api.css") + + # If false, no module index is generated. html_domain_indices = False @@ -285,6 +419,9 @@ # redirects dictionary maps from old links to new links redirects = { "documentation": "index", + "contents": "index", + "preface": "index", + "modules/classes": "api/index", "auto_examples/feature_selection/plot_permutation_test_for_classification": ( "auto_examples/model_selection/plot_permutation_tests_for_classification" ), @@ -316,32 +453,13 @@ for old_link in redirects: html_additional_pages[old_link] = "redirects.html" +# See https://github.com/scikit-learn/scikit-learn/pull/22550 +html_context["is_devrelease"] = parsed_version.is_devrelease + # Not showing the search summary makes the search page load faster. html_show_search_summary = True -# The "summary-anchor" IDs will be overwritten via JavaScript to be unique. -# See `doc/theme/scikit-learn-modern/static/js/details-permalink.js`. -rst_prolog = """ -.. |details-start| raw:: html - -
    - - -.. |details-split| raw:: html - - Click for more details - - -
    - -.. |details-end| raw:: html - -
    -
    - -""" - # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). @@ -528,14 +646,16 @@ def reset_sklearn_config(gallery_conf, fname): sklearn.set_config(**default_global_config) +sg_examples_dir = "../examples" +sg_gallery_dir = "auto_examples" sphinx_gallery_conf = { "doc_module": "sklearn", "backreferences_dir": os.path.join("modules", "generated"), "show_memory": False, "reference_url": {"sklearn": None}, - "examples_dirs": ["../examples"], - "gallery_dirs": ["auto_examples"], - "subsection_order": SubSectionTitleOrder("../examples"), + "examples_dirs": [sg_examples_dir], + "gallery_dirs": [sg_gallery_dir], + "subsection_order": SubSectionTitleOrder(sg_examples_dir), "within_subsection_order": SKExampleTitleSortKey, "binder": { "org": "scikit-learn", @@ -549,7 +669,7 @@ def reset_sklearn_config(gallery_conf, fname): "inspect_global_variables": False, "remove_config_comments": True, "plot_gallery": "True", - "recommender": {"enable": True, "n_examples": 5, "min_df": 12}, + "recommender": {"enable": True, "n_examples": 4, "min_df": 12}, "reset_modules": ("matplotlib", "seaborn", reset_sklearn_config), } if with_jupyterlite: @@ -557,6 +677,26 @@ def reset_sklearn_config(gallery_conf, fname): "notebook_modification_function": notebook_modification_function } +# Secondary sidebar configuration for pages generated by sphinx-gallery + +# For the index page of the gallery and each nested section, we hide the secondary +# sidebar by specifying an empty list (no components), because there is no meaningful +# in-page toc for these pages, and they are generated so "sourcelink" is not useful +# either. + +# For each example page we keep default ["page-toc", "sourcelink"] specified by the +# "**" key. "page-toc" is wanted for these pages. "sourcelink" is also necessary since +# otherwise the secondary sidebar will degenerate when "page-toc" is empty, and the +# script `sphinxext/move_gallery_links.py` will fail (it assumes the existence of the +# secondary sidebar). The script will remove "sourcelink" in the end. + +html_theme_options["secondary_sidebar_items"][f"{sg_gallery_dir}/index"] = [] +for sub_sg_dir in (Path(".") / sg_examples_dir).iterdir(): + if sub_sg_dir.is_dir(): + html_theme_options["secondary_sidebar_items"][ + f"{sg_gallery_dir}/{sub_sg_dir.name}/index" + ] = [] + # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. @@ -606,73 +746,6 @@ def filter_search_index(app, exception): f.write(searchindex_text) -def generate_min_dependency_table(app): - """Generate min dependency table for docs.""" - from sklearn._min_dependencies import dependent_packages - - # get length of header - package_header_len = max(len(package) for package in dependent_packages) + 4 - version_header_len = len("Minimum Version") + 4 - tags_header_len = max(len(tags) for _, tags in dependent_packages.values()) + 4 - - output = StringIO() - output.write( - " ".join( - ["=" * package_header_len, "=" * version_header_len, "=" * tags_header_len] - ) - ) - output.write("\n") - dependency_title = "Dependency" - version_title = "Minimum Version" - tags_title = "Purpose" - - output.write( - f"{dependency_title:<{package_header_len}} " - f"{version_title:<{version_header_len}} " - f"{tags_title}\n" - ) - - output.write( - " ".join( - ["=" * package_header_len, "=" * version_header_len, "=" * tags_header_len] - ) - ) - output.write("\n") - - for package, (version, tags) in dependent_packages.items(): - output.write( - f"{package:<{package_header_len}} {version:<{version_header_len}} {tags}\n" - ) - - output.write( - " ".join( - ["=" * package_header_len, "=" * version_header_len, "=" * tags_header_len] - ) - ) - output.write("\n") - output = output.getvalue() - - with (Path(".") / "min_dependency_table.rst").open("w") as f: - f.write(output) - - -def generate_min_dependency_substitutions(app): - """Generate min dependency substitutions for docs.""" - from sklearn._min_dependencies import dependent_packages - - output = StringIO() - - for package, (version, _) in dependent_packages.items(): - package = package.capitalize() - output.write(f".. |{package}MinVersion| replace:: {version}") - output.write("\n") - - output = output.getvalue() - - with (Path(".") / "min_dependency_substitutions.rst").open("w") as f: - f.write(output) - - # Config for sphinx_issues # we use the issues path for PRs since the issues URL will forward @@ -688,10 +761,11 @@ def setup(app): # do not run the examples when using linkcheck by using a small priority # (default priority is 500 and sphinx-gallery using builder-inited event too) app.connect("builder-inited", disable_plot_gallery_for_linkcheck, priority=50) - app.connect("builder-inited", generate_min_dependency_table) - app.connect("builder-inited", generate_min_dependency_substitutions) - # to hide/show the prompt in code examples: + # triggered just before the HTML for an individual page is created + app.connect("html-page-context", add_js_css_files) + + # to hide/show the prompt in code examples app.connect("build-finished", make_carousel_thumbs) app.connect("build-finished", filter_search_index) @@ -796,6 +870,10 @@ def setup(app): "consistently-create-same-random-numpy-array/5837352#comment6712034_5837352", ] +# Config for sphinx-remove-toctrees + +remove_from_toctrees = ["metadata_routing.rst"] + # Use a browser-like user agent to avoid some "403 Client Error: Forbidden for # url" errors. This is taken from the variable navigator.userAgent inside a # browser console. @@ -813,3 +891,78 @@ def setup(app): linkcheck_request_headers = { "https://github.com/": {"Authorization": f"token {github_token}"}, } + + +# -- Convert .rst.template files to .rst --------------------------------------- + +from api_reference import API_REFERENCE, DEPRECATED_API_REFERENCE + +from sklearn._min_dependencies import dependent_packages + +# If development build, link to local page in the top navbar; otherwise link to the +# development version; see https://github.com/scikit-learn/scikit-learn/pull/22550 +if parsed_version.is_devrelease: + development_link = "developers/index" +else: + development_link = "https://scikit-learn.org/dev/developers/index.html" + +# Define the templates and target files for conversion +# Each entry is in the format (template name, file name, kwargs for rendering) +rst_templates = [ + ("index", "index", {"development_link": development_link}), + ( + "min_dependency_table", + "min_dependency_table", + {"dependent_packages": dependent_packages}, + ), + ( + "min_dependency_substitutions", + "min_dependency_substitutions", + {"dependent_packages": dependent_packages}, + ), + ( + "api/index", + "api/index", + { + "API_REFERENCE": sorted(API_REFERENCE.items(), key=lambda x: x[0]), + "DEPRECATED_API_REFERENCE": sorted( + DEPRECATED_API_REFERENCE.items(), key=lambda x: x[0], reverse=True + ), + }, + ), +] + +# Convert each module API reference page +for module in API_REFERENCE: + rst_templates.append( + ( + "api/module", + f"api/{module}", + {"module": module, "module_info": API_REFERENCE[module]}, + ) + ) + +# Convert the deprecated API reference page (if there exists any) +if DEPRECATED_API_REFERENCE: + rst_templates.append( + ( + "api/deprecated", + "api/deprecated", + { + "DEPRECATED_API_REFERENCE": sorted( + DEPRECATED_API_REFERENCE.items(), key=lambda x: x[0], reverse=True + ) + }, + ) + ) + +for rst_template_name, rst_target_name, kwargs in rst_templates: + # Read the corresponding template file into jinja2 + with (Path(".") / f"{rst_template_name}.rst.template").open( + "r", encoding="utf-8" + ) as f: + t = jinja2.Template(f.read()) + + # Render the template and write to the target + with (Path(".") / f"{rst_target_name}.rst").open("w", encoding="utf-8") as f: + f.write(t.render(**kwargs)) diff --git a/doc/contents.rst b/doc/contents.rst deleted file mode 100644 index a28634621d558..0000000000000 --- a/doc/contents.rst +++ /dev/null @@ -1,24 +0,0 @@ -.. include:: includes/big_toc_css.rst -.. include:: tune_toc.rst - -.. Places global toc into the sidebar - -:globalsidebartoc: True - -================= -Table Of Contents -================= - -.. Define an order for the Table of Contents: - -.. toctree:: - :maxdepth: 2 - - preface - tutorial/index - getting_started - user_guide - glossary - auto_examples/index - modules/classes - developers/index diff --git a/doc/css/.gitkeep b/doc/css/.gitkeep new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/doc/data_transforms.rst b/doc/data_transforms.rst index 084214cb094f5..536539ec97007 100644 --- a/doc/data_transforms.rst +++ b/doc/data_transforms.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _data-transforms: Dataset transformations diff --git a/doc/datasets.rst b/doc/datasets.rst index b9484a02ce84c..ee767e5843256 100644 --- a/doc/datasets.rst +++ b/doc/datasets.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _datasets: ========================= diff --git a/doc/datasets/loading_other_datasets.rst b/doc/datasets/loading_other_datasets.rst index fdd7fd1666cce..004aa66c001e5 100644 --- a/doc/datasets/loading_other_datasets.rst +++ b/doc/datasets/loading_other_datasets.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _loading_other_datasets: Loading other datasets @@ -37,9 +33,9 @@ and pipelines on 2D data. if you plan to use ``matplotlib.pyplpt.imshow``, don't forget to scale to the range 0 - 1 as done in the following example. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py` .. _libsvm_loader: @@ -72,11 +68,10 @@ features:: ... "/path/to/test_dataset.txt", n_features=X_train.shape[1]) ... # doctest: +SKIP -.. topic:: Related links: - - _`Public datasets in svmlight / libsvm format`: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets +.. rubric:: Related links - _`Faster API-compatible implementation`: https://github.com/mblondel/svmlight-loader +- `Public datasets in svmlight / libsvm format`: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets +- `Faster API-compatible implementation`: https://github.com/mblondel/svmlight-loader .. For doctests: @@ -219,11 +214,11 @@ identifies the dataset:: '969' -.. topic:: References: +.. rubric:: References - * :arxiv:`Vanschoren, van Rijn, Bischl and Torgo. "OpenML: networked science in - machine learning" ACM SIGKDD Explorations Newsletter, 15(2), 49-60, 2014. - <1407.7722>` +* :arxiv:`Vanschoren, van Rijn, Bischl and Torgo. "OpenML: networked science in + machine learning" ACM SIGKDD Explorations Newsletter, 15(2), 49-60, 2014. + <1407.7722>` .. _openml_parser: diff --git a/doc/datasets/real_world.rst b/doc/datasets/real_world.rst index 78b09e6f722b0..f05d475b0db78 100644 --- a/doc/datasets/real_world.rst +++ b/doc/datasets/real_world.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _real_world_datasets: Real world datasets diff --git a/doc/datasets/sample_generators.rst b/doc/datasets/sample_generators.rst index 7dc123f08424c..5b8264c2a22b5 100644 --- a/doc/datasets/sample_generators.rst +++ b/doc/datasets/sample_generators.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _sample_generators: Generated datasets diff --git a/doc/datasets/toy_dataset.rst b/doc/datasets/toy_dataset.rst index 65fd20abd361d..d7edecddd3510 100644 --- a/doc/datasets/toy_dataset.rst +++ b/doc/datasets/toy_dataset.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _toy_datasets: Toy datasets diff --git a/doc/developers/contributing.rst b/doc/developers/contributing.rst index 9f43d8ed52c38..402711dcd1bf3 100644 --- a/doc/developers/contributing.rst +++ b/doc/developers/contributing.rst @@ -70,10 +70,10 @@ link to it from your website, or simply star to say "I use it": .. raw:: html - Star - + Star + In case a contribution/issue involves changes to the API principles or changes to dependencies or supported versions, it must be backed by a @@ -82,31 +82,27 @@ or changes to dependencies or supported versions, it must be backed by a using the `SLEP template `_ and follows the decision-making process outlined in :ref:`governance`. -|details-start| -**Contributing to related projects** -|details-split| +.. dropdown:: Contributing to related projects - Scikit-learn thrives in an ecosystem of several related projects, which also - may have relevant issues to work on, including smaller projects such as: + Scikit-learn thrives in an ecosystem of several related projects, which also + may have relevant issues to work on, including smaller projects such as: - * `scikit-learn-contrib `__ - * `joblib `__ - * `sphinx-gallery `__ - * `numpydoc `__ - * `liac-arff `__ + * `scikit-learn-contrib `__ + * `joblib `__ + * `sphinx-gallery `__ + * `numpydoc `__ + * `liac-arff `__ - and larger projects: + and larger projects: - * `numpy `__ - * `scipy `__ - * `matplotlib `__ - * and so on. + * `numpy `__ + * `scipy `__ + * `matplotlib `__ + * and so on. - Look for issues marked "help wanted" or similar. - Helping these projects may help Scikit-learn too. - See also :ref:`related_projects`. - -|details-end| + Look for issues marked "help wanted" or similar. + Helping these projects may help Scikit-learn too. + See also :ref:`related_projects`. Submitting a bug report or a feature request ============================================ @@ -674,219 +670,200 @@ We are glad to accept any sort of documentation: useful information (e.g., the :ref:`contributing` guide) and live in `doc/ `_. -|details-start| -**Guidelines for writing docstrings** -|details-split| - -* When documenting the parameters and attributes, here is a list of some - well-formatted examples:: - - n_clusters : int, default=3 - The number of clusters detected by the algorithm. - - some_param : {'hello', 'goodbye'}, bool or int, default=True - The parameter description goes here, which can be either a string - literal (either `hello` or `goodbye`), a bool, or an int. The default - value is True. - array_parameter : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples,) - This parameter accepts data in either of the mentioned forms, with one - of the mentioned shapes. The default value is - `np.ones(shape=(n_samples,))`. +.. dropdown:: Guidelines for writing docstrings - list_param : list of int + * When documenting the parameters and attributes, here is a list of some + well-formatted examples:: - typed_ndarray : ndarray of shape (n_samples,), dtype=np.int32 + n_clusters : int, default=3 + The number of clusters detected by the algorithm. - sample_weight : array-like of shape (n_samples,), default=None + some_param : {'hello', 'goodbye'}, bool or int, default=True + The parameter description goes here, which can be either a string + literal (either `hello` or `goodbye`), a bool, or an int. The default + value is True. - multioutput_array : ndarray of shape (n_samples, n_classes) or list of such arrays + array_parameter : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples,) + This parameter accepts data in either of the mentioned forms, with one + of the mentioned shapes. The default value is + `np.ones(shape=(n_samples,))`. - In general have the following in mind: + list_param : list of int - * Use Python basic types. (``bool`` instead of ``boolean``) - * Use parenthesis for defining shapes: ``array-like of shape (n_samples,)`` - or ``array-like of shape (n_samples, n_features)`` - * For strings with multiple options, use brackets: ``input: {'log', - 'squared', 'multinomial'}`` - * 1D or 2D data can be a subset of ``{array-like, ndarray, sparse matrix, - dataframe}``. Note that ``array-like`` can also be a ``list``, while - ``ndarray`` is explicitly only a ``numpy.ndarray``. - * Specify ``dataframe`` when "frame-like" features are being used, such as - the column names. - * When specifying the data type of a list, use ``of`` as a delimiter: ``list - of int``. When the parameter supports arrays giving details about the - shape and/or data type and a list of such arrays, you can use one of - ``array-like of shape (n_samples,) or list of such arrays``. - * When specifying the dtype of an ndarray, use e.g. ``dtype=np.int32`` after - defining the shape: ``ndarray of shape (n_samples,), dtype=np.int32``. You - can specify multiple dtype as a set: ``array-like of shape (n_samples,), - dtype={np.float64, np.float32}``. If one wants to mention arbitrary - precision, use `integral` and `floating` rather than the Python dtype - `int` and `float`. When both `int` and `floating` are supported, there is - no need to specify the dtype. - * When the default is ``None``, ``None`` only needs to be specified at the - end with ``default=None``. Be sure to include in the docstring, what it - means for the parameter or attribute to be ``None``. + typed_ndarray : ndarray of shape (n_samples,), dtype=np.int32 -* Add "See Also" in docstrings for related classes/functions. + sample_weight : array-like of shape (n_samples,), default=None -* "See Also" in docstrings should be one line per reference, with a colon and an - explanation, for example:: + multioutput_array : ndarray of shape (n_samples, n_classes) or list of such arrays - See Also - -------- - SelectKBest : Select features based on the k highest scores. - SelectFpr : Select features based on a false positive rate test. + In general have the following in mind: -* Add one or two snippets of code in "Example" section to show how it can be used. + * Use Python basic types. (``bool`` instead of ``boolean``) + * Use parenthesis for defining shapes: ``array-like of shape (n_samples,)`` + or ``array-like of shape (n_samples, n_features)`` + * For strings with multiple options, use brackets: ``input: {'log', + 'squared', 'multinomial'}`` + * 1D or 2D data can be a subset of ``{array-like, ndarray, sparse matrix, + dataframe}``. Note that ``array-like`` can also be a ``list``, while + ``ndarray`` is explicitly only a ``numpy.ndarray``. + * Specify ``dataframe`` when "frame-like" features are being used, such as + the column names. + * When specifying the data type of a list, use ``of`` as a delimiter: ``list + of int``. When the parameter supports arrays giving details about the + shape and/or data type and a list of such arrays, you can use one of + ``array-like of shape (n_samples,) or list of such arrays``. + * When specifying the dtype of an ndarray, use e.g. ``dtype=np.int32`` after + defining the shape: ``ndarray of shape (n_samples,), dtype=np.int32``. You + can specify multiple dtype as a set: ``array-like of shape (n_samples,), + dtype={np.float64, np.float32}``. If one wants to mention arbitrary + precision, use `integral` and `floating` rather than the Python dtype + `int` and `float`. When both `int` and `floating` are supported, there is + no need to specify the dtype. + * When the default is ``None``, ``None`` only needs to be specified at the + end with ``default=None``. Be sure to include in the docstring, what it + means for the parameter or attribute to be ``None``. -|details-end| + * Add "See Also" in docstrings for related classes/functions. -|details-start| -**Guidelines for writing the user guide and other reStructuredText documents** -|details-split| + * "See Also" in docstrings should be one line per reference, with a colon and an + explanation, for example:: -It is important to keep a good compromise between mathematical and algorithmic -details, and give intuition to the reader on what the algorithm does. + See Also + -------- + SelectKBest : Select features based on the k highest scores. + SelectFpr : Select features based on a false positive rate test. -* Begin with a concise, hand-waving explanation of what the algorithm/code does on - the data. + * Add one or two snippets of code in "Example" section to show how it can be used. -* Highlight the usefulness of the feature and its recommended application. - Consider including the algorithm's complexity - (:math:`O\left(g\left(n\right)\right)`) if available, as "rules of thumb" can - be very machine-dependent. Only if those complexities are not available, then - rules of thumb may be provided instead. -* Incorporate a relevant figure (generated from an example) to provide intuitions. +.. dropdown:: Guidelines for writing the user guide and other reStructuredText documents -* Include one or two short code examples to demonstrate the feature's usage. + It is important to keep a good compromise between mathematical and algorithmic + details, and give intuition to the reader on what the algorithm does. -* Introduce any necessary mathematical equations, followed by references. By - deferring the mathematical aspects, the documentation becomes more accessible - to users primarily interested in understanding the feature's practical - implications rather than its underlying mechanics. + * Begin with a concise, hand-waving explanation of what the algorithm/code does on + the data. -* When editing reStructuredText (``.rst``) files, try to keep line length under - 88 characters when possible (exceptions include links and tables). + * Highlight the usefulness of the feature and its recommended application. + Consider including the algorithm's complexity + (:math:`O\left(g\left(n\right)\right)`) if available, as "rules of thumb" can + be very machine-dependent. Only if those complexities are not available, then + rules of thumb may be provided instead. -* In scikit-learn reStructuredText files both single and double backticks - surrounding text will render as inline literal (often used for code, e.g., - `list`). This is due to specific configurations we have set. Single - backticks should be used nowadays. + * Incorporate a relevant figure (generated from an example) to provide intuitions. -* Too much information makes it difficult for users to access the content they - are interested in. Use dropdowns to factorize it by using the following - syntax:: + * Include one or two short code examples to demonstrate the feature's usage. - |details-start| - **Dropdown title** - |details-split| + * Introduce any necessary mathematical equations, followed by references. By + deferring the mathematical aspects, the documentation becomes more accessible + to users primarily interested in understanding the feature's practical + implications rather than its underlying mechanics. - Dropdown content. + * When editing reStructuredText (``.rst``) files, try to keep line length under + 88 characters when possible (exceptions include links and tables). - |details-end| + * In scikit-learn reStructuredText files both single and double backticks + surrounding text will render as inline literal (often used for code, e.g., + `list`). This is due to specific configurations we have set. Single + backticks should be used nowadays. - The snippet above will result in the following dropdown: + * Too much information makes it difficult for users to access the content they + are interested in. Use dropdowns to factorize it by using the following syntax:: - |details-start| - **Dropdown title** - |details-split| + .. dropdown:: Dropdown title - Dropdown content. + Dropdown content. - |details-end| + The snippet above will result in the following dropdown: -* Information that can be hidden by default using dropdowns is: + .. dropdown:: Dropdown title - * low hierarchy sections such as `References`, `Properties`, etc. (see for - instance the subsections in :ref:`det_curve`); + Dropdown content. - * in-depth mathematical details; + * Information that can be hidden by default using dropdowns is: - * narrative that is use-case specific; + * low hierarchy sections such as `References`, `Properties`, etc. (see for + instance the subsections in :ref:`det_curve`); - * in general, narrative that may only interest users that want to go beyond - the pragmatics of a given tool. + * in-depth mathematical details; -* Do not use dropdowns for the low level section `Examples`, as it should stay - visible to all users. Make sure that the `Examples` section comes right after - the main discussion with the least possible folded section in-between. + * narrative that is use-case specific; -* Be aware that dropdowns break cross-references. If that makes sense, hide the - reference along with the text mentioning it. Else, do not use dropdown. + * in general, narrative that may only interest users that want to go beyond + the pragmatics of a given tool. -|details-end| + * Do not use dropdowns for the low level section `Examples`, as it should stay + visible to all users. Make sure that the `Examples` section comes right after + the main discussion with the least possible folded section in-between. + * Be aware that dropdowns break cross-references. If that makes sense, hide the + reference along with the text mentioning it. Else, do not use dropdown. -|details-start| -**Guidelines for writing references** -|details-split| -* When bibliographic references are available with `arxiv `_ - or `Digital Object Identifier `_ identification numbers, - use the sphinx directives `:arxiv:` or `:doi:`. For example, see references in - :ref:`Spectral Clustering Graphs `. +.. dropdown:: Guidelines for writing references -* For "References" in docstrings, see the Silhouette Coefficient - (:func:`sklearn.metrics.silhouette_score`). + * When bibliographic references are available with `arxiv `_ + or `Digital Object Identifier `_ identification numbers, + use the sphinx directives `:arxiv:` or `:doi:`. For example, see references in + :ref:`Spectral Clustering Graphs `. -* To cross-reference to other pages in the scikit-learn documentation use the - reStructuredText cross-referencing syntax: + * For "References" in docstrings, see the Silhouette Coefficient + (:func:`sklearn.metrics.silhouette_score`). - * Section - to link to an arbitrary section in the documentation, use - reference labels (see `Sphinx docs - `_). - For example: + * To cross-reference to other pages in the scikit-learn documentation use the + reStructuredText cross-referencing syntax: - .. code-block:: rst + * Section - to link to an arbitrary section in the documentation, use + reference labels (see `Sphinx docs + `_). + For example: - .. _my-section: + .. code-block:: rst - My section - ---------- + .. _my-section: - This is the text of the section. + My section + ---------- - To refer to itself use :ref:`my-section`. + This is the text of the section. - You should not modify existing sphinx reference labels as this would break - existing cross references and external links pointing to specific sections - in the scikit-learn documentation. + To refer to itself use :ref:`my-section`. - * Glossary - linking to a term in the :ref:`glossary`: + You should not modify existing sphinx reference labels as this would break + existing cross references and external links pointing to specific sections + in the scikit-learn documentation. - .. code-block:: rst + * Glossary - linking to a term in the :ref:`glossary`: - :term:`cross_validation` + .. code-block:: rst - * Function - to link to the documentation of a function, use the full import - path to the function: + :term:`cross_validation` - .. code-block:: rst + * Function - to link to the documentation of a function, use the full import + path to the function: - :func:`~sklearn.model_selection.cross_val_score` + .. code-block:: rst - However, if there is a `.. currentmodule::` directive above you in the document, - you will only need to use the path to the function succeeding the current - module specified. For example: + :func:`~sklearn.model_selection.cross_val_score` - .. code-block:: rst + However, if there is a `.. currentmodule::` directive above you in the document, + you will only need to use the path to the function succeeding the current + module specified. For example: - .. currentmodule:: sklearn.model_selection + .. code-block:: rst - :func:`cross_val_score` + .. currentmodule:: sklearn.model_selection - * Class - to link to documentation of a class, use the full import path to the - class, unless there is a 'currentmodule' directive in the document above - (see above): + :func:`cross_val_score` - .. code-block:: rst + * Class - to link to documentation of a class, use the full import path to the + class, unless there is a 'currentmodule' directive in the document above + (see above): - :class:`~sklearn.preprocessing.StandardScaler` + .. code-block:: rst -|details-end| + :class:`~sklearn.preprocessing.StandardScaler` You can edit the documentation using any text editor, and then generate the HTML output by following :ref:`building_documentation`. The resulting HTML files @@ -914,7 +891,9 @@ Building the documentation requires installing some additional packages: pip install sphinx sphinx-gallery numpydoc matplotlib Pillow pandas \ polars scikit-image packaging seaborn sphinx-prompt \ - sphinxext-opengraph sphinx-copybutton plotly pooch + sphinxext-opengraph sphinx-copybutton plotly pooch \ + pydata-sphinx-theme sphinxcontrib-sass sphinx-design \ + sphinx-remove-toctrees To build the documentation, you need to be in the ``doc`` folder: @@ -956,7 +935,8 @@ To build the PDF manual, run: make latexpdf -.. warning:: **Sphinx version** +.. admonition:: Sphinx version + :class: warning While we do our best to have the documentation build under as many versions of Sphinx as possible, the different versions tend to @@ -997,45 +977,37 @@ subpackages. For a more detailed `pytest` workflow, please refer to the We expect code coverage of new features to be at least around 90%. -|details-start| -**Writing matplotlib related tests** -|details-split| +.. dropdown:: Writing matplotlib related tests -Test fixtures ensure that a set of tests will be executing with the appropriate -initialization and cleanup. The scikit-learn test suite implements a fixture -which can be used with ``matplotlib``. + Test fixtures ensure that a set of tests will be executing with the appropriate + initialization and cleanup. The scikit-learn test suite implements a fixture + which can be used with ``matplotlib``. -``pyplot`` - The ``pyplot`` fixture should be used when a test function is dealing with - ``matplotlib``. ``matplotlib`` is a soft dependency and is not required. - This fixture is in charge of skipping the tests if ``matplotlib`` is not - installed. In addition, figures created during the tests will be - automatically closed once the test function has been executed. + ``pyplot`` + The ``pyplot`` fixture should be used when a test function is dealing with + ``matplotlib``. ``matplotlib`` is a soft dependency and is not required. + This fixture is in charge of skipping the tests if ``matplotlib`` is not + installed. In addition, figures created during the tests will be + automatically closed once the test function has been executed. -To use this fixture in a test function, one needs to pass it as an -argument:: + To use this fixture in a test function, one needs to pass it as an + argument:: - def test_requiring_mpl_fixture(pyplot): - # you can now safely use matplotlib + def test_requiring_mpl_fixture(pyplot): + # you can now safely use matplotlib -|details-end| +.. dropdown:: Workflow to improve test coverage -|details-start| -**Workflow to improve test coverage** -|details-split| + To test code coverage, you need to install the `coverage + `_ package in addition to pytest. -To test code coverage, you need to install the `coverage -`_ package in addition to pytest. + 1. Run 'make test-coverage'. The output lists for each file the line + numbers that are not tested. -1. Run 'make test-coverage'. The output lists for each file the line - numbers that are not tested. + 2. Find a low hanging fruit, looking at which lines are not tested, + write or adapt a test specifically for these lines. -2. Find a low hanging fruit, looking at which lines are not tested, - write or adapt a test specifically for these lines. - -3. Loop. - -|details-end| + 3. Loop. .. _monitoring_performances: @@ -1365,95 +1337,87 @@ up this process by providing your feedback. retraction. Regarding docs: typos, grammar issues and disambiguations are better addressed immediately. -|details-start| -**Important aspects to be covered in any code review** -|details-split| - -Here are a few important aspects that need to be covered in any code review, -from high-level questions to a more detailed check-list. +.. dropdown:: Important aspects to be covered in any code review -- Do we want this in the library? Is it likely to be used? Do you, as - a scikit-learn user, like the change and intend to use it? Is it in - the scope of scikit-learn? Will the cost of maintaining a new - feature be worth its benefits? + Here are a few important aspects that need to be covered in any code review, + from high-level questions to a more detailed check-list. -- Is the code consistent with the API of scikit-learn? Are public - functions/classes/parameters well named and intuitively designed? + - Do we want this in the library? Is it likely to be used? Do you, as + a scikit-learn user, like the change and intend to use it? Is it in + the scope of scikit-learn? Will the cost of maintaining a new + feature be worth its benefits? -- Are all public functions/classes and their parameters, return types, and - stored attributes named according to scikit-learn conventions and documented clearly? + - Is the code consistent with the API of scikit-learn? Are public + functions/classes/parameters well named and intuitively designed? -- Is any new functionality described in the user-guide and illustrated with examples? + - Are all public functions/classes and their parameters, return types, and + stored attributes named according to scikit-learn conventions and documented clearly? -- Is every public function/class tested? Are a reasonable set of - parameters, their values, value types, and combinations tested? Do - the tests validate that the code is correct, i.e. doing what the - documentation says it does? If the change is a bug-fix, is a - non-regression test included? Look at `this - `__ - to get started with testing in Python. + - Is any new functionality described in the user-guide and illustrated with examples? -- Do the tests pass in the continuous integration build? If - appropriate, help the contributor understand why tests failed. + - Is every public function/class tested? Are a reasonable set of + parameters, their values, value types, and combinations tested? Do + the tests validate that the code is correct, i.e. doing what the + documentation says it does? If the change is a bug-fix, is a + non-regression test included? Look at `this + `__ + to get started with testing in Python. -- Do the tests cover every line of code (see the coverage report in the build - log)? If not, are the lines missing coverage good exceptions? + - Do the tests pass in the continuous integration build? If + appropriate, help the contributor understand why tests failed. -- Is the code easy to read and low on redundancy? Should variable names be - improved for clarity or consistency? Should comments be added? Should comments - be removed as unhelpful or extraneous? + - Do the tests cover every line of code (see the coverage report in the build + log)? If not, are the lines missing coverage good exceptions? -- Could the code easily be rewritten to run much more efficiently for - relevant settings? + - Is the code easy to read and low on redundancy? Should variable names be + improved for clarity or consistency? Should comments be added? Should comments + be removed as unhelpful or extraneous? -- Is the code backwards compatible with previous versions? (or is a - deprecation cycle necessary?) + - Could the code easily be rewritten to run much more efficiently for + relevant settings? -- Will the new code add any dependencies on other libraries? (this is - unlikely to be accepted) + - Is the code backwards compatible with previous versions? (or is a + deprecation cycle necessary?) -- Does the documentation render properly (see the - :ref:`contribute_documentation` section for more details), and are the plots - instructive? + - Will the new code add any dependencies on other libraries? (this is + unlikely to be accepted) -:ref:`saved_replies` includes some frequent comments that reviewers may make. + - Does the documentation render properly (see the + :ref:`contribute_documentation` section for more details), and are the plots + instructive? -|details-end| + :ref:`saved_replies` includes some frequent comments that reviewers may make. .. _communication: -|details-start| -**Communication Guidelines** -|details-split| - -Reviewing open pull requests (PRs) helps move the project forward. It is a -great way to get familiar with the codebase and should motivate the -contributor to keep involved in the project. [1]_ - -- Every PR, good or bad, is an act of generosity. Opening with a positive - comment will help the author feel rewarded, and your subsequent remarks may - be heard more clearly. You may feel good also. -- Begin if possible with the large issues, so the author knows they've been - understood. Resist the temptation to immediately go line by line, or to open - with small pervasive issues. -- Do not let perfect be the enemy of the good. If you find yourself making - many small suggestions that don't fall into the :ref:`code_review`, consider - the following approaches: - - - refrain from submitting these; - - prefix them as "Nit" so that the contributor knows it's OK not to address; - - follow up in a subsequent PR, out of courtesy, you may want to let the - original contributor know. - -- Do not rush, take the time to make your comments clear and justify your - suggestions. -- You are the face of the project. Bad days occur to everyone, in that - occasion you deserve a break: try to take your time and stay offline. - -.. [1] Adapted from the numpy `communication guidelines - `_. - -|details-end| +.. dropdown:: Communication Guidelines + + Reviewing open pull requests (PRs) helps move the project forward. It is a + great way to get familiar with the codebase and should motivate the + contributor to keep involved in the project. [1]_ + + - Every PR, good or bad, is an act of generosity. Opening with a positive + comment will help the author feel rewarded, and your subsequent remarks may + be heard more clearly. You may feel good also. + - Begin if possible with the large issues, so the author knows they've been + understood. Resist the temptation to immediately go line by line, or to open + with small pervasive issues. + - Do not let perfect be the enemy of the good. If you find yourself making + many small suggestions that don't fall into the :ref:`code_review`, consider + the following approaches: + + - refrain from submitting these; + - prefix them as "Nit" so that the contributor knows it's OK not to address; + - follow up in a subsequent PR, out of courtesy, you may want to let the + original contributor know. + + - Do not rush, take the time to make your comments clear and justify your + suggestions. + - You are the face of the project. Bad days occur to everyone, in that + occasion you deserve a break: try to take your time and stay offline. + + .. [1] Adapted from the numpy `communication guidelines + `_. Reading the existing code base ============================== diff --git a/doc/developers/index.rst b/doc/developers/index.rst index c2cc35928cbf9..cca77b6a015c9 100644 --- a/doc/developers/index.rst +++ b/doc/developers/index.rst @@ -1,16 +1,9 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _developers_guide: ================= Developer's Guide ================= -.. include:: ../includes/big_toc_css.rst -.. include:: ../tune_toc.rst - .. toctree:: contributing diff --git a/doc/developers/maintainer.rst b/doc/developers/maintainer.rst index 70d132d2af604..ffc9b73156fa8 100644 --- a/doc/developers/maintainer.rst +++ b/doc/developers/maintainer.rst @@ -1,6 +1,5 @@ -Maintainer / core-developer information -======================================== - +Maintainer/Core-Developer Information +====================================== Releasing --------- diff --git a/doc/dispatching.rst b/doc/dispatching.rst index d42fdcc86f9e8..101e493ee96b7 100644 --- a/doc/dispatching.rst +++ b/doc/dispatching.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - =========== Dispatching =========== diff --git a/doc/faq.rst b/doc/faq.rst index 8ddf0c4c238f6..81f03b49bc7c9 100644 --- a/doc/faq.rst +++ b/doc/faq.rst @@ -1,3 +1,32 @@ +.. raw:: html + + + .. _faq: ========================== @@ -9,8 +38,9 @@ Frequently Asked Questions Here we try to give some answers to questions that regularly pop up on the mailing list. .. contents:: Table of Contents - :local: - :depth: 2 + :local: + :depth: 2 + About the project ----------------- @@ -323,12 +353,14 @@ Using scikit-learn What's the best way to get help on scikit-learn usage? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -**For general machine learning questions**, please use -`Cross Validated `_ with the ``[machine-learning]`` tag. -**For scikit-learn usage questions**, please use `Stack Overflow `_ -with the ``[scikit-learn]`` and ``[python]`` tags. You can alternatively use the `mailing list -`_. +* General machine learning questions: use `Cross Validated + `_ with the ``[machine-learning]`` tag. + +* scikit-learn usage questions: use `Stack Overflow + `_ with the + ``[scikit-learn]`` and ``[python]`` tags. You can alternatively use the `mailing list + `_. Please make sure to include a minimal reproduction code snippet (ideally shorter than 10 lines) that highlights your problem on a toy dataset (for instance from diff --git a/doc/images/ml_map.png b/doc/images/ml_map.png deleted file mode 100644 index 73ebd9c05fcc465d359c469abbdb34eafe5cb6bc..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 761071 zcma&OWmuJ47d4CsBA}p@G}0gq(%s$NA_CIgrKBL;NJ~n0m$V=qTj}nGO~<>o&*OQ{ z_vd?G&UG%`T<&|{_nLFfIp!E+?GPme$)_mzC~$CaPo<^ARN&wq%fP`Q(mj3ze#7ZM zVg>$q;HV-g0#`ajxCLGy+ev9V!ofYVf&KqLtlpIg{1VAYT3#G!4gnMW1%dMNQ9k(9 zqqnk>VsQ7c|1w+hW8qL!ZKcJ8)!e3c=a9UxoUeM1+FT2M4b6KVm~r!?cXx!CajU5* zaaVjsaZyxMKEf-TMeexAks@9%JMFKHh9>!pwq{J&oP|9#;9`@e+yzua1TmRW_C&XY%?19!LA z&P^_RW4EW{ij5_@b=#a)zcRs^9q5)Aw$0~~_*{Ia)Lw`WC*Z7|Zg#J_>m~7>AXX*z zTxj)f#Mu$d9xd2=v4Ql@1As?cd`z7cl*a42&0#&AW7y(R)0&m_T}fZxx}doD^-zZ3 z0+;8Rm9esNwE5NPR^B(&{4Wj;4nHxe6<+7(W#F50!Mycp2aW&FYgSW`|&$f1B3Ll zW>i#Ec}hykJZ{Hz+!yp(Z;A^GS*Io^@xG*_JhhxE9)%~?t+ScDJsx1v;S%-3)6@O; zL%;F@6kV>A6Z;)jMwCC4l)B_#4tpZnKHnlz0lJYKeB zWNlY(ukLD+nW^a)M@Pq+!$1V4)l{jMxp{d#9Wu!&Qk)9WZ3^szNke*QW7?u))YDOn*QIN?BIDG`P-L{XkM6qJ<7 zY^6;n6{DToAfX2iwC1C>Qs#<1UYhhhiWw%uwFD3WF2;fXsewm(SwZMDAf zzq|&i>clW6{$?P7;VLhW%0J8_>iM&fkPuTIp-l3=Pguy4T|GTI@4Q082&3)E9nz#X z-|o*g=;VK%p4PE$?whW$gc5MtSnWBGuIOBFBmVOYV0-vPE1uoMa%r+ibEl}VFf1@I zP{-`?7QPS*$(&L3Ck880B1S5O)PivA=p)A5+}xhyV~3I^abx3bqsc;bk1fAS=N*l? zp)_7+1_lP6o{)bo4))N9|K3cUVx7a9OiP$#-;Wg!cXesKvkEII3Jk-bWn|=tkB`TD!JzXl?m62)A`_(Nlht&!G}F@8 z7SHqTFbVQ9hJPLk774^-=}Qvd8)a(5c|Sk+@n03jO?ttfMi$>NEJm@~q~g4!`T0}r zBwtRMoz1iWJ2%&2?&i`$)V*Q4@_qEQvVMunb#Xxf zGoyB8mj`|#UXJ6y6?6wWQ)@lGH(euZb_)^F{9kniC29Km8|G@S^Ep=!+I~|LljP3M zPIPx>5uTS~fq~{}L{wB11?Jzr6~5-x-KiW=Qp=h8nO4N1sbTRE$yjy#`E#euLb<^~ z3t#V+E0Zminvy~p)SO}lI@JMLS#@uttU^Ybkw)8}LqA4&-u5;8l$KF3x3_;~{}Y#; zgGYxKGIr@#-u3-{R!mH+`VqtGh9-|rTwGid4!u@pApMswU!GV(N+%n&Z$Lo^d-_j- z1_h1K-Q{4uBvu(tMNVEuhLxm{@d4{TnE;i<4jgGVJp~-8xXYG{U5=Cc2XgKMhVXC; zSL>4LR=0}jYP+ndr|;Hwe-~ENYcZs;h%)>fP&Jv_$>pMx#m>n!heQULzf+T$El{>l z6AR#w2(%}^L!>7oC$IU?9e|8k9Zh<9d6}nOWr{a2Fc2=A$jIJTkT#gYxpThzJDV+K zu-WCG&H)y;5gjj^G=n~a$GMP}iYjlsNxVx;?0ujWtrb(UfW9}cZTgh=2WAAGl+p_2 z9UihYMjslGnxE1MkuR!&Y;1SGWQos}jQiu!4P@!B9jmCS zPhA{MUpzzB2?!24OJX4ziw6nQ$!Fa2WV|B~H5}9%POJH5ZC_CJdp!Rx2*3mF(LG@E z73(#qWMpL6qM)PKIf*Gd+-#2OEY*N&uvh#oOY5oAN(2rPKK_KFY{L6&(VT}rS$BqO z0@BwNlfQ;Pjs75RD&jZwWPxz~!xtlbnVf!o{LPj;qC#t&v2 zRLwY2F8Tji1ptQlKPu!~n%mfLNEtD&zWn?p>-%?$w<3Nz%qF2aoVMv>>>Mg@9!1!# zuMJGLUU}4HH|kgy6etyK45>Q@22SsE{S3iWcX|62ry%qR>dqKxC=3m}cwrU|>AyVL zuuP+=wOttELjU``AOSYfa>^kS6Yu(lhB%NA5sB1}m_aG1VP;aa)~}Yj?&1zKg4;8( zu+iX6WK<{UAD9dsQ&HDf$~4_rg%zP!42%i{4>7!=%Cyt4Gy4Vyt)D90T&zSQ(ER-j z00uMZezp0wm45x&flEZ>tz^tj6-HE4czjahN7bzl7px;I>VIW_^tQxNUQ{`{uy0^o z;%1eK+R|9Cqp7_Q9UklNrNHK~!?m8NmFEOuRJF6SYeMmP@ZiBKegOkm+1UG5lB^*s2Y?7y{08J)G*WapjC70|pz>jK+)}a3ur`d07S8SEO7PTRN`7I!q9z-)!UQ~)Q82U6^S9o`pdeH= z&vSBc;DZz>jYSi=A^r>5VawX3RcDhXKuz6C`0UxDW(5PsD;c`etxduQa7fmmPG7mq z^VQU63Jv!4DPi_RsDrc&rr;xe&@eHfc2cZe6$T&@+wQLl|HHo*g{^OT_xsni697vt zudLh>mqmjDp)r`8O+S#RI*af@lrU3DKhL4CjKE@u$z9Pv~AgCn7F=b$mQ=cjbW+3pdh@m%yM3 z%kh}4adi-pPy+Ts)lSUl=;(ymS-tV)?$6;VoVHW4xRDG06m$@3w5EgBYlV!|RI9W6 zi+DnUqAxNsaSaX0%j9rQ##bf-6XI<2KFZ2uh2gIV7=Tc_>KN1Yp8x3^YK zPWcGbetv#xGBTm=L#f<7Ff6I7qk{|ir=o!6TiKg$(dBgBR*NkQEdDg21gnuXO|=Q| zWN?JvmqHF+&?~85Uc$g!w}iN}o1I9{2MP)btU zD&7+n^(+HLV`*ybRldAxP##ri0Ne)-9ejexx|8*9?hOsF(twDB=Cyd%R*p{)LwP= zpZW^YP4cn1WO`K8;&@UxvT<+WAnFU1=7(^EIG#J(6R=Vm6QA1?NnGO0x&3KG3~cHz zugzl`z$|n)z|=Nk{TH~v3iUUA3IM|1#NqAFqew*?85OpcN0AZ1Wy+eHTd7$N^sD_| z{qf3u_ZJ$fLKqS6l!~67l@1sy=dU8K|7I7g7B|hbdN(QPM0nC+Nq_&w%%)28{(a_4 zB)HAv)$_???W$^JqU?@NUW(Vxv9NMj!T9tUhk^ADlpUv(e=SfW=I8D)vOr?mD>u3) zl)XKLgYofL^Kfu;Q<3WGuC#57T;G}dM7*-S$AqT)N`Rl*I0$|a}~|{ z6l5Zz>T^Gn`zyV;#W~=FB8}c#jP*GE>>tvAZI-AJF)OQLle695Jz%)rrVQ)5{rfav zuZ)OKOikg7h=?@fcu`SOers`d#+rbGV!>1?4y(wG6Hs?Nk5jVqhpnD{t*LKc z06I!qB=|EbiduiYJreep$4{Q9adUI8W7BEiQk?dAKmG3=fQT%1!^YmFr6n9i@uY%s zX4oi&RSO5Vi2yRbI$8r06GQEdkWiB-=J9oNdHG1SQRgH6bFTkA!Ut3sf=6(p?dvOe zO1r4k2M?Ed0&-L-yt~^%MI{CW4aLIsJt!$tDh38Naiz+$Cx74kSZ47PjIfcBkpaP^ zcchkAF_o}}gR|4xOk_}{laW<7uqXsT*#^9yfniY3(9m{d%V`$rZ(f4;_hmzNbStZ> z28nfDg98dC9XC{Rzzuw62IUBbiNX8_kd>w88!|2~E%`K_$!gO##bYXe#L{v-fEx+l`&Oh1tMsH)dHNrbk#*hy1||i}b5p*vqW@cg zOiv3dtJiK<0p@SsWWqK>I|7^#dL_XA>R-}IzIJp>gYZ|CYJ%!AU15x*Pxbe<5hzEz z>Gc~Y7Qa2lc#dB<#iS(!Q2htu{${TR9aW9Ia0o1Nn(tvSyctjv{;+)rBS~RDu)Yj| z;qvrQV&m-WNdT;s#Ngo;A7@!wsR3mBik-1k|6>S%0J4C;u?OYaDfvI|gaepe2*T>R zuNO%gQeDsGoSF6U>vK3b$pXU!M)ft-{K8)aG;I$tVS~|hwRs+_h%_Ah-Em;w8kvBM zfpxp|P=eT)n7D5Z$zC@wZ-QQK=Z8yiL#@zpXE39%|hDjI? z(mK?h7E%YN`+jGsPW#H^^ONGL3Pwes;H(kAQQHv&)=!RELw z2i7Xk-5tvV4z6AJ8eqHl*ti_$@Iz|m=Y)jCrazO6rYlW8r+ae#_kLm1eVqHrIvzhZ zm4)fg%yLjac_xOw;FsvCztc)u(5D(3A0Grm4LS4wJ_+ug0T3RG<^mU$%Wp%$qi2pM zeMzag4qvS>zD1LRv2$&g>jeH`&sJLhLIRKn2JGzYc$*a9I*p+W@$nWO9*rPzj_H`6 zgE_|h{d?x5LDT)C|1IR=G_2r!{P@uZ6%B-2r5wC7xcg(!BiN|?Hv8)hid+}qopN*& zKqBXlvvsx^ z5!XWhtmQ}Yky8C8r?Hr6eHK!%l}&7H@^Hb5HWts-)L3Y^)S@7x9CQB(1uQRlUH2*e zv#f^$h3Z94Q*8|4H$=nVMUYFewcOHS|rC<^c$GHbEIMTTZ zy-EO#Syj_lVZiWg3yD4y2mNMbZxbNNujb=wYFbIdACXzi$0)`DTsxhm`?GgvqZu)V zx^K`0F4|4ZK5dQX@8o88Rt*bS^6b~IpqVR?v9OFT-nc0W-d2C3Ba%&1fM5_1SUyHU zVMW7bZl5jEWCBzW$bwBi0B0%L*v74;$f(FfERE!|08i^=){{r2&So5hkBPSh_93if z0q6ja30s8^9PbDN99eufN3skaJ~lBi@z{7NWcG+sL{xMJfd?>qkX%uuZ{NN>`tK)T z;e5`eWMUd#EoFX&hm+@`rm3n2mYP4v{nDYPI7bYOlo!}ZQqs~a_lKS62>&UlB>?R} z@{&k!a7<54<^;U2lF-$a$OHuq51KQ;v{717M6v)LcSZ!LB4E=HmDbn)0*~;TOUt^n zI42XVkw>w*<9fmBFReCsOjxf5l<-b{;-B%XuMJErP3(s+mx4iJTvzXx8+FPBzoH=} z`9jEL_hx5B-*wJ80Sww(H`@1kDK@NzPNU)p%gf86XQY1D2W<;-|NYd$=H}VWQn+VW zxCN~#f*J5AABa0Ez1#`b*G)5J9i8WnPiDDSTdBzf<~Pd4goHkP5%6v_Ki{AG??W;y z_};gG=I6|VjCIi%aq=r-=!wiPtJ!+xI?z?q!dB1BT5@F*Yh7}Z09&`DLVWs4;KESlzkD*8!Oic`6&qG z$J8~F;X};tfVY8-WC;m4|H&G-Ho}NZF;DNywL}S!7@%uyPUWaONlAU0;k>al8`@>* zj$jH#*Bo+$?B*gNsbV=8-KKJH*Ms3La=a!{KM#A~OWzPOl1X%J93jx?Odv_*td_FE zw2;B!QC&OKJfRkRAYJe0Xrx)6!l{_%c5_tHyV3udN#m+VB0`=Q9^>r$V?dtab0=^( z+`h+QIS`b-0U1c=-oEY6=)9>cjEqM~ zM$QRR4WwJ<%-EI_!%9zhRlR3yo7eUPvHI$T&zY4vt4}ljb@z+yyrMEHnx*W3X!04t zqIEy`42bX2QLiq9_xg0aW{CJ2%s#Gwpx?}n6Zv*03}+PwYvH%KsseeI>1!1DbVLP?*0^+X{bnj8G1wGStu#Hl{7T+IB}os&6heo)T@3UEx^Y&djTpcKKKXft6x^bcOUk^xc}l?X^AzaXc-ddS zhB-Ssdk9d#0}Ry|-u?Ln!CXsn1~G}R7?w`@?m|Xp0D5aOw<^&b;6m(U-uPo}d1;?V z2;Pkv@oNq=bG(l_yG0!m&}B$|Eq$$Xm&Ag$k++a>KWiL$P|mY=$Z+6@9f)_zF7yRop_-BzL;iF6-)ubLQ16Kn!Hh zL8(BD{T&!&>W6Vs%hBbeMtTM4zvD)9j+9t@hmXf1*l~PA2K35i^Kq*G)P+UK@7$m{ z*lnb_e&G*S7dW4FWKap1+JOq#dcsDrXmUw>Mc%#FpYyFV+?GQu4i~@Y_4G(23j47Q zadoa-fhj}4S?`dYMp;cQ=ls--18^W3XFGFFH5pmQree}}9Ezxs?qsv{EvQzSLqBaoq~P7J z{NDQWdC$4@rbvOS0%)@}DADJ?j3bk089ayi&yzq&pJ|-?%+&g8&j;jJ9rRa!JvQ<) zBJ1MFszqsWBcRc0sYNU*9m?Q^k&)B?>LT_d;{U0SkOcz*oj)-@Q7l4gl~>&em8 z;`eEmYnLhdjH&33xr$!GaStz&9mw#SL(%8ZYMaL@yH)pBs|7UB{#eDrVFO=%I;^t^ zV^0V}-TPkZqn)x_oibK7)s~~v@#!QC?jXJV*6>;8-+>fVke|xjvNG!H%NX&>>cwNP zP}R3Pl3(S%4U#cX%8XgxC^|aHGsoyZ{vaw*+8{>P@Q6B2Q4_Uaw&pOP8Am2b(vN?> z1LNj~Ls2e&4qHd6KK;(OK^oowINdD-)^?IKz!~5)a zf+%)elmep4rmN5XSp?5Ejq@NogsT`P8K(>h-g|v+6Gq+&SX31HTJ(sL;^j!0pz65 zS-Vhqgb!)G-JD=xR3eg&1LJ-f-x*`^Uk;2QMo8uNL+lBNJ}Es+kvG1~6dA_T$v z;K+Fo#{PT-^{lCD6hnASQc_ZjyPHc1TQ*w&T;Ud_0JpyQ3?8UG&IBA$Z|gd*qima( zDmG`^e0{6(?Gc9N2vSi2Q7X4oFiBFFDF#%MAs=_-*uJ}~V=X$3;*m@IxN_=j z`BX>>kMlO^&dZVc%&uS(pUr27^^1O}^mLk~PTD^W>+P}(8iRi^F=b2gS^Gjt^%;hY zX(ht(*UswYQn^N#zQj9Qe|%~S<4a;ANY8c#v~cmBlV>4cM|HG%U+bhceUdUm)to6Q zF1B*qy8{LpNJL#&>+crNx`9%rvAJ&dmMqcWFK$E+0V2@vpKWjqx6u_+OtS03W(Dh3 zn)>N+@XGZ%+pwM9t`zDmn*x7)W)~@n%&*AVsE*@(N?EX&Gj88ri?aiVKzv}}cGH+j zO+~RBs_acAP_}hdvz?_X4qgc>eYK2IHtp8d?w_k?GlK~VU%ue`|CC*8#Rd!79=)F( zDZn~icajL-(qyuRd7Yo`QP`d6cMq5Y=upO0A{u7;S$D&=U%ukKtkIQg+w~kNvdj}) z=1lh2c0VW+wSa_s0Lj1Di_}&`lX=a~zGbEFZJi?E{?F43CmN)a30ZOsv?* z;SagI54ddVgNtO1QG&5y_d0psl^UHL6iECaH!~bFOY;tda5wQrlFHX#kr__`dd=-ntXWF{r9A}_^W-v`%&Tz z!KsYj#fNt4g3g6FZ@93GIj!a>R&NH5a^NEOmq`LwCS!o1W~JJEdN|Q3Aqw)7C_aAL zGOei;1A(fskN-3D+}c1URM7}I8i-5tFiPfH6NYCcD`5j%&7sHf4{AEw0a(qSK4wLE z(;Go#gF2zecN8ExdeN|vescB0bxX;pEyAh%u(~-+U~@N9OixeGQqs?Hm>+VySGRD* zzb#bjOMyT+@3F%Wyy5|RlXlK^ZNBrW8;{^H03RNF0>gYKVVwoIw%5*}wa-+olwrp|c` znYzF=-E+vKoZ=?q{`6v2uY|mtS8=DFJnNyhVR~Yd31iD5d`9HT`sK-Fxv>AlXp2X~ zoPq65_!8#rwWaU_+nJQaFNIgLUR4eXe!NZNjbZdV=DI(oG8(8$BIzOz1}YkU?z_v5 zbdOi^78QB74z22(J6V4kFZTWLsO`S>Oxjs-Cf0Gq!dqH?z?o*i3beTMd7q}4-o~YV zI(2y)n|wsd96S1q>crdV4e~$}7|8^4%IKy10q(>muf>pr%Ev} z;K^u4YplN&t6`R$KWh!3q?pwK^y^zfn4juUZqw zJ%i>&(3e3(*!rpW%9{3h29j8en;92=3x@zJz>c*su>$uRmMqX9O8I*)q#nyiB?gQu z@D48TY+`xV%{qMUG=_pvVR!G>yLaz!-|cpR{=d$CdN?AA&TR#36CaVV<35Fi*t-+2 zwjdfdY4RXZQXG;(DQ$OtY~pX+hJYF5Q0EZ<3204~m8^B-oC)!9PATxB;u1lf1@N?8 z^G?u79c8@^%*0gR)=s8n)%!yvc1WjGG?>A1Wc?h4mcd}CStbCD^SCCt9|>I>LcH?( zrImrwIA;I7c4#X<^{d1aysr}8$029t_eckg11v-ygX}iEB2pE_2PJj2jGm(n8-?eF zZo)eOFXw1;HV^FB+|TE%8b6lMny6yXHV9m$cZ) zM|e~y?0cQk$$iF2Ln_|oIK-9h%#X||_1s`+m<|*l#Uo@x0pp4vv54udj`|dD2i@9QL9cDQZ!Q<=p$qRr5^vCO_AQN3I#$G6L zFtrnyx7>_j4ZQvNM)wOtr^iqG@(<8C=8b1`y({huo#5Llk>=0Sa^GBIzY^O+BW3y;vmd|A^b_4}iUH zEG^3Hf^n5dO^QPRsJ1WfG*YM9`56*%!4z(uv}zj{P6E#_iHdEml&rD06itTJ)Wp7C zDbE7DV$PC-Nn9>Wyasa$j?%76!q&}+1`!eX{m>8$)(S(79u+Po za`AyG1>O>8JY)|kUN6m=*iwSeRaNZ6PjMH^t?|&`UZ;l_MH5$+VR#*Zq}jMlpRsY& zlI(b{^1jAUp;Uc~!l*43!L-@humkIbR+;lP^j&ojLddF_c!!+BU_XmiR6<^0#85S_ zjgH9gtNT5?&&#wlMg&cyW$4FMx^_iS{bf4m1Zag^#TB#H{>EKOqI#?`OJ$P!L@-`}1i%K#tu$4*I`;~qd{ zxIlwEfnYFwpeA(CpE`4~&mA4)#V;rQzLO+fDagB_Q1v%ZtM* z?dpoL?Dho14;ZUo2A0t=wbnax)0#GIZ@;;(XYHJytfly5Upe=*DeT6s&UgBgpD1qJ zGZm?G5QQ|BT?nnLv^{UaDptOrhJ`+WViC|0K(>%3NbNqFg*zN6V*V;>IjS~oUI1*70`FEi@d zPf{jwQH4u}ZB}Oncr6qI!}n@DLkD#OW-8UU@5V0aUD+vX6WAm> zjeZt)0eEGi4i>-+oN*IkK701Y$)|KI>nq(ON*G!0D7hQ!s3a00>{&+LknYX^gTle` zKxUhXCIFVvCi&+^TdP0NILTRgI>wI`&khdCo4p*GL8!*2X9WUCjagowHw*JvwX3yegNlK*_<@<;`B*^CuhW?s;dl?-U2p*G_-j524BQ zQRmzu%g|>C%o(}kZ7rE!WK_Kj&$KN`B`xUumh;7#|=gKpBJA&i$q=L5^#(+6mv@YN_NeZBr|!tWa! z8|%Hz$YS~vcVK(62s*n1Qy(_BEG#XdwJeyWdd`#T2{}0w{$(E>Hk45~=bU02*v^_j zJiuT)d1gDD&d&hrrJ_c9>9VdUGB+zE_sr7F?V2$8$XQHjIbPF%g*)=TW%KK2`c^yV zJwSt9o}Sl-g=hoiMu409_aUg%xWVWoHXiHAW^yq4McYpRBa~~edYqmJJI-zUTRsm( z+#+Gzr_fL`ng_6mC-Ao^j7c{a5Cl5ST)3?TyYyW7_)KkKaX6QOwr zAA*Jaop7U8su~OWc1{EiimQOuA`ccs<_ypP{E)JYH|!7Rc1K-pS%h`=G0vnZbDJ8k;Hl z633{pSW=o%w&G-7&G3-WV_N1vViS<)aC>3hGE*{E8Oi(Vl%)w(_7f^&eLDswrZID} zoR2g4W`W|8tA^57-}^gL+WH00gBHe&dq68U4sM1U@A164UIuE(K~!ddBP7V5-E4?3 zQaD8XGtO3q&z1Rj2zC1Ac`Z5>%@MFtW5&Ta>1SgO^dRPIec^{AN;QyRGFMFpXl^3U zEOY&K&KpIPdsN`*o8Ix%DdiVNzJ@Qx`pW0M&}z5;t;yd}5*azD`do`U81o&1lw_)Z zDREpqa2FEU=9mqi)!)=rnVOS6rcJtTRFpv9&`kvb!M){@Y0J@pjBp493Ef4DgPo=? zzc&iLIBclA#5Fnb1SC~d1^(V8-Z>TyPf})=PZMYn^oO}Zb47d-(EDS4XuBp!0aELo z&@ICuIaKMeZK5+Pqd>AlP}Mi`O62LMyGReGiNx*Er0DI6Q4Ql(_~}Xm0*CNEDA^tH zWkVw=`AGiG;oa$*cnsVE2cY^FcZt=|u&ELtQI?soN&uN;3|f%enw}|!{<2IP96wNx zf~I<+$_4}k6!iDYWY=*%{1YEuHvDjy8o{RLb<~Zc7-))&Wi{70X`R_@*ydxZNkq_S zq4c)>!-I7og*P&sX1K2>x zG9}O=lD1YN1vz9~k+-CjRaLVS_xf60)s&V?>gNBm*8SJ{ON*LSQpIeCQ>+e0| z;)0_4ZkAh<$SHNaI73{IE#?&4PnglvEpjd>Ur2mG>^oaV)*Ak^xNaeWke9Y^!1#0` zGr$QsY9FuGBywl&x*Q8h(f;aT0UaXcozpEeqUtnH0eWdaByj5#>}+BcSSB2DZPPZF z-@AFfA;?=yy_7YCBGYHtABl~9he#>Wdhjg9jbe8}M@R%<4>(`1UEj&}dLgKoSCj`C zsT4oAzy&9%&<^w^BuJ0^VK3r)NEiaO&Ce%i+%(Y?Lh>ajIFG8)Wu%y+GR1~Z zVxdrruTZb+F?})tf%!_GTaO-lSaaGu`WONnT%GI?y%i2-`yuWPEe@O6&B`POWAxp` z+wqLMiCljS$@{bPiss(yAJiGRxt2jEC*ELYozV{yh!YMWux%bC%U1EKF(1zZRrd)V zYu8dzf6X`^iC(-t{t&qUjJH0X*6OIMp)L+AyGyg%*_~SBO_m2aX}1Rk~d)sp-H)tLznB zk*Gfg73e%px!Qte5yQgB!BJutW;&d3$Wl^VA}EWBl!1l9w9hTi=JjbR&z-5c*UZIDnI+0_9saEGIQZ+%Yf!m9Kd%7hXghA)zs#QS<};z(~Neq z4}Z!1+S%!iB8P>Al>{jDUamhD3I5jXN~{grrag{Ca$1UKOBVcFj~5RGmM1lJd5rG? zayQz+S5{H^TE`D0%;u^=$DyGi8_44bQM|ZK8bH5N6u)V^aova%SwCyX)=n{0t4> zwsQmLgT1<<8QXf{IlHxZw3#!UxTp>dfT#8HGAUVZE)4GrEgT%Zr#a2P-}M%iIy97I zdqP#1o)Q*JUHsP00n45$nb>!95N4?y;adyk4)nRm!oSRiqrF75rTrktW*_Il zVOfnIgIRRP;$FPo@MC4dvBCa>3&VRzca9c2g=d%thhwz|6}b)w2P@@R{!Y1}MWzfc zw~9$%a8bvFn|gY579!nL23j_Ah!bWEGo4g-QfAK#k42PMjJPY z#U`~=9wO>}O*{o8oWpFON;`Lpzi4tqfaa2kp2Ag2@JYULx}VCD?K%|^ZB{CHJ7XRjm|qf zHwSqUC^GdsZY&O~QrTttuOm(~#q8}X=G}cQEiHMSoN^uQOn^y401+YeAr3e}2IC?a z`7K?b67C{$a&-(zas>R-OH`tbjD$et1cLN-@wkGc*2Xa^lUlaGrP!df!j#VC42hYq zgzc}`G9ZyxP&Jn49C#XQ%nT8SalR^Q%$1uP;15Mx;gogH=Yj@nN%G zQXzJ`VM=Un(BOb_*>FbAycV-|i*kC=d@-CujiqoYasx+DyoqHNGP0ahVhC^OidQ4r zK^3ZuR6eC2#)yxm_VBsWPR*jMYe;c1{Yg5%=O*JHh%tl9{N{tk<5nQ2F|^XRf%8*Gt?Ho$3#+2)@Y z<*G_*K9%{@b_Xp(+nEI#Es@L6IbhkSxX6eEn@gz4)l(tl;Mg-TQ=$O}Iwfeh%iG~c zR)V2h`lDk%Vu@^U6a?4eIx*s+lmc!mVKumHMi5B3-jW}D(FvyVIs*{k`LOr(e=BL^ z0pvdceo<$St2)W3z}-E7dw(UFGJZlN&p5@Buhvxu_D6+V}D!aCE> zU&NIkP_b~ai#+{7oE@}IS&)dLTK%;Sfg%T2pxL1izk)_Fyx>co1pSbvt@;bN>6(|2 zuETyl=z0gO&KnUwc8r7zS#!SyB2c?B2M^AU9pafisv+gzG+}@VIC1Ng2+PBfHR+?@ zXY&?i1}$++#)#nT2ayCl0wQ7q{h`i1hXq?L>>RB?pQZ_Zvo)AP{RVY%K@UP zs=GmRJ~fEM{oU>0&@g0%XY8oslFOYpSb;=kQrfO}&fZyIp{)5h6!M`xid1wuwF!tv zSAfQVPU#M|BKY4>8WCLY^$*K}9JXz}qyolP5TVPQ+{z-(u7?ldC(zKl$M@eznwX?0 zc3u;pZGOt^YQH{k)v9G?99pSGpO~z{OSCV)p3zepF~t%C3~*B|W%qt;s?DNLY2kK) za7YU~dp|dS%g)O(&#hLYwiZIBY=s&dtY7mVj5G?gmg#1`o-BWzi;OL(9Nme#_Um-`&MW zZ!2|oz*zPf3?Nxnl{$@TRhfnlHRuND0m=QU@P~_jn#;5~PWI^L36z3}Jcljx)&a(u zw49E~>QILObOnJqGK1gv@g;Z-&N%)6IM;E1)$ARZ1CiJrR2$2=Y&AOw!1o83YbuGH znS=9bVGj_&h@EBzj*>`d+I|QQ40vBvAnXln^`SUGG&#HvvHBlTc_uGKZW7hrbDnE>&2SL48(335e9$#pDr^lH2iqsPs zKAvq^c00Wf_^(Oz_*1xb_yw(-JsOzRpQfbbVmIf;1~5>N1|FR!4yqh*#uuW0`Ka;- zRkbX1U|PyZF4&R0{rOE;@A}Xw-SPPB;02NAZiU5a zUvv+!;_TE}&*a4l`G@^1*dM z2i>7nLp%d8#jw`Ku*XkIE32SDO3>@VF81V@17>-l1P3yhZRh!J!Rfl}5++0s+PmO@ z0Nk|-y%K6;B7xge)jju_DMuW@o!Hgv&$%vGD*ziwu|bOtb@x6H!&{&SLbo7;-Z`N? z{pI>TDk_k02Ig~$r0%xeu*bxhayw`_4^z#PW5L3~*jR!bJos(jUxZ~fP=Su67%;J zM|WUplP^7!9s0g-cg9)eP5oqxf)r9-ym6CS+H$5N3(V(6m&a>78=1j+#tva~X}nvE zWcrG$?%*3Twpwlpr5?Zk5kq+ezK`G*oY%5)*q^p?JQ?In!NkOT3I-|c5uPe&zdMxT_n zG6i~G?@_s5h~2l;E$ll6Kfr6U|Bd*9iz)^%x!NXPh@S>V#qBI48RU==!N>6?Z`-?D-M*=(>rl79wUVy z2shWhvbC8Cy&NL-mpo`1UOFI&qi)=)pS2534=***t!fmVmBzz1NV@xzb4Qc1)AaxE^$| zMgMKav@8$vuk_DRXyDs1+SYVN;4ueG&C@8Y^eN|QhSgmMQ(#-$^m@4)_C*F|Mj;m$ zZUa*#x?BH&Zv*y|4edlTQcpG_p3OJDN(BZh97B>7z`NP9eI=)*{js=nb=GaHNlwrl zee`@kT^1aj|K8AUOD=x1y!^JM?V2_V-ZheX>4|IBvlJL>;lRA%3&eIF-*aux45w?C zI*1UkBP+l^Z?%!_c@J}@ST2eZpOpFD7D4t507;C4$6%~mX1mbJ2#G$TI-5yE!@465 z29lXOVG5}*if`Q(E%P!M-xd9cn@b;np$|<}MdhsnG{_Ykr)PDi9dqFv3Y_>n%v&Ze z)t-*knsLGKy1Z{NfBe7^Meyb%H*wbH08HgBS{gjK^>klkk-{(|cola1-n0!p;MB+6 z>g2)T zID&dHfxP<14qZ7}{H zs@^-E>Nor!FN9M@4zl;bAv@XIv5qY=A`w~HD?6Oxn8%jAC0n)-kx@nnnaR%Ho8PVX z=kxu2zdiaV9&}#!>$TA@&GrCEsY%Aic8WvBJ$%{k%#snR$~A|r;a zJon`GZykI`LgkX=;>(l1xg(7}f&*Ri_owLx#`KdwHN`9J}h7L9`kA^JkeFr#ZP?*JAB!tRph@ zcWv$9n!~E1=q%F8zy=V^pAui{8PU(bi?Q*Ds=Euf&kokCz;svLm&3)K1!tf~;vDCu z!k5}-Kblmosy)d760A>;KVL3OU)k(iH3Mfj{Cw`3$SJnEvOW65@f|KP{Yz?)Oc;h8 zT@!k>#qf@sGKrKYpg;kO8xRb0z6h~ekkZlFW7hioPqw$6lEz-6Q0qx? z8c<+tyshU$^Ef{Fr-M&r77XzEl zj{A;=6*B40e~awD8v5@3EuIL)ql#oSVapr-5-{WYu?D-HUx}gA-OOnwgDfH1Ic3@d zz(L#S`Lg0S7u|POZAmT%0%|>&G3~_>&GoB)i)*&NNnMN;SxfK>jx5&ZZ(C;i(qC&9 z8J9Uv2)dtg6jt+y|Bcg};MzNwbiCRkzO@#4F_KIPI6Xv=T4x5A+{brm)(*!*{Ey92 z_X}|dB+_{yka17GiuCZ_?`oO-brG+e{M9(xeT=LCHP?eEUEIrefA<^bq_@=L@5$Lh zhUGD=acnkStLL+ano$iUcCDp)Kz3*B)|qseMS5oO2mg!svV)TZBS4&`SvW(R29%}~ zpLNk6byCnD>6fL)rR&TWxh>{P`A)TFTZq=KX~mBX+=(dEqQYG2XDs8t zfnvhb=vG$|Ok1CS{VrcIO%+M5wROgTGD6%A_3jm| z=d7}btfIT}GfR*YO}}Ve#Ks;14R3~PW}YY>714{PwXyQC+F#}uT@SIYlbyh&@9&~#IKDsL@I z)Xd!6KHhz(zjoboAi81zRjG+xs8q#OBUwhK*RfdwIsImZ300ue8KJNU*ZpapJeJ@H zD}4VezlXTJ>{QCgKF_;A*(~UkCDy5)Dhx>`_;lr8I{9Y(k(sgaS~3}= z{?kQt!27lG`u2_Imx~3dBY2}1VHfAFbu1!j;RiD)zvJw&D4LA^x>DB=*ARSBQ|MF7 z{H7-U;->V4O0&4z`_WEB5MgZ@mz2tzRL|9lr`Q%g8NEHm+JGj1Ep{9N+6_`0AuDy=ckA@yKfmr)6K32?MQ` zjfQS#%nhh4I@t4+JZT>^VC0!H@5Tck<}vuBJn|hC6(~i5n#_l?vi{E(Le~xq`~j>` z9U@whtT^Gy=y(U{Vcuua^IujqK~05!>U@U+CRTnBts!M+GqD3exYc;Veji3pwrVnjJbQCr2ji)a zYWY4;5lEK1*A=nj^K=RjEryLgAK69CS|)j|zhu1S@uZ8u)1i5@QD}L*!KA_MmD8q$ zIm=j}-w`o~ZljS#5XUCHJQ!(_^4(F0UT$V)k$-Xs5~hPSN>R_Sih!rknfmQCSBWy- zn_+ct33f!}5G~6CQYy<7rl6GM!UI9N`D)3v;|BO|{Cd3m>E&#k+@;?YeRi2&No(U= zPe?Tp(S+;i#u;|b)o^1*1S8es#8L+@hpfiKA7?*7LTUSL>S%R))NeWtt zV^x6Z!Lpfrbqs6S;iGnJ&w%5U#-$klzXetddeM<5VOcl;XIFr!;1BS%ngwpYn7Fv- zi9|1^eEw&k9K0MJv$mjHJWVPck<{)TpL%!|vOoREts%nwf=f6g_2Uxo7>h=-7)$q1 zO*aDF61IPO2;VY4X^a@fMBxwpnhO`69r;w#|Iq}{Jy4hfQw9kGagD0!2+Z9&I;@u#D717}Z|&A)2}@qL)%}^Xk29cX z)GQSM$y9zNFGkGFo}QLtN)Ug#WDB(!daC%6%)&}yu}n6hh<^e8nBH=S34&CRb@vr z{bI9%iZ=ueqhp%fM-$`k#;>5VIzZX|@A0svp3=o8oEx)kyNcLY+fCDGT4#3uj_xXM zn(;H7-utokVXU(2z3Ns&?ty5th@|0#^Y&~2UEJ;t&EFEca;-7xoh-4#JW~ISSC7&P zGI~NEQyewuon1+>WQ@^YC1z_{o89*M9>*)9bcb+!Yku!!{wKsLtzh-&*OR|dV^`Ui zTkmtL5Acz9<7K)gtePJKsQ@oRRglseJuWj=`LECn?hX#C)2mf5jtFLU!;6JKrV{03 z;op!Xl!bs+14KsI6aQ@S^7#7=ZWLqot;w;xFTuVWKeSD2{WnVgVr|$pYf7m|3VG)p z);uwNrIWtbWmi4VbR}&qcU=DMd=B>T({2DA>{7t@{o#QUvy|(r_3%rV;!~6Ir$(Wl z4{K;Ly$$ZD67;Du!es%J&1$L8dV`DSL#U<(s1Y46pZ>et|32b4mr-@Mr7#-IHHR^S zu5r5^NN~^cT>D>=>S8Vuw>uzK8Jpv)W)rWtlNqz$jPB4LC`^pyg`*^_^rKI{cW6%t z2#=RqUAeCcnw?Elc!^Go^_yJkDE%1yTcO0EXY2SgTTkzx{GLM5hn%p#kM(r%`Q=}d#K?AI z?gBc{T@s%$hng3q)D34Rv$H;~4*ilxQ{*Zz38~Dj!oCKp)-BNn(XFF%`nP73|NXtk zn!K)1K31raE~fWT-Fz$M;dwG?=m}A}~owNskP%ie7;Kb!hj<<-bqzmGx^A^^oZ>X48?-M#FCPlB9HX=4t6_ zKT-PXAzS*+sMuZrsoNi`JvXG}2l72L|BF`YN{LLR|9KPz2<~;NS9mz+{dJ+oLc}+j zVgCWamkRitK|K6XSntF4EIN$4OW)XInHTo5Xz_4Rv3i_?-_mDmb2~8u>j*TbeM%!4 z>p~An6asxz5J5JaQTphS`=n#!B{&T5*BPp9Vhp^=TzT^Ko8PXzX^6N(+kG+j5g>d1XX1g6v%s}*F z`KE8Q1H;Y+b6p8Rfnp?>SaL-wMC(4|GgmXATQd_U#v|{O@9ia7gntO z>j(G|=Z5G_#u2+T>)PJkUy1+CBA$8>2)9+x>RVZpapsHH6*+YIamo)cVIxxR*sl=L0xnx7qkz$YBXc1?y-z(KX?-y*-SXh+#BSpUO0)Y4 z-6;HG{2$30h(JX*i5wETJC4?7tk#So)DCmqVW&hfOEHNg;NXJY>7!r5Mx!_IvzhHD zg|HM-B+Tw>bVJ!|TV#(kF0BP;3`$uf3v>AY*(SJd3%9p_8*T&&(i`nz|7SL|fz_c) z!9J6N?mfC|%OX*=EG=3^uIfPUIeEd35 zx<^;OWnVja+H~o$Cv*3+l|hp4X$7{k5UV7HOuNobiRt+#{#`p~e}ymwo%m_7n-j19 zbGq!JVkw_=J4{5un9x_y8Q77x`p;*jMX02Pq27phg;4X_YpX;m-_K;CU@74sDJGNa z=ykjK$0_;UV);`#E1>E5W&-@H{M|mOSa(T*e@Cxb2Ud)P2 z8Xblm5X%XisIz{wV?@CuL`-0{Uh|(F0Y}`nfB^D8f3HV@ZHaTQCK?kMrv7>8Ht;=g z#ktRIE;mJgP7$Z~K*1iO@RD7G zh0!i5QY0orC_A3*a{53z4mb|_Rq83t|9q}N{4;JsfGw^lo zpq|H<4`x*ZuQrvRIho=+MRMp!DA2m#A~xd~t6q$KuMUdh&`D`P9N}EGH$tT1JDA-C(IrK*lJ< zAk(YaK)RL%LO$Nod~IcU>>Ay9kRpVVud1CFk!o+p8i*YcKinM4?=4535&iFl{VxAv z=TE0%4c?&7Ykr#gVq4l!FgFVwcy1nn;OEu80 zL&+w6u0#LAK?%iL66*HLF;1=SMRfH(L?un;4@$ybjzc{y(vGP=BwiqJ54GpM_S=eW zI2}QEhxFe?xegM?0_Wl39Pb;(z+GrSsiVD0bZFcVi-qMwiyo3#TBdx#?oRv$GBa}K zrHQb+lP~o1OFw@9ULyCzSJv`=swGUV+#&=N<%M)f*1mXG`Zp*CZWP`jdsw7u`m#;p~rf$&dYM|=cVW`9A)Z#Sbba^Q*&~4pV7xJz5|6F$qVIbtp|Gp)ig7!P{ z^8aNwUMt3eN3HK36^JCT7HFi~p6(4upWJ-#pLIXJ4Lu^Z*-AV9YR#@3x=X#fO47x` zq$F4!|I;9YM@hMeMA=$K2fG7XB|_#yFib&N4h54pSPZdAupX`stG4;@Ci2mJd@x?% zXxU7xpFF{W={UY@PQnL9XTd3E0_x;atY>nvh>L`t-huCGe(U_dbEjIol-h{&lT^Pan?rcf z&_bRb9?bY->L~`3G=^Wog0x#dOiK8v7005b_}o@O96W+Twjg zk01A1=c)dE*zE?1Y%=zWD-j|+n|9wR<$=#$GQBwc;h(rdn)!Yhr~YJB5rq<*6UmylM}!2s&m{xq>=Q0QOUR=_=Mt z9fTm&mXqU94&BEuW;9cYR!(~~ZS?qyM%1>7W&|djL}%j5l8WWZ?{$HFeHoj^nki;+ z8Q-jx*wqqm#kOIGECa=s7RqlP4k>kb=s&N$&c=zou-?Ell+mOjMEQbd+yned$afX^ zq$1LzRkSt`(p6T`l+eBKy@HOoC{6c^Sbo@3ScW|<>Y7dSDqaMeBUWGYJEi=4kd`|wC?kB&TnmfWN3apB8=aD zesP_unNfaySkR=>xYi_HTcE6LDWp;Epvaz^I*5L+X#ULfskuB9mbXhSzSIm?jaKF@ zW=dko8^KqJ2&L0cj4epYmR?FKD3;AvX3#?_yv6hoX=@sW>N0&mJ=a~=3>%jX29T`2$N=N1(MWeQPk;tG#>3$RYgmLg8X~KTl+4wiEijMpT-omBOMVF z=A=sR1KSNi^C0LKasGpI)f|gvG;~@W%5Ma;Y?anmJLc&priu1;Kt|cy%DxHo2k7cl z`ma^jdCHYE3VeMIjJzU*7 zyRMKHUO)4D5Dq!f=B)`n=RW8u$ zw(kXqP3L$#|1N0+^b29%HB!#$2sR2s>AsjBtkPe7rff1%S5345QRA&-qJU|6VA}&l<8Y(Ce+F%qC-oH84p;hO!SscvGBTj>gqGG$;coMjJ}% zz2|IfWMo835v9pFz@+&OgMt)sg%~G)_Ubt4@ajBK5G74>)Q*ym;bBVnQ}4OU&O+tz z5kKvYvWCW}Myindwbsc>v0m{Db8Tije(K1gTX*hNi+9xl?d8~wTR1o?pFVxszgBVL zH*N9dLM}LYY)%y&?Cksq0O~+*fh=Q+LHw&vKp#8;_h|WATh=rmNlprGTR1eDWGVbf z`QZ&O6KlA%HNZ(db2%Ntcz;&rSs$&I{`j)er!BwA62K5H5+h_C<<-QMY<(+unNnnn z?}Wlu*hA#Nn7``t>j!%m7 z;NDi}#3RlV@KakQRNp80zO#sv*>iiidy1%Hd_N}Ovh(fTRKHsyGxXoAeyPz^OSZq5 zagZGz{^tA=@=;@}iA_drt=5gYS<0NRS=bUrI89-vk}FalCAEE){`AVSB6%#vI>-;9 zgP0^S{m~TXUvNny|57UCebB+eeM}~2-AjvUp@O5^nRXWqn)}Q@4|44*XX=_;3PF~( zF12Or@Wh7BdXLHHarpeJ=L=(hjH}>nd{Ls*44U)JpJ;obU{^-oaG~ZNL&JZr7+R!M zBdpVypD+P{WDGOOWST~~hH8v~jY6h|hxq`|a+oArGRaT++Ae4Y4vza-S*qW(W zbKYCyDBzEGQTPpanb3syS;O9Ijbo1_YCfsc$-&o$X?1r(-UtTfp+ANr!{_x1)RfzC z`r{s247; zjaK=eluXo89fX^5!rojLQZhbyy+6crd^9_LgP*t8;aLlGF+-I?vVB=6K}fxGKV_>n zA2-wAdYY#|@=?Pl3`2%bK3jr+W!SOW%e9&p9_=@AAhdfQ-EDP-10_2Tw;#YrZRpnn zekFYfcPHaGsU8ow!GyhBWl(y3g`&v%du}fxgUKLFD z8V)&yAOogCEjGp{ndxfT%$lhCQ1RC|-xZtn6`HK_;r<-7NK__Tu}4f#hpzA)pl*{G5Zs zQVBvB-GAQVW)iRIW9}w?yT7{r_5FMVabFbBEtRSrN!1|Pe?m$!adBCiJlf+~-S^uo zy!^}n5r|w|8Ge5soUU5sFn3-}d_9W>OoXgu{MyJJXZ<51}P#L8cIem@d zYSc`lH+QmpLd!8cVbc1F-Q>r<h{K`O7krVR447t0E9_b#5h;FA0DK+`aqVo%QCvs;?uiMNvj zhHU3xlXC6Q>5?%R9>+(ka!16u-=&5esjmB-6-Qrtbntl0*BadtNUu>@e9dMRni6k2&r9#h9nveu|_EgLN{0v z{>U_`Jo-D*AF3T!}X=!O;lmuex>grm|JHrZ| zHhX(|yrkhxhJL9b$&)_Ou^Q)zEQ z-5dXm?ym4l9P&)l4!3T802Lx!9a7HL)@_Er^$iOPauIAe!8z96Oj_kU{gj zrSRqz-egKBG%aOgXkXnIM6fKr3YqFTd=2oZx+iJA7F zwrfsYhh&Av#zaFSFNhMM^J{Cx0EpV^K&5rB!NIK@oFN)M_~rBuLOBT;8$#ckHbYmW zdfIM}vtpIiOq(PHLDQdUM9__F=kFk@v#)Ue_&G;ZXne+lOU!IPY(d_kr0mrVnV z-0$rRHNP{*l)Waq4KpD4^>O04wp_#0Q0(#O+vhy3Ot1 zj;|YwoIxlFNjdc>E!7CEIOYZOFIDG;A@YH8>S-8u4R{{Js~07gTyH6**;G)-uJ&8v zk8eTJe1&?FvLTmd(ks1c(uq48Zx7|gkyRZR4{{?c{>Vy!9!tb7;PhDUF7(L%D_7Nr z{IFKz*832TR)8qx{>Zz>ZOd`1AEZuey$;`x4i-aJ!N+fqiI+h~jI}VxSlT`&&FA10 zD&~dVu*&K1d87!={kb7b9Ik*Ccvw8qch-N*(BaLf2L3HH8&JeaHS+hk;Fz{6>wNuJ zl3ggyEhZnhl--3%K&A1#|1|Awf_?fd8;;L-3dW%6bZ}&E>aes=s1XSk}Q0uEs=T7v!O#nV^Hg=MZ#BEfCQ1$PkEG zk9QNx|K}2`SA=5P z8>s5Tp~SGienTq0QS(~GHWV%JrXwGTh~8#5;RY4F3`EJk+Z-Ona4D z&-!y>#r_bbV~zJSZ7lo0@HV+vd9i^VbL}9rD*W7r@-l%V8>_00YmsXpmp8mUOYonW zyHGmVZPLa*uv)NE*-w*pl&SU>X$z)r4x0@y9Be9!&|ehnP+c`gGw=|9JC_^)Z@n~RBwfo=UZ_m z)#dR6J2Sbb;l_!~st#6HLCf#Nw`$48BxjMa-j*`dC8(W@|G`&Iv3Alu+hwmUM}59k zWgR3EXcT1hH*Lr0umH=eS>{Y~;? z5RyFhgx9A#H8{<#&-yLc?IWJRdVYScChRz~5c2lFW0s5U2uPU>Y2_1*gAt)d^ZiuU zw2(6P6E(_DZF2?eQ(maVgk~mZFjv~UP@VFsA!A;p!2fbQV10QDqO?k~TSbi&Z7-sn z17N!gLd>ZB9!)AVgsPGVAq6P^J||!k1HaGR29m?bU@kMMS-5l1UbF`W`M)n9RVPt| zJ&84nfR9N9RURC1^W8Hr;v%*;3poV>WPi_&wj3!Ryom4zMe;_VOKs~o-FTp-fCdF+ zeNqyVY#K@LYJZ@(@%Ea;cLTyKAfOXIkawbyDOKuq@KfI&cWZB{PZdZ(JJ^#}o^o(- zOn}8>fBjDuDV*t@q=529IWaNun3oIv=1g;{_xd=0BsJ)BSFIHT1NeEJnhOK{&PtP) z4A_%Evm>+5_n4;thxg6?hGM_TYMZ!P+n*oUPP}Y?z%v{I=U_JNd#@NCoV59#b7UPFL8e4k=h>gVxG+CL13{u9%*yFPytYlekOMqZm^QchcX8_oNcItm|O7%}Ovb?;U zhmB3qXKSWejg)neZG|R|U2`-5JU?z4_7tg;#$e`ywdBE!6$+7oU|d3h8&i&hR}bc? zI!yyE@*(*6gI+#9PX?$?u{NE7IJ%MV=BijUt!R$TM0JsRK!{-WD7$8wNKAffIFE6C zR+}G{AMH^a_))#qXKh$OqmosG&g`VXHrAyda^=>~i>C8i zZWyFJ(`Nn%WxY-A6C0N3t%!dk7XIV+FtOe@J>?t(NQNfk8;(D3dHy_MLOweU*=x2( z1nd0d)DFy1Kz+_K4#^#&@f*Vl)eSvuzO;H^f^4-GT6xs8ORpST(ND3Y%~uO zbFd@jz#hi(DmM>p8-b#PU!iU>jM-|@P8>?FIAtt^csd|TLnzx`R2X02UcPb?pF&d3 zqdUm(Y9dg;3H#!EnXf|&IxplK!5(rx+0$t~Q0t>J_5i_Hm4UIK)ZYxa#`ksKKhq&f znn+4AfxGk z>xp7ut&fV&iO==l2CBl;Ow#qp!a&&1d{v5I3BOMA&aig@%a*d4%F4=v9xH=wp%);xc=l|d$TFpv}3zxgK9cNcwgNKr8wuj&@;-oBaD@<;cz(XSC~ zCNddkK#F*|`hsz|87x{=Oe0oW`(Z6ugn8>!D!SH+eEMqc7O07Rm!Ajs3iMRk?BwN+ zvrn+`p)UM#P$t2%qwv7IGoPa{+2JOi!@=};GXBpv4(#j?qVaW7bNqhvTRT>ZPcU5E zz+R43W9lL0QUd^*F$d9iXwQv(?kAPQbB8SqfnqatEBv&?`y6wVFH!KKc>Gq>e1%X?m_WItrE?!JD)fYAx<%jPtU#M0_6__4Y^b5Zl5GS`6C>F)uZid(7S#YJmdR?E< zfHa(J5&>1L`%NYH`8DE){i-0-E#=`%z5tG|hm3~GXDn#w8&xuj-M6p^<(v*s6$z`x zQ(L2G)m_Ka;Sf{1d^3|O5XF{Rx z1>fggyhjboD}V+uYS|ca9Cl*&X;^Vxwe^^>(qY}T(D3;%YeXKL$?zGSwQxfg6B@cm zJxVfZq0Q`b%+j57I6x?Cy(`DwW2mDo@4oIxsPTM_|8U}( zBO43rzYjxyFjCJ?MicnVW3lA3VIOCqN0ZPqZ^WN?J6DZC#tolrFYf~ zTr3}fNs!1_U-VPnwuvZB{sIL1$M&yjU6k{Y32Mh`qI~E~e#%uY@|)OEHMTzmu5*xy7pSlAP9Zj#vk!lyeCx>SeEecFQ3Ogemyk5CB>G+*8s2Ys5(t3@>N2-a=ol>Tsg zwx-yak_^WsbKIO@#UVGJLWX2Gk)Tq2>hHh&^%TE{y7_(f~}g$GTmaM_(x z-r$V_`P(Ep9X}$4hR+bZ&|&BE-BppgoV@N&JAabH6Sx%;o(SLDlXt=_1*4cY#3zc3 zgTh=FG`06eLS?M1{j_!C*fa~kX%qvF)sZQ^-7*zhWcFi zFZ$RCIeYBAND(o^`Ud?ENXJr^;r!)}MWhO<~K^CIC2O$9wj z=Wa`g>%U5gwY0loPD3P@S^d2a%WLhTp+EIow8K|?EWHBzQibgjIPPG`s*K`4Kj}rP zU_oxV@ZY?;j&GANLPqdvmUPTh7GSs0>j$rAY)8g){VR{wl zaX_8{<3lW!8*u%=y`sck#)Ie8k%I4|1hLlHQNduCTye`fK>H74ahZBvZ9K2(%!>df zUXE{~jD)h>go;q7DH2wv=B#qn3qlv%Q^AQl_OnHg*s*aF5+*@x4pEY$?k$Cn1qyJD z>&M?~do6`Dm$B9=P_1_@)2@dEV5$GCR-ON{b$-_z51Xq?0dT3I)$9VE)EW z8h|Z(8l@7UpCS`3aqkN5G+aw z&dTStPlC0-=YET*$#(PYqZT7&&VkOzk=XM(;QhnZX~>v5yGb~~vy)+$69 zezyldES3xj)6R+8vM$`~QGmd>>L2jNeF1QJ5`iYip1{m~_7BPF*rbw1+uX;i&2N1! zx3ZMzUTrtwX>PQ#tghVTDLg$>8^hCCnzu(1Ub@y?|Dqw;!>a2=OWg~Wr0*BrA9_74 z5?TLMOM3b!9Xr=}?D+#2rbpiPcTFOpyDl^yu^rWdD&~LgRC}Denqw|I&WCI`paTXv z#5qW~4vfrFXbK85hAE*Io=vHzXx%3DU=<}>6v=Y~E$bK_GmcK@ml+C)GCo-*gHqP) zb>Lo{zklF$(N7r%i zVW#g(>%ek5MNb5T6>h_9O2lzD=@dscx($L+WGmeB>=%uxr?k;XV zS3Fk#_3FzbMEvytvVwV7?oAU|3}ds5*QOJ9{k!wBm^$IwH-VltUNMS8ISO}j1u8%5 zQ9%|ZZ$L4*)f9PVa8ipYI$!<7*RldCk7tXSyc(Lyn>@E_8}wUuzS1aaDnM4x=lySG z%c$1}S>zcL{Yeto?PIaME11_R46A@R!?VgZ*bK$`glQnKlP#Y9lO z4~IgYOH*7)e(HXr7cbKjnI%QoA*c-9bw>mY%c@B?j(3S|`0siY!_6ezFk3~$XqqMe z4Pkrg|MkbzQ?rH5X~&OKU_Zk8I|@{wF&QdQyXM{@(CS{z7h)bp+SjKt&*@;gLuq#q zLc3W*s0U{4AKlR5f%zPx-x|2g^xuA&nqhyQ5_YI0EfY{5do1*BlVNGAhDfW$EHgIt z&%SZ?dZ4dA0n{=9BtF`fT&F+^k&cIyfx+>CNN6lAAOW~HIEI!a@rDTAL~Jw}5n=!B zZF@nm-DpJQxcV(g-jEok%jhmE${WiT@A&fmuoTSyd`HPogM>A&Ze3ff{g(^ncYU6^ z=Uqf~<@z;M{BWggHkIzPgk0r-_%}|qk~KrLy{M4y&p^g(WH}UGyaC56jmi6624|XE zUS8fmW@?5fod89NX=K7{2^P~b*X4eVBzYSKOX!Uuf;4XInBEw!#r_&%G+SX9RM{=Y z@zGNOMM5ugTqvUiIV;S$?Uze^E9bWtjDDTz^D$7Xg|Si=6*=U==VqN20v*dV`&{`D zB1KId45K5QlqU_M1Uy$m5Xe(jf6||ChDR>qEf8ba0^4%LIXKL>SN-sh^e8Y+s zojujefB)`*&6ga7Y8DuZ2%$K{u(U=H90BhMyy-@eCtnrQ>vUbhL_9`A)$#T#&doqt z{VmWV{!2GtUrXxEc_k8EQ#{)P;m-CKoVVBYk`fQ>G#dRlKx<@(5p_JcN51Dbhv^fG zwK|7OO^Pnk++%fNJOW-S@Z?DNe~e_oc7IH8ELJ@A5|nf=jc3F9zt-FhUS!YVitT6{ z^saWaq2qsF77rWMukG7zsi5!#aIgJjo`pyL2#)4KNUmfoR)kdU;baP|T3f>Cw3dNYGCx6Ub!P{~Q zpKCq02i^0wS*GvazP`Cz0%ZleBQ|g?Nqjb~{qb>nPXG*DbEA1xY;35AeXu?)%GOQR z8;iI3Nu7?0sz{F}9&tik)A5qv9?KG-#`bq$$0v2GmnF8P zUiEGOP~Wro5jX!lFwn(nZ{9np&|ieKc%&a2igft^&sH0AX2b3oemGceqCyVZkDKDk z7EU#$%5BYvxS#n$J92Oyd>#l-^!9mTiOw6;68mIJo*o%Z zA<%b_F2132O*#c-9|g$wCr9%~2sxaVWYF>!e7HH*H^=A`($g9WgRF+Dfj)YX)%eRq zVuSb!64o;NSsrNob`!CmiDOGh&m-rmpfon*)NFGcv>7k_YF65_Ivwu(PzrfYdv3_m z)jqu^?6#uST(tl)D2NqyY5xKyjSHD3=HAOK3c(KF zU96C%B4N49vG!#(|r4Oe6Fo2*v%h=2~DA%gO&{h>YB!^DI4N?QOsc;un& z2;bbq4&v?&P{VUw6ZslNSA3+)qxF;>zBkuj%jg3?B0YlY3*4z41Gwx95X?{O4-a%* zJOu^Z1QrFfrqoHtl31tT=3{k6xWtWzg`HyB@WBq_WjxB7;Ihqo55 z^R@Nra&5O!T|=XG@-b-q_NV*b{`K9^{0#z3d6;A>BauUZ;j(~qGAoi?HxaSBCruV0 z1M22?K{~d38~CJ5^)qz>!MDf9gDIk})g-Jx%$Czkjt?4|Jl*C11JoUH}&_`U+F~211uz-*8{CfO3FEyxo6mJ^!B+o>x5YG2kSAD@P(?5;-y1J z`035lFJ7*|fMlfkXN+^_*OuC}5+bJ%>x0?y9%H>gkkW*RnS~JRPn`Iq7AdP%BU|pbf|M)KC%B6*7xr=y zZ^b9uCFL4QSydA)Cj4k2WW5J0Xh!z1Yqqk`WXa>wlvNN^-^Iq~u_5d4_rK?E0$PEk z>_^kR3HO`aFBvO2>TY>y+Rq5jy!uiwFlXgio1N$%5$ z)@|3J>aC7}wSWy97G(1GGumCl=lmOTZXg;xCiKx)lcxR+NW%XUgZSQsAC?><|4i;5 z6$rUWwXmie4yS1-3THo`BV65f35Qj(SJYA>X8E@i_}@phxf4`9ukhPAUbdd^sB-gs z69yyM$y?K*DZ@bzDyd_f9wpw|t~+nS#Wbc-ythCb#3ab>X|`E7+~Gw*dbyx8LVrb* zFCz0bT5?yx_>y)u_XFcFXz}?u+-%1j3Asax9r=pojPu%TUNIv(ZW$rabR_$LqCfQK^-27&}F25hN6*^v`Y)dm@{9XD-;O!{pg(5Tlpn7rvs zKfdiRHRV0skIaKP6U$3?`4RZh9|^D~Z{Dt1+&mRCr)d|?A8MSe$l+cvN!bl9cTw!P> zBY>XyVq^`mHnNoyLuoR3RI?<1lv$frKlpz_myEP*K!fW`OpKa$%UhQ~c%X3C;@ICo!=5eZEO zY}AYia3S5+M*B(+&w!Tu`UD{d=_VHt<=UEfNy0I-x4Ox}`Vj%qKhi*h z#Aza50->ZNZc=MdX-?%Z3}!GVr#>>7z?WqMbT{Mf+i1uY|D2%H1fB*sco+6-Lhdig zssE3ww~mTJ3;Tr+N{xcRAc%zIz#xrCH$x4LbV^A{N(lmzGIR`}AmKO!D1~JtcA1VdG@cKgTuw3Ur%qtjBqt72}z&ul8yt}!D;8rt2*vC z$f;o42$}v&i;6;^HXY)yyys6Xk|i0FrqTGGl9vSXHt^-)GKHjmrAFMJ3dBjUvr4|! zZ1HMHjDKD%=GS|LUqk|VIm7~yU}uTx$U~Z%4A3v(IDAX*za_0C^}WH+BQb5+8>BFd z{c@85A7SiQ*ILf6yt0YXX>IR(62yaX6H5~@c3<>_5U7o&6%24GR1KZeSqy(PthC>; z9H*mH=&-b0e)>Y(bh2DNXD&N%UeZelCXb%|azS);aGR6u-LGbIhC6U{OIs@%hQ{D3 zy%CYsMfYu}yd!?^YbcdOxG@pRjUbq~)m{Nln72WlG&TKCuk^m(^sUP$^d!)k&KX5O zZ?a*i2m812J$NhcZQT4Q*L7KCx6}Yo?0RaaonqDWJiVM_nq%t9#eSGkRvFt`5iON_}#5^fw|aqXFym^|h?;zk2OGL~;n zD#Jtk78y`UW3XtrO)5O-j1C$5`6ei6UN7Ah9m;XPT>R?jP~5V=hDw9aZXWzDgj?`Z ztuF?Gtgfk55^46)q5{96gM6+)rWWU7{`Y-3L5A< zzMzS=t9o(6(@;Q}=%r;mT}XC36WFERYX1N^D)K@oJOZa5$GD~K3+3DZffI@CJ*e=N z4>`?7keAHaeiR9&sSIa`?Fkvhbe`nzG4E5mG$CIBJdHF2Uxn>p$`@(Je=Daj1uXCC z2^s9%KQ#Wj7QsdFRi0))o0bC3pW8V)5TXc`7Tnfs9zx|g>9@P%dTr0@q@w5Rl^D@NX z(s@9z{=m|IKvc6jWUKJMjoRviSasXTEp{18nKT#FuCV7RU;`ti^FD5u<+j451eZ&9>=DQSi1p z>WIGk{wRm26(lyUgn?B4c5E9P45W~EO^9)qShZxis%B+e zJ)8IhBfhR-sdWDGOYlelc{T6%tffS~)(d>;CL5kVy8f&6SGiL6-G>h7OF-U=sH4AJ z+CB*^Fl(%vs?|_d?i!LL(2AFbu#Q?Zk$O0gczPogc3Zcw*IVh^C(3bzY24b7c&eRW zY2Reyzc7g7|JhmOnWpM6{xa}*nRoGB&|X~45t(@$jv``gzBr(A^bU<|fzll3aP{Vr zSPEtIUAcFXl9j$cXve9kl>Ay-!9}Xok_-9>aixqPoneVF{hT+_IkJHvl_4@NS^=#u z0!c6SrQhnleoVEGr<@qy?W}b4kusgK7R{2Ww4Ymj**v&z9!QZJ!t}!5{sI6D4*AZn4|~GTj@pD2>Jw?mVwPPE{P~2N*ggqv80i4Iy;$AYR_|RXklbA?>{@C{jI0@o zHWsMXv5=h%g{VLoIhB1fxo0uAUonF!narwkUX~qgr@^T5dg9JTgQuP@wj)FTmJXC| z*5vr=cC`@K-f>~X56lrhJw|VeUJ7~b;B!f)i+Pval9h9JFQ=6K_7dkh(Jyx7)3Hx7 z={)9=>HN5WfF3Sttl}zURBvpruwVVFsglvk#?@w%QN@+ZnwW+(ee`l+Q|u234Af)p<2HB`8&2 z%a;_-?Y($Ty{zYOgPFb*eEOpjGNvejZG$!$V>z^euoov+y7-$BEJ_p#aBG5q=BNSj z_#)R*Xo*Wu8Vu13 zUjnD__Ci$bTfXTsnm)~?5v%Si&PZQ5EJ1wW4f4xnQ7OnpZeJvIac{mk!*Ce3oGWtw z*Y8`?MplY{N-f}HbC2b3O_A3_#l}L{=T_;s zLI!Swee(~Ic2{aomQ*uULRzhE}nx{A@OtXXqs3io~ zj==;@aKmW#USUBN*`Yya<=|nuF2*khLXn;<#a7W#ey|klCCO?g8GLqnR(E+TBiVZEeFzVNW%fI_YwmK5()RG?+q@m@`{G!Bi`++Rci^!U`KZ$@D+@IoGv~uZ-Sqr$WP{Lw{;I$;B7fn)V5Mxbl?V2JgyQc9L2tyv z`Un_RAM?^4-O5qrB{~fzWl6*gz)+z!bKYuu2YXXcnC~gc`;ZFi{+(L2YmX7{3pi#+)Q;*|gc38d-HjofhXU@{;c;4D=b|8zgc z*zBvS$N-mL%6?CGyoI6i1C1oU%Fk~w)<$}-RT=R(NpNgPNDgLs28-Kt=ct1@88uRV z>p)oZd;Z$HY!p;E|MhmMsGbg`pZTTd2%sL6^{!Y~Viwxxj8YP5Dn9g6&U9DWJIF_7 z>BNr22F41ia;l7X3MezJvSYB{XcG}+7>Y2%#Lk3rgoVmkXg(11)WD-S-vN$st+6Na zP+shPA#-T@^9JD6dV*?SF(O}rV01eU-J%74 z3?1k-JR>tt}(hFcH+W6cFX za&bLmjwqz*rDPC4SG+^K!4Qw6657SS&bdTIc@E|DprE&x;NFMgXp1dwzy>)Y_tr3ko_AjM77841)?(1epT2 z<59_;>I<-k33C&qQf_?E3ub=auYxhp4$RKVZqA;`zRIS5C-ug;cvvEK^bv@7CF)K) zq;=$_h zMou|Ebe7#C;X!+_EG!BAbI6e}IJ&`_oJuO7L6YN#5OxWz0doNmn$IXQvh(b8c?f`6 zSlLj}i5Dv|E6jycANz*_n(lZSh$o2RY2^N}cu=S^WU^ZKgv>MUX12x%fp%PsN};~& zr?6heAx9N>tHEh7FvLyX<~;3W+fgZ)FbX^sej+(+zP1E*o@mB6C#~Ewg#Znq>)qCC zA+lC>jCGZ(1S*Ckd;U-x5eAh>B_#By$B$o2wp2SHWJ^v}J?XDpc2O$c@ZVQ6t0V99 zu!+hh=K#x(jvCBg@wcv0lAZLcl;QVSd*FuY&E~aKqPc!@gj3ZqJ(U3IG;7^Ff66?!i)Tda8%0X*h1wBscP(h==i= z3unh*bm{W5NO(WMY|{@Nh6)n+Dt^jjhS7=QBN-TIc zvzwuIsjP0|Zfs-}9u=%p!qC^}!L|8)=&SXgQvgM5jhqI8#BhISGFYD^ zvtsN}ja`3B@tT~WSs@sa)(#4!&-3TM-Zo=3=lAif7f)IM2`nW*9fRdZcYJvLPd$=$ z-))5M%y+pS^Gf}GqSeAq3e>~`5lFocNP3(xXpph7uL$Uw>EqRzTlwh)+!A$-f{Y^AKPSS1&PDS?V1n*2eNH z>O#Gv13+S^6~JsP583nG+CZ|je!X718jv&7oVv;C)a!YcVO-m2OLC(AW==DOkdTnK zZf_C)--Is+^Qi9QA8p=w2lp#ADZq-!=^f2MsQbW~0yN(bTyx%Es+x{mM^@08#a z1=Ga@nHIIhNKC0(^NZ_^CZqcpc2@GU>S))$N##CH7{-K(Q)8#PzPVJ`28#6c!!-a6 zIFpRAle6Oy#QPShuO!b1#hfq8RNui*AGXG&ObNXSNYjqT4&Rh2HR zQ1$7lCK&ZFwR)x$-xUGp^WHScDEH9Po2dYE>`GFRWuNzgZ**&X=8(3jfd|bH2;Vy4 zudx03W5}J;!A2LPHs|-Qd%XckAHDu}{=CJ;tla9yv2eHrGC!PL%${q4hn=K2RP{`&i$_U=&9%=2G>0jnyviTIDm2 zJ9#Rk1cxYlvXGg|U$H>nGA?8*5Juvgk+T2dTltK{+CUxIRHv(})J%TGYcSK$elv=I7;Bl7a44rHIiwh)?HT?rcm0X}hqp1IL5 zZ(CPtmj@gKnWTkVKMrGQMJ$C#Yo7E{r-taMq;gl?QfdNEusnb**`C(Eq+*yU1+uLl z#WhEK!X}>{%cNTwHTqWdSQ$0FsGZ8@!|c-U3%_{rV*l>l2HhsQt<8yJ_wh=5t7o@B zv*cexaF~nu8qz=$UOPiF*>FPwhgOmbjq1+>aklj6zg=_)Xa(EgAD z6A?@mZ0G>ozci>z9jyH$*ku0j=$|BZ3Vwa?8g-x{z9&AGtqONNP_+cfU0xkHyb)Ut zfvy=GsbIw4Rr!AAMaxZ|*W&Eo+&3phV(Ov&0AkpPwFRBST}s&G$_HfajgD8I&za!A zMcqbhu|m$lC7_2{*1F%XZ|-m73fpIgWdmW^BjVv)Uk@dC*#En00Jaji*KV9IBLLs^fZTsnQAA3z zuy+(|^!UVT;S~<3XK~SRw@lD^q@th!%!&g{M4P9_n&>Toy0S{-V#>II(ObbY;yfjD zb0eoFMcI_Ga%%`IEPOz6uMt`Z%^xkUNSOg1&H?|yH*mLSJ)(>^rD@~yGHxE#bQ4^C zG<=eA@AUa2K4NId&NgEt?ST4u!+8{C<+l$~@<7OPPCHZ|WKgP&j<`FW(9-NXRksPW zRdkV1KpwFNsHgEymTPd_>F*9IMcK#mahFDYB8M?GJ1gc@vhadMVQMRSw^4jXb*17x ze(om~NxduRL^T|>)&HvvwzqYtJUxBO27+$wSvN5G8=-Me18b@BNMg4z2jC_f=@*C_`xTG0!_yJkPI=e^*+l?u!+*q*Aq8iY?+r?hE0802i6zU zTX`1JnoX)GD2y;<*GJ36K|v4+kP9wJ-%2R}lU1$U!Qv4U46C;D^o8&mABJW#~O_HgF&;PbS|94h~-b zF#~>as_q^T6GF&YKcjmY8W(y}rv~6Hx!P?E#{&34%1ugw6+U6qd z=5q#5@5I;Dj;r34mHHBVPFw3*mg9jFR zx|9(C6f=iOzA|l=K5OGbIGWXht5$2QdLdjlv9kl5l|3`X7@hEf+rThVf$m+dO_Qk4 zJhJ23(?9v&hsKK8Jn37)@+InK@KNcH35y+#6I%8Zou&>jC9KlEri1|8hE9>sHXMEd z`23eTwOl!N(0V1Z>*hpILy!)k{WLaq$Hv$njBD~bx-%KFM|be*2!u zr44f}RW)le0T6cUi)I9M&o?gPW%E4=@@Ctu&0ox$>Du6!Jp<~Y&@%rp>1}V-h~wwO zpS$^g#H^mwQCZ7CTE-D?+k7ww7n`!)C3_Bq&fW&JExtzf6I zRD80ff_;-9-hmlEl*l(rD$vaH(+PO4QKPLoBRFw@(0ifWbVm<6p27)#Xd53K zgN}(+ValO~EPk8FCP1+Wp6xCqX^3($2Mf*dElUJmzMvZ*7&;`wT$?tDMWOoV)YiZ& z&Yq6=X*b?0P+aW!;`2FknQ*@1G0A#(R2uN$cMXrg8q0VHY`7TG7~HO3AEK&Mc-y?M zAn}8Mh5FCSvNo*gZTIkSM9w!p<(WSEPJ$4p(S4|b#vR<`v{CsNzD#n%1# zJU9^}+30H}j}-m!{7IdHn$|y7hNQu9fcp}5`sRTQe(p0`l!mZ6(PKGbY3&H@>94;l zD)u2Z{Lwo2@0_RVScy)V{~+!shn!I(Ss&M0w1)qhBw*BxrhbUrm#`iEjZKQ%%)-){ zjO?}><5flxL{uK$BdOvzN6I#S#B`!Mar_L+OaB~QN8d^$nVdh>*~GG2+Kl-OY6@y* zT4p3lO0FzH1t_St2;1aUMlOf+fb_Na_dsa!b&K#^|5pb#OiH%di!DQ5Z7As!r-bo5 z;OoPWx0BKyIzI78mc(Ir3LlN}yZHX*f#+w9@K>+a`gmMtu&2=dJKfKm7s6}v8@(iD z;ABUI`%9Le%WRu~2-}l8j5meTYE~V4+Zs%-=l{x)!)ggVjUB|eT*g!HKJNxR8z)k{ z2-8-zF(IG6mo1+3-UgzK9uo{1$BSmWa+`;bbtt0S4IX%x#8br|yNYfHzB&D8`@BW; z_5=T%v0K*BK;EGhU=@hKr890!`_bMpI0J#m3MZz{Xyze>6Jab}zrQrhC|B6t;aWMl z0rL%nb!$l*NEfv_&t!3;h#4!|_{*fuf9^gj$m*@rOp&`E_HL?vLIFK?Z0uqL-cw2+ z2-gi$xr&fHmQ6M= zT-HPI8Avh&Y2rXsXZfFA?PtIFpo#iZ#XuJaxg`+G`aqOy*dPaomZ(t0FQq}Xo^m*+ zO=MW!;Y(g2MX^0J|AH=8*|jT1@dNHF-=emzuoY1H?trwIh=AbB;DC@zE9GQ6&eP$O z;}lGm>C~lQ!feW78Ce2|d;%mUwFwG8B0rU6dw+Av*z+#>hAXSZXN+RpJzzfJCRzmA z;@)i9wq0CB7Yql%#p%R- zmC>*GmTGZmLfxJvNIF zEWvlrz%l&tNULQ^o8|M?3oJ>G-f*)uXV7GrZPP{FdYMSlU2`_P070k4r|cXZjf$il zfsICO`{yn=HSU_%m@7`NwcX5>o+Cn={{q1GNQSmji7Ps7P6-`9f8X?)ERMCf_Yod6 zRV*=7T-h4TAmcs@H<1kzCg|#&LeS@UeKz9BAqSKQ=apst;bX6^w<72N0F<=m%OTDF zW&G|!)piUmD+s2n=Oa4L|$xZINPb>gLaFDN*b;< z?p%8+%+%T_4S{|yfV%dUHDLnj>Vv+ol{Vtrr49Rjas2`plpQQ0yX=Et?l0|Y?)%v{ z6D>3n^DxgXixUH*d_! zj$lpx(lv(UR^6P2{Ixa_Pr>b|-J8Pt-M6ndBu|%^ip_&2hy4)Zw9)1Dr#uA8qAP4n ziHR2ALE`$9n@UMZWxW6V!nVgkEcWoIgFeusu31U2bKUWF7rs)6G!0z--o91?@yt6p z0_IbeZdZ7!;%Wrj67dRg>>(aByuv0SdhQ1wh?JGx19RN-E{9gJBiJv9qxME2y)Zs|u`G8wLm>n3;j@5Y1-UXO z6zEr)-K=8-EL_0J{tZM;Ex6Vz-Pzfno>ij$Dy833bf64_`vuM5D7k5Jh=k0C@y;Vv zpW%n{qR*u3BFcZx*2!WZ$PxHiL_I&gHuKOp-dg+f&Pb>PXs`rd2P!)b-|KD<3*ByY zq=boM00vNWaG8!~%lZ>;QuzEjb#-8IuejV%$vXgwqHrN)GmG{--T~><2Nz>cno7M8 z22Gz9er7Sp#sC=L0|HXH0WizDrf2zZx-Zwk6NtTe$1H+`D{B`!q@;n>Q*0txLS z_hri=9k>ax4-|y3r#Gdq=N*{|LK^EVqU&RBZZ>u`9tHE^52_L89YIAq)n=rYkj!z` zT~wdSf?D?);>rZ5yVBl^rPXe|u$4>{7mxq57S)o?fDR4EsGeSaf{W8e$u+pKHh6!? zA{3_^q2svLq+sFtNvjCq=_Tkzar<#|Wn8iih4 zY10`)VL8{$u*sMI@mogUS9${lsK%XhBw~A&;~txyUpJt8o~49Wu-!~(1#6;Qnn(QEeYd=4=Mm@_#=Inn#{xrkfE8yPEAi#|IM-<#CqDi<?xfTAi!Af{s$RTetM7lv@~3 zxm6=7#gfbZm_rFCZf`+>KH6L=4!iH!Gd$lwe74#aP1W@0+drSP$9I^X)-T(tgjVi_ zT_)(rO?;^85I&7gM9Y+BCGw2VVL6f4HbDASwW!`*qNFlU4)_z3*Sra2(URVALkG;K zhpntfalR*a-DbpsV&`14hX_x_)Kcp=7t`C^S!l4@hPGr*WMA^u5cf+~pR;6c(n+nk zFiH7)%cje*W_ZrQ_fATJH=lDaD=df#%?gIsD%BajTrH{JuXweebj;9lS9x=@bAN}7 z9cnW>YXGGP%kA&K#>f}?3&S{fDkyT-hvlijeYuTK0<8ES$jQrOPN&O<5h=n&sW7`M zm8^$0b)kj4GF*I0l$~#nZ&^0^B43!%jFiY6caTI*EH^Q&@epPGS*0>}Gya}BkBAJN zoMsBlE4jeyx|N5)&DGWHMhq>*MIGKFs31>|fGS2+xM4nOrd~2|G1qk26~f&twVFs- zl!mfBZsfwt5IpvMYYBtggivV%v|V6%?$2nLVavz}C5zBr+0DN%^QD|w^b_-yJys{7 zd(aIiA`Q`J3O}MjX_s2SJ!qm$IxaiQN2{iU?+rd;Lu%GZU&~iEsRhXY-F#%5_lT3r z_~yW&6y?;Tq3gqV!vw>S;hV#1Hl3!JSP!tn2C8N{!I!Y+DM|J$XCVFr8I&4cB|}L& z4T}HiO+ymX-s0OZBocXS5Q1IKfjjn4 zR@JSu{3Tj9`l>abp3!?#_y-T_rzf`Pa?iB4ta`9&E&ZX-(tXuAWkDq#`DH<@9waF# zksInxxCI%~@*b71U;fzLBiG;P5Efw^n!Xn#D7c;e@aFUbTg$KeE8A~HDee(HOZcqu zX5cswQpEAoe(<-175?hZ&%U{!9)oOc_;0}wz&wxetfGifq;ZcX?BvH z`8fo!%Z;<5UUfnT=8~_O+jq*uMf(_3G|Su6SDqmtT>EdBAS*udVecqj)p|fIlbd?+ zt4bIcWiG!js-DGtR#Ok{F|z@`y_x>W3EPSt*U12t##zM7^hE~1*o5z}rdzbsKe zNEP#~iCJ@63#koX6s^!yu}Uo4lVnbflF)7sSDvbwzfA^#(t z4Uyraub;q_FgqX80A3jBXj&QVw$)JFk1EP!RVq@WtZY`v9yDFhvz9E!!KC1-S<_Ek zr;Z=BJEE3Ye?>?t)~gM`mY+RI<7T``?svfTAe5AB(c$=e$w7_KWIzsY>++sSeK|Du zaE4|fGn2nqVf=!R&e6|1wpFHfM=M{Ja-6_lpkWU8s>{L*X;LWTa*x4@`(lc z_C8O7S#SaF-sX$Glr-XNc?-uJGWC8>D+oPd2~hqLs3}zdw{I>7VvrDdFtk z-g>L=QnJxr)X9f&YJpy9!A-O6>iP6jS*Jjm;lCm<(3t zrm)7&!7-2cSEQjeccb!q)p!N)OggzkM|!@6Y3NnJ`Z?T0YbVqqK}& z&PUhhH~r6S+ya-TCARH->stWP^c#SN^{cs#I5J`aY{QJbeb_5({KvG)oSKqVoApL;Fz!iEkY&p_)I+LOK=IiD^C;=C z(K{V)0R=7ML|U1L%2mn_kyeyl5cDF0+(A9#LtR2CmG>>KOfQtuv#7)=_;6{goaC8$ z+Mf)-3g}+F<(4_K9rS>lJoA;za)Qz{_gT{`{3%!^>>j%m6#0$uby#d>#?aIqV(wkja3MX=V0!Qf6UN0Z&5Xk`rj{Bx#z&L~{V&d9UU_Z^m4mNXPCt#Cb|)2M>e%tu2gtAQ z8XC@nabGQE`u*thod-_U4#4jGpED*7ZyKG1j2(ZGmec~5Yt(TWKZQg%3FQhI3wOgG z$5#YW0R%!vpNZw#rI^gJYC9Tf7T`@!kM2n{{5lBK&uf3F*b!;tLNi9<-FO+C?RYie zrt)+1n3Ds@R2IwWXci7>x^*D6cpaH7z^vJ~@Suu38)cq`E{Tqz;JUSZ-yfNt4RH*& zS1I^WFs&3_FjO;|okLipT-4jE9pl{7^)QFW>!CPmJx9^GYwp?BFo_E z>iXKMHD9Jq$1ng>8p|H7QOV+#;UB0SfT7EA<7!p?G?|Crm!_x78_E{zjV5h>?*Q4O z;3Y%lmRIz|e5Yb8S?Jybf7X|jA;mJ83(^sVI12KKlyPUB&qfaQ{pA9vG*S-4rCnH| zi@~gUobl{e#{1$AjKVb9KkzQmQ3&?doL@{G$WfRWy~)_*67v!U6ECTBWoDGS4+VH2|9tulcOxrcxg_ z{_k};QfhAQxVhk1Xw=JAXo$AsW5H|SUDJ;~8U65iFL`OZGj(e|S$?%+DH!1(% znhUxgwE?GR(`LeVG%nBYDm0&pw>MpB?7WcTR9m4+1l9AqeDzHHBbfS{4Ww>0!x~a| zBeNuYCM|<26s4wZ`cXq|xay%2vL&qz@zo*R{`v?!K)X@P9d|f0o|&H?p_cek`eB`7 zk*)*HGwCAZ;Ly;0#_S~@$kKR; zyOXx!8UI}d3T;$y@RU1SSRBCGYQ~f1lapN&n&=GxAF#K#cI@+)a-)JByuz#=Qc8wo zh-g?iE|QPEJtrLLkcfDwbz~vmDS>giR;2;=5^}CDljxJ3h%tD836)7)4z1(mI1Y3Q zV{9z$D}2PUD{V;mAKW$g9+_dY!cyQ!9Hwu+5DO)F~vBihcve?5RIBsV0HiRC8drn zIPr53E3;_Dk14;m*|4YXq^73UV|=9419+&`Z~>HKNi9AA#%*`P{-+6I=j8nOz?c41q!nC?*brLalVw+-9j=+phS;W!<$jp8PfTUat64Rs>1*SWAs-1C^EQ`mr8^fD(<91M-8Rrbr(b0)jn|{;kD4J% zfemHOnKz=I6m9qJspW>1Wmb_Sh1Bst#}7H)ZMG^wv3>9z?D{g&zCur!p~y3~()1#czLIfqwt<<;lvP z6_-EvcYoWOvN9P@&xhu-->{HS^zY+UjVb}HMhQRK>Kw`N7!=97`-cJjtQLlUpA75> z)U{NZPPg?qqIxk+{$`9d+yKNd6Q-KRCNLV#v;I!g!rMEhG_w^nT}dy z-8Rg^-=n-uBIE#rNIIkudRRS^Et>5czl!NBt0^Ea0?*bn$vFJfH@2tq+4tGRMUn6R8Y5<^HVoc0Ye;AFzo zQT~cbGqtZUU!Ie?FCNH+Z)_CoZsO(a_f;7yHRz58$V5O>CY*;ty=0eYXa-q=n;!Bg zcQ#x~&*QF(#R*I|byVyeMv5%bPiSie;|67#di3B1KHIdqZYb;HfZjQ+U^P45!Ou0W zM4%aN`L2z-boQ8e$J_`Mq2bx9lFXg^#+Nc`Wrnu9uj2FKBaqEa_AA%W^;XRQSg`1N z5kVohp5K8iuqA7Qdl>CQOyP+*KzLROE(U1XvLH35v@Yo27X;bGOFyl}+~?X*6&Wka`_Q}mVcSHyh7v#@0D=HMrmqlo z0kec{xibljKxu2kVfeQhEG&o$0zEW_CJ~$@3`mpadygkCbw;+ZhwEDdWF8( z<-dg){tA>Dj^8uvdZQzLC-tX>z{|vmrAoVRC+!M|Xe8~+g7yK=_e$A-(Jc&@5^4yZ z3RH^@sjwfbgD|@pMHKN+T}V!-+5nYedD~$DPxQRY^(L9R8X@i69ZluP)KrGn9vtKA znZbgXLHV2HicIw1RzEW&aLbe~Sq{K_OrCHL+j6$g%wRY{FwE!|HbF4!jB0UJ-VgK1 z%VqY#*qgoE)lVdYdb{Et`%i`du#WzI$d*FbRR(*{EJNxkzE zCz7fM`s#(}M3J|C7@V6ZJp(3#& zsUo?JF8Rsozft$t;uPCcZqwt?n_+F5kokk{{e&Uf=l+koS2sM{o0%uKXFlT{!|fR* zdx*ZKo+KRS3EZ0DQErJ#E>)xH)BuhaAB75>!84?DrV~y)rZ}?M`?p9 zC@8=$*6ZmI{d@CKXxB)6ie)YEUJysE?st@ltdM<-3jF5-QwO1zC8+XfUt+n0iN^~f z#L_AL<~fE(3jXdI3?Lluu>v}~n&=4vbwW?YhJ5N)U6;KzpY}L|v#htu69I9sm03HR zC_P!aSPH50^uLVW^hRcDN)kYbQf1Nb*A5Nh$|T)qg%2SY5^UGG&Ct?06oTJtT3FdY z+iKTr!GzS5Q1aBu8hR7~#r7OJQlRUI^2O9)PL1e~UKaejHm#>2v!3U*|ISg9hvc;; zrljb(Y~rqE%10d|JP1f((>J|{6!+Aol-J`;avSLf{#q25Kn+zqxfFH zlW}6-EBQ!-O;M$(cIbB|6{z`w!tXq7k|<2*%tynBw?Y~w52y4nZMAKLl&n}}T6-#7@1)n78JrKAM`{$5*)i z(Ckc3rGiymasjEiu(xsWcdZC?M2b9$#shY{>by$Zs6Nj?|Ap7ECq)H}jt*Ht={h<(y3J*2$kvp?cdYkcG;D0W^u9(X zUmj}rRi+Dy3OE+vQX(WbUzCqfJ}!;2L^u*8vNf6B{)s&*fsddZ)dWs=#wD|CU(F8g zGxUr8X@`1OOq@O#HQat9LOy%z7L#5RoCP=8&8?UT`I?-50n+&FD{ut!7XJzkNu;u) zSDJsLoszwek8~?g-;tAB=pDOz#;n)YaWh55>fL$Z$&pQ2SwTcBB|n}rIi8G6=aKo# z=3v%r#`Cl&QHvtfGAgG3L76C@R*uTkuI?7_SnuZ!HREY?2K7ty20@Om$ETVaxC%No zb&ukOYDZ+qsDm+GfH}AtqeZG#ycv;Cf3j-L@jX=?LP0rNx4xA#Kw%1zkj?+vMpe)@ zuJqF=F>1{TGVF{{MnE%ghfCTqh*D$E@~?jwke>qzj5V${@2^l{b`Bv{G+FPHl5dDj zO_-sxQ>eTDV2z|b8HYQxYo;-O?=%lgo01mj)OBqCXPxqE zRPBHNg#AUr0q;e3h!~!%eU|=K=fK@quQq&q;UE(| zit-HwOqFex6Q=k&lC1Jp@TwN-MZIt z((AE=V#)zTRc0}3pA%ZTjE_q#g6IPjO4Nc|#obM^E$6w7YsV~VI@C4zfXu&4a$G$} zCH}L*&-zEyNh?(Yj(XK|AZy58Lr>|zo?W-4zhBD_h@yz;&v-Xr@~@NVR@c_JwDt9E zvupoEq(t6s@CWx)+Ogls+4$7Se3^s_s0vCxgpO9XF`-+8xBUbnp?9lmtlpdRFx1vN z%Zk5?x~nxOI)$jiY=n#dYWmf6L&(I|MnG9(gQF=>Can3bSRTBryU9&rZRzfe_kGPU zV`saDK#%5XK<9Joyqn;P>1jIY3%gL`qJ(i)&5&Z+JYz5jlSf*XjV?S|JhEt4y$Gnb zsg}Q1#$5#HzzS}~m0s%fWU2gpoPf?qlm!f5D1GQHTcuOHnDir68l8=ztdp%$DSYMJ z(x8KKe1v?>apPO{MLYtvGDt%X1N7z7kFRlaltt?1>O=rm?;ffho!upF6bD98ab0C? zGF#iXByxVuas*Yp67Q9WVK5kbWS?CYdl-Y}l^F;ns#?;Nt?3_A;u2Fb8$)M0ld`6? zw`FrOT?_mAwSe$-^dk#@?$ywbf(_({h^DaQ9lkjcrM~Q?+)>7wIk4974z-dH6@6R% zy@31XMgA(~p{1oRa!yWM^jEx2+=>Q?jOg9#!1spe)Y5z*M+WOPNPop2MM?lMNXa%nZt;!a~_1^RZ zTb~#O)lt;ZK!Sf&V@J{&o(cl*2ll=J?+6do$f&5b?-{C7Z&N$irY4lo*~+(99Rn&G zXwRaeJb|!#GlmIKc2h^5|A**}4C=0|pC+5P;n`02o#r*(=C#@`sv^FpzZ$~3sd<|= z`j4C27&;*+0}l^hD>w(=5Y3x>2RmI(M3!B#Z{D6i&LN&@-sT7TSSCqGev&PUe9;<6 zSU?fKX&Bu8Zk~cd_O)=iPnnWqwwp$HfWB-EU7ret`wct@IZG;Vs<%WQ`*5NnW$g{9 zBCq*>Vm>y!Q2u&T>Wwdm<1Mm$i|8Toy@#yMUdkJlDScxm6;r%>{LAD%$>60)VOG`W zm;XeSBV=V|CBXWm%0}~2Fj;rWyzi%qzseAK)*bj4k0CtNQg8@Bb|~e-AIQZ((yfDt%(7kfgFDh$oS{ILM}9+0 z{=EQxnd8%vn$6vTy6HrQ#8H!9Hjr_bWuB~8^xx(vCp0u*=VwYP_7MHDpBJ1=Xf4>- zt|jGaKE3X?MTgP9^*%o%ir<`MO8L(%LrRuOWyVUjLvZc*I}{c6AMJd*Fv{YJ1D{X1 z7k?iB2YLy1^Ev_WyP;QKmne&eT0&rMULuUygp1>L~F?mdaXcWLY?bTc&e1{MNoz`My+OS1sToStihL=`mDj zNOn)4uNowjA z|E)m>Jx(?=$d@j^g(7Wk{VO{3BfHyEZKKV;3QLpSF1PxQ^J^D~nYC+1a=eStTxcW) ze0ou4u&+B)5O^cLTt)&Ck}pik0?ghx_HQl(h93|xK(?jU4>&Efb}p#=xT=5S_oDbc z+q<5RC@#2G0ixia(w3xMi93y#6}oy(@vQuND>S_|>Jl*XkJ`NGT#(*=tdi9yfi%t& z;n?H`ht@hLqF3w2TNzl@U*FCBB*|!Rhv49o89;TiBzs%vAnbhYMlZ_>#oNAV+3~MJ z*pwk`G^I-r+B?^bx*Y0&AIz~+G|%?%Q#Ff&Agq`66q(z})*IhVDZZBi^~J>T4SEq5 z!?5Y6QjrsK*85yhr=(~F>z{nL7fM~|2L>wK^JVt^a@G#OQXG~B!8_^7LG|-oF>fHF zv`eD@b~UFEGpOzljP;xCG^xCnD5F*&If%76j&%q~x$YCkdD8oyON~15?E3G=BjU~W z_4%2Z2g$QgAa#$4nm@wfHG)eCQiPR6mLiYflD)Y-U(N&snf4E1Vq%`#s7-*c6^`~4 zk9?*hq=RtidgJ#_bscT^FLqTDc$j=Dn~j@%hIr>B(6$&@)g+J?3IzzZ;N*73FBDg? ztb-ik!O*LvD|&t9rFRd&a=WV_yiGZ89GW6Zu!J-B@le)kItI*Q150Ldp!C^UD-N zLjMF??SeZO+>qdh;r=av!SA?UTwK_zYvzsmxUPV*8{oh@=?KbP$ycFiej;2$5Bi$M zEn5lJJmor(#YY}uIB%yOMbAe`l6ijjB3*!Q5NL#R&yM^KZ~gvk`zyQLe4|eeXI5(# zYHbI(5c()ZQOPRODDHa-Br%t#V6oH`=jUh!31=+pQi_4iFyYzIpaPg4j|{q^J9KRy zictR6f(?Gj*R| zecz-JqH5S5cbsiDt#z6gMg!DO1p5n3I+Cfs07(*Uwb{#(ye&phw{A`qvql{>b0yP) z{1a2m8}&Kb?AhYkjQeK|b~2G2lR4k|dX%e#&*aKu8}U^m4*S+3eF|(kU5T6VYKQpQ>9;voz=RAur5A{@_le(I)PtkR_cvjjQ_o|M-ga`6#+Dfi{31d;aIqB3w& z^7N@rg8FYiusR#Qempq=1;J^X=(P)0(L>JvH+HYDZg0;(Q~r2)tPf@h!&6FxR8sN= zsXM~aONJIGFwbx{nFhPjW^u@@5~a1Rtc^0$_vg(`VwnVw8$3%bC)IP91+yV3zoQgb znnY9i2!-6v1p|OY+n*ZDAG88nVU=0~V0Q#CcJ(}5^122t0L(>2f?j5d8h|4l_V6g5 zI^4sp(--0+`b3gOf3dPy`k7FtLKX8xnb8&RMrX+Q&%!mKhoAtXD6%@h;%i&1rD?5<7-5D$z{&4tL*~B^4fbW9KMMh_J0!sDNzAN;LNN>zon``+ zKqE^FPP94aQN`QItEQaBq-IP@(YHONJmx$WMENsA(@J4zz2t>V?0aqeJbuS#9N~v@ zrAOJ26YBWDw9bJH8G?+nTaBoDxLYO?eBuUVA>byLbMQ?MqBOG`PFU1y7PO1Y9< zUxe3Fl4xrK@Cyk@`tyy9oau%7mKXR$*ARc>qB)-)0viAenk7fcS?}n#`6`X6)?gm& zIXJSqh4<-w^2$4S1Daz?+Ak*7O-afZvs{BO=JvvcoK;eR2I+swz>Dfr;ioIZ*8$LVBd<}9nRIbHJ!FEV*S@IXjBPjD+OJ?Jej61^N_+n8jwv zug8}^ahCWCjnbvSzLrCo-bIVgU3iYg+7PYsddB{-zQMp>WwT86p0Ru z$=%*<5I2is&XqCY|6v4p&1HQHDpNnkwQ_nKA_nQjL7HqEJLpoTtG>E2VSo)OlR(fN zHB?lTezqG8fF=#WG;u;ID$Qq97#M(p8+C_mn~8p9Ec23ik|}!1Rq`O!>D zjpv3$TRg0|4&e!FJ1VJp=rL_q7Z-)3My`U>TiL&XmY5rw3V8T$MU?U~9NE3!0sk$8AX~Am{9Wp0@`>wpcx-oqkP6!h0g%0I{mKK8fXEjjAa`IY{-ToIz z0^4FfWTe=S+q8?ND}w+mvaZZ5DvzroO-DxiFZma1_m)TJr79l zWn&cEdL|Kb3P2Vih5U{>Xu-F4FTWNEZDw_pFi*=slY&`$r|n ztf94w$P$%15Vvs%k4LIp(O*W~DP0-A{LjxDH@Mkn`!bf-A%NMYs^i4$r#_2Rn4Vig z0sjdD7l#UKGopxZ_F88tz+{d0zmHIT)c_Efd`P07uy)EZWC7&7hWr!0yJRJ`H9tC#W zR79!=17o0_nGCTgK7SN=_zAEb904d*$d0soo#WLG z*BF^X$IGrOPQG05k4Vh0m!S#!^$XbbkS4pZFfbU>((#~UHp}~cHA~GKq{~DX*Lo4l z^zyGO>#Bo2Q-#z~#CAuQ3{i3bv4ZBr@f$EvuZNzUUCf|VrYpZwrzLl@3A=igBvA3* zU;#h3n5Fz|{Cc{yo3eASoHg~}19tHz=%a)*$i3%Xu($8B2kT9nIfC`3`BlHhzwmd* zV}3-(se6L0UoC`}&cAlQ%l~_JthhG41`#Fw+FBaWGLewDR(%!WgwFuo9>7Qu3UusA zc7w~wx68lGpp}z6YRk zHC?+Tp8D->mD~*FB-wnpe_@Xuv-_elpEzEiMeSTy zDoU_3NdZFm?A0Q|PoSV@2}3{qG?T=PcK$>cxf(>t_V?&8WCx18R~NnCVm_pET;R6( z{AMo-+~YzNo3^)X8kzj~0MP9=aF9ZgJ;ngu49C~?qXK$MGlgoyGERVC%cso)w@G+F zqul}z$N&WKzuPJFspFEevN9o`E>FML9GVMtUVCvv@CeB2hsswfp@cX5cHmaK5!soA zCfLaz*En~#UD zw|k&`VU0o(#%d5+Ej6x0F1NXl(+>z(T)zuaveO!9o1GZcAi$a{SM@o$J(mRife(9r zab^OpEhmD;(swE~JWW!}QA@4Xm z!MYPu`S5gHy|U-JFFo>yJP>8$pfW4661XYLLY~n^-*vP1O8aCaUb8u6K+{*8h%Pvk%PWq{?-rm1*0PRC}zp^9+n|Wz@7NU?d8J}9Rgnc=%(R(#1 z8CL*Dyq($-DTYy8|2XFCXBwBed9CxJxWXiQ{nkudz}IvOX3Ox81Vy}-?3UpVOh%&s z6X%M9M8;X=0m7$eM?a}&QMw+jR^E%HH~70krT8L(J>FBoKD2owZ?O1Hlo*|sc#(3j zYN}A1y>?h;kVI<0sl1aFK9F**!45a6`~WKkc|}5w`#JR+&nP(;T(e1b<&9b4lESTS z{P&kFJaG`YN!i?r=6jih@iKxZz@xs>$t!V+@@BBdPw|%fKL?nrDM7+pw89wEiI78*T&gvqG{` z{Wd#dR?pIoA{wd#6-jE3J%Ge%S~a}tX{hs-AKr3H=aV1B;yki{{?h7Id&gnLq02y& zk9|SIk!$W2H=U5ae@_0oOM;?rbS_E*h)d_ztyq@(eOYLzfknES?6n8W!qv-st~-kd z7z@)MK0gzB{akTA*T{Wf5Ufi#L`rRN(q00+lC~_xP`0qJKvN(6!#DX;g2GM%HB)<^ z$Lh1V?Dbc5^fixxSQqsa%R&sEh>f0Og=y`pxL3DV|1trM0o4muV5+dQAGXv;U-1Nv z#M}!L0TSkv^^<(55Qq3LMp^-^=ije9R0uaA|Hz|=iwR-gSf9G}xt;OKSSXo+<+zGUp8N7hs2By`yc3`2;NRwzv5U zF3cPXhh4i-d;o|c9tTCTMMB&f{4xIz7AWcN?miL?4j3Ntoh(8_g1ZYG`MA2~zWsqw zbz<$D5l(oM6Iv%ER{O7QQj(J#eXBzoa-w%3n^UU$g4sJO((1j%~ZSVEgVqf2d*fv_{+7+04hZ!=sdUOR_QLK z4|(%OytJyb`gf(wrm{8R%2t}u-3-XuD}mxyvDYLe07(X4iXD;jbo`0gObdBccYLDY zU)m#<_t!7(#|vmve8=qw4E!Al=7VdmeNxh9%;!Y?P>%x7dIJp#u+Ie6ntO^!?UHBh zRKQ01K>;+A1uf`VpGhnvVtMT?_SZ-4f6WT*>-q;O*<|u?+Fu)0DzybbpPFgtTnaf( zni5n?7r`K+E?&{w+VTBvi)nVA9w$ONv+~?rqP5MHdkK{O&L@JJWplmFf~}QoZKRHE zQaH~^ZXVI_eLmRZ_*2639Q-P&uMj>5@Qt0O;!TzhN+f`Q!%25W)I4&LwhRcINErmP z$zNNzjFUTp0txrRW%`GzUY5k-fs^4WT-EGSG(Tr&n`chKpYS!oCVr>z%O%GNPC)C` z)_VAGPI@Sa{N!hAy0awRDt>@yb%3+y(2U69lCvJAxV1t-`~2aWKnTi!4CdoWQRt|1IGm*;f6j?ULH8P00ZWMqWhLf#p~wM?m^=L zcoBZ;CZwibu<&>P(KnaL#wd{v;p=o_HS@@JKrz`*X0xu`lWc~cGc6wHlJne%EK$+1 zUaS>DWdgJIE14o4$WD)BoN(q?>zwSVCK~+3=6)}H5efFA$zL{o_ie~HZ*fj;y#5<8d@0m5$ zZlLkL3=pfQl zLos!E=N4_7NpC=2<87&%!*+s(7Rgo3C~a1^npejRzK3Pz-x3`p*wc9m)h*NGsb1SY z4G5?$K(u*EsAK)Do_sGw!Bz|#|0tt=N0-vzcih+U<{+l>1|8|Ks_WXwP#hRXz`B6| zy&kLvOc%aCczF;9X%eLmc~fU`ck+%z#t(1K(M^bYv~rX*m@R6~&-Gv0at9GezaeL| z!<9QNmy5~~dsHoOjReSGJ8jhhC2WGni`rDnB>#?0$LWD$1}HS)@3o@9cHv+C^b9Cz zhhJ>om!l+JMy}t9r_PsI+*V+lx;SU`gzQ;*d|`+!1!-GWreS}`)^)vyMebD!kv@(( zGSjlmsK;)R@~R1a;hfi>`d!!3Q)azC@T?A7ELnGkN$QjI$jM*2GrfGPc!1UW=BgFF zNC~wfyX9c-XSCex$1xK4d8Z~Nhwmt8F_QPkQ1`;$iDmn%#;2H{SB|SS`1wrlqADxm zV1v&{a#~t;te^hVWjJFaxpQymy2IEaV1dr#7C{)C&VAv@z%~z0=@eW5JzHphU|9iV zs|U_i(PJMgfE#W|qzELT0g)rA$LQX_r6PkA#~#_~|M)}x?SH*k_tccm8{mZgoJeFd z5Ko63XQl})p&s;RN9eogNPH{FUgjIN(#IEqOymz#jNw+Sz?TG(mDq(C=48FR2cb82 zQw`4@sxFc@(qTYv};d?W`85Q_5smSVp3`%J*HjgSwB0+VX$LYLy#t2I|G zy0&Jr*Fv2#kV+>#+(dqBdGa|ZV{bt=O~L7!h+d$<871>8FG=nrq|~u57vqkTdRpX$ z?EB1p$t_+ThW->Dftq50FoYvOV1|NEJ0G#&2?T0C>vy8EAM15FE}raoYuU0-F%vt9 zz+WcWYbtFtGC6fVAx6iHK6?QO6%}#t;P3N-fRhS{wkm)P;!IYW9Y7DAp8guf8g%Kq zGxWONQvBhlme2V&_OsW9-T zFT$|qBpv4X!a#5LLkN5@xxy6 zvOx^H&f5C=X-#Kp`caJ*JC{dPGc{gX{FvE=4m*4MfrY=fp565sLJ}`;-+vmG7AvzI zQ=VUMeghO>jkp2?45Zz#2+)a=oQVp0Ufr7wRJGB};@zT-Bnf(H6{=@^&^ewcS=(N; z84?MRQvJZURNXC{NmVK6@!jVPCM}T|0dxNkRl*MtFi5%#@IUE+KP6%@JFj+1VeT?j z6z^14!HJ}oBRUpjzdtDO4Fp6u=c-A6x+iUr#Gg!6Naw>F21Sb8tf+z#iQ>Q3Jjq=A zB{P@>B0Zd)NmAQ}Xmyk~M3vB1d_dNd(mqg{YMl;sa_P~a#? z{=?ufI^M^wh}@%61oV)Ibl-%kE<7L3nY(%HT$wkKTSwJh0}{IAfN;U?XmSvJ*W8nx z@Oe<%Pwr;Vx2f`j*eBLwm|yq#QYbBVF56_@%!=2r?v9StodULwpD#N;jGlAl6m@m+ z=mPsJwosIyRkO*8!B%j^?2+M)?>V)Th?*kO*P(^Y6BF$66A5OQs#+)%0pyyp@zx>4 zjnCwf(^_0-6iC}JacwK7k=q%RY(bCpOpXv<%isQWtzIf4+Nb|{p8vDp8kg~4Q?$Ol z^|LC9K!Wd2Yy0Q#@O*iCD2|l^;(4 z-;VF#QQLVPuD$V1BNxfC0rM)5;l-fZnoQ=d0l?=�+rg_uL0Y&jwF=EXQ;hjbRG! zREIzTk>Esx8`s&rEB&#=KHQ`G*M1%A33_kNlwBy}ABUQu7sK(th}q`c-LotW^R{OW zL}H;x#h4z$A4M~!(~J>ddh9IE9Wb*b>Vh7Jh*^PvSz}=Q$TN4rSwSNSW$cWl5x1o%n~`=gaW0z0t2~*z*Hj68|fRI zvcSK0g6J@pc~e)oaY)T$ItjmqQub_YbErLobU}TDSev0j*o3rh>1z}TrDm_y{=&c2 zVIb2Fvk?^1gW`cY=mNJd;!rMWX@&jc*1h7SuPk31Vtgw5YGL%NT9}Yk5(kKwey{g~ z%e>u0M^BGs&TRmIb<31A((*u>&b`13e+dH%dfx=u=WaT72K-A~GYonkAcFp#{4FX& zfq)y#g30(wKZF6^qj40GGTY`V91lf0mn0lTzrEld?^}M-v-ktRBn$~y7)g*An7V4v zYx4yw1dDc8$-&#Ywx5&U20o9$%}-Po^VE04s9Tl>s#?&R;%~LLg~^M|y0s2Pu-`NI zSbFsU$;C?vfH0y^{D9AKEEpVsozu7Ty+h=W;s1L&Bi7`X69Qm=dhqE)TK4C0 zwkT6s+LM;Xe)-~_E=~Ps0D%sGRe@0Uo)!$t@6LPXBfw}B96W%3+RxE(?)Gi#?Jz)` z=Fv2XsGaC`6+C3w*SsKN!hqqG{({G-$WCA z8fKqn&~cf>Ls+WqeW^##d;%!DlyvqBdB;8U@RY{AkC^aK`c65GhecZx%To{`d|Nn) zefzG}0|s~&)p14$WD&l0!LR>7<$ilxZFp7D!pcWzTvO9?&O6sX-u@e4+C?Q#+F7+n zM7-4g4|VM3!Yv-&KEeXJQa0dBW_H^iw^W~-TlW&cer+To#OR058VN9`4qxBwfE}2X zu-N5E83T2A-&kfs#a~_9eG})!`6V}71sV-=f>q>5;%r3!w)gX2$O=`f#xqJov7bKa z{Sj)S7FXK!W2Ep45Iet>JIP91S^A}Yi&!hGDJRrX_?8)+qn#@ zcK4*}PFL%=X}gVq*>(o#qvUVLGZYB<-tZQ@!j<3Ozl-|tlWaHRD^swN%Rc@=*c{@p z#K1=}!ibc``ImYg=e!Fr&SV3#F_)?*M5W7Q9(OLDQ60$A0uT{qZ$JeU5B(?KtWIY$ zb`TR-90q8?!Y47ht9wF-0d9QX?!a}G^xzmG z)b1V+8VG%L37Ih93TaZYxvy(aa}qt>-z-a8U5@dG8~+v>58y$7 z9E`_>FCF|crS%wTk4WAE{hOiYFCcL{ zBLMy;rO_MP%kWQmCSwh;Tkh!=S?REgC>70D%W5PC-qwwJ7BTr?$LuFYBHfTufzrg( zAJiTWL@f5PdDRhp#1jCpt-vOTnz0~Y&7z6~wF&YCb~2+ewX#_w#%y9wKfKkxn{u;T zdA2|yiBqVsY2lfUdx)JDRVBna8Q)}hdh~l6iz*iHYu~v2JZTJ=nZ8e4f@x}+ET*fg zii6>Ci0!NBpl1gL6@UWiLUnG-2>u=m56^i8xj1Z)gkoAOmFgJ{dMAW4q$yOFDk?ij zNTk5==be0f-Y<$2ayb=z=I5wyvW#ddxXhxceG9To{OhVGBXN*$1slFi#rIu&{)C(T zDWEJXvJa7mg}+p=oki_x@SR<3eL=N&p>9o304nICIT|+;Eh;aUX-Ww+6 zA>9E3_M1}=`#?Y+uA#t*_c9e_?3SL)(&$XFxl8pyJ(=0QT(qIK;FGjlRKvf7+REPQ zsNgx%{Otu6}h4SdQ^x5I3m+fX~>bPTmh^j4$1P-A?#*nbv1V-%16Wd&=EHKXlj z1Xay_F4jnaHR9rezRFWgzZ7wEuDDgQnL48ad_3-up{trn9O|P z1CJ7duJd8S^d(OHF%2QIwziQWk>XUT9SfJvZt{hYiSXY?fHpoGl1MQrUMa_;I^F=d zA#+Yfj>x|l4p1cAB4q(QLxDBc%_Z#kL_WSl20J368X{?;c9;Sy2i<{+gU^`m-Nre*+ ztOL^$^Vobg3;;swwU&B)t4cKI&gKRxL#&)_h`A15KFdyk*o^ig5H6xd%)e3T!sAyd+LG z&*Yut@v|ZMhuB}5Yn|6_!slJ8xF)J6nYro~2?`MH2bfMrh|#wVQ~*ZZ<=2+z;Pcd- z`nvF&Edjjstrfrt=fa_md%t@A-)8X-0U-8_c6zy9B@rU|K!^K5v*!7KDsoX#k=LdM zLZ6KEq-ThP6;7aee_W4x+;@McmyEoXK9B7J8c2g!h}?^=%P6q*Qb2uo6u84k^X*oh z0~QcNI7?Bwv^0Q&B?}NshnSeEp;pzvZm_7ceTMc#lCrCEAsG)hQDhxD(k+^IM=kL} zs)|LR@TJ?D>&uKpQ8^;>8qo=pIVixbzxVQNF)IT&NA^<8mgC|eBbn|2FIH9YPX+N} za_?-BXF!n+6s3=&V$`-uw6hL~eT4uqz(y`W_ab`+H{GAKQ3URYc{K)T>#A*>NRZ=k zYC`sklX*bvfk;{tY$<6;Ieckeq|K@KTJ5B#R@%de3w|+@h5Y097q$C4vH(TEl@QbY z>C|)L1bIfo1us`8=U4p0XZfKC>EHOB`}B^Ch>|0(}~rY>wLJ| zR;-^FC7m#65j?%U>OuK=0iKxktE;Q^iHV8z6B85l)z#JY0OTyp&R)to`WM4#qm?hp zv+?N!o)1%>rJxm!5<{mYGk6PEd2%5i)<73ad>sa>K6tkw=0oqG@3JG>%C<|?Qpk|c zS$AyuNa*WwW7(YZ_?dp)qA1O@PTk@_%~1>>8h_A^Ke!T|PkmjCB9ADWxvu6rw$v?_ zdV4UdX{FgYCE9do{5%2lKXx^YpPzsCdp4Goq1h-Ar$HX%c%;YWc{JEXb??509)6R{ z8c2J&w)}uM_FmClo&+(_EZpac{BbbSO75TX&~QzUF<~-(og3;ujD0@ zJe>_7KTbHd%Kjk@ZBH<3xoKSwzJe|&8N^IpDYc*0rN%iT@{m1Bj7ORg#)0^r*wrdCmK6xHk)&viyDj~qU zWHoYVs|ya79vk@?WAb#!lc;HF!${!02Vkvn#5S*-LVyG_!^g=NpsBp6tak}7m^W`& zlhVz+(-8)nnk3-}6jQ5Hr0a#oiexL9Al*H-+a$xmdAdIR4~nBm7`g=VmcMP9S>wh$ z)HFsBi80wOZCcLZ-xpOgDU># zC|9E>gN6GI>CI}+I247NVuI9%LD9irSbU!6Q+O<@7Yj@QdrjXY7e(L~(kT;y^91KB zW0gHscyt3(qwmvjRc~y0xKGA^FUhzy8g^N4GwdUMSa=Uk5?gF9@f0NxyBc@!MFb30gHbjAi(q&wWKfVp>0;_8plTVJ*LD5 zA_fY?bWXKzBWa0_aOl2#$GQE&EhzXg6&>W^4h8J3)cyVa)%ErD)x8&v{(+pW6IaAB zLEPtzgTHB+CE}E#r?O!ll*rS|?!-e;^c}ni)GL`sr42!e{Kfdf7yslHUijD(xkL!B z>YGx%^~E_55!G8e(MaZ<_GapAJm^!B5pWV|eYZE~jL@2o1G;F9Y41YuTetlIKX3p} zuH0=WuLg_t|Bt|11BU9>`amM+YZA?J6Wam=*yz0NNR41P9xx8s_Be+fUkBX><4!LI z5>>PvV+JO^;lgK?cg;*5{ZabompQx1PVa7KSX$zh@eWnUL^6dHZJ7POR=K+6cO_ncT1ri)g07hu) zo9OeiatFK7YIJnO$y$eOHOS8ZdT~+ynuGBkBB9AV7b|nRj>Z z0alQ1YoQs!H12bVlid)sNxRcJB(<9^kHR>DQiWV_5WdI49+4A~=ZUkqtFUx;{ZA-A z#dE_bIT8fe1EsRe8Klg70tjd+T?qM1-_ENLe-*156gK1NL(z~dW+bBc#M~Ng)aiPzpY!HDG&)HD43JFDC2=2Kr zMC{Q%9{0w~xhGV_DR_I#i-9379IB?K z<^<$zI9XX0BvL1S_+YG~rKP3w;>8OceFC!&JAdib2QDI>VX0#FBTX+7Bk z-ZWv3Tb2Xvl(A~>!eC#I-s$d1psc5<{voCE)b}yJG;`*q>aaNTYrMB-gbT8%R(%_H z1~hJwf}o~@w+!lQtc%{C4!*dwOrU1_RVicI+ z>`Xpo;OuXAK@~4oLR>Fk)&rQ8bzap8I-(5IvbcJXfRYXp6D4cu${T%4Qzc_FB8H#& zrpp;|6sz(lhYzj2_Lb%8{%pbGQxK(KBC*gIW=2Iv!N^}3!@a*xyfI@tOUDms?rdaD zZA7SJ{4fK+Y?iA2l4Z5Ek)oER>hJiSrF94 zjZycHoF_4pxsm@qO#^>mB^^4Hgg`&@NqOE%`xTh(9Qp8=uU&`mi+P*9RAV^XK zlFaGu8=@)sxNORE;#Gvvn^w+)4=MoEH)N`|9g@Dyc{Y*z5px@cL#(1U5~*;+(3VD5 zd=aAy@lV)kV|B2SuX{5LMd~X1YGiYqeSvFRDZBr2D32<2uv zv4TOvfc-8O(NAskk-hs{XMN zz=up?g>9mASYaphmR1_Bw4c}hy}G05+2SgF{`~ou((-b_0dR}=0Y5<1rUNDi z53jhf(+Ay*T>_1S_t}iOgV5Z--srWckHWSGE@7v1eSUs^Js}|>qg?nyF9`#@6bDB} zh~1$;%Z3}L0K{`wB%VzR(*7(r(Jp0225K0SpAulB(aElMU2AXq&|wE2$>pD$LJWDa z{SKK>d;I8Pf1fhEF$?)Pf2O#bB|Sql_n@$7)_wfCTecMJmc`+wSgbOBR&<~?Z=B02 z=OybTQnSS|=gdX!+;GsBs{6WyPor+}B4D<~DD?cl-VG1JH!Xilsi@`Ivd48U94O@am20OAV3T}Z{QFC_d8_D*eDaO9^nGKl zG|8}*O_Me_vW~X-c5ltF+v&$WD4Q~@hGYmZwE%>fdX_ESo)n4 zv&DGO5Gf^apI+n2f7PyQJ~>Wtm-{*uu#{Q=G}}nP*z?~x*>hn)g=LtV6s}G|!6+0q zr|vj7Lfq9e_mR0gDxp8A1d_;|NJbF)`)+x~@xtjltt6Rv2S&(_hh{i5Dx0Q@hMM5_ zb`-e-bzTGAYY`FVbkwdhCk;VJ1V;yGhR7Em5WXK&u|2ILoCc$V<>6S?@$uPlD^W1I~=8y57_Oul5Eoe18I z$#SJ>BD4zWHW59goea42^G^45*^&Bmegzl zL5Z}9+AL6X9WnWjiUSXVfo;X83q3Z1j;oKdZJPjR=eq+FcshqLeTkcghnD9{KmChs z3~Vslw%AV7?;b$cK=53=MkEU8(|lebs3!` zJ2lB62Jx4Y-=Q^MMwu`N1_g;(q2YmnQD~nwF(svElo0&zYJI+X?~}$TBa^!xij9Lq zfYjgC>|NUe^`IOgB7XT9XY5Rqzhbw_1$tooOG2>hub;;NA(QbS< z^hnYk-oQtd35~cjN%vK3W^cskvALe|9`8oaQd-K`rzzXP^3bJ=8NNMsCObJ(8j~t~ z3WeqM)S~(C(A2CUI#UO{8?Zr3e}C7!@r!{fxb z_U$UxH-c4fZ{pHsQmBOZi`ZnMUU7-qKLT?Fy2Dk}d-*HG)?Z`!Y1%)A<5o`2sxQJ; ze^x04zx;y-xehZR~ULnZqxqS?8)hBIw{FDVMy1Eo88l|Z)UHkVj z_9bM0ed*aFf~!}xaEdVbuZ7=tJuba6Wr8x+hPTK&&^jHgtUmsI9tIwKlEMqO)7!Fb z3hN-F4+yw^LG0hVtS5w@1e@`RK|zzkH+}c>%%8W_n=)rH+3)ljzQuY(1j7SAVqO`4 zbdCizrPo&=i$^UmGV{vgDe$6KpUddaNMmre%KGW3?8#4_fz|S#YL+Zfg<>iY&2CX- zhEAbd;0@Z!lcmctzss$(q5L1QNC0}bG&bM!}?vICCf{3*z-nnbZe*??Q*RNAP zH_at%>Q1Bz$};h(cSOxIRWZZnW)S+ zn^zTev-wO#bJCiFzns`RZ(c^5P9znKWKQYbf7<7e&5uKT?upo74ZG9-cWoZ5KC8~? zY^w^d^G$uR%4)fsQ#0*TKvS{!qnhe2$UY=WV_#_w!qJxV+++ap-wz$apes;xWvyC1&%nABqgK88=wJF)d=EH{N@fJ4b2P5<~#&<6nz+2 z;OkooTsXP-on`H(6Mo_r4m6gWgYzd}y|Q_Kt?&&`e{t4&;zs_6{G-*Vu#C(c742v| z7G$?DDnyzoq94zMkUSj*%ZuRSYo%Rat5Sbk%vMyg>3P=Y=lOG8EFwg@zqV=7_Zyf7!itwdHLv-R{UNx6F3Ul`EGp-<+OXXgL5TOFioHLMHHbp&%|`y8mj z$F78Sha(tsi+9|=aeDH5GSI|g|F$|yBUdik_meo4#LpWe*X~*yKc9Y95L9*=sXntMLt?~R?lV@8JP*_N zE8>SfN`IvFn3|bc_K5~=RP&=KdNF1Dl_>tNSeQ&US_sU*8S|cK2-mL{HmkT&I~8au z^TQ0-Qm*n(Gi9MqE%0P%LM1l7A)I_^mEF^?U%A!|tbJ=M`&(Fka%qy~nccNMC0KcQET|u*3k!&13Ar~ zq{7hbznaSo{o7HWUog*eOmj}zS;*kum(UuT^G>muHCpGW9v)3G#h5XrKOKxVWzq5! znbQOA-#KPdBk}|K70GQ(FtmPZoXhaLA@IzPBcY2Qo0J^gK&zpCWs!<%un*0z5C z70iQ*?suA+Hl^zjPz+)Oh7v*!Rrm;f%_6ET~#2l(FIcZ`6*Q7CCGKy?1p?~ z#nB}0QL|A9jBf4}TLI5)Z`xzzsVr7GzCpAj9UUfj!{;S)u$gsk6x!_C?_OTa7K4&_ zqDZ!V1+pAe7TekZ>7;ORscvJips8n24!o7Ng3z2b#aBkd;1+XYXXT|X`KH`8BctI< z%Q8QT>R7b`gA_C(6;ezK5Y=NB_a7x<6a1EXnShkfWO#?FweDKJUpLQe@ZT*}bRr3k$Bt zorF47#UOMV`xKw>QR&MWQ!qYKdsOm`fS#fEHEfhH$r^zfJ08ZkK>+;`mSmj7fRe}4 zgsmW`Gr#e{xry8@tQ000;y0>d7Sx6F#rCrv`yh*g#RO$mb2)OSe}mHC)@wgC1DM{T zRiWqXOM7g_t|iFaX?=TZ{-0XDNBP|6I#Jo#L|P{g^6&Fp1lkU*fHQEniR%HN;0rKf zZ|q?+3ZI;uqyP^L?PGGBQNmCrf&{PCE{yhH4>r!OHLGt%-xpFvg&fC0&9a33y7+3at4Qc5J$^#6O5f!?`cX zV%|ic{`);*LA);i)1Q>jBe5PB*hAKZPY(%WGdIRR3{cHOUtsRzzLI;B{WUxF@0srv zY2~|n-Z=9PhqgZz;b7cM=`TLCe=@3`DSjD}Mar3n3^*lc87z2dbvaBh3PCLG`d6N; z2|j|;v&#E3(kQlnp8xvy9s*df+-!a~`6FgV+8^db(4Sa1M>~#|_m)dU^{TtprzyMG z!1^uZk%WcVFEoNMwpE`<1g~o%9cf>r*$sX^?(m997$a{y{vY%P42#F(^5JaETcA+# z=0DILan&K$bd~Gr4z;v}Ic=m5?jyE9+JZOI**hsm@9KVzg{y^=C99-UWI)UMJV)T& zRS4Jj1pIlUD&CTJk5w(C2QAq~ra#X&xM`C{1`u|*g@l4LXK;T?QJk+QpwWolS^9^Q z^~>ASgT4`#1)Q9ZR~Y8+qIONz%&;w}Vq+~5g{O?>y&l83r1)ZA&`F1@yOb|y&S z6%paV2z`Fn-Yn8|KAAkkHg;QT*z{7{=%>})!b;(3%==2#*VgSpSkH~1zJI{{1MNK!klD!RWYv7esZ@-4N9+Ge4B-7uP_gOVlYR#WPj$$_@!!E=dM0Y zH>|*)ggv~}*X|-}N1dT|Uy15*582$g%9S7Dzhimo!{N2CmYt`kXH-VGlbR^g^Vm@i z2pn}@w6I#_!OHQX)88_GmAIuY93OFi&B7+`L}ex>KumXL`|Uu-xQ*v}@|w z=0I-|`0-)xNld{c4!Oq+iO(br@O$3=#DcH(5-)uXak^0~N+4$}FU=4N+&>VlC#ZVs)CM{qB-36-w7L zoMrd9XzVh_`^LP}WWS)$y>0Rpv{8GP3pmLmmK3o#O_+jYBr&8pT%T5$BM|1JY?%Zp zj46Tz3GaTJ%41V)<)0IQm1kdPhxA)}EzE=kiX-9ezd*z|puY~WaeKWWyd1`(P&40MEAZZr18ztM%pJ$#9V)-M*P%w1vE$c>lFa0{Fg@u2V0b^POACQiEzuI`Egb^u znl-Z&-riguCB80)lDG@1&W1shU=JP~xdLAlK4bw~%b^ZMLatjBow^_xYy-EAj8OjS zlH170LA1U{a*~+4$&tko#(-v!$6>_*?sWmz2xc?x9{yHs*b}oXQPCY=Sk0K?2kn6! z$O6(p`dD0EbPn%ve>%SZQ(jyW5&++$g_-a;pLI_148vTArJPL|= z{icXazZU*Z(5?}!a^AXM$;cuNqt-QB^zU!a9(nkJ@aGo%LMP>XdXUvwf5ld_yJSct zo^lV~#t_^KAgQ>YPHU_{JQ?vRV_IXzo!L*!W4W@C!_87)$o!pFEAjM_}iR^F(vsMgNhCpKQK`xFjK53bEv@98dnJ__E zwVjuss0rx7ax}e`=fA zdgqAX1B8p^-7wtxHC~qkETzN*Z;69hJ8-)9bAI+08yej2fBq~A1^f;5>^{=t*9D7! z6We^ja?dqVKL5>zEVj7|q>kc<*B&cHJn_B1(qqgJAgR9rCd$nolJlF5)j5-zB`JO> zvHqZn;3oxexWZh-7HsTliHw7XSOk7H**&{z-4m!jG^G|F9>1-Xn~fhbuF>9z+b;-! zFLLGx_nv2fH6CbbLJ*FE?{gbtbST>I@)2b1j>%ct@_`JYZVO*q?X?*arqo;YyhiA4 zj8dDp;wX_}BhX}O)iLaJip4^v21QF#fm%c3!T?r*R{VomGKLf z?Q3KzF~~tV9TBEHyClEW{{m1rSyz2}X*y#LW04kg7VxUXNf+%BWuZ+=tcxyi(TCd! z1_4vCJHJ!skmPDuQd*amHgqCHQ&%u=>fTV{9B_^?&DAoP3)4Ei+Z?ik_I{s*{m74H z)1=pq-2UH@tOi(d37jrf(lXst?OzBJ+qBALEd0E*qM!4q5b>3!=G77Y-G)MVj+=^7 zPk*E5X9f73Scy_j@4McYi1cc{Wy2(KQj~^HU=D+DaN3|w2yiId+?lWEZ}rqQ1WIZ5 za993TTx&EYcf91GMKYs%sYoZDOv`mhF8j$wv|k@qh(!ky460 zm@cq^XXBJbU>Hau+rdTPQFLAJ=)Oa79Dyz3)KqAq(;GOM6!*i=iP>v0H6RI{p*elT zcYjPL;dE*9urQyHw_&?O&%Cm_d^}#ITg~M3ALe(JQs~pS# z|K=pdXrn4lNl5|BopR6Lx(7Pg8=01$ZC}~&!Hec*B zQ$X)DENz^(+3PlsgDk|BXn^=Z3<7p@k(vIEq?kS+@IsZ5wZrvU^P9qM0)x$wi<3gD z-rBLRFBQT-+XB{#tbVCw&+Q{iu)gffsjl>mRWz`-4y_Q;4U-S1@_>Y}&f0=LHgOPf z#vAQ%G)Lj{9bfpqZ&kgOGoyC7y%cr@dZJwh(= ziNu0y(cGbq$M#ohSo7l#)9%}ycEpzc2hk*BOkav^|4gCfn^4q2Y=ju(=JE6neR0dk zDFc>kNCS+~!Wgm`p)>sK#cq}=!AhC-?{seEuky_Cj&cY$;O11FN?<=wZGX6qcqT@# z)&{~M*Io{I&4#b{*_gXo48+q*`A+R8O!s@)yKG%63kqJxXJr{_I5;=}#xaUs;AKP0 zgcGx?r6Y5Y-lwJO7tBJ6ihF!e`gUX4UnjEAn6rJ~C(3FMS`~X&!bg`1nO&IPFx`Wk znz;vv#@^qd1Wg7IUY;gek0#AQ7CAuffh%cG$IGA&47k1t2wA81JZyKb9zT9U9E;$v z|E9w6>knyNBhjB;*g>grs7a`)L`HZXJKVjH%#e0|HEb-8s=khV13;ks<<3e=vUdK&Wg?n6s!`N~>O4g^>+;y4mBX*ao3zfyFIFJoWg_ z5El$l)JFgZgjhBK#l1=iC68z~&R(Q^yb@I=@{x09+YM1W`C%V%!#1Q1O{lI8&?|dL zGPAnKT4B|^PA=BXV(%l7!|qNJIwRP-=+-!Nul=iK!7Ko=l&~UQ4B)a?VR13jJ$jBB z0#iL?7>}=ovd=sVQb96$Dj2GgaN`$@H*Q%%$Du9wq-u?E!K? zfYIj+AW50I2XtG_jG%U5l5vx8xaV667MU%6KTU2od@nncyDVpYJAs@|At2`9bLK*gW=}lnb^If8y--7SqEIa@%w^! zayy$)v)jFaGoQS!&d$8P-rfQP0#S%~{8$q`mHGB9;Tn*ZLfT=fK?7h8b8R!ShQU= z_xQyp2O4tVZtA-yI|Ma23EZ?EMd;h!@I?594<6^8$Uv-|ox;jprp&=bXM}*5Hi*W^ zV6cH68xQ259>$Kg+0>W`;mhkW&MY-okcj@hQGebQ4y%#Ui#Y+IfKF??02Kx6$pDx+ znSi}Y#wjCiS!#7Lgt-?_2pMnOn&MWTB}+9YtWk8i*Sa(nu^s;cD*6o#^#ZIh=WFS$wWOoA!WK)ajohKgSj`YVAGL89BN8cb*RWEL5?m=kv>-1D{P^>}p;m(I>|3 z*)sGHu9%a*p&~#ngP)~t-RNsT6#V>J&YiBfWbLvg*XydS?Zk-O}>}7E3|lSoMmVJ#VzJ;^JyNWGKe{mz4&+cAL)f?J3JvvX-1iDn>>L zpSHD|w#Xoi>=%zw4B4{gZL)HEP>?Jr(t$!@OT$SG@v4rf4O)UxI~vsGUjk8iLpY;J zPe<1uIy5`0FK1%HOeHpyCBe;t1o%;)KfUij~9SB*e);6QX3z143>plW*KV8(ZLI-h>l?WU0Epp!L(bNui?i0=>tpvS zbDKT?x0r9k0m9$IXZ7-A{UFHEna{0oKy_JRiH-UHK!YQ6kEG~k_%W{XYHv51I{*v8 z?7|oTb%;T5VZuI|#%SXv2H?#hiN9fCtf)l}#f3~Z20&^%PpQkNlI_OAVVt+R*y?@l zcm^AIzkQd4nZa~UljxV=2dF<7NU}OVF{+QO4D^Ve`5-r>dj31QOU-!Q=9d?TOI0tQ zJg&TE{D8cXWJ~jdlb1KVf>y*ml}=9TwTG4GH1d{M4P5P8?sPC(?j$h&zE^FuIsV>x z^UJvN?-Twbq`>;%mnh4iK^EX&s#h1nHvQ;cBS}chvbfd>L*(jaKh-WJtwD-Gs|WAj z7ka3gJl6b%Cg)Yco>~M@kITn1r$`=hGVi0o0MX}X9v?hDj#jMgMQy+mTyv8^=fgJiJZm7!_(;L z>Oug1Aky)?i*Z*f8J*r3hS7hfWdkZav!&vn{%44TV+nmwjEz1Vd$=XL<)71em#zu* zNlQW5=u9+UuWlrA5m_-W2?>X&KsMW;Pz19vx`{+dF*}4=5#t(5QJS(rWAP(HL!jTn zn_E$HA@|jTxQ+Q>x69*Y#~`5of)AX9pYO6s-R|oC?`YhmRL>1;KYvY{hQWorQR`f@?%;lj+j3ig5 zW0}a)9-}Z0=rWzZb@>OoP0%!G>bjHoR{Ro-IE^45%6 zzZJlObBR|8;Er3qKN*E>+?#dZlsR6rEXbFqvS6U%f^j=LpXj@}>kgTZ>xt*nE`Y*h zO`hGgKoPn@8g0voFPOe*_cWKh7G6P$1H+OAORny}4}_BHBP!@y!*PLL7rV&wO< zE;W$#a43whK~ei2>fCa|G*$Fk_rf}pzqMfOraBad-)g?NW4D+tkp~!f8dVf4AOZ1_ z#%S{;g<{I~9Iw2HhzJ%6sXD;eJOyl?G=zi$d@8ijzic!tH~vO6$rgZIt@F_;zM}dy zEP@~{a|;U&fM7|)!ou>2MgojFB?=x6vpW$!Sg7o#)y1pFpnpp(dl`JG)#A_SM%3rH zFaK*>L@O-V528@>{7K`^j5cG^B5sTqMp9uBz_bH>4C5Le4CDICmyf7E>?1m^qiCoc z&wmn&^%Qm=Mg-yavY7 z_j@(sFM~y2tSsPz&~%T_@Ect6B<${G@?fVI_Boo?5vEVAZzw#UpReiekNP<`$Ir{) zREMVM^{jEfraLb1e#!B9l^}(*zx=IJVj-1{ni!S5)6cOb`UuWbcp>H?_KYp*7;Ag%@p6v=_uxHr|IY7uyET)YT z(Kf5$;fU<52EhRcUy`uQy(Q=wDSvZ#ueE$nn7UQ3pqn70gdx!bnEVWh|EL5&NoqB9 zCTk*Dkf(cd4_T1KBR?2!7ug*D9-7NNy)o+6VILTBQ!-Or7Nqk}wP%!$5|kZvI)jA~ z^EuLC18`bhQG>2-g(aut*{*QWyhJ=8Jti2ea?J})AI!UM^D{k}^cZZkNL%KUm@K)4 z3|5nrxuJ4d-0?gqa01BMpbo#{I-#0`y$LDKIsx#+)%(x_s&>c2Ri*Aw0xDz>rW}gG zAhaX|z#Hxv*neDn``rcKKJu|YxmpcNPS%YF%z_$vdMRv9fbP!l{p!l6J4Ysb%JtLE zMfPy?O#P#j;?2b6*>&C>YzI+4Y6djzQ=Cq0O(|oe>6MwNLs2gWh(eNL=d@#Ym}_lgy2bgIwTThuq-nDA*x%u2Vj4smIKs zPRb2e!>s9zMUC~1eT>tMzZ%aPU+MQzD`>l@AtUkr^PrY*Gyv|iGKZUA{bNBCx1S9& zB2YkdPTY9fd(2JG-&)X#^yK;#)EBxu&|f)pC#!_U_R@(vsxt?3l}E3yNWKZoSso-G zOmoV?&%)X!x^<-evNhRhY;hTkt=!j}s!ctH#paTO*RXm(>m(^nEZ=8BXuz}bY!RIn zNUnK@teJ{eY61(1DYC$7tKp#|WpSi2NJ)(s_ea5X=#SBK>@5SfEZ^G$m+7BrW*&vR zOq^gfE?uXrN8yGlV7_Se68bPT$nx$)A|Ac{=J7$M0$X5IA8g?5Q`2Wj!NAJD99_=XX*m2gd>AN5L>;1z9p0uEjH#CUAgNKrUg=Dta!JYo`O8&C1jc(kcI8~m^ ztD4&V;l1eo8MR(|V%BGT5QYe&81Q{!Y1>E44~zGx_#W5w83PYQauMSZN-JO|9i1jn zpm5*!t?=Ryy`-}Ia%TW6Wm&}hv4Jk z&FM^LMN$2DXa^C~vVMASnObL6lpJmo5A5FmHI*Xt-rpMz@A8+S58h%uaA9}=QcF(=BoAL%-pt<8-;IsT z^(7;F!OM^^BMVqUvUJ&VS&7LQ)YK?eDw1l2{bdvciE}zm@~ramu|6QL3uET~oJT*s zT7ReX$Mi8;?-Mp0I>4U|>DfI8CP&qh(Bq^zO)j36ZHsRKkWR98HGS>w*$mo-_}(Wy z=Nlu^{F=orQj9s}!>>0*+QAL(12W zg7cN%3#!U@&q8<0H6gv9vg?mZ5X{n|7jlxtM1ea%Z#8!9 zo(SG(UR7T2YO)8dC?1mvQ;VaxgD^)3B8(*|WFmFwlq)=vOi9}-ONG{cr9$QSG!&2_ zd@T4ac%01c$%Rl(4FwQ%97`!XYuKpRufI}5=1%!=YR&Z@ofI>21e!3=eih^ClHH%O z=O@@;#N7KAqy|8B*LD8KkFenEuI`;T2l@7oFyN#r2dhs83rDISZEo}Vf9~kqwpn+~ zS?M-vov8WXX5~L5g^oO4pO*9aicp;FS}C#0?ivihGq98*R-h(OoPG0^jzE2u3mF(x zO`k4V+J4X_EBqpG2J&OW&ENm~>A^_M=2U$=t8gv@gAhl1XU_{FrTQUu_ji&z@?%bq z(J$rLlqg>%m@1ttKSDaK@Q zE9Jjp%t=M)EM&(H>mow@0p@=gV(K@KTl?gGV%$9otyiJX0jnJ99svYj>o0JLpt{q@B)(cVix289~UHF8``dcLNNhn{x{X-^AAyx`Bus+ ztbzizCJ2)2o#UC2;rH6hci(gQptZbF~<(x6(P_cz^G zpfL9RA1sB7V5xY#5mKeoiiy+G2mcCN`b={q05h1j2Mkx+#HlU1OP2Eh`BQdGyhjj-m8*{ zMB{m7Oce^@G-#-VFCC!&C)b-x=5oZzRuCqjPA0___+f#5vi`Y7BdwboJ0}?p3nRDG zI9P$#-&qBh$KvTWeky4FKG{`vG$8$NN%d-Z(r=-s&Qe={k;14)+f?}fx>HbW>IvrWnsY9}_e&{|N(sxx5-LT-uWo0>5`1#540K^< z*R*N9wHsPKZGED3GJo{Kf;I#H?4wyAmka!n+Lx?D-VK z9|NWSpbc-}0bV+?)$>V)s>-Ny8j_S@(2m@@v(w7m5~1J%N{wR?{wXF}A3)jaC-zrl zx+DVzQi5>8-o?S!?4ahAbZl17w7CJlyb*tLFF%Xm{4dKgeqCOYPu<>5;QP*}+sB{_ z3ull7QH&#(_EE_HbypMR4i(XalgaoS_RM%UZ6S-Wx(?7a$Tl{R}aL@!e` zGs3rcj?FBMcIAmzZ9!lf0_BP(tqkEEWq4~Az%j`>AU_+}kS12t)NleJT7@b+{(LY5oB1QkwbMxiF2hBfFAynWU=)IN(P%CI z>`94qspjyQHO078h!QoH%FadFl`~iMQK)whyOWamQ(|84ZyYWU9zDI7wAAZ>^RysY zSaK2k{5lQ3mu_-WQi03BwH;n%(D94o`nb4Z2Fz)$OrcW5$!8mF-mC15LTJ4b;F+^& zP+DDI=Wu+4^g2c~Dd{)5{4VP{K&U@=g!F!cum_p(+zTVl_LcIrs#E9w?z}HGBjA?L z3B>RLE9V^>RFzMg6k%{cDEG)#zSkgaUQRDJCIB!5E>kk2&C;GWESSO-JF5849$rvg zzrFc!wAp?g>lkp5P1m5|GND!<{-5C$513wo82A{GjFE+5|KL5N^9dFdh8&baq#}m5 z8&@W~3n1mjHXB}VR$`yfJlniplKmlPFX9vM42+BQPC({DGb+=-a+TZ2sK8$mZ9C60hLE9-}6h>|P>+PEfr1f|mPF>yBWU!G8 zg8IZ~pUCTcM8SiGg?P0$rr=^*(CVpc)*D4Jw&w58R#Zi5R|>k|5xE;pTf2^B^G7w$ zKHpMgVeXXg7rf)6T(4l;KN@+-x4BK?ndOl?L7JjLE`?5O5S@K0ZbZmZN8%lK*(>(D z{1`HLLwqUh;Qgb~GqrYkPK15bhqA8!p2(R2_QMLbjw_OrBo&Theeahs@ zlp=R$3vtpBAvJ`5 zmc*Q`pxLs~(ThAKOhK$Ln5+-lkM6@6q9sGfU89mu$K(~*P^on~%xSe}-%X0X;m$%j z;43&f9mk+QtYE^3k8^ zXy;{fi*K?rUnN^Hfak`%$HvB{?C$PnfAZwXFC7f^csi%|q}g{ZKX$G@)y(kC8!6EV zXOqg3}W2EYEI*@9LqcTmFAyb-72#|6z` zUrWFY^xbh=ZAQ>7hjSxF|Ec<;VED3bay!&wa5JQ`0)j~{T+xL|^mH~XDug~E?#J#R z6FORz9{_Rc1VG#8zM#2o?k{+7Ch^a(8%ojO=z6x1uU$+!iS_R>ml>FIv+#+C_;HmH zZo5#U(+MaFquZ0>35cKi4~rwPI6x(ob<+XZ*i==5|q+y9Ot2elazpj=bh&H!(BK1;mS!!;DJt zI+0tFBcr6q9JpKev;Ptd<+$e4f|J*mfS7@`*!Ql2Ag$!XB2$qJ=ftL+b7+(&9kP6QT>; z$!B;e#(FHj!r8iQ0d)i5VQ3IwBxwvWw!-|pTNlWXF^-WjmMmK~ zoVOF0q-XoRe0c(AD%GRu5&^^FE9GYyqX10-#6ChF9X)DP(r@v39C^O;vv;=VYA@nE z<_cS0#FfGX7mP(!4MSLpRyiDjEke;H5M!E#J8LT`wD@@?T}oa+DwpBcLX`aJL*7pa zzwsuyqE$9BO3F_VPAoxmdOH1Di|^%LV_JwjKwM_dh{`jxlf~l3FuU;h0Al7zp3ki~ zeS5(2Ux8$<#NT7_fM0W{LKfia*DAVxTDZ965p$B|0?_Qc37*+3{4EyS))+A|S6Z?o zr7*g8d_%CpPY6bqOQb|UpG~BceLEbxsV)iKG&+8AL3bT<(~E5LXsd5KM`j&7j$e*D zpHox(_X8+|;8LT12lYC^rHh$ZlE{$;F+eO>|!tLd;o zO-$m$dLjxZ6fzvK7>7V}T3zt6klsT)2 zw*94)k#C_@FkOK5B8Ed?N1SMwjN!*dMk#bLZg$A6ZYTTVc08c~fJ1>4z+-zHPrr%e z88rnD8#xybzv=K9vK8hpMiC@y0y~p>DV@{~9n^Jrp0YUEXmWEk@^DkLBBsX)ZrC_l z30ZZtaS<;J_h8IY&?3O+`fkwXizM1z|5^2;n_j6H`cY87cb8!Ha13u-K!|l2OCuH+ zCpDuqzxpQKG1)rTx(J9$-^Ot;BYo3t=3m1y!18Z@8{K_5ns>7GlVJa=eDl2jJK7Y1 zoPufb{ zn_1?1*2NI=3wYIr3V$z2l>ki5*1C{zGb}QCAhMf}IE-lREKc$qdbUT!&GDvIpPLsy zQBiZaytbXMcRHE%5v6@Z?%JMGY9A5Bp~io@uErmQB}Py{0PJlzoK!2Q9*T5gYUwiT zw^D`lZWZRqH!163Z_LK&!>g*Q&aDoCsEBhsg?eG0Vx+(Ov62%rbIwfUT)op;Ct^`jMI(Gp*y$ch{|tY8eW zn4G*R#9>4qgWCLRdh6+k=vD1FNMlUCFXc(D=E?x9FAn@<2Q@ zFdnM`tR`3BI}={|M%-gXmKyp5gi9H9f~5arSk9JF80^Z+xi#;Wmzd}NofN9fg+&=< z6ZAh+txeGl;^D|O2Dw|qvda84rm_!oS>HB0u4qBFQa~v~qomQ8Xn+xbh zHyfVt2ZZPk5pQk!0fpaAVlC+G5ZSG>u7}L)56equtvj^@Ot=mZ|CMXoI6>X7- zbzCWE(g+E87zj~v;Pq1%m57h#WzojW-va6~01qz-q#w$1@{dOnh(w8D!eIrtvr&f6 zZyo}Ja`+PGS0nQoWBpE{Wug)+z8^cUQ&+zRF=(!CGg+(~xIYwInvdL`Gzet{=-!2` zr*JZQU}{@dIpLsKFkT}TL|>Uvz3-u%^FNyDwSzj_Vp;+!{fCC0QGhydU6prfVROR# zpGK(@3}5^T#vw*JGSzlTY*e{H6vpnqNO2e}6n{zK-Z0ib(}eifBzsRi@!?$p?}1wS z@YLQ4+I6nrTlZHoXt7Wwor7O}qiv-|C0+i!E23+(wr^;t9Kpw@O+!al@>E@2cWW6{ryEtvHmDcT0iA1IsOLv}iN|8ij1&kzWNvuHM6BE2%;>4C8 zJe(SvZ0B~i|EirUIGTgh>=iQnQTaA@%@`lKI@-3k0iSB6|nVuwu7Jvqg{aY=g(u&2K;0^ z`q&!!UXJHpGPYr-qfXg{YN*_66&e2QzITt(wyh$!X`6Q+I-wgB9R` z$o&(+DqsW#pA1S>Ef4<_K$<=4LF9YpM-9`uKC9QQ1FF~$mV56rPsC&+YXg_ zl)JCMti`*tyg>4x%&xEp5ZEPRd>x2q`$3AXp) z&E!;9RBY2)iv+lTuB1#6cQvpccIZ^oU)cuWQ$6@0p}EuJ&&y4FugS5e8mHF|P|QGa znx^xw0aeO?iO41o-|R{k_%A|Cut}KWbs^-?pR>;8ni0 z8U3W{mEDy(UecZ11kekTCOPw3(e)LvuJ-p5H;=z7Vnawc;wxh{$aUb6@?Oe~z!j}s}ky_lUED*I*VYWMIZNvJ)DoJ8!32NQ8lPlAtF zI#9B|`5Tc%-bpl4{a_^iF^@DrkJSZEN-eZ}tcxAXANBmj^}5;`6K;pCw%MqfPUd7nJ`VQ|vuDx}Ewk-LuM?>(q|Y2bW;kFZdm!@+Nx8clBBU9BKdidas7B zLe>u$-Mol#{$;zvz4Mj;g;*?GKRI3c+>A8o&+#!QnST^bvM0%dK<5o^MA9dYw;Z*% z_nq{IR6Azffe0|NXD=_BU70N`3bE~53^)F!!Och{p zm@)e1UI(C+DFDt5uAbh+cBs|*r(<>FcWJVYvt0(c#ci_hv(ZhktVkDf$z=;JXrl%l z^O^?TBxWjV%NpRgZWMX!yRY-MVL2p9#~VN+REg`#w|%EvwD~pw_TSpm5Lw;XDaBDP z{Zc_{v^Vh>l?&kKdTJq$o(FXh}Ihe)ux7`s#}ZPP^N$0#x~ei^>58!!^LBr#(l7Hu^#(yb$N?gX3PGb_i=j*T8uM4 zXr@Fs^0T6in*3+q-OOd?e~DfEVCF%ij{xrE)wpLVeSaj-nY}?pU+RF5HCPS)Kuhh7 zwh(;|mSUm|lon-bD}(^o#jAG;{GkuE>8g9qtS@=pQW_BH7K<;h?7`xYCyWO{_f17*Gi5J>iw*AMn^hS5x81n&@*~Beutbsn!14K}L z*TF)7W5K%Vv}8Sr8HF)jXKxgL?mghJgPlp6)N8kTUqIZ=tX3tmB~8{?ph<~|7^9Lj zB3$w*WSK>FRi0nLVdvuIE=Rm;l0ZHK>&E$Y4d-62hHo9u4M#&mQ)gH!f}I^tPAk+p zvoDKtBZ$2x>>tqKSxM)=ck<{lb^_wSFU3bp&|ya&&^hnyL3l_GAa3v+g~~>{?W8ON zdAUf5+pBjOulCSsAy-dsn-o07SImVoL=$3qOH9zgWY&77_L7X#yLp%@NY}9-I4UvO z7(HeF$)#NjTcs}#$>EgDLz}{bk@}~BWHEvR482#c7?LCd-DpnL+&Q%Hij#eT1)yfF zAlUHGrv0(V#cfBDt~RT*YbW_6#($ym80D{-ndB`$D=T~3M=evI&9fn#=O*?f=SwS+ zzPO+tq)tp=^>>}pMk~aX4>F@_)$6>~Y?|!I4cA#VBCq7!pxtIJ`6FHF{(w>n%tEWUM>P`KruUo%JOE7>9y z96C174{@7M;v2a9qs=xpiTp*HT^--XPL%Xx@p^g#k%pp$*ZZOl*$@}euJ>S^*jR5X zz*v#aHk@Q3kP+#=?xe5K(ywgS>6h3b0z?Q*IFZbQO5J4!gev+v886dUMvICPsi;1a zC@4;|V8S&^OCZVveYnd96E#{QpB;n$PG|ofiyA@y<`R$;H)&4n{>}ro~8}zX*Ub+g<`2Yse?Y$nI z^VIn{QF(=_-a(#2>ihTkv(4Uuz4qCb9NqSPQJ+}+WE3~&4N6?i1k3XMT|22!%U|7- zHSO)~Rd?h~O<9J{fXhTHqXvLj?ma3leN>wUuHC&xhq30AqkLVh$RGL9Kii;pj@ovp z*AJ)~1AAwS7}d(V&o8usx~nPbs^Hz6_EH)uX(Lh_pR{QWDZ4d3G~La zU_U-ZfBI=dgW>dFZAW%DAv!wxKB97d;+ap;of3%`R(SbJCZ>M#2Vlqqo z2V9;%gkE+62u%-~06d`xW+7`AUuQzqI}_RzXKsvHxYo=PCSP|lx0cT@CCu%mCj;N3 zHM3f)eA~PjH}?Kg;T&D&PKj;R(dgF*K(a(}vmq3Jk04?6E>h^IgPhf)zmi|7yA;H} z9gT|9CZlB@3!BowKM&9d}s7}gHqTwJerT$*d^zJfV()EnJQ;#7^v8F%XrfMYV zH^6GLuk5`(#^U`_cmrBKe)WcJyqM19#C-Pxq4n5{wByU6KeWpa-i;L-k)&GIY1{h_ z6lgfNuIa^lsSB?l}9N4FiJc#T-|} zzv1&Mnz(K|=nuS5`35CiQ0|2RJbfA8(y@a-PZIAa;4>VNEiWre0qoXfcXoCr>am~g zFX#^q>H6|Q#0_)Oy1s=X)Rl`LJF)L5HTPaqd}`|VO1i&)|NgUsK`l#s@aTHK^>(6b zcML-HfzIE9D!CKd$yd>JL%K^%Ofgs2;F81n8ZXIGf&G~+Vr2Pwq|tbSY5y#|wv;!& z_1bk7ekY=ZFtG-rBlX$r@Kt9qM3pYERS ze~fv7c^z~kCGm|Jui+iQWJ*G_jR{xir&povoOyviLMK*8mgM7P35P0@)JVQb< zQNao-AZOKq)nP~8JJQ>(_SI)Bo#uEa!0?4MeJBL!lEIUd>GO$(%1uLCP6R(!Pd)NP zl8l;|z#*&6J9|@Pd4u~4%R`i+e9jTtLbZM|a(VYP8P}Fal%;O7SpX{H@mP%SiqB@P zgkWLav%t0YYpqTYT>K`apU~65Aq&feMi7Jv3SvbR3jlMewS*UL^S-T_kH&^L4m^R% zSN`BgeArrqZdbk1dBL3FPtC{+w?|LjS500i@>W04>QcAY?D=m0TiPdL-mm;)_rWQ^ zbB;%NqMg0O9)xqfetqV`{%xSE55QT(tNS3 zDuuQ>$RuQKe}tV)zMe)=$r?!M;m_GAp62>Hn;|yuLZ6V#_lT_gcDdZ>XnRTGsTmJA zONUq)qzQ_EAn!2u*hgPFyU7f0C?e1mY{I0u0k}&GJ!5|m8iU>>lrK2WDtfIR^m?=+ zi3h#`2IbrW=%`QE)?e$g$+?zXb|`zR8NUB1T-`CvHxiyx4OOiZ$So3Ar( z^@`zZ27T_)H~3#3Pe5~RnYjg|{_G0wSy(YnQemG?hwYKlbeu=rvz`q8Vv=OpOb%Cf zcW%IIG7`CPw@G9j&sma>Ki`1^cFd#zQ>vtk=tKIyDd?b9#E3k7{7`;J-qI4$YxnBa zD^TRmF1vIQ_p+WYyUpVB($VPZqKgVh~_%9VC9N=ZW+ zS6hdO7|Uu4m$nA>_u8vmIp~!_!jyV+f5?44$0r`S!Y2;h#iG zJ4TxmE~t*tRPn>Q4bvj+bg3MWoCn3q5=NkD*0VtQ%`$?G`@R7!l38t!jMr;;>;D!D(Nx7?@_n%+>1_J6eBD_BeF=lszpkfQ&!K{Kc_$TiJpi?-;z!HVM z7GvB*50gU=Ly~~^V_`Pv)ixHRGeGe=k;Idf2T?g(LA3)t?gvmEp1@ETJi!#bV6d>X z$m|=!K&ZnPsdg>v-rDo@fCnE1($&8m$hDB@lfW%y&Qi#lSU-~>KLVp@Wi@u$hbfD6 z&JLVESQnB=K+pddcsZ)P(D^8wZ1aedumd_jKM&76|77IT`K~KK@hAQb;xR`p^Ah95 z_;j+FAf>Rvu+y0=5UZ1}HECF-Z_Uyljd`a#A+*Hin5+*6qm=4kpZDp6ik?CsF5Y#Em)(62w02+^82O>*lk-wW3XR^@ z{RxO3&F?<1Flm%m}@6!${*0=0oEX^RUfR!51- zfT`8X)s+qkYs&p!oHl{r_nAU(gA+v#p&;|@t6i+2@CKIX>`t|&=P*Id4d*1 z--fV3bMeU%aupRS%7r_rJm+hcg^Wd>X;Sny-+9r25&)Kuc*JSP#Tk<(2Au9Mlv8vI zc78Z(5%Qno;c#PJr5>z2&G$TQr*EqK`6To%D$V62C_-ERI-MoUmWrKepWE$Sz)}0> zMy2z$E2WsqOJq;yuu~g#L|U7-&OOmK0T2PmVHR4SeIW`kEKXOUmHVN#c63RoT^XnM zpb!jdtPSu6Zd|09KJz2RXMo&2Bj;>R#^g%zH>pVfC9P&76>%_Gg2OtUu+wv zm?-A14)Of|{iMIAN1h~6&)()?%fRRM?5IJbP zo$~4<+J-}h#o}FVMyNK)!(fjw8p_!oGy;AP2mSguQQgmg-ueg!e!u7v>FVPNu|FE_ zBpH>76_sYh5u(LXmc0Jd(s}ut*Ym3sV4VqH3xMAN9~Dc5^dEzgXaSkagGTBm&35RB zPyih09ufH?Vs=PP(V5l)DPS>Zm05DhHXVSFP5J&b&V(fY{lZ)U)GBbx=;fE52fN?jKTP+u&vO0Tm9l(cZ}#0qv`Ia9tBpOXzVt-TCW|p6{p6!ZSPZUQ_csKJ{QUFBa zv#1gX6Ga;W#0x3_Y5t0Hi5P%#(_ty6T-vn&ZZ!=GO3G&;EY^V0Ew`c~E{jh=>KRA& z1Wd#asNn9u3isn7?o{JnUO3*&K9^H!)5-^4{SSt~f;v+{Q!}&o0Xf>v`s7WHr#ruB z>6&tIRPn})zLmQ(EG9AL!|`%oUvTD^OoEmze)#9<|X zhz6=G=ovLAGy^+j9b_1cr6xUV&T`;k{BE6D=a3@_gI+aY!|Qc7#CRr{iJTQvjD|r)lcR&hmj^h(I2gR6ZsJ8 zZ1i7I@Qb0Fo10g5Nbr|0=PY$$K~Qq~(4ES-ldh+yw zJ4D;?a=afLgD)_AgG_}kaIwDBndx)vZZi(9C&Bo^ia%VTIicKjZ` z_5EZe^EQSz8xk2B{jzR#7gaxw1?M@1ZA9wo4or;FJtMHgS8nSD@6UKSFmgf9E?pjD zV%OgX($9vpFW{)$GaT}hiGAMRI-l#~0K{a|N&8rAu7$tX9q67Y)aSxK_=``2B#~jO zNB?4(8NhIh!gZ6Z*o9B8yd8~P){y(PPGAime>K+C}LV8GPkQkJdR=OE-0F~}; zB%~W;=q`~MQc}7@TIrDP?(Telct6kc{#o;d#Rt}!>$=X_XYYN^0W|aBUcHtT2NYiL z++;bXa^V4)#|>WofWbd#v$q=Nw=2cs0Ipjl61#`9(VW6BL1^KjblG_1A?3OU{XruVd8x}6ePB;n|;$<5BFu< z!|ki*JG+P&vA9?#PMqh59OAm(VcxYEaPEhcv-QJ|O?p*IsSjZjJidYm{%7O@npgos z$8_(_#sN=##CNWQnJ3Vi&Dz&lG<{ML?*FKQ zPTM7_(!U`x4NlZj7MOIRfUwismu|${-qDc&AhJLG{qimmh?veRo#+aC!C4{SQ~8GE z$`}Z<3cMNCCApdLv{2*%adPf|-Pe<}_S7c*0%O-VBG2J~`n8~Q5NC2!;)kS^(X4ZY zAAIsC@**@QtoXlzwHYw^6}Eiw34h`LEey>J>FJANI$}7$`voA!)DSFgYAE?kAT}Rw zt~#eGw>tct9-kebPp~%K(nc0V^+?#QiI0rW0b?+o;a`A0IQHyTe|`U6M+BJb@!t=S zRN2?IwhB-oQ<|EgY@e;b;N#$VmDGaKryib)KFf$otvj5)#qNR5}`eDu}eny*WEuMq3^Xw(X2t_5D!deX}JLMSKC)(BdqZ0d8oABrT)1 zRso>LCC0W7lSl-g$OLEo8(R3K-n(a0!zjJ?pq2~GanLRq@yx(AZ9hItK0$pTDsPoK z7G+8#O-k*SEE@E)>!J)lE4%f62h;N*I)K-*!li+s9n}UvTYIV9MauGEz-hp_1M7e8 zV`Tcgf^M~dJf$(mXC53*fhIspaKVRGN`Vbs-MehlewvyM-2hNVAfM`@5`%+$d=rH- zLnN_CQa8HMb=jTUvY4M0vNus?;P62F+9uF;1!7>D3>(kRJO;&+uvCAc<8~l?Gqrkl^Of_A8WlYU zA&1@bj-Z4j>>M3+D@K~~LkISlH&5N;!M$_=4a~uAS5jXc)o#){YACz01n5i0!bKEW zy-gsir^whZZ#W-sm1fq?*YLT~mb2yb+Td?ik6tb-q-X$I-c@r+Ksujbe^z)Wx--~; z+YNH781L!|3j5*U;P7NTT~8PEAdrrtG;z&?(-vMmabO41bTkaBmK$tcKxj{D)=F~s z@NnFdQd9e9xThuJ}h@9E# z`^N@kwLSr1;TlC|mU~8Nrj4fm)i435N@6qhGfU!94)Vs)@tEEg>p6Y8{7*O|{s%~f zDL3RJlL-sAVl`77i(mqS>dm{X)Xa(pk;eiPajXybA2sxRaFh)nJO!m;0YE_in~5Cg z|7H&FC+00DO8io91XI~5PsqVA61|$`v6xxpRU60L3t)8E{PK)_r467=`3AMxik`tX z6t30jY9o@89y)hhYTQdF8W5Ov1k}E+$^nY{(V5T+4`9&z_VZzD(d-|<{fh$W@5jz< zP~yok)pKluI89L<^Aabc>wUZBH{}jt!xYo z07d8goW)Ife{MZ9P|dTC-&NN_-oQ)uj6T(9U+#1-zych&U>dY-M-NClPeKuDDXVYd z5<*r8xw0W9xO`~$9Mr!X9gUl7Y5QhuY%Jlu%bxPVd}ER*xYM>RYsEWcepq$nW!K+3 zHaV!Z@KYB^4^H;05%DeiHR=*@P;yU$NOSn%`EdA8?}&sG5B`n{S!h2WE1&HWIb{FmeNO|`&8)?KBfzH4MbZ`?ls6rkbo8yY zp{JioldT{>(fF_(pe6N~Uy)~M?Gy{Dd2+3X2ll&v5;k`Pya}9v0gzZX8?OR5xE^OI z71KNFk=h#ROr2MieD@*BN<$P*BDFd)k z!S@+5VjzP10tH%uCvKSC3D8#J*`eCy;K52nrmCJn<{1yPL}g!NXFWmm)mPSHj=dZ% zRMLjjH;B;z<>h3-BIpvfB$`48-`U0^L0F`u+7B1R!WP=(PD#y=`<}YNA(5extM56v z)nL7B2xtH!++a)GfW${z()j1Sf*pSvRnEHJKxK=KvRLRMLfT5>JmZg3p*=| z3PnY8WJwLMY@E>%V~gx)z@pc(d@tWw>KZKS*PA6L8x6MTpn6!OOu!6Wp;%X-TP?-yJN-f>($wb3y8 zlaZ7yqn4r9C)%!p^)w1eZ4+nH;kKLA6QDEbiP6)(loUjeIFF;;px@^Tm^cSO5)4}~ z{*T#O`4#u|>sNrp_hXjn?cEBClm}{zR_N~tyifZm(alobg zL9e`TV&xmFCOv5uZP!Fn^|SXW{n}|mk$lngogYtPseYIo+BSKwPO#K36=+3!_AT^N zgAudP(9z(4N^vGXRI1kcTXj4~TuX?DnW}b=*u7>Eqr!+(0^geWw8E}Z{D(!4ORCA| zte>II-OOpZ)!4M})+80<-dfobxZz0$44oMl5$&u5uX}p0P*O{*PLz!Q4BAn5qF~46 z3|v>L_DXbbxkRa^ocoH1?MpcNE~M74G0=$|;f;MM(7jKTBNA9NbvhMUmOcLh^Iobw{-Q3< z5rMN{i@lFY{x0_e(J%A~Mc&AP%3eN)6wec=72jx4JpW5Ob-KB>2L9(OQ%YZB9K;)f zV?fZ<#bmYypV=fkBFwO(auBl}x-dN{;}_m(p3U?8DvY$WVkybVz2)!h!}wi~sE2G2 zKG!|03fZ@I+LEaJUJrpge(Twhc96h?w-0~*0uyXmKLEYwasJ!skh#=4{c!zRAKq_3 z`%9ZFS%g^{ki6r~tRQA{-&7n55cAQ|Q-_~3(z%LZ|M%z*gv5-M16fJ3Fr?!tI3ua- zB}yZhx|pp#Zosop=vF>euMM&B%Pchk17zI#gP$m?{H^YT@1zBymPreC`5m<9?!wK#hb7v0*(_}`4l80O!!j=Y^04%S z&eA`PuGF(UTwYd3nhXW6uU%W{HLt?1wj)Tk&`Jarm}}(2OrNQiyK9g(Ap5E za01Winm4N_^s@+qW`O}^C`n%5Dcjh)fVqLw{D_j$7AXf0*U2jaSKEi~O57{(H*KgA zYWj~sRG`cg^WGa1KToc(qfT51zBqX2O!6^;z2Wv@Mgfh_bjfZo)rq0h z>NvZv+{IhSH#IK#sDI0fgD#@-ua}Me7^koV(b@iW3}b_jb!@qM+C`FI)xLl{skb!w zPd4ZJrp#ns@4soE8B;4yQ{gd_0IS=3{B zQe~LC88P7-BDJ5H1tDhq(2-N?wB|2@WFN%9e#jtM8G0LDU`>LDk_=6}GE!F1uz^`+ z!2G886oU0{RU@TR#57qfM&j=Dy2{p4M zESvDr1iEreyub$sJ9Pb>ywr#nc^_F?LyGTy@7;4`7`NnG6}}(=TTGH7cMul385k)% zvWVzO_qd;uM1REqg+D~g9E)fM6`EtP3~5L^j((Y@gD{^&i~ve04P5VAObkszVxlD} z85uVjkM(dS3&u=krh1r_>9E8pXFqO(k`bnu^;E`r%^(rfFm6ZJ3+Q*{0p9Sp+?$WZxHitwL;>Ykh(aISoV`u1oE40yeYlCFNtI48!S8x&(X=*$ayuQ+m1UOx{j;mW7^z+ zh1E`KEf&-Ym7PXu2LJ8-f~lqg==^*2*En}?>bs;+5V+U2Z-{Yd&pZ*CwX89@(gP*>m=g;Jt z_q+;s=Z%csSVc6yOHSA5 zU@={}&bQS76zg3q0>z*L{Sg z2?YV`S4DB4NKBmYI?E;{^#xV-`({_Fu`20Sw?*cx4dZZWB6>w^i|)tP@{7h^xMUb6 z81y~V>kw~qVPqt0y22!^yUeN91|FzXiu>Huy?boVSDuELIiie^*3ZYg$o$@y2p5-r z7}P#dL&m5XPr`liTL=cK^osQ$q>mPG$hmht%y-K(q3}QLboc0Z4zg`evV`3WN;^Hy~meesWyfcIP8z?S#k(O`_ z(>@c^GF#(D(UO3@{oB|8+yWaXr>gk0H0Jg7bs8oqe}o{1`H6`ME3NOM?`zIIxK(y( zPd}2&B*}OtPjp6Qec-@RQC(YhA(tj(c#!zhi6ur7J^Pv31knOR*74CcmciJ8*6P8& zP~%-1&y}vChdA4-(8_p5X5<&SG6u5ak{c@l^b-?CG?FBSZ1}T?9PpVsohhOEl3-?O zI*mMOzCYV|ydn3(h14{))9jR=$o0t0$nD6#)c@^HOgpBt(S*Oc_r{8{`?mrbSVyDi zMoUXu913#f>&LNEDhB)cGl$NhHehhSfAOOC4P!7pqLlvT+YH)7W;_d!c_Wk%PxK8w zNWy?nQc#-{mtJ{qw@S13NB$B{&kHw^L`=h$`+TNfS){`jFm-Pw)kDeyTu|yce!LU94M{F1*++8 z6$3=V=id6$N>^+~RHN@7cpxEkCD%+s4%6f&u)lY+JB)}(TqRZ?>MsdfC7>4?#3XuN z&p9ZxTPKOGk?8uy>4$mq@fPo)bM^G~p3RtN2!T)I%3Iaxo6;|Imph7sYKKj(;+fSECT ziMS`TBQsIm#fqv*=wXK3?T}k)68*;Rc`bJKA>KF5pDQYJbf0$KNK~p3xbZ%PgR`?* zooD%Zc@UtTF7@WdT|rJR48=wxSWG~;12fTsD|*&;3FlxenzW{bDc(AUP9)6|YG!U; zz{A7y5g3sd2Vkn)ogK>&6;xS{Xjb-88iS?Q=i(OHWY}sDiVt=vz(OuzF)RFTO^Y4} zw!eka=jOkmdv0$C8y0CL5bIf_UD!qg)3{=ceG+8Fe50eSdDB9Paq^`um#e(5*Q*4N z-oC^2PQfLSN0PKl?hKWSY$#r+Yq{?}H@v?}N4YFLl>8Qr97N)`&nXwF{0DCyh_y<4 zWw>_tBGxg!T^q2k5U{$(*Vb(xBUf&p=om~1M z<61O~juReY)FP0;ye0`5d`XPf+{{ZVc#fVfexFDP?hjniQq$32-R3@(&NO~VV;#aC z@UP%}NIHnM94x1e=@Lc|8ju?#D1lyeedN_fadFeivY zz*X7tHNmp7uPTtJ+Gv8kEc_zifo6rW@yTU>^15Pj*Amr~gfy&}e%hZJJmq4iOY+{V$2w2Ds&&H zG%9M*!Mt|*uq>-J$tWpHBch^`-g0u%2+LMiR|8h~Pga^*T3@|Y!XJjS26?{dXbr}} z^;}F!X~MJP$M9Qla6$`q8^e6c&%}Xdz}hltsX})`^}gfM_8~ z_m1Runs6EEUS)f|KECsXzxw*ieMANa#c4TtV$bH0 zTQOs~NApBZ2%SdwmSRNotfl%NJkxDF%G!|o?uS)AFg~3-8fe~zM>CN6xPWhvZ$ayG z27Hi3_q*}%QJv|3*BI&#HN2xAC2X1j_A)+rVMXB6~w({dmDgs?YT_8 zqTOOGkY6UzFl@Yfeg7r=O%Uppa+an-!t%0Mta@B5Z73hO@L)$VuC4kN@#i%wIk)D& zYP*e0p8CK!msYXQbS#|$?t zL*dzER8->G3$8H?{Z|tNi$ieaFc33D9gjYI)$_{cl?2qbV)M?3h`!YAi1OWiG3S8h zhdb$g>kskKzq~d}KRq%{IA53WUL;5Dx~-&TY~3yEv?CvA+_ON!9}cYyXTFKDO3&MA z#JkRap$P-!Q@>l~aM7shEo6>KPhW5YZhXAm>uiL{g#}g#^!z(76s^#m);juOu1WAs z$9vdDk)yeT@k{xgeIeo6oTfx773q}_U>07RfLF}Yj1U{g$( z`lQSHq7s}+!>zBQNy^R05K8OjY)qFB6s!`Xsc?;mNNYmfH~C3mX$SznPOmH$7W~f+ zGE)3t>u&AW9d7*`>8e#zVC)z0ifG)z$PnC3%1MOM=i2ynJZp($UkeM}tLA?)ukFc1 z0kb!L-uBXwi7*$Ori~?V#gM!nB^48XX?7DnN11H~mxxZLJid+-lz>%P*r^_U#R)V1 zs>9EecMXBk`YaIB5+eN|+JAY>69!VJn#guPM5OsbO(D(%ahgy|X?Z3KN=AA4s;6#< z8Nv>H7`5V)%`daTf97xY@SAnb>RR0K>Fw{oyL7)4t5fzyxg?c?A}!*ih}O?Nqq@^# z{;Kxk4)fRcE#VK-jF&Dm?CwV$yf-@W$?TOyt~dR~hZ^zvkq`xy*bh*{g(hGG+@bD( zGF!U_0JT(K+L5pgE&|Bmc(=keb%RI&K&uv_%B(D~*M}hb&l52~i52wGDH#TMFy;{^ zBkOd+hi)moHbUT?^_zP363~^ZF(u*^-}O6SbitdAsK-ey!3_hdL4l$-DLsR{)jgh7 zBr%dODq<9JXT6s6)#<;W?QqWDwr-H9Yu54)PJgR;VO$}rAo_6iP>{^IFL*iLq6iGl zygWJ@22lFl_wSPE!Tc~AUiKFIsBYJex{j;anHo_eG@+h6z;Ib;_nt;jQd(M0Cgk_f zP}1u+Z*ueU7zS?6cew%eoP%uaiq%aX=eL8+FvaL0usm6<{n>4IA0t#j zZn?BK40N;Xj9EiFy&$~|S@m7@Tm4KYDpoaJ;N7D?6_-mtdg}Ur5qCSHs;WxS3WvUy znD|tDwzWY06|pJwN(zyjg>YEYK+9XGdVOuUyI&p(*885u9J--^jy_I8#TL4yFDW0M z$@(t!r9|(hf>0D+K3^?gk4#h>e@}f6x38GxR|ol(84*OP$rms9q+{tioonEVz35Oq zL2;(m`)}<+`ykqyTqz8{O!JX1D~IHbQ3@Hq4~Q^BDSX(qJ_Yq1>Zo*%*8)-XJtw}T z%JYZsXQ#%hMHsmN0h;y4Civ>h%A+oa)mH~DD3WkrMo@ef0lmnSnNo11656(){bLb137yu7&dUK-_)BCnGga$8EF3aM~^+BQF2@m+3C} zKFS1RA3kryp?ilG6Cd?2M0n82d&}A@4LoW}#Ets;?G8HTYe9j6RQ}#oVZg z0cu&=lc(6NVcVCQ zIFck`s;-`_S{0o@6i!Yqc>h5XJ;}ehrh4H>h6A5|*tA_R_c&P+z5lXr7CfVi`M#tm z0Vgo%k^hHe`C=*K4+yJCf510Hm^__K8%&g(|9~OmG2Al zU46^bVi3_6*2dr2`gP2fJmGb!lP&rBIf%<0pMsiA;I6+55Cn>3qeKnK#QFp8r{IBs9FZ!VaOwU1{R6>%?Uo7(5vG8*S}?Q_ z2n_u&yGEMD?3f$hv#%F7$|WqZfudgTf(jdEwmQ4IWVg4s;R)E?fUmsLbhSGo-}XI4 zz(sV+tJ2D5>(4j_?eXk*yuly41Y{JTILby>%QfWHqL)s&^2l@a#z?0*uo$(q1=TbW z!)LK%#%{D)MBsRkWUUO%vym*`_`cs6397Wdxdb$fQfrO#)(lem9_91veFN)gG%_TY zWAT&*b3Wv#3&^nVCS_!2ji74dtu=>!cFYdo14nk`0+18{ptW9LTxad;#lNN@ zHe2T*cjdz|K*HI976fsXXJ?9p;Dcx2_Sn(vzF%+pmryrBn@)1JrF=bnlYEoY#D^R^qGhYm+k5z>mrwZ>Uo+c3o#rar#!*6VHF zge8(ict_?m>0bP=iI)Z3}oH~ky=`TH)cx-!lYUy zn?pe=AL=#auz=EV$bj_1!ej|Flkg4le$)^Ms6aiS*Z}r(c+k*w{iM?Qc%Ko?aNxTA zvf(}#-D&ynr;)|dx_;Lvw46(PuOJyeC)DGOi&?g?3sN!Ks~kDntDfdBAw+yWt((}X zRZcwL-3F(feq&7zlNHh%))SNGr>vpVaf&$cZNf3OM(h@LA*Jdu5Mpg^?HtvnvrQ^7 zNZoQd>h{WRX&#%Lp~M@C94T#w+W|vCb?nv)BUmVC5&MN3-+C|N3|rg>_bny-Nc<*?&$9=W>B)rF|@RgYln z*@%TJ^8n4L`u_9nvTy&p4{*D8#!)?LpG)TN7T) zH?E`eV)(5L*=pOW^%6jAmGy;`9>SZj<8ZU0X^)z(ysc4dq!lCDTns(dYe*}|{qA>S zUonrp>J9;NgCUcQHJjUX=Hkl{Srn`&z5k^=NVI+r3{<~{RBfyuKbvg@E~k7_TYwvZ zJ+(q6yLYBmnury)KohDAQM72x*OyJ;p~i67CL>mtw~df-?ALSWA^So3owxc3OVM0anw8V zo8LyJD}nMQ`QJZ4k;dJowE&(fEr$2fF>Jp%>|bm*6$t^YkZQ(2;siIti12Hhj|k>( zC+K44d`%om40LdO_`AYkj^1zSWdv%MJ~f=K!<-Jk#Q`nXV;SiW5$Xr^*R9E=)4z33 zx6^s`;4woH`6H?fV`P3|1Em&KORj6Xms=Oa8F`Hi!i+QKBGGM4Y@yj6*3Yi^#BH44 zA;Y3ZONQdc*bol)d3CH^4iz)<^h(COGR1tk@R3n*8RV@ac@^jVe2iNMhZ)FAMj9mj8iw_=4qMfmle z?wCeM+s!}@nxtW%N_g8vXbmaN*LAc#V9(YqQ@*tRqXW6UfW5Z8r+u1BVyo$}%_rwr z@7CZRmZzx8ju{4$r(yzwf4+tk5B*;LTFoe%93937aS%&nG*;#_3#RMfs;U(G7)k9 zyRQ#M0QspD%@j)H{YLXEHJ*`&rc=g?f&fVT&y)K6JTI07T+~_t&Vw8XN|}3qwpNCh zHbE52W)^i=Z690fxm3edgU|4QlJM&nr9*623Is6;9QQza6c>%xr?Fg$0%%+m6syWg zAlCps(?IhRRp3^zS=7qLUk$Vt=xN!pGb+X>C)M}xK-=HMJ^{?%m!^HUoW>|JSX#WL zzw6b%lKzn){j_3wbPv&`OW6ieqw zIAP!kj?#{2yNBRS>5hC9SA3$Ty6@HUq?h=XT$k$h^sbv1e)1-1S^t+r0jh=^2M}E} zt#DpV8k-z<%*27^)kE21|6v1WXm>5uG!`K;X_5o8uy>c`36r$C{7@ zDxnjGvszon-qV6%U(p83TDn8D&jYIS4(ggkL<$$!DJ3 zt+u@HYAwfMh8*!dG0y<~*y%I<7T_LbWI}8Uh*p8Z#9yvP*U=@Sf?=&qX_eqxOTqn{-q7a z+U@C}rP33q`RIlH{KvB@V72`WFwK(**dh3um6gcI?Jr>85sKoWG~e{AdQmmMbZqTs zS`9GC#j_uelvK4MC&C>zMkT(C2F|4$edrIMjmY}Shv%-IF5-cKhJj0L4Esf=;?zg* zmf?q(-{+RQm+S7vH1MJbsU!lw!$T%10qUAhwnYYzNcOl_-4wQE&?9o$Z#qsn8gGuz zfBi3t8N&hQzypEuV_yDgzzpJRCH8zu0V4Hy+?bp6)9tx1wj44lADLpZ-D~P;Jv7v4 zjC8%LMhgu(?lfyC(rn0<&tC2H*>J9*N6+I)y~T_~BbDTx@Wt^joJHK*Za8w37Z8eo z?@nPDX?W(4Q6KOvjVd#D1I60@{yyB!ORZ}{@rgW;F3z(kg^B^R*&shN#JE;jA4(Ra zwr31oDI=gyJvW6*xSmtKV4W33eE!Ycw43Ie1Uf43q9Q;C*Z@bz!_Th~Ryz#fnB=%I zmuE=NBv8<>aLF!ATCyu8S~XS1ORXx`TvjNJ$3Z=9OEE2ECy}vX*0~oc zNCmzHVrnpcL61vm%)Dvfc3oM4>7X96WtmMQhnLrhmP=wVr)&M?lU79fX9<8>t7^UW zXl{9>*tgI9e=O`x3P2(k!6m#bUkewQkN_+XA}z#I7gy9Q-2+=k@P_rqTe5Jv$>)~; z#j!p>)yR*P*4=N!u|m$eF~agf_q`?_eDXaF5+%|9ebFSl$R2JQg!D*ANN3^z>B*r; zM31|V4W(_Y`Cugn^|HJJwtA4t`nWQVcz)nviDZ6No8x}+Thl{5zF@i!-l+$Mbe8N9 zz$Mh?5dr@FTkSN1tfA%&&1cP(;`5UeAiDf0D3B>EDjEZdKs2b~<-t7Mz7LMvk>(0T zTE#R3A=8Jq4i=DM)r5f73%@v#bO4!51p)~LZW-eTH8mNaw>Z^#cLK)qu5K|q7xkeR z9yoUqFeJ|ARAco7u~9!g<}JqZiuNLZ_K5tKYAnCZ1d64pe`BA}PFF@Fp!K5NL3E4} zW4J?eVhb2TgB!nuzo&<5g|H{lHh^Bq8%lh!M6S`YEkdkW6BI|Cl>bZSl5Z|s8@7)2 zzc?isUs6X0zzA?2CK%P|TL8>=BH+;+w3!JmUB$Np-98?ufF_K&$8e2ygy)l+&pv2X+Rq5(Ce%R(Z0O!+8KPU4>d1oTz0b za5my2f5$u6X!ZULe&-OcAjikOK7fMdU(8?9XLAvTfq=C4L~L_}Olhi(TNO$GS_M~pm;*RD%RZPl!s=sb z9Ker_;s6KopH>3@M?Kg1H*rpexZs%IQcJ)HQE|dR1MZ3R542F)VoToV3AT(;b0t6= z8^f<5No3Z5pI=-M#oU8`ip95SZQ;__*vy)O==lmW3>5plrr+*MxA59&eWIDBmGyP~ z>pwU=tZZX#T^yg7$UsO$1Ob3)YQmdOmOR!|`aFpm?(ZgYU|ysh>CF3C&Xwo07#Z0$ zd&i+wFjfcn8;6yj0)92X@{G{(`L`V;nuL=Id*agh9vat`Ck_39XseecoZh@GRI^zG zujGH=b?-0eo(Wh?Oz&cPI9BHfw{0f=FN3yGmYJ3Hs}KxLiEhKOco}Q}H3VSKrnakJ zG)7B#Ieic}bS2w~`@8oHO9PkorH4^3-t!&u22ny=>M z206RTT1sSzPTJ?o1ljTy1+V#!IomEhN=!GLopL6!Z>e-B}4Z^cnP`c-U#ZFv}uZf&zXl2Qj^$eAZ{u*NT^z_I9MjI7b zS(tfNrTe+1f|XT~1+&q;K;kW8zyYqsgv^bOtfobFw(XYz4-}0w{$x@P=N{SB@MDHx zin=5wj*`EB4_wG4+If_FP zyC?1PUez%%F*Cs8t{+uZYGcF0)C*#pE3Z55&M!^qgsBl%luyQo-<(Tv>_%V zJ-zJo^t6hGMhfz>#r{k+Eq6h4bF=g;7G>Z4cfRsZMtsVw+cib+aBBL84*_2NXUUTN zNuUZmdOMb>Auu%iw2tW|JRg%o*Y|K%^)hBzxsSQo_G`nKeWr>S2qlB+{{l6l?=dkK zkR72;T*8_EWk+gA6aF@9=p*sN>K}k;75Rk6J8^beMCsVoKqC#7M3)!mP@i59f8Y&m z&HwKGPKWox8(JKnZ{QQZcs^cLcFPROR0z%ma~$+UbycBrws31*B%(*bwyDgXf6L3_ zM$Hp^7-I}r!EymmcRtvUh)+hvZJ@_*0rN8+99i?%lBUE6r4eR{DZ7yJ_@_Uheg_0u zB%=}6$4)PT9unG@GpNn!gl+InTzVSzVc_L1FK1DOKIbQBHh~)MPL$9Jwl$jP59VEv z;T4$&doT|i%Vh`AJYNH80mC8R{AT+SAj2tAh!}bSUI0$caE#6vO55;&D>;6U9Uc1p zNlK}FivyH{{l_8WEIJKpyN8Em0HPmRQ8=rpc#AjL>aZ$>wP3jjERw;cUt1}hd%a{{ zf@~d>k-$FZvT8pYaesRmRzs%6TWyZ{%WQVsC0peD2jHBOAfupQ$?{SJc73U7XfSbe zb6ZT5>6Q6mnl(*Y{j}{Rxnk9bUE*+sb5QEdvtm(bGGz?}l?oQC&g{Y8*O?Z2`<&w3 zG@obe#z>9mJ~SA3EQeLmA6m@Baz3zkXK;9#UAJPXWA`1}JwScz2e_Ii>L|TDT=Na= z(usB%=WU5-{|^wMy#2;wQ}G&N{PpW;hej}Y+zww(!B`HCm4QjeM$HUL@j6^`2%s#kar7R(&9lq)< z)~a*BF)Idszk|L&uvqLCAo+1T!1*-iDs}q+!$mzbKUQ<&uCrc&1GTb$3 zQCrGg#A$j%5m0R71-ZO5FsE6RXud81uFz8I%Xlfx^vXyzNiB*0jygMpZN@J1=TJo_ z43D0aeq@IZZpsE29O6DbeEdd-{2W)n;o3N`o;-^TsyH_Bvm zMeoewQ6>I{nspD{&=gA zZDDImv`TX6I=4&HBN`vw!x2^MH!~sb5pssw@UXG^KlK3sIh@!Z4D-q_mhkNCj{iFk zzH2ygqU4+KM=~CH0*t5+@c_M{Fe&_2Q@(Zgug|E_qPNIp)3pi?RE+r>p?s~pr?zLl zxe3PxP!WnS;R;;eCOIvb5Qkj@X&Oe3(n+~w;|&NxJ?TK` zlmN~raga!C5FirI6g%I#vl;Mv#h3C#IOjk-bw=pr^!u~x*mBS}l7Dd!$b#l$ks~=e z+2+16ly{Jc^>k=`$VmpJ{)4^SxK zbFn+W8Le2J6WJ1VxfAR|o22pdLO^M+9mFKi>0GGmpOq*MpCFegC9dsN?UOUu@-l1J zDeoQ}uu8xJ1CecPZA;ZYd@y?JQ-CFSd&qb-3K$z$60du_z5pVx zmz#SxuMRpvNASpOR_Q$}WbS_E)Nsbfs5z=(u>zbmhfPGE{6IvnYoEpd($GCmmbOFY zgY9BXGIqbCdzAx8Hb!4fCT^E7@dqDq_V^u>tf;Rf!`D$FIY#NC*Esn90^$Ts`fHA! z!NEdizxKb%O#Mto3s3>^{`a94MITE>`v-*df9Cc+G&Y2qy3r2a~RO z)VotH$#S74_bBj!c>K}@8KX!nJ8kW}FWB!Rqq!TLbphg7c|mb~XCmYOvQVWN5Pv7e z##FhhY6Es2zrl#7LhCAFr82kYP%Shs8Yi) z^~_j%kJ) zP@e%ZYSgHjAys@|gnM?;{qxXxLl5uAQSAbmGs07<`;BIAV)`e^h-3dcs1*oCm}r1| zg|>9}(_CZsJI!h8Y2;OeRaA6T@Y1V&gc6$JP+-Dn2!4NgfKiAM%qWy2#3v}iA z*lxCGbsVrzVT!@;?*OF-Xwz%Rxhl>s#fevT{?&q#Q_;;P3va@VENOD zMW~z?a~d2R)C5Lc**w{z=;TEYmHqu(9d-wgsLG-9@fIe&}sSZfm{u zzvCycN@x#KN!Hi!=O=tJSarW#%lRIG$5S(ZB^>&RWvlb*|KX>46+ttbPvlgk^X^Bi zH4GV&IhTO{z~7UBN%3uIX(>Sd5=%>agZrMS!DkZjZDy=>mUYn-=_%*U(*nh2fP9vs z(7JY0w0%}NxTop!<=11s<4~3(Tl3VJ*A=;@r4u^#;Wv7|xwB67%0rUd>qe)G=bK?e zEyRbfgtF!HM3zBg)VjT6fFY=o_17;reNSM@B5WJq)N|HISXwECdEwNzp`(|;p%PaSY4XJ-v;4V(HZ zkX5kR51{?h?VX#?@#KYljjkWRK_tvn9Ty z2awA&;mco_0+D(dJ%-Y;1C>x9(9Y-Jx|If~zlF4zF80Wy2$Obid*E9G ze;{iw` zNdKc<8n58R{MWpdPQXSm8$W1&s1?^)WkuN}O~8UpfxP;x07m`Vt$|)k7IxZadUgP_4<-3Ym@`j5nkF66eJFc#kRX%N=758H= zb!@xERRw#3q+^|Ap}QKq6|*X4UsvDSv&W}$ZviVxPzFd@Jo~o*Ju~`pGfg3B&K_(2 z@t{a7q|JNPPJ_&`Rylm= zMiKy>*w@#julNs0Lqp@c_%@4aJ>OT_E1;a`dUB7CkC(;gnL(cF{`PPGtd*Zk!Y;^4 z(VgMRkMo2SxE|xEEtx>|5Uy7>_Ie;T`V5ZuN8zAV2_8r*| z?8}mRNB|<_KNa9fevL)L!I{+X*aH8ZI1&FZF;c^k+cv3r1y26@Y}XK{!*3V7HFEfR zWigU30p_MZ8lU3G3xD%Y;){GLSm;tQr!iURVRESJGut}_UN0PEw5nN>>p54_`vogQ zz4+NHo3`h~*``8w2>O92lz{%;AzS(e}cA`675{dk_W|mQ*K?dzt8JmByk(@T(rK5u28#b@#wdvoL|s4rko}nI^hriF;IU% z@-*4>ZkIr}e*8J6m`z1=g;mFePA-=tOI`lzKej91ZTdD64C#&SJY@1PA8ZQxuBfP} z2{6bdklfMk?ryR8;mmWX4<85@WRj={mP*dfcPA`(igin-)%D6W^fZ`kz)Ud{n;Vc_ z71dnli^gHj#ZG1=@raS#4@E<_{*;JHFR49o)0N-sjcnyIkDWY`IgJJX!wQ zkjSKZ#$wl$W#_ifeScBRj2??!+PYwju9)x-rg&iZ>{Us|@)fjnW_~RCrxgJEkeCDo zDd2H|5+qggTeja{<U%oOV*OVj19X=^|L?W+b!SbFrK!}U9vtH*3Ji$8|GsJ9 z_JQ;T8Wb}W5l=Uud!xDW`@2>kdLA>gN-zgn0ayAPtJYd(orZDtsWACO$#(=J!zzgA z2tbuOR$O2=JY{mgJC*plJjv9JajdD0`7-d zKy{$)lC*8~^AN0^*Z+Sms{Dr!2@^BVdh*Vkys7^|i2wYW8y2`kyzPwMv z&{IlzE4C?Fxt(A{0qjieym-5}lFAtgv73K9a+p_Ec8A^9Bs&+cb;U(UR|_uOB6 z>wLQhK~b=u?l~x@VO5q22H1Wh%u(UsPWzTOjTmn>fHzbqmGBfi89XVIr+xCCP9Oou z$mDuELZi^o74MvG-2k&uAN%FccrxLo+Zhj?sHq>F%bzyk?R>vmbn~90SNsMoq{xY4 zHFCI!nTs(sX_Jp`rTOHTQ5Hcr*N>-R!Q-Bvmw(>0mCBVoD#=nd?%Zu(n>%esG9#W8 zwy9X7v7B|3`=l_Qn$Fs7L7NU=~Hg z&Ph;y9tox9wN_6IL1pAHkP*DS)g&dNlZtA~p<2|_9NcmxOtcrao(u3gIX(SC5XPUK z7WRy!N=;MpD(+sS99{LWWKXXRw5;i~DH_pAK9e*hWg^CJ*{aN;D0kP|&6`GQT#!3J~>b&@SX>drgiRdktqi9zH2m5C! zK+=A(+O!KQncMxr2m#=i=gH>K;x#zmcWKE|GpQ_>;Z>|t)5WEw(g;EL_GYbDw^Bm; z{z-ZJ8RfNb*n?f?H+9iX!4~nw)$TK$F880R=kP-}mxK)Fh=h zPXVQKOqfhF{NGQQL^?`RORJ^4MKcmg$;+#kN?{W$^)5I7%It*jfYAsEVY_;iz`VRZ z;9wPGSHSgia{%ghmX;A?A2PDl_dW3B`eSQ*JFCL_d3GV$O`SvU)aTCyu4A_IOF67W ztBAAPy%w&LKD(-W>J2<$I)w#VdANc7^7BKz%ls7mQKFRFt6D;6Ue2EhBI&58dVkt& zBk!^AEqw1}6bHO|Z$7bc-~4o+EdDO|17891$v68TMX{GNj;r?k3&CrW8Kgn1@0aym zfAJeXMhYE~t7DakV?PiwOU?{9h+G;HrD=y3+H?f*L0(~kQ!U>%lT(8V^rkZ+=BK}R zCg*Se?&L3iKRjIAm!;;;agj40#HzXlH5Xu#nnp&omG$-WHTtdchSoL&fx&eri^R_F z#@SKs`;Xfao}RkKvfq=Xr|mX>=ysM;nHo7?HJqDWQnDH4mtrMUVar~+D%50E zMx#nf>foJdsl4f}*8D0gGz17%Ww6LT{Iz*msOSguU){%ZJLc4b*xx;BemIjG(Qo_z zd1EoDO*4FuHXkDuvkD6*@>*t2|7+#i@YMs*eKR}cVPt0t*=TKgSxiLgjVXq|JRg1U zrXphuNLZ8ibl-l-q2Ge|vAtb(`uq2cjGwO^rEJ_YR~D$(s@z{?{0Vz;vlH85yN2poKHa?Q}B3b)n33<^M z!tj6%ZrL?A_;P7j>e8o=+ zB-HW}gV8V0E6~0dPsamzhb}23{BEn00Z4*dGJl2iocxXw*Dhr#u!@19G+QX{QbSgd3=zcPC0B5?jPzBeDIrdRh+j8_C`AD!FUm{;xsom&y9~O zRBKnC$aJRKUU&EmMh0ZS_J?D+VZOe0TU%Sw+~iGYi>R8~+VXByX!>XcHyGGMgfH*U zzi)OZ&lu*s(4qycmUMKNj&lsmRm?w1ycT#u)!SAMCz`IBU(hEf&z&ndC>QWgqk+EP9P%BHL zVTsPH#Jl6u6qjtzbHH0NRWnbFfoAX9B~b@%3M_H}O&(MVQVK&RqW5wo7wnT0Kj-s# zSITEr%*IV`6@^FvRxHiXFf|Pclv)J^Vhf^ke*pPBb%|T|-8d0&ft>tmV!cl@CWz96 zkW3}A7P2iCF3io&mW;91W|Ucf&15yReBsRiEM!o2R$3zOl3Ey0^_8$L(nARoLq8Xz z%W^gij`RvarjXd5((34@K=N+RWo1bi;|JNjp3{n+?>46-fW;Z_XU6qkg4cQroB(D- zmLkStCREveanw$?SFDhlNw)T);f+N-I4-js25pJ}nCHZ895R6fxV`xL~hjWVKU944kcz~oGtXR zCg; z7a`XX@W&&bAa3$ciR<3sA4K%yIJwIdYJ^MK)fU-I4|hBtt1r>YqdhUN2OYfT$SXvm zCI#2+jF}_wK5jJ^*#%+WQD?H1M-D1p9`1ghb2w&KJnkH_BYGwK3_BTGaD0rA?uG^X zJNg9&Iw&25BU0$oRlDE3p@;xCIcicqQmRf)wy}7@bO47F*6O<4jkHcxQp5;TV>114 zcLT5%sQ=6)UE%5*%JD(6jd;@hBrPj$ZM#>~!CMJ^!uo`%3NZ}hqwKEeK2|kMch_@y z>;j!uQGm_Yd48=Hi9v4ktXrpW{S#;T5=?&GFMX$``0qZ|<-w#&(l3{L`}P}n(9xNq zeHj?u{+YvuSAPIuwSru~{&-yJ-!2DX8l$2?#d)rkV04@o4h{}|8X6ipuEF8q>}2YD zNnQ5&+WdJ0tkG={OaAo__MYCZuBTjFs+12Ovg)IOgBo*mum5rGl^g`=EJX7U_1}#; z_iZH@E?emZKZv%4x^*!uJJUV+Ihj|~ES=0%5uxT$kfQz7li~Suladyf{~rGzz%Ks& z-D9WW;mG7qpy~hT+oX|-BF`V~+y|07lAMAV@_E`cQLYFdg1FGR*QK(zZ(bM>sBxC$mR#VxjBvaAIa;OL@ z#P72*0UaG|ljSc>?l{ni>DG4uY_W38gw2_cs6x8%fwocsK^#R!dtO09Oj%#`JSzkM@+xU#EqwPOuyBg^ROEaHIY< zj`^YQTK~nt-k^Re!q`S5Tk6d|2de&dXhZ~XdR?k)eL%-R4gD>td(Xt}zJYUpwHNIndYie5?_PX2>@yQliCpwH9ysox z1?%zsU4%@m#8Py54+1GB@g}BptX%2w(2B;bea!y2z98($Zd&$KGvC()OMfDqF5xBB z5g1^LZZM+1Q5*>{e~OCIB!8r2HT*l3h61rCDq5r^S#xq-xIn$Xi+GPio(#4yO&l`S z_3OVRw7kxF7g>$?@d>!YXoJKietzmVXKyMab*>jIN-htD=!)3ha1Y>)5>Pk4NSdd4 zotSZQr$HwX_BR1Zdo?tzsHh*W+IX6Oj%h1{0vCM!N+0{P1{ME>Dp~)El*3+2q%TqI zocPNVyMC2n5mAtfW(l!p7hrmK76cAb=UJKYP%uG&>+ZcD*>&u=da&D%CQFREQt4*V zcVL1)Z9-s6vGF60vp)wcam%)+FclUkm&|oYJ_vQt5R()7^l^HDL(WqEPee+F(?);T zKLA{PeSIQXC&Sf~u&}U)gJ&5T894HwFFt&aiO0fg?KwO+7|Fl>{frV2 zO+|0J0&aW(7Hpu-c&Yw#B|nXEY-#Fji2OyZ+tZ$_xsRNLM&u+(!s!5(X!u#`EF56}^0vKJf@BE1xMPs#`h8N@P< z1MbBo^k|b0@*lL~fhoo7!e&Kl4RA9s@bwo}{z)EZ140{)o2AL5RovT@ z)wr_)U^Un)=1Y@Hzv!lIQpkiy5rJYAxJL#P<&4}-hBXC;UHpP&9e*Jxj5nqK)QAUx0A6eqXB8j&FA zm5(a(@@8L+vzMV5|BfWm4$GFZx0H4%~2C+H}TAl#!%gt_Er%)q|2QKnlYfmI8A$7U)R zUE2x*nwI<(UUyLJsHdP7inK!u0{*!Evw-CR&mZaZOwun7cJDW`Rb`F$sz*7!P%ER` zBF~6qQy5pT?ZOH1Ca#vkdOo1n`(L|*$cg5=+lt51o4+1Qk7JKduD+Vz1!9Q0-ct_l zyS#|}eeU}DqR=le$QC!Z98{}|rNRUAt2Ir5DCF^N$7P56j$LkUZYv1Mp>LuY!w2de zgy&~)A+cC!()}o;0E<+J(mO-fCtn4?;@Pj-Q5k0 zXB7N9JO3(34Qi?0s~cXI^P3O;0JwfCU<>a{a-C+Bt}~s&tIUV+X)IdB0#Z!uBcn|z zG+w0l9q<1&b%elzJXupVMI1Ug?%9=EevEZp9dL#kWvd434#}t-1qC;kYm}5qK^W^S zAvtsOk1t6{MW2nS$(W{@-eoaU1#E)%-p8(rflF( zTzz-Z&W_;6lM=c0XTvmxON0+S=OPwzn5GCXazx>91gsxMF+vbpyt!$PP|nt>)`onw z0h}$cQM%FNC_w*16!7*{R8>vu`}Hm4B)umvy+=su3tDqw{$D=*f|U7( zj1wDgzgc;_p3WbE$y)-&fvEC^Wg?Nj@fl;-TxqFVwM25CUI|4umxa53*KpMh{Zcu7nPa{kX&f4lehFoUPrmlk+SqMRVo<#2$bDX{Buy);uXvucNlv<~I_(hlp>uW-Gz_>z<(a3ix41u>nHn zn}Kz5K%>1g?#OTaYG<7KcW>^Fh5qx!kUw(Csx3>2j8Q`!ewR#g1>c90zdyso#5|ZT zRgfN!13`n1Zf-m<2xJH9dSl~{ELR8sGc0a_$;|ktR8LG^6$;Tcp?zynE5`lqzT;Ws zh=kqK#74)gAU4fy{JJO%Df(Ud9<&XcxaqpV|I%Zn({(G9&Gqv|?wnNABTr8W{I8b- z1TWa1(JGBD)vopC=kIZiuoaEjLJ6m6pCC@o_Z&$X%~2mcOTr=s@+UK@o$c*tPeFv$ z`-QLFKFx`-pn~Tx{Wlbsy1o5kY!P+1DikdM=^woKDaqi2GT;!n=XiwJCcQA(jDCz0Z`y=h(NPCtL1-2^Yi+ACSVpk`p032B@lKHW@MOSFJ*Q%f$ zQT^eREQ|HF;uLUWupyEN9iPx5JeXxojb3td8@YwL-Xt2%NhBgv$ah@bJ)b(JF-C2g z&s;P+bbuJ4_5PKwU#r-rrl;xg(#-R6SV5!^wzH$7V-aBlim$6}7T@z`XLf-y5MiS1 z{X{UFG)cjMw4+ zCw#YUZGPEcHZXWTHgnRG2zPpPT9EmAWLLIU9(Uj_;DBgnJc?Au*u8kc)8}$?RK3wi z$Jjq4^KL)l`R!10X!;AZZ$EZEy|K3IAflqGiHnJud0}NmHzuB=&>a>($68xk8$k;f ziwxpI)PbHNNc|ZTPu?f+mTInVQO!0Mz z+|Me427upI+m+n=>;~fI8(gUrfalaEmtpa{X}9@L`Z#nqqTy&^<>Q{Vw#t9$4uC=* zvdw7@7zJ(VsOwQgz{Q7q<$>X`b-Y$8LRYE|k=g*D5aqt2!9GM<;)n?LcQ?v-5Sqed zh5{j8irs;nqec?je4+~}60#6VR8E`?vNtJtDVB|pFB*O;V0V2e^d`nzYx22@V0?V) z){ZQCP*71CW-?0^1HF_T`dm8?I5ZCu^^g58oN{<`#yz)uKo5!SLDklG0OF)+v{bb3H|Ep`rdBM5XMA3FCD!$RS5DFdi4Y8jZxh~K z48)~dw`VSzm+H>b|_7|CHaeBo( zce7C+6FM9C*K=G$@pt3I$nD>UD}VbeHrH(Uc}`9VhPr!=JRttpUBp20_=65HnvC|1 zkWQ{f01k_4s9IS`9y}CPfX>kCP;M_w9(cI9flx?q8!gtfId6Zk+p@E=PK(L+br`lg z<=WH&29yjIK_!ulx@ZFS-So%fqlph`d`DdXsTw5hri-K=0r7*Yi%~zl+Z)kbl%2`)g;E8UrTKY)R2%?Fs&XFOj74E| z3<}St*(GCgak8{U@gO0`@sWTeLnxL4J(_w9o&~iuRCe`@ff3j)Td3Vxy8DfD*@yPE zvR5i90O12MHjV{D5iD|`V>C6}#;}3abZNmtxE-LNg9`)xG&{XBSPIaP6#wDhHrCej zTV7dzhy6ICH6#xXtVzm+o;{O#|1j+3U^iGc?2DT0TV{9}_uZSMEFTF~PEV3W12(utUCO%Fp$rMVP+5q3_W1 z-R0l6G7Lu#BxekZ2ZiTDpEXYckd>F1F;V|y!mD{N`;Aj^^Ms%dg4|2w;w_=TH!C1~ z9<=6syQ}^lRYjOtKh|`WQ$gb69F1zjm~V8bE6s^fB8*l;EE$W{zC29u>XJhac3ANB zH`z;$d-2}>e%0yuIk|ITc}YoRIwjz=C4v(*DBGOZ;%5oFH#lx(qEXS%VUY!oFa|TH zf!pEtLHkS;n1^Q;8pBy>XxOLOYDyJoSI{=`S4T5u7{3L(IPXE3)HX+G!bV#->BLLq z9lSTtd)Q<$^_>@%V&*6f-d#;}pUNnVZ_H6*;ve%q+P;{9*@-wRrz{kAP8VpSN6rZX zeW&{WPr-qWY-X{W?_#fb=VDH`2>yq-M8>7I)Foz|rKY|!D_sTxL~@UY{n(P3 zXchSU{Ae_YoWJLKsehk0(P-3HA~iG9q$HKbYiyjYA!L;5!rSt4|KM)5iBfHTP8m{J8KgmQ5D*R9&wGqx2ipCFz)TwQCFv|p{`zZ^2uTD zv^DYh%IMF`Coh^py|y1F-4*~GR-J?vTZ|%5!1QahWC_=3QxK6oJ39vboI32AHsyjW z%(mbLq5GXfJ*{m9aGU-auxWzNH1UU>=s09HMuvthqN1XU_jz%^-t`pRrkXVjquXaKGAhCoZJL}Q1(Z?YXu~X_+(_!Ryu30m~z!RZ;~0> zZhplOvg(`oDZOsOIr0z67s0CurPjzEY^%+l$TYZ2Wg;RWDT#}X9n?+diJNaZxqU1S zm$;&e#fy}p=)J&ymBFJFT#x==dvYL~e#@xoU(+e8Df)op4_qHvSmX;5!|4G7_EdF! z8B7|9J2iSF-7a*1Pi2yVbf4m@p*YWM-PZ_=a5gg*MR+MhFUK^VfG*DihqfkRW~W=1HF{VcPug{#pT3Zgy`^Hdib+v>d9R~q-YrGN}8!QPiTRrZ{fp`{ynS6 zMu$V(#5ZM2r@}Q7&z48UXM7})4rebtE26g>|3q2|t(J*kaBM-`J|@;1UGU0M6p^&+)EWfCI}gs~I4aJb#iwFz1u%^iai$Sf@ z|4Yzek?e$q-`XdWV07f#CzwUZx9q*A@xdGur{Q>%g9bkkUhv24Y1)c;HSM0yYkby` zL%O=UJV9jT;xXviUt+0OIQyjrcqb{Uii=tjg+KG4v5+q?fp2!H5=0IJz-JiGURYwW zn2#qs-%pj^(jE!`&XAB3-!)P9GN)SC*P*noKWanKu($4n!eO6otD1Lg`Q%B}$7>IMcPhy}~Dth~NfiI7nj255H3f)2s_yN3r z3j&GaKNBLD36K>H4RaW%(r|eZZGUqL$6p`HJEBjC~6W=_V-!yQ;*LW21wWrcfR&lqRWiX<)=1 zcrP0)Z}miro|CiQy<%wCplw}j38Q-~wj>BRN0hXcMJ*u%+@u%0_*2VozqG(QgFyn! zD1##-`=rx9n<2ULf!)wlE{7SDB7B-rv42o5oyma+CUxIwQ(2(<)1La7&F7hD5V{<; z$@vhnNKz4|jn4VAj_KY#Gb-(R|m07#5$6EZTM?ln((#Mz9wcAtL*6U}0Nz_gZ* zc69qLos+3aVysyf_|&OEeswi=Tf+A*MTzPSK{^B@~EV^0d~byOC`*di9-Ai<0!0TF1u5)Sa9- z=r5nRNj;CQg3o<8c>1lsvnes&_E(2?G&dnJt--p|*{@6rc72P?R#@kiQ~#SIoAV$( z91?Hw$nx^G-7h+))lQvzZ;zVeR77nnqT|W-pg^Cvc`2mc8R~Y&W);}0AK$1W^;XYqB2#M@f<-RO^|RF-%ql?DOV>vN^+Jtw1*ukUa}!~Q}$6$#=|n@(id9`k}(7&9j4bWJ=($b?BGTAtEaEKa=mqV=?0i< zz~jhER_-#ByPse>9~>>V{vcfBFNi~3J(Qgmb9HTGdct6kogeVCY4FdV5I+9GupEnO z>Bsn!EiW`WLqVPyF!DZUQv}-*l!=605aiZH@J+=Cxbh`!R^+SIn6Sv|wk>cG!#=+l zcuR0Qv@}L%O{4UD*n$xT>2*kfZESBdfz=8CF+j6}l$&Cb6J35K|Q^Z2K@Exg=~Jy0_Zy_6-3HMalFG4AN#g7}FSt?B~7BP9HP3 zoJOWz{ixOC_4l=Ysg>qkZLFNpccxdSFdFsXgEkd2k5Li7V1G76VJdwpJsKKW-~lG# zbK06w)3x|eH@#P6rXm6vy7lTMs@Np*KASevXwN5~b;5$S;O)zaVZ|Y~oO=#wu(nDk zLA&fw;j+d6<&^(uN-o53d5)0=7A1#lo<9%Ry`P=bu(SZTol_XuCdwJH`Tl<8RT)Pt7;Q1|c?$>%<1zXVnz4Q}UU0sVuY zpdP?F9gfn|8t{Gzw4}4X-*Iw59$Q*G;){xk>MYc~&=?*q_D98@@veU0%wOzntf>hr zeX)(ew>5~@OGo0JIZu+jX4QXa@_3r@ejsz6@WqBNz(S+en;sQeh2?P3wSQ|!=P7iU zoRZ9I&?;*9_2Bz6CG$`ok^Z;rcay7rVk2oQ)_FpCD<^f}9c*mwSG zj83PLg-B#5;zh?hf@^dT%^vKdcUM)b=Ur=T}Bq*26 z)&|0WdIB9*2;h@bq_9xtmObJ+Iflbk-lv-))ysW;vFCSAuS+&rV8{=6@%?g`3Ps8U zm4aI-!(6*?$&jy!ev@uDKGvzzMarA_^hs}4a5Wg+tGKv$e`H6zw7yc}Hx&fB)VTtk@yLi5L7>?H%Bq2Lh+Ksz*8=j0hQ{9x0H; z44F6T;>tHXg}w6meR87rQjMFNKA5w!Nw-D>RsOBfo}q!lOj=qIPoWTJLiY5`SZXH1 zN=+@51}dRQCfZqr|>L2`b!MB?`gHk2bEJ~fhnv$3{$=S1?G%6`aQ%S4vM z<0pl5RkVO_Y7stl$*PWVVFfBC{O7S*d4B>GQNJU&27F1Dy_Z~~>!7tuc+KXM{rh*r zqAIGBSrn*y`?{m}xF!9cRaq0_%d$&gc4Hq)-UXvPocSSrfT3uXIiULqzgf4=(%L<} zb$;3piG{WYbG={D@|y-aV~+35%k23*ZA}-Ks?hUYC$Dw`)&8}$HRR@x24;{B`G-u0 zK(_l4Jf@=b!roq!KIoSxt?3O_dRN+FNNOWy-Adx$iAjvO6@N{ryPY>~c7A}k`W#Vlw=DR0ctw8?N>QFyqTnFwJD9SL zrNbqGBZZ(qnWP*c2_)#o$2t<6HrVE5%Pij}`$)V)&OWolnK@Zq|I$fM0K+U#@-2Jl z)y8dw^82Taju4IY9@j8t!}ky!oBk)Z!9kG8s%R&p-R1@N+s_t=O}Fg`s*3s(J|&5{ zU6*XMA9|22g5Qupls?=*3M5V>WjHHqQ{~oIYI1VxgxFY*(D3kQD5$890s;a&wm&{- z&oA_BcFCoz$E)Xk`gE=^FaJPLP|)*Kx2si7`!^6~!UAVrZVPLyRwAUz}D)30{%9m!DeCe~3dwUOa-K5^3_0Qiq1+>T$ zBw-OTB#>E0S~-+NDd&K9NRCL$hBdV>hi?_!({&n~&+L2?Jo9otjrsVx4B~J`V#kkh z1|*fOdWXC?KPZ+Cd7s4^w9{B3=e4or>h)NJY4~91S7Rgh(2|lEM4@jsOs@+iy`rvd z@Iko4h+TVn4s9T0#t571qq^o0)=(BxP9GYpAkQL4O5Ij=Ad%&VP_pdAQ>r4A0n)tB zNF+bx-Tl}}=WcRkXf!&=3$*X;3rhk5NILsegy9X5>_-c6DBqNu7t=Q1cH(7ePw zVkG94DB>UD#JGyysvWL3*c=?{G@2Fg|32pxzqM{^*FTAS+ zz2ccn0`v?CX>LDSOZA77B$Ke3n^*8W)kZ=s3q^B%?tr>fWw846k6|w+LlHy>UJqRr&F9O{V6?1))YF0k($RdeQ2@1YgU#oc&z8lcPWg^y z@gR$dGbxSw;?v;?Z=k_TU>EDGpB%s4Sel0t$EwnxCWePHAUVO>jm!JO{S4|BT&g^# zPU1}}J^`;F1P@PZb8{07mXx1gPk|e*B?pBj2mU>Pz)nj1+2c&Whh#HyE7Lk6rIBLw zD@}(gWZyk7>xVK0F<5WX>*_enE}!!AKUdC%v$uNqANie)ksB{S*|<*{69g~&2c$a( z!NsQD1W4%XKK)YtzlVR1WUeT74(bPnKBg*EivL_DgCs?G%9v4~*;QVrFOT7*XR)-_ zn(xFV)MoXnrg*EB?3eSab%axo+2f-Qn}bJLZGA4XMv!#~#ZjOMOaM7jQi3>8h%4aR zRaq^!t5ViNOe>XrX~XD;xT{C9HIzXx4$IrDN4C(weEBaHsA5F%X?c0nn)q1j=vPrQ zFkOSnj=l@=Um?DEZTqLb2A-a6BHY|l`0lqkmxAd*VJo>dL4)`udbDGxrwscY+I^%I zq-xJ8bzPLrD}wKvKN|+4?qn3mb*eoSUHHV$cPy<#7Sn1?zhR`o*sypZqYx7rF8dG( z*SSO?Ha!hO+}+!tO0kK=tokWv5aLXzI23QyYHg+VhE)tH5c%Qsw9T>e?TaDwlS^Xe z3LXySKq48442&5kQVazxP`-g3iD`j@dca_n^QT`dvZezr329U#a>a`eri5i|v=Aiz zI<-44s}9eQ*7j})pBf~%pALgW63GJ4^5-GqkV_wz5OZi z%y4=vI+c*q$l;xK$(u?ksha!>V|eZ;*@<6(_p>_ThhV2OcBD8=nQed=iAw5MXegYI zD=d_@C0Q&qu@jG-B50(~g0a=GI5AwvqtnUOFV4xRePG8h@Chxg7=(a8XLD;S?av>N z#?567ghVhhWe`fsl|Bj*G(B)H;RY||(Tgh&vqGM)%drbDo3**Vo$x1911s7`uw|p< z1fJlSqNJfvFr0$hRzL4N?>+U1I`W@ft#%^bgL)eZ^LNuAocbt+bWcm72cB4M$pxad zMOYvowJXN=Z5e5;mA}jSk-mAmG*{7fb=KaFlk>GGQ7q}R+kp1m%lC`Vc{)&X5~GN{ zCtE&;w&h8dDGEa}7arS!&!&$i7PUlVIj^!!py`%8fi9}_;~m21!IV5WR_dCXmLLMG zfvtQ{*Ttc$Om5v(08F-X3xgDD3ATN<*sL^(C?MKkL(Ci*6`f6wnEcVB12H>vR`o;* z6mJ=k*Q^z2?*(yx3)5)))6==(?|q{soO8Pf?0bAgOgyX_b^SQBP{JR?@>1A<$21kE zHCnM5I29fW5hLbWHH}8i3sh}xc=NPsnZcMJS0~zcR zA2#NY1eM@r)vaR_;j%x+Xjxk0>{#Q*V47_VASt-#p#=V{-RQn&vr&7-aSuq1xYqEALV?xSGttF>xThJD$O5 z&^<+BNRa-SNuiGrpj7+}f(8Aml~Sn$OY!qg?P}K)*~k3GMJ`)DNjyPz_{d6p#@>dL zQ@(PV9$4N*TiHmIIb+0u@N{wPcKzEP;z-pa0yxT&ynT;E<0pRj+l{9^8dok?cn4KN z9y}7vRZl^Raw-V2X9NbfsXY%a^|Y!gRs~7PkkaO64J53(#85-mcVw^)2)xjUh0_eu zhs3pES~Q>-Q5ioX9gKP=68hRcEFV&U0wLL7=-c;>O*lMsQX3DFkAGM^HQni)@3?t$ zv<8aaZKaB!Z%Q(W1C0v?H8BQnAHMB%z0Oc!8gpRiQxORXSjbMj!LO^s#fhh)H-nJ} zh@429PAkrXoc1$Oe^5nr;#<1J(Lq&KL|0)v4XStt$G3=KG)dPborAo?{@D zl!Riqx!Z1Pps=qZ|1ffMo4u*G^~_l8Ky z6^#XQIOlLU8Vu>H=}#Lvh>m2slHQy#DkBoMSwPSHSC)7pDqfAXyW6t3w^Qdm2~d10 z-6VKnLOdA~c>#OLJEZA;s?aTx5oYT1c%1IRf>5uD=9bxmq3<9EzMB6{$YKjJI~($E zs%-&nF$+e%X?)XN9c^uW9{C@&N10ASd3k&GWiwyAM%O&jB&tDGdy%(kZ!Iky5z3tS z3^@>Gj2NXz7lTFH_OI7lBl+J}(e|D4M0oQo1&2>_>--QSKk|x#a``vCcMKb}v>kzp z0M5d~V&3Wlvb|7TD0ppv3c(0CsrXv7&Y70qf2>Xj5U!f$_Zwx@HP^yBbdRGWOg^z&s4L>%jK zWuIJl*LknnYq{Fsz5ctHkA^T^R^c>kCplefyL=+*d$jnSF%G*vI) zz~vQc{{~-F5977kjxwlnn0h!kIF9!--sy5f^+!*bUXI9)N&vDr2?dqR`@$rWheQfQ zQxFo;3`K6p9!W+`@nDOg`~rLX)^NgwD}3@#{JeOb{o zo|jFF3$b)~P`cj+srr#q7@j9+w{K98{(gM+nMYVQCRt_U5&aX7$*8sY7L}yRmpQSY z7&hOLp5BzyA857DGq%MXkf-vi8S9CBPoJ$wa8%EiWVG5&)9_W!y6lc-5o}iV&+|!5 z%vN%h%i8Ra9Vu0{RHP4+9g3OX-l2ipah>TOL|pm|1wAC!bkxz*Tu4+6`alqC)<^P6 zv03-N@)n?tOJ5{@I~>r`ekE+;a$k2rxwXZRG?;Vg``p!xtJr6X$`?dB#x;PfB37}x z@F~~_%dGVY?j6oJAyywo31jTtuMB%*w4=Wp1ZxV(qaTV6mkrgFf@i~`qOrl{RtA9z zrqLW6187}0A|c;yM|Ar#`xeB4(X^{k6OkN3vXR+g?`@$qJ^1o$>>*GAZ7v$cqqW{r zt?^cq+a@GNo}23mTE5f|#l_O-gm$l0lS03df3(V6vLwZ)HqqX2`4DryTh?i^;$JVP ztlZ{zC2u!x39%*VR~=#vs8NiV!jzXRVa? zN&BARsnW0d4)LH?P-+jKh0Pgjy^IUCtJhFnQNph1k`8$3wd-(TMLPcYlQa)1Eoh)zYRGcJl}-a1k}uhH`;ES! z#k&9WLP90H#T&~XU)vD;K!S}#?0s1Ay^rGk2cKEo$Y=PV_MVKJES4Gj+A941vuj`f z)$a>8rYU9uLl88O(p!`(xAi5|+y9?NO|@1R7+Nz=A^dtEdD?$1pvcLqpU8f!{V<53 z{2;is>-8u~0eS-ji9CxZ$Uo`^TU822arE4U-L!vc`+2ud`zh_0=axY)dOpg|Y$Z$^O&8(w``Ia449t}J} zc9?BZ!4^Y3QWN(n4irN&MIwxnLl758o4N?(itOy9aSZ`YGFBxs#TrIPkT~|gmVHxk zWMt%O(F<8L^b_=d=20<-*BF$m&8ia(_etg|*Su*UYEIw-eB=UfI&Hx%w^F2vcjMzP z8Bo%}aU6TOnK2@I09}vl$W2OWZm#6Yoyxh`VsRTAHS@Ds zw;99?78m1wP|rCXH+J}u)&)ekwgwrXVtf|v~X z7iy)ahC|&eZ$5rks`ibFFXvnEpFr2Wxw*+@fdX=6q6)9$1Jz3=E>$b4=LM*GF%3qE zq0CqMWeTSG3f^Lmg~@A=c_CUh_Cls87DK|u2{l`N0^*%g781cczxJyQY#j`yd&xUs6Llgn1dG+kOec#oqn@c?RAK#Q1n+}5J6V}@8GvKAR@8=eI zVbg+%JjkXJb6E&e2`0t263i6*29F{pgYihM%n)ML{n|F1pU+%rnt_2R7gckkTDX81~b%vEyP-J!%yC> zVvXQ!KZG^ss3@&~JJ4HSZ{Vbo5{gL!4b1~`W_71$?rt`!8eKsnC>7`hU}fvp!N>(u z<3C~1128MfpDCRRmJic7A3Gwp$0SyEXLQGosg8Wq+$HC60WJ{fLL1frJ1@t z-hOTN48SM*p*%(?uT9Ce8e97(Tin7}VO&9JzmV*>WR5#chtE$>1!oxT@GunS2?9(d zbBDG2+HO%X9eOylsJso4D0v=;qYy*06D@omBodNRvTL-H+?C1tId#(`GnH*b_mtX; z!90*M1EcEEnJf=t6!%K#o)6s=NLViq8^I1XIV8d9%iyyG9ED!uUT}YbkVN z0K}7~6UA&JJ_WXg3H6TmYvkMw@AnpRSYbedkukf4Qb4xtW)E_NZ+?Dlo-BDt2NTYQ zs=LF>-)4XK;agegWelUng>RZsm03+y zwL*%tb#aw@)$J$VjGor}w_CZNEs+su=;%?|aUe;A@yQdd!DG&H1RTUa(1+7#QRP}IyC~$kgSGw|GsID(Gl*y3sb@@$?q77h1+%Zd#QXW~L$q|5aBh&cQ zsECE_OB~t{ts9S%)wVvi5H+?pov7QfH34=BT{p$OA zlDQzKhF3#>tGl+jYZ9V3Dvuv4m*qrXNIdTWnP-j9<@-Ay%pg3~nK-za`BneIeV`3iJ=u4Tp zPz*7>NaR?fou;)DDzCJ^KFh1^HLcCppW^>52Gcgp(VRV3Gm}oC5Q?((A$jlyHk^`> za8!rHa(#Ub2iH0VlI-s=8~FJNg^>KKf}CFCm{2YIzkR@;b@A^Kg2n_EW;Et*as6Wp z+ppbHn*&NUf9k4>_a^-(nn{B>yTwk$#b*=K&y1IQjPEE?ZEOf3q)1$7Fl4cQboeob zp3!im<0G-)INdqp9Fya$+ppEPms(rFE2)PK0SV9a?A7N^=UOVrSr<`zZnx! z5U+y4CrSqxV(iK(0NfBgJ3Y}m?ZJ4owd!CAfLX4i5+9B@smuwkOVc8|YJufag>T#6 zS-AhcoSPvfe`IXXSootYA3xp*9RV&4jLeP$+5hOrAat;mR~jXagsa3Xhl7o+rYiPx z9nb5BkI#+pEObmIB#8CL^6kH8OBEv9eRPXmKdnvUP%ED|xLoxfcvs3Auj2n~AV>>C2-4jh(kUHM5{gJ8A&r8dlytw3d++cJcc%L)PkRfw_Up?Z{Agu$k@z8-taM=;+SQ_(+{;Uz;72WNB`h*B< zjD~eor_82Lfaed~csEXijeHX*)h(Nu_j=E)S#^4=g&uDr7t^7(>-ua_?TBJFCa=y5;C!yzgz;(;QGINqnuD7=g1>cgm zL61Cg3|QOkKbBa_8|f76Dq8xOXnnp;;tcVSIJ96#7!=?#Kgj*?K?g!noPqv4YBZdv zF&jN8F?$I|=)3=Zrjj`?$~>_NGG>EM**pIlTw(!eevA?%_A@2iX06r0 zVd>*MHu5thT3znwf52pGcn3O<9zSxDP0wQOFT1C_G8Xih`*Js!8D1>BYAXLr z5u|zM4Y^w^$o&GO{(9H|G3MciS90mJpJIAysrrOjukYQx`&Y;$JE_Ebwm+nsbv1}Q z^O1oj0DKb?)#%H0rW)sAFGpdamxWO^=@TROG=qbo+NZHe`mAPQn4FRIhHb1bf+Zy- zZV=5)E8?=V=1v%fVjYro{6Ap!r-Xn>eC`d3TU~WEyaHTB{&2y>1{3Vy+=x&8JUeC2 zpWnaiB6a+2aXcL&CEu5lLWTP)p=;?r7#dX0+P}*671Q%X$X_%pnwvTh@oDH3HwVTe zq_q#o;SIl&ki-qL#Y=&W{QMFCuQogO8KT#7v%r(aGvQe*!2VVoXu_R58CyV4qEvLw zA3>z-kv*%bGH2og;@<1F-|E+Io59`n>1SQx@<*TWl`LR!6wes&csP+lu}O(lL2JS@ zJ_G9v{n^U|XT+b#3(s98T8Eu^c>3Ljq)`Aj>B-8;B^DQRu}euUq%s2{u8OMUwva0M z$DJ=cZ)l4iepK;esLOvdcVQ;`m&}wukaE&E-emI^RbX%M(NeNHx zL#9yA@;e`K#AB3FKEZ~e9yvp}0JS)yt}Lg8Did#|{rjK8`pa%BQk!pTBH5gA#nVQW zl?Vzqtbb(|>Go^e6_y9X%haU1?nGMtm~VQcL)AZ?7C-ksr<~pW@NOA%=v$WB`k%ju zkzp{`kR6nn=L!6Y_=GX14VMxZ91O_-8R#j)DP#^6(*HHz5ISNjGIT`EhuKP9%5i-N**3f za+!?^nM#iy-3)fM?DE8{o87=Cz^l$uFRNxnr@xym_>69!9sn$VdJw1Er$0`@0_4hm zWfhTY3m%rbG%a*jho&XscVeHs7T@IM%Gvw(Dy^!rkT)_?BXEo=VVZaiiAB!${Ro2) z5#1+V3wiu{+o@35=OBL~B?hIxx2H!=%s*bNtz@1`ckUUWuUF%n~Gw z!}VT)GVq=8$S9IVn#Ul!b<3MQz=z*ZHf>qxR{aJ-2&?9dzHH<iAA6cqVL4h|lWpg_QStX<=e z4L}`Q8TCXKd=qF*%wvN5TS9OQbc!-G(uHa(fDNXX$y8AJ_Hv&S-cYuaEk)% zphF1B42P+g&3JXsw3YOq-veK?TUuN1T=Bi<&mV~Wpc-}gT=aL&vH(M6i>6WpX=4&k zZdABj^Qx=Rko-ARfiI989pofSKH95+zp@qdN}tM=XB4%A)F0dU$s?X=fy~y6k9qmz zkmt+dvRjkncF4J<5$EcmMJp`tU0F_ki-~w?hf05==S9ebas5=I8{vr6M^CEXbY|bjB6+G97MGb>K}k)WSK1X2 z#t`uwg-XFC)0C0Yv=Kgc z>9m~kLa0>G6c4XNaiyr3lCUI6so2I$HzvH8PklnkL8eV93 zD`CtvAvj-+q%+KgHqcOk*pdp@&eSxUA_Y(dDG)8_60E!jjE;GP&>c(MjUXs9H7UBJ z>3e@oUHLPQe1J@Z z(vJYYE^_|h)$Y#qg2~jhJ)GxO^(D``#ASn1>;g}-BHqBu@!SFTMb*SYe33Saz0?2{PLIIzdwU;X=}d_e#l?G4l1jLW z=ej(;8#tGXCS_Asvv-DsxHHX^U3ELQk3ENGu>Cs2la9C4?ta+#!j``wK>B7MDji>o zeHgdILDn1BTFQJQ8PnF{4ZIV1O1et#k_T?OHtJwx)&i@*Yu_%Z8bt*K2X9+>w8#DT z&y(ZY8&z`+$D^xz2PlhoZc?x{3m6 z+pTA*!{0|n%=FhiaP)n|@b)sk{;z{s2FCk3xF6@P$e1#j+5<|HPf(c89MR3^!)3Xf zo^G?YpIubZ!$~*k5~7y)Tad5dOBeyUcZbO(E?olOcg8IDCq_0b0vdx%@!99}#57d! zPN)kSOy)^NAc|Re!W5;C?nJNUC>N-J!&K_Ksw|9>AoWZhxOZ>fM5q^M?BfB$aJ(x# zl|H9pHAbKCuDQhnNywYsBoNn8b2e)x#C7*MjJFoboYTk3!u>cD&D(HhB|0%j(EsH^`@Ce3`g}wFC(|of0B?&y&%>I+dLJ7~Gb}8y0-O@eJ3RwMN{7W5C^^PyCsPnL@5$GlV6YY*=D3^1OQ#wgu z{kRd!j4LzpYbyP65SzS3kEPIxv$%XDUCh6me%8<^9ltqx&hH_5~M@CId=(UQ2#e*j0M1oR%=f9d&o^Y<0m zo*E2u3dv7}eO$l%WU&?5++V+q=Q5l)rgO({FevCW~abImDVpoWmd#jc&wcr+JK}^VPxEM!x~X z3W+R6D7Hpd_HM_IKR^DmU7bB--*8?qIpd>SYTvHx^<$=oHQh8~=r%32B@U540Wn;j znIEPl59S3Sn3$@N?ChZv@4&o~8Vh3%CB9GO1Q5~!C1wjIC$p8Kfh& z3bG4{Mg{M3ZcKU7{B~DJwo$mmMZp~|gL#>?-BL+7zE`26Q5AhP#jLUPP%&6234{{D z1BrmNLEb^Nusd;4B+<}!GGUdph1Q?&dkrGBGn_M4)F@>43cm=mJLWG?ABUFEQyoY1 zFuj6NLAa0-P-Zy{Md~4I7l6#1@#?N^X0mT8NE?aNSUKuSSN=S>pq;Lt+ zOiI4N!I?;nXB%U`ji9i($Y(mV7XT|-dbCdwO4)QhBEC;nq~cM;x9NKbM5%}KH)@WW zN5lf|Wo;}DlpDI;I0H2w8E(T{2a6x*2viGBC%%M;t#I`d`Y+_@E(pE< zZ5W0T{TXuNKe;M&W`6QDj2Mnyl8lKx--f_n1|UV^1^g$EUfDNI)GxiE*2h)fl%n_h zmB?w}OnGrIbtD>C`rF%__(1Ru!$Euj^h}`-`%>IJ%lDDT#vLwg=k+^W=03lv6U20U zBT0I0Z&c(ACSv4WYlUKwx2L3 zq{L0UpD^pOT$3hH$$xm<#J?SQ&N2BdYzwKU3Ea0g&-?-wr#MbIFkPT1&`pq$J-4{n zs9({eHJcUeAFyw#&HEBkxX)g}j?$?Krb!IDUtd^{+ac}ui`SdTiVLAfYj3O--~;$&inbBeOwPbzB$!a*nR^ z<+Qr4n4Y!w?a3+b&KlJ$1bz<(2RoO91_rChc)y1TaM?@M8k*#_r{YaayT|fuo^v-A zC?d6k6nkQ#t9I^%Z~>HvgYx%cKH&llTI1EO|Gw~T$|n|^+j1yh9mN0kqUq?H{~#G3 zm#;BFdY__w<@f-UKR{ZgNz`j)$NTCY;G;t(Mdd^q;+;KLV!|N6q zGotQ2f@ni>AQDhAEL1RrlPCE9cUu}{1X_)S=`X1h7dP>8R;}(yO?wy>Hfw<6M1kU@ zC#-}M82Ph*4@4r(_RY9-9z*XWwEgYO2-pkkV4+WjP%~egpE*@p@ShAvedAEpdqH2D z=ZhB;Bz|qk!^6`fF*-XNrh*_`!*O7T_tgg#G?Ya>6I6L~?PLO>wdyC>swh%C(NdEY zr+QSceg6BkNW$ZC$--C#yw~b;xh+GtwAcNyQ=1CZ2#83Ewo)t`2(*gVZ*ih>vow3Y zL=WTKP`^3Yb~Js9&3~|n;P^{~Hx$gTUp9zGI=VKSZ)qBc6KF36t%_MW`kK?|ct2T{ zmRi?TMmg5ijeH!^@cLYH%=bMjBM@26uFKA7%OfTv4N2-WhBguG2Ltw;jX#n@LaiNa zF?qA4Ful-?0TqqJX*pZnxRL8kwNt7kO8I1hoLlPDT$Dle~{c{1l+~Coo zrHi|JBZL#e+bM)6;h*A7n*ia0{O@Li!FHE;kaC|F*(zYiGV^#1ShQGL*bT%eEL@>Z zd=#BffHodWJR6dp1#GW(EA`9|uyAY2r$=B2Zx#iMd{m^}8UDh<$GuQpx>cwpbQQ&b z)g4i(d#t}M=x3AedRjhnxiLJJzC$_UenEVo*(H21O#bcQQxD#Xl{fkAlnT(6T@%@Q{B@IYf zW@lxIs4k1WjoEhcwVn2fsK3s1W=c~!!17n7zAbVwHcHwRpkNOtXX4J9lE1&h~W24SXlj?`uS=2{?yF1+5| zpZ@`kjX8XfSk%acMtPy(PMnmGl)q$Yy9VAdUfC57a;bk_5>|#T3Ctic2 zJ^`tv4ra$rfypAUJMr+Zlcf6{%vx5Z5bru0s@3i3`Xo@q5*&8gldME5b zEr*Y|2*hp(G&Hg(8cjjJQ=-PuB?ifWQQSVqJ12@!vvjI{4Icm3pGzA|nN;%ph>8pR z2r8*<5Yq1)^O-mg#)iigH%x0^{1)}3u{PbKnyuE}48>7eM(*zkfo61d2gj16)OSq#1ZeY{R`);qFTir{kVCOf@6E;d_w%0t^Gs3&%S zDz^T;+!EIqfBZ?Lnjfx>kCA=D*GZw_ly?}15k}qz4=)N&hXcr5(_)S>p|;}MVlw@< z{OJMg3nlIABk7Ev6rLEu`uAR#h1N5}A4pYyY^~)8XIo#a3b?hMcwNuX&)-LYj9xw+ zLMqHW3&TFpI#!ArJ8-d+MPNL3JyJN4NPoRs5zhzlJ~)Q3z=sRkLp=N%jm!M?m$jX_ z^{lN6zvuGWLuw7n`R&Yx)cCQIi$B=B`*%p35ce3ptPOWv``c`VtA&k+_wX(tr9p^= z2y(}aM1g=bTl0V1j7v^h+U>Gdij(5e&ooA$H~uwz3~8n|a6j~|Zczh699bFm^|_xZ zfO|H7CDQ>8UI4i@`?0)y{+`N(s>Tksd8&tptWRM!WU!=>4eJ#-rhnFqX&xKwr6eSU z!NdhByAnSoyQN;!^oG+qU2Qi$Fq2KcoBNjI*%&yCkDOq*dWRsM3fn-yOxKf;#OtF ziql*6>MFB7tXDFycigejX@I_c$%Qv0m);3&g1@#?&i*TqAt4my*GEMG=|CP7r&Q!S%7`l26nLO2kyUdv~ zdUni`dFDf@^to@@P6;gXc3g4%nZ*>dBw_X!fC9vdj1dwWXP5bGoI4569_ z3!WL`xl*M6xu~^=wI$g%WnzM$W-HF!@)ViMRqu6M+{9nBHF6uSxE?-L@_e0-iK+H; zl2A76t`C-Dq}z_d+q#|#KyDlVZJ6G_p5{Mr`na-VhJZUkH+RZw=Za6(3U!e=?)R=W zm9)KLsOlx{WDqIdLQ+tjTyfm0$KSWh57SPKYjhy0o12^Ez@T6hz;ZI#Kd!pgW=ghOPz^S|`>AE!bn!EDDUpjCdD;|QVLd@zvb z+h>8f5r@+zm~9ns0A#zZF;V!}{=ZbRNeYMaC+mWZXy1bp3_^&jOjb5XW+pMcwbU02 zmpww8Ho?QhUh9LQ_dR`CLRB+ISQE299Hl=65;g=TCh$L-7t|#L18OgNJ#VPv+B=qK zv~>J|E<41eNi}iFm2OA3&WrKYrK8Ky-^Ui?c9xw%oFhTy>ku(07V%P$S_Xz3jztXt z^;Jqd;-;>L7RKzILztMSxP0MqOYIO=aF`XA?m%p8u*i~hUq@1Fo=HtF`K#|W;cjBV?>sM)h6$9)0>;(aQzV$g{K3n z@F&jvERBSxbCi6`x-R|N=C)4Vh}qjDa8(Gsq2N=Qha5jWfR3V3Ff!di;d&?S3mFZs zuQf&J9rgO8eX5S?$F;97g z=2J5>C4fYqZM48ul;?bxIR6bR{QigEW}lLJEhHb^eq62FKdr8Pu4_1o)ZqesuFw6) zGf+x26b}?j{j@p%d%-kyH)-T*TPa?>(xWuB2CQ58Q+qXAb!7}3Lb?6gZR{=RVHd%a z(e+nLczVfkvJ5jb_YIBtR`#2H1A8q1@oN%CMzhA5D&XAFYBZ<|WCqpP5WI;Kq7B#k zr&q_`xDF+aWnu4jX=hi!#?XoNB6)RuiQ7l(cl|>`sD}DJlnnYJpE`?-cVK6Zdde6&TY z=@|B*6i2aAHDO*`vFc$YAB!&aTo+=tqka|jy=JaW{H4KwRDk!tV~tUW68KL z`_YZ&3N!+!e+h`}M0j;K5|i%t8h}drU*2pa9a!+gmGJFvy)-7fpE33qRo96eQ_Wky zIi;2Bm6az7$461xOG=;1P-yqpX3GDp`RpQE}9&)p|7_9%>Ayx^!-dUp0=p?cfz6Fr`)Kl%O-?xmN5TA>vhwr8X_ zFCz0c_!yvBi(yy}J~8oY5KTHW>5`)_dCV=gxZKv4ZT{a4kQ4%j0M<1>{9!p?pPaxWK2zdw3p`t+gx%JdzmN@s@r z&r6`lHwa#|cc3ckWxC7NWpRhEhDf!kY&E7D8-rUg%AANxMgJ)^m9a>L$nR`ikBUhX zaHkWQ$()-HUqmWem0}MoER^jZ9y$s#-;Pw|1-pUK+JYZ6{KZ(7;czW$76Q1A2kX|G zIux)U8WKjBiLGoz;x+H=Ev%AuQt3GvgP@~PkX*wQsWFtMxgq$#*Qg036Pm6Mjf1iR zn|9C8g;imt5r^=gHSa4dZn~;N`F!mBx9GZ#d|Xf0h`spj$7s;x%d=h0sFaz|giw-k zBMRYAGGcP&>kf$ANhg3r4*+ z?8uRwAt3&urNi8iwLNb!*eeW-rz9MchEV1#;BpHTS3~(&%wef~xsnU)NdF(uO2g92 z28S|85NAu(xitN+jUr&9fA#8B0?_=tFE1a|0Rg@xWn~mqMU9P*P>5oG=VYY6XAnzh ze?Y2%uCC?VFAa|a1(19y<#pRxZC`PD03gB0VrdnC#xtP2L7C9r-cAX8y@CP)4L6jx z)r%K=o9n_F)0Y3mGuuJ!GVYucLt{Ga(=AAtO@+d`9alvPNRWGzfE~HrG!Az=CAVD;turQrU zViOHQmJp~0WJ&McdvxKr_hYe8)$iDy*EGK+(}+`ZY(=y~*~RZ_z3$}fkL&(#?N`Oo zU6y86bp=_bb8i}zH8mUe-8;4dIkK=dte4>qXF=2jyLz+dwv9lbBLN3n$HE)AXj)-T zvi}%MC57!z)htvhN5vB06sR1tFl-4s$Zyr^T%~gC>H{6C@=C>oz**$tT_kyuTz_8J z?`J*_P7BiHy=0waLW;A&HW3~lN+U)JLbzh!2q5)t(6N*hvS35?DExfV+K!2eZjlI?o_fi9op~|Xx7Pgq4-U!Xv{kwSzlQ(*o8(Y`tpF^PIwFaYe`u|iP93DPaR8*8N zg?B~+qm#>gaJbXpintk=-uR{#HzV7Rd4qtb%RQa)aP( zKHU8XQg;VRv+gCTCJQ`v@?9Tp0)N+=)06cb%#`e%52d(l_o;bpX%^JBH0;&hGlFeb z^-X)$&^slHG%d|~E%A}{nk7^IY4&x-nyWau9O)_Ch!L4$% z$1=Y$K5?=2vImZcbC_c^--dv46ht_x@p=`1*h|ac+y-2Z;=ANzj%j! z4Ez3zAM#sWCsO^J(GA0T^rms|_}G2dy`un2su+?B2z=W1oifmc9umfZ1pw?~XNKEmS2UekSz>G=Vt z`k8JZ=lfXwt3F*Ir4_wfA|7OWVCrxZ8JQekH~rwb;93 zdc0+I@FQxz8Q67>r~)TU+7UOX6l+hv0E+epM9VdD@jHZ)osuyT)owMk%_ZS{c3=|* zLI8gL`ZWVa?3RP+Gz3GpE*_`-2U<+u>!#_sXJtSUvFz{flRFuxA5&Sz@_4xDI~J#h zPi-4RLes6=DpL~=E)6W%o@xu5KIJzsAf=|!RdN$K^gI8-m>N|$W#S@>;BIeE*jQI; z1`|XmsTCCuuLFTl&btI5eMU}P0_NfZsQ^FMUV;7`fI%-|6tm5CHq8O621e;At&6fKA(~z4E9)8 zS2Q#f*rEqF=R&f%H+{UXhOg8vE~3tiJr;K&{vjylO|W}#q_3_TYj=YlVl2v@?9_Oe z{vGs93I!5uNa5+XbWx^5HPc4=3X{A~eR!@-n^Mpev1d)3IdBL$Z^0E&$B!zyg2l7< zBUhbjoJeP&E3q20<7O^WKp{TZvNc~_tWts(W9L1ZZ_3^ShL+$J>t?gIU@(J`;g8*Y z)`DHCs6!{HWwAvBx>%tF#7M`CFMkSGCrL%IRWmADehSeNsoa*@YlAiGJ^72C@z_@chUfIXDfRs_;~H zoj+Ubt@AzbGxvpbVop~oRZDx`HK_cC+g>wW%MEINyLD?KJzLY#>m$Vi4CCKS?(*}= zQW7?M<@K8A%1-m}n<)BC2cV!Mtm+VObosN@_^7S@;bsQ64*S*GOAo)Dm^1={Ig`J1 zbac8Wt&96uTJ{PT3sUFz;j}~Vc9m8jg9oaQs?slSC($dFF^!Usk6GSg63>Nmish4*)=zpQQH9ff`E`P|FuIZ&t-Adihc0AE`cJV?_S4jj{DlGYHHHN1htk%g7O6X z9R1wd`m@BHJ1mgsw{LOw!4N<2Ion=Kb=fHtc!4&s<-IjSpa7w|omS%gPar)BybXu+ zC3Y)O5H2C5qG!}P)*eKeM|)uY3o8=Ylbe;kH90wHa7bUytWC83=&F41zqEvHiRt}{ zZ4Doa$w{BRg>Svy>9|oCcqrj1S%fq`&D`T*lUIIbi`GzrM`i)$@b4xN_HB3f@X7J1 zq;Gwxr98K}`QIaBd+dAwJQOGOEU!lFtGRAL4mP}Vd z`ie?~F=e`$=>VlPbhcriz{r9#;^!t`qP1Yki15Xe;FII|9OlNHp3`ApgNrM3#lEnq z`h?6&F`JddM;_8UF@?5v^ClBz6&3aW+@-1QyvLC-A`smcv!%){!$=UEox)UhM&1n6 z+6+7<1&cT@@X;$;h5`&O{>bhyZ~1y`W_ST7vjWtH!1JTKd`mzpW#~LU+5@I0HqIWL zj7<+iKU1Jmx;&+-4thB%#IOkAa?U%0{-UI#oG=8@WZ)IR;DKNqSW=VkWeb|9`SqWq zlk-0N_};8@CI(HcnCd@Q{E>yeU6raNx`4?}C@<&JuGiMl`A}+`UsW{>SV@blv^0cS z|9jQsK_NSN_Rp^f`b+|m6H^YAWo5N_fxh{D$)KEgPGz9|b?LbX8vqh^G&U!Bkw6y| zlj|JwAzYm@Jwf>j+Vzk?^W^LdvDB8A$7-ai8vfeLYxdR7f}}<^U?M<#kz2H)k`k3W zXLH(|al6@0;X@-B0uk1U<5unwL>?M`N;Zi4UK=}yH_bFH7=z7;yeX)J_`3cXpgQ@B;orI~A;(u>s-RYC1AFO$z=?iv#gXmp;)gU96)if{1@?AT^~>&n&i z90vuI=044V>RFzUJ{^1lLq1J2K?jfy|52!jncT|t+BaI4{kGp8VX1~%LDHZa&{vYV zF!8*LaSil@XVZKy#fr=6`B*LF6|_lmxL7>qR6P8ZDk0@^y1!>9*;qGSyrGP?Hb^`+U~b-kW`n|rnE}K9>Wb@fB8gXf*V^)b^xwsodf5T(Dn>Ddi!(q z%545DM*dqJ26^{KWqI)|M5x*%tj7@>`MvDtNTDjT3|7p$@)bjLpsF#{@xo7jMD?C#?KRvyF+C}Ph-;daL+vP^w1A<&E+PjV4>Sgw}i0?H+UGm*b#)gzNv{;ey z5*?~9+gPsre)NaDklqWW%ISG4_-4cTOy2b%Y|2%dMdrfiYCn7ZOL9un zFAdALl;bhvk+y+$Q!i8Go+Q!pMz|9T)evM9o8&cG@Gx;I2d#~Oo`~1O+yI|(TLU?S zIt{>lA8fHYA91l0GyK4W|*5dLkxmYoH?4v=!6yenR^7PlfC6x2dS!_w@Jk0+u1qQBD@2 zudkof($XSaCQ@nK%vvgM%0IjYj3gH2S5;`MH9pDKD@mJ7 zNtYMHw;usYTxf>L*5a@E)iUeD2$XSKzryj`*(c^?-S2{`ZMAKq>K)SDV|_aIt}La^ zCM8y`YF<`HLq2p8#lk6wRI881=IRYD`%c_D{=|+>AI#e2y<(F_1`XupeNKo$sc&pV zmx+Xh$%kPZcz){aaeik>hU$AwgO=@9@%am|ucj{hGax_fK>ij!`?%wo!K3Z+uK?XC zqd>OCH^=m&>!|vv{o>QoAYLwWgB?-8huuHliw@@jRjKn9O$S-y#{+l2#+5_kt0F&y zbjQEp>%nt(y!Sxq=dDdr^Ydapx_9Wp5F|Pf{(}NC$V3a9c^JF8DCtmB+B~^QzH<0KzPjs0?NS* zpTR*jc0s{mxbno*l+lf@9i-^+mWoi*&}8bc z%aY34HD8|DGcF(CgHvx&F#?ozX=gNO(;uoWK3EFk?ydhWFjk(Jr3D-;1$aXHB*Km zgqWP$pjzFQ0|Ueoq>ugBq8~a8N`lYXteO~8B9`*#=Y?=ug1oL^+tMig_sjaKSm#^2 zn_s?CIMH+ppem<1*0@r6Y8bhoPXTM4`C~Ewq2j==-f@ygk=tExTzTc$7vUij#|!^{Ue*$Q2%>VIRZ&qv z@|kaMY}_FwCQjSAZBi>8*%G;Z((wU^?6}bJXfzt6B!K9(o0Np&AE-EN=Fs+bsjmR+ zd4i|)F&=A~$ikcBr?F0~EO2*j!~#SaLI7BThI>{b)ag;;QIt=~g-MMq?!|!PYe=Va z{PU^yFfdx>CJf3FM83-%rz`iI4ZFC!RCs;kVts99hU#i2TX(;T82V57CP@Xnh>zzp zW4sQ$qAI84r#j}6P}jP4V&MHZt#W@er)m%;birFg%tPENnY zBh@i+s{YSP3el09lcIsL*4(583)yrO+-u>W1Oz;YL4F7m^o4pt^7zT4_LWh3k-afh zz4t@r0N_o;W~vAF_OjyOZHS}Wn_I!Wlm{w9ny>_|b*V>Mvf4~WF!Co_Ft6gFGIZLA zl*kw-W2pb``n`eQfwyI!cU!o+TvIl``PO#jRbL3bW4OfX{k_C?v zcUwWSMzZMvZGxC%n_TLQXBd!{0@mITpsm42#EbQk#AsRDyQjl{_iD6NUcLHIJO`rK z^=@=AtBnl};_*m`vT>7Bm(S_H=lfu^pG4*C^tTx7tcQ>e!1WVP*`1u?=>Q|ip+?8o z7ffJt*EFbqqH(whr67t7OwcvH36%KBMAl}xi;d|5YU_tfT_7dqxw&~)z%b;ZIrG2P zk`G{Zp|!L7KW=5!AGI9$t~7h<&(&PM!#WN9W%wR`sn`Bt0FJCl8c%L!KSUsh z0IR?2@7^lotq3-zQ~c*R*jna>wE8_g`1#~Eh<8;X+7GPm!qKuuwf_BGdpIbIFYLcHr$*c_M4Wr+1br?dKW&*^FyWUl~Ru`u6%tYBz3Ocihulk)3V=E;ydJWJYU$> zHrIFanpPAk8@IRA+z-XFVW^WfR0`>Swc()#{}`{Qyngo&H&@3~BvVf+2UoLs)QvXk zM!E8*^{X<1?kzj+!s~8Ci8_tKTV+7O$cA}uG;Lf_$b{w#zYu?N`7VG^9E1j+hKZX# zDLm|`mQn{xcxP2Es{Fu%9R$efIWmueA@cA;rlj0lmi?bU3(#?fq;b22rNnK)3kxPV z4BK?VG2N^dC3)@9!2(ZaMsB#)?@=W$k61v2h;~Uy;F!w*7pu6x&zs@D`2S^GqN3b@ zCuH`Ckx>O07fh|EzqjsrL%?C%$#uUaWfC1#*6!-^_GNDn`Ed3AyGJmoTdJ=?ERra8 zISygP*?eE2PWwk&cjm9H(ZkA|o`c5rU$M>8N52GhHO!c)LPB))eI#zs(ebM^>ezr!8%72qg-aXG>eJ&ue@c$#}D zBQ8#x#>OMMpi#`cSa+LX(19uxuQ(J1gW0laG5OzyBat9?2a5jdj9yW$mLDCFgR1^K zm_tmm7YoTG!g=eWn}ut^S~3r>AMg;w$*0LXI8+qR z{odITjgE{=wX(AM1~{`9@{akAmi*{$Ivr$TVIkk0J9nZYZ_C3=9(3ne)JEN0fy3c9 zCCmf2cr|{@n-T^jWDvl^5$hG1kQ+fG1Gs9BfEnOVPfyUV?fF)s|CKR+2x}C!HF#7n zFYN^c(!&KCdhYmCe?9m#CRXF6XGBr0WyGsS?l95dhQpoS$XA8OzPV|=$;Pzz*|_{{ zG+KU3(dJo!i?ExijK7PpNDkqI!{-EQi70F&ka|Jk|67bdK)w4x79CKAu7(!8tt%c~ zyyydb`6kF`&4(%D)e+CDG z+HT6)X+c)~4WXXFy!yriFM?@5(BCE+2nSAk^_3`br4_@t7$9h|kVFMU-vdq6 zTT6udw9FMi=O4MYHum$Yp!fZv*FO8{thb7|C7&W!bJ7TZ#B?T$*bMZQAX-hxWn{|Q zr@-LWhbP`l;q}e;;pHnGpa^Vs{M)c%lh(7`{n(3_OIOd4K3u@fz!96qRja@^2E^Hc z^?>8wtOpE4(_8_SIDHa|0PjC5;!0BB%3Q%#2pU5JioXr#<7Gl`I7l_W-q?&d)>5GX z71e~cKR1;9 za-|uSdnW(Bv2p6IxVUXrYU&+9;44>&hqPh6>jzdshyK~top!sM3}c69uN}0|LGMJE zQbcQ)`)*jis*&A*%-P_oxLk7-3NyM_0>ht!d#r%K2Uu|xh@8tk+XQ3dsD1jDcCc^O zEL4)~P_=kv`F2g>1If#c-M>*l4 zckh7DCz082{AUDWwd`_hj9IHp`0DHr<2RfCP&`ZbWK_aV)R=Px3v`*^!_3MvzMkCc z+J2;>m+&Lp?BZi|??3v47*O67*2FQDZL|JhoR-95=c|+ckU$drY&`Ze3?Q_Nj{}io zQrgY2#(r7gc?reFPB}-*Ly*w%Y?jc-E(An1rW-nfT|$puN2w^;jw@K<^luE5G5RAy zcoyG})FJE?6@zuOw9Nj$jZ;}kT~8}4EKCieOiM~jKjiS_*VRqjGP&=1CP5b#gTupU)O&{CzcTK7RSIu{ucd+%JD- z4ga}?MYn{gs8ze`M%-y%B;5;S8uJXcA7t0eXWIY`>(_tt<|EZQyJloYO3?jM$8<97 zHT%;497{p`66L-m?VGf$re_SNIM`eG68>RcdgfF#G(P}{sMuU5CzSHrJ;uIysDhFS z{hSbn3T5Y~TN{M`W~Khpq*>mQntp!f{gjLO^AG@ zlYu)tlN{_#74(~7)2-Q{Tg;iuVde>a#|(UThHoQpr{DQ#f~++&>ACnVkoufoEFhX6 z9LUK6LHL_xV<}yIh5XI+N1A^`ZI8E%^x5u%cEj2|hp_}ZcAA~&`J%Q0WFyT-vZBtP(hfETEo23=u?S8S(On$sV$~(wp^Al!`)BG6opxI5|0a|5ud5m|;%xPoHLj z{Bx5FVr$qgHZwtB7jw={(u*nxWmEVV{l2HWL~IFQeB}eSCc6?~%LzS~D5R!4@Z7 ziXX>TiI9Br%Z@;1ZH?^D@6TDmN@WgwVffjMy|BCfh=To^rs4-l=H%6q>^Pg88VPz@ z5k^g9vK8gbeO*wU`FR#WW=u%ruCk+mTi`i~4K+19ia8ej>9s>&Uu`)b?gRVKs9*<8 zDQ+9%9~a9ZF~3(>H)8^)yz$N7Jy0LDx^t9}BW@KsKSeL$5#u|^8jDNY>il=QM)ySC z&w3`-kvk@+T}5>(FD1Q)C&X!uqvne!1K+b#Ga6kI0dAu%UY8<+pSaYgHPf0gJxi=& zBZ+eN0zOH8gwj*k);(p%&gm(g&?N#xf?Vm7`kAn;L|?w|=#a*u1F^QWT>dfg;2W~i z(1>Cc6-~aB=H)HBckf<&7e&So>~4zRVzDVHpXDfJm%YUpey}?EU;bQQcTY-4a5XS6 z;Aya*$+Nb%e^x{1ee_p*X*#l>r6rx2>khT0C}_xugHgc4X#T#Y^B|P=Jd`Ia7L7!N zPDJyhQN}!OiC54)#a8r>%)CeYPJ&E={w@f~y>Ts9wBT-*mXv6-&OM-B?F9b*s`pBI@sI(C)mQcf+*3(N{oCi;dB$|g*}eB)TJ8$p z4L}f5Jdrv`>Sc}!8ye_xGQShAI*G`(Jt$Jc)2-d*m!YS-45 z!z>i@c+%2Gy)2lQkcvtfIfiah!Do0y=FwAw-(SFAYo$u}gV75gp|@(*QpEWa4;!T* zA4Gk@zQ!|}tV;4=JwoF-Aoi|eCg@BHy~0SQAHEExFiD?@MT-( zqCGEq?d|Q&D<>;E!Yv!RizQ2rj|Qc<8#QnahlPi0pIi?CF$M=V`%|7Z6l~<D!4p(hTx0X>K<5;hgr#E zqnO|SEUoqDkw2zPQOrxX>H$ZJ&D19hn}^L2mBRpN~Oliq2b$MLgH z@-DSUQRjOJQ`7E!CgXprUmb&)Wo2o3^qHvJ&YBy=4I|0PA|64t4v@hpm3WQC1*O1m z#igZBe*3dU{t4WI)Tu*l#E3VK`95?yuX(RT)Txhm8B|zH({5LK#Vh;Cyn0vWt}jOg zgb;#duIB}F&irG|^Zu2;jt%9_3m~D8m1fBGnh)HY$X3Q>>x+q0VA+ESTByOga3y*6 z4nY?>0)4o?ah6ZR+zA=_jSZXBnmX!TTcv)m;0r_|!}vaQ>BjtewtK04*~vj>LcHBFs+l9 z2`T1eEs39STRTLZ+|O@{f{`&eI=Xj#ZEbDm?ORSH=)y}|@tFO;mst-bDJiMP*Sz@Q z104c|kxl)|Lra9G(O~sWi7e^lr%^o3@dMPt-Kp1mwU>~OFUTQ6{cc?9Y5M2kQ-*mH zrQw54qhBsh?1#947rl@*3|A%*pvce9-aSI|_u_Jbdf$E|HXm!m`hZ46ZS}EUqVE}F z0lS}x&$(l{`fWsyUBC5Q7VsOW?c6~D`_o_67%#5!mw%M)QusrFGOt<0Viy@(#*Nu`aeQ4fwEu0a850!cWCd3$tlQs#uT0ZKi}r#yuWYF^6vWz{_E7wc;N)9(|91 zfF2F4N*zoVOBhDZ3KIG2a6{6ccB@JS6X4$xHiRX&k2Wrf`IsXO5Ud1UvnOO=WKwc6%^DoDLjfcU z7^8HB=4w?kN76o-To?LuU~1 zS^0?Y5QGXB3bPqLv3zpxQ%Y-OVj@flv83=sla8iR?VZ8jB!im$6;t2NZ@pb1E=r=? zbX1Y(t02omRgO|iCTxdogV)2xTaAVPD>3%XkyW30%Med&t@?OJN{D8Ufty&Q9#!ppMr8;M{@mp&fe=<~ z=Fy^c&3bjcWvflH(rQknB~8|G=B5j1cZ>Gw^8UatDSj))l)DR*%+Nsg1Wxpu3Y}@< zGpK3=hKjKQTkG=ZdwhJn2q$N-vdhxa5=zu%wxp=6Y^S8WeAfy1y6;c`0T@xEqXtKY zC@ib11n_l^gjqo!o-h_#Njk*`Df#-=gW?~MCy9G((M!^*)@OmsRDoQY-#tAWF)6Lk z=Y>RAZaHHcBAQQX@1A}Zo%|$kW6^h#ctjGZBvJmPaS`#%X%;_G{S-$7$2X{sV;?~} zRDAjNO^TYH-ivY995|?&vbLjgeEYvbp-kCO`Tp1`h}_My2`3+U{xt_dvpRRrcytkg zNx*hEtON&j`12pw%wIFPkfhJs5#GIgY56>etdIEHwq62@I%-6wS}P*M&&eyFfSTa)#i(IJ1B=GUS7ksh^#neX({4%m>rZtF2Cnhk5+%FDCKfRc^2A zVzrseaAjhOF!Xm>diqos<+V|#Enp|i+L!xuL{=bN4n`GuZ`#JxQxKic5Fe%|N1vnj znep=mk5)N3SfE%L^|+$!uKRf&idMSUJOBUc23n0GoerU5i#cV9>T}r{^v)+981lY%JcVbf#5|m^`4($ zb8YL>eo!@L8Nc+7mpEY*7BN(6buXBz=BoG-ZQ_96-Y=PM9Qc?c>Yl;-?*kfSDJM>6 zPLqNNs`cQX~8}Ed^gFEHn@NA|oXei-k&AIXL(LVQH&qAiA3_IKyiOJEnl9 zP~@aU$umOc$qLhz^Y=e$51E^5=VP%87q{+8pA4zRKTsD^YjxvtSCW$hMPJQ9rdm8j zR8M548J?@wG;gWVrBknKP*Lu%P3z2sOSF1&kdx-i{apHF&-Wr9y9sf9T2Bk=?_-aX zgZ(C?ujlaFsB>G%WiMI*Lul& zMDSQwcj!gkDp%rJ+)T6ey{koQu}6*+Xmt$20Ld1DOvSHgHGnvpSzEsIBu*z>4StDc zs6n_`Df?Vs99g|i_BvUooBz_=)t1)8Z`I52vjOU939LkrSFS@DOI|_8e6El0OY4}# z*PmEdo7bKFSbH0dR-jiT)5OUr;}P0uyZSz}Riz)ol9H%sGceBZmoHzgiND%t#t=Y9vK5G+w^${ouPJ?S=slc#PV4$~ z!y2dCLOYE1`!69(k%u1s!9WcZW+#anCY7k#|KE|M`#3q84&&eP(q zf1?X86@Ur$_QS~XL zL#mmn1U0ZmLYN$|T={mNDfZO^3}E>9=VDwE6t8XgrG^ZhWSM}CNAmr(X<@?;VzZu} z?-Cb05uPOp&^TDvOA@?kGpE8WS=;Yw-E#L7zey7Cz|*}X22{Sh0}~*%w7qpfz^(Zd zc5_rElhOOOML!)C$RF9$_wPa0Jvy?OzTZ@Dx3@Vu`eT(xg&fan#K$u-iGB5LIFBOz zA3KpnDlrc1YeCg3Dz#txdlb`wBu&iv*dbt~$5AlVlipPIX!=Ycd@52h4qz%0`SGJ5 zUo4maBNRjLp!M+iSOEPdM!_|>g}T@l7P`pc;8G6Pn3~&EX~EEh6T%6JbkPwtI`+ZT zU~ST;+$t(2$9H#jc7Xqe+GP-xQA#K1K5gm#i~I3!Z3;gGQSr4_hvYtihrmW_J3tLu=_>|NZ-MPvY;S5TfhMZq?LW8ekTTC)7ELk5T*6?)n#E#1nB@i zD4y*iS^bS9+t&+%@M&4QICO$MFM+_-NH=IX-7+f6bO;OjZz!l(>O_Ua+o|- zyqR+o&-C_36%&#SiN4T3sPQ2T{#3gh(M(NGv9Px0#VsY(APJm4C7D@#GWO)wjQoF{ zr>Li=C&ilJ|5c7@=|<#qh3Vje=#Vt}W^sbNkGJxHs8z}v zevwJ31+<+k?-%%cno+VLJa7T|p=XcY{&=R_`l6qaHRUI#ZZH}XW922~K6+rJ=2ZDD z#Xw4**J;}X`n5VtTvhc3@LmMr6-7i?Rv+A1UoU}2D9iF6Sh>Ypi>V=g>$Xv51}Pct z)^tuI^jDpvJlS?$_sXX+q3b_I$A-QN3@i#<U}RTIa36MTx6a7ylV0F?1CoB+|oq@k4ajy|~fY@XprcY@ z&ZVi;#ZWCB&X$#Dd-HAlkD5`MZYsp6g4K++E@yf#Zj8Dmt&yq|q_Ev&FF`EWVpae; z>lZ}xAI!QaKqtd{L`vYfKKt4bo@u}HnZ56oJf;sV{`q~kXPFKd#NrE*%oCdpnCAHx ze(fjwK0PqmaJ4VSMWAs|r;%?%1mcB${HZ~4*Ph^=y4mCEmbyQS3wa+PLRPe>-J^g1 z9s@B`yvwg15Fo`>VKM!3VlXTMC@&6NP+(}%-*`tpFaj-4wF*j+J0=MX3{)3p%8H5M zkdh%PHmNJJ2Z{-J3WQ}}!l>B=9fBgTW_t%D1e%WLlo%e}(a}*m;DDPBu=(Kea;C28 z-_JxYu+D#-=qss0JeWDpHT!mAcmCP1&PZp~U-d!x_Jao%ZnZT0_sGM% zpZ^jXyG<7Gtrufq7B%l#e*2^?km&;H7#7Is(e^w2GC$1~Y=B^~JKgH@$>w8xaVuH$ zBMVXQpG#cQZ(>aMAv{^1a9zDaHz|dXth>7}17t-^{#Gss)Iv_4i<{=b;;5pQ+g%P!bGVuh`M2D)3AaxP(-qHgk4`_E0p)D( zG+c9xu5@?1!~ksCISq>>z!VJqedn;x)XD4nIxrVx)T(RX0npH<46LkWTI%ZS{3w(z zAieM9V>iUDx=8BeTwO!puDJFeg37I@*r4`WEW*_sFgVujNpUW}co=BR%om|+WuLO# z`yGAvS0nI`NBp+eT^@M&^R^=<{g3q?S)7%y`6I3$5I&&!-36}U6+RjBGzYv=J-`&k zJMh7j?msr>5A0uTJ7nlGG!(3H@Xqt)!TjB?aJE#i#xwtYLadRITuKfLqQ17WhLK-tA$ii@-vyci{27XbYS4Ko zb1yas{4|ZFXE6K{s$Nt!IP?SG3Y$6Zr53FQnZuFpnc9+!#LE(X5ey`}eDicKL>tmq ztrfC+=aGKkW2?9-=9Nj?w!w#?d!Kz7`1d}AhGNL}Jncy?n5u|UJ6VI4VX9Wje&X4FmXWcU<~E8VCYM@*j{%Z-9R~Kw z{_kI|PWfL>y~^1X+TXV`&Z=ki@*0Lu|=iHb8HZ~lTZEUy*kmM{9?VNYTbrndRan|OL+vY*-YS$5fuy^zjpk9EEbo6j1 z!LaJQ)kndji#I}}9I{(MO53YD!rw3d?&CHoVrewQ;#r)-Y+tT75xy|aN9p5}V8bG2 zYY~Tny2E?2cOEoR&R*f%Yqq}hW&~t5p>e;cKfJ_I=MsLw_9qy+%l-8m7rpoCmXz(f z)9l4$h~1A^!q?&KQXiOGlX?e=*``;Gm$%_m7JWy0-A9QSZ`axr25={B#br?5<6ooi z6a$zS0$K)T1$_DNg#k{cueh$t^!1&Bx}82$cu<9stLwhCz!NTf9eM@^On7+L`pL=3 z4lqQ1*f1%lE^k}Qja1^)T?oE4xfel}dYYIB)H;#Ic$pQ@-)b4#NG&u^1llpR>Xw+i za0D@@FD@d<$Vi`-BD#kfCzzD!n#X@T)@BGy!0lrNi&^lJnF$5(oVvmmMCQ}9lO_8D z53X0IuWon(dLkmV*Ph`GL3k(%itv~F`%cW$S;=k0UQjFhPUj)da3#(h?S`;)UvTue zZmf;?D9$L%nZ#>AB|Q76Ps={hPEOB37>s<0KYSuO6g@+9ty0}K_vN|KQWF`i&yyAx zRvMu}+q)M_>4Vc;@VMqC*#}E4f&K@kh=Q^)8UN{B5@h zfgszTrF$@&C1rAmHi9*5l9gLv=h{s?h&+7j|W`P7*?uL%uB6sc>4vqUkU%I-RjB@AyY{8<;xO|u>^aD(9Evf8Ob)&xEj1~1v#Q6LB*5FFs_K#^5!F#8VicWn`xocEj zUpV$m2x7DaU#+*z55;Qj6+>v#Q+v*vVkYGg&x+;@gd=(65B z!C;zyf&;i3hMayqcqs%Rh^odiJ^#7qeOD~m7YoKsnY|jkPS%^8)v>z)2ZT+ebk|Cw zO|G-ig0TVtX%t44$T70sJ?M+oyl8XzkvwE(whEmLdl{%4bH^Q2G?xD?;Gd$nhp8uLJ%9f5)45g=|;&F}UgPU>%GAW|Iige>3k=Y}JN zK7y^1=|rX>w|>aygVz;MQc=JFS5RuTp|75x)Zso@IUf5z%EaP^GNHc(ev+72AuXI} z+-VaiF5q#{>5NXy0t3i~Q!dy&ehpru%8m$XrUOw)e)-EG{ew|zc+%3}grYr2h(Li1 zD#pIFr*k4eTYw>_B=P%RVMK?5Ji0$?R40&y7XwS-?OnYW3xaW!!`CmeaQ0Q)zY8YAHFoe1*&=^h6?khVwxM&e#yortIFga_{>#)0&u^8x99@ z-!9EiR6t3bGj06tTcl(ihBpq#um<>uIJ)<;9LGRW9OyT=1+k&-kmxzNaEk8-kP$nc z?TeMQg#uD2R2R7Icl+y?FA}{yJ+}@I4{vsP^??5We2pYKp*ZpEA?}z%R<@~k+-Pz* zYZjxoYTFkUYbxGwI-p;(vElfKcqmZ7c<^K3-(^pe4wr|9Pha2nZMFESb6sS1-yXjJ z6VB>S#hQK+F?nHhpb{Q+#mvg;eZdfrE4kZ9Ap>Mg7^IJFQ52A3xo5M^XecD|hZXm$ zZT991=bEwMtdBjDYS(G2NzwH~V0o;G%@$(ADd=4LYm;5BFGFX1lfw4pm1Xo3rfsjG zg}C~iP-FM&pr!*-t4T5UCyNtL{A9};t_1W&`IJcOfKy9y1}6l<1b zd-ym+Jizpu#>?5hzcYJRf7V?G{i&;}vm_yBzfGv^s`Eng4%^~o2+JGySwoDlmp@K6 zOeI*juTDH!v;vm3O9%1sDYJ>r{~Vs?yUKEGDTEpT^tDX!vvXlJzM}Ao8YkD|L`?06 zZ2__{-EWfew!bbBZ71F3GNij-%b{SV8kL z@|GZZDl8HJe?OPL_a*3&Y1q?-pk%Yr4{gM(t@E#1h=7_~zianpJoZN8eDyk%pN(yt zKUu!CIG&}uyTme_P?P`n{E1p66F{9gaf)JtutHB2howRDK`SLvYKboRQwIe3g4cp# zEc1j|dV2mubhffBf3!4I^X<_UktX=Q2;3Uu!r~q$XAipOWXHfe^6(G))Il7Pz>I#q z%FPioL$9K%z*o$52mrD_iUu*+9V{;tsLiB^;@T9_B9ngzP=mG9;%C`6b#KrdCXNrP z0nmOYw>oc&(=kilu_ZO#c|*eIWLwdRgpm3_$`}qd*LqO%-pO`{aLqc%8M5Y(&rmN6 ztZ0KkO`B7#hhm3P{TIKd@p2kKE171ghU`+n!F`cr;%?X{{2Y;C)!jH9G=#&mC88##HB zXkY>j7~9CiW=jn6JMD?AWKS6JiJc{6w&VRtT8Q|UNUWmU8@46JHbZn8SEd@Tj#T@M zg9iOv3|dw5`f-I^HO<=R4x@vXPMd`zY^?;XhpL7oU;+3SBbOCOoJ^(A=^I{$m(K?> z%0~uMj%6+fM;05-P2dYiK5<2nD0g#S+gurW97M^*L0B$IlXTqp1!tb8J|%;aTm z*5wD2EMA{~%I6!JUqRbGxe4A2^Z0|3P6|eE>$;3VIb!Lbm8@<>&!uOt%Q(nIUNu8O z+-j@VTdmfMm+nFx-HIu!&w6#q#ocHIL$Km6<* z=y+5=KhfNQs8L$kkihssr{!LS(kr46zPGZ}{^eMC*c~A_qfxLN~(=u;o@! z9ag1%>I!5@aQ9?-d|d_9*QHB1qag(OYu{lA9M`e7^HmimBHxU4CakZGyoyjf_C`FK z%LmsHFiW7-DjmlJLXADT7U*gXD!J}tvn-tw1B!W$N=G6+-< zDjzu?3{EvVxl06X81&z&HEg+uS}i$u*Kxs-IMa7=n32=c?Oz@jUcYz0GTmwTPV~oX z^=l#_(q~bO9;N3V^}sRzE0Kg>{&2X}q}7X6WYdx}8ylOgk`h+r&YjY)MMY|QhK7aq z&dvswN+c>(md{9Jv{5m$^qO-az{a;S8vX5kIvHRAfG4ICjg%G&roSZ#hWkyoZF^S! z#2U`|S(H{>4qtrm%i46QQU6>ayB=zIx~`+`qxa1AgYGA+MPL2)|WENJT-MW$dw&vHQwp>B={F z+K(z7IJf{>8332VO|n#p9SzgME(^&2hSN zK8LRE*ruw}w4Bzo$fK;&gSL=g_@R~4`F~FpRS$e7+x`>;3{V0_PpZ)J4?6@Rv;_$P z{5>vN8&WX;(JGXuufKl~I6Lp*GTUGrITnqcQwAuxd)y!D_Mb$Nz0#AB0m_>|L(5$# zXg&A25Z@5(bJe@8=C=Rykk#9f6_xP~Py{ZcF8}*}z#_fTYj%Ebongsg94RapdcdAmd=i zSdI;BDMTc@5Pdy(=TGN!PaY-@CZf<(+O@$06KP%CaeQtGzUml*s^Pu`zB_6Lcp1_p zxQerVt$K_Qs^!JYI#4#1hukYPt-h+Vuxly64tZt(BUsmSfz)@hmJ15?5E%OPNL~Cy zjT>-p5RpW#3!1^(W2+;u%m#JdcIwer10hoWj6p+2M5u zw~6IN<18J!>j&2P*yk4z32&SSQ01L*K$X9klu=*hq7L-_URYQt!q2ajk(oJZY-Ch) zGY#Lnf1h_RQXY&PiUb3~f^#P$3Zo;FnUSIXD$(^Hd078coS7>jZOlBJHiuF!LhG}> zqmA|IVAQsb?0FI`I~<-SJ1}>oLG~-%dvkt&zrE_^Z((Jf% zGk0^i5pJc+p3;0XI1y2k=hk#wYSzWW5`T?U*l=K1-e(@`#u)|@0a z!wDVE$#S^RRm$O%V2_&WH5vJiM^uqYkK*la7fldFPCS9%$^bpwX|!~*mT>&8Bp zA?r0YG*XDjnb}=~Z>&2`P?uL^WMow@gs7AM{UsVr#6!|9g?@#?&}z6Dgt(fuX5B++ zvDMz|Eg0Q($$b`cK7q!Aq=0jV$HnJ^Pl7vKQaW4Ml=b)B1uF@AeSB;%eK?9HQmz=x^wQ>q0U}EEMDC0vJ({5%{uDPxvn@auUnD$wJq;S=KR#=I>wz?BmaM+ zNw}v6NqXTgo^QwRuIyEv92=73eTInLAplbh7kG$tuaT`!#M=c__cQR&(`BLz~E- z)DJF8MI#U!x|;Ph=Yr3IF-ve2f8fMoHUU8)?u2uD`%mSLo3ZJim6>PTGpk=%{gz;j zcdnYsU$+!dSIT_pnc|R9y{OURb$aA(F+^yJ^I6s3+4h`MBSh{rx`5`$S=i4u4To94 z1hL#YoKgT2{c2@-bH%zy-wHfOZ zDNLeWRBpPc!-vg}mG>pHrb6r2_RbI`Z zUMFUAG6T7ko)E})LHg;B z1!Nuz0Z8uuw6-wysX((AQH*zU4N;80 zE}*WpXfM=`$p*2dWmGJaK9e!)qMJJdGcOb?6$*;(FGRltwBA1-Csfk*hqr9_zOCfc zw-{4F~VyW{X)Ru_0>|GXB_1?5NwM;(7vyY=~-hx#gOTYm6xSy@>RVCDr3+SYbY zpFXv-wf*q6vQqEY>};91-$}&+;2h(xvjv=EC-0WN(bah8c8uFvLGxOUA zNm9w|ue$Pl;_{9sy2}qIM62xWn#%B7>Ej#mpd7lt(mn^%XS*KWA1hXlKHve`Y?-H* zhIiifoZm6^{neQM!>*B!O@Gho9o%@V_c<@6d8MwR_)cZGoBlp;+93}iL{$CKn%bJ z#rpVsPp&N(>SzqY#F~qL=2YAUe(b1jD{kl7f^E3NwCH)*f+BvJp-3pkK-_TWsl2RS zGfDVEc{OGFF1LajO|J*y_A_ninVGo-zEV``k{%%h$cMR7-Ey!#O6T#3;sg=a`Scoq zCs8(|_dUy0sJPShiakaP9VKKSF`ZIv=c(=bDdo zab_BSznh94n1Gx4OaegxH&#h4H8tIprKO^WyfmaK<5iAh=^*5ga_iijMN%|2Ig8@f z=uRPLBou{7q)2lAl~w;IYRjVktak9o=z>;Yvx=9^zAEGIY~jU0A@`4>uYy=qjfYF) z-PdyY?Q$&8#%u3H#*?656#iAJcuF-nnUq{AqKyv2!kwT+;onhN$Z~3xaOio>&KZ-{ zgb4|1(g$rM2h%aGoBXS_O@KJOgDyzF=((ky4{oKoJUpLz`^4cqzOffDP2am$?64kO z@`W}+LjX^wNob|ve##J7LLLGJXA1}j7%aTzp81{#NGdsxSpYb}A!?LC&w%+-90hbz z2y*ZGxN$n!`{ZaN^fH*raOPEV@umBPBRa6zTewGYoP10js^Pj26yXxG{b#l-K%mYm zJJY89y>Z_0GjSi&z5F%;mj*DMg~$5D1I=tjU4^maN(J%YUZbu>@W?Mdew8hhTG$e) zm<*2@X*!&ir)WrpabrBzTt+6zMvQ8u-=>mD&%;B)My#TyyTch8?S#HaQUj~mw_-B| zsJ!lkE> za~i16sC>n=1bymMPrAWms7UD-ijXJd^Cl*re412?uO+)$HIC6n>p4Vx1U*)^YobOh z-{}s9Z*f7ij1W7)e=3wvyM)|uS4R!)P|@0K^R|VP*aYHSHVFYCPnf5#@5@cJyE`C@ zB3Salo!qYZ?Kec<>)6tqB)Q0wOTb6J$V|rc<8kvnRCp~vz*rFOmOO`$0Fv=%3{@Lt zy)b(KuDQfQAfG+wReNhi)fb5r#b;zPv@ni;zD%Q*#$1Sd}Oks zQLvGIHcx`(StRnZj2c8qq2;IaIi9b)E>oWFZ_+3SA(G$xnM1GJk!Hf5W9q>M_U=PEhb=R->G`Yn!atrC-H{ zzIJxI-La|5Ea((XyJf`u?6L?u`tP%TpkZBM>+S3QirapYe4ONk1fh+^F5lBlex@nQ z**-)3>F88Yd_=|6=4tz^sKX69gG4Kb zxREWeGh%0KobeV|I{Gy_+9?;g*cE>l7&z4Tyco6f+kd@NMb@k3e?Th_^WOFXP&6q5 z!dYt>K6>oH-a1a+FZ0V^{>0p!OzpP=b)rdu0V3_ofC7Lj=^urU>^Ft_U;_xD{_BB8 z=q@k^Q5Es_u6`xCJiivJ)d8pp-oh?nW#BMYI4{wr|uwg-|59!IGlQ3la2~zFwjmG&-eqoJ>k|LO3G>c9_hq z4nqE&4P*=M@8@XkgivMYaI{UC-ti#FQ&Tzj_|L#$y%-M%D67Qgbh6_E={7JC%F1^7 zsS&FYes4CF)hAo_HRHoN#c_7{F9O99s#bVe1e(i$(zBOQaJ*s@ur@Uz95>JcL z^S+SP>IEDt(-?tEF62k7i3 zw<2}F&jiq&s4i0hEhJIx{k(g&{Z>#)g9H?+iRUO;$N?PvbDoAm+pI4iy=GG!0!IRN zi#=GNkg%vIElUhJEe$2gja&|vy&6~O%MX?n86Adcuot-=FWIFJ6SPuN{5Y3|C;@Oy zmm=_l+jM~9*Ur|Vi?K+}-;Ye=XYMaueJlHy$IQsaX1%jgbFWsC^$0cWJ7MSp8Q#GT zn}}LfOFc{omuq8bhFb-v6YKQOtGg6x`OdC&wADR}mM#y;`GnkcTo*2Q2$dr%@ih8i z=h-iZ`6s$Ad~HLmwtnzscPjdN(;6YyKfRPKw5)yL*!0?+S!(s4`1RH6fwAVEaf?sm z;#!qVUQX2#;%ad-5$FGO5{yj%dE=Rw*iQq0RgM4b_hfhg0re7Uj(8-p87}%f{>b302^+x{!U{@PZsNBYSRZuy7}o-oX<{N#EFWpp6~`+yWs(%FWG|(^ zv-O^{QwT!^cqAPD4P<=xiun7hem>mdTF>27E)6!nsVPuJ&H<^z^ z%ES{|pzlOnvxFrSsXg|f>dAjp?H}>_ove%Tw<`8auTE}G*xgV0#RLt~Jpfj-0CojK z-CbL?CDGT~~xhj1+Xzsg$Sq};@(v+#k%H0>|~ zZXq+0l#`#&9@I0)sojXdSC<%Z4IwDtsNN(R!?$RvTr%`>K1y?V*|=YA`SR(7?MgEy zf)a!jGGHI>A_Br8jq&ND3Aeg?o-%DD+uD}=Is>)Jde+j8h?iN5R@rUhHGk%*#-F4XKy)r>q_cjk$VHl(J7Xz87K?8( zR{KBd9C;^c2e$viKT$d2nBMkaDv7^NCXQ2NuK)E*@+n95u()F?LhbEQBoF(~c5rJ+ z>BKQte;dJHUmLMK-e*#A$49h(YOEPOryn_yMk?tsW$H0`HMZ}+eNc}#z3dzQZLjIZ z_;bvMv8|r3=)0}U5(f{WTw4k%BR48q%!dMe5kx7UrlFQUPo8{~GOLCA3)tzMMvG`& zjPz-Yvb5jX7)M!Dw{W9LVU6fG>uTF+CEFIoc_&XKgI0kFs{kDbu^9!2R7(i8KxM@w z4~2nhRrAKT0s_s^53J#Px({v<5q%XWk9qtXoraSeXe`qPuA#fwSrxqAUBKbw0745v znPTrW$xD`^Cc{mvQS)Jx8YSE#4`ZsmH^vi^-#Q!@7iR-Wk>h**`0?=F%gcOc=NBXy zS>4LkHS&>vxkF9#t^mo3^~+&Tx%AJs4}e{4qIl_3{%Q9)C9jjpLI!9BF0TrHr<_4I zFa#edRIFGN|LXQJ`P8bOu4lv@9eP=j{rN7UKSTjxf{kaXlM?S7J1qYLIwpZ1kMNU5 zmv_#&_x?5P{bl;!bVyhPERn(A=;J+fZY1@gC%tC{81^t2OyPbeyj*9!G5&^+RQm&@ z0P>2i8D(VVigkRc1V-Pdm;b_99qUxN?J-mo4f|ACqOxMyfi8N+7eOpYxPHw-*e0&7 z-o>umCEHbSirb1QW}?});Jn?Q0LeU7g25Yc>%mYV3kphfhr)E8tgQUid176F0~fzn zB1>p4Tt8lV9^%^v@tW9V&=U_H4iPw3F!$s4eMP+}ZSs3~g8G!1zh#>5tg?>vzE(!LK_p?S5#*rVVH|tVOi4~j8rSSa0wx##4n@C`GbCDpQ<^k0 zv(v*V%{xQjPziD5Xt4Vumahh$>JvS=KApk2rjs77fNr$R;i8}H%J~0!;W*pTcDn8` z$s_$eyijr&KM$Y84zF+r#Zpek*Vhag*Td2SG>(- zY~7tdR`_inq5nO1^nrg>!H-Fi=nAM zzq}VW9LtthPmj7}0T({-$t5wPk)%mTG9{9c|7B_YT-e^86NOqs15DSW0^K2L_M0y* z4y$7sNhW%@z7EzPy^Gqvm|ov&|8}g*0hq~s^1CK=2vX98mTiw@1hRa0A8%G|{gC95 zE+a(Z&aHvu>WSTtmFv4q7bM?h&hqWEBy+u)1!^xuPNYpg9$irg?^NWo|D6t^Dr5R1 z7fA|6J`=H5(|QIcI95W^rvEYqMH3da{ivRw5?Qc%J-+Ljw)xT@M3tQ#JX)dU%CCf@ zK3y}z^tM=Ih3GEclN%}ggAM%B%`Tc^?lnU?yZxX{?YwBOcGvrJe1RrUNoPFZW-jAj zdi}B5?#Hg{k5KJ7`X=bZG5yEC+~}tf507NJW4p!&LP?Na&PsQTTdl=_Z3N>jmAE`M zzV{;?ogzbp+J^z3i~DzMfzRKDBo}`!i%~5VIRm|Y=~Oq)QoN{~!Z+ZYjJ&wfm*>gl zFFO^^oV)}u(Tn-omln>fN_Ja#{-?TlR6JJ7u2reNH%sk9o>2=qfX!`uDQh5z089ZW zdd(56;SsE;U;<8h(!}Z;^t%#6(lw`8 zodXo@!k6kIU@N5QQnKi^@e50mGz*#B!zsghKqif}c&?>V$`~ZHomK1Pled}k<4xZ6 zS$y)PCI6+g!gUUcokC+0wG-?`hxu{81q*hOexN7FbmH;sNFGv;H(V`PAd^jS$c8 zH!ZNt-sbf+{{7J?S*5YVDND(kgQ)%D!v>Psxf*cetNUSwbOWJ$&JC;q50996YMaz7e8Ek`wF$9yNS~Zh5U#Z*He5 zoZuaa!`pY>MxeaDuH}5mP@!N&>Qp!_5=#}rqw>WPlgLmLyGD*V$41Y?gQ+qnALsUe ztS@xNnIm)e1Hi<@pid{_O3qYX)2=%1Hi?cFJ`zrWf7Jnd+Q{8Oxr7Xc=$Qz2G#0I+ zgMyM`qavV3mvYT^tGiAAwmtiEOINt{WUWB=9%jC;c0Rwlc_K#Ju=bTJap0~R zs5}vVp{Vxu&UZNTa){tsxyE+TGKQw&5BGtrT&sXSj+Jtb>2u-{8*_^pR}_O+5FUs^ z1#r70fI>LM**WW%WucsbV!lbD`IZ#mTRXPOQu@040UvSwL}xT(w5x40>H3#eP2;je zkM{7CJINtBLdQULV>*;#HgWl|ebkhj#`cefOaf9=O8~R~;#u}JfUTC~@vLOU*}eGZtgxTglyL6FW=_sY+9b}Hh2G-nIpq)sYOXu zOt`EU!H)MngHZxo0k!jqa0?S_&Y9@+Nwc(521VmP#;GvM_}QOTrxYneV?=?})Da%8 zL1;li1NP=@XE43V@~fkJw!Y7~zu7(yQvHVCu<<}$gt=v%>O8t-aG3s!pC3CAI)YEl z%#Q)&u;4<`N_a~Pl~;^gGuX~^X2djts+HOruS2bsdZa^7YO6wML$c}xGs-P(>ZK6Z z0oPO2+a#x=-L=kp5vv3xGaty)%Xrp}6lv6Adm!8>r6wYeB zo2T!;yY`POv6CBBK$0XU=cxLS(&z&l1G>HQZxFGO!<}IW!pz$17>Xqt^2WHw;pQW- zj1X3KdJH=#m=emv{yqpeLZ{@)4klpHAXiZ9=16$Mx}!Hi3B4oRLlUia8R;1PPvp~C zi;UhluzDMg((hfx!T1?D#W8Rq2{ZOT7&jILdk{WcAeR6@-%6t=%OL@+E%Mur=!?BK z%N33^0#O9-QpMBma143NG*e}fk^wIV&@FHF6M%4${{DXA&s#Qyfa>ye!T}(J$>&eP z7KP(N#8tu!bJ%sQQ!rGJ^)6(NY>Zi3Jz#wT2wEnl&wT>}JN!TtgVS82`Hi^;qLD4` z7L2(G9^-;&I04H&!+rlBRd3-IWw?cV&%h8vGaxP9lG5ERjRH!efHcxb3@Jl5NDiTZ zAdNH(jUXjTNQZ=UH=LKf_jk_q&3^#bTF<-UzJKe-LzyFcUoQ9p{c)@OU-Z4zVQ-n` z4V7X@7_Ub?cZmeVrR|;)o!q1Tm6{|6C9R+i$a_e#8{NyeWB?I@Zc7-%$Hyo7!~$*O z`21W3__M$EY#TMJFayK0e}cBw-U}8?u<|g;gQ4V3Iigua^cx!=NkO6X` zrZ%*0p?KZlJvibq2Zv57DYWc$N9R0G10hAilHl<2;}?!vZtm6nRRS@Z%cz#Ty zFkldTb}FtxvsK^JX9baN;|OCFbqxt+3j_5wg|N{cwZ=O+=*5+>v-5MWeo|QHhRmQyv`OCdPO)Nc!P!k&@zL9v6%c! z8AaLUu@(5n@{dGG$aZxuQUo|_u8O|dYu&OX0)|)<^YVSO1bJ+oCBFj#(zYeYhG?)e z2@vkq3VthMQ9kKV2&=FUYiN5p4uG7%v+rn$NUw2t)fKuJaY-s$kzMXGA*TH zWMm{VKar@q0^pFq^z3dYo8$V|XS@1!b#?5L$An%QRHNvFMv_UvhEJ($-S8A5@jLlw zjseXO*BsDVK23ngbKs?vY`@;%##ApEiT4>XNv=rnSm3Mo+l(r2zD) zFGC?XN(u_-fK7!?x*St|iC+j1dGaXK)6VM!-kdR!BRXZ8npR0APd1b7F*bN@ZbX*? z0SUq~u(jB@MxouuckqH2BOQV58L2w8cFkraAOk)aA-I3Pt&npo=F@+W04Hs`TE9+6 zcvV>|)8_fYewV+7F~EHY-f%oicWqLk-P>(iaI4 zzOzC#GZL0J7f+^79_B1RXwd4@LbdRD+s=eLX!Nf^If-PAG78D+^;f7{w^=~!Cj20l zRvdEZk^A_Z)qd7vRkMLlRbfiH%9TLZ;l96P8`*qX_cAM`i?#830qa5-*qjt;mq3_Q z8w0w&_lyL|A{EV1*bft#zKc_JYb?OU08h@^H&!6QURn{ddBEw+KS=^!qf@n=XnaPk z$w`Ph&^ZCyXBz5@0pR9bxfy^s=aCWB`v(ymLLtqcG}cP=#h@HBB8Z4^66spsOHOuYTKca zW*#U`ftC@qmw~QvMCf1^g6Cwi3Tm)>agoKm`hc-jGfqVUK(S9N;6qbC^GDq)dEldX zYOizH?6hoaGKqxQ_*;w)aw9H<;ztm_m-iQ;^)f}`72d5UueXKI_n)!8 zsFcwd25cPM=2UiQ0Yo~%J_ZBXc?01pm0-BExh5Q?p$c z310SQ>^@OAtKK#xP%2?dr^X&KZWaZjdRP}drkA*}ZcB2IGT264!uGhYudd|WT=}T) zKcc7o6UUHiItHgrmx+r+&DR3*9FK9S$A}{86jYGB4x_*O`*da<##ZnP3FW6)G#>Yz zZq)t!G-YlveQt#P@-%dAG%PwRz_|_|p049~L+2Jjk%C_Yd<|7P0LPs3!3d8)AO?YQ zY-Dgy9WZbe7PPemD9S-4g@LaLFp`0+t&tPv1)fTot4{qY)P5FH*>RuRBm(pns{crE zkG<#JJD97$Oe|OEj~*K0CfO6VFuEfL!lPrC3Yn2_%Ye9yJe;SZ>CErq;`k$1gmrR# z1K>xYx9HnhR7$UG!t-w%=~04Z9~|8;1pDF|R-G3IUE`Vnj+mRey!)|f_;5HjWd49B{va=YumL3gBY5kEQn!Uk2NGduPA)qHu>XiEK?3}Q>J(SC-jO!IsB)35#NjrOYQ;U^S)$pPF#S5uDSYF`Z zqzbUuWE3VHAGhBQcq*FFws`PM|3oZFbpy(rm}iXdz#<*|<*U}%F>ff#3pp+u>n2TX zKsapewYxpH@|%X4C}9&ZRbt>CFPi~k;u77!h7cIVU~W+4LzV5&h|!k7dG_mJN=3Da zRfH+5&+;*KPP#~FL_5W_T%AeqG6!aRK}1|U?|4YCpCOYYh%#h9AUy9dka<3v<(AOn z#+-!ZZ9*kExt*7P{X288e9NIdrbm3GsimEiW%m0ayg;AD?}Grmp_)$LQ#O`Ij$x55%Hs+fiDKzIqQ2kE)Bb zWk4aTp^>Wm<^6S_DYN{5k`=pP&>_`#P>8lq+FGCnfU#Pu{0pjE0CCD2MX^LezFcTh#9$`F$dz^~YRsflqY2JYN( z)h$7oWXJV5H|Zv5bOFNXA*<0>JAlC>*LUwt&URQL)8;_F!`+v4o(qjpqP-@U0$@93 z&JP&PUdEA?0OI=ORu@hW|HYM>hMLWULqih|aXK`T%{ASHqOm4?D|lGOLE}Hdl%=pe z%9F=z4^t`ymf3hY4|U>c@y6Uoe3s76fyzAT-lcnqq#pOGz>KZu2_W9qa2$&~J!aAg zkwxf2)Q!4TMz>zd2n6e}0$|&g*nK6TzpXAJ40(q9Y`EydNxL%GQ0Jo7bg&Z{8{P znwwdvN#03bTaJo}fGE>0d5BUp7{i_*cX|p}M>UwuL&;k;b~gb{3-DChaT+-j?EW?8 zo7qsiYtwkl6WnAuvE=i6{kWn;bZ$kOZA24I#`@;wuyOh^5&ev2fzKc*wxB>LpM%5y z8tnnYVRKqqg4vbT8KV#VbZ0GP6;&)NY|GEr@EH`|8Izx z)`>hx_5_5iiU=Y{4{_QamkR}xK!qgvf)iV=voY>Mx8bWVIiQEEU|NN&`+5X@=~YL*3<6d z{GAauMvdk|@i;7j9L-tOYjrxp`f*%Z$BO$p#2ic(;S`hrN z0tBk!+U2Rwa{*$>3qKzpcHlZ`DsUtt2Ll5G=eN%nJ9~R7VjZ;m(zJP(UlAX}gPEL03slZb&+R@MGUFx*KIHXwH6=-sq&jC6JcYLCT2W`l>xaCu?LB6Mq@ACR`AT z5yDKN63p|sahSsPX@d0AA@5pte4tf$*nXCr*sn)0cm~cDQ`{~;PJ^y%b>gkadIOTa z@ccLzXyk}>-eaCc37`T91$=$LUbFjC>ld$wm8Lbx1Q?x!TEsalGBR=xzy;}YVF3eH zShl$95?tP~if^F~aSK;RLV{r%kd!gkc?{_p1gKXU{~VDY#)i2q>LyK&|0x8o zo4djlk;k&Z8r&~GalWX5$znyu9YTbQ`(JVo`M}AU4Ke?3U0p6(%y==$zN-CsT=FwG zjDW!LvOha#W_$g7A+*mnR~MbdE8tcr>)U-^(66)QcC%@#sd8h3NY=zYcIMy>GRZ}Q zH>sUhC$-VDM#PiY8eE~if6HtT7UwTb41XA@hCMn3z0X+!%z3 zS%FBQRC);toEGhQizY{ugM!d~*X@}TiMd&;k}kqK(H9^2cU&D;9(uAs!OFnJ;E{$p z9x)1Gsp;-k3YxQf`!=6W2oNwGQX4JxZH56di#&0U%>=8d3eyMZU$0-2psaJMA#1ri z;6lh!vIC3uJmlaHRxFc@}pqnZ1IA{gOtRfi7eU42mDo+|S27ZcnP0|WOJ-lD;nPVOwm#oBo z!4YfR<=6;UC>gUcjfyP6X8*p#6QeHaa+*n75rcZdO;Y6mw_lK^!)=F_ zQwOcTM=V;TYs3BCrkZZ<8vEnz!9MGS$B6ue@n}qr!a+dT*g6k?$l|G!ah6Mc3s?pZETL`U2U%#R3<}g zgFCcODMe1Z@bpqnCbWrOI}{?LdWE50N`nk1uCf0{J$Gi4_u ztZwydK44L!=bebnZNX1%bO6k%>g>)(?Dr7UL?D>aG;y;^q?pPHhH?zmwL7t^Jir}r z`$&XFVpMnh{Vm4m57zbO_;dZla!0?!YI^0?*waou^2sHy#GmC!>$CM_AcT+O8feU$e zB+(&V=Pu2=Jd-jNOyU<7*XawFF>*oJ_oe~!_>Ql7WubG*J1&!X4%5x^=Lg9L{g`aR z_{)){i`*91E4y!NDf#$e)zo->`ZZ2dF`Bo;{0s z;8@kx)fqhSI+Yw8${s*gI35h0K{V|AMyhB6$bf(V?epu^x*P%0Ups|#m%Q{_Uu)Oo z5P*L=L6T0{&-GYJXiMo&I?zi2fm>HeF1!!YzIWXu{PjB}F_9R!s^v{5<(C470<&-O zqysEcYisNA;AP-q`a?ezL#5N@*Nbz&$7g|I<&HOFt-a>RRv$l1&s!pe#X=j~h9LAs-1QoC}oC*_rpw7FP_z zP%-^C#!t9N_if85I*&Xs@WS|8ne_IqwiF9AsU%)`qRWu3QV%b(O2HI75;UGB6Fz-wgV?X}+~u=svdZ3B&zYbHDzf^)-uV!h6T z^Vap5EdMYmz2%@(SGIePYlGcBkX#2J(4Lh$3V>J@nX#gRGd|%rDk4@@oh&YTq`!o% ze{!ZFsQ0Ked9dr z*e`nj2kxK-BAEX*?`6IgFmJS1+ojTS-Qyfv>JTdObaAum>apo#r^0AuZ^nOwL%fGg zVYynq%??4cftmm;6KAe*EBt?C4rxrHmSDjhU(ug#US&D!=Azq0SaF!}9#A-O z(su7+$GgS&;H5JiW)4+0M&)qyta>Zos}jl_CaLLIt;h#8FRz5ZsdYs5w;N7TIVQb%za z{;27VF?1(@t6tHwnr;3cCx6?)u2!g6x3Ub%)Ms@&l=`nR6i z%kMxNF3xvq>evWtqkL`~ z*o*vFmFu`~c)M3RJua;WBO4xne^1p2pr0|MS<``ziG~h)hVI{BVO#6SH)lyP3;u@|RTZn^G5))-G; z@z+BR>VN<4-8=E?7O>O)lImru!Xx{s0mJn- znTbri#o1B#N3|)yA!XqAPo}x7KC~t(YoL2J2!(>!7dN}rKv0AZG#?$#(~mcMU0ZxuMgC=CjySukd?Rg1ClpL}f}xd--+-6^GyT#D6*6n zx%|gR9_myabT7`km`1}IeXh5GmqL^P3B2xVVy%3Ai(){meLX335LAE(NUeS!6bZN8 zj4Ht=&9ShIGj5KIl?^sW%#_Fs2$<>)$OUi9V=-Tav&NXPl3G~xszs>kI2!c3vG2h& zrV_lB1xDAD<(w_M-eu||DaU+GQrhC5qJ@+)OJ@IDSs~qEh@l>1%a>6!=QpuLm^NDr zdd7x)eEgp%f8y!R8A^Q4)l^LF4C5_oLoJ1QM~j4#*y|L0t^GQ+y*LusLNY2QEbbNg zroXQLDs}<>>p$ZA*(K5{>wbdatJ7_v_Pk>I8N`7QJ6CEMsEl;!o>OjL>Qk*!~mN<5<(O63kflayMnM7=u*4J@?ojB zUT!h_t!)`LI+4MyL&g>Z_(q~C8jtM#Ty}m4{A2AzhDig$bPW2I-oMw}dxVaX3gVJd zQuToJ{!dSjq7%Thdk+|5ZGL}wPBVlyMf?!S7|zUq^^br?6nS`lzAs|mJtdR!Z;CEa zWG`qvbDy-NQNg6_+DSWS``M+?tI{{G;=5H>*M(ocY(j)s9dD(IEEWSR9>rkhR)vW* zTlW9H-9i?rzg#{c4@Bcm>PRzW!&HDCVnbWzmN^)BtW`}1j*gE7-Xe@rGdblD3?P<+ z%tgsNK2u36i21bXVf6N9M9V(1EXbEBwsqaU`8=F$bJfQjst&l!2InYK4zh)!ySx}_~5=HTdIX%FxrPU4_p`El4THuobH8!&&NeH77E7{sb3}vxw@hq zz{Om<44(CWbj_k*r^xq;)=?lvi`3~R`d~1EkAp;BOCEeg^@8&VWik9;WSGu=nR;Og zSW}T1FUV8Ik8a)=q?;=}@~t<>T$IJQ9O94&V)?r+q_1nnl=}C#?sGGt-@K;E+`gac z{N55f4e}y~eSOQhn~%YkS)w9#z~LOSdH1Y$?qULgUqbb^i8-cSW$-ur33_LR1^K4MUccg}4{I zK|sn$&QgyzZQRA;TmREskePYxUku(}))*lg0V%&`H-CtAQ$?PjXMi4nyGWgK(c1{6 zjS7fd#=gdU@AaXP`$X6)nGf*Loip6tXKLZg$Tays?N~2eD{el^opU(E7hC2GmKVte z6MceH`?=x)>Z@edPv7dhf1X)usq(jA=kKaWgn7|9CClAJ&_+n)0M{ylCg!bE`w3+( zU9KkoWX(#!ajh=T3Gx-t)cyH~<$Up`BHIf@oSSxe0?pN1D((TJ2h6$SP=tneNz$$F zib$ZE`mDE~Ya91nd_r<^?PPzy3N?!?ea^b8l+<4eT$F72L?wruK(G_Pb;++ zf2#gsXjBV0^$Gm`)fu#$5%n@}B<8er!{G>EEvyCKJn}OPf$5PWU3DG)_3y8*c`OXe z(vFN%#|NB(&F5|%er^obR30&IT}iln8meecY9GK!MTUXdm-De$*7@0q?X4BuDk@U; zRuz1MgX!@fjDS*32@MRbRmFPStiZsg+9rs-_!q_m z+gT|JO8khyN*p3;IpSnhf`q!m!>Ho;ykc}hiTiZIIOye3L_YgjxEdv;$V?pEOpa0u zscnrT(~+!0}db*E(wx1`oFuGY_Nxiu8^P_vE#E^b`1X(#c!5gAq5%j*F) z7dCFQKkCa(+ZarqOycz3utKA&CaQTNbyN? zb>`_<3}_w&=RwIkPR6P2foi*_EL%gzN+6Q01!?OIV8P&6#mvpo(8gr?8hT z+li>A|EV_c$l#ap6aLYvOJ{s%eO+V!j$Kk1)fg)!*vmZ$NL}Ix+}(OCcHYR#6y>?rJog;eHYyknbH#)! zfU?n+C_o$V<}}Y;_b4t$nIz$Nbnr$N*>|7@&;SC+glqP>!ePUH7reS0mASF69Zf1* z`g?cXp*x?^i3lfeR@bj<%EpK2{58`}o`y_yw-fmWJ8XwDG_`7j)%|Vh3PAWic$@N) znCyqwShRmtIZ%{_rtXi2&(v0?x`oiU<3Ii#+{c=2x!t?otdH-nt{uI=2s~N75Nplp z&ke|Fi1uvH-Bs3ZyX*YunamdjkURerw>VehW!J`4Yy-N5@vG}=hr+_bdH_ZE2e=!2 z_W3ib7iI7)w)0t60OTI3BQKg_1gi%Z=iNDTNi;R;t98HdwKn_W9eB}4@_M%_W8r3> z?POXe@6+O30PpQeMAid-5TGw!R-XI`lD0yk?ZJ+Y|65WeQK<{LI2E7VyreB7_+=?C z5}1YxgRm6wFfXr60xG1UGDZCtX%LnO>=d8Cy&^LtuGHB4 zsx&(8?iEywm9tkkJMWzTq;+IeG(J%}ecU=YC|^ytkX?KR@xs>j1gd4B%z?B0fh%&0 zLRGQfVhP)N3fr1bewQ>qf^mtUy26g~Ik~Wo*0OyR&$N6y#`}S9OPdKO!s4$XUXwdF z!kMYwNjB@WgOZy4>-4~cget5=F(wG4A4fg|v+UR2ng0Es~OjA_C0SSfqlPbX5Ns$g71q=cJV zNkMoiHKvF225FscYmn%p%{~qz%`Ud8PzG5sl4Hm&Rg5vHOM zT(IMX#t(A}uSTJhN#|uUOFZ?~tYhbm`*-*KgL9dsaM{^-r>WNDTdiWF{o0UGac&G2 z#T!f-v?WqdKS&e{C5I~e(RC4flPoC0H%lLg9sufhG1%R5BSxdgGK3O$@T(d^PsBj5 zyW_uvt-RGV&iIw_RN95MqV5uxhef`EGs2Oxz45FspUCHhof$}C+C@x7_k$#VjZ^2{ zS#*z6!MUnv4#NH3M}mo+$<3eD7f(rFrL}*1x6w{8RNXiFy54|YJ+^?vpC~;89 z&^Ay1le@9_*1l)a7$_` zeT%X|Wh-#>{iaPN^`_N+^eC?D%DcS8lTqY{&6W~v4xX9t$-l4pMS~a73#dSpAmM3; zHK6Mk94F_q{8#OFR!fzD^7>st+!sg8z7E=(Hr7)=RXR;EYs~G!@lJT(Dd!bhMMWU1 z7=%;|UMFQw49NIwLxZGC@*ZEia1vy&mkOY64zb~WR& z=C})}%9@QaAP;N-3)pjwUOI5~+VeC8F53O%uAD6zVKaXI$}Oyq?J|!-mf*jQ&!|(8 zi<*nd3GL*($Lr+JGCF85K(-&M528W$+M6o{Fja-DWnQ(DR%4uAV%?C)MOkx@9d4Zb zCf1m;8&JC?Njx@0)Uv=~o3kU)?ec$FgYUq6n6k|!{{jRntA=Zi)2nM|J3HmJcXz+y z6A}Vh&*p%OgY(D1-d?cm#n+#Xv)?q)AMyYd01@#8G8+&^%mTv57QifNYuznyvNr4u zEO7txD?LWf7&9Fu6-tWEN(Yi)PyZKC)$vE9O`(8)rTA!gw3UjAN-}w~!|^c-yBnq) z0_*OaiZ^K3_gm*t*8VlOso&p6f}G>==f^9p`@U_(#j$@ksz=kEici->&AdwGJo+#G z88jc$1??hE1_)N)z#l>AgPmeIA`4_%ueeM-4wX*KGKNZ5efK?^m-i$#XWt<3ge4E| zwp-)1lWs=|*exL%pcGImk)@0F_uO1Zy4VtY6!8;1{Yx8}u#PN!y%GlL+~|HItPv93 zySS6qa~aavSMJT@tA0oIx!rKZguVCiCGoDWUPXDhA}QF|qCCCUXKq~U;Z~+O-+u>) zYkJ&gn4SA%f}_e>D=E&FdQzp+Cpr}Flz7}GO85m5aamp+9pTNf{u+bGVt6WkU>OT* z2D!BU&=WLg&rE0dxY z(Wg|N?-G(eVR%hReQ*UC2q3EaU%j0wE7ylv` zQRj43kdeP$x4v_g@ykRT+M>@gB)rMR`GD7)hV%QUgZTTdJ>qKXyEhO@8C~;G@w=qT&`D0pH>fc)WJ@>Qs$J9TZ2Znh+bhQY)fKy&&R z9TKX~-oKdFuYwPS(sWk;W)D#iCCYIygvRbkIQ`3f{XL1r^r#sq=zeDZ6T?&Y&%ECP zt^hQ*dG7uziJk3swzb9KqEmhN=IDTAJT`S^bEV!-%OQPx)rW7oR_Cq!{}iXue)8>X zdfiYI$-v#i%K*a$k(-2%kt5q+x2UZ~^=#mFMa$+&^cGhC!SUxHofb8aIyigf`C0Pc zM7W%o>Bz_kO$+g(N1uiV2F8F(l64}2f_4Chvv{UGpv4AQa!@^_h+>a3pfFidu8Q4z z*;Gm0=bYPa&}0?gy3F(ceJDH^-u^w~8RRk6s@Pi~Lnmo(Z=ZLVsz}w%e@KzV=SD_$ zKc6%9^s9ux02Bo%=7N1PdI7(xSVg5{G@-jYuXUmp|MykA|DlXmijD$Sx|wv+-c5gZ z8$61biPsuiuI(n?rCpXV@M4`~BT7l%=YDjADhQ{fMD0_wN(^$A_O7;O=S!Beg{b_l z<6&0NUF_n%7?=f(EMYWTOfpOQ_fYgvNJt4Ir#c5-<>+@y+_#E^OZ-;Ypl2vcG_r}v z)q$zDzHS%R+s^GhX@(H!8J%v%S8k>08QqjZrfy<5W0I7l&*E0|qI^VUWpEXqF1C+! z??f`$`Xtrd^IjrDwzX4*s`KfDe60r{dDUl7~Wgy~H3nNj?i z97(}u1yAd7hu_;%y?*=b9rU5nrls#EP6YMNsSk4=w}Ws+7$t@DDv~)RpofV@u zP^B2Zgmm&Bw_z_Jv$}^Nyq9hl{e)x7KP4ZsB)Xa)u!Zp*`mUYx;T5=EbE1&yZIlMH zZT-0{?Bi>aTp0^h`DRr-CsHg6sHkT~C<{?Huv}DeKhiexuh_7qLo&OV(~?;F|8gYl z48B|L;d4u!E}#y|XlDKX{rgtRl%pOw75ky$PZCpY7Mb2mW1(8~(M7s|Adw~Po_7{v zlh>Y`mG~DTAZzS@@HSTYd=9273G(->s;6^oi@!r19;nzFL?(PB#0xe#5`R(mrO|Sp=O`y)09@iB6#El1jh4bve;1 zq>o1O5boxlHy3WPU%!6+PIvL`ryj6Z0Ehs$ISu2c+LD9S2(dE$rb=E^-WkSWN=wg-$GE(rb2dH|~4419B;?4z8$!&Z#lEdk&f2 ztsXg4=ASdoW05!TlOn@#(m?FX61D^q5=FoyOHLJALK&rmCUT)mwD5)8W};9v#yH7` zHW5}Tq>N&tX)^L^EOhn9F_rHh{qP6twW&1?3o2@JmRd+lEq z9)h0My@j@IG5<_TkpUE?qfMQ;%AY2E=AT1*?jISr8{pnSKyLer{MzJM5dH;|W;B&1 zMrr5G3|b~?gOgF5E0{Ix6<7m9SvC?5F9VwuMlgA$r|Mg~p?@NCVjk^67i_4y?SeA_ zd>qA_h!xJnx=_}Br`=!{#uoy3hnhMhp~U4#WlZ*V{8wtLOjFh9z24BTC)R_`nVIc* z>oz+Ki*-UNNiWsv--_WqI}kHy3XeQ4j$n1&>+uyJAIisM9kI3RB4u~;FlGqf4#pN@ z2k#C>6*ltU>&fDZbkfj~|L54EhW&xIuG-FU{IfGhWj;n4nT|(hYIDwK zQI($_4HTJwb5tk6lvh?pluazZGb5O(2%jWCqO4#^6n|#A|FILeS3#^qErQ}hKA9d3 zf_uw-6uAW=myB`}J8vOK@ssbHdE;~xE$Z33`@V0j3chbA0`2S9R-5GJFdQ0i(AlkO^;@mXrKZR>3DE=SqFzF63~>%uXg(*^F2CHSnLU z0k6NDR0XU8@!Q6fMKt95z;pRCEQM{>WnI64m9s!+6ZZz7W&Zz7rO3!KW9Q-5s^-mtvjv0n|24o#%}a2^+)*le)S4Rgd(F3!l^@Riw;rV**UZxS!tYjX-JNBj zQe1~$Xj90X=&S zx%}DRUODk*A^ogbZfjX68H|M@0MUWumxNqDqqf1O24BMZjR>ANl!tn{#lYE*P7WaD z6}2}vq*yp8l5sPwx&dogz}6vw)b=IC{9jLM)0KelRbaL~+{Uav-phoadaX@M?QcP2 zJ#JD&Zt`?xZYB-S@KumH@lzF?Ukj%Toa&GzyItr^T!_Vo2fUVG{8tP*W)*}U8$}ek z0`G=Av8vzmFMpF@rME*C!5pZ%&>KhU`dKyw>l=r&N6Xq?LEVYHz1ry7BDf`dGau@9 z7gH#vRU(^y2S*%Nqwvxr=VzcEH8vkRkI*qFTm7}2^(v=4gn0q@(8oF<{*0+@N9U(a zPSyCDruAIw8ab&0_|_uOy0Szi2`=Ykn+@80jy)4~`j?)J2so;I$)x0n745AAlH z_vkdln!G2YGqLRXK42(9u$`uiSHI0J)0!7Hrot^%qNQXeTKuIO{@`~mnIp9&u7 z+^KG9&Qp+*u_DAp1w{hltqK5Zzy7j>fM|=nJIatZ_iI;(_q+R8anx*OBunDWb@wQM z_D)!dO>De*C%2$Q&90zE&+Q4EVEg`gH?f4edTE^<#wF=q$H6kT05WWa6KuqItxCw1 z*q&zz?QsQ#fcW@1yaW_TWB*dmnF+n`gr><(xTA1--Y3qet5uJcQ8mm73iM z==DIK;0)t=g}kCu6)@B0fSHf3jlh0(J8jBdPp=qD9ni3cGLgS1H_HG1)$ZrWuUH0K z?7uW`ET5G|u=<&>Y9)CpaKZl#2*7E3?Zhm{pW zZwXORySBErdSK`Mr>KbeKYO$1&mZMo1J|D&y!IEq_Bf+7yG(YJfn^$*7IDBl=**Z# z9-lhyd)5YULG!;q8C)SJ=faFN$(MBleT){2^z^cQZmK|Z`ja?XKD$Mtx3w|@U8gK` z^Yh~3@Mu6H09-q(eXoFQxU0}of&ZINur2rokr=!{ z+JyKQ3KE6x8VVX%dh|3aaQ{8I0yzCTrl{OiCXfJyeuhDBrDV@Zo>`4gn)N%R1tV?M zmz1W8uoV-e)JB_&x&xV5wAi0RL6qxD2vT0{cW2q^dA{vRgzxVV6$kA%*$N~gm$xAc zxVIu0tX#<7Gn94Ev9P^{UM&n37O5q5-zLWFP}AnW4$++KO%_tzgED{gd+x>L0J1Tx zsb8xTMu|1efJOv?LqWugY|b()^VVL8s`C!8q@}Exe-8Ikc1XLt+eDiiUQmEQOp~l zEu(vgI0;W{Ed414z-g3oB(AAGcr=aQ!(LJ-0#e`kQ?F4AT+!r7Qz29OCSmLHPacm( zL!_d|hjiQ(Ekmap_JZ=gouwVEm|}Y3`*%4%4cRLcVm~zH$iHW?L@-3njh(i^b>EJ9zZxIk0Zp2!2@j@{2fF{Qmg~ zmLiIdgn+PntU%1D)y0k*!OG}>D99I(#24 ze(IY|c(X4Qm>0DgzSp*Vad)wf3#{@F^Z^{q@-m*d#o21yij`L)h$8rytAOr+m)2U$ zW~k7Iu*6EkjF$X^E;Hs2kO(#$4^F{ZSZL=pE#eWn?u_>`D7h zwmga9^=7+EzIL+8%`^M&>dWk;ryHT8uZ;sAU-CM!l(mxBL|=3(G+TG=G-Y=SN^FCM z2d6b_C%#RTuW<`Lv6LE)d8H&^{mSmej(R3#N16?rOMx-Rtew}DR%T99yv@c<(R(TS z1mPh$s1Y@;E%0c*rd!YY1!4usgChBK{XejLZeE&nC;%w%r!yg&# z>(*ndyy&;@lAiac)Jg5we~uCIT-AwSh4AG^dDX@_u+B!xzl*ChV9W$LffqtnV|REX zMBgb)EvUTMFTO;NoXa4Y{psZ5Qh5q&Rw5!I>;cDWT~kxjZfa`kF0g^Y8>A2UyVMy< zB^tXVv&_mMi%|GL@b>2Rw&kjMyk(#-q9%&^FaEp#+pp!d4W{qYo8Rk1!=a6DDvWED z7ZwwcVZSbsKYlz*uElCKHJyP08&q^GmfQ>HIyIe@H!WMOG_F9&I-No2I}?4}zR^G3 zZ!Qy<6&wy|3JSmP-uI72n7adg-A`P1wk(ei6#Pd|oBwK`AH63UTEwrijYJD#GDGL< z>mb+E&BdB_1&Z5=3H=VSVx(eSGRd2(OAcg@%`JWasR!Zq2tNox(tI4C$9og|hMf^H zjU`Hrg!94?^?u~ovLwTP@`tTLqms>qs>#~iOX8SPAHbnX(2FLLa=q0A4uSU zYR91#Cs$VYWuvwcns$k`L`)~*wF_a*@l~$$iGS+djwi3_KcSUuITAHDTD&m6u%tu< z1SNhQyY)t?Rl6I*Jr|fLcH7C zAg6i1mWspxdf4c5fxbqg!PZpzPaRh*Gu^%+G9)CYvBGjpIzI&dQ_&vA_rB3jlehz&)h z<0@sJ>m_^^%S48+kXoR{bRzR@T=?OWNiiAS@-m5dHgzUOA3Uoa&R}7>-GC3e5<#Ck zwyT?~<4PS8+TNeruL)(Qr1+|$DLGrKt^ksInwG-}ZJGMrncCv7KAvvZx69|=(TCTm z?S?;pUF`7mw0E}Q#o6F#7VU0>-D52gpZe|O6rtzT&T92ICgf)AIm_a`!Pvw!en#?V zlxYgE&x|738gT^JH)fkFwo9yuX=$Iid3c;FzkdB)Zr1j))^qy>{+|gTln>9*7fBk` zBBx{VsfFt##Kb($J>93i&%^>@oFdZu2{69?_h&FzX`;ZhXGR7lsjjXz{Xj^Ub}j~J zzl5?qfz3|rgKd@0EkHQ}!h#7>_iy1s(B3TJQ~3`6#(O$)A$kY+N@Knb5!uD#BU_%1NI;9~8h7Dmf3eZrnRF zA7@FALmvJvWsU#)I7p&-g?!3Qu%G+oZzx^+cU0f0_d=iZ zqeY<&0$iN}0~Zo}K!=JJr6}6Z#<$&8im;tonOij{P2yW6>t+5ChhNsIRyo4tx*P(AQtxO1{`2*8<$USzi)dBc3mgcqN&X-pF2cIfP9&I*2l{)VrhuM z=jdM217d?1x1FTN++^Q!>ho+^oC+v)H3gaKvTZIl#ymzL-_i|bv88T6jo`H77wsHe zq<9-VTHA?1;>K97s{r-kmz3Whw7#;LMekOf%=SwA1TCnQe+;A)d{Pu?qx9=Umgf5_ zJLS)NQuNeRV`0)yn(yZ}C+}#bBjk(xnF19K9&)lJnLgL>!`0zkXG|g-otIm3Z(Xs z2%xy=oY6eU(#)66zI7n`a)wENIhX6!}T@)@{!ohhw39 zx};E*i2JJ1Bh-v`Vm z7Z^?yO%Dr-IX?ks{vW2!DlFh?234&5N#B@)uz-6Be-gf!AUbccYnq?8~f-3`*+ zjdVAX=g0p&=XsA8K93iAfwO0S_ugxL7M8lbm6k-5Fo2I9%MGLc5~1JgsNCy=q=&T@ z(q0jCD2O=Q%O*Nt+pPLe6%MYO#=4P|l+?39{{8#+yCE2Z^U5#j3~7MH_4msqwA~Gf znT_oPM(1G2>+A#9S>(9s=s~0RKl&Nq_kkcC9YIEsUtvT1*Cl55_H4_XbU?{00ek8> z<9(#V{av|*Bm$^{7P5j-%T1@g*Ipna<{dLzJQ$KtZatLCD_lCiYCFjkL^nFUfjjjF8s~*#Rl7HBrK#*nf=C*u`#12BW~x<_~0N{&h{~Fhd*=W%KPi_b?al4KhDX& z7NtKOU%7aHWc0FW5Ay1?sV?L!8JT^Aa^Tt`i$Pt(`iC&a! zRv-y6%!|M(51y;eI6WPr#>Ar?+s=zCW}^-RqAJ~YpD2OpE9vY@WvjbzZSaxA9MW~L zkIC~4SXixxR16Qq=-f9DgV*Q>_83Ad$$oWqU}-+nq2UnpL|?NY-MPjo96dVSxCSp> zIHT@kg5$RXXy#k9Hr#+SdaomCK`tLHJJprbSB()oJJe_LGg#H(w-g4C`G->I!|h~u z-R&82mZIg46SIh!S+fLJGtNh*OSgxItyY>n!pQQiw#V~r;%+-+Ug)LuuKidW%WDJU zhIFaRFFnc-Tj~W`m%lP<>oS@6XoZj=l%(LY3)9-O_yK(d_)yu9<9nl=lJ0=&4-rm| z>yB`}xJ0^OyyY_Mi}97bU!uis-}rR1yIq%W`$}1l({3+a`Bej%qb7v;IQ6g!MMh%*Qxb=i&u3Bm%wiy+F= zP7KZxs^nXRFY-ku>+}_Iy6=?PinD;kwb_FpTjM6IYkwc(thqW6GePjy#o3!NGKLsJ zP_RQTNQ{F7ByA)z9ATBK{dw`T>k4!d){WKR%=h;=@333w$rn5&zK-@gN?oYyCUMiw zdDZmHix2l0XQ9Az;d_GE{rNleq~{k^a!s_$Kviucvq8vCqKnJDuwIg?ZbCpYH(f>y z>+AiRSW|qu2La1AJ5h$8gI>R!ikz85{hEK4&K{hm(QF|M@MH_~hd0N__$kGmxndHS zot=+tDYsk~7ME|^+C*LD&rBgF^wDxZI5+2K+MPcm)P-_uR#q3VCa|8jhLst5qm$W{ z@qp;y`EovJDC3B_9c`5C#rZxC3^1ePd$4&SWbvd3exxf{c$2UW0|1thRUuraeqr%8dxQfkPMney=kmOTDX(Eb0xQZ zn2%Ux93u-XK8Q(6Bj)dtQ23cugbsxEfPDYz7^U!GWA)gqroI6=B~ z^#kM$zNtRYVEERiHyOw&_0hiuI$kGbzC_xkXEXx^~W}7 zm~8?L&HXxN58wz)d3t$ScXf7F14Huy;PAT!82i`T+vdX|=p=Z&P;b$o^cP||Hx(6? zK8$wAABTshHc@|p#ok>J0Nel1FLbq3Y4lGgYjbQY>xYL+E#||-9w(B(6x*fVh-#fs zhI3t8>s;Mx5P;JKp9l(b=v$@81%xM=P8c>Buhk^xB;gXVcrSX~I*3xRu;A7ZOm~o| zu*<1H&{8(N*WE0hPMsI~x0t5xor(8ShNs;axMjGH{ul&LKvyB{QbgW+AOw0Z)`V|XT zWW?P+hR+`cKBSSWOHO)E3QDA0n3E5GZYIHglsiZ zM$aV%^ZWb+&AGQ}WNjhl7Gy+sM7S;1p{l(C%#n)gt0b)!AlKUcO+FBII3Gq$QxI_y z-}hV{FH^E$zX#CE4N)Ln6^tOinN?U3`=oS`*YeG5_zBfryJj%<;r5d)-HYaOaEiH( zq|ll|#kOR8wsBSCC#DO-(D=GO`xI@0xECsqj>}HSWVtiMk z+5F_Q_36qN^VYsW@E69Dx}2n+8Erc^HV#S@&%v%1eTqcuLUH;dH%s)siKoQT${tzI zwIig3LaT&~m1V4oV7gkKzc<9QMW(!C>G=I>6{Cy{AoRS+>prB zXo-rnX~g^?B(|jF4+-MiIt_)N&w$;ab)7orzNPwTp-GXG)lZKhTUfF0lJ|B=Dhmm3 za&9b11H&|2xYjG8WTj ziF|R%7O)_?xVg;&C?~*-XHxy@)vE>IaC3ck=Q*6lZOx@yXQ#PDdn(-Fh8Qa>EZlS- zK%1d2T$F2;-2CUw|GU}Kam!IPvT`xcQ@j1AAqEYf6KlPcgIxW;+@>|2J?5`iq%7j$ zPJl8YiCpTrHdTRl#febgvuBHo`SaPSKkW!MqrX#m<}fQt?KUYrh;8l43aANFBq&%e z%rbUFWGZJNi$jPCgi`5edIL4xfx>X_5s_86=;%23)JX^nVYp_Eqh)+7Q7DoUjH+8a z*gKmN8ZB)<7@EloUN_5NASc$(UU3s|H7AN(Fy@T=PG2gYeratO$cAU}n!LV((BUz_ zo6d$U<&hS0_?*2xkm3(XB6Lu4nzXGyPv@UxjOqh-PYYa6~f4iy&@H&cyyKaq=CdmAUXd{7iBI) zMuk7DRa%&;e~U91-p+ZLsHm}OOHY5*>@A~0qA$IOQCCvnp6=~+1fzdt58GtlVjVZc z>l0hNs6H_;(=uvX(S#hMpj;Y>8fce~-8mW5(ow}x>Rp#Yq3DhdA_JC;=cIrg2)teB5JWtt+Pn5sb*G707x z7^#w^eV>pi1{aWdtxi+B+GXpGITI;6PiM!IbQ(LJ1sbO;;Puzt`1R`mhas5+y21nV z8oej`p~ws>ph}9;|M2Sv1I=?mJ5CJ0=oiw^;yLt(kulY5`yyt$+S|IJ_EdS^aC5u7 zZWbd}8*U20avENTL&hQW?Ha~+=(9IWBmTw67$8=VK45~0)vmaNNv}o*Go`zGBg_`Z z|F=gj-7pbht*bl5#~k1*_?Nv{*jY0uYn?fVe021WsC?wczQ<66BTH|CWhmArt#PUMxa}XE z>-7 zOTnmD2BpC!rQ(wXhtEhAfeZ?jSr7f?6ZB~dGQvzAMvm9E46;^AE=TCHVT{op{;7wh zlilF~iGIQAUtkL~NnCgD!W$j6d<+CHPd^g-vsaGmx2ROM+ZJ zeRDIB^M{6J2qzL|{W*=UY=Uo%1$mw7bH{A(k!eZPbC*Khw))aH;BFnK2xB>>C}$$? z@8k`9tIS`Ku?+of>yi}~>tl}i=5o!dyyxhB`wC#C}zfX6_2r! zlP2vs=Kc<9Rr2fI%sgIGeX>&!i0-YgcfzwW5MK}j#{nb&l1q^;=EUnk$ujzMQn=MW zlkAxLTAyZs=*q5};_UzzDT0oFuLf?6E{{ltdVc4deP zx5EO5Yl7O&0Ev`cMxY77LbKq>KU{s6VV9+(n>vvQl`P-3FkhEG`#m6B-embM-OKV4 zZO1p3?C5BdtyP%@Nd0{}d47szZF)etyT7piB5Kmi8nbmQDrEU#x3IerQ23gDA-e=i zzUs)SS9pJ-sYjPlRi`!ATBi|~fJEoveyRmBqU%LZkM7m#JtMK$xcSX8e|Z=Id>%18 zgz4$1po6(Q89y@w%1)a$s;RG5u3e6w=!?Q>_<~Bh6Q^1b&qxqA|2-sp!ZjQ{CF@-y za?AVP7wP68K(t^l$Pmxph`Aguy(tL1VCh2N`8?q1=hxMOYn1Ml7*T7(9Wo#^4 zyUF!eK~0V3Z?_Wz*M#<)d?0DA$#R@Jjn_U?TaKFEgXurlisk?J%F1~et(mEs47E(w zJA>Z?6Se<=sE0m_IJDUKixWK`U;QBM^54TDUKKhG=&6(C5r{sQ7@juYu3{y-usCS{7Qr8W-ElX>xBvjEx9*xH#w#fM@h9Y@B zX3H;DGl`KEH|%e_zyXc$KgSsLB?P?ZVU35SktiZSZ5=_W8)#cB9=;X%pBs`71+G2F zv&qLF=gQzWlheQ=Vhmw#wp8>Y-j zTQfjvjn(Ae3T|VA$u}tsTB_%miA_cA(ua(VwL$~}1(jpdyU#W3aB@@3dX+b92ohQ| zj^$`%^ajQtL7Rt|@$T2du^!8YtN#S=+$V%W=s^lb^Cc89-1p>Tp?Xfs=+0+!$zz*r zkD>IemxYCf&v7z(p05Bp16zFyw`+zN#nm~I;p;vmaCOSo_kPNzqAOsUHNs!Pfsi0Bl> zUy?dC?=GrVb*7-)1fBW@>+mSULL1!0S$QCTgTN>lqOmKE0#-w2Kmn_^`#_|XO&xOk z9CJg!IO{w)A@rqPihr0raJBKPzw@wg6v`%?*J z1&PJI-CKR&Guu!kEv)3|O-{Cty3&9JnPK3ft%b%*n|j)+)(hH%U2|yhnqP|Ig+U;< zMraD%(f%CK?by$ z@RhhA$En^H>>JlC3|hy+)$hx-9kpaHMqt2O@=H<7rmwyNUl>3!Up~Tcgk*-0Sk&!t zlGFqhv$KpTRaa+;x^M_l*mDqRr)+t|u$@=ihw^0Jvj07Qj09jg z5#o{0{@DYa5`cx#S@Wy;ty2~KZTB`Eh4IX28NI^=^_V_10>j*o6o-} z=tx>RVi7(Yiq|A9Bx|cj3Ww{E(vOPv1M9?r_$X~q44#@t#C5=|<%n3tzA4!0Z!h7> zARceH0Z)s!#udAAq_(uEXW=AXvRv9R@vyYuP;1YSo|H^>c5J7Jxd193gjYwkL59mo z9g|mo+6W#+B0^DWixrMi0$mars}tl6Kn6N(Sdn?{raP6D5_INW6}D%_7&XB>CB!wwgchNXfld`3DW-oVA+%0E0J{AHm%$Zdg`IWlTH zfEY$HBw}|2m$XYt%koudT^i;27A&Bnz62*V7h4D{u7p*vR1)y#j3uMk%G;Q`zfu4q z;p*91kltFuFL^4&?C$tc@`9pKimf*5aZ}WH{T0~0m-|YO-%m8IVQ|0T_>eJo7N1)3L_f9P3>|+wB zXbzx8Ioe%673Gks@^gS>?ohpE*dwv4%ND^>u< zZ%byVBtV7UUpV;JQk-@F_dfVxX}GO5k8l@e+IUsw_0OXnqu?67DA3UF;5&Vmtf9+4 z{Ey@I&$n0NiI}0k$OPSNl_kMJsSlo=wc?+ulf|u^Y(2#J~sBa9ZAyU=i$@L7PKzFFQ?2*(Ba=t7S&r~`^ueAa;Mun~unF;^Hsf7&!x8oL9i zJqK;^+Q5oZ!L;KkJ(`#K_Hy7d*-xX$e&Z%>?m0hqz-j<6OG~%;Cki+>#Bf z4vf(xi9lG)b70;#!M7p5n0}4x(BqbC+Gp9v5sMR8rAUb3^@4(740sL_H!ISgklLYm zJyAK(buNE*jCKZ?8lV>Y^4V@fr>YbEcoIgZS5>S2C!X|i{)g^CU5!rs9i)2Ru%l|;nelj4ul7Jd_Surl z3oMp@gsEe`yG)L)ObF&+96xM}yWXZhTm70P+WD0NphN@1)OsJ(G^^l&KMzeT95IXk z!F}%#Q@Pa*_|~HU=1)KNV+KG{A5~Mv8u?DKWfzcapeKpq|3fCTE<4~Z0KgBcSfL#{EY_jn@T81;Cw%%2FpRzN%~?b>;=F4m0MhS^y0=nXK>Dp ziR``-nRQdeOkDx9Qws<*3iI%MAfceZtdRtyq&f$?X{-poBM-%XY7(mjEOLuQe2PXk z5gbBYIE{{iz16!;L?e^Yfyy$D8KLb#9F#eBdD2seciK@G5v2txj|&H?<2NH zf(~$=GKS$+g@sKB-(0*l-9m&%@@cIowfR2FOoPr`eHN)ozQo-9)6S~dCSSh zr?#<7iR39d@m+@QZhR+|>Qd7euZb#qj%|Y%o&`(^^Z&2lsFrB0-pzl7!={hLL(0@p zGpXPV8Fi_&qg)HBTnqv+fRrh7;o9NNBag@6Z~@B1t0Xah+Bfu(^g-p>_L3jj;m=&u zXk@JcE5Hx02SA`7jc&`2Am449f0E!jmYDecvc(VE$AVBnR3P|f$nrYsBPs2g11x~Z zgj%g%R-7W(CuSPv6ht1Q)+Cbxp_x*_-i9H=@N*h%#Yio{-?HA_Rvod}VDf(MiC&oe zHkVYX^y}bI=&=8y<78qiT4yj@}&gxp^!?Lup+sBiEbQ8Slj@>vv zqocP@qKT8*-O!HMTKxip>3DkYn9oRVZ?vR2*kq>=NeQu(!Hg26tCh{+8?C+pv$m(T zxg*j!-+0SdGUPEd#SE##~W0+by zx;z^5lW&4dqI$J0N3l!bk#M8PqWZKYx#<`37hCzQ#X1us;d{?_odTILCz^9RK!Zm>j9$**$cW0p`g#sJ8rol{u!|3BYGVeP zn)%{?dw~NHm!Rt*h<)77)U+!uh@UsSr{in2cZtkO1~7r`69#EjwhWd6ON;ywjVl)e zI=L5cm`l>Vq5fieoI2nh1Vp7Tb~ZrXHrsFg88AbAmz0)~aZSDRUzlH*@J~xag-blG zD&TF|o@@eNU-|~U_8~n{%*sa^-_6I?`}^#wZ4z4|rH`m=)&I!|!ruOg32vRU!vanY z;z$Ql0;RR5Zhp;$8N(@DeqgyB->ZdQQkliuX%_wfTCpM5>xdk4qfU1$6nKN{7rXYlL+xG^8ng5@@v#stz1D}rpt3i)KO>*a1~IVi_B zDb?G11iB@QmT4St@jq;J@^|8q8m|%MKxp9c#s^=SL?^M5c<}2xk4s+;F8X$HhLtzp z>9j20eQ)f$apXXaHT3lxD%Q3s_|b}ORoZG$_%YzPzGqm&Ni3KNCUGQUjFQog{?Ta+ z-Ut_OAC!fh48?m`TLBYdf^cUzqJiC@%~(Z{?!G583Tokg3K2q*nAd9)zEgdT#ac}G zB))>!rCmo;cNqk=Tc$xpf*6ilWt)hLk48aZs^t6rSk8X3K4(NnBPwb$)|aW)Acbn) zsdq!Wey3Grd+PM!&~|haFNg3sQi^P^;Z5Pb^D{%D9{}Qrlx1MUrP~oz4Ptfv`$G~O z2>d`b^9_hlvNw!g{7@6+A3nJ!sC2Z-=L%X{u^&I}yX@w53&0+M_Imo1>H8=d0|$n8??rX`d5eCD4ea!I{)uW&#R%S6OyGEV zDO_9^Y>cV7Ch4T7{`sl^V+KrC#rA!Ip?tnHlDuV{F8bC#6%{*GRaN`ZkrBJm;bGg+(NT-7 zt*x`F#Ol&(kI(5%g%%VAsSSNBh;-Qv4WWNHJos+}i6TuhVmU;px2Dud5sz_x^2My9 zDQUsW73tBA&C1LkGQ?KV5HvideA!PqNbZaaN>5J*^u<}G@0@p3Bb_w0wdYr+rhaJG z*?oUm8)|53PGhi}Tp!MxQ-z1kp|!qxZLa|A3SV_$BZ9hXF+N-X-wUe?BUTH!#@u#x z35{a3BgK4ue5)HvCH^Q-WjWw-``rV8Kv5wvB#Rio7<RJZnA}XuNolNTD7@0CAh% zFWcY1!29CT8;Q=~G)2Y44?e|GZ~ckL0LlKgSNs3QW5jyc1=9|Cb9DSSC@DSV~( zKG~-sxjg1EGk+7uqo(vpzjusDO1y@{a)>Z;pf<T{0sCF1nAgj00?QM$2_#-s&l zQ|BO=$72~^b!&E5*-7NQ5Vkr`FJuuk&{yH-eCk`sz?yoE0>+X|J>pY%UPm9uIOoyi zQz?+l_dx79bQxcHxJ#lG+~VVrx<74AnvZ3ec+(|v=B_A_U3IecgzBOFtIt`7Y`@zN z_09Jyan&gqI~-91d@E%BDG#9W2pedcpDtZj%Q0(Ta_9Tq5Ywr;f2}Hb3jL|)Yt#pY za%3#mzF!Xcxi~6(Wma8DpWN0L2OE#_hbkIF6*rQq8y~CpmTA`z;VXXSXUC(yw@QVl zKUbZ2UuOxp_4?Ii!&d!&qb-0GO?VM?g&?=ryPV};1W~bUhgd$^wINoaD~gAglr_Z6 zdK}Kr4wqf@PnMqw%&y)ln#}`bnt^L@Y>F3!30X6eqFDH|4`(22H_>f;Xne^ao*9ZRa)4whULbu?&_;?l-GV$r}0gr&#W~WeL;FdrA@HuNb-o^3QircibEZ!Ek_3iOc-;Eii%o* zoP`!Z@z9c+o9i=QWp)H~Cm20fv9{vkj>X~bF@BS}QAfRc-Er>a@ZU_m(IaLtVLsv< zObOk5*JLBhQREbM!at6z0Fo)YnmCRYpCWiL;418AY#JKU7_3j!opkH zO7}ApTPdj^9wsJv)Ov)S(wrRe-+)RYW}*MjpYf42?no-A(^nFC?X7eA>cqrEFr_h? zEHY)T@ud9ERfi0#S+e}J8rdSxVXB`xkGPs;0&@6(ps5P~9{*e2VS<3_4-tF5SiUU2 za=tdcQNC5a6TW9iHan7X|LRxZUz-{$@$FJS*Cw5?$CLg1xj5q!^~-Qcx7_0%+CX6; zZgc2?sUUP>ENx#uoL}cdIPNEzu^T9d8M6v2=}vCIMpMjQi|rJJ!^M|JgMc#P-pSvj zu3h-U_3`GPJ*4`4BmC3;r|X|@*Npmx1OkIp2WA_(Yw{R0i%g`eWoxS%ptIThzHvZ2 z1I&8x>H42=o>QuH!3=R4Hk8X%6!ESTpW3L?>KWr&f1?&qe5bZ-^g?i)zJ=suXU7rn0PaAD{ zgc8>f&F+;~g9+<==g>)%rj|kf^P1helNGlo-Ghgs z9bM8WH!89SmHKr*^L=}^-C9UD9w&=GL|0J(#kT*?`h35opZXg2({~Ko0Ml%>I6BT} zRk!Q5sbEz3qBd1X1mA+1qUswDK(j%2ItN)bLq1J~(F@!;B(pO(jgvz<+ppEL5pCc@ zll1B6-e-Iq4Q6KjVEm!n*SwsAo#V9+p|V>f72t$%RR$Fy%Av!E*O;nNE$u^@UEwhB zN82u51wtI&gScR>-t4voblLDR+NBpSbKdd{Zuvv(Y=`6eqw%~f?yqmNxegZlF1JzL z0w=!QHHQDuV$FQKw=GJHEO>k+-9&`W>vX4lM^)z)s3Hl}0inekbhIA;KuHJSil$$g z{*v@mgRJ)Dz|&bxOeh&BN=Zw*{5g12oP|mY7L$0XFA%MNQ8a+s=cKK4I#C%$N~Lhd zAc(8)zo)*ddv0rz=#-S2LL{79r}n27q$UB$wSUb9Q2BuYfPs((<>aA0H&;SKPp?#d zl*uM5>v!E^yK-*(m-ZQf9Z*97>kf~;lp|4-Vo~1{u(79KS{dOZGKL3G+j2%iF$bxZ z%UVlKhYVHZv{6HGQbw-H(b3T})6<#^DPi^{mN|a+pIP|3odyT;9{$Ht=2(;io#G##3BU24n89*AkBkx0*b(Vz zS^j(BZU?#YFmn_dYDu`+&NAgG0@6U27`wxu;NaA#wRV;YKqs=p%eZbQUEVa3Q`b!B z@X+hEUUtZQCSN7$1JHd8w}YHID6nxDpClbpL1>iu@yEccma~8{q;(*6V>h0yN@DMK zHKiwGpO+D^Ov(f7ll{Fda6P;aB9{P@k`AN*zhi5vsQ(vpv|prCyBkJdU`G1M!Nls$ z7a(Bp8u3(ldb^m;Gtlop zQ^(ky0Uz73d&{t`*mK(~qtKSWz`*>+}TCbEkw!FYG;=*Ttm#;o9lV&g$PsDu|R2lHyIrQX)61N=g8|(Z!;Biv2_` z5wjk>5*YXRkBhgG!@L%rx}4L54w5e}?=vl3Q1?4|cfRSKo^gPcwUCmoC>Rkj*GR@0 z&+(c(xYoZNC#jpN$kbfv&(hGd6M~}FJF#Q|Vf1b9B7NHK8+j=LAG~{F!i<@ZpPZV) zPu`;RLDJZf6pPwSx3iI*9OdVDmi*Xb#0?oT{HmOYk$-!7n4e7G7Q&!3S|;X8#IBR# zUbXDB$%{hWCu?q)b>Qk2ONzO3Z)6i*EPnr5yYBpC$DzJGyh7kbI+h9K2R*KQG_Rvu z@J4<_OKQ2A|77-RiCf9eaF!v=1#5VUkkS8|LM>D4IqksC2y|-Gpb!Q;TvaV^#tTiJ zegCDuv2NqMd6#X6MzOOY!TXx?-oT{dza-DQ)viJsgnT4ouky$ z)I(}@J-wl0Y!?@o#xjcra{yqKHeK?uD>YmH#$J$|W+bPvQAa~ZXCX6FcdC`q-tR_? z3Q8v;F)KU&$&MzrdJFBS;|R_4oonJ`&ECKj44b{fC-Ifs!bXY^?qizth=Y0WTJNSk zH)ThAmE9qkmLrS+AALnSV3P;pG$-E);J88Y{UakYoo8_Dg9G1Qa|1akQ&Lh=&cu>9 zR=iL_FInc|Rc3nuph{DNY3IaEHleO~^}m^ia=l#N5hfkK!OZ{ru$8D@1;hgLzU5M1 zs808Xdb6EAw%-Kh@xQMKdQg55Cw}MOO00>C{-vK)A@%9gC&Fwm4 zpTn2aj_dGUZcZuTd#+`bKKtVuk;>%KB`Z$k;fo<7h8lQO4mAIp$SxKSBq;9#_*@(&DW>@`)Ft`S0Q*U$5or={_eSfbf7w?~p)@ zLE&)cp!m~x2eXMznv3o85iF07!0fo76h?`d7U$R|Koe*|d&0uHJ%4)Jnp$PgdzD@T z9|OoD!xH(6+4M@LSBIWC(G}z@jorI&w<)1uW>8ql_q*tK&I|h517ny$C!BX#xOXS1 zFj$nnQj{6WF~<{zX`91WzS2-y(C?#($C$AjIy0Ux=~36Oj;fiAAPA)|rjSV*m09}2 z@!SfbCtDf@@+0CU#4*G?eX%A%yh@Teg6y~T@*v_{zv~eQ&>9XqW2nZmyU>Ci&O;aJ zKd1936Pv3Xvgg5>f9+9v4J6>2S4f-prlgwa>U7+U0!(^Nof8FX-FUkDJC705&#taq z4m%j$C&Ealkh?qJc{w&qr31ZqxM-+T5>ybnA|4HFeYF_+IiX+COx zU9zsp&#&afGU5e&qn3akxw4Bv#in~RsererrxJcj{tp>AQsXk9R3Y(VQ@#FhNHLV2 z^d81lt|q75n<2DzDD}mCG@X)>MbW^W!DmXw*SB>=Iv4OL<<-=D1Bc_k{@_sQ1E>{A zS3z!&hbTTIZ(wqqiU|vS$eq9_>{J%+gHzbO&)8V)XL5`Fax#Cw3U((1Wrc03!Aw=w)s$|H&2d(Gr?`Uz?H^fiYRMGB!Oc`E;3c|snC0zg^tdQG;wZh9w}aow9DlR z8;6t+-9?01DFo`$2mKk7{>+_C|altRut7XZX;@_ z0|Jkh($gE}>Z&}+wZDQBT}9#HwXRz{Go zq?#n|kL#Dt%4Y;SU z_jAvw^wnPt2CEGP`j#mFh)Ijz!2M^lS$sVve4L=WY(i zARZmVcM`A9FPP{{g7tktr5x;E+p_M>CACaEr-ahh6Na$m9NdAg4pTz zcO6Z_TWi14{7Rt8Y%q!DmTdB@0Y+zKZ4Ep@6a|`5KDcFJA;b7$a((`$)ulb06L54R zg;HEy1cd$75F9C{`R9;jjh4YqFl-SswW=w*oEktgb!_Wi8(z99eyn-_=N#UIM=RLt z&jQU4Lpca51u7xy-_4zqlhtJk+I12vg*PRB3DPV~OvQNs&L&;zV1Z_;`ka!RWm$6i zqHetAYW@8C-_J!P3UGhe-lj|7Dl)Q`#Jr2tVXE`w|2DGNegrv!;~=$Uo6wX1>{(Xs z+sEY1hUN5 z`015xYM1R#kt~Z#46_Dvb?Fd>0*eO)(Z=ox)v|G}X_`#)yB~4VM)dPRTM3d%`~b^m zUypWM!)W|1`8VsScOOAGKgW&t3DYINi7rtvg84vM!vF62dxhVABUJ-RoK?C*|g!M>j6N71|g3Z+5_r6uvTG7=N3q>hZ z`?&v0%F(n)cxNjQWuBV8Bc-HUO$?_OhS^mFaF!B0pIy4WcmOz&#f}@!_A{^{ES4-@zI^#`?OkiT4j1YLg;}cvF>Repe8usm24C1UNv!8=@mlcsXiQ;)d*V z*+Ezl27Z3$WD_i+dNMtfV4Dx`+s z)_%0@qF*^*W`$8;vl7gmNTMrVg6R^iUq`qyzRfkPV-Ym@uzF-+tH`0ElK5*}Ogp;h%xkpJ5s0(}*D_TE{N&W&+mV2+F7E!nskm|_aN%PM~{XSH=sM)B(SP9Ynce1uW3JVYNc(Ag@$HvCSCnhGS^k~;e z!Ib|Imfdq|fsF8WV%gKSb3s`6wV~hRw`KYy7VU|ZrKO1K=lCPQR1fqHyZ_mwhH)nAOQ2nK%@NP2+IgiE{cs+jV;D?l2`ub`RYarHH8!aG8d1i+%gV|Wp=6{o4$q6M%_R!UUA7nC4bPu`<72pA41=1kbw>>i zUnY170W+KARERxu?1$QDM(V72=+Nh!ZLDGjr?%4p5ms^EP#D&C3`xS$OVYUo&jx|EDAo*Kr&tA(GI zzeDV>@151)TLZ7dPvD}oG}NVvJq)-w|8aT>>{Fnb6A^S|qCXOP&=2KNyz|Xx`kcO7 zIAnXNcs-J51VyClWClX&)<|O}{Rc7iOhN8Bz)C;riRcl0hv@Sx*zdzC<}XO`V8Qm@ zVcO*~P~#T%6>mEL2cXxZj5+~E?DUMC&PcXR4|1<3vPUkw_3m@g)OEW{udr`87e;NV zs0v~fDlRjAHxbtM8?CNI;?T>B`hr}0St{&cX({~Lbfzw>bBt zbjP_2bS=F@KgU>?dKU&tXjc)s7<$++0Oz!m)zwX3kv8cHK|cai_*TGQ@)FEosUQdO ztl9WKp9y9|y<`4i_4sdiD=I1q>M>O;^*8sbINhg$sr=)+{;JgnH=lpJh5*{wBCWw= zi+Vd~G8C+g>?QzyS%Key@C3p-i{4*^o$Tcx;}iM&YNE?Z@!BvbPqTh0y0ulS{az>P zq8FJkC*hm7n}5z8ESEbFE<<)=rd>v!1Ms^ zZ2vE_a9gdRR_Dq}W}*e+FYlOS;1S4fwb>g@)+-YtjxiwL&`^8*BLK&}BXWF*cN%_x zWL3Rjr|XdE{byPE<6~giMKh&d^ww;PO&mJ86TF}dk#4Lww|#7@){w*vzTdNm{jpMn zUM`iEFTV-N(Er3C$Z;uSTU|*5jsS8PQ^Mxk6_uLZr(|u4K;eKca|nU1wc>PKP(jHt zhEHLC7o7?(H%{HJcdoLTO@*G(v9vv?0;3nz2)mDJi4N3wyYq(nB+8sz+cu$Lo5}>JAW{+->^OoqWYFdnBjXIvUn{b&oeht{<~V5fKto z*3)ydFnhSVM#p0xk4eAI?)(;A^$=C{yWE?NX1)J2E3z?KInpa~f|=Ovi{}tV^@HR6 z8Hp_LRP>A4*vOa&G{0IjxX#4eS`&LEBJ!Sqd?aphB7@YYExMKkREN9Adq&3g@nha7 z+L!LYDa!y__{*`zUp1z~E8Is8q3n1tWJ%*j7%h-s+t1!vr98NB65VuDPZhohXLoWI zc|O_O+xuk-5#=Ckfsv7Mm+|%MNm<+WU?bpyfF{&V2Vun#bUU_LZE|A+@TNRi-~bm~ zETn=>C%|Qrq&A{qAY*N9?FEF|0h{>GvQ{dUGnJN#qefu3IF~*9zwhf)y-`0p3XzuS zAHK~Aqz{^e&qhFGNVFyn#8r6iGYZ7W9+Sj_lN(w@im+Vyg+y~puKmyJX}YPuVPh@4 z&$>wSOA1S%Q`6DmQH`CQoldk&9y&Vu)^6hErSqGZJQ(d7{KU-6%=+%`oGF0XrQyYy zh?I3UZ`R^1o>Z->;0O>8pAIETEHbG0Zc0%03zhRO#?B;_Z8_yYnfH^|1iE%hqX8Qx zfnPy#@|67SNuMNX$;Du^asW;lh>p67k)=3jVE^>JKt%zQkZ@sj$@`rc6z`o{N?dmL?iA`e2A;8n zY_WmCdpuI5D@Vs_H3Wrh5FJVuPU3Ex!)qDk=VSVDt0!azX^lVyU$=O%GvyuHoDf>} zJJcBX3YWe?#g@n*R&z7Jfh8aUT1hreW_vGff_twwuuVbxx zBNr3U6-ZydeCFE+jcnjRSW$m3Mh%rjQs4Yd(o;=BXd1HP9AS!_?`&aViQ1;89m^e3 zVr8{wVcQ9KJEHIEuEq}`ox!hHui!zHJ^ZPZ2gjeKW-;L+vyPk-$n>1cEiJvIYBLpm zM_2)01`T~*h7*Y2W=!O0iWbLCKp5bHBkf$gnM|zK{)CU!Lxs;i&X6g&^C{OgzWt_l zN^>G`-HrH-)Z^{;Ukm4x#T8B-T^~Dg zBYIOGVQgVJlAW5PeW^Kxb4PDS=aXE2?50I+L8v^qs5ps=Q2|tE+!sKDjohx@$!SZT zHM*PU7?TI;&JLPD+6A(IjswS$IvSAd&>x3y_LMM%KdmK9TYV8Jy>Hkt?7#3aJF>v3 zhizikmXBKeZt+}ZWNis3R}JwI1R;CJ^vC(W+yOc7`0vIgf~$l~M^S(*B;j)p1*>Xt91z9!(DzCH zCSTVbY?^0~R8g=W2n$5B3ktekn64q4mDZbeYL4sX>=<>Hm683TE)1l-DfERr2c@vFfYg$^pG%CxVzYM$@b_RTY$|u`PAzgW*sFwp2VID5g9K5 zX*=VxMG7H~8hlcqwVCCx>v{2#vdR{cC1b6v>vp*?kKNP%A?huoqI%!9;hACR9+B?Q z5s*+2B!}(>328*SyNB)uMX3QKRHQ+gp+rR*rMtVkp3U!nulL;_fwh1I*S^m4NTY;= z1Oq@j@U5+_?S+U)mXXA>=g(`Sls}i1?Pdr#8DA}S$5N$K)Yk4$q{#Puqjr(mxW!w8 zS14pRrp$M(gV-kj)jo%7w7C=O49v;0xs8qRKSD&m*38~`NsRCN&w(6YTzt<)f%{x< zB=+OWjxlQvJbbbhBaRMh@)kBB;@Mux=Zm+J!cBwIsh1TA?=W7 z&T{h;!Rf&Qq}w?JX1**E^AK(h$h3|(3UTD>LR57p)jpTa$1p!kbT0io6bjqSFNU&R zdZi)`NMyRx4o}{;b!FyMs1qvy5`cQb1z=789c6>I=5DSb)1V13WL1wEv4ozvBvZ;F zI%w4)Tf|mT*bII@N-agtX2lOX3Ye)iH342ih=JU^@Ct~^Ml{XNWy6*KwjR;4?yOq_$pLew~G6YJX z(vHK^&+}i}UDJ8oQ-H3tOE!MSA*&{LO!ra>ylntiXeX5VT{C)xcLf-m$dHiv=oTSs zN$Ii@x<{k^Y>VgHjwQtu7Izj^l;PvCMayq&H71`KYJ%=crl`u4tnKRO^z>3BW~rX9 z7iRQqT%x|Nd*hq_IBsnt3?QFWG?C@HrF$noB`t2{Sp4~A(@7ajtMkjmMWh6-XWBX@ z+u*>41nx=}gQ|Lmq3BirdtbC^gqmyHQ9khx|1~4QO5&1;{0~U@Jo%e*(PK9N&%y}0 zUA&q*yV%}w;yiIAg@2^FYKj^~i!Al1%?DW9=a`5r9#8Q)PM;STK8*lGd?sbsY+r)d zIG$hGJ8`_mVjCtv;2uu^Yik!KCRKnc(5swAysKFNN#ltd@a9_?+NCLQ+i|o2Mc`l)fR&@7NYF4nEFkZj!uhj$|D2~FJ^F(2 z#n+mVI&0kl6b2@{_f*j`n$z`STOI z++{RsGoO6&<*;G@o@&+Y=vpd>cqIjvEtwwUEcgQ4vvk5hxxq_Y7C2lUhyv{Hc_u9U zI(A79C_Mn$!T%&d4JAsyee)|)$$Se-`N{4`t0A*~i^3rr`=rW12vz?n*`okud*S{J zKGeJ^V5`>{`DLWvFOFQvV`~K zQ9%TN4V|E*`#R|UZ*MiT)oac+oN2iXXG>d?yy%y?_js^13&uo6t-tWld=wEzU<01g z?gGVV!b`6;LSO}|<+AzwKF1Wv<88rrAy-(qiR3r)Nb`Hbe4S&i?6JO$y zRgxwn?LcU#n;~05;hj1lp}T3Xx>;Kt`AX<=tQf%AVn`vy{lvHO#mAiT==`-WEE^49 zaD4wE2DHNzK79SXFLp(A_2B9xebf5pfP9yY*;5AeAku>i*0zzQ1bXG4`|R^v{^%Cd z-4gsmW4$0CFZ=b2Ph2#6K@{}B=L7iIts~MsXq=AkpVKy~gVgq>=gi|$5S46(E2zX6 zu@t#X*w&=DyjMUKj%{P`2BYs#h3+8=T1E#t2=q)W{N7fFI(X1Oih<>9kL>Ky9`HU? zbb5Aq1E2y5d$b4F%TD^|R3o!jW(mLAVgrI#3I^J?@`4VU&%_R)@pJ+SU;(n((Ibmo zrihK)ftErO@%5ZYhT=Us$%Zz*YZ|9OekJj_u;&Adb_94nQiO{01_bII9Rz;fWb^@6 zeMLBQa19u>5G$&SzHpEK)PH_`U7qqMS1!PJ(6Cl|%>6sXy?s#c)Nh+($(0&mL1|2rKA!jl2(iH)d;NDVN*(AEYoMURuM2-+?T2U|ao&f+v` ztf3o>Ei5clkni~MBjOMkE0h-|$Qbjuvz*r7JRL{vu#nAsl5HbM{3ycbtvTjusa_c<{TM!S@6eObeo zAof-M)4r!E00axrMDa`hZQca=Tw#3-V`E&I0Dhu-yqJql$h~A{Z0vi_ zDDDS(Qr@Lq1)e3S>zFn|7u zMD(o$?lub+M)6?)=90I{2_O|1fc@S|qRmg_%LCOr1fm`!n|Ogk833Wzy1s#309 zDN^KopX;a5QKbT+o;5~9pz7*4w4MY5^i4d1}4;}M4D7f z@j#gS+iY%O5l~6!5_FOrM73ZVVnIx&Edisa8o}aJRw43DmYc+wl=3T!i)Nk6&_8~A zKH{!2|4<4`mU5F@%xfsJmH${_P~?)?9~?ke4WxMoDo-hkTkQ-2w%b@6dVW-xk|bd$ z9tJKt?6al69gTEQbM(&FqW9vL$+x%5y#(fzZhX{ua?w$n@vBB#u|!FGrTS94aE*M9c(f8jSV8g#x7Be?jlL98Tm=A2 z)i#C3*ip6<rKli;(LgF{$Qg!u)eO3)q2;1ntHFIh17$$fUit?;@l2Kop+R|5eD0YVRcSq-EF|nMZ z1zu*lZf-IWOgK|a_9k<27;BtxDGHup)H z;qSh^9Y=II0Hm%jVv$u6rtW-z2LL*Pih3p%M=YvPnHLD=sE0#S4P#C(ZK=jz{IL+E zs|Y^Naq^@IuwnrGVRBX7d-4_E8F1c_^uxyA#vy;a=#c0Vv&z;-g~=?4#dx|F5tx|J z=NU3k^dw_a1`z9+ODW(wu=f?UG-#EGUYst4upB4TxL9fFL_MH5XJ=vY85IXgQItSs zk_)uRbmw%EfJh*jFagIjU);K*!ijhF5z`{ASgBgt&A9@EZPbz3f7)Y+1Jr%`q=#O{ zZRZKJWg%@f#~~3e(y(mZV8Wl ztZ4!swxqQx87gUM3Y`9MTHZBNH}}1U6riAnFhG2DxkXCZ!o)9#lGZzUTU~bY&PNyk zN47{kUf=+qlofa|fCW@k?(N8yVGLp`>@1aD0Zu2~$!g=M z666siEO*S&aO&3nvU;Xx>Q0>M_>Gsgd)f;wF4fGmv`;|l^d2A|-GH;RZ#poO=GaBJjr7IB{p{J5Br~2^S0!M?(EmK?)7?JKbKebegP*4koDAMb&fX3#uQ> z9f&i3D;ePm(i*VAmrtW*?%h9h6qZ|4rJ$hr_Wu3*|3a?G$$y~nX(d4Ka0E!C9YF5w zyrpGj|N66DrWUE?s-80>0phlBG2706{W-s>b>sEqB?*B;DoHF;D%SPt4&E;bZml!<>Y?c|LI4za$DolUxsWOsTw}H>`q1{(;9q{G9}>~_YMv?H&;P|* z&_1$+4n_KqZofh&NlRe`Jm=1Awd*U`Tca2x20|WxFPdMvxcoxd{_ZfpY<{)@4;V`k zSP!z}!@HvGxb1O4AD~^@4}v?pvUS=YA#e#N{Eji%H1S>o9OwPjrpOmG1B756HZz&s z7atS8e^qWgV`gP#Mg0zknBmyGuF;fDcCdgX;(b#THN5O+aaz86OrKIw#WCff8Uf3| zI>;68DDP$P?wf@z>5-Ogn=e1Gtw3GsA5(dmdHp9bah(&|O`~ zQE<$zjfm`67k$Ujx6S&+HJ-{G!lzA3{kx#+wR^#k#`$Cs4HIY88XJ5_9BxM0v|!RW zQ%d3YJVloWj--s4xTWHIT#957nEwLu0@o9u9T>~ZGF#UpmDMUpgilQzLRB@6>3`nl2 zrF71PyP22>?&IWcu<}VkdhI%pq=(bi($L5#3-pO3=s^(*S8G0uR{)puDzp)b%az5d z4ymLBZM|AY(V}5f?k?QOZpNC>FN<)YxjjSbCE+678?utJz?|BM=GdU}99b1!za<6Z@zkwPtS_*@`eQ-a z&@XTmvxHF4v#F5g|w5B1KzyY%-ke>ga7{h;3ahSMsQ-y6A+k!Sk2gNr3e*{zu!b8Py>5m`C8BNsmRWRe~dmnXmZp3<^HS@RMA$*mbsV4vQ%B{yn)eanc8#rle2 zSc){h_e^7{ss%925dY<#Q1OWM+R$mTE*^!aT~aP)ERHWyF6m+94@x~?2f~q*07!-` z7^Xpg{Hj!-C39KserYTSfqOnV&wmu&>iFlAQ>NSaUj(rN=aa(RcSL2aA2JmL#1296 znLNgOn?8L3UhG>d{Qq~fhC5-u|2tXWL38S~eM|KYQAPz|aRiXJqk9rBvvWd%PIhW=3gjbkN;ir2#6Ke$(6KoQ=sg*Q>6i~jfkVvJ8z-r@t6+$ixfoLj2`z?=D zXO+?$QP%=jqrIQYMMm2>jEvD@sxVj*WlKd@ey4pOaWM(mOp+HjvtVh=*%`hfC?!M3 zHLRKMfUNlV>$=5S#OvXA^~EL6cS9tCS;9PJ4CNFY%cdi(E-zh2<)X{>GBPuMlG3i9 zkpjhB7-J!HLRPpQw4u%!Aig}T$3h+?VZ6?ggbF3uaf9M5CN$jb;i)LxS~1$cVHN`k z%#G(rm4^>oT(}h(aIDP(6?~oEL?BuHd*X0#%o$Y%l~H%zQ)ifLi@FS$ipm2spRw6! z^Lqj1Zn6Y!J%|od5x&;cIPmUfaecE*rfmj0&3asR_MvcJ zxfp4BMOng&Iru2H-Oq%3-~Ti)y!>?hwf}dOrEJltb^HuT0v=FLhD6LvHWGE-UX-mj z`GW8mxxgI*>Nok939kzrcV6a*-P!j|99xVhWz1-pTOTk+>|NjM@xwW6LXa5Frd(tjeNt9Ee+VTFiuYM*SXz;THQ8p-|zvLHtf07r&rPCKih>ji&}N_thm4#Axi4`fDPNIStfbBXgf-u`!euU{*z4(F5eV) zw!P%hOI1iW&G#x&vc8jd_&M637L#Z!16;N6k=NoioWK-Ag zVMwF!`djLy=S8|KWNFCIZXKY+xgh6k2%DZeIeY4iYMfC6vu{sqzYb2kFflRd;1y$k z|1uTjVGt3)D_CwJyp&O$<1KyyQm|E7hm56CGn@oUA^Va7!O>k8@~v}-|?6osD~{u zg9o9iFeHogD4^S1*xr;liS>$u%Xd)1nHZyU$@>bvQg?3rj^O$C@FdUI$e6-hx?Qut zI3RJO?_|i(ADa)1z(PYQ4A=ndKU!kYjh>u9aa!QwA+Fs2SUyEXLZwot$8BimR1bZi zxm7b~M(BRf;+M=~>)@jn8XtaEQV~YE5DR$^H_W4q=%9>Yb$*8w2D|>@ouoY7hL@l% z^ToIlj&?LmrItfS2l20{uV}C6_wn#D0Stja9#wB+o!O?g@(37a; zu>SB&EcaBP-w&3e5_`>%ms4K}G-%R(E31EQqxQ$dTIyJ4tD!S92yL zK||-6z$){!q^b|#1dGkQn5sD5kh@qrLJWo9XBv9`Q!#7Lk85VhgQI2lMEv9KEpB*Ye;!moz|#QoCZpt< zc5hR0&YNQBaj@G)>^|nP#~;^AE*Cl#g?os9XD}4@JeFuEF3Giu;P<1ZpD(?^y%fUgh*O`}!_lFHFVD=&n~c8=u)74*AVH8fO2op8)3~`lVC8o@?OyOXewQhu zEyflupl+lrVvJszV2G#)tArDE1=!Ct>g;iWi}4XG&MKg3@K212NYJBvi=~>6T`63V ze=KL-u|>*K&?dK3_OLg9nwmB0JfH^Zx9?+C91sZP3qHP@#87EfRU! zl|aXa$8zS3YjCCuLUeF-8j6~21u+pykLHS(t zFx6=PHBjt~Wm~;Yw`_h*_0%LG2UsOcB@)`i(<8!p!y>mXhqvupXM;#iVeto)QWhd= zTyS3F=LxsV0dzM5N2HgNHx4Ue*3_XS3PRrtwbj%VPY%r^zY;JoC`P8`@;cN#Djri| zw#5y2@I3}-14M`yIpvvDc@5WG2k;f_Gv)>X^+CUw8B-+$NHfW_o3Bf5X_5(nzxoOQ zVJUqKLSAjIH$Ht+_N^tekPh?74Id+Iy|0dp+))b^>e+E@NB5RDBKpry`GT{X+uK`F zc-?O+*3UzWkHD0OdWF)ts@8yzJ7__`l}s?jNt#Z&M;Jx8-D50O5ia?~S+rl1RKDaT z0tUdvbTTqBhHsqg?YFHR9Cq}o-Y8ss(fK+lU_U58Pt zJtE^w5DBl}G-Lzb{u0rEog(L~X4!|z*SdGjqxE<-lQILnXWmM|?`FMS?{fS$?s555 z^=|crU!wmRQ;?XY3$IG^0(Ij~_}wtD<9oj(Fi~!<7?`^n38F8;waV=dI_sU}o3%o6 zakXv;&5Hkz$V#E+(vy5(Efmq&(^D+xlVAr(!O})~Y;LbFZaQE@r>8X)C{uL_TtPz9 zn)0Z5M5SG#V-2?~=@KSS7M^+>Hec}j4tRe-Mo0f{R@FI4J~G955N@_kwv~gMwC_9^&_uyT*?z>NdE2okY(*PpZYAIs6XDo64+Vb zUGM=VO^0dlS}U%ArO>ZoBxawYMA-9M0rOGVysHcA!K2B{Lq3Q8EEzleXBP&HXk4l9 zK$LTb17t0gWF8l1j3U8DbF~}3{hcF!xpycPbxu~-2tx8NAWJ{Z$uvs*<)uH*sReaP5kY0S8c?TpO*}|D2 zpfBE6E8u1!9~!IV2n6`}ZP|Xuk2!6*76S9@&z`$I=sO)iy<7+npbJiOqg;E|Z<93@ zfDo7nN^ESM9z z3~z_-K4uQEi7|i4lal5KI($AF(ag^xH4uP--z}7_f}kPw${@a|sJPKfxkArIHf@gya29;h3x1DhS68gBr4+=m(EkL0VuMG@-_Yfk1V?oYkINs`i;TrG< zD}fFe8bd*GJgdxLAG?qekG?!oeZ-5nX&_7nm2s+}6y7W@+UH@W0%BVkD2PkJOnY4$ z7eg~vSq;?LQorA^K*=^L0!z6dBAWP!Wg~y9yhvd~;?gGZcAq!sZU<^|QzL8=@Ug$` zuu5#M<$!^BSU9@ns5$rH@44Wuu=DHam*T^r3~it9Zu<1NbJq4u)OM@0##jt}gtDIg z58YzpH?)22mm$)816(NSRv#TjdKCcKq-{oxX?q9&AD8g)9)#h|{xD=4t$^aahQG~Q z$25h=c*ikg@l|R(Ci?|amnTfDXk*&;qs6xHJil^Rg+;ov)C0)yq>5w+tSuKKqKqBB znBP*)^^I?D#q@yb?S9k?#mp5_l${oUpqG}(^eG>;F|#RV&x z)-;F(7MRf_%6dJWwIzr1KCVDMohhKBg-?v6#x~dHxmi2?F_DFG4pC%fAh1*EQQtO9 zMkbr}fZKdrlA(4eY^saiNEg@#KgrhKjptfMVY2QX|wP%mrQX_>N2=wTG0iB{C4G;(zC_^+gONb{X#iw zPj&iy8!@}Xn0hYV#?l!r{{Cl@8!~)LHlz@eG2;1fHNc_~V!s+Iae4Sy~VGeI- zN1C6T;0M$VQv}hjG4hoQcf>8>*+37TVi!m6GwKEk@_$crqd&>w!}AhmkXjH!nn!CY zyPM^A3~K_r8Rb+K{1zKC^FT$-UsD_fbUdo4s0bsOKB@wdhKaY+5e?#j{8J%Rpma;7 zB#`gOf)g!p1)pg2xR@Hng8_vvA`OR@0z}UEjzw5FGn;SzH^>@tg{eUvNE)5(SlMlq z5KTB!x1rSd&F#gh9#O z(kYm5V3jK~HthvyknW9TpCWWrI8IYyzefK0Xs@iSEReJH-@>8{grRsu#>OhC1yw+e z%jyPlgE~-Qyn2vuPu@$4ZZC~_NeOyMQv0US3cE;E^X0mVW{QIE2Pwu~4jCb=KoT%* znqX;cPWvrplDUy*SLyqRk>(VtG#<_>CSM8i3Dr)B;g%Q|8l2|*WX6UZZnl=%fs+2z zA{q*dl7eeqo>lGh7?6ra3oZ52yP&0kb-EKbsEF?K-f$zQNy`W!C@Nkk1AiVG6NP*n zR>wXv|0wuk4j#+1wXzUj`NF+?kDyWadFt*_rp(#ZK+zQj=X$Uyhc8dp#}oAuLQ%38 zk+;;2ev>#;u{-2fpsS@ggFW!sT0Qliv0%@yXd^bfkPtZYXhMJG%gi6+iFv&JQrL=y z>uzEib(Od=Shz0YNI%2Z}>CJ`4}zxd!3n12KwU3JQFrg93o~PWpIU zTs{HbXoCEpOha{>LZFiIgU!fwA{{)T~g66f3BG;KhVcqOR-S)VbDdbPpaHB zLVg80yMrBU*K#v1zrE41o%NV~!ICfMjYTb*Ai_?~S zK^e}fZZBtufy5}qr{w~%pu5fL8FAgF*`y7D<$<)vj35KSiapIcUjsscOoN?2pzAu* z!GmGWA3O|M?Wzc7xmv*t2Xr4Q{%)(o4u#``XC&(R-;@gieF%F6Y1_ z*P3X3!D)7FphtyL?R(okv?Z5ra_#7K?hSF!t&RS*#un&1o>ULs|4=Ul!pKc>M>cG^ z$EkaE&z?PN{O^p#b@YOlADm$;S&N8RYpL|1+F{HQ7~!5^Wz;#5H6+{{tctUfPW|HZ znQ#IIE9Z_&7SUHjR_W=8FxCWyG-q~Rr%xL-gZJM;ebHJy|5CT==~W-6ddDn(Gew%S z^SpKNG!jJrG*RPFM?*uKVM9W=V2?hpqHAw6sx8j*vAA5@+sUCX*R&Cj1dBS+53w0B z#a_Qll`2mU`*3o&Uxw5_Hu<`@ft&f{_|uNsaayOg@1&2A=#o&X$+)R|FaGQ+`<>|K z(GeN$^U3`e;(M0eR}1>z_4(?4h^R|G_j@5TKB1A~%0Rkdq4r*1^%L(a3+uR<`4HH> zB6mxq>{Bt_oy3T}SP_UrDS-zu^zsLA@}2^5880C&)KUHDr~tBpUKVD`xRU7TJU|IV z-!0A!ge*xKXldC5`U*W&4@8T;%6kHj?$+|If7i ztM->~7<3f>|80TbWIvf zRdp6TOwr=jw}|H|$JPGJsVa(`hroAKmLWQ{)>fxIy5NAF**!W)h%21Gt=BYC!PwtXuQ-w zk;8E*-)^IsP`lbxn4fEprY*RR6~7$V1@P1tgHGEjGCSiFMGymx1FP`(wt$OS4HPuY z!F#!hcq1#8Ykq*cepT_3@$q&EWxU;9Tda6wCv=q}_vWCo?Z6#@8?ogwbTT%mzn04Z zEc?LoIW<3~s5WekM2la4r9t-oqo2*lj6cqY+W>cwxe&XSX33Rc%zTk4?gAIsR1yKm z$GXp@*unWp)bw=E#?K;koWq=x)G=THTzk7tNahxxRQEv#@!><&bw<8`EDTPnQ=NS4 zJtgYCqw@WDh%l%j^!Bz(>G+>+wL)q&LXxzHw1w25_A|ql`9rvde@2#l3uRiAi~Ae( zd`6xmxqe-JnhU zy}Sfj3W+1|ErfT8s53ji5H-6IW<7{IA_#QBK!DI_rNFvlSCnWAY+1e>OL*ujlTf%& zt}kq=$o_HNSvnBB`4Zhqk+ol0R9P$bHW(HK!_nDgV$RxGFQOV7%%HLe#AeIFB2E(= zxFSBTUWpW8o}23k330H88~ThRhNyUHtdAf`NH^&Bn-aL=86?hHW7h?Q0EGd-h>TMD zX*D2Bnu1M|F`Mq+DHg_?38A9jjcUgzu@{@TdY=4nC}9L#x6n?d-vi|B7jI}Zq`7ea zE@uxZ2Zt*?X?CUS{^zuVIZICaMlNK8&^xxoP%S9n8nbaJSWeE8;akMSJRT(DY2YrA z>o*?ah?<|1%DY;{nn|_%Qlie+pS33+Bj{=b>X*bowX3ZR{hLk2+Z zH&4(*5GUg<1cU+o3B4jQ#bCt4L1Bd5*uj;tvqCQR>HH}WPy_*3W_fL`+5(Dxh$ICG zfShsGaQJD#;~0b3^Tf0q$3B9_{~fkzg*1x^Gbbk}vLxiRNI;3r%B_Z$y$*$;#x_t4 zY6t;X7Syl!ZWwtI3fh4EC^<-*NaoWkbytZ8E83ie`4P4E3=Q?W-38_r5ZjvtpcWfY z6yL*V+gQOK)WVLmMuAhgS6wzDjtAKq>XO9D@VNl@-#zX>>MPxMLhr2HbM8g3DdIEe z-VbS{T_d|bS2DLZoy}1NtKwFR;qDuK0{8pSy^rkEXOwT=FJDeZycM6K`{pvu&TGj+ zU_PuC*Ms2wwYDCcZs-Bb^%#$!d`xKETBtM=fAcdDqQ!Gc2yo7L%4dL3Q$cssd~k=H z>(I067#MmHfa$h!=qibRp3f#pS)EWrGJe(t=D zh1X3f!Oe`R&Lf+JQ2E5|5PiE*B=`e0qD>3jV+CnK)310xXGye66O5!Z?l zXNbz01}@F59!v^}LDKwcTr_V{!o9SUZn4)4n>(Pw8;`B7{>;UnTC}!TxPghSECnO! z@9he2=?6H5DZ~LyF$U+s0pHjVu42Y|LBZDdR7?FP{W0%M6tkEv=pkD}lN%WUBYlku zNGOU@l7M=b0r1}O%*>5w83-yeN}5zK;1RM(=NSi)Hi3JvNSh9<7Yk-W!3xTw%G;I0 zdLA7UAXO}99z><_OEvZDJvdNm3dq#AtpRtINu9lZZatwzQkS!gLsnE%7!wcJ6f_Sy zeTsm9FhTevYQY(JU=@%UfYjl3;*2vuvOpyuQ}8}?9uq+TL4n4RH#kWU6b2L}`Ltdu zYJi8kHFOUWg?4o&s4%Se1q~xRF@Xl5Fpx3$XRrmv8V*~#^L|#*W-xh z&fzC~d4L0p23}y#)Z?UGgtQ0D5e4re^?N4?Go zRQ?~;ulZPqD*WV;UFGiXuITS-gQokXDncJfFc=jQ6a*p$1ShAo+*JE<+hGytFoSGO z7DXdjK>mS{l!WzQDQ`&i0D4GQ%i8b8^mT$cKl@YwwU(u?w36ixkyNDZ@nW z{HpBBz(D)01j#H)g~SlvTWlV%HxRb*bYX62AtSl~>)m<`mDJ=quRE(N!A@L#!Yi3p zX%&rs$NqsxeQx4CqAF9GL949dqgb-~$7lsGGRzzI#507uEy|a>J9k!za9zh>{__+2 z%&P41S+5knW6x&d&<7PS_$kuR@Qa>6@1!68!f$^{;98fym| z%GpFoAZZM_D9eTh0udaZMO`|Q;Ev;eU)U#&wK^x6v|lStrEQ!WqG9;yEA=a7#Z)qF zA0k+xa1D3$jh-W{?ViXH9Y`-$&FP_>`0%GEbp-ZN1E4jtOOD)YWzXd9%Z+;SfciG4wwoXlXSJ2?)n-9Jv#l=7pf(8ra_sEqY&I=L_cSX!ke* zoeZZirjf6SlB44BZPQrn0YDWT>q3Q_daU$vsUd&Te#vcPk?hk61 zwO{Mu#Ojc6U9v69`|GOb%bmfEDJ<>0eC3QbIykq@q2Ek53ctK5CQwhWYh-o+uQ2w` zT{P$}$Wwf)&Ff}vx3Ep*AW^KhabfRl$bJY(w(xqnn+b6~$;! zVufOlIDPx}m_WHC5BGEOQ;Qx|2vR3h~&u-b@?GsM-sZinB{ z-hApbrj|^rt#GW)=wTc0uq;cE6@xjzy;s~m=og9YZ(E1aM^6bfwT2mIT+{WqU#}G^ z9ETTjI~CkEd1TrgCZ299x*V+Nj@ad@ShU+n{aJdaEm!V;{Xq13nS;O*#TaS+&l<@( z%91Vv+-VWU=}p*<0*#Pw*>ap0{W&W42EoORUzIe@sTuDx&izIaZy!-4tQ8k)DY-st zQZmhn;So1rIN;8&e~uOQkVx7P(U8Ec6?-;k?e^1SluCHvQ!os>^T*&WinpfQiJ&E$ z_ZKjTj;G|fZqwC%sIbB3#&@6ia_5+EYbXᕙPXp zw)dl^t`{U^IyBAQwK|^5a8j~l3u5S1{AIg|ArIgW(tjik-Ez<4ks)ktXG>VTik(A= zL6$o`0UVd_tmZCKa{O;Ba&~juGOjGqwDte8ycVQg)okVmK!VdJgKg_-Uei73P#MG{ zBllk`{~2d)|2~6fUM;Cv`R-qj7xkF<y(7Y(4;PiYaM-lZ%I%pNbcP+Jx<7J(&dPzW6Woh6xOSxL9)^R6`8z|K~orkNx`(> zh*0h7JH1i5V6pXAtB6gO7$ zYP+BfC4Z21;$z;QD21=^f1LDh<)@S5G9S@AsUG7%G7{JQYbG1IU%?hD`ir@**B5-{(l<4L@<@bm;)Jq~peMR|;N|-~TwY>4FA&TAz5_v;a}-y> z^M1k5SfC0R&l>2L!=U;;bG9E}(shE(|tITmI zM@m#l)7q*HBbW84tRzt2{PlaW9vl}Zx8UvL$dzbLUir{D8=e@2YB1B)Sl}SAhy*%E>UQ&-9WzKH71_Q7(0?X^NypsgsGf90szsSWT~L*k`K2MeKzDV z&=%%>5EiEe!eCgH8}5-AI#zJu3^1UU12p})jhc1D1#V(oF$?b^+bHh3yAxe=c@di zA2N_xRO(;FDeBM1Xa-WKIP^;Ou+9;a#qGXLN=YZvzp={=^sk=|&I#Od^IhHHJ{~lX zUh%!93i2v?q$57}?d&=}81vxjZuUHE_j1ePa?Zs6&hK)`;cPufPW<}&U2DnRP4$Ga zdw;{4ThOCPgC~$BF}LrHACMboO3cH9FEI zsnL%VX+*^n3g0ecLY+kjCOIa_%}oZy2rUFIG1xYTN8)Fzg*nEMQjtVJS*iw(91yic z5R4;5B6%$}L?hX*ha=;R6aEGV(?u$JfRVTDyj8D=GOwIV`YSl*c0M{7h3m16^)9+C zc2NLtac{MCieC>EX0XJ!w4Q(x_I=c&yo>jnaJXXuNNU&LdlcN!Y_^Q`PsP5#w@FrO z>KT@D)C<4rvg5Gy>hZlOZ2$JD7=Tj$ zR4n@R4;C9I9mdZIfp_;oDIW|ZeueincGz*ldA%+I^}T^yeqP+(AHD>vrNw5_SmxZk zg5X{>UxL5(YWGob2Jt}Qdg$O|CM?ZA98ldD-4NP_IZ1}_i+Bi~!$q_IwaTBw0KVm< z`>2NdCqd%rSE8iquT8&%?18MASNChcV})1>?tkW8-3YX_I|8%=czwfNo_r2O;Ko5^ z+6iS|#E}^3YD)g~`3sC0mUM3(YW3FbI4kV`vMogATap2~RkCrjG@H{CV8wGrkBQ&6apCyS4bwP_h97l3!* z_<)s7mqlgg@x7v}Di8*A2V^H*@y~HNIgi>B@dKkSaK2X;$YWzCNJM#f7J0Ai6*o?4 z7OuJ(P@a=H5Vd7bTJ+NZ{+|qf(Ji4=)Mc@8z#N_3~mIN+hlpCMjca4y|9g zyHy-%Nxk$ZH>mp<=$`OqeIbRT%eTZtiy8VgPtEm;?@VCZ2)W9Gh3l z#Cov_4uDuC02?hcTQ2|`fR>T{E%VF?^XRp^zyndCvupf`CpcI3tS@i7`eqdVt;qe^ zDo`RyT_WHJ*p~fL{1~8^oO5GuDR|gWiZvQFFKfiXiWv~yMEFrXJfN)7?__h+cH^l=#8WY+3aP|FNwN0Pyv+lzRdw#vV2>4~_-AJRE=VYj`JTAheTAdCt85wN|s=*Dc>azB;w`j6m;Z z!Ja$NT#GZHaIdTpQs__$&&bHw4K~Hi>MD$mzJ}?N|1A7;83HpBQit5%@=0EaqBDt4DaAV2sdV>i3Gzv_B@(++OdlG0uJe9LLe;6KBA)Q7w8cdgiY-G{_4Qp)o<*8 zqR8~}g%jOG%^&{88!Esrr~c+I7T25TIWz1;OTEbD1U&f=eCKahaI;y}L!pRiKYSUY zS7o$Kq{*orNLk;ag|># zfXC_Hm8IgMT4&D$Hb-6bg@CEeZKNDI;p z0@5H|&)56+e^`q*ykHSmoa>yu_vfJoy9=oo(u@!MT3c3a!QXWKGOqX zN^}KVZYrA#;$TKlNKP!u9+7V62d+bcGyNvym9s9fy@2qPKleQ@Dc?NC#}oH2ZBSUcPdrR}?IaTFLWrcmJDh56!ZYaqVsqn?o}}wvvQObm9HM zf6mn^r@F)H2U~7hWMiPRfrGHaDViy z6>Awx@leF|*%&omzWwp_m-gKIIa*`>sz>Oe$r2KjCv6!}2BmRZhYqZV`_g2(*3WRq zY?v3oC?qu#{1+2j^fx{l8X7kKn*lkx=HK-%y$cUG2nU!mQaaZXkeHu;ngWV;*DT&njh`c;1{DSLH2a_pu9qbUclq%c?R^ zp=0r*+EM4on{Ec$Zaie-;d0ljsY49dy^mqF{m+^F}SN7|5`F0K>&&6UvK)gy6fyPzRO<FncFzM>!nD3HQ0KIOk_pUW$Hi!x(lfIPQzBZyn$}qr$7ka6*l{- z`E5Q=l)u^Nl_K?&!@pc&d;;Vqc$z+zSn858yGh!x&mVP+s+vtYz2r)+q|nfxZGBQY z8DHhC5*r$e%c5j|(aV6O*D@niQW0N+;RyK1a1SDu3lnu;6A6T+o|Mqg>4-4RVm8+v z)k%rKX9muQNCZBNRj79!$N-P9uiqX`OwvP$-``qHjCE2#MR8KNPVj;APlT|O3M@S3 zXD1JCB3k1{N_SPGkH~V;s`8#o0z4AIKwv`}1t8c6(51@;bny{z2`dY-ECnCkH?V|u zqqhy=S0QEa0+qNFzQD*-{1PI-2ZZqQ@Te0L%U(u+j@RAL){zV;HuzL2AU*cM7F@Uf z{_J(6v=1>8Jk-e_i`l7FCiL<%OSky2XwgAd_Ho=uKv>Q3G`dgYUT5^>7Ri3>1!@I5 zAXOOV@(aABQCn1~iDl(EX3cRzec!5JPc4e%!+-aoNo(C4WMOaFHDMp>el2YE=&iYS zx=Vn4q^oQSbtK?u$cPU%+k>LpyOQ4roTa40gi+rgo;SUong&*C4TN?I{ zY_7(vBiQPzPgRJx@RxNC8L04|ppu++Isn5on=v1ql%LOZGM1i}R(J04$+Q0tu48` z#~O8|Y(}f&6*IpxGf6p8&8^JE4}Oo=Ag9;QM)H5wO({Ros{d3jDg&-Y3)4^;q+7Qu zp~V0phnxnn*!O7p>psMI0M~7UlSY5pcuoL4=V>S0Aj~s|4azL1tETodCxf3dl89r| z9nG4p0r#GK(D3zuEf&#hBi8f&jHVR-?@uw+?!->rXqRVQyHitBOsGBrf~_hmJ>`XO zyZ=?z89mhj5X*mWGJ7sK@CvwqF6Ke+ZEM63`>Q4fA8Tf~t}be?lbXn$vSODAWSxh7RR~hPh5;vPJH^2WY?jc0hLwe>7}u zz94dK9YMD{#3X=`-LdhDq%|WVV#k6_J3hq=E5XJUykxw*FVW44QG_Z8()`{yji@}> z`1Je_J2)+yY2>8YH})m3R<8FF29Xrp3&!$*xRf|116M|oi!0*48(hkN_tYw*(NrX` z%dwE;k!Fwi{OVdb3;I`k;v?+=*InY_@i?*>;fBu7X$xszQ5z_SnXVh*CbzLi*7V0M zKSDpSQg$|0A^Iq4HtI11^X1DTLBX$>%l1e`m`>R%Q~cNdL=CblQ>anUUoWauL6tLt z=x7^mgyWYySR-vWI9=g-VqBJJcLBdbMBd68a|+n1Y!=Tf0Ef?nmv&A5DLKCF1LWqh zOvN<;L_S+!1S*GauD4%WW$u zAYVj_&PxMy@$hYE7z*63ws6$bw0+<17Ad{OZdITmlS`;wcXP`gIBGwJ?e!*g7((d< zo*sKzDL(smUbIUViHdIB%CA9vb|u?( zx9W`f(F>U9bm;amfD@a5knp`?elar`k{|J-a09v@dFQ`8tHY?ETR+F>f=I5;v<}fx3*j2T#XhBOgp{BJBD3n?&vrc3CwJ%)piQE`D$t^{A?KS z`K7ctz<3~}QKq%f0q~7NpzCd*qAt8|T|$@uWm3QhD-EybHPDqf6=6R(3HLjpdMjWI zj7T0oc0Ieiy9KiR5#Pl8IedDphDeJil*152gaDM*-(feBdq@%x1t|3?BMfqGv~0s$ zdcEp(qH)r$Ra3&ze7$P+W2N=W(Y4s_?CRyArKXOHc8l+~i}`PvnH)|hE5a8~$AS)P ze+#(ePgtPPNey*%3vx2Dx}&3`MP934r{;)w0TbXs#5U>&{Oq6>Zn4Zw!_jU6OSl9j zzDe=S1aFK@HBuC}#-~reNu93QGW7L|J4_}LS({=A6WzIOdD;(!Vht|!r0i~%97a(h zs_kEPEt3R$YCZHi0B%!IgwZt@?^TZ*_8>?KVUrB`6bYWxnSY~;rN9ojk0_NyH@;#i zd?y5COcKb9R3lf0Da1_?fc-j#-U64}EZAYqR94Ex+SDeE^AnGnrCxqygL;Qw25L;b z`Z(q|?%la0kQp&?awP3rH!qU0jF$k{Y%Fw4Uth-dUqc`ESP_9e#aI_itL(GafkphUSKp=L*QKF`G%_+DpW zmE`PkZE~&uMU=xO8i6FYY1c)sB=BXYVWz89K}fwa(h} zhA=D;y867n(n_K*u0!#^>TrsOW0E8`6-=S7A);Cnajk19Z24 zIOBYh4dIWD*uSHQ`RMRjR(NG# zB!jxoON&CgZ|Ui32O-c$+B$>>%CmLO=H6fHNv=U^vPQgiJ7ah+{G2LmlpVwZ3y8FB znH|=14~+J@$LCDEn{~Zl9j7h78(oncuLWY0dV+myAqED!D-17RHo>t{(4?#>Y%L50 zHWR0rs_95=2qf@H`%OUvP^3J=(1wWJoc2u;i&})#^$!p7{?5=dc@*LXrnU(@+DF#g}Hxq_PRQ*eoLa9kd zT9gc(CR$gismO-Yqkvu)1>3+KX$YgIR)75o+7$=62A%r733)uFpg`n=K>6}kBAT$( z;-o6k<$B)lVIy0Er1uo}0DQ=F**UHB_B{JSR~#7Q3Bg@*8E+Y)0@v)dCD_M!{T`g? zzFz%NpZjEPxrt-IYU2(OjjN$LvMdxNq{CQOn=aLrD@}N?E%mjddQ|p;A}?-c7PNC}J@ayNJvTQuJ-;L*cmd(4q+g&cEK|Q`W-L-TbPM!5yqi&M zA?_1Ex|sc4ms0UQl7be3aw;NJro`XCD*L+0dH;QF9Fm4n5~sc}BW49X3M1rD&@pd9 zspqTB;|4>wgL9jL$hRDA!joCH88D$@bY|a(Gwg@)2O&e-rne6w%-$B+L7IfOGNuYD z#xDaQr8rmqkotpBphu>r+xX&Ul5P;@coj|GIm8~JP@1hi^)dbba?3ZT(~YI9VgD~vO0$tI`S@|JzBVO8@IZ8Bk4g93}#wksA{3234)U4 zokki{JcX!aNYau73lRoZi)rkbxQJ@(=cO{k(Ruf(7;Ts+6@Aq^Tc|6*dW4!+FQgsX zP-!2i`;S~&=m7chT_BwME`x0oD;phuN|kV1oFgY|x?zZU-}LYUO14z~?$Teqkd*%H zKJt!+zpkm6j~uJIxC(|lM79b~c|u9Pk0-HvElYQc>rrf#*@Yc9a8Zt^9J{&1^ciB_ zV&|_lYx?g*j9jyZp}g$0dW`D@{^a#dJXXL-WJeXu*7?ZN^5OzGF!aOZu$mGNpFywHG;_~tHptf)Do~Bv+ zuxQP>JqT4-sZ;#C#e;3)uF|c5!L>Fo79dI5I@XM!k5&cNqqS|mFz|gQW(A^KmH|+R zyb|hg&UxaFN!_{E(d)H_taPB7V;9aV`!E0l*SH+e8BZEW>+;$b7NUeLpI%%Dhf1`y zX?%4@MK^)<2`e*%(J~9%{v@w4eLV2Ds)r+2Gv*`5}fQpB-`>;JB|{o=SGq}n;&Qq9Wae`W3r1H|_3gSz@(At9kJj9pUM zDa7TREb&09_Gh3I-C!f@-z4gSE|^F~s^Py(>xJlH_WH71fm8bj(J{2a$n51Zx)dR5 zt0J0V&%C~IqCa|B5K0^z4Vy59+V3~Af%d~{XW3rLM7vDNM~|fQ`8-1Prjd0IcQG-~ z8;6#|8q&Y5bF2CMVozL;H-%!m%bpad9+x-X#(qsQhW8hCK7EzM@7qEew=Ow5Zj3$u zJhuOb365%_$fq}!rie8@W5 zs!=bg%-y}5yo2o%@RE{_@f61O zViD^HP6-zJ21K1y>u7|1v(naRN4|{}0IoF1k7EL? z6Lv4#Dv}?$!oAB>Ek%krHdbG#^Jz!@pRhTo+6yV-G~JDI(zH@w`9RI@d^s3L25TOb zwSN2Kk_(^t!mrhsq|(dDpz5DUb$-vjAV{Ix$*K?86lJ6As_*!Ffz6h#gT4NB;t5V1 z-DPr8(ggwnf}aG`)Dt)m5JOE(O&t(u3IH0lwTsIuD|ef)1>^y(whpd5jU(b|1PecU zhNj6J;sP#{0f70K2Bem$l;l4h*$SPzUA|}c^@hicc+ZEdVz_?qlxqFyCGQK=Q^7n~ zxRC-vqmexPeQ$^_OknlzO`zU`BW}?r85=tT>>})E^76~vx%>=Jp0DEJA+!2`_&Pn0 z{}`SZ1kIi+-l69WcCq@FqN=W(l_ynE(fO-vp85ak%-mnmgG2qZe-TLC+^(INl`|&) ziAOBIpz~D&CUl~H2iS(MZ(VWCd!p(5g6PtqmM$hB!C*!bOxpj6FzDiaC9iLtkJ5NJs;SU&ckiQ`o*LvSfK5jke314?Oy~7l~!0$ z@b&G~TUpPm%j<=3ge)*JkcZ&HCnEaedDJ0)t@Dbi{U&8%UR%=o*}H>T#1sJ5fDoL9#AHYDg~a@O(ho@fWPenFpAZ_w$F?be#O;3-*>g>lq!z?OL921I zYEaJHZ+EQFEkN#$DK|WqXK2hPGMHb-$+uoAJHX z$YbyZVok_9xz1A01?}H1J5wsD^k||g&^#gI(AcAa@fwPY!t@#D&%{w*Q+&4EY(S=w zMSBiy`G8QCNAwLd{Mqf`Ti|Y9blzC*Q7$&_oO}<(-;fS}2|j}#^B?GVOC2o6VaTY% zEIAQ_yisfL6}-G42i$D(0ZE^rFJEuIWAgmkln7)HppxHxAkg!3x7Zc%A{HFWn4RNF z6s!W)YZu@BXp=liAjB%^Y{B*Qf|3DQ*i{9kB{;&}%$Pd^@-?k+> z6}UJ!@Cfq_o-aX~&_3zN*pLWl^xzEt0%6;L1!IMeF zaVNn6#OKgsuP0Izf~eTgjJ=cPbDuPa*(B%7=(R1A&drW&Y8wCDk3w57TP_Q6C$Ep2 z6F576TY9eku?l=VotGy5IC{U~wDMFNdT;P?;i^y8E|wLFzrWs3J<9YaOzR{!@%9l_h1N}PQe@+1{pe(_AVG8>?F^;cH~+V zuJg@kP0)js4hz?Y8&y_KU;1S0_EJ$XgFeV>89Txt_=>pkA9g0Q`C9v*wgt_B$Shs8 zwn$8lv&-4osR3IE9g%!f7D?l5fw>`O3c2PwW_OLA&xp+Ri@}wI0#rp2=JvbHJ~wfp+WI-Q~f;0@!bY7KqBqc*WPu$0&zP8)g2s6zB@zF23@}H@af`=uprNw` z;tXjVC7a~YX zquuY!U05fOH!QM484^9{GJb*(6r*!AO5o_DKavE+;4hjKyi4>-fhK1UDx(k*wE7H* zw@gTi_s6x$a80?hm&=|9N$zMSC#yq#WQ6`+u7r6@QCB$Uh}-wbbHW`VIsLsJkG@;= z@q?p%Thjv~1zWH@AxXL{59x-2k&B37rn z?FZK{dgpxce!x9y3vWfzfcB1yR6Ase#vt}L`gZk^l?O4gBh!yI$&$!gry?*Ili_|* zybO*9< zL>7a`_8^Ua|2^DTU^PYHQzK4amjjTI14z!cLmi}0B?&%%#!{MLW>Aqp9Vz4yEPjoXsn)KyvM{_+p3)iE&8XYljyUY=`T&GZ)_a-)0gTH251^HoV#fD4{$W zkt8_iic#37zi_|6q`tg#mF1?_I44QwGMsYase_k(P^q}uE9zJ=k(@>C3Os7bTuBw ze=`eL&OBQmJ4MA(6dn>bjj~CQ>CK1D%JGtou+qSaf)oM+(SxL&Swu7hW&Fu6jEZ%D z2-WVNLnmx;QO8D75>eK=uCcK;5DAV2mg{N;-cR>eM?bq5t6N*sxA=k*f`l9;fsMo2 zZA%oF+U$h|?#9Q$eH$8ZU=aZEi@ewr++)5~{p+DkHzB?u3LF3<%XrdWgl9Y-w>`E< z4jvOho_{MVr}R601CAe$xb}&&+Dk`&CX5|F8)=Y;2%oTdZXc!WjemTjAa>XLbHwSX zVAO;D@BMo1dg_4ZVLSicwNpp7SZFIZ$xEs%I~dCvPX|!9^=jvGWK}BJN1tnds6k>Z z2*?XM_o8rQOS|6Ir~jaI!>&wTdgs(5h_mZG2^*D@MZ zQSx`A8+XYILN!*HnsS_LgvxVL3Y+=u?52u6+12Sc|@g4?`qoR#lmoLmdA?CfF$VPKqN z1|Zoo4%~%I===_+>it4fdzxbko&!bUTM&*V=^%BH=1nQ)!XJbi7J7SxL2lP{?iW+l z;;2ehKZBgGdzqM~z}n2^aUA z--dsUVg^1yAM%#ElhXJ~xG2|*Nx@I>oN zx;|Iy)MO5R?y|Ojkau(|1Z?vqQ4zTXiG)e0m%$qZ{6r#}oT4JxjQ=u`0K!u&phF7Oe{pkB+ymvzjtiQ&Y3nOUlF~uc5yF z1LmnjpSSgLQ@n}jI*k#QT$eP$F5d3@J{vhXV@Hf#CU*8w>%WC5??Cl-qJlOU6?tF< zP}^)^@4on7vD+z6l>ig|#9OA{A*u9$l5Drnq)3eYfnTz>^XZS|9Suhu(6Y!qS@x#a z_vyX#nQ|%d0oyCN>( z+s(JNhYW*DEjh0FvG2@JPel4&2TIOI9Q-V6p%dwWQE}D7s_8UDAZBP} ztnIxv_SoXeKyAEBKW;}4>Js65s&~v6c8CexrV&%5?f%5B9XVQ zNrkd{DpfId^o80^mvK@+)>Y*)7aC3htJ$*kuNUhY~ESjH~Q8wZKr$C7b_o5R`Zm z4RXu9RoIwmuh_xPfqoTjvvp1nVz31G!iM|5X5kGC|1Ox zS&q+iN049AnzYoYEAS7&=2@Buf02d)q%aTx~HSc)z^2di{P? znBXJDTHt)t$cTb#7%WQW^Jf-G{2Ouv3V)w~}M}9@oqgwfn91>T|i_pzolk?NjHC;Dq;M zc=wg&GSTVP;PX>*_f=)`rO&bnTN25D)5#4A~ws1p?sMkBBfV!1{GL8q`$ zhiiZD#T_jwRVasu_^F5j@8@B*MCmhZjpJJ(IfN;Kswdgk$QbsP!fyD@Q&wOGp19V& zui$kQHGH(d@>71%3KkN{CZ*JfJs_ntJFZ;eSzNqB@)l>66P=n2iZAM$-NzC8X43B7 z&GuGQ-*1lc?%8CPL}RksXR~F=jt8&dqr;IK*0<*r3pdZdc0d90PDH%%=`Z+hRm2Sk zO`*-=`6x9I^7S836Te$o5Q@=@j%1QamdMSCpI*U$9%D=_5{ zvUQ!ea%hF+tMU@82%C%P_8H||XtO!;hjGLhBnEU4*484dT5dl+{u4dF>)|{t zJ^ujs3(1f)0uT1e%1WWCbEV$W%9hqEQFvd^rb!)*mGGFNp7KTR!Dj<4mND$nf@V>c z*Ax6nylY(1zwZlw2Eeg?^>n>$Cqm}rVYw8=Onl}-ct1ygu1d!{}+6?uoy*DRcV;(t1e0WHu+(S!_06e4$rJ z2R#$Fq?yphCof#Z;SZi`E5mA_%bm721}QY%{`-4S)h*faj(?=T9Kc=! z&HJ8tZZ)ThoXanSJNc3l>i-mR^?!BTUzML}oR0SPuRX96zkG50PclNB8aJDsndvhy zHRT}J6_gc<%JE~IX)NMJ%_%3Z8J$2>q&4&^;>9qu0F*ow8%3Y8T%PADNyhnNyuWq0 z)1DF$h#m_oSse*(x(N{hD72rl(GeTb>FteG+|m9;F>g7XEQBus-&Xs#M3gVfcr zsN(}xw%N69d%rO4YNeMU`bv&HApZ=tAcKwFpJ~$WbOH3%kXKBU%P_B8Xnt?PEPe|^ z0c1_0q=FEKV1RqS$>bvTf$8Ad=R8mBqNDR}6Ytpk@`tE4KuOFnvs92EP|U6s}{{|4$%cZOB##4L7nJ#uzyp!ZY_Exv2zj}|Duk& zI+}=cK>{-}HUl@P#Ewk!7zzFt93o}YqX3`wL)cV47q=`8X)Z{A1q_b4@CUHYxgY~ zd9D~u!LZ_o(?-^^*q+tO#nQ*q4p3<5IT<1lE8#OC)*DNo{4a^aWXf&>4WyEb{OIaJ z{GtA+AUB_U|9DXa9p|m0Ec(aeQUjxX!Za1RGsQp9_M11r0>)6uRYFy89@)eGPX>`+ zx6E359hzumSpLt(#0jGm^VL(+)?PT+*l@6gb_GQy5WHY!RCRNzW$#ebKgFl`L#KNU z0(kW9NXXxL6I_}<5!$s`4R`#-^B}g#iThIj@9mmf(y(VDNRp=2um(!QJEMS3ennu8 z+6eatVbtRFlMLU~&%%Ou2#wZBavY-#1te}CfQfk*zWr91c1za3mx)dAC+A3d#fF6T zB+TZCw0>j@)0M&2Ci^mR{}FlMue&tz!z1bCI#?C{s?pI;z-EqOo?8p42Nrzbzl?z5 zSS^t6^tEgE&CLAJF{HJmoG8DHcGu3l_TXKSZQ1zw#nwV1!sIQprDi5|iqx*4L}V(PP%2g2QLzPMEO( z@wO}j@wL-1RbN;}r2hL~=_x6N9PI3-vH&tbh#CC|K*83RYLpwx86W&Ar>F*_qEpg1 zkl{c8W-PKS7RtZ1yjc(QqmN*b91)g6g)ZGLCH@e+jA?E=(QrG+>7fe zB*t%d=O+(0m7RAgz)H?z1+qwF;jTNab~3^_OH4x*~-aT&!Xx{rVd!P$10^?==2PwUg9N%{M?V(l!3$8I$W*n0N*C z>#3%9)DvKsAR6(iM!w4?9cq4ISoYoPdR8iPC%uyL6#Fa3zCA&Rb>TO z0==#so*Gu_9Xk18hnlltn%%E!Ux17p!YT`VY1S=++;npD72@EKnrN?|ptzu+Hh%M6 z(Jy>&zMutdP^}TZc2L+CJ{-yQHt@FXv$y8tEa=pbiY14hY0JM6L+OIyD(IP@BsQI6 zM2d%_etblvzCQU%`)HenV6Z;xI&$A9di`{qf^z@xH&YXsSNR{q{-EK&-<}oo_Bw%B z1tn}r%eT{K6~vL*NG&8y-#<*RyrD9A+jG;WO3||~+oGs-NS714s50RBP{7FV7XR*O zYNHu!X3Z38xBF!`L-5Xm0c1l`YPGd_)979PbqKpYJ;>std7>Y^@Axu>`|fz=OGgt5 zT68r|NU0me^xaGr#Y$>)joRyvpB0_*EI&8AOIzhdut%bxUnc^ahl+-xQ4;1L(t&u< z(0VwUHB>1*zH>58)S;ZewPUD^G6Nc7-_>djL=|O8P&Mkw?7eOLIYu})%J2GQ>$N+GDxHY=@RxLxhl^ysMmcG`j~6I)~4mOx2KNgdE+ z!BTK`b+w!;)6QF|`<(CzDCg5wTHWYBZPk%|f%S!e7-+z_I=yNaL6Q$y-eeOZD;_wHkI--n#JZ$QBE zOi>_&atR>uSS)#eNiIJsSbT9`^xff=S(4l2N=Y>Qa;H(v@rgPZ5a za2)nG6~6+9mERLUFPrgp_ZqN>U&TOtd}f7T>r=PKYu998{P}f}%K6`Tk)=4ojC}N$ z;zq~6abqz{wo*FZXJA}9frFe1?|FPIt}P0)gExvl`&dXZX zieHaMq$bDLzhYv1f|c$*IL&#^z98P6PkuRx6ya3uBHRo^y?28nAY`ZrD~A=~fZwGe zK!cFJPvRDEgFj%gs!eG6;|*{Jf#{-g(9p6ZPe^hQ=})x@$bhW>NAdHDeWuWo1k(?K zGDJ(&W82(w5&8^T5AC&@`f^Hm<#KC!g=hfZ-^@`F-A>E6Lxp(Vex}yzM0Ho9Y^fB(MEf zo&c(r%B1v#amo}$)@vXOX@iWGf_^*@e+P>dq%(<#KSF}o1ztxS!0gO$J)h85279m( zx}4sC*D-K-CBlH5VgW&xBKn6QRXByI=uF>L;flw!z5<#>K!V zvMqVP=u6{A4rR+X{cEk~k6Ulnz1s-(2X=RlRG2+qPEWBzH#UjiiEfY*CTqPtTX0F# z{-1V+g+)@juOO|B^Ze?nBRfO(zxHgHVSHLvmfyg_f(KC8H>Q)%nwm};k^Z1{0ShY{ z1{Vv3m?(Z`sg#iZH=W0?hrcKx_0QQ(n(o0TGf4`^UPz{7o~uFJ)@=!t_`#=Yy7MUl zDD!OzP}YOS9Rl)%oKJ%mJtS~d_GmCn;w0p7)kzeQwMYIyh9q}{c=A5W@4SlKL-eLTiGcvu%jY*Mr@gJD-d)k} z;h36wUeN|A<4sYG6HRxl9Xa9T<^M*IkJwA4woTuB`46bAS1?o1s~^+SZMVsFEL9{9 zfji1rc$vZ0^Hlb3ZqTwN>*>}k@P(8637oNS%;Zf>`oaxAD8{_wiF!3QHqXn4;-mo8 zcZh!hxTR|Nim7^4Zw5$WI>JO*2JD*9X=GSl=b6oK^=<~NY}bEJ!c5L#v|`CMCg`6z zUOyw=s_<_OdWnZcX`CNP&}L$LAvO_WBiAyeB9Sr9S)W@niN_{GEGC`2gy=P_NQ3>(9Q zPzXV+pa@XgB&w7%_cCam_PaZ_*(K_+kqjf(i%qJoJ3BjRz~n_qQ8BWhwpOhc5QDep1vx4W?bG-La}q;|9Hg8I;*)$Z=?OI1lp$;y8Zm4Z~|OriYZ($WKDY+m)0 z@F6&;W6HaxU7zT8KBtyBI-z=;8*Zs>*;|=vWHvRUt!M-WjNNKl^zFD>pSPGdcM`tA z$%j8;<8=2$&$*Ula?H{%*O4fgRqD2iV)9!r9VmM|B(POTV1z<(5?zFr``s9r`Mwnb z1@72w-^fDnIPnp}VAVXn`&1ESON#!ys6*|4&=x*?qsls||I4s|wEgAhsJ5PUV5C%7 zbo8n;0_io}1T_4biLtsDEklOy1+mjF5sgY}ON&%IIpf^>n3lCL1m2DWH`xW%&1a#A zTc#bUWs;Ef*Jqy{C^~V~Vi9d&NWdS}NyhsXP~`Sf_evv$!d*eF;UtV*O7;Qhdec1K zgIQnlwv$(egXIY&XH_Xke*8U#jJOZ2e{B|sVL^GTg&>DUj1GX{rRf|;0=+ zRhk9#t5R3|5QsRp-5H`5ZfrPXqqfgF)NcZ46(w^ZkaPyJ$?{mQh=G z^%)t~`#lf__#H_AffAN8=n%AS1XAjooyu(!d4!=SQ~|vv5pJH!Q>Y|CS%B@+Ql9ubEK&ko4HEEJU$T>`(5idPJ3?Y%*H6hN&$g!lLpkQwKvLii|zuxAJ=#gEb zGO>yT8e1KhYx!by;&SQuq2Htp+sQ+1;`Z^-?|chr!w$#g^8Zs<_)?7j13af;W%sQF zuO5<|DJKfI61Aml56)Fm?@Dpwoq2pl_}J*9nm#aBW5L#xd|$#7`BcxYYe^A&La`<` zjyR4w{$tlH982X*=B5cz;whGL4t$RyLXIV`Zy5!JagwuS(d~cUW(9@Hn>z1=Ik_;l zzILqtG}Gc6G8zDX^PRiG>vR{Ad}hGc1cQhU!D49}9 zOzN6883Jjxo*o%FnPv5J033w%lB%_$y~~cb*9M(Gf|Zj32Js4L%rIXlqAK^4PoD;T z>xo{Eu|NpQ^NrsG@PgN%;rtcn@x?T!fhpO;!FwUlkoCVC!iwxAhqU)SE87X}64d?v zo6rI6C_9pC5-GKQhg1Y6PG^fAP)rpl&QOz9iml$|;zU~Rk+!Ck!e3Ekoa$$s6buBE zDbXPWgacOi(LvQ@TQlP0#K^sZf0(@}@;7~5`3E(bwK69Zn&?5bjvgfm=l#1b)vbUc1ai#? z1tOiLNPB7c&amr>*5TS(xzyY_flOH6t(~9?ew>YM9fchotDxlhW~V|F`*=q{E6^?Y zq5@K2%x{{Ns@IchZu`dB**W*_MeB~zG;pfZ1RVd$5}l;R(J&y7vHde>;Go+D>+QAc zusGM6(DfOMMNF+COzc`F9=8sgCdUtB2TpWVB*tTw^9?8}q8uH6!2OSB4JIc)X@9CC zBp)IhlsV_U)~0VsWMUh_gV(Va@CzU=@|u{t;el^u4XC03JFs}Q2jSQE%JR+8i62%0 z`~c8e0zz&qSKOm2!{6$&ebCgrR`{oSjIaXK0E+4N zAv>9Zl8BZBaAcnmSAeUI2L708HRl<|^fcS2z{lJoK62kO&BQA?TsILvC^f&EPs*Yh ztg&@u6NZVt@PbwuGb3vrXP=e;>$rXe^c|1?c9xAATSE+ouG-J~(Ke!FNeRE+3tIOH z7x}{p{n{T+$I3rUgCkp}y2W2lPf+?H2YoM0PwApXFfA{_R|9QeAc(7g9xz0K7 zdNMua)LwCeR&wCSqCh305~^&HKx5P(!iyZX;coJc6*M^!tVMs+w3;z50V<9wb;7c3Nn84rDjM1FwwcyzER?mZ%ZS}_!z<)FJ%a8n&Fcz0@#C}yaP zGag*GR8Uuk-vQKhfC1EZ05dzT#x{`$X#xxec3wf>2#>W#AaMizpWLoVI&R42M3Oo> zD<3(L4ht!RAJ&)Fd##oNuUr3coeCjBSZj+hJ>_|^fU7Fp@a6bI|SM``^TnZNy+ly|!DM;SMNGy9G0^~rgm=$r); zg0tvk{>^{oyL)oE>6wJ=EJskrJqMtALkBU74FNG4AMc`E!-u#5EuD(F^@RPC+HYEB zJdI6FDeiOS|4|c#$qc-yX=zUjS4gQdE$Hw6@r{U%t}ps*K=ZellaH6hX;v4%Uqj!M z3NOY5h~Y$&_`6cg$8>l3h`cQOLW=X+KH2)$dvy>FkpW^fN&B3;mPbxKmPaQ^u~*Q& zOk87_dT!OgEpwKqX`rq)R{8cE60@;GGnCF*n z9JR8&=dWx1*FcEJofLsZMLlkAqfRQ$0*XLF4{(U2<7`Z7_%=C5W<>&bDL7s>ibpGK zp*woMJ-J3hH8If#xLjJTHwYAVvucIp_xv$Xl7oyA6p(;?I2nk_4XdC?PhAmmp4Z%EO>lfCtBxF7Uu0!ze+LaRt!0r>Ft+6I=|LQY^Dok8D}Elb)0V zd7qNCQ5SxeK+={QkFD%m{a?SH8ybE9)RTf}4geD-wTH%sb8xn!o{RuLPDh+B_}{Gh z#_>4FSWxF8hChkrnqt@2GZR;2fG%>0rW);c8*K35#~r9hYwib?IX{p(ip=K=Okq-H zvVHv%*mum6rgdD=kWl@;Su796B-VEMyt%16Y%k1aJYzBS>iu){I^s6(w{JT(5GrO# zkQQ}Z=uH{088(h^`4TnT@rmbj!gdNaRkBwuiBOnJFh8ta7ESm}8hASVd^6HNxZ}SO zeTI56s2{_?x`jIf)`+w9SCtc+PZ)`wY+H#|jeI4IX7`poe{#Kk_5C)`?vdI0zde)h ziPk2*7Yj_Jdx1PFMPF~q!#IAMDoo*7bMFcQEO*C8Xi^6$fTv6OVGP8R?kb@?JpBG; z5nx^0dS~^JrP8Hc+1J-MAL84xizB8J(8kcN+ae)RO#N+yXousP)h^}rAn_4S*k&HU@JgfsM=-XCWFCcIj(4+Dy z8q5s-5CO`SBD#3k@2Ky(6FWY3Y}p`&(WVb0zeeMm=Knf<`DxTOl6AtPS8#$kLfuCJ z$l!EpO48uEUK7t*J3&Aj+seWF0-r4G(IE=WG}GElF|&J|(`Xl__w->Aq9{ z5@|-=aSpYDmZW?7`m*9@h~hQUa0*@kG%hB7Xfd8yPHp zBCUkwp<|yxEMPJa@?Fq2PP6MqEl-ue?~}pXK-VGpXm8fJja_p&%YT9<jvx1q3cd#((2X2q zG%=N3e&CL>st(FeHn;xQ1ld`^P(Jk=C7ttTRom?vJ_)5f9QvtBCY}Zy zfe-}_f^-unXPKT}t))knBv}GDI!9q#yy5Ujh*AlFx~pWmCkVjDyJQNl@o62v5j}iT z1L$z=Ubr~%n_O1f1j)c?;TE$33EsuYdop zXFF$nZtfZu)8w8YH=oqQqV4l@pCuZn(ci%fkzhHbf~1*>To+;n(}Bq8*TK;wxa>nG zhSV@%T^V;-;nx22)O6)W3RaqEOQf5*od_|~J615dTnj(tT#M{jzA^~Mz@k$B2tl96QradB@oGB z6a1EL>Dl~j=Efg-HJ;CoHY_&xLnwZl0c8f$V-!LWv+K9zmI}D*1%gRRzFY$wwnPc| zLAQPWBSMWhrN;qBqNaf>r)Sp-H)oG8+DJu`-cUPkU<8#qlYyX9y;NwD0GjQU0QNND z8oq;+bGDA&-#*Im+9mOkd*P#>(?80v0(5Fzy;BkVK(fH(;-kSo-$Y0*N*N0Uz}lIA zZyCNFn#@USnaNE|PX4bC&Z<(Hs`t)$c;OO2`29r7h87w)q~gHOm%zKcEXNG$0HGn+ z%ppF+;(R4@Y)64la8xt5Gwjfu9@nn#KtIuBz?bgHC?|5iJ-QV7Jme}QJ%JqH|S`=5qUpklz`A(M-041@@1fNT5t znouNjWz&sh5Gla3n2<}j#67)QqYW6kXJ}p=oX@nba`)mYFhi}y0gv?|LS$0!EU5Qc zoQP*GUdd-`xe5LS%?XX>GRFmF>W@;TEw*^&07neS?juzIsLcTN%NXvt5Tewsz!WyR z;5dDX+=&UCB^9)HHSsVaeFDlsv`;8f(m*JUdx<%#3R+rQN0#mz0+&NiFJPq{kh^jT z3LfyfNRr}ZqV)4J?vu;E)X;3)V2M4~TiM|UV1@BrAc(rj(+vhMDFReD@qz+iDU?wQ z?du3POFU)2itu>P!*}Qo8~1o~jnBUR>>C0wY9_Y7;eUu!#UHxchhveEG6*UoJDY=T-DH(34|x@b}cr(4`~j zad^RG1l8EH)?~T*<#BkZ^yv8EdvD+*fd%bXR1&m%91DfSPTr(5{`}v{3_fCIfgCJA z+9d{+<%IQ|&ez|6pOkmL4#Ih=xqW?*g;k+Pi&6?$2_mSFQA&8qr9vAJTgKJzx}Mbh zsPdA>+OHv(p|`nV--u+Cn3=V2|IgdEergIz?8Lb0Ir^V3x!b$f*7AUICgaX1=jB2H z#6Dx;H4C#0M&haS@=B<9C}+na!NCdLp!#J z3|d0wDDwVgx)7@LhW3(NbAeyggGwuHHyyxg;osm3E&x4+X)jZmtBcixG|d7 z%=bNjfim%0!n#>3qocheg}pzz0G>D0+Vr-9N_P#>f1g<&G)*8~0=Zna7no7mxT%86 zgW5Se3YJ~E2Kc-s3wV=b3$2F+fN@QpK;`V!V&GA3w(E8nJngofdU;@^`MluL2No)@ zhS_P~YK&sS(kcjYj(Y+icHA;oYq3X9t!bFnFPdFGXxf|f1u7A1NT2Nfy`%hpZ`jg^ zyuTkvjH|(Xf=A9Cb$Pz<&F13Rkm=v0&mAGs&4g(saQWD!;S}%U^kX7!3NUnGBPhCL zAkIA=e;l)#3*Xv(68Z7vBk@tN_NOCHMUiX!7aW044OPs4rH#@)?LA72Q7C>)HM;)i zTtn__(MY(4hjISh*{>KG*SjFUpgQGK-gtRi!CUySEOxVeTJOTpRN`E${)z9Q7vl;L zq#z3fL84PZoZ}>vYZlSeGs3Ie+m8R95qRp}?dR0*ZS+J_-kMe!GRc4dn=REt-3rw)Mx1;bZ|{Uq ze2+txy(C_DEn|5DHXva|U*3{f zhiNb+^}kXNN7AYkuv@(f5pbBvw}>R@F; z#v}Kf)E$HyZCvjk9}HG*!y7ZU-*qe#o4ixDd{pLF-iGACK+V4MZ{NgsKt-g1AxWPs z;u*vbS-udoeExtLn5cZT!75P`8|zCzHrumFWtXR_Uz<#Xwm>-_U#7`AvZ>vhWZT)f z=hN*&lJR~kla8@pDoqe3sE+c4uv@~uSQ4a&7hN&X!koM+-)3j~s|?TdzCnLGd#Bjv)Jg-rtEkDjo}|1nM5E2zJy{`N~Rt=K7n zkpe?E*r>3%`SR#srT=lhq^Cv~1tt5R=E<|Ov&{J69s+J-B4C>T-xCmB1Lm0Dud_8m z;9t+{A(sopZkS|lPQM)8_8Wye_`!V{u_*_%Ac3A%2P8H|$q9`eE83+r*E+x<)XteNHR)Oj2>LGhz-4x* zlG2mm@&%w`NdOl3^V#%=sdXCKW||R^k$_w+9FU|KGf2Ktdjfb1($mrTxHODnQ?2f3 z7k~X)|EVd<6+H-PANQ$1(f}$(0Y?i+?>!L#78qx>oWf_A$ zNS4~^zhwn7gCP|uNnMORyiqxAba@EaYhE24#s3_bdHh+|b9IqMx$^MiZ;>wlT@!x% zB6Oq?G1b^23@i?DVE|lKVBVpjSy7Xq5{Lzk4pX_idqV>!j2)zgLB+5>|3c0zcvsuQ z+4;qhRu!(CiG2sa?$~9RVq<}>9IU)E-U-+?35p7{a~%B6VWLp56jUzS;x9;do)UED zp3@BCcurIhowXBq0DFLfScIZ-fH;Ij94g6UvIv5ANGxi{dvg4FTnTJwd^K?uOjOLI zDvOBSrYu3p4r|6YYa7#od#QW9l9g{^>&B^<6~;szmH~KYk!}puk|uJCxZyQ04E?ky z^B0+K(xVh=kOz7}ghStX0MC|T9lMu3r2xE7mJliq7}G)*vzUYbjLk3AXZUiLzev{| zkJL6|oKnr$Fa>fiaAR)Kz@Y{aAhHdxC>&3tz)MkXk*q2Nz%bYK+g1TY*~Nkz$Y4#< z#}ua=#V*0rKQ_M3pKSElAi`8}Z}QIv_{WlAU}fCkR%8bdapzyH@43C76f$=i#lQ{Ude5EimruwvXdvaaP-(p1-WZ#76l)V!TY%W2oTwK<$~Xks8Hsfxj*!Eo2@a#m?bG(kU!4fe;Nvgy$C= zNt*gN671ed&cpn*Suy)c^0dYuK5{f~NV@N9av8p~_liU0;1YC%7#QT}G9`qj7qKaF zpf!^W6W{bThJ^TuL)^HGSoneZTZW;F>ADZ3#&Ob;)1v^G0N7h%v%klMhpfy4x>|{! zROO}?I2X;vw~Om5xJRdZ?HSIJ5lMRw@?uXhL05g3yGz-V7uo7Onj2q)?A-t%DgD``G&&YmY;;G+O1#Sr$)qhDN(LP#(7ZT zNvSDj$8N#TaVDvb146C3d#o&0qN5q3pU37W$m!QW(O-#FjfiwIqt-j@g>kejv@H7R zY%4l{ce}v=_+OwsHG~q)#UK62#*MuZh?Cu|W(weK^Jlm@KSv?TwDi``3{=3P9)< z8AEn5%w)q%?+diWVW)vmAM}1lGU(q2 z+T*6B*WL#wUleoi&V1=Cy8s?K8+-eLeiF7uy_qP={!O7CFk_jF)nw%s;LIrektQft zm23%(JJ0N&^km$iKNQPdz2WP-3h4_(ti7)+rvS)YchHH3qng+gG1vKu@595gD_dI{ zY$2Q&{NUiSuLBsFSqa?C~g^qnQb$?IzTGo zsnZ{YDl`|_WJuvdgFYdp0xWK9EtVc+1W5o=6Yv}C9p8JuKP^LLQkUOSPLk{aa5+EH zagkL4)cP~~Q~=lCrU^gcF=0=Uk@kt}KT80(>XOWgS6<8BRMx~n&jok!)w-w_Ij0f! zy5v(l?YZyQ;&gO$>g`7uKjtJR2Cm}XbjX1CA%kCFKc@8^U;mc#b8yir0<&8(q$qlk zN32pAb`ImA5cmVn0nxcY)Rcov4-zeD)lGr0s_iCMjNsIQQ1T=k_iop}+FTI_=Bglx z9U=@Uz545d(CW=D(r?4WO!w{Q&z}uue*7pjZuR?QH<-?MM{#^f!YExLPZS%@(f1e# z!W@^(G(KM4T9f}spZHbb{~K(zfMzCkS~&8&s_nr4XnXeI=EJews~|0adJdQuZJzW8 zcO{w!eC-V+#E*n(EXvTU1{e`&AOM&gDtFue@Mf4D4n{x{Z-a(ux1}w4P3QqU+wljQ zLPJU*4-3>7Xy27Zj z8**=z&RG8BYpzX3O^8$N=VZ@$+1dxvN&tMPdJjFC^mL5;Sz0iLG<@K)zOIAcc)i6Qw8WwPLDOlrfmddeo1j)WiAB`)od`G+8CgJ+`eByNgWnWq^ zH}=L75RLm?An|ze@u;n#iB5h7CtYQav2oWfg`nN?zU7c}#rhuFuQtQyEMg8UMOh&D_u}-%eA#du9K9{H+=E z#vhKC(@xA}pnNuYD0np~Bv{SN4w1-n{( z)~A-2t(;9wbN|C6@5~?o=S>m+lkKs^HF67RPi++boy0!=j#G4Sd@S;J&1kG%mqs2a z;vD}WyJYar9Ub2r1STA1igfKh915XOptD}gj1ng~m{!E$Km{f^8|e$ckdXWxfYerE zUTs075ru<)mVhVK2Jn?QvET&>a|o$YhdJ&$rY<3(U6X*>enI?S?9j5reOB>W9s@n~ z6`C@$w$}_+APr2gb*1Z9X+Cz=`PJj6zP`Tyk)GbE1hCw=~2kjAu0XQ@aY#;zCbkG&4df3BdQSj zq92V5BDJ}=*jkYU(cq(5Rq&7?Sx`7A3W9(T=tb4wSJ!fy)BFFc@!)h-b^V7TVfH>n zxgW-G&@R}xlb9&zbe^wLr77~?Y_2X-KdxldUEQV7+D(vMwOrT8Gl>0a-^uC~im1^9 zk=+o|>Ve)tSoSY0yI2%_&Br8}6~vW6H)wy{m=;(uIT^+~4v1&qJpij<(9z5HV%|ng zAS@}zI3WpWf4rC%eY@mvsv_~2L#qc?ihWKdXPBNplP20?HygV_Gjcr9VrOzLPD`9b zF5`52vDpP6p6YMPPX1g!;!lJ3->hr3?V4LlpL50mt00(>LJ#MXKe+(?v_Kyj)gP(2 zSq=e4+p`N@^fvPoB4N?4IK(aO+M#IlJ>Dq4VK+;Z%zS@@p!TDA1ogUD? zUXY4Aq+1bevv%rlNDyRjzPBRL#{hWJI$oK5xN4Im0;y~D5&kO0RgW4Vrs~kem-{_Y z3^n#z-cFh}ntGANU^a%Qe)jH2o}!=;NFdj`lWM&EWkL5zxAhGJc{m_|y(LnskQRY6 z3qD=M*F;0Z)DlFVb&Hd{X~srVDnVFc*qE!rT7G>77eYrmiNt-ZY%HsxX_W>G9nH9SDiMM4QSXqE)w6 zY+0UZIM#+yMBjXa@kIu732{p|D&0G!7Y`}|xba~WnM@Wga#YAdt0~-{u??*)!%I#7 z={od^yjDE#P@0&SnEBDs(K@yWP7LVb!w2dbg?vw+zOwtHVGMe6U&sQ2)0oO>!insm z9mOViHS-FP9}yJnS9xWF#K+Q76o>(=82#GfoH9wpu~hgX%(BW~^>%$&RjySCtq!&lF`7$5>lW&D!B zf176`u=W{=qL&Y;&_Cw|DInobq*O2#(IpgA4-M_?h4cY68Z+f54{U-Lm*4*@{90g& ztwU~bG$CbL17ORu|DAER=l*!$a>3=93Xz#%D}z`H9)Mo zxe;WCb_LvL7e~GYC!zWyNK!t>A+Tmufz$J5cSlivNupjnxC)#7)ia|?!H+*EZKw^@ z6AqmQJlC`mjQ^R}M|Db&*M%%VKxn#4!8Plaz0pQBI#p-bm^=lYe~*z1LCSB8bpKe~ zC+W2GbT1Ve^M0B%vLx&qn3UJHFu{^?dBPFNlsapR9;rGn(a?4nd!gn4M@`lWGZ|rs z4}RddN;jidGFk{?!X9TW`o1Zw2L&A9|IRLg62!$C1Egk~NCnhA`^r$=L)MQd|Mw&< z<@vAYfVs1?lhZiBWOBH}ccuWglilsj^?g8fkDpMJ`Y-o1i=GlovCv^+xULrT=&OA6 z!@rNFyqFT9mc#HRTwwcVDh_CPNpF7(!wa?vKSbuY9csv(M#PuL4>oZ-Re+d3#4S09?kWMamO7+JCq|lZw+_>pr zGnu#Uo$j`US;hv%Qr`^&$rz=<1h9N``C!XNB*go|tS#H@tlcbvas4Sf2ZwD9LHxU; z4};}_LnplpTsTRT2&ioWO|nTD9!Ctl=s|-V@U|p2`uk+J{Cd_N)cU_GVO?0Hn&>z^ zJuP0?4N%j2M(^Z$#mY)ZO&5L!2dA`NWT`HgbEr`(sw?My7J}tTj|XP);VdVTU7_X) zu?_}A-~j4n@1TS)7c^j3V94`Y?sU5+Nd~Dh$GAr!SiUIu=0l=DSKw11{~Sa_o$olxV?63cNzy2ywRPX zrGgKDicVw%^flT*U*qD3TG!bsn1$r zv2yfAjpOE!{g_Uy778_{jedczmWjiu)#J7?$6)}IV(P7VC8liXTC`tFygd&#>SFtt zToD^dqrPg?a%2tQD3VQXFfjCs6ExbbvExdpin zVE()P!36amz9_&pcaZkG9u4M^3tssA9{@CJo#O)cl(M+Jg<(s{6-UZl&JR$C><*j? zkZQ2wCB>RcpDWwy+GtDxc6P{TI>lfAe!Qb2{%^wYSmK-poYd=;m6h$UuCGVpBWJ>2 zm-7^>s_1#R@b9=fB=zc+ve2&Zy1gYE4UbwUTf~mJhW~>0N6So11XfbMc|(Nn#K%|6 z$H8$iKtlEJ*V?*}7Oe=O2a{Aj*O*-W|+myzry~MD$4G#|o`Invgy4LVwU7 zfB7XtVwET(;w6|RNkS63XB?N~ckNGK{)KvSvE<^0C8%?eKYIEf}KcQk|^&;mO}lekZGMf&l9Pk zhE%kOZe12n!R>esb?7Caw+SMQi0$EiIvy#ZW>xM!oRb!0;S!XQl!T%=RFMc~q(^p{ ztoF5Gncg31`newYV|cB&Vk?ZjC3U3Vxr7;dJNt(UaEfJt_9!xQLXyHI9j%#Zqc;iE zh$c*d0?|>7<-&m4u`nt`QLE-Pd=N{0`n857o~7-)e3*uY<^)(2y?hSnv0whG7;~Cy zdRphbXO^&t#)^(xq?6$e77hvuva3oSy#MQKS3eF_Yls!k+B3xl$=Lg}<&>Zwzop#@*77{|V4pv}@b89i`@z}5TKJaCdjD(j(elIK^)9}(Yv20k zgU8>9T*z&sS@-CEmOdL}_IW*#OS5;{G}v=<#%|P3$o`A|uW;WgsaI#mrw^{uuvkOd zlF1qOzD+madGeH%j}}sLB_b5H|3aHH>2tGkp_EUTx8s1fn1xUpwkPMGRgHXk5KHI1 z`#L2h79BRG*{5b==ZBw$;=h|LUc(7~Ybd@StiF0s)NG){Iln4kj}O#))VznfhU z1XM-9ItNXF55mIEln2p7viFfMhM}35hn^tF$kIy*6)|+2K$;bkQ7{!d4i#7cdxm?K zHO-*DeU+7#~|rO zerfVl4PFAg$)A9Qq`0P$^3$=LAxh^M{e#58%Ey2s9AIrwX8PIbt>g8@aT$Y@7tooJ zkhNJndSy-&t&^&pNJx~HnYOk7Nh6EUIe6pe|M|%nO+>HUFW|!5!3;{2@Q`Jq_U7eh zd{K+uk6YT8WJuPD+S?ykLQ8d0|4sin-6~UxltVoRU@3ijG=*Yp7?CVJBeZU{Y7Q*2 ztm!jrxPPS*LJOi{wI6jA;g(5SVn0d*qeAzk(^FC;`P`frjfn?JL1^ztyT zYS`p554nrY4uytJ5OkF?S-U{pb_Zaw@iPYbEi@y`)9w(kabHTw-v(7?rnF2<3l`Sa zKlxoKlioB+MELsYy)c38a6d@FF)Xcfe~YBqn1<+pXhtKrPDJ{>HXu}JQfwtKv!zEJ zwpNHj8LF7fB4Tvf;2rF-7SCG5xq?w7h$UPq9L-W41c^dQD&xZ;Gm*|cCyWzdwzNv} zz7FyqGKK3Q6dJFi@aFILGW28R)BRdL9rFnOv!J4NlXKhVvAS~f7AP-? zINvNc@q|%$fHaky3mbKyHjfsvc;8>ik7Uc}kUnHoh_%;Y`(TIY8te&&jGEQfEQ!Bo zr=|Ud%+JR8E=WH(eo4wahuh;+l27Wx3DP3hk%xp!rN&|>Z1Nx1br({rbxlrwA@B8{ z65aI?gW9g*63qYghE?QdI|r=xRit$bPl%@7)DsrmOGp-;CVhfTNza zGl`&xinUPdLX1a-vkrHe7D~imfizxLhbwClW09$-qTcPw0K93#j5lwdJ_knJXEjzh zs;KSx*5|I+!0R=v11R7;BX?sH`19)B?ZbHeUQr@LbAMQj1^?CNo6b6u^c*F8{PU@p z*@)Mvq8!~!moxFs4(*4)$5^{eLtbZCyUoo|$+lXkWRP#)W2dpi2GWfc&~ummZW^Xv zx1{a2O$N^yJ}*@-w=Z7=5y9jRCSK3>O_)|So8RwjHxE1n-G6i;G4FLC_4#^pPwtOr zNb^iQ>8#@ImyHpcnbY(+6PIptiABGy;7LRRoZNgWHjwQXeLFayBe=%pi}XL{z*T#; zyA4y$y)UU^F+2E_?-TBsL(T5MK=70XIt7*kR2Y$@vD9A{cu#2X9 z(bDJ@@%CxtatIf^$`+>-59#81M~XpMK4wy4v6A)@2_ulAMn;fX;IdFv9jQwsWaa387MjnySnbFQ0>}2Z&;aQS6c1+n#v{N zzA{>%_@F8#n0{tiSm3)zF*F4gg^{Rqs~?qmGlb$uC;J?{=GxS>xPa$6>I0iJqsIQd++nTy`e?GwiCr( z#eSKo@kssmkN1}`{!Y4zR#vR4D18G1M^^EZotb`eSbrkZq!J2l%CYKcpR+&z(vCT1 zV0Jd;!7s*ioJ1FFjSdFlZr5PHhF>Tfar4<`G1C64vE8=iixlUfN99%v#>1>A0OSxSy=Ngnz7SFH$FA5kgzA}%#-110H0PflI zQ+)RmP3FC7UV^m>Kj6xJl7k;Oyz@*=4bLZ*QeSM0u37-AWA;=j{}jo-J`Yg2HSl1f zz32m!Av%PUIF+O(Tn(p$0wm6|M|`B;Je+aT_L-l5!N=veDs-Q4uK(wS#bHp=Z*JpK zaLPcm8~xv4vgIxbK&y^ZwYHw*FMKni`Z?BL|)z>3Nz_$zL7Ir)^fB{z+yY< zByYOZ?;@8WOhd3Wy57EQq|`k9BBdg&(#qf1(3{~jYC0nKHTT^{iE@8gn{QDO_0J;f zdkhm7eY#$vnt*AscSeVd%B;uZ2g~AV9X%ur7LZFA8RCT+{vSMSWcnAees^|psk$PC zhInE{%9}0G(B@)>DXEC0h{vLQaVDC8Pr#-m;7Jp+*5~rUx2@O4ib;ot(E01dNc(`@ z#j9t9vLj@rOVa+L%_=_pMu>S%PT}z&{4k2qk0e02dk{&lq&TuLmay30M*vY6!fs{# zLR*i*Sx0l_64#bHrJL@iW zT_cV-6hq*l8T+&@vm+9JEi8QhEcbF?IiQnbSe<8p|9#3@F@xxZ&&XprzXy*bKkF!= zc+J~PJ^?cAiQ!zSr+6eV3qz=QDgaV{CcGT#?Civ3TltMS8gFmdVS0-4TL%%?(-Ys8 z#7LX-3oJNziB5%wRy+sWg}WE~K!$h+V!yyEv!@rD&khwYVcq_wv$3(gbSGO~+(Zl* zzS!gNORU-ZY0lng>P(#mvAC>5xf}ZZ5IXy_4|}6V^g_E`(${-}`> zdtZq&dK@I0G|W6mg+AP1gmTAg&NDb*8LvfaNYRP#hROU$16jBpO5v+{igY|siTP$^ zN0+Ad`Ojafy-J_Sp5vH9+{O*G$3Ekrd02TBeX+7Eh=6Ld`0nMZtg$gO-Ug}eXu?p;&; z=)vcgla26SakcSX znCs6T$*X8_d5;zEv6fNl`i>81EtvJd>`*ez<9zkcXjZ!+3wW39u1Pu`2LH*Ee@_P& zW^+P6R`}3&P0TzRaKqrHp)aJ&6m=@=ew(u4B`H}jzbQZMf8;6U;29w8?3ggqanl{t zbEwqw;6-8DxFetJCi;TT=*tf?4-XG1&ws1xZ=BZin8X0qDrwnvtWM4&Nq08OhuWW@ z?>A2@g$E_F*8Dk>-v)CUN6^$h2eUGg9WNSID`KffH4s~~K(8Vd+F1}F1Y-MJDqp1P z1ZzuDrTTU0-)gZhkq=W#;mPjICFX=9El+pD=50sanxz@2CHn+H;} zOljQ<)o(w#1$8XAN)4^IlTU?+wzv6$XAzes;!ihXXFH@-MlL`0x*EA6sGgCynFkK6 zBnqB)mwax-=4cXw>$aX_zp0eaIv+f7x5OraL?WVNV_+LrY~iP(rIj3W*6;St%<}dS z20ERqip}9^s`wzM zp1O3l0Bm-ai|(ezYNjB)y)fOn;DYtw+sNbOs$-m1ZKlf^$Im!hY1f$yg`b9)VhiK* zPF`Q(`|WZ&aFK$U;uU9L+NiwpO|tCmm-3F_?Q zw%0h=*uwu2SGGd`p3T+SKXwM(MFSli9E#q&nJ7KM=AwD~Ru^5)L#?Dd_Nzr&kI$T+ z@Ts0NE?3%qxGY+M>Ay>e=!G(P6IgpHj2v-!GUKz<@L!`~bSBz_ z-3C7(aG!g8_!XFlpkABhT+R1+_iVPZwCr?hY+NW22C=ZOc9q;yBHd&p-}%XP>g-eh z&Ni-An!QKGfO^20VFmavU&iQHaSaPLDECN7=oZ!qaWprKfHI5!~EE{ZkW}cZ>@LtvZp@#sk4urwhRx z>|!z|yw=ud`qZLz7_O}nMsZlHgH*FIF$F^B zO)V`gojpB2{l7g3;F>p9q&oE!qQil9LshC9M*sTcd${&Y@wAUaXSd!;wUzhPD=Z|$ zjW((i(Go%7huo?|+28CmHSaBwxU$q+3SRAIs5tcDB%vD!#^(EK1&71-;>HLyhytuK z=e>4jG}jLH#AL*kUcLpA=l4}*eKjfLy(c}iD_sIBTeI?RcArG%d9HhYEp7#(KvsgH ztfH4sff0A)=iirMvCjIE2KY$G<+D%<8QQePzh2oFO;7hO|9PsGR@=$hraAwCe8oDK zRbenM-7S_qC$ZV28<;FpRg=W&qt>ej-cU)xG_`}3AOZ5`g5z031&SRQn9wk`fGMsR z=nyr$+r>kHRYmCK^8Sp`;635(6|ql8m33b?*Xz2kXxfY99(&W}oj(q~<&Mv~l-r$o zRL{S0swf3=rauZ>I!`3c-5*jRa%t{g@G3;b;+Y-H*trZHHco(~^fpu0(!*(Jtk(;zc*D;NW4!us9rcNPdk$n?C=mxP#iPpA-%( z-SP}o9Gt^h2b8my=~IR22h~x^J^dX2HPlTQsnFBix#s}vXh2It^Q+qDVA%_YOG`^@ zU}8RR88A+JAeemk+1BK>{>%T{7|?~n)AS(JO%}?}-?_>*k%d!)3*bg2ApuJ5Fm76h zc;>?a``}Udu7!weaN+YgabdA-Anap9r@(;5KvB&W|Aet zet$tJbp*|uBN5FW9wId`)LWziW!H;BAhK#j!aX41%m<2M?fe?ez*V@tEnWsF@E4&S z1Ryww|12}>kB!!3wvNmtILP+J2Ungm=3ZY&jix(@GzrUmhT!L#BBjbVF}=2 zqNv2g%pNx=+4%WC`Rq4GUK--uFtquD2B;u2n-p0)*I_gObRVw`glTAOQ)85radJWM zg88c7?M*r2uSUP679W_2x6X@$VHp72GV|a4XC$n_Kh>%T?1>Ij>Ft;Vti8hB@;TtIu zF~U!cg^Qr2s&YuM)AOHG!+kY9+-&d^s`%3!pM&n+L zN>n|^&dl8SUg`W>mK=w*P%Q8KfRIsiI8ZnCxWngcCp!)Ue8neq*c^T*p0NpDF=CLSVlyyNrHcgd$ankd2Uf;GWk5)Sq~i`?3&de&@kUHG5(Vd?I;#GMz>9XZNW zNl7W}(ItV3tiLrrnP|X0R|T zgpyOFiSq!l;s6Jxi9sObul(kt0@5smbpMYMcqHDUC>T}9%#7~D64wE#AoNuqEkZq? zGq>HtM7c!5L4x5TVN|F>{1-F`yueVla5}u7_++ewQ!K3S??r)1z!q48xKtq?P-dmd zd?spKTs=1=*_*P-Px^DBoqj9r5}mSsEYJcoomPk1NiJ#GLNNotaiKAKBYw`;Hz0`7 zU{7dUaa$AQ1F8J!nT96Jc+=R}`8hQ#th+S$=3G^QV!cxvg7a*NQ@3f!71$r?-4?v? zvXo4wH@0Cg(;{)3Ai_Iab+Md;G|+A+P{3!u(0l*{d8Qj?IxABP&~lWM*d^vW0L$h+{=U$lhCJCzL&sO;%=nA9}s7 z&+q5D`cp2R&+~ZP@3*-j)Hmaj!YsK$U2Ok$BJ}IMu|Kv*!dR-OQ}eY?$#hudgFM;$6Lq z@7U13?KX<JY6-?(D7h{*Z;y{6LT_8LteOA&mV{Z0aW`JTTzub`||3$dRd>mi{ zazlF2jav^QBO@<9y9o)aqi;HwKfNy~D2RUX;z?;)nZ1__RFTmuBAj$lO=YNS{fTt# zlh*=|G+3xG>9DuUWGo+rc4`2s`!5e+FbGC}pn@AJi;6PHiY$Kpdc6R<@bQ+Y4n;cZ z4k_Dp$Q3eg=nw-G-%>`bOb|gJLTJhX(StatySrKyw1H5EZcPI$4JOPtAVm@zAuBKM zS%ONE*uB) zx*l>_!u(6%JtHSQz2ClBvcfEMIHlZ_72$6v(aUujKqY}$H1Ta1vXg{u1rNuwI&HJv zv|=zp{Skd->Y_HsF3N)FXm5ms`p_?fRBsf#7&LZaps@_|&Pdc1CnXr#PiEM_A$9A~ zkD;4?o$+JxN9LLlyNB~$bg?a%SnA(xGzii5tHJC%{lqxblkh{(A-G%sl?ZOOmFfPy zQ#J#UztYuCvxhB+my|n+mpgN1ynVd>UNs0F2JqDk5rMK(<}D@&Pm|BYCvKbDQaq!B zZQlr0+u@qoQLG{Fl|jw=rls-Zau=RxJmG>Cpza>aLi4Zn zd}vB2POKH2LO-J?hS#X4znk*q#XyOf{qmwdP~K0YZjuXSsB~jyn-Fn+B0tJxk;28L zU3E%qppziJ+gW+Pb`Hs;ypz0L;G2ZpF;K@#vJ|0uSQ^u7(;lKD zm;Zb^toE4{^-ZV5RFJA?5lQ^mSjiXO4~Dl9uO8i)v7>7Cob7XOf2rX6#`G1qhe$`w zZp?{vULw^@^qFb<3!Mm(yE(P->yH77?g_T(7XA6qrS=-{{%BV@*yCWSrq7hWHn1lG zv58s!Q41t$0s^f5>2@C~t|P9_4-&ORJyk2>?`L>&0&uMLx9>wPe!{p2M9V@vO_eUu zuYz0ho1=Cwh3FHAL1)9O2}-7N{*tX3>#5mekIxU23lA(Bh-xU4x>CP{a{ykb*0~f1^y0LIAxJ zKO=x*IKCFpUE>ng;@(Ma8xi&B3bY4WsxwTf2$_fU2JMgI&E?6~BA-&UkMi*7*mYRv zpkT`?2iM<;T*FpV?2?F-H%bL7rRSfoM$UfH`!E(vOks39uITCMnUA^iYGa^3W(w7M z87P($k#0Xf1v*r77QC@};Oh5iUM}@9T}M3YM>A{tAj2pFK-g^}8gd|Uin8Q8X!ZF! z@vLafe0XhaYIESn-}ZBeAUmo>2?&1)t4s9s(O=|@G5;~NZYMPWz~KhGF#}AF#ndf!bDY4SHz2a&W7mg{vlc|Q8-;!ODjJQEk&6ZctQlg|dkDzGcDq7IK z2`$q$Re4(O5F^dRn9Cu{aQSlKBHu++zUM2X%PgcGosM)3&SJ}ZAJV{)77|!Py;?7y zdf!NAq|2tfW=IR@VYpMtN$XTXg{>!9Feuwfv0y@4SLX8{=l&jbDR?J`OPuGI+R4AP zkw~{#y`rKa*!DnVFDnuwaxDX@F9i--P8iS|SXLLW|5UTBTW(RCBfRpwyahT-Py+wn zzqQ-u!|`4I@_Xlf5oH&Aq6MW=l{B8rJtErb!~L_o>eA=mWhvFJs({6+zU4+#dfUD1 zCmXbUML)E)lfpDy@ZrI5Ap#A*H*H#6eEv6h7>aC?Z73I)3kVcDt|WRdW?HUu)6)YwpV-Rfnt9_tLm&S#Cs- z?RMjb#+LTM>DrS#+RLPc!q!tO;}gzV)BZyFq%$n-8`1BbIb7$jFEXs9U58lP(`u0zr*GSC-X3D=3`qFSeG88P5Xg2{3*CqjFkXLgbQR zW_F55EjA&+#f9=_Jc{rxS$CwP^zRTXd{m-dn=B&xtuauBNRknFV$esdU7fX8Q4z0P zU1hacknGVoo^y_N!XL{{CB5(tdiZnJXKd6+389u=&log zlWmuw#`XHh*6mJc)2EnE56@i`I4G3RUP6~Qtgr6q@~I#-uV33IP>vCFy9`^)<9p39qx9GeAl z`%87+A-vJ+p*?$kHqe_$GU*#WTHYOd9+dIyuaaQOeE%~}Cs6*yLAyo_YCIwVs?*LB zHp#CXLi(rkcYMyu+;t0)%ecW%9%QhRzW~kiV8@UJ(scP*2p1Q!SJ#tegKzF~lDV)c z&zCP>^Z}Hr>-eKwr4s0;7`V(J3xFtmaN1?x+1bhRVp9F{hxpJKCn#F>q{q;GYRbz_ ztUbKpxFPA@P3eAD;fwXg?x(Pp6P4ZlOXqv+T1!&pxjKlNwc6{IVtG0RK~v=^)imTJ z%c!N;y-xAkM6=UBEonJ+dy^LTD;(#bt}|=G+sLs=Pw^?)^?;bqC7gP@Hw0`#8D8eAkN|?bh2inEWB1E=#n433?v#~%GIS5E)~Uu zaI<`aF$E=-0y$us+AX=C_nwGJYNQ)7CLF~zdauXc#Q3V#jW2l?J7RWjkHq|w8MPA= zvhA(?i2PYt(V1$b!};++5^`MFuJDuL>sA4}Oc5>(hc)l^jrD0b2VkyqduFDwynvGI)uqdAB3Ted+9E5jVkon-1v3w>ij%L%)PR8%2ZBFHFJ65x&Ju#FrWJo&4 z%Mc2*njnG00geMlu$`FsKm3$=M!f`zaI&*B78!`c6IB^v3+=`t5aJNt zFFt>o9j;X8kGskFFHg|dhE=^K;xXa7CandeU;jtI}N9;TqALtTd#RLFq4R zmx6nkPsf%clm}mL>XcJ+MU6xXqG{P!>i0xE>G@wbb$^R(SNGi7r%PWOe0KNRK+fW3 z46qp_zU=UcooY!wb4mPOyM%qLP~v(CDo*#O)PZpF8cisO;)*5p99pF0!Vhi&azn<= zW+c!wWlY(LnE;HM^BcnF-ThS0Hv>a>EQ6_=((X12HKjORMn>?SmZ>{Px3Ef1%DxPX z@qSGre~8e^Sjs)3a-vK&_pJ5J&@Lw=YKfR2m2a8YK9d~2fLSrktWMSkFao`ntog2q z&0MgUy$ncMXlXCwz#>#%1cbjeA^j>T{sg&`qdmiKf2#e|d#2?tl-+6T&Z!m!&UlGLc1Dn**D&L{64VCR!7<%DoASH*8< zKzbZ%l$pPLS7klEfK#n^9K(+U|G>sa>(;1PDk78c$^$_>%2|5;Y_rUeB?!F?Z8bzP z2tXXTm-VUEA0H#cic{N0xDKP#X$kM7h_)BekXK!jh)5jjOIjE|asD zX%mdTbc=IUM$M7Ye@dVj)ALI2QQr1IExCc+E0Y2r!Js;}Ym!L}phmpVjfz@56 zSsNk*q+cb3!CyCE3v`QtJos47|x zX_H>>lgQuMJzheuG!xi(!-;>qm^g)CP>=F?eaP1-a!a1Bp_r=#gOPI)%yjJ#Z_Dq| z!%btCnYL}1OP-9SYwm@~WodPw_+p>GEoLfUkm5qYrcxLxf<)Mate42qWa03ZdN|JR zUHXoe@5~S=%D#LNZx8GTsO8@il@5lE7ih|pCr_RyChCRP-gV*qI^RjZxu|laqeH39 zR$PP&6$bXpi^*59@Qo?&p2|})J4L2+)MUt44@DSe_86+{TFRnpnUXElMhG3eLNwU& zvIA*d_qT7CmWC)P=%LkXnxwe>mSZyZdzvWr6jFSYy_H2ZDC~7|+0-UD`^Cl&wWUb^ z01+-NxnExXslP4w(LjdQ(_g(qfafD7zR9(tP<3^{Vm<7u78K&rwc5NENohn_+&m8UXtg4D|C@y7=ruC(Y(PGvu1p=r@OGRCKnOxh* zoawL7=Ca~8$85pi2~Z|-YDk&3#yCLB8g_-W=()=nl9h$7l@?PG-SG5QqUIMqlN8?; zK-HV6~;0V;jl>m)muw+9?)oi}nX1&dlg!I|T{etPp30<@< zoOU;5ya`}HRke!n?YykbNaqO(ddIwTWQTzz7Uj zR3(2{TmQmNsoi1^>D=2(=))P5zw6-mh!QK#T3Eqk{OMS2FdPVHcN=Cm zc@!d(Ov-XHdV3iwy|vrBzhck-_X7G&7d;++t5tb)bhMw9l@)XA)-85&Z6jl&m(4(d zA0C3yLX&Us-KG=AJ^BrgIEWpBconD!RC( zIB|N8TA~aY|InFo;ZC3@`=67imj@SDpYtdasR3v#R%p9t<}L@z+UHw7&xf{IHMw?J zxwyDib@lWdqNAfnsy{7yGwE&s86+_?DJJ&C46-;Sh530rt9|JE2MS=k?h1laUm8l2 zkNvZPJs}+?bdLEqIM-Ev42hU;*?+OnIv8^N9oV7ABx9K%e0x z#LYu9*ZOhI`R`@ly5Zdn-AvuJj~AN#CW+ZvJ4IpY>K=L+#f7?D^HI&=>%)2eLQBDt z$II^B3KhiG;@EKN-4$(FZ_+Jf&C1rH~n8)J?nT3NU1t6^qvkZx9wt@^g+g`@qa`!(^Z0g2e(~ z{pM=1YzmK@&3t`*8$Wz-&Z(`H^0+2z_2@C0d%NPce5QU+a!+sy4gkab z9Jt?-dDZMpb{>>DK{3g+4Srcx(S9}(?nATS4*Zqe;gtVK9V*=Btr40?QiQ$Er1EqV zR7lrROJoUWD2=%)a$cxP$RZTgTj;ycQpG8mDa}S1MslMn5o2nCcfxmJOAM2o(|-bw ziWFeWy7|);ElajxJP9L9o8NBe*+rRv&qU73aK5;JsKclLl|X!QvY~JjZ?Xk0lT#8# zTOTBRa{l+gB6jL~rC0OgfLK>ris9$UUo$f> zYF+9tTMlut02@6U3O3yA;02Hcw%fk?UCt5?eW^D+!lq{$ z2)Q4Mf)`Ph!j+Bb-Bx00OP8-7ydh+|G^6uqvhZW#BMN z*DkS1^=12lJ8dk19bZGi{4KkFVBs!LTSSz~c+e|^JYAq147eEA!d%-ZW93D^xQ31UT;MRJ=#v;1_6?p zd&>URE<;bDVUg19GXpR+rz*fq4=KG)2Lc(dt52wH?(k3^|MEjM&l&46ynw1#c`&m{&E`Y#8M@Prw_3PJ_4<9~+ zblkgN^<=2S8PY!#GqY?zHXliM9V91@`o19%WSSWK+IRiI#rxt2C%<*b_w;wqfD0vQ z6NX42t9Jt+1c1YWOJwouAh!y?wy^tI6xs^T7^wABkCx+TLKta+W<;l}q%%~dGE18J zHu6Se>l=h}>sS#4*CQq}Ii{_V$60%wqAm@JCXn-6KS!4Amq~3{(nT0?*jb|>t7^(; zc>8Cm;mwbvUxmvbOk8`8@1U~?>@_?;kjyuxdHS z|GxNsbz6Cr92ZwMf#ggq$#r}u&=4>GQf0}?s^Gf$>Q8bKP)~P&TMnamKs+=M^6t0m zX7phmR5+4uzVVQl(v>bTI{R>uG{zLnedWOtMPnj0xPFsCK4r7!$J1NnVOH#|=;LOT;8vgY_-fsq) zlp-H^_72dRqa5-9>CL=jp*+e27Hx0@-GgMjQsdw^5v?j5mbaCU4E|?jm#^``yr*;-^(pE$+sjC|!^-LzMMKk>4_a%YKn+d8eIKN(npFL{>pL?6Lc%|Q`xvCJ>0e(1 z74fAd#UR+Hgqn=ZuA-tMw;y{UkBZL+O=*BSe5eTBKp^nrsh5qfB_^!S;fWBN0J>XN zn(35~>j?V%=R-o8bod-!&@!w6k!=Hq5STO9zc2N-8_ZEU?M_JHm5fZs1Q6V0#2Ja% zgn`THD$GYt+C?e65v!l&ZD41R8XUk)!9k0FJ0eNwOEGNwZ zLz{cWrBmHwKM%tdZ#N;pEAb%h!-4{A-D~}v?)qJq^{#3E6a7a%g?g%;PKSmPwHnCo zLBD|qV${7?0YUF}*F+)1m=#pq=37aEo@{qBqihC4Sc`CkzVS<+ZwO4AtS@o5b4O?A zO3Vx-eK>JJa`c0Rg~M`Vk0er+QS`re;s#9PccX@~%e7(?&9P_G$}8`yFe6=o##{k} z&DA8DpZo=QMjBBtBy9^Qer^vT65fo4B3=H@%B?npQ&iiQWz$$c)kr21B4E z&0+}@qt;VpjX>m_!i_W+PwSe9m?O;e3pxH%A1412zS|~#uq`~}Y%={^sb)FmXtvgG z!iL%bLckI0aq`}Nilp&3y)(tU6i2|h$212I#&ztY_HS?MMwzhWtPsZ1Gc0!rySI4U z?tG@a-6#l%yz=%=ZHdcln+t@|Za6EGZX)0ynmhFh?Y=9~H9Ymq>jNl5mA;}`|4xem>QK$bmV~-F^*Kgk&T^)J9=H}+Mss!Y)8|&-R zojy>v^2$7QWiMs5;kw>C$Mp@Sj2pSRzGMi|N!y@b#J~K7HT!#&mPE|IK}gfXc(R$< zP)ba~G0P&G|1Kr!2^jKccrcmg2*|pU?g2k+W-d`(PL)IKD!1Go+DMX<=YFViq-=-`7Efh4vbU3X zKQ6G2uOzxDUHsyCS7D&<<^)b&Bjw=v^^KfTjlZKAv+BdO*m9S%drrt{BCUb}B@_cZ z>1D#|8J;MF`W4N`k*(N?<<&G&5kKr91rG$zzc)be*n7&lu2r4-w1huToUrO7>%e@$ zJI>4OPFfi8kEf!XLZsFW&n%v0b^2YTa2*1c@6oaXsF`Z&R1lW!n;=A40}5eBn!*J& zQ`flk=xwF8dmvL8C)p6ewbBl=B*zf@r_ahHA7et&~=PqV6u0~rS4hcvkp zmsSFonbcz1-e?zyQvV;cFcK>641&u{?_W4Q>F9=MS66+%eEU{0Jb7J~jSVq65Eq5{ z+4Civn}MMm!^<;5r4T9k&uhpx4?x3B$M-lC!&12ptdt`r1893fnoALHD99939ggSpBxQmhbJ z@)p=v%X<7`0t|nM*L_0>*iFw zL$Z)rRKqNZg~g021qH>bzyWMmB^uepJw20&2G$E3&s%@>?(t9<>FP2e5TYVo!5o)F z@~m2a?Wxx=+-7vtjO+d}oERCq=Uzw=qwbYsD|XxNK^4>OG(w+`89nab zFKP@ts2Lu%FWJ*C7vC3y<1E!+dU{di)%gO>&H#Y|R=1#CzUzI}?I>6nkF2xQD@;75 z{=!&M%x%A|-uU>xPrs|?^whbxCUGdCft1oNe z4;2V@`z%zKZX-F1ge(ytX_SRd!r5W7yaeIU6<*i58Z=l@Us6~yp@gv(r{ta@l;XlC zxjOie#y~%R7Z(>ZYinyWU?0Dbg_0ixflB-B+q2)xY%UwJq$l2<8xN<$gE4s8i)X7v z-MFC!qW}v(lIZuRwKdMMgL+kJtPoHRaIF#$`^Ms*zgO0}>_sFla&^S2O^)%Ua$=e? z)T@s0$r&HN(Zy5dNWkhT|ES~M(>=Uzvay;UZ2opKufCQ{ztoSD$y0NTZ8VtY&<|Gv z*VTpNmLFIJUa3-AL0uiW8Txdmi*$3SCRiQQhLl1+TlJ5V0T9)HW^CQ5YjxZ*GWEkb zGFJdJzvJna-O+;Li;m0htF3h}sxtxHcWxaL9C1zXSa{Q;M;Agd5lnUy3l5nD;c26D zl%@x^g4zQa1``gG>W4jyLJ1s57t{h@P~fpC&jXp_1r%)E0m2s{ha!Sz)3AZw)5{F? zb8pmu)n<&dKE8V2eOq{rk+V<6Y?tJgMxeuSKH1Z&vzg$%s; z--sa^YP0mAao4SfG1haW}_N7wHYM)0dgx)-iVGHaU>{9t?8;FG$AhC5f~V zyQF_xTJo{Dutfi+h#bB@G2Z0=>|et=_#?WytGT+C@z%9>bc9IL;Y-U)uUIfKp~=a! zqe6(rQO;UCVWSc@lV@FT|=xFe{eg@yqz%%J3`=E@^>j)DwOQ$M*Ciy zn(*K!828HOt;}4tz-PEF0hZyz!h!cO-2Q5}2 zS#jWbn-FSQ`ZefJhcW%cJhRI|WJEQ70=@TG?ww}*qSqGxp9uWO_OZ1j5Oc0v=n2fa zoJ?D`S>K=8EEE6M#C$dnvnu*}aM`0IMP)?d`0(%>$j%sf_~_AS(yLeR{y8q{Jowdq zxAYN}#zOMyWDo=*Q-ja6pFA!TFg0z#cijK8dl)TCe^(A>u9&G-KV+!U#MT_tCOgj& zAP{NqmQ--(fu&+0UGDT4M4#wd(4_9>_pG@b z2L|#Jdy+mYrr`8h$=?YFeSKu#Wy6-#)o8~N_`Nv?odTYhnQ*@%;oF--WA1IS}`0B#!xO-)UQWWoDyO`0Cp z7C!LM5NzTFsrv{VFk$V2&y&r%!)g0jx2sXLhjy`O=$7&8>-Kg2%zf@r*+&@~4>(ek z{)usol>QsPZQp}iN_m-NoAqeIUgOu@98}~{q>MHI{YO-kmA`>zo{=Qrhc7WIgNjsL z_+(sO4Rvg}djb3-0#vG-kIBi9GHq5QhDL+bD(@?wLZ&O;C~YAHa}RC{Uf8CO1=>QJ zUhMvC`z-mol~VJ{jsk>k`BdeqO5s9?{|kRA6!hdT@HGorUxhD5U(2itf>+7?J4e(N z^$PBx;1o|AE-;Gc8(TL-ljwmADPdc;6%HfZ6(^s>zMCHvVttV=k_{5!S(qnBpgkk36woIh}0EpGz7FAV>P3fmZd8) zxB9nC@X7`&zKxZ9%98+v0=y$y)vHCdx(biS%SlVuwf6OG;Ih`IVsXW<7>Mg?bxhRB z?p^2odJ7z+JR^@=^*Iq`GLqm)EYadzGQ`87y?r-EhvGp@0}JkZN-DY@T(Tqm_>Sg# z_kf~WSRmJ;y$R`nnHQ_?v0G=gS?T5seB$oq^?`zt@@KXkz|$OkeWk}qDuJ1ORnJrE z{$>uUaP6XF3m6oEt|DEQ#ve--(sq+{^#zm%ejthvosbG+^v-(;BsRdF@e*(oK&E^r zsI&e?(GHD@puB1szqS~{RnA7T_w-}I43(s7tA!$sEmJcA20EzO@im8DHvntJJl5L> zL~BpQv|pwjH_^c1y2%L%x`swZpALdSmH0c)t?9l4NXOP55r#`#{NwbX%pLO)1LKOC zmkN<6I^TBRB(4A((HLr1{6LPWJC7Y zi3dBbaUKhdDycfFdl;*?+>~cqVDH$0(4NES?IpPEAg(T9(BH z+qt_-q~|~W`0*p{+`aqY=&5&GM2{Trul;c2B-W*0ier;%Q_*E<96G`iH92($sO=GO z(IgnKf$8-3U&9XRV+RdnpKA;^U8Y1ixgegW?B0dootuTGkH*|1CFe5D4+v_`ugj@H ze9o|LIXfDF5JKCm4v$%UgEYymFt>;Rg2K*eG*Gn_em8?)UqL|uo4>lVvom|A`ydz$ zGVd<2OLvsgpGB@U%a|Y3%&_>90{SbSIGTbDS97Z`m88q$Ys+D$yIKO()axgjUU`C9 z3M{eiUP*LR{jOQh+{}!Xb|&rAo9gv#$xloL*8|z2TYvORAbQIB!1!bEp_~Pc zpbvu>4>*vh78qAeLr95d9{DuRC4vj1mg8eV=v?rR%8bva>9~tKvxA$ zpA-vk=Vlx};b5dx4Pbi^C>_9U9Qc#bnh5Essp_nuu@a-9r<&KQ0d3(2x$9V}FHfZi z5wr>=1fPFSXyA$7-n{={dj3s+SJy9aq+GBBx#L6_{6`m%H0x1YTf2W@xE2x;S|Y}` zh?%XgBPM&I%iG)SeE=K9Cva_KXR*A1cLaqf%^JQSpr* zBd^GzP`ihwY>sG68!XU@>9P}}8#d1yrtf~A*7OBfX~XK?!1$(mf zB-to+FZt$HGR0*aW=rN`x@{{wd)tz5`)6W(DB~k`aWHW0k{1JDs>MI+(r^9$LH>Ti zE&h-a-a5RpSN)%ngDzG7Ev{d`lJpz5YXpo;XF-6=!7CD6>A^4-K6eA0@Y2<7MTq{W zlUVFEcydWr+HGga{-M4Vx1Go@Z)Xp!J(EyYWVCEj_hf1ZDQwB74yk<1(HfQ1ApEO_ zp>gT4>cV8-3SnmFo-3YR&85ZIS~0jygHPsXMIz1}z~^FL2q-T-fn0-dTK~C#t;rN=#X9Xmr#=bu#VNuyZ%Es))T1914)mNp ze0Fo2wdO;mt*bh^5DbHMgtDgecE5kP+%IRRqOzFGC3CoZ*_NBH(zgFic;f6uEL`YJ<0tD6AAE>~diu0i zz2n3;NxJ{N(HNdZ;A`Y~xC z$47k@an2Wl!KX`i8Sv`gH*%1L?ujqUSl>{Cs-K^~=i1kQ&shX~Lt@&hBchM6RE)$A z615)O0K)l~wxg;f^osnK#MZF|Bv>N0da!MZOutd$u*O1W+o_+j)qEGmlR#(?pZKo^ z0h3BhV11Fc#qn(Y%AUNqwlA=#tjuc)&CLNr%h2UOpvRm#_%!T3?C5208Tu^zc4zw) zq&1>D(}@Y~|Dh(z7nEJxJ_zI-%x~_^$Q@&!1yJ%JE}h{gR}goCuD3m8jN zkt69PHLI67NW85IwP*-w2IBszJB(W}`E2i$o(;V4i33Wni0Q+1H4;^k4GQM~MV+2F zd#&BHQ0m*etM#cHuOG9kbNZcJH}mx2th1lJ(&y6K4uB;kT5D$a?%UK~<96TN+$CHW z*-U%qzF#@Ez18^40?qkXX$tD$NFGG`Gs2Hn(xvEBzh1Fnag!W9EB&16eUn$zg(dZ|ZH|C}dr(^*xbi4h&{+7RyAPbU zJ~%CPBxoyNQpq*A6$EFP`1i)Y40$V3zY2*V;~4q1Trb=Z$n&A}4*3hg2ZoU$lOs6u zx=^>|%}2IuI&29`Z@~@(ICwNY@#iHxPM>KEfrUHKf}u+}zy+tymwz~U4`*KfIx`ep zfgQPwYsD=03=Bs91qy*kA-&MxF92V%T8gc_I2Hl7G5FzVx%megL+ z(pJbxy{@u-IMfsj6?&XgBM9cPKTw{In}Nk^BdK@Ci~?^(V8pBw~E?B#G)l5cd5}Wi|si-GgWg?ur1lt zMK&#PD6(8Bjp5@?{`rdSDXmdM8pQ@;hZV{LVZe)=Pp)z9xai=*WkM0FHfPqzUn4+^ z$8o6z1*7)cu7^>RrehVGgnA(&sNP}B9!WYa1SaBVNte4n@qR0?vz@?nx&OR<>-;Mg z_GRPnM@LM!g^!ke>^p2b35sxA1`mHiz1KYtDfWSyGb5MfGB{|SH|;aHko@6HirMdO zV!!DGrQRAoK*xS=smbZq`u0TLRA{en>#y_M?XANPS%*|b^07R#G&P}?X|o*G8T-}X zYRR*3dk!QAW)B`bVBe$y3u45q4F)<(Z>lxx#5M0#M~8?{O&zyfZoC?}a>=-0xeW}d zii!9TdQ_y;FCpM1R=(S`JqhECH|Vt3v^CrWGut;Q1^9fxuEDn@$FOU7+bMJI>K1xA zVWq?`h+EG>c>|Q5Iu$0jFa7%C>*EB501|Y;)c;KRb%R}k^{>dd!J{_X1j8|CUk20zz1j0t(-KLK_vE+WG29~b}Vk>@mo zoc}+R%R4ZT??vp}k(HH->Y9{q{5L4Pb(bpb3W<1VmasE|S;?z>SZZw9mk z1eeaJlBVni_}zXW+Q{-qX@P6~M(dB)Q`gXnigrGCD8Xcy^F~U_v{!DN5{>^9vk;bD zjZE5UNP5hVxN7aQOz=pP^A$YE^< z05cp8f4n_{w3bW~GBcrw_OH<>$m~1auPKYa7#*0w=)iKqdhWt@c6Q<{ck8Z7H#jxk zK6@bcsr3IK&|p(t16O*Y=kR-hl0k5Q^B{v1B0=ulx=f5tIk6Q%WH}{{{r_N#;4O+N7F2@|I^-M^o_|De8}lzi`Aklu>GUpU6O6)8Qwl5 zzdH2tvY({X2~X*JWfwouZs%)ECAQUxZK;3ttNxIwJ+pibrrLzZgdnT~Wcrd+`2{du zPG|&lZvM(%r6k{1Gup=ZVfx1SM%{&yZ#w^0&f}Tw)4#0XPz4GRo{_xJyN2|HfaZ*w z*YXDdzy-XNQ(3w1_3nc!>Av`KvT?JE?ONwurs4bI)7hMXr}0fEn=;48Yai^}LSTER z76Ytf#%t2Q>B+M|{JW?-NUs7=yW_;Ik&N5VzH0$>pb|_&UGg6?pAQ5(o}j^6?2AsD zVCW;6ZiygxtIuT&6r*7IIfECI{j0_t=*`+(dNzEc|JT|0R)9!;-Bdff*`z#oy(535U-w29AR>wM=`MV!_yc9jo)A>z>wo3bf^viyzGg zXhi!s2+`NUm_G*#8#|jVO^=?wen-4)nxyliWENnsNCz%XWp#D+oTjSg+E50;sl5*Z zy6y@XXlKV4s_t6v*Ue9a{mm0Rt=edhqmUqd!~tWSRmt?DCM@2;QjEBR(M>c}A+qod z_}yQ|fK$xm`88ap(WEUzw71_)&Oseo*RcXG-;cc#H!DFNabxx{rla8|PN(YCmQ_u% zl`&FYB}ly}Syokd=dvR^j+sOa#zUqvSmakf{AKu6F?c`2-!0yhl>Yi=T{ioZ;FZ^Y zY3w}kkerUMylODhv3qHEEBFyXD}9WwtGx%5Vl=>f5OQbcCC<$>)$@Du3-g22v!$djr=zV9}o;eNniS^tOI>R?zmeY zH=J*JAnsTH8_kc8`m!~iUU#)!OYyN;uAT|V$qYPu&8wYpXC~l8urE`-d5EVgZ#t#l zq(;{}{Fyi+{?)5ae8!I-x!>lt2s+;7IgwhFa=SaSVPav$#>=aNGCSLT*eoC zhvJsLXGCe-y9Y~9a6$#!QQ@%SL{WdJWpC}gAP%tk`MOevkgC@`>ajQ?D7g9XuXa66 zV^7UieExngNwV2=czCn;b~WQLFg5gynauQ3r7pG-v<-Sr`7Yho+Rga=UICL0;5(Me zIG3Uhu{ZE!hrc9)#O)WxJO*5gs4NqvO+chthXDO;B^VwNNFY1%1{LWzQ8jY;@yzuH z_r5??m`HgrE$cgY<@YYiYZfyamf4Q@4z6c`bu|fYnQTdz z)Ks-`M`E~`qa-e@i4z3 zJqHe{fIP9sVBtG{Nn(t+0u8Oa&R@SIoTp_;crJwLnL>xS42wNk0G7tQz4KbJ`RtgV z|H>6S$2QB4A3rMpnw?~dz5VEkp2hj*<%Ga-SgPBo$c64Whgyw2eRb=Z&;Et$Z+=t~ z*Hb)x)h@|4)za>8Y4kUR=Vr;I$!W3v;u*S6B7d1aZlQAgy^yb-`xNa6?Ff)5#;Tk% zGc;}|+cNffMvg#vCclop)Sd>FtZnZvIRLYJ1qEjQY>vA|B+feUeioU4!=$91)GG9M zTZ_Vh&N+c(CdlGFq~4aXmM>{I9%rlrF&VyQB4KiWb?H!9)4Yo=05(eX8CQK}|M$_a z%)FyMp}NW0Dstq)yW|-OGBjntvS`j9)+^xvMQ9yvIQx7cXstGDZuP12xdN<`89+($ zSa`%e*n8OyQU2(U)GSMgx#ZE=%}sNr%a=_6#{88V1#@5~tG3ZpMLjZ&Vo zw{-eI{XQ`oXq+^?e-&niRGeY@V4Wf)0qSbSR|{pYo2TmR4A{N+nx|abt{K=rCxS#-)@2q5LX_?d5`1jo|6{dx_y%lUblamM@ zWXhNM1$!mWTkL$oOWB12%;+~a0th?3=@)5RuL7UB{F6Ici_kN^eW_4uIXsO1&s+fJ z9Y)2wMxP&k0z08Pp>|^Lv9V@W4thq4r*F9dO+XsyE35T<*{jn4297UA?7Eps1SKUE zmaWhlWjipj1FbtwO3$wA1%X1+V#Ajh;f*L#q^OvLgA5)_Fa?%`_wG$egqata06;-B zjX~B+46tr|42xsy++~$|WE#B)pz>jX0Un>cR!2sfE&x~A(%`%gKQq0U1{ut)5)mu} z%UG+3;hMMSRC{f#oUG}ackm%9f2_cY_jF5H5R+Y6`toWa*r$uk>PPWu%AQB6#_7w2 z7XHz~O_Fa0{dA5W8h3>fs3Tg*8b@cO2SenH6cuTKQ~KElJ2z_dqTTaP6_3$h?rXkY zoB&SXeh4Cfu$%x9^i+c}d(mIT7|Y;vbAB3b*qGq-yQUVP;>)llrcbRhNwP}f{|lPX zbDQ)1QZlI!%6~~DCFr3I`#(j;j!AJ)PDhnA2@l`sd3!v%bp4!5{`KaU-R!hokSy@T z_VUXWb;(@etTnxj+AI%yNKMoc5UziRW;SQ8eI&>4c4IX z%yDFwc>YB|P#i#bXWg;t5gr;Ely~tp)Wrsw+PYm7CzL1DC$ug^D0&Ed;$u1U-5-XS zmb-AZ)T@!e^Lp)PCI3k3tQd}yq4OXR1#CYwr9>!@EYX`Tm3Xd7OSegluq-jFH^>V} z5*651o8(mObf$D?_vX8GtLm1ZU@>Fo;OgqCNw4kNXmRQ?l@eZA`-%9e!6EC`SlqCj zQ_IYa2|!04u%CIQ7djN3Xv5H_=7-N3jbE|!Jd2TR_L~r{{;=?OQ}Q=%Lu{h%$HR|n z7MkA0v@I(46=0cPn_0oSb*kBa8OJQ=Cc(5$K*xOlXW(+=l22+H$)$OpYTLaqwJzVj zEv(S^s+-lXObx^TN7PqFMb)-#56uvQ10tO>bPO#>=g=*obW3+AU4kGrlyrkgBO)CN zf^>tFbVzp$yxaTv*82XkSmd?$b)H9>zR9+sCGL#&>A1-*(7*dV-o+SLZXZ_vmaDmty22DJXrknBA@A|yLCBDxdGuP`%>7A?VoF`>oeKLn095gk`bianYkw>ibpJciQuGg2GzFnB!UIi_dDAp zsb%cF3HMoODSsP%rkUTf+Iz140N9?Nu%iFc6ZgEWSM+ZH5!A=P`(1wj;W=l`8*AUV znTcwiHvRe3hJCQ)<_f$x?%TGUY>LbhH32R7LKIf;|_-XYu|uC|)dKIK?M6R@Tnt=V~e{_>gqp7N9hW zI4?X=h-RTkqGylbgPZk0>mHqUg>8v-oI^g@J*no|J#gXMpmTXT*$5vqkHPv*9Y_Re73of!IIciTGIZg$LK<3ACzP#TR z#q#rGF=MQu& z%4ft&D4nLYjNLssXnh-!f>RxJek@`CT+!pzgc8$8m&-%nwNd-HM$kR_&tBNOzt(@& z*J+08&o&tB*Xgol&6QxJnT9HCSWb>P`G2v^J`Q{cu=z!aOJcO3qk72pqw@F8hZ-Da z(xil(HmBCGYa_zgq0;RJcI9CgAj-F#r9dn;VRSo*U;-N(Hc6li;!e81Uw#GQ9JFJ| zFDFnYZAwfQ^Cx~iC0Wfo`C2#hQ<2~EFvwJL!e?EB8Ow|3blQDbtPD^ALfcj|sol;H z4C;v3uH!f=;n&ku#uY#(sUUta*3m7%atn%!i&M6?`<>eS>tviFH~0}OjQ#cE?_8k* z8@eMt#;byWi16N-r(^M=&z}oEdGcib?Ch+)rluy)$LA6aM9@c7P%};!R$9+5&rVtd zgm!*hx7r;ZDQ%mY>WoGc}y9?`5~ zmXOdOgC%&bvdp8NPMG}dF}u{0)+e;P5ojv`CZECSsap ztxT`p00C{D8$!RNqL2L5P2t$E*727=C0z)^Ac<4Yqe39?IT#?&3B|-)5s%`(Tuk02 z*n8NfmRLPET`1_ogtZ$SIQi1_Svk|qEV@7Mkk~pTipLi_LR3i>Kx0&@ub6^-~>tF-*)d6>h=4aOjvU}#Rj-YM@gKLOHi3eNgi=W7}Xd+2-N(US!X;L*IO zlgf^dj~C+OgN!uslOa26<6lIM@H|r>hfHuXcCI`=Iqsq!U!t_hnr z&wPVg>IDai^`8UbKlNosdsAnGA9O^8xiYf%N8GnM`z5Xm{%>SskU*d4A~c&$ zLjT4C8{RGdSj9Q;c>Qt0_mX;-@R+Xjqay8`;#}lRH^yNW^H|LkTxU58jZ4+eO)`X{ z=Q6oUmS9qh;&vch7Lp`!YShiFW#&jLU;IMb!kOPX)%zHQU%wWGCjReLO*!onck7UH zpJS5$aBDi*lu}nQ4QP%Lc9g*oj<$lcku`v)%aH%mZ%vxJ2**@D)8rlRm}ka8vbxMU zPs>Kf$3F#Lwxh>c<&UJ$zT}!W0A{GyfTY%|yu3UhF)=Zqy}cb}Vq$^;H_pz=!v6dB zuU(yOjpZ%Sol1RlbVS~H4@mfLv_k0t)>xxhdk5H=J>lVddwXB@_xA}bK#iR%mCs6L zWIDhB=u+dK^eO}Zd6ChX!x@Xd{!GZmuQWQJcil$IGaKC8r2Bg+bBT$%$w@K}r>FM0 z!K@`t;767Q=-A@1{vZ;BP_SP-5=?&G614(W3T6%GOm=J8r+ux`z&8H^9Xh%htmjIr z5C(*rFj&o}RU{|(FZK5RMa`2VLE&lH*_C02kIc{{A)NU^w0nY)FpvoSlhv_zinqYc z5zu`Y9f&&3QRoOzGc=^2D!Az|ckIO&0P2c)4)JfZ59<3^WW;g&CrjUCJKISb7CMq2 z(T6~KZ$2FXEwtNo+lMHh-HzL$4Ue_W3!lTi7x6eqDG^dB&VhL@(f7(O-#y{fHIu?| zI;2@^?EUWBUNz9^V%tYW>(LrZ=U&ix^^ zzMHS6%)|9i2t@h^m7QDTJfmj!*kT_!aug6W5n#an(_w}0JW>Wa8FvR4-=yswe%+{i z9?rl^v-&m4;>7%|CALtkYbT`4ElaO9701{-mBmW9#_f?EI!2v&G>r5U=jQC~%2hY` zF~N=WMm=0djGj5o_7~8FRv&#xlB0Ao>UnaBTX>?FYb7P4J*?uA(9)q@Ef*=$8mi-K z+=_$If3GFdD(>jxN*8vUS+^CNS&M2Q^zH-%rk$vfpGAFl~0~ zuN?)BxRoj2-Tt(*ha8r?6}AVY13V+bKlxexW*v<_&{WTLUe?51wAmzUeD@=Ppu9U1 zSVQhZ?u`J|oKXAnf6viw7zE+tL4<%t+|QAN&5jMvktPe*FEbj1POZm3T-<9-d|Uq8 zL^a;?-(3@}z()VBw^xA+gh5^m2)GEO%%%r))7>Nz-90_26Mk)A0KRe*kdqfswjZXA z<>cfvPe>(XcX6;-(F^+6BozL=Ex-C{35gjK!Ei}Y(HRyF&Skt%=DxwN-hr4_V`H}7 zk$Crlf--Kwl<6m=qxT;v&0njBS%I^`aI^`NP-e4r6?7>E&-JAF$NT!*=Q9}P$h1EFDm4Do^#%~UCSAgpl=T@co^TJL=$Y?{FSD|y>~ zvwgjj3T&iuF*85EPFTj;moHx^kw*q!ooQs-W-nCX@+{hPTLFVLJsW6gL@LR^m5{2- zIfhmctSppb7dr#CCmJ)M@P)Ai(kHG4Uv#GDVa_j-B7fR%j~Q9`^C0Gw@vYp#^5pDj zGxtHTJNK4A4A|~v1{N&O?^i2<8M^l4_PPt$?K_zp$MRAJF7s%OI&)OV(j__1^V?Q@ zk;Lxj^>JwL=7QSNmhPuxs@nf(+}*74bO?8E6LG%MD9sUlZ`yJDCrC?EE8dWPWf&)S z)k{6wi?Z$doDX$On#ft4*zQAM-URv$58xRHedRfq5;d;8~}t=@veD% z7pAq+WNfvdx_;tZhnr-O{w+5vEBnjMVdebxwjDC3hrdGMp)FPAWF-f9hfGl9bjOE< zh0SdpCTx?ME2tKVZuFKz;N9l$EEAsa*FWxwGn{Ar5n}hoTAf6eggims5E~ctV~kz2 z%^#shn({(Eu{?z|gAdahno^fR8mrORVwO9F-FbqnL^hE`&Kgm))85O{weoUO) zci3~=lRPl1`J=Ix=r8_l*1NUbs_ttH@{m(-A%!LZ2n^ywJPFx}edawl8g=Wvf|G7(~u_ zoU8)P4miNF`4g%yac!M$NR+VhG1Hll6=}pd+hQBcf)h{Dtl+*mvSZS}E5lwJ$Ze$fX5L9zEE&NNd^{Em>qy6TO zOJBer7?+flCj zpkmve7`dWsFmghf!?wdeW0>P5fdJ5mNDs}S0KHO9|jw)g_ycQY^D2}ZbN_zL59wiVb zgcCP>D+*^M#e08P;Y+)_zptlab8T0H*@;EItxfSrity@9h`_sx58mh3OIt(+d}b|- z7Fdwcf2+pFfdOST9UYP$GAdzbT@1Y5Mm6bZl52{6gmiRpBghGL;crs4KXb7}8OV{F zd*-zRj6NmB!U@!&5RQ&bYR3ASaPYI*PL?no8qH4@)~XbKP~il|mSkYccQwQ=dK8PL zECuY&*Qi_+dm&Mvp^{{af|kJ?S$(8NBz)2Sgnl**5xX;Wn`~cs=H8 zhhbMa;jxVV(+&4JyaB$KGM0&HN$QfPoXz&b#;t*NJ2u$3(08B>#6kLP z5!w{m6&2Y+3j>HV4F9flv!~FzMQeJ!g@l!AEvCRArE5Cwj4VFNX3; z6UcX^H6q0YR@#~kY$Pg-pR~BuD}sh6dwY9d*Vol)Du4KOO<#$v$)jxpvioyQdKtEZ zt-O7kIB$bYQq+nT>3)~q%UsIK86y26eVyD@{u3zHgP^lpE{X!|iym4lVZu<^nO7%> zG@KU1H2+-EP@w0yf?)v?=;Hq&-cx>E^+q8An)mr(Xbsl_Ig4w7C_tj&7cqlAbY8&U z#RixK&GK9XLHi_0pxKgHD!5x@Fnv&8ryaNbQdegzFEj+rM@q0HAsn9jLmYEPUM@gn z2;3Hxqv4wwIN;9Mk>ohQYC43XpvOp}Ga?{0EHWRr)6b*9+Px1zi2AS&zD}Dn=7BD!!OnS z3#<)BRE2#QNci-A;@4Au4QBEFt+ltyr#QpsB59^A66-f1Va;KMG7vkLEK4>KtF7Ve ztCo?iK9L~B2Xv?cV&Dap6@khi5ogJdB_*pTNHvZ^m42pgId64oUhSgifr8PBhydwb zzw;wxdKG$u+wk>MUd)h@=kxxE*@PrI3#to^XiJ>Y(6w(Ux`zfkU@!r3qHCh(V!#wZ zk+Yiz^|(lbgWR#L&CL=*0)oljzCH&x4Ir#pYLx=Rfd5Y*h;xK zp!^EfvBapks=Vc}(+A_&k+@}1Fy7L6_yG);+U00SDZ2kQ-1T6Hu)^Hv#Kq~3eT(U~ zebn_CPpSOb=Ti&+;eGv^uZ|*ZE7tNn{=Y|6@Lu}&&wMbss4q=J(HJ~{0YEefdX9hg z`0U9U#aZ^#^%o0i2L!dWRLCRTwQ;H?bBaj0XiF^RXWs@CQW?J1GN38rf+@flL%=vd zi42!o5GS}C3VlpGcHw11<0eUC~mB;*e%C8ca)qH;`}8mw4bo{jAr zGEqy;&~Sq@;{TY|O@{#o^wmb?2SASUhf1`MVkeVR6W7$2>)>4b%&czj{a z=i=@?y>i;FEFHaB1E|J80SITf^8eFt`G9>b`t|L0`w6 z6Ic?ckZ1n863EjK)Kch}5S;1HhK2WH=cf`X*q&SLn-?t1%&&FXpNvlk08i%bhYyd0 z6pAU<5tX1UVdKIJmPxyP^|8UY%-;`sfAmEsW@xn}#^YyV&jW{V1AMv4pDSS)Sa{F= z4e5}-uYBlPAiAACG_9uH7mIffe1p~vLgKQ{&k9SP(%0%n8I+6yR3DZWSHrAIzdhcg z#2@Ra1}aORywwp>^B`@U1PPEwKuHJ$;R14Wojx3)@My~`pfx!J5Y`;NzQ9AvhfT|m zhmRe2p+E<3o}7#a&wqdxTahOT>SIMCfW0O~ocsCu+5sc_7v*B@_sERh-Pd34-;jmr zTvcIdS~N2cuG~MH$HcW($bd7Hl#kgHsC4Rn@BG9IN9%b!iaAJ1&|Ww19j^lChIPgA zM6it<{Sab*O^wN&Ut|-WKhv1bTkFgNpBM{2B>n}h2A&MPZqu3nV(JLCXUnd3Y zT~pGEZ8n4}6u}&~EIVssFFghkJ0mQ^T;ZpKV91RJPced=9{h@_U_Ek_H4n4u2_TL{ z5w3&+yhvY^;VYvxrQiD7Y1RP68u46w@2X_ZokrufT^)`08-W>l7-W{`M!3rQ-;p(Z zq)d>ygiAS<*T&ZCO&sfLEHm&e~zxq zbMH{1wn|-GAW}mncN8Cm5r7r28OKV|M*C+tVCS$_9k}Zs)w#N#s;tO?)%B8;UAAwJ ztim9)ChayIIIGVqL9lRj19LbI{{BzB~dJlRZAD)v_{F0+1U+kwKA<`#; znrdoKzkG2j{^CG18cFz(E&t#EH91zBO-UuJ>2>~^oy#fz?v7Hz21GtK)=x@KE}fGj zLEx?WqzOIDl$Mqj12EB`*i)4Cb#w{=M^Pnq*zM~4QwZf`R~XLJ-b{5AMTxw-I?%q7 z3oIIvgU#im@lI!#RxbMbF&C$We}5uADJkV2+`XNDY0RZ+fTn>IYaM;-snBN3?MqDD;{o#^5ovyryZolqO3GG z(J%ze2~;^%7nR?404Xb;N!xqzM zgsCLut?n$!!^7ibXICb~#-@~+n;UHy#(UIPzYwrjVU%ZnGO!$97& zS=~5&0_ZVC1|lN^rfc{uX8!lriJSAN5&{sf;qH#s#3#MyW$l4nDM$gG7cVGa%r;tb za$?sv*vXlhEMG^C1x&5^C}M-#V`A{Q|Ae5~jq!wsM>;&*qu_l40CMy0)xX4%ONK{* z4gSM@M$@eQYpXJecv$6(jAf!C8OBy-5cGLY_hn9B9iAFazQGDzLJezSCP@l0o)c6!AA&Cb?Y z08cHHwz>UW?_tQo+7(IOtK1YE}2Pl5k%bm9*HK ziWn-bMjmS5N$bP>c*PfgwK69fl&*fQfw+%rN*?+C99qbgT1w zF`0pzVQfu}fwBrmUR~Xb*DlLKYv%8wM}bpa{^?V4UHvaMZtl1{lE;lnR7e{hZ z89z&u_X}OkAf05mCvcpZb)$B7S)a4VIQDAQafykw1_5b?AETRjs7jR)8x%+KL?z6F zLn@?c1O|LHz)Bmz4TH%iCnpz{mz9kQ2nrtG^1i43-Q!&gOwrFCYr`JlC{h!`&B63& z{6?asEk1|6e)4mKNPOL=lTYo|Mcnthi_|bAp-!cANj{_TY%RDen89G#?(f8$yppY{ zsaMcsFV{zvv20B7>)6^>KJNX|?*{g>fH8$8@4G5TM@T~~PEKHiy2J*ldRo)fNyX0m zTu{EpaL2n4Oeu&)+XXL+BXzaq-TZVecheQoTd`4?{wvvE7<^n&(6gigXAn|~?FmvB zjl7QWGEW}RFV(~Z+S=MyR##UGiHaJ%56>7M*H*K%ENrf*P*G0X$*$Vr^K};V(NL%~ zGM5;lHn6~iGuY#1)#wsBe8HabaVQIn`?%ZeU*5PkYBqqW?ANewE=!_Bw1KAl`r)^+ zB5+I8nhvq}xv~Q|zD{~wxCQ@fHdsfTuC)Vehc{E{3t;;c{(#XJZb@~x_3@ZbbZgv; z9t6(sNj;$8Ge)ChD95trg*%wdTOq4T=#U@C(iVM(j&+Q7^XNIYKy_aD42so=e{42D zYS-c6<^9^2A)ofr>vfxpD{3WMBAT&vArCK5zyPc?oKUG~CJdOfk}Ea)mp`2wXqwzB z*>a}-JWT0?OByj2+x2yrLctxMmGXJ^#)(bS48f+dAkN0SjM`r|J-4YLk_(b)Ck*_Z$YD#Lw!r9q5?!sOS$ z0ME`^R=l~X)({v_9Zbt?us2OJ{&io0oz33j3d+bBvhFTfS6?sLSU*)+**`K;Eh#SE zRt@Zp_#RTP18t0N z*>Y0IqEFb;J`is{Ze?v#LGeIa6dX>d21bvqEpJW9j-7vV4SjJ=-X+mx@R|5 ziBzSCyA{&jVni={zuRXks??Fb@FXfkBIw9$=S@_~;%Em^KRp6B`ty=f$d8wHi4oSq zFMQ=M0Px8kg+hI)t*td$z#sVaYiej{DA;NW(K%OdJJQffv>h~An3AT_U-@LShX9K? zHg5Fz=d7a(c_=f8*;U|ym=(^demS8kR9d)^%Su=&kx&kXA~O?{66%4Pan;{ z7^K)C>Yw~Yg&ts#$Cdp^XUs1N)ERPX2u|XM8LDS>o8^!7O&%)9InW{h}BVb#XEJTTzN9SApl?mi;wX08QJ6_UPYmTve!Z zAziW$rCD?rA2p7Bhz~p0sR~QW5xTot8MB`PM=5JK(%C{M`_#DL476-C;j z6eDhubOLc`5%FbcHkmX8Uk~T!^pX}!a(@HRoo$3_lX~x&0U)AYFJET*qi)Wz&G3kc zq@s6_oH_;uc0y|1OJf-y{cpmrUC}`#Yl-$?B5YWsO{V1vStokz;K{o7>x|oK{eD5K?xjZKt~{<7^_%>)G;t(TYP$kDgN}BteCWs zKQ=@FETskDghXaxx3`)UfQjw)c! zu>*aEiteaVPS(e{FC4uGt7>btIHbV& z6bzG85g~;9w+J;pMMYcg!o)6z=!wzo&AfmEkX5*ZmqGlf62k4S188((As9RK_1=p9+5tTCH= z8X}S3zjg9TSzuT=I$E!&zgXFfmn1=Q^tcBt8S*oDkVn!=xyMNG>G}D-X`BC-O@jqR zK*6#Ji}fb|8%$;9?4RcAz(ujp*1Z=K5+068xOxGoBD5@&Fv3V{erT?@`!_2b&^d_^ z$gYN|JAkO5Khf$i)5$AZBQX*5gqR8f^ORr+*WSxX$@TlZmhV1iCv3v3&eT`zpX1tb zP1Q^lyeDRO_rPG1-WtpSS5T?}@f@OqUAvzdng(bD5UJycc99CUCf}a)4Pi`9-X9Fn zV*}1em*NePC{A=3nW8Y!cE@kK4fk&^9#9IINMsQgpm_@jPPUF!Ia*O<@8Vxd;_s8) zcDY)zIgrRs&|;6p$?s7(p(2>9k`1f9t86Lr{)X?h;JOwr1<^dx_%)}i7jDZ3_`;N} z^s4{>!3;ZXF+E(`k^um-2ykF#t*HWsW}2(DKhrp|VePKQHi)DIdTnfl^+sr73Gm$Qk)xQ@&_&Bpj{q`!xw9?>lBN1iW{-`Dk)K8Rjm!W?ZN zv-tvLX1<`Y|J(w=XlcH7_H&$hVH9Nm9H493@j*x0!cynwuU~1OKYwPKQuT6kqv%w< z2DWV)WnwdWtusA_e5R+MB0xy!unVYEfD5F#si{dKLS_u`0!YI3= zuxe{3k%`h&?_;(#jkDqDfTpr`H0l>pnR|{u=MB0P4+z;ezK}-XOMaNXPgqa$Z<4Ir zX~2wHQv=|O;|9UBNTHzm(Hp7s!BkqUyjXK=UvPF5=Jhz&_wI#qZ`J8 z_Y*LJ8o7b0Wo6f*LjWmeYhZ-`(hTfToHB2`i)7G~35HBCs)b5NzZj~iqgs;x&83n& z>X4yfkqhL!OwY{dS3GbRs%dC!Sy3QY#)3-!yy*mV$yc=SMKd;nw;3(^zh~!ldW_=W zwBduyTCs4ADEjDuf=93Y?j=dE5r~tAxtLc0Ya%(z&$NJVB_q?<=}80AV$5$1vFYc0 zLv~wut7f%FCiB50aUrcuMw=o@iY>crQaMIvN(<02T{@7oSu1Y>qMa~+LjIU)^wl|=nUQhz-GIZh=Pg>=+CqZDE~M}- zaM}6ZoAP{f@r`v|O)D!#Ki{ABfIKysa_ewyZ6Y@@G2g+#VS*N@>nl>n1*;_hSu&U; znqlug-`&0a7bBjVn``=DSC1VZ_1DR%e`Yaz6$71>hdGjRe7vl*CIQ%n@tBMdb}@MN zyomT(T9$Y3-DOxuygtXt_Af*|CL*DggfF29IW9CMstv1<7P3Id9pt~`0VT~b*on7* zSny*>3G+F?=S2-MM}6Z7f$+2Gt-AIT)zZ|?Q^`70cW$LYQHYgrxAAZ{d&0H-l|Ish z&TsP#*2zXDu$d)_K--RD{--e1kK2%tcv8VLB`KyMeEU)!rWx0|?>+-uXR;?B%*!G8 zvg~#lL6P})k^27l*IShooE=(UENku*CKwXgdE>^RMRio5R|&WfYK!cBcLlEz^8d?>dh7$NY<`0|*U;DrLIh zA?)7lxPF%Ez%(I@Gwan`i++CAj9*S5e{^VK!lG3FbtTedTq(oap~%YwzbK+ku1mzijLOy~H4;Oda$KCxSA8|x>9N~4- zH?7Ydk{fdJTE?&0D>+#60t5xSKa)X3dv_gP7xbQasz*@-$z=2a1yDLYHD9a0`Y8Q? zEEb%|H-EXEro3O8ajYCOn;U3OxwGcX zELsPq5yn1EfU9Hp$yPx-A-UKBZgt=FwH$VSH^ud6!$8V|8uM~0Z?%7lK8wn-_ytf? zA*6HJq`H%`f1doFwMqksviA47(e_EqVX?!T1E*`ug4q8RHZogWULK~cr^j-B zR)$4PFECt3b9*(fq`_0Pvcd`wof!i4y3EOhPyh!J6cDhx{5!|g31-MwBE!Do<%b*@ z0|AbYP&}-xWpu?JC3te?me%s_|KRHL;?MsduGZ0$#~2#wo+X2Pq~EWsDp}aJGqSf8 zJ_y9~eHzqq{8@A!wK<2hrO>=8IC?K(KS!dZaa4z8jeqrPRu)W@5kU@;-M;Z^3yQzK zeK)f)>1C%Gjj!X}C&UjplgD|RC9T+*1xE!J*p@zPNXAj}^dLyD{ zVcli&{+BbS57D1GD!d38Dhi6|ljrlmxPTPb@$vR{=OgUofaayAE@kYZOu5rC0~+z; zl%7O}CCJ-D2>XjC?=NqepCko~rHaO5!tj3o6EJzk-iT#Z8Ap-7V0D^PQmI=flMEBz zxyKXnRdA)dAW;94MDAIz6?X`n!Ke+5R}kH6pk`-{882NHnwnI6DMv~9HN=W4}KKBmBRtLEh8rJo2XEAIx4QKS1}65F?;=I7@>CTP~XttrI8E|I&HQPL+|b=KB3Gys`aWj(yAO?B5~7rkn4Qh zdz0OFxI<&e9k8u4R1V3F@*1BR+uLplAL{w2HB1U;JIb8?6sZao)5-iPY2I;x4v zL*PulR^W&;m}^%deW8Z5_wydJC;wyfP^p*;klm#(yVm22uhV4=B+8e9QRA2i$R zk6$ZcLw&>FMJq|?Q~atHqfR{Fx@Iiin8~Es0t}oazyv=z3DlBI0fqS|az4 z;qNv60x;IitsJ1wzODJxnwbm*DS>>G1{}zH9&gVi1Vh8aONdy}vOVkkG*=f%gPIS2 z`CKp0ZmLK$e%6=G!qFjd@1`gTzE6XgdH;SE`LxYxyVkTLzm#Tk!WQOcGxLVOH<^Sy zr!iL&-2!Alzki$DZFkemn><0GDY}mJEd@=c(>7@S;HkgoSlXEa@^1|wMBY1ovOJM2 zBsumlj^2l(y#1Tx7WkxIH?*%E-%t$V-K5BsjkH%ke@Sx03AdOwJekMXw;*#J%bfrO zA=`-&rlUHIl5Q;paXhGrxVvk~;ds6ViX_>i9DP~i?Xe%GCtjBR;(2ko4flyEkt@qK zI(%naRJrH5D(xi?n9n}UMiy_~WJ66QG~#(4hW~E$d>QJis@YhUjR()Wof zVzV_~I_u}|d2kbbm&iJD4LTjRIsY>l2qL(WPC`@l|GxRvr?EmKG23D+*u~YeMo3Ul z4`4Un-)3Of4**6)-{-SSs_3x6l!b%=r##f#y|;=`H(#W`9oh#e#C&iffgO4$X3npo z2C(|+Y?FzTu~lWu$29*1x)o$g<4~_s@G+HCYT*M;I3Es{3j*!g=?>lT|s1qHU zGUwo|O2>_Ll9PdiNS~hjr*OuW3CB;E5PUiC2eyyQW1lEeng8h2O;{i-%r_fA=Z zH8;Nw2nYa#-A{c3|I|HaZOIQR$!N3|2AaJD3KwToD24IsrGGMNqGK}?sM$yQ0npq4 zU`_z+aAEXem0RI3zsi>)jBnF$I5sV?zg}Aq5@4_)4eQZ7?fDAC{~x zl3|nWhn+c#P-!}w&fIQT&X#A%b;lF8zC5kDe4B??>`~Pe>+F9b-TY8-xgF|Iy?RNR zmepCibTx}XK=|tUrE~MlKE*qH8JF#rD-Uu1<-C~QP{w{k^4WjOu-UDUX0I}HT zKeEzJ*Pd3@y2s-=U|&Cb^_3JU)nayC`lH7@^vzb=P@ntp-@R|Dxbv&iL6Q=_kD{hS zGJ@u^=H4y@`RyBu9`15%PflnQRy^DbJF9$tc+o1nc(fhR8vioqmL*6CdE4pNUAMIm zDA-9DaCmZmZ3=YbYN=40_Pk-NCAK0w#Rmn?9-wl)CcPoF)}{gV(GTSFPFRd z*hr#e43v=poTX3fgMpHApIQJ_OGzvocmLo(!p!h*En()Ulhf~TULJvssi`k%$|{)v z-=O+SkSSU@#3Glk-T9ID85&t5cy}?g;?v0jylsY~;`8 z+yP*n_*>RLE{KsgQPjhI){NH9narkTv|-{A>dQ;gr+qu@iZ?z_YDn^eqnnAuQm@h( zQa~`FSW_Um$#Rjx%eLdpfBJ@V2zH-VGbZuNgRHX5D4%NI#M1Es!!EchdJ-f3M*r5- zDbdh{%DF;CU443eeVtxhabkA%XC#{$2&&r&|1s#^56`aJ5C+a2D+j$aWUsMG$8=X1 z;+kIlv07FHGT3PP<@J-Vg!4W?HyeQ(eOKWdW#gB>~(wbLB z%>a1`D+invar;f(X0rW$b0Gfhuj zOdmi6Hh3z#JiyHba1E`p9$~=dy-z!xoQJRnIQI(xMlmLyrzo{!iPt>uyYg3JA)_ac z+3{33|97*gCa;{O=eOs)T2!vLDm6Ug^sek1TBpaSQ%%NIX6`6+Jm?_Me$t@z;)fCU zH?8?P4{|6kr${&MzXudB;6MfVrNBz{xq<0~4xMPGx-g=T(^zAkn|@nILa`yilH!-- z#&1u(dImjPpZ0^s>sln=W~ZS=CZu+$;v|H~;oDO{IBJ$Y*AEMPem~;1w&vj{k_WaA zpne+b--%xmO$cFiyEb(Zgc9dfR<(LOO6&3E5#O%K`)<1YHYAN{Oxg(BZUt#rIu0QC zQCKh#mYJ~>bMGD_4aVNm`F#a896kE6!NvEO!>BG&gUE2)yAR<&R=WPuvF%NXp&-F0 zkZN!vnr5(Nr}xp4t#Rtn9wMsqkZ2^=)|cpFBv&ISTPgaH9aWJi`ByYE>>Zy@@~G!C zt;Q&C6CxjePT6^^VYVfg1u_I#*DabEYq3NxuT@3z%*J zE0rHMXD4{jhV+sG@CQ3h?*INuRG%aWs9)f$oSUyD=2rDX2cz{#XpL-Et3Wm_T1JwuYQypvI8tUeCBoqo|prY^gE!)t%Y~r zP^knrfsgOxO|`X?up`Uw4MS~Hfnf}e8N7ujca+JmR?5%Hkg@;*0oU06h1RB72B}V4 z>Dy`|r}5Fzyy>8P8(G6p<`-U7+Rw>EcdNinHrk+QL)!Xnv_qVmO7u!k)@0(xkMpBr zV<+jspzeAc@i82^LvZY0XI`sd0T~GG2lKNXG=Zl8&DDofsP8(Pa;KPRQ+~zmZ;cFRm#k z8<@9fZ>_Et=&_PEd26~W0v3eut;Ywa!GR#fe9R$F_LdNcQem;*hQ1Gep|strJj{YC z!aO-Iq7h;oR;}aR=WFN;M$WDFXEW6;A8d=>U_z5ztjPK<`fM}k1R{BXMns1EXpLmh zPf*?;R1qClAorVzH5K=>m~{biKvRPU_{D!t;;APicy_3#gU~Dx3E|(?-;II5Vo#w4~hq>*7xFiHAU|uYkW@tBcky%!e z*(2mtoluIp_?oA>20ZYge)zrL;%!G@kgn$HUL=A4%kq^;0uaG$`*E|u2d_AD!Xh|4 z-F=I?r%rOohb5Pv`hCOSn2yEX9TGd8H77MXhA zzlD(y&bzsG|B*5$naC7`$in|I^_5Xkc45~u^iaakA>CclF(BO~C5;l&T>?XQBO=`> zAs{UsQqtX>QWDbf-aOyC*8BZs&074q&pFrL*N!HXp}>$xiJ_+VJ+DIDATVso9oZN` zN{|6&Rm`LC=lXz6iId#}l-Zxo1K5+J5?YdxX7We>iR`~mSep57ks6rgc zH8=NwD6a|ekrc0r?JPxZR1~(N;vj>gV?g>|nm;3B39tkUX$uQOIeL7!Lly)svskya z4scpB7t8;@Ly0Fjc{alXD2(Lpe^FR0fWoT(9}08kbW^UaD33Y&H=F%A`nN_W44w>P zRk1X2SY7_!3;$zdT#~qN`yciqPc?tyx_ZrjqLJM_cPOAMZjP3+_bbLJCBjQ!e;L>e z`fNg-AqVg<4 zE-t4A94Tj`Z(mc>lQHMJh%gcWzCe6>!D97vB!JX*eLm=8Q1zd|guB+jMlJQacvC-U zk`Ab>sy#hDT_`VSEA0QO;eg7_3@=yL!F+gWI_1Xvy!6QD^=$V{W)2yk;-k)$?sWO= zED63?8@}G`9}wxYOv&dW?BrXYO?w#&lhURd%}E}NyJ!DIB)>hT_Dhp z2=3b5Iu_n>b+S4&BNWkH&t<2H9H!;CnhgGS^jnA2 zqSGU0k_W^>^`=WurHeQP)`T

    uVJB&)Drb1PT zE8co0l$PmgDJpU><4Xc+8nL_`hK)yFUS9WWS~ytESq%zJ&+dv*fZ=~FLix)Dba}i8 zcngp^@xIW|f~=P}zu%=0<4gZKJ)J7m9G{ucoOs2L9&EDrwN@tJC3xu6%|pD@c4~g! zn~IZDEnNDu#kdJOn7)nk#`yDOazWyh#MtV=@?k}m3BQT%k0$BKmKuHb3R^9U0$%<* z`ff_9AJzLWzJha+2Bp}BjZ16Ztz8-aYJC9I>(A^Lkc|QxpmMjh1!~f`R6UQE=2<_j zCJbpY>znhbyn=TTCnZ1y3zNteJ?(T?N&I)e?vr_^Lp`c@sv?nrVpn_((e*-)%X@>4g}@)XC2CLIjOO-q7rY?*7_co_-g=>22!_CPlJ;Ae4hZvs^f zknyRSkT^kCtP~UjWa`g5hoxkan(?5;+NRzBQfD*P&z=2|{e_nq4)w%I)|q}7>{*Vl z+u2-;wtx${S+&OhrS7U%Qg|Vtn8-Gh70$&>xdTFE62__(lCSB!^L~w5tNm=3!p_EB z@&tC9%z%@fMstwFC1`y!olMOk6p}JC)=7nenKSsxcc79#{Qkh@o8<$w;>lhi{B{Yq zRIho~X{dC>!9brxX6Ak1ZTr*khA28j-8?;YB?0KvaV2Kr)|NtqhgRdphJ@-{WsX#4 z`A$=Y1!7d9h@75Hjy}E&MkmW zgT#=ufG>LyhZ&=I7o!R>iD4*9$&lA@WNV0b=ooMNP0Z}C6FtgV3|M0Pc>$aFETEC* z!>A?x{KUnPL0xx_xauePr!K++=F1at7Ou3%yqE)|Gtr20bRS-udU`eh&?v5zt86(* z&{%7)|;6RbhO!FNE*mU{-j{e*Jgo*gxH zULwjGkls3FWMq_fR1VM=FlpcR=H|N&>Cd-9&?aGF%?LwP8#6QQ#58#z(YUtkM-obU z1~MA3@B4G>(oU)dvaSB)mW_RVa?-} zvcCmb5B>!*N!iP=aRz<`asX}NXcFev0Y{4T=9PT@#NMJ}GN6jzLdrI4^ZEDTUli$0i6QTLP07G|TQb^C)MnmAptSA5k=86~ zafjHl5Vem;)6IZ@eurPn(uQbz+MzIM=Vfqi$asv~fAS)4iQOMWxBf_YD3+MYUk-2G z-LkJjQ^m@fM)T=;gfhgKz7(L1k{>qjPaCE)*4SZ*kv#mNQpdfE$~)m;a@u__5Plz; z&VMl}Lb95^?60QULb*X0w4P{_Kt|H&&>_wobYup^UGOqsG8Y2nezY4gC36T31W40^( z)j1(EE`yYMnAlKDZ)sVU!JmtH3Ch#~}ObXu`G-+GirUzuS zdzjrwEpvThpZezhXJz^JsU^Lo_WW%3pI`cwO^$0;jmK5qa@ZD{0+foHo)+`VqrCG$ z==%Kfas`J2(~KU^weQc}{g5PVc?S4?9MdBpy?6KZ6=Bq}TWKM=!bM~Yd;q6)#Jgb% zQYiHH*O* zRmvDJgqnML7y^V6C}yeb7#sQh+k#6ffO1w_Tl*`xMq5|cRS4(dW@9!AA9}3e3PRVn=b{N6;5Z2H=HxI ze{K)LD`x-Biu8-{W&L&tp-)w}vt*~=ZE$guxU}W?Y4R+Pkkj>e9h8?q8Z3UP{|6eK zGk<*M<;0~Tg=@w11rMc$u`F9NT3FDJA-^R?H8ra%H@LJSW`uT zmEe0Vv6mrA7VOf@uWql#nN=LX(05Q-GF*Txb9|wGShMx^GyO4GynG8oe1v$EoAS1hqDKWbcTOkEe`Nw1Kg;AN^YX! zR}nBsN;L>G@O}Kl?QoSlXXE1s6inscI%$8D9-5FrrvMsj{fs-*9$$Z~mx~nggM!G= z^PibS-`mp_+6nTQ#Ve=X+nOICxZB#wzw29Yk8HS^PHmi*s-!Uv?=o3AYS8$;Kyszk z8z&AMsWtV0{jA%NqCM5|lT+|~8vE+R5B;=tDXC2)M)hpjB9@}HHTfS6o|#;mn!w_{ zu&C%?r}i(ZZ;d%Xs)b=*yyHrX{^Zh9IS>XsMNda}@!Zk{Sk}ma2&0*Wbd__#fB=r> zv9xSeKr!~U;k#-F@}!|}S=l#c+F(to*YQ6y!}73OGZx{BMHBWNlmpD^x8^Js>M#Vf zm^=gvDyblvLP{7q&X9jv`hV&=7#5r?0VPm7qNa7E-WoI~GWZt5f};4Nvop7{mphPd z=P1|Sx&p-h{-e=Hh$NUJx{Um?3u1J_6eNTILm4`xkPDd!8&yr2P7qizBJ_n@ph{m_ z{>ku5){wFo3PGaHz6=nuRIE9v<4M#xXH7gUJJv zm`Fiv@}Q2UUpF>(c0D|WkZ;Z_TO>z*5+x_RISgj#ihFf}-gxsNJ7kJZUS$iOr6e|RFPp1&x``XZ;!DJ!@6GyJ^AEV?Cv@jLc+oy{;dwz0m@l<=5;;@ zNJBF{q%EMJXQWms8K%Hfxc%j>S$(NWff!SYFc^w;P;2Oc=zIh0r<}>&u)9(a(TzJD z*uQHX`UHkN8wQ-Q7<}Wo0EVD&szHLH-r-^SD#=8fe^g#>9!vVF+itj2PYKyQQH9ZvMUj%6?LEbD5TyHikrV-A*Dw4C6 z5#C#=K0muF@=xYHr^S_jwq{3Co<^$L5)$_Mw9rz| z>{IsG0kC^jwc#>G(E}}ZG$o|A0$iJY+}TUYoe;9r)vN7h+BiuB+8FAf&mWKW$}vVa z9{}dN9|3N5d~f7)pz^W2pc7%@=HsiW_tHEeZgI}4&gH$JKHq)G`?lSs&jugASGH`9 zwq#Y3@c>r3@z`0HZ}F960k*VowzeN~Dxm*fZGGd%|F# zKQ0G23L%}E&hdCqVQ!>zFz?yHpFg!iLP9_H_V&b^48@%q+fVwW;ygUIIFmKZ)o}>= z`n1XvW!@?&Da_6>!9tk7W)To*e@-9V{cXQJ2x-PvH((GEdE4N;*=qxqi$Ru6Q;JN0 zqd{Px1P~q`LLvOi>KGt|ocp_4Z%>wyl}3WSSyNG=G6|4yP18?0(MdRjp==Y(pA=J$ z*Ilpy&DGvh`pk@uij@`P=Q9`y_8}tgC|IUjPexk;$xBL@0g|5pL$`?N;tTD<&#pqs z6okr4DJFNk=)g`{lDAcv1USW;G%&QmcX_3~Cm@o8jxGcY89I!QjFcon!U93)eB`%Z z6<$P?ma=4`f^acqO)n)zP(i8GHp0TfbAM5mG_?)$s|S~aO(Aq*P7j?;PcE-0gCsTL+v4x{l;^&7O4IzXEv8wi5?OY|&Gp)k+fe7Nu>eK_U>Nv;$Wmc% z9UqNu9gc@U{S&wV$azihKknqj$i-24d^5v&>zKTNI=Rk0HiwBXhEHa8iG=SffKN3K~9leRP5VaxpTW zfxgr$3>;9ULM}*=#q>@dtHWx0^c|9-;pJ|I&~yiW3Wyk-06J*TA?XUcFXtUKg;|W0 zJ((9!7Lh%BzBnwX!B|Yp&L>umr~D($x9E?DP$qZ?79Dq{=fCZX>$8*VG_Vkeztd{F z-hSvE6@tx6=sk#bh40H|(!2oiApE0##^64-bpb#><``epuk&~E+^-56Z2|{<_e!Y? z=uk_TkN~N!k&jF`VpJ9!weuv40zpkzz_z=HmE!R|MF1fPjj1f~f$X!qr0*IrIC$x7 zN#Z6m&%RH1R?XnadXA_eqwUDi>q0zCajdxE>B<}BeN3_hh-K-v3op1x{m~iqWE3As z@>`;7Q(;oL@>yBUAx-Rb zdNsCIOk`prHxCb%0nF0;fnoIO9s|hbg4W($b)B zr5M11;0lN$1R1)wP^0V0$pPU_%L>)#OPvmWcU z9ah`Q(iabB-eF zBDvfndO?J3?XgR1&&>0@^A(H;wgyBY6 zKW|;+vvgChF}rK9Uj5y_k?t-iLRy-kJWaU^Y6UQ5ip$gF`I?4)sv8*?P&ha`8lI&v zWr7Pbtp?d*JdivPJ-GcWQh<3~a$Pmh2$dM5VMwJ0LSOd+niFXS1;)B%@6pByx+G)& zf~ff2D3JUY{_J^;_JE6>8*#XBIt6HT+FG39@5XWV|d-p52!l$k$SCZvL3X=^!8 zI#@B!C1_eMflVF{um&Lv#W_IIob?in$m?x3!)aEySg@LdKg5uS5zu(%YqBbQnUp3e zDr;IL6tEW{7E|kKH}`sqm2ALL3I|9Pi#+Y{3*p>I-jZ#U1sx9c zY&qvK@}4!pE}QLM798(zyIEcFAFrzDOZBtW<0ukYOG^NO8^OII#=PvI;7+cmN!O>* z72l4&Pt&`r2_f0{-8pnySl%X5dQ@yL3Hwn}L$N}jAD9B)6X|)(cm0T6u47lKUwT)j z*Lt<`>Q4a=>G0Ppjy>&^>u+;WH@f#UxYUBM`V6OCojxs=ew2yRnsMT{M z)Ae}z!Ef~Zp6Fp2@u>?I_9EcH?Dl>BiT&5LQ%d#)fqb5{=wSYtohx!TI4$_;X%?`wTJKs0&pVQTFfWHP>7;@89|B{USoAz$n zH+r_x1W^2r-J%Ide~w;&RRb-_nZHmX%mShck#W%l=Pwhj*3i_5(042}#P z9XV62(E$PXo;Xnyi{51{Mf4OdXDI1iMzar696j zC2>E%kl;x8{c6}bS^I+A4y8w8jvNQ#5*d^HLK#znLPYwWHY*Kh8!d0=e}#(u(%RB? z$~GPqSCUXs%zKJ)E})eAHIBDVe{q*fdRx(+=)YN3!ss_R_vCf2t^P_3Z$^Gp&T}jW z>bpO>|GJjeD&&$Nj@>IYZWxuUZ+Ek_Z-*zN*Rrmnpr&_(cc(YoOlx(GnIv~D^dk(v zU;DDvI`s3Kn!FhX<^-BG<-4Hcrp2%I zm$$Ms|);X%bCrBHd<9q8En-I`dmmCVe{EMC` z;&bs;h>orYAU8~BtoeqxQT(uQM%LD-$V!Mm6Nft`cL>h2I6x;pT4;(`b?8^RddcDw zh3Jqsbz*#FYMFYOQFxpq-o_%I|Cs2QP!b^On%EI*im&w=uMRUI;x`Y^Zp2m#;NASn z*cu&WE7(Zfpbz}l92 zXZN?;jgRh)M>6OFNdOXKV*e(G{Bwa@;DGo{CkUfuwV8X^a>+$~RZbZwJi(5g%p-HEo$ymf!7ydW2sP6P@^^ztw>`dVn6Rs>2aM!@)We#2(8x9 zh&vTv&tTwc_U2o7cpnezcqz`ck&I|zMyuqv9K*=7Dx;L&Gxhbfaq0-WaBJX=q02?H*1D$z z3mSqlj$5jL)5vOXdy3kJJ1<-kCm_PQxa9Q#2^Uxp!AH0-?h$82dQ_%il5#VCQi(bE z;zKW2YqprICD)8(N zkt&DguYr)oDa9GX8B<2^F4sb68zPHxA&+__O@a2gIGBP3R)tnOj$Kcd%b>^?;UB%$ zhrbF~6&=v<8q#TMY3Xl)Y4{t1kwB0}k6de@3VSG1WDNm97p<1e^BDFP%(s5jvnUUl zQC3l@z9Be@zCx(Awzf_?eWg59iIkLJ2HCF*=Ud)N)>jL>IRcuY)p-?}V|SSg{w2Zb zkHK{7MnbK^@(9i>>rLkqtGjG2w8FyaO=-_1*iS*Z3BlI)PImnJuBF+u{M(EYRK-zj z`Xuzx2t;1wGoT2W9SXCYwa^|K*^wdpiShUKN=7m&8XI4_ifYv-w_cX%ui~zjC4lH> zNK?L!6cUlS=-VM}u;4s_Ji)*bw^lmfeY!*R8I@>J``6@n>4o8^)@rM{pA^A)`=Q}Fv{M2-GTk2`FvT}0OT?DCXHTwGcu0XI) z|C{z*4GKAIN=s9ilpe9G3W#mYP#xy?{yk=KnuGl^VKs%Wfq`|u^*d*JnSp`B^II>U z@4j~%nRp~5Lh)!sjd;tA&K6oZoI2=oUz=qAcGW{;*2YO5O8Qj7vN0?{xQ}(SMA+Kp zEsgBK&~08qbt%uR%&5u<)gyWz-V@Q_mmsm06qle*C})qyxT}W!g`G4;Fhi~t?c4pE zG*uLZduDIAv4Vt3z)Z{pnfI=>)w&FdF{q>CavBB+cgF4|Is2Aw41#G)@$)SD*o`55 zMiQiCT8A{!|Gmbh7wmk=nCg3;LX9p zGDuEFW*e4_*N}W^^*T=$4MdLgwBHmOWNmcK409bq0(O5a<3fM)(U#{=1u->i*cRt#^b?8pg(PdPIc35#bO&%uTQ# zhMx^B_NgGm5GdU3qY3GcB;w9Q`Q7x{=<)+ z4$#U^b0y+c>dW*R0onFIOT1L{Smp^>MPCs7^--?$jc9iYUl@MsVT zm>g&_pg_rF!)M9>QM)*H2^1RqmhqMdSiT#DAMY1eNZY zzvY1O0%AmDIeXlB!3kd6)$yJ9a604Pq-GBIBIpe71t1_|%#^i+9+ph>6k$VW3+fij z58}->ZuRxH{Zq5E65Uyhhn*0hA>f3+GY{fx8l-fy%tR{yB7aBuo4@iE)oI|`3pP=* zi$ii6Z1uF%+eS8WH#+dPzh z?hc$s^%HRf?EUG;Qn!2P5BgEWdjCt)Drt4eaCSDc*mV$FV32q)y^l(1RS1Y7)guv3 zOf_z0iT$#v&mpP!fHas+^DRe`)pqQ3e05ND=<8!StJc=mVIcLJKamWOq7?&zX~O*= z=P>^;|KP{aw%Siibbt@pYI=kl+=-k2m8zDGE|0A~*9)BrEMP@8*!=aWCdcGchV*gr z=t7Tu2t5I}JVNNy&<5e)r}{`etR*zr+OY5I_^jnpVNn!>b%A6(PDvm-4PUz?Fj@K9 zA1aU6|2y2AzDRtkH5Z7KKy6C))ce_`lHZk=fwTkNPTS6vHVdd^VKS>sv2e#<(HZjh zf4jH1PnrLy5O;!RJwUix0lWam_$d)*xh6f{la)z`dkQMV58tWMf3b_|CXUb`>fMJ; zzd>+DU_#*ajI@w?Yjn*aadkjBxw!Jcaoe#gE=lRL6@BrDDj{{^zv{ccPLyp5kFhQx zsDIxe!{!p)tWY%@*L@#035Psw4sqibBUM+*>n6 z;q3_z)7115ERvSy>Y%0-PXA$UE{{j{+n?wqe$Pt0J;efS&Foi>{%s3jc{+av1t4Sf zh(*QRI5Dc~6yJ~uAp{w}BHNy|ej%;>>TmOZ!}f222^fCba+%YAhtf}Cx~O+SBi2D^ zU{i!sQbVtM#am{dH$K@y3R|jG{aB5f9a%w53Uhr9DV4*!@B?Y}f4^=rixcNlkHL6L zI4R?JR}T;qGP)-06fIf0T2!<75@F9JE$`inWTABqxrGqap?e^rRnXT2}cA!2mn z9$z%mi~Ao`sUnk<+&a1)fwkLja&mGz*$WIBlc?zE;RtUHS%=(qFic8fGm-4=FBJrI z3=A!?S)!DNi2R_j9}duup-q?yeA&e-a&6VXgnwJ@n5?VLQ?mth=9(o)E6WPGCYdIL zJ8f#HRJ#Vk7Tq+ z&MN0*5D0k8RDg{H$ zNH9|(R9OpB?tfw-(i^BLm#vg2D=MZxW8ZW%h`QA- z7XiT=&3Es}o0?u4^EO15mX^*}S9AY2F1gK0b)w2l1M#@7Dk{Tl9c)9qfDSf;FnX!{Pv%{Y5>6|umMyUDVVwT2vbDNu$Fv8U zi{$!AUE0Y>FX)%kR?J&?WH~O1j8m&6GTmR%Ty#N&xz|wJb%tuFx2`H@;Z*$an|iGD z^(grC$&x(+3>;qw6FK+7u5I@dMSb!Ygn>YvO%@w@+Fic!hK%DQWIcJ@w32h7#Yjn9?uSu9mZV5n>vM=8M}=K%Uz9ltaOKvJi- z8X~AK#Wz&5O01+cB(3%3gDSZImc8vj^yS_7s4lXCoBxjMmM>pY1>cK^!QwG#cGi4` z9c?XHjdOeX{B`_hFeX*L?7|Cj+D4EpjOj-{JesVBsU9H-);YbRV$RMU5gJl|=e2t( z40OB?9y|L4Y@zA^le@tf?r-Aw5wk?#?+|=XOm^DT4b|0c83(9&3p&IeTYY15-uNO} zUEtQH2N#1aaZ9dU^+i5oP51t{E@B-%RIbx<>Q4k8ar**^!O!_AQXWaYD7|RCgEhT; z{2p9k*%Q4Jvr$qn z6ZP&)nelKxmfs$_?Z*Ax37tX1K4z<~`AY*hG?YPMa9boq+QO$V!66sEKsrUGg)`Y@ zLXU8x0vn^iW^8EMLS$3a%;H!NU|PygL$C9~E^6+ZnwqMp*Rtn5!443pKxOJ&rl-L0 zwG$VmUdqhQc1ZpHUT-OkZB5j|mj^zdJdoha&qGY;d0Yi#J!o;ZZ439IA8o2dnYOe)lKIP;#4w@;JQkF~= zW0ZHqOG%&uq}yu{9;<62oEFtw8OI8$;TfqzmTXRP$Gb(Ez{i-?H}v@UxYOS+?+PSJ z2yt?b8X6m8%UhvvFzopf3xHfxqn73lU4>wxb*@?;KYV9mT5=@)QnWGx`9qRr@`?`3 z1Wu5eoeVG_pc{Wmj8`v=Mr~d{p!{aWI$WUXo|0hno;g3&6BsJWhGXrmNT|S6LESi) zQq`z^K?Em)9AxrRjS6TLh|*OgwYci|tX~y3Bjf*lj($;boqn9$`GS3)0gU#6SpdRq z3@{de5W3+fQaJKLz=Y4_YX!Nzye-;`B0jZSmtKuq&)63aa&eS?byNuy%$UWM1mP32 zid}o-6Hd23IlA(H$lr#EE6U6Fv&29cY(AQn!-z%VtzXaS-Re1aBmv6tKR6ZyUknrn zZt5^om`X|XJk|4SZ`1yWsZ2EhlfRoT3oGkeXi`L^f_bQx28FvgigF)z@XTr5(s8f{bnDlxIo9GU_ z=lcfh;lC@=q^i$yzb>Q<9{TOHtSS}u`2xMLVW^7MQnwC&AGlyrK11Y|Z5a>CH~)g@ zQhXfue2I)zyxn!mrqk66zn7H(->*{=ERXarg3g625#)Uj3a5dqpcGcZ+N{)NA{TJ^ z*@0n5Ae2kQUG!Qab0QX&GUc}0(;E?+r`B7tt;EIG;HC7&}5pslecbD$hjNlMXjEK{FgFYh?l%dyDYqhDr?qB z$;lR}I}S5X&)Y^X$<=N>kUS!n6|1ZR3`k)-|FBze76#T(pUeLfaQucudhhqxs{i-h z{OzmN`|raCzGZjTYj;ntgDG#AeErut)zqIHa|*Iol(3_V&;GdBuH&ysH9s>Q5T=9u z&wAi#0h;8Bm}q$p;QQ3VAY*DS53YUVN5}|ar3-v;B1R}1neG8Yq>olTEIYqrJyL(Acd348d%O1Z58bY*2x_iCYF^q7E5f=4fa{NbRsEDmEZxcZ_ z!&4?9I>%vt#1H={?(Evw4eRD15J-?7gr*+5IadrEEh;n08nY7`Fk@U{F|$i$i=^kR zU!&}Y_wqENqDz@+Y1ShnBmA^y$Q(3Ic%8(OtBA@y>*R8YWEn40KwEjF4_n8Q%d|E5 zu%9xzVXTr6V7>@PBT&z8@Q*-wI@%011^QkLJirKgwX{(RF{&}0spAf>Mibxfb?xaQB z#l7$vYVQ7XY`Nn_`4cDoMcuy{o<1i5SSSl|5%I~A%EoTf==bZ}BfL%%U~-I5WYuy{ zhHJ$*B?AGBfF?L$>@2qj_sQ!ly5Ah`Z0_*NMsZO9DMfx{s&wVWF9ab#>$p6Q^$s7L z`g1-zJ^gh-0dKw_+cS|RCbn5PInBNMrOqWIA~Mp<0guTLy#WHSy2H?;K!WCo0&81a zUR`bNA(|&_E-6F9CD9$At@*2Wk6%b=C_8YSahXz6QJI2A2qGvE@KF*vySsxyCXG!^ z>=03)3WviqV@}S)RC`IP)}ac<7~_|G4nO+6feAc7qMhov;!^CDs375h|)BA>hW z(dV#BS+%c7zrh!`qWXj024U0Q_e7-u0+$KZMAvm>mq9Yxl1yBM?yW*01=aZy`Yh^_ zd+r4zr#O#I_g|j}nzmS)_8bR0epv?69lCcoSx{GdxP8xiAa=D|8$;Ru$??aB_gVEK(Hs2-#koP)=$uEbFMnwW)b|^i4+zHDBPg>$eFyh1Vs7B?y$9= zG%F*6r28eD;lq28$Dt&hK>>=A zq@Q?aimuoSYsH+Gu@-AoA+*dGzdszYp<7;Y;#AY1Ng->hA6T_;E<_`W*iy^g>HS#c z1naN~pw7p8&Z|g~o_tfmy7){TP`7c=@HzMeL;(0^o+Y)Aio_Lt0(pmtSGA5_455rf zymFDT2=p}OTG}TC2yM?GqVzo%acazB|KLOv4Uok+R=UhUO6oIzzrIVBtK=_~*bv~JqCaZoS+XRmi z_e3pCUZGz)$y$ZknO*2Mx-deao07Nq31*4^c8$RM{4VH2jqHyL9m>VaokF!D%1X@z zg9Ad}!!ncK4hU@$3)!kBD6OE0V3UuwI^f}F(6aXJu#kzU9336;0yv5)>{0uoq^T~5 za)tC>=k_3>z4%4QN7Hq@yd1r2#W~%bcFKPbH>*95mdAC4vz9NcD6(S*qj_xq8BF(M zmG8*~1T7*)O<$@)Jq@aKE^Ssmf2u+vXOoqcopT1IKGXWl0>mo*Ki5UV=r2<<`c-_x z?#~w-<(#!M^Fz`#=8X{IAWo`!=xKAMVy@C-3_HebKk3rY}tqps~O*G&sr1Nj(c4xD#37=mh@bXWQL}x@$3g z>b60G^)fJ%Ak+8>k%e>E^`BXGoDg&-?!Uh{-@+qWNEhuJk@f0NGprmNk`a>D2=8Ox zA5A^&kA6o_+I!q8Vcv7%dWoe%`y`JQ%7Fjl%}%7ybc)6l8(ETwFC5J#7DS1e zuHzItalLRiYssnq=x;1vA;zy@qVRATRe4T<`PdShffSzCm?5pdX|v8iO;@V`gTy$# zK45xyYn0C<3xHE#IaXyte$%BvQxuY=Tk~6(gvl(Wm#g>8ClKl%m{*G7C@>)j#3C(9 z_uJ~1a(&4$VTfu2o@U!Me(pS{3_Y>~pYregq_H&sIAzdK#(%CQc0rQ=+lX-g8dn1% z@0OL#_ltkEzzgdE%Y`{DcUeDpD`iSnm78D-A03S**h4=rd>Kv>^rK%$?==VYd@Ung zU;dckg6$_;J&MVdzaJT9BZA)7jk4&r80WRl#nIX2octzax&nW?Nd;K)U+ z44_>Gil*_|**={MR)Epu0`=>c?IG4(6Wfu+5jcH^2P0>);i&L%adFW;#9D>YV-~}f z$L^PFn{DU$yooL}oXkpMo2AW<^c8Ic`!ey?a;xyUs#AXVSOzj2#w&>Hh+Lt)?+Jq@ zfcTOoyaEx*IFk>IK)SyF1Z+%T6XfxWRpE3%QiSr}9ms9196z`^exupi>!`=_@h;2~BKV$l~34-r0tQtShm%!P=h?3FnYsI+0IjbC9*e_Znd zT)4gDzqS4LzkWVT%)l6Q8^0b%F(^E-mS>^qobVQjlZWj19Bz{l*51#u@<>YT%kB zQ-r9-y+2Ig z&p7${7ew9r(syQ=d0I*c{hA*Cp73#D`?DpY^jrrHh^l<7yRBbpfwJh6wlr#f^uDPw zDezDn*6RX7<2eRju9g{=KzV#2GtnU(NN>dDz();P} zkecvK7T}GEBrY7y3eE1b`(GXG9)CmPIa(yn9xz_?iZ=e8?x`GkV)`d{uJ&I1)s?}F zt?OOQ)#$Cw{ZRFM^^USiF*7gkB+_5%SFb)nsE{7jl$0!B(z3E)`aW2!@<94{hO4Wq z3LutdsL=Thg0vbtN+pu2LfP5b89LA+mSEMS4%m2jc)Stq>*J`lMpZh|YakGk9>QHu zn=__U{ocumRh6`#Un>w4w1jW4AmBO6%|uVs->@d=`ZpafV>MO6yBio|t;xximd z6+S}5@if2rWD)7%GPBKBcu{6Nuk- z!S&BWbxv4O{*L(mZ#X;X^*Kp~$8q#PJsi4v6S(A0p42fs>tpk_ul=gvjU*Itq77=| zZkZ6`D9wQUYp2@oJ-*uiL7YNc!Cz6YmW0z@Lw_WP1T)3fMX=*8kZ$@nai3V1FUB}G zJC`F-*>#|@R>7}{&^kaNQb-{iG(@-M<=@ZwOOHhx%;(#6n~b&}uetwPZ1jCaVoOmE zWl_#ci%xNc+GbG0pt|$*Wx~Dtfpe(3n2PsuV-0h9yWhFHo^!^M1EE7gy=-ze`n@+H z&l}@<5EFP#knLLp)TLDKospzW{72(odcEFn+B}SDud5!mu%<~h?CcI(fFJ9yZPj-4 zu4s%`mzNvkKZow~OSiV}&Sm0}WwZb@#rpa>hEJ>i<;DJFacu3|=W87L^C}@^LIy$R z9X^hkLj0R6#!=%m1?w-_i_OPQAp;wPi3>8#`K;Df@UTGK=v=f$sSaEz6q+c9U>s** z)*f|LIVjdv_B*=x6rdrZ!u(9JELHop+@$S*NWqBCmw(X!18B;6k3Fit8hm8xJIAq# zdKvy;{zP87#)TY**Y_KYz9WsRA4j@Sl;asjI7-KHEp)a1vw-xZhh@)#QMsU=!y;Nq zv@&qC>-poR@~6u`hQ2Iq^uF>F4RBk})m_UhDJhv>U0o%|#We#uZE7PIL3Dv_;SmHK zLU6jjo?=v071#<(;NL3Bxq1pH#sd`70ek%L3zqs1K#OBljWdFu_Fu^#P{-N?4 zWdXTD6P6Wo`zad%e~hNhB-4JzXcZHwAQ!A^#xkiFJ;b7ud;QwZ6a!hWGZ3Amuxdn0 zF+wUkc}yHpci#52?az1D3)$+~DC$U0l=ck6;O>4#wk(8vSG_P{LyL*%^mhUf^7aW8 zDUTRj2Y_rK<7q$hPRUv2rZgS#`bwR(qD3@#alC-z4?Fn^ zOgRR4W}?i!vm!?qZKdi_%F_Tjm+0=@Ye6UgkvR-&Rhl#~#GCbqEt?79BOT6sK7e%h z7+6^DXbM|fDN!30z*H~hma&(t`a#BahaWh7l7N)k74RQh>fJ`2!vX$c>=KbKCDfuQ z8Y!xei7qZDBXi)Og{Qf_t2R!9RKUh_#AboOL{235$NN4s>}L&-T`n3c4w$%;wkfC+ zLLLO_0Ht;6PRjewt0bilNR)&kxV&ZNs*FWAU;Gk;F098FBxA&nKJM}RM?hRV>dEe6 z7to(^h&MBta6gQt!uk^5gz^S8dFB|Kadzf*V_p z_LUC;o*gx0KTV`!(Ii&U|GphF363R!UXmAS5H-ML#X3|Co(^UEE+qx_15_l0xO4x-Zs9>8#T?3|B#Ai z;*yJx*$7_6Rqc^RbQ1tqGAvX~-VA6Q0E%(te6SW|7N_K%1U62dA1TkZO&uomQ(@#G z6&mIS%ft*MlYcBrbifPa-&Pkt-IW>X4c(+T5BK;rD~L83Faf#7p~VarC0rvAz6rP8?a5>zv?v;PUkZx>Q+7qF{0~!K9Tipk zMms|f9Yadz(2bPz&>%=E4T4AxA&At_-67H`-7SbT2+|_msWg&O_we1{y6gVUS}?$Q z-t+GL>_8VVE&prx(xlps1`FrSqo}C@F~uw<=C!OX%P%FBqNwynp-UeqmeMJyK5BOl zw9jp6fu=rhCtF36;m^{1Dj_8Fx*N~h#R&l0#PfbU#4y@!_bC%in~uPa)?m z+WYw#pO-%QHV6*MNZbiJwJD-me~%@ij+Ti=&!ix9>B_^35)38{AGC|Nz`~Fl1O=me z$ZUf3PYU>GOy|{zzDSV;fbz6xis;%aPf3Q=PCm5fIO8nzUDVR;6WnaYqhoR)e5ms~ zUEGj?ty;=C!^B70{ZhPAPo*A~!{z3a44-=wPBAnt01Ho^e@2@XZL)1@)e`{8-B5st zTz-^x0HUVYvw)EJ=u@$nY2m;&`0*94icO0GC>jI>)8{ue{X&~T$A>pGH3`gw$HvA| zB8kGqK-6GNU=Iyere8*>#RL&2$D_q98jj^RKBF((zqzOh76?VHL0jaPt?ju}SF1j1cd9XcVT@4IPpTS(ZOi-H;VyRhcO zJ}&0 zYlx}6hE(4bZHJJ`6Z?~&`MKhR7Zv2ab!a!rw2H16Pd8eI!-Y{D?t44~k02{q^P=Qd z3d**38&CHwAU}%Jls+Xz3%#*4?W6|9Ya1<%!a&ksj~`r4bEiWvr&RRI zCom0rJqxCco}a-xX$=~uH^~e0_>N5Oam+E?(frZEy;BzZ7PyR`@n=TD%X-A9XGSUN z7gf56Ui&ovRm`rEZ9JTsoV0u_6Q~2wZn~SUBrZOF@!Hy6z9=U%z+)`2I=#@D0&Q(3 zYnhu50*LMK@Gv<&U3}%|&)13x@|kP^@fzHO!JOxwAQPZ90$=Z)W7k34#auUf#O2S&6JG&A5g0(I3d+AlgFgwK zE%W_6GzB#f`++^FKFy>K5iY3HD)C_6+Pm_;ZmKZ>s0o~#E%W~kYdjeHx0|6cEPZyT zUcpOu0ZCG~p`gHUpixrvthM;1_cA+dP1h&I!;W_%|hYixXnp@pWu=LXAfZvF_y05K6(yZrgdjzN>F z?0d2Qa+@*0QWyZ!jxYwuA!}FEuRZM+Q*JIWCaw$}5LGJ(QUJvSzm?d&ptAYpVBGSj zI!Wm}ECgxklnE!wpPd4iM!YgZUXUY;JD94rJ8 zN$Sf(lt5?URT<3Hk>#6q#_~$(`8e*Kymp#j$b^Ai-6wf@`4J#(WE*H#AR|XDCOMl* zO-=m-h@k8JutW!F6Kjr~jffJFz@e&3?v|`ix8RNl?qMvYf!0zJc3EIS@6Wgkl2?Q@ zKh^YBXXW;$yFrb7v-8VX*(+QV137sU{kN?3U!Rqwv3hR26Sr-Vy}@ms9dZhDVwrTi zDVm{9H1+O9#7M>%6ge6*N^iiig)A4yVfm+$eY%=ja_1B*1~D(v-AxBeX+9@@Npd)6 z?FHd%*&R34Hxc#`gV5&-c799q%j5~R$$4b$mOUx#it|yxV7VI6*%sB7R=9ikt44Ko z6_mOo{a5Ud?*-`}Q4iTr=9;+C8Do7s6(Rp?>A{7W7eeQ8KWj)`wBK4gSaZ~`HIr$c zc%4w5d^+|OuUjWa|9OKMixApA$YR_dko1%V5hhHFs?@&w2&;KTH9-3G`?UEy8GY}P zo&PmA5EfF<8Obg}XRSPg4}Vu&(%=+6B3pFM_9^CRzfE*U<}%so1!)lRbBy+G{r>J} ztfD+Qb3ts|`t|t)*pfwfsqblQ2zW+b3J?mndt9sn3|=`RMa$TkACvuUN1tSr7};OW zeh$=;LN}oxl}ZqMm<;#@A`j8V!ZPAzoOS~W<(tknM}PYx1O(5`j}+mk_+w=mSG03X z)t>r|U?IM_Rc}FIH(OP#>gPRcXIk%U?>RwLNJ~^OE^V1;?b1PeLb^%Wt365z3cg2o zsfw_ONIDHE&eyNLMVdk^k+s0*F;cv{O9Faj6d;hdn}>(Btg8xITH|uST4WIrHbS0e z^|i_aO99)zUzA~1m`=;>UVHP6_CMe#=-B=N2R8wAj}J9&@yjAA*B8wQ!7^LmsvUahV%T%Xe}d8Fp3a) zWE*G7sjrXG{}8EbOCTyKb>S)@Ix4JitjiciAvsZs$Zo;Y%zZY_!&N44$JX%CUKetp z;rJ$G1K5aACTsOOL(THCLddNRQAUZYZL;%bCN;IpzgUpfpkcBQN(YesL&V8sVt^p{ zN}%Y@NM9ME@XA$lw8$wSFcw!_CV>i{m^vO5kMs)*Y$Q(9GFtlft8Z@_@Z4a5&jQA< zMbR{=Y~vaNPv?4yNbL8T7=4wTtUnGKJ(bHVA{)o#Aps%A!^U%3rqJSc4AC@ayGR6N zy82|piVEL9Tft~54rWZV3MP&20p|P>H145oOEkkUCm)t4cIE&ZZ6ISZ>-bNm$NUe*g ztcvJY{#WAYngGWAfbeagt&F#b56Dy^Kf{(=9=PV!!WR_6l5*)DzW&S&65Go;+~9%TCX8dMlAttl_$d;hAW= z;)R%wSC}c5Rtq@H6JYL&{LEeituB3?+GUs!$%yKNV#U%XU_d!gYD39|U9vzDYlt0Q z2WG0^OP*xUFZ(O`)~Lw7JTwZb?H$r8Pt7-qMQ_Bx+5EuEXo8^peHjQC4uLq{ zE;ZmuTRQWwY-DFbOdMDW3*V1LS)b^PMTb;j(<3B_cNnBy% zuljv45AI)LUCZ^l6$$afs$3VfW6c&MP?&%H@uA9!&wI7dwekay_PD~J zcR!t^WNPY<_9dCHs~<;5pNXltq-YCmYx@sORMbHuHv+gt>AZL`=_4=S!xhQ6Zp;WY z_%yT@i13(o_}IVqv16?}nZJGYMM>29Y%(?;W&ZcaAyC9pz^6^>irQW~!z?CI>Mj!| zLik$w+XhiZKEC`UFxnzJN}m-zobL^QH-S+S#p+tagt~ZXe7+c{Oo5XWiC!_&$zK?jiYl#&)u8^5vT=%@BO}(U56=9ga zTZgMgAG&eA&yS(rX<_Mav*V*^ngBF%r-`W|v;Yw%z}B!T*n#3@_^D*Tp3$P7ht!y1yy9xbj+4r1V9bvRNGeiWW`h6xd=Y7+dfV zE?Atmpy#HsuAHi1KaJI~?BlaG$f9=~0U6!lAyM$5s_z3Op3er6#5z^X?-mvv7!}T} zp0}thG|kupld&>zAJbiU$zVl!J%nUtOjLuJ>U33J1T1KGJ z{q-TOpA-gca)CiaTQocD9dA+jBxrqF$ z$?y2*TwWL~f}+^`619{Vs@x@StZ2=XP1DQMyw%5&h3LS^Eu-66nw&L_rs%Z5vOEQ~ zLJgjMvL__`y;j)>j#RGP$y$hohdb%CkgDuthhE5v7hiKMMSJ6%Q~8u&n>!VwN0y{i znfdCjPuW)Z#S^oky>~3f744>`V}IYsXtmfq!}MnZ8XuMQ462Mj zot&My8{$?}9*~9T13%dD(YGQ%Wd!5r4+5lLGiaGuSXhSRc8zX8F!Xke)NgFyfP(;m zFmoj_Ur0Xwa7q!huNOD<5ArDXn1}_%pvNCSe{)FWE$2EYESYlwu&>c*p0QfpL8|&8(rWvG{k%9HTwR5z96)FTz z(&Alqd>5pA18pAtAjso|9LeHal!Gt4`p>=V|IJ>m5+=ji-r}frzLfKh@PKOao3D?w z|HVyz&*T~Cu@%jwuwyXR4F^w<0Ilr;FfbcLh8PhqBTI#kOU`55^6q3Ee#W`|B5=Lo z8Fd#8b22iRIB~XQ{rp7@T39%r6v($T1(ZX|gO1=Vsjhy*^8_|tyaoNV6g9?GQQp{e zPesF?!JJc956zcmIgcVK4-DDlx1?cH8~P_+N}!u?e~>lS5f zHN3MF+cL~U3~*T6EiIyAcBsB2wS3`9zxVfF2fwEA7WUUvi{zwd)Q9eg;IWM+264?~6e6cE($A9tccAHHw~ zG1rty!bIX^iCtbQ0xrWhFNe`dpZ!Rr;uO%f?YxY(B8u-7;cnqZRXCxb>3H=LqL|#6 zQyl#{3aamxBFW)2X$ls0z=8$rwM*~BO&XARPAteR*K@&6yjH5m{l>7wH%XWzRD)Te zFC0E=hZaOu;0vT2Y*btgQUerIan?cz0k6q15kTjSe~nP6|1{hjC5pv3B7v9;EZ4^z zRimElduMxOZFgi_VE>6OueGq54=<(dRVLGy%6PP@^1_)$!|Gzb91Ek_&yvOL>!W~4 zOzvXC?dw;gY?Il#MuRmZz zA`D4vyEViqnbcZ=Br39Up}tnd$E(x^1BABG#lqE&wbA#3lg7HRYIUN{3(kY%VRIzf zx^S8|;JZ7dB`PjpioiHkE`9AnyeQU<5sS1}XmunqjHR{}9f)ia(E^B#8cYVVE`nc% z0qxn8Pqr@84_{p@G{o^~bwgF-15qE(D$=6Xzrkm%DX}EB8qL~w$B?l=gAM+ zr4^OD1>=&UoL&JTn}IAf^YN%8h%_Wf6LC#;@#FW<86w4;2ntiSnwIiRqImM8jU{V_ z63`MIE%Xpwg-NwQ>1!wY?7a=;DAfwwjb*!N_^^zzwZaE>lq_h`KS2Lz*AR?VW-OR_ zSX;la?ov@}=5cb?$5Dw;7`5oXO`O(qQu?_TOZZk66#W;-)4b?@=Bd0LewF#2~ z@3Cw#V_DO7#t9}cCyqoW8(%X)$;g^=J-#l@3VIzy7I7egCxua(23j@3$6AzW`}gv5 zOKmcog{BftIiatl6yNrf{HT_EV#I0Zu}5hNtO7x z&|=@XmL85*FjwaZVI$RX_#E)U{F~W)KRra$f-8`@1^t22qU)REB2y|jUz9q}J*H&0 zUFK7a4)lefh7)OX?^Q=wE?U(Vs8cFqS&l&QJ{k~ike9{xE(9*azq#NP(i~2>ui6T= zVlu}AJR2%YzTnWyv(V2CS*KuSmA~5P#;*%&7(dmk8|q&FP@VX=QuT9M z(R`6z{6&<@;+c{QqFVL~t@tlph3&J;3At0F*LWX0EF+}sn~k5ZwOhL+wb;2N)S%=H zi83_G0cP=6c3*db(nssd&eMThb1y(OQ(9J3)VE(U{xLO`DY68(>Re`NX0|A#q&QA~ z7mSj87FPukUEAAhi_giC_Po7v5hP2C{2TYkqW=TZ&&hzmud~IU>V`e%ZE^GC8c8}n zs9%3)*x@J#Z%+dIS#d%WhYi{_z$NN8H^QX}FjDP)LIK%xTX2b@1DF+hvU%_%yBzS8 z2Qj=(%Nuhj2)v(zbL{6B>BB_7ZPWIkjmtVpT-?-!u_qITJd??D&#u8_8>h7;-xkS3 z(a3!^QDtj(D6mFmrif{&`d#>IlJ9eXJbT7h+jf?YtARksl`_HKY)74w{2UE`~F+-iXAlY2K|K}M;e44HQHJ-SxU&tcf$L~Fei1wl4UE6EsYYNuy zV~BuTydCB&HnR<8uP2`e7v3jG7R`83on)804xr8~`zELVAlERi|FFS2ZlPPcXMDpq>+`Z0 zu-zxmhn+}TCd}9ypXw_L#ECR$FBW(&P`N(4r=f@AX}$wb-HV8j#GT@f|={b!t)Q(3??6?q`i$Ud`=&bU+s+ zlbl5v;`!2VMm?4v{JTx1_2kVRc-C;XPyj!x^Ji!c-A?jX2g8d}v@JDBt)aqd8{aY_ z?YOFl!_~XX9HOl6tTPyynkkyYSc8Wj#fGo4+LC8V1P0l%in(TrKEBOmP2Sd7R!lx6 zdlCbc`o7HvDp_pAsR<4zAekTK7;i55^#&KCrvg|LkwM7HX=!Q8vREZ0Lm#!Q`K7@3 z^R1kiptN(A)(8o~z{ZKnmk+~V5*7+@?CtL#HPF)=iH(W*)O0#x52zIKMo?5>I2}Ik zZaa6Af7_0jC_3&sCy+3T+zRS~A+*(N3C0X2ADEl-_P;;~}MrtsT8klfC;95f8V@LRdi$B)aEpF$$;6FrR)%7dI9LjkZ zT83*7Z$zMk=5YzWo~@kSst=S8;z3JWlY%E@EyYCFO-ZW_{&WYTNMfHz zMxs_x!G5}VLb5am7Fi|*>qqWeE8V=$XB4_@iiYT3&eCN9*rh-zt}ZR6riQQH-O*N4 zMTOs9h|0~vB9Brl^5=v4$jFEw5K4;sOZI0d>90>+E2n9DK-JA;?UDB*n+&2XH+eo# zv{|ud=Q?mm^l=L?@7ewmd9LNN1V61xBkP+KewXx#;rSgjWN%FCbKX(Yg2EkP)Hj$j z6|1jczPKXLK(_I?_5nDc*AIv2r`V5u((c&*8KT_3WGA}X!|Gc?WQmc&TE?B1F^ppW zx?aQw!?+wOCA}MM@$i+7`N!6<9QT;}ewi>-4`omeV*2u`;(V8^p9poe6Z^F92$RG$dHkAWl6 zX66>@YQ%8IivjbZ+W^Yd_v*KRiLl`r*bm#0jiqp_{MYM$|Nf~zW+S*K;Wi!H(QFSA zd6rIPlEYs-DrO|`@J#Z`%J5Y+Mp$`ykAz(^WTf;pHAjsN3_f1>$2|GZ1*mLG%DF)U z$7;Ye5u&R|Yb}3LGdfpnt7MLUaIBGMa{s$Q0tVDdS;Wj74?E>|wu=D5X3Im&1Zz~N zmE`w)@alMH783}3yZKvsN8$U(ULNB4Pne8IP|qtk0)|86Lj4Riiv#& z`^mY)f{PIZiNypo-P_604)xAX3+?5m3b>-WU9;Wy@jqIbJb*Y45kSE|^6AqjfX*Vs zHixz-H#9d3l1Jp_F|@99odgYZn2#=u#-kNZ+wJ_U%4zIxddHo{5mmJK3g{vc+Q|4B@YK zOzQVO&=Y^1IY+yp!fUdTY|QZH0Ns^GQfc(sDpBz}%O$SZPUh#OIkxXF-2yWOF>O6< z=ngccHAjCB42l(mdAvDO8N*YhvYZ(N?9R(rt(!S49|Iw-6WMGZ^V#jG=YNC-5bvjJ zdIq(I9B_P5e~g=$sUO&#j<)!~ZXJJ5;TfGBWmm8gHa+<<$n3K-22I`yx~{;TR7q$y zer55aoj;_->7ULE>92`?kpW~9r=wFHf&AE9RQb`Trer|gOd#BS$Vgt!-I~US(`i&LJ2?m(akWaIxqR04G?tH{jIm)i?N-!yW*|2N*)Gx) zV|G9BNm8f0WEYM9tE*^a_J^q~pE|19jXQ1leyy5v(=AmIhy|1k3O~Nd%69O+@)?@B z+G!Z)&0f)v_WL9JVZ%0m%dp4_`2=0MiqMgqMRj34j$mM~@`RRY|Kxd&R}y~TZzl;& zF0jVn3H6J%A>a@1z0u+{0C0M&gx_mSRy$jWM6*4ADZy2%XrW_$ngNe62|XOn}4WuFZ^L9A~qY`zaXhAhiNPfHicQD z=*JgO4C%*m(nBn?zn+63-hl42A+*CSk@ydXAjCp5G8O<@OLcB_(<=FlU5>FPH^Zr_J^_RMS8Gwb*~ zOU0}o7XlJk8}LfSjg5_Z1n+$|0B2droOWB=+RDj(Gcs)`oag{>br;|LbW^Xa^ml$k zgYoIbg$YSBgqOD(Jw{P*W@5quFophKuMbM1)=P9}OqI0DJy8Q%Z*2Oijk7{n}fR{K0j%@+UJeIn=G6ee9RukXf9 zomKA!Fl^6#e`{lN>=ybGg`9alT#Z4E$7=@}P;Tyqzuj{FJ0HHGZ~&F8K9Rl^_PyD8 zE;tApxV-njC-;a(yu3ON$|*2dvZDA2YFVX|I+n#yTIJ8@={RmY8t+;8caoUfd+B#B z3FtzL%sO`Ej;^JTtjAHZ2kuwyM?LxD(Q+=$r0-vTIFW&Q<2#Zg%?*?U)Qp1NoD|cHF+FZ0ca_@<$j$wluWfE;$vtG zG4c_M+AuGFa+I6fVeq28%B`uaEV7TD{&AOY$(~GvwHvk@XUBQdjKXC>KQ_rS4ALFFoNr(48%um zV4Fv*=Sa(%GLR{EOLJt%t>eH1^pqfTDao&9J6CZ;_09XN;Wud-vCT;4CI~&hyZjo3 z73GoMQd07?PsD9m)x=U~(;nlJkQli-Uvt>f+ocAH+Jwyf=uPM=ujCqw6j}BrgH6X9#Q8?=06b>}EL=56RVvBeBo|iCEasz%4aFKS@ z=!^&t55KOftD6J5qDh?MqyDA?FFPc&lRRU3I20IQ2O9%LAAEZt>HFlqFeLJRaXSm^go^Vd6?O)69K0E`bBXLDf>NgcPd z1ZnnYGDsl)Z)vir+?sD)>6>>-$9>R%wTv8uPx5prXNn;EHtF_i;^-ljXeZiQPW@N&V@{tpr4zm24Q zRs9ZY>7L2P-Ce0%^BeQ5o+1wAVh$0O)HsAJxxuY~?P8G84VsA3(&z@N$^{ zK!a&#@I7m*-9Iw?Q0tLa@AspOrafb0V~?o~sZ}dKfMvS~(US|Lf|3$u&~s28E&+ic z3_b$4Y*TWCP0!7h{t1luF*glWpLP-j)=7r#iZeiP@-rn1VS~YG+j&dA0QYw5nNN)! zY7@+2K8rR%C8|W4&GzQ4k2s6SR29~<1MJCo z9i+R-kOdYeR$efD@^O#j?wZIf=&6uQbxU>#=-2v((R|m>09VOs%^Y+)@x69Yf|2vaSTd z(M&*(c;Y&*f}zl9fpSQ6MHhGCEg3iCqKtAh;PG0y`@@~N|5rrGEmcTrPLYEZ9cqQ@ zA5A_sD*3&VeSt1Z@4|aluB~JzBz=J z8>174NG`1)nGcqc1oZzj^re{nDtx6=T2YZn3fv_t9s?1HT7k}LXJK*ID9wxLx(B%T zA|2r8e@q_IR#cR_zPhT02!XE{Sy^qC&G~+0OL|QPXKb%avN1EeOUn{JbzXjrZd}n& zMcLxeF-3~h{Qd0gvvYc7R4{eD_9!D4;Y*_Ug`s?yVQ(lE{ltd^(&IHh5IGw3g30|3 zS2UbI`*nyv2qb;KRE`T|;|A(L#Z z`P1=hD{9Uryp~l>S%|2}@e24$=ZM!m1wX}m+~$ZlpFa%SPF*?j3t#`599ay64n z#|N7IPjKC)kw)le5n;4>mv=qVFQvW-+bBRZxPA-dg>ThhvK~Ln!#n=E2H0L{G|T8` z7Ii#rogMREo0Q`|vStgN#6Eq}|F%2=Sg2doj9U<0tg!{(zU4GxGBSzsfx{r3AOMEp z;)9q8Q_}eNGPDIfYY^`(j>Xt znM%KI|Evm#;*>c0Vmrirc>s=B+{W276V~v4Iu+@9Hl43BUrEVWyy-DdY9!xg$uY=Y zmYLbDHppHPpBeafFoIOqz^43LrU&Lue0_t-&atIyEC+y673XP;;G>Z9&CGfDs95oL z^jgIyczQ5dNCmyYtAm~B1baKoYvx_pL&(hA;~u)E0Ole8D?xycV0D%uCVB~lCMm6{ z^g%P;=5F4;8sc!YibuoFg3+4miDDDO)N^GR=pzom%E#|x+JC8S8u{L3$Jmp9b zkk>3-a!^0QZO{hv3C`%}EEZ>SN$rsL0lxXq*8blYx29cePmN4b~ z_z+cS&y0m&C(mppD}M>}^8EczMPy}0coAh)L#-w(!9z`l$?eob`hgUX9T$QWfSytr z9)897q)F8_!JDEB>ZH;0nJupXiT`bex5-ZIwka{-gNd{om+xt->jRhz4_4>9FcJ}n z%2keMN5wh0(Wg=z6*ccZ)x>QPc0Q7FcJvUxuaVaq3L$LVh4<5d!^l=-iw64Xh3ZK< z_I3xl0i+l6RWmck=BXs^g~lWyI~uWd3j5{OzH_4B^(%H4V%C1mf zP?mOrK!AS2501gS>eso%#8^qMV0hx9e}##5oK$RD!27U6KuLiNl*(30MhnADMPbP$ zxLYWGS%?vP9r8866Oi`awweqF5=S(?(UXNVbUj>u^B;3^-Eg}9-rvm4QOW1EDFy4Og}O{wlWVD|(>gD^k&xdMC%$XmJ(poeL@R6^ zGpLj_sjyhR3rYhFwFWNN)Kz}!-8i2uXR+#M?FQv zqh|vh1WYdwhhxZvna`HLo;2e3Hng?J>+bK3`$uwsb(;kfw^jBL&At{SHESIFmsTlh z5J+;tsbBz710Bv9Av`SnRX5s=l!r3Iia*W)gf>QOcx0r&Kwlp}A6hIG;unmIO95qOF*9aPKE1p&(`wsxq-pex1R~)vBK#_;b=7RWTS5$fh6mjc7sPJFn>X zn&6W*X~ybY=55wBlI$+Vr*b6N?2&LMUF}yEOk2sG+S((?BE-0qQ_Nz`tTtd$L}RXP zWCTEug2p9t(Nhz~xS@Y7tO)n`SIiF!jIrNK+uoR?4PT8Vqz;Xj z#X?83K$SMk!^D3I;Cwz?sHRak8xF^=d3R$1+~h|@6emC+R2JGBhP`OlY{he!VjPyL zk>1Zx5yz({h>emb7cjR#=M>fIGRNjr?qa~+R%d9$1V#ELOlGn)PMda;q$SDywS6ih zAY(mO{MKL%idwqL(}j%4boqa?{TC~0K}&{M(p7#$L+)H$_Mi7=iC<#k8EUe##z} zlI*e~R0nsnyOA$QuBa6#Ad*{pHZ0r9)523 z$EOUr1>=jAYnw3EcoNj^2sz&pcspQ;!9YQdWq^=X*K9@pCD35ALteu=9&GI-EeE(x{|XBW z*8>SWtc$wjJMzHwq4JP5z%q|GaaYv$yF1&j-5QD&qF2mHj;k2LPU;(&0h`ZF}N((+kU^xfu8$pOc9rel3)7kmDy)vd9h# zXo>cJ*pA!W>9|;Vut!xr9y^&nx{dC*Dc_mBxH`(2dzXB_WtCIs#f`+u7*LZT0RV|E z64HRv!RBLjwS0WH=G}W4aYVXul-IyIU*6_{S<{PK^igEClNgYU3ceZ3wq8XNr^@&* zaa0kjwW=N04luBYQm+a!#%`?lMd1?HVzPq3o!nqYG|}Ar{J=ifPHU8LG-@&+E|yX# zz%a6AcJt-RW}?_-#jk7B5GI@`f$s<0O{7RPOs1MZC>*~61Kt$`kycypBf!@X4Q5Hc z;rc39mA)Ku=c0&1;quc{AEHRF&m<|CDW(Kl!vZnrUt$Sn3XdBA8Gss(3k0Bc(Dl)w zE3=~A?*L%esJYog9%5r#oW?yPx`$jna?LHEK6oM-6_92qJGLu?aXwvkrQ_>5%(QS- zJzy?wp_=c*E~bpaE>@-JPH4Qhb2vY!JfGe_J^CfEg7RWBNljg>m037JO_88=Ge&vi z?S~O_$P*wIWopspVQlWr9EXeHp9lU!3iNNAn$|1#{9acBNpG|Sq833gB4~!1g$f+7 zVz7MEYjxX+{cVF-B-l7N`+*azqq57eLfLm<6{>7K;Tf4~-tgGFT&j;(`$+hnSNSqO1xd zoWlUKT60KuK^-X)L+p#Em9I@Zp0V!z|HnWNS@T-t0-yu?yhl0-kT+z*b{R%uoxKGuEt;@mGcG&CnC;Xnc zZ}+)Y)fxpV>#9B~p*_1fid)QA?-&qkaPT3Wa$wGI%iot)52SYcQt~?JD;+>We`K^q zZull~{mW?pk}QnAzxLk0M6#i&Bm7H?-vo{f z^Yg2?UmYh1qp|^_0vHR6bw^c|lZTJb?ZcZR$W}E_(O9_tYD0J~CN4+25~d z;4I(!=QYZ7w7;J<_esLjX6$LXQ8shuH|^l#R&*FV|uwVA_MQ?mKFn#PbU9QNkkt27`mpJ2;(|V8SZwApN>Cd z2JIg7J=xt}S?tkeU@VUlgssLrh>bfxoISOn40tVyL}UKS9Y9=@-EtdQP7zFR7V8^U zgnmJz^4o0r#QUG^wEpiqF`Qo$!ZRjg*v2_k=lt#dybAYa%_h-^d$Vi|Eiy5K@F%~InSR%2QBT-wGB{2Km?Qgvu>x&Rcr{xlZ^LP4_R zVj=G%{DyFrrtnfJR7~WY2Eg`MVtf|w`^`Inc_;zMX%MxRo*ql7y39-2f{9(=7-F$S zL4sva4fQ~h#~0^QZPx=AVqrFy62TwwDk2?e4YOP9$9c}NxVPeafw0)A6e-r8sZ%3jLGzcYZ&R@n8$d^J&1ccW58R!eEIX#alW?` zi-3RtLs3Q;1%cT-9UdK>yo!aSM>2sz5#D$(2O%LLThIO3E~s)#Uq1qgW{|L&JLI69 zuxiorS@$n_R|0zhN9K@qR1_6~j_Wzms~qV7Y+|JMy7yZPb208&;<1Wshb#?zWm%p| zXP$EDx`vMQ-i`>}j>y+i&d;TKjHHH*G{QkRy03qNsne*a zFqv;+u29wW)~CXq{=r&ex`>bd{hDN>oog6+7R|2O;uMuXvJlhs|%;XYOtGTz85Ge@g(X4+5Yn6pWfCxZ9yd18gf_YfL`1A_oBM_>>EwFmMG zSvD`xdopa;t~DV$3Lz(fBqu|l+QlcO-+t#>FF!U1tvdcasC9gTa?^DQxfzhf!PiHW z$l>cC;^pwQ5yIHyJ%%Ctb|w_75t1HUGgqjY%EhG1?23($F;S6G9)Zlb5L2pGpuUKf zuZp5_7}^5L-HGrS*iHYRimA<{Ih7N!nB>G2J7GTlOqwtX5{2+Iukjq}M00cJ1(mWg z$9%!sW)q;y8|!#UE?bs8bSK*w`#JlY4WfR=XnBetzI!Y!xnA|~+jQFL^zgOI58ps6 z3N^ivEOV-cPU?yibHwyrU0Be`wlA96Z+2AXTmPcHbEkeYvFsNOH(Jmp5@fy->$~o2 z?H3zp-Qh#WWZN9?)eT?~g=rK2Q46SEl(jfoe*V>jO;;8IlQ*Z_7v6MC9tf`6I*Bp` z!j!P;cMqPaZEaOTNs?3#$qEY;pX|+4(*Y6TyS%)-Gd(y)ND@ZiHyVmZYhLVB_kcnP z=)}s-VRx>bzg};x&pM^=P>n|FDw`JYg;+vu^7B@MyW@@FfeQ|uw2bYiSV2#;b`4OO zTi|G%+ryDJDwV#th9JIx1ICG)Q?_9Z2SF``KonFNG=~LZq0WttupCPc(xEM7YUzi2 z%MX7lc@0ra?`b;&2~wT&{J)(^`EEC4vE_l3DpjKxZPu}6;C?>m?6$t3;%3gr{Y*Zr+aFk4p`w5=WnO|)!*+{zs}}>U z#CwQ)=3Gj^B(QtnOSm8y2q6PB{OYVAhtO7uVO$8?Ku!&yZbzUT8%a{LySj>&i`EH2 zLP4A@&L=;ekB|4LdNQNrvuEcE zO^#FE-rj1FL|Wf~_M;Ni8wxtQ>gTGefv&-tfJp&MHU~uCeIN{)JiE9MNW&O20of%Z zdmWnQv=p73oO0&>+N(NMPAB&L_kT3+H`ZKYIOUM)+ngBiSG;C_MLn&Gl6v5TF|E z`aURrSZPir^RiB?H-NU@^brIQw?b15RVRRRW@tq=y^cXEe=UBZ-g}3#EQtA@5Z3kY zBZES%>z@+kK`>;a(JwGE1EiW=n6iPZ%rzpe7G)*=Ho=U68xdtQX3ct>giT?g8#QP% z69$LLeesKtK{E&A%MZ$8;mZz!vGAV_f-xmgLsDsk6t5Y`YB=OqDI+jJI`t(|B0eQP zip#7k_<_zq-bdw(D1sr36OaQSvC)+o!eA{_=&?!E*@zf+rjI4WOrk`IO7=l@F{{CA zSG;so{`;X&wp0hT0yx8TgQ(wAZc6;b!48B(UgIY=SSNyZ8VQLOYf;L3sQa`O>iw~1 zgOI_}L!KCK+N&_;-vl}kq(SJcbc&_S_-)VuTZ5zMY9B+D^N>&S@4gs;Dn&m{(MX!8 z8RKUo=GV!kzhrWoxMd(jJAec4Oy|3+JVXUZs)xHk2erAB*4i7-!z~{0wcY-L?Hm@L zv zQN!l$?(Y72dMUKuy3l^?GNkEZ=ulfFI%xuX8fFVzeDUwn|K`kCc+-- z5?`U%g&CpGT-X|kme|ZH@&xZqT0ScFO&K zpO!@Ya+s<4lyba>ufmnL8%?G9!|`);qUKQ9eo=mC(2wk*`~zma3@F!4F!cU4DskkV zaox|ig0KGc>e8@<-MVdH%Wy~9ehyil3*GsS@W|p#Mb$zw{it%$;R`fdxc#CZ#5mh% z-@?<%5e!fpL4?F;c}Tj=c+^~Nw4Y6e6xmVlK^!TVx~)7y$&N$K1D63uNz_fN<{`u- zotL_DP~(_DFjRhnG>nap$5FHFX|xJO9LHOEcQKtT!?Df?A7D_;bu$frf9#hb^R7m# zTS!$^3mSg=c9EyD?0!G;=B52x*m;?-^>#gyVqF-YgJ{jTimg`ky~#WvmIQ`h2AxPhcLyq|91`Pf>`&C@BI^K4@qV z=;?cCzkG?AlG>#0a)QsnGJ;7ILn2C1)eu_w;w%v!BJSF&_MR^Wjr{q2U90^x>hXYgIK8C z{<7TQgH^+8gy$FHsH%!zVH3o$8O&%{VQa1~6Ooh8n3W@C>rdkq5|d?O?TUnuV??g)cwpzctZ zE6B=%QJHGukdiHxkAdA15|o62Qk~OGxitY+Ai%8@k=_>yVpi_~*afbzTA-xdZgJ`9 z>AtI}D9ww6!7>T;D)cw~BQH=1m*qqXB>T}~H zZ1K1?7Au`5x?~~pTnR5v1}z}72p`(Ek6;qFf)8(N;p13Q zwu*mFHD`sZDkkJ)z7!h$6`J>!4}}EXF_9 z?<;9o4@nAyM`0a0Upvv-IgCL-vKS*TN+oCjHx|OCVmyiB1SSM`hD}Xru&<-(zFikY zO;d=9o_&j|#QStRS8Fkn)L!yq(HI2btpmE!QvD2FOgrT=nO}HLZjvKTqi6Njd1vQRf`=j$kE{w zxLF(>6%meBN>3I%J0;Ta-qn#SfWe$+xM^Ap31Xz^I^f<$$mrKF6Vj!tzv4i;eD>NI zb>R#1x>5P?`Mcs)y5cs$*dDbyOV-Hth}Gwk!R?U^h{IY}7o=R!&#Vt8Nig`b{dskS z^~;vh3bqm@C!FZ>pK`kNJAz|sVoGOFd@f@!HnCCf5l`^OlWy=8*~^36vA8}Gk~a$K z)?Z7F!@4DP`d$r}EXW5*lTjJO>vuwl2^8QKL%?*>G5&!v=I5^*j)DA?F%na-l6CuA z5_VpLU6*|-5#=1@D@$=RU&u727hVJcw+r><%&@Q25SQhY}mocFjmK_K~(sMQZr{)W$ zhl>csaC5W31sbB6RVCEX_UIAGu{}^tNo^^J(#N`kY~vcGJxZ|CQ=4-Rzu8pGwFr441MW1%*?a2+H9fr@5)u-{{W;+nWBlGNE^K* zCnvwUI6wdGv_^DgL_{wWS+|1`UIyo;7X6|{iTKpdG!oV4-12@k7!eVR7Os_Y6K;x+ zEuv6PFBFBw2CW8$sv!_e#(;t|TPykB5Zw2<|EB-*z>U1PgpX4+TfT*Lh`rKB;lfV@ zc?AV~*}kB!C?t34_n5f8-Vu)x-XbgPf^xZ>UG_qa!+}(3omD8nr7~V?_ZrQSg1iRF zfdtjxycv){m%s@M3R=v_pt8Rk6Ntf5`nc?bdgHLvZ^wtEMv(v)6Col&PAK`Iba1J+ z8XDb;KohI!Qa3+}tnr;-AtKTj8v_8uE0+HSIXGQl`O@25J_pBEQn?psc^sYNgi|{+ zQHLwS?Z|nlnU3Q%&BbSfe%5Z)av~#tIffh8466(7)IT>6^6w!Uezp^D+Dk}bqHbw~ zBBL8Wzl-dtgx+DNdZkOv1`mxo=s8cxu&nv3h+)D{R$%U??+XN?{irh5(UqGP(V`jC zcMj7fUE@^E2O_?*RHD5}(oJ*?Co9N|^$ojGlvnAg#2qHqwQ}B5bcwbvKwe9QE0iGv zGvt&|*|_r9)CIL9jDwU=lvSRQLgtBObTW}&g%-IQW_77_)Xo}U6qzri*(DGLLYpF> zAaC2^=aZf5wBBAN{zTmQST}Wc7&35UEJmzsY;pKHdS|YU-)`P1zVcE%+MDm)B-o+d zxJX1Nv8REl*%aaYj?s@2{MVc%(f=vlV8ljHt(x+`2zLG^Ni4}|PQE66xnQ<*JZt_9 z_Ed|(KO)Rr5i}LyrlBKCP_q?_`WB(gt)7hVW9$`#N%fv*~%I9!Yn^k*2;}azX7oDlgZZ zo^?$m?Gi5$i#hp>oEO^=I27;5ASOE;QTqqh_ z(m>}FbQ!9K%lKm>cfxkV>K6#P@Lj2-hukvWIP`TH10S4!mtwuL_jZuGdTyTo11GIm z1pygeWuz|@9KHw78(|mxk@b~~iU;DP0VYmDLg1`}*${^bx;N>-G8u%CuZl?`jNAiV zM9;20IQ)379rj}^{Q^h~Y7Py>dO-pMF2W9$FFOE;HXv1N@$#|kFn1ky$G_PvfdndP z47jB5<&3jXyavBAY&!*}eF+4?f@8wNvD^MW`>-?ol_Wu5Fvox^yfAICr&jFgAZ3Eh zXg%GkF)KyiHf5CMYVLbCz>pvUHI)uoaSExz5vcTRV=Qlg&1m?bMDZ|&WO!m^iTX9u znhL#H;Ji$nMM3{#4Tw?bwfZ&f$Pw}YPIp;tSh7P?YrJD-i|5A(P* z)F{k;^Q{Je(P#UtbPA6cp02qulzT1aYEqNZrd~mk5D8u6mA%)}P#YHL=cs|9Hg~&< z(|qO-Yd<5pF}EP8$fCMnD*w%4BC2RaTR+bd>_ibSGPc~-TeU=jNQt%^H<$v$9}z$b z8=Omv6_;Ot*4vr=zOjRSmx5^Mg5inSBurcJDxds&3=ANcgyfo?ChNU7&I%tabsX>bN+TydiQxd4PN^FuBRfsLzz{QX-6Ls>!(Pz6UVIDx*S z=%RLFgu@c-JF+p9J~q6_TNk=Y^Me{V(|_J+nYyEMe2AN(5-TX5MYXgCOyj*WkwX_3 zqKTRB6uiB=w%6AMf32gL0t+|rW#ElXNccH7J6mw~cZ4IzA_QPc>@*T2PEUVqFf2y( z8R6-FI~l(X|K+Hdb5ove*Uw>zQp~JK%M~ue9ABW2!>wQ{Sb~S5prZT<5}`vC{0}`i zi}9unVazbK9U2dQ7Er<`kFm8$e2#$ovY;elHKJpN|M@+@qpsZz<;*VNHc_+&ucLub zsTh>k(Gn@YeECAr3i=8p^L{bhmnP6dSCSDHz6uHnkyeySj*ssyg0zJZ@%jEonobPzO4h@L-e_^nzsy@t&g zk^a|`7d!-?bp_Z@h6Nofvf&vnLtbJf2Ke$$GguD!CPhxeoxm5xR5#V@8JY=GmAL=t zqeAsvPnj)!3`fG?n{OMUT6wjwxC;J}baK|zO| z0RaeK?VN1-IAPbCo8;bOVAt2PJz?%cwNWS56w%z4BW-{dchA($hS##%z7T1$II+)6e^ggeqQ1FC`>|MuzXg6xyS%)NLFc8d zqchv!apmwL9BXrxT`CYOKMn0M8x)pf4kZ0~)x(~V+j0Cypy=Mq)nowUo1ulk6rTb8 zbQ=D!z?puw%FXr4z>U@|U@ri6!%>()`VUJ@mnDX(YMLbcN*7-*)Pv{7lfF{Iw_LY8 zk7F|0khj`Q(@2QWzhSv63}{XKChW33D1@&9lHj6xYq0ea)&E>$i<$Dy-HF*Nf}E8lPNDq=U2Nvf+9@!e9R9geuTs7f(A4<Vf0iE9h}qItx_I*L~RD(N^0#*f~S?CYR2y0Q^!~Istc`FM-lebU3Yl zlCUG4fPl~6vxtI01-$%%Bn@wG)UV0M=EDpKTFEuPPb0PHi~v&vL_JCOI21?$CV8vI zR}GPrf>oAd&!sd(`1tBNnw#|r+`)Yq&T7Em@m&!qxX|(x>iQ}3q6U*(w(gk~hC{fq zqT?u*Of_Yg1Bo7xQ3%abFlF!y4=iQ`USH}_&QFj|=>PZlBCsUY&9(Q$O72$wmU1wQ z@GBDFL<4q&0v*r@7Rgn%obRK^Pi@9h?No$jT5JF@7BHk@GT~E;xJUOu?HxN-9P!}U zdbQuhfu_%_`1qWVG#P8_qVoEBve-bN6iC_1{RkA;WsKXTfyTy5NEJ?jA4%xcJAXkg zFE7ud&^>A0CaaLs_y5 zkRlsfRu@cf7rW4)XS0T3eQ#prM!?ha);_6$DkJvbKaxHrNE(7!N6Nxqd9z|MQ*z{? zW=PB=rl>m*Hv{2M-Zq;IKC{=0u! zVyS%c32}EDrp8frMtFNzrE+0cZ6D}1107h!6^hKwMGd56Vp4XEib51(jQhzD? z*kNsPCvyMJ-zZ3Cia6}B$`_Vcz5U)y1=AA!KS)JcNL zsS+t)0)&T`4QiIBN$Mcm8Rf1S{!6 z=%+ieOiH+1Q5XprVSXp`zbb4R{G`;K79cvHHrktqZE0Q~+y6A_xrdL_QK2b9o~!S2 zr({II=)4XkCPdNeHN)DSp+!t}K6HPtlfn~whPReDdnnC#qJ^T{U|}5TD`UQ4u`boh z!X{vGU4MF&?!52i3|H4*u%kIl(b0AC*tp1;)wO^o&C*I*<1n08&o_Xarx6@^qOUJG zDEv+5+@&feixSQo91KnN6}*KbGw9gYrPDg-~xgKyoq4S(M;@8>si&n!?_ zzv@>I=-2*3DWj6Tz8e&@A!2AyX+3||>Qu)gB8d5-5?> z$HzthfF3gmJ3A&^ydx=!bw0kuyn@?Kh=A&>5;%@eq`aJ)}bAfd3A(B)-^Eh(VCi}1eV z>FP;kGuY_KRR!9aGWp%^E{Gs0(qr>xM=dGc{%ULH-B$aGz^+i5J^8Lv&R51C9I=G* z;*vg+9nLCt4RqOFHk{ln`dLXy1sp6a{w{v?ZEc1cUnM#+?TewgC@;6eiCuIz0Z0Gt zI!`k&aoFFb@p;YqLW3OJnE}<0Y|;1cKlu6iZQPEQhZZG0-X}{#siG+$!0yC=M&)cW zxx8HZMheQRQ;J;wu9eid1L)GHePP`rF-E#XEN5)&xbWQ1l##w@2WdzdSeD@{QnlQX zd0bNvG(|l!wQp+lZ}&=k84xkSsTtKs*yP3P7pxf9-=IP5Q_IupY{%t6Q**7V#bjR7 zBE;!;x4Y-drcd1#pjV`eBcC#|wm&FZ5Z(oiv(`?GU4nH%l`J3@e(~fKGI3q53gCg- zydA;M$(ilz^k-9v(zQ-+lZawLXcq2biL444n6U6XTdFHB;tQ;vGf+oABWM^(Wr7lk z(2gWT^!7$-Gx!nnOAuRb#j03H;X5cQ2|T9OvK6Nu;9aHR)NBgMQ-?*7BpJM}O8r#Y zS;V}b^AB8`cM8>W)_op<_P>V`gAoM(&a4E>xA`u9piv?b>i5GDQGRE{-tHs#yKwu6 zTx~V`82~cACxv$n;5$Fcs9d~XUMaMpiM~Z+`i_M#O_H;+Dtuj5xxLqHJryyOBoWr% z|DdHk!$%K470x0(=NJe&5B({1d)3@`{(VH_%jitz<5s(W=6rQ{=3;YF=ISqniEF`0 zp7#CUdL0-2^G9r^^k%;sx2P&lT)8vIF~3ZGz!O#zS6SkuhgW$&==?p$&0b%Jg~v=3 z9vq|rbo(1$D7}oz=|BAlAD>}joI1da#MPSg6gZ>5+-^4mEM}-cTf7$@9^RMhh};yq zOg!L?_O^k-H2`!r{xbK=z7@{VS2lrIG2Z&_0z_h`1+K|K5Hjlb*@80S7 zLGvfXglRDufmXv$s;a7^?Wl)H(OR5zJnwfv+D@PVTNe>HmLeSvhyT_@WrWrg>z;;4 zL*a;lH`Fc2)L+W+_*3^|r*fo_9xt<@BntkdiW9}`nI)e22WfnT!H7cOOmF_FC<|<0f|@-RB;9m4CAK7E_{GnxxEE5{)T2sQhDvtdNwrZ<>cVmwz|5Tf#?~qD6cA<`ql}0E@bhEdo8EzpU zzWTlZ3`+e*4t)RXDSo4>s9L%#Hwxo5U_Vw7*LVJ{us6mFqxTF zIXpJ-e55vTBrIjNbv_o)Lhc_PFblem-=Zj~XaL;yMaieg#Kcx+bqPxRME8dG?ugB! z!;ejd z`(%V9Gw}aZHaR+%I+6P_z7|wIX;=F^5er+%94Vut!v_$d|9gF{pTBr9@V&8d$Vt?8 zaA_$EaMry<%LIw;?dQtO(fK$aCW;wOhspG+eLI~PL+Jzr z=Zr(55s>W+D9OnDE<<5tq4{i1%fux24>%|jP?3PthJ5Irfq|58F=eperuW@W(YIe?d;ji? zFt^z4-lYB-lV`5`1uq+XAquO4w}$<4#Nzp8;?U?Q5rkF!2kwwP$jGcP2!gy5=^NeT zV$B@yT-X7=2h-C`+m}>-7ghu>;aZyp3PDOeLhpZb4k&jg_W=tgGI_0+1&nU9@mTMmc;1 z-V_iNfz!zon@5-nLN=E5zu&+@;ZpH(lEO>l3}_%>A#M~<*oxiA%tmW)a?~TzlDK3J z;lKjBD6A+;Lh=h(1V}{_jT($P|MxC=&~}iG9d5toWPPE#_g<+5&Lfwz0B-#;OiP8f%V3VIzkQB?79se<_HcSJ&VOiacQYyPX)bJ1|B))4atAP zQvK;y#=!5iV8ILFz#QU1%eM2^<|?kBH2n+oU8TNi&c}VDq4BPOBq96!ulsF77F(A8 zJwIotx$ukO{2L+wj4?~U5Qx#t z(&($2^oL$y2m!@0B?_&C)nTNoC<>#B7gn;jZZ184+U^y;bimWZ;L%(%Y+kzbru3)- z%kBqezaP5cUj#V(SBLN|PKMKmyw4Ms#~A#fgu#HKYvt*5z(2N+6$ZzpevI|neD&6e4Eahah%$1iD5QN3*A(Z;vR_# zd_LrYs%S%^jWCvsPhf0*dtnAv1SYgwKd23`7oz^(W{A!BTj00&Z+XgiH{EZ&u3;rF zIF~igfufk^_;{!x(6;3Ya2Y^F^<$KGv=2|8w=|g1q0z4k;_?ZL5stzLsXtN`m^>|e zd-w6%x5b}aT({#(j#gQs-(rz(P#Mi>No%k+AqF9mbZGGgh8L z@SfS=VtFNomS5^0cgZM~BuoV_u()bGJ+0i*QHZOh7~iCHHuVU}a8d0hPVBvVq2KMB zI(eQwGvqP!l0HES8lHMCdfx^>zjhdKOaG(>z;=u=vgg;iEqGRb%%+3<#lqzhfk!MMRY1r?1+rkL^7F>0-QUZ)k94>>r1>-D=#}pM z_bgqP&a1kj18@TT9xm}wX;}V5WB75h@8g-{k;$4~r2MQTF%t_hOFflkXCUq}I1&@? zsI5S>kRScd(A0iU>~G9?;fcA~BymkoNDw2*dJ^0>oRI4ViIz!@lw-tX#E!tWraho9 zp@n!2GHxGKXQDt$3_OQSG(kd5msr8Wo>NfUdjbbx3XLBH`V0bWUgWm6evaV zI~LITN!@#(tCuP~secB08KlZ&X}$be$j402MCWuMUZljI5h8P2$r~+63}Qm^JKMJp zRPKI0UBufyIOvlITVLPiLS_8&UyS;Ci5mjYa4GrrP)i%(W`5v6Z}k)oz`JhtrK>Cz zoR4U8V1Z{>x*c1MY!lse6c*KdZa8l;P{XYGlpya(2(u~&J;|(pN5&7DWDN0iBT@Kav`t3!TaA@lP5*1>yHr z6}s*tfB4HEZNJdHIRB9Kgd2&bB$1kHHTTMXpu$^rwiC+L)g?&Y4CqHOlmLGRr&G{U z_8=*vW%!HXkF7L-F$AB5F6=Aon;I}LbZ|-ebu@mw!lD|$%|1U&4KC%sX8QogqtJ%2 zFs9=rfQwC3;z1DQnvsz3LMCika5Tl4)J`Z*i$xNZpqpTbV6tGL%O}V`d(4C&S8@9` zR9n_NZb7B_KRHe1A@s6D?e>v8!LXbVH04njZOCW!q>-o*tI19G9bT$jzFe(%-|$|k zijVpr(y*vqZCK-2umPi-x7UXVJRw?>0zxws-|EZT{tsgU?aoAPkA3==&+jhlDtx~A zwI+Nn+h|;WhO0ls>vhM`cp z@>?z1L2~5`bx5c>VOdsCNg{99-d)sWCk zant?v_4Q-XUrJz`C8h$*fdAFK-T*dgr3I(~9FD>lwtN5WPamOxWdlkO7_NxKBH%+M z`K4FY{wnI%Y~fEUyl3ZnxpIM|fR2#mMQAcZePla(57$6dmaQPBAOVO8R3Wjm^(}+5 zxxP~$L2su5v}==$`Xu>*eX$x{&_Xb|XD1T;FgYqM#$>({T1%*=8he`HJRlj!vFgkcfoVlr;mQ?^`EPcQE3C&LVW8;!=d zDe*yIy>W>${?Hng88(4_?D$HI#7?$;nul|Y`tiB;OTOm4G+RCJiwd7FTNQdx9~fd2 zK&5Jq2aL|HZw1;VKl~EbyBEP$BoMtx8@j!YIPCcQ2U{D_^Be&VGpTbuCBF+dE4>uT zNVhF-S=|<3H7u1_iF zcS`{Fba-@RX@iw?AW$F-cjgwpu}Y>C2wEe9M=!IHyW5|yp@%Rm-9 zCy1?YgRaF$Ycg`+f+7`Zl&v9F^VVU=kDhUyjza^uq{|Vfk?VvyG9y#b^X2biZy1|G z%%?5~srVCw#ajHP!i80~OH7E(hWw>Tg2%~&5xrx!|4HJb=dwaM!jAJlQ+8Xo+lGdP zqrC~+;HQMEl)PK3G^50iZS35?>xeLzufe_alP;e>GB+}cX}cv_;_&oom2+OxU!S#9 z=yp=c&f_8;$k~{7*zOE$o>Fb&CEF0I{jW6RK)&c>4Zk({jhuz1t_Cx!FF0v1o>>{h z+j{|w%D{~J>minvmCHE0G!%Y7sUrz(j#VD&n~5q?C|#nGqHLuf0t93t;CMhS5CufN z7SXy?)wVNn`2yHMN*bD-fS?w-1nSa&_jk$6&E>F^;SEZPqO=ymL zjlTs3&bHG?89-qm|8Mz!hy9`Ojal3K*Wu!t3BG-(;im|02|sG|yNPrjJS| z<-(`NGGvG6r4iZnlhwr^9Ut%JfetG2DYc{Ks0ZWb^YG*7<`>?};*Q)>#96Zi+(87s zY#{w|))OjVC3ALSBu}>A0xLPi`Ykzvo_Fq_5Kx;MqcoIYc^s` z84U*%U`CBO@9sxA?{k9s3L7Na!GH5t+@3GGmz zeEeu)47F0jmf6a&vJ=VUkQX{09xX>e51;;N2EA0^VLhd6S;&RX7;N;v5o}`wAacMN zaxP~=Nqq}k*$kP}7m6dNmCKc6iJdO3J`e0}m3ho+X-_*w6V*GhW^(bL1QDB)Z^X8K_YiwZfOJibd zMeQCrT!t(0?XvO&Y4T1qr7)`_(~ZkXFs#XM$9^;C)S?C6oQZQ z(HNVLTVmQCxnB{_mP!uYA8$}>B_L64UPe+<{;zm= z67;gCXJ)MNuB_UJIQ6Hfe~VIp5h6JtoLf_2U-6v%zx zbJwG9-4XBg_UO{@W{S60YWW1eg3ZpDq0reT)kO70MWGoF7!JNNddPy-M~Y|hg0G`* zcIC9G-chY8oEb=sYMZKP{qM8xkQ?yq5rkIS*3N*_b$+5pFO4d-}6>w z=O(`@5sLfu3UPYgI0`_Ugx{QQtvGPwMO~s#rcIFvSmA;pslna z_(-N~JC1|4C$rBd|I(~3b9^F%0Qzak1T27qv{gtUsU-S#iqQ=Is_=FE|PELP*hmTo^ zi?C1ov#IlL094c2E)61~moZVnP;y$r8{O+aI2ueNewZC6u~hs!HaTib-NykNh;x_O zpjLDy<_pV)UF()80{V*1tmnr*Rj)eDh2pQM6eL`H1QFmNOI=s^n$LFM)%@Ms?d6Uo z_0KFJd#huwyT8X(d1d#aBm_;>Xd;RBD2!r8yN*pOszkd>d>NQ^UVUy-l2hBd=AVAJ zwO>6z-XvCPYn#^nO3@CpElgQNnRf)Ni^YqMqcBobNaD%qpPqfu39%7Sux4D`t>M+0 zV=?@6T2oFoY+hGWHf+x(H>cOpNBF&U257W%075nJ?ZfURAPnF3zBcjk^lW{_z##p` zz@W6GtZZh(095b$A37#5=-A_2zbvO^U{m=&i@!w!mfGrfVy4*B8*SM9C9Goh$eQ# zBe>ft(ex@OF)4q^p{MFqPIzk%w=NyMzGjbkDbGlAs$IQ#*W|@asrFX{S)dcH6PuF? zvQd4?B_ji;y}AvaQI?PHjm|s4=nlAuvV$eL-0L^^|7(oNHD5tEF0`Lr`8>_})J&YXU#~+Fbuz0zZwW8qTbF0daF?jVN7K~iZTJxkd zyy?mMVd(RSsY&|$s%p^5$YfR`_zriRpkXVPbwx0k?8o1{m0W+uj7|MP4(<`Oq;(|$ zc;IGp&&7ZV1Yq}F z%xxGoV?#%Zb49D3a*EGYRsIz=_hWol1TIDA^O~Df+1~TW`#tIzs@95%<4&#HZ-AN{ zf=gmJ{hzFa#C2k#G7T|;-jnAacDf+jnn3xQhGYN`UfF1-hNEc4ugA*Rj)yv5R5&16 zy6Pco$Gq?8bR@pRou)ha z&o<$kp2uXC`1opxqAEWM<2KRbD(bY(iYbN?D1KduRP>vC83yCu)^A01)p5*v$U{KM zZi$q+&qvR(-UlTZpcP~qa? zy%-!G-uox4k`6bVcMDA^tEX%QVGDytk5+ZhcaYlklzv~?)bTCQVMB3wvKy$-5xD0N zAn?7H+|*F=k8xJF1+;8ozsSXOO_QAZ+at}LyClO#+RqG=M&Go@<}y8Bg3q-vzNhtJ{t-ijFRymHZDdW_Bg%-d>DeUTk*@ACBpdD+>q)vUn*S9yJH?R$Xw?$g5kv1Sz> z?gvf0E^f_`Bv|ozJTsny_Uw&FI z5IAFPYYb+es2g)JvtHy%YhWG*!_<3eA)~w@-BGYUqvo}|&|!OiHl>po1}eWxqbE;1 z*7uK>YCa8nJdFfM-P^K}_MZNU2#y=3hoeUyeB1qA)GIs^yr#4X0`HG6T8xTT9F0rR z_~_~yFOJ01OFg#A+)~TV0HQLAgR{%x#KM(Iuy88!C>zW;E{a_)DE2yT$2|EaU)9Sl z^%sdfz5@UF=Id7pY=ZN+W5LoI8z%L`D`&^dA+T*8D=%fWB?GK?Y0mLv?s-4JbA%Y? zIlsrt_^JF|RLT#l(2#bAxxYO?tm=6K7l98wwhk?R_M2Z&Y5jItTdz8EIV$&KdNAha z(j7X|y{KaY@Ac7qeRn`6J5D4>6oZze15rffKs{%{`k6a*pDh(-Ym6|cu zN8sv_#^W`baqkk!`{0SSs}s#qRnNzIk0Yyz@2%_xZr7{gEq`<@2ZEm%oE|m=w_3BK zC>`&<4K;>*z^Vk_(Hh~0q77iO*!aRgYR0XSl%Rqt>e;Tw5HA!qRAcl`wCR!S(;nw; zx4=crOVl-@a0fvevuy5cY!%!nS=^NGLS54;pgcgW8Ptq+Nx5bwYd~4!R5L_2Sozpr zNxvw@%hYEvQz^;^t zco3{glqJM}D*{em=MT79NV0w^D1K&7)cB$FCn!oQElVY>+Tk(-{GAw^%s>^)qN_B* z$;BUhD%rBp|F35crGrjoaC$`yO*4EkXy6y{uBh zRty=Gy6`4xS1MhMx#bIa7;z)L&jU~2<#mXpWEJR2An0c;%C9f zp~nMP5CnL($4ECG$!p9{QjeCrNA^z&Bs3(_<_sp9v{5z3iiT;J>S?^&$~q&>6ap@N%_725j~v!|eBi zwHU;#Dk1{fC=TcVd276^Iug^v@GHfL78AYLeak;t6$RbmVl+j6IvEiBFAyoIzWu8{ zXvh^n3{d#sYHAZ*DJdzB-QC?{BzVy@;^m}$&xv?mBuY3#WtGmaR_^d^l6UlzNetFg zhwTIqXm8s@0~j5-SaBgPFdB7|xM^4#&>b^XRsU}rp?DQ5({H6t0T9HUqhiYT1`i2Y zRi855&B_%uGNduHN>6njs4SN^9y&z+X3QW1`3~t%M;9OFYMAON??1#2>fBLb(-=e0m8nf(Bs0Ae6YV5%yL@@{-)ZXbxo+;?03!us}DMJfE9p3E+pD2UNm4~zhl zF$o9wp96ZBnWy_*kndNZ9Mw=#(yzR@SPAoeeoIUGHyqvUlMh{Gh~73g(_{4D4>`NB zXm1j9Yu^*uE7;YQr4$QEpRH_-EC2QACm7@3jg?_c?}|um^=>i*mX6W?PQe8GE(6MLQiTcZ=JOV_A{g8M-h{QRA!zPQh>juPsekWqCLfE#ZfUOtgw- zt?F&E=*d28WDfv&Q@)`oH&Na6Yw{!-bX75Tm7a!F9waO`U*ImAVxsRfuE`Ds&4D(R zzAh68$&9*zTWC4con4u|%hd*{%CG-u``>r@`3Dx1Mv&4X&et_&YwUvy7(Y87^<*MG zOgZ_~62$|Q*_nXsWGkMW0@#-=vG>O=h}@W8%yK8!M@m-8+kUI{%ytP1;-kJ4diwmJ zsl6YiHg{XOQ%SuwauSI$!>OBkYVqO4!~7S=@ejP8`2*s?)2&DrI!AJB(u#3Ip-u0N zW}TW<5LLdXSkGy1bx5Y?Ve6jE4PEn5@LP&&gmg=p`zm9<(hcsYBH;W#ErjbN%?C3y9&sldBvpB^?!ox03;Q4 zqnn4}I8^30z0SVnt~JzuFf)0<-vh;6#~wFE|9O(=q61guSOE67mW9#N>RDn9$&dU? zV89r$a3w1wf)!d+1)H@|*t9#@*>3KOF{qb|O?Ra7z(=WtD1cd@zIi7iU<7u(u`h#h zAF2d>gJp%fV$KGkW=FSZDvB1Foj`9RttrcZoSWKA>usi}$45Y-8|0_QcOvt~HS}WN z(2j+A!V&?NK%-8qXu9}iGS_lA6!K?tB$8+S=)cb~yRg6JYrDni z-gJ!Q?)R7ZFMoHW(Kc^diJMgTd>mju*ZD%bg#XU$ZHyqh`5|g~<82bPY}pT9f$aev*|9@}4UTu}-v6#MVSKBGKLLk6caT?SQ!U%JGH-q-600Sb#Gi#Rq>4@MHcRv{^&lb*h$t zFfWV&er=yFXX9dMuy^2Npm&|>Pr1v5*_&d=)0p2lcz82~|J;S!VN{P0Cf*67SrrSgtC=S`u zWc5J}KWRAai1->`qU6V2y0B8Z7CcP_FwYlfLmmad0NBJQJAF#wQ7KAt)_(Uu!>M>r z^X~3Li3H?8IQjYw%LP)@a^&NJ+o)YEp(DqtG1`k)4`eMIr#sh=;%%pM&}C%3;f?#_ zZ&n)p``3*Fpmjt|)N_JCRfx(UPGUSMW1!r^EYS z1U_G9QE2^lMbHk$wh^Gjb`XCgS)#8j)}q!cOe}Ox(?kutL+K#tcB%*P2#xnqM|?BoJ864NWOt)JnjVVd>1iksbZ~_;PS>!h z`{L(&9=0l$qGS2- z$vsWkApRK-T`qA8Rad#TiDJ#&F^0@tDScr`2Xu4@2ceCni`zZ7Rt13=bCqx$cD73p{OkV~C4X zj|;M*g;TgcxmAdcz3YJfF+mfw(fHjW-V|KkdTLdJpZNVb7{7bf%U2Rt)bJ(H%g(=` zd6M2?Mbxm4UXNR~^us8d&~G9S0DjUUhQHIjjL8xA@n;`#%6wVJ4iFkPBnZ!W;o2A% z1h}GRqo_p4jl{qUF(h^@p2A9LEWs_SfspP zJ7CXPT3sEtWB9Q)dHl8S=8rD&37BTwrf2Go4OF9saPi@?#zImz&)~|SQb9YbIiKa8 z+~bmArEh!)QeO-SCJIQMi4AOPYs+J*a#HqJMbBY$ZlQp6S!I~@b6FBf4`(RQBPYdlTY#zO%wIu)!(oL$&OY;#xo znf2GHmCp>urJ;ZKpHFxRx-HvCTj%BiyeL>PGFK{+5wUsu_Q-gSG?Q|tE9;{2$}@jFJh=^i0*Yg5r2I}u zN*W<8O{W;>KhWn+F>_Ueh%s!oXd-O@m5u^@ZE%*d@c1(~gyqdEmhUSQmT@(k-z(Pv zN&3`r1c;@@MMn=$F$3}_21F3W?$^T?TSfiqgYq;bRH!v${o>JRA*$BonlbCcM1YU= z6M-OjDd2%LQ?)T34cJ>HcI^-yP_8xxkyo00^3iJvnuk~A{~i~hBemyvGvdvaNlqNj^$3m@Y+%+O7TlefEbd z$_XVhY6A9$6iF)gD6>!d#02S{zuv^$fAx~HrsUR?gy4%E*zLu2`d{~PR824x$3ydW zgx@?Vdw_w?(Xh}p%sQyxf{#;R}1Z}h0aCMf#J63E?PPP3!99JJzCV{L&S<0kW-C}z3iE3X(sz{zg=2N zhK7*{Rmta5`x1oQy1%{6NraETSO`2-+AKz}M9~zBf6$mSE7p_`H%*I^&A77I}+pC+CvFEb!ovAd~0XeGU@^rP#$=bBZCw8j9E)v1sip5X?4`qN(z_a289%X`Z( z5b&{gf5Maw*|{Ud(qF=#H-giAgolT}b#rrj1bhpO#I~5bjo$ZX8wUSgBsU>O$X_YS zo1TYdR&PEExP|LmpRBehtpzU|M*wyQ)XmLDpjMlF8h|C|);2V#cLE07@-tXlL};V{ zVTKPo3MS?$zj}t=*PN_!ik5BxgbB6b^#XhJj^TVW zW*yMdE^f?5BgJY6M~KIObaW&^GzxdCwOPMB`#@N z9*uL?v51?D5w?ZshiYK=v?=d*xrdIrz>e^iuuF_B#6faLtwCkkZE5%GsP2nW1&$nzv6FJf$%O`VLC-mDWQ)gbrwBOhCni;O#B0j!IWgHVp-v>eQ z(_hT~NhhK4GLjpxNDl5C;Z9YjcoC%+%HgN*OB`Xek$I7^cAmyHK5p7mF+M&%$H0PI zDFcm-jV zbN9(@4_OjwTo2pdUdt}zUtJCmCX=4Xu3tyk>+}N}z(Pc%#j9p! zXFWU+unDJ*k7!fxE+k#FZ`2Es@jUx6lSO5~Oj7FgU}ILMj`LQw-6R=ueyqq_G4{`I zk>SMq>z8IxkFe&)pA&iU<13Agu`o0jsULey+On1vju)(Le>9H&v8|l9Y<#`$?Kc0^ zT4`;u)*eN_R;{W4SvvhK?NCOLKyvA_c82sr09t-s7T zcPvg8z{|p$jKXPg=|BhP;GLg+5hntz;#Z@gz!a7jA#Doa zeXtISnwzzBO-*MU!O*k5qRb|nnRpLQ)K*e~Hc3fIcp&S6m~6s_A5DOy{XIO%3}dwa zM_516Fm56*BcIu@AleQQA+RVI{*oGhDuIde9oF*HOp{7CqaF_sR$d-N=X@Vl53016 zCBri7n*0NzSE}t#aO2193%dY?)$m&#CbHtsoRZjtm2-itjB<=pt!yBf#zl%%!C~i{ ztd}w8pt)su@QJoUQKnqG!Tg`=!pDg(ptH?on1Je!&(7SA!YR#dJ|bwbY#I1VX?s)3)Iu9uZsbLem0^j#P^R-}3S4_4(TkMcbA{ z8u=ZWDwQ8$DI@F~SkAeY+tYKCzECtHr9i=-Jcg2}y#)N5{@F*|bv00gpW$f*8H;ch z)ZOUGG{a$I8l7o|@Y{m8PvKAaXNF{1diYyr^Iw}q{9aRe!SqpdnOq7lo_OjGcR61+ zT+y-A$?&PncNS1*S39KxNU|_Fg+;MQo=aqxA*Bz%4@y`<)caLg?-vkkijQX^g zeT^QwCX%o(t~afYpC2@L{nh+xx;}t+ZV}!t&Y1VWI{$qX53%v4_$N3Zg-=?7r7%-} zf)T`Q64|x;|4^9fqAJIR*8y0DVJ;zIOmP!tVfhlKqS#o3tD74tWaJUlw)21X@6bn? ze{P4H-}7(^SUaU^;A{tj4F%`beE zeujzH>ur?_C#E9+a&?t%8UWxFC`H209^N9P1-yP$zL{$Y^ z#3~ws2MWa>4-ajFtgY!G7|j3*P8k*Unf$qc@W4$pcITVdE+TRjMo(M|xl5N7K4Y4w ziwO`G4Oaz_(~63Uo?c#FlSqh8uC}rt6ULf80QD4a>zkS^fN`9VtyH#KkZ<(5upBX; znl7{G8gY?Y$2KxiP|MNv^osakNdiR375%}e;2-@KpR?fkp>T%dYwzj|a3w-H#sP*u zwf!*+#oqC#jfzJ_;13D?Z*`)#9h{#pKb;$3D#8f#R{MM*GduZM&1ocU@R8DN0gs%zrYMD`QPwU()eR;ozK|d{=kk+R7IU4Y6 zvb{Ugb|2=u7~?MlhVLv#&#V9j7RorJyKl(ya7!Ft`K$Dul$+xtd7*>5bs_y(!U+3% zi!nVRw<$U97?dzDsEV1j*t-66|5lzsGw85%XTa_f=?u$8Hf(n?lXP!_6A5^P5g|kK z%3EDRsUW-9wQ>@)fDgs??Jm~pfM8qmE0_Ydn%;ES=?KPHjjn|hOUc!NvKPdnf%U_> z4<~hkvKBBFR_EjmR)=*|K%K=|=5`+UxW}U^fiw{Am&OJEaFX$P%!s4qY9zXywkf*o z8k`e93kTQA?T+c9@1+_FoJe;<^=lteW!4nN45YE%y9)Fpq^3%O;Br8mbz~A za&uSs@k6fBz~*q&EG$)OU78S7@D7{=Dn*Km!8An{EPhTH=ziU-^~F@|sZJfVvRKg7 zeLk?9cs1_uYgTxr$of)2yAc)4nN9-ysSr-YAm^}Je=f;;%9Xl{J}rj0YyfMKZV@JL9u)BDWk_23*}ybOSV91CEumDyzRIT4Vjqf>#Trz-(zJwVI1 zk~$UU1I)@q1O$Ak03GNbAw}5h2olO5lX#5bh6Rv##jB6>dU(frWW)BGeLZ;c-=T;2 zOnw+Tk-~FHHHsAHji;2)QA1$7{GKsv({t?7KF`Bx|AXFoX{QU=2qv!_P#TKNC4Qg{ ziD{~qF#Db!DO4?1Pp06hB+D{63Q=mLaa~`Cci?NuU$LHJOMY%yeoYTLO9=^)y5;Wa zd@Y>w25Q?rWBiN!0lFA)U*$O&H~KqSE{3M0q=+#yD;B1u^+7N`Jbd5Sn5w1`U<^B! zz&ogcr`yvJt>^fy*U`L10xou){`m6ek1z1@R98={EiZq+yt+EB#S{(2f49Iq*q-BS zMHLDHpsn!fr^Dfh&9r81i$hR=p8B2_bshH`Xoc0Rgna&cwFjQowGXGh$7uep0R_7} z-07s(MOjsCyN(7(Dr{oOyBd}bdN?qm)JsJJYtJ6^P1zth06**bZ+4rZ<6A`87yYuM zND{^{i>D0J^+~*Bm@E}~S~E=6J{vdgv8VK)>J(@lbf#K$&EKfRod>p($>-!<4N3R%RToBJt(&-Q4_d(-8QnzUjiZ}AJz25crY}jtqC|yh zIPOOS?9oQ^(bv&Wjb!OW)AknBPn)K1L-g@uLm!9ew!T4}JD#0e&#%I}^0cQ0X1Zkw zjRWJ%^bYsvS;RlsCFrmA1zPojXI@47SAQ+f5FW$PK9PSz61Y8` z=wZ;0gnlyJbgRSp^K4$DkRK|X6Q46q7c60~@h(l5=-0FRc>zJe)fz%hZT7S{g@$R=^x36|9;5 z#v(Mff+VT)X|!)vfj1@SXD{qO7OS1Fzdu%`SA1*h034(q7V@WBeZY|$Z~^Cc`8=f5 zmb)1HMG-T)?PH2_8{VHS7jn|S#dsR7<|iW{+E3997CX6Xza19W3F2gf4rUZM{0M;I z-)+f-i?haoasB zFV9K&w{Ijs4)+6^1{*=($}oBXFgB5oPEDOUI5{mAiuh^t;!+Q5DZT>9Z37xcw*^IT zF_3Xem5_tOQ_!QG;mpU6lf@HDb(Cq$ChP~2iV~dYGdl7VEH+KgN7Lf<_Z+0EXQHPB zrYg%@?#TI6G52pnPA!_e)BcW}2z^UI;Ixdt+}N8tzVH}+;(z@`(KKUGP6xX3eam%t zb?Q-P*If1SGFA$QJzVs5iSXzY3zjl9q;=i7Ys`HzaL^_d@>1xLIu>xw>Si?(5wdlE zx&atz!(Jl(y+HHsx>4qEetteTT~b;)qP40j;TD)N)jzgvR2~5L z|3NaDVDUz$PhIQ4K*N?w(a>iVd5av#X-Xml_v{W{^B2)_k_(OYDqIbE`mJcJ1Iq_~O zYn0D7!=|RG%)s^mVOUuy_2c?uMBQ~A;Z|lAy!!x`{H~$>Yi`?tQlU11b|w@dKF~Hn zg^zQ69@4bJ~kt%At3jH0a z(JvFb9!^|zDZpGkV}86yn^j6)@=$A5{xhQ|I!vvWbN`@^K{{j)*xu)5NrP~mTBt&T zAD`x3xP*~|MMZ!C(os2G8prp2I0;cGYIVdiSgr|SKAj`%ks>d>HvycingO?u0nG?)p04#lnKM`y5~Q z`TO1q7Bi(DmK6_7E3m3lPR8x#-bDWDwZABCZGnZH5^|p%v*IU5T2HY3gqga#*v>N5 z{dQUqic$@ak0lZiauBffS@`7-b2Jn zyn!(ygChdlYO@z;VZk-adx%^ z+|>1ZzU<<2md{loUhu}AzxnBgq5&m4cW|BkB`{@$Zt!^9ci4$vh zT*^1;6W1SOfJ&G&pc3Y6^SblgVbWR}j+S;2rMX?Z>TYg4GvJHY5KzT;i|iGNQ3OAB zJ{OPQ`Bl_huyuwRmrGB|xsR$hw)Xa2u}c&T1Cma)ep6v(rA||^mai{dduPCWx--g} zCi&9R5;-v2ovy5`!~kTI#hfITM>}d&0!VDlX4#}aO=+?Xi8(lcJ68k67YlmQUN~Q^T^H7jZ#$faf3Gnd z3bx}*rw}~UvfgF2Cage+)`upgFkmdoxn8m$f!41bgfM5f@|TTd3ShJ2HFA) zn@@$z@^CXwzuTktiXb`1DquJ?oH;SrO=3g2TC7Og3N5x32F!q$mb13kn2NK`P}L52 zx(}p?4mb}1^$gtWGcx9&WfKkbozl|DaQFixU)SJa*rC(!lfn@vq9rTbB8;`MW%YpS z#*wk`26BjviYkrm{ZPF!*&%9~SF*q?Av_yL$U=-CL}Ezu_-fnP#J9CfBWI1$EKg>1TOaP6ON15-K`+y zh#BI^CmsYkw)QiUj@t^k-%q~mB)TB!nU|M$+2U6Z0sdHT062!F?fr@Dsx$<=AbuQ0AXv^af8@gmPuH(| zD1q9Glw%iLN`wSbBV-JNos20AZeL493R+PT6G*XXfn}8FHJ36-&JDdfmsBNb8s4)4 zd4}fJrCLWXaKS_iM~f-f1^o@mhV`|G_?@aQH;36c9EtV*)RpC9g_xKWGBYwtnAzENdF{J90m!>f zdG8&}2cmG$j{i;fDbkCeuyC7FD=Bwi0%Xk@0g@3Hr1v>bW=@?Kb&4AgRoL#AAK^rj zCW^vn*>PF!Oio3)B#!VRA!V2Kd1{%D z&Me7nZ?ZA60CGNbMXWXc*B#8B!Ou^UtrR#ysVwwO1=@7(4t$yl^JgVX630)=O$vj# zDc`;lT|GTgC2K9y`A<;OhYap}vD_bx9~s_jh7aMP{kgO|z3&cyP?rb2$H$-g_N~&s z%sC($=g)jo5QqX;B}E}Kib`CXDIKN6Q^keA*HQ}Gus6D4GsvCm>14oM;N@w(Z_vLr zpwzS}^H}($6wcMzwD=}8GPa4+e)(njG{@VtpqW7;&IF5=GLbhvFV71Oa!AD(Mzk+b z$kwy}Ug&i$ftXR?{x6j$Kp6mzu{(IDVA8!k^eNb4+)F@Crj1z%%!od5jl;%m$J zoO)Q(_Dsm|JULN6otnU2ynOI1Tj;BQae&U&87X$#T1v?9B1356mg{WD81qTq6p3!B z=1G^GiB%G$hlKy{B--PIQW{iU9d7+OxD_IIO7j6bog%3?7C$~t34JJLVVzwJFA-Iyy19AdnUS`Kbi3@H+RlfX{ZV^f%GzdVAC9 zdC#l01Gb(dWgL6$$ZvQ$0DHe?*2(F0q?Jc(P$vM(vmvM&a_8qt0gvuDWGSN}<=j4N z*fh;aYN)XO&?pw>Kgrh=9lyQVC*z7z5@+yWJ|F?^AE?h?;;`^(O| z2+_1|>|vm1vtO;Vkzn9pnha2IY1`w#pp$pH>cmKHVVx2?jd3-nW|pUtWmPZ2D8P_p zp4rf5s+C10qu>N#WpNbyHu0Ecx(7gWTACM_k9$L&sL*jfzt}@FPG96c%ISypWS@*|e$u$O@4AH+X(1Az;-GkeHEPbP@k8IHx;mEt)0YjvLT^H$Ro~ov!r_RQm8BCT zcDbl4iOLkr9{1QR_TXx_4<20G>qg-q+KUK=5E;HP`}>2} zs{U^;=gVU1W{C%UJxsm1x$#lln*9w9814dIBDTfhHI42xWz|tW6k(MR8nf?JWoxra zq++x8jqOu1=5OwbZ-Fi4n6>+-%ZpCs!^1#ErS;HuV`Pm7XztV_V@&GCQaFSM$%Ube z&B-+K;<){i?x0wG+6^rTN+ip9Qy+;kpx0uLotec40N1b{9-?du23otY)S&FRZ{B<_ zNK143+R%`;jhdDSf+D0Bluhun0H~(cyHS7X0z6#!CTd7H=t?G!45A0AailMd3K%sr z>zWmw!I&gl=?)550|3QqI>8TCoggr^&0HzX<>e*wRHvM_kUKwSK&2A`9$i$m}8knGFvYS6Onej zY~_G;c5A{OWL!X%=cLwxRZ8mIE{%-)^M@)O0I?!h>w>+dtbu0=svsj!Prs7&Sqr%x zIQLvqjGowo4&G}L9KR#w^$&L@PTtD#3^8r|$)S}g!A0@C%wybrA1Y(X^3Dz8!>j8| zJqDTzYsrrjpbAP~h2GBlMsv>7ojGnf41|A-_5EwLAK8OLtGcab?pc$_jtS^XN)M`evsJt@XU^Fm;K12t$}&)I%6{b826kVo_o^%V0vZu(G{ zT@j6xOkp6O-KObbh!i<$rAIx~ExxYIPf?q$5o=aTIHb`F+eSO?=O6P=l`m|$wlld8WVji2n=pfbTmtRYx0r}&kI4OQ3V^QxCh^d5eHcjEll zhHW4Rkq`GyzOGXt7@Pnu@$Gf9xx9JP*6Zk;VC*98$H1LGo3{z$CG~smXQrhDZ5mi7 zT}M8LT2+aCIXhwmv!?w+1Ivd$+<}rQgHRAW&(9(IYV|)4Q3d!-3r}2(Zr@TR;)G2C zD}Br&ngsoEAYW=tX5z6!DVtHv-my~AodMzcF?0B1=TRT%!1glnsb_PHkwn?Uke1d$ z^-3^0Jg&C(u^vEZM`(rBgLBfxQX0*e9%&Q;gMu)tIgk_pAPlNZ+KDn)9A%-sb<-zK z0G?{G$5YhR$u;R_?W_l0l~{IgOxEGpgqg*mytLHl%;Lw7AOD_EW@eHvFE6J6A|!^C zgk&LAk`T2r3|VoZTCYw+=#YPcDbI$yf0q~<$rC}OfQ1U_mH3A_{K(2kHFYH2dBwi2 zTrN0nJ!T*n@b>QJMk^*NszOs!Q&5l{STqJ$Q#N4bz=Gj_Mg#S6%{6(v$Faclax=lc zw!5>Vm3N%guBPPzwn-HXI#=l$Dij$01BSEN(Hy zPY&K!Y+1i!g3@T`U2xTo zERGLFfN&uddSKPvFBWyMka{9ijqA2MP#t z>Aq=V{sseXdU|E#_M}rYF{4>;#}H4aias@$GfnQ=Lwc7Dk6(1D2Q{eihrFe-T1%1S zbi|=fp>T!!ZO=!6+>G;nt9wMOlJa-tJTzMc;-t~qevH^yDKq*DRx1-}=XZi@nC;)b zdTfiMEz)Am@#KS}3!3j6yQ7jfyQmcW>yW3Nre%&(!otE##;u1zNsu02?RK*#lsoar!|aP)Oe?n|ZfCv`CO>}sU= zXTQ}Wr;=}9-&ZkT4rm6EKsd_jsr1!hEp3@xwJ{Vt5wPh^`MGs6T)*G27{RBHGEnC~ z5zG>|1fE+%YAlABzqwp)4n65MuD?l*jC~=%fA^G_Oa+YO8NYxg@_)m~!qQS@5-&hr z3xrj?;bIK46rZpWd;S7LtxCg~mZq*SG&F^w2=hUrGi?T%4Z4?qLt{6|AuCJ&j2qyn z;o)%83CYw}5fp5J6mE_7%INE}41mB{z23BXQjOc+)r3eBB1SMQLS@xHBy2`Abwtqa zg+^-4d?95Fgci6Ozrn;bl=&Ezdh~V~ZW$q-@#}jKj~U7nQ9lR{?M)GnPTl5bKh;|3 z-k!+SJvNP@;gd-WLl&E{BA~;c+S%E~93LMq!n~L5uY3jEaQ)j4tp$V=35F0X(+it)LTnGIzahP)zaF!szhkC{b-h~)h9IT|or7{a~Z0p@HU z5g7S!er#0r39}i$nYfw!ts6xYLx}Wy>op!Qjfp(Ha7Bz~6I^Dbx}I=ZTNf0F)!%d-t3tuf-?TDy~En z9Gki5UEdjogHr#z!pkDEwNLOqfJWzOTUVPK4zTBv3v!%Y(QKuFG0?~#Apxmch%4!?5 zC9n3^>0&4@`1UC3uu)mIv8Hd+!{i+5%9Ltp1ghdzY42;fl=nw}`a7L@W?V#1RowI5 z)4gc+a;Lt&{;vCF4G;jkh=9U&xx|UYY67SXdpO86MsOCsWb^0S$Abd#NRv<8FJE;? z0L@1bOif7{W^Um@3}Iw8n1+E*?|=8M)3=-()SF%jo8B+~hP}?A=u?F_)74+*_-iNx z0#a0BvH3vF-)4fW1Tzlg3~j5f^dHlQ!bE60;RjOj*fFG;Y-cs0J2F&g7O9b?)Kti{ z;2HVxZ zyEiiP^XqB@eFpuvq5a6M5vOLIFr1|h<``LTmJb(h)8?u+>of& zDr!6vP(4@@8uyK9|KMO!s4Y0NL9d42e15#&4F|QY`?05pVg%jfTGaB7^=B`4{+XM2 z5ZMO|zUhtdlu2wH!^ZcQjcUQUOIE}`aao03Mjxt2-B`iqHgQCjq6#wXQZi6Et@n?<Y8%?tzCh0L$homp;^$*=)% z&9|Bo>cqSl9#q=~bItiSWlf$vlflxohcX}0z||Kwz1 zMl~>7i-LE^C-iUD-mpn z>uGG`%3!`1D%Ye~B)cdQCe>`Bq*s^zpoY6L#+QV{FxF0yu;{x;Z>xe5Wz|4QiQvv( zE2Ve0x7q*(R=I-{7ndGiJPu|xV5_^B0cnz-UkdcM3w*wK|&)51*^`KeatJ)zIaR@_Y0ac$_gcE->{0lHV9;?Jy(h?N0X#uO}szVrhf zx;`b-J4Ea2;}JGv`Q9ihPcsyKq6lVHf^rT7#!{~KbcDNzUEj}KXF1EtGFu5|vSI7N zEX+%;PqJ&gNJ=Q$za(rpLuk$iw&%9@wy)8A*gJx5ffE$H z81>_!QK)!AI>}@!wFr>W9PR^G02_gZ_I7A!sB(36wKXd%tM&GH`MMRxR6<*-QKqj2 zr(Whf0+bg}Mh+bWz&Cc@@mz~pD{*Uf<(jmH9FqE@fOZom*tW3me-2A~(D{Sow!sH> z(=10@+%1k@^kvRa=qt?SI_cX+cZ4j`%J-CTO09EKK7Uh|yIwC3ey_!$A6DR;*LxvJ zpfAYzJdq18$MyL9#@C(AFMN?HOwLv1f7voNy8C4#?o&adm;YC2q`e|jY%+}ev@v{#}3G^qhA6;sNdh(uhw{wtG1!lj{I_dZt;n7Ty~S@FZK zgB#_VN`##dSZwv@;Q?a_)PYgcCY5|ggU(C}>>zdB7x%qRt?rj|lL$cF!5y}qp|*?I zo0>DSy5*z!npM6Q^_}&AQ741re#V>^^>gHE37T2-onXJa^dL+G9l){^(ng)~cv}hb z?Vg#?Lh_utU@Ltfpr{VqrGQBFT@K;pFG5{<8XiAn=l-TvXV}pS1F4WM;ysS!8xh=0 zB=|#RBsIAH4d_;t4x6>crt?U&HtuRsl7o*!09mMx~&asChIG|6?o|C%Q0WYH~ z7yrG*@PG<>U1A5Kw6r+DxC9+s!B)f*JPZT9yj)g4rsf&Ee|Wgn(rJyatX$GC{zPE# zrOvVR6Vnz;<4S6b&>wTO8%%oBEh03OSm52orGc(Q%RtD@nwFs{hlr@6r7>5mB%q{& z49=6d(nqV==zIU^Gz>3iD&?oeDMl!P2F%w~X~Jk|6qS(~inb@R7EwRmuq0YgsML$! zslhwiFemd68W!`1)x)SzoJUU)jh||MewbQD-=vU;oVLBAS|hxv^<7bbE~;D%krHMW zL*AJODKxZr+JJ!1Ch!cCQ&VFjBcDaNxvyQ7loE~rOKpE`Ny_-4%bZARR$H}wetron zv8Zrq7V>g7!mm^n%ZjCZ6Sj6|jto7F>V(6wUcea|eP>zt8LTRD{6=4Ijl$c@OB)#x zu>#Oy7ySJEDgm%`E5HnN7tVI1xKM+mley}$fer$E;2(fFZD8DOHyOZ*q6I(xmUncl zW`6fhMH>u;0`rZAB6M%6f!GnCT zDq3#=KB1!RFJefFy)Qf4pH0P_Dg9hdp5*hot{3$>&dOg)s18gebWMG5lYCztRQcYz zY{_egUksvqj_vEtArcxZ`(Om+n4wtQUhjG)IHzE`MmL<&wDWH|5_jFr+WJ3c-XBJ_ ziT!SZBCN(EDEb~$(`iO=x7f(Fc!z_i_I9#A;6WG{{x0>*?UEpoPbLI;a<}e72f4TF zG&CmAjCmZz+vsZeP(A%hK}sDg}CehmXG9RTwMrThhZ!X5-LQ2#%>)rB2#NiU^CdWF9sKM|h(%Os|K5 z@v3!23p+YMSEwT0gwHYPUoHA9DKzq%G8!txc6D79u=(sa_7)b}EXLKNp4%_dc88=_ zIxO7?g8Os!kQFp+=~$M*?iY#l%b~PaSTp8OCPj}zdb>wlVyk1u zI&T(uqI9@KBNeHCdW9hjoI&Hl+#yljueMG_Km-$rkB`S9bs+NdVB)oNXI{i@qZ_IwGmiC6q7sVZQ%TaxJvd& z?Sx9Ix<+kMewxNUKYgfct2vI3S!d@lN3@zF6t`41Q?ztb*32~# zr?dB{t{IHCNLa3}q7JK_xuouwOVF4qfsWdm8j3FHNfq;MFExs+I#n9~Q9@QXr=LjP z45K*pwa0o2cFI4L_U_6%FRyjp&}x?F%lB9lCBTK>zWftaS9du%GBT2;rKQDwQjs8Nikqb*C6cpt zAnTpss!pBBhPCO1PiJwY=eUV#dhU}=x|gq8iZxZdq#lkUQkhpPY2IBk$3bdw-(fp2 z9szpT0`M|E`u-j4rKlJW?1I4nC3NJJ^pxy$gNTu;0DA;r>BqqiA&)g8qmi@J)L^p! z*mk*O#~6IYf71~IgPctdY^YTbFj=jti92moJdm!vhcng463D`g`6|YMtqAqde@@}A1;6xtQ_GqNAQwrKWfu@d z#n9@Y6`}FE#p$K)fqRo^G9wn;q;OE(`w-W4NsIdtL`gh4^#**Lsl4VH8-M0_y8?`Y3Z3GfszA&tm)oOdr-Dtv5-Cj4X2?ie@iCo_7zy+JE}4TCZJ@!9pyp*SmZ($~}Y z_Q2T*ptaT}CZA|&YC0A$42}S#qHJmrk-xDG!?Ww(jDc=Th(M=g+;r)avIl8nvnLH< zwgk|TWmOhaT53K%U27c`^Z1SEk>Rlc7mjvX8KazriZG4&MCg(IueZ>fOUl!f;OM)- zZbjkU&CfNcTXT<)iiJEol?jiCFRdII%!>JXh!R+OqnWH2VQ3Z{QAVHo-;{D7sgGJL zR*L4`dSBijAM?-V)1~oz=`BFQS2RP&dE+Wo82{8Hs-Hy1R1s^2x-M+1Y0I8oi4aN* z!v&mnH}78DR}PW10u$xFzS+IQ!#S3pkx5A^axyZ5X>)UP1Npqd??K8p;%et77hM7O zjW^G$Ee>n_6KxbaN9_(I;L-z!8m071$3?m^+9yoFhqWVPmArxO&2$%L@-utG89@5p zU0rE76tLKTA%sAHpe`wCdr--zlCBa!Yugoj(@H7|*mJW)!H0VIq*Xd_iaeO4OE|>D zsF~Q>fMI^kMN3z=D$AkRYvIeCHnzC(S26J4)DNf%`u%UR-c*7|6(ZR4td^&0G8 zwdw^Z^PTuV;vSE3d*Cx{b2?Bo9k@B&oNdAWh=G@IF9#NICc)<{vQPxLi>pfj1<*~z zZx{*^h4ocx$9{NKp$jE;teRrsza2$6AC$;`oFZFVtY?WkJ8 z^M)AQFaKanQ&0x%P2zWx5HlVTn=fjo$U4qH=^myue(eSzEMs^5CD6zw4@yG|8JSW| zDJj_fQmgr2U)lW~o7`HXg>IN1`P~^$<0w?ucEmqpj^WyBubLYaoJzMmFlp&)C|Oz6 z2toS=l#8%6Mr*`wsNzc~Wj(G{*<2jghqp%fOxZC?B>lX3P$KwY=+Qc0=@FpcZ2%Sl za#SQOH!G}c*2#$hQ0uhTdppvk`%hS0gRfV!v*R8bvPzAK!8UaGXz%(D_?Q>KRN7Tt zt(-(WQOxfDXdNT{zNgZx%-*?`>nTa_GT*k_hHK5GSNzi{KbLO9bM!W4r!!wMuxIgv zSM*f)=%q-;KK3lP&AKApJUILtNNF^!&djKh10dSz@o|mJ?CiF_9oYZw0rFE5#cp)) z&Yv+a3n)S;lAd+7v%S5c*RpXbLRRe6rTRcH4bYXI3Dik4&y1r@h;9s8o{;4etY`)n-=(S&6!md_8UDy5^znXu!5ASo@sD} z4a!)m@<63wQt>9GV5CRl;zA+ysKUGtcLRFS3fpXRFH2Mw(!TxK))iYT=|*2Ie9aUb zg$pIDXdN++%m;h@RKB@QKw} zY823^!gmsw*gmUQ1!}gbU_*LE*+F&GGGtpopDc#dX;HUGF5@2AkYFg;Ox=%;31@xU zdnys2vYewe_1!lZqw?(P?O+-8T{fMnP47Ce_ z^?qID$=n2b>h^YaxU`{J$O*P))Z{%c;)+eMHsPwRz{wzk7cU1+;vfI%mU&bq{hyi8wsX`2ldIJfMH=4-Qr2nFie+ z-VY}VHd;^R@k#5!jRpSpSI}VsE?2)pSvWd0G_(bJdU^~+?Kf(DK9Vx%Q4$n!Q zYZ;Jy9EsEUvqm~Cf3DhL`VD^Ydeb$F?*uOJnm^sn+mKLR3QK-+{7;H?+1tIGZcE}R z*{fN>Sh}X5{w84?dwz8T&b>zdCZoFrWfqbQp^P0;QZGulbk;tvp__ncrso1dU3T;Q zDDjO|us6ezRCM5~Uab$ZfmkLwEMh_za?{-GJ~QqSMJ zk8psK_uXx!kd zs>GG;2A@pl|H%yW-bEYXAn@dab$_7$<*Ax}6zq(k#hT2Bg+pf+a9WlEtvP5QyNIwue=lK*7?Ho8lNTHZ`DeH zJyQHs<$;W&$*E53OvS?b)7LsWuoSJSY%JKiU48S4KanT*teZWxLXWN+KX5Vkw%EXA9xJQS*z9bfc~G^j?!_}) zynuQt^`6ut!&UGq&J#tA+Dn3trI4mduux_e&+!5y3|KylRtWCi!q1N-Gpn}r?_YY7 zv~9Hrt{Pi#YYQJyPAU@+(I}o7+NhY`+s2WCg}ubX&m5}+wYPg=Ov&Go)|&ue3Sdnr z|25%Its(G1XMC&z`u)3JW1ElA{?EvS1SL6l_p7vDzpQVIq+<{S+(1q7X`X{U@W@zX zt4%g)Yrs4r@H)Oely*)&K+t*OD$STzR$7fvHam$QG{G&UVjE&u(6-DRv}8J~dFG zqE<@IemC4u`TKwHN=@do{foJOjFb4Ia67Sa9 zTwK<=0{A1|{rK!TwZ}}k)A8w}5Xw!U9Z0m{F&JjSAQH; zcC_p1SB;IGJM2W9z!HX&GzXT`FqKb?n|!gRB%JHu|PKSt?XIy!;J`u_zY(C9xi7VI}MAwv**>6fTrLaF^uFqZGxb-Uty|qJF)@ zrHmEFz&H1zRT}F@9)#~E?~CW~1N@L!K^z)Cxvgucf0sni3uV%K5|AG^_cht_PQWU{ zAYHO-mS8|o9Dd4lR2Uk4_EIgv@*L_y|A46Qd`9{CWr6+^$o_YK0$UN_8XcXf_vs-X zvBy<_cq-6;Hf-+oXar)%s((`Nd>2g`31GI8p85R`J^{bFz=E&Vnq zy0(3rK*wZ2$o7f;&dl>PsqKhK5So1Ob?|$Q&&J3;_*9UBG0frWkCKbqgC@4Vp+Ng`k1$hC{WmYfU|q4D*RZ10 zFXbQePXKiy>78BAjqQopx|5K8dvtn)4Np4~ZJLiS0pbYZbxZ{LPT zH|Rhbqz0owx<|K+?vN4`DWzK)q*HQq2uMk{beB@n-QD$kulx7D{0T759iJn2?UsKf zy-GiMn>@|1!J@WC{c2)4*SjanzV97(oFqUphyqi3e|pK~)zt$*kZ2^OmN)wZM>g%; z?LRVmAM;F#&N&-XdvzJlwvWw4-{L?|b)|)kUGCX0(sqMt462Z~k#;unVOZbOP>HZX zO0$LrnyuIS(=WZFLDZhK^MPYUe)LBLnN{?*K9kwCbicDoKNFVZ7snlvMMS2TR5}W6 zZvN48$;JMCA1ET`oCe;$Q|{lDcOKYjqfU78m{+O~R_w^(__>}Li6r9xD+%J%= zigI)uL#^f}aU*!G{nAb1BvrxvvI|rzY8!I()pb3#UCpWMFR#-_z_t@iUPl2qf%bqv zv5U2JVQE>}w*{VgzIlOpp?Q({*2+aVzM?|7%R?YGQX(~Cl$KekjEhI43^lRX_jWUy z%gxQ@cg>iqI->Zqi`c*M@s7RM4JNbvWg5IQWvbOHu?HGK;Qo>-6RAuN(>5bMi(XuG z2;BIjUG zRSVvp8If{aIJxDMaRM`!)v#ZQ)i)&#gyKqK=Wzu~_J889Je6uULo^Up@!P*MSJezyr)PO9!!sZUt39Bk|IPw)U)a$$^+r_HE-k--4 zTj}9=m8tQywVwDNVYn_j7qS&0iP!GncrRifydQS?hDEwE(5%7X`!d9-&`0?Rkeynb} z6%cHL71Y!u?8*XodF{Xm839E1%^+&i&K~P-7c0kle%rg;=TI4kI|z^7^&C*uKI~vR zHP!At5U{Cni$mx;owV-0vGCXmO*6^3Aq*rX@V#MdZM4A-MA5r)Y2aCW9Q@ppy^!tq zwf*_5cKM=>;7{cC^F!8=&%Kq-@0;Nn0|%kHk$dX%SJ~U!Pjwd^#R5AMKjkJ;I`MIR z75YL*6AHxoBv`>;tj415qld(udA8Rng`H7bh40lWM1FgAi7&lLS0eDeAbva^S>^TK z`+1Rk%NwGC=npu|dIL9)d(|WOEhqD-9;?*8h?ie7JNgurB=}I9RP3H;ryez^^Y~Y!TJ2+^u znXBf)#(z6G=g^^qR>z{Mx?qXuZU>+>xBsCqzJ~Un4@z%G>0f8l7&J|i{p(`;7m|^rjhR>7-aivvDJUp@g@%R-3ko(w9-`0x$~g=HK@z3G@oA`g_~Xbc zXfRy3?|;tgj}Z|X0H`Q~qJ0@*RqyBTO5ag~qu< z)*sB|(8|D!jiiJG{hueB*A}c=hpklsMN$~x%zj@$Kk=T#Sh8Xus*J_*;+9hj(#^9x zZmnqDyqeLz-Voa@9~W@(Nd^7!<&2ac`&FLp=kkFs;eZ7dljh!PqLvLB^^kiG1yrAc znz*3uGB^X>`F@?cTiO zFK@%~6JyPbkMk_!UUh?)6^2*zxFeG~!$UHgEcit02LJl$K~S)CG7J??T`PDR$wSp; z!*}=$;9c|qv`qUa<~llh$yM>khB_!e=6<4N+=)PutWYnE3*KbZbMNCp+4_f!HPad> z_i!}G=HCp0lu3_p_+ROv)AYQM;X;M<4p(afrnp$x_Xo-in6w%UOD||=F5c$K!d?7Y ztdL4K_%cWfJ$9w#JY?MXnqc2=jDsG5TERo)2nrq>(6Mek-L93je6yTPJntU&pC3`) zQqx@t0tC1z(IC9n4X8?Cb9;0$&|m*%VWD(M+i$caN#fHZQS_UG;{tVY8_^gO94zsJ z|38Ap_Gn=E>@v}`IcmAx{d&!qL*Erk0eH4Xd8$&Fwpf--IO!DM0*j~JIpgEwt`>Nx ziom)$DF#GNXmmUJ+~>F@SAn(@_*V`%mukB5b925`h$L$|Q)^+{*?LFdC9@c)~Dwx@&3Q0m2bGz)pxO5{;3^0{ca8*T6;p_VEOwGjNW- zd$#S}a=<#uj{hY``>tn*6g;}UYBWU>-vA9$brJDUP4RQx8AKo;b_Wu>U4Q>&KOx3( zPWpBGVu8uib+7V&kLdHeO5D!d)${jlI=DVNB}y5%P<1mk#>g_8U5)qE_16V@oID0p z7c5j*;->z%@3jKfD4Q7PgV1|8b0rnG3|z3Vl4I=zd1vfXf8**XdRQzmcv^H?hJ0Ky z5zRbKcVl}$(fqe&*En71ANtG6_SMR4CIBQ}()}Ssb_o^so|w~m33ZZ>FRb}=C~0rs zNkp0o;;YkBb$L0t(y7Tw zEeHfsdUxk(KV~!2YbPL6-TFQjb((=;0dJbw3>}7t_v=?_l5}W1Sg*_G-)Dl&?F|@` zjJBcS0wB6a)cyK61JD8>5~!ZpvLL?G;oHNS*GjCwlxaRNf6D{qem8HImQX;c(N*)B zCk=9s$6yqP$*c7WTna{x7feo*flUw_r232tLMN~kRaBQG12Zu8L4mYyx2Jwx2~4(L z#f;-bJ50(~NK6W5dsq^$Nw-xAi5iM<6vf4#=~h;wf?wm(_e%!7MZ@SIgge1By2sIf z1ELO5As1!{nJ^NT9nJziloiog{W-Qz+E*=3+Y?%lRA${k|HC|x_@sETx35I=yIzhE zbCr*NT|J6+7suXncuqxDn*ESj@uqH8U*+?ioW06&y`rxgqufyv`eu9 z(U@)0`pEfRPO?_yDiXJOI-M4zOaWDk^T(1{qV){$E>?%U-0O|9=|^7sNzpXnnKWVp zl*BOe?|xKJ^lLCWB%iIF~w&?@Ve*cuga8R8E@gp zAY|b=f8w`9i7=YmkC;j{u?;|=5OL*rbSqu^_jRU~?xGWGRO)H-5l?*1gLH3)CyFBy zo6vuW!w}s3vjrefG1`2BjEq`misIJx(z8M!WHx#9JKjhl(v?9A&gb4MhSSH}CNi2-17-~}v)gycj- zMK0;G+CCNVBIk`0qq*M+gcqtZwUoOxg%G5#lqo{P2n2s-`al~ltGRm!VZ4a$Q3;`s zy?MRK6(c9aZg#UHog#aY^W%G%MQ~v>To-eiYVQPceH#G_Um!dj=;}(!$VBO1mPiJ) zN+^5zHzg&5FTix;e_zP7YqJ6OxrNs35Xk0awN;y?wYBeH2Nn}kQFLu>?QZ~=Yi34e zJ}#Y=rYty^CExrP_(GM76vGX^CKgwR76Di|2bUVzkmOOg@vVoDo@PKK#=s;;){W+ ziZL{qg%G??pYE^g2iOG|5ZISkVMtsk2=orTAwc|-P>1L4&b=2gOVZHOD+X}A79T%9 z@P1B&0R-rQDU73Ni(DCjdV~fIN=-|P4-dyu%@Y02sFDhsdKmQlLNJO~Znf(&G%i&g zQ?l{>ugTnxfp*7)wo(}ZVin|MQo%8AF+MESY?wwu<CNYy?9oM@iIB=OZrzY>8} zI%$G&3wOY2R(b^c78J9LSLfa*>3yPCeUBy#_tQ|F-yq&N^}6U7^{*l~dM}3DK0YlC z)KLg&r!!aBh)F|=Yb=lmYc#H~;a#90_lrhd7vhhct>;47?X=K$m=dHw;8OBLZ>2%V z_=?B1f{-)aZq*HljSf(cp4@eymlOeZfWXx^dT~ZBi&4ThW+yA1U*?i#PCO`j_g_DA zAz)b7Eh7<2aXjV%Q^yHglUkar1~!`m&d(r7S3IlxRTDQH8B0GdjEaV)LyphtuF;uo z#>lOtMUW@ujkj@eZmzzr&QwG2kTbosi&fPA6X47zRdT7xCwk8_7=@j8m*jPErCu_J z-WJ-AttW?unkI8G)09eS3>8mq?NmP>Gt2K8b^s3YWD+jjJX|zc$(WfP3NLQBz zGYddFcKAIDDg^6;PS<+(`0-2C*7Ew zJhF)HPguZ6P&ki}&~3s`2V7Y>YmE;dm;=Fo{_K}jIsNz_a}m(-s9^%kgjU%C%c#DC z2rOmgp=e;EfL>Kq^#emB`q{8~<0HCt1U*uO{u;oAeX0{`UPxjZ)~e;Ijc1d_X;P|8 zv7cca+QZLC8hC>Xx<-cv2zP=mU;yf77*2k5oFgPONLc$hSJ#D2zgp&SWd(6{b)^G{ zr^Ww;YgVJLB3-{-eRE~6UwjdMwf;l#Vdmezy1Uapk-wt%c6}i~+deFdTJ*+!Iywri zXJGmv@Mq=+2!Zf@m!uBhh|)~1)&B6W;6HhCzl!qni=BnFfgohH^QMwcng1FR42$6c z_)CAF75azcAIf{JCISm*)+`+F4kxsI_$IqJctsIa_G}YiiqDQWC|1e>X!Ji=-XU0~ zGts7CUm?7fdPqUV=v0>TMV@o7Q2tN3q{Huj@{)1V**V;s2ONeJWWL3E#* zhYj6+`LUgOVcFs6$$3CQPAHO~qG>e1ClbDn~S4Di^9?rWKH(B$E}JT zDl2Fy!-_1Hb?%p$p|Pg-62*5H#Q24Ukk4?=o?h)-LVVqw5XVs81I28h%0GOL48yk2 zBENEp3v;3PjpsqIK&?g8YhO1h1nSVy$S4wr{u`4M6dt`tA7}@;*J+ZKHPFnq0t^!w`+V(x6w-;Af?Z z7(BPwHU$X9I0i-gr9ZU!h6SLPuuX0#b0|A;&m?Wig?`rm`sd4&k#T)i7gJlG)fpz) zJ&SfC-(DL=Y?mWd`!RJvORB=6@a~Y^ulvsi-Psg6&m#+xWE~M-^DWPwuU;-*2l{#h z?CBmB43-ib>#xL&IexDlVOW?mGKn{KC%Uqkm6@oKcN3#Nkgp-=Nv62mFJ@mO?y)%d zBuSF+BQh^*Gek{>A0XI(z9+o)kEdBZBGhIKSF|OH3fK8?&zBRX^v!lj6Wmh}<>YZc zpb3BxAP7RQjuscJ%i@B9dw^asQbbU`_sK=-&$kpnV^-rzwelSLx}O97Odx(VhEhi% zX!AP8GxIrlZB-2UWDuhg>vv-fgE+$#Aka z`*`fomujo4wnT&ps!mQGlvP!YiKJw*mpKxX5|T67T%hrdCoVL-C%FI}3+DbiH|)B{ z1gS$Nc+eC>#Fs27b&e_Myo+#8)7VDXb*f}ZmY;gvj2_FyQ^25i8-jdUeR|~_{nrg% z5udNxB;#|aP4lyHt-y-)oxsiq4K!mJDlvr8y}8V-m~5bTp-UIIkQZt&bwoI910Mv7 zX@~b^yq`?RDH>l;E}UxCscG~Vqe---Yb z1*jPA24XV7sf6PyrKXF-2L^K9-pOgo$eeZMP)W z8t?gvV$v&mW77I_Y?Q4Raox}9mvg3 z*_VKTVcB`RmG|Iw#$&5+)k9L~-2)u~wOz6`x4H2Rj2>W;^XkRpm0~~no(!bygcu&J z94`AFOCNmq;b)kS#!|GIN12y}?Q*20OrZ=sm+>2z9e&VK&24GPSm2y@dY_xQP+w^e z|1WB0Pgz{9T~5tk_8Yo#vJzOkS6(ly^Kc^VwfK!pzEll45qh^e+xX9}qG%f=TyP{u zNrGZ7%tRD(5Dn5SlH$Zo1|#{_c}DKKVBaPs`O!0eVgrlndCivU7;^s{HC5}Wi$x42^^lWnfx@;$tZwk~4K z)C64**{6&U2?BS38@X@&xo$qd>G(=Z6e-R)xaGyTTOR2HyeaYzbH~_CNgn&NzJhn& z4-VzvcCTlrwH0bzbr5n^Qel_{AmxNvpeAANTHqRe<|mN2vX?B zFH@+UKt}VJFmTKP+)cv3*y5Rd(`EdjN+WLR%Nxp?6@f!xMpL+lI^Pd9pnPGw`b6=y z%{;uB8v0V`@iWT^b1rIRi9zLR(fejJ2>6q=O%Coz)1)v&-@`z`d|0{6vh%|$F!Xff z_k&+)v(t8Mmmgli%l*@WD*wIUe$n+?q<=@yRzqVluI5qz zQ1;$B)z;OOe&dV(UnY?fCDGmD$@JfM-;>`0YQW99fzXE?c^smJKq?=iNwTKrEGTgj z-JK@KjGp||BnJEJNMn};P)RqEsm0JBxU~2di0f9mw zmS{#Trc48PE*$VS3U)Tz=?kKvK^)@+I5<+kggATzy>w3!;^Hyy2SP&&;BUu`=1Fg~ zVgiD$5TE-$?S6T~^BDnA&gh?t9+*&&YU~t?L+JPZbrF;_Cy;Wo4~yY`)3~ zSD=5{8Q_xN;a2-nNqoqg+3`DTu-CjsZ4nv7bEJ@Wtevz0WLGtLEIWVj3_8SV2*AfM z9WR1mDgTV)wVAUd-*_(-`1So1qTd7127uv>PdiRU`T(){h1^ysVW~d7j|JTDo-7u# zdi(w=-I3&ue=zEp59r;uND1cx7gJ2X+}lgX)U6PiUZtS@3v3fn-iV)FMH3-_63ZfH zow8X)A)!}9q@*PtMS9s_NAtOAt3$vh99nO`SW1qG#baw-Wu$GMu(cXAx2B-yxn(ap znHQwLXJSBUq`?0YBLALvyJGWukI$=QJ<8Y-Mb?Xf|0266FTvd>H<1pL@7qTN8KI|F zDf3VNgtoJkkNvKhRJpG6)%^H!a5$P$ha{+Yj2(O!z@g%IxQm|Ka4IMgflVT3 z+xudgVcdSgcOn|^55q>)hXU;;)Q4YpqR{l1!X;HnDM4lRb-}o4y;{Cko;bj^KX4ClE zFT|JSJ>?8#`<1cv!Pnu+PGWoVBhu^1>O|g%u}^CoEDT+m5r(&Z?EVu9=kawD7x}G5 z@8N5(M>5Tn)K`BM3M;B=`vo%DKgU|io8k@lWg?T_*=AyMorxRxefSY0dap!s8T#_r zue=CB!_3nHIJEN+-I4SX`)7~moDH#ryBcI2G#w-a5a!p4U8UUf5@>Bo0P^r?%(Er9N_28xr>b{nj6VJ%u{B{U2*~ zXw}|pBqiMOSXhWVRENIt)aRLxhHj!iA2&eb-29P9rmSX1o|3c?5Kxr~;Ia;NZ{@pm{3(|C*=S zm9X%r?y`^JPk(Sc8u0p}?YYJ>`EtC#c`jTpc7Njp1T7^T*fPBTStJ25LhGlA9|+X7 z?FFNr*bDJlwn96v}jJ-5!-sOVIlK4!52rXp2hVh+H!DW8=UM?{$+qpq$G2$(Qt z=7Pjzox*VEw|BjLBybfKe5QcFzy#*O<%AE9;)Q_$x-3Web|<&5kAaEwOuJ8FeD{}D zu&zb1pm!J!$Iv>Clk1qgjt*38Y^7iOR#LZ17R7_tga)euU-|DOq`Z*rX|>0DitrL|{-{nx|9i@nT+#$o&($>7 z*UkRukndB7+5&@nJby4pjqOG}*#%%3yz8(HIPyg^3$&Ctnmb-^-3euQeaAhQ0#uO9 z$Qk%!dVKkdvxn&typ6ecw4k8tDKe-IPz4Jm(A7K?NPNP77_ECZIwV9j%}pm~%j307 zBnhXGtxea`QX4(+PVC?N^Fv#K4G&cttGIMP8xk?}L)%*D+4TZ9c~)9kI#O?twC0q{ zzm)0sQm7f$0SOD^R@Wb;ABZ&Q`lG8{ZMQT*r41l=9aMr6-%X>P!Gt0 zAhD#qY>vg(G>u`FmAs!HzR$=_oVc~GJUdZqOrBoG_#v1=+DCZCFA9T9tst1)|5s{>+)aTcoT&25}<(SizpN7~izv?L{hRz%?E?=Vqzd^tmFvDr#Mt z?tEm-xA5Iqd!a~0&DM7Zpl`edG&;L=$dgMn{l^t0{27=5-?bmBzoUdYJ1Fa-^a(O&f{n4Lj68;i(GUP_;K$9Y`R5d_pZNRYdR4!xO>NJ`elHgodXheq07T*VNF5FP zOJWw2HozT>B3QaV^D&7QNc#p8w;bGjzI#LQ^m;{V{Z6{<%}XG#RW?i`iSdqb>9D$W z_SV8(|E+s0fCTLxXySmV|xl8iS_P&3UWr_HO|H z97qRzN22~;fRcT>>WbzMul)p?f9yKYnOk017e?_aru>=29jmcH@FTl`Xx;!HO}Hdv zz!~L(D%|I*tPWtY6dS?=qV~Xngj-fmIE{C7bX?Wk{vQC$FD#_y{tG83=LhVtq=@ds z&F^0p$D3;_VU>Xs-Qs`6sG+BAnL1C0myLv%gYu~lO8_JKm9UT5^f-WEDZg_YcgsQq z5KqX~p?(MH1ouSHQ$R|NZp=luC-sh2Op@4GxwT z9vqNAz3xDbZwD~~^f9xjXyz)K-?GBsX}U`K<7=&HeMP7HB*MYb(Wf#RBskIw6c~mb zCogYOJsw(Qak0usTlF{eWZFt<`%zlMgse8vs}SQ{-*FWJTIZhEyQ3wauY`Iq^6` z#s|KJC7|iq=SPj4AFFOe(&UE6bU+BH2wTrh7@ZW z4>*o!a4Z*${*6WV8EO`#8=LvJMD>#Y4OBTBB>Dest z#mVmh-5NffKOABLf3K>VdQU{#7*TWZ$*7K0*0(4>6 zk&89?{7gw{TBPA-DN(XpYWe8AVSsi>$%B52Ui z(Bve;0TxAwQzTXmyrpfBs7ANy*~S z@7?Hs0EBT4MZAZD6qt~-HZ4}Npm8N-9Zn@)%~lmB^cHrDITV|pXq`eI{!M@JOn+(e zz>b0B^dRK!g+ES4WTPLkUvk#^EI*Bio{(f4b@=;-D276SmtN>_qFo(ikv096L$dso z`26J5gywUz&OqgTedc9)>G31VLK19)@)m7T;ji0QuqR+)fvmZX|FW09$AdamI|U2{ z^Rn!SoGA@&=cPik93#v;D`;Lh!fIp0)Nw-qW~}2d5#026E;54XjAL?okc%Ef&+pv{Ek=9=YejG z`nD=@M!UHD&G>k-13kxK%nmYVg|5nHYz1VRS(5g#$shGk`QPXPVuTWfA#lG8t@Vn< zlWA0CPFW&`Cr6@)1My!XX!vg^rH{D>zn7%}UIEchb9ip82j^JwPs5_jP7ZK23MYvD z#^)N!DkU@W5Q6OI8O_3)M#iS_xyH-}$?vy8;A-fsO?hU>fUa>}k{Ne!ij}*_UI6$E z^X5sBWpwz^ycNg}IhF7Iu8)CRU9tcO^%%ql3skvVc6(g07UQT zzPzNQ{AXX5L(>U?gi-3oB?AX?8>7&)3%@W)Emd@ z;$Jo}#grpH9{(AnX&3b=t9W?2HqG-|Ca<`DWb(Vq;Aq<#%!A1kO$M*}I<^Rix^rgw z4fNba;H90V6n=ZR17q=;@vKW;$-4VkKi;J&;g^%7cU3pd>SunzWc1Y7Uak(8vOf)I zxVZaBx&$+(6L%Kao;xZcO56#8Sf}YH6ckVh388UOzM#&MJ3YMx1oBaT850w+S46x{ z8(V*!^gTV%SXCGp`UAo((eZPAs7fZDje$c~yD&P~9-tdn^n+=^5+pZ{3?68q0=)qE z!xQ9Yl2>=CG9loaMrm5PT zA)TkEYL4ae(xy*`0v900aE>JYeYU}<%ngVdYA{z#><)_!Eqn_XD5jr&)qyolmF0HK z93CF#Jw|!H`Y$b&TII`lSGw@@ za2}Ru^Y3hkQ+VyZzry$vbm8P`fvTxm%xnH{6zN3g{;~^6xyRW6{-T@T{b5*6>3@-2 z{CE6M|7no1m1U)+A8>|^JsSEn4oaE_-n7VYzWYnX=2U1+qD)Mz5J9#;g08^Xx>joO z6^x0CP~u70JnIAZbN!t@4U)vdYT{!1tpeY@FJ5nhHgiaV8`_)|=o-8QzF!l?j{_%F z@lZLL?cER_Cnu+io?fc3kdS_6N=lKGh^&`vv+TXB2=NDS5qhFo()U!-%hDWaHD-p1 zi=8~GfPetp=KpF@9r`Qi1A%cnC@fs_2V<@K=^DPYcDTedrCRjB4=?W+q!0Lqoe80 z(Fl@t488eE2<=Yfd$PNq?$Kz;_IbhBN#l$jDHCIUspB`cIJST3=pTO01JnU@~txBq?F-zvb@ZB^1PzV zSzq3*E>HDnKdJr~_5!Gi*qK>vvWhPa1Oz)51b!zrQK1AgI>f9sM?1=Kdkjlwin+%r zr!6-q`-kiIEhGK2c7)OSwN_?97^)Jffj!6s)Lq%ag^;({XKz#6V-uikwTLpXw@m(7 zzxO0DhjFd)c7q6Xf@eGu=L`-}Q2$EkQP{moJYi#^J9l0-(EIY5dKTc%ud;xSAeVu4rrH1BE zbvPW1g5r;NcD`SnZ%Ibt`J>dJq^T*2g;iJG;}+YVlg(%_nh*rcVuD~GM^L|i=hqcd z7ObaC*PumNW$d4 zzb4ivsl5rrwuI|VCjd~fCwEs>*A1gt_;thDnPB8tQp$v1s_`+o{y;fwtIR5lAIcl(P}hldZ;RZnT5ueWBXhsSg& znv~3votkTpfB>rYP%^tF5UT$14|~2@<&}U6)+m^NLfh`p&e`=e8_q=tt{aSLJt-V; zf#(aqguYX`VOt}6D}L|5g$Q!Oxz$+QkIVDnABOhc;+M?xIWl1pndK$B8tUuY%52EF zyEiZbCozHZ()2>@Li0lR!tlbhN7ejff&vPFwE@X+V4$%CP-QbL|8YxBUQ9|c#db~ z(1IaDDaadvj|zoE6~_`NAi^$JpZz7 z_lFQVS)WeRUULCaCAVt{SBrO`M_ymzNA9VJE%q}S!+OUv{1F5INTY`XHvJUWT{)0{ zADJRSLVkky9PN65hc*qJ0gg;QTUtK{fo-&bTgd#L)xYRsY*+J}J=za8OT`PL)tBPXZtBDN1hsM0a~`d*a1{ZZ4<>G@0a%B^LMX_P7ey~m&y^qA zWKhFEkij=KwOqY1oRyzLW<$a@K+tz@oGolwODyaU1Q?tc4wMWIR_BiUqxQ7#$#gX6 z1c>lRaBFMliaTJ{Xie7*6K21I3&$(Jk_?HgHt?l4r+G>gBJ1Y|Khe>#?o z_xM?cUK!x8l9JX9tjoOUp`Bkg68yd(r+EJ~v}~UTG)u!A*waRlFPyf2jGdA2=CKuK zh(c)tAwYm)!7CwDUQh%A!iEKqoFE}EL0}h`{gRw_fzu9u)ju5?lzifoCbY5|A~OOd zf-sRfkZ4d~1pe3{Fo;e8$E85~-7}+Vw^b8H%27WKGyP=xH3k&vXAgg^qYV9T(pd@Y zk))(@0LJiV%B1W3(9aUO*5MMaVgYRhmV6@4{G^bBsE)Ve1*$794rK-}eZB2z) z;*iHxg~@HqPKF_4phL3Gxbv=!hG(5N+9mNXtZFHm6=|Z;xdG#1$FB(SfPI&*(-Mp< zlZ4S&(Rk4>qhD1}QHp$XdA)^>FX$R=lqNGpU!QI67LvbjXXO`=*08dvu)=Mno^nHsjO?PU}{F$wfxvy9v3I zN2l6fzqEgS+11c?(l78-e`>S0fT3=iP`uz^Xz-9 zP;RLI+I5TWMfuf@td! zS7;*M4a&n`qE$a?jh_)KcuBxhUkfFKr^fze%HF#s!80DbV~eU@t=usDTtt>hmtWZ6$%^ zgP*ZIVWA`?wuiKN2-NoN;uoz7ct}dMc9WGTA?}>okUzK{mTX7i8;&)+WQ|okkH3)` z6@hV~*IFAPjtOuYEZOZQuxf)M&>#GwO+p=pB`dr-glv%s;pLS>f}n$xpyUnkj2@K) z0TPwHU$`$&labCyf!1G){rBU8a%yv~$yQD3(;-N<}6sb;<7MklBg2cZF_ zkmMjSP;bZ8uh?EW;w#n^o6r+qnlet*O6d+NxatV`5=TCPVc8@SF>=`pcrZ62S3qTg zB0pA|s4Hr%fiReVlAf1{gUG-i8K1~8`{Xn{m#KvWFe=*e($zA#(syRaNdnf;}wM&1^Ed* zE2sojR%RbHD5YO-Vz45D=wyGZ3?+Yxt5`NaJ3A9$wm}~MWNvQ$-q0|e9IZqXO^LF+ zT-(9@kPn?UIx)EvPcr-{I@%()xWuGcXY6zh_N5m6FkSqvSlNX4w_mDav|ik&g}Rcz zKTXHt(1F*NdI5>{$E|IuzZi5U!OhHAW^~6;eMnubrZ-+=0e`&O5eqh(L7!K~GD%=!VM41Wbf6M?$4PsrKcGsM|?;Ou$4aB5d&PpGaE?WD~FEH^?s zhs|BJnoo7^*4%i~R>7*S>Q=m+gU4!UkhdFj@ATNtS(cTp(e?sJjB2hE8Uy8vGBY!K zfhi$EQqtn^sHi`HS$0p>9+92fp1Yj;ye1*7AjMpHJ!S>_hJu_n-}sqH#ASt)p4j4h zvzPq7v0ElDH12kY6PQNJuhPf_)-WoHi{S$N{H6I$37xnHGl@K5&P#8fym7b+>*{oP z9F|0-9?*>-fZRG-0Uo99Budd#JKAN%KvRNk*`^QBRv2uv(ZYmoXJfvWncz-gUow+D zSH-xsQy1MouD>qgUfD`%PwP`}VT$gG?bUmTzLZ5xc-Q?BhSi`6bc01&05zNdai(=G zlEFglzJ|7VEU@T{q3VLUp6z7E(Q-nE&Ad=%h`){ZAYvUN_FCX&XVB$S*-cbiuXk%P zo(!AfHjz4Gj<(1^)6RJKeFSAwVir{`qT4sk=9LWLdxMEu4}9K_0XSoW{PpKK-=jG$ z(uYLvhA#!kf87vz4j#U0S~!$!>U~5PUS9wD4o}5s)rqi`ywbl{w$2&1FERfUFS`rL zNdIinF-x3R>hQy7L0^=y7a;LdJ7S~ixIB~DOW6h`h3%OW1FeX?h>*Z^)Fb5wO4g|N zM+J{=dTHcs-`bvCSfVmTvkSiqjZ0zpIiE&t>mNe@7ABSDe}$wMw^)(K^4@|w?0E4n4NAf8xB-u40^Ddk^vBQb7Jth~Tth4u*2Ng2w z+}?LcJM=kD9gYl>yXbanU>E2QRMOC#g-9LHt9Zslm3sl2zz}~aX%|3(%_ilRhST|a zwa$3`4FHS928lXb$d)|&(}ceY7~7*0_=lW;@v4y)hE?FeBFwbNkPmzfess7H8Gd+p zi2l6lV2qYXDs{NrZfaFl)7@K$X9}lt=JrY0`CWl)UU=7#W|;=h9z~NQ+EFi_=>$ih z7dU`hZk0*9T}e4846{0hR=8*#W+cJvjYb!n=Ew28u3%Ws^%Zzbe5{5t5w=R*;{yT} z6bzBFfnqD|=J*ZTyyau+G?j<=IUbPHK=~k2$p#hB8;~9d0fP}b`-8g1HV4FOAx{#u zydwcfs4y%ji-pK6bzS5k%6Laxr5ffv3Ha06Bjzffl&Y$sULS4Dh?p?GVLuWMk`89^ znjjo_V&w`b(1t=m(U?pT-Q9Fluv|1~HE9MWjuUMH4%JOuX$*%P(3Xdz^ z-0?U$B9W=7C!8IhdbCNG4_gYDQUxYTLP`qC zJghh4J2R7dcg3*(fD8HPhmQ;NQHOk!vy`;P>yhYqs)B-oU*20=yV@_c=!W(<+8#P>ec<&9y_M5h!p%$h%mi8E9KyC z%q171FwW>XGy1}XkTO=&`bK$=LU~cx=pkrCgQxly$FZQDC~+Xc zzA?G(EvLBsr{Igk2!%=x-#zHNh^HIS`S^jD)1>V5`g%r2R@PQSQ-W;q$c;C8 zfkeF4&d;5CXAETEiMCP!?lMO2dpVAks{+cQ!AE(4677+fXCc3!*agP=yzMF@Cr2kG z`ybnt+)Lu3shRNMa_>*mc{tGeEhUsvwB@b5t^LW`TFx;E#71ib8D{^)+~`OqTQn1E zaW^md8*D9fKfvFX6##1B!-V6TfqH$jT9GpX}IIXi{Yteq< zQb)E?Eivs&E)rswdm{=R-(*P=ddf3l#J zx9gC^JX}_(Ubznb{`}foAa3dIpooXjTKd~9jKo5tx<%sA$A%_y=LVc$2) zwX~K;gAM8)Op7K*EOoIxerrMo6mcOSyYXKRyM--q2m7CFr3aVfz)jgDOI$yenp?Wk zijP+r`AD!=UX$+{jPE)wq{myaUDxu$VM$Kg>D9AIoM|q}uYkITFwo+dGv7}!nW!JG z=VJvWwx0Jy3xOLGG%uD+oivcG?gimZkz`hi&%{hjn!g7#oBHvL2*Z9C+ZxHH?d;#- zDN^FMrV)F&v&KN`1I`yH@$NtTy4 zH$KhIm|0#^C@tnUTW)2I33X1gLZVO9(nbCY8sB>e%Ih{4n6VZ^B)tboN6i_1y)P z=S};uV=eB5Y`1xcoj6wQ%rD93v`3M8`a-#-=pBj>=Wm$!xCDMzSxa~ANsv^d=WhwP zylYVWUGg;xU23&F9O+j8nM5bcX4L%Z)ew}0CH&yv00U380jSp?dG*Q#aU#fokdX~e zYif@9fspqmqH(RSpg+ zkf{c+O(<9dgnmCDwRLnNujeznz1YmaTfFVP{JH~ePzuAuZ%_gyD{$E42K_5|fYhk= z76KRU^LflfZlVrHZ&MN9=?!|i-|Z}?Tgr>djMWYmZWMJ_D@=n7%nrue;`vbjtjeiv9ScdQDMLAiTaO>q=c zMXDmZrMx7n^(mFEvL>BQqKbNu6oDBKsVrLC_{jlQwm=*@VZ}r0PTLmzh=dm=>wDP> zSH5w)zh}aG-Nz6yEp0_9qRWLCVp)jv#b+gw=Iq5PYBvvYn1tt8kts^@Uhxly zPP*Z>i@fxo+r^=@#wq90Ljx=f*%r=0KTzqMNzIZ*nMT=<4v~#Cj37jr`?08ZLjRAY zvkZ%}?Yi*H(A_0N*PwJaLzlE5APv$W-JQ}Y-2$R?cSs}BN_QhA(*4~$@Arq_9)~k~ zuD$kJ=NjP0qloYc(;R;EkAFXHIy=QLu3DHkIKJUzSIHAT-zt~T#G?|%kfv$sPw@V2 zW%1O&k%(ER|0te~ewFqTJs}o12^MP%h(ki!0i@G?p;q??q*Z@dVqpCNXGocL#a1IP zk$nD>ZH%k~2YrFG1MCH|%@Xwkg{iIOxzCTDo}M_D?GydyCsc)Q-2ia#NY>~8C{;#PE4dehBRi?pv?8CT?}cRG-|OajCiPVG zw&dw0#R*|@4OoB8erRF<*_h8)7upuEq`fh@>y`U{4Hh(n8i={QJwk>K5~;TN&8FAk zT~*|_6dwwN5ibMLgvkJmA++Z`ggOX>y2XZx>yP|~+LW)F9ga2^4x+ENKa@K3I9fpP zQ+!;ZZdYNmQyL<*qKSCE=q)uAvZqU8YwSr8mYv51ITql86jW5ONPcT-C^CzQ<>f{@ z72}=m=rN%I|LuUDvC=m-9Jo>6~D#V*z#mhuX4{mxP` zUEsOD{3@UCBiqq8a_qG!(>V~Xj53iv*#wWew z+(Fk-!G28|_w?n*d#h4bE&gPl3uoEmJ*5EagmlDej*+ z!#@Y2S#lu5aTruJm|~t0?~{OJJ(BdUy0KkQk)*a-_IXti_5LnEw)z)8mX;#tKh>J> zL7J~i8%2xbb>g=WW<+_DeG>VAYnH+f?MzcBxvNv;xm1%blpiMOD95LkDRHJ)j{`oJ zEmaj@EVB!lfgrmdLcJ-C4yPH}&6xFD<#}T}CAn za|#wbZn>hY)o1UU$YZ3cp9V#FyWHtM@t)*oYTeCW8bvOv@svwM<^m5Gj6jla+K0uw zVW|kg^r=XlLy6?gGnjPzN&m70oDpVo@LLM31YU`C^zB_GH8wWVKa5ss03Z8~UrS5n zoHN!yt0%Uw+6Eo_tJ}HNRQrdn828T~lIl;%#dl;J%Mpyx2)Eab1A|%e(PRRGi_CD~ zkbVQgPO>CeOd+RWf$KY`Cpa2=6>6M6fESkOM>hx};RqsrBOre;Ls58f(4g0JoR2Nv zEi|Cd2*L$XCJ1w&7GRBRvEh4mfanpSG?x+nOH`2;+dV#?MhMLT6gMVfNkRyr^T(cv zNJ$W(o~I;+O1Bdvk?HH#_vey@Ux*XnOS0_pJ(0`wvMDVS++d7-1OVz}kradv`?uLD zJxMju)24FPoWS+(bCcDNACMdnGH@_m+)Er^oeoB*ec!yp-g>Cfx*z1TcaOooB|viH zT+k(cC9wSXi?01)c2}9Bb&RZnQYYAe!Fz+>@sOjF`B^fGx;-mzFjpX#kz-1ZjXlZ_ zM8m+qK*zy3u>p|4AT?4<7}y?gPAL)6Z0Gk){;_GWTIDm5+%;4kj~g}e{eDpCwMX-3 zsY#U~&m;y?2TLlHXZH96H+g~dCn^e^2z^E(GAwgqIQr}UI+L}88o{D)ore3rLz!?! z^X|}swotDDY_`luvH@tn2}kd>G*VqMb83OShat}4)tP>p;Ye3*GaNFG= zC{^_4$709w%a!|T)dWaCYR$a|#);vGdMWNmSEljGh~(o=*UCJTyptX{GS`%B?5)m) zLoJzI0p<^3#WRCo;fjh1vZTMKr;`%+K>72Z+FC9*Kfex}{wShv0H5E5KGcy?jg~*W z(vxife9u(q>6i`Xu$!w68ie$nf*eY-gqzIr^QC)T#@&D_WgDQYorjE!>`zh>K5sY1 zjn^_$ta1;HGqP{nzW-p+ua#vdrBd3)Udwf_sH#f4$CWr z@AzkHY>AC=`pM+3>d@AjuEHD&G-<+QM-r|bj>%ckwQ-iU!ZqLF_fLb9z(LTG2x?;9 zJ{vv9L3)NnN}}BmlC6YWQzV8qi^n?}qpy;@GdEd|#Aa@>sjST=aYzgP2(GIEi-q=) zXnHye$`om9nClVA^};zb8VGaLrPQa!tp=S13XGSli@4AgU;Tbep7klA=2YyL(yAtRnd`Lyw~QOC|CzafEj{VvY=hj`U}nfRtX&MT5Vu`9Vf z_bcH&y({uPjjNGx%s7GZ2NCay2ejK>7d*kcKI>H@WBe9{C!y;v6LV|t&wcv-5QN}Q zIpw9bM;b7I40@3Ig?*3)H`lxg@u1Dvu`-UZ>d-da-HuIi_WlV9n4 zx3`0l&^Av0R-{qGJ;i8!$?My`If68U@fz|lw|AZc_esA+xfl4YQfMm*O%52rawz&J z(3To!D&F7bns2wl9>VFd!wsY=k2@EJu=Xiq?*!mKI%)aW^#6OVXglB^#3wdHp1fN3 z^kI95eLkO+0?Yg7d}-y;Zzf2JA{4D3#T<>~sl47zGJ)Ogj-Iq)Q2esCMlK&=J-r*i zyzffsb9SQa*Ciw&%2DY*tC54EuMq(|i0<0!Q-g2f%X)h=!1KgM=^;2ITgfU{4DR3g;CYt zNf}X=p08Ft`kY`?av;AsM=9YzQr|-$To|uHlAlr2(t6dVOkD!N(3SQ(_29INI|B4U zLs(#ilvYgA6wiPfK@ttzXqpJblt z(Ou-b5O9zq4a4gk$1Hi88!J>#)g)`?YQzR1HP0D~e_%`R%MV`{x-O@>vq7o`J5DS% za^LWNMCC$~TDvx0b?oY%D-Ohu0xniW3(cpfpVIg><>d)=_4KgNGpidLORlf4$7W`< zdC@x%zzlKn;^YVn`5_7lnY=h+rEg31pQelUBu}u!d3s4$kt(^1J^H8bSL{G#~W{vnrc!Ul{tY(v3UTsGW?w z+pk+XRb~C?`7qiv?TJBUXjv&o`|z-m$TKMvxJs28aJhImjV(_)U?)9uNPAW5#}iP^ zh7Zf9bue=(9aDfLAV%#20Y*#(pqRTbeQb=;ks@$9@)y4rYy;TmrB1kvUj`!#Qg9$_ zcmkkmPRi1>pV{+*xN3#>9apWO?zJV0_wPAD(-RZ<1AJjhsFx9(R{8m%*U*8YY|G7E z@;H{AogG9SNy_h><3F>}ZTK~``)w3oTI~e88v8QqnmY(H>p(K|Tmla@-#TuEIvld= z$$c-*B2DE+Wb~GCKA(QS;Y#Anw1`}ng^0KtQ->AD0X?~c&^yMp0||oQU^Av=s*(uS zV&=0$>m3M5=7$5RX#L>f$#(~|>m(V<5~ux`;-HW4bvl}=#H3;|G-3Ndk@6nm<1gu= znJ`v4JIv4xb31K{esk3HLOqm~?BU&u@Rt^PoXZY~h3sK{8XN8v zX^ga^jS{>?`uj4w6T}{giVcJjf?U9<-FGNO#eooX`T`UM`3Hy@MXo&RD7eea zg1zL#KlgRlBWGI4&zkpdp+4jCK#xI@qjmfD>lB0H*yZkWFSeOVP3F3JA}m_~dE@{x zF15C!(>k zixf4WGiYtMBv1~IWC~&37frjdJ7UjfcqHHG>mRBz6>XV|loZKFBa~22f1(jiiB5=8 z$#eX9Gp8h(2%SV*WxR8mydNR;Xcb&-7(Wx~?J;~o*x?OjsGkJzx`ERO=nsJq5LUTS zfDQ_^-Gb{+kgR~+ulJI0f^be^Tz|PX5eunfS{iD!8gY5TG-ZYIS*i=1at^HLW)VPT z0l*qU>d*+LM#aq^7HmbczsgH$Yl)zPr_S!6*rA5ccwVA`p-T#dC`qL1JKoTggv!zH zf%xN(msrcUb0N@0Q%p9%g47r`U*9C+8&KtDm~n{_3wb;HaL4U5TW|Tf zp1iA?@FK}pjrTq6T=5R9Wb1m=Ydu`(`g@Dx_m66Y$<%7=K=kxz5ULR32i|D?Gn2J9 zaCfpZdm6Js^;m{u^y|y?k*bI^AYCOH=H7BIU-rrSvpdeI{kJRSD6V&^si{c;{)mvc zo#%=zS?#qT1QhT2wXcf{Z{z?Jqyh3s9Gh;T>|IR>W5c>_YaDQ(EAKS)gNYh^)~k{H zT``$G;coPk9tAeJvf^(Cv@_bZteRWSPTqDSbVTKWHxI2O&xJBc>w+vfA(`n(?KzfQ zFM9AhI*Z0d;g{BB=l>28lSjE@WS|jt;Wf<0ruh?yjhugysa%gSB^{%yqhD^?d3xPp zH9f{kV8^Xm&8gyu-I!L*cK$mix$hKvcwbV9rG|hW_|H#Oe@hi;XRIOqm2j*&yX*=S zKGy8Ij-1MLE(t<<9!>)^E4*%`#@oNyJ^?4}9E~i1Mnll95uS1H9Odwd>$ z_W&!v?-2Tp%}uhTz)g^;(ZtgPPLthy&+|k=r+4~e0z7NFO_14egxwFkYd=I&U!k6enNI98jemaHCSoCd5PUXY36ZR6ce}0@0fsz4(z3+PIb| zSAbTGDFBL-XV#J3XDEYd{)q>9s(~cd)tUA^>Mc{7YNnLlDjZa8krjWH86hjj=#{;FheF;>102U;*nDUeW*vsT)lvc>Ll#A7dGra?vU14(UAo0OLGj znidd!zJ<_(EIh-D&K^BiMejT?Mhe6WXQzs;NAID0qV_n#z8T)gA=4v0A76&cfWvw& z&}V6L-~Gi5cZr8Vmfbvvd+}-A?W6okA()s~HPx1wgf)_+Cv!B)FLw16u`#WnS@ ztI9qahUB>PlcayYB@V@!GB`^m(q^Pq3M1c3>;$3p`uo?uKvkP0c|A!YO_L4lbJD4S zO!Q&9XTdos5~2P5BYU6j6E*{-@u<;u4HNo4{!2z+c(fP%RM~O%fu~Yvz6b;0vi?1z zU>EPLLP?-A+6@m_k;y|AOh;r`ampS!Vt;*|$F{K9uVB`EBx=dM>>XHxxd@WU$Kpu! z%>q$Q_+J=(DBu({SwKxJ&H%)ut4XijJUQ{5@PnB!@&P0gqrO3jK=L$0KZagXbXb9W zV&OD{h?IpzYC=}lEU+jkDJew(E0cbgf5+_`k{_6?SL&ok88TyW__hZJT4iES?IUka zUA9H9rt}BxUXZN(n4beNUMqS3v`Cp38~-6#9=(QZG)2Xpc|@C5PyFwv9a##)U8Fwa zYrhN}0kd!=o(GQJI1ARe?W019esI=bTG0YE>HyY4cK?iB#jea2r-3G`L7y3)oO3a( zt7x)c=|T5L=C59~btg;U-8lQQai0*r;O@;Gcz65nG@;9~#$Lw)r+B$lAk}Y_5xa81 z&6$&263u=YgJj+Vl;r5<_WSzw)@I8A!7+&=lwM6fViD~Y_9&J2sSO*J&^PfNU!ZZo z7>$yk=q#uilY)iQ$+XKjGA4stxY$WKIWzOy*!cL{&4%ZIUt=TRN@bw&R(`06h74Oh zmUj4Jl5I1HaD#h$d)p1rfdyIca1(pn`@Mc2wCu%fa1~+!FtK6AVtaY??V$jpgpO$F zv|bB5x@MG+g9aMTK{;F?s5v2RbQSDEl+AG|c!wo76evJA07m=)MiY?N!Rl{bbpgtF zw`B;Exa_LP7bUj4zB5QRS_M97yIYI|yn>=)ANW z2q1)P7|37bgx3ZRxLTvWWE&L>$2A_-g5RPKQu;V~So@@Z#g<2yHItXD$$b^>_L^eQ zff`#GrR+y;7ZB*nOJ1TgCo}jQyCz?0`Go{t){N|QOqQBZ*;Yr9dTo(}6p#nlj`p+L zE>C@t-zH4AsK(GlOJa;E%1g!scqd3NQ#!LQi|5za#kn5cf2ig4yNd42LPT#ioYD#B z1heta6P0=Wl>AOyLk`$#OaVh6lbR&90!SNF4~jq$D7PER6Qq{kfX}%>@n%?K-_&$6usRQXaeG|(H&B<$;*-(dPAHOgU(TY5|y1x zOaDiWst2RG!3({oeJXKFPspHj{dXd{K!X4OGFR;EumbfiQgLx(A;F9Q5xF&yA--^1 zjcD+;b|E6G4^Rr@00)e60}adT>C3&(%S!yP?IwLCcF00aMN#@ zQfy{jOL(Zl6*W6#>xa0kra`jxf{0J1*}g2s;lq%HQ#y7Md^Jk`H?eRM#yePDd2A3$ zHy(phlcx1F_RA0R{oHD=-nqN1*GS%yNJ=0|cCjYUgp7(>B%`MXOGLGfA|Nxb$%6qi zcquL?m2)WsjwGyE^u{rfaH6m9BW`Q=W{*D@pQO!5a$K-WVmb#p{6p|#JeEGaF>9P| z9j3hWwz{J}-g6Y*+@_ea9h?==_bHvBa(|nVW@8*vLQ8uEuQsZZX0Z8XTwKryMsAnn zNRyiRsLC-3Q!v9=xGn1DV9Rwm|Mws9xqh1=)2*uAtpQ!T-|Jr5d%ZlmRWf89+xF3g+v%g#`@@3k#;GNGU9ZeA1|mB3QVC zQJZ$dWt!2g{a2iRzZ=b~szQUR*%J=F+MmC&AE-;GEwI#iBq-hfSm~CI z?+rEiUS35u@W7gqb70&TS-TfI$~fSJ{cTCvy&vVKJ=-;r<%Bfj#==z>@YqA4P#z#@ z@ge}Qno3KDGBPtOBmHfBC znDg^RWgARPDASDJyyoSf_amvN?ptv*b2$18)vAY!YJLw9vv9u$rd8tGqy)}%Q|iBc z^PZKbEeV>hA{cf?vj(fBogPxfOwiKO6}d)41zcrZ6)bM#h8SH4S}a+_v0o1jK7BjV zZzf_RcnD%tK~*^itKMf^MG$l_^^Q}EWpU1;YC47%_#npFJ8ok;v#rQkAPt6}FO8`z zt7sD6OuKT+Wws6F5HH*%R`>|C+%j>10>y|j^oq0aqIBnw+_FerVMdL~1*l_OA4K6w zdN{S88VfjF2oI{Yk2mMPg>&@7;m_S(B0EypTB!LDTqH4sC_cv=Pny50Oo;SsZf!A! zPJU??!t67G@_=~7VMg3f9Y_L0l_}BEv~#C8VdAV(*bN2iAPjPF)C606IoaFZ`8`_) zfaiM6DKtmM5CKby@58VOni(f_&n$d)BIDYw=-@8N(T~)Y#QtMI$OuU#*>VHSPYfJS z>MsjLslkHcI3ycl>>WrOBR4WYf4%PSi)k{zheMDQA+_FAMnu? zCjWcgs({(Q^$IBk;6NQ6EiVhxE!+UFakb{V3N9ru65%A&*3#Mil1aRa6sX-Ts;_r` z$)c~QrBzYyx^LkwEC7T_&>8nIh&fWA2?Ep9kp&=T%yl&19iUfmKbryf`{Z16#<#M? zJ)`2pTgOl^_4lN)Wn*~c!SN%Cun^!eyAI^D+my~nBdOvPTURx}-R1HARWeHT|t5>KA%3KTz0&{MACAMAi{xqChZJd_50 z8Zc|nJA&JGI+c<~8uS0_H*-(Anqg;*q}1o)nm(KE2}J5uqF35hYUSjwe}ymUt#&I& z{?5&<)O|RgUPcI_Z^rfB&DjzhX+QJGt39qMcqI_N8Q-kDfQsEx78-etWp=rQ;o_d` zVv!}rK|?Dj{k_~FUOg?+#V`C6Zb^_8Oc(R~WxuGJQ|9ZBK)K(pQ7CTo$O5cedhdX0 zt(+X*+}zyE{CsNVH*W}|b~D@CMZ)QUV$wH2J2pSMLcV7u96x}PC1?}Khj-uLS4;QC zi@ykC(989$6$XC9bAW&8*y!kQ;n^Nu#Kq7oEPaMGD8wXBlJv_&_!TwDKqY}fr&wc< zy@csvcwiW`a1TessZmH}&2M0E(1T5<8n}7DKdyaLW?eU}1Ddo=1%fxChPb)%Sf==J ztR)OEep1jK99C?lwgh9Oz_1G)NpyT|n9K#)@$35fktl>A& zk==F_k2s36`Z63*x&VQ>$lo4SgVY7cZZU7c!)V@s(>S+qXZ`61&$mw(*w@$V%1gGVSFyqBN1@EFZzXipC(u2%CskcT&OI-^VmxkrA z6>{4Qa~B(WuLvzI4wqH!R<;AP;#CNP^INhohKanb>b{I)w$pLByyCMl;rK4{>t05+ z*~edHClkPuH-6+e<#|0Ha5@gX@jAjXC)e#c;$OM+Ft`&x_K|1DK02#$+5gd{KR9CO zccR2~HIm<@@A28;AyKvC=XiN|4Uth?o@$zbKf|)?qWE4WxkE`=WlJuj9?IU#ch3IK zYOL}Ivw+!<__LF1mb?ePEb)=;w+}K+>@>}%#^j!c$PNdDVnpI!ZBn`b4i`I*l(A(V&B^mU((Cp2kJ z$pr(2FL(6yqJq&AS4iiLHU5K$37>Mdbw9Qsa1j||rH+J{p?kL|7`L0;1@t)#Sv0&t z5|!yiN`jvwRf3ly%JkeP9*ZoI5f#cYC>1V`*L~ylSqv;cHbO*Dsqx0Kn@=EieGf0L zTmgk(vf3>xYAPx!9dI;r#k`|@MD*H<3ZK&A_iey$ z_mp+eXQr062tZY%?H||yezh5hNcc6~E^KVC|-SLUXnuoNq^Fq$oLHJKtPE!t> zbsjgCAS}}iPPL8r9cWxf^F{+Cb~2he;zg>~278-Y`Xyg^Ho#}HRYgPz>BxTr<`Mdiq@ z?M&qbjGm_c{B*F*fFei8!mHTrfpX=W%cu0z)@Td!Lt&HqaAww_Wu-V>pfXYE9Y=54 zuk;H`mcd8;OcRkgvVL!wI-ub?DscaecK$5zNS~iSV2iU^G!m(v#WxxQC1DcQv zpAGE*XT;_o;Lso~~4BFhC?#EX;eB#&dF%-HGiYBbD zj+ddc;DRdBWF2f1zf(Osj2?H+M+xVAN%#xrz#c*olb=o-c0r7PSAhEh@BeQOhfori zpm{=;pdLPpe+3ivw=xWm)dC)v}53xTwzTA5040Elbb>kQ@QP3*XV}!{VeDvt_#JpRi0yU{Tb#{^4q*L4RLp;>rX_po29@ z-AWQ9h+t!DFTes|D@b?WS;2=FNc5GL&8f0?k8r@7Wk-b#j)R{L(g}RRfIB9DsDm>0 zAqnt9lqEjL?Ao#!8w2*xJDDToAC)@2BLu}}kz|e7)@5$v?;gMm*SR@9>BRl447;H( z+_e*W@jYiGsU!n7Y`+a2t=R=KfQU(h@t4Hhv71&;$0Mu(0mz6Q*!uUTM%ccPJ3Np} z5y#bhy8p@JP(V_3*V83Fvxq#9gTdbZ(cxiG6jPQ(#d_`3GRYpd>9ca@;~v!)XO?dn zs^2P)(!46$kA@q+dmnUOjh-w$E@e?oVeZ2A+kbJvoKAXGPdNwOe&Q9&LK!;q97aZV zyy^ceu^&_3AWD&4>vmGvQ5`@^b=LBR^GN>ozJKyST6Vpo5VAzeHakRE6d<5ri0S_s z>7*g>WqrvQ>dGq0VJvT2=}G~JSCO5MCbY2FpEgtr8|`~PBkNS_#sAP8tJ zReu`9mf}ZaaF?2N45F9bLO%Z9JiC$G%51p=81X|)W~WSX*nz^&9Uq3mR*308GV0J| z{B8*mVZuv+f{Uo7=fF^}yn1AdY!|<)qoaW3GCiT1=|`jkyk6|B{e7R*5PZ4oXpf)z z5mKOR$bk0tc~!c@H{-Is!{o#>+fB-D2Ydhuo09TIx}`;_w7x#f#&#BPY71BBwb$2wa`QgL3SV{CRVBs+q zgoh|qwI=;{NwwI+NC{jMa=O8qy;x|}cWmyq1-h*OEXZ5SSW!Sqk@ORKNTBe(_t^KO z_TMU0Vi!DqS@6GkB&GGXDZHo0ba-mY8QzVk&x}t%Ak6<^rTlnAMpD{-Ow=CQmFmg4gL(EL&C8I1i&a89{3uNts$8F)^nk~>M zyBd~#B8wS+MjK*Hbm+&0zh`IDp%D?bz+r$lBO@a-I2a;;SDMOZ@PiW@AkU z1I84Kj-*({`hSHBdhS zW*TQtNy>GaZnT!ozIjAt`8>HWpO2h6v~9k{>N=3H1$wrD84W8_v>Tc21SLh#sTgv6$gg421n`ji8i@C3xmOm0%i~^zZQ30*ASCq*up#wgrqNIJzc>412yL@hLbEazc(x*sLNFJ+&`#b#@MlByV>p_#nlY`1TDlf~;c< z{5#4M7Zfj}x1S0m4+DYSfw;ZJ2<<-vT;yz)>iDGaiZ@fu$_L&w583PuyKkxh`eso( zW7O*^lZnzUApZgxec950k~%Tq2vUJ$M~Q`sF;LU@!s57z($nooObJs!Kf710eT8JJ z9xmcLw=aPpzfA199#d3iX zKmUJq?vkTVC3*)`5tFMavL}lUQ*eC@NY#5RysY!AMvJ~IZbxZ4i2qbnA z*M3e}zx`b$CatX<9pi5VdpKHlVhi{He1WB4nB27I={(hs=s}lfN(^t+sr@IJBV(+7_*^()K1u=jyOP@O1 z^6*veeC7tgf@jGI7!57f;2<;DS&|_Edkf71C|u;WALTZ0eYQ%#UHUn>qv6_ET49e< zTtb}C(Xkn5!07Ai+X^7LcwsAK(F^cIRmz5%;c?Zv+aQ!ZbLz-}FS&o>>T3U>Vq*S6 zL_{oQST~AoGBO^#|NEoTdRRCdF(qL{Ti}!0-|XZo~${m$)EYg#2PIjONy6CGV6&2O`{RCsjlzz7CiuI$VOjZpU2S9&|94x z@OSBRRDJ!b&dbaD71-*u4rZ%%Y5Agl)B1xSw1Dx1sUwN4XM$YTu94 zS4(@fw4O$@yH-nYw|h~1Tmq3!BPf=pvFH{$*x9{Ns!~Ttg(ITCGXUqwS3PZ@>APyF zaLjh)n}YS+Z#=E0FWlwsA1sY8I#s%UJQ(C|-?c5h#C8`uPv{gU17d)}MU1SbmrRE4>Jx-CbwNMwVMO6Ny%6G% zyj?QUS{!P!V-h6F$vjNJ?GCA&V7-UM(tU{3by~X=Twd0n`VUX7f=&jl4`CErhf__NVMK=KH z3J`UYsJgly*n2wVf|>zv`a5erS@E|<`O-#XFR(d@WF^p=t%nx7GR!9lDiQ-^gYgHt zO+`u2tnbZ9c&*F(u1Pf-qFJKiux;$fPjul%j~qdrckj_3ZU^-G%oxfyWS!Gs2ZZV3^y*#V?ZS7NH#S~C>l0CW6&;9{`f3MFafTg<2&buO~yg1X)+wRX@8 zKVJRe5tgxxtl#|^)W6F$Eg{sU!jf%!QjN&=r=%oR&E1`~P2tzCa*Nr-?UANBj7Z`X zfkHx$aiB)KDGKq0;4Q0t<(9a^7a)0L<*by84ZY?W${lNiXARzL6mhoBiry{GE?uq~ z%Y~y>vo*#yc8NWF%(d+m{cN~%*=FdI3r1L{=B#AQsC+zNbv@mFl4DnW$dJ9$nI^X& z*k=!D`?TVe{&{f#>uPy8HF?2}c=Fj>uljTzMtppIZJ#-p-hW`S=+XI)rD^r)_~70U zO9G7r1r*#k*hQiI96q3;@(rF&zf*v}N>9V?3QQh1piRdk zf5?)>#%#Al`P)U;n9 zNg(tS|E&iO1I$U^MlYc){;+m&n9c+1X1jqbjL|iWYn^X0o@{`Ldt{E#crx!ondtZJ z%Um)9x=>q0F@CWC;~Q*e)_FPYun23zb>^2z43$TQYlnku_)}EdLL_MC2zU+Pw?TmK zHO>%jLV@H?_>HsI2wP!ITr&aC+q1>UAaDPnV)vPW7(vFMzs7)}+9`0rO%C_d`o67GF8uDnV+R13PY<0lt>>z*A zW2-q7Sa7NzcVRK`vAKDW>c&@lKcezDrTY_EI*7PmPZ~2n5MyMsIomtxb;WZRbS~Km zG(`mif5FqDRh_yA6vcro{WIwn{OS%D;|eE-3&-mB*)H&0(ex8(m+~byHvA#NU5Fge zqtQ>K4%l@=KzqW~U*wD=6QwW|4uQ}xt#&Ud)TCTsIt>{?1MpxC1fo;GX(|)7?uN^_ zLco!2A(Ta4^SLR8jZxySqJ*l^reaG_=0j=S|^4v_(q zf^&@{$UVCIkQ+UP14*8=RX*Rybg55g->4>HhXi{}(7sTW+3%v)^Y(aG;ruLgp2sPi zXb=qykpj>1b465H>UZgG+rN2J71n8^hoct4Bj)%ffhQN{0Lbf_z|xrrX{@lBS41J8 zq{OAKdAX+$PX8AZOp11_6o}zevAz=S1JzG;O<*v_e3rpDw7jOZYpbg{ZYfNFnDJoC zqhA=1STBfiqYrpWs9Rd0>IVwe%14=A^4XHbDS8P^5*Ma1y0LvJvfOiCU@^3ATjY7Z3OfwSuS{l0}M|Gsa z#eV|yT~O09GKOywCM6~PQge2$6=GnJ$w^Nyjf{>qb2N2wmDp{MFI~!bo2Q9z(cx3If~>tZ*ntEw3|8) zMzYwK5Bn<4EDLfN=yACVw7LThTrTnZ^|iHAbBl|%`UVEPD=RC9v_UTM{(*a8K(;Av z!OF@?jn$|#8)FJq`x%7g0U^v;*UpFITZSix;*JH;z`z`!{Jyaq;rQ=ph+~+J$l!Yo zBcm!HSEQZxDWx<^{IR)=T2O`{LwjmHRcGFs=-n#sD+`&czP*c3t6b*cMQiT`N;com z9C4;M@QRHH4dO7lR?#1q?lNya9Q?GIE49{J835*EJLp%4SoAncH`=-YjYk#-lJZA0 z>$xvDUvVhf#-3Uo2zBcCEnH$W`e)F2{ksNEGLJ+4gbXfRHhk@4xln3no7``^KOwC| zH6$y?8>zx+?!1GM)(`vKN^+VV0Q@x~LhdU zTK^_YQu`@GH%GUKw41DZd-)xVrxB2z*kV)`<9Dc7l>EzRtIJGq#*CEx4#YaNq{5d$ zKFnat>b28oO(#_3BLSiX{(g6IEX={^#1pL~2nU5xN>94PC-f3}R}zNfZ`Rwj^QHI- zx7M^wBY`*p=L z`}W}<%n2A!Hvdx~?J$@)(Wen-D`BUkH>~*MtDX{YyKG@MVJr=#pP0p@K@&XZn1hVL zsiVY9(8<(j*3gg{y^SM3Ofx3>SrZ1Z!LeIJu~}e$y2FtA-w=9H>+@ez9OLO=kNBHc zn1!CYc*QLDzqWOb_QY(KyK&uHHh^2&SZ#Oq zwRdH$f}u)u^1(27UD)!wzxrXesD6nCZAJdk{%pC4TgUj85Dq7R(FB0J8)p42TW#p% zx^m2iyHwpUcUJ>=T@D(K<;1NvWsg3O0BE+lh~M2b{q6phE{_Qimf-Lx47>E-S|b|m zf7jgiaR@8W2$TvUj(QFR{5KJ8w+3d)Pk@uaAy!*t_Hx5)dYKVq@Xfj)WK0Q!4JO>U zA-K|MX4%g!{m(M=hLVv{TToay@5})o9md&b1R*<+4+>hh6omyr3~Ub^Y^>*1u&~JY zQx&`Xi9kd-S*>3uLVSH`nFRzQpZgCPibI{9ZN36rL19G@U@JmgdjaR$lcM#OVphxX zn?WD0w*jb?C1+&?@Br!CI8 zHZFUtD#+Ns@jX|68=6N&(*61K=ijHNry#oLypBF*M8B9mLVk8Oly?E}QTzhj^_ivV z0}8-m(+I7jdEl%( z{rh)9-Y=Fy7O+;G>(fjBLM|j$(;0m2N0_N@E*nIafQUZwudo)PaPJiuT60Z_*8wg? z%I~{8T8vlNJtZ9ja6aU6);v5srFDunyq)`QImDB02AjQlR(5;nFGw1r{Nr_$2?}SY zshj|I@)TbtaF@VXhB@b<p*wmn|*mPE;G#+1)52OM+C^xG@IN1PZ$i zq?(mctssMnaDtLRw8_DBOz_aUxb@S1&&@UcL9)tyXTCdl91%aiFD#cNspc$V)}%!@ zmaM8vwLw*@?X&iBo(p>pe{79UR6{HU>k+g5rqYL>Gre~1gbqp|rC;_tJ!}@;OgsD< zueDjj7(OKhxQcm&StLXUKy;CaCYJi#1`1Hk;L;0}nW>FgcgQ@v@0pa9SH44Z=t5Tq z87qs7k~6P)osEORuoOm+Z5fYYt0H_F!p2DTaC^%2#X!`zfkpNFjXuAi+r`T(XKec~ zcSP?7PWzljPrw%yVytobxy7(d#dV1m*-F;%D%yDu-X+-rv!QM;i zTAPoUPh1~=>l&jz8&!vuGJ!zvO^pU#A2QpUIQe@Yvl;BfSL%(UON>QHm`nIZ&L}QJ ze)XOw(*NF%F*dJN?ZpXncxfy`g5zrK4dtq7ZK~QgSJB;>@?Be!SyozpPm4QbzcnT1 zJ!YY|63@BMB^;*@A6U;`01jh3e>@~_ox~0~`j+bfZqEafj9xf?;a3pU**wj)3o+s2 z0oIkgQ$UKiI4nQ3a6P|#$|5ncE4!o-p|89rY#1TTFUfTXGY^MA(RpRu~ z%T`|)lxC)sx5dyoIAYwSI>}pF!V>a~Si-`J)g>jt@84^wtE&?LD*EJ9ahBE1zs)#c zI04$+e}A4=HWv_@*|%?c-yN%94#PBP+}zw0^qfAIc3fFpVYNoy`$eG0Z8|xPg>qfs zXGI>Ojvg5qi78=jX<1j{ub>dwT386F1pfg@?)T+D&4m^b2}v19&D`9)dPG{su697I zxY*WkWpeuMUlz6Lo_hrIw5AaKGrnZi@7@oR8JM{fuaYh}r*%Fw)?j{17}<+4X)&)N zSv<5Qu7PDEY1uK2;|s_hGAQ*~XOHRjdC3j2)EAEQjA^0Be@u@}NWca0yy)iMBk7TW zupzLrvVQwr_SVHom$D%!m`fj>P=4blm|mKOYF84D54+wJ0VmDXS>gat!6XP9Mwxb% zRuyq?k~-R$2kU~WuGfA!P2x5&(H{)Djxi>b?!zAVth z9pyfU1a9foetA{t?J}6Oqs^O7C7^=Zga%ed{ep%!4o*XZ3Tv_v2<+SyKdn4U$)Vo+!~NED0^n$1?bj?>bDZfXGTGVLt+C(n_rtKfxe>RkL(@BQ-!{b6{#byu zDNnURZnpYeEn#r2Rki*=ZL>Sl-Cg}rDT0r-u$<~|XY8t~U*DFb9}g619sPs@{}A zXJ5@`7&7|;f!XB}lh%&QklvhK=R>X+M8K(hkBK3YNf3 zkMu*0w@L5*Xc!QpRN|eRxu+%M>dqMyp61U)mJNCxj3YB5!Z;^|;8hfBeQH7YR!y-i zlePg4zvPy%nXr+`i+0V^dP}K8{}nQV;@X*H03$VkuIGB5m}{hRK!Po83W4cDUqrBeUx1#|0r^494Xm8C z3qP~(7@lFxUP4F~bU?2WbPNrW!Uh7DaUlXwU}p3yOHMjEC*xif4urq_6LZ@I4#L;% z6z8H3(jkvKO3I}R*=(pW@Jt1zNBb}xXEd+;75Q<@dZ4Aa6<%nP8iJ`hwe;DMm2^lpXuUAbznVM482hj^!^5a&10tC5$BHk93UstCE#F$6x zBmHAHwbj<*?W7?!Af)$ri}i#eV-sw1E0PZt7Ma{$KB|9tksT02{DX?|s6%Wop*e*3 zz=f{*0c+2!rHTZWr$@?@>AZ&Udf1lgMt+Cy@?_W+_hWK%Qov9C%fL$S8S1(hYwD>; zAD=r6`oE)$aD1&9n_Y|q1L@H$$c(^(o)<{&Ne9+Vao-c}!jK<Qmw0

    1d92n(IpBaJ%z$!?WjcKBEW@)n1auOHoTnjEn1nl`H_5vyUYcI z2#@JY9;o&VTe65roS1HcJuW%cq&8$TMw;Oae~F#xbMjy88O*Cuhpi4*+O;*?TQF%}ZdXaWr%!2QZ5qtVegPCRa`TcREY;3PM?(!<+r zXToH-YS|GIw(;N3M~47HY`g{>^=FsZ`=6giJzn%CeWNX68wN1X6--vszF>El2pSJB z`Q86EYoY21E}aS=jtA)ZG4Y*tef4`lT9L}Xd*S7X!N}Rckp%H9a6_D2&Dh4TY>q84 z_4~M5viy-8iOE0vD1Yf`dafGYuDp{tM_y}zp0JgM)uO=hT{S4BU42wGc$fcy?Qo1c z;4qVMP?fvH{`axhc!*V;5ey$7Xk3t@prXZb0cLU1cV+fsx&OSEskwk$4qYI!jcE1I z?xFKP>_lh(+ZS;g+=hp*IFbO93Y5MvakmU)+&h4IPFE!W3hRwkT4Nwm0IHXklS7`S zLT_(x@XG4y0?=yM!Fofnt*F>II8G}(lVRU{_Lctewif<)MURY(eD3JzW##4lva@pu z<*84Uj0DKT4nV>#yY8`h4{|OR3{5jZ6W!qd`WC=_q>Z77iVNA5HG74~(r}Z?Ai4+` zpX1-XV-re6NazQ?hVB)_+bv{yVv{H6dp$oU3)yRxaFd|*I}j2RzvJ#GE|%*Az`hH> zo$EEbUe%r@9pVjWdHyA^--zA^qNLeCM3A(EroL%e{nr(POnJp_{-;5wJVhX3iD&4G zaS4U!%bO(UCu+{PRzfG1=HSXborW;qDE?1oGjizA4VfUO45$MCk-qr7K2%>z<2$ka z`U^tZk?O)MU!|r`@)y{K#vRd_QP(wD!j?Q7=$gDD9xL@fRN35cCT^xq>l&Ko+!BDh z4TwBbK2yEl39vht0fH!6qXS~zr?7E0L=fKbUW-`lTGV@Co0Nf|JpbQL= z;r&<(6g)21oqB?Uv&fbb8eGs*K-+!8ikhLuj^m8k5sA{;r>`qzkn~%*ae>?W=CC!n z3z40V&aGt)Zq4=eJYRyDek}%Y!GCmg(XQ5E@f^eh!d;DI=M_byMkCgGCoy@>ewzi& z*A772M9jspjh8H=wxQY3yPm_0;x+RuyE^wWzj(U2m%3;*JTL?i6q#@<6{Ygxpoy59qE#p3 z!;cd9ClDcsw&(TyU?Z|(T83h|VI2DsavV+^E_81z4J?&gQ$S>nyiJ{l#0WRVq~ssZ zq_EQOTfU@R?e`iwUfl`j3}@1SM~#1F`kXIq6)jNy5VIC_t);QeoYgL~uZFC0(Geom z30Ob5%q{6nn9nJ%LvkK6-?sf^<~-hg-t;*yIX*vsq>->Zzo!8ZaR{(TBbUwz+AgU; zd{6%;3`_w#Nwf+a5F`-I^k70@&gJRyWw=EwUEmkpjrU6=XZvUC_bJtLon}wzV8$S~ z%Pg9w&?SaN_vgND`up=>@Q~ehhLY!+7s=U?C(Va6;~nZp6NA*xIdh9yI_Kt-nQ=R-rfJ!p5OE-;+vZ5ns_ZxNz^`4+oO`6q#8gYo(!Y&j9rnk=Mg)irkr%m{t%EZl1Y#Ghk>Xm*O;;x{# zwa#oZLbtc^lq4n52q`l9!q)Ti`PiVf7JZVZF9Gmjz;rw#lnzLDQBu&5Qd0VL3B!kk zE_a_m{c3Iqs6{aUd|`7p_~U6y_O3r|ZoxfK^84Lr@Y#@q4eS)S8sfJg)a3s0{I?E*Xw21zOYuWb%&GRnww2xB zl9Cd11z=B23c|OOXkb{;rl#-&*-j5lRri8Qz=u;eE<>VZjb4euTh8c8kKrVIp1j%Ol{u;uLV_3~0&Rq50%<^^}+K*~E*Xf7C>wI=s;nO9ZIoSc#r(&i< zCKjG}{?u=uHL4E8PkiveN{Ana$j40uGKB)dF}h+i;w~!;32iiKr^;7U$cj#q(>4{V zN?ots#_&CgJP_R(oEN+|+tNeDV_*oPkNFca-94AN{DM~?FKO3=_-7UqXcx6P(UEC( z-yz9nkkjx-mfF~H$FOD5%kM3SpF)gC0e;JQjKkS<12|CT-4l772_82^nvF^66%vTo zkOT;`SZY_mByMzlK`5lsszlm{58bP24}F(q7q+==yyX_R#06oD*~W7_c*CU+IWWRd zCS3H?@)$toyrk#vc~R{)?l;i2LvYElBKu7?<9jD$fnB9>gKn3JE{ipvXw# zz>hA^=R*%Jlq9)$f>g#B_x^l#Trh}VKP4>~m!z6O^Xd-1$r$}qt_ZzY6wLn)iwvjuon6@jH%2OTQoF9h4qN2s3|Tq#g_JV zf?wBvg{`J%3s(Z%R#y}s-E zsv-wLjATn;3aJVpAI~o^HDIiuoP=IWwfmLMJHm_tT6=ShjUmHRFVpGiXIYtw($Fy| zO3NI?_yo>!}l=M&>)$X$uKc6@PZ%{B@AX*QR_s7WWl@&t-bI2(X-bgEnXq^b>%IBO< zVdZ0`v)a})n;&LISSqF_CMuW4#>$sAH@gJ{1zQAOy{Z!s7tdZDB2C~5e?}S zf2=0akQ%OS%djNJ{=?Vka*DS!aJt^^MM+poX=pBGOo4Gk{O)1Ur}6BMeRX^uEYgi+ zlI+3PY|rnQqjtYP)uNk2`?_*y{vNLf-zL_`eZbtGY(tsi=FfC^=RvFB{H#}cIzLUp z!?p9CPKr`JkZV1%_dJ8}NdkC@N(eC1_BOoDCy^$w*WL5>e(Aw8p}h8O5==I+DWf`!9WucvwexmLr#tw@gB`O9ghq^r}U41lBe!9Vjw*#Tl8K z0&3SI^le#o$1rAv^xvgZ8TEjuiB2!hgdMNa0zZxvEc&X)K&smh{0dDUqDf<@52*#u z*z4>iwZ>Tu4~lN2~3_qs#kP`wj06IP%2- zG6;g122Lw(-nxk1DS;I_q$P48wlq_{RQPio(!tTZKK@b^4oF%#e6xQfMHf zMuU!R6GEa!l`RZk02sPiJt;~l)Y%G~yO(G^cJ(jV`;eK?=}EW)f0BF|&~(Ndu^Ig> z`(m>M-buuIQ~7Sc6>`HJw{|FMwWY+jEasNai19~DPpk37M^y@6!_Dn?7{v+IM?|JU z#S--#el#U(YeHksID9h~a#SVX^0j!=D7f~YcMT|=_(!tUOn0*stYBUtv4~>p@M$BV zZC*Zs;El=n*;3l5Vj?+Z6T0n(=q6ZuuHUqp-OGm6r7{S>ah{y?r|ia~&Q?-X3`@>2 zs}9De;HS)WUM(!>=R;F^%{1o|`-QjqMLcoU%Y0c1W&4rTcZO|^m-rlXMd$~J2gnDg z2k3CLNhMrfx1I)LyFg z=W&2p&c*x7c&LjjzU+Q@HIXIKEFma(8_e&301N4&-C(ff?^m(MD~Dh1DT-RTgbeaym$qahFcSgoMuid#r~jnM(-*njX$Wy^UYoU zrEa71(SUoM-@OO0Q!++2hwK&vM*diuTnfVH`}eG+P?dOaL0#R>C#+W;e7;pJ#D%qB zHT-5^jlb&F`KxO-{Ug^j`VEHZ5J_)0Y~632;nz#xHbbJ?$#8LXeLyn%0d1lR|2}!w zfjzf5ie!dH>p8xQ@}dz9M6Yt>6BJNnAB4rr(2(**)_pp&rIJ^|i=@r?a z!&0#R>+iS(+1Cs&ZdCI3uQ#k)XVu-~;g@kgK44945niHA?d{0wYoW;&>1g?0(+0}i zgOM45I)qN%OT7w0ot73@Vq@f{)Q1d3SrJc%>h2hmw#&y1n)D^thr#{6waQcEwlJEb z33hRD-tBCBR z`t1}zmWc4s)(==>wBQKjN5~|l0fmGn13&Ih{KfZ)nPpS4Y=(Wep2|s0vl(ZVxvV_I zGgm@mKRXAS8ir@XI4J$d@PDH!6~h3YX!Z7m8iwNe_;pqe7h{mm&L4;(rY<2(T)#fE z`=j!~tHrTTJS|hZ*>e?Z_Y}#%dnbj$M5W75Lm{8xn)MQGjCM1E1HIo(&Js<8nrXi> zFJ|^nvR-`{RoS@{*ptoJjZ%lHXRLF*<5AUjvy-c8h=1*g(*nJ8OicV9Df~+)V{mZr z-Gx8_@Ya!I8c*b2sI3FM)9f0SCx(Ie+Xzv9n^jjOOZdK|F(1Uf=WM9p{K&s=$S3tK z;RwR0sdtz=>~U2DWAOcE>jYxLCxMAU%vt< zJ$-CqQZ)2sH4ulnWKYS&2z3Rr%0IomGEAgV9YHVpDeJ8v^%LQc0ArD8HXndDhvVuLL0^}|Js8DY!#5mXuWmzT|A7BiBKFa3mQG`t5j&^=H2*H`1ln+oB5sv>Y zNFSd3t*+z|eUKDQc6nnJ7}|lpZA&R??M+^4F=Yt1KF{ zj|e|=eNWBOY?|{63yd^HX8yIxf9Of@GD>T=e-WVpLvO&%td`O^-1;)+YnDnZY-;B zSxBk}@A_?C!zfSUI)et~{C?;WM@?VSSW7N8h12-?IMhfU7-@lbV#Ei#X%ZaS@ogfm{Z@7$C#;SI!zZ$zmh1Pf_5p z?t3?v5s$K+Vg{~;{Y=?qJ5qLc_5i#|{!z^w$|M5LvWF8u!mpaEwE?Ig^D2Svfo zioY`DyE&+qHdhiS`uRO+xtEx#k$COO07)aY6{+NV1tnNkTh`-Ce(2*ZdI z-QQywuvD{T9Isnz`x*|0_rR=Wda?W|5%;gcQQN=UX|EFP1ASqSkE-7rcNFPg3zTz@UtAMXVN=xU+u|=NN zl!3oKHSsbX+W0m0)!34o?gxu?kL>Nz*kvvh1=1lWV;oNWkckd{kpe>m*|hXZVQL=D zk4GF}{roy-2@*eWMGu(d z=@Ny>O;*OJG`M3Hd#_yiqzKpxlzRH+u{$9PGas*$a+$+{i72ZlwW zZd}Qw6(mPP9yOies`6f|%P4jo@e?g((N9%wW5N?lkSa8f39TwTw;9V7pAL>Iud%APxYh(nRo9l2Ppn@{@3o?PG)kWDHWC+YyvTt=p!f8=i9R_w>FnjCmUYD|&wUXU-P@AZ$;t5)i_rj#r84i{ zySvvqBCW9lAu(-B6$W!w$FG26;rEQh#9rCQ!?fj%p8j5pavl-RDh}~k7rhrJ3t{`+ zCQsk|KlcBKRtr+}dwWXlP!S%;Ku=FUZ-$dO@4#PKY;P zVg-|u!qs){hTd{PINHB_Ka)5SjiF{p=7xIS&>+r)f(7& z>ITwZ!9oLRK|;$P_mliSfQ4iT6RoU2y2n{6vBs6+!xZ@_PPrW%H{GM&+ zk0k}?n>Fsvd;tyM9dLp)a@Os4{@KAVs z;HrY}824qVi1hWs`tFanHad6Q6S}8FE-D%7+8YK6a~no-^(3pay+mr1V%E*Vp~k+u z!z`j9QUuYg{Pp3pQLDFiP@O6Quwt%)cc-8tCcmkS)26Dnhy&5Wbh5h+ua`4Y=Zvme zbz^d!sWWGu-V)&)yQ=KfJFC3;*s^elcPaH~$@9YAZ1lqSD=ArKF}*~kDPqPMp6|6+ zuN@E{+3C`HcXLX*3NuP2{xa90`eabwcv?KZ=t;>&eOK^|@jIWT;PJ!v60N?UUn)rN zT>K$oddX5#pNr=3&VMZ*`4Yg?vg{ zd{b~C*^94brTOknq@qIa_wQfM1v-I=V({M{+9RVFUgzSZkC8#fJGZQ=}^kf zgvCL(gRrb4MMFa?8F@sQ9AT(9g(Nup+-vf4LC_^VlUPC9jls@aagC{^ROlndGp1nW z%lt5^0Zc>%`%t(1Op1R;BQUAOnopOg;s3M+6RMCKqcsBf*?Qhuw5RxaAUfCa?K+L! zdYj+;M%U-C04v`h_|)LDK>vZ((#rrb2Zj7U)#@58jvyo?ri5ls(iaAGnFajCYFSEi zCF&(#cx-2nzt`Juba-JZa+r3cZ3H~~0U2IG2KxGehG!uKi0B^-VGtxyI?Y0&Sz^Zt zFo8Y``nk`|>Hdd!fH+3h{|@zYWK>jC_RfwaQM!Vv>b_+FfIo7Pd2d`DAoUHY`D!tm z{rAn)syh7J?=sE5CDxzU7tTn{JZFRiTc;-G4j?_KEpoT__czE$NPoh^!dxqmCkZA= zCNlt+l(?&Dm`^CbDZ)wMHLM*~01r*USR^5ol_U~JTy%!2{`z>p_3UH5zUKR24(;Yd zo7Y&C=VRtvy|XW4zo8xh9Rk*@kPJu{mn#%R2ND(>(n(PEC2D1UJ@>1h{GDLTw z=qlaAo57uPo#=AF6^ZH8?2*fMc*^7#3?sEVUzT{Xq2HUY)8$BV?4)zpQU_%4ff;Cd z=nVQR=*F(7tc$Ls3CHH8R@`}itP7GqD=LeI>^%7YmB-nQ=Xy#8hE`pQPzQ|&~tYu2Vo2k zW(qGKGkA~@u^{GnGXzP6U67p84hKy^ji%~96wI=-3RY>5@nqO_P_-YIPtN?R!x`y* z&l2|8Q_FgRGpck|-W3aFULV`zi=Bk)h)pjgZ(ig9DW@RacH|g}943-Hyg_b=Y(WfC zqhhy<_OARf*{Vej!5$mLI4Z$Vep%nZ=p~~1#YNqvLoB{{+*pR^N0r7YlSjkyXcz~T z@3INXZh@IKzest%?UJV9h~a4YM(>im`@Lj1BfL6f{rL~7A}R{nc+60mcu9e){@GyR zTR7j}xk9<&c;By zKTj8Ob<(HK7JjwiWt|LWW-^*9d@quoT##hE$e zb)dpn#*M~ATS(b1=4pLP>g$haXvzw)niEEGiKTWjUpqP;dSf4+{@tq>JFK}DzTxA~ zGX3A3X{QX}l#={Zn7R|1j?Uw}dKbeo^h0F?d-pb$Y(Mgt?ORQMx)bM9p9zGv=b;fv z3wiXwEyOL)Q9Kc9EDJR$imKI%Xl*btu+<9B&tLyzFx}pYM#ZQwh_vgJMfX4a{rz3m zawL%nFdx4%thGb}i06rojeOr%R$g_Q>gjocdFEqng(yhQ8>T~r{6ieu0B$N%5e|>T zg(CtfLF|*&@c16Dp}+DX5noR2XtePt1_MJ&4bJcr(>^Hl8qbF>%I13=jF=wWoj$oX z|9vSgnW}hXFRQ^>d9FG$U8U+dEOt21Tlx}sHyiRcg#t)?EU6V&S)v=1H>V9b-epMCA5v*(% zriWjtPc%IAG8a{330EA4UCccW4-#X(6jAfuBNjDcvIsbx^XW<-QRam)n17DdM{bda zcZAPYMK}fyG^X*fg3v10uVPUZVu;gP@OcJg>0V<#MN_fzt4?ueYI$cBKTqxnWAl-kb$mwwYH2F5 z-jv!`pB@U{K}B0%lMzrr3#_R&hq#az8)yo{C&Jb6m%P`)Jz}PNUz1J^ET5mQ7@~m{ zuyB&?W<&6?qJH_>YsCtvmR%Jp+Pvj09S&pOugX_6z!ui0ABkcfFq$n~CgNp%)2aqy z#82KVTAnV%^hr;ypT$l5dO0tNukYEn09J%OLsfHcD}G#P4)ceKE=VFqf zUrm*NDeL=cbEKfY*iGW&^h=!a`Kv?>gjQSZQ*Ik?XKt@q#CSD9eP!bC z{rzWv-!3tc-1Rv817Ope0gl=^OCApgVPKf_P{&PalSfinTie8Iv-VH?Y8heUa^{0{&2?Ts#-Kb;2SW!_i zJUAFmhvwr0Fit{3>bi2Ds;a7}wFiWE>HnJdAfg9C(t0=?2vP7Z=q!ao$NrfI+5vF) z?E1`1o)iHb_O-Nh`$HUHeb@lDxEpJ0#vaNb(tn5cT$qZAip%TQuU+&%d~ktT_adDw zKZrLc--(xutCCP*h#xkyKi~dhOH9e4Ywz%T#4bI0Srr9bBG6RN+{ZJLcruq28Dk<#V!;yUNK#Xxnxp$ZD4 zLZv`>!lY6tQe1}#o05`Y6hzMXTlo`&S{-3hN=;gJKl#zwS0{U8_P#Nu_IaM0q}EYa z5FBB1EayUqmieU#M}aZ}(D1T;hk{s+^GApI{dm5oW|A%)tykW?4^Xs{ck%HN5ot|x z`-}^pm63M^cqWxgq=|uCr?$j=hii-;hZPT+3PTu{;}y|R)`HE!2X|ut%Ds2tX6Udh z$4=QnhFxPsrBp7;@COE?M*y4Vm0}{@hT6b?@I9T7C64A;d|7xx>*%Og$3#Gi>x#6d z(SkK`|FO;}Yp`A9tQ%QZ=SPxHZW2@Ew;6rRt@GI#yea$Lft8WJYn>GkQBil3=^c&vA#L#f}6QR&TCIt-&I~F4t)?0UlX&^K> zcf|8~mcnJKh?NJo@j`sU&|LO+s?e;Kqd=W05sbZ)-fImrVx;JN@73w=pG=OdfXpR@ z&5CaD8?cUW=jm@3f3rjh!>72pF`Y{YC8cS2iw~5mv_RJYIpvg4P@x=1>Gp^gSx_A0 z5QrcXhN8;mUZ5Dp$;+yK#sO}Qcx{xP>{Q?u-}8LomY#)OJj@4HoVTNkEJsPcbu>lX zq+v+Dx3)B8ut{EGSAC?of4)Hi*O z1w<)KfO<%PrS$OX4U^bU7x`yw6WJ-5%3@oBj>9nC0B=^2P*Yaak|iap!`Mr~bmJ75 zi!RGdGP!Ky2yYRmtP*=B!T#FT|CY8+EnG=;V#IhsZw6*&<^QIo0*@ph9Zt>Yh`)BM z5A=2WCSKF)uOS<|qm>TZ&57!>pX+>r%#cffyk?v!Wg{MWdWGm&v9^;FHWQ#Rm6Jo- z|FOts^_{$|!gxpnIUC0zMFNNfwEQj!fiPOw+Ll1@^X-_U>`F^Z{ov%JWoeGsX}CO_ z+ZsXN&!DJL`q)#9U)W6wGta zb33{|Qbsn`$Iagd`f3InU58&UAEh6!z3%U+>O}7KiYvQY*lM@)wVe!d++;j9eV_t+kWI%u&;g zn4j*!J0{07n&iYnHkWyW(JsP8n1@178a^F@iz)p2ICpq7%a~U>TkH)*!H2=J)ghkv zMk!5Ig?k^4F|DqT?&c=?EQ_%Q|I&>D3hhU`Fere_E=j8KC@FGZRjQOUHr z=4WlhCywNPpH3ZB`F#$+u;#ZZ1M}?1JSGrOE5H?nu{&v~`cf6rWM-VeP8^cVZd4y) zhG?ZL%<=IzMf2=l%-^flEs;T@#K4UHtCX=};4}W-9u80LcX%2J<}i$CWZ7=(za8Cv{FUIV=qi5x$eS{~?Z;EDp^jVG{{N0)=Q+?5*$eK!1b&)&PnqX6DQSrz?*Y$-pk%_u4UWzr5 zmP#tP)q4N4r0&Lu^*)}mZaKp+fQH^i0mGJm(V+q^H}(%%%5sQj1PFNkt{v6Ow#OoI z-&jPo!{~8~@X9D(qWd3{<{>elr?dXs6pt=y0>Y)H={&9vQ)$5~GTqA!Sq09y8_bCC^{H^`ENq#f6 zXdxfB*tWF%V|>A?(A|3C^l4$$h!5C=n-j9{F#+1kFHvqpm}_MqVV_Vq7$ChtExEX) zTI6y~KusXHq|X3ffJ_h;i~9`uF4=FJEk@T=VwsA({iMy^ZokohM`)|WGuwo(3)zIJ zlQc%Ei0f;D%m`3=D+=?^EXGkNb%M-=;i%rAoH2rqGtD_)?VD9Jha=%WH4chv5O(|Z zIwK|^V`9#WIRR~R5pVg6`>D46E1=ZfdG0CGa_}Al2sb5&4!0Z(rJs|$2>=n^iixAV z<_0C6x0cZhgi?=TGT-DfqQ^`YK=;3}8+c9j*6Y~Mar&ofnJ|I$S(iww0QrSN?CT>B zKdJKdHK3~ls2C*s?ZjwGG39IPC>~8UHBg{z(rN7ICFPW4yzPp7s{4Ta;=5MW6ZJg` zE+i20Cdje-cM8pO!fD4D_0zGv07lYL)@r77PWwG)+sUNJ;o{V~8iq&|mUsa7c-Xg( zQ|pgNcfCv9uX;MA4sUqON<_NfpC!P;{%xKpk`vmzuR0+#?_AL|3IsIFlm8n8;gV=; zwyrO6-{P-k`c3p=?dK`_c5}v!6}2`h^YXx<@alj}}h~uqd!+7b|Hl>#g6vpUq7OO(-vCUzndahUIy*^n|(wk%UPQ zdTAys4FVe=wDAgl!07z}d%WKi$e8%WpNGV96-OX8Ffc$V_9-c;PeW2pPR_-_fh`32 zUqBRf|KQ*|Yb0~Tem#&1Dh7s?0=Nc}i-ZaaNyzCAs5Uc)SG$-WB5eldnwm*Sgi|(L z>ZJxXY!V#d<03YNoLICki(ez$hdlN^SxD4&FS{H|#32lY?Dk%43pSdE!v8B`c(vrk zTd0|4z{a@&VFlsD5)-(SQ~(uhR0#nDxrtyIqHXevL z{8%a$xC%T2cN#J7J6&7w z@hg#$rk&#!LQKE%IMWJer&I7WVj8ey0u*iS@svWnOC^C!Tcq?=BNu^8G50C2IImD) zfLX4E1eEFa&b46W56a)L8l74RKfZ^IU33LhvExTaWONV?h_naOeDhodnO0*9flL%5Vjcy*oYX4c1H~h9spJs6aH?-~r;n{0XR2#EpCTR>A=sgELZ-WNn zq_pof6Bopl9K=vJDzeN68E_Fq&P7F4{yVzphdhZl2=9llF)-4)V)f!1mOqLeT-EfG zHLc1^z;bXkDFYp5qgImrb*4`74}CV2%-$>6(XY<(5KwUIE=;HqZ0w`3Hdr>JtA4$p z9Mzw^30{nU-He9JB0TwZD-@o|757VHJ8}j@$N*xkBF6$t+XY2P=ArVKBeu&`NH}ki z2YEy~2+MW3myDGDsJ{qeh=HNKV60`dXYXvZ=Ii8l=PY{u=^D}phh_MPwM zr!%HN#;sR-6rToef?LMPJ-&~W9ctY9v7`u`ZM)*V#eV@$!X>`*X?L%skc-1#+F33^ zVnP&L05o}L2n#1P)2pgQm+Lw6!zN7Re}G773Xl-UBd{LPQV;|Kg$7z7=Ar^34iFm0 z$NlPe3c)5h+K)mz6C%7>LwJI-Jw+IxvdP#V3|-BTy2RYjc{?J!42MP4ot_{BvCFIo zK!&CRkRTohsa`;#uY>XRK*=8#r-Hztz#@tJ@87!J975a_m)oVVKZQw>Sj&VGhnwIA&dU9;P8i$OOaW}otfzrdu=u|7|Hi$N!xVK z=EqZkY#A(d7Eq2;;n+hhfs`((F(=YCO z^3*?YMG$U{>#iJ8W?+((o12@uw6wIkvvVc7dU8ri?QahR1JnqADAdygDzq*zGb-= zspgtMxKgB)xUXMj2N(@^cVeH~_2bjFqnuIGAh==Z8qoVtzdrGN!IEGC%GKIWyTV)i zU|USEDhP9Cz%BWc--=w_3ksi@c*ljGPqS@{rp8k(abN+kQ?ENlGl^hl1Sut6kkzjh zO4Xd%Yj&H8R$366%u8@0jF5o-3o(lR%+wA|7A{PxMRDAt(Z&-=knKZQ;RWW_bf{(2 z z+Cl(pg8E?=q>G~wfdV0WC``IT;2}3QpI5ELYaU{I-LG~bTodX zb4MDzY*`s^#V4XAz;2Bhvj;79Hv~xsB8|Opz{1sZn3&Oj8PjQ z7U+pBO0dYy;@iu5*4)Ld7AcSOU;=FmKNcPKDZ`dj5DjoyN;;Ea zgmRx=-rStg+*%3%&;4hzmbThIb}Cq<2&a1vsDMDh6eC{Rnh z#1s`31<+3XKsQFBCC<91eZ`gnp-oS}1R8c(aAMIDm#?S$lI!{bcIyr+Bco#LbBU&k z3O^GQ(K~AZ=#3>0@RAy|ollsl``~6PHQRyj;)TcWKh|PSB`@1v_=0qFn}86kj|K`- zG_*Iq7$$%ZC>-5-(y4i>aM)N(TU3uXI#&VKdjW*wWU11~7NpM0&wo9?v{Vj~ z)zKl6_XNp7U%WUWqD9)_0I>tP5pS`3zex2ENh@-&cd>&|QI7yt!+*7+MgkJi<8K+z zsDT)VGQ>p5fCv-{k}5pGmx2<4>h!u+jPOuI#wt#YUP{Iw$lXTYQ2S%L_z{hx>nNKW z%L|-gAa~*rjMndX2#T}}N7$+e)W_PU1Pem`r$)eI0*yj~!rG9drXhI9piqxDHC@9@ zp}iCE!pAuMc*DaPVxKGAFc6e9TjN?2L+xuE!G6{;zbo25H!D_yaIM_ID?Af94>F^X zCI=_7<2aoh%{LR_rp8C092vlkZ4*=3;y(mY#zfKYYXi#XOGqLNGpVSEX`((|KE6e) zm$pwv5`UVZD?YJ6Ua<8S9a<0KwxZ23J{SfH+2>5ZYFqIYC)G)1d zPnJrwNpOx3>K=VkBOPAn43roZbd1XRT5Mo z%*lkC_tNGU{NnY}rOewJeI(3t&6o}*K#n8uUVa;R)XxP*M~IL@&`JwtMGj#b)c(=r z2$Hmep}GM_Mf&hi`k2!sG;gln_ESQkrA(b{GH*_Gny?wsprf3f&g}Jww|DD?01DFA$qes z-^vfa;Id>%6;&C9RalB)v7St7-Sub(#jVjiQJGKqh1^Fb#K+#91svUDr}kamW*7AD;-^cptULWL)K4GFOeULeXMczvJa}wpsr2LyWzW!;KU=r}eNjh8N zqC*S#J>p4^pG@i*78(k;$vQgy02JUCNwh%pK%B0pVRg9&6JSN{wvTT*v^(~O%vZcX zG)Vk;-^YGrF$#F_AMUfy{FB~xAN_8a9&X(^cquk<1lU^V^)ajguOW@&ER!!h_UCwLS<`1QQ7TF;;5g&`r@qEvzeNXI^qU6=qv0m0FrM~#@1UJvdv z4e+1*-{A6sFlcvHSZ=Gu^+6EFa0xY&C9^tj3ze+e^^Y|Eie*zEBmarW_g$?`F=mBc zwlmxpIIL}m3W(N+AT+-YWOEP<{CSOG@m&RSJ{#s1Di4pp?2H2lH!p~GJ~*Y=&Zg`G zUovKwNMe4%o8k%(i;OW!I{?ke|A5i{hSm^~lOWq(^|%83F*e0@!TNLiM=NDHoQf+A zmHjyJ7_^or*9nBc-aoO9Mm_iuMr52E+>|iLbEJRRg$&u${bvKtf}t#$l2rtk91R$x zP3Z7V`oYg(Jfdtm);*e7j=x&Ss9G3CLd3bb9wG>MDb8)Ak-t2s2sO%4pR0E^skXjf zfKW6*2tbmP28bW@o|YC}kOwsZf=3J@Y=9vpXLg6%en+sLMu&&!4(9BN+*SqBAcDXa zMv%}R@h#HtbW$`~-(ZNj3E|2b3SMK`%0R`{J0rEglshzLP~#yD3Z^mLz(JQc4jGUr zoso6TooEDR3Wh_TW6nHd`4)fBRxZxY9c)u}EjD5|Pz0UcN>@%V(fKKF3|Yk(!qPTE zwgrT6p;tTv(wBRfL0EX<*)1qvLRrRpynytfR-eQRu_4e`u2k-RF8nVB2k=ub<};tc z8*v7x)KOQckNHD-0pTn>rsK+$yy-JWj0QOJts&*Q+}x(w#3|lCecapuM~UZw(aiBc z6R*n`hQ`?Gu<9duiTvWv%-R+(NIU+%j!QA%KD9AkAKPVZKZ7oTx9GV29lq7&4NgP` zj>aqrrMu%`DG_G)(Ogd{*m{fG5gmn@v&7Z;v-ZZC#$D&??RNZZlri)Er)pQg+Vk$q z`1$SXjU1|@Qt`Zdd5rmDhLqiX11+FK8Ez~Q&`K8nR55p?=wH@y}AQyMe2n8~W-k;4^V(h>B7dxPPnq zmqJ4h_=cq=As(LVOiN#DyN{B_&Z`joslP{-0;kWbRt3mRKdL86jNW#~c3tk$ko!Ij zd1(uAB0N)LLobF}T`syFhQ{O`eP;%>+IFKo=PFis|E*pypg~fEmzzvb?%?tE;_|+? zC--6gd)s)u{MY}FrK@nHvw!>N9Nl#$kM8NN>1JwTOm~ejQ&UHG+w|lxZMr*#sp-z? zHXZNnd4K){T;Kb;K6!fDn3QSwJpjMq>sa0YQ(LdxHi(<~KZ)H;HUQ-cYGNw>-*TYD z#D!A$&d!ZV83w~9L`P5Gzn5tlE=fj5F92mAjM7FPR=hFuW1<8Gr2Rd*1>~drAH?!s z>GxoxDN8(actC3WKDny@k`~?v!LcBwJun2W96*?X8$&=-ERCUtx{U@_?^vhcsn>{G z{Ar2N%nN!AH%G8?m1fedtFJFn4+gQ+*xA}@Sl*{zW4FcrGx0H7n#HaQJv6(U#W}#a zR0iR7F-u{{hB0BSJ>z)Kytk9D)3*=|d4;R6k`+bBVYrmgyyxMOW-B&d9*5CvlFw@v z8he{mcYM9;0&Xg2X0tq91O;AhXm*o)()+1iyB+JxTtOtkE|{_+fX&<=9$0557s`~1IPz1 zgbhd^*x(NGwd0=y`d3cmj1U9`R8*|}pz~q*ez83_cDFXC*cH(Yh~y%P6VVdP`#gK- ze)0HfbCX}U-a%pf*RCFdPHq=zxDXo3$n{YT^p z#?9o3s!F6p-#assUiWJB@{@nB3^Cs{c8^%J7h@>gb9q}TS~ev19jQ~B*R_qjmCuDs zCF?=#cZRiOHR1eN%N4n8PB0H!tutfRoO1t#z+{2=Q?y;F0duhXLh+Fx2PpIjRd>tT$IO6T=IMo>nILN(B*lFuN}T}x}Dp;b2r?4`|o#J$0O|} zfzJz{%gmpMX-3c?AJ31fDRcX)SG)e0XEc2%&Q4(`{zD}4A8M3=N8#e7{jAxg&pSy; z|ER^d?4BNG1_mn-)7oAWAZY^*3y-dk*xe}NK1W%=qi}Le`E=)OG&=j8#Ehs5XD61q6ntJ=dd*J!uH7#Y90y=7#WeSEfnJ{Cx z+2CNY)?=kz_RpXE#XsgGR8$szlsO2*>ZkLQbBE1?#;Cuc)R?Dm(dB4Mcgwk1l3{a# z)o-4W7+Pjb9HM9XkXS@D`-E{7O^^-5E>BCQui!Z7nGO_Ur-8yFMv$vpAv29 zyIa#G5X}1U=a(>3C8Oji z?klV3`9Q(UPEyb`L|$sEIS491sn53_aD(Ns1nr4I1d6qrFk{6_68(WXyNkKQoEOcv ztHKBa=u|KIFru*F^r{(xri5QP=`~N~h#60O9z1?+D6NO|EN9U_l=`(~(D?426SKKG z=T#tjo2v_i%ZjmY62=WwPf4#wGQBK|NH|YtE-4N4M_@N86PLldg?WBET=>UT>+aJ9 zMB@M@?iv_bc^&j1bU0EU2>5-0XeM_InGs)8!_mRosFhM-;7G}QLmhA9Qnk`{Im*P& za$*J(;21~=qzTdw65^E7AK-aAoaodOjiwB+-x7XOl-;#&R-A({B<2NUq7vMc2KA-6 zNTv?1bCDQykgXF8KcdVfWj4|vxgktlB$)rRhRv;MyGGrY;ArUn6N}L4b8r)T)8_;R zZ2RsV{!+(Mrl2=Ai%gg_c~RNu=0DOPNy^~t#}^eD$*v9CYxi({n7nAz>q1^d6*(lxTah58hSNjw^CrDJC|ALAw*u_R|2Xh;L3q3nV z|5mVNBOM0cFO$a4znN(q8~NT1fPqR{wqS_hx;*E-s3yv`L@;`*+yi47)J`tZM`X zJv}{<1;SZ~^z0l=r<5P`LvSdr?g>=NrJciE6JKrsb3t%algLl^aC=}4qE_+>>G3Tgq&+S3AEwW zFWEh~aG4F7khW%J^JD*P^l`@60UWs;lcuQ@{d3e0+?Xfr)L}CnAj_Z+okItTP)N5e>=3 zr3!Y+#gzb111b;(qpBSOXwW4*o*8DrOgw#rwN9nKSgrz&1 z!91dVjJWGJt1~+e72h{kDf&M59J^a3KWKMQ{$iu@2TUGJoD8vSk9g+(xvU3IYYpmU z?gmSQ%qKpz_b(Qjs-wpzRp2;iKvx>#8LzAHJM;%na)9? z>T!#bL^UVwA`asWp$S2xrGruP;k%=K7te{Ub^E5VA-E@u&9fS~k2{7B55HKiO-h;R zDd*_x2&z_NoeNElbC8=!k*Gp*&MG>}`JxSC8j16oLOUzJ4TBWpXe#^$N0iQ0^tszm zqa!o(IzkKJ=+t0lVh~{gT?ex0qKWGKzizJ?16!_4WQWr zVkHx@^ogHDd6#i-rvU+J^znkGo)K;HW5+H^T>7*nWP?wd;I_(>ZXEU(grYg&D<8G? zF52Q1CGY{yviR_stuvGs9oHBh9`Q$cy`l0|vsmEY@?U?u1klF~)MmB%j?0tZGjA)r z|3N09KZq4{DWH`q7m`Kd=bn3&SYL9XaiM*oCqV#W7)xIHp~~e&{^~2q>yih80S=l- z!!P(B$pq7so+nG=lT^W+yER~qONuAMPfF4KUQhr8t(?5k1wPj}NgbD9O79IKoYZ^R z-N)@#<4sGW=qs*$Cja!s%&R47jlaAz%QPc1ONWGTqR80fgyq0!qt;M0w>2K4 zJsc$PuW=qsO5=ho|FXNqgXpLY=y0p6xQl~mX>rNdGRI#75>i+dHH?lp&PFgBf$ri6 z?^THoWl4^(yv-Uafk}@7JZ#;NmmwN4mlI8uSdsu)m0(}3gq;AWn9F8>qY1taQ^4+E zfU6o1*bPv-kXe_<7Ayq}{RW0qJg7Q|n1GWI)wW+s6E3rRIq|Lk4<)65#Cl!!!tSx} zXndZ#puDX_CCg*sld{zk-B%RPcz0c4AXn_{wdm{}?MK>rI|8B-&T66#aD?W2zw&yq zm4^Cs{-b6nBXur4A}`!hD-06MDk@=$o~tg2PA#fVoej(i59ZtXW4oCj!BmK-rkK(x zkY_L~1Wj%r`3nClr(3ebiewgd%m!|U%;Bvx=4+F_R-mYX2h9Z1o448kISU`411#?B zHX^q@i4LF0=Qb(ZiqS9rS{S>2)6w=(D%Z9iDBGj+)FG!m-isZmxRpjP6_U!S4Q0-~ z1j){jkAYu&E|P-3c-J6>#45*J6?5Gu4gKSkl1nO}d@YbT=NBClrFF zf(fVPHNR8G&1gLJd7Uj2fz$7h{VjVMe-OA#;lD!qY7wFNSbJ!11isd3$EYTouE;nb z`DjhP1u1tJLVP^s9QLxa5e-Ihu^0i7=c&5qAO7m&;j^2IvSeP zQMK}Mq3q&c)?*kT;Ce0YyZ2$w`dOxmqYikmBlgtzt(7FY=;(4#s7Wu1ugIBBQ-w^- z0xtjgPnZDI-5SKg&5iHN*E)3oaJMX7>NaPeCv+%f5mb6Ms>M8oRFT1d@W0@X8B%VJ z7Js6@VXI~&BJx9~$881+pb0Mb^lrVevt#Z@_>#oSGd4Bb-~giYKShu0QOE+z7KTKB0>|Sq~eB* zBE~CA3JQHchdSn@uL7~G-(;fc$ z_zUTG6VceeOoJZ(2O;z~AawPhb;zU`G@E^A1A!g$ofbDT6S4%9G)@XblUVx2yE49r zd(N*vj%{XsEPb2C>Lw1s?XAnnMn#iTh%RhKyv>w^$#2_!Q^a`-1relJ#;!X{F7Z#9 z(lGmBNvi_(X(+z&0FpyR94`er8u5tFRNEd*NXJKxrDP;Q z^Iu_v7`3%5`xIqjN$%7XFs8RPxtg0Ac}2JRxtdKYQ%qS?CPJ(gcNEiA#kZxoqXSj9 zu(`MHiA$~@%fEg<+_Z_dJ%3Le;~|eD-%>vt^OwU|HnPmXHZ_w`Pv|BwP@hTKtz^y? z)ky~XiWv$J&Cv9Bl1TiHlaH~541_6T@-8*4qUps+j|Pjgy(2FRa)l-pm_)DnVK!YJ zi~Pi+WWv9f+iR{6HE}~uQ^eV`5zPdCcH6u&<(1dnrxEzsI56ypPp0h2y&*G=pI^>} zg~Vadd5aD}TL)b+W^OW)#@})-Yyqsv@asUdXjXi4X!5Ts3o$XV2Xjv~24EshO8`?x zzz@|1%OPq&>mvsY*}~ZzCe^*?+NZ=Uzm4r~1p4J+)U~a)>%$LY0)97|ftJ7tDbXU@cc$idygHZTueAR?m>uwg8n~aYQZrFcms3urIZ{&qsYxyGM0v zr%kob^5tbaJ9;R-^+Mw@qY&51gt~GauH%sCvXm z`W<$T9<2LcB;X1=t-`*1Wa{8PF83hsyfBn*Uk#43u!@~-;4v!`iAnm|sRLw9+k%Q|( z+VD+gerOf~-|2-v)8}T7kv;+_E3X{kJwD}Er##H>41tNJk;J4L|rIKi8DddXSe z>7B_hzA5LT%fFuKz&l@d&+q-pUNbx$$SU-XHYJbG;9>n*EWk@%-2fcS_=QU%w9De- zGN}@?-S?Vxe!|;#F%$KqE1#2vDL;F3<%F~OT@&!J)#hlO(`O`m760 z|D?Z7MGhcC=UG^0o&(pLq1mW7{SfG;#!1(K$>#6S;P2`-Hr!9fsOw+*Q`;II^*JG>QZMilQ+TJ7L|usi*;)^FIIrG9kwxs zl$>aODgE&EJa)GYP(Aa!j);iW zMf*)pzIJ!}1X{dac=RkAf9VCn3Hd%Ej0n)spqfw77ulOpp_REEy;A)3OAi<@pvZb~ z_MJ0Wb}c+DRUEdB=0X+B_1YA>l(>AjY{(M1%p=Rv>xASs&Uv1DW@L)gB5G1jWI* zV5TEN>vl-Aa+s<%+2LSz0>B(j_N(eIXE(5tg0iS$HWHd;5ax(t79*C+_g;NZ<~0Ot z8(dCbXWRY!uHtFsaZg<+fK*;!uF~K#-s%fSb>Du;Cf+$>wYe^W!bMt+v*ou%l{nhZ zxLeN#S!z5Q$%*P$vB4ORaX~bIf{iu!2)%J(_0A9VPTUBYBNMDhx5?{tih=ZYcu^Lt zMAqov6?clU6TjJl^Yuzhx6|&GrK5Q*QSgPM60ptZkbT_guGHqoEJcv zpYLx%b}DKylvT~wa#*tYJ7z+&mNdN47^-2L&Yy4?^{~&!1=5qYB#UGYVSkqpXIjv-L2_Y)A0Do-e*`yyFFrxbJz-DTE1uUV>Lha9%M} z63ppUU+@@%SaVDQ#x&DatJ{%g<5YU1A2@%gWI6Y~CEPCy+lD4DO(|JOy`S<)c&!65 zSBU?4y=+9*P~7SRkHg>$xW7%&({Qr`oud-CO6%#VjEI^W7USoCHxSwyvS6-a(CSLH z766A8@NIdXG!5<2UEVuKRz^noXC7w#%(goOtF=Jb48SdcZ|%TcaSo#jC*M9ls|sw|o;PX(6kFZVqEV9Yc-`7J%`+^O$=Ed;CJu z3jr261Vah+&K0lSKY%0ybqqV~gTxv+k_WV&lYlt5d~=iLSsDhI66@Z`cN*P2+3N`+ z=K#H~5iuiXva*(AvC_p9s4#`X)LtAwde;$6?3jhV!mCR|X^;u`V$#vHS{( z%sEj}=#FGH&w_u)YQ8~f6|XxZJ~srOn(@AduTdDWzzx}?0S}9Z<1}oi%*;8*?YhPy zmJ>5eaM>J$aEH9U7;0kQ+=2~Xl9vTqP z6@tjn)!ofOA>vkg_pz506G+O2(+JwRuAGtSGvTVV7? zC`CVC+{;t?1U0+S7~H}X+260_3Y5D;JJ)CsiUxV;zAOr+(Wd2~ktO5)#2%(CxvsUybXRCnF*q#8 zdttr%u<5|NQW0kL&SQMxRv|j|oYe-10!(Y}`9>I~i=|HvGu_9}52elh#l{(*#|O!E zVWP{4qtP7v;w8t{-#|4&59AO_Hc<-}sXs2DyB|(H+A>Vje$JF9?Pyga7`x(n=~ zz?frcJ_nV!t9?j3?rv#qy&KIGVWbrR!iH`pr>3UNi+Oakc$L-H(c$>T%|Sm~e|W}U zM1}G_EO?T%Lf7P~_jxeCc1q6z@~mPY^Grv)TSWzgbB|liuwbHR^Vu0_JO2E$z4O@l zVBKpL<<qknZSRxGvXQNmMyRmp%Kw}kb{3wbV7m^@;gMj@#(tsB|4MBSbp;NA$2Vb z`Q-w@?T2f|xdXl;D|1>R#t6Qz8kiK0t`{NJ<$}s^L0NO7mpZQD&Sv{>_QSKL@@MK+ z9{lIGISS>r+GzS-F1nXr=mt9gxb9D{9+S!-K;vFpS9fWI1~TC!HqAHbRVUr8+gx!H zAY=lvbnin45PRr1Kipn-g+&tGgxaL4y_Ck+0h3seB`C+l%WlHn=0wg9yk8SUg&sv4 z(g|ASZ46`KC`2KpbTlGZnBn&4xF@3mCO>Qnr!#n7f0$`_F~vt_k$GdSH`AK>`Xzl% zpWNKsj+a~0m*{c(`u0Khc{_cQOocqEU`a09Bu`qW!vZE!fVX2ICx4^3Mj z-lb+xG_EsrGr;PbHZ}{{Z&#(diK$@3LGfRx=@Wxa>GFJ3-1rY_9t|4Kn&IK4&f% zr?!n0mk26V0g5xmOWrj+)jIZ0i$hYmuV5hyl4d!gKN_A!5cIeBQA`gh%WAVS=Pl

    D2)R`+!JGE=(a>mXN(>az0vT)+=%ArT9d^ z+22VwQa%S3iTk@C-eUFZ*BpG`t3?r9&Mnx$opOa~d`h84bmO*NmhQze#MH9*@*x{) zNv``A5VZHoSZVw!?X5W#h&B4!-dp#y{&rH>0b4uRT0Q*dQ$zBaaK}Tb&YX1!13zUm zqRLJt167$mqO`&ww_%!Ke3_cKyh^m8w{Z|AjOC)E2jq^1l@jXrVSdF+PcponHC6J; z`zpOjF-l-bX63%O`(i4TB74;D#^`o1)=%N-<7YpK-)l>IP@~7?V;?Ww<6*zcu6B=` z?R#>DgVy^|;WgA!+$vF{1Wr|smUEwpb>7{)%`{`i1Djx;N_UH>=W=zo@5 zQGYZCuBg_tRzT;?UV=?7Y=NKDF|`%^ky zR3bXUoP1VM$bYcVJSXh{g>qsxj5S2_zkw_wCdu#;&{y1j13r~7g&e(ZjnI$TTlrAATk)#%+A0KgBYrn-!7j$DZx z??W{uUEVZ>Vk%1TBZ+Q)U3M1a;i)DX!3T;xMS(L))PdYVba`vp$6bEWXHy0N-|zHh z2ru0vJ#dhCiRi_PDFN5L$?gyB4|QOw({Xvq@xm-$r7XWkq2KOj`H0XK^mp1S3Mpkx ziVcMfTrmH+zf4i|TlGL%XV*&_0TaU*vx%xEMa;M3x&b(E@KcCkDH7nf(OYB9uc=fS z%kmR}*!xVPao9T>DM7#m6mwJF$=h$s^}FV3EhS{vMbtLUo>c{diM|BUa&dTt101pz zH8C)&nkYrO%hK<0Yf((=bKMKQy)OB2@oVM}Nt8qeaz|MBpTFboIv6{lB&xhBls~v! z`~@C%Hr3o5sW(?i6xrMUu7wp{yo?xiR6hngg@f)v4cSGeqD1FI^L6U<(%^+gzqOUE zLw%B0APIl3kdfZ}ME~a5Qeos1DFWrW-X3w9bTbF?qV-)r7whGi0AD+Xb%(uj<&yV_$^P7hriYEY5OnZGIpEwEOG}1i13{| zn)9fI0%T>5Pxx(0B1xwqqF1yh76N6v%g zuJIx!9h1S~@!$9z34}ydJ~FZ&08s{fd8};zh=q} zn?Db`4$RI@a^WZ$d^;XFeeprIVgIp1@npOcUyu4i(Ur4TPTuxu3`XwA(OB4FsIxp_KG%i9;{3il2>4b zL{vLCBr?a|T2vH_VHg~&f?1CW&L3-|aFDulEw%=MsiXiXI1tU&cIy-1kzv5G;5dEc z5eoXepGnKjBuwf|+=wYpg^%z+3P-5(cQ8#48|b*KqO2P2oToE-eh)TCSKoomI%_-m zq!y9ONy;L5Z?qElU6QB^vLf%koZ1OewD2uGQEjzdarFv% zoL-|c!a&BrOj9j6ub}y4Q3CZui{0M3i89fYpsrC^p)gA#MaKn60$=z#6M; zhb}2Xe}1Et-=?eTL`+B_h?6~+#+YsG;H!$kxS+8^2)^?-paTp|2OUBDG13jnGSlx( zx3T#mXsa_f)Cl`@CNh$~$RjDu{(X|lQS?Nq{`vFsImWq{wbk$|50zCuMp#_Kz~`9RtT)f`*^Jj)R&yhl8H}`^^0OZ6z1gDe%P~pE34RS@Ax{`h7e8E#X|h0Uk{A zLthp0;rv%vvPT~$0yINtMUv#ZvNn(#PZ_hQ+oYVl>kC<;%g@gbK}lKFjX8R-V?{x) zGB|NqlKTFeYz_=sIX)+e;x z>|nvW3bEi?X29@&EDG#jKeDQ-9(3gK#l&rm|RYvy_ z`x7em=!ore@f|zj`hd*-c3ofp*6xh;_VZxu0WlYvNl+PWAl|f#=ye*%&fmTVa>eO} z>aQ6luMWg0SaQPfU~lu?V~VT;Qc3M;qf4rNx{>}TRD0bmEe?3lXsti(2>ODHy@3m?WepdkS z;tHT78@;8W70njEpAu+0_1l^DASDT1N>Fd=_BS5`)oFP^tdvQbs1WNW-nA=*p;SrW z+9JRaTHO=Qx@T^-Ib`JG*|k|Av<|>uZ_FjN$@Og>y+x`=TM5|>JS?6bAN~Wz7>!eM z%*!=Hf@EUR)N^ZH5k@`Q^3AG#W&1i-i7ci3?P_9P`rD;d zz50QyUwn4Y2@zHA6*QPnLxNxg-$2IRumS?Ce~|&N&qH%nPK*v>=G7*DQOTvCj0!9sV78 zk;D9XluN8V+}{5bI)m(lC&3FfKV6c<)3P`JaKJ#_uKdOvDGK2Fkwd8K(mHS;9vv%; z*VvL_loPh(7%LTheSG(Z1dx39HY zChiOC5VDEI!!3OOl>US90Ia`+fTJNoTej&kQj1UuSTPPfbz7{0ouCS zE1_~1;hA=z2r54-w z6^~3se_14h;VuNLdt+!!4H6}^Kj_Q#k57ruxi6%g;2#}9ea~rK8b$74P81cYZwS2( z4d4z}6K5@UqItY=>O}^S>MS_J35^@XSnB&JkC`WPH*}8TBG4RB<#e!sncCIjOGC)} zk5~75{-}aldY11Ck7-4A^een?2iXI}GV9{R9_J%Ac*Gw1l(wO#OPIHNcXKbHKy1aa z1G%dPsmtQE!Kf}(N0`_l}TJ@q(5eN<6 z;5z|L%Wb!i&Ap~iN2p!YIksD1JDthN2aI;Psw{srOT#sj+%CZ{EW~XHVTDKxGFfMD zZ<9WFFvyO&6(kTD=Y1Dg^f=27N1-Svt|)wCB=Z#;SECKV$)M9yVuAXeY-lhOVc5|; zbz*rv_|ZGc?v>($a0sgt`={-Sr^oOvHmdNi+M;`nB?pVnN|Ilf^AAj6Dx;0{^zyuZ2ESa95NbHSAd0TSEsgbDUbBWMB8ZbbU413*a&p9M;qeaeRvG(EiDuW zJxx1(_8wV+at`{&7@zXn9}mTZ@6`PAG0JZ+mhK))81U9@W@^>Mq=*deh=h+PB6pe! z9}5irIQ{b}eHu&N@T6>iI`4%gpIx+2PF_{{j8nM4(Z8CK8yFiD>Kok?^|#qqL|@;3 z!C6#Xsr@_FO4-uqAldxEh(Re>2Jnr6Zm6zy#re$csyo&&5_N10VEW7Lh7L-^%)HztuWKp>z5jl}V@i zJ-Rh%a=ZgC&>wGp2a^p-z0NfZ#%nq)p$x(WA+|}+AN!~*y?j}2q$2dip1Jm;Xz!N~ z`2#5Hwrt{Mr7iy=Y^5Twu0J=sZQ^lL)H=hf$;GKeCDbDJI9k1gXYGvlzq zgx&M)ny6IWG(6aOikHP}A=?ojQ)%<4aCgqj=A+j28UdQZ{rFw1{4$Qmle&V3g0Y1K z9Rfa3uHXYis<-a$?zRdE3AG|2A+>I8ZME|8@wEcAZ>^V?m!U{hV8QiJO5g1N;U9W` z%1W7Ns^HXNY7+%KxYQAnxq>~xKmSG_(E00ibxFZw--gfu6kXEf01Cs!7$UmtI~z!_ zUZ4&3mKU~7t_%qQA}=74L688V>io+)qEUm3F6`Kqs#t(tRH7d(-P{A3II4noJqd}{ z&^fOlXDyU<3ah!hgtE-H?fX5fM7N#O;cZ!4aw`i+6BgULw-mUtCNESX_vlKJ{tfzk zT1kOZm;Q8{NNV`PE0pig@Of(-F;wvOF^ zvP-WuSDe65{I#`w#zFmMzm$wLK3} z3w63m) z;V)*>dYgzA5e6K=hF~O77Y7$n?5RR1G3h*2;ws87*!Zd65}ERkypXB)D?uaH_Pf?6 zZj+OP09)^vO3ZEKh1)ABGBH94T*`c;F&1Bp>-+Ur;SX!XelC~C#3Lp)G(a535TBo) zg5h?7pSU8?iZ{8BcIGf18Hl`+(!jk1XL~>0_@0pip)^NZ*tz1s$< zsj2_1gM~T(P#_;AQczOTPYj~3JMH#)1xwEEsn92S!Aj$PC2@8hnR9Z&`^`2jU4JOp zB3>^>Dh82Wm7JBD``|7zHY8Zyl)mDHNyIoS2!)M}N#>GB!`}X_lSV~NX|(G3D~BMUB%`z!cLHPZqWSr$wTo0ujv;nq=SJej#NHbG?0d>~VlcEm(P%M`PsAr*7dV z#F0ij^^C*u`qYCwsdAsZ3^eQ0(Cwx*K5ijLFs&#>D%bzXT{qk`XbJsGbW}JOELwOV zxmMa`lvY^NS>+_q_~MZ2IJXR{TN7`lJpEGKuK7p4S?V4gtqD5#O&C``Wg0gU(^uAU z2vqpGtkv+C5Sr>ci8BaF*5@XJBwYN3I0I2ZNoV_zA-rGETFd4~7!> zVVD8Z*e1AZ3^~zg_*ZxFf>v8w+IlrK&@>VEa_(s&N*N8k$8YhZC64%aSI0B*j_>#N zbbVKuXaqjn7Jpz@aSqSlJ*u+U|I!1jwfu;5{$VH$M4WUQwecALm}c{w#Gm^ss8q9? zgW&XOzJD7CLg)d~K*Chu#=@PObq#7P&vSN(jj9ANCNJG7RYvDk{&3g*DQj~lug~l8 zG}<25fBZm>j*i2Pp#W5M^H6E%=uGQtYfmkVjg2h;aod09=H{wD?M_etkq6QsI*{D! zbpGf9wJcRY8C85TFTfNMkv3B@z0S0QI^?V@w7>3O{k+zZ&UFOQC!-^9X*4ybSZg zEhlgimVhFzhRrO1j_3VF@6W(7 zn1B2bv2&MgmxjMArD>l0=VCK!K-fH#n~+kFx!oG%r2F0B`wz5|-OvH-G?;-}qPOyn ze(d|SoeTwngD#t{jNXfzPu8~w3#r8{h`HQt8NAZtuaT+S9!;@*c(&xzP(#CZ-FWBv z{DC#oY1KgYx9heG&!6Q`E0NprSPTT4Z}ydYglh+6B^e8dF%u`~iZeoTGTYA2FcRuk zlT6`ECE(f)O3HO>^G$tWXg3)IU|jp7M<{Ymh#g@%qEP>~$>Met8&eqQ(~iC_W!99x zV6)aXJ{u=^1{umbo}6%||7nE2kDcIlAQ^Wn#bx>FK3~oS2qB?V$%e&pDh=D_d&t^s zCoCMpPF%h`-6hNr;W1nvt$GEyP-RPdZV7ZbQ(0GW(&h2pv>fQe> zU74_SUoxxYXpjJXy{@79sICrCMFj~O;TYLe!d4N{ADOzy`h#qiNPPX~=s%4F6J5wV zCiR>NJ9&;d;%pNRRjJ^SpAFwLe_9Ex;8E~De+*@L8XgOrHidv7Vpn$Xz`c3@88~r| z@KwtbdLYp{-w2u*qftA-{x2Y$-UGDB2?+XLV54sA^;7cNh`=#2Xa!|$k|XPu{*5Rz zY*P-6_XD{gd}&{_C(KT7zMeJja()93Yy)0l!SCp(sDkeog@{-yDG9O>DIx%e(B8U~ z8hdfaS2AZLX6ElO6*vU_79~P-hhx4g9H=G}50J)C#^klvx3^v~E`>cvNmf-8V3Vek z$Vsf>^}cElgMJmjx}iR*Z4($#C2*G|%I$`~AUb$$hi**#Iv6;J|A4Z1%c z8mmx{!kiClwf^l8Bwef#ZHkUY8yF(|S`yW5j15hwcSmG1f^}cHfE9KO=+K$?YLhnj zo%})*5syy87A5XLcB{hZ0%#5geG0+N!ovJa{RbjN&4`aN@^t?9Dztpli*zTHK&0c* z;#}f*+uiDTl=&Yi`yG^R)U>~Zd7*UNHoi7uLUPF^s`%3WbXpSYbkg|7BWL+66|Jd8 z#80(N2azNc7dtK$lz%R*ZVM)&-NihVsBt2X@Na?DEraR^v5GN%DqY0{Ewsn#Cm(xP zDww{&^5M1SME#%ZusCyM`jJcFbfZ(htvJ6FAntQ~d>km&rl>>*vp(*z>cqaX`B8+EZWGS#bF`t;Nci z9Ms{@!6zRyIR8lD|D_Swl(uI6F}}}DosEX~+Y|)csL~PyZ0SV}wxTa4EB*)}Xt`?Y zcoL2N6aX_$6klM2>2Gy|U!6q`PdBRWtf3LLdjN5n$s?YSD)Mu~0NbN3P|Ohs#@Rg* zDG3H4IK4^X9|{H{rw7d9y5_$z=*@9ioE+A8@;dLmy6qeM#xUPB)iNd zVdV6CxXXj>`aRXHl`pD_0j?YYIgM?uIjc`Ir|OL#ua7xpP79IJ$}mQ5h2KSCh4l?U z5`4S(5-s9mdH9;3G-GGT_VVH;U+?0kzV4#eo#$dKa0Dy`jIpo8E96D0F$%my@J^s) z7>Vjd;DqlQw!e9xbPyYi=D;T!9;W_L7b=O-nnx1hbgp&~O4C(6%SOXl2M-{KU}pUh zMU5aRhsp^VK|Y93Z;M*Ol7Y!MZy;}dcGT&+WrLNN{t^l>q`iO#?Fi&jhKpG))+4e~ z-zGUFtNWvEJwiCuWIlpsLGVB~Ah^&x84X5@p3|oE6rNUlk}vNfq3qZiU2No)%)Q;9 zzEsVD-Q-&~(HE42?sf#q2-rZRgMje1C1spXt{iSC#GV?CAzBvdxvYtO+6_1?OyHB% zHMHYD2w5$?F(^(UaD;%yfXg{Q;T6Or32$UG-l!Sbj9@M%phx!w$KCeuhbc=Auh9)l zHC>oCQh%>p9tOrZi((1V&&5q?O`01(}klEQ}KoubB5jpz z{-4$QCYPySTU$jPR@w~3{v>4g{CKOSHEHUS`RQ=}A&)evquU9}&x!Enx%9GQSQDy^ z+w7lu1t94LCz4>K2gC>20DMMDz(vbY6RfP!0!13GVvxpoa=>KIZV2OIX>R$;#OD7b zb2)AV_#paD$&iqu4^jg3)?MU%2t@81|wH#OCfb>K+-oqt&#NEib&!6+z5+0n&t zAavsOJ%>BvI^xkh7M41af7f!z&7N@BeA5zYMfC3xoyXhjSB{gw4b(ArXPqxe?`P8B zph%L}E`DGbB`Q1rzkg0Zsd=ST?ZjGWcaK;Xm%DOgzP{ES3AIwZbx@{<=qqyr0L&Jb-FKDGL;goQRw zm)!*?B)ZIrno;ROxIRZm1AR6cc9YGDpoFm|#rym7Q5637%hNm+`PKuD_|xGfpW=e- zdFMRnCrW#Fc{%7}VR=IXd{rZyj?xnND&qT8;ds#6)B6SEv5hBRO&^EDREZD1wxao? zU9t$P{vL<0x3W*4|8?VSvvWaprFxti7zM`eli1I*0c9{qY4c#pAK!Mt=HrB1)8Ji5 zUI6{bsc@)~!Tmb*3a2pw3J@7>VQKjTE@Np)FaMrbK;Y`rr%xBG`gNt&TZ3Oj?Ptml z=PFI5N58V^e?IBJ@o6Y4E1MY^IU0x};Za}#5UPiV~Wq3N+bpwAZVHfTkSb zL`LG17+cIBb=Jx2Gi;SYSxM&NJ46KN^7ug-Tq*@!Ll9*G)=JRJiemhtpmJQ~jV`lU zwpm>ySStsC1@`Zwi3!-5P%80)Dv;iG=E3Nube2#WC!$BJa%I=WKu<@!DKUD2qQ)U4 zQ=ncOi8{$VWgmZ_ACVZ+zq3QqSx$z`j@N0s`8|WIJ?uT76s@4qF=0HUKFluScX8qM zB7>Wy0^8A;tSoUL9@hSkd`|-7`m@WjmoSZ)S}zkpsSQ$7w5aM$gIw2S+z!O6@0Pbk zL?A)7bP`M^s1Irt>~k_22-(RAmz@A4>2v@@Xx|8GkHdhnN2YzghX-b*uwT|TNGli( zHXWHr*W~-+ux(qSAVNFAC^nfm$PoHU z2k$-uSU2s;{U~A*sG&omYyU|n`N3t{z2)GAc(ZSE__6qwoeiE zqTV>Iggb)3HS0{Fdl|66n)nawv?_YohR6i&M?Y-pdgvz3e%9RBXe=}ZZnh1a(Pd9h z>)fyc5x2C`K=y3tuksKLQ4ok?vM(8S&clNBmUJQQHwd;NY4F@{5YVOX?dnHx& zf{cuJFPUvO*0CZ?b{Ka!%tC(DInhMMG8U%T{z6~T&6N-*%+KtNG5Fkp!SpwWDgBMn z$I0py-wjU&A2QS4O2k~th={Z~ZOAwo7FLOel|VKXG=QtkJZovG856KF77+*F_RUvx z;k|oq^La!2TeJ%X0}^F9VSnPLNsZA?3{ z-x*YXTaVCrW8};T*h`qr)lg!^)opE2v~T3nUbVb)d%)7Vx{pi}`W4dE(mluAHOdju zDF?@kB$7{TZ^w>7#Zt)$3;Pri{;S~n+FMEKrA}YdN5Idm14dh%S)&1)AYc<-->C^I z0@29h#4jet##GqZ9Rr(`d;0n)_I7vU+dt&@1*P|V6ZM)^p{ah@&S_TMJj$b7T(>Q@ zhw8CKSThDUb~aj2>PeM{*KVdREBSg3F%?^qq(qR8_wf5)?|cS64Cg%0-fORYugT@*F{Gl8kIy&|_vHVx>eWh}-|2QP z5Y_VU;8#OAW{@v1)x-?G+DbVx=KVUli)q)#@P|Wk!*rQ5<(8a zWhi5KATEkZ*R$#2?(`6JB<^Q2UqbG~)~IgRKhtXS%QPSR@nmjyX}WIuI(7g)uki$% zn0$UbNcLJT%J&Ctk02~njz~=LQfb@O6QfPBk6c^T0y~0TUrX1BRK*Sp*3-o!FWxCO z4y)YwngvJ}l|-g(8iN;%T|}ty{|4@cb!grS@P~*{4!TpcJeq2VA{6y~GZGhs#*bwNguTKxduo6&+rwK&b@N^c>l|lV znD&t~S(@0|B=yK&*%iN7wWJ^hAoLL*k3!17bGY?Q-gN{v49s{B9>a5e3)iNHqrh=_ zvQN4`y6iJa$OPuBVOjtkZ|t`UnH~(<-)U3GyM(uv!NXe)9l*#P+An_8qB0j~ zs5qChUD$^m4f%bq=voI4!~+0rt@F+F=>vb8Ch9Ei7L^$#oFEY6rnjSE;f9|%qY0fI zvZh-Qzs!$`z_LT1h;+LF1+TWhbMJZV*|tgPvdm8?$$n4$^#fc-%5gy2HbLfo+30Aw zifMr&iLw@?yVvzQMCqic(vK%~miJ@NU+)o4yZo60&KOOeg0k>HocOWgu0Ohe2{o8H zSJD3B$FLtG4bsxz#Ld8xnr)hcn-iLI<%sNov{d51FxHZATuxYNzH8WrQdm^M8;Uly zeEMOF<4;_!4h7LQ+)D-x?_PZQ<%s5UrzlV|KbZaT)_ur0CD{leF78FsZEh#q*f_>B;8qCi*MMEc|5A{+tjy0qKaQvMf|p6#DBQiFTz&Y=+?+7h{yAR}O5q z1RcF?NYsU=e}|`F@hb-4aw>`>l$jP+S@abA(RqtO`rQETX8s9J78HsFq@{Fq`2rys zcu!YnT|;8Djy9sc$Haas2@glerZ4;4aLl&>!% z8da3p2yoPW0|Mxi8Y6UyCN)si!`Tyh%TuS2cKy-;SR>e z@^!{E`3x#Nq`15&0vP-=H;J6~!xE#8QF1$EJhuAE{?Dy<4?w*Lk9&$xUHpbLnk zFI|^b^kHz=yk0oo5ZUl3*pfZDAHVCR-vg`xdp~dJwk~q7k8dyruMV>E{@zcdeXHsS zxj$KNJ6qGmtUDr2f9Z#Rce7M=IVV%+CFyNoVV_q}7w!%$ov+@5$stJIF%BLp;|W0) zfF5+<&^mYeB(}P*WI3Jg3ihW+p@66W0|}(^)#9jbZf#M5pn&zMeH#?5ktOm8*#|_b z>j8wS0!>syhIa-q;vmgZ5wzMnrb~dLlPOsjV*^0cr&E2Al_9DgcY(blfbAdPS=O% zqD28xr_jU{%ixO7iU^`$b|rw0g$iT(SesRVMY0GcXFw<*iAbpiu{_MeT`{4q;bd`Q zRATa}?n~)5y3@&LoWFG|TN?SiNE)@@x|=wSbl@|Ir+7D5%|4HP#VxF~qhsnNdO_d! zc=B~cFe(r(teWIQI2oun>PTU+szZ4vo&XVDar|e zX#i=^?9a|aU;yCxChLCZlU!4*hu6~cHydKf|IHx%&0ewXPqC0`W*`x;ltt zLk)=Gtj&=F`>O_^9M_cLien5kR?w?ISDqQpwK?VVZ;&g~NB>zdw8gCtQDxeCTv)E2 z0{9AM6%}1q<;3VXV<`wol=$l)gcC{Srg}g6(G{i4RMLd$8hb10 z2$vbHOw{9fqaEMwN9{-N$Lz=M$L+`O^D<%88*UZ4J~6UMOYk!5fl3MdWQl1-l7P7K zqhbr`a00uPq6hI1@QX`XxB!RvK`xUSc9&f1eP{Opo@2cwLlc&V7C?+FRt9#dS`6?# zTotW*HB$^)J_I6sCKn4)q3&YZQ?~sclbk-X^H#@9H*pQXbj>H_UlBE{QZErxdJZEK z(-Rmsw+11Cr3R!D9?ACH*Oy93iE_Zv%1RezNd<~lrkni^hJr>xs!;+2v-EdxvF*5s z=KQ~Z$=qFCX&`B?o}N;*7X2|VuOw9*>Vd+@6K@I7wXJh_-FtZ=U$-aEfz5;Mz&vqZ zSl*>5{~bOm?kY?rc~O(QM5e1+c$Z$}o$P!4@7>FPoAD!3JIs7+?#_Q5gEMcKb=Dv5kMW#|&;920WHKg3-HbO?3I$Sm#(~Xdms4E3((-JPCvw#<7jrFP))M<9zygGwzu0) zW%%qC3_B&?Zm56HiG5cpJ~cR^Y~KsllZDY$0m?(qo81~o9k z3Ko6v3Pq=y1Ysvmi$?y=H4WG>x71lZ6*jbIVkBgA81O<-Hnvhx8JP}pq@usSzl*nb zV@R0dBXn4m+q88CEpe{Z%W*t`R+1uduFa($D@p>fgs%lVd8fd0x=M@;9zFmpqzTG}*BD@Gd6pj$ z<7w^E!YB%dTnhRY*&<8cRLVDlvO!6A$aZ`6H$D~x-=j^@zxUxP)g`WIg}hW1meLmQ3=3!A#-?L z5F~htD5oI%?f1XD7)-9gc==JK@fcc)N`oRYYPgQR~uWj4dr@&N)^O^TECMvC$V;;Z5VrHwf+PkAA565hKbOO7G%?#)~mY`%HYW|=h`lrARxFNWm6krnY(1wZBqR{VLqP=UeNcV4$P(mM z_P}bV-q9d@BfJcum>f(FOraf_J=`XLP$PEGxqhe8Qt6u0ynmPuoG;Z*+-(uwo!wFUR4W0)(1n0-?kYJ zvFu@6Nx1t?ScLN>${+iL`~LMcM7ZX-wPSK+3>6*^VX_Y-_feF1q|WtDgaXh_+@5#1 zDM;Rn_T)g~qVGLW7+LIxpX-tZUb;29iYY5ZpOR2iDU|;KyhtMJ={N60!#NmQNm9GEIfdS&4I|*Zf(P;Ik?FS z2Zs-TMeRvZlX~O|KO-xSn)z^B1BH++}D%kPPs`6#!j*?e5Zwat~7fn*1 z@`8(CWJN-!2t5TzB!E5X)v%b}{vz$I07SEtaO8fXX)!)u? z8Xoc6-fPm$rcwXsAI6O_^83gI$${=`C;I}k?oTKHLl~nn(vm+QOd_+OG+_mOSX}`s zXTlS@MQ%39a6CL|*v=SW%xc1&STiugR;BJ`G{dIB1(DNaxr{;GHSG%x{Q{oKMK1;k zNjr*aXspPse0*JcygoY_US{ptv4eiwbb_BNO7me;bkEGy)%BIHukR~QPazr>{{|vz z*F+d#I@cS}1Oz1zl>`IFHwv#NjdZ z7CF@DgMK9SwICW$8DxwEM6~)H1Y^W-4P|PEU|~=6C~}Z~)U5RGUy3BW+lkD5vwMO7d&4e&Gzr;DL* z=C=S^8ly~;(hhcb^jNEKYY=Bp;r>y8msUS+mCnZiEU#xDM)T3q8m52P;7*b9= zR8^Ea@V6B%M2TBTrHy&?20Cjs9{TO0X)1QA&@O&A#)J1O@*&}RHd_rNv76HNF3pms zzPg`yx)@^JOG3 zKJ(T|Uz>wu6~yoP%K8Z$@4S1{-m`idH6(TyCus1?7ncb8??n2YR!`HYq38Ie{_ZG0 zxz~KrO0Z&Q+iGAdU?*^wJPvx$^FO%Jq?DLA+KK(^yS&WWv}{I%*0mEq&ORo{B(#bb zGD{eIPk>5e**{2=d7zA&sVrag;X87- zS`mA4&xP{w59my2u#oZph}~tTEh~P$JdKxMafmOr>L5T2iI{m~!d3RhjDY0n%tUTL zr(8nIj6w36FkJIP3~y|5nUYkg__!P6w5eOKFOT;TCuQjRL+lIL z;@1Vk(bT??$D-OxLgE#v!FZf(Rrx|V*lIdCEKJOTVh+q4pHw4Q+&%Uwl3{=bwR(z{fTv)|4issX9lrM`bIce*`F4aq=`w$%%!Q0>)F_h=M;{P-4k z>@vt`xuM+!5Qee2#NAN^AdSnz4x5qc^7xVvhDOF>Po7?E0endcBM?i{)O;@ih6<`0 zmezVS`Lgz_qULv)8Mr;Mx?1aFZ}WsM@$%6s!c^mTmak1nO(-C^p%<&}j6Wa71Bkgp zp>~o#2Ty1TVIf%1nuE|-z6}o;4G(1Wr2RQXFNJHv(lyiL2 zlXH4P5awYn}cF{ou;YczJEdjHp1=Ok{3fP zO=@qye*JoVdv|vuFE0;#PrSU9kH&94LBZ$ob07xo=g+4X=H`5RK-iPx@g;#Bn3iYR z;vP>|u^7K%&P(zZA54inwliw3JrxT;1jdB2SB6Ip@^|Zb*&oHxWK%X!1l7u9Z8Tyv zKOYN%UWh|cTxMJz#-U~QQ&K0t3lCg|1Tg`Oy$G%tNxc#hpIzMh~oDID&zo5yCFGtH4z)j98Cd4Lo`W=5(VN1!9oGBCP{%;EPwPAq!y%{JtSa) zgqn_bNx9BcdHj&Q0T8z5!}_%>1Fku);|{?uWw@IWampfKG-dc@Dh_1 ziQ_CZYvIgdba5lu;%yU-$|(B~Wj1GzD;0&~(9eWy9VY$F425R>+Lc)s~dOggM} zg|QF#Si4KNR#f`yg<-5{u!6U&_q2O~085~dqcZRh@4Yd0>%oyR{yH@<8y|8ehV`uc zIat}7M<2N+T>Mn|FspK`k9$s>RW}!e^6kO3zXXrl#JBec;2g8wF*#$8#6vUbuA%yv zQ|hda9;iFFybL-X*vZXjcj^!U zgI#GM7a?AcWBY?(FgXDd+B0tvSWB;x%P@fE)PHSzcQ57dHc8_pIV*Jnp~p3mJ$ks* zSpNC%AuvS_2T6{U2KkuDMjbStej%U1B0Y=!cHAESZm&^4cgq7Eg3e2PDb?mdq9n)y zMn+ccq`t9%3{a$i&`$f#_#UxboFpF-txqWREG*U;uecxkAf3yT1Vh__91#YFr(*`` zR36FwDxZ>Y5O%bz+cqsZ5a9S&I`zC3`@0V|$0q6qf|e2mgmjqk6Zy%jLORO5-ofji zI!$B5lrJJGO9Jd8!^xk~!WeBXY>u@BHw1dgBe=St#Fj56XOp<>81U_ce9OD)w(;uYi3cM ztho@-Gkn;Y%B+*++tA|1yFt9i17mqGPw!Pxl*<9kZI<}~I4jO$y(ZW;4#DeP0Zi8@ z*MqUg1iP>hyLT?z*Z8%u@ojv=c!(gyo9xg6oq@t#=@d6TwMx$AeL<8j&fm!0v0U(}}3L1$(qKR}MtgSv(B3Oc( zz6bGm9-uwu;Q%l*8)nJxAQBUrSGC_jg=N1N#~9E7Y@m*L3?Om{J6T;Ki|~ZZB5?Gv zepF6k|LK84_wBQ(=Z@!HFn}f|EpG(JY)*%VPei z3Tc`F)dwdKg8S2}Z&m3U8HL6^kwxa6pNxy-(VR@%@Nc3!-sHRBabzkGQgscZ9?`kF zAc?Vdqg)mnqE$9aR@LeFZOht4skKfr?Btr>CW4~k;pJCRX~AR6>#F0x zd+zfuru6%Z_rFd(fniKdZ!h~*(wV&+%OK)5Xk_QsXQ5~%=rzS19Xtwz~+igt&w`e3Y#wwuo&e5IY?qD_>GkjhTb@V)8wre}N zUs3;4gN1g>#~igpk?WB$wli}Xgaq?7k6PGmv5wPUQBhTe?Vp@29#eWx(oOq(5odD> zaiyI({bcgsW7&Qg*s&{M>{X{Vt`~HT97Ii&Kjc#jeuQ$JjFg*LoXn?u{J2AO>zzC< z5BR4owvLX1`nA`!iI)8C@Tx5b^T*JbSYzSpK1~|EFvH8a zPB*l-;jG2aNLd6R3bl;d(Y1&- z{`e(nZS)aCRR&H>^k~uMCUoR`g_%lpkG$!Dvh~)Jpv?g)x?aT;$U5vr#f03er6myS zIh7cKG7M_D7Z7H7asE<@fxE_at%tc>zv?KpGXT&@vcjX5x=`N--JH|TH8{?OQ*+@mBH(z&kcn>!IEfCvG91_Zy|80?^yT)wejhc9j<&6!Zg>LbIea(vOE8(ulB6Qa8-Oy%bkddp2 z7(2)mL-ec?8rZ3QBrNN%Oosv^qM(=~r=*;J+l(&;%+-;xfF$9h z`Iw1hYip~iuTPE&1wiJK&TtFZ3K(mFgOgJNE1f|-F}yqDX#JV}mDfyTqozz^YI5>w zU*Z}z(R@J!dp!XO3eJQ)2@->WAPiWRkV3ja3{^!`MGyf$2Gh(Xo}d<*)zNKUg(Dw4x@3BLYN`*K zW7#KruatvmdkT-%Uzz+8JB07lshyw)LZj7N`t82rPVGpXSAJQ)oZB{vyPz8HWR*@v?l)@pIXJ2!pr-{kC0{hoyuGF3xm>4u zp^-#1c!=;eI*+q~VX`i?Tc>juTjRRpULF))?2m;`1FZ*@#=DQ+wi`M#LNV>QaPI`l z$AX(ecc~`gfNU-+h)wv-ec-QVx1vBcR=Mb;FMw;acOZvccFNlADFT7`y%`FH-D)5j z#MkoCJU7;jIoP<~9`2WaZY?V?7bedTAf{Kc{odC|(#=@)VP@Dfi2^GTazX`56m5K+ z-}n2=roq=YXd#extM~2iE8fp0>%C@2#hXS&*k!&V(6~U9?9rXPCVW>&=cq09?U!Ik z1m$Gn7k!=1ukSU&L-P|`F8Xcz&lw!I8X7bu3~zRlyj(d9xt!_}4jJ}~g{|H<^=3I?&WJ8d$hg``;fj!Rfex3D(q$UC50+W;fkm$Yq&lvFR+ z#_W^NUn0u;j2xVPfM2Pny%vsMf+Ro(^7{;K3BH)N z{pN&(gklJqxP*iw^=HqHMn^}j*`ooY?{ZoinRn9e(UA?@Vq+j)+PLvGB^mtjZ*^;+ zkK1sAp#$!&CaTz!B{N@tlV7>MKp;k#!~__m%+a(ALSZwZEdoyq(m|YY-8g#w2H?d0 zNkrgJ1B}%$jNl0rh!K{&D$RQkQ=c0lnqr1WjMxu1)z3wJgms?0P`>ucFvi=BPy4A& zc<|`ThoA!E+3vyWPVV`6LPWij0J`JP^AD{_yI?9Fp%6O)IC0cAuq0MY(pWyB_|)c$ zpQk7Bn7 zTn!UeWqKIVz?;)()TrD0`$}sN z!b2Jf1&{kKH*3@t*4oLStAj`Sam_#tJ56sx6!O>%+h(o4W|^6&IK(b=SrVZ ze&vh0_);&2&I8g0mHqj~l9dmwC8%QFpL- zZp<6dPP=<>4Ve_@zPP%&!hBbn$j<8Z#8Q+$;EmhpgoWtqCrtv1NCEwQwzV|faRCZf zDXemXDrIMu#zR5s7PtETKqT~WmiItSM6S|?PjWj+=8@Pn=}b6?9@XV53HUuJeZ|NO zz%`60w~#~h`nB}7nS*Pj7D$kWi$(y#Z4T|$?#wY23`M-~sE9E=j|>4zcR@$)wr;|` zHh-`Ez*LFO$jIoZuNU%uU-tR)ZzpHxBhy+dwegWuE^!-6pr@B!XmX(^NrWW!)qtR3 zp8&7a`276U5Ztomg|{~@OoAhwD(yIp(4hoaS;o`MK!rVJz|ojA;UbxcFG1&yD~TXZ z&`WD{s^l3sY(SIEm{vt)io`*14}YF+K}g-gcmhs?6jZPsC6`+1gYB#1S?yB+Fkxwy z_|M_yS9n+&1~J<}xA`AXD=AsOF4O&UD@Wbe*eUh2vI#{K?=XT))i1@>fO{cc@HObwQ zloiT5oMQaW_7d{4Ph_WJ2ucfR!|f6iu1gQ?Nn_RZ!%^0H;ZA|%wZNA{)vad-%rS;I9S zWLJpJxXNoza70017_-`S4|W2v$z|g($u8EmV)zK6WT!XAAD}`B_vE6Nv1*SU#zEW4}Ns@n*&*qqlSh1*VHh_MnR?G7dpNO^!6kwwT)V`46jrzxoFtC zNiYI-UCEOUbS%%B?k^}K37q}!>1mom&fnFq-?h0d|EF>OVy8EM^!1+s?p%%EL+{PP z05pwq^`D#GspI!bv1GK}$5dB%fL2f>pHX90$xKczIux4l*q88!K{Kx63Udik3{+eO z-nc#m^@-E%O!?7ueq7;|h<$b;6*Td0CH^M-vt!z+i~uz?x;;thBwamjgc2|?$vMct zKa)LEKuV${!WWvtum2Zm9Ywd~Xk)u(%Z|F@>&5i3Zjgynnm|I*Tnn@^c^X@oJRme>@u%YS7OYe70>JJ#rY6385*g#V`-$n3tIVY=o zyYwu)?_b7NqpjGUIV*eg0C5UvXlIQ6sQHS(vGHFvD$omzf7UDa7kNF0+{N`4AxcDB zeD+L)!JJzW$->S~kAfzkYlhI7U zQef0Mk3lZL0~q;ycs@1F5`~rqD*(K}l8-NJ!hIfqDMv!^_jH#pYzn z%J8mLTTpF8mu9OD$9cM2fK42I@x6=42&6E?;ey+5-K6#Mr8FurDQS+bY5O8t20ZTx z&BFN|=en3{wz+u?D%n(EP|!Od^wRj=HC4j8h8hGMrUQ*m3;t6^K6ErA%}zOu(Li0H zY>C%17cPLiK{cSb#uif8`kT$1q{WRJD9+R(S-G1L0P3V5vDRxduQQv*T_i)^-w3Wr zxHYP3;@!8h(#glkIRZ+79}N6za3pGRGus)ETk^2LBoO|SGyDGz-!Ooki4^%Q*0Z~bO*#+B9! ztkXXLSx0440E#i-yVvf}kfPxt5ILMIF`VBgILSw2Ts%-HIP9GuJ(_n6&|GCUx5-qO zmx)Lq5KSVYJreSCl~12afIzd}#($5>r||+HvE|dI!LhN`Rq@}(hDXiASHe(19hg5f zsA1LXwwZ==l5v$pH^ZFf=o*BaA3wz=+hsb|hggOSP=H}w6fuw^2uc*h8G@%!#t=>y zIuS<5d63u?N4DeTmV|k}2C;!-l6|p4C#{SF|}v@3alHreINLPHWu%i3-=tv>%^OVhCmqUnH2&punI1?m1rYN2Kau&iq1o{&z9&y=`J|<3^A#WU2KDqOu#o$=m*mZA zT}~=+=trtV{X$^EFfl2-o<3n1%d% zgmAuM20_YDjVL-R6WLUjIq#Wwv1EJts>0*OvC2FE9yccm(x%gVrN=%k`fpE&C|}W$ zV0>n_2e9HYEBmXW{Flo^mN*`sNpkd!o>U3go^ycfHMp>~p`Vkz@tFDf^L*Hr9!i0T)lU*0`QA`~t*UKd z0WSHNzJK`J_*1Pr$B!RhW)xlU4*mmC5g#&{)6`8)H6|67d*jhFBmvkG=!>Ztq(zQn zIFgyHzg(LtDpjjHDnC1zU;db+Ac6_lPG^C@(HKxkBOwgo7)Zz}YJOzmRD%>XS-%t( z*$M2r`m;zaKebW$(C<;y5#OL1+8WaX)Smll7oeNsKGTYLBpskDkSK%D%^+|_BVUvq ztp1U!0(4F>u$@Jk3)LtVFY`h;sa00nEF@D5gTJSOOI4e`Wv8O3zQPFTrt*`MMd&s_ zVZtJn1wVh{OAR<|h}9oK0YIt&_3_`+a{K)302P(NN9{1JzH>$mlT|BG+1wvErlhk( zoPHZ>xvvf-T8Q4_`rQsR$JbD82o6}q=~ImJpVwq5exu{9EE?inVo~laN6VI5g+Ldo z-ya7wzrEV#EuxH&MjepFw(DVL_-pp)1TZo(dIfN&t6WnI>TEO!Uz>vwphcp5v}+C_ zXr~G??sIuLA&R#onHkCjS{{;r1opZ(a;t3%^%V#3`9zGXQ6X(dm$|zLYW$xAEQYrrWiGlp-g zj}2B2G)*6bpz?^vgOBCJS_$Q1i|~{Qn3)m|_)P&2CwJrQ zuC63B*5DwA-^(hvri(oHV?#qjVk~(9KqlnO$il+HCT8RN_jTN7j~z^omDc)wwMqhI zO7rX%V{Ov~3y>HAFe{3XNHH8-^^&e9vfJB)%VXcJslZvE=$!dHR>TgB3)ahT z$6$z{E9?@eC5~8*Kp`LzBd6I&nkrNFvFpZO6DtT~gG?tq6O=C>60sMa-#(P(73;~~ z-aIZc+xlf?8(UME^Z9ccWuIIAIC!jPlULw{dGyGLcc$#h*!sKqtJ58>i%u*~aZVKU+PZJE!l~LA8Kboi zIYS(=-$KM9R%IdsxQ{eE{`y>85Ecc*kPUg@j7yV1p;PHVL9TCLFlVf<|54ecOB-d3 z?bjSWQHwxwr{*QEFtFG3At2X7$o=1+(y~4pPOV`2`pUgj!VsVnFD_1?%!B}o<#zJ> zPrz@Zf3r%?o1(bUcs<|7la}9zr2h1Kk{x!};KO0nqwAitBjP)geSL6Z7XiHIZh%->xs{+m%gDk~28RP%bU z*802_ra#X_(lXXdRe*0dEm@N*Br~k(m3GO(7aIFLFMU8jCo$8mz9$QJ@Cbk)>-(FHGNE+?8l|jIl{i1pGY#JGWjkNlwy7iSU7HkfD`~sT?pV2 z3-O5dz}Zy6z4DStvm}_%i3pQrE!UqIwiCK$hb)22QJlSr@=yNl0Pp8<|rqR$S zAL{OQ>#{Jkv@8O~MUkY*6QR)mskcC3`15)DYsZy|feTZqN@g}}0ywCa|EF1n2>D~K z3(0&*Rv(3H>cpVSYA&#-IC6)5QHbtmtZ@@V32_NFxm#OZUF`q@;W}<_ZDd9jeD_^SHU6~^CM&g4yeHVDCj0@bZfL} z-F3@%MW-;aj;IY`CLK;7kucNZi6aMZTZl#7K8HwoLZP6;Zu|@km^pR42bv7G0>Ee_ zRJj;mso_?b_5KXuRcbtCviB2Dw3X*unDh8cMW0Ro$(*ZYPumc}CB0R3AJX5RK1q2g zGg0q%^LER3>vr3Adw0Jz+4un+8eNpB;;CuaRok{D8lsC-ITUJX%&0w_#(Xa&{SMYy zVpUNNG%rp6+p}2p^7>{y`KW9DW(kGPVlG*sz)e=Y))LL5t4vF$3Y8e^eckXPB1^TN zJ|$>Vv$CDl($*GCP505!7{zI)ZLc(g+32f_Vt-nT{xt{W+!~Qb$F+U|maV$5xe~^; z&@Q4r#p3Q^rmK3ttNt6cVet#@ie|&qiycxVq?3i$g|$Z3JxS^R5euwjx5TK+AdjoC z%ZO!pDF?@gt;)f!%YKWQy~t3K)cvp&X+v+(nFuy30CS?L7RZx4#@@+?craK=MQNM(pd<$7Ko1lXFu!x`VC~Q~U{LcKv8u;(%L1El?PT>U9BdCOG z#R`yr^mlfXcXGZZ+61FoE&TWXJ}Wn)a77I@OumRBzVHli_!Bam=jU760mPUTQ0Kfq ztAHo^1r^ee!h`>Xdno~9gB;L z%b!1UVz9obdif<38nsNJkpSHe_vU-m@l{k@{31OB)C8v~(75Qkt(XY2( z;xd9ou{91b;L&bdM?#hIRR}_kPp?Wqi0>ZQQ(@2#G=@bI2;d%l%EeJ`(Iqx}xX`4o zDi6pnuK+bQXj{V1*|~)K{=bWL)uOf$`5FsxtEi7*VhxhX-nx>^q+V4f4|pj7tdP+k zjhEF>udUgW(C2CH?QI>fX&d2CU-P~n!vFqR#QXiD1|J>w3#h!BRfX!EnW}1~*~g@r z-pFda+so&O)p@$e4EZA9=+;VAUf`7gas4kpf}v1omBO4TZbDKCkVnv>Cb}RP4B?c! z;C@L|p2IrW_ei=Jj9-x__uqR+sWN&f3i-jXvp?ZK{p9y07-`s7dqO<87TH#3)-nys z<%uOeVh2g7n9+?!?XxUo6VJ+S?{Lm?w5Pedqj8tU(oJ<+NT|@BX~czfk{JL7^&DU+ zMAXc@qO?>QD4E&OQ{anW3&JPHjkGjS7}4|?5rSd`Y-~=`-Hg(VzacW<5T{Mi#$P!+ z7jH>Ea6|Y}g5OsRYQm~`i*cmUOuu#?7BE(L>!lEDi+JhwUqkyy=9H9dYXaZ}O$`kV z|E&N&mWuN&9=3#VY{i~98!dS*n!#jN_3QPG4MHA+>ec1~?1Vkni^8Gs*PLZX$pW-G zkDo!br&tDseqMyavlWG7gfbsrlwawRC#qU29i{-v^pkIGu#)PW*lO1REKS~ziQ!NT zHjrEwD@so%swJ+kpQ?Nfjt@@r|W#K z<>u&&SRPZ$cSC>XuPT4crp?9(q_Lo?U^hW9SOb}Bf%ev!`OPcb{aFE+cHNmRU?CLP z(&wR_h<|n^{evsd=kZCy5`=yCI?Ko)F$4h}Y%&#)AAv4GvJc`jsRz(8{$iu2LYYvJ ztQ^MN6F+m+{5~bR^u%<1F?6)P=T=r2gU(jgdfMjZ#Cp2i1;2hddso`I9Or3B1A&@A z%e)c7GSLa%1YvMGFFy6|XCF}NVY3w-bbRU-4}_pc2!fy)))lQPXgjqYU>llP1N=1_ zfNB*r4KpZEwg+~NdwApl_DBJc21_9+pMiv+!U;C5H8mA;>zL)!<2wFVbXZ8Ckj=?Plbz1= zIb#TPnmKch$F9_c6V;VMmcP`Jd(byb0LxN%fHTewlPyru%ehY}(@q@Zx@ z#XMKOo;%D7nnl~MII{$MFZm^%mWTlO53t)=)=^PW(E%jD0kguiT!00Y3;f;_SdGu| zvH&{5F5=h(SThH_#%F6l8JP#MLm^adCx5GDVMCevErZ~{27(cV7*8E&AyzrH>ke!` zAIv=~8O>^5%`|REHpl3Kf@ncfpbQWQ43URDX-HmT`t$O2>6m~#Iy25cGr;&8vz7Av zhepc}E{-aH(yiIbg4@g=Bekg}n;Kld^Dq9s2cDvuIwo>y?zKXXG?>>RCVO#laEU+v zK-j^e{E(L$%9WDMa|3sA$y%$lJ$Urr#xHmXA@5^=VMU>>w66@H6c}jLSYapo5SxFi zDwS?37bn<>N(_&!k2xBvA|oZ>=i?vyC$1SmH=q(YkdKPQM_~uj!Eh!YJ`G$Kejr@q zgsR$t{D>&S{(wfmzwzLg0X`2+L94Q^la(#n8ifFi!u){193xW9;g6i`##Q(}Yz?Ol z5<%%J-)xhC&Yt1{E0oY}!j={y(wZBc2zSlw0$|1{L+cc#mG8EZ-xLW(tJZjJ!l7J9xXrxl3BU4Yj32LKJRni{f*&VOV^(=*2+7ril!d;F#-6bjOLCJgHa zim!I83;IP5*F12_j&ZY%-Gs@{pUgmhSx{0^Qjop9eNahBN&6!){98KTv0-O$(BpQB z|M|hZ2k7D7zkl)KzyY?^nG2BiIvz)@&d$y%&(MU-DW)f3mJ*N6Krwd@bf6Ln`~1`E zumI=evE_-yT^y{_A+qHKqJklT!a+3n z4xSSB^D@0vTH7SbP>e0|;9x3AhMs~E+(jtBnI-W2};eQT|8TgixIb>&V4ATESrFNxXrO8nJhed z;#ZCWDr@LBzk|HPyl!40ihXdmId^w+LJh_Q*#L8#HZ-NWqTHqRJ+KL35J<1hrr9Bt zyL>w`uzqzjCKFZJa#i^r69K!RTXb>F>uyKCAbD74428C|4S)Mq&d0=rf`q>UI(ZjM zOH069qz~*hm^C{sh@fhryjPpB9pvOLAWfi6QU?T(x0# zSPeIW1DrFged^lg;V9TGQsaKVzK@Ol`YtIM5PU4IeqWMYdI;pxdWY$KHTgcPxw>G@+E_#u|0YvI7QCD(Y^nu_~&yrKF^COSb&pp6U{(k zD0T4yH@egb$fT++BIRx@W;LQEFw=Fb`A=G854Wp)+h+x}EPjwi*Ib`1DpIK}6E&~k zxu^L2TXIKav|%u%5Km!JsnvmaX^?~eHr?OY^1{A8c@0t(dwX0xy#{Z@qJXe+?$bdJ zJG%RSC{XjwN zVu2WwnFhXlN|qiO?LOn z1XI=RT@}9JI4%SGxT-rLq7<1C7=tJ;?Yp(9tmP=gO>$^zQX;$pR@j7h32zsf2rZt< zBRF~2Gx56c_x4C%Zx@7G2Cm}O!K3AP!|W>G@#%YmYQ=Qg&GAyiS~j+n1~HSh^64qQ zBU#)(i%fq%2pY7q(~L1z-`E+P@*Omzg`*_x|3adD_ssZR=881OsH5E@LNs7}7tG+0 zXrQv`B4X=~3dT`9qfneA6>}5wQvkEa$q{GzC#?U&tF_Z%o64FWdhQ_phjJWy_!z`? zTW9a^dSBqsxGdx(u6%1I_w3C5aYcW9-6rgx;&pZ3u*9>-w}V+iEl-|2K}&=D6N81c zq9UQVBj43iGIsS<-9 zFBkTV0)Uo^j~&YRm5)+iO#39o#>R3oFd*fk4-O8_M@B{(S=H0(zZlj<%0<6 zgI@n?^Ks$(;W?M=V#dO1t$!LPe5Gv!JTDjwu!3~Xkmg|YG~_(a1h@-r6%$VUtLKS= z7TOUeKgu3S*=g5#;)@Wcjm}inN-aJ<3Z} zw6v@s9g<5ZozfuPA)rV|cXurzNOyOGD4?`-OE*ZPbW1mU7x(iX-!Ff8i0tfKGiOcS z1GDS%P)R9p9pc&0j}!X$$xj`R!i!P<%;G2M4%hH*(+x0Im?BYzBo4SvRcXK&OJZLAt}51iXlET*4VE zVOb#aS7LpAptQuCeSM834=C<~>BRHZwy|b7hXUw)&u_y60-!)38n4b+N!~_yofG7` z9}EF4<)AZ|3Y}<>IPtx?l+ulA`tSG&*Rdd!Pp8EaPZjMk3PXqSxVpK65kgai83oXx zpg3l%j9;$S+wY$~p(Wayv4q(NPC@kKeDjI;M2`_ zQERB>DyndFI>V1r_QZ;^iyl~&L1DV9B#)1^nz}qAZ(UMYIHCHRZj3X&rX&(lw6{Ny z@rhH7$A9+^4uZ5NXW#@;Fo#1^nxiRo9{J(tx-CP3D%6!3V(1x|Tse|*t9UATmR@ME zTna0$oS@hv5`$@ZN*`(7#j~fGA|GiN?R)P|_i3dm>MAosvc1%$`Ldg?)>#Dx^d4@_ zGHvF9pF97g?0F>-9gRv0H2>-!9($ssdMCN|se>LpB3kVt(g7ko;S+6geF6&3t2qL)<_A z=st6qezQO2wXC>Rjs0Z)ZSBd4b+l3)^GLh)9jdT;hP*vadjnE-sN2%Jlb+jzZy^f) zP#`4SMwT=1Bj3vDawywQ*%fb(WlSh-(JTEhMK7WeE=fHGL8Oae%Egt3IBv=K|L*&T zG^l06D2iN>pY(zak&)mxJ(T&M{?h%QwXow2zmj@GW(L)QyhDzs5KNngS+Zu=39zIV>4#%o!<_Au&u-y&unxA0~Tiz(eOttFhite?xTF zVrymPWj;})h$#C6=HQ6=y*T*Bl)9S;8Y-Em$CDb%lsni}QTD!9R6=K#gNem@ybX$u zj&d3^Vr1$MWo>MI;}0$f;KjDbym|YUdn8G!+S}*uS}CWi&+|38~s4_Q(+g zbo}D7f@~Pl8KP{6RQ?jirBZBn*W`k^zPN#5yrag+=GQ|#(fZO1=6~&l(1b}9`-84I zCHj#~(K}(1FGCm&I;g4Ai=K32r-YCQ8c^#?DUH8FZ@uk50o3t^r)eeO-<&M2OsYs_We(3ho+D^78f~p68>N~~0PxAE`#g&GbiL6&4 zmT$=r=O^C7iwWOy=P{+zl z4oGpT(HV5L#{|wsY`KYIgQse1wWX!*CV@+B*qey4KwjdSjp;{uw&#*S|;PCq-KL3%UuT>+3Ga{7o7a~W{ z)~E`G-SPfYw96eJm%JEECRc0E~$^5O#3q{36hsnwyBXP_}Qdmum zJLuIiCKli%X4MdA6ibDhyAnxes*JukCy=L(@Fuo*cYn z-CXv~8h_;Eu6M!MG5_H6A=s4dySvd&7^6A3axihkI7Ssj6=Yjd$LU$`@^N2VccuFM z_2?GfdK=Lvb2*)E>Km4}ox48ktCU=IG>c*n_e5Ta^NN~ww|tA;;EmnN9P>N2>G{IT zmXytD%~#_Pa?Y1g?$CEF`R-hp-*@n;VO^)A}2fz{W%(*G-1AXIm>0Zp_{f}58t@zim`Kl{)r)3U3}?d{}*k=PiN`G z36L(0I=SxNOgPlXTlcM>@Y21ZRBJd$Mja0$U`CF6s`7E=S8wlT&b_~Zp<%lSa=0ug zZOP_jrrb6toY3G`dkPYZzj5gJcp-^)2jg%r81EI5U#vA!g^7!+@x7&pc>_|10twmf zV{{#m6MpBHF2#&UPkv~V_NUDoaI;TrA4{2x2Nv~94^=^RE!kN3_kv05LG(U`kk3#a zZ(ZoF``eeM`y|Mq!mOO-qPJGxB{ZUj+i(?}Sdm563Z>MQt2$ci)Fn>=Nt;E97 zN_?iR*VzQScPr_kciT#>!z+zipTkvF*PrAopVY#Sy6v7zW6Q0Od4ttB2m_}ut5Zb) zDojbMMOBl}48h&q(Xv}vU=wkR*D<<{DCr3-5=GaL1HI|D8A<}5CxY;HWExIL!wDmd zqanX2U(-@Rk~(&)z@M%fj*gPXMz5|C^g~g`gKV9rK#s~k@8k9>ausThZ)sBa_2I;? zpsAxLRrC`n%f%Cy7C2lJ!{HfC)P1kHGR5QjVF1D9=zmvQdB6ty?u|=n2Zp-4qu;E2 zJzE#H?wvpz^Y~P7*td-$jEz<*MSyNYyYps3r!hc+GD-9YvO#D-fRtPxtgyYj zI2A>H@YFR29MJ%GbMq1sp#6QNg>i9@mo$dvZ7pVprRsQKFDipdUdJGxzYyh>C3qi= z5!dE(k5gJGLLSgyX_V)LtmqKAEff1sezO2lXo{4GnZg}m>wNmX)3}4hzz80cd;0kv zB5l4K|9#?y4(9(3OYl(DZ)p2RmV`gO!j$6{g90Q9ffh--M+j)&;GKMH0#P}-X?Uv2 z>QO(!IvHD1nZv8&>F~7?MPm@I7o|JTME+i&$oYo# z0U@D{A2A0>6djI^0YgxMi=m&ne|(bQzVU6uBjTt1+B)h8LOmtaLBQY>8g?L*(#H&h zu6p$2!*ZXDX!#LavL@i8N?agN6`H+A-U**9Efks1M%iMjF{?-f?q@F z1Vlq$CTM=&cmj)M%?Xk*mKzz$kQBM+iR@9X$tSMW1844X5$OIpkuc^rC1P0es_L95 zfqdi80O~kJ-UhvjM*&a6xfu4aG zeaOhhmIX-b|4`B@tCITqRCOj25}tqON7`(+)kDHp5t2Qk=n^rKdS|9-S&P2-nxu^u zO=d+(Q#~3Nd_1jOjL_IZ>nDudq$%uJ6DX$I_Ol!Lh_sc08}{Qt(Bi0@7p3B@xLMeR zokbDQ)pGLaa-DKt!Ts6q{f=~|WJTnnxPoT;HZ&Y$71+^sI57Vi9L`GSdZY>@FcuCr zu)68B4Hy z^>dl&1pYSkd9Dc;_x>`-ZPm?Z!tQ_)g%fBa_O^-o(@|4H3yRey%W}Gcu}SBibJx|T zyG7Ja(9UR|HBg5#r`l(=@r4x-7YtMR_dJE=3fWROLyRWxlv}KwGbGYFk05kd+ntmQ zE|ZQ}LdEhbh*KKD(+xMVW>;Wz@;nO)fQ~+7`GwCkZfv}My@(pKdde9>q>#RakKet(PbDDtOKrJr~;N56?PETYO=M8Czl}JIg!O(Gup9bfI5UnZ1n1HV=axb?h;o zPEc}gRcy;7{G*p1d2);)TRhsO2I?xeWA%rEZ$&wnyJW;gL;Xt=nYC(31z>sk>fJ1l zqxmYbe4F<~2pt=UUjLvv_R;h8r4hgjdKa?k{T{S|R3{%qZvq47UySJf{zMI}I;H0Q zmjaxR$uFtu&yZ4zjg}Y03%NsV>8TS4Mpm8POkm^6`kg7dSp#6kfZRQpZ)d!9{E z>Snxb3x9^7F>y?HjRN0+Lzd_qRu74&Cgf{^Q-CnI49(4ZMD)oR-Dnj`6}E&*$5s?s zby}n)eD6dvptjDO4S)4e(>TI;(XUa|Is>v}yjnVjop&A|@9{b>CkBxltE1UNq@txGtpjr%l zuM9kE4{11FAfM(bRJyMryyRma&XwvT&~}Z$HufR)gb#F~LZDIadV@lNI`ju~B6BP9 zigO!#llXR-_k-!!{6W%bc`|nMrj`8R&Fn;of7Ge!sNglsox+DqAX^w+oq6F6?M^zz z?r&)k9EXj&^UhC7r~a*hp8B=61GEZ)Q~ic70(FiWZ*v3f%@r>ldz0X0AqG;1St z_tU>ylh(tHHXJOu-b+qx!eLTNFln7*Suqh&aGBO2?4#1YUosMT!c#*Sh;NUHQY>ateAj39_c>QJ)1muEX$C_`t4L^no|78c7W=aQG z5ec{bMulOhkVkk&_&`e7cnmVyQVgFY5DEWD=W%b ze!fycAtBB7_VzDpYsQ*}hK63iL_L4JKG1NFGK!<71UWLG)D%VMcU8_x!wJ42+lcd% zVWHccR`ED-y~_QssEOGes^P35Ksa?eAIU0$U<3ax3DV zkIs}LoGN-!MGim78%u3JwQ+solm3hediK(=br562=QREF)2Yilsz|x>eAZ{)TPNDe zo&xRNpr41GDO{Tb&?#ncN3)O-#>BhfgVUKRDH?XC%yh~T z*Pp*#qN%Y*fw{HBO%%O5W}3GU+5u_CLsy7$W+4Z*Z{U+Plie`HhpV-&3c>MzHjK z8Qzq?(|Fl9Rq~~C_E8lt>Jp?D@zE!(soo%Rle#o|6jiEujFo=uM5fApSwI0{X*;j6 zqJgk1c#k{?3|(`Z@)?p|gU<;dg{mu8OauQ&zGs%%)+?GV+R^_$a=c4;f|B5V6gcKt z<;3a1FZ#rU7#@K$@l~`63xZH=EO;I;e8<{)ZmNfqBj(R?Ux~@}uGRm7G&t);=hLTX zYE0F;+)>XHwlGrK%!cTRcLdq;wacO;UVlJ@V8+Q9WaWh!MO_P};w{hZ-?^CXxMDm} zT0i0hCpwOg*?eo+s^97_tLhhI_B;ImIqe{jkH?i=$nXAEqS5W}`F{m`wCwk=f3unG zcm5)_0O&+s7I;q}I7JQhIas-8AQ+&jKn(DqCib^9E>Bd5d(a9wLPv1lZ3gYyHYWGN zXm5x}LlW?_f!`mpLX1RbAN6|wl=HH-PU_B8VT$w)C4q>uGjXPSwcUdPEpZ@6@*?_l$EV=Ju659 z`@}y>0iujbH;~gyB-dYFblg3^*6Z}R6wA7>s?}PS`>VQ)FhpTI2%;Ke(>n6W9wi z=2x!{;JJYXwXQWp(qPwdCX1tsm?ERnM660>FY`#bxiW2swt6WQe!_glCoT+lFtazw z2`q;B6}g5;=}U0-Q!~kdP3oJ1A0kYQ3=m7mG^7%pd2!4~hT4SJnaYdYRVN5T41Ahaf7nu}vr^0|qmW0|Kw7opvBV8|+GT7-(!>e#h{& zAST8bgqr96kN%kPA7Tss`+Ky4O+cqtH6vbEcOgG)xNFWqY;a4K|EwHM$tuAod*) zip3*vPu0+i4?CJO6S0U3#9AzeI|Kvk3j;quV;U46T1w0XX2A}|T;l#0KhNUiN-%1s z82dI=02fwCb`avk(Lx9b`~Hg^cP@iM&B6X)p@E5#l2TJrGKh(WCcnA58h_(;aVpgm z@;1E;e|rmKj^snh_7fbOgRwN6U(-vmw*h&K?2TdlX|?^hJC6%)4sztLv>60h7Uvx} zZQg>%xsU{uKlfC^kd}0qEvHwLVT?6gZ7X?B0=yg)1{{6e;o|~=uG~-|f z$OX`~{5w&L$_5q4{T}n$CJy@%v3?8AxMV3uz@c|Cc<2rEt!UEH(v&f~ln8W^A)2bH zxg2B-YD^p82Y{0II-{FBZ;fLb`&}PvX$k&fPv^aI3W{9Q`aK?yIH|h33((Qxm-HSp zF)_VUNK9lVZW_(TdzlmT%Xz)$IaB$pNaC0r&i>XZ zC^!LxXCWeXHU{FQtD~~XDu=ISF#IhroN!&}*wj>aIhb87>I_4#UVOqQNfZAcL@E2} zQ>2FKcX4&Yg6zS^Za0v$PsPAsmQOg7a>P8NL2ZK0O-i=# zw4|DJA8S<2<9efJwvc!u`wSXI)L!8nM#vLBJJ=?cjf!}wj)2iGou;V!lt6Z5qk2Z* z3vefGA>U}tooBxXO%J~fBwc4E-}@Z;9j}A89F%?2=oH@~0qp4h!tcapGs`bm$Ee}> zXY5?i2+l+FN$YG4=?*(3oQ#Sn;_SXV-CQop<7U7*y9;S}c$mr0&rj3YxtfWSv#J@y zt$iyk4ShjgkVdtL{0|5Cweu0>WE9c3dWZd=vqaC7Lm6WA=(I(@?nT#bSzBE3e5IW%!%C7P`IUR$kL%VGM(h3wij# zbdVd!wFm#mGA-=r#+WqCdYd{&QbgTe<4fORQ*Lf9n!_E<3?ZW2XB?}$>$Ck}oTQi- zbM}}=R0%m{l5NF6tusb_hgV8EiW@Vbe&S3RT>4Y>`y*ReUoR-9T#*wHKtoR%VF!n@ zb$}&{ST0_Li5D`(#bsU4aJ5*rkU~`VmO)nBpY|(aRl|D3Ss+9jw_xPJkT(y6HoET5)q%*KT9@7F8sL(x z9%4USmN1>Nqy1XEtrx2MCTNwUk5`ZQWrkFc(-SpQHu{x?Tz)$;3W*rq0yv_GlG`@d zk~f#B9MF_?UB!}ohKy$We!z>PPndT&m}nsn#pt(@Q6CSXg48o|69iL`GAi`nseUlQ zNT^@UEyl`5n%aac-2aw8Bqn!@y)6*L0kyaPIPWe*U9^-rknOJcgk-tz(+HcTV)h-m zS5WL8Eq%;D!{X!}S#U0M{o&v^f4H;r1p^C9qr1Di)X~v#uI$T~xg-{y@mkZNG#*-f z$Q%O9-$z|EG(NuwDN#iTU6GB?&`P<*KQCroO|v9jk&snaOx7bkNv5C0h~`HH(oa!i5&5eF{YmW3{#))u-oQZDYi*7|XS_Ut=917K`TK{> zB1Z~Cp>?rHW=EtrluggTpi|I47uV>0>0BF7*HSOAFH0~&!CCYb{@qm5>vbxc8*`Ayh5xyyeEQ}$zpEdyK5rm+P7fP1`5EL% zsrqxbri|}tC+;df=Mdh|A(@uqIbI=`kcra;6JK8X6k+rcK0#t3g|z(CsyR70B4Uq% zHtt)^%!exe1$lC`GV1F$8!SC@BdJ3$!q2bI$r*q3MH1<%uBq9duQD5H0d|{en}z!C zHr-(aHmd8p=jm3y%4f3qv%cF{I4j-(4xdNpN|sCJY=8Q$&holvASOUoF#E7Lo8q^o zlzrENf{K?fCuw2+N2sMj+MBm{G!{)pY$9kGhboQ8Pa*T|`@f&}Fs`={MJtJ{Dzsn| z$hqr60wK6kx{fG!hJ@x^?1&YA&PM#E7w-R}HwEl9zsnN>4ikGw2Te@Fl! zACt1OvIchv^w~2_u%JIK=2)AMafGi(=4cPVZX_!jyISkF3uacEva+(yP2aZe?!w-7 z^mKmLwP#Poj)>Pa#w%rgV+cbffp+2=pzWJMX-_qRMVAZE&aL7prCN^PQ4!ts{t$v7 z&CN@Qf4<+>@40dI&bqtw>GY+_=@KQoz+qdl+G(_wk@+kN1^q6gB@3%Vfzr4s**` zPf_Bww(-%O#L!dpGQYeU7K$$a`G+UdR3iOSz?UXk7Bu%o?s{Vf(P>VajFvvkv0 zX3B@QfqxmN*_bQwMhJ8UTsWk{0f6CeQL6jkbdq_i_qS>sjjkng?e{7e^|qmzU-+27 zyxZ5KR2lTam|s!;p^mgt@^u5U>ElNAh!l8w@)O{5ZE4tVNthwM$Sp1?7;_(K{I;J9 zuC&zj)g=A`f|RhpX0MBb`39%W|90RSAXU4 zyT*<{=x>m0^hN66JKB4#Z>iw*hG>M0T5ju+QbU&$b=QTvT+c%^LQcS?0zayudQ%q=(j~EhLu~juZWQ8s3tiOu*OhUEU#*q zb`2t=)$l~$z{%ZPuA>7ti*W~q9u8nb`*4wezD=(^o5n7%7^$=gOQ9vw9B5%iU~U#8 zn#Y~7b$@Ql?RA^Ao$21z*C)Hax|$#M`Ljx4QBf@+Az|Ij)D(LLk_=kqFmQMfFM-L> z0?JSU-h}SZXFynp22@*~2pN@h*>L+XdDi^D*TAmR0|(O?HpprW>41593`=?%?`fT0 z9_DYqdhE^Eng3p=dCfGc=ToFldQXYWH}0bRpnP(tPHD|1y}TZ5A&dk^tZO}iV)Iw5 zHXi1$N^O6=ne1Y3x(yX+-PJmLM)jnr2Y^&Z%XWk5N{<1Zhjjo+!kVgh8@m}`5WoCB zKQ9jl@-*2B8FXW*grua}<?AagT$hTjx)sw<4x2NY;=Q$mk!-!`(qdx|TDd zUd~*a{}0{s@wEK(BnTt~(W@V~MuL(?#Kvh8?r;)GDLyT7CiZ$6v(X-1G})*9CF$G{ zHvPurLW)6)fbTD@kvTY}_iEmmrm;Yj}eSfY; zcC$~WFHyJnK!k(_HXmIy{I=bWpDDyxPSTVK^+&^KSOL(KzOT)Rua*0mPhUq_~H z_Z;FW+{=SQABtQ=0sTK^R*3+u>)e+(bF^pK6aqogb3e2~eU)(bkHSbO#cpHpekxj< z(ro*iPVhy5Uq*_6ve_c5Z`H~=tIwrP1sqy5PRFH5wlg!r8C_$Des)uVE&p3eb8K?3 zc_ZD1@x6t=KGvs@Vh5BEjwDMhdzewFYvNd+a27q?I!W`tV04sK)$$5S@IUj70Z;B1 zBn^t3YY4%U5^?+fd56)js~lF8iWfsGPT^{;{v-@-ZtaEX0^_0fN@5(b{u<~{81bKF zh;Q$r*XkDge@7Z1_}qaHYd5kyQxfj|bHA*ZIuP^ehmSQW+b8NfW3-GL`z&OLKP`qR zWX=M+|4wis-6Pd*7$bAv0&_Lp7aDWEAN+;$pF5C293kxF_8^atALf7W9aF+pLzY?J zoTU&vf3PKO+oUl%O!l&jr2+@NOXBzXwcyj$Z+qYigo=r+t*uM~ z0`C%2Q)l(S!QkoNzkk`|P?5I@z+EeqF#tbUZ8nlsTU11^>F9Wj0Gx~zXbdbbzx`Td zhIg!1F*aH=zI@l9?Aru7d0sqL0;I`)`rpY`T%(-{?9YMna-O;}sRE5%YiN%q1ADdo zs=Tu0pbyb>ee_35KZ;e^3y@lUx11y9Jf|Z;R0~gyw#oEykQSdUyjYOJjk^DA>vv%y zaPcG7`Jj-Hlh5!MZLg!?ec5@u3&pB2gbx41)xT!IzCvo-d?>FEfU-?%LxJmwT$8~O z1FN6y9P8bIP)CdNAM6?Pdtb-f3+J8f;-eM-L-c){)3jOJ*fu+UZ7D9^fzYr7q%o79 zM1PYCz@g8ax)lE7Cd_r2gKIddD9_MJ21Q+ZnA`2rQRD=7?>Vk+dez+Be_n^HAUsN@ zfe%H?9Y{1S5K7KRc`w#DW4O@i6!UUCX%zRR6x)MVNUkSde5N17&hIN9BV)!vLdE+F zr+vy^o=J;9L%M;c@H9$Rf1%vU@{Ef12n@zpGUleZ`tIx^%3!NW21!nFIosl_^TGmN^apJ{!9A?E` z<&A_f<7oNm2af3;q9D7mC_;ydDK*li`_7p%*9PgJXw$2qy_J(!2ERKOE)I%y4!kJ^ zh4ol#xlM!1He3gfQ6_T*g@fdts#k@3z5IY!DY+`VR1B#l3ZOF}d)Le3QWnt3ULW)P zRYWnk30J=IYs79;gZPCeBDxULOHIUg^=uu+3HiG4aDdi7$w6kq`G=c`Rw68l((%J& zU@ou!?IG_?eZ;#CqrHrnTbw7#KGsMuxDIYTR<8(@BmslLX@o(!<@`I)>y~(le?nW* znhYniNej}7z2Y{Q$VP$+zGM`nMSAvlJT1& zI21_>JbpIso7~ysq;Y_Mo=iMZL%H*rQ|6+Dp*ys2ZA$GCV-?eXBn~)Xv4q2Hoo{&c zm5s{cxu-}+l*oIRJ(kW=JL$QTu$wDa-;tq1gCq7a%NxU9pl3=3qKh2+P~0Cm4RHwe zbk{9+&D_A*s%IX!IwDcC9R!3-n9RfX}c>;<5!!m0$u$2V(Fd zLXhu{gns_(vD&&equf7j$>iT7yQUYC0mHWjH}iR1Rasr%VO|O?>+;Pb`<0vd+O3vY z;PZ2qCs58ujYpKzU2v@hHVqE@;b$*OO5RSu(vr;VPOZ9e0dprsR78b=Q$>?^13d>t zj$}v!190LsJ1emty}IqSR{yAW%ma!vMe$1Zl`0m3_NAG9zdxXpB%okF3Vwk;cr9dY zdgeSOrHnp8JhH69;BAL#@Ci{X1-c~P_Pl>^YssC$o$@;DXxc_wy!4NZt$~q?R6l*y z#UZh5`mg!d89-bD6Bf>Hugc3SLda(FXYZVvn%Mf}ZfaVj`#BtI+K$S>7^FJtw)$fP zJ(7f)GcRqkvnEVkKek1nr0VXjJ=N(?gc9XDWVj_V8SXTJrFR4~heT8y;#M@Qd~MX= zn--*bKvC7Zr*nX(+xTaH{~HD-raG{imw-R#t*oqw`vJ2A#sQprge3%6E=0(&DeV5{ zP(+k_e|vlT2JG-S=cs(_z0+B{0v{*jN^(qJa)0Hg5;+AcyQ&BRI1sQ*e0Y6{O;QJY zgCysjP9W~)`;Y12TgqexiNABecB?B#O>aWaIAb7M*&*TAs@p4_RyRbtoMMK%t^vy1 zbEC|4Ucm>xOxF$Kre*-G3fAdcs&k9e1)lr(TFDdx$esupCE>=hwPlQ0%(|M{k9mGd zAMKF5)~0_g#3Q;NN^~g%THRBK@i8EuWK{xQ1awv)T(DQ`dW`tOA_`dlHd*K@IwnU8 zG0jGoX)1gR8Ns|Ej(c+|LRcUMi>}b9TzNRs`P0C-`{81c#(7!maC?C;I&v-Uro~+g z6q(A@fNN}gReIlHCJ-VV&jTPU@8H+cQj7ZDN(O)JM|v=-kD){841OY*!qK(#TeBvp z5II)CJb~JnA*I)1h)}f@BW{(Pfzl?4^rFhWx zyxYI%yPQMn@bc>oB#)gaVPrQWn~C`I&H{R{C=;I&S9u>Zl)=vg=F7kuQn+Kn9QNZw zS>P%$nfR{)fDb}6G)Aq_(IaA*nBk8PCCkgcsfp;0zdvAQ)t}5z`=cKo1%13?p~{nf zt2aXgxQpMAr4>A5?eSM+tpom82*KKyF75%8s9R6KDBW1Hzf;!}g~ z6wQT2t;_s-*3pzWA`;*I#Iyo=Yp*qOUW;k|-GGxVACa5kZR~Xi=T4{Su^e^fKVf*c z7d?d8E9)Qpq3#by6h!enl5Bfn^3HnEzyM)^3*GIo%f&{{6RQwLeW>fl@f^01;1$j z2qeqMQ1tC(VPwPungVoHHv$q8&(TqY8uuf5_QXe=i*Mu~8q8m(KjqKzXr=#`GA&g@ z)o0iauLoGPKNi&?p`g&IX=uWl>x z8=I7|#JzF0sH^K=w{C;~u#)Z+FyYBYy+6iTh9zj}LO*L(~%Az6`cMdTz2WsPHWocv}j^P3Zc6JrV z|Ng0Zh{Lzpaf8)PNm{CI$}ejuma7ApasTam4F6jjX4D&hEvKL>fx zjiqsOqK=3|C29G7SRRYF$@q-0n2>56QA%(}xLSW=)z5n#;kn2SOo-b7tCfN6(y)Vh zci~bE4d&ICSvLw;d9HGSPz3a^ZU=OPE^3Y6jfPSVz5rG|R z`^~p6*f!=J8fQJ6>OHQAbk)yzl;MVQ~&J7H)kMX%%}m`6irM}k^@~# z(3X2U@HXQZpsnCQDByye<8CRL85|?b!MArtFly>R;7R1yM0Amo`_dJgkkyQYBRtSo z%H`>Qu(|2>l)gaM3LTcK-}>F_!nS<54a;xvv^T;p`_{HVuHc|x_C7U($zP5f(5}Lp zIZU711@}*>X$Z(#wQt5T4}BDq^_}8}qrbrEvwSw?gTER_aO>lWT+nCo8<%YOcyFc7 zT;19o)JNiD(E7tHL|r`^2bJSx7My?0%}K5A?R`ByJJWn4DOoZ;K0XJ`GV{ATJ99~_ z`b)LGcb=fv0)Qv#4a9cxM$1b{Y4{!lF9c3cPd6hf{T}>IWA~sECd-(2yECQHYT8PK z@<{Dbi-z7l@fJq?G2!0sO>DYehSr}q2txNdEPeh($34{fWK60E__n`jkBcS|SV2~_^l zs=VD+`|+ceJxjyXPz)Oz`%&%rLg3w_s%LSuod7Qu_Fr{oLXh5g05V9O$cwijskaSY2Ga{SWbIctZ!0CPfMYwi6kB0~n=Af3^FfQlZ`GD5PHD%{&XR zG;cDpFYd=K-f}GG{Wq-Jf47!4+g#HK^vL9XAlCZ8rIC2j-w@3n&GgHAN2FQ$+LY$j z_mW(3b#C?an$*l??~t+)Op&~cGRHYbdnQXtjPnV1fZzvu0prka^-sN%yOWZamw)e| z>2p(^;aU|vU@`VG4L|=1J^UAEvyS>1a{i(LO31VaTFf$oQ86h&4>qy>&7@A z&S}U8s_3eXh?z_#-pN(&7EX6UJ2RP~1s}to(t~2JU%yTS7EmS_Ooo7vu(*GC*p`)* z)y~S&($dPtW@^%QZ?UmXeLonCLs`)C(zD%}{NpzS#Kax|blO${hbJ!a7P=Rc#f>;% zNXybmhtE$$AE)tWF#ohrFq840iI(Pza(CQd?g^w$>eFBT+n=NAP=DsT#)K(RR0|$8 zukG#(0e^f1Q3A-z(@4LRtLvx1Kvy+jHNv5b5Pvt#tG`vfM0#R&?D=rBjhVSFQ@(;6 zZqe!toHjCsg9$)60Y{k|NaPB0YmQ>^`#W;zPHg$6dZyWL@`k+U{*N5GQBK$QEpst+ zx@IxTbN8(fWtT4;l~^wHsLQ+T+3DW4GvrEeh&|A|TvAV$y{|ZHsSsd7)vvvJ4}_HE zzb8K`g|nUCjrRA4sSqVh3KVr!r+OP01H|GL~y?~zXTN?m) zM$F5vZ4yf4=9WGN4+1-&hRW!#`4V8knb!crZxS5ZT>Ll5H0p1gsFip|51vZR`yV`kZbqJW+~I z*(3R;-Y}M^V`6PuAv0N4+4ZO8CMPbEY$Q76{wlPFOUS9tBiI@+NITEFAn!CZo);D- zmiA7fQmC^F8!2>u=ThmNeG}6G(@FgIgS8>LT`(;ba@b3=c7Ua)ad? zGN$bK;CBmtO=xnry0LAXSFH;F3c>Ce6=|-)=8Z2{5wGe4kc}-`+MIFm#^)VCnKfc& z=Y$gcF>06e0?66*UEoml9ugEfl`;h4vMo_=WLt?T)D^5Zm+vVdDx&BRoW}w0usT`f zY6iDSxAZss;C@X}kH@(SMIhRzhu`ePQNuq4kxp25t815Nf_K|r2uE(K*v%Vy&@n(s zb{A_p3y>HOVm0Y%{TUs?jFEvu_Y0GupT9%0vad*yUM4U3Fk?=U7J-q~$r&x7-ft2u z?E;Whz5-d__}i9`6pEr}e~*G3?{zmq0A32c0AlCBV4Uhg`MU5~I)K11e1#e^7mHG1 zchJvvgKbu6#tUHl=HU8#QA!G#oIG>!?Ja7)>Jd-?X60E`U2zis^?lA=WBb=6l9~5- zSvzY%TY-Nl9LqO~k|FZ%8FSLN9Omb`g--LImT1hccKkePYmjdw6!$&TvTT+VmO}r8 zb6Y?s1pivp>R+>WXNOBRqsSX%PeeJ*l&^>i4Q8ypts3G(izYfg3e6cE#g|iH0TJtO zG~UhSQK-+@Q)9;I2=q(}A(i_gSz6A?ynP!?)0>%@iED^jr)!7KlKbJYkv-g=jI<1; z^E!R$0)Z}bVa&U8W~L8jEwWh+$t(dFE|%HePH)Nh(HLu#`OwIN=@Mv>_;Jr7+21wN zGZuU#)mcB_emK#xDze%_@bdCfihqKIwZ;|t^(%`~yl5fjI4zIu0+6zy+2foG6}n1{ z(@HXYDMtz|m(c}bPy&2r!x>=4`)Xs|*J<|RP1mN1X&>~99)0OE@M4OFW}(vgev@DA zLZ$OZFs*G-{igAX>I&f>k|lv}`DXz614ohjV7pny@Hp?iVP%!aLvNjwSSaT(aeoYg zB`?IvT+6~72}@b|Iy5`Ir8>J9QBF|ksF(tQE~XxC^1D2@mqIJk7)a=Mr3ixAn|C=k zfrhN&x6*ilGLh#8BRL}vp*;z>IYg@IkDvsSlyf4Cy_~+`eNND^FwKwzFtsxj1UI-} zrri#kJ$n6sW9q*rZHLjs*m#fExpIAz6d+efh7 zRVdO8()M$HPjWVji6)9Wf97zMMAkmJ?3-$2w>brmi z6!@Ngz4(!!3$^kn5;onlGCk?Y8BZHx-bmPzBzBl1AWLzGO5J?b7s>T}qcUY- zF%ZPS`F}KWVx-BB3kypFarcS6TmE{j2qtD)M9uEep`rX#Gw*>ty;yD!#NRH13^ivp zI%>@1gTp9QVQv>R9hCLmB9irTV;F{g0!}4ErDQhBY>cRho$ZgrxbtUvZeZAY_kY9I zegeI}9ASZM&fhn$6~!A}C888n^@&IkPBh-W{bFC9!E2{iG3g@eisRJB%NFoaEu2yL z?yk^QvoYoAf5l=8hvusxZk0zbZz0RwF2#ryWAn!c>pQ(+$S1i7RP{Mq#bt}JzpIKS z;jTFoL*HNf%uLxLZMImaYj$#c(|X?qgE{Q0ldtq_vS&H>mlls#4oL41?XzutUy5IC zJsh_`v;dNhr8d__&%GAl8OMR;YSsFur7(&*=Ev1+nK=3%Fg*mK-D<9tpN1x-X z!uCj;JHvIDi){DN*=8UXY2=;?KT;*IZ5z$Bm9~;F7AO4XWR(WY+pPW-h5~ z-F`m?Zv1UH)XW2m+x;O#oN{yiLqDPyR#*FG`K0aS)VE@IhmC0}6!@jA#%Tf8v0Wew zCbj%3~|B$bj5&Rv*weO1v9LXFAR=XxV$$^kE; zJ(IcX!9zg}CT{)=q;~3k+%s)FNH5?}Fvn*Jd2y9Ofi7!9BlOFcFFeH=FVPxJQW$Jk zFmQTHI2>ia(u_pVttHpVsUs9-+tOA_F8k9aSkfkUWG)8K78Tq{RBiGdxY^sQc(}Wl z1Ox=|DN?_F{XU-lyW_fCCKvjx`Zz7{r=6LA?^_uVxyU9ya!ij7vrnJiRKTB=Af)c@ zDIw$@C8TJ+0UJx#!qZSmM7b0QUBcRDWtv47(a;KYB);$MM92<(AL_;}%&-lg-E#Mq zE+W$XBij7np;Ih?q2YlgVDi*%f(YhtQZ{0qB=m16q-k#$SARkW*Mh*^_j;a4ooo@< zE{gGNoA#1;vv!Zadyyo#+ldk8bg}C120-;T0--V;qHp6zN-CotD2RdxbFF|ioGD!;hng9hAmE!iW_2JP) zCq7Av2M>PLmXVRsz4ad(@I-!VfvJh7a?~YV@}t$tyzrnn*yoCfw#x|%Y}Cx zb^5D*LfzBr=k_%N&v`ud9bMB+6mH2iB>eb4jnXE=(*9&hzV)9K44*Mi3(~MXe9 zj*^rYr=fPgOLD6U?y5{3M;3YDex3-aZtiw zn*CLYydrdGjLy$XUi|$xGOhn1rrw*^=9X{0>VyxsZB-^()&Lj=A_`G}Sh-45XCnG;g357a7#T#f&6fiWjkbQN~f=`wxS9*1((c+#? z^!&fR(wT!C;oOF`oG?8g_M3 zMr7^7qU3B2^F5lHzg054L&u=aBo7N-kOlKp&-nFDq|LNmo~Lg`ca!%BQd|V=R&1;T zFuz#mex;7mjg~6HGg}Oq=m<`II>7)TFlcTR@tD{;L4yUj=uL7w)QF)M$ZQpn3xY%k zp-;I8ZFq1b`(;eKCaEf%HpJV=o7KBRbQN(A;W;Yw)4_!A zalmEW@7(nA9k zl6E8T{XigmLG) zW%!IzhyjtoC{@eb5S3Mb5;VoRu88HW+cMVTcC)PZ6_ljreZ#&BkDWux=mOTJBeG1- zYm2n~46j+4@})MLWmA+10^FtUI(^@VO!5nzjBd?mW*JWBu{XMoc+J9YKTXrM3E`g| zU&Ar?X@gYzd^2)#fOZV|X^^lv{6drz5y9MXq}YxflGkh_id=u^Qf%RT-c4v}D{+m& zq!9Hy20{zJ(7CC}@S8HZbthbO6cQ2HUx%wf(zlwK(z4Q}Qpk_<{B>=NtfzV+kl&}Y(>!fK4d=;KR2u5Lmn=_QZ2lipZy8o)+k^`*x=|M04T}az>FzE8 zX;iu-RJyxCKtfU)L^_ogq`OnPyM^!KdH4Q~?N1K>t-0r#Ip>U1Z(u#9!NCIjlYZp{ za`M+3M6o|HbKtUrF3TPxBJj`8I|v8i>1CT^>Hi>1xRRudQo1@BscJK0Hy^fA?Y~h+mS~v$i|ijO4WW3 zW&^D%a+F5lfO(H-aUyg4ue3z-&VzP|odV{>!qlhF_t7gx!^ zz`!LiOT27qYO34lPpJp&*a|G~)&vG>64+d|rP^zd#^)(3+vB6`w_DzXEwepvi4~O( zHuyiK1~P7?bKUFUZAO4kBGQ6NiKYA=-!3z~ebJuMqs#aMt(=aB%uz(}kcDqH`kTJ1 z-1277`>OU6A2#`DqD-7O$v4Z(K}pztoVUDWX(cgfZ*B$I)KRLo(Wvne#RvMQaIb$L zC2h}_7~FEaZ1(u_aQN2pgS>b70{gP(6JUVyKiJ8ih=hceA?1mgVyQ0KOp#OJK%VZL zB^$+uk@T_uK9HsB*O6U(MJ1E?ES1))@7-L`WkC&j*$bcr88UR zt_SmXliHTr`Mb}2FgPv3O$Wn1hU$Uv@X_*2TYeg)#%B~vNN~ZnO!;0IAKGmT6)NG} zpd@OXE67+RUB!qZt@d=3ZQ9Vz@+~d;O2-bE%qbcbAz(o9FfIz~S#5T_fA4-tYqBh_ zx~HJZp3~Ce!OUS&LGelm!lSUe^V}FfNA>L(UY?$JQsBP)89fFL4D9UuRXvjvmP-v2l)wQ>RdSeIL5czhN z)FoP;XwWIVd647IXnAJ!%0U_+qncV;|8ec)Y4m{w&;0IW>3p1e73h23@`>W_!$EsP zPUHMp@_YR9^z?n3bn90^f4btvvqdIOR)1)9X_20HG_`Cv`1-6R!XpqXn#F10ZE#fS zVC~kp+`fNHqQC_*!!_H#=+0w#I0lz}DV0C-N(qqj>Q0$oTgPMu_8sYi+j^+_E2d@V zr{DBTKy{6#94g0-85t8~2Y`Ec_#14y8W+Yr@})asIU{&y2>g zWJdwRnHte(UM0zU-5fvGTT6-&Ib97G{3SQyW@37b&NKuNhGd6Z&+wldK{Cqx=r9l5 z2-a)Iwtfv3FdE;5;nFVMIl%uC-EePV$hR@{n7knKzW(!D>{w8Kc4R5$tvEyLzl)=L z0m=t~@cPn6FG!*n|66vEe?5igU8R&`!_^|&fV|^6w_`cd%Th6^PZ+ZNTTCtQx3N#w z(zQ9+be7ffVSHU`77CBE58bcF8G@)iII9XiD7TAiQ<;>v4X?c2BEk(X3PT%jm!bU{nk3@=pvea#@t?|86@U z5d{1jddDLtbS#yet}dECgXQ0ViGyKmkh4yLM@&(%H7#*dh2L|0_G#k;=A2AsI4RN| zzFnwpxk2!kQN#B5uO?HX+_ul$nnP%3$=zqz2P!v+O8%wa> z4om_yVUg*+8`FJgf&1B6P(h#4f{b97GZw_pE@Tl^sTxeMoniRoKX`fItjZ~JFPY;ES~vZW~z z=+7^l$6!DI(HzC!U!i72^2Bvj$8%7+Xrd__?PEM3y&iZ0V_+@I{k0W54m9d%2Pvv` zIY>MlbrDz|se|6F?g$Knll+SkKo^0}XaQj$0yG@gp~_XeR10$9D?oqCTcu@RokqW2 z4G}sltR515RgH}aE%vOpLhQ7hhEdpplANU!gCE=a$n&j@6uH1-H5vcG4Vo%c*A zw1mZ$1H+`G&pImf^hy)I$4EpA3=Hb}8%hAhf-H~l9t`+UQl`ov1|9RGrPe$3L`Wd1 z>=l4bXRbrwC=#{u(xw(8kjbj8g?jm_)=*jF8mmd)wz40d++>7|M z9jL+)!|CK1BqY%i6p!<0F1ZvEpNC^Ai5%9k8Mo*G8`N4cPR?V%V{q}Pt?GOi!}jSK z`3F~=?u`7~$a;;xO;YBmVNXnC>D;9_;H;v#v3n$Tw%F2qzm)X#>rayk6R^@|P;G2% z9PqoEzO#H4Hu?lm{zgk4sgU*o~s{sXc2z;EfDWR_P87@J*We>1R4(#Wv zzQM#bC|=xFV!+kJhoEM&OY2__E?>4_en;@_>?H;yN=$s%-hgpj&z_f<+t;DXuf8Af zIHtcZK?GhrDcZl(i%zq4y2EiUcwKd-z4gO%@)bsTOWcMs@oD9sc5==b;&Dgfcki+@ zfxqN|HxIsoh&!ymfQ12ZE@Z^-*H+Lv_q7>u+&6v8?Zz!PFxf@duO3iyN$ZCo;;@ol zOp`s3a{Hg$_ZWP%o|4!_tP37)`d+ALHSJhw{px4%vdMIr&L**&vu)qdP#{3WCM|5? zpXkm1+ZoQTF(E4AX#db-9<9LfA&~H2MMXuZsp+2!u+st+Ur1dJIyTV?X9q$R;gJ|~ zpoqn@!SD);%3-!f|CSd9M2Aur*h8<0rqxk$w4LRfx_%%)6(hhK><7DcsI0UD=<0z8 zv%I&bFE1}_5~a{xCVl<+xY8|n^ccmQ^@X&~T5^;wd7LMBBfB4HE&Eo}O# z_;o3##>osG07RPa-#^*xt$i8hJclS!6+am*eAdnd@dtMk_btA_yzqEv6)yxxUhJBL zq?6*5%-M!Vf@d+ui8r~UaNg=Vn3ODvYa;l;9lTA|$2?Q^B*r9fA=q#P7(fV8+=wZ# z)^J5*m9q)HJQbqwh)C&-vvB&G^5vdCf%x1kn0To#?QPNUwqA06wMeSEqDRo>>0OrB zm+7pXMDz33C&iBt(6yVm;AVR4n)21wz&*3ut9TUY^tHI;eel_y<-g|E{VHb?LMJ%s z*w$uy9V>>C@6^V6G2p;ET&6Uu>ay7oUuydt3Ax9mTtilt9v`3AnKvP-Gz8duE^I%8 zKx#H_fw?Cr3ZS;AT*dm^40t$LvLAsnZ1b&`%SutyWf@;pn2D?^*Jt4ZgyYVcXcxkS zx9X(bI%FO@PoX}SzeCa=toS0rATE#0+aO~N4S%{6gzdgV6(@K=^T__h z{uS>zi5k#6B$>3P*}SR^Z>NEVKY2cZCojdI<~`*NvaI_JxxDwH3+h9e7YaUj9#Pl> z%F2bbRNURM&H4UgUUAmO4m_CjPZHA#bG%^D>FDVX9&8Bu;&;?&>Mcw8KOn)dvaYg{7bIHRD zds@EDN%BZ&;9cqvXO>x98|#izE$MSjf+yF(>M5k>D|ki{S_|flm+($)rCBjt7)j!9 zk&_Xeu7NLxEdSCCghLKdcTcXVG%o3;U0MpHwVw!=k5szY?1GU>OOV zz7Ndq>R7vY7YMzMiZkF^OJH&R${qCQ*+d}hKlyx%x3&ZDeILWYL@aN#m>&KZ<03-9)7K13MSH;fsR3Xqi19FT)iW;qhl>o+ z$$yI@GbqDD4R}dE9wp(SY1<2Il>V|U(^}vFk1j);CpkJKh1Emc) zk833#pFT6N!*}rZ98qY^4q!Y}D+~&P|MRD$AUC($ZhLb2 zd!ffgeQmsG%4w5ow=VyhFO&wNs6*wokR?kN9m zK+x5Fb2#XnOht%5;DJ!qo&Y4nR4B#Bh4#rPQxFa7qv*_6ck<9&TZf;Cz)5hB3I=3gm^R zUf%)NG1@5~SzBAX28;l;p5OQ>d0Dx5Z7KB`S!n^9fIPy@lnh`7u@9|fWl^^J$!xECc-hkV z9g{&L*+#?=+vn%!uP==q{f9xwE^GzPU4|=YuZ84J4W3KloV-lR`8ic?wM1PI1=P&a z!+}s@iF2T!k7kM~$YNOoEYKJKG}9G-@#cR3x%K+wl|k|oq50y_89BI1$T9KjFY@5n zwiDVR4=jT^_3$XNRDf3Pu*xQ{q2c2%!|E{5mMnnqc+PPYc>iT!8&vT?(%pzq6F%r+-a&NEfzbB-xLD4#?liFyaWrHrL| zuKpw=F8z}YSK^-V{X#kq7-$68r1Uqx&P{-F8zo%c*a&ky+I=}2jPLB-gG6W|`=mB$ zy&t{G7|3bGrbxl1pEz<|`1SNCwPX+vxKvJDG z9MI2qb`2Rf(fXZ(r0iOu|0V*Ygt(_y>nQ3-9tA|jNf`~n z0SaIsCwvTwu$jF`=t9dq6P;kR=BZ6_zF8s>|5IlIZTm^X1l${T5}gQdpWH?i&%Zg2 z5srOmG&{G@;2G}uUFJov1J8Z&`3+ip5eM2Gy(tB~in*a1G*A@c;{yxJP66oMHXGOk z3vV2jjC?Ge-P}ZK%sP>a=bnRikFeI~->th8N=2+%_WcOUe?xZCwmje~gqLITw?&cS zU*v&4$Kv3am<1#|AqAR-h7{ilU#Uw-&~_5Y7ec&7XR5;4PbvELeot+T-D~UL>PQSn8;PmBJQ%*^o%N$w-Xmf)Nm>lxl^XlBOUNwHS zEdQpk<0+JMLa9WVW~y#(hOgoto(p951rlhk%~t?}Dj{{qqm~*r)A~IlD6i14T~+Fu ztdIPL1d;wpoMap`{k_#tA-nBvV$$Ww_S719tMs{IhHe?B4%7+X` zKadow=GRV%k^v|N?Q|)7oc{Dc5q%$c5}gDgT9wBV_Yn8?_9h)egeYC-^HQXyE&5D^ z+)wQDRVf=w4WYSVdVYFa!+F1HQYi~63riW8>jB%Hf5d4czCY8Zb5bb$r|mG~zz(M9 z0Pa2SR7uG(+FtPH?!*Ouc1S>^3U6o-2%!UR`*Zm6=948l_8_yyTpr$yt;in0m{051 zZGn^5+EouAMgr;3i%#5-5?@a#g5>1&{aqD*vv43$RzTvlEq16?93Xq59{{)AJD*ET zB`>ly~dn~Tn$ znYf>NEL^Sq;++Te19n@D+?ckL;#eJw3D;{r1T`W z>HS?#Lm|}u&#A=a{o~e^BqgbCsBSdnCDly*NAw*X4_oCA7vCQxu<`33wqDg4A2l6R z9I)BduAe?^8Gc%iXZ^HMUUzl-X~@EpCyjV;pf&Hy)raABakvNa_{czL|FzlY(9qxT z>B63#D7rO&pLu{gSpz#6%zv$p=(FEU6qce~IyCt ze*hV`87K=#eE5RZH@;by!i(Rp;qG3K78yVk?O2=(hx`$gX)xoLHGUg6GaMTz+6-;| zcKqUp;}pxeEr6Rr=R|RFN%7`)>$kT-BqW#WGBSiRc$jfULmCAajlZqDmz-&NsF4`> zy6U;q&A$mMhPAc-TB_&&;;@wn^GY_jyqb1=G{n=&f4ysVIZKmNr%XoJ^d$ zC$?gC8(Rky=9LGDkrXgRYd|@_ysYX)YJ(b->k_7Gao6g&td&Kay+&7!bD45Tcw4J! z>cALmb*s0GY)N&FGv$YNPLG)ekv65}`9W3@o?O=lCHn!1doEi2k_wJ6e&OO(|fYn{|K3cI`=N?B#A*E(K~{I~NAbmo$S!k!1*mXU#OH>N-+($cwC5yn5J zfzJ;dW1ZWqC&M*Vo2(~Qf(eaEEyhH@v(fM}xL!~mBQ7vBG$f~J>UALxX-NNu!~kOw zMF*b9q?>PoZOpI}p)K=8mKhj0CFQizub@51`(!m@+3ub3z}e?GX* zx%BJ|zq|jEc8hYu)e>fkxI%*Jgos{;EWY;q;vAAdWZ?jfj`l1rD2RO-CB5M~#;6}^ zWprs~P$(+tzN>~c5=6}TgSs{gn2`roD~qGeeCB}A3%d1VCyB?S9AdzB|MHX3tZX|S zVDbML_WNY~&=uVJQ0_^YEB5$1=Ft1P5L4O@0fB~ng`Jvxn5!vn(DP2@YP?z1i~$?! zc!ZhHYg=K;PT>1-N5tdy$g%3}{lNhn!~FR|DP`5$RE!@KV>e45!cC8nvZLLMPcSRQ zlTcUC_APLVK3YUlrpLZCMcqT3pb6&n8r$1(bhPKI*fOCM;GF-|5)v>I>-&!^{h>GU zmjzYt-(PoPO}BG<#8m#D)Sq`gbUe(Hl$k@iMV<-Eepr5lu@JHEjgGl=i@B)7=kEj<~($=#+)vEbJ6(Nz1UKYAw zf9OdG^Ph=27j?&yPq7PKA$_Ggv3$ehLNap zD+>|>=rR20jRKdowauyN(ja*8)4MmLa>OXxc>`Rxdb|=@Mc6N_;M)+%7^33IUUu;O zdZSB)LbvioQ{}WwS64oQo${RwE?!JB3yhi|8X_uuHeA2cXZbMHhV*7ET}TjpJ>EU5W*Td2>uCFDm^ZFvoU<13HhmkaB>VsCN({cR<;6Y>3cVuafZ z-(g$7cw^+@mPv|0on1S>j=2OWTY3JC>kDPw@yBPT;alLU!iVxEwS^*Sd9ZHO5VjtE z2J$<77rkDRZWLp#w0Tte4&=!=wLG3~B42)4t@8H{{M)*3zws?Q$SEdw1*HKcJ1Fq7 z$UZMKkavBbm9bGcjfQqy|5sYdt4?vWhJShp^dFbsG4GRp_@EZ~42y>Z>%-@j${?I% z@l{eJr`M)v-vmvL(u8FVA^!S_E)uo!&_p+mGEAjz{ogc}D5 z>K=dy?kz6vC;H-rW>#vd6+B=NKxydwN4LllR@R!%T~F8h`WBl%9CjeTXq(`YR+}*vQ^y|m6 zvZHTJ=9E3|;i8CS9}Db@tjNO7(C zan+{N;q_Wtz2lqV&uu>b1Cm_N+#`!KpX}L|HMn35Ug*7-KaLY-J68xUS}xxTji%1D z6m@WT4c~#(t@A{pt9KjL{>Rq%1x3pIn32$(J0hNTzwk0ChDt<3`u%|S*0ym8`?MIT z{eH@m%G5}$Wgmm$>tIAV>Otlh5gh$kNqX#(6DX#rcfI#W-{F+oY;EiB&b-}3#nDz5 zq~V?ii?xYpY|z#;s#}u60P%^P{edop1;)%A`0`?XYg*&eClmzw5jhw24nBN>DLt=` zE8E-hL=u0Fx&>Ixu#){E{qT~l?Cmqlii^Lnva?SWPrek?cfYGCx4*5i|G7fqoPu(oPPSR_CoSkW zgrtRP7>E0QzP;oB=II`qc$WlT$EDxDmS2{YpOu=-r zva&>U&g;E6xbpDWbOM$Fu=Z}Z9kc^qz3cZHCMMs9|NKeA#=^>Ue*eD7^cZnXNVxSa z9?9ok*~HD{TCKNta5kiAn@G0o6>rH}+a=K0E4nZCGSj!qpVf^rz80|#ecek2iP|)oEypA^1l~ zlq5b%>L;b>><@Yy|N8QqY-#1F1WiqJz+(%jnPVs^+cz7+gYAZAOY2)U<0Nr%?6V;& zCb`#ZO}90iJU$Z4{P<*|``u{Nsp|%jVThM#bduKrk=98W%e0FVfwrbrWnJUB@}shM z=1;;Cs`7XfvlGKlqMEXgDn!{=372Dc#hvG7JwCU3FMmRk^(eK}(h<1z{g>HtG8!2W zx2`x}AxBlpXduZD;2GyI2wFItzVBF52TebX8J)@=AO`1!RxmFvO;5i9ytv#~FudEOB)nFG@~KXGLQ-kw8y=JNZd0U-iV_KD6BReuB=#%U%`oIG+3@K4>t(F zegpuga^APa{-xT%_tYFf5Ig;eohGL@#GEw30Tw|D;wNWx<`5MZnD1Ty<)fynD+4_v zA*#vHpDpol2OFyyix;=E1nO%sz0KP{t{J0t7hS?+9K1wVnE8gecYJe85x$$9$@0D_ zgNaL`vxEtzR0bV5bve_LnMGOzp%IM=%NK71*XSQe4%0n^J7Baf7Mvm8TK8g{>niiN z;?_qlsVqnx6=HIIKx>1thR|-o%7=wi_r{T}5`6^^P>1PL8Z=J_txWUmxH<@K4q(_h zD*-f^5!`mJtSIyZsCT<_qz<`R_nV*IEyq~Hj2nAW#>kgH`T5-MZC#5B0mEX%q&6Q} zv*+F7cyJ;S*t74RWsS+r*L%h_dp=z%e#qwy3_!=MNc6I7C@i}q!pBQ2opm|W-E-E89;tLrjf0H7H&fCNc?G=3ax1yDbk(Lth!$DbpsFw)TI}Du?)Okv_SQ|VE2a2u2;iK;si;C7|$V!Z>?qf zmv|T(9PFfTG-xinluR$;XoHAXd-*ord+ZEc*9&+tL$jpcPKQ7FAC zVJCGk{q5ZyqmZB=11Sj!1GuHTh1vHG4Nb`v5UL*ZioI!W4wAJ@5BgMZrJ6vS9p2K4 zm%3~j#1N&5+u?>|nt`gCDxjJQ{4yZHs2X8Z-I{bi)zGDgGHLSFgDSBaj4je3vR> zh1pfk$a4Fv!p?`QsIW%?do_I;E?i7F-W0{Ps;HuhNVuumw6}mdvfrxxd7objmOgOOg^DMeSM4( zjS4|MTUsq85ie@&lU~iLb*tPJ2^ObX-d1qy>Iic$v4G%5lS*H8?6lx1vDjk`(fr<)Je997KfwXL3>K7&5y1tUIljiK*w|!%`-t-VSwsj-?~f9r9mi>- zY(ich$IY#*x}M$(dWKC6cXxVx!g>(*&OXJDU?urlc3w37;apQwO6u1n3MOzM-pu0w zYWwoC-p0J|qScxDf!+?3jig;lDAIMnpYyi~M5H15~TM%q$&f|-K zXParB&yuN;XezOBA|N$5T3m`bZ}0jFuc=gtvYXl^!6`=hfFBRmw} zG9l3a=@%jfcN@VD^wZMTN=vM`I6=Yl3(A7EOWit3%)Iv4VQXj8HCLyg@(LUQY=NH; z+7%Lii$IIa*G5wF?-zIYPliWS{7nQbO@rwF^$mv_W0aXycFk?8dNBUXT2i8TQvn4F zYC`6%7P6vU?@P(_z^Y!+7g-A+8-~9+zT43hkqw=b;4gneDdMyYNL}VfJDZ8lG?Rh!Fb=a2nIY1>xEydeL(g)5 z|9%V%bLkE8baZsv+%I0}O(6Rb__09@Ax)5vaMuAe^x{MiE`g~91u)I+nPdDL{^@<^ z%Erd#5iQFNgvb1}=k|ocKM~%$JLmbWz%=RJYRDSnTbFng7r2;DT6VfPvmqtLH7RoH zXt#N^E z93McFx-ZfR7SQ}ImzivNcZa{iAI@TFW80)p(UfQ(VfaYDH+~dhL7>GqDg)t2aX2(~ z5QPbMU%_Vzs0YeHbh-$z(UA{PYvZSO$aE{RyquhEC>~DE>gK!{d5x@Y5Dg8q`&IU* zF%Suamzxqwpb20=k{U!;WYZ&-PuqxeCvczc7Pm_1Nt~fX1DWK~A6GfPaA;cTyqG71 z5K}2MXgsJl9-Xlq{faDnLIDlm>p4BO5?n>{iAgLDEZ6HxE5+TWOkS4 zUk`R2H`l0yTAZ}Xj?F6z!^n2%HI5lt7dKS_oHG`%nSCMa{DeRg;N$NAmsVHUkQ`lU zAz3wwB^x}{MI5ohP5Bd}GB5ukSw1!7@ciNX*GaIo(n}Q3|^a>SyNqlhcozdjJkaI@k0WrL19%28I(R5&!Byb*fDoA zqjU^6Lc|D8jY}f?&x~q90)kbkSU`LHA8;WoY)DB;YU>(5V#QP0#2-Ef*#;gHD;QL0 zWUra%sGH=SrE7$4TqRUB1dj2RCnZeFE9?sD zQpITLXp~hY;C;czOVk+ZuH6lC5mFWS?Oeh5Zd&ub1Hw1_nz*W>%&LA5SbbHNzYP80 zT~U>HKuL29=XO!fBOUM2XgRYy{Pdq0Jl@%PqIMu)R1P~_<01tEU;|=MC{FK`zSZNV za$q3i4Z?qTNF+qji|Lw$5C2zdfFv<2J}%A{9Aag~O$5P3w=)pV^!aM=vs1nw-k&vJ zwNW8A2%Gvwjs)?VN|tof@DjL0TiGosjeh%bUT})wLA8rxKx^V6v5H!Jc;+2ue8Oa2 z0d)+jA9>BS*mE5n`}uDT`&}hmQm>E%=_HD^trOo%Y3t23{xl|mU!nMJoVob4m*tI$ zPI>`*0sa6yqIOHP67G;S5yB_0CQkyHrkO&mef=y^l9Es+QRBhfsHf$-WH+avKw_$5 zbZYc+l+uYm{2LROhV@Cil&dQbsANGlR(~2nbK>X2eyPY^yz+Sh1_lOEhfvrMaP->) z6v+$!zBH!0{hV1OzaXc~z(8olCjz7o^k@Ps%M)}i*#=e|^!N6*2nsXb20 z?u$eao1wWtv`5n!77%DuhKoDCyqvnbyCb#W1CoPtr_0{qVg4q09$sF+NpdI2(hl?0gn0_;^03MBMZoUIWL=_cv5s#$tQ5l_{sWzY8I;X0@ z%x2CzfpD@>x3)UyC8s~mG3<2eirjKUT4&2l7sBpHo;SAnPkW33Qi`emMlA>&bee?_)QS4GzuC7YNZ6B8>!P3q|=!94wEsQ z1$&j33jQHuVep+AMRhxPL6sD&u9F3W($Xj%oc?#=2!O&m0EgmlSp#?C4|aInGw$m6qHsvlJE(gu;fOacmf6LE;`&<)q){rR;?Cm98V+w>Oz8Q+?&HJ}ku z2h$GF@>VM2X~;~6?eC%+e6K6a`uz}6fzk4i>yNY9r0Oo>z5PY@`|Yd2Zb#QqUtDA& z*onp_5d!`G`xp}O@BpnErs8P#psfU3FQ%LPX)SS8lxjQ^l?rIgXz=-%oT{>IecwyJ zO87-Or^7GJ3fCzrGltjmaSL+k{LOKRiBb3WxxnV-b3($YLU~1QLIU4v^D#R?VxW&y z&=8nmUEMy!zV?Rsrb!OOU|L7gbXl@T&fSL7=lmqqc4Kp90xM-Ldm%iMxd z!|2^R29_n1ZcCMy@6HG85Xrbuz0<5mAzqyhRI1N|7mM$Tkq{fjRgHDzykGH zCWy`{N=9DN1N)e-y}P?slm6V<@5U9l3VVE3|lD@0ww^P zZdBp(0ZNgZQv~5cqb@mTdv5l`2ui=8Vs~9S^h%kAOPDS>o7Y0-z2Fz^smKAvB&T4|_1~ri;(Q!ej+}WvU zVbmqeffdJ(8O|m;Jnmc{5ycV6C^11UWNMt?6Fhxgk7{HpmL_Lo`blL_3h#BY%=dy{ zDj!08J!k!Jaz$D0SiJ|2_&gSl2-ml96~7~CkNS3`eaY)G&+h68NUY(l3d=CB!7!pP zxzsZMm-FdWxawkr>*wP^yZlG*4TRePOHrwMuMJW%NxkrRQX>y{>=*puA)Rguxg5$k!2 zmHgZvpekc9>;|Q_FXFrG{<*>tXKrq8iD6zaR@RB)NgE>@n-Wn`QDaJICJ+6YN_u?r zn-RfD#K_EmyoB%|YcMkoN#Q~mq(jldo4agK=%3S8(KoudhdQ3ufbPX*-bofGucXA? zW7jsCS5Of0(#zG&jf)ViE5A(!-ZXNXhB|s~B@Ph`8{g=nln?gy5Y+iT$H#M#L!mEd z&wmi&XZtOPc*8h(Ld+8P4|psB|J*hBYIow`{TU2 z_5OMozo_&p@gGMkt%;m595uki5xY?%3S#duFh@xvD5TD1=e9exv3@*Ha`OZ5dsGGV z0c6aKUuwDDaCT3}RHq`~72$YRCeR8v+^?m8Rsc_p)}XMm5Lk^yrn=&~X8eA_oj-g) zW3HhuoQ%w?ciz)%U-s?WdMiF1>N}#xU6rjfvHa zqTB2c)IiHNyMHf=v{+J766XiBZ<@t{&C(a#!vp6_K0>^r=P;%v=d{|$3=f>Jv?$z<}2uLB>1zfx`cqqVRds4CX z?|%Li-8`pui-*k6xW!iz)V5QjfgeTb#3R(Fs=1l8ZC2aHX4lo!bfqjX`etWK>+%wN zePd6JIvy=4&RAT34w;$Yu#nW9{4dg{3jAm40LU7wV5Y*xR`|3*jz>mOpKqH9CZ94V zj=bOh&>oFDx+Tymv_MP~cd}q)PY>Mxo(u#WB|mC)Y3`JqR51<+6hep@gB1FOtr0GX zC_gPt)Pr@`IXz;H63M|#_XKwMt&mW|!2#=O!`9LHKH~dK)AP;;8IEWH8dG%FcJzQs^S}TGzF;7??gFM zl2+nbRmb0#qn-+$`WmRTR$T9s@dGv^#LeNXY|U9Bi;m?>=)fTmY2$;I^a+Kg_MrtA zN|=y%4hfPiUd1aK){_m#1<(-i5f$_z7W_IDthy!m(C6Oqqb)1XHBCkv8r~C22NC5x zZF1|ZQH#%MqdxBU%rd z1q8qw#YpBH{hO*s1zxWe%|{HAS;lFLho6NoK0crBzS0UI5`Z&>r&2* zZ={UdS3Sy!o!#NLu3Zt#_Ivd%o3zs)NOQuAOY7;O3vsAlM@Rh0-riQ0AnsV+!K3&p z=^kHuz8ti8?z7A3o#gBno%U9SiYwAc6Ear@4lwu|>(Ez{#>KVkS&OpNX`&IV#0t#2uIn9T5z^(pPAWP&dq}r^R8P-1otT_Pz9wkNF=08aN zia?n*YFYeshb?SdsEY~1W?(>PATFV6o*i7d>a^r3?ai-^5RU4jYajZre2S0 z%6CYASdi#edw4%}WpOoom7Df%ITL|_NEsGP-?g`n9!k%*MgEN~+`d`}UaKI}Xt7XQ zKysG?2gpxiqoXImkr9kkjEr)OvUaHm&@fSAsGzKXC#dP2&a_CxP&)RC%E!^=n5d|2 zbw7I>o3ZJssofLdqM904#nMUDjjb)U;>lfWFjHlI{VJN7l*B_0kcU7Tduiz|%r*F+ zvo}-A%f1A^zy~zLgZUHf*|V(hsHlwan3%5`Fg)&#mpr(XlwyIY^s9zxJyxGswTiV> zw>CCZ0DhrnhDW((%9ZP5YAPOjCNB_5gw;L#jJ+bbgZH_UsikEh1v?%@b(C*$aWMr; zdi8)%o;tqcYA*@QPvyDy5vs_VJeOH3!6M+11+T28(J+qUAUnO9<7~orjgEgqWlofN zTR2ZE-%3>xtz3+|e`l%;-on3u!snxd%a>VCtCcZVCF zX_vWrmpNw;Uchq+R1MgAB$SpsduWJj(_myy@DG69c5i2I?$c8(?U^$kg;qp#@m|5S z!3XyQiW2Zuy*1U>d-r-?l#j+BDw(rE$;)QJ*!gZtYWQXyG zn!$qFGKOy)z8G&B^1I?^)6rE`*tDD)ujhxe(ePv~l&W@sgYekm>ar1mX%~4_^Y#ay zN2Q}bQ;CJFZ{Ub1u^6_u=0*JRWWN!~#EIW=N4v>!#SP*XG)^|f+xxbwzg z6Pc`=0n6?556f~CeL8rl^9pLh{|Nu`wBhhCcwu<&Ero8oyz=>4(XwmvK5UFt?~>8j z*>&)Of9wOrEtkl@4uhsG|KHn9qz(lt4?FvA``=AO9$&m>cfI--`yy4+>(TMyi1&7X zBc=KutLoi9u_g1p<~5gBW0b}ov2RKUZu=a+S|0t{^L#cwcktl)m(bzue8{JYrdxye z(HyVwvk?R7n$GtPrS>t_OxA1|dvmtC5+Z`!9nddZ&6ZSXRIC_p%AT>YJD44En|tBh zsz~kkpiwkCW8>lBIh^<-p}%|jUTuaS?}y7!>AliYt%7J&lajVM?H})sNR4C)e*b1f z$?|mQA$vD-(Rwt>6)kHCCKj5O38S@@_Q1j}7&cCF(f5)uH;`9SrUR%#f3hB2r`i`C zJ*rvXdKkT#+?TVKLf-l|Zp4yO9b~_l@Wa#nb-sJg62JMM*>0Vq!$SvnxuBq+ZCV-{ z@Cp%q&(SPC2PVo*9UYR$@)Hvi%6xo$X%Ohl@XYd9Di&E}BBPptYkZs}6kKM7uHlAV zAY!P$Wf;k5MY2PI~RjiijHxMS%}y6Kh0~(r55oIb|JjM+(3LAdv&|dgTmm zAF}R0yf8YNb98hxZ6=2LuWdaXmyyV@dl;ueN#UB9;HMJ^`Pc=HEP6?DPEN;|bEEIA z$75nt*AEEA+i@UF6G>lR_wA4Mr^^Y*gT1S}`>h6>r)xgDLxEph5qHyN@0%)pzsCD! zYCsNbP%Rx9QD-?JZRY4hY5d5^PQX6kb}>199J<&q4SQkY`!Bl3;_MHL@gbZX~w8VI%IbJ&7ZSSzQMokTu@EOVy}@M{ihB!SrZrAsR)u!xjiSE~e{6aIUY zGBfMTSBEjZZ1mGEdGTlXyG4In)$ZO0Zaw(Doo#`(HcYz|RF$yfkn5Lra4>dc0cSyZ z_`9>l^MA^h_N_`=o%rn=JS~H?WH?Y~ zwIP`9J23sTwb=aLDj5+8)d+KBtV-0F7It(F3R4Hc*%N9Lr-rU84-j= z_-alL14PDN`O4c)8A^yfT)32(##%egHr$``x^8)kaeg7ZLpc*Yx%)*TCgy|C05PO? z^SEB+$a*`?Sx8jwOp^Sp2!0$+Og;sRv%~Ao;n$WAvaIRN%wsBY8K_#INIjC z{`B|TqW=I2j6ne-1E|x8<*udRXx*csUgNw77x9;6LOVhEM>SlhI z=;QPAiM#9TO1U^RqxU zg+d6NrijSNC;vZ=&N3jXzKP;@mu?o8kZzVv>F$#5l9G4`DN&GEx*G`z>68?Z?go*P zR#F-fK|0>+`_0d?bLT%Z=ll+}q+ePniFuW&9Ia%l!&e$~y#j*ZSsZg~@WPN`ko^i! z*`Vz4+#wlVO3Tyhm5Jd;!ohP<2>rjMH*;Y`mu;HSyk@e;K5m0}sxx-iBZOxAlJ;N2 z62my9JW#)|=5{&M(U3pQ1-0RNG*Cso>2^Ll#r-suz%n z(^VhGjD3mZ#;I)iPhaA!NK#>@I0($#DuY~t6lEit~$vvu%#BPGuY|lg1oE!Ca zo_YGl;aMp(!{Ss_`H-+HbAX|tVeH?^X?2xiY`n@g{JBnRYg6ChyRjetFO}V*F0_jOBEPqRnWv|-6k)6L96+&R$5X_#oi5v%HUo7yj2|xPR`FS)I}=sj6bVerG%g(kd)oPmgfa@|H#Q z!(e{u`2$DW+ZA2yC-yykqho5hqx^xVIOt|n2{ALVgFf}ZORRKqO3ME7Wxf0R`_%75 z+O~YJ)_hsR{oZKwTFXx9gR?3Kj839~8qWUu2jf6fiHodi1pBy+U?Tba# z*rqAva_aoFLP8=S9y(i=>mO1E3b&t8F#<~K0wB}-u)nV_uATz4A}WcPeC)hTc#75_W5yZ$IPjN@3i#7^Y4MGybw)sIdUHfbnOHLJqAV#-RTG z-+(Qw!(^~>i zcKR9hRQ^5b`T=5KGy>-=~sz6*2t=z(=BE0kj>di`-Iq>2CaC*h`^}mv&5X%_OCH0uG z01nc00O4`C&^6k87TNtKg697Eq}r_vQ>|E#_G#9`)yYHRv&3pCtDK9GRIN`=h$Hpg z!LHu($e;_eEy0eHhH-8I2t(lMaL`Po+w}RTwa55YIY6cNe5%jFd)(-yS)D5bh?lk? z|IQxvHEbV=V`w@zWRnyYv_!w$F%YsTRtsNl9L=Jlz6aAl;+j6Uw7AUYO$B~zRn0$1 zzHqn`d+P(j78|a3QNm@U-oJh&u9owk+x*`j9vFY6?|vUmL=)r4U|GC8VS2#Om$fHo z!vFaEt2y&f^UDuJIO2ucNy;8HjK8!n$4MAPl$4cOUsvginSEzcd;A^wL_s?&GV+j- zk?}7mo4d)(BxgaQxmzN6scUVeCJ2CDX+qR9 z(*Cm@ZRYonQX=hamzb_&(n{IuD)spvW~O&Sh#T2X^p?{Y&pi(6m$)jEm#X&zKCKYF zxAz%Hn^=r|p(T#aqS<~G{;c)wwI;|`$Pq4lNbcTtW5TE|oV}h5t1Y+}wi? zRT1208xqPn1m>pcFIT*ocxXjY*lbc75YH?$TT5K^mjwruSkG*j{x!8f+Mozk_rC*# zd9qr~FH48-kBpWm3D!}?TMO?0$~QOTDn26OLH(iN*Emmi>j9`l_(}8j2+J_eY!vOZ zEbk`tw8hF!l1I*6rjLk<{#AV4HaY!}NTxgtiBT+r3ZNj-zcr!gYd;0Ge2j1dF{MA7 z{o93-N@gz9I_1;#g@Q4&2z|y&3O-EQ7gYI|dXf9xSnd1OnQnfJ9pRP)l|@E(9Q(}O zx_;ATQTxnmME^evqwCLh%TqeJ>SJ_LuPC1|AD0l!Ue-$-#~)yMPEs;<-|586;p?hR zyNz)i7tAzhf-8W+u`xFxKT}kMHXZ5_Sisu6f|0BWyI5ZCeG-*hF8R^3vP6sNNhu1Z zjNO}!?tT5i(uHsDPKrQ-i-kKc^zg3jNa%)k>15BfTWiFO#-6AQ{QGWfRD68oPn@Yk zRicwpKxG7^dZJNfG<cTvETA9;QwfrPwb1|pSvwFbOQ!SG*G=JcqHS7N7Yi)z`=$Fs_;Ut@6D9qZ88Jfzg zXei(rfU@kq`(;q#y!okU?6|DLknl;@*NN*59nx>fGoEqB?UZg^;m70P6z8(^(&ggC z+5OuhGD*-iz!gG-zodi^6SJt5>>n_9kc;vR+w6_AEJlYJcL`MQX$#w04P1!31l zz}vt~CktKO6mBlA_+YdUZ?zKLjO65k{>M!GJ)i~`%)?;-K#wIv8_)%0AXbp|5OZz^ z=m?Mx`E&Yr_U-NUVdovRwBri`N9KCRRQ9h}c56l|Xvzx%Nh zKuWz{UwyWTYWNthii$Q| zA0PX2Mv?P`PhY?J5s`c&_sAEobL*}PHJ+ZIFCBIaR6tq*!~n$)%a-)^sYjdzlU(=X zsUlu94APt}_ZKFU$J3U3*}S@F~ywNL^sbJ$QHb2%0RoJiC(w}lBjLE@kp-7`1X_odk0ahRz$K%LiZQWKEUG3Iz6CF(E(j}xjIr+* z73u=;TowRr9Scd%AOUeiy>)b2ADGF10o4L+zF`~%EM`{9o+wZ!9-9DTAcsUo`SRL47(=}I zTEcOk6g@XJ#qDzjYyjOJ3+VXx2q$A?PC#i=7@qIpN`umfWW@}iUcN%sLj=ml-BEe_ zh{ka<0R&_?!r}4nb3fNkjCO9R>xs3m6lpD&8z1=HWhsVxt$>X)+nd)xzll@#AK$#h zFdLe;B5_SAbp(A!SC3BL!BYs`-*hkZh}-*piTMvL8xnr!4cpn}}Q%*;9N8{tNj zMPC>A)V$nYU(cVGgu+nz0tJVhqmZaEEmTQ$&!QXwfQ1TYpv4@{+t=Hh*U_=cCZeqr zvqz|=9$g^uivJx+Re1r+2U7~{ilUNCzvc1r?)H?6UzG(L!D7qOb1KBQrh6lA#Hpp{ zUKxt{)TK&MpX4*z9(y|mam2?9&QAR@UH)buOZ{bV&Ny4^-HRpt;?exoBc?Hp*plKf zm6&Mk(j+U<(Yub({{DC1Jjl&9j7>m5K#Ia}4iS(u`#`#U(KuCF7S=4m+-SXHUJs6s z)K)A7@tTEPe|(0UsKO3WYUtf3Wa9`Y%{G=tWUzA<#=GxDQzA2HM?)D9oGe*3dY+jA zXq+2OQJStRUt@wgFvq|muE23OQ9P7lFFz`b>tLUM9-%Ol`uREXcjuS=JK*KT1=A`< zy(8Xg?C(SFe=8bptGkF@=12E8O~FJ6N6WXzud2|~);E8_(runjY+yR24axD^B(Wc$ zvo+aBqh-*rBo^8>R{x&69#6~TP!Z5(cr5NUkh`zwHDK_HlTx8Bc)e?dC87>Q0K5?1 z5Vnt5KcXBO^u{uepFk`IuRr1UBWPmo@+R96LhN^2Zh+7;XdzkBxrO?h?wHSxXvg_kMEZBoaJ zc?(9~5NfM1@-k2?tW{A#p{70y0-&&7ym%+T%OLz&iKxW-7r8aI()ub%Fy^Uo6kTlZ zlR-Lp^NBk5yNkLPR;ZFdT-t=^a{B85dlk94`J?;oJblHkCwPX|SUU+*J}JRyAXB!e z9Tm*t>-vMoIN<&@RN7`isR!EuMeXj6;L&QsA2zW=LIZwiyaQ#g6UzLiKb*N|HtGd8%=CypTW_P}D4~^h8 zs*8LERKUTw0ECszmrf;2*|%g5T$9~+ON0q^@5;bnmyCB^|9a+C&|@Sm|DN^L^T+qe zAw-|VzE^ae_(ulgu#S!GD5HIu%%iwk`nt%UFfgzOu4fR0YDL29NZvZ%v&L#SqNT%m z`qW%mjI6Azo1-Ha^e5mRkvx|SOfrdsx&V9m4Go?|;GqL0Tv{4KgFToNF>fyobN(*K5Jh-cue<7_{n6{}H;ai3B3y|%g@G+ww;}AUpDT(}*zNJZ%if;2 z+HwD$jr&H;BovAdm_|#zc6>YHGF*r z{r3_+y~4v+%b~2cxJ^Dia|c7jNU^Od5*gUA`}{xTxHb;ixDRwVqsH7K{wzGj)iwNv z2+z<=`gAdH9m+t8!aQNYJg2-z{7rTT8)6KdB#PRQ`8Z@2L$kvRf#d;nr<(rKo!Ko8 zG%4B%Jl?4?_!mU6>xJu58#SUT8}DVu=6v)#R5?Jz-KS|V49cd8m1T>WZ5GIkwYzVcJM;0!qW9B=o>5nb8XD_%y2 zv<9~0K@ruhUB&T)JXi!52{UySKw%sk6C*`qG&S3$C-HhsfO+d;>4>rA@?+i*yz?t6 z3Y!^eYLc+ca5$;=&aCv1{v~f^Hu~C6gw_ey>4*duJZxP)IVlwQdTM7nq}e@ISR6W3 zWW<>*KdU}ZlXaax-Fk$GQgiZe4e_kD0iJKxhadZEvXRmtxpd}Qcua4p@%2&Yvz_}| zdCY7OQqW>$=GOJMYQhP+5_->~xkglMcLI@tnA}jkq21wI%V0oQb7|TwwW@gUFSUjQ z;7*|@Dfl0w`leAyhISb$e`sNMoMmBMZY3_#34PMTq~vDjV5AG0Z@o-pvmKpRhL;I% zsD80{JdluO{C5h$Pk<1kHM+@E|MQc`AALeZg|podODfT;KH zDJ*Pli)xyhUNux#yEYURg$AQv#Xs^JSxpO)Ob zI^81OdMZL!uf0gy_wcP?WOv&;P-(Ik2336gIPs>EeY`X;f&V?ZtH~?Efp9`9ex=Jf zz2^?1PZyla3k75Ucca!d` zR^2Kdi^I&)LFLc)xw&F#?>)jt?*B_RaH>G`H+ZTr;dlt<#8yLSY{*`NSHi;M6-i?q z9JI1eXw2Go{Uhe;a4p2aj}~Q zD(};?j>m@~v=wCEvdy8=DUs0W$juN41M^8q)Dqzk%yG-+3b2Q>6t6^m{kgv0pFkW# ziJ(!-2u+?(PY(?#tiGjCRP}O%41U3*qzeD*#*)Pu^Ck51!{~KHAB$3a>@AqI8R_X+ z8DCoz<#$;9T!<#}-v+Fo$YGzx8Y_Vp9)VW_i+>hcT=ArI@sGzJZmBUk@I|J~N!m@{ zrnXJ>RKdNR1-DLN84*ecXaG@2uP}s&W=Dp^2r`C1;38X&D1DVl(BaYdv$JNBRxd;s z{;PDg@ItgK^g86hpD$>HL6BbTnXzY9Qrk0?T&CYN9o-eLqG0=mC+Fe8fx-yn>l>1z@TulxAMQR&>)XLN>J|6F~bziM@JH{gJ$_S5n8 zbnSy9KlNeTP8;Q-&wCWoMWGfQ^MK>OE|fwex{D417|eiUrnogHD;bs(=r5r_G61eN z|KX?Ton{5Q9BzyDJ*6&EmK^=UrS14>8V*YyV-N<|3hoOY<;-M)!ky8VQy_a{z2BK8 zKLOTeZM)!ABS#UEzLrsKsT~4=5q-vBLj?OqJU(1L@yaZCEQqv!X3jFP%A`FqOt49> zZTz>#ZDKpW>BRH^cVi7*3>+0y`u~3}077~(MLH#v6$Uw2p)KmB zAgK5dx<>?V1{ckV%3&)TdnT?U!}ePvM^Nk-il+Q0X)tg7bX_zMUW(<_V=r{bBMBNk zdNvrac(Dsr#LQwUG(~6z!=I#8t6A04C2#ayVrL1rwuw9^k_j&=V)UxS#KFl189a8} zBy!TD3^D+AJSb8ieC(}VGbfW1`Ra~GT;m}IpIXlhu>m8x=HhB=Pma{kb8{?KM^<=} zp#5+-Nrr6n6AHtQ3F2QSY7`f`&lY5b`m)J3COl2M1$F(I?B0_j(k_fK;}o}Yk*uHGijEn(0?Z+H}H1OF3vf4KH(Gt@XO z{ovDwd(QhkWv#lSO9AjRvE9({@5LLFiHX@%ltjnxOgYdiObRFm-X;^$t&i zP51S!WuPzDci-L5)ip-!B2>nv!q^!IF>~-HYPfbgr}wpCGrQ!{ww<#R0}Zz$VS1lH z`i?R7tOrfrd~#Rnb;-9^JTIOXMaBB^_MJyix;2P=1$ofF3wI-!WuPn8uDK%U&I^H# zr~YAsQapJ%G)Z;aG{Fpf*h4eMc<@k;gGfZv9{??#rXY7&kBlr%B)2LIo}THI4%`7& zP&XLB@I#B*zHbeQ095EI<>OYs^-f`S7*{=|13ShS9qg$%?U2$8?AR63mS@JHEbbo% z3Z)W?WQVhSPK2n8I^5h-$Q_V90;)l6>+S=)FN~%`0~2Rr179X(b0T|TJINFR>#AVl4CCq3Q2v7@2pGDaf$?8AdCa|h(6ZEjLnz*fs+5BM%PJD zk$of%w{an(!#A_H0A3ovqD369RP?5OIYMqoK3RyQR)v z(%ff77kiMMv@7tAtUn9~Y94kFlTO_J8J-;SeLVf;v*j&AsvEU2NI;#n61qnk?8~L- zAOq^BU7oDSHIQ~(fQz6hkUg{=f*Joea1^KcSsPxEN&B?O{g>*77bgsmeDn{nT@97N zUV#LehS-lU2-)(D$;g60G`$V4ow>P?a|ZBk0DRM<@p+;gk4kug>iS)+z`zGm+LRuO z9I&(tZ^uVe?!(G<=fKO*o#S+Uy{blN!q4r@0jH^n2{ur6*;HR`R+b3*y(O;j1~Smw#{7IMY{vIr2T`npS_#-@w~Wn)7F7fy zi4EPUM!GujII)XM3X%qq@ajFLK9Ec%H1dUA5?=e{ZdEH|U zd{Wzr!$CnfJUd0+dRmnU2h-L=M%)PCM9=49VzOfa(;U@Wx~H)&8L8s_N%I!|5R0*^ z=Nbpx*N|KSq@=qG7Oz9=2?N#w2&RG_orhNmv_E#84rRyJT6leFa+y2HLK2aOV-6#` zAO148ZN_}fB~6pz!AFHU%c}-Y{rEMV7h*!RtC-C$9xoWv`8=PjVD8DA<6EY7 zT{f?{Ioxix9o7h&tnEq%eOo>EEwHlha)bX2yqWy~GPN9}LGj(+`Qh_9y&zr)9^jmh zaO}d3`!V37nt@_1osT#jVU)IiGz*onI!*jZ$GyGw7?|PKwvSVW#yk*kKcoJV{4y5- zS2s7`9(t^8JNU2pc;|4CPm%uAdzVrvMm=$NR!e%gnPhim?cpM3lz)RRxR7I#(%--ac#u$kYJNfvaE$aU~XtV6vz^+$)LD zGBg&o2fJgKovA?d@z;~=T^q4Y!S?c`V8B($QO;YLSA>x~=Fvt!jQk7zJIpR`p9DVf zy9I$ComQYmslj=VZ;jQldM$GMCuJLufTYA-$5cMDX~U zi|aj3s5EQ<#+~4l`q>Z|I-*Z-Oo76I;URtv-D;EE3_Tx*3gshNxD6GD3x_#R$2&;} zfBd5n8v3t|ekm2E2t;jcU*kR8L`(&|fZ-I16#pU`=Sm1Yyh9-(Oz4dMXGqo&mhF1+ zVaEPAD>w3RYkAZyl+kr%M{{!0^UvRSD_62(5?4Xt&+j2Mj*&p>zq-exY4xxM!+k+J zj;f2x5g1*(CH6fkPz9XKl4%n#kq^pMmEO&5s%g@ft8wmK`>CLNMy({JRh4cMT7!p# zgWVgs`1$2p#p$U>i$M;NH40{sZLWL0%qf8;9=P^JsK{btf{hy;R+)s24AtMMjXmk- zr{mNLds@d0i|V$ zNGWe*=DOj=K9_C!4R{O2t&<5RVf?aTnyfdY20Hh_4@aq22*s^dUGjd12nYnA>5Y_3 z#dVZxpVj}X?W03n@>5^i-%rZxT`)@6hak+>w>L?lTVqgeh-TpsICM`GcK+w=y!4dj zlC$M;5IEdiB#fM*U;qDP0z0TL=_%OMu8z+!EgfxdbtG;uWkLcsW9zihO+WX|4)~}_! z4qKhc9@Sb>0LOWF;l6;9$ABSi-4Qo^^wxUMzyTW5gssqo1ry;ck)D9;(Q04Aeoyx)F&fnD#V5rl3ev>sBRJ zbO3|F8`yY>#C(GX&Edt+(TE`o$JCAD4ad}9Wbg=tg&^xBJgylCt+8TwF&HN-7&&`k z5~iVxffcp23q@8wLW&hV!1J-OxUwBTyjYL*d|)B#V8mGbnD)Qo;I97;{^KerZG%>F zj-az;qzMSW^6ksah-?}=jL`p4?hB>?`#D@_LK0v z$2W5r3)gTZ5rK@#hd_UxsVx&9t zVOI1M0&R6^$wrC?oA!q5TuxNQl?iDPS;-0&R|CiXo6`qmN>x=a_B@+Jk z!_t<*q$Mv~e;V4tR?WXk-8!URPm-qfl&^ycJ#SPx?7zI94Iu)E2Yd-TtzAtDouTG5 zlO%}X>6w|!p04E?e|L+d$;;E>m57a#8DHm`W49uyg>6SVhk3v9yqxDaq|^f|+^EH>je zvvgFGs*Ksg1NMCB1`VV~?cebN(;4hvcTr_X!oc$3gk&p2E{!?0@My74P5T&I!6Oc{?IrlzjJT1p#_S6+IN*;c*t(C11-m1$h^e|cM*3g#{_iPoZWl|frty*w)L>*Y}&$EaIpCoJXnA8cD*c7SzY z!|sJaosX%`^k_cwxws>Wgy+^KyOh-T%}}yxL-E0r@fK3AR6<)}?K=!Yz-qmxD zQR+XvBc=XStv-spR#iKDd(b1+(7@lKy0^{}tb!vV3~2W>KQK<$r(n*SicY*LU0Y z#9F%F4ThY*Hqv!2O0OLIRy?X+GSO%pqZd|hO!$)Lwa>4bIh{Y2mX@DD1BU>@l92)< zoMQ0}iszQ$4|B4EWk?hZ&@wa2?gIT9*t<4-2g=^MU2XB38qw+$a4 z)j)@h8C_bpXZH{9Fo26!va7G1-kki0qpiFpkiek%*rDj)@HU~LJgHe0-_+gWO%vW1 zUe_9Ppj>ZMuk>oa?@E&nJ75i@P5DK-KE znG&H!fcOcAoZWCT%TH~b1F;epi^LxnU)9J&JLFxbf=vOdkT`_-yVutMmKvh@9eML8 zZ*d^jYM{xRCT=bwwLj?LEKl(_AQu*1ogXG@Oh5F}IGfDyy7ZQP>YyXa8@Ahie<5By zc^OJ8VV^@l2kz!sxZs{-N-pF;^!1zglp7sv9%+r0$-;7ZJOnzMa{#l_fDOK!Sl*Svp40~4LBSu?MZSCI1}{kNX~{-hbgf&xan?&+M!+F z+Ji|WHzH#m&DqhSJpG7aY=pZq=BV({(ZYpsX|O5T!bZ4SYf14Rfhp88Ovo-CXT|-X zP@ZU~VS%b-sv~f0@}(V`uajUTCR|YP=!G_9`K`AHiv@}MH&G0xnm?WI0}s!Y8&>L5 z71#1#DoP{dh}@F_Tox!%l(5{#h&?L$K3F=#)AdX~0%T^Jl5xx|c&9F{fjQtS<=`t2 zSz~=Paxrq$TYMCuK``0Q1*pYDY*+ksc!lr!kB&LUol^0hjra3xLwlGB6$T0mlLyuR z%WlAY0(~+#Y7EO$LVfWIcX8Cwkx#=L9yTTz$-7>F^<8C7lL^w)vB)voF_nR-mrud=Dn=2idiObZ z9i8d4s;a}IEck!0R3!9#KMW{bL!k269`4P<4frRT5QY`5L`j34E%;pqsA1w z#AuC|fm_{@igA-TmGtIdPxY1Z{D$ntzD`=DOQXgF-B-gR;HKBQ=)nx5OoXaVF5GrO z!ab%nWBpBEFQo2SmV4s!nYs*Wua=x`tjmXk6jD%&wAh-QQ~;aI;M|D`xq4z^Mecij zlUmij8xz|kLPm&6$8AnIje&J3%lQB@&DA3vrD=jdF$C!16E!e0I^=p)JUxxYv01>O zM4*PVif}W@CMycjL4>|&dpaEV6Hx0xx6Il7H?R?0a(!_aeYN2tgT<*up%oHPzj!wj zfL7q{i1Yt(OsdE>Kqw#8oKsV{doFl0_w~FWR5&Os#mmfOg9t_vwS(XhR?r7>RJgc{vqQVwe-sLJ9o)Y% zbx72~@7g{%_`3NLP|dH4$;304U#AP!*#nr?_d=b+_NX8tg&iHKt~@s_*DCQP?MfuCW9v`ryeGQi5FO=uKp{Y}l@qFq!pCeXf+a=&2?aN`7)vll&DD0IH z1-ig8$8=(GBnlC zUp_uAi4*)5sXRLjnoB~RQGG0%BBCoOmW38D5z65O16cIo06o3;s@>C-gU-tzZ%<7B z{&-u@G~R4yAiTQtj;nhuuf45m>D$M~24<6=|4`k(Cnt|4bF;qZp0)2zB~VW;x8dQd z(!p@n&fI@(ilL}LciASjaxz3{MVaVln7DI0I`8dXf-hIX?(r}%F@=}v%`tikS<+n{ zxS)Gl=~D#$SP){IF4#?!PEJmhcX$3^2y%EO7?aHU3@V^d@5Ur#Wfswc;-rRRhgqDY zhAlF|+PXW|OW~;si^#`>&^v()QB~%`5FREm$)2^?F?D`p>JZ+ga3NE?k&!N?gTtEQ zbaXU>bbH-EO@^w+C|m+2X<7o1GGeS30b8F~U$;8`XtGKWo-8RQRw?%CAWfx&&{Su` z>vkZTSdA(uvl9ewNf;O!`Ur`O-{#!B9T!Y60GZWi^M@`MHzh>4o*2pwo<4uAN=4a~ z{89R|l4(E|`v#vACl-n-H2MkiMY_{5tTxNXu0s(I*4I3)&k#ieMMe`vY zia`ENUO#6^zV)R}la&2Vpx&cLdj2%-v8XE7Tg`ew6d5X&Z;mTv#TWPNr3nRW=otAk zs1+C%jJrI1#rbx%Mr69=xhQN_kAUf@zM!^gV7%X&LETt-OQT$j>ZIPu0w;Fjv!bMO zCT#3P+a~zpC14}baX0#{KQbQ2>WR2`A@zAj0m%8s?yxv z)_lyiKw%QNV3HifvGCmt&iKB#?3$U7O2}bs-t*E#Dz1@1 z<|GNpe)|+A!6Z~&CT(fRNCFBGMZT?&C{#Pxyab(y!u{ya9A*zJwqn*8o42n;9}AB& zcmboIyq3BSHO{Vw=xSo4PQl8CL_M;loFctYz%HXHqoZMYl&3a31bz=UZPqGFK-p>K zF79MC!ERs z$ELqx6G4J6)$N@>JZYfBz}hd2ejS$Iv>|a}PB=JsF)q1VE<_*ZUQ*jgb ztW`zA{umUsbS*9~b06${$|&Pt`;)rg^8?*F69kg#_9>@kTBlYX5^FSn1xkSA&&&d9#h(yP}IYS1RCrz;lQ> zZVQICqJaTP)q_k3_Bt(j>BGarF2txufyDmLjm8=>(zd!QZ+UT%{|d#43W;-cL_PAO zSBHxgJq!?Y_x5B~b`Um!lCu?ncDxEsS#AbYSYh|Hs00%d5#@(X@w0(%k>)`8f^rM6B1-Jfe`Y)noEGjhLP0?8 zf4$b)|46AyP}_C$92Cl$3V}%!q4fqNNs-FsI)@7w%)dL{p@V4`8!vIVgH~K$lQ%s` z-)$%!dzRDkHBznPcC8X?-FfscxcsI7q}r*6_;EP_B5G<|{i!!eM`~X`X8OK-AC%L~ zN-)(trMA5JPRZ>1W+N6%f?6&cb0fPHLv8{}Naa@-tzB-Q(40J|;iJQBM{A*W!S_M~ zzy7C2f(MB}~CebtCiUzck@eX%Mr`iZ@5+k!R+?3*jx%5*_tb% zB%Hy0g0>2JYxNWPVNS^@8sAnt#;6O5Crs7GxeHc8PKb8_uVK`>!e zjz}dL=m|!}GPi}O+dK5 z0g*Uf+5zi0TnI@-W9F;at${k;Qjqt#ODce~Fu0WbjiBd&AzTe%-aq))$nh!GT0v5|_wRLC zWI-i}#zukXg56Lw_9_4w23oIn0dzEUbj|*pSMKhF_DxAsL`Kg+RZk89cpcPKQ4ztY z!`h{tpf1c5G{w~&X z?LP>!d+Ou7S!hPxO^FsO$YR5CDgip z4ja+&Z4xi%NolMwP&!pTPaut(iexaB3!@=~{00c2R;X;Kd^l42DPD3I2VX8qSfVuqt#HMk70!h7$8N5l`qZ7PiC(8>7@?wp*He9XBvU1> z9MP3OY0|)fo|RQ*`5K|A_c1y7)kW`q}gG;eHIqTij$ zfA1S1C2AY!^Nngt%uDdBteq?>41udXODK%01OC325pHO*=oH9>*!Ma{?8hC19UL5d zYFUVZ1O5ro&W%&1m8h~IXzOzzrnelVr5f;h>llQlkxaO2J$oie2DXuSlM@wd4<8?? z?#!>2^aV|bV*G+WtR5;Nb8vY!2@#Qdp(!ul5C4zncQ!}_B(HylMp7^{F$-CdS6H{jF+BRo9)D0_q zhNY!G;P17y^{F#O8q&${xM{&Dqp86&`;&&FW6Z@VkN<|ci_(o!&2mzy%EY`&oUZ>D z*s@N8|5L)!C5%y~n$%`=(rMDmu%!V^e5DB{MR!C9vx3SDJvkvvuM|gq0!c`PT(1i? zvgh!1XsY<8DYZnsojqHj<3?6Ri@ZB~o5|a5S=IObPYP%Mhv9|LS2o`l@xxqgR^H(0 z*2&@MO@MdFZR}@aXc!1%>~PdPt5M=$UprC*tx~p7J41JyQCY0iyVP^p3(U@3U3C_n z;KrvmtoOo4jDF1Lul!i{(EJeVd^Z(qo!+r0)#rF0Ue3Py@u6tEljk{+@h1Pt_}19IS)^-jDfd-v5L-RvEdZyz;CNuFw2EVn&Oc=mQ3Q;15D67melG9E5gg}VM z1@P!RGF{ZQxMAic#nnGr8(p(Ws;(RAPpw{ANl7Jh!a$#EcF6}iG&E#leNq^}Y#0fT z5!30Ww}adD%rX@>QEq+zKK799#?St&aQmCl*TJD7O=ebBtrrdsRiJOx0Hh?fEY%*J zoD6>n5*jB0&}DF4l;5+^Bg2~*GhwJpzgAGK$x$-)Vb!m@xmihoDwf3lSdKCVrbpZB$~z*@Fk*R6E};A zV9IdL=}qZgv69QB=Dcd$6dI#<0Vb0Gz`ZVmsvbPmM|dm-phi+dac&VR(_atJtN?j> z=1{n4n^93ifCg_wYu|Vzu38&a5chMkc^qrXMVgfwQ>wakZL~$y`^7Zs( zr(0pIUqG(ZVE|Vs11^ME3;f%)`aZ?QE&q4~;@2vL098j_CVVGIboe@E0I$u{th%8- z5LeHLn_gb?%i#I#3aIx_pP5kupK=)?g?}84er>1ZmZit&*?kb!kn-&m>rqhn35ltE zQk2=I8uL;@!fc!`mA^M1E04dPP|zC4SuFn@#%DF)?;a*72_?j_B8}70_%8dWT0(7} zxh&)8YB4V$s(BfG_TpHGbAN1dGTYoDbaa^YeP5q0c~9txB;XelYev3~GJ@5Uh-8}g zxkq=ln1174Xs6Ru&USeW2Wz)&8?Wo;x%3C zn`f%+vrWUF(2M|V;^Hd?ORBVlggqMK;c_0$6&2C1rcnstYw=-1g+NVZ_ansq#oD)_ z;bDXR{(klxvT{NQ5>PGYx;qArw&aK=Vel_ zzEol`cl~*HNQS4Tawzh{&zacb_4i%x=G*F*_p|~9Jfvw!hH5fV&!5NenI`6=f> z1IP<1Cd=o7831B;x)5ghZ67CHIuTqx6ggf@8+3mwclkkH0YCbQq{K>^Z{_xJSOPor z`gnWgZn~B!FRr}kyQI1TU2s+gE<~+*3$VE~3icdobLHW0w5aj{pl<`K_=RH%>v>P~ zls|g9747?Q#0Y0=;zZoDC&rj*Dj)I*QV6DQJy7gObTu9zr*J~TVL187qj(;K`0AyM z+NYqe51;k#T7zXzw`r*4n(6cGNbR*~BeG|M7^L&N74Nh2V*RpwibeH&eObTFo!1{S zTS3^EAb$WplN!KGychaI+>?B-0BU&8Ne-f*u9y1AZZ_J8u&`txzKwuO70=5|WCQ z73MTj-VX9La6Z^!)&68(CN)=F(Qv2|qN4H#=|XY23s)2IiC=92P!dFq;#XPqmVDh7 zGo{CugD$$spgTBAeDifylKJsaz3s4+Y}|3)+WoH%z9faS+Moa_78d(|SxM{y0(vFd z2>oy0zU}Q8Ui|%AP-PY^;+?6jQnl_x)RN3T!!#dZm6w0Gv`BesO&>TnYw0u1!byY( z3rp99x*7XY)4VJTxNn-9HrFutX_A(aD}&`>4X4_ccdOB?`cFw5*J1)0VS-6a-g&_r zbDD+OqvcP7iDmI-5VPyCfB{kgxw4E(BfF!~2{O_zP=XAJ6Y*)6gbqNE8oc|-asVC5 zkmP?VAdg`ZY;6L)QyAxACy3M2Q$m3oh#Q?M$}WGH0tzNC#(z`*T3C2EAAJBi62l5o zOe+%{96SqD0x;kX=^qe~1(2Hg}q`vl`9leI|fRh0@8aRH#rmgXOK5=+>Yj_-QNWQM? zMIk)OLyfQ&I%(i7D}G85i^gmp9F1~5KpZr;)NFp=ZzGE}v7XL-vPH}+6YZOpZKnSG z{$OGM=CE6-w)+A9{wGiEOjT`{VsmpINUXOKm=*@rF3+2$m!4{l{#DLsv6oj|(Yu^Z z2hd#6sWwQ5|9kqz6LlSviGl7Z^e++b{c(}{6I6g4utKe!1bBN2FhS@-3y=iS3Qg(* zA6!!*1Oo0Tl_;6@D{qX8N*PV9eI&><)&^B>%#Xz!nuCvJ7lkl58)d?2RC?*L0k}jo z^yFPXF;X6gR_VoJ(yVL4|Jx=12VE<>4s(q8Y>||IT(YC(Aiht)PS-uA`6o>o*OIc6 z-jM7K?~Ak_T2zIvZ7!!UHn_I;GSt9qQd4s16w2m>yj;psoTvUuSY#RhmLLOz>&}Vy z@fsnKWns}LV+Cm>b8#o|5OSJ$LmOTg4eI~N;k?d`38OMZ5s>JnH+cvBL~jyxGb=g+ z(gJ+u<}di7itFl<|Hsrg2a%L0@9(< z(j^VjNQZ!Q2m&Gs+{63c`+fJU<$o@h3-<4vy`TMrUUKdxlY~Ulzb`cd+}1aVUmi;m z#3ia-o1In74#la_=U;M>MdZTFMyu@ItT246gyqQz+FV+Hm*!CC<Y z3@IZ{lAlu%cxXI7Sa4AKrFL2ZRfyc5{a$fRe>S1-yxOdytBV8m77)Bo-2p}8Zt-^9 zB^LWm-CM;2J~h+!;K#1Vnd%7m#5~cz?{#$f)6?A6ldSm5zFWYJZSi)iuKW0LTvvjk@T}ZbURB=%I&KrMX^Bm1SVp*l>Tp815uo z@W4{tN~G;#7$7hIJpg~X7v8|#_;8t@f1vzasXR0^J`NV2xqTm|ntK`YkR-{!&Bk5c z{L*+!@W^t$^L5VX=_>#|*6zLfks``Vn>-d2z!>n183BWW5I);J+zBZ@eY)vwJ}ebv zxrp&X-$47x#zdj=24k@^|Az`=`OLfDQxu9GaaHJB6VrF@3JH~xx^SHlVnPTZd?5yQ zOwPf@3O~c}oCUCO@14rx!TxoiB2ul@`KZ#P7QE&1&yyrVV7|-~MkMB+js5-n{{qbo zUpVt?%%j+1E#!CDJ^`0la5oIXHv4kE7A9@qB~TVUJaL|6lrZ6=b?*qv`RgAa5xsjh zVau7pY|C-`g{Ify8+&wLCzwM*;6`k?h}Zr7>Nqm1O(Djw!@~SQw7Eq{0zMOFE<8C= zr+XD|7=gwzp44A_C=UPH-1@Nb@QHZA#( z`QpJr-uiYePgE0h-xI<8ah&3rcID{~-=?Bnf4xQG;x8QGjzm@)%sw6&sx1WB#4BQ$ zP}LnV_q?Cost9tWc4DYjcNTXn4WFEhFy`MFQ)}Cg9P>^KOyu%(%K$xY9MBYY<834z&a_;;0^?)mF8CVbg0G{!N z2RODQ(etr&g|{QItvIdq-QK>4YMOO5Y~(iGQXk0+7|b-8GK2%Gva*Sc>wN!X(dMO` z{y{<_xk_GVAW$gRmNDTEllSp>4de7Z_Zdbj!?8OM$LYXp;=cz0V}>55c!)l5c0Nc; zsHSzTeV=3O*wy|IEC%sa7v1|b>xN{`rhfh6eKR+H+r^($9w;*gcr2fFB3JibZKhLg zN)bb4o1`TrKVh$oeigmZDxQG$eul7Z;#=US0u|~9%tSQ5iKWPwmNI7=maUV*osTQ; z9?3lo8M3c=n&t8et4tVEz(_c(NI&16G7ecb{mp?%xJ$G+Nfy!~2X!DNj7j6SoEtt% z55uDl(_sqva_9067A}p2h@*xvFLlDJwao)7VLQ{rgP+b$M4B)yOT71JOmf0^C3mM; zHIbcB>9;isQL~+7-=*;pAkeVi73Y!1ACRib9L9f4t=Hc9giXZm?nD3oB-63ZtP#QL2xu^>^r>fNaQpPdxVc)u%`%w*#_0Y$iW9i!IiR|IwefzD) zRH^sAufdVa%cT2R$^wL+<~w{%bS4Hn7$8y*U&yH&5;I4#g*{Rp?j(GrIOY2Kk|=?l z|7mlup_%hRZ+Do->XwWs*nJ%y_mMhF{Rdf3Nht)0;X2b(QzgKb$?%}}=g&&G5-C8| zf6aph8=jWc8H|Zw?PKf?`R@}C>za8VFuiPlH8&bqD%>FRch1Sk|I&YGz4!9w`m@n_)r^_n)8>!m zpRT7uL}v>rsB>=qQEh#Aif((n4O%f%??yoN&)Gjd3j7`6`#ClYukEArLd7#8{ubP} z;lD?&=5FR)73el4YDxlWTndJ?M(1t!Va&H5J=+Rm{&;O=%S?V;7j6G@6*81hY0VFb zB~SL*NZ{BsJx_h=Vl(s~kSC24-Mu4DdflUu^vv|tu^?JQ=l7&-j{5vQZ9WvqB;6&z zr#Y9!MP-KOEb8VAF8XI1Yc`)5HCI`$jdgM%a6}DwJ!c(+27HsaQ8H%rSU6 z0~IK6ZO^SEWNa^?7RUHQ%;l$7L$)RIlH|qxc@|l~230#ZVe7=qQTT?Q{}V z$mrgk?&v__n=TO01c``z(@lG;4({KFz#tTxwZH-^=7?qeKs~Z=p;kiZ8#k-ar-D8L znTP@=>_~Pjo~pp`D*B}r1?dADUBJj~oP&{5k;w(Ny?bV7*X&p(b&rLm*we#fq*O+- z7*bg#^H4E1^8c&yIDnBCZ?y4Pf17b^9WToUSUePkoc4%k?TU>`1lXbXCgxsh;e(%(M)JT z&^A08bX|`9n+*|9=h~w9H*4?XU;4~xuFpKfcxm(orZ0q{>VzLW_r94*{Ka#>q_W!m zUib5bKbS#tUix-#t9|}cZZ6%xskIg<^KZOmNVRW!-szL|D%QKv7k>|4P5`3pa3aUp z=eW6Dx;&RqdAQM8WdFZ=cIla$4EYaa*=h&aGBDum@1i8mXpwxYJEV_~^@b}W-A9uE z^Cj=YWC^wH=1oh@m_diSX+>VsSktDk7SUI3QN9`zUT?a79s>U zQ3~<_Vm3#kgP`PU7EYlTsKnwH6XOY{jeB6ET)P8jER3Cu{`fUnJQuem-!(wSQwR1ZCyn zp&u9=%$|PU&=}6QDgdnCve!!{zjMJ+?@r4_F2tMf%(8+G_-Q*}(7BuaV<*e)&YCA8 zAjo$VedW@gZFP^Ou8t1yc*@Gkxb>UI7Z!#bMYUES7i&|cPu_c5Q|z7YOb!C&xMwf5 zAG2(mkd$H2I8G6H;%d#mLO0MC635j~Y#<3V?%LaCP`hO0ALl7C=ZW`W%h5; zyT*9^^Pb?@@r8A~^aC;sdQGsrY#e!orVge%iKu^*`D^9oT0>&Av#F}JvQjto^yiTI zqg)NN&)x@(`5!-x<>a4iR*;SU7-FJemTpzwa&LJzV;-d3Ot}0uZ{~L|-O+AKy+$Ta zdU^-r+j3o5VVrZuAma0ZU!ylEFCw9f9f6lW ziBI2^Wt!e7HqlAe&-P`C9*r5{V&yA-q{S-5dDwbNl5O*;O(Ax#*Ks=~*JS#`sLvjSn+gW$gNFK(c>{pOhwR#l1hX*~VI znpnsAea*Mv8=PR%d7?($fmuSF0{fVUUCZL+H5dERSy6f1q528^z0X~iCl6_-vTg)c zu_6mL%cm2}s3@O)@XV`|=$+cz2K^l(jGjC%JbUWM2&$xxHt%8f;JQllrpRIcMM29r z2^^kxGZfg35nZwS`z-_0!mk5HaIm_op21m@nM$#y#V5#NQ|+sg&^Xz^ku}f2wqJS( zxRdhrHFI^lxZAqvKi-9g+s`C+K;_3f<-7c#yEzG`+MIHk`u431+_Wh`!d&6K4%}kr z=ZPRRV5a0JE|*6cK{OuNFU~Dg8O^B)Pd>$0`AH5K418i%IMLJ#D~SBRwD!+jr5UIz ztZA2@+y@W9MODZ;P9I4e3$fNtX%+G9tpu>0fA3Ts=7$4^^Y>Oy&b2ajR2jGwY9xbb{+$=2e-kVBF z5mtJc(j}8)xC|R%bJu)>J|SHsfo_t5)kF{CFY&=u7LQ)=_NWfI1sS)NHbY4s4c3R- zJ6!caM)PI3~$Dsd%x&T`^|{(k#>J-YhqW5XJLy(R{S#b$}W4pL;vW5`)z zETRof7$Sr_ED`PyEkxKNBR>S4M<4F}LBR0VFLQ4E`Rt6+B9W6FfBAr8T}ALrN%dUhZd@RmsB}=`ADI1xEAz-XVq}z`{uHz#|nT0OU0DH}}(UL6`bL{O$fzrEu zCosCZP*G_DIO>MIB8f)VFki!vVzrIzF;;aq`+I*&l#G<8`ugy&l{dBg{qGhQQPwEH z!rv#PpX=%I>1vnq_vgN@uZQx$FgCeAhC*2Q$Qb&#VuI2>h`Crccp&A1Y%i4{Y^S3K zbHDyhWpNYl%M5Sh`iFSII=GN0oSY@a!^8OcDII%a7JN>oWRDdMSDwNGUds^|tY%T0$0D#}x*;#4E<(aYJ z_LNKV+qdN)3*P9UcXgGid^^@`SXRw5IPyAwyTsz;*qh@iU8WkQ7GxRWtOLm5Ub3>CbAVra zO9xB2tTE`Q1goptgPDBC_-ejAs9p8&&Bvr9f@Yf54A+J=oWH=$t``Au(PBA<@L}d+ z4)6ATebFZ6(y-!p1XY5ezxeBs1pOH*uQ(6Q+`9M+iR z!S635GDT2#6W(LVO@Q@iN2bZO5em?ZD z`G}d}0^){gk@S06kUx#^`vHT)Y2eq9kBO$Z_m*N!acz^Wamx6Ic8{ERV{#Txkl)eY zVwrfeW>63u44>dZih}2Et-nU}^_!VL@CR$Xt-d>~`)JPuUxi$R;ocj9iUq!}GLN6i z4|+L@4EyU0++#}e4&V5S!P+A5R2Zf3-NpG8*03h!XBlfB4>7C9j$s&lR%V=5u+GSo zF)IvwBR4sA_mIp+9gq+?sx4hsx``MJdmmJvDvz(O@HSD;ht!DmcS8Ca*#jPCZ1#e& zFv_g7U=F5V!~FQM!`8?D($jws?smPP(4#AvK`3G|!8%CkW43q3QKVARm}{so=E)cN zG@mAZbHC*czUp~m?bC$isE+0hcEmzh`1;lj??>zq{i0(RgR+Ns4sh3*OK%QRi0&1Z zl8Hp;Zxp04#lI&#d2sjrDx65FGl`=X5`Jm;Et1nM%gIR!qBGnPRbfrmSx~CFWei6HlfuHf6KxuXwhbc;J*2_Go^SUU@;|U=sp= z_wG9(8lgwP{q(1J{E+~F0i$F!#fs1-?{n@2|MF&mYV7Gfc;NSgXzb#`0RWFvF7{5M zKmr?Q|3s5D=)XqXVIT72fh!bOz%5{CWQ_*5i#1aCGjY*@K-uwB%!Y z3Z-$ts(6(5SzBYH#1mz;fy9iM%UodY&*N9UecpSg=>v1x&bLdZBF1mn0#~^r2<6XH zc(4Jr8^g}yU-7+$I9iYl#9H@u+pARGJQB6n_{4c{rZ3zG&T8Lk+Za*W6!dBtzGf7c zlr*a*$G5ZF`UU#L$+@|?EkK4SI^Unmm+;)kkdUMM6Y(e)Ml219BBGi216vjjb|*8knI`L?9C`i;+AC`j8%0tHc$z+`;-^BRI!klz z=6#q>OaJ}=S9zO5i5jX{Awq36z>Lq*0VCExCb2{E`8*9;k9-HQpzMR^RmQ|ze8H;3 zeGRJBu{=c#2^7y#g&$>tpMZwj*A6mcl-vgfBWrS+q#-yV#JIEI6YzZm39XKf^D=_a zfDrGaM?xIpA;rqWv>%H_q*yHpd6+>Vb`$%*%caGjfVIRyi$sTA(^gAVzjuT+o8O!3 z7C{>=SE<>qso9J`q6MGndByBgL=F_%hqOd14}5x-7NV;CKoF{(OtOO_*GUV3QkW1{ zpz$q2nN?DgK8AjxTCfln)w3qoUEY{T;ckm$t1qCHj8?Z{oIy((GWPx*UhHe^Me@Vx1w%<_%trb!LC)yY4isPqu5(}a#>jk*N zeB0sdf@J@>#ha16*r&}HT5`qS>)}*Iu^4Q-@B9;|U069dYUX3t)~xhQO&Q9UsHv&7 z?rJf*l`M$`{%a^%GPJ?0g@b5_*0KF(!-)~TEmQ3812ekEqlj(w+s6|WZa&RFLE0Og zYB_Vh_{?qp(hjDUF}q^^)lvM^5|+TtTx%jx@u(LE1Z;fde(O;K=adk5EyZh@g6o(I zg+hx#rs=4ju5Q-B&Q3ZeA1qhfUmq}Z|8u}LrzgDsY2(9>va;XTdOwaukPjo?QHE^X zS+`Ro-YHPE@ZLB6w74obY-uI@IX=mG2fMq8Dy!hZHFgshJTZf)xdd)o_QhmI|2Z`# zYet;?BuhaZ?WJ2-l|{FzEP>BgAEI*jJ3gF@w9>6Hm2@r!mKjbA51?pGx%AdpA--~iW9H^_X&^345}Zn3dE zW87*{IWy9Vg|_lUkG^RK&i4sJ#ZqQ(#=YY-;*T?4+Ru|H_Q;=B)x%2L?|G|9$0kd;k@wN2Zx8JB4W0F3K1Q|$8N3VOn;$Nd(N9W5J z=rfWwPo(>5H6D}@gIsGgaPj!_XIPN>rJuLK!%U-oS(sU)yH88(G*ipBR3^fJJex_V zUgwlylE#6?AF#(9E)&=4>r7;u>SK(PM@U|l!n;!YVW6*X%U@2eOPrOY?(=8OQkh9T$lac;lK+7O!%|=9N9MVV9Ui*7 zTN~Jaf!UHoGQ0~oXUosQm5+o{mh2lk6~zVqz#+U(J<3|^bCTm~o_T_5_Si(h` zd&l&D`=s8pJbe3DGSqW`T`up#9IBMqlYw1w*c&jGaq0tGaWvx%@5C9(@nMbzIG2-| z{{HiD+*zg-beFjqYk9@yMWZI=rLK)9fQ-25U-+$L6M?xj>S@-IO+N>Ek zn+Y8s^3rCFsb!8~k~x0;&kI|SDo>z3tm|>{<3-K0JFH<$Tv&)08-Ky{`yYQEAW=`9#c1QM+4NX<*_50`w}&j5ukrwEZG`&1T)%GS z-QZV54?VnzEmF(?8Hz9(gZ|5XkpdJ}2RjkdxG40NeFo`R-}+$kAWlqXCMP<2*Cxm{ zIW_eiMf-pVF)KjKAP;}e6CsG?$H$-aBH#g{i-_ak;OaU$002U*Vd)R>Ggh3VJjWB0|# zOW|_mDq`nK=fXP5p8P44g-=vCvHBwdyQ)ljJBd(j~aye7`M=zUW3a#_3|F9Z1Q_5g==GrV5m)A*_U*q-qIW zsHw1=f0z6Rvw=5}FL^Gq(2255*K{|1sW&^&_Trm^ll+y|pR@tHlR0_ipZ*A`8KQYf zAQ-}|qwQ@*94Q-devGy#*g1hYr3zip#n#_>n>Md2(e3usWkN&4iEdbW0qiOn#$X}$ zDG~Y?GQfnylVt#-H>B6F=Ua7hLJxH(Wq2{Cm_$x`rIAqveq34ET}ONBDW%_E`e#^G zheP1M3YGE5yxn);6B2Po7FIquY1^4l^@8HJ+B%6LR@R;%T{1f)l#C`UVgp0@#%rEp zL2mO;9~M>>9>Qvwm9n*umpV-=CzG8t_SqV>Vv+6nGt2M&6D-f2rR^qILizzg!au-z zHZ3BuxQZW#9*VSe2~l8_)O4@N?dnO(Ai_|oFlWwII{dAKME2KSNY@8;;*~;FK+!-5 zOL`E}IF176ZGSe!tr1bFxOc_k=VJ>BSoNE=b#)8MK76pLqXT35EreB8RJ6G-cYK(> zQ{}bhHd>t#2$BUNgkl_qH~T8C4W6!r=RK@_-t>7Yp1hG?*C=t=0>-MA8)0p3o>CtI zErs7s1_T*mV{+0AKXmopDW*GAk>B0bP>3x1Y5trEWRb517K{M0DsumrVu31*($WnpQ;|HKZ&OWj2e+r8@$+Y;^d^qtH zkr|OC9@?-h1Ha-18p(IrWzg2U`r0+{$TlAV(|zKGTzeUG`F6xQGb?|#9h&-c#4#!0 z`atGy-MJX157XyiNqr2k-nd%rBjh$Z&meA0j{1X&nun$0g*-#gNyLey@&+pqWzNzH z7-Shw@z>o~ZXM|-RDH~Ar6d(In~||Jwb+uAe$HoZxBgd?23zIz-qODv_~i`N{?oLD z42d}TVes&MAW_dvl+UvVxe&&K!xg#7$yWM3sBR3iq2Oeg=BS$oUjO^-V+Ozzl|zx@ zFu?-&FjIsg3P>JPW2>z;@-sYJ%RnrA-5*$7lm(Bhj5OvMtr*oh5M}?tz~ z+NZsA5_NPSRIn@}B0?N2`^)as(Y@7&=mJ{W$X7cL=H=Fp+%FYvmDOYc^3{>n`}`Uj z`r>qSQ_OOk;6Y}f*@i}XDYI@e)lec^hGR`>vtB2+m`_=EUX{ML2|j3HKJ31}ykOWa zeSf(tHTd;$E+7t^oVpc;BN_`S>$eUL0v>U3?U*Pk_RN7q!)ah7nX=|-g#7P8!Q}`5 zKJ8=ti1@S7;w;6yR*3tr=}&>CPWqB!7d(~!9I8M6E&?-Z)`Od~PeDmEa!%qJm^FRA zKO$D{-4|7#h;T@9;&FC=!$vl$fTOaHH~3B8xq*Eq!A^7D-^87jx{(}0Q(aOgm703(hZ5h zV1jD(vbVh(rYNR*@w~Bbrh0BKt?^^&>h@HTD$@@LJ5Np?udrFq3ulKtF-jcvOFL8) zaq4wKj=8dtQA$N3#sCx`mJyOV>=qr(jgbkVL9|AS(+P@~AU>xYi-{S7l^RdmEn}cy zHCgEohn?^**XK0S7IMU?d>V{wNodviLvjsU%E$8?K(*xUy=*MjwICT1OFF^AXIrBC z{fw4+5+u0d^g!Y|)71X+q&?Dv2t;KNfHFSuxm}8?qD+lwQ4(C|@e6sL&M_6)gwGYybwixM+a8FSd9ClPGX6*t5zo%a391L?lK3lBKd%t}w*NcVA7)hNhEc z6fg>MrxYhnBB`;pr0hh>d31wi=E0nC#L-GOH^#U3T!UY=(sDCiUxn(Z zdE3|Ufnsl_lM!0!ezX3tQUUMXt_2V0@w&NG$%n6Kzkeyey{r3V{Fb)n{t98K-XbcV zccEe@Uz&qda{jIva8_2j&M`;zV3PR+AR)4FJh&{HuxnSWOj&pb9vz6&4@s7#h;+6h zyKR{Q{Eapk3ejK}@EDRr$?pH+#Y17?gUKS*j*c1Xs^S-fhVG_Mo4jDe>K&)waM^`Y z=y7M$re=;TOBo@?s;b5`iy<2rOUY3@`YRpf;t-9F+?U?*OqsbR^E4}uZ5x$E*;zp~ zicwcR0Bn~b>Bmn!<9G0GBKpLH@}TOF)c(I|^~#^ez2k)hmUcRISa=>}_YV%nK6h^Q zN@Rg3U;H_CjMYuW3aLsgQqDEYZ)gY~9Fm+9#}nI>gTOFUo=Z(nc?~SLjC}nn%@G*? zfdnZBCJ$5?d7_x-<}l!yzkB8Y2MM}^t?cYd(=J|%0ixwgNOkqB!Qo+DE^>T54UJgv zP-@K0%oNk#y=%KC>Ag=4<*$6;a1a5=>|n?S8^B+`X!J3z&4eB;R$D1$KjOrYr|lIY zbev-R*UGO%eJM9o)ck9ai@hs!A`!Eci6gpDwRUPt$5k12@Z*e*<$GL7&x)Wv#V{qz-|_L{}D7Df}%?+L&fq zhZrOcF@amAjlN|5@MD#WY;JCPUxEN?#+WfS<*ATRY)9SLgp<^2KyMUIJ{fo6Eig)J zo)bkD!4ySpk4Wu}GFND&p@XOt1oJdYQm~N%E1z zTzy*2$E%^B)RF-^$P3tE>3Vpa=z4qC|6g9+r`_#sEn-5#{}Ag8Ild8TVJ;+x0I%p& z^Vu5$S$Nd(_hCXa2YKQUjIXj$1JJL-xpx;$Rf5Xn;Sp_P)jM(Y2KWSCMcszxg9CWQ z)$bJ?OGYNXx#nJD_p$6+U~w|DPN^lae3)9$emwnSE;;?K+ILHgjg5^;E6A-iZO8D= z+S*!;sj2Cci|1r3EdRS)lm$>V#{zRkS{j$jA-=PrWiOBIeBfyUb}L{xoo*zJj=y<$ zoxSX{ZtCH6TDZ74FYI)RB+_!oz=|1JD;iKt^XH!5H%DZeymu(~Yk9nc6UnO8+`$Ah z1BPOa7SY{0m~g}2d+fYkOIz*Th%mpvUqXWWu>ozM!r+2pSi$(jjW+0tj<=nA{FKQ) z=hGzAvzDZ2UlnGUbui4VFHhsGz0`0AHADa?7kKo-zQ84Gh^ce96N0iZLz4^xIkmp(cv9C>cLza+JotV_9~^wl^BrQ_7OBiB z_?y90uD_Qf+&kO=t!Q;LubGVwX7!22!ey<0rmi#G%sb`zi=^Zzf^J~o1NxCVLp})^ z&d!%riOVtRB$2tW3CbtR0{m3~kn+P(0+g)Y-Y1!~-#01M&CEyvk?#wNeBXNC3B^78 zTSp8t$Ca8ThN4#;^lf~Ez0}qZfL`DF$H9Tj*5?SY)QY-TuOm^hARIkC=hkBks@Onb z=`e^fVfbLEz#%kRjr;%|r7!y=+T_h*-4|B_ayp)rmX?++E}H21`ZktTRcQl)bRj)G zy)IC>a95e>zOwMU%njocPcebQsjeO=ZTC|rA|WaNDJ}1R{Xb8u6~hQ5;YQAW)Wzp^1d!Vs z{g<}GB%)}hb$~!o0@M(*s7gF({>U_wE5xdVq-`A|eY;`yFsqDdLv7yD>AE5F?E1VU&^ z-I(^BH-|fq-#(nH`J@BuBOB_Yo3t!8^wW$j3G z5n*|?BvTw;KRXu5m@!_Yk$S7JO3#>23=hx0Y|bnPf2czLn3!PB2A-Tu6ewW<4IxM& zR#dd940sa|6A&A~s}Tn_&Inf45Q||x@1`Bnj8{Z4!Vp+YD}*(SQb$fMVxMT6REiV4 zjw;|KVm%&c3m9zuz4Y?h$A;|<8bS}Gyu`@dTh<8@HM_p<`HdR+e(T#)F7A6)z$ht@ z`@sW^6p#W_rt6vyY#gR1C-WDZUp`bTzLVQsNZLCMq$5nM-z{AGhCis$9P?tcSs*>N zFqP`6a=X7;rh2tsu{W()3N9Trqz4|fq}+9zQzB{1oREKKdsIvYJ&&Wf}zgs8NFUeXX9 zl~Uw}p~tZCxp)Aa_QctS_?8%lL_eHc_+%0g34+W2ba!`q{`m33?&Z<)hg%rGW%Qvm*E@yl^Ezw(RM#FzW}NxUTXvlMMxh~ ziU0MjDb6ayeDk|ZOEnYcEo%1GG*JBS=g;036{=ctxT%0z252{el~^ch6hD%5Jd#aH z(76B6he>;DUxQsHK|jlruEp@uH|d8`dYHWrVqR&tyO*M1L_(dxurFL>xTm>MW)Fmd zU&Vn4XTW>T13S}Hw~k46zC*r0;{PEaLrQiLIw8$|cxu@Yso+;INk5rt_c!me+h}T8 zYO{E(7W#P{fa9c6KhKf1z!U#!d<2Zmc~n|%;Yp;!QxlT(Fwrr}94Ub+qT&KOv-eA) z%bZU1y)u7zoR`W-kUpTpT2c2ickuO-U}y;LvRzE^Pkr-i-j0CSqz^} zviwXB=BGq~O{K2MB9mW!V_u%6>Oab-3l4A;9Kt~;eRb;9e%T~!>)?BMp-zE=%SwD# zs)U}A(GJ}Wn7+wZt}X5()LQTLTSq_|Y$5L{^kij&0e44r8knf=0)osQCTFlN z6hVWTY$#sZX8_CZM@Mb!d{@Oi7ctRc(I8Gn@q@Ru{TmIg>LR7Z<9Ne1&G^HAs6e~c zs6f}|@VhT(l{6(XC!T!VJgseJlU{EOyaGhupV{XBWB%lM6~Fz=$`Z) zX?EDmd2cpc2mTNAei>y$I;E`+l*!bLj^wws33v1gBC8Xo(6%%a=uyBf4`OMmpq2_Y z-UCr)4h15g>+2tvw&#@m3{dd5``^l>)dp**@No9r>X)aGeySw?pL z2fg1ax%C^XzOn=l`%l{2x$({^rrfHl)d=u7w+qK6TANhhf@mytF9cjI`yPhn66g|X zpoA_BXT0@GZ;W#IbGyqk59;oO3IOy$P-B?ZKGdKJBz+yG} zGFA;&ox1EtM}xf%`(`A&)+pdYD%#jEfZw`Ycz7(&4uUZYL5mp^G^LdL2vY@y!bD5t z1#`SNIteSbn}wDk8fqr4jx#&|~+s!s=)h7j0B5e5m03J=ni z!OBTjFukWX$;gBwo$VBDq{EnANSJ7}8z`V5iLl*ac~*Aq`Y+Sr{bf~{nLw=GL%K<& zA|Kvwq-OHAc`45*wUD-EJI@Yjl{bl*pE>-{NKGAa6z9+5g$Dg?`*T-##eJrw_xmB8 z3+v3w&*LN6yw98uJ_c$&+SsJ*Mv(^HP~#*jC^;swBqrj|1r7~Y=;jCt?_L>=qLPio z-rLEFS>>JLf##7WKQ0bhEt)b3z?7&JD<@G6OdQCrh*ll{&Q7UD)a>7WmMsoPCq3{P zft9K>;0p7pp|+2X49=JQj(h>Om-Tx^rcV|mj}roW4`wKvv9YliA}Sot23V7|622z| z6Ce=}+`@;O>g)1f-!AeAg5)BiDZc!9L#?%Q#4jUcm&<+W?+w{Bo1;F40%TY5fg-0S zs0Y%F_L`%(r4;*!AbfXnSNvb`@K}_F~@BWhkNa{y1v-phT}+Rdt@>Guv2!F zjatfPt8H&L2AGW8{ah9@hT7)x5bmLBPGRwA%zv%@-+FBoS7A<0PA9*9N#WXEOn15?BwKH0ngUD7ipc3-UnKr zO?zw?s}JL9)B?SQ^|~2Odq<0M7sjyvRK<2E8Fdh#qZEJ(%Kw2B1`;wrmX|j`n7g_| zma$7rtQ}V4h)=B3(10b77Q&$eDM0}<7iz=21gg1t)gKOsrlI34Yg7N$JM}Dj=ZrV% zS70xo^tJlB=i$IeuW9DJ;AccxbdV?r62dvq&zZl!&yAyOabqbn(nWe@EC#Zq(>j&1 zv#kZ)!itQcTV%b@`FBXy{K+zoj4hocMd38Iy-Z)KG@Dz(X^KLFoEhjeUU;-qKaj-jeu)58;uE?Nv69Kvs`KBJwCN+AZR83 zq4ZF(c`_$odV7>#&dF@oz1zpi#5~5Wkg6+d*5^iIu(M=+^P3m0$IJQxG(=f7dKv{! zDIA#kmgagVdDShR?{j!q>P?L$;KU10Q)roaV=9KNzsy~aF4SyjYI+wR7xxYXAkSfL{eTU_h#+)z#JY(my0H(bY|C=)BKbJK`j2yr5)nSLLpK`jmy%zQ&1A zEeS9(b^+Q!M>Kpv%uSp7GuqPjHH#ty=Z`jDl<=LBs7TGz7T!n2aNLanBavp&$=oHN=PH>kMnjFiUdu3Tx5U$!iKc{zcc zIt_#|IqbI<0bW-?@Kwm^>ys1WGvBW7ucfCJr3jS0yke@amM1;6GVcPV8uJ887_Slr zMqah(8<{^FWbU3mu_16N4NMi{lD6638%dLwGiAZWIq#ND%|7lP9_rVB{(OI7X=#+! zGj^}#*T^qsX67de2?;g13W059kNDim{(co5Jp(kOKhkV$+*7`}^Xs!!);U=cFQQxT zw(tgM$#uY~9#V^AU|>u}#4u9XDN9s-cArkS1V4LZKH(7~_S5PnqIaypx)`j45VQ~1 zL`wSZLk^!wbFzS)lxH%p*m`oVQ)v-FYGlSWI`NFXr0Y@cJr~z(-;!c~%O8JK3Wd8o zrX=4#LPqhoCFc}kuo=^x+)mlGsxRCMK;*V+Dc~o<*S`$(Eo4_zROn;9Lu6AVa_sKy z6;G`=>t5VtY4f|)WP$@w@bGYAqsE7**Z2#qf6@P~Jp|0*K*?b}ZM^1E)UR-_KxI~m zGD*!Uw%!AZBNpREy~fvTiT=WAu7Z?voOgW@U+fzAn;nO4(W7s4ZqHN|+-S7)wmviL zNN<`c^iP{>=gmj1XA!3>RS#u654LJY>+t$bYAUhd{5lekwXKHuapIWVu?AR>OjSeD z7E@Jr34X8BNB9~oL$)?YKCGYy?(d4~>NFtstT%391dDc=>PP2O((L5W}QUW`H+o}07;LhjKb!PWd>H(;{ooZ{T*$zZ6qcA6g>S28r}1=yoVu_XVHU`}eFWx38&_df(L6=ISABS@~dL#i=1a(K!pQU$YG^ z$MfgUkyq085)U69nJ6pwO(n1>V;S=NKWSQCiq`Yz75iV~r>6YfLvN=T>NG&d9ljeu zlWr>NlC15V;Ta~+#`l&9mQ&q{7HzFnWFyY8!_X5 zmS(8X+m$SiHxD*vup=pi*zmA%Ms$F;=02+?fuuza4S_0xQC!h6=WpY~!0`8F$}{vl z7)YF`dnh)oFChh_W}T#lv&x6!t-Zk#(So2=5-1LYD)E)kp;aMYvS(a@_UQmYcDafL zR6HWg*c`TG971{wQZGWjkd;_rNCg*=5^LQ;HoGtlOvTX0_}I8yV(P&P_{6$yC775f zG*BO7KC`T-lzKNb^JQjWCjJ!npG+#WAz_V9qdDlOe7{CU=@cs=MC?{hH7rGl*}-*1nFkV9M`PnZ%g`;ysHk`KB@Afqt`V zbL?(SweE)x9|o6~&2A;D$@%&DgST*Tf}{K8sYB=)ofRR~!~MS3ukk|BShmwvMF)j%6Zf8!>UgNsp9zEZ(r~ux^Wf=>kE`e+Rmeve=c0yW^kdo= zg!8_=34oL%7{SlN$Sw$ohwEuvB!Ub$l7uhm_qw)C%g4f`#PZCinQ=9LZomRiAskw6 zujTM{n0$k8J8a+!W7$W6d%poBE1Z+L#zl5&&{2lwnUi_=$@nW0ntL<2B)X`aVCONDh8}UN1EEq^?Y(oDGAm>%+E# zD8Z|5Ga1+9YsjFu^IU_(D?>JDD68sPTHdw(3;b5SOr@K0&En5=0#k$J#x;W$>#zUw z_9O^l7_R;P)2YNDDx>bnWT2dI+r*5Ad%p6i49?gi;F94;cz+LbdL@A2|1Sys8ld$6 zs=DWmO|M?lZ35gDk_?Cm>!eC7!-{FIWhs$Ku^ zauS{U^QW%918VM)FT*nM3w@*m03yTYnnm(p)*Ud1-7q0vObF_cLLP|@0-28(#GG1w z)Rh};R4E5FaKorxb#z&FO)eM>ww>uIG@^=IYLd{{#g4N<5GyjPOud}^szet#t$CGT zWmP>Vo{(-dfO-R5n{ceXu6{5+Pd{%kIlq>W?3-&_t;9N~J7+mBCr`eEP8jpxWMx%7 zFZ%eJ*vu~%fH7vR%-C!Zw6wZI*eXIYfA;|qKe(*A`c@@e0Jz3FhjTT`zKDP-xeRPG zsM#9`TdER>$KE2O;ZI{;n9*xwCoFq|!*;JisE+Ph~ydJ?PlJEZG$ zfq?Z@b}!GX&*GWO&I5TbpL&LWE8`2i9j*i{m0=&yhI zIyI4-yI6sR4?8#gwgI!Vv(uhq{-5rmXN2C}(^K-{?;ikSlV9ARfEz34VhsyWhqV3Z zO`ihnd81b$jph5#-J5b@;(|nBpl~5n74TX?d*Fi0pGgYMrT!&T znxO)($CCC}j>RnQG$uzME&EG8Jx`Skl>OB5IqC4vfuPq9J%h=*oSS>THubwaB!;W< zeR!8wIX53_7^HqX-w#Ty&TWqcX#T_x1C!3wFDod4eSb66Scf3W9x{pC6Masu z94mqI@{ir^5-~iCRU6>+}8rBQHKgaw7{ye3_H$lDroB3b#jecZ1_3XqeteM+<96; zPZ}?e+A>`&<6pM93P7LJTWFD*L6-&33C@#>syCDC>y3^)CYHFT{^YL}mb0MM%DQxpV z5ApnYNpZga*WnG|*0?r;bb8h6i7QQIQC_-){8<$A3~RFegvDqO!c7a{>Es^u^WXC) z+gIoQuiEnw_8(NG1F4l`{?kH85Xbx`Q?yhv08JUF27CS-gIiWkcy+R zp5n_76F#0_${&8Y?G%?t$Qd`^@1O0n8YLJ$HtG4e0E%U-BZ#SC@c>};S;>l+g2dIi zIli7Quzz@ZPF)BC8wBuuGL-9!LWhgS_jfTR{L|zC|ET)X()3pdlUmV8nzQ( z^3GQUf=Xt)BfO7QxcfW}PiOuZc|KO&*4e!a(jso9L#98q_^d|2(_sQR2XKf+m*0tZ zwUEI-)FI80lS`V8uku9WtA>gePlFJ*{aXb^#n9U7jh(SvMwfp*0{HQTQtOAVRe$>y ze|I`LUah{k1M~sxER0CuK}4`A`73eLgcr8ZnIbS8?I|D!mKugkZKhAj`vrNyjCe}{ z)Er$^^RLv)wCr%oXb^s9Bv?ubhq<&p1;DqoEKLRoj12UHo}7G0NH^q^gn-p416iHH zxQ72;a79zxqOT@FX+rNizK@<>Co)h;ZXnQEP-4F-WmQ$V6O(E+iqv7}EAF{t@@99r z>PTlT7B~y}Q=OcRxRrfTqxhGD?Bb}_tPAw*NLUh&RtH10Sa#k^8JV_&(6<{a@8#8x-HC!n2nWEh6^rxiwKkX4o%~kjJs&L~{s(OH@AjhN;z;1NQ8OSU z8sLZwrC>P_l#poq6C9Z^E#H&+CEIf>OE!T39iBl{Q;?jqxRc0id~M;1Xekdhb;0Ku zjT8QDWWxnm>Z0b=)SrHSDt2i1UqO}GaKc;`*(gu zGpN2*P}3F-!r=6Is{jZQoIiZH(mlWA{C~|oEUEzDj_1_I3kzi(a{nPmKj@1@rd~fN zo9B;ijvw?0zXXhbDr2mK(4zFL(dxT5Mx}gvlr^>I|BRBGR|6S*JBbx}De`&nwVy;G zeVoIsP`?AO-NlCKF_~4IT~sTr@o7d96PNz&{RtjEI%x#wte@Ah2@6Mz-{owJPFLC% zTz}ln0#vt2Tpgy6kK`sdAVGJ`5FwwyBpENSkT>?-EO2-_XzDXPo7Yy zVup3yG&J|b3q;>prheyI+jwluJ+A(6FS_*iH}~!-N5xnD$DXnGufNFCox==;T{w0c zD~v}Z!<4UuCp}E!^ZkFbz5YYCa&c^1S84lj9Wb*knjZugws;Aj+=#d)hy+Yv0`Da} zx54CnF0N}UE!__42eWGH%ZJ@9J<;ZUOAhPMx_Xu)P6ti!B-jrS@c0q~#{L82p2yNS zev&w3NP9f?m9}jzx6g)Hfy}Xp%#3YOGa#a3rRmvC%Vk({vr7xIwl?8K2yS5RyR{1X)>ZFE`m;Y8h+pzvx}#8Vt<-r!9w7x0$I;YZ zsI{Fa-pV%BbNZuwUzOaGDxD=OE!9^TK1sgoX_XYui}2eaa7{2t56ul!cD>vwZ<{o1 zJf_FSg6ptiAZZA`5?jxy+2S2qEunc@>yw#bysGJY7qPqlj3df4qS4OU=_1cXB4wg6 zbNl5N8;}d%CFPJguFcNPhFIqha3w|>?doq|???0jp{t=I1;L(2)GithLj;1z&5t5K zum27(98ZZ}KF!NZ)X>(B0`W3G0kh)C`mTCP?Xq{AP?w&>em^%$bZ<)p)MPe}z4nSo zvylw3^{XntVsT-4x!kbDqyy4tpCy5pDR^umDJkhAD=X_`W@eTtpS#Ne$Wlwn%BIS7 zzsUoK#@S0XR`KNfy+DXTr78$c`AJ9s$P&09dQI6;_zGrDnJ^jvrDMGwE%+>T_EzdE zB8w?w&F6bjXAns4!ijsbi7adMe#1J7ILXgyM(iZZbiQbu%xyUb8?JWZDhX0m>+x_9 z$3&cTvC6E_`N9KB0*{*4Z@o3iS%(D!prt3iObL=0xO??1wf5zt^R-3V2CQOBQ#CFd zS+&lu2&RISre)*iuf|?vNTjK!y~f$5+@{(#1pH0>NpoWk3Q6N=Q_n0(=1e7`<7fe) zBV#oaKmWOjmzUW8e%jNMnmRfud!e5S3t{)!z$d*4WOh3uBD3j}U)9(-2U({NHdk97 z{S>M`Q)O)$MRN=+OQVZ(rZ)AZ0qC^+xa~e%=k`cDW!* z;&^Z&!;JS9FB!%D@jcVjlGE|%rCq(>C+9;J{_k3Ki`HvT{AvS^!H+t4cmAhB#=^<$ zWHLC3uljlpen6Dyi@^`X9{@u_!oy!fUoe|T)4q6io>1=|H#^NPEHp_73Drvo3+r{; zZEkIyCnhIH%n}H_MjiCd7B)3C5%my$x9|}W(VuV5wjL*ERL4Ys`>-^TXu`+qc)Jg3 zBC0~L6!LA}!(0sRYoQ+s^^_^CFLf(GP?#^H#IG*bXsm?x+gb9` zi8HZ-+(p8AuAS|ef=lzo-I5&3+z%wL7;29ZH%!UsYkz<2=1aqZ=P$f!z(Fa=wTbWF=j%Cur()^fu$=m8DPndGr0X^9ADE)S6J(k|)%5U_@{( zf=d$OnwYX2+YLg1Q7q*}F=l(0nzH9yxSYrE2mdHOVnPr+|gC+EqXV0Hs0XgKb zppXJhB_-aittn02IbkNGe=fQX>!h&&zAtpfnET%T=8U?_Q$`Z9#9w<+WN~iNy+DUl zc!%loHDR>zwGqX{bj$g2Xk~DpT zmYAc}|85@~e3UIS>{P8T60mql!ORLpIQ%%SAfJ$!!XQF}PW^EHL{_%mvn6{WBX(o#{PDeBvB6Lga`cQ#U9KDLs-E00) z!9+l2GiP*<>WHX#y;q}4i;2j9yU$VELZyUH`lUqI+4d8kryqy4+8WQXa^K!^3&-; zx}qH(9u}{+TWSd-cwr*7#BLM8fqkOO8<59emw zcPr;|=%bq-onm3+9(l2cS(wMHl*B-*549{YQZMGXxz zh5Z9n;8IdxOn$ha`o4JS3t|y=vJL@41eYFV7Pw{9-x1D_R(qiyO{D`tP{%I61fyrU ziF#27k9WR!7Phv2DJ~Y4eZZedsHr!w{HW zvXGFHGA%L#g#Ha+X?6|R8O*7!GuJChf40(yZ>4{(AqlBxNOQUW;Cv6nDSp5wAo@>~n@d-^mQ@zC?E2=5zeF#pF4YCFD% z?>-)q?KnQ^H^z6(yd^u~3-&q22Hv~G$n}jk##O^#?yp$`o^`SA`Z;%yB~RGjqnb{d zUx=HDfV>yadn3-|yfM6zXp2MWup|RnExfHzsqH82*DAEEAiWeIg;5sd20D#ZgF&kO z>})Ci66d+6*!OE`J*k0N7`ToI-)!PwGaC6d^GQbowf#c8>0cxzR;>z*x;HkKR^BGgUdB_@2j;`dbBL$8QT(!}-V#Px@O z_~=5_`l^hE61|367r#_W0mHnpTB2jg0`{OK)g;JkS3*WP6H)VQ>z>T zV8Rc3o19b|UQblR)a`@1#jCUU)++FQNt@6=nFUvkZuNq^6QO5 z83Q&R+GtAag}cGq;}~2e1m-2S5Nh>rhpF_{Oi!`YfZDvZaka^0aH@Aen$ zU~x1`6hu305%!OO&ICnDKWYFALe7*Cp>^fMxubisSUCA{k5%>5q`cK&q-#<|VfP6I zkb=`3jI}3Y<0(w76|(pWuM>+)x{K>^)fKnj@$dYGLvEz5{>-Zz=bD0t+Cf90+o?2j^oqIqD7QUso!~oM@7-$KE$?yC(mx&n4)ZfI6QEfL64L z0WOm3-0LmTv700}TX6>P)l+&y`071~BJ^}-S(pLIcymaE@g7E&_Xw3(n4Ocuzup9j zqx0Pn@($oP>inK}VLG~d%h(Pj;pyj+Ov}rk~r$Iu`w?;Ha0Jy zUwHv4VlM&$g8Aub?L#cX5DZEgdAn6Q8E9X=*Ug1hGPkj}>=M+I@`BKwCZ?}z>t=Pkp!(Y%=lJ6U8WOvv3UF{*Xv zVWS{`-uFt-jB1fhWhP|ni$B!eYc6Vr@H54Y@7ChQ=>#yXzOR^X4&C5Elb|^(CsrT1 zI!cj*l#(8sx2dkke8kC-=4#%8>|T`M+fR9 z5<98yKWztf`||XnvY^t0LMiklzqAI){xc%GF`Vy2EXW%z?n&r7jSI2@XaX|oU{*^Z zivKxdIbIyC>jv?hA2_Y?rc)*{G4T%c_R1(47^!sdl`7R5d8GTMweRE$va&LK&VY&k zb4ei0_sE>5xDJS?6ciQNlLzvtUy5j5PCV>nNp-K@#u{37WR=LeQe(pGzQ$HRUZVl5 zaF}ymWcb`X^SJ&_)Z_4(D>hJLQ@#rf9tLGW*yofYsxM=fRT*;+0NmOiWCC-n`kYjHA}6)!W3X4PXcxOBY_!4-1~3{5bL( ztGb{*E(Dcdk5K=qNSKpjAchz-$W%SF!DYcjWaksuZfU)YePX~$Lz5K!T&T)Ej?c|u+e9bi<(Ag*NhBDmTtEojeC?R-w3V~RnPLP<_X+TNoQcOpk}375|2t~)udt&TssPkPVsdCOdk)aR1~fl~;^D19Fh z3&zLBszaieCqGUM^${pzEYu^BNGRa>r=g?-+1i{83nhwPF-gbgG~DCa{Mz8d{p?8h41i{i1sr%8Doba;cK+ zdMAqe-env(#L<)_-ZuQ0Ez}#l@hbTpO^d^?&oYesDlR>Tg1eXBf4Ga&=mX%16f>dy z+}E2e>xt{E&0fw~p0i6Nfg!D}%xgJLZL($3aMSdcazq&g9Jv%kL`vQBaUov_FmH%_ zp=<$J808^9@Rd@mH7($Y6a^aZwdl(zL+Yd9%1Ja3LPGJE6m|TK|!hsX}U6h_^{=T`-f*0BGB-xUMN0( zE}I;0^YYFFL*e8dSef2ViYzHb{s<~WuK6fIh>96(!cxU^#Kgb;p1B^x zo7Am6s+WQoO!$&pTQ_11Y9mKwsZ_~;)zeEYEta=F7fZmmn~ly3aC>urk;E}1h3LfO za&$4|-~7 z4YO+V+KG`5y7pZ5d_|j3DM-hUILWL5UAIlB`#{9xyC0r^)QxCy=izCKoizh|@p%Pf^G1ySjKMhxmtmTyo?h$fMYVOf4)}X;_^vHNw>%~P zyD*}92AB{OMT_e;jK}}y?SLRmsoMOc7fo*E@qjPjC;j*d)!*Hp4(M9|5+j$rM-LzBgcLdHnRBfGQfEzz=!2a77cHk zjU)Qq*75P!osYL)+D1vwQ~Rb%jcc>$iO?*JB(LL*k+2c3-vNn2EGdKv(c3H63HPTz z+jinC?iq~K-6hu%YEU4taFdRjnHM{&+l)xB(xm7}$_);jxQ2DwX(hbto+Wsz1*-F$ zc7V)`=j7FR2UU!n4WB*brQI7W7Pwb&A}YJY$#eZCH~G#~m9|x5GH>5JCeQfsum;f1 zgD_PSj>)9p#&?P?F=7sju^3wUH_df!u%O`lmj(t$fnh7L`$CE90zCJp7lc%&qJDIW z8VA2D%74Jqp6wzSq#&|pS@c94n->?ZhkI#ht#Q}6felVXSlHN?3bL|iK>W`|UVi=s z5Zpx+wm94T;hXg)mJBqPLSDaEY(!sQS7RY{olQ4IbS|qK7^m6c%#EMVQ%QqtzZ#5)iuk_itt~kVRS3 zckbhzq9$_32iE?mNv=-U?J>%K32 z1rfR_qVG^!nX6cBasFr>KHW$yktGA8Iut?%L){N>8)# zZ&v`z_On8z)vtyR$i+doLE9Jujh6v4SRJvJVw8?Ow1N|TFT~GYIYfd4%3Ckhc<+vU zTDyT)w9^;L^jv9?#8v_%trH;-(|If5b+B9JyLF~kNqWaID0imrn>{)`_V6)bRSrN4 zc-bpvQ7xM%Jty)jf29W5J-DsmcN~j}%LFd@GXbx>u27;_(X8jfKx8+mB#mvQZ6noTK zZR|$(V-@4SJ1*Kb)HB{ioP_FX^7}PlcCR_17R#B9MAP;5Mu!)?ihbK#)x$LSVnIf` zL#~FeS+QHCRK=FDqSOUTNBU8hADS@ku61R%4m#tXP9IMf8tr;>DMvl*0ZVp9Hs7$(gl8sGM z=uAQ>NzUgL(C|C%&F|;b)__mkTm>`TY59t=9AmYgpl(GbGnJF{SnTYK<4rB&%Uc4S zjfjR}(q%bmY3M8k_{HS0pg*(0pE|tXYblG&&3O2B(CFyp&D}?83=BUQT|p=4ly^q2 zraG#qOWDvXU)0gHLwsSQf`Zy^FI!#@UM8TKsrd2${OxHPMuD(v$AAK+Tv36 zJYKE~%A>QJi1jhO&wbhV4L_JoEm~UIOe>T1Z^%H{J{9k$)g2RDrGwcjnQnU!3beyx za4UbJZ%-Q>A^YadS6^lTh~My0MTIT`&KHvc0s>Twf;^1Ganz`I0NTDl0F>Hmrjmw+ z2K#z6X$_mS#m>G6IWZw5_7sY|fra1XZ~m}!J6 z!1^%TT2%c-KSQ$V5)z|s{@2rZ5@v=_8UpHy~3R~f(tq}1+BQ)8L>f6{4OD^loj z{QY=cqLO=D3~k}$ck(gyF9kn!*;i?vgoYkV_Pc{l!}5@|a=svm z&HJ^#OJ{={Xu-(g5K1VGeM8!Q=EoHAA2?5&TMvR)CJItb{;hO{JeWez1~!6Q@{hs| z1y;>WxUX~Eq|3obv9txo&aRWw7a6)dxuDe=CQtw zzqt}p4`&Y5+%55|&kvq^@mW2`{40di+ED`hLGlg&e~=$BWLdJx=EF5;aFrl|ajj(K zUADN*jV%`6;VKMP;;ZCOpB!;65w>eEjm0%Nu^qCN{b{%fR04{^DM+Q&oES<`>1cAZ5(^UgwYGl3|XXtWW6~449p_p$idC)VfU} zog8jRlrGWp%_Grwik+hQ@q>f5&MVyivy!2=IbezVqOYEpS7!EAOun_Q=Dox&(~53s zRS5GLXrb}v`DArx@^teJNm;{rEpGsm3faSudXAx-Jo|>=G$mNEkGjpFls=GclRn7Y z(fN>8O5x!awJ-iS#lK>IjE#jw^;|(&2Fz+ruTFumRUEcC zl~zMvXy|}WlWSS6)p9cfFfLuL_%I9b)kv_g9u)zatm{F zY)j1D)nN0KUOR*#oHCV?orVLDyfaxJ4lhjDDp9bg%bj820*ez|op=QRYqHQI9Ne1G zTejLFmkFI=8c$K2z7gPc$5A?Pv}DI)Ul`4s)-pxn8LoDY?z?ujV1B}JT78<0V|LOW zUIk;Yue3DjaRJeag=o^IWXC&g8J zDO3LbR=dRH-)i z-mkhyuE{eYJNb*2e}DGz5;T@Y75YJm#Lfj9_bvs;yL|4NfB{E>i&5nFT8tMjqqd2b<0ZhX)E@2WEUXMN|nEkoEMh&e-e%L zl1G%+BQO6~iMVp9eqDJ?W}TWCB`=hiA*izn27=t8w}a}i>%~FVphZxB_V@3v77E8G zd+bZc&Yg6Jhwp%WmRDFU3idHJ*eKfjgBOkizEiE@+6zBcD7Ui~XjFH%?u zU`Y5){5v2mzc}Okfkll!&l-#bO6wne@rS2L!l*JwlaSC1>>~LnOx>q>~Q~P zUuNgKI1qDj{JGaluhdp!>we-HJ{y{^BDFach03I>fvs(!g6&W`YyV)e0v{z;;GE4O zJnVPYB!Y(G-G*i%V#?SYH)$%=BM= zK=~CAD_2|&H8KLj!=|cbRSvQ`9OB7=iJNcS;9w~7 zEIEis)=p^bbjxV-=&>~5vcdS6p0h0B^fcHlzMX%l=f(8b=p}?r-gj-n$h zhPlW~zCmT{nx4Pkj5&5)XARPNapOFro47|54+P5I-Int6w&Q5hqw!#1uwpA-5&2@Q zVoKusG7~pdx$IA)1IQJdxCN{Lk+tNLxT|6C&RrkiCIW!RIWXbkfev#R+OV0E$riVcV>bc~a5#&XvcNqV#r|r;ltDLs>D(q4; z3!<|}bZ@brAsjx{c-um@-u7u`we_V4t3A=J-c$s()!F~FIg6SnfBx@e2eDnKRmHPm z|4tp6no4*NP67C$awvk(^sLf35%AT5TFG-u`;X@+C#yF}w^0@a^L> zILP+4EM>YL({(Pe0vc?&51N9CEXv~kCG^OsYt3}I7~|SBjP7o)c;!((x;)Y!THDdE zm(?vf8H@q1u_%g1PPjB5YXm(v+`$#E{CdSE1S2zioYM8RrtJ5 z5qEo=rZXIf&J5$F_BC8(WXKUv^6Y1@rx=<#qn+V@woni{I8K55rS`t?Q_eG73jjL)7S#@=wbz z`fI(X`XnzNzMYWsU`%70Y%Koqmf~)^{EkX>zu~|;ndhpJe82F=-iy5*3q$}yV@CKP z@Y})AgumO{-@09uk^kIavtK{lp^IJBx$RbSl#_E&`7$qGkE=94%=>u5P?#6TD^cF@wIEtc$%X)LL*GA-j3PT!#F zb#it$ysxQl;$MI1+tF$w8Mn{tFe8DzkW^S0X0Ro-*R6bAcKU7yND}NB;u3~LBT-Vo zfk@+{5eJN-(_?`i5l@HI5_F8Abza69rDK5;{E6EF4n;{g}n z5%P~U0?0=z=37PnMOA4-LkbEhozfRO?0)`4;gXa^F*z?aG`>-G#Khe)Xf)K&+ip8h zbZ|Z;igj7{aEz`PQ*d}wL)oAlm~bA6n zX@7qr2qL`Y46+5$Fc_ORZQc^sz5=*@snR=sz8Ntip(iF{zETMT=t6$GvlOx)O{iCE z8S3x``fAODYwxt$NuaUq4uavcvA%(f@471LL*6@GJbw5NR_tv1^lqd!=jzYlkKW!O zVBZKN*{1mioX3HlI--M!aK9joa(;(*etin{1!$E?Fx*2n`|*s(D!rGFf$}5BRf6D5 zaB+rL*fg;9hXg>+-5%lqn^y!MU*h`uDMGBpU}l<1_BQyv4HVbXmeyH=k}#YHlQDq@ zV>KX~ShfJ{-tL{0SeE;#THq(QRl&i!fD*TX`i~%5m~o|Fj*FM8&ayo2&qJ1n#i7RI z*rCn11sS{NEt?q=GDgq!`(F!k(ieP@{?mwHtc%b2Gp#AzYWL`>@$FXKOIK5lEwWmq z#tGG$8u}$Z&JCXF-7FzQ7r&E?8lMMK5*IF;je$tuf+@M1@d2gi&!VU2@hX!6N=iy} z;xs)AhAIF!p#x`^m|^1?Gcov!spyUET(w*~E{GAth0_-rt#+7NOE5p5MBoKiHS~IZ zZg^)kMSX2PAV7o9wkNz3zu?f%Z+^#6F!?>iAfB2?Zr0=RsUkvblkAJnD7V12iKUsE zkF%q;&r5k%A8l7PV<{;qV?Ziz{PyizV=u23AjA5FkTR$d#N+2;b_aS^sX8n0o~f2> z;Yml>8V##Fo~lZa4fv+{{aiJZwe8TzjMqGj1t3a++BHL({S}7{eE1z-7lMQ7b3{a$ zkW##NSWeb%`QDlMxdQXu|Ggp2r%&KI7v8lt~sl#Z@}=puL*?R_B#vI zS)g{1%`_-!_Fd@DSSrHsSjj*({5a!jsULENFzw3EqE5hj?MX5B=8&nR^sa_}zulql zg2stYOIu=Sh9)a0_3lmCoQ$h(Q$K%6$gNW&+ta%Amw)sSZ6@DQGqI9EY>L?-2rMve z9$pZeXf~D_B3C&2mjLfnxfc!IcZ<;adLb-$@2r>^vye1FWGoj6h(z|I{EWP2t&Dgz(D_U3Z;T5mf;1s2KHez<7QhXcu=xA4S#^6$4hy8e z6a;81NUn!^CuIwmvL^9-z+x;Rz%(i2E!=Lgos+ z84#zs#CUBcD$ZKt=R3#Hl7DJ6Fh!_PbS{|m{N|M(gvoLp=1V$TZqNBTjE-FV zb4xp4Eykv-gy6g1h}c=@<43W=-S4<>RXiP2!cSmxAyNB8NUWH zf;1HoXul-jPcx5`CAWk==*uPQIL#G*9d^et|fL=042Uq5fodpGF7t zxBx{oQ_9;;3Iw$=UUW^mNDHg=7ZUCYWMiqSkR?M7n)32I9=mxcZPu`>JpB)@?8)jL zyZI_&>?3uXaS}f9@dzDgOc#5WoO!ot7`V8;fWM%nRVG>w!?`eIBa8TRxUweu&WG<0okx3dQW z(-g+60R-u2NK~gY3F>G{c+2dvYv?b)K^Q_*AgWJ*v>y(Io?@;NlPBdjT`Dp9WLk!2 zw1nas-HMd8p5$xzL0`p)s{vP||HH}sB`8Iw2bn;0Z~I*7jZ}}J*>2(e>`Rhya{B$O zZOLiXZm}-F{rZzNK%(GwWqCJ52PAK! z`$U>F{%ZbsXSU!Pow3yV>T2&V7?S512v{ZrG7-P_ql`)#9`gE7;(5(f;!5MlHt*%G zQG3xn9}HL_mP2=MtX$`fm~_yHF&5za-udn`Xv@QU}t@2r- zyX~IAiCy8h(E?otvw2Sqj@=LYkIt^ysjFI2f*)3X*XB~Ze>Z+JcGP9ZJ-@*b{b%QS zNoLQs>P*OC!hY9%hUCx#k;{1(|2b7(m7}Kc`M*!h2go0tf2*dk;ml9zB@< z+B<(UrtnAvS59H5Sx)34lANeP>>G>CgUud0gCD;a>}3qe6NYp+aTmCbOp@To54jv; z0W=n8+aDvGq0rX*u%8+3;d=a$VO#BGjL*I)fgG+*^A)}Cet2jqNFK-OMb!q4dDb0+Ab+lp?AJ4lLjm-q&$8G z2W#F56(v7YU3&~`#{-^Rm%;fW z5o}eLhJ*xSB`yw{-bvdW0MGcWw0iyTOUjaadw2Irq4e)n5Q^a+vb{L2R>anKiA3}w zbm31(0HK+hDV$Hx=^*^=pNY#@+n-pDsiq$Uf+euY_y;rr z*btS*38C-LYZFbnVtKEC$?kuK^Vv)DBUh1~(5J!ZJ+4A`AhZ6VvezKe z9!5ssK2EtN4;ax5o5ER*S1fT28pFrMZ_})gJtfJK6mO27j1?#-*Z|?0zCeZ~=9BCn z<+%t|ybqR*{Ve7ppK~og;A0N#mIi&k>1Q*?!+cwwJ6VdwghJc4=P5Q1VCQ22WO*ZqIa1PKsa1H>PJ%|W@!sUEs*JIwW;{ba`e>kYYU~LONa+n<-y2L8lSos0 zdmq`U6W(?wJ#t_WA05rSzp-!JN#&4p`2Ft|28P4kwkxa=+I(8B-;HqiK4L0+0Z6+= z(p{DtoB=({Sl-N?_LGfbiDf%V5<7O7g+`_5@pwef39tzPpw}iQ95s|X;{IcKk>?N~ zn4uv5aW*us?(Z=YCYFD6j{mV|`R0!tjZ`G|7oBzv@P-RQ#C>LX?lLZo$o8=eP6R_f zm{DDRIb7k2fv`b-90>V5avML8!KCYc$|X@&0)X| zrfKL%y)K8!m_lH~8nOzWu}4rujj~DStSMT%tawlNn+PES5V4H_ynf;i*Pi^!l z3uIa4^K*}mq86kwV3EgDL5vK^UXh3ZcYU$*&l_*MC6Y4$81v&HwkNJ{pKO`>iFXw=G1xfdb97a=p_yB2q1s~04Bf> zgh_?@1T}?QjXe3g%yZb~u72%S+_rX}yW-9K>qD1K*x2c)u~{QD)b}5mD||QjOzwfH z;Er|3c+hkAyp4LD#&0+D4-Xo>vsdLVUpqCbfG7NBl$P}4eVVZm53@CT`^>+Ko@feS zvr;u)o*{2tJe2+QFH&z!RKSiDWU?lpVQjn-oR%7F-zB6Y+Yq`fbK0u;c~ov0*f6%#7%tK852uP>;Vr z8{8S3RFH-I#ku^b~slvvMl?rhs1+gIV^??7JKfQ)h<2=8mqx z518Wzv%2fMozLP7<+-mcYBl9u(=`SmS&&^mzhlGtuvHPAM?<`1z7U)J9+?bkG&D2- zOn?C^{%%EISzCQ|W1X#XnWTn!rh+qJI>IDM5DWe&FfIbHDlej2M+%y+mo?|s&EYeV zJs8e^2dvWcx}9ojYprK0jJXY11nigJhi(aJo2+XYJri*|nlyvu%s+eX_`Sf!^pjMW zRQjI*V@f|Lv6&E3F%UfvTI{>fU18s%(I&ydOJkAdMJ^_`Ei&b@_|G)#364h{}ne0)&@ z4UMrj&r7@Lo&T;$NL4F2X^$eBo12617@kZg1if;J}J_BOhYWo&VJh*$B<=PX@WFLU)EqD^+=EgKDK6L z;^cJRBKa$NY0PjQA$hGszIyr9l+{@ba(jl$+s9yqCqL&E$Tv)SY?JDv-pz-M9?T_S zQ9wkR5&_418IIRj@xZ|qVEz%Iam>cnW5y@?epiE8l#00nU}zdUpyP(p5S1+7a%>g> zLWdNjyknLZ1J?_>A93$cDZek2>6K&nu07s@z4lX7SL(^fl3NMRRFQahg73w==%(Z( zdhD_vg)KZvpi}@O_2XLO%$`wUY~}>Apwz%!latN_4xa(}s)F%1{KzK|sR1r%|!RXArRTa8vE!&DJ4*MOc z^LhaTvYwtzt^wt1Gz2LrmJT$PmfD`=ZmvdL@T4#?Y3IM2rN)}cG!v+U&OTgu7J8FiSo9erb(6jb3 zd0W~YB5$vSC_rQW);R=3TO8kWYJa_-8JXYqt5xU!Q1zBkQTAWk@X$lUFm%HZN{4g~ z-QAti42>WN64EUt4T930(k-BLH%LiH2nd4j$@RaV5ASze3zqxbzrBxr1aVr(3>qkY z%#ojy~+6)(<{)D!wvC|T@U~+NQ^aH`_7=eL- zy`e+Y~xX3^eW!P*oNh<0R4Z1H6%|H8LE7P$s}vFD{J+fX#^pr zZB*)+t4sz*CS;T*R2~K&2Wp<%Up!xgC$z0-K?~Z9b__Sig`^t9JRQ^9aE%NXSxsSL zaYX`~vTtwG8ymI1j(#SNkPgy9^!I?BY!s0f7-S%oho~wz7^)+WhCtm|$n#M5$Ql_{ zATmb2yHkZQJ@*a*?&t1WT1LBsm4$6x5m$rdo_FKLDH4~JMOoXU5Dd$X#a}{gCt$-QE4H zA4ds?wjuOQ;LYg^&!kUoKTo_kR|Eaw<}>}h5XJ*rBuHuf*!nA2TS;5@lXi4*@e`Kn zh$3DN%HI!)rx3&Zu&{o@rkCfD*~gA%nYNnS2Y|RNj+HFfAdA)f-`?rUz)yT@ed?Ku z{G8uRW;X+2+h@aFGb`tkeE$Ofw;Nb%!kaO#!VK2D-evCBQ`QgznZg~{8u(F;U!!Qi zKhdQ;CQ#mx0b1t=2neTD)-wOcmBm^>e{BJ(6xK{o$~VEY$f_sxlhZ2myn*HxS-Tow z)=D!vJ}$QSF>o@QH5u`LGB{%_)E$IxzMNeAe>H-`KE)`1Uu+q+jf=I)dQh+#56_9) zma6QV?s=X4q4{UYZa3G+qD=Fl$p}wpn7&;zUb`9~dLR6NQ7nSKiFqhSkA(Fi3XZ8w zCalf+F@#N?DfK&B2A4D#1;+|Y7O*&-=0LuW47%c2Rpo5!wEfT&yJzR9ph37Lxgge#QXlZ;wiM!2u7HN}b5$qMSTreWM)QhNI$ z*9u?~AP3cPkQ?7By z;86`Zj$r!X!AFWOh^SE?Un$&g5?_n*w;Kd=#likUJv+Bu!Ek4caAU_{V3vc=l`E_4 z7h3*U~D;AZhx#Ub6VOTCSMj3v?jp7>{}LDbCz zoN@%`QlV-ls4HxITi__YMXzO*+BUD*1Y|};o@toWmbf}C!pd1?+{3AyfqC`*_Aw$g z>KQkWDQs9aoay)^1NW6Vz>*Rg4+*b}4Ubz|Y;oTRUF+~;G?y0hsyba<-ZyIBPeX=y zp;EQE7j(MKH8pVZ#=0%E=$TRGQ0rDXmwjv($Y$YRsgYffuNYx3G5719RJBibwWaBh zUij9M^y&hyUU5UkOC1STm?m>Q-%md1^8iF!$oGWvrl9noev5!)3eBBD+E0#k0?~(~ z1`o}FYPPo3M7|HTrk9VSq+$k$bgK94qF0&eiSQp|V|&1bFm;bBJ+$xn|N0*n>$%q3 zjH#dRBo;)!eK~AV{nB+`l`-ht`0B^&sKcHs(Z};+Ks5^Np`n?P5=O#jato%yfT!U; z=FCIq$&a$ZKqn6dppmLatjO*FWz25T^;c0_d%6&y3rMWydrrjsPhXsCJ2*T{tKIU~ zd#8^C82N#z+FUc7oPFGtB*GQys(FyEMWv)9*SAewhlR*M+{6_P65{eJ%=kgxd^szQ zAQv6sv>_6<^Pc=VE+8(Hye1E1s;xAQcIq%|!S0*(;AbG3=K#U3tx-Z$ZvCe&OA5HkyG5HzF(fz%##S_L7qZzGHUE ztijZwX(Njo_LwFk?B#k;EiJL!Hr_1z>Zrmjbwd6b`ZVCWH|0`>=*(dZAJ>aDadB)+Ws+#&m+l^60igC4ebkOFVCWSkWqdz{g5m*+yb_iqhqs{){1F4ad zwHt6RTC!5(A1h0;Z)G}Kc7{$&HZ2r485LibJA0M#4vS@y<`c$1Pdu9gv9kVVle-q{Csr%v@Wl+YUH467dC+!YrOxjni9|r3|6;4R+pP)Yg3idAuN2Ph(a&pX! z3_k1I_`B>NaYdYo|4<0Azl~j5kiQgv`MV+W5s;wne9BkhEK;etuX+xU=9B3&9&YjT zaiYhix+~)_{s3A6qEjKK0@UzVyH{u4KSghfERI@sWbd7URbi(f9`RvBtpp^AU*Fg$ zM(@x!Kc8MyRD}0}pZ^Nw^v5#s|NI<8FqhlB%I3d*RsKCDEZCAAOUphF1=#jEGSZYl zK|B6e&?AN!r@%cRt53RTm?b8sGj-&-(~F7G)i*Kn5>Ad*do;#5ZMnz1%}F+U@}3jN zbT!AmVV8h4_h0PxIQkeQQY=gz#ezO?xn>V>amqHIrxE0>=34?tWKZ)gi3`Kc7mnSW z6_qhh-^uMt@kXfz3rVbdD3wk_coqK`N3Q+%I?|AVB00P#&HY&VD}WDxpU90g2FgYf zV>E+#dLH5UUXYRFzJovmw03ojNBCg9+rj>mddR$JOvWa^3sCR2?*azgT?%4ienV4R z@{Xsk5(q#v!7(e!l0$AJ9uy#Y;5JZn#wduRd_ysF-bDyY{xY`7%(J|R8^=2g_7ajF z$8&`;etj8Wdt?Q+)AA|EbV3zx9hw9TF0wm#6ZYDNu_sL4)A4UGYL&slNc@?xIj)q+ z^*w1EelZ<)e24MF?JLS)|VhjT;or(&&ifjQl0 zgrUi`azYa07i=VSsm}8=WMJ0Ah=_h9B-z zqXqUDR^}q1TL2A|BmH;k)cyl-u#$8{lG(rS{#UHg0GIDP4wUp)i$ho7(LQ>7)BP;{ z65uHF0W&RX7=#F#)^i_Hy4fCb9dILQQRF`MI|(}f&M|6E+C=J&-{s|-QkCjXc@UB( zdDNH8YsoT&k?V17bXCJmIyID5FaR*9<0R%#DJ2-C zF$V%I*D@m?hIt7HuVOBd1HN6b5LS5r<{43kXL42iug%{=5FNb&k`2Ewklg-W7fQwe z!jU}T<_9!jG4hyfp77DtN|7(@m9Vw(vL>Ydv;Y`JQ&$5Da&rvm4HY9va;l$%+T8z`CgD7d<|%41|f6W@fr;}~wwXA*^5t5xKZA``it}@M6&ViRBpWF* zPBdaOcwG*ngba8ZfAL4-Fxis^Se^if&pK)e#E#-1->!HN8^{5yRz{0qI-_(jo;r>l zqe>mhh!Tu>P4L1^uQ*B_B_(T%OIS7j3NsZQNT>%Fd5S!Q#vbNI3L5x+E{>c7BCvw3 z@qc027MP`rwpxXarv#u8@XUy2*tauH;S3{yEwAd+^VrW2f5Y8e<=EHLBh!Mpm4A7? zze4M;7bdqu*y#bnN9S8loO;}E)C@oFFZevk4f9L|=EH!mB?*;1EyBd50;x!<*H;hd z&AZ7)h$=)u?Z|ANm?eW37g|Ym>D84dv88nwh`B^G(W6_WZd<6bGV*bflz;%?FCqg$ zz@!Sz4jHCaI@CTaHC`6zRbP+zhY~gvFFU4NU``lj!6gBfVAhySB%HAR1h0pneyzM| zskmujs!2_*W421BSqWG`3RBw*n6ohS!AXu^=t}=&2SGDiPA!dIMKo7et3Ua<0Ah2# z0S`JXxpoyrL*)Gn+g=FZ_J}c;*Vzw$-O4>$5MEx48uQ3%j3-D7fB>?u1!rIBjt$mx zEB}oVbt4&6`KT_s<82i!sg($DODYcm#}fEXHpU~j?6lTi)}M{o=7(4dGiFOHA&pG9 zuHp9`$zWxJ4ZpGwYJ#@Q13_9Wgw(gov_FC}^GLODktNo$Hz_m@h?=Asx7#tsNIT$& z6#KLTKDlgQFJc!AZ&2-#@5z|}#G0t3+p-*sQO8EAVL{=flM_^DM zZCd-Di3L@SPGoImT3Ja1DR(NEorj%4plr_Q!x9B6;Z^}713HdTWC)Qj{6?x9@ z0ab`;%eo)L-;3oBbky2&tDioGQ5K%qmK`z$=BC@ZGGR>EdyXs@-FLh@ZU`9VbnbA= zqqa?LQn|@8YyW;mcusct0>hzN-Ag^0ai9+TXRATn(_#L#LVc~F>gC=NIRlXQYsLhM ze$N)>gKzR*5CU-2gi?NBv?Q0}3wgQ8P{_WARL>K?4Dc@oDY`b^S4)Jzt{zVHk(6|G z{j{Wl@h3(nQE)+&sG9{d1P*W{bug0)-{1H{e~STE92BL@vZM7_mybrla)9FX2R(9J zl4dxSBWEaBxP28QLl#pWhNg!p%8ofY^DO@ujy)n#nUo$$IyD_-U1*og1RpC_#?WQn zB`}ky+!YHrlzeA5VrTuw5Pu%S>H&Sky1<_;wz;3!1x;#;L}M=)&6Z}W@+VtMZkog^ zrDc*B)pBkS5im@97)A~D`OxPEFlTq5&X*Z4;$n;PuhC)7e2NED?c}Dgc7YowapfBt zn!tBe!Mw2>iVd%09V2B>Ck$y^9Qu_%DPhWuG{-h`H?HBiHVmCK9kV`vG48(1S?6N+ zVKxj(&aA0Z)Wy-xk|L)mYy|U8jGak8r8z^WYsmqWo{!Cd*-5L4x3@QrM@Ek@)w39z z${Hph`Uv3rfBwvwfekRv;>bFAD$)LZ2*7>>EM+W#58*siG-5fB%#qXO4ki8nJrzO$ zHqVuTZv8>%*?-MBwX#VKEiHvi{+s%k1~@xpb#*nt7DynH9iUoh{=dddrc^xjDZ!<# z#X_B$`u@M$d0i1T)|#>(CNRlVN>8B|o7qt*02Vp`^+pyN*4<5$iSWW^z*x|%$9i7e z_E}V&EJ^b%VNvVL=RfXCe+{6%BUV@XBEKt=-6ZxF&|-}A^+l4f8!FGwt0N~#4GhH) zD@!q$x4!Fk^bgOXH}{2CwOgxq}sB%_9_8+iC-h2466j-UjHia@H~{9|Fz zrc}Nl6+eC27iUeBnO_ond{U6Z_V0tf)8iqY*@xM-y1Fky2wBT13Zh_PqT#3vyCa@< zT6!e9cJ#!SVK%C0!h`xLI;Ojqn`!Jh1`cs)EBoacz?!t- zo}*HgQ&QOB7yvDXy!m@qePOjF0lN;WYBlS%dU31}IHm?p zi0UH76ng*B2)yOH&Cx;8k{9e*O?h`?qppdGiSsUJC~dmO=_cx1uUEX5m}~9#v&$*P z{o0&#+^im}1q0nW4-rJD+rnKHs=B!f3Ad4MukUzx0!&@I0K+NS!i(w!i~sIP|DhcJ z9hQVXdzn46vm2OvenSkfF94&rx|t{1H9#a2(K>u|%wRVv5@`oCL-|jjCzN&lvz$jJ z$*-gj)p0wM4&}0_VW`X{{ipz?!o|7pU{#PpgG5axvM=-#u)hBKw!AP?L{rKvYgrZ$_l=5oX6b*dp?|Ux8Zl)9G_}Nl z(G|;X?wWmN&b4&b7Zypz4El`dA2#9y^U*#wl(O^&TCMNpR;HjXa;71@uNac|+E|hz z{78(#=i^rtZz9M$Mm1Wh6uf?skD6`U_CcKIugV`;Gt$z$9onTKyiO<)K0&kcHO;kl zCjZ_Z*R`pS>-bF_PX=ULAqzj-0-Kh76^L_QnheG$0Pi%LI6JiT1Mh9~Lh|ySREKV} z5~eQMa+G>dH7d0pJ=xO!^ zR3ilgqtgn}>qYgiT9XO@)Jb?)n*<6KR_|`X#Mo*px|^pz3@NR zJmAODUwv+F_T9#K!x>d;sPj4Lr3+?_U&bWqC3g`qqsiFU`RKm*XWXHR3AMGlTk;`A z_vLzpPe+xp)xJ^QPdR%G|IDgtZH;mG$;Dk+AFaFrH1ll%CO1!&RkZgS52hU_(@xCzNQY~kTl_T}{uk|w_AthOtOk@ax5Q(aoeHtkbN!CWBJgZp1u(B|y zBHI~%89!$2MbjEoyD@h!UKb&WUPg@~hEx{)%l>YODLS|wp8yfgUY?D=c+M7E9zgl1 zT0FI<%nFa=PpqIoWk9zC8|ebgiRoZ7wIT1dm*~~kpD;kV4F~Q3aKKXS_wyqG)>?;| zTJ3KyZ!6V3Ul|I_GnSaJ%yUU&8+~~Jb=4@a#6|$DDntL0Bsu^7Ok&sgA|!1=9a;Ei z1R|x@SZQ>*xb;uYUy0VjLX+R`TI1s4!e$6l78_oE4+ZG@G>h#`3Y0nxmzz0th(yIz zIG-5*RYNs3B?xmrivDDAlY)MeIf!zoNo+Crw`RCY2XZ7?^%`E|Qu1;|d8Bg&v#a)7 zXuY^{0p^MjnD>25P*0a-e%j=Kn5_3LX^PzRJddM0+Y8rs7Z=!fU&qFpe*gZxoSsfn z%!-$zle6-0f0KyK9{K|ybK#O_S~|8x0luAHg+Sqj*?s_aeh%@AxqJEiH-NcW z9cSA*AkPdl_p%s&+M}Lok>~Ud01LbU*8zbmNkrElzZhCzc62NQTnRoE!Q$azodDDM zF1!GfmNvh?{eC@Iw%Tj$|4nY%x6%%W(;tCTA||GhDHH(hYdgYuxa;(UFnhE>gA|5u zRV*3UDvY7tnzjmc)N+2%4Xtnm9vV&}V2x-Te-=_HKI0(mKs_P-*ntHrM1_@n{0opZ z1DH-GRc=}uvuLfkYW6sJ-uHs3Iu3r@0&W)eDt||;tE-R_YU@3r2-H45+FcszefmKpGRmf_(mDVEVRe!RM%sUKZ`13#B7-3-sF z*2vwmke3vd2MbvbT@Yly04a>~2q_%Ime;n>ddHEmmw)}g5~T(G|6WfS;AGIL+^mT> z)Gq{VX$mJV)}{4a__PfNujzSn6&yA%J+lbrLw{o)&bxxx(Xm>-7M<{rx?lieW0;T| zNClL6u!96~RJVMVg`E*y_j6_63GblUj)MtCf;-?bOWvkJN278*T85SW>9bMI-HwTy z+iCA1s!~A+Cw+AFMCY;|Qy^Y`ZJ2D#Y2GkfVz4oZEZNm&}6vlKr>d7Qe!_w z9oHhu62J!v4a%<(MfXA;8)5L-$7~Vo80UD$=ZST%tgMWqMFp@Jmx04MmZ9}<0`(5M z3Jz(<*3V8)ZDQO+IUHrGe2KW562XUbT*Br*pVXo4uO5j{mA@N5%5rfu6#zD+@$$}W z8Sjv*FB)iB{@@txvycP(!c$)aigJhZYUV6bgz|9Z0u=zDW{f)mC_ZEE5RK^526M!Cxlc`B^tGWZ^ z1YsU>hi;3+9J4kTAJEX|zl{2k#7RU$W7Rhbnj8R>X|_M1ve;rT_yu1#-4;?7gn1{{ z`f(K!H)HZMdWb&cOsW7BPXO2nkna;Xr|H3Dw6vz^f$T+_I5q?Q(ws)#{xW?kN4S~) zO;=~sTy3+jKo23WF-k#^HOz03F->b70FCGRY);SS&kWc zt#R>{GUZ)o=Uf^7^-48U_hdWL`;T6*bmjSqt`>mdveq12LXjU^7dIRJr7hnXXAr9~akg2}|svmh9|C)=DPch|-9^Q>y7Ma%Ye@ zQ^-N_$FamXY3=I?mSPJ|E_bbmsjAl2+fDBT40z72Rf)8G&aj#abp* zpe&pd&6fWP5RIQchuQXitN?BOGe650bs?wRkvfaCwx5co`i_!CLgf_|O;2D`bF+Y} zfkB2ZV6Fm`A&iBkV#p1;%dDy_g&dK;<^2T&05VUM2OMQYzW4MU;A&);TB+gW$X>8J z!0qX4?7KP{{{B62M0hw=bxqCLa1iH0-+v+%_Vk!vj7dNoPk9BvOvE8oG^~7f!pS4V z5Flg;2QI=R2@H5Kr>tE+ZG^FKIEfJ4n(|()?dT~D4K-0=hSn`H?9}}Z2`@P(@SIDJ zN!Lr$e^wV44d=6D{OP^2(ItH#SaY3Btov|Sw#b2;L(qe2%B<}R*prl^vL?5G7=Qb7 z#6=D{i_4Q98=Ddk*nZojcp_l~>@in5{r+Ka!mr=)B*RoaSgVZIHeRSB$QXb+q=&Gi z7SVLN+7t%{e&L2*P6+$_ucYwluK=_mnmZj@jodo;smVH;)(bIFcSffs+OLSVtn}u8`P}jdqL*i!;q5@;xDgJ zx~I73+E?Uit*L7=?B=h@ry!-x#?Vg*^yeT*_Am80>U-U6N^Ln3C26RYFE5(UH_}00Q`i2TsWt>hd}~A19k~uCila6aiP~l+JpAfsKuQ z|D27jDLy`a8PI{^hBEzfXSc*0?|%KqbMB?fuC@k=Vjnb03duo;noSC5Q%~@nE(+5m zMkmp+?3rBaG)5gwUlST9NB(~JltF~nw#Y*@uNJ@@%kOLeB_1hn2+cOHySd(PtUaGy zYi@q;+A`Z*tyws07D@sKr%0{xdHDI|wsxQ>g`h%Ajjb1K*`nvnF>o|KhrK*z?7eoXfmdb9PlZM1+U2#Z7XY1b8GbBrJMSooS zvjuRGc`<#O4K(eI`GrN763Md-+dP>D2M4K*8|>92C4R=VX9DaMz-T@khOFl>UJi)A zOrXl);mma%1B!qy<%o42DD*yD{f?sB1ZzCMtdWsVmU!q0-pwhhs5fA66eDfE;>9m8 z)60D+U^ihpqn#j!(d*51)6mbo*0_`K6b~Y8NbX8JDW%;OoYDZArP~GG9(V65lPXy{ z_e(dz4hJi5$}BYfq^##*<0o$&&aFjrZNi~(2*fX|YC^<8hz>^L+~zkzsszxdw}#Nq zfv8kcz%mCW77FY6N?nnP%P5crf*_|5Ko(SAv0#ofLhHtkT9PLmiUn-fY<+n|A79}S zhJ~Q|CH_(`Wa>H`UjxlwO}~A<35MQi?Y^ugtlj=@R$-v~!xA+F$%qwhZ1@6Lm`QX} z^?x6weQ9_9G=G(th?Br3USqZ8tJtewe-TvjwhAwY43PseWQfPuoJ6&R(tJl!jA&Cu zC7mhSJuU8*+@+yA+hyLHN1eo7@Sqt)vLswM-N99X62BM;Zj0!E9%OM@A1+GHeb^NS}<3yq_PDGo(2km8d;TQYS+eHc@- z`-VhyZTMbheH~@j`YAJp5`q9ZLIxZ`CwzXAq#c4RdA2kK?{;%8%{8HT3bK^Kq@O`! z(#|=o(qst`U5!|ezP98MqAj_bQCOnCQVNCznU9+>rDPQ&VO_JX+TifLc!^Do?YK;G zf+K{sfF%W4RYL}i-5*U_Nk>N!7%0b`TP=Wr&(9+s#%sa?z*Mj@(D;t`Pk?keM?0Rml`#{dK*rtIJ=eRB4jp8kTO;5VW9Pf7CK z{1FIq@%+;IISBJ}V0a$&zYxF;BSEUp!fCMPW&ihHFr(%`t(=}xA^*pdO@fcj)FP$4 zV)>?9zKv)mdt&q)i|OuGQqlZ0QpSyFamcJ_bt;L4Bjm@6jM;HU-nho197@e?UQJu5jMhcIJQl{O5`lW6b{{nqn zuy2fQH8)j2U(OyL#8?V0n(uQ;n9>%*J=f$fL zB<4e^G!eDU&SKowu>nm>xSEQLilf%`I**9Tm6oo$+8YlK9)Ra%VnWV7Rh%U|l*4o@ zM2^c|s9%Bqb)xX?Dl8SmgoA_$eFNf?Vx_@j>B@(Mz<)9qiZcWDccohX@WQ*?7|U$! zqoVgfR|3kAzgIeXB_;P@f(|2qZ_$GwT@m=7qqRrpdl{{PT|~xxF6Sr~#;jR8`~qu- zw2lfs3?HqG-=ae@z{gX3okA*23%Egv9wN!#Uln?@U}1X}hC8@F`4}Sm@av_+o}yRb zW-aslq*~gq$(ELlffiZY(ju9Xp6>gpqN2jRGT93#$ft_Th8_VjZ9dr=^|n;r2Y?IYu| z=b9H-%7_>1o@{@*F6lXp8&k%|^`{xUM2#E!K9GpWrDkPhkHe2f*nK&&nA~6uvnP$L zI}08Y@filR9ADQJ><>E}wY~}%r_HLxT8oabw<=#|*E=TLz_Lur9qJH7$xYMZYu z)d{b!*V*N52x7qW8s8D(+zc>SRwyANJ}O?1@2QZ*^lezFroP2E%B(T^*7i|Q!6)Cb zR%1%R6&?Q4MGwAGz;NVHJeW>gOaehfL?3IB^)m(Shq*XDDVs5-LG@l)%@IVARTpH> z2m9OlP?2{)sot~}oz#LNq}wP!KWB+PUBC-qv_q&}7QQ z?&#C%@q>0V+Y>?~5l--M$Z3VPA@a@E4w4Ft>Bq>UT8Q37>Xcehcee$G((zKmeoywP zS>#{N3?zL1YJ7`X zh8r&OCVpbgBdZ2$e>dq5YgX*^E7sgF|HRjiTR;taduiZjewvo|bXZ2ba-h#DbEllUtS$%-x?bVO+=! zBYs2G7raPIfmg6OywPM=OSd#8Rg^nns46Nl*X;aRTM+EhZJ+oQ{lDrOqo- zTCM6=gi(B)NfYBy@NS3da08R`${|KnJpD*I@umOtoBA(@(Nq=z+9wMCCVnqG=L*UD ziVqcugi{t*<&XciaZL>N7n_Nt(YPsjr@a<`eHiAb4uu@ZdL-xJq>X%!E{fTfb^83B z5J=<+CmJ$Sk&zgb!$@uV{gp?CC?O$1!PC1g;zsDp$g3+(B3^`?hPV=k{9J_pfp_}~3oX{SGQG2th{-PKqNB@&9^lUxhqvco+Ce54`PB!cE$hIn|j7%P-=Lbq1Rg|0&iMC>_jsPt&`&Q0!?`jxm zm|lC7Abs;2WclYE?J#OO7&|ugVH;5N2X&?rrT`fa;^h{GU!FI7%^KXY#>#Z>KsJ?YOJrV<`1 zfQx)QXxNk4vq;9l9?F&eV=wV*{~(Mmdc(I-)5NcrZh#x4$W2#NmOz}SB^0hnx4oTc zCCb20cgz*RDkMekQ?MBA`hmis!v3FHu3lqTRk*(3{#4}!UAFdi(HwWr|2_>V%)%Ws zWt@GW=l{8qDrZEy6V_C1jhTj^uyTpQv6W}-8lqUA<_F!Askr{gY}1$+Z~-w}O^cg7{l)f+(Co`$Kbe?1h!$!DuESx_Z zW$^Cq&aJ%Sr*)64;~~W!Hxfp8PLKalrhpnDYzi@)YwP+$SwMh>J-u&=unrmwAgMhC zD1t3?dqbeM4h&}+Z0i-e5KItsa~WiaG>J@_fM$RZC4)OOaMSN~d+8y@0oqbgSARS< z4Xb%(h#`Y`2L?nt7dMG>NQ8(OfJ^mpWCRCYjxHN@ko%OZw-?;%Q6PlQjogD7V>?pu z&I`j5dP-#lR`|7@#d8BjQUqhh8Q zpuUH4D0JyESb$E^TFDld<+sZ);UcmtSDK zkF~OZDM0t}#!Qw6QM*)BAD&;Tq2aF=X1js(52AMxcl^#I!WkT;aYJ;*EnS%b^9IvH zO+PB7Pz>T0)Y=Br}g;YMx4_Z$bOEUgv~#UUhkf{sw5Y>rBR(JyfQM@ENauoR^D76 zmcpC}QU(46kset_)B7bT$&rG-e!2}Z^DjS3IJ}R3V&9f<;whLD_=HkrhAwnnU0jR` zrJ!2j;p&_YaDeLDrV4Onw!e^ME{z{&@~2cYgsKm%kPF9ywt1`~Gl$ zod;e{Y#2e*I9WJ-BOW1$p{TgQTM9LYAtePXs~=q-tKT?R!4WYGenwV!Mlm&!Bf7b1 zg_A%Q9~cgTg@>ofx;bod3mt;MY}Fg;DwjhfRkhq6C=*^PvrFgrB-%3$uPgQ!e^3{C5WjS;vIQQr43F+1*um1oF{piSbjazGEft8OoJ`{8!?xzNd=-L8GipVi zqd;=*YMUq8493V9ATa`_4CGZ5(Aj4DcdO`gRDiUa8~K+bgf(<@m${c7^Y2QB-&v@| zn};UBYR9uetsA{-^X#*%kEBh#TP#w1BBYoDF1C%l24qqitAz4+N!&SO^@stUyl#JL zf84)*AlZzEo#)rtiB6mesA`IPdFDLtx!fjJo;}`h6TjZep?=zBfqFj zM@+rY8M(UPWf5($`^;XFLLt+S`S6+S^w-VH6cLPz$u(wXvOnjce11{ikfPvt1&gbC zgW($;3kJ1CIvsmL6Fy7)4X}_>sK`_r1Itbis#G+AO2Cxsv(CL@G^X`vttpJpk5?Y* zWI^Us{ho*2pVdCPQ}Q-eLpYXHi50@$Ozgu?Pf!2U=8b#JXMt2~0i72T5;{LI0Dv~OquDN>4!V9GE$1b zNkY}n#z>nqz1IvPjYbj;HdpkCs-nvnFkYJ5qe|j#+{qA8APZxRH1UuiFNiwlT%<5L zOt`j>SlKEr)?lO#cgFl7$PtH zJNJCw!?W8ZgpG?UE=JBMczv>hVbF=9_cQoJkd_1VzW)7Q+W?OuT%;uf!?vy~qh0Y= zCa#cZPj2{xV?@Y+;XZf5{bZcM;T7LwA03UU%4yKC(Y5Fh$92~E-8=6gi*F@p)jY?3 zafcnWud>avAE?cI);O-tkud~L&t6@TXY<-&t@$s6UHz@(8hS~iyjMWQ-Mg2Enkn^x z=Ow8c<%JO5DQ9T2Ik}Pi-l3?1_`=_r=lGxJj=C-`F1m(>hSslvJ>~TD)LhoV(#0}v zGd~54CuaZhrQoi+BXGV?eGAk4B^`>;KT?sg#1zi05=nK#Z%;OleU(m9`bJJV0#DaG zRk4D?%h5+C53gtwB)1=ejYb-5v0>iVTr)3LR>z#W{`{)=85$n{$4L)XcKT=9yqbMJ zn4L$RDeG7sC4NQX4!$w8L219yAD@_cJ!??hfwHhxkDiB@VlNDpBJU%)ZwYp*DOE94jY&eGA}njz?Sy~IE?D7>_k`UBym(RXTbQ1%-x%;)KuePl!b|81RxYUifj8SU9xBjuMzPv#j}iDf%x@rR-zDx_ zQT0dP**_CvNA-GIep(G$8JOmp$4ATG!{0u%`-Cw0;>vos6fG~SJKgP44!S``Xc3Nb$pQPOX?g(2_rH%5x&fspi1t*!5smG$e2NLJ~;jy2JtZu1G@6vj^; z*y|q|w?qMP()AHdxwAaT5!{sy8ADES=m`WN;YpJRjDkX-NZ}~qLo?nxGPDNvO8)O@ zbvqg}gDyBE+LWVwUhg@rZAP3f+c)Ihhu=WL2yHkPm1CQy`>G1ZP_bGNS(|lKRGFK} zR0ve0TVxQr2UU7u1Rz{+owXTZc*%t(XUj)`f5Q^u+gi5yh(t$tgSkqJ&>*V;C%kZO z9t$Q+2W($QW~DJ5chTvhfm3Y5NPN7B-;FWJ?}X=`HdfO>f)iO`7>wi4=UPY;NZ>q&K4(HGl`3vWsyZYyW!K$y7r!z7T%crR=A|2`o3+wI|* z8J&4O0Qpdc>V}7_%KqGV(8QqgHd@3XL9JM*8=mj{b+q}2V9tCP)%3Tz^J$bO=B*q< zwFp{UYD*-(&}y7&S9U4ATQzp-1~SuLA`0}N1^gEZnSEo`Tz{y2dvV7sH zuFergNbmy*Tv%fJ;(dB`X??u_I!x-8y3e-HXB4iCRNtgHyoYcYoTEvA+hYbikAWp*|@809rx`szp8I?Z^JYY5y>d9tG!F1Z+3va z^hggu+U<&D^?WEqauIbpBI9qoS;H^mTZtW9WgNkOktodmP`qVG4O$JhYh1JZhn*l} zg|x}-xGA$1SKf}q62L^B6bik1G9;`vZYpnSXlU>QLYq2)s6=h5UM(Y|XC0dbt#o#9 zDMD?bwvfMjmGAbrTd)t3I92djrWK}4Zna2!>Ai*8ce#gmT`E~JZf#?% zWnyvJNA;PhvSxA=0P;6Q>7yjR&#Q{v^HUK0drbI;rLH+aP{=+Z6b}LfWbP1A{BBRoLXl_q|&-bS5fS zAWNLy7By{iGLt0jz}!ITr#`6`suU)k{I8<+W%a$FfUpmDB39N1y}uY|c`^ zqaievz#y~6$}|6tS4ZX(t6*fga_Xng0w3C7K91Eytp>ep7Zg^=;lk>tgdB@@0d^J%7F+IHwGE;SD`uzH9 z?B9(p00QYP?B6gvzwSZmilbI~TK{6)2l+c1d+2_gt|=-I!YP5lWQn_eG4UFBC>+m% z#5S1;)p~oQ*_Ro3c=D%b#xlcDwx5Go3Z!)PKB5sG9W~M+V?cgM(!2w)0p^#jAYR0l zP-KeR{v-+pZL1Kd_q#9{?)|fuAW~|eKqp)bN{=D0XvP@s1@!(p6eb)-L2fP{jWLSm znUud06c5Umip9QvS+l)Fg9luC;52Ti003#F{~_@mb@$|A0cP%4xGFnFBKjn;du#{! zZBgvbX2n`RkQ(xO<&zcWyG3-8`)~)AR!aJ2%p1m4cZ3BGNiR?OA0V%V<^E4MaN>Hy z+p6>n7^+d}^b4PW@lQF{yl-Y=S0>?*LtElXdl1yx05oFh=5>onfV--2`(>}1yWZ=L zZ2ZSm2t??Nl;jjAz4dR5^HQexe8B*sC%mvBmNUVo#|+uE;)6STOmXt>P&HlQte1}> z<*!IGb-lTtf;&q}N@}XBt6P9vMZcY)_;xVf>2oWxUV3V0EiJ8gKlbpuyd?;w!l5xq zZ-H~yCMRUN6;}#Un|)?((96K1iBn#sQY`w`jY7~6uD&0TC)0wlE?Xljp(Z)>M)jWx zHLGdiF9)!SqI7hR-Ib(*SHNfxdFS3s8TSa0DN&y1*}2EVrc9b*3WU_(AW>UVvM4b> z5%dJSYK8v{C7tew9%3FJV1hZnZ)V6PVu}TyCL9LVy3e7_z6;tKFPW+=bl`4HN>}-w zk^zka?`SxGm0(&->B< z0dsD*fhM>^{lQIc#iuS~H9$;JUl+$XIz63IR9uYT)Y5XZ#n3@LFh%GS*3G=;N zqVf+$EH*ft8CAJ5|KZtvw^vt$mZtSue`4*hfPcgxt<9dxiPsx*-eYB#&wAn*Ocb#u zpLa?>5KBWU+`c4#p$Y;LWZwRL*kNU7e{XFwmzHhZmjkPPOY)6yE_=b;qC1p=GVoK| zE21z0Iy~6so2W1>0xTs{5c$=dE8WA%^uF>I24`?E9-OQXDEIK$XK*aJ5n*{&k9dIn zmNa?Wp`^$tXc~JHUq0DPXU8_-lVaic?fBM)&GzK>V}x$o+#X<6I!wuY>-jl`=Jrg5 ze?dZb>d`;3_E-01A_{D7?BdTgt+QG`VZjBDcY+b0m?uOLaI10macXWH+g zZk$8`J>mQm1)icP7XDNi7AFbFoH2(gsq+a=rdj(mbQ?+DF$v%7Z{%bpd#AuXG>Mx% zoe>?%mh6eYX_C{^x$f;2B5^72m}5T-wZ!KMhiu-2%Jb^*O zC~2C=s$}gd1+F|BhR}DV6G$wD_>-jbJbJd(k2>dKCV8EgfLzkE+qmlV$z(ZpbFt0q zCD#znPy&wu=3o4uTlBsI0`oii+*(+&I2dvW?zf_f1q9=!FoC&-R@};j_i#uRu9MTJ zZv|h9z}csMzj-2LQ6iALocaa4$9Zm~g)_512rqrU{_cMuP7>h5U(WWC zoQ;!vFbQBVfzUuy4!JFcbsuE+RvIu?VMX3<5JTaLCUSRcw8HG{-#GSCT3|HQ&wMDP z?}!?g3yC(-J`2rSsz%5zu4Ev7#}eQqjY_k5^&b3QcYhQPvjU z`%f`T_Ku>C)jEwXgnHi+@;ej}qQQ>za|ceBL^z6@J^Y5o&jv3Ax6L6)?{`oA2cM^lfaiUVA5@HbVl=q5Rk7}Ec z3fT78-xdQGM?WCObX*VFW;nBAAf3a+mYTd@=3xjoG6{u29{Z`>+Z0^NU*bVn!ToYY zFN2t3R}44wi^5<8@3hR);h0YDcM^MyA__j&JQ1*UaA2M%FZ}QaOd&hvOHOG?4cWZj z_O>o%yNErS8IilpOv>HO5-bzLMa6;1mZM1#tl1n(;29 zZP9j6)T3;7(VMC72WM=aX2f9-JcvSc1ORLSV5lp2^YpxuQa*+gjC;AlIl!%_MsjIccjO=!`iy969;* zJ=+kf8Y(I(m79yp@$kNbRv-}s0x1Yj8fE3+I7wQKpBNfSpRd_qjA4hvOF_!Jb2=Fj z@$=-{Kih!t(7d~N5lbtbd(KXq9;>$}_p2)X)dPEI@;ykb+yVyGAFoZ^bx@Tm+aA#` z>VLz4v*;c(Aw{`Qs-g;;O@+ORiUAJ`X5Mgh6ZysqSoK>OOoEM}K_qlxB_s@CavBvZ zsb5}RNnV%Bi~EDKv4$&;RX;3g3H>z)%92MFD#!I8%i*X zKJI9$QY-mOW|%%|w0qu7#7JX;=&4dN|NORI+wsqzaclb^{y5_0{#DXotxyynge`o7 zd2lEwX@9TU{hMaKbU5&%C@dZw#7!T+Gg;-!b!^Saz`Ds0FeuR;mtNwoXFf1-!c@}( zjfqk$8yG+a%qgbi5OhaaH|DDi2z(I=1HfwIAASBklKO`tyCZ}fWX13JxQXLbyr}Wv zP4o#c@~9^_PKqalq9bC+kpWOI3q^CfE$E9GEG`r>snESRBfM{+*s^}Z`av=zzq;`)dzp6&54A@^YbDHv9L#S^3*||Gw4L{Tmq>d5(+r6c!Tl@Z`n+NUw{!!#(=2 zYLJv8a>5lvfs;oN;kQBIPs_DJ2TW3HO|a4W?Bey>TElc+{nGdx&h(J*4{;pDH;Lo2 z^-r^a;uw}^G+_mgM!vZY}Nf*U_)u)E6_y{-~S|z-v~qQ|mp`r>P>A zN_<0dnp{M>vsX?ArcPjAMlUY@w6WIV89W;FKNb~Z=gsN*x|OLZou_7G1e7S42(;cX z3=UQwHJ4R>Hy>mDP8G}ID<(J;hJIdDeKA}7@wW0{&NZn<`{N4+-XSs{h8v%(33wCM5lcw^XIv)jjs8SF97`) ze@~{_7Tl7cmGG}!Q?oW2avwA5?CYXIMffir8`od)uW=(d!3gxm!pF&+{I$sP=2-T5 zO5_}|k3H#3hop|>c2kIdf8%#u` z!EY#7-9d-2029K|5d@Q z?`Ho(SI&SJOB7PtSUMyzl8$t|Vac{A`;#CIqN5+4lUo7fFyb8p@Pu82 z3oKGf`Tf!R?O*ji;Q5F<^9Ms35&(}2xv+=8RXwkdH?dD}$H#xBdnVF(XYhqmqP2xi zoQvEw`{5dBu9nPLXI%DaTR-B^+`<#pTbrDDcT$mY0f7^$idEcxgu=oJHJ&Cf zC!51y2?9A=)g*K?R*0@iI1A``iL#=H<;*~N6gwvq=}**D=rng4en z>%p6bMb?%#zu+2f5*ZiA?1$$^snhxiHoR$V7MX!p|90PZ(Ug28@G7R~_E^8!t3P>B zpFccnZlyhKiPBRF>_Pdwh5qWbVK*!GYv}2*d?QpjBuIz-AV_$uYoK+N>Ai?%=b ziR$j|x6==Qy2w}$Tkqk%z!tl{h_m*44P!%{4}a`IYrq#0i3I9o3X$C_YhtZ>b?h%S zF}8D21!5nzl~i9en4ZO-_dk&na9yZU7>5BUZ*OES-1T7lm5{MP)60%Xk`Opc8mu`)AHw?IEH)rYr0 z|0B0h`QG;!qrwPKe6e$O7BxXptk8R3#F`$3jPV{L3^>3`(8#07&heF~E2PmqBwQnQ zklY!ya%_+Z&2P_bqsb{amklvrDQ_Sr;cP2^Kle$(J5^;yeY}#YXIBo-2+9S545@IL zX@?aj$2xXFVLdK2T8^2-x*4g`damqBB7P(&its}slMDQUse!M3fAQVO-qDew(xX+>6%n5jy^tF0%%qb`QzB zuy6XRc#-M3agY88j-7o?!_RtJP^zE6RBe~YPAd;N3SD4y&QgPec83R?hW6I2i18Rc z#aSb(`Map0L5{2o%WLmgxsnL0?Zyeg z!tHC3v4gq|>nIO@$I`d%U^Q^i$0+UM#nD8F}wnPVg} zVcUz8Ek2#Zm?DX5ejiitEKep6f!F@E1gdUH5y8GyHK}KIQWmA$hhWq>tqkQCzhy$mKJ=iqYqEV>6*@*JZWe~-tLU@ zPrjr^Vj_mOb#6_^+y#JZln9u@NWY+O31K<{$G*%0#Z``MXh!_IIze} z%PI_myB$eJ;O_{~rLXHf{dARnA3|=MkLfcF+Ce#gT$n%?h8rUN>*Ek7;wN2EYZ$VLry;aDk@!p|A$&HmZoi3mYD9a6UPuf4jY zI+Ayl9$s30uzZY5-gS_jqhTG7HKifklQ_S%eQHkkN8w+w7kBJdBbx;4T(>7=rB$CW z^7v)sIHYxCu5b;tt?#;PC9{)%(0|GhDDTgow8EW85Fm##OofDPo_+slq0ShC>TH(n zDKVY;Hep5@7$c5p({k5JTne^_v_Lm}ey+3!3kutp+STXEeEyt%WbptNX=0inQAwPj z$@O$?HDl&}S#rQ}h1E)72Pt+Ac7H3Q?MpyJoAYz=5}>C+mUuDA9e!?3l4D=jjkk|} zg<2)LPj{8pLdc(um^}0xJN?MYFU!y85gNa_$Q;yIvZjffb2};P7}f*NR#>b zvrY_Js$Qp;Ac(=C`h9dn0BEKEqksxP6%+*MUAOBR8}pnGeei>cY4T8uF(pyw8dm&0 z$UKp#PM1pD$KpjhdxTAf9r+lEYQkcwS|UqF8T?vVm!iQmf=ld2yuk>Yn%7bnC}h+6 z1{b1!KZZW0+`BBC00)l`Tq_d^y+MM+*Z;E6gci}>2=a$d?^dA$m@68=^J76^W1Lc6 z9h>L3tE{V8iJcIqqLz1B2dTR0RIySlXdQYVuwXV%b&ZD5x(nPp!6EZK^(k7$9x!e3 z?tFVty*xxyY=8^lzC0Y@y-w1!^tX!oNNC4UgAlt3LjgC0D-f$!WUbY_)Ddf-)oeSc z`T8|hQAvvC`@Ea%@1|vi#+#NWDZn+f&PWZGmrGj>uKc0)cg~Pa?(ngi!$uhGP-;@8 zK0oRnM1Lnf7g@@_i3Enz4mG@NRkWXZS4IktDR5^uePTd%mUtik3Ntie%0j8mC01n8 z;cl4L@ixAursi>H$848H{oT9OwomhAYZDU_YwT|usROoQXa&G-d&n;wq%Qe5Iy%C! z!ERbW#F=^^DDU?%xbZOj176?#h8ro5q<=DbtDkyJ*gzVcw&*5 z_S>p4U7T$=*rZoGiJ&}~{-s6$$T%52$KqwMCskJbme2g=2QR}yO!1BtC96|{1Og)r z#;_C~JT-zJc4^$G`o*`|4Hs!ksct;^%D0-w-)FrMgRKUsV6s*!P#QJbi^MWy*-+G^ z{O~A}0Pmux1u4Z+GCX2aGF%gCaBxI{EGr~`3~_=hT)_Smid#)M3jdjzwm%uq)C

    ldcZsiD*m6leLzz~e37s-n-WcoU-%rUDdITqXiy_e3*VLO|_*gEq^c>ZeNcfvz8Oq z89~#w*4YP5`1w9Btyxt~X>aUxUr6$!o)XkyjL<9(j~8*n864F>Sm?nj)@X0ayp+-zVh@kGtosEDmsvnwW)6yd(@J9#04S5 zZ5Si0X+HX$QPMmLH`=@955wRvF)yUtHGZLB{{|EwZY~t2=*0YxuEOv&Ce@ z04ftK6eg*=!CiTF7`QT?^RVsBMEw$<)*SUQd)mG&sob6BVf8Jxu=dH@`%E{V|6*Xks9(R6zke$ZL3o`$mG;!R7gC%b0TPDT6V4&@Vgd z!3qv)CwP9s|63;P6i+VHl==f6E+Lh=CWrt!GtQ%&(^Aqv7TXdpfoI;*u|rZNMnFlq zmXnY$larIPuB)v*zYNk~z|L~%nb@*6p21JG*y$|{&zPB&h5d9f%83B-2qbRBBdkKG z5zttz76{bsz1f13gl6h8bN2fR`47UwLM`<-w4FkJJ0*tFL>-tkb%K@?_Y~q?Vk-H!ZzZHX!wb6I)Q@buFdk zDdAN_3E^QN@#>cuj6KANeEwc!3I?1G8gRenozMR`5gLKU(g?rJP#e*4BX+FX#dUNs zz;?~4Vzg^NIkP7xRpkHveJzA;FU=4B3n<{OL_TBah=Cpc^zo87T_$@OOMl^Dp@bFe?;rX9i8e1Q(;qs?vNIuLH%`qlqPt_z0@0LRUt1Mn zlDMK)!^)qI;}ZA`an`>&M#Z-(QtKd3AlN~SsgsJar&B~UkiFTc!|{a|u5#&R>=brM z|4jh8X;@rP+CP{#gS-@2XlTD1~4^0p4SIFuMKQq=kHP z{lAOXW~tfUG^aKL0100qy+AA><8lq@KZDyYQ|;15g1*j>6Z>(p^NUdO@zEZnR!->j zo11B=`S{Q|CYF{jcgK9!9YEs;U1y#ttk?M=N!2T5DVl$M<#qxV;5m$64DT{VuD#c;V#wQG<%(2?^G>v)=NpN=6Fx*FUBp_h0!ti#>C zC3(fN#Rtnybu~CU_IgE{Vl z91ac_7B%n9%#b20M<#87#i7e5%l-FpG%MNlad~x~7O!8I9a-FEXJ?CP#;n3X{1>Ca z>csfkxBBhR&OYeUpOm;y;ij*J$a4TZQfGs=uOtXwM6OJ~7IU1Qp1rg=?OqPYKy|eM zX*_ht$3j_VQF$+K?>jnL+6|WJl#Gn!w|e@EDf;nC#2REXr&{}ST@cslo}cI6uvgnJ z%v(oJSXvj)O@tf?&iuX}*q)?J1=`$BdD>LZnCzYIYwuYQik?E7x)P%=;VvAEdZ@$0 zjCCU-ugv0PR6IxscVxb8X==ZDIiFObX6;^9+?D^GO+1xo2XSWQv-m%;zQ|4$^=XT9 zjw|&Fx^b+gJXdMmnXwJRE1g`14$_*;wX?T!wtqMa79PGp>-#rux9QgzURO(s5nYwt znt05QW*Vxq=a=OkhV_>0*Ng7Jja;?`8)!{VF-=g-K2hw>JW=dTqpMsV$nNDFFf1Tm z)!j*X{OpS|Jm+1Yu;3PEob7f`Rq4OWAd7MD(o#Ce5yg6ZygQ}+ z@_)3GA$b6-hVIxvS#|X_<%ew4!*KD^ugYs0T(0dryGQ1W%be%zFWDm`!e>gdKiJ@j ziK&nAQIx+=OpJsum4rk@zWo`YXSm;UUL<(<{F!)Uwi`<1RP}+C{kLrYlu03*;6f{~X@_Ssw3b((5Si5|)mx{h(*$(ywy*o$7Jv){bDp-w?!)xX=FHl64u#>pv zIyW3k=MRw_8t;?XQpO7iNB0sN<~hyU9P)Pmn(yQaeo1^VaWU|r+?Q#e42N6^2A%ua z`=4(X=zkwnvdra?4Q}C4prvC76HK#QrGM#EOD=lI`exH{kH~scldO#gqmV&^xnK1vdRl|A>ByCT~xagn{$He{_Thj5^# z@sXZ0Kx_il^b8?4e4+PP9)Y2vFB8HjH6Vd{a1BN`DXAgDWlu7NEJAs#o5lh-Mi9sc zdG+dgs=Diu#SfJ1XL|aJx5w*UT?@eLlrMmejZKBX1PosJi_t%RRL*@a*Pv*_{aZll z?h%rhW5mXK)<5u-S+panGK8J=t#m`fyJvX4@=OkPc1rob50nB!l-&lpF%b-VNpHu9 z1nMb8$0FwPu!)0W#eCCFXok$T;XB-G85x@>dI`#f6*pmctg1{O9#3)bgI?cO-ZoKf zq3zuCT-H7$X{vrev?$6&Sh@sck+~O7^RYfJALdVF$K9r7wiFVQX5r`DZA!73;7|ApPXs!9Ua&iTkFg)3^;Am>+6#e&r9+biyfY> zr~k68JD^KM)FUE8DDRF!v}@9j@}b{fwHWS^;2YLP4=ivEk%VUeWx-R&CE=>mt#s?T z`@wp3CXOjsq3S-b44tdd;f7zOn;J)5>~)^4E#MPD6C7j+P}Ngg zQ9Wd~g!aHOp_ABm-nl!q{g(3>xFj7HJwd-XZzwkQl`oF-lia+e7Dq-BHQ2Tvs2OUX zKSpw}f7`o(CK4)*_c7dGUxAi0ge3z1Yt_r>9^7*B%hJjszoqm`z3J8>u~4$Im!++2 zX;Abn(8r_$OdP_{lk;m}NUjX>axS_z&_EA1v%_%QeesZ7Ev`$)-)Be_HobB4;U@I8s%~7eQre8m|tEHa!yxIx)eIT9v_i^+=RwxN`htg3`iWqK_Ve>mog4;5UU-kN|N zvNVjg3(8?`zokU@bKm`n%8KZle;6i~V)s0ZtOt^OQvXcKFVrjT4|v}1vMSWk07VhH zK8F@v&TAdf_)x|Y-f&G^bdHh!hh98EYy_)_zaR@7`p>;tytibkF6%w7;BVQUo8}ir z51pEq{5Bu>{{C|V0lNSLYuP>B36c&oB4`l#@7SZh;Gy}pxHw)~Tr5ps3XCH1GWw^q z7lj+t`ZOn50_f9iyAriddUlRqC_abtk)|nvVC1A^?SYGVR@Ma#Y3U}LR~2@NptcMB z$VI4n)x5j0WSZDz^z)OWc6wvj@8s8CBn3TWwFtJ<;$VJGP2TQ>&&J?%d6URgE*t%m^@r(K+7t>sXpyY?Jo$i~jnk6$A z-Jd~Wm53*+qKlswc0MOpa!8KuA)I)>Q`M4#gve0$r>vp^%EJ6{-V5o}Y+Abjmf_;E z{Db&p`TXy|ViZLM$^TOYJuA!_tJY^q3atSVcS`nM=cj&A+dUbk_WPxy;SOXqFFu8{nNei^+OvlisuhU{CRhfGSeyrQt{gAJS zEc4nq2b$7m1bxz2m8^CbQxbRgmE!1Ba*~kIi{k-NPqCe znZWA4`-y8;qKIh4@cQzX7sQj{u{Xt6g%Ts<7$sZndSxui#e?au_2+ZV{rZ>Y2kNUT zQ-zkHmJjK8AVRY6)wuiIm|ys7K+Gt*$Va$Y>0PnZsUI1Qpaxtec+Td!S*f(b*cYnj zmlj1KYUWTb&&jW-ux#6%+z!RGY9)^8a65!P^;6w1wluirmo}|Cq`(W^WSHLnE z+S?P3KXuPnsA31b%&u{UQErSm76UluBDLoWsiV~4RW}+-b8lpqTdkaJ@MvA6{qTVJ z2&d^hJqNRcaBFyrZ%ygUTm_FJ!EY8e;s&zi`!+>xozHB_Rn3&qdp(JPH%2NW-+Fq` z(n^9EME`BU>TMkhEZ|C_F56ikL1AioufeaBl48<1TpnTOU`(y3kRu+&#m9HF1cYMm z{A@69K98iP7qW%1v6Jsx$m7b(ky)j}0>HRw7PUIns(7Zos2q+M0j?kOahhb7C}4pH zVw!^iC6Mi{D1TE7R7v+6oT}z5qj?}_O7(vLa-Jz7l)A1vPokv&;b@QDOXE9>KnjJ) z$Q#&c-Bn4+fmJ#pbtV%UD#QWR@l29-F3Ma4r`s-zng`0e^)Z^|je7gRG>h6}2sD-` z$xrOvPK77CZ^xCx?wB!J6<%E}%!iCOg@Lkbu(GC8BNM8Z?!sYk@Y}%eECt}jKzk9q zDxZ9V>;+^A z%rGW}h|8iKH}S@FB5;n!L>*eDFU9ga!r;7)7v1f=V2Id$QwxUqV?wlaQ;L9K>`Rrx z>Q6%{@&z5BUAz4U9e?`u+4-q;eqe4*zng+F-Rhejp9lqrjm0f5kz3HJ;>)S28Bk;##_kSw(^DjlY!u*Hehp;6N%DrM1smkA<@mi%Z z=6fuZQ!*a|!)c??QMM7b5w}AI+O;gy&<$SmZbwMti8#O`s-7?cBm)*2g_I;v-5uPb z*iLCIZyPK)TVd(yAwC`2qDXxMYl8%t>-)8_{Le|J|EW_j!^d*E^i`vXy5B>_FKb{B&^!e=K%Y((2hM@|apx{z8 zS}F=Qw)o2GD*JN-@?5N=t35nCz}CxaW)@vmQcl4VZ_uV2_@cIoer{mVsjPaukOz{5 zyM~2?Cn*1yuar1A)qnlcCysh~Ub2+_Z@HkCm+&@Zn?fMv|1ZeG&5zB*_hqFD50Spp zHRa>A4y5XM5UG4MCPW5C4;h3N&XDDkFEhEUbrWve1@CWPU4|{lS_uql|F-r#-gf`I zESvI3#cD<-M(p<;fOCU4+(@>$qNg5zm{$*5P8vPmNX}_(@#CO(qcu0Qk@{^JO)2i` zt%{lO_QUGuwScw`cnTGyrc%6ssK4vTPEY3pl=`zjBgsFc#fCs^4UQkYCK3ZsZC^=* zC(JM3fv0tzb@k1WfL((DEBXiXk%s(vZ^W)muyIQw298qbV-WE%QWtgxR&#<{jRhe`Xlgsg#q-9-qC)l^0 z^aB#W5=jVce>CA5ETTi!Ki=@OzF08lM-|5m;a7fF?b$Dwuj-51Linsp&CBo9gL+*E3I({P zmvYS~ku726VF)T=)Fi^r1*Xd?6+WEe#?vG-C~E1Dr~-Zx#^?RWW;I+${GNEm^*b4q zEvN{y>@0uU*Pf&dLKOgeq`O2FMBouTCi3n<-|zLgGxgr(C~R%RnLZzBq<9Vzc@k9; zT^I)e`W`xdw;s)Y8x%E@x!fR56aM<#egK-Vxor218SfhV4P)*ys%Ml1)2G)V!G>$M zT+MzWt<;!}oFH=A8zcVsFA;n8-D&%4TcoAYQ(@FstTWLkX%A$|X+p^=!k3%{9vn+a zu=wyb2pa?vEPmQBm19r>u+ND5YIRyQuVqxpsG59O>KDGTvC((9P)*zoz6F@HL4&Hy z%*zYmZM|zjS1CW&Yyx4ENC`d3ojYQb7|T zLP8k{iII9$9`^REtS2B=$Ap8>t{fEdsL!Mv0A1weQ!^27n}8XEgMgr6S)X9xBp}?L z2W~;J_2x*>pd=eIIOs5;y0T&zo}@o6>+j8z?#PP0Oy9g>%o$P&ldDLweah8O%gUVKjJU}IaND|WB$nmwx`oaIx4YF5i=sdVsYce+tagR_N& z6K>MHF2k|mpw`RpTabTl@#T@VQg0JlRpl?F1~>IyJzfj~yJ1JKmS1dMsqU$v>DFL;C3;!nQ>`dcsM{shGy>ha46q4r&H>z zj^^`p-u?~C^ddeqpoNjOOF_Y6g^BQU76_$nRtlmafJK3e!49jJs7G{#Y?NQLSV^lJ zVsucQFU2Xu3QF46IG$Z@PzZ<_qXXUkz2E#jMS{e+{q~ZBPMFL}&yBKky{RTVKH87B zuVV9H20&w2e@@X&Xa_4{fE)v#cQzgj_ahvS8Vku`Zck0qn&_35McpliaX#Y^Fk*m} z{li{VLrskIjeg*-dPs5X#%r4B=+f#Dn~G zr)2CE*}bO++pDpNzekHr?H9alzTy|#L((_m>QXDiKo~uAMM13ErH>Ac+I0s<+nAvK z6|De{`^5)Y+Q{|Pw z-?0%`TZ7Gq(9!dTuh6?4AvKlR+Fz-I$?@TMa_4}w>Mu2!();&c35ZKTKEcapRPN$} zuMA*^6fAD`$ToO0iVdyJyR zo-PM$oF0uhrxJ|_H`n@83|^J{ zTf*orS;f_QlY!wFJg7u?fB)y7oYB7z5AT#olLXw(sNorSeM|Nw!UMG5CW9(`_=bkE zJNknf)=$~w1Sq`1v(@g=0g7q)CGBS#x>X9uwU?)m1LJ%khdAbi%mp@8rreWuflQjbRgR?L=f@|Dpf0KK)CIsuF0Xmwe znT|Eh71cZ{I&pI~go(b%;O94kFG9&pYzs@RMs8F6ZDAF7s=#HuQ{{O4vU<3o0x+?J!|FWNN9Um+SO$)^k3wL1c%PcReX(r&U(t@E zt+e6D&xNU0hs8HEG?WJpUw7wCg{9Ykmhikq9QyCRchyBt|teGe+QxrKY1pNC-SAKK#;u2Aj_iBfdZ#=YxUL ze~`z6uBuu7O`iS(6Z@3{HF}O#9ohs#XsUyQsx`flGcr7b+J=le)_`E2RN2>FJoy&~ zwXLx&@-Qrtc^77%1A(W;Xbv#YFeiRXYMa$0KmCU%*02Dc;kjSt)2T#;^77lNQ*>{|%8KHl6pEgL>P9cscWVf7$@Av8?+( z^Y5+__ArQ2Y8Ur}HU7SRNzzM#)ANFM#}DPJ5`qL`|GVyS*jm!C4&eM`gR{Z_Buy}W z5;Cy)Ym%2dPlfKFmaCK>Qik!VQrGHz;wuLDfhV+g z=f1S{Ju(SSUT55a=LODOUoEzwLXU;^*&pU5gDy+UN4 z$9&#wur%WCNZB8!lx`nFSBX3zRAqHhF{SQdYT3NX2m0rVIpBH&H*RW#x-&Qj8M-_8H zjanCYjVLK8<;lp%{wZ?@X#8)}jxU3YiyQjO=H;-cjny)91P_q0QMBbbCr%L&;zs(r zMGcNL%=xTd0|32(fBggSaqOHXz)Kj@0iljx)NE{CJS&gW(^WnJ^4gXN&S75kDv47f zupWy8I!gown2)b`oirtX3cZ{>)zzvn#L*Kej1yXka1^xi0p>^vz_O~>9RZ8Jrzqp2 zy*`p(78WM2s=~gc)sRDj4zDVm|20^{ow%#{`Y8I6 z0;0a~W3>dbMDN^YqGlp6lo~G)9%|k`(x?iw3@#!Ed@x9hEdz6J{GfEc5vdANHAU{*2#>i0r(Qgz?;1q(z3>*-vd(rx;F9V|{hR zsEYON`X>aStwWpm4obLx-7ejPGsiHm1SA56$@(pGSLM;6xyo#pH!N@rYxaNsP3cjG z&90~vD2Z^G;F8{cwJ9kPp~~YI$+6(-r(L)GzUtdTi9)l7MH5WpmLzLZ5j*khqZj8G zzM+Od%c-{FkB{IQJ{3s&+mQspKNaqy2yBFe#wPdYa%%-sb#jaH3HnJ2Ru=;aVv+Q~ z9DE!k7z{r`2usgH?kG$`T-Db4H)&P^mIiSv^e>AOp!sQ_At(|M;f}AzJRx3f0M7rI z*G@Vby7HvXmP?qYU7Y`H!C$zy+g0xf>7N(_jo(}vZiV%m&*2Ds2S_CTTTg@fE-IOx z`3*xdcvL)I81F?e;e^=#JKRC=3@2Ha;Bdp5b0NWxML885nu|a+i&ctvCdFf)4KKcN zh~#jjyD-3`Q^TOm>}|BWPI!dBxO=kc3V-z38~@x@^5rqNiOP^ECVG4Iaq!YQuWZ3{0hTpAO|hh*M|4%wjmw_e?bh1&f=&y|st75@3_p{i8R`b%9nFb;fn z75XVhlxU^#!tpf<;uNd6igwkTA)<3(k90T z8%8pA!%bN}J{BZuBxELakOA{-^avpIvdZI`RaL-za&Rm+6K~r4_3K4uRBnHnGn!=h zQOD4VI-EMCoqo4V^UQEGsUKX0#KmKiN35qsb>7#K%-%*CN|}=uJKOFXQd_S=k|e+7 z(T^orDz0Kz^yC?XgD+u#W*4=8<7|7<5reAk0Xair)kV;iRL0tve1)wrwyz~r-1e(c z2<%1E~vRa2&Wv0h_aL7$fVs`Qgq~LI|Z*n}etH@WGgEoFl9hNszhvAJ-;lJNe(b6KMaQpkTD~%0%8v%qFHrnn0FE%!EHd*84RX z38hHbK>YL(RDN{j`rnfH1}pX^`6%`@Q!&bz^*|EVLY%v*MX8Z2yu!1dLvQx(o+Me5{DeB@g5)1~WTofKLmmPy-M2#9_}!bQi$p|&ax57>bIq*(jZyAUOz)P3W!E0TNURov4?~MMk!|Ir*m(-s2 zg{_teSl=R1hXfbZc$VqEQ~L11io|W$v_j6o;^G!N{$Z@setWPJC|iJnA=Dr5P>BDE zC2JYIeTFp1m^4Y+MZG96H>jU`7wjzf#qMO=;4TBYUb@NItc(Ff@z`-KnD|gMh6GI{ z27;DpbkgFuyKMQ6VM4@e_%H#qX=p;EF#eXn#}#!yU+KwKPYuo(xe*?rM}U9jB>qQ* zuy|G0j5W-tfW*aLlO~$w=8OT0T@E0vtH(uVm~wrT%@{UVT8GblCdIIiJqG%GUs1Z8 z^(kukE^K*@HX2AJ=;O3+(UgNN$E~FcQnA1j;7qiufcXnbt8pA}wGp~}Lm{SWu@d&dcEa2e4D>e{ozHobE$zIhrlxLYaxZ_l4*&I3&eML~$q$h8_XJ9WQ~p-$k^}fM7X z5@YU}ZS#8cq*Xz?xxxnWzI&+b(fQD>Zs#Bm?~DkL@4wvFLXWb3P7Cw2dHURXtHKyB=XUzg`M*8*Yb_Uur=;1~ z?Xa#@gP}fUY0;F_ia#(n!;Yif5XrXHQjQQxf7X83qIeZ+XO!GE>LxJ6i9I%!*)u&& z?BzvEBO(%=Uy(GT?;s;-LExpLG@y4dXru5m7La)<#WQ?iOmh3D3*=Fg1f2G9{PEs4 z*=Se3Yt#9V;kwbRo-1R=?2qRi!yUW>>lck3v% zw2xQx3bPs;3F`IA>gyWsO{ZXEk2D-Z{|Wnv``h}-CM-xT#8I40VHxw%bYU}$r{Os# z+|~7#4i*;n_tezXT4`zNT6432vy@bT$7XNvQ1RH?qS2{Uf5JECBu5i& zlMprF=k+oOK>*h>k>F5i>h*gYwyfJPkG&L>sv_8KhX2qUqZ4c>3^?=EJ*p~L5ul0eR!rIIrY-ITbZ`TjWrdbHF(RP0aH`&6s%ni z*Rw8;l%HQm&0dLcaq&B^q9TwY9p^qC4troh@>7|{#WxSY5u5(@Vu=p{>g4KL4hMCi zc!j1AZXH@giE2y~r?}9lB$cdFKOupW1fGX_$%Hha< zoIlKsBCT8DXLGg_H?8A9{O|1d;PLM=S*x1UZ>$R?P!TxkCBqYxkt9*=KM$KucI3^+ z4Ec3T(sg{CvWoFnbc;DN*zDYT{JD2B1J8i+MM6!ApsN;Azm*Dz%1Z+Svd72A-T?7M zct`I6uFt;%CUz9K7c_+uC{f=fNZ=wl;CpaL z()_s)gm|fOz(0YwPW~vX`xtDc*hsQmIB+j03%5}Fxrt4T;Zj0J&Fv|gZB~$K-y#OS zwCiXV^Xei=m}1u=XEDrX$0L423hAL>(5h`BLxd6_`M~D+PvGF6NCpcY$uFwbh;O(v zxkfbnauTtB(aiB~G04hoOO_7o=-x`A7E{dxZcLhG2a&mr8@Kb3^Q zET8%u3wnsYnoco{?b?@W-bpXN>X!(w?)}#t&gA>=qEIp%TZcWxixZBl`QGZZBXJ}4 zZH^B{Rr|3y7MP&yvviK9R!$vXZg>Cqv1DmXD>_Y_|jxe!Dr=-BMFYCT3=;x^Jw^E(Q7dnyfAbwpXmN zs~cNeLf1BetvDougvOs?g;s-Dg`!=Pjwrik3qqp-lG zp!h=47f=2m`<7yrgLN5gcO-DIO;M)NFFc%mana4M%@ZQ3yS+sam#nSghaDic9~Ch9 z$;*8E+cJ(DAhgo{74&}icimBdnAFYo2B769tDbJaK!Ihv^Q%U=XAFsR#kZRtyjX-| z%dD$nF_bbhd>Ne+0sD8@@JYsYy_dGWpK6};Mja5jx@q+|>YprT90R3@nmdj<7}vfh z{6J(-sWtMTgvu1e&7M2s+liORvb42&^ZG*ec!#l)o3pf`_q5vO{XcI z{fQv65D|*P&7Wc1vK7Y*q0z;K^lb5eac7`vXlT%GYilcicz9s8p%WA9sX>n5g34_OcjCwp%5dZPtB{pn;gggp2in@9xn;#BIV%{M}k1>k90a7mx z+e`S!mlz>a(c^J&v{AvdQQ_9cwRnFF4UjnSQzrdTSCCeS?4yuj@g6wv{)jbl)ZX=2 zvS@7kpyc-N;^+3a4w@BEqiSV7(W0QcYr#Z#LFJ|N$r+#rhVxf!T7D@GZpSG6&c z{`fL9^R#vI?r`+0w^F%=FR!@;t`k8>-){=>#l^HUM8GzaK*iPR}28%3HefW}`LUAQN495BA}G6z*n& z$lE1%2bATQU?LFPP?x*1Ma=FyVkt$jOGsfTUJ-wOvxC$cEwFpcy{0HtFz`i8>L{ei z6(K0N2+s?WqKm%~IH~1i`N?`U@7GizI;D^Je zYqKSB$4I4!Bf9gcXS?I^n2b^1xuP0~+n^`9d8S4puu?~xD@cv1OF6Eb3#j2%&W%A7 zwsMagP%a$(&Tw?Y0I{W%$caX>8|e<~2HSu#a&^i%QQ)U{*xv_jlz+SLXF`^=@;cc0 zgO<=lcTuc8oA@N+Cq>@-6z>dB;fwfR?kuV-WK3w`Ta8A(G@wW#0dh?DN6xd0_B4;< zYK})`Yzg3SNRln#jsL6o7l!{-ck|^$FgcT$0JYhfyf#_~c3zYwEYyqq*V?V%PMd1| z67JYWE&?&}LfRbVxMMCv95IvPI68oVjg5_(mGy8qPdXHs)c#jfIlQfx>c1|mtQcI- z;1MSGqrWmRuy}uj6w_Q4JHjjELg)518K(`GGMl5{X6M%{(9bo$rfdU0>s)+dZ!$zd z5gn_-4_p(dM{Rg0le(o`M&xQxv;(}gxGSJ#2j31RkMr|Cx&7rUFh<3C9mPS6%B%o~ z-ncKfVb~nGfm{%Iv#DI;^wrt-NG=YiEk0fUbuGE~~v!u62ENRVpMTq{W&X8bkhzCB7zRg@i4@alh3?xr%VbgajsdPm5J& zNI@;22cc=@+OMax-w(-2x7!oR>S-%Q)_b($Tqp1}>yR2B2L8w~L;`ii=X2k2*Y=}) zsdeu!-5Kx0*I*lSFLwXP*?j3Q|6LLOg(wa|&$iXkb?D_*L+D<}2K{(TucLWJ+X6Kt z4^gS`6p7V}yrI0DwM9`zPOj|#k@cR@aE5ERurip@joy2Sh!Ubj)F5g`bWsKoy%R)~ z(M#0my_XP%=ygU334$O*9VJ5a-ud3_y}xzNTIZkqFl)uU&->ihbzeoqMX6Hn)S>3X zA`oz}2nYfer99VBKyb72<<(xdC9pPy+q5QQf$xD8`Tq@{ii8nk;bbLD93@4f5je`k zH1`ULG%;^8+CibBCGsRq%vR5=#J(^`#a6eBw%qwH?$7Ujznlcd$@}Lb;8UNlD44{v z_b1`ildu>E1zIR@g>|EE5jR)~4{*6v{u;$7M88j6A_lAL4W{X4JIzwUSn8Snt}wG% z?zT^+HSFVNmFw@;X1d~0`Q9q+up}l3Gtu2pe_T(zp-%D z5VHL}GE+_a3!#x*cF0@Ual{s3r#&&o_xR`z;@mP^wbvFmD{`qMb9X|vK=8**_!fwF z`Fe1>wy&Ga`dpYxG2vWuz+XnTN{SEN|414UZR*D{Gh;-Lr#S;)l!3j8te_6T|GjdZ zzy9_JrC>@;W$rNQ?e|XWcPY41n#k!_QGk*p$d=KzC*_!8NlEDg^QdP3;N@kPzzJm? zBX5i}Q_8;yAy=3#zGq_6n(z~^ z*uD0GlJ`PQ(r&EB%y5_`U(bPh9**|u{NX?oHVU{X1#^9T6JoopZS+x(?5mblQh4+F z(Pz$?IseddTe`3a9*TF8ubZgZKPzexvnt$ZLf0q@fw~BTBS56N@iqDKTn_!eRgy0iD^S z2O%h)ya@RF`>dE=tdK2_Mj_#PSmJ+pc0>Z zni}@fKS6`QdYgWy-^T4yswND8q@d~LB_Tm5bRkVk% z2TxU~7#DJSe_M1$!i|~JED^95oUZDUU!7%x#NkhYKV+TH%O_zs#{h**%x+}hT3vQ# z?XRkkVE`g%3cnT3q&07mEEJ zZsA8?^2yQ{+?YSnnsMfx--@=Jf4t8pjr#{3(7V%m+Vyz3-PaZSV}?GI%tuBpvuShr z`7KemA=lZC?OpxdN3BSW+U~Tpll5;>Ytjg;!8KOd^0SWf(NW=ckyti@_t^A72g;MT zNs+C{-3e^EDb;IkrYVbAuMDey>8D9782{|Wj|2%_L)}9*ti5XP@uQ+o9pXuO#h;n*BS`h+Q|+>NNA^xtuzwkaYINxjds7H z;!8UEYIsw}IBrtMsBZJ%zccjenWWMIBM=1wGw+JXape%rhW{cboaLKXb3sP)VU@QK zx@lCFQ)~cSfHn%sVG9w522`uKV=7Jz<#KSE7mhF$9!YfI zP{grm-236+loZ9~%x_FtUe*#``IS;qHpy}uz&n+N`N5K0U%^vX*S+OX0x}jL*ywB- z@LpH^tTC(NuXtH3etACN(?i(pg-rYH(C-SbCY9=++!op3N5jL1YFbQcM=>4KOYaD@ z^1B8VT%}J_V})8%%8DO{`7+et=JL7C`g|TaUW^SOnU0>g6F&NxeS2i3imfN_LwO+P zj%Ye}ecg+J@I+tro?Y!A5XNJ2xP;P)E{rYz?#_O1c9l&yXR#h`CIGOX`B zXE$db{?x)zAeT|~tzq&Yh;E}mL+_g@#RKQK3P>QC0y>n}fIx@rs*e>F^3N2f78h$A z92{P-(}@J#zB59?u>}Al92FJDl01Z5K8jshi4IpOhnU<_6I+KijU1Qq#Sc6#6;UpB zJatTKzihBuZ&F3odmL`)&7Tl~!OR$sN(iE0ForGL=e?_f4>U|r`}d#?hx_czk_(7z>aSxr4hnfGU=Szo-5*u54#DqdcGzQjIF2x8y$Jy08Y zGq*Kz7EsSRfAxjP?YFZ8@GEA|g>k>Uj{4*0+3#dB%{^@jX_k>nn%xgF3!qplIFSY2 zcL~~sv>e~nAhPp)GjjO%CF?FI@_aonoH~EARl9#vh~}V8mgS=$n6jxHgMA=z*78F( zeagTLJlHt?T&aB@8f{@{YFezpIIXXs_q0F<3HmlL@W;s3)>f#N%){LsI3KYMK%arR z5?S2F29-H-c||(gO5#QAd%%%yf$V{As~8&-{O4i6G+fxq@YGi7<*E2+Le$^?U@dqx zY5Y-1kvJM!nT-xx#}eA2+{;TV~dLNK9GoRk;HrTI!#BDSXzu7(+fQKXr%+usoq}I zLs36RN5?%oTyEh&T!m<*NK)oSpa5dod9JDQXRSr;kL{{&;;u{XtKSubGC;p|&@8#6 z!UhA69Un>c7f^<=8$#au$@4<+LDk2jV_R}WIUMl$7I(MXi&e`!YdVETGrP6hVOJ~x zF^fKDO2EdcZST>6I>%Y0=jday+a}V26YIx|wk%oK9G$ea_qStL&X(ViX$30G)L3Ym zHkLa!EuUVo?0UA3InC9UxtP>Y8WgH8cS_8^O=qz~oJn{k!;jeD56SrswqLStA;^49 zYdhBO!u-6v(c!e{lx_n%W%mv9$Tk-!aHkP;pI$0Nm)?6B|8nlQ-vxw^|IymodMYzB zbB#yG&`>q;sgFlh*NmxMmtiInYlOl*5hFI_Qy9|S)O9vjqR`IA+1ekY?7$iD zu`qVG)mI8}p9@hjR(J+7-9~WbvqbL^dthuB==mN>F82~lW{&5svzVAi1!|Sjftja( z;--vy25rJzkV2M06zyK`fty^u_jYGQ@x6+FURs~D^W zF}q26mfcnbzfyVE#MviaU-!)VB5O^$UCiKeJ?p0xc>hd{Ap=ZA^f&?~TTAiZM|{i8 z#AH@SiR^uS{Zt1Wn1mu!^|#a|-r%ZM6kRE;zR)OUi(V&S#UYz!>zs+(-d6w5Tz^vA zc6S00x;0R+OJUVh=N){$2hP06`%j9Qs_UD`=+lJ1&fqnT|29E_`rW8pORTK)rUV%- z;)=)XB&8DD`zmpGGy`5>K5Tj}XUl2Yw;Q!9Bbj7#WyxeOHd*-x^Xx_u_MV?m;zfys z-Frc2kB3dy73ba;?=IzE5)7Lxvs2mDk^HgPrqM{kvztmNo^-z>z~Oc~KK~<1+cWuV zeNCGEO#$k6faK1eD8qCi(X(f*&*1L#u?^tDT_ufrvYwvQUATh-!Ox$& zn7<6fx3?l8*z-v2=i zSmEQchO4OYao)<872Vd|Ps`~N8dRJOAtO?+r`_MJDzqFlwJ%>E&~8wl*LE(`80}_% zoJto^qMD4KICx@c8jy>1uS4Ru1a@#@e9b*7(|hDiq-PdKK5cyVeP3V3UieV+3SSf00OGZ*}z;X$gsD+668X z6B9i%GqcGA2OyH3o~h1j^Mz596aBp>+#d4a9y(ia`r&W4_&F&z+p$kbTmSqxA01Vu zMza+^3NL5=kTGf7x1a70C0`tK*3@%CYYsaV9cR~~R8_0tg4evea{-bpX^7a7*&JpCX{Z2G)l8 zFIdNtC6RoKNQ&Mv>&incg_c`U%THQt`fFja6l>e#m_l1KyjFEKf$=}*6OughDcZD5 zmczEBHKOHpgxX?y_faELzxa%LhKGrhlau3j7uwTtDNTX<55q9j^9~NAFnk4*K7LHF zu|3}#D-IxIx_EeSm~Yr48d8c^@H)n-rFR2-FvW{SUd3${JG*-Fc6PzP|0TYIbg%Jo zdmGHS4MI)LN!%-K;QVruYl>&}+qiJ%mm0`0M-OJ-e?Y>8mioF^y%}~uPUL4a*4HCV zV^TNvUEumTw=kmkSAO6PF8?7%N-$@8Wt4G8lFCPG3L4cWi<=+`iv8dTx5o!heCF@K z#<$kvXLl}L%sidv;_t5hcw~{qmRXFLs2^DuLO)&C?c~q@N8!@Fx6La+;DRJvw z0gdE7{F24DF{w3u3 z6uN{7GBS3Rp*xtMWSu=!)_J>su7BmX$s|u{Fsbq6H75ckenf{<*WD4(H*|K^z;i-X@u2AY)UYk zT-GscD@U{`aFQAo66Bu+b3XkxZ@1>5-9{Yav06|jLt^rmTCYOc-$!8H3OoIzDoLix z3Wj6BD|Bh(774(+$8AF!-eb)PsGsrgKG|@64@xMT;+6b2{)9ryDNv!jbTPyR?4({6@v)~7!;>)BYgO1azM>P!lrgeR0g_uqRN$|5&&kA4&E*Bq z2e*>+Mg4m687_2XROLl}p_iPkd#*VN_ocJI@j`Nsm>aVB5n%?hp#fC-!VhE_XfCw2 zvI1Do==A;l+tJ|o#6&*x24M2SO$6a`_636&%|>D(1l|-In3L@IEZ9)-Q9QDZ2Dm4h zG#-F^TK_r0=M03Xjn~S&2?YWqmZ-Yf-=v~eJpC>h_*JZRq=idK)9$^EV@Va@`y*Vf zX-)(<{V`dlMCO?f#2B6kcQY!+NGLw-f8*>E{YB}=E|im4^WDJ^hwo;P#gBUASnOP1 z*#oa==xyL(s?XQ;yiOIvsK>0ndcJYNAQfWd^adTGc>LE^(6%C`ec<)J4|O!P=XS^qU|piCnxq!aqt zgHboC?|Tt7@8*-P0E6K?Rkc+zF^OLHGb#7WYl4jGD!D+nGh>{^#ec|QwrA>;9%U&& zXu9icNAr4t-D~L#$O|8Q@2`|}3eF`E#vf=H?couv03#>_39PR^de4?58KOk%#jqnH z&3nHiLNL#bzSW)$1Gkd}$s*~(&T!wnKVgH6w4ywrdTq>_R9^-bG6vNXfTFs}Cr_SC z0rug)K;LGgso>rNAt6H`__-1QSQ^L?fYv6R2KvArO7=`nrU1fg!a;p5Qop|3NwRO+ zzj;8?9Sm0jUM~D$L^1J*V_oA;CcoCRy`8?7R+SHV^eluhJ2^G_iD-drv|EDnr!Gn({9hj?p1bs!R>a&d1{`Nl1?;a3 zmVD%VTR>xjh5~<|K7A!`WySK!Mqge*fs&e~4l6o*kh0i<>{)!^Zy;bynz9BO;I5Qi zSXP#8>W1Wt>$lG@kv1w5!-*fWi#GLEl!~;p|7ng?cZ$$go5Cb5f@RkP>(aKbY`C+p z=D9!m=oT)(m?Bep``n0-ba);Mam_usWSU`8;tCC>=(lp+jO)^agZ3+Bb9)G2hg1zj zXdQit>~Uo3zeTN%64r{mUEL*Mod#MvT5n%}^5!Hym{9argRT7AIq{lb3Q55VYC2Be z#$coE>2?qzSafRS8O^&(c+V#Hcr$Q`IuuGDquyo+LMxOlNsxARc-2PBSU`~_X8k8^ zD+NW8wur$$eok+a_}|*tqI;ZABD$yN?bp#I1OhRjvg$*MuTB@U1Z>z~`ai{wYxJ08 zTpE-#FSU_igJ82)6s?l*9OAZ`0!Exz44YBW5`9E3REbi051vF|=7gU`wjkps>y?od z(^)u3GSUj3$e|Sdjb@j`+94o%SyVZF+2BXchi^2jHQ9eQA^LA4bYIK9PvMESgt*ig9HPAFKQj*4^&{ z#Jc@M7n|-W7->KwfRilAJ4zuS_U8r78qQqrZkhkd?O=AH)TSXH?5SeqI*Xa^Kjz4I zY&JvVrlh?%<&yXd*YXWRaWYaU8UZnQwvOs^Py;qds+c3v1XdPRDjYsd-*>Ir-F<(8 zPh4pv2G9jl$WP@o(A8el{QNK<94KHp*Z|fGK&t~SFsikD$#Q#2`@-`D8NvPgjCRfo z--#rEJr*Q+ES!^$4G~Tg#w9KNMz=0;p36Z(enMgbU@s1r0?FnVl+e=>go=vEcE|T$ zR~82Z=;&w!S(cCTFioQgAGZ}-w6?UgL{xb*lFF;SWE87ic=*&XI#fDIiE%S8T-jbg z+d64hw2mc>9*e6F4svimEtIuk-u|%e`e9NFLvEp=!(?v!08=ix43xiJ8`(|At+K(3 zy7#4%1u0wJfoN)4E~R}hI%_LO#EXIn6X}G4x87bho}I`;XeLB{6o7VdXLqfy@q0Km z!3oGS>8I(i$pP+kb5fQ~t#Xq1L>#V}L2sJR6y|lfIYg&)domn&YGD%Sp8hoCyVfT_ z_i*n=eZ;X036Tb1CNO39Cb`tg#qy~j%;owEkY`D@ zx7c~L4+MA&(igP08dK{}`n}@&Gr(2JD4>)&NjA=|5{23Di9|c5Bea2?b=FuWE;cx< zbf1nP%XQZDe%4-NLf3}~F0nsYqv1-6i|l6pWw*c9c$Rl}wOybG2L}MiHZV|efztg7 z2_WD!1@P=KJ`mcUD8Kwj-!xI$O0H=(U66eS+q-U1OOaT8v)>_K1)p}rm%joVc3;cs z$OJm-biS=9&OO_SoDak=$qK~2YRcc>U3m0$GU8+0XMozjnziCP&LXNDk}V!2DV?ZY zQ!H#Zeg6k_W}6i>a7FYVOmMJAz)dJNIxWL1sk(`^ek-0xf8M_Mr=n-KAR9peNv;j3*^+ey)i=fld2=HojFZ5M6Xh##AQd%`3R%c*(N5?a zU>?OK9EIdD;==$+=Zh7q#gZ|$WnrKS8VWQ64lpt>Om?{Zhfb{#DI;MNKhDZj`{3Qx zrO@&0Tfet7TlDOS$u0#kfEqwF5PB{IOv(F1+AjMz4EU=IyWRyyMiK+YZFwFI#LNs6 zkn@jUT2B)bYdBFqR%mtdcc($nR1P>rEiLug_bqegBqf(t-&FvN)ogz3yG+6-L4O3w zrvJ3%R~gb}@ns7P-@W`PL$~LS-MD(l6aIvRd*_o%t2z=)+CfWLr_{*!l!A$REpat( zrT|YZ3LAp2BJfQbEB4{p2b$O0oORQ{PYB}|w357fq5dYgts3Wl-Xz5Z*&XmO~l zJb;HNdo&!AG7MR2io7We!v92e_eJMm_4||bw2Qxyx|q<)Ai|@CvkhHfXpBAZY9$koF5Y!;e#aa(u%gCMMi%#HSMsS{Fu)t;wgo4rIk1nXgI#~ z_^^L+q7Mi$30gQECbp6Ce8*}vJd$C{8*UTQGqVkF{PJC{pZ?JNGO_>)!%B))c zQLN}D`PDw4>aX-#9lUnGsIZ<3FU!FbKJpjGgoTF7?V^Rnl(pIA&wmDLa0nDgo--wo zRJA0#|LD(W-nGEcGgt3EYNVhIp&qTWg0nKd*wmW*ePwqlC?;Zzi6)a?SOg~GS52K# z$_9}UBu+%($jClFI4{(olqC>Z1ceXKgu7^%mOtNaS(QQ^A#NB)&>%O?A*EqLL;S>P8ROvpp&0;#yE;(_Euk?ztuhga1kA%(caj}Gl z^jhtMM^@*q*92mt-d)p5)0Y8C9;t8&Cg1!XD=+7rxBS|Feor~dmZyvdj6CXMN&7~& zg$pHq|7?kf=*Jl;^=|e667a@Za@dX5hIun6FhzHm< zgkurWJ`bf#hkXdkt&X?y-#!0MA$c>)=rYcfFUTLZD0g6=708bPo1H}=u%aJS?W)jL=Temx?4*v3m#atMe^zjP9$eYJoX=n2@h<7MiBT4hY3{r7; z3i!|124RNNN{N7TgjdhF<{@E9Mc|>mn>PsujDwAhw5R6>o2>aSIl`tqd59^`e{PYI zltn%D{+z0JHHb$G{+QUc%Hzx09OWJv;*>;>=yUcP!z^*mqgu-1&FLMcF9C=}nO7Do|AezzO;=Ej^o*((h{nUtO$9qFnnE7Jp~rpt35qwrS)z~&D4YEcT& z-+l}Ox<98mbB#LYg=~$DM_=55Rp+^RKX78`Qc&Y5MtlVo??e1lsAt-gSR#N>^C&{k z$Ti=fMB6Y0cXOFZgOc9A_}pHN)Zy#Ykg1*s1VTG0&T?hxUjoIgz)iA%Hd+*1y;|K5yBPK}I0jbc93)C-u zjmKR(jYN##$*akLoK2${JS6u;(3l?6vvIWtCxqA;D2j_0C=iZY8>-JPf`?cE>dWNv z;EZLTVfFIN-d&4$fm6f-9|2h}C?e8$?+wEVzmd5oJIv<;sm^3C8F7sIFI|f}+ZE9M z4KT4BA~5Ugcw5t~fMOL8IAa6iH>}6&g49@%KWn=q*Lz-j0GAzceBPHLw%HMDOXP0* zCh!`OVhvO&0MYo8r+~?x^TIedi#4Gs^0cvCNk{?$fkWU0635)hazsk)wSM0Kg~vkM zQ)-^BpgaBg35=tv702YK3%7U8lEy^Zy2(VtU6>4x%?>lKU$+be8i52YGS)pat7tXk zrkE;p}4qNwqcm@V>4L&Jy;Khapaz93iyRv5RX|p66WqE>W zB>Q_-`f2_LP(nW+L7s8&^T)D9=j8BfbvqW>K2$-ojYaJ~x0-=n6H}jUB`5QI9i0VS zq5}gxXC&69+*#S#`oF1DJH=yi2O{5+YUxUZn0Xnq3M4IZp`c(~%OG@DFC5Y)>uv4X z(jMkMUB^eL8ilq@3|ps*)W>*B5!EZW!jpWdiSYf77q_S zfCS;0bYRk&YD)xtY?HZa2!XcM3uHb|Vmz0S6>{BgC;j4|vqZqmAGp>(t_xC!Q(zI{ zfYsqiSVZ{k^|BHlkp`^C(t{y6?9%hNFQ7Q`N%W+pco3LjCibVeRz1^Ro0a+l)i?jh zBYJ$62u=~MI)6u8v!P*Te4;t#2Nz?e_apN)6eEb$I~+fQ7a!&m?b+Sl0it!^rC%Uf zFEeb`)@-zD9?gDqI`?%VgQQgfD1_Fh`;;jsXgqwa@3`spLOEf|d6js;v#qx_;{q*z zPqXb80U2M#qn)c)avsTTXCt(u#C(N}?Mc=IWFhD!sYaI^EfGzMttL5n{q0Lq3GhheFgq{~OUa_Qmo z!jAEA=)agmcmjv!L8&;6j)E-!T`unuw((3R==s=x)*5@-F(^_t<1MoHxeg}@g#s|1 zcq{K-JO))HMpN$S@Y8WOff=A(K*q+ufesDTGpQxiQzM$jEUc&{t2sX&m~k!Z9@@ChZlN7 zp`ZkKLC!8VmzOy&q}oeL)&`BRx$!+y?Oa_A0rXJ0rmWvt7Nevjo6ckGj}mYC8}|9B z_G4`A!hS}GOHW`}Kujyj%_o}ObgszJ$SnyjB6&lu>-LLOc!>GZ?`2j1mcdLrYvbq7 zy8l$$p`oEub#--rhlht3i;9ZOw<%{NkO@%>TzdS}C#B!MsjId8ZQE5^nsEhmWD(2q_B-`C|zkjl57+4EH7Xt$>C`j`yLg z_>_#TLJ?dU*`W5c_Q&dlol>j-jEVTiCk|1y0GcQWX$!ok-)%2j2o>Pk2|nw*f&P;k zR@@x8$}t>l#HFu)m;4PVwqx(EosQcA?`wp4eu}l~Fpzw890m$+8BxfRo z$cG3#H9JS9ZS{BfCP%p&dGY_Ql@*HfmBElY%tLh3%WWRS)%&Yah3L=EgQz3qZPfUc zzZZlOhH?)YD^BDaTdXIRH=Vk;M&t||0h?1+s*HbqM~lFBHMI4=Yv#9{`L|aOfu*3R zsAxsa?%KaQh60cKa-IvhA6Z;7XW?s1_QvjVO@mMEUfA`uN_~c5-x?jBTEV=b^ov3Q z1xV1HQIyXyqKMU2;fV5i&tKmB2}0_47yR6*7p(hZKpwIzf*0QD|y9 zJ<9jVMSuTJWNH@rkLG(-zZUqc=vgq=w{Oyen-F%0vqTw!y|=!eCiGW1pninKmF_V{ zm~uBc{VFnPcFFx%TB;0Gqm{;dca*8ulsfio6Zk`J#483thCP47h}NRY*KJB=Qrn+> zMJk-U3uVek1aWzpaqZKs)b&~aHSBPlnJ%xiy%u3)WMuc?eE9H1ZdzK|_o1P!{;uEv ztDV`#NmXPmJRex8&!qG7^H2V}Z)()P2Vt>TE58)ypozsc+CUf4&Q@0y-;Gu%ns}g? z{vUd)OlMFsnVHDmZX!OMOP2pbEG`rmm%{2?fiY~1*8I7q(I6*pbeu2qH0t%pqevGh zu;?gkWT$2L_}TKU`#!QrqKnv@ClT}avFlXq;`yk5Z7*kj=VO4|eJoD&oRLpt(mU4& z?fV24!l9HxvG&6K3y^dZ2vf8qGko$ zRx=KX=%q)0Ue09u&7&}?J#xF!Q_ z_U~XK;5anK$eH@L(cxVCW0zySu=<`n4$(scY2Z{$J`sm(?{uR5OF2t|3H5M5ZgB_7`Y6k&n$*V5n_ zk(4Hzz`^sL*BR;cp+%2@Iz2OPIzDzeiamIiCzg|_KZ>(BH3m6s!%+c$5@$Lc%3~y> zx*+S^3^8+4#K{}Og;Ws9C_yhDSia>gGd+E!S-a1~_0q|Md@(o0>m>s1f%^f1Q|keyExT zyvaGONrr!Vr^?#~16s!yR2aYurJtLd`|-;c6@6plOn$w(%fbEc?m`*7J_yfu+yKE9 z>hsfK-|$T`C9!$FfVk>6vmSC`5t;%>rK7n7jq0>APC}{Ua-O9{@z8aB!armIeB6|* ztn5FfNX&fV(C^L}0wDCG;`uS4utz4qEztiE`W5+U>FlftaD{vnh`rl?{6zsGKk3vO;_~BRm_@=VB+`dT&M*$`13wRhiR)_+*rV-M* z$1x^arQuAkmuBQqM`b%yyykwSH*-I-tTEUW%i+E#ro3nw0o_Q0gHup;@sV-?1HycT z_W4PSYTCprZ{F>V#<*oHWY|!3?AvNFT)&{R*2{?yIl3{S`X{HISlXKvWFb#M*{sMS z1DJr>D;cPmV{q!ubh{jtdN>kTPRVx=-ApYby7f3C?|~>`iX`t4zKfbMR)660-Xvra z9uKMN5)R|Tz>qKXe0J4e%X&QgJz1#JORc1cTQzfb?MUyzHebm@>azRN0);o%Upyye z&9TYK`;8~HX$jKMqbiqI@}_AJ=RYy!_ELC$ORw^>|DqD^?EDD8{Xi|J=~1r!$X4`! zaZ4#6_vNF0(=Gw`>}FtEmNBtK}I2ARTLu}D+JQ9p*n2gV&WMl6_ktk6D z8o~OoQjJgO;bFC?S$Tpol>GaT>ctfw8ycW6K8J#eidH!nC5B|W;qc0i4*f&V#?n%5 zwh|c{v+cebC|$lA28I0z9N*L=9)sZnN+nKGn^~E6FU*sg@R(MsP>)(^Iv&1687?Xa z3e#mP34bWtvy`L4Dia~pq$7HUX&kPx=tvJwbtP!;xasX;(NZK#u&=>w1o*Joxw)6j z3=ALR6A}yo_2?N5Ev@bv{%QEh)^t^q%fiRmPJf9L>TS_sEu1T8U{EUXEyet}AnURg zcoT|%R?mbg*O2Hhs!$J~eyu?OanS#VrqZb^Y!gV0`D`RxFjR?G!4Y3E}y2~=Jy2R zcaoL=nYk^=w7utKKT27)H@7$=cSAHYrK{}RE@7ZlcHuMGRKr2~@Ie{jQNhRJPxf7h zW4{&W)~5(9Gat7PReVBO#|M`A1oH9azE)VdK4Vw;yimzwA+KM;E!6a${aFt=6MF=^ z7dyB^Fw-qemXOGYOF;3ADE5cZWG~K1M9ssEUA~C#Q+QNCq5a!`e~6ve3A^0@u`EEIdRSmpg=pZ|&t_ zRx8u2sMbHZsy0UX=bu<$2^%XYs*bg<4u#4u~yTx3&XrE`Y*QDPCD!O<;J7MMeGSu!n+n8le8^{1D@`bcnjkPd)?@ zY`a}^8yh6|9%*F}e;xmom}yMf+Ij+e@dJNqYOA2ok`v8fbdGigWH^933?>f=W6O*7 zjXpM;eSbR`FM%;x+QQ_vBw(g8n(e!WI)oxGzvrfA)v7Z1aBLmlvC{_J(O*`l*#1bAWac+BauYn2TFutV;)f(LPdY2m63cT z4+g*^fw5+s?_!$}8n-S;*lwgv%wkd`r_r#AFQtI6cL=wJ03I#G%fd>B5si)}r%qM- z&Xt*IllA8nGZk&Vn*{?Y7vk`gH1S#!81vqERe!nJY*WW{17YzH3MRVG$hRjB`rh7+ z9|6*JnzP(-2H98dG~%5(NmvD~LUVRj3dL|XYq+JO94W3!CF7L{Gw7TFt?&SynY^OJ zYur6U-{Fp!HzApa`}?(D_dl+#)6h5&5D+w$mzPURN*XaUGFE*b9Ng&ljQ?XU;emSv zzNKsjHb#J&U@P@{F)P0(Xq!2-0K`Zg+ixIn>U7W4POs1@U@(*%iUGupyNOhP2&6V2 z@{9eCqoZa(y2au>d~FuD_0*1SBRdkp51;!iJ&-U9dpYY7?woRS&eh2N%w7ISI-q~L z=Uq~F2bRK;tYQ%Fus_+UQzc~@?akc%NfsHKBH`}s$gjv&{a@*|os9~1OXFrL&aHyo z6I<1RMx3rwtUXtpuVn}x7%xudSsxYeo3}2E_DDB-)4X{3qbQ*v-m~c>`a%f^IO-{v zD{j6swI)bT4B@1sVh<+2!2;1_=n#j&g+YX|zI*~IoS3lU3lWFnsz&mk4ODhD3V34E z>+)KD_$jo!y<`{IC*LnA7yU z)3th1xpNu08(ImG6@J3|9v*(*wOtLG(sGOThv@kZyv3G+y<2gH7%l}cntEN>yp4x0 zskBZ!+ z%_&*^$+@7>n^A}b*vsL-iqOLcCGt_&-qU7@R_jlTUrkJCC{*_0j5$NXkle5$&+Y zX|UPpYqueD4bETvE|kPM@OVmrk4l7j6ldWj0~HZQ9-bz+%Pw(KQyyk} z`?(+#(1KGnQZU|+1dK)=X5WS!gOigD-m3hZI)Oc%a$}1I8mYgs>H=O_xIlsoMZ5Zj ziW{K93+0dmYFzb3Mn*mYY>K{lU|_AI_F3JBO@gw_c9dYHa@2}^BBWN;D-a#{bwv^% zhvyjJmsVW91D=Cm|FD!$klAWc2FYD=Ew6&u4D+Q(N($ZPq97E?jRwE`uySA(@&?YkG6VGua^9jhgz}cWW8Qi z{vHnAQbL9_J~>~0DaN{+;G5a38K_5=g1Q-K8tA%!IhwD_780pn8)pkb)UQpbRCj1C zyzvm+I1Lnkly{zM-sm~r#@4hD*R-6dus6MWZ7w$Ab5=F_L;AKtQ-oNZ>NFIpP9VuU z5HBBHx_ckpI~B6FYLDBM_mdoBgB^a$+S@f&rOK2c$r8u{a8@io*D{r?z0(xZA?{)X zr$HU0eW<>#ij)ypkS3Xh-wf?eX1qM^uc*yqB~pFe&M^WLhIORmEcJv?iqm26R^$^= z@G<%}=0@*Kl$d}UfBO3fNg_F;LrOc~o%^D59pB>^`(MbR{1BMg2|d#eR4vWrS5_FL z1uOxarKp+Oaam%QKLXLzW=}rM(ecFo{;p5PKIq;ofG3*WnGY>j)aYq}HIBg0Q^)j%#wG z^=(k(HjCTnCXPiv0}gM-Dk$D%I)wK!mzTVN?F?cTrASah4kzSUUoXHlB<5K-i%$Rg zQ;97M95IH+;g$`&59Qo~aAL(nRd2W5lxsiG-+Y%zbsQ1hSK!u)cihW7n@skE>SjE+CXk zPNTe}go$}*Nfdw;5gd|0g1z29yj@ntqwnX}$`9Bmrg^I_HomsSR}asV#(&kqB>e<0 z{`%y_TwlSo-E0L{Wcte9(n9BvnHbFTol4%)?J*a}o8x&-v8$LXfv0Q7xKIV|IW!NM znT7Ux+cw?@tP7F#f8|FT8+IXF`%J5?E>2E*pNv08Tww& z5CH^zk}<;@0+c|gf?~CcfnuPRSYO&(gl!&P_3$l0;PVR>pgEh>Ji(WRg(MKm<*<`Q z5JmUIaK!dRpP|)mtvV@GrHR2f54ZW(67dp$$8*Azmh*2z%U?Gw0A)xQqCDt=Chx+V zP-_~OJ1_A4`duf78WB#*@ulOvET#E~?@&o0>3hKJ--d-pn2y+`**+P0E~9xs*S6Jr zK`sNYt?fM1ZaM#Z|0FGPoW2d%&ak!ZE3=-HKNf(k#M9S{G`rOw@DY*6t$bo9@k38Y& z=g@1EtEJ&a94Dz};?UE{6QqbIe?v<6R;wn)Gon>`<_0;dgU1wCBl8m^xpd?X+`-3*<59m_ zB&AA9sfh|eCNclGwb(69Txgphl$fV?MU1BMD#u4$(a4hjns-0x0}dBYbr#m0=ndU% zW-~NUlnjw+&Rx!wGRCO$$$0TF2N$07nbGO@97?SVGEdEjGOSC(K-Oj0v8ehPx!DOH zB!)l=!viZ61+bBciMt(6^u)n%a=@xrurmg3zE|QadQRhlefDmoYi$>Y@wd6KE)&*= z2@G9fc}_3V$bg8*unqmA^e56PJk($~BHd6Dgx9a+>zjq)NJ`Zw_47MfYnY^MtYcwd z5U0oq9aRzGLKjuy`>Plj`lts+h)YNiyr-bsS`zi*ltg01-<|F)1^EI}C6I>G7}I=w zJSl%pdTJ_#07afoV4q$fhU-dAD8tq%M88t&Un4jxNC|I0Z z(QgaF=3S(3EHENKwjK#cy}DKlks)VZ+&!)TWeWklYI-EUpQ3sNe_vMJRfOP3JdK1j zhn@|Llc)omt~s%3B}YTSHF0J8JbD+*ix$(PUl%?ZdDqnM$gg;07*9d-%)XCJmjf~n z@~6y3>B&=&u_nYzYrgr18zdrp>@G@{Tm$+(^F>n;Neq%gZBKynTPt*>OXh@Mvm%{g#fSWI{S0`%8XxACL z%Um3@XH5X)V1b&JH!g(Z_V4!LBTMM-iHz5xPDGtYDOi*Pz28F@qDN6#^VDOo)WSax z(M3}G{~u9j9Z&cFzVYKY;%G;A=WLFSVVF3&yP0kl+BqCK?JzYpJvlMVbj;MWsi}#v zjbWPKd*9C=zd!if1NXUK_jO(O^S%(VbWx=7`GUtu-@M_~KV?<>>kn>xwW2QgJx#&0 z^U)8J2;B|#C=N@`7pzv*7Zw`oJhkZ=+miVOzddH!&Lx-WuSMq(m{DSV3T!qVW*n*k zKFHtd**Ma^uwI3@BKPF&EXUHJFJ~7hTd0M_(q>If&Buk+K_~W2?Z7Q%TF>?llA{cE?Q@2OImbs zTO{HVt2uN$I7{EAJ?y_{6o!UEDiMa;4O7H8}eCaOFq3J%t3^xMD<{N7o*7oMXaYrNIOe zD3e=i(~S3#jO+p#SGH|`-~vWfI*-VT7#dRBnW%%dyMdE3vhwz`Rq||3kGVCXcXvGy znxk)c`Jblp^194~)OxkmLQSC5J^z7< z>LJwK^K~{lQT_sjBBtzeR+TNER(-FxP^Epg*)7bL1`MaDxLX7XIJN5ej}Mv%c?$hC zG^dOZQEV?QEx-Z#g3ZCXhJXJoHb=Ipu65$wRLxpmSMU?t@-3~QS4-_M&h@RW5`a3S z4@~+%x=z1x1}N@4@2~HaqvXl|;#~7kwE+WDp3YPo7hl9(#lvWVHV;Dq6pW$D^{HUe zU)ij~dOe)_Eu@s8%gf}y(Ft2?x8TRZiOhrSv?FJO_ON^KdNAe7Nr3vcjz!&u`bBF z2-vLJm%Meg@bU*&L@m##T~RP1klhh;=+f!CIq4U*f;%_9m?5u&1!KHpjEJ57d7n?? z9kCB;=R7^)RSbc8$Mz9p2@g)MiCO*|Y)pVW14e!)R-?8J7KR|iP%b4A3g)sBt5<)) z-`7n9AkIq^j0Xiq8i&3gLu^K4p4O!s}=jU4ukK%Si;mN z;xdD95|@Y0X;)m5P=!!j$=D*O&=%|Slnj6puaY_PT346O-+Cc!1(EbYsbotH# z6s(nHFalPWHHMPVyyHgf+;0r8_S>omc%Mpkocffh(7lRUfa>-&zKz7 zetws(_@HELJV$=L+S_#ne!f6g9Zy*Sf7JWHlh_Qpi$o2g#xn^N{ZbRHPy?a1&%V^bJX7} zFP4}_Un|SN{2hC`(>=uS3)|Yc=LKp2&rD{mduz1_lqZD%}GR-uLG|`W`qm z->H3!yufG6T5A~}$V2`FbxU}E+`c0|SrqXWY5nfDJv=>{`!-PLLFWs+1-?mQ`(&r= z;2y;W(orfr+tLkI0Tae(N9SH9`+A4s$>LAcrnWqh$}jKt^!FPd)6MD;rW_vPWB+r( zh_#Bd63+v;20WfPoBU`)Ae24fueerrHsmJ;b8?!~3SN(mj@k|-F#$MuGSiK zEfyo;wtl^mx_Q~6oWn{(YFi6QWZ*WnkNR&=a+qxdyVRc#P%`!f#FlW6y?53$np2Vu zOJ^5M*)EK4hyanb!|EOrDI-wiilf>qa*H(E%qTCR&Vi*KId8!%e%0NeWG^`{C)Z%5 z<52yd8ym$y;NLg~jjnL8w@0@oqFA8^gxCtOikqu5jR+XjSNPW97cGSAssCKCgO_;K zE)|n4!8%)Q3fU&MS!K}^Gb^JU0s*4cq282 z6BoqAEolj66Vm>tFxot6Er99TyG00I8|U}{=Tw}-bF1*gZP783L7SPw$@))l{FC6E zXcD-b()*jJu5bWs`EL?$2E_NaxsFEljTowrb^^R8vi_eF+7Uo#11X_-JC#QmJQn6S z)kz2ZS~ev<8TCTP^`wz)UBn8ocVRmPXcrd5+({ImhSSRyl@6Zui0P4`P` z^@N^5LP1MQ0)uH%xG^zMg``ykKVfhE8aTzf*xelv8~dq{yeT`|MQBx??x0oMQlgih zr+T27Q1N;h*hGF^TS2_dKDpe1Q{^__dj{>w!@TTQ_M+)g)wYRv{gH-hoQWy4=j+!3 zf?Y2!Hb`1v0D9`~*Dp58v9%2th-6&Bmbnm=UXmY9%-i!!QA7A|H+xrzX_GybfR!6g zS=n=2r)|x{mkSDDthkgE&aq>`*YXO~jj6d7cu`SWCyY-Xz;-Qx)_eGMw7aJWSav{y zvbT1&&(8yXaoa%ziu5aqdSSGEde+vppMfmJ7$AC|B5EE5y=x#dPkJDQ*CXvt(dyI^ z`QrJ#bH2HhbVC1Zc^5DWjFn@nP4VoCvj-|0pa{{8<-%pcO`8cG7y)j@VB12ZR8NL} z!X?=&o-jy$|Ba&BB@u}rOIIu0$ZCso z$VKv_Rv6wU;BuMf;dVN8qiHb+u?xjmD)NHJl;7Nby7mc3*l07(%c^Hgbcfc<`{l%# zto5_zHO9lh_9Z?nuG)`hBPHZ7 zO2YK+mHhn=yO=gj`SZ5=N4IRd!?!rbuZB5`pb+xI3-ko0rx3~=GRDaHT;l2!i=LdO zXI!1ooWz1Tf)@Ybn(#n3BvPMK&`3oPNdWTsN>%LZUi!vknqOz z`mTQ|zII^Z+H+lGtT}4_Nx?x|(-YMpyyWTfF!966WU-I~M}@Win+9=}2$<8_FMAbv z@(87X`xt6YL|9UfoE>jwl)FpS+qB5U#93rLdi%o{-?0}=%mY0@@rIGLszgprO(oH{ zuk&zyKinV%#_3IodU&idodChyoEH+fDb8y_1!pf*IyP>W)3q90<{)7GY< zq!vF*E?kk{cZy;Y_sjgC_K#_+ZmJ37E`C1>VChv9>$RA?n^+A*zBgL^#zKGsl{QhT zyIgtm*-a?A?iJz?IG)VEQ#ZpgH?}Z$DXKm|6D=LZdkzOLrJb$5`~LAPVKYN=+KiJ7 z(arJqtnN6&=0ZKwW55@dEHUAq&zUB$a=PliavV6pH&VK<=q*#pQ1hZHOvPPxS+ywE z=g-k(N>{ij4(^~YV9}Yv%88Uz%IL;ZT|@GT2sO%5QUdzi?LW<%Jmxo|Z96ZY%2^nb z*|$_AaBj8c@MXAvgeWN;dF}H3bE0J(3PZ*j35vkl-PoZSpki2fuP)EdQyx!1K(8gn zP?4_~ucV<-z^B~X;kLN|HS)w46Z=`8&Fu@=^isL~B&OiORwS2gmPI5Nkbbz-P*=zG z^Yg=H7ycY$yq~Onb@bPFmE3RcCwD>K1B1^HlW)9*P);o$*%)FUMW{{|hyX{4O+KC? z^^fzwRot0`0{L8b?4&udfWOi}nEorqGGYMq9bWyTvvBr@OYNeMzdyst-@nX6z)v^h z)*K1kfR9{o9vB$F23Z3{6m5buela!fTXGR0kT4j;6zvUA#O&&W*zA+rVM)HgI1-deX!@dy(7zVlS(N^3Nh|By>lC{jKY2y5Lf@`^DGazon2LL zA@Ther7V!}GfV``B=|bTzR4|qHo%~I{dc*@$1;d|cSkc2w%lt(z2&uz6*4vi<+X0z zSq<0iED{px+5;e_FX8mULnv6LeE&*#IEqCTXF&EYGy@em?=P0ej2bGK4$85$Cuc;-Od}wddEknze93YUB`t!{w;kHKK;j@A$F)B(Pw91<0JcX@}mke(;DP9`j9sN_kK;u`oc@Cg5%2Dz{NQ| zkDx~-Cb4II!DhX%IX78tTuke?^&25XuP079D=QtA%A=%p=iZgQub;F+MvIbgsNiHt zc9lX$&xJf#Jj$KLm}OQ$y1*Ym=<954=uyn!vy#Q8%-+alT9PTcuvZOun3VbU^!fas z&z>9kZhikg%um7xRYw2_HM{4py1MS_YZ$u3#9mK9($aG5Z*UXnvP82c2?C0mS~FUf z{g%`eU~OIDd0KDc+$3~Q+1w=nO7{5Ec*vB8t-c6+uIc5fnvDu!$3*TQ;<=GolP_H# z?p zDh6=MrwMOcdGNfP;}~v|6la#EYCKxk)D$zzzyYiu3v1cO*Q15a>|fcb0?D(J_sz|x z|5y{RGBZhl-vn`g>30%or{DBaVngeonh{y0Us4Z0sY>8#`Aqe@$f`b3E`a8d#ZiDL zATn$}q&3N+z$IkxC|Uj6gaDSK&T}FzN;Virz2@R)z)xyO?$97fb6BSlea*+{q`oNq zZf@*MvPxV=Mh5rh`Wm;dw-*<9;^P|V>*F@m)lUFUeIU#87cX*WJwa)bK_?X}Dd?0B zAFg7*XB`^{f69G-OoY+Rk%hl(5gS}|bP1&o#8Hm++87T$3EFRL_GlHGd(vPxGqCzQi}|F~B2CTYj$uzVtOCnsB(VNjMYgp+|D*X8RmdkWL2DSh<)F zzNE1l-=lp0=u8#&e*flzxFGj=4hpsrnuJ)=-7mhhw0i= zX8I)fY|gNh#6Kxl^$CLTr+t2z-fI01De~i~bkDkM{4;AbH)#E91hd27~h(IJ5E!p0yzCo^8^-w~}bNhhKsK>(cwR+?E5L8m!`Lci2!C zh!t!4F3MDl#a)p5QV4zQ=Lcdb*WZl#d90uIDEWR~BS;67)5_S~CR ze%DQ=6X*@*&$iZ_)HULAC^PYiiJ8PhzNMz~lyLI0af#(dX*&YADh44%ubGulQ+h>x zeS_+6NIh&9tV8hS6oYlB|BnoY_sc4|;sJjI+-OzT*ZC+J-o616cE6qo^0~hG@q<}A zU4BNANIjdIjf?A9)kNTDQ6_gjn3++=Q|I#)gU*JaS~sj4>r>9aibyFVR#w(bMMW50 z0O*{IrC?-RYCI}C`#a{f)xb{w^0M^jk-l$YmRbNA$}T{QuS;A`F1ff^SjrR3hZA6v z_2(CoJL0s7yY{v5c8Iw98vabIsoS6eMIeCUY1KC0e&vqlFqTdbIz{I@d?I%AexI6Em zG=$%UMRNg3y~VD;C>m4^Ye3s1BQ>*kC35Jq0yl+ zp|PQHq4A+FLuK^R`jrZmfPELq!f%t43ahQJRSVH@-vP}R`DPZI&aY6jG!0n_ajm>8 z`Ok>3NpLL;JjI_iQU3|{d)`!s3VKUnTJWnoQT!wN&57^F z?jXIxV1`Vai);}5@ch^IsPD+}*Hsm3V|fauOWQ@ebH;A^KLL3x%?z}7a2vb!9>XZ9 zrNxvHBe90I)u$$(Jf{iNWeRVpqHx+$xkn?L*7Jd**eSe6ZrYHWkML+VT=!XqJdCYg zqtHrFqd=+wJNH%Iow$?G(?ZRf`Z9?>Zw3`8TTYC%=p$)AE5#ZVU1fF*57XA|v5!?r zq-3GC;=FGUgDE0m#Q=hsQ1@uL`B+)eng9N*`c{9@syH#r04j9JLeggdOCV`2Hy zBcWr3P*sJr|qVN=={cH)5=pj+P4D6# z17Qq({YJC<_wPrxXrCx3tWTL{q)EqJ64Od#eUBeMi7#B>i-Z;3g@s$@KoU3{b0E@R z9dpna%*Edb1SEIhHe($(5PY8*oqf9-^@YI56=OxX=Vpf_&TQQk!Zmt*nH0I5pv)#p% z{Lth{_)kD&d&~<%?6Qgnn-~mxpIq%)sHN$GQfaBDI9A+|7z58Mb~Z|Ka);9wTUlAO z+1x@}_5I}qVV6`uQsnpQN*BOIy-i9=x-Ba!yRE9Kx-BkduiZdsYtx-*RZ4bppEafe zsV)Ls*Th?1sVye<_Z=Tg#+P~yl@ROV0EWMv1Vou9Cq$r!pQ6}J$<2nP$T#4>ak{Z{ zWWDYf%v<<`C6Fpqk%2Jz%i^^|)4R2&T%C+%Mq#df`x25w0FQNg^Dcswx zvuA6-6h-$sl|emOSq9|oK{A4rf zs>t63Ufv@wiwETnu}v?b3Q#TqyDut<WXkL{XeoXEI0X(@*iL)G?OJD=focAq7bVWU%Lyq;#Vj{s_hZ-b zK_bY=6px4_yqhLUeg-R|d3|#a{j#f@35U%l* z=VxbadUuXgRXFdZ}IwN z@Fyg4(ne*GC!Qa5bV&2xUy-4I*!hxJT`1SMObwx?_Ij}@@eMZuyz?+?7G6W>p1UXa z^RYo^c2L}<#Yy}R8zKa&0-g`;cyPshcblMCGn!4PLIF;nQwRj1*})vs0+8t-xc7ic5K7^h*me z&qK9Ru~e}p{+i!2;~OnlYNoy9BYs_?>MuMxR0u>Z*et%_wgb*60Rh|p58h6g~q?L#-492F5aFDT^^oqkB(*%$AY>8 zm58k-D*kt|13EQ7&*Pks$0;BLhj*)7(%6Lb)c5y9;$58`e4YLmvb_axTDNm^bGJD; z^afNh>sOy`EfuE@BN28@m1xwMSe5~Bt+3ITi9xa5Ft0`6R8WZX&I!f@Ob}zg7gBsUk>6YLecV_exd_>;!rT%_> z567fDHgbDl`UZ1GXV;j{&@rQvt~pBzPL$`>i@p}sss5F_0MzvTTccE^J6>E~AryHv zhzr!nh69FMnAw46jZ5?lJV_XOtUQ&Qo;3{?zi-TIu4%+j&_Zm#n0sqx%WL7;woXMr z_(vJue(%0`BqkJVzzusdYgiPT2pq9^Pr#K&K-_PwjW^9w`V)s`a{Gr1E)TqOQN=*G z{u&{z7&I~&u(U@LJk9bZx=OS&+U_HkIb254d;ql%*r>5Xr_3PT(~zIbb9zDch3G3k zgPi{9o^c}XA~%5jILH9g1Yv<j8Q~c`e>z|3f2!B2_w?}sOQMb`K@^;t%bEM0 z^PT69&&~flwQ;CkO)2cBn|F?OcUDhx(l=$7kqJ3Jo_O?XI9(rxNlD8|>?IbkvH3>s z&U5~3e@@TJDp@qXq~rk2)lcL;TH8|nt>WtJipRLk_qb-Op(j02I_r56aJ-f2^;n|^ zIS*+csVfyciOfHFqHpK3D3p({(jc4N&a4@WmuN?N;+m{|=I$NeH^fJaQ+Ge3D}N?j z7;|rLT3Z+vt~4?_AwgKVz1vCd4h!8aMaD-hN!rr#%h82MMH>A*qG9z*y+38n?z$m3 z>vsT4*3s9m86M-CB8O(+95OYE!Js6B_9J;^^h;Gp4e4m9m|kKNzbiw{=E}67H22Kr}(W77SBIfRSWL;R%9S zl|Us%S9PtX){@-z3}eHn3;Ub%AF)4b#*TtW8U)loR93Cx)!rY&T`OpuO^<|OX`eie zCC3D?8IMtcvR0CSlJrb<0yQ$vQWI%3?e4A^uh7ET#2i0jc6Dg1p7Zf&TwfOmP6>Xy zyti_F{`hH+M3=&QnNxfdA9;9;9l@gl(TjvYE?%rGVk3GGt~t@pUeX*mn)CV7SJUG) zMjrSKMvhfA-A4rVctZk(*jS8Nvwpk9d=ma4pOvEjIxJQP#&*tFhL|IvMRgmUI(Sno zrJffW6>XY*NIX_Kf#2gZsu7iI0ldG&+cU)* z=-7!l_$n#tz9H>+en@<7qT_)8F6C9|ViR91aeHB5fH)Ba#VMmiGTkIR)t0q~6|Kjo z$zeyUhEP;j|6yq4No&AK@<*!nUFXaEgy68x61rWromscFw{?|H*nB{y)0HT?M@fR4 z$gmOR1>uw)8}%1>9Q*-3L8|xS%Sp`2WjZMc)TMgldb6J@h@-_xP+>f-n`k` z6IZ#~=C=X~3IAg2WQ?WdHEjZDIc5f*g{6j14E!aoVwP-}94N;27;Bq}LmRWNP6j~` z*2g7W%}pmqw-iVSQr;ceKRoBbn^9ona6C8!Fj%*=k_|u_jIu!|Z#h(xLY|!;t^<6) zvs@!z);9SPjos5rRCTpLEfPOji^)&@H=Q*fDyC8a=KGUle>o(XP+qZApZN0XiWFct z6T3Ap0#kXB*nyv`>^TO_N+=vdbV`=r&dbXl0vqGs?ko#xs@^O6vi1 z)bpu%x4p2Rf@P#Bx=7eg#duLh{#_A>MU{Y1yiBd|Ih)X2a@r>LZd+cQ^M~+{-I4Af zc;C%e{1-uND$0Uf7ycMo`=5!Y3~_^oaf?qKa8w;K8=~Jx#S}p+)2EkCvrk&jq}#(U zEKZiFyr&(ilJ}m4QhK`sapVs|Zn#U>>a9wF`XLE|*hC;M{&+0)!si^xZ^eBye=VD< zeIOp%weGtJ`ZgXU=Z#I!?Ms+WyC)yOG`?R^>S8eCXR49?#Zf7zRFhNbZKdWh?y0M{ zv?m{hI@8M=xu4oWS?1HLMVA;-?z+?1wgmH&S|W6lu&#aeMmH@kCCU?99=!B+;?UcJ z1H_Y?3!n;00yW>+F#maq`Ep`{&^ zC@A&imT$}6G@M1@Cqm+RWH%4^C2Sw`m_}sB@RN=vP-if} zlQF=z1Wrys`w?3)VqjMW?}&3sqN#YM&mzm@_799tnYOlSS`ew9wsMF|b^tVOf-$_w z2ZnBNbK&7prX4$u45_8sZqq9`mNLC&nOGN-)Uj_n@&^g{+$tI2tx{~uXkKn?2)Tey zNh@}`{Xh%y|0+*6f?}{AO5BHqgg|6aN;s;j-ivG0D()ZCUA26$YNo`eK9^XVd)irjI1vgKDP^{}709selsTzlJ#D6DTXm zrHEdGTgA<`u1fawWt^nDIivIdiu{urH~Mrd5^8_Z4yc< zDq`DQ2~p8Qx!qsCetm0jPz|@SDX0Vr_FuV@UHy5&2K`k34X-*;!OFO!L*XH*0#rO$ zT73^O82UV0=km)uFTdh|3hlV-j6bA}@lt>aLR*1QgT?6)<3?1gOVId?g1T9GetP{m1DjzR>cFW zefiUzN7Hg+Vxq-2i>@);Ah(6%wmv<=ihIZRJIlo8w-4LxKQ?^y@x+Fs8a_G)i$!wF z{v4Q@D=EJ>(xKJN^Be_3Y3Hp*`2KyLK(uwi+{PEL{TkjidX{k5X%$F@H+ zj4k1mP(@zRHUI1{vm@QBi-q00E?cM%cpsiA+EDOq1Yhgmi3`~2Ba%Bs6ct25dx?FRxYWNa`>cvqAnkvaY0 zhh>n?Yvtd;Wz%^1!%h7hsLa-ZFTynUYkWw`GZ-RWGa^}d9#@;~+o?yJz8{agCxU@P zGATv~T_*6A(85F!7!EE<)al?QHY*k_ijo9L{&@ypo(E(NDvI60x1?yWQ4S^eTjLmn zUKm;k&qSh|;}iEk53Jo1jXSiJh)*(X+>7}fHHv|M z9*!;S+P&ey;mSX>c1CkWh|}N0D(=v%hqz(cesO3KPe9PNBP5VQaV1dN3;k&x4+9Si z4+jr-4}aRdx^1QU%3I6op{+vnTqJNXaO=yYQrwf;3?wuGjbEb7Dg}l@@yl&W_AOq?>C=S|jiS79$og#ZGz#FfOfq78ZML^h1hI;HZ9wpV=MZZO6(t znLI>evP}C|qP%6Mlwsd9$N$O4L}I&KP!*_I7zh_&ffo8ijtmVs_sM468d0lSMY1eKV%2adu z+_^DSK$$(#z+WjIvIZ%62qK{1!v^*FjQ0f^b=!TWWO8gr{_$>jz)pp|&ygmC;iCu$ z*BcYc6rCK1meVJ-J?z_!S+9fe)Q=*;DG{g>2$l{j6n`K1DZ2NeNU#qUKOcx;O(t0s zS7(9@mwb5{Os6Ry6$LHxF`O(b-LKrPEzlbod#}3#nNR*xaGj7TV5Xz-%Bzs-9;54b zb!P+q{>#(+Cc8+Q$7I^ttJicXFf?dX2=}qlq2GoyClX(;2z9EjNWS3Rs)EI;7eS8r z-YrI0NsiR^`3XiBYbMpBIRvIT4sbZj+=)abes5*7%!T1SxPPB1?Hg4YOO|dgtT-Nf z7*gR|pZTES*}idYn2W3HUd;c>suRSW0w-r;lBK0CVmgT(e$*-Fx&P_&HEJ4+;4Q*W z#TU`0u9GtAhRg*z+V6a#?<%p2NvzFd2AI@xyWhWyxt!NZ&{9&0(lRrTFA*$_(zCL; ziPw)c{A?ht7gUNz*HjU6aSF|DV*j@D6o`ggea?M%+`%DSdkOw#8uq(3{_rCTb==zHR!xZbhgYvIuNId=) z`C+R(HMb|5*qwKDYlW?sM#Lrd0Y!E4=IJXT$JVLYY_IA8vtLb;!4y{Mn+o&0GP~xl z%k|o<^~-hV6MrmPPBeHX{q$ZSHTmxK?w%ey+hQ{C@{<8!K%>ZG(eX1$Z7lV*g#q7$ z&5P-q`_T>`o>{8L|DiRR^IJ$4#!4Y6#MS3ckwqwDWz?kvBNtwB4aHmCruKnKC19@w~|{>=L~8W z2TTT==bfCtu@L}DUfqov+K6UkWUS6#knr#+%*?c!(oK`*BLD5L(3{n#>16kycOjCF z^M`~v^TivjH*a@Ib<&b`ws<*HyPX(D-#0bs|7(8W*6ss~5m9K!Hjrg?Zr=(3)EYG- z28UtEVio+IyuuC1|A{Lryt4CGmO+-MM3o;o7D80xA(}5Zw__=xhQh4M#nsg-7w2NM}@o;1sv*IiZiefNyd1I!Ge`ypNM2528d8 zg6L@3;yDcnqCk8;zwqQEN{BP~drjTfD_Y*Zt6a}qqD?UUF!!2*osqG_WmCo5@7XEG zi!;!lLwq)!3Ap}S4$VrkbD5A@5S!0Rj~^Qwc$Tgemk))X3iK&#N|YPSAwxwBn^PUG z2uQl(J%9T;^YD|%PWk56VhxB9_!k#A7B@F0HO9%^kj!rs+TK(#h*y$+Tc1o~NLjY4 zVgQP07BUVvYFM9bV_`AUjYedB8XaZSR9B}@0K(%lE~1eN%>RuYnSOF>$((6x0 zX2-`l-|x}fGm#r_LV52CWf^duNa-0?ye#VNki2xatG5~~npvJy;Z#>*(_=>~K;;QD z3n6LjK17=V)H`mzoh{WFo>A(PZrb^HCU;@);UuN!I4{!Ez8Y?FMFB?oC$5 z6!cRM^2qD^*dst(N;zmG=c@ZFeS)Qa41W=XOMP>1+#VjO2dhpcRxDPINb`aPHaMu9Ps-DPA> zynVKB&3}5#Zn=H<`JCX0pcIKT6@RNl6zbGEAA-7E*9$t`qjjD*c;mSzh;HG$Yq zbro@HY@~lY2p>e!)O1kvV(Qgoo56wLZS9Y%rqN*R++!4~fs#H)^no&1deF?bL$#l$Zs-v1ZGH^{o=2b4;TdAgV;flAObz0wK#)RmFyuP8YHT98wv-1 zfv!<_=;*y=TZ=uKr7!Qa?#qdf|KYhhv-{%*eabh|eJau92^{=Fc`{OjJ%(sl2U)6jnZ|ByXD0ZF&|Uk+eXqvO+wBh zfciG%Qu(VwPs%1?e%BwIrwgVqKyev6g(|+?TvVBh-iwh4fRGd!Kju`$mt>ce%$k?w z=Z}An(-LR5L-i=axo6 zPt<*5(RkYoyhTTaKqjEJqx%R>&WqZ|O7iusHCAW5%XH{A{|s3*DA9x~!E=NsEpz({ ztPJvd z5Qyz-Q^i94%1a5Y9DX2Bkva&4mWe{K)I5e?=~smc7)9(${19nvQ39S{76o+Us*{T; zfHG0i%Ft<`W~%s~ORWaHwgFFVAu@u!q=--KJ`!E(>*!@WCWmDVFH_^yQsLmm@+aoj z_f?U4X6^q|GX0+8o^-w)F}9vO4F1+u_xpD`hg~5Nn#SD3M&Gl0?4KVwOFj;{)m&A{ zyt;f!Z>O(+{F5=bm=6X{L!yX97*gZ|Z>ZaCt`0F?B^%KP*j1{-BM+Z8^|D!~vKKk~ zu=14W+`FIB>X6Nja)j%o(vl(;{5!LD7e$_j(UWS~K3qHYt;LaKbCb5c#AfdC1LuRt zkl(2@n2@~n50G*RtjZ7TY}Dcq#V*@hMBTVZ{)A`DVnoKEgucK>Vzc;0tVS-!o{w7Y z8TAg$78u0U*I=0`DV4yHcGW|?@D698NYY|v>?La?sVRv7>0g{o;*q$0l1#c0QZn#< z1WmZ9A2h;VAqYaG>ospD2gIq$eeQ*(+&?p>wo-MkpA*z?(DZf;3`?n z_p=C*+y__&%;8E*c$!x_au-h+;i#P0e~#O~xXV8q9H1f_+*bwmk_wUBAR-W>e0zkA z&v~J$(&d-ItUv3`!>{|^`jI5(@p9VXBDO*lG~PWb=Q2~>eN#QL`({*U=*jsb=AmP7 z4jh}CJCf@i>2%fk-&8TXsJ{IUhopyXf!W>oq@>9T&E~SZ`}+@R$;i6*ouI0*C$SL` z5m+7!9vmL`X0mLT%)qdP!8tc^ZO3@DJ`@Ty?t00*u)^y-IIg#8lGRl#4pN~>5LT-2 z_8hJsfnO^6@1YAJM8dQ~a3C?(i!_LUO}V7x3_A<}FF}5MOyiziu~@V7^u5aPG8_ZQ z>-(o-r}Mie)-NV;&q!UG_a9Pp{uP>yBvM1;wCO!9i6`E!HpEivH*oZY8DTh&zSU)- z)dOtvT?fjNdA~e^4nU-QZ{k5*KjJqkq(xGs8Qu*7S1^BG%%rlYGvU}Zz0m0VnzdV_ zQ90SgKloo3jZe8O>cf;nR~$F>xqYk}G_yg5tW{DVrb3b@?10v#jpW{V zGh;}0LH*4ASCOC?O@WZDz0K5(p#{CS>8++)?L<-L14E zaS|giT4r5>II218mz0Df^NJlr#@5M>&3}VRZ>?Ul10t(ym$7r%fF{01g<%zW-jgAC37(I>5Tz(x zu2Xk7czQCfp*BqLCT>4MX*L?si)tgLWi4V)4kJ5x!?&V&({kw-Wb!eOf*2T&^odd| zK_FI<#ysL6+CNCBZHJC(e7|9>a!Vo9VhxSR``4Pl^~>OVvONk(8$u*l7i*3jgky`1 zr3aGlzF?9E*ODT6PcCt%_T1=lcSjoc*)yW`!LL?t=NhRf%xQk5mq}iM}jWe zldQN8^4M0Y2Alk0;7WZyIKI1~xOz%Af*dfr&1(jq`1J3!lW=l7S=?CB7(K0ENcl!M z9@36}m-HA!0YA#aL|ybPU{!FS;q06q^><9CziZDWzso(6CRos7AuE%D5)L52v~OD zN6u84pX4;(Qan_VOX6j={>>7;JZv?l3#k$XDYFVGLRD={Q8tThH}E;#o3iSK{d>Oc9tf0>`rRtnoPBgz zbQ7&Lu+kdoSY`LFJ1zNZshXef?!j$nS=62o5-JYoEFwND?l*n(Srb|cWJS^-PCw@j zOO9KWPJ8wp*I~?A&Ox`sEYlCqZc{R4LS!9zaI)m%43p13Z4NV3aQa2=$$a#-kaF}6 z$W|=qic++J^N$wF>`3fRcLp)DK!3|T30W;n+3_y3E!y!ayRS@60VGZ6u{Y`XD1iTz zkrL>P|5l0Wp>LvLf{;sZ?#bd=h18!rmx66+=~~&dre2s$|NXM)Ue>+^^>X0EP*t7i zgS+But*6FCxk5(8PqvY;dAR`6`>lsy>HX?PQg_mn|c6~az)CfPh(`-Ln`nEOHd6#Yh`25e*4UI9{`*SsoP>q0~ zprlV%ME@Dk%F;n6E?v!GrbSazPOkcDua!Ek&gnXO6JXI8veC@1?2aBECS{g1w6s1f zxI|zLO#ad4Pj8qFyJDhb0R)IJWf~bLvOYwAwSE8lKFP>9E_vuNt-rs4TbWuL%Rr|Q zm?_ihB-1II@ev?7n%Id>?pGUmb{|Azbt>$r(VSaLmgZJIGP#Lf?!Z>jx(cXGL%J5E zqzr**K_Cl0m}I%uztS_{uAcShtutzY@l^LvNa|Q%^MV-gV->TN*jVG=y}KV$17x5V<1*N(}iAJrNF?L^~Uy5H(^!{+FsLKA?8>zD*CxX z{3ToT&!7sCY~Gp0c7VHY<9&Lz3^W6_i%{F=Ad2EN2jHC5%?BbpJ#T=A`QnAdJP;u& z1{lU&z-zjzxY%A^o`T(#{r-JVI3M3IQJy^gV;7fQTV350@_c-Jx<4nREPjLu%zjXH znP0Sd&qE#~{vI{2U-Y@NtH+qA7?TLj&m{}QdC{5Gx-y$FnQD>zQ1tUx=RS=mBM2ID z-0J)CBQ?2~Uo{g#Ln=u6nZbI!K&)d?@brAB(|2e-Se504ZWNJJ;5lhqKt)Untig4f z8WqF`2NZnl0pXb;dkaZUrpb>lCa$|jX;-T35?p%g0gN#^!A94o@Xl+sDumw>l&?7 zj!J&NWkyYDZQ#AO@#~>cJ%ySXDO8O5BF#>HK<7)a5i;m}{~;ldAoB|q)+;RrR^RNi z(i5Emn&EFtsTAy(c7*3ma4%li-I^~gRgwL%q%0pg@wQZb?jYSg23w4CJ@BfF_6%$97LgTk+82xb?_6iIj;J@RNc#R+OoOrfFUtmOS#_2 z+d)>=E@W0EbozOa_G{qUS?*^gJF%TIIO7rI!N}|)%BtG+vpwZ7D5an45eT~Dh~4*nbeBx^YDp!Hk1XuH*_}?Y;i2ffoF;=Zfui!k zyn+S>k*xWKHoF>vqmewdRM%%W`W`FPmW&NVrFYB-IFWE{&Wy8t*wbn5U*Zt zniR|xnyxIJ*VRd8UJ$Wx-rKmdHYEt8uZm97zKhKg9)|qhIAch^X?*9=Fnu6@8kL$* zvR6j4L4Vo`;tXy7?-TsQfA^8Sb!*LM5@QdN#k-!pNw11b@(tB?Co_NS7F$(GadUsD zo>SBKCUb&AdjhmYF^@i~)Vlz_{@)lSr-mh+u&32eYt0l=DhT;V>k zz&aPe&I{s2JbY+51F|CqYyxqLN+1o@)@x#x2apF80RaKT#-J7uIRzb^I4w1G_x>Xc0lNZdfgBA5zG`7sy1^6%ZyOpU zOz!_fL}YdCneA}qA@k6xl!};&QjoIQ{49}j2B|V+uF7TvQ&SnSWa_={@td}da+08} zBKX;xhUl^#g2usYP1cryf?$z_cQFqJ|L}Yp8~<9;I&rWSWve-Mbsg~9bda@YvkgJ{ z3H~Km?j>g|nGps`yqISgc=>7LEAYzDg$G3YS@DgxC`MHf8>^h?K`I18m8(^?O0>8W z7&1FzQe>hWKtW1H^RsiqSP zB)vSJ&3d=|rFDEq>5k6%mlRsrZ)pE-So!*?gprXLI;rPb3CF8UJu(gv`;uK1@;2sm zbcmqdaU~g;k#i=8U!EEeQ>#Anc@t?B&LO0gN~3xquJ!yDYDQ)$gQQeW11UqX2-dcs zFF2;T!|_a-j}R0dr2dJ=Zl4Fvep)rK_P!bJcjFI+E5MU5Abvm|^&U9#J_sh>+(&rrhz&-+eFqLLP@ev>BAzAQ7N z%Hv0BrizpamuvLsXj&cAkeX8UVQ!4!JxV3}HA-7!Z9+$7_4|c`4z9y}9MesH0c1@y zOO*RDBP$~Uwgs<9% z6z$+9=vyKy`>ZCYa!a39Vfpa(H0jmnrQ(42rY1RcJ$k;K1Y00zMss^RKW}0(Rh#{D zag6nowg(BUV8Orch01C)V*GTH=0wHPAe)Z zk`652*zj_j6QyF>qfW+bkF#RK@2Jw=wK*wo;$*u0Q zTpJ}o6z6=+Dk$j249uk-~0MhXiwwYZ(}bp`Sk={NFq4`a;NOakMei1dNbYuA#sTNs_cpF{3#1^gP6|uw+JT zQJ8+}g+WVz{kkA0m;93Z$IhxB3W-o=yun1JOB}UNvHfPiE5o5!-kja%^E98j!&#C& zVsYol4WK}LDiwLZteJ;uBi1QEeIq3O^np~_%wc6_$SJzut!1E~BL?dJ@ochs;mnbe z8O%oG48;;)l!~fkN61l7zKB1>#BSA_XPJ^8{H(mP5;VnsyImn5S99F*d(PeD#mIq$!f%zYSvt6CH=gi z_;l;erYA3cz;F8L*$7ttw1KAgV~XHY=}t8CrD#bIoH9nxs3P;3a4-8P6#JM`Xe?fJ zs79Pv9cx$s5VGU007kQp!rOn$2e27r8Ua#Xl^J$NSd3MJ;7U2SOdjmb%2o}?PMh8; z)ZzMeh5lc28Np%KwkpjwqDg3NUT$ z{Hn17L?@27C8m8Jq!dhbDv!vVPm*kLUWvk2cJza_rzCWY)jeKRlz2FhFpOG8+T@qz zRwYUoRKcf5pTTlb0@u>sJRjeG%^dD`$5y#!Y?VB>IVzI;Nkbp?NVH1EE6HBWmC5=6 z29_FpI*3SFN1-zHOJ(3ncB&&Xmu~&4>*GX8J+ZJ&3$oO_1a!IH^fKT;aj|rx+@*C^jdxt~yk9O+z zI=}IXPmb8p@v81F&I59fSQFr-z0rI!fQ6pQ$jUP27p5GXKH^zatEn*({{-2OI_up; z6vyoav1mXeQ@1xAu9sf^I-3RD@hOR|E*fw5R8q-DL*c394=6!k^!;q*v=t#-4ly9f zo>9XHWB@Sn2Vle)lK38A3T!9G9lsAmh+P3zN$M~v&>hetq1$cEPEU>&ZeyS4xns_T zp%~V9axg7~8H$PS@9z&vOH2F5x&VK-UO7U4WI+;e6aD8a*7e2WgMtNgN&%)A&8c)8 z^@G5HXyBNDgV~%UR%{Uy>MHFt!`Ct`I%>+}R5xrPIP*f|*I;f?u=F_1ua;vK)7(ie zaH>{n^ZZn*(y#mgU^(;c3`7RC(5q1XkT(({8x3cj@(bMAFRJ8>QpclxKHu1XQN^kH zKK@E`M-5;dza~(0)UzjSjz1Lpxa&4t4TkG~Zk2Po`a1*!twwt#5QG1Kx4Ff)DI88A z7|h?23+V}8ZqjoWtNb?~OhRUlQ=i4LM>O=iYb4q__1PdTjFcY4wL0d8x!D*|)QE2C zM6C+*eK6;w&vchSjp#I&hSOrw$Dak3tDYd=^?deCcWC1vi z?ZtjsLCnbV5K^XTH?Z$#G$$l-x$)}BoJ$g-MU@n1>a?fZ^> zl*9@S!>1pqk}3)z{a?~7bMj!R-`6DaLphxpaMIc;qjyO_EV|O!o_M37Vr5{pmAW2J zyHQDRZRak1Agx)>?a{X7Q?#OMIDa>XsE;Hf$TxBd3G2S;swYHcc%05Q@uHfaCI4I3 zCO#V**?(Icvg&vN^YePQeD=S0<_;Jy2LRYI1@I*V;(+X4sHmrMg5~fw79A(G+?bL8 z0s@9Uav{c4?U+~5fE57CWkKN>kUH|*s|SxwEoeIE`c8c4wrY$A#P93Y={SMNZ}L`C zqsEwGNxs~Bf}h?C4gfF?hp;$%(7~EfSw4~9qr8IC#R5WHtM|c0TI3#NtTot@mXE(< ze4J6Ddab#J@&mf0>z_r;Msr`XJ#PHxc;Q`=E1;|^1sZM>7(50>Ma+E%FjX@7o0%-5 z+JIM(XCh8ZBim#c)tCOPzkqxQroSN%v>@;A)6rQy_tG|58r}~%lba0VSAfJrK@qv@ z$=!E}`6hS*W$NXR`) z2O}US%*x?yn`=i2a26~9H+?e209PBq|F>t|4`$RXJuRMGZ}F0lkoZR5?$$=$ zqki+K_^+j!kFtThlB#JT&c{!F>r8^4wK1}AJ}94RZK<+Vih1?@J+6Mzb9(>mdiMo4 zb#YRMj*hl8gdV^j*S7f*+;fLnYdTq`Jn!bi@X<3qM@$#TPSmzlmb4bSO_7kub)EfA z>O2Yw!9qgF8f-J^$R?=69vwfuHofp~*|-rtRG&xU*7I{Wk-FUSwS!fvzyC!0x`91v zQ_xQO;=lGjVU5EoV^8L0b-JzHMv~!-DWF_4zTAG$hJX~={-=?tLsw82rZ4&@qzRlo zg?zc8yhj5l5gyW>VQ@erAS%STo!w&YbbRkX>yIN}dv#9l*4H$jfVU#>ahbhUdRbn$ za#-?C1IiNd<04(<>hjT6mH$wI+hM}ZP@ebCLg49?YgE%GrE*)X$!Ei&HNolx=lG-Y zHbyMd11qne%2Lu&(moa|s5Ew^T(nhg{L@t|Ty2_r&s-E8@NIyKdZULAh4N#za!ri# zbSLJl_~Tu$6LUd`qBRMed?GD8v2UCVurhY4?Y*3M99_L?{tH0*{k_>Tn>> z!Tg7>F?#Rb$D$gKTA}K^K{Y@O8XE4?>LGQEPD8>p*J&tJ4IuKO`~wWV__34;T!00@gHI8wg3&3`oKi!gT*gG#^-sZ; zu#Q$RClbTUXtF^|9H2n$Q+pBYcREisIRQckANbi?>m?NXu1ed=GM(;tE;#WukvZKq(h z@wtW+@H@j!n_0`Qsp}mRLgHw_Ju)yVNe~fqgP9{~VoH>R=CLxve39Yxu8chr=a+cT zZk|jnF8V_izg+tVp5joxlK}>HV75!V0~O0w%RqNf_J4NEy@xq753E0m4RMz|%33rReV>04s*0NJ`R+CR2%H zQzI~;Xl?Cr7kf);TZX*64{!-4FRz@}$xpOK9vt1oM z|0NI?t6=itf{YauJ?z!I>;3_) zg*i+=H{Y1yt$XmjHQM!%9AIRIM!zVT$oy6Fy|yZOdO}QYnLr&81dG-(=bP5I;u8xR z>7@<(Bd(kopH|-?)zQ*%z#MxoBXGC>UEf9J?zgi^Q$ce4IxOF@rA8vb>)%faUvF@J zj`9+gB@A<+IGggPy1eGmz59pap7`h>*GXVjQ26<+l(H$qf+PppLIUt^wC2f%F^m`} zB?yh_raLC5eG&crn-aoK`qor~Iw&r_$4Q)iOF6K;PCb%n1x1#+jp0KPu89xjcl;5@ zB$tiW_wSHAYi1Fa`(E1|D=E3)&;f60X<<7jyx+R1`d`{oQGLDl=oD;maWP~)BmWZz z$rJl9M(fIsqI6Mgs1@#8c=9)nj9_+bI$<#4N%QwXHR`I5 z=6P#k37-Jb_4-Kh6mvu}kM9=ia`{nAKYk9A6{5Z9ThJ_&5OF8)ymA} zzpwWAJAGdHum3vO*cP5fmlv1Mw%|5l9HCg~JjqqDL{$ebI%m7r%eCRHRZbTzVyqVw z#zX5Um0>wCLFBNM)V5!Hcy?X?L4cn^$Q&Si2vy)|0!r;7kTbXqiU|WO41>N-76ad* z$lJ^5)w;U6_J69aJQeIK96fpx5)vFoM?miLD4v#OgGqWPYbgBtuuo+jpT# zlI>pDBQ>tn+SCIg%crR%{g)(wsm(_&q^vk8HyFn777}mkI6c-XXex3Y8@LJ#OPfU_ z*~>n+iIUe(D=+R)tPKmpimH^u57xOb+?fedc*?XoECRF!E3>y@l{lR=f%w!8d8#+9 zD&5pB4j3F;OqV@>I^$>vhMjK;q_`(ovKh1(qxj1Xd(*h9J{nqs!r_0+WG$#BOR&$= zHNYlpnYSQ1qd(&`6DW44;?d)~9zQO=lTaPT`Ffk?_FIg6C5(K%&Pe$Bl#|fsxAjY9 zcR@WC52{d|t^qIYEuvaXrbi&wpJ4!! z3Ic`lPZk(CPM_E#tK#Qm0~GuII=R;9Dr1P^jN8oxT*rLb}63J#n~I?oyJw=Vy$#u4}L+k69Ry!Spvox#pQ z1r5QAR(?m`LuM_wY?%My3fuLf0@{*CVAi4iy2+U;5dlbp2QAQRc>bW?qr&|6eB59i z>alA+s5$YP7=`ucf5cf%slv~y9qOXUk+WyY-Fl_E#*3D4_&u}>&g$}RmE^YM{*mVS z#!mNV)veag`C;}=VMFJmqwM1^1!v-G^=g8C09u;l2XMFSmz_}5bAMqEW8Ztfgd9wb zuw9UuTFEg)N zvZ5iqv7oVyiTaw#%9MW>r6cRm>lXgJl6iKcADOkd`%AX zHT^YHxn7)^nHj{x$SCKjw=Q|L=j`WqZDwdVhXsh+LJ|K~h>eYnAV8!HM#7b2XKJ08 z+6ew~BPq@u?9rhD|4y+4Vjb{kfC+0Yz|2xT&*xkkGu?Gg;Qh|yP6)h%;f~;D+)vGg zk-y%1akjo|`-Q|R#P%cEdr+@faU}-vLAKO7zTfgUc*%1A#vU#iSrDABMZ{}sdvR}i z%c8Yhlb#v8_|uL`Sar^>gf|eO-y~4y$+CZTw=oBU8R`u-r-IYzx^p_G`7tKk*FdpHfyalBh zC-PI45I$oos>UBG{mwogF;uof2JfRyMr#OoMLgg`=d=8&2Zg0=2j8o?xNS$}#P9nH!ho zbgbdJ!`wZWd(=>A&Flbr+SrPxah(s~VfOSd)gw<_GFXG`8MvJ8eg+J9B!~Etb?g$B z7GGy+EtqB~V7olx7E}R`51==h^bzON-~PcYVxi@7Mwvh{4u_vQl(UJ7+N4*=ySpFr zwY2u_pZ@pMy4ukv0qB2creIGbB@NTk#=i>+`kN)P@L==v<6eD=&M?J>>KRy20h_3N zHYAoDs7UfeOxeK6Pr4Dngzm@o35o90so|=Tn1gG4>VnTD%kha{k~xFi@uJ@^_dc=n zWOG*!d)P@ROKbG=r_uSoDCO-x!j{x(dU4d`^cY^v{fo<&4-kl9=NQdwfP;Wi`<|ZP zx#GrMEMj)9nZ(L()LR3<`F~ILug|^)-i&Y}#*Y5n(!IO?+;3>fa-QCaF7UMU%rO|Q z`~&o7+|Co8j?!?9F>iAVZ;^@T(_QIku+erl-l>o^&G7jc!C}aE~bF}ky zqrGavgA!YJi`BAY3 z1D4c~?@%!aU{2=HQ8%O##|MF5xIF&}Ms}obC8`gdh=12EU(ZWPi*z?k+UHN^)UtS- z?+K8C!p=+pvn&%lUt~n@r2TeedRYy9Qr%6x^mzI0S;N0-P4#Ikw#|K)t8Tz5EPPUT zE%iT87i-xYdr}Orb&T#G=jA!rIS;w%jM!dAfAHxzuCHgc2*ALQXpIDuh*55izypr_Z%JHWLGlw2pT0|z@;^?tBmx{luP92q-}Cij!5m4pFYE73 zDlqL2^1mNbOqBw^OFhY_FFEsmB5$&TK0JyNh@O9~@i081kN^2P5dxs%93JkxzJ99f zo~Gw$cCn#78ODRQu+f(CxINb>8=HAH^@=)atKooi-99R9XvlY2na$zgd}19g7tK5f zUdqI1e!V_qY(z#7*f0?iscuM6<(-<{5|ER?m>}}$PFQ&dhqNJja$v0Z;%Z51x9q!r zZ~0`es&*xiG87(J@t&4{zMa6H5C*Fx++doUW_796J)XVdZ7cmuIQM zDxre3dW?XHK-vS0yuLm~>9-p)<2$dnt0Dgv!-=uUAwqVzayE?HcGn?!V&L(Z?5OY5 zd5~}+P?-v?x;MEn9qTOEEEMwqun_F^vG7-TiGe4Q7u1b2=)V%pKPVBx=38fRpXJW9 zS_D3vxNCiv*+pP96vPS8C<}9|IY*VhUs&qtXwjfe*PK3aS#iXvg495)p?oG_rIq@< zYG;iA3Ny+cM|JPJIPf74@$c5Ojp_7SUKZ$gnTEu1lloTU0GF(B$8Q8Mhb=_jPses; zL83>R6PT=g_BQS_egX23j%W6_8od@AE~U-h06uR{)JdQ==f2y<#NVc;PXER;EswA7 z6Fb95ME3RmX%74L&;Q$Pab<1FqN1YI4P?v96FE~dZUzsV5A8L726@xjCiYQ_n9C2(XHSvb93`KhG1>$~Se_FOE}L z)z?7YRM5Ca{syE!BZu{l_j8s?4wffz0e24vC|lZnT3)g=ubn(PJdMo*NGOCb6?OpA zd`Acpv$E0?2sJN#DVKK#uoB=8+k_vpBO~tFaeUw1vqYs-Ksh`;7zOC^8+U5cn|n#s z(++A{>z6qZ;Mc@h`T5Sk3ZkTNlV5{12+T8dL}I$pz!kydLln7s+ry*P1w*aM*^QXD zGcyL_s+O^KS8`-A;Rk;rs;aho#w)*k0ZV>8lfLEub@cc2^lz!xLVNjs%c&v!b|cHf zjUN6d2)GK>VUqCMhykkBkI&JW02|V`$9m$)Sv0d2D;t|7v$S*|_RAM|4gHO=u`%&; zP!rM+H<2C6&ab5%DvYowYoj>*{^Zpw-b7LTO%MW1Nv-(MIx8^2XSy0Vpb9TzzmbcI zyroO}1{lI6kr#XfT2FyRGM9RQl|(QH^Vs4uHT$FG+=md}^ry%*I6yY|GLnTrnB_jx zmA209bXHd-w64<2D*efIcToQASS0_LVL3g%GQkYkvP*y;6bJUy4yJ?@@ZAu97P;*C zERysIY>_@I@Uc{dc1*iU_3LTj&z7v1&BX{T%!Ltca?~=|^cJyW?=EzrF{ky1Wiq+P zZINUJA4yJ|Rn!p_9}2~)v{BGjS-pvP9)nY%5^a>a$$FD-@5b-p#9z>~a?ms9V5qw% z+~V5V-`qVxf?7D)5p?f6qv1by9q{h{G>*;w;urZAqsYO`3`kJKjl-#!4^~<#s8b5sq_^4j~?{k z_w?mfY8o`FT$Xu?Pg_8{dPd`}%f(mIOQOCn=Tmdt2kd##fSJ#ID%+Y5&r?E@f-^E+ zav^NBbshJFis#59aNT$mI=B!C&y^cVuJW$RvgmZ!1W>&kDEDRes)PCt&LeqP7QwoG z*6W^^FA2t(Kv^JHTkj18pg(t==?fqz?tOGb?LBy4w|*nUBomRDso6I>I|-oJuU@@k zQ&xJ{Ixr%Gwm7iZY5D83Q-5JC5%9;X75E;E6ql2(S1vwk7LxQkMo5PVMU)knTRU4| zYimuvdw_J2|Kvkr?px%A$m6N$d0bTWq6J9~u}(n`e$WDCkP(To~=R6O*P z|B;x8_1)Z#u%(m@xw(`z)qBZdDNv3X<>Kr&}@-= z%0a*L#}8k=mYmualy`2m)CmoAm)-d2h0)a4<0iHSQjMTBHF$-Fe8N@${?RfPa)d)}^AM~5MIvfCdqy2?mF#JiJRL_Xxa*;@2-1Oh> zI49q$PQZh#Ovw9&2PoF+z^2Y^rWqTtTF6U^NyYvy#(|f)^%4QHay24OV(wmE10U$z zsFV1j+i{BZnR-*(mVu)JhQeZj*xfU2@%7xvf*UcKLHmDjr-cOgznlp{{#sF?e^Cz)D!-{i=_(n#Ziw`C065*PXj> z_{+F;GznEQKJCPa|7&~dT5m3?($9FCnwynC69fBK|NGi=adR_#@sRZb%B`$SZu~f{ z5Mbmpfl+OLDru6=-yGo|uk3hjdD$=JznyAUA}bHfV)VES4`_9HaFey``aAz>y+H3+ zDQ@yOwNTc?-nvCnU$cy^Wnt#`%-X%p~7ej(K3(LrrsBkTrv^&vSB^F zPE8Ry?4BEw+WUs0cwBr({x;hiu=4boshIupYNDiXfg1{hq#7$w^1WI>w2x6#+St?1xIpVqbt9`v%IS^y5-hw!!ua^#=kd{2_jPL#% zCndp)glV;Bmn;JygXt}4=cfCj`#a-xL0(R4J|3PJN)F(pt^65jfeZYz8vZO67)xHO zL998=X3SyO4!2MYx6O3quxIKM5RKt()t13ESs`xH4D}@&;qjs}z&gv+iW74ioa&B# zPOFpphA0G9z&B`|YG5GptdYe-00WIi1C`aZx5b@D-Ecda(>72@9dCe@N?|;%e=BlP zDgcJhIcrifCnS=8bB+fp@4!(1gLzs^8I--E#K0Pm%kJJs;;Tk%c3l#|;$<(~`Y&!(0^oO*UdIWi zzkWxicTJBdliCJnHmof}&m%B!PGyTu{Nt@24o)OQ@n(Ie<~a0B;;+?Tm1UA+z=^`A ze_3XSifEp0o__w`Jku5UYF+d%(|nC-VCrufKoFhx^sNqHgs%_%@k3WjMde`#oDa{O z9Dv(UnX0|huLzE=6HWu9OP%pJfE}bdMf#cZ(q7p zBxI!Y*|Yb$1~Y@sL~!51;+WXsSvPy%D=AlJ=W20!oIcRu*=aoq3P@!rx}~()WV!bJ zw?frIIa*3St=^t31OOh?z6|c}KeFbpri|8+FeEV~X{I%>l_II`>NkaNkBv6Kntu6m z2WeumRJRj@gHP(56AI<%dC1AxvvW4E*j)3kvNDYyO3a%dw;hA)03cH}o2XDGgBy{s zc_xH=_4sJ-^2a#{ASHi!Mx0B_$#1>h!4OstJtE{xR(ltp#*56UF;?2QYL!XB^K&x< zN4PbQWMBCOXuSISa0aOZfh%i(nS;{k81}<|KkADU1;hDFT=qJhyAR^zsktBaFzZ{> zPRYQO3EEa~tGpOj)Squp-w$HXb4(nny&9Q%@ovw$YW7(DQ93G7on!VGZ`+FH3DpFI zmT$6oeW}=CHnG^D{#&yb{XEr#Z;I`Hq1(>{r7tg_GiIFwM;Z9`LTL%s8%rPR_nn3l zg$q=jp&PgiK@jmv zx=%wWUS3(&okGJlIO|St-Cn`m^GoB(6gig`ViX^uUE*l2xh4W~-MrTUzqq(~dy$#d zjfF-DLqfq_D=RCxrxM5U@d#ee%ylf(b=--U&}D1wPkX-3V0@@^f`LdUu`<@+Htm-6 za=*WOP4@4}O8&9pH-UEy-*PNJ=K0j}e--`u_^b3O&S|fu%rNP%Y3af;>>HvdeTz>* zgG1gSq@>cn@4yf8Br-Fs(ZSt2%PFVbuN<=b4X-Nc?@O-ixPaB2Z-N&Vg1-$seBR|~ zAPeWn8~cvd(y9t~LRQ{$q*}%qhHj$1ht*8U=WCrcSyh+$=`FkO6~6gx(Evq$s}U(h zcR9J=uE-bbLq{8O3IeW-NKqhL5F*IYgyQ{ga)g%Grm+PR>lA{8#R$oJSDk0u-SJNB zlSA9wDo4{*+T#OQh4(#)z`uTT73MffuQJ%MU1N)lC&j<()(x&=M8|*E)ycV{*Zzc& zYEm*3Ipt|xkB1=f;iNzXV}b@T@`_Y;ZtJ1`(hgT(Wdee}*9*B@T-48hVxR$0Kk&?n;wx&@ zOR{11eVgXW7C%07JCNoN1%yZtvJOs6>2h^d=U^V(IkJ{$eN^CNR7zRy<@h;&Jf1E| z>PkKGcH@Eeh;Q6Wc*>~MtV@Nx+sAX_B&kiF{%4nTdOh6OU-tcjM-C1{)cZC(X)~gw z97^2!Cj;}M68JphnzEYh@)I%<5vj0xnrA#`q!Pm zmf=Thaaf2o_*j+>V!K>=wrP{h(80oz)!xP=fMR`ymwRk(u79158wj;2Nx%ZY;x0g? zi<{jYrKHq*4zfgdWJh(rO;#6vtU^EoI}`8dTdBb)9Q*u%`v^LSH&d^2@~$mM9ALdH zp1fI#Ik6x~$a9ST74s|hSKJNe=HNwLR3|pHs_HQ?vFbQGvvzk|MOZ8$v0e4(*H)Db z5sMhMw#bY&89Mjo!6VnpXK1CuJ)&3Rt+V-4>o<&=0qi6um({()s{ukjbhj}s) z4Q;-CBlg({&fM^5g5ah-1FnZCih*98282fTpRP*!5=t<;^I$(1)`o}hO#Xg#-FQ$tp)@jmHjxvRL4u$t|qekvXb(%HhGq)XXgHvaV)Z zufK$GmRLQJX0l<^#N3fxy0}k$d1IUT^sa=e8d28yqq)YKKHZsJ1o=dclrI`X{@9lb z_XWm|Wq%39pC$d`a=yqRMQX)-y65H5@#vY8;O#x>ZP;8*Hfpe{jI-2f*0#9E@}bAv zYyMK97X=1*W_U+7t=^GO_1UAmfmqI>!*3TGC!SP_5q5@WeH(V?!w+;!1xA<-#+uhe zBbWED*0FUc<#^^{f7`dVabm!kR_3bfHeQ&4rAEK+q+4JK?-lQf?7YbLyD6qTQucTp z?n|UG6a0vFEY$wIsQHt!&K|3*uwnmU$zD~{k`lP(tYN~_{!!;#&6rJjIGNH+oo2x{|NS1_jQ0(oBAPs`= z%vO>8OCJyr5Fmc@=1mx2Bp3ok0dBi}#K55JgU9irL!@@H?8g6zH?s%yPEKi7S^?DAq2(l2?y?FL-6B|LCc!u3tvX^U_ahcd*EvGnHSXrzQ(@&fj`POgpBTrDH>(PI(&sZ%%3BjJAEd z11^eENqdRx?oN?`*!FJbanCC(jo%ofbJ})|_<4Ts2Bympt(uHws2ep#Y0j#v1Vewu z3IX*=lkF&bZY0*sfFBz#r|$2c47EsIdjevHBw3(?Wnfd^bX{c97V(h)Y8ZFeEFC2S zyJMe6tXpQ{=ECC(U~8+a8hYxy-=tKQ=Vy=8J=1Cw~=8uE2J}351nmWO^QQvL(?lRQ;-qI z?m#=|erqB6vSC{wYe3WP&&eG1^u+N6k?pE1nPJ2CI7vy_&~#|zZe`_%q{N*3!9my6 zLx2Fo%Sx~2LXRT{Z(7EqNoxBFG*+W|w&9O4kD|Q@l9Vsa!<_MC{7^4nf~{=y3H9S6 zBY8gqXWgYZ8+t^L<@n@e=Y~gNR20##h5C0{4Py8*Ft9unkMRpG3KTl?d&84DpTy;R2koz^J|1s?C+DQlk^#<8yg>d$S+T<|w#1?-a+*!9fS)KV@UF zZD>6`E1;{7(eHnN0>2Ds(Eh}znfUVZeSRY?iN+VW@TqT6EAfpe>>qBg_n52B)6mD7 zw23otSCWg@Vmitz0&aVFgni*GNGLc`(SU5~Eh|+dilMRHIg|$p=?!~=WX>& zIC7O~L1C3?=>ax$F?|=Y7xGy7;D`vq6`%7E6`av!Pf=>_N1~74^lJFHmiro4O&Cla zCH;#Gbu3F9nWZ*Rrs=Vdk8-f>hwr|f=-l`!8D%w(!@(CAG(xua#81-*3k}fUYOH;R zWC-yduEJGSCKV>1E1>#hzAWD1>HGf7G?gg}XhJ~M&1UC?IyY9xTUq^NY0-QEbVrLA zazN{N@5^-d!rTQO2-$eU;X3a!^dR8okgP!e=C z{WGv|`cA8AE4RrMeItcpP|!j1D|mg!Dy|DjB9RQ>>5Q0JfBcP&o;H!T!Jqf7WyK9x z{Cj{z9}Ak*vSX8qA%mS&mnzZ^+zfa~MV?b}6AdIGVI{i`U=9llDo=chf4M&7s|*PT z8=cO`LP3VdelwE4XrD7jPcX~*`bwMOp>dbyi?#0wxO?t!+=q!Hz$#ei-#(d$Snng! z$KxVI(&sBhP?T+rp`4Xfes+ERv*pFb(&aiAwh%au@+V!!%E_y%n*A-+gjy27!oVZg@o);KfgG)nbn@#6NMrx$}|)f^A9+Ytey$ZcHf@=2}-^1f0|z4{c=J< zD2yr>EQ)vWCGESEg-?HV%2g0NhKp$&S3|Jdxyg&((V=e}AEmteNvCA%?8&bncq*Pg zk(eIR`E3OrhtJOB#yJ^?g}fy$Zz|)x+}cyN6Y<16yD8@` ziyMGN^BW>NK<9MLNATZXhIsU7zoI#4S0Urx5gb){x6ARcF)rFkd#Z5E8O6{7ZJ zi2xE_*!-RhOHj{3I8J{rKFq-bGN{WV#xDvCak%oa+v~oZh5Qv5-fR&6v9&QTP0o zO+I!Pc2{Ct@8LY=TMmFLDiawB>PN+4bDHEobE#JunVE^g@Yo$@SJz*6RYEE_KX--v zj%%_XT_xDMQ{I~JZlC=vz`Pp40mH-Jnb2gXK27vQA!3@1 z(h(MGPh>Ido{pb|JIT@?6LKfxu7D;eTYU?d5G*jhkc9|Y2*;1{x&R<5q3d^yaGsI4 z@wM^RjlVQHr5 z-Yr9wu~;l~EREHFx(v{(Iqp@8Vwzv{3B0tM9aMnhaa@MLO{%szYG;L(razdFnQ$$z zJ6B5aKS`D9i=`sP2kdlIL`vRs8MOUeRl=uY9Dv?q0s%e=jGXOk}&pdwaDtzqOtBZLqMTgL4(hOg%L}_q8g$i%!f7g(1G|alN&D zi;U>UXW~CCg$V$PaDW-Ri)%Usvq`LiB^8zZ7Rc0bP--qUs9c)~!ofd(Ks1GIgHK_h zZFnHkk1uQ56TUt>Ys2YdP*M`LAU|_PC=@wEb;@f$DDFc!GsD-&V(t79uJnEqrb8N{-RUt{Lm{nLZFZX zU+0yz(EB@FMP;mVT|U_OXjTEjZwN+J+y}gOvKld=F9OMc?-CZO?CwF8pug(Zz_!N} z60pd_D$;bTq9Jt(hIREQW8_UdnV7*_Ho&>P72Jy38Ucn)nHA~KJTwb}?C&c-IlCuF z&eH8zZ5P~qyW_q8K^o@_-`*DdS^fFTwCOqqdvuP3c_rrF3McrC&>jsrU>bS`X7%ix z`hpMPsK~sx+u!Z=mQvBOp%xcWSubaQ$+*A7g(Vb2ea~;u^6qMq!QuFE6VH$uullzo zS4*T2C#em{?FQY~FPy0Lpo2g_#Aaa}2G)T2BRd#o0vMa>%i-GrhqotB5+0A<8|oI1kbw%3zxKCr!L@aU3{ zBVKBlSkSa2WRUuWn_e0=-GznlWs0!8z$;S+8wV!`FNfPlQSh$6uQ?v4=877WutY9` zN>)D7@UzE<=BYOE<`>G|%BgDmb6bdl?2f6Y04?m2X-MmS=|}mMEiL2bFw{gO1B4^( zHlQk8J0cvdZDFC|l!W>Rlvs!xWD1`PXrFPE-Amy$e&scat*QbNPgYCXfn;z^oL+qS z7oa5M3q^hZ=B0$Mvpy5*P&8nRFchDjZV$*n1%-r!w)9I4t?)R=x7)Fyzkcnnt&Nw* zJThql2vh4pt5xlKvXLvuY#Pl!UPAVtDml}+RL6^W-B`4~U-SZ+!ho#s9LNHD;`+@4 zL7ogk*Y$3J3T|%70~mrmH$F5N-l&rC*g2FTz9M{j3zvP$D}`tV`-$VNwY7SIbm{dX z*3>?0-&<;N)8qco$<1mKP)6U0p~}jY0*4T89C*pQF9FL2Y^)EG1Wj^NN0@S=FZQFh zizC&_h-Z13B5oh%ejLi`a}QW1)<3Qp;?$OC<|;@D8{ET3?HTB^Sn$dV^?px*Mw{Pj z4w{BH#S8pYs8j>=m=iYYv9uA(()M7KnX&V`Hla3#@lDa1mm0973S8BhU`~f1irBA{ zGPoQ~8!*x3TGqv_8+K`ms;f_&4P;40D9ZIup3=F|L^le5E2OngFVe*Ky(4W?a046`ho2l$aLHO2Vq#B6H+wt z%hV@I^+l4uf`?<`nPF6aTv)hxXXp*&I2=qJHk|~P{K|Gyj;`A8mVld*)>V^ zqt$@w<9e>Y+ABDnR^9}sj(R?kq1(fs~c_N*8ZN zlB`|WB1^%vWCdZhxMK*S8b6+-?(=_o@V?I)#OifHqf1>IuG`wgVbVEi-a99d4zy$Z z?j#x>3@*@{#u)icB`qRxRF23e8V2Bl8k86oPp3~+Fch;k+s?$*&@M165|F}E?_B|xaFH}yd$AIp4dTdjNuR_=$=8kfMznMc(P%Y>$F#|5J1fQam~_)- zLscsV1sYYDJ#!_Rod$)ZlYx2qf!)mx%COEkXs9wSK0ZFzuk{Hb2_-L-S4g9yq47R^5osEeis!9$Z&`_Pvd!`ExIV(nlvyHo z`=Ib1S5J>P4|Wud3!rZa+RqTD_5hUZ3`NuBY+U!%);=fR58C$JBnaJ^0M@NSQFo(nYs9^(S3{2M6*6vQz(KD}c z09jr$LPCGh8tahW68rg z0az#$*#YH~RHje+!aW6^WaqAgp^z96hafmc2o%Je*6HJIFpNGn4ynnI0dqXJIek)e zXZ58Inuq5bgD-a=+R?TAUHNgvUDf}?)>{Qt`G4`kdsEV}>F(|Z>E84v1!)kZTj}oZ z?go{TZlpt6LFtkX2|@aO@b^FO%$YeiTsXscv-m!1eUf4S%jW}kZsXf``UPmGd0vmt zuyr*jhf0eG((Jcy?vba&|9$_U9q*54X?Yiohbi#zsF9A^O#2E4EV_G;i+`dkL1o<> zQ(LD)|17cB#+H11JZEe_XqO=Q!`ObE(sE=qSkxOZA>mYPLb@CAxVH8v?G(--*tM3b zx|={OQz9Q%tT+_&q%~UF@%yv#fU9YB_=5A7zZ0s0nG3A$4+VQ3Eo&-*;%8K1{D-93 z_ML&^$2VR>Yxjy)LPpoWdj_uk=5H7y&adcLg`*PFIqprqhd!@;80JM}a`r;PRJVPC z5(nRqY{fW=MOIGA)R!5PI@Gxk5e77&P*+a6B--eGpli}f5QX_Yyqq_4d5~1p9F`LF zuBW+KAy?vXHESK4spx)Fq&~pHoQH{CPFY_cA1<(}a*t=Y%Jk>_oqMT$#n-RqpHE>s zE=NGjiM<%GEyCci0nDm*$9*E3|Mm(6H~!_UKtqL!aB_08`N-H94;~>QDX^Sh0>YKs zCcA}$df-DjKJ>DV16WNP0Y__BwLp)16dD$0foctel4SeA ziXvHzXhO2|E;1Aj5fLw6!=2-+GIl+wYF9mJ z0}ow8R(b{&z0mup5M=XCfg2H@v*?cYlq6ZGBSvg^HlUM|@zv8$pp~mv)K!v3VwlGq zJ`iEkoK6zXVM7*#a#KG(jAqBx=+LCrDj@08ay4l5%pJ_l&zCO79qSq7DLG_Q9oWF; zC@c!>X42z^KUDv!sZzq311W)Ad)LmP7`~40^oujQn?8KryX$MCeA$Vt$DvblX|Z=KF;iH>kIpbDlqb3O#R<3rGMa((1Mqg=_x;X> z*&0eK%|$cA>oq|PAl2W!YvgSJlUApuzftrkFf6savXZdzm~=||zY+E{w*@fR_hwNe zBM2Os0M>v+fAn^{EIMZTtb4L}TH>}3ZLfHov&6~nyFko606!FR6B;q?JoE%Ssv7JY8^pVm`x{OYCogQ4fB%IyU%`4jl>uw`zPV>te>(5_s|I3LLrnMl zeTWq+$cLtW(6F`h;H+5~y3GPMMZDW;>U4f4HmF_kh$x?~M!(>kT+hn3)LLhCNC2QL zP^^xQh)Ay~8>)#nvq2YRjU);2@_MIjxGeqaR~|5_<3BLQGm#uqDzH+)%b<~>+uikx}0U%euIZD4?CPyK>^ z{q>hZ*#IEG;AiZbwFA?7&>RlB;-xT%FS74+hhh%*i3z;~ivB8U5tTm;k8bYjuLyAc zlhQs>Z=ylWeVOUGVXcbWmV?nZAIG)78Rpm-suj6-MY2?K$vN3q^45%No2CU%TGzpH4|g35s23X6{aUnA8hT!48s6C2$V? z?GG{t=1#qzbh!PN?q@Ztok=Du8@DLHKwvY>U~S9!Xh<&KV&5_0ZqMTSX~s1HbbgM?DA8jL*cS;g;r#+-+U@P1zF#HgUV#7>F`6<(bhm&I9jj7NN{3PP zz091Fwi_NBeLW`$S!q4f-9_L0qTOY+(`)Ez)^^>_etsX}xd4~NoOf|$1q;Bflui8p zSZit~OI7QVqN1Xr1JxwqJ3Cf>fO(jLn?l6njkRjmNpbJgPt3=FF%XN91zF%_l6TRlx`U4N0*)|So1swEu z{h&EFlM7Gbz}$G=p4`IE%jj!gZY0)0r(T^++IN+K^y_RveG=2tgDdV84a6Rx#+*zLl4;f6U|&fvp%q z1ci|t5p>g-$8CzvIig~_>X#AD*OE_q6dC(~Dj;Cj2rfPb63qaKe_W8f4N)1wT5qyv}V;?udM zvgforQ3%fb??5uPMAVf;XSg3QMk*vcFBtNkBWro{kgx5B(V`EZ-C3Ab%4@z|Pb7v? zA82ZloZ_U7vNEgUs1WaOq~;K-hIvJ4*Jx>~hP}okSj=hqwqmSeC!$>S_MNbUo|ag6{`KJ z7AFb4yfyAI5di>BRt4DdB!F|#WL>CNoQ2uC^orC;)RDXS`1X)_L~zU#y;M_Ly171q zoguD#sI|vn(6z2$X6khaq~EJ2JZx~WOE)$lVfPDY-X;hD8vyez&~Ci{3@D$nvGNMR zDez!AX8FT7u*I?vVltpW5|cv@9o$3v-5VqBS%l`|`7PLG)pUN2x&;N^sg;T9;vr}l1)T0_i zuRAQEx*u(-Sr(f3l0Wsc4o+$YzC|u$5{r9PpGI+gyWm)1Tc9p!MvIkBl=DZuH6w=T zgJhUqGFq6eA`{g91d(;yIgB4>hE*&?Ag&R+(8n%I0bO z5!U(mc0l!^mfLSAdpAJjfj;JX^7>_g`GMG!UT65SSRYxf*)r$3XI#w{4JwmskwWol z*@fs7DMWIUWNK|%LEH%zSTG(KC~Nh)6-3wA<^nh<&+O0=dtGdRA5L#1g9pv?Fk$8@ zL8L~7?~ZYeWx`Gf+UrI_-oYh1bzHV7Sw5>gtt)hIt(43|PlZ&HfUexD~G z=(s$hmh<1Ypb~H!$y_1zP**pH#{gdfAp|8+fnUmJ*IEtT^-RA_?$%c>?>`d@NTCR4 zQoW$3dpK#%8N7Va?Y$<7K{bR(m{4Y7^0eze-gXt#0pNnaS2mP_egRCiCso1I)1w!z z(bJEIorS+$e?@6zw=ckxz3zv57($wczTfdT@1S$*(cD+j(?pQzS)`dxBLD|VN<p*w}P(;n7 zn%|wOpzt>VTv}Qz<}@W4N5`6?#>Q{c)6<0}O}1$uj&&Hg0u>K#cX>$CQEG+EW zup)*amf0N~xjc2b(F+7RYDpAJCd(=sXbQe6VzwvHRT216w(Yg72j9Z4=sx!jm#oN5 z$siKMh?-{cqB=U1K|8Rn`<^TgshlVB8rGT?9Q(E@qJIQgaUu|^6vBuE$Eao{;idf* ze<7ho?$M~z(J+Ty@}vKf-qPE3=cufJ1YQo`aN?|fXivwa0zG;j%*bs$7N%gE<`%9Q~vF z8o7W}l*Hqq0QZBNgJI9UvmMBnssM90I!H3=`3f_a{4I8No8Ym=a`f|44^|=K;XYw( zSERqkodhuV#;ygl)?TaXG?t1_Lww}&zaM|H;D(<=78x(>R0!VS{KFSunKl)+D z>)-!wP?Lg>oWV3SOlx51wVRp2U=q2($CD0n2kwiy>ND6)*B@WufUXiF?d#|YR`Z2~7 zO{(J%-w!J}n~Yw^|9i)ASejn@y`j=8uB%IrVFH9R$V!EYPZ!lT$v}TkYFw{6Sc4sNFXzlfUTGpq}GYk-YLOmcJD{Y1ZUluz}wYoo*u~d z2!y%6LrzUx=3jqp)@9g62Qy#pq+~1Ka@)L9yNi~J!a-EbB%`Z)NdKlYdz1~y*4I%{ z!w=)@GE~-5zSw(f#POh)sw#nJHFJ%a)iuU-C{msMjv=)cax1`@*F94@vz@D*omy2` zs}pru#*;3t9AB)y*>7#`j;$JtT#6<0uor@D;w|xGn91bKTUrm~hes?cUathKD;156 z=3`&k2-P5RauY-1tul?gcw?j_0;n(0TB88o2B4L9BvFpAjz}djfZi5s+n(E1YMAuJ zfdQbVke!*a)nqy!bb-O9tzXMKBm{ES*{8UT{6?V9&K8*N3*!)|McbV!aJpap_)|0a z-H_z7x14erfXcq8<_PRBe9|v*3b>d6)Q%Hhvv{#8N=u18fBuXmYQrX^x6@A^VD%BkYid~rV@iCn%3O*Q(p zT#7~eUQR3jrI9(-L*Wlu3FelW)XO|Rovw)TwNP2r~6S7?>fNe zBJOgnkiG&*Dc8fe=SCerHSto%rPw*6^ z1eEE^m$;@+SE>+_l)Z+QXztEcZkt$Z_mPp{3&zL~PL^tLcl90q{mIATf~gu8M^FQ) zs&Y&6DRtQKyZMC^CT#}Pb@2g?Y2ptbKVno@SHm^;ey&qtBjrL0fi&yr z=~>T3!SV=(;mc)U1I_+pYdBoeCwSCSI7G`Ypwsh}W#@~Kv6@dsp~(WT^;^RYn+$9m zSN(Z=L789}{Cc=e)}8eSTfv9i<`93S6&6tBDel6Y2g>2zQY$}PY~XLf@(nRGXy0Fb zHVf~0uriG1dRh?$7G}39|GMh9w6)J$lQ2V5QJ>or%3~mz`_0E&P*gG;5}h8~{BJP* z^yxa;K;Zxss8&sB8TLiRdS8|bNLWTAi$53Rxft*B7%Kqh+mCDCZXu7R4^2OS@oZ?| zJ^tAcVMMP7d=K?#b%@Yoz}?7!q-GUP9W>r+O+-#?svP zooWO+q|g;$aP9ZmYmwL8Y)aU*lsAvKXSY$rDQqQz9BqF?$?37bd;wg2rwr6$e(}fQ z#}PDpr|w|i5@8xCfG3u=JE}d;n5$ea<74qbi5t^<6HK2v$;V+xw*i z`Ina#g$SEmASEga_!BJWAV7)R5i@QEEEXpdf(Z=&li~vCO8AElEHcWQ-3Z~tT$8qI?gGu@*bMM=-D(cM0YS8Cx8?+`7 z>>d~Ex7`MrAsE!j4jF?*LB1f+nZ+0ZE>}{cR3MJ@P!Bi8slFs+Xll_lMMxjkmv8lp zqI59ZVLPQKoTiaIRa0AWF~svgW#g|N7p^|R`6v?2tlg5EAL|tf zoQMG)C|M}?9{;12~VgEXxLDc3Jag6 zUKQZafh2mfq*yMoUcojuKh_jpOiCm$yef-Y2=KZT=RPG2JKOPM&|w+8-g}|+^}+b- zT><@^LojA?1MqOXbu!=$g4_+@{_vD0OTVq#e+x4Y?Sq8r)f!gcZO51qrcr;1(U{rTJ(OX~I`rs{QE1)eQqI}#=%qo4>! zAIf$cTjeRjHm8eZ0LK}S1^%Vlpyj~F+xzl(VowB8logudhBOPJ|beoR4Rzy`(wAX&Bd$x8*9XW4W>cD7SNoUvPH4 z@)cTqR#YVJ{H4BtmBS|55TFC{-Wt-eoIoQP6T5IGPpVmJNqp&jt{%&nG9NtT9X_#@ zBpeP8z$xE!r-11GJ&C3vkUhKUf?~?SwlLuEsW{V!u`XLPkB<9Y$|qMRbec-YI_Ony zfTXmZ+gFHyX8UQPLHPaV=B9Mu>CI}=KgU_$GedZ7&J_UcAagy{Q;mQXm;*bx#&4a2 z`+?OcdGIoVK^>Uk^%k>R%G2)eqQ{h+35SF^K~s4W-h2-`<%jIzPszia=Bsz&KEviO z{f8}ky0SU$dY%*t?6z*pUzN>-q%dTfNC?|~{(C>?)(z+@MDJIIfe(LTvy~C7tNcfS z6Q4r+$54JYYA~*T43N)8*E!@q;7+uALoU(ZS%JKzzL`rVqD&Zgsr8kQ5dz=g2+C zl%Y_e)ckzMX=}dl^K(}j3yYHOh6XLR7vmPdeLQR11T3hZzoCeldM5{lY7d+c22q93 zmeMqDlW45zNq>lzf35!w5I`YeaMis}OZ)<{@<92{0hR^D0?sOxejgAEVBkPdM6b^o zh_X(yVnp0|2eUO}PD_82`30qIE3|5TmGCFXy6t}=cR}uhKLj94_-UjK znOVNdfFM!z{;A1CPyp8(Q$ed(j%AwN8Pag^Pxk!K^5Gi-lyClxmYs~TgrxKdDh(LY z+)JRasint8Fs=cEdqBS>yOa=mRpN9j76PGFdx|q+%Z-Cr_$pST)MX@^EaJYXvYE6R)W@lRTxA~>;M;Q)r?!hIXez1bzQ>Yue5 z?OdY%nRdb%u6*rbBVfP(TQ4BDC`6O>_01*bFb(0h;DpRM`5g;;)4I3)&5s;>-c%#^ z|6(Sn-@O)6S?{1_*nS4D3wGrH2%Chm6Q1Dw#duy-Zx6Mw=2j>>8N_`aGr2Fn-cwG% zkp1ClggM%7SvDSj7Yxp^n?|59J3HJOgjihNio*+ax`rUV)<^CsbA?ozc zQqLOGP74yfzh8d=Vl1#|{C2cE|A8@DTmby3V=C!=fkbWqA@oU7xXFB7b7$Qy-3bq( zBP(K=aPV79JUn@tnlQTB!s23v51)<%C}>G1jz4|0t8L43=^)83L@-4X0&4BAU|wE~ zI_gFFc~hlhVY>Q+N0@ti9IwGhcz z>0rTIg12Z%jLo;G>R7KR*u)eirHz4&wvSTIUUV>02*W{@TrS;xPV;!OC=B&eF1b4{9{B&rwbY~aS3k6A(HjXP| z*43O`UX9M~uh*LGFV|Vlu50f(D$?I&gA=NPmT3{l%=*QOn-x`gc^KzRLLPbEI3u{X z?OI-bz7}%5D4>mof#?7Q8Pm(A{iL^$(9-W7!beK4Ud8#%YyZKp8%nkb9bN?4lwEJPV{Ugm0TX0bV!=bFEw*R zKsuY=AW4czexWI7Vd#BlpTp*|j+|ooN`&fP@#N=M`CWQ11P2FaIEX&Gwazs@7@|J; z7=H4!Dc1h<@p?a~Rvi06Da_yZivLN@ZxYS1K@L645O*#lY&`VOrOSms;Dr>uRi!*V zv^QS87`Mu-=pm?s4tVQLJ$?J+w0Cj;!+)+QqURwq-{moCHQu#_IO^~Uqn9Pw z!?0y`AYL8C{soAj)Jp<-RUrc8;W&DqaJN5=U$dpdufsbM1kwS(bA0bx@Jqdb3gE5h z3&31@o&7j+T>z{<(vm2R{G!a0g#-G?%GR$kQ+tZBa$q21oYubNiFh1< z&j1su&ZJmwcDC)v(U2qDL>y%dsWgJwvgSmD} zFsFn-^GK8cQRM8K!DsYZ2{pM&x`OZI1wKE~wTzoljc0Mj^Ucq{EQtbj4TVb#cSE?X zl1Tmg`|lX?oDZtt21Ah&M$!F|5a12PUw{+3UhfRK5TC5pOvMG%g4R>bR<1_%-*!C5 z7Mtw6*uwq|vSTk~Qd@KO>tLE2pEo?B58er)&~&Z^?n_gQWB?-I1}-mn02QwJ>Qcta zlRk@oK=0RgXl#_#rc(av(_D3|r7q72?v^-2llWTa*8F8HVKg>N>UdoK)%$W2e|@DG z!n?!-b-HIgtE;Q{FCdP=#YNfae#mNrVfv?yEAG00fa|ikdp3z}#|9Fxt5(vB@O)2is!wY})TLjR`?WTm6Eo~QL1qYg~R z#YV**s|ganyHFGba+{1rbqTRz7!!I{R#y1trn!u&YFu}9wJMthp#Sv-6kb*^b5k2W zlAJTrpTtq3rnXx)0d|tokEs$!D;h^~W{B#n?;8m;)ZWp0;W>&l0DQA^9UKD?{whpH zZ4)X5na@u9$T+q9y_AKi6xAp@kb$lu>T&Q^JOjm`o~)ThSgo{>2b;`=<^)HmS?Lh} zvg-i%R%`t<950?|i$DA1qCKVj&Yyjg9|RrQ;s?Yyib>d#Hltrsi_lBR-qHQC97dHa zZiGpt(c5Sn6bZmXJd+94-(Cy*pp%8Uept#KG_O}H4Ujhp>3;EmeQR>rvFGN}Et%BS zsi(M@D>Md0!*wQ-Dw$&U`c$jAo3xb6#xp8geUPZELSNaG{RQ>G}7(Ox);8 z0(5x_V4mI^u<5e{2>g;y?5Y&d*o>7H{JVsr|GR{m0xeZ=*hpmyg1X`Tkmo(xw*+0? z#*d{TFiT5%8OSFy6eW;(q9jT$hTTHV_ZD_N=O0P$_0R4v6jD-BFo=nX!~6QAWps4X zipt95dc6PGiWQ=@YWG&dJ)=TbVGfob*YxUr_l3pud^;mCsuCTH2IRr5-BqcZN+LGh zR;Ry%kUp8BpqZM3{@g7i2h)9O;_?uYv-tpMA*x#f3#8({|NN%8MmP}^oVje-m){Xo zGI*B~M7v$jp6r7l8L#7jxNT4uNRi+lDDM+Tp((k!VEk&<^YrcL_kd<$V;ML)?Aj!v zLj~rjpwt@V@~@4~8j)jDQDuOe2zVfhKFsoc=)bB?a$2LQ_X9&SjYR(m4f^p?CD%gz zQFjq8O(IdH?Xk&Rrx&Poksl}}xj`0tgy4jt1O%v+vS-4(^Up1+8@8biSe|mx{=p46 z<^}7v2vE3PS|Ozk(NH(+Nr~qt$l_RU0Qi8;4>f%k7}iebF!DyfPVs&ECp&nl9Gbfd zRIiu7>+@!$H#;W*U=J`!M@%kc3Q>f*9JrX! zXUi6zlWSG_dn2du<_!sRnp|qeE9GCm$Tx*-99CE)qfSozmWRU4?ga7_u4AmxTLbt2 zC@_gQaN1IAf2EWTwg8{^Y znvndDjv7`LmX}`_dY)e?GGSNQKuF}Uqzcj|4|dK>Qlj%nkzTIIiBNiK>KoYqLjxmV zKm9)q%xcKrh&#$pfO2c;{PMDqxJSbvt3NOlP=liO7#+)L!?YA0<#Mdkt%%?e9|BRt zCPscJ&*_MaGCQyem)RHYM>p|_)yI?%x6CzWGGtS%NY0rX#Lnp^X`Pc~=g-Qhjj3*z zE~=>=tnktL^tk+_eNmj5=M(7by2L~)(a};_z>$xaZpc743?HKxzZx7(JLv1<9Qvnz z8`_A3`Z7D4=+^Lt<6-FOfI5t}FsIA0wAN3eFby2zFl0wJc#{o+%(^S3)cme0z<1aasOS*SqSvgSVii|lYf#wB9KL{$HF6{*CE`B zfy_aJ)08ytk^N|UQ3kN<)e`Euz{h4w{Xe16{wyPLgp=|@oL>}CcRfZ`rK4ARg`xf@ z8*Z4&ny|uziF*8ao`2@Eys$c1plvj;4q@2&*{cC~7oz}yF=5E7OE3f+vj@P}#d+XZ zPl=xi3{0=0udZCIi2Rbt6$^HV(n#qSDG&KjmX=yq>K~q^i3vP?*5&&e!8C;R(#w2f{BSKskm4>H8)oQC=eujl#86u!k2OVQ*>izro z(Z5W+^lHdbO<$ob0TwD?mT*Xph66*7q5_1ef-;drf33~GR;t23ZWIc*<_f01AvlyHu;KtD+-Ep588Ya5-H`id^NmK<+=WGYj1m8VdnYd6z|=-V3zb9$I@0q z@_kgT2@YIUe&KJ6h4qn<&Ul%Lgg4a*v_*19WRzN-rE=Fp0Kn0P7H zcQy3>=>wg9V?8J8)_y}L(X*b5q5Q?%U>F5_FeHUhy~JiN*X9eH$N432o1>x1b%W@Y zlol(S-;)Ce4MM8qoxpR+c?S?FS7dI#gdqrvtR2;$Iz$=EXN?ps2NMZu0>_+;ad;v9KS# zmM(iEkBx6mL8`%5OXXY{Kl`|r&rVG;J8ic5+jaiE+wA93OA9gcJiQhTwN+GC)RE%- zqCq~f_W0c7m%uBCHZdaZJk$@atapFvkprsRyt36~km-&Y3sccfok zNXoY=ieAMl*qM@7rLpe&4Su|2T^o;B7Td(iUzolVuT5@w@^$N!e^W^+7vV!8Xbi8u zpWO>-Vv;U$j`YM3HU!-MiTybL37?Nxg2d4tGVs0xJ!0%4;H_@t!h4_q+DeJgkC?qE zmkHR>e?AovHuFEHK&>N#*fy6DDk@jqv@+0_`-M?<&2lrUSLj;F>*ySoV2lUm^Vf1f zRaq!hp*!Fo9-U{|S7-)>MjGkC=}rm*SBX8Kkp>1Z1OmvDu2(DL%8LD{SHT>RKss3L z3#uTRhf-8})fzRzyIayq-HDe*JdXbikcw$aGxOanYIq|-Wsf3>D$6Jk<%>UQWzb8XvRDHGuY7$IGGkI)-II50-Sdz^KRov1rJ`; z8dp2zaBWo59&6tHe5;_Tsfn(yumAtMhnkx90i)5!wN9@F|7XY1_30YtiPy6`DcLSbD3j*ME^|8XGqJxaKKBhfZvSG*_m?LoqO&So45r4uqnQ>2k?Q^iMZGD^|~T~t%^!`s)? zfw%?>3z0U72nx_T3~_^nOer)zi8(Qx77VXOq)WS6)_wYd3Y)eyl?Iq zc@dsfw{J-TTl}zCX&lr+DQ4sTM)t8=Fodl3i+TN|yq@%GMhO;zY{Vl_pR|ldmCLGE zp)e~jd^POf`v@9=lkB5;RDAFFS)B9iCel(ltt?Am*kE>U?q^%dzt5gPKSWAO3ce45 zDn~$Q2&m2g8m%x?Ws6o+cIjUV819zTDdTl>?J^V2Szxdz>V>m_WW6!oX_>&#OZL92 z^uVa@t8^AafZ!0i-V|(azk>PPVcI&b+An*EZTi0cv!w#8-^msEW$Wv7(eb)5f75_G z8X!d(Z~Q+V{*dT{e@mC2NVVRE)%9z3F0S89HT!=T)A^GnQOFuV^w=r&mg58uFD*)J z)Kx^cp&j;}Tk#e^0wq$@YX@NY;?maDB>`Fr{{VGDeR*&$6cDDMOe{%RfKtuq>FJrc z`;y#u=?0gaNCtu}r$)FOo9X|TfO#g6$Q1sY9tx&wInHO@U z24EZpLS#u~2(lRxm3Pq#+-;azjUxVbx}oApG>fZx6+^-|5^8nJYK?bRUS;2Ne&wxB ztDj%riN9i{W5*pI_O28EM0l7XiS|!=q8wR_Rmjx_yL<@);Gt3b)u;Gv;}(*N4M2-`KRBx3G#RL2JVbuJ1(l{5z*D_JL0j# z&kGf&h)3MRrOqX!E7F@HAsKDqrE>^4LPJ>Ie?mBItkPZA#Y38s;X)NCHg%bI4pD0T2+SNJ)1$r*JU6dX+|X#Y#gt`RD2nfU#c! zSS9ka@T&iKJL^VbwxixyU`@e(2;iNjpPh{Xs=h{&EbvW&y}%=gU?|=_OFy%FQxEtd z00Mnc$dIyb>fpdTlvFk=pb@zIFW8^>u3Av=h_lob6-hKdD$5n1y+Uo(>MetF#CNVv zyfqrtG3UB9VO!|$UpnE>PDq%l2Vyn%ZnFQ4P#_wJD0cYdid~4kN=F+AL=#M z{QEI5n^fhj_lhnr-DQl8^Zx}vSl`<}tF@mwr{~rD`eeli`w2kf`vI+pk&)ks)zjv& zzpjGA54R+18}<@Yqp4|G38)JRj?QI6LbU&D9QtBDHZod}{NJ+dJeqA-sB>iGS3!83 zKukI!ILTlHDd_JI1d+d$IibG1*`u5dVfUY3k4k)0Wuod>Db2+!>Rr~sRQ&h&%<|Ox z{(F47bmFW=;MSCbnQtYddBE?X@pur)ptYDa_Aj^~Ih7f5rEDBcNws=aK3azumn9M; zKa+{C!cee2f9dGH+pEgj;09?a*<{J2wt5d-% zAFSU4ne~J-&pw_lzuf)LYsRXCCO52rj*;=((2RO<&$nN?DJ6(MkqMo)-X$hOAfMy> z9Jy`y_)F)SvhR$T{rk6B>em?9TzG~@KIn+V4Hwj|*ztOJTw4HknvI-y^N}I{BRE0! zKkCdvK;(-QUfY>6^+FfBl)5Zw;kmhFGB!3PpNl!kp*j9iSW#BE4bU$d60!NjVUuijf~>0SG8YS*vWx9c3QrE|6Q7TksnX9PM4|CIS;0% zkr37wv#^x*r*oF4)YAM0$kt+hV<^!b0b=tGLiJVWg_?yk*-n5E4Vma(pth<%$|`=Ne?%={AhoeZWzT|dsDcB$sjB3Xcqqoer1|HP&Z zhD4$&ii*V8>ByMzrTlhRZr~j3SOf#@ZZBIu`>)8+uObifX_}mE;?q zbL$}-ez`b^2ymV_mVeae9EQfxQc!m^cYinD#P91x(W15gtsxb^p8 z&wUg}>$W+X-sZ>TZCp5dY=iSV5vQWN9^cwEA3&gDOyV>6tNhr;SIlu0>k{Cez6Jzj zAme#w^m2jEa_1 z+1aTjq)p{7OR+D*ga^y!q3`CS_S4P-<^G zKuYKVn0|!AAAagD{%_gosDE0QU>nZpDUUaaAhnF-Hx-l*3d~KdDs?!A{^X|-(gJ}r zL&HI|o64bc!Tfk;@54uI`9-9lT%lyaiR&-Gf_nn6P)Az1bbFpE_Xe2uPlBSo^J=R> zZF@K9`IO}Ib*X&V2W)RBbzJcH5S1A;jdhO^Fly_w&qQB5N-z!K%-iRa~5aI!UYYGo2AItK+eE+JE?02yU%~sU_poKi3n3LlU4b8-&Zp zNiq{_Xz3K?yymmgd<%ZK3T?XK9m;B(q}jQl%UA1CZrsWLL*<3Vp$wyI5}EBC*UmUQ zWU;HQM^BFhOrDz!=lcn&H_87@uZp^|JyZ99rDgwF*e`y){v_VmwhWlDFYiPirJmCP zUOnDmk#zwyw?1VTmHh>k}aZVW$+Zq7nX zn?=E<17PrwW^4Vg4cc$R?e0{EUvhLGpn8ieh5&|zyuWdNeaA&zei4Brwzl&cHa0K5 ztKIhjpxE!5S4=`eQN<$IVP~y zxa)O-B@jfYm0)Q>4#W!gL#~=EhA|&Hy)Nvpgvlr5-s-HjirT_+qqzL~Xj5*5y+S+N zJo{~0^LCUyzWh^Ud6i>5jV|y!^kRHDBB3tkLq!Cc#!q9L%H}!0PL#oMev=4~<4V+r zE`14yO)xF<>wR?fGBw_-rn%AsBdfuMqh^@&asJlWE${g+#lyt;s6XQysJt+<`)=1r zX*ec2Le$Y9I5pzri%_!Mz%7K$m$KRlwM(JI*?L)Wyqh`J@;j?QrbJ=Z&pT$7GI~|3 zMi4`OoNp|^28aWXA3fkqb~$}v-F(^t->y)~P<^yZp;5UXgB9c>>sK}^R@_8AMOF)b zp0JS>+W5C7jz*rFo47H9FPBVFgt@3A7(UVC@9I~mUtNWX2?bASuqiZ6c&=C+=8r4@ zr~UuzC6mesi}nW&*F|^nEfFy6Ox3$F>Cw! zX8n8W$eyQN7jM`3H(;e7EWy%D&fNh2jh6t{Ekt&(>&DW8lj{V}M=`E4>aeh{4hwir z1SCxlXPK3I22TIF{M%T&54d3mz3tfvF^N5&s(!9Tp9XCLiEzO3$HoNS+uJwkCdCeJ z-D&R0Sz)XRIPzbr!EL9*al6?5I=Xr1yO3ye(JJ!>G5ycq%UZdfz*G8y7Y`xdI36W@ z-hwFx|GYn|HMV_fM`Ld+J2^RNl>5+#S2??hDMd?1Js?I6{L{%v5Qw^!0QHC=@p{QE zL*GiUAqRslF)?RX7|ZM`{^)C0gNRqab*{u`8NDZpUGu&nL^2ByN#s)h8RGDtkssGS zAT;ODFFxsT^v)Fi=q_)z$cL-jjD)@;4+mYaussQn#j%GpAf3oallJPjW{BPXim<12 z;(Ux@e|t@fspMQ01W_Pn0w;nOFgUOQ9-hB>9xc_{^T_4g8H+yPNeC57y&^Oej-V&0 zU~S}t@T*R-Icvw$hknSDP2A@6`>%igh>Z00DII#$0U~~u=Ick5CEeWmb2gA z>$QM{Q$Ug1CdC&K;c>vrahUH_EG&MPyo{^qDc6fMb2?S=a4Z*umME>bb zDE}C$cb}b`zUiyfj&^&~YQ&X@U^R%QK}u>6JxU+oAt8)8Vy*Z?{`Fq23L4wP|3}qZ zMn&O%(ZWNwz|bK*ICPhENlQpcmx6Q%NDm?15=ys}bc1wCql9!wC?(Q;AAbLP-?iRZ zOZ}i95YBUApMCb8USgzX{PaC=m3opW7EZrV>?$yTi4<-2obYA(bZ&Ui<0+|L7IGN` z-H)8GKa8qt0{11vnr_;KgY%Zwu%iaLBmWS;s5NY)qKObVDniCNmtYmE%S(nRqw}&R zszi)rTC+UzH-Ris8S%DXvndZn@4lFwhQ-T2E(U3?(R&-pEcE?h66an{ok$TFj}JbZ zW_B==&DPr<5C*oNjfgXd&Ao3{=#}?AbB==##_p}rOlo9SkUl(>rc%rULNSwI;FYBU z@-Om}CiK)gW4`5Vz#LKt%OcW)B(u?QT!xTvf}fKM-jn2%6c5{Uoq~}*53`1eHUd6h zX)NN1Un{}=u1$u<7l4U}`AcNBh|y|FRf+Zacg^ zmOZb9qwZn6w>a`}xj{%*srBNn3iDe}xoHFiL;cWT%-$82x0pvHX?~8jiTF`9(n%qL z8pt_a;4A34+S=HVc>M^!QT)z1&LPHk-)p9Ea_jw@l^Q=wT>5nxo8yw7&`olUz1`EF z-^qVC_YAgvs@h8lqczJ3oS-?x;SnJhwQyEeMuzkJ$<*74ILe;DJ71C)ifu{d=y^vb z`h%_=<$(7c-Vs$PPm}E<@w4f$w?mt$)#uSG^mQHEeV=y#b5YCD=|pkM;&>`s(p4j< z3V-X75+` z)1yi%s-xL!@G}MIs@Z>=8tmyw<2dw8uM6}Z5QfqyvC|;;`LGDfILAosg{+d(16!NV zm{O?o2u!5Vi4Z#SK@Cr%!eZ}F%9D7m`?h;~#s)JahbUV6rYNNvC@jyVfxyvw>@49; zv0SX@m@bdmOE&;F_9=fte&jYHY5==Z)qrMF8U4+`^&_Q%p`;wSf0_n~Z$oDK`Qu$y zYmfpNE9yH!B|LniRE@|=S1~2I>`1@RHz~-4w(y>ZhuClloQJoKIJ16>nfgr=_ztg0 z!KUBN#w~6YfeO9}sUFTjcFvLKFDq&_Rjm-e_z3TPaLF)WO--S>KsV=UOmuYJUDxu| zR465t=dr~IH!7@XJB&{s2~F2{7c&Pn7G+oB_BPeF((+6MyZFKwJE;@bs}o0PIRIbO zkzJPl>YrVO7F&VL?26A5wi@jF0iQmJ?3*pO)9x?pe))q@KYv$_UC7tp$o6=Z-_}aT zy4}k9G;wz6 zN2o)d@~5I${6VsC(Fjsm=Og)x ze2@_St+;qj84XQM`~J$%o5bpce@1EKN_hBSPDqH%7Hh)irh7qOo>|tw{Z>|5YQ@39!QL$!zB2JPnZOK7%`C{2tWZWqhRGO)d@F=|*@V}N1xbXL ze}VOk`f~J}2yB5vNk0V5YF$n}r6!CKDh38Vs>44!CT5Qwe9k2J$+MBcu zv6w~UQSC{}ARjqJ1fyGA_#;p2145;03GZfwx*yi3&T#|-b|C$NBk)(P$LmBOHo<4s zSxeI-=-0|CRyH=#OFqW`8<_yh+hk^DetPHZBuzr%&_>4>Efvubl{Z)Ja3e9}k!+HK z+7S10g|VXJIS0*ZyI$6-1k!mathUfwGv>B;m$I~9hf<=J82lsOnpcyrd!(9pp)H*n zsh?vI$MNtP+uz0=BP=_4aE3Kb`u(%6Uj-TLK^Tym@=-BhW28w^q6lGU`-u>L0?k~! zq<4N}{0-Ea-0Pc-;%5ZGh~C>PLrJ?UiO#dP(W;JcL$aLUcg82OUCGjIH;pHdp)=t# z9~1AiujqQw7%Ksp%?$iV%{Jz|@~VPubqw92y=T-i(Qfv8O_CqUvGUn-ZnOyQZ$rhQ_j01R5=Twb|`o zr+?gtq{vWK8ms$ya2z{PpK@9n=ds0e1$#_Hhzf4hEcZWUb53+;K5&C1r&sk6vr9w< zSE1O5G17z0l3&g&WR6AVJG~5Ecszu@z$~w}-3N~4x_O@&Mg0-GgV=KFgYTy@OV zkU1Bb@IM5L%)Jw+>mqxWWj`+m+#yxS&S(%Esg&fqKCAe5icT8H)l@2p_xXKT_fy?X zDEyMPLSNS}&nbEc$$py3#XS`p%oE5kikZ$6SfvTHiK(Kq-l8F-`rWn2sI`6z7Z-`I z`7Wz{K=|st%Lw49wte>LotZ&aI>(I0IiTqReCUVI^b56mk;HLXV9{%Q^C=-J7;0qH zqixt=pOF6PP4=dZy}e9xvrZeFPgN@7dc`+_#PLWJI~D%)3>*V^c0SVIR=F0~yAQ{N zl+)>7sRTl~?oWvfw;4Ck*h8fV82GAuGom7X`D=!}-$i>puyO^uD-D@iVLW;M3`9Z|LTOAXt?^8X&7P*O>f;W#7yU4-Cg0 zJ>_cN(-I&f2l0r<4@WXX`ipEtTUz>bZre7&Fy8-&3SUghB&7m)DJlV7C}Ntd=dkZZ zWhRwr&Ed+*f;^ui|NM!isS4o@&Hr2`r>Ti@O;flpno?iyF7$f-_%Ppyj29mGE?O3- z$gF(z5poN*5fs>;vNqCfKYHdVCl>;a2&A(zGdZ|eSj>;8z+qm^*_p={YxUn$Gyf~tEJ|r+=E@xDpwh+Pns`W-*pNOJh=n7rA_u#XaW~+^>hHf@e zgwNh#K}2l!q&FGLzqhq!2ZZbfJqx-dUx4dDcb>p{e$oNqn~1xlPn4?76y_kzm?T44 zBR6yo2x9~&M#L>%yr?iaAWTD`dd97S_3Fb%%XYQ_d#GbPZH|m%KrIk z%do}n?mWW<+JCth7wjedK^RDf7z~QK#M9YL7AK1Z-r8#I_>!1@}^@S1ln zma-Z8-K|r5F)Jzx@u!r%VQH*K$|pGRK$l4W)0-bobN7Vm$MYkmZ-bzolJ`u8oC3@_ zO6I_>-GO-HH1;#iD@_so!@x$9nTKPNp@ly=a%wfuq<8yXU;L;J4{J}+-%hIuorFUP zr6LlXPEa{kivle-a!_ZRkzldB8hQ1nbgdo;3T2fAxKL|K8jX(;mp;Rv%I04OGW^sszyd6=L+z zD7pws0_OpR1~nexG)qg-Q;H9x`Oh>9vQ4dxj55T;#f?ci=$n-7jXT=y(wn`=`U%aj zs%t}-*}F1f&sALTK>fwV!+T?B_&Wy!rg0&Uq>rmaJUu;C`t~QqfIT}_dH$tt7yE0= zYBg>SH%vWw`*5JO3*4V0Y`0$1H7UG%?LdFH=P7(+^?ng`xt4>sE=9vqt@BilZ{m@~r z!y3LjjH#btD=eDbOI{7GaTsj!hY2=Sh;Gu*%h}D96_PXzZ2ujhM^a7z9S(y?U)%W`;!{igGQp7*D|;iptQyYE)e;ceY8@puJ5cd<9%pB!k(QS1*E;DxEX>`JeuO$`;oLCm170=3e%Oev_8LQfw-0;1)t@qU;p!?r=_>5?|LY4}C5ygB(495l)WF zE!QDKY_N*OGJw_fkcu>0;xav}hfyCQ!M0OQ5h>~y_u2D&oxnn?_!FmWsR$wQ6qRm5 zy?ImV$~g&@+Wn%$+F-0^(RASNj0nk2#dC|p#BsHlqy%l3f}K?%TCGh?cZMP>NBFA) zLV;I9+IpW#w`i&hVcD$;xb$zb-28gSsb-~4IhH$`z^86_vg;W`&~jV4B%3Q}k3raM zVr;~nx7;-yZf%W561Hi$nFm7&u=~i2eF@p@pJTi4ktDtInKZSh8dtqaBMI$$P7G8U zC+^&aH=o9-g>y;WAgXZDcJ7>$I-7~^?>FkB=GvD{MbiHZ4IusNy){s&y&*#_4_Yn_ zB)P6fPp=mp;>3IV5yIFTv)cC{qKe3#)i`WOOl?TGY&+OfgD=aDTMDX`gPO<9FCD=k ztMV1Q1`j_jH>Y{H_|=bMn#x!D&6>8h6s@#m#QZ#s*u6fA&B{zq$R_?wmwhT|S1?cM zp3GMeVd@fK2P|Ri3lY~}gD$-zdvn#YGr+;j?rtsY!&UU~&0&Wm1r5zIm@F$@lZ(-r zTx>HOV zQ^nbMG;veB#Q&r%*#DTTFlvv>+_|^!EOm-e7k_FzW#i4#)hjFO`p}HM=%LY{(PBok z36-Bo&@Se+^mF*+L%YShgQ1qm2ZWzkq-`fDH|1SQZDKTvAz(FV7K>MEvY6hB5Wth zfzbQbYma)0fAIN8V^$5DJ`YL$jDd%OmO%)2Ipq+VeCNqGeUBuDImvnW<>OD3q=^t* z?xO0OqoeGT9cy7`68O1m?vh0paJzBqa4Un2#1y zt0niya^&po(Z3kfE3?4?rN#xiQhRZ(Rsjgg5G&B*KZzQ(;TJlbvR0iDyZ7}}R8+Kn z`?gMug+<8(Rng*P=evWe+vY#L)lpeAl3P~UnzelU=gHTZK-vDNL*M7ArXoRp<1H4w zIwya^HU>pXaup0SqOJ$T3Uv_pAq^{PLh<$}vtbf}M3jz1i4!5~z8h^goJ0`a0t6Q6 z5TU6`!z2m21R4*kGtNsAt)3hT(CBL3NE;B;rf!8geSXAH~(8*v-NMsS=W@M2ui#gG=iYK4<>Ik-IG?Smk9VB>7a#;KQ_w7{= zIj_U|tU4!=kEp&U`svgz49vqVpK`X^qTW((76~rUZCHIH_DsSRiPR*yB6wdAnTsP=l>mkG9r7*1PTzs?J+Q~#v7%eaP=E7{aEW}t*@_d z-G6mzJc=*=_Nrbpzc{x+7hJ5c5}9H3I-5z((K1L{@ltpuPvn6K=1T>1)V(=)O6@`X zDX!6pvuLMA%`cQGrSG8VQqa5<5IoP!>$*kKbX%WrlVQ=n?h!1__}^19CaKN^hQQMZ zBxsONh@h|q0*@%YF0>s zX&TE%8q}dLG8W_sH2L(dhB6i8U?Q0XI)80y8vERPtBIYldj5!$vtq3xV}yKYI|qmp zJ@g$9bGOkSAfmWCg{DGIm9F9FNW!&>Yp$^#_#3fc(^o0L)P5#8yRmK~8W|7Ex z1WWJ!0|2SBP?;G`Ax7`vKe2cxs&c2h(5`{{%>1lqlJTV+(sCHNOs5M&3(9*F;@~41 zBvs6X-fOvBeK*s&4&iQDeTgnviWo#UM+OgYzZz`)oxrthxm}|k|G!zh=`QW|Fu5Z@ z_Y`05hnSF8(4Tu++h}@4zM!qIn|u@*h<2>)q}2Pg-ZQq?uaNjaVG0D{xcaBT93(j% zGapdx^ThbiVRB=u7k$G45lfvZ8@I?ah#nMb-c{Vd4YE}n%k z^s%^#Q}*~_F=PSP?E|iutHD)YW?$cR_iyV6ElF8Q_@sivPU@u2Insa>Y)d0xzws5E z8f5xaY;Dc(k%f2vJ|3e^A{U56zS)3_iN&n1|C>9jGPduiaZR@f5FJ_&4bd&v&m~F1 z#Kjehc)5Sm3Y&fZNHJU*>%^;5+Cm}1xYdKFIJcxkY3AhSc#W}urKO1i{QTVd7P~WF*ym9QY1c6yJyNzIJ5bXae@C@Qjgg!lBJ7IN2PSk@ zgHQB_L`>C8rNLW<=)8(D)b-{&337IReA=8)_(_jW7sr=mk~vKqg)U>Fc!K|Mcp0k@ zV!FwdNs_tyAM#uL>!o%(%|enzYzjtSfJ)&xnj*5plW{&xpZzcj0#`zYvKCw8h~a$*=`9h_#!j-<=Y3xkYyd?+f<2V98xJh3c0 zjCd8F_5wB|JmF^L_eIQ(IKPku#whkrWjm0<$! z(SvXN@b?Sz`y`B4SmvB;B{n`0yjK< z9v*t*PH;z0%C(Mrw1ZbsON;?~cY;ofvF+RDqG3TU3ys{ZEp+_M>Y87Fn)6K!nG?Us znv}Fb!^4B4upmh*a{XyG3taR3*Y`*X=;*HvbN(u)oV^VS6FPQm73SFI z0n>Lc94MB1>StE~(#@mZp=z!Z_NI4w77U20HMKV8b?-@%v1M;lj0O)x^} z>+fXM+XqcLtbZ^jR*LpcPrOPs?TW>jkO}CfpU+_CH)iey16LpYRyd(XTUcLF@w#v# z)z9i~W902QVY+PG#Cx4SC(H^cj^+7x&}e_deAEdIOy6V#eup=wF%q9&8|YpTif3g~{$j+`CTX;x5_w^M9Z_-hl>FTLr=7>f+; zA#Cz*ibWVZt9^3zlMgb)B%75|tgXcI(?C?7eC_yqG}hNAkfE&=55L5HP~9BLCTe~N zjy_lkpehb=u(P+gcR>RK6UyIp;XHk)@BbyNhv=yYM25{-+w?fvK0fED7rP*+Z~F@s z2>6R7pnelb8E~8aXPYCxl%z=e^?~ALdX_uXiCYq@9-g$0th_4Hp_-?yV3OUfYHFom)0aEcchv#C?yx+~fQ=-H2rE4PZ zKl_t>0I@iaIksN=x9r}9eMC_RXtmkd;HCe~t?90hr3#N#3f~}TRe>Z{W3teF$dNHf z@zo#IkqKV~E1O>D5$xq|M8qc~sv&TMxR{|jv@(#wAZx_JG7|>y=3-&4GBGcstF+L9@aBd4!!9=A)pUsHcHNx_H1ihj=5JFbW{jJ|){_ybE zD*mk#4_&3KHz$IU_<#+rPjLbg_1m{UuvD6wy=p&YwiWk0OgPRD8{&t5LCLKl34Qe+I$PqXiyL$NSy zvXc3k%xOOMHg{@W`T3KZ`}jun)J9;~@n|;cM$)5*)6i?xLpC z_;u(Y4t|Ql);W0m3qNFQMkPbXN(G(gCdiT?@rc=qj!VIB3sM6Ph%#<_}0jZru$$HWm?{63tK35<61y z+6(`rJU-i zzIP?%<$z%P-}0;JEskV+d;1gcj&*e#v|oJh!V&%dKV*LlScAPtDJpFK(F?m{f7`6) zooJjdSMcLwmtTJ<<=WeMh)GkFpFfv~l;Drr8u^q@k_7bce#N8CR=ItEgwriFznEc3 zEu+I~QlftPHoRG>^S3#u*)=mWx-WrXLwR|*>hj-yswL~Eg2!7UA_*B8?Bhd2<`qyt z>#G4rKQ$M4QWSGs7_gHUzP@b*Wg%Z;V2_t)x#5dU8sX7wPSY!D3~JACs5fl>n;0K6 zAt@!r``OnU{6Jqs?*#?Eiccy}S_15+&n`!^Rdyl?^(N)XOjT*4v%6!JR!&cmV324` z0@OwRg89`OOb1HDBvo`9)g=+w%-j;%C>eWo8k-A%7b1{m`U^|Wo%Aw zAObNqqd;5OAhf)*%nS1LS;xJ^WVN^ZtRO~M#TR<|%yg|6o1?E@x%LSskN}Pa+x^8x z@2A+&Iuf>)^^J{9=VWlgW3gcW=1oFf9xbwg1%jqH3hKSMFbP z1>KXoHUw0Bk;x!xkm*H$P=x$)AFHCpCt2YyZ)0GLl}TCgaxmdOY++Ebn>yN{DxU@{QP%Wmp&fx|9zCBm|*9A1iydnkjM6xFsLh!(A z!c|h@)USr$PrMtp*C}zaIiiaC({Q(hA5c~iRZK8U$#wk<{cob_QHyz4FG@siD}#*v zAHb>-u(`SE{yPYk^Y<^R?%e8on*W>2Wzmu@zRkw=x2E%GtY1rsZeB#57nr`d{SAiS zG!ycnMI3F*a>17(V-Qv6Oro_1xWo|((SuZV9-*9fElWlGtWBMoD(tti#n$K!Bk9b~ ztAUGu1!Y7Qnl#sQ5LdrzT1@pqa)5Y_uY4t678p!b&cL5;VB;+bgd4X;e zLe#PdBc7#l#x=w0pN(<|rmqT-~Z!|0DW{-vQ z+Xvnk!6i(RDSudBe9TA1{vf)buHb0XZ~xb#Zxs#3zvQ4{bY}m24eeb8J>z{4H!y!K z2rcC&MGH}U)b$dXE)Sv-zQ!SO*9j%dX~yt$LU9#Y<19N-BTt(SjJ5$KgRV~)r7ox%T?nh!@g{9ufzfrp&Sd301NY4s zH3~1czDiNiqhC8a3hnLH#3ac89RW9eed5isJTqsm8Wt1&{%5E#?glp22Ce1~v;uKn z1*Xywh!yLJx;Gu)3zR<81wjP`1()C>*tIhv@GgN2X)HO%y{NcDdkVhSQkE{=Mn+Hb z^YVVNu(15Qx$*S^?#$&SB@sYJ5#Hzi0dT^VB*qJ$C}gB|Gre}o{}?P&Yb_nNoYU(Y zrccUO-76T9A}T)#@N--lgds9DicuofOHCuZL;?i|eh+0C=!OB1m=uP3qJSPZQUr{(o5v2d^;BHi*!ip1U~3)OX^xGH~AXFKBl8qP#q{h8W*V&-yvn$4GuE$AtH&-^CQ>akz%0gBacBL1TU%M z;X%Qz;MD_y;k2%@f)lVXb5p?jzdwCraEBN=tcAgJklrFrdg z$8l}0(%P7Pzi1wkMz4-Midnx;j7@`&ALXo+QaBR9xHFel5OjmrR~XI{0@9zK{ck&K zOUlF7rC@JW^~!QDbq(GMBQ{LZ-(0W zVPh{qS!w^k!(r5vru(Hv!&k65zRZpQ4V_uT-kt`m+BB7v*mj>NYpk29PUNur6Q<_3d9z?QZY;aJ~%hk0;jEhU%L{pQVEEu}J zgNJ}poBc5s5fMqOfIfTn?8l7JI}-~b4||qewb4tfk6zl6LJ{Gkwh2^V4L8*LB=ccq z0x&itY^r0|f8t;jo&fW72w7k`&(b@46BeJv3)5LeNfwwx7}wnBydtn@|7v0b2e4brsgY ziRD@y&_3O?$k@%TtW@8;k#BpqK${ctofWJyzGMriVY^xMNz0++n1wT}NAuF)Ih*7` zp7%Mf-sHze?H;+efZj6{$oyocqKsAC|BsEbQZ^TBg| zr(nL(W9Qth(+gVf8o(gIEf28;_?SIqy*j)|x2R*a;Y4f$+a$nWv z()9%(D8=sWwGH+#X2{5B!Fj5~UEOwz>*~~aW<0dqjwR;nesg2M&>e321AfeSd^9k` zucwISu%Pnr`%9zzuRhV4G6;mr}-4a`Ge}%g7M=f&WkI?Ui zYq>^OzCu7E*Wi))!knQ@==1V2hJ>^l1DWSBuXDNp${+<0Ep*hRi=|EjG=2zWf^Drt zfz=8d z#((U!XA0(TR<@l8QA96M80zaw47z;`r=O3i`5shKN0&lbI`wH<9OO;95)rp_GFEgU zIDPC==bq1EoY9|kum5rp>wI$Jx-XnfASCkGqPR%xQ`#=?v=OZLh-w>1XEz;P*>Nd; z>vhf@b9cEndc&PA;d`%^Cc3M)71?!Y7_6sO|LJ5{ooMGn+%hvQzKZ|zw~7lN-))?d z`4|g{iih<3onrZ2_Jt)SKzqkO(|j9>PAE5ZSZvZ9%f|U1MB(1wO-uViORME=7gWQ{ zjLBiiJ1H1?i=^C?Hr3d!dtw>Rn7$wT^T)^Eu`g%BSHMuMKb?=jZ$zm;N?gCG8H{-m zk2=;tfcDp&5`+p7JkYHKCy6}4QeoC=J}Xh8!wrwrIMcl6t!CDl%US-CH!n{$jE&86 ziK{bS7-K8Xr+D!7ZbK!b~EdF4tU!wZPa+SB#+ zPen~(GwoOXFUhQ)#5^9BipciAiU@=T++98aHk2wZ0kMbkVBywy4#*QBsPH4evjawz zmR5Ei4Q-o0t*=Q^;6BHrU;&dS1elDk_V@Q~b5JAi!8mLhc|2FLFT%_8Hz&Z>2OrA?`3y)+!GG<(AK5M#X#8Tg7a?8N(@ zD_zZwNDz2gejALWL{r&0y%yp*O&Ot%HcI3hhTMmWIIeR7*;nlB?=@H%UPHgGf7w?kMl|@ z7?MYqp9MZ%jpKH^HX>zezIuX=Ig8IDH6~Eq1{oIsN=z0ClWSCPSXbP?T882_xXC7K z;9azT%$;9_bOazKdpn=p@~?km)5#VID!LKV+-`w4L@iVb81#a$(zlchFm?aJ`Sk>9 zTRyb9EgwbWb3)&;nUd}ujaA&}e%QY2p|c?B*pZyAE}oP@zw1r=zDg z`vzEc5T!UfJDWFb0iublMz;$|OueDnhS5xo4T3gk|Mxar=oP!vGrHQmu=GIel;Utb z>;wWMl>8Ul`e;g>Y79b2#&MNeVh>f58rH;VujW$CsG{QO>iX}A(;*xiN9C0xl-#8H{3`;DAlI+Ta!(}bTDyD~R?09>8-_m2668ne2%h6sOaU)~K^8$~;K zuOg*!`-}OVFL~l7eH3({9L*AM6%`PucLOjhFN;PHnI(82F7ukmmZ+;T4u zGI)J+`~evrxD)fxE&-h~><3NfINU0LqK>J8gZ(FU;sXLdtnlBNYlSb(HPKt@U|xrp8Rt*Al!O-+;!%r#M^~N)!hBc?)(O~R^A$Ns8eQ74 zFP*JF^4kfZ&~moyFnC+<#r;b7Im4BMx{9_Iw-Y`RZ+pD$YN$gcr?G>hEVXi9D^q{4 zgdc6b?OEIjO>iIh*{skZ#S}%*g+!J(&4O|AC*bv6$*+2IaWHUeDF;cC{F2ksc>}Hg zVO?T>(1)gUz{7_tIDMe9 z%}0tEOZwqS%pnoH`t9V3?S99-2YZJTo<$6efY!b@Kv@4CPelO<-JM7_&RMD?$ln4i z-Oka-Y?Yy%^ z0YFjhJS9*6RUrfirFT?1!VORP*H33W#@qI;2vGEfmc)~gQHWTWnZu^0zLn(UB%I>) zI+|tVLhwQB6CPLHb;vro*p^L6>A^RFc0SzQP5N!DqVUHL-pHttf~jhvG5eXT9{lei zSVZLTqvLVO?-?R)EquJZzW`~M7Xbx+!s};uMm;ns1YngL5FKm@=obpqcouKCpEaSDEs7vBXoL1 z4LJcDbX@KO7$i*eq>-nV0a;3^CLSWj{+r?cNH97GuFd&flPQyFz;Uh9&t1zb|Cj&V zje$a?2*G29n}oX!rvR#?96-Jc+<10^y(k}o`KT$j)2|m+7%>7}IQ<0oC!`LO?17Zy8v zDyv}U1lhwn-(TP%BzI=J{eJuQA+M2NAuBgMO)IT8t+pq92r7C8`6gY6l-;+)ORq^; z(|}8tY-*Te`{gs81u8&YqZ+;u`=hIY2($W%Jsx}G75~5f>z4T@mmdz_DFC?6#6Q2ym5Rgw-Qy$BX8lM}mANw%r`gvZ@Rcz54$towW_ z0!haB#)QUNAxf*>zJ%LTPZY51cJaX0&PIb_eDm#*n4a>C5m`pktVhc@x~m%wy<~@Q zB)Cf`D6kOhkBl@ZDJ=~qSxBy?3VTVP6$}kt(LtUqePC5e&P?xH%~sdd#b9Hn!TD;_ z5O5S$07*I~KsWvI)G4<8tve0RUphQgqCSGyq{9Rb$b+DT&I zcE?0tA6{8eky78#@a=(i=W~9L+%*jlYHP5XeBIn&-Lxt-j>MtLkOisTAkc&OIB$$F zUIjuu2*1tY4Jh)SC^FO{>}z7-uz`@L$?2$hBm~uTO-eb65_5D|)vL@$%d?W_kCctv z@vb*6*l7K~)GmRBUBA`vuqCbwX?@oDdB{#&$E+~0TZI@Yetkr@3DCxpJN>v_9%3LQ zh7W?Qx-7)dfbEOA{r9r_FIZ*fXl+uoqLESm%)HhL(OiCLB#$9ziBUA2C9~0#D)>-f z+`Gn*MgZ9fB-Q=!DKcM;befphE4y_o7q(ua3~uH2ctJ%{CkM#t~JLfOX36`6m&>=l#c{g04W=wneWgSobaL(BWC}<9JI=UxNuwRc z`cux1n;LVUSaIJ&v4*X8(>M8h{AOJ%-{HQ47M1z$rI=}zV+pTy&z1hBQ ze>_y_Odq7egV$9`1@q#vC`+MWhcfYCJlI&~hat@*Pxj(Auaf%%gA;jPYoG5pLI zi30qPbNc(2z+X_NvE{JDX87m9K~?4FoUaM-nlSWq>RBfBmIrnYMPu{E!O)O`D{O*GMA4 z8Ag}!d(V1tu2m5jyRtK?gKSwWENWMs60NBo%)doh?)R z%6`esQHP!Lz}lG-(4}YvS}PCTdCI(uiOBv43<5#SsRac>WeF1XYv~jEq9MxU$0KaE z0jdE`i&klN2csqf*FTKNT%baWuA;_okNQqd$_^(Be%kE}rLLH#%r&kYL)^3o8WoI& z>|fw->C!KcA3OPVr}UJ_y3v~6@fuD)nxvD6$ks;v#FC<9PFcKnxYm(;9 z*4{qOWj?u!e0kDUDsqy$CU!OW4$04=C0s(l^c(Y6U&rQ*_9~Mh=8kC4Ndxq0Z9S3r z3gZgv3g-&%YCI-_)cdr@>rvU@^iUGA-#(mkD!Ar5>gRO+t@v(0Rj63QQfALM->yQ3 z5ir7yQ~y03%0~L%94L_U)Oi&#($}|XrcWN><6<#(l05h1AH z_TULz)6nOeCd05M*0Y>EVriJ23H-zmRB9*jD>l4zwh&iBaM0lwBPTB?ZS;- z^qt-g3}=doGs3yK1M>jR4J*{fO9EW49%{u2Cy=lB8HBHpRWQe(^vAfx{wF&oQPoEq z1KGG(Smu5DBL-v-naTbIH3FRW(nZsD>BvBsd%IoLa{Wx1>hVTzcY@%;VqNZ>#xMdO zB)u@;q*hxU#DfwK2o2Kc)+u=z)Lx@=)z+vg7b2pb=olED{e68y51kqe2K#q)<^9so zkO~D>r4Igcai9s^oL@xxDwcr(G<*HM{TyQbbL9SLqARnzVSd(eJgS=!3TE$#9Hg%Z zUHmSTsBVIRma_M%n#vgu;e!zNuqKcH8s#y{?Xy zFV6cLLp}|-R-a^dgj4JJm#35ZTU}h?N0RuxS zsfgf6x6jme&Pne$S5mV^jtU0&geLNTSMW1Wf1*+LD42{m<7Zt?p$V_ey|(;fV->A+ zE^p|H$AdNdX!ht%*v`XP0X8?Oj8FUTUt~^Bj$CBqx1yvZ-fyE{^cI7Wl;2h%``GOw z&437Vq3?z!NBWfG+}>RuT5&s4>qwr&TM;%~CQSi|PVU{iCNT+#tkH)^>x+eAJfaqk z4FX;de}j>EP^+Xb9#7p!6JDwoTrw_)F>B=FOLcW&RotP%=#X%s48jEJjIpayV(2*! zrYBzh&tuzc*Lx+ppfUK8suB_snIH@^$R?n~NTF zUGwqP5zQ2+$p-)z#Z8(BUm}l8pfb9}RLMYwK_(zc5Dke|FG!!**vkxOdYf}lJSf-;DYq) z-8|08aoonxk9Rx*GgcXs%_W+?g5;Gir8e5HLYCj%%6ngbNqw_^F+S*ht2{rISn2+? zXkK;beCzk?T-)GX@}djstKS1Idw$XZcM=iyUvz7)U#`4f*832)`_zE@9RJE=o$TbU zwX$}flKqoXG7Kwmw}AQL%~zAF16sc)fJP!h>nm`^=n=c@wM*g=>%3g1OypkC;pZ0d z>(1p-?>^MB?KfyQtIyy2BUWb9DXI>0{Js{Q>b$Xf)1JY6`&Yp4>PYnD58L?Uc6R%~ znD|-DA<`|D@`caB&M8eFHs0GjpM!SU`Xv?4=7NDMDx;B?hC)yHzRYS8w0{q8j62FN zyEVI9{*X=d(63{S1QG2$dNspF%fFm&`9@o_ZPCw-kB;o`b!SnM14 z)YKlo=3ADPeZj(09q;N|7YuC+FXMu{gr}vSSG(yO%=cd}aL-UW1%Ss@u)1m$89O!! zfi+aGKkZCYOMiFL{~k$Yudt;hQ~PDJnoH&`@%fxPzhysenuOoeU>K?I`QzkRihOhh zOkjlRK9tDW>&V2+Tw}q$cWY;7M***P-__NPU+M^uj3R@u2X?b#_gI)ynDmTzW6E1r zS5-(%8L7`@ZTa^}$vZ*bORS>aFMo4qu7IWyQd{UFTYj#u*9k4gg*>`!ZvOX;HsA+U zO0oCa`~NWHzkmNej~+GZyFzeMQc=Bn;MN1LOcgZc@W-&X&80ToG*>plUBtox6%`dv z3YQ=;bLHiM5SRwsrgW69c0?A;IkDANs|2~Iu$$T+(h)(AiM1O{v6O#2-p)bQ!v~tM zPW*!uij2T6e999zkfA15uZMhYg(fM+o)>~)7Cxz!-6tKfhOQh^Sr`|+l^x1tug9YR zX+q@|?jBET$FC}U0KWzZ6w-)GH9iulVS8?^Yn`F}mzw=CYby( z7d+5J<|)B7h=6=pbLI<;ycYfllXnM7^%j--A1581EC=T$&PRyA4h^7sUlw=_#5)vx zqIF6dJXhRXT?M_2nZ@tR&n$h8EyHsD z0XKJSGfus`qggy^yLU+5Ck-pVgiXEIk9Z6k>G!B6LIjIZZ`BvPeLVjUQ(qYtRk*G_ zz%XG&?^(XQgaz@g%06o{LMSrty~A;ZzpLb1C}rg$5%3{=KbvzX&k< z?aB(QPysg_>hS(2@=>+m+s4h(Sp$FcWMou%6CCs(Kg^>!GzP_@{#bXbZRHoPJF0F; z1j9Hvhpm1O&vFMm`(|=k#*r{{*i6$6`#d_~lfm)is@MGZsA+3kCdALLotu<|;1fVh z1_QunZSe*mBcs7`f&woPhr|65Ajw}>!F5VTQiNb521=Z-wfj`Z$vb|Xl-Y8t!mveK z#%o|(YXqrBQlnOrhJjSBAj*zb!KIzXC|CMYrl3@iBlrxtO3J{#qRnKf4);C~3Onsw zCkH4PVtoAm0SkZsj(=LPxtSR{2rLdQ4$2292(anFH2IcNJDVYfFL`jkwFVd^X#SR2 z*xSn=XURkQfKtX#r8)a{)Y%weXMj7NJ06w389x-gOsQ7tS6DLx~ zM5BbzR$>>VJCVsa{LX-A$AY|~6)S-FeuD0a18#+n@Pxd&Ij(iw> zB}T{ycN;MstVKZU3~W$0sPY@nIvPYW6+n2D6*Ft%wy@~m&>G}`m!CfAy@)HQs(l0w zg!Z6?xoPQu+80BfE%{x#pc^dFnc6@yoUQ3YuWrjO1va5_oxO0>$8VXfInm$XB_`N zWcR$70rARPKOpO-eMw;5k1Lh`!$yE=L?f^yIt|VAIg2j8;T$ z>lwe229SH`@8Atkh#R1i(C(C4pBG~5RDQ}m*2VP|>vXQ-QC~(1wJTi5Or7|PaT1p} z!R=|kGjaXjiNe-H$<^N0ru=7{)!5ql?WRVuu#8Eg?haa2rAZ?PQOCl?q&mn79t; z6*y7?#K^sg!ok;F04R4u0i>$F2kPZ@QFHLiCk%!P#O@J8q0_|w8zX{;_mhJaPTnYs z2x0#c6gD|H)%kVHD%4yZs;Bkki;eL44G*ou7o+F`hzg)K@UZq#u5B<-X%&2pMCaWL z)9u_3F~`Z$x*B-hc=v9Kw10=lkcqr~it67Os+=MP6!KOdmekts^ESi3|C%E0W^I4# zaMjo^Jih@CJBeohsxp>3xtBU}0E8aMGoU!Y=->te0nDikTLjP=0I1V+<&Wnp-AsuC zI6b}Lj(qHU#QVV+DTg`3Nrw$?C!3b?XQ1m0rW^$QCKu2O-_ zt(NVjo!UxR0 hDBnZ``6nk{HhlRt^q>iE2M(s1vZg{Sn+P&K2-z|fxa?g(_H2r z%IU<4nOuB>BU1BL^vLXrwD;j@pnB-d{)4(5JEU*kfU9OpQ4GatCYopsNNlLP<`8?; z-Y#krgKs?ukBqv$=vI#KUCs(?FQ)s3-@)EuXe7qt{bi(C7+sY~YlR3rx(=(94hk9?C;z0M&(BUJizi-Q81J+8Zf;YQx!fA3Yg+J zNA+Zk33*=vVSq^Zy_lrSGOxDu2&R{P@5y-IA7OoC{D+pdXv|#4pD(vx%*O*(cNb+^ zm1^SLNG&K%4N|C!@QH=dSVn&R4xLBmimPqV8l>5iZS*_oPNG13PzI+RiQv5JXlH6K zX|HYak7?^@R%!s^!QIIMnZWt*RAC@BQ2t~n19vydD=P`c$3MaJcOF_5&yK08{f>+S zCPORD0>)8C>;8g3@f&q~e0-WE2s zD94&em8v9A^NHj)z;S~U6Dmv_CtJ4jMcB^8z&9|Q{ux=7hPzU^QlegbIG}EZB43KE z{CbRPq>9ElvXr{9PGc86u;&fx24iRuRa{RKNZwKFpE-j@m8QhtEs%<)2Dl6^*p`$k z7MHINeNZzN1ghX;CLjvY$WC8p`ar24;}=s%NnNyXFcCfQ=$2m|!x~~K6?6mA#UdK> zSUbpnM(4BO4otI>(q3m&yJ^??jpx<HOTST=f6NCOj}k}Z`)FkonZNh9^^{yqsn^_ictioPG zpdeSwI~QCYf#sP7hlHq{S$h4C`U(Se6DtysqUkT$>ht{G##K~O@(CAW41(t)LjcgD zwrjCq^2J53U*Q-9%mh@tylK&&{l$Ban7oR@%i9vcvWOJ*0rDi zb{i80O=ovZRbPLpcUoE`fDKX2!h#1N62<|%z_<%YqA#zr&w-WeH7Cji!hnh;pm&X} zI1G)D(}+euprsVZ|JBgeegzZ~CH}Us98vhDEUd=kO!r|WK=dm;Z0Oy)ciJ4hK;eKz zMOt$5PlaKo-xqNc;0*OFBdA??}IWK8%3VwN{Vge3UMf5u0a*1CRI|?rprAmdB z-6JEWkyE|&=$n0Z607uY6mk+R=hA;0*8pVIpCGE5{5q`se)3U}MVWBqM%t^|e0lHL zt);7I;q75keC_XYEMZyFJTLkB6ILckOkQ+#)vXiR+F$n2iehHx?Li|Xf&!2%yggi} zC8WCW4p3kN5?r}|Ds55Nl%8H0o7g_#K4l>Nq~QiToYq!@q7U%asYr?daop^1tq?;| zk_jE1G0Hi{@tGu4g&$l1er#*3P*h{ItRQtfZb{bPl%`Hh9RyO@mmcg;&4~smY1BWg zzf^o(CCArU9?vbnG%^xZKi+7A*&}^}*LM_8-l~;b5ut_2){xVPhVnM$E;ZaPGMr9l zrd+0@r8n?WR2%}Cdy|y??7cl+0XIwYpwGz1hW-cIId=Ugl!3;ee&8&orF;SnCl zIkf-f)OQ)1)hUQR&YFdz`7iw4i}-7D$>v2*G2XjC*^Woh^$izjKu4QD`(r3$}?f#{emgV*O3K-!^WbSj03 zDFU>bh*MJ!;Zf$P5EFlR4SasF0I;o#g0gt@&|UJOG`%lB6uaBl-hNGAU!Mg@4AlCZ znMs0YWgZq5Rs%$8Yp-SVGeqZl7Lq1_@sczq53;6a%+snbca~y%SJjoVLzMX5UY60W zvNk^`zfE;@#hY=HTXHJG%2qAf7Z2ZB}GFk8Nv#tWK z=zz5f7k+*({g*zGFI560%B;`~bH{Xd|;X$AXC4lS%y8kP9 zau5z#d_nYH80;vUV38cBwdLN^vJeL%kJ`5H8)s3keq%zIR)7~!zwk-Xr3?Ql!7^(yRIOnqlt?^*94y3?Zw3HsjU>nBNg1D3CZ)o4 z%Ey_xY=z}Fd91SV$yR=j-1Tu3{Zx^(y7B-8sN4BBn#CsXk(_+7pzhDwws|R-fx3o^V=om1*5Sv6vWIw`O`C&fG1||u85GEz1xUe4R_}l6kli;yoX76kKgCa?RcS`+Dii52!@lwr7i$oxIymNDJ&%*?$u0Y=~E?%b3e>?Y1OE^wuV~`(`_BL*4<%b zM*EksRe+)t2^6z#@w+xFo}Jd{-SYVrn!pjFL3p*g;6MBqzjZBmY)c7?98 zy>f9`7e3{0IsOCc_W&jU#Cnze1h;x#*=PlFscvmX{4jlXbvInD_Aa1fbn-MU__O9A zThvtd`!ase@?o^ny7B=Q4Zd=9B0|Lh|fMZeq6sD*^BO&q71=F z4x|Sn(d*X$%%GAdvAB@WU>5T>tNZ4!y}kX?b~EDmuIKL7#OZ(8<+>h91RzaFkmKPU zrBTn=SPYOs3i0!AVgKc~Js>%=(3ECvWVM zO-((CKK#>P!B)Xl@uotsLi8T)9^oEwOB?&wKX|BDJgOrIIyUx@;etkEkBUm-_RO*A zHi&=q#F*_Z9ANwaec7)hzT$Dg}HH#z}jjoy=R%JcI~=nx#sY4;-TKb3_qX* zqom+aK$}OL-$Rq317<_b9stoGOw%mPF)`R5T9>%AWr)b_n~Z~ zLw6jmR|<0ZR$Q|5jcLMEF-i$TiB1Vh$pGA51$bsPD~I(( zA&b}&t#mTn-fRQx)&inmpzNKLl#~l#I(h+KZN0#N{9+|tbNn&#i|l*-9JyJamY&x) zZeE0xLYwc;PUW)NXc<^sUJeb?TdOIL!f>1%HU|*Db@oB_eZ*cWwT4 z%R&#GC)fNkE#)qld9K5Pp3}9C>rs=_!usbaf-Rh-%Yre7yd$JKOAACj9brF7;l5+9 z=mJ5|=qi!jC}Ve79Zk*Ihv&tfmCm%ZwB-}#FvKX!_vup9#9^d(scJ@V3;0L|^4* zxzJiGM7(ax5A;=AciBs3neWm#8Ns(`O-5pl>_p6iZuIvov|`r=`HMV5Auml+gm@;C zp@jjXj4|d<(vB%j!h^v64~M4Dnd;8x%V;?xcKgnZR`7)l!WXPI=7ov+>^iCJbd6nJN|9JMX_&IYahs^{0y zLRHQ)1SaxwCHx`lu%cC?($4Z*#CJQ=ab*C|ZP}6nuR1-Hd*90G=fU>Zo0L7*CCQT~ z!JaEQW3B_PLeC4mAt#sZ_0%dC8U5?)FLVL+|C1v3QtLrr$>Y)ab{8+O6K*me0!n4`;o%PZ9RR(e^1F(%T7T= z7(4M$s`qI*UZ9zMV|0)~&y6d&Z$-DJ<~1TCN1Q&LuU`lR1SLxh+@OPt@x)Ux?#2@I zx4$-=t@$C?<||VvxmNHC630##(H7!I4bzRs*KBkJ1bT9lp%uTtsI3=PmGi&F}XCn#r^vAYb`qEA9;osx z^4i$9flf z)=J|3%6Oy)k{Lg!-zQQk)Z-r4a$EUY=hfpjGuQ zztqv(2Ilffr-QR7-{n4n_wtJO$fqN>ENQO6m0KST@47V~0>w%E+an41WNavuMDx%7 z{yru$GM{~PYiN5r0*qm=rsqNnSlaee2OWTvFs;raK7;o&qhyEx4fP84H68!b#MFgR zKp=*Omg^M_O-N7guMF&2(D{1UK(6Z`@^*w%pQni)M+cE*pPdnKq^xC4xCGf8{jUfe zuuy=El6)ysTCu24qhEU$dP6Or?6`pW1_= z3D-6bOCa%iItE)HN&&7@ir5t89>zH3r_w$(FEElGtfaJ5n@(9xP0hneRaNEbu#$2@ zm9eEa@zQ6-L_S_ydX6HGd}{92W{3WswjsoV-hKKgxt*Kg7?fd7Mt=$9)nm%pMsw#;Pv+U%}D>Eqwq}za2 z5In(1MkqMl1#^0hvI3WE0sJi4bagauN^YyI2nO2_5I`s_eDHZpBpF|ii^AqEwQ^e< zBUs9>Jidk!i4Kn=7uEEDODc!W_A0^hw!h$D?>kR5+Z)_3a_VjxbU$itsI#b=7?w*M zGddlzxT;!0PInzdOe^ggYq1@BwGd$|1nm11ah^~4ee(CLqKW;Ck9wcKxF=2Wk>!g$ zTV5_qMZhW0shTh!&pW#P)^Dud4vHDnTGzx>+-L*(-}51RXdu!RwD=FI@awb1QiA(` zE=JgLCiA7TjcU5a#IaP6YKl%(x&cE{W3sWVP1hr3nwphf99u7 z`Ys2Vw+=r8PtCbTJW5QI0rK|jCP3{8gXizK?m1JShRC%ifjA9S$4 zU3)tjFzfp7W?0tPIF$KyvfZ9f`g8{SusTh!(utu^Qx`b>xWB)r7{%s6OxJ2#_&og! z?c=ZFUQiXNYN+)$Run(Mj#D$wy*)r!3%U=cnHMu(c z{^96{GO-Cxa|M%wZ?osjYPJ< z@12%YNZ$_-ePUu_9B~Vwi@Wm|J5r_yy=K^K-L#|EPE(>lK(b`V)wIHw z+kmJ3L7hqjjqZ!RTrZPRzeW%DnM9E^XQ0kb#A*G1PXvn)-st%FNqu!S^}E0*m_oK( zfz}wRq3P6z!uooJVAuwos#}(PZRZYecEhiN#U)29IHe%ll zkZ(^=qhu5ID4AS|MeT(g9SDmeS$w{iOBWom?3bhwnvvkh-5c5xN3?L?*d#b&=lCUQ zl^j~8@c}pl9JI)jU|ZSq$^DqJ4FJJZISw*w{V3NZ8)y&-NtL70f+pYtpv67HqPzK^U#OFmBzV+8R9a|^GBzZEj#jji0{WRu)ylQTie0WqRgO#2+>yT;4 zDr~>j21ityupkoH7AH)Tqo+nz2 z`?sI>bIt)eA5l_ZC@Wo1)2D$V+ZDJGP~sW$N^i$0q)GNC2*tMn)Yr2&n%$RU#_zzo zs6Ao9W&f1MR{UL+OszGA$Ed`8+=Q_P9fDoD=nvgIVicLWf9ubj+Hwf3<#Qb$- zrR1IZBMGuR*&G_c@D?<#$inZTjg$IQM8Ti@41uzN1t%Yv2!6?QkN^4kiI4Ke2!ey8F%63iP6*9 zd6)GcS$w?Vpm#`bz}d7UvcWlmS-cKvyKiid&zV-7MrrC}Ea=@h(vYRBLE(2S)?7~n z&2rPHQ@Z={>2^>$4kjoL#!>!y};- z6V#n+JFK|hdW_-o!z(K*yM1cmUMe^^a!ed)Nv7*&@xMncT}s(mbZ_^uzP29r%w z#<5Rxs-}+qV#Gj3JWQ8PD_Bqg5U$g-h-ht@A>dx7F>nyUi<*i$v~7$0SP1CuPpdM& zBRA@MSRYSayDe`<^LbJkG=lgD-QIAw91WKePX?~T87TVizxvUh5+IP{Hn(`SdFzsq z6)b5blH+#6&zvg-fPl+9+0Xvh*LVqypJ_^OreSG@a+ki)MVt9m&J3YM>%|EWch$)` zyxhjZ19jA@+2^8l;Pwdx%YGLz-Oxc`v}w>KVySz~A+y~}{Fa4}SngQ7UuB-0i6`|p znz4it!uVOvhU8MK07IHCdqS{LV@d#nvD(rUQEv-mjPw=yqXBpz1Gl|8`UJp684 zT`){|06@BrO%H)jeNqtH!&t6~{7(H#EP-t{%W3^n#ScI~iK@waag_ZYG`56+qbCnT z(z>V2;x-g4`K}ML9pk5+IlQcZTfx`z>F@Fzox_VucRuQWNT+DpQg*?;B0HGuCqCtI zY5hq$a-JF@3~H)rWhcrxGx8m`R|*c6d011g$K51}iWEFKf44?v6Y%EFv-PlDRJ+zf zsj(^ke~;vJi`!ufAZNN)M5Iq;z5deE)4~C#K&5UBKp16W5ry^&3JgpO1x5y%jVadF z4eV)fco!ulyz1uWt#o(`VFM96+u{Fzo%+vQjK2i!A&jF@G*hq8y@gBGI>?V(1$L(z zGo04{tVc<>1E}Yo-$No;FCuhISybE$W6T?@DM*apLMhyh=b#jcekn|1QBm$JdwZHm z?d>7m=@@8eXb?G1PfxOl5%GhiRpIfl2o(&fpdMR!hKzoDy4vp=nYikbF7VMG;|zJn zZsZI34N$n3g~KgcrKhsL;wYx~m#Vm|6n(7F6w2^|P3z^o&pb?1un_-hMxgOc$AdIu z(7|H4MvD3lkL++OyWMXH#v(jBJ3Blu@Rr30zIIKmOB&~~D+pnfN372&+aHJY9)yyO z#>a4TygUd(!Fwp3KR&{IweDl92FytjQ_|XcwOFZS2o*927ew}iU z@swU(j=?jxOTyx7jnCMq@osRy+1i1rF!i3SgjM0|N*i5``Vnbnt<2Pe2G@F}qgQ*cqHS^}l9t3EQZA zvTh7!Z9Y1kJ|!@4Lig?J*uIr!nkJI%Hk3g}VX`)>OiJzkuvJ7kb{!1GQt}F0OTS6F z5?rA*cs{eaxfHEvk1Bq#?{9#uuXCWtejmVnAewiSVzQTXPMma0N)U%?7$5#zq|F-z zLanGP@;N#4p188`kE|S&4NiD%Q|(+svA)8PO37i-xPY@iXNkmFOB{;Gf(P47oc@fX zOg_Z)!^H+aOX(B*@X06qIxbkKdvUm`rB@4BbwelcretkBgFs%e$oHd)8$J2{dqSSy zK+lYkkOZ{F&-lA2aL7&KppN=|HG>@wb?d|uUv&*133L3`nyG`2h7e^v?_X}}S){q%>GjRK1wQ*BAQ|`5r;2!%9JdpG z*MqV7kGDyG_L%HDfnMA#PIs({8@1W>K(>>oeGE8xKya~DfOPU1^*f;T_?3TL)RU^@ zsS4k6Q2e|QJxJ-}s2Bp}LsESlSRm3}A7N7><_1b)RcR(Cj2}aRmd-bZryih;`z^fkg-=-P0j8r*tCLGw`L`W?Q&ZJg zxAI&52C{)rptB2C*%MhyTYGVPYs-X_ee>Wz^6S?zQ}|RdC;QbFKVS}0prl)UTg2|J; zZ-tJJjswnFckmN;71$$13_SQUjH~@PpjqMs&F|}*T&nkBWMmx8j{zgmow)$fu@2Yw ztE&{SBEo9p)Q0%cE#9f@NuA8&JeAtEM5|OAzAP^$IP4R(vNQ7&Vo8GBYHP3l&%bLt zi@nxRtpC!Hq!p6~P|kJFTSER?BxtLmWJq(Dz(rp@6>0RjjUNc)s!dbD;R+=pAnM_D ztD(!Br%t#No4J@8 zQPagAQlgFXZFr!9Ue0Pj-f#voKsZiRV4ky+&Gyj24Uz+`==}XA=;CD6dSFrFx${vz zVE1FR=N^yF`Izg44qsB6u&p*VCw)(rI&LuI8?In^v~3`6>Qkn5&G&MSG<-)@$KFvB zJO(%rT&58#u5JktUT83^ZxaQgYFlYK51+;=2Iq8(G8EP$Wd$5fya7;D_kH)wHbH)< zKOo}L1(7^oAEqHJ1M?LDXJ=%SJ?OT#;4_;~zdM1h`|MNFSMzt}&t|vFkGDwAmzXw} zZGT_t<~){}CaQinvF(jKw~vOi_?*>x)Gzgv!{?b^AY;SH$6_*`Z{Ox&{MdLpk8sE# z$nUFsc~G}$kNiYbnjc!8axd`Yd;jouKB8mqkTdJ)7fKM6FV$s2c+e~X1n=0hyzV!D z{B}7PUDYJ$_o>bx!~;+Auy-LAU)3b{Z>9P&*Mv|~4xyy*t@;+i7q@J`8|_h^!`-Y( z%@;r7df(BfW9*t~l~ZAqt(AV^_5=_tG&GdH?u@FcuCC4lh_Itaz+GEo`d(;q{5=?Y zZ^F0J1x9rz%M8Ts2mOFUEjVWuN%ghm7$BA zPb%KJ*(!JtTkN+ruH?28E>j%Ap;7d-@7btKj6TK*Pi9&Rhe${MTvm*^m|lX!EiVX& z>ijO5rFg*968A8KVk?yKfsf8BH2=(Z}3T4kKu|#X`wKK?@+#Ys8MBGOPMYwv@3yVJyub#2`s- zM)XNas;O${?vH+2NONIsCaVjOhJIsIi2B_ZcF!Im3l{A!r-BEFdbca&gJ>F>9`kc^ zHL{p}V55Nt0IsRq;=5{Ah}B>YoE!?Gy8ONb~`+qW0vJ3 z%TW0B#YOfWUEQx?qn7@6Z(f}Vo9nFSyxHr3bM4pnkEX*}Z$d8M)6}Vf7Cs|ZMv$-0 zA7?EbMBoWZX6z_n2Rp)3C9nz^ql!^SF!G6UypJ^bV#@RuEqOAGc4x4RY1NeS=nhzb zu#>ymPkG{3WUv$;Zh@+!nF2+3o_M@S=3ywzv)$EE0w zu1wS)VVpn%7&(w zH23;bCE;Nf&*wR7?(ssdY(9P$IgOd<{ZgTxf9$q@+n3jmmCO!7=8+iS*G|R-?Kzf2 zL9EzQ-OGYY8N{|Rm%3}Wjv_>;jBx2PhNNV*j|=L!@YfB!w|BFePrY9{<_V?YjmZa= z0-k;|s4t^Edv{EAATV<$yR0OfG(A~-Bqt;J`+%R8ftSUZxl~gSyy~&P7PGLhknl%D z?$ya*7?_coj?PsF84HYtit0_sW?%~p);&T+9-iZG;M7SZMX^Z3KvgNiOsy@`kxgWM zF$po~Hf8c1<3fhL|FhfyJ^UPihYlDHN>XWsY}H?~c0`I}EUdlj^cCMT^hVKro_L_I z<@IQL7Si{fO>x~^XEVk6dS!<-33Aq+&{(CSuDt$SDN^_#;-57BuqB4Zt6 z+J3msrtlEX8;EsPPB=Jni*(rh@~d&NV;gS$SAc&}igu~sFWCyhy<1(p=XH$v$zGUc@t&}yYj$LfH?x#?OJDyKs>osH#L7z+(M|9RmAG8?2AUsJfW(DiAo-U7hbn%1 zBTQEknBJ*G0jy9WL0L>$Bj4YFQV$Kv=AN_9rfAOSdX?TrDEdah{BOI=;Wt7daS3{K zu2fOD&PhhgBEG{WcHxD87iC`M8(mh{l(d|LheHlB5!m5mg%&BKeh;F%u|@~ z`TF|Ck+zNjpK1)~b#_sb=xkxR#A=!VaGe9YM)dZ%Q6{$VF&Nw!1V zhLOsFww!rwz=RdMpQB4(f?&{zGY|#R{G%_RbLWC7qZFJ?cM@=c`0;P=MB8u|1SPrZ z+Oz@-5E4?<2c1T`j0-z}0Pz;`iJ8-1(Tak+^0eCZb75K}*xLOOq4$~LyN3estW$3g z!r#NSc%ObHeJDQ`p+$S{7Ys2TZl#Z zp(6FGPJ%q`cg(W^!k_-w?W+6jbC$5lnPB3A{8e}0_<~$W5JxcVq|qVMVGQgFzwiRL z%*61DgYk+G-|vUeX)#CbF5I1y2>9z;^-MmasY;M0djcD;>*35Rk}l)>KzEhLFRZE0 z*EI?Yey<5zZ{M>Z)m5U&x7F>(i;G9S(BFS#LDK7vPAyH9A35=TXZPa2nUZE>_mGYD zGMw6ZTn)UN7NN_F{i6^|v11~^tGob-=(<|3SuGp=?dAIW%+2!yJ*mEjw|doFi=p@C z$D(6R#1`xNmzzVC2r%F;ykI9zZo17CjBN-@3i4eIgq>wnEMu<2i9VeXBf#Yb+{lF- zN(v3AuJE}6_ZP#yO@!SAZ}n#p?`6=@qum+$meng!stATWM4S%9 zu(qgLqsgH8?a_`eKb*9`vqs8C*sChIwkR%}UWy>hdznuVLy_F06U(a||AWMC;Pac` z9pj)uJYZ`j{o=}0eff6XZ*2c2&v%Qu+)r5nos<8N8fF zYBOw0XXSqWD%jvV`a3W*kdFTC6(suaW6;=bn40(U23-7!BH8nX+;bqxa#+qjv1P7! zUTDk5R@v`!ep8|q02uM0axb)Kcv$a%N6ox^&1RYR)t`vL2cx+nkf5r(afR>?U`+K{ zW^esa*L-oZjMVlVy=vQVTstn9#@c?a6XNG|9pa&I=w)-@i_=cschARF8+vqf^hpBh z_}S6jUBp0rdCrB?gjba;hqON2f@Pvu8$|nlD-MS&cHbjfb}AS!jTeMdqY`gy;A!_T zuc;+FN4;X0UqI#MA`0UlH48U-!Ste={evHn(>Ul;{eQ0x^uh#CG&4$Wmk8G$N*-Me zGAsS%f_u$R0nV-dW!PfQAb$UcRX{%^kLSR#OzuS1=2$wRFCpa=YbYy0Q5z&7gnB__ z7<-v|oHM+zghFDU@_boV=0O8WfD$I9ZZ- zoY)H1L*96skETczy+g#x9dw$Jb<&pSr;H%b^ziwWZTp>`=;$Ek#^)d${a( ze={sTbZE^Yr(NLziRM4eyX0`=;J5DI>zM<_$YQwEF5Y7MlOGNH-wHb#vA`D)wu$x`= ztjh_(c)gt6+6mF!xcqyeSoCX?IIK3Ms?ORu_p|m;KQY6?&fm*Y%-{`t-}QrKnZQ>U zKzSt6Ms()I``4pU77y+ds~)nIz1?Dzc!3k%M=ri~m1`~#Wx7B&M{x&+1Ry5J=9(dcVg;_QuszhpJDf zPwK9!6N_D=NqLImsjyO5463Kg=io*S)!PeH@YKC}v!zkR`Y2o|i#COJhVD45dJW*e zLD9~p19)^(vuZL84ZPl`q74q~Yb+AZG8~w!< zwVwFX{IIII;4FzlvVhbiy3hL3d01(INicf8_4V6z2O(CWXVxJ_fKk_>Cy{5yA4r^N zRS$yrDzBks*yP`r+c)0(wYM{LPtpAVZ8P>ke^nW%XoOOAQ=@pzKs-K2s>mKGm8{PT zidus8>1yJpSN5;DN7&LV1h7JB@5yOrj6wxoOLAaG8;OOIgo8%AHj(hw+tf+4#L);& z*AB+Ys=|WF>V#^QpcdRCuz*kh_jbhmV6;qD*d=1T&L?Et$Qg0$Bg*$#@$&tkIgXw@ zfm7B`6R_pv#E6=@Y3y4 zle{77+hIRLQRA;^B4h1R4Ut>RZ3bD*nO7ucsE}kJ;wNc)A^>+H4Zx@rK@_#jDgVSU zYAx%kX@8wTqzAs(aXo!@k$YhI)Ayludoq3k!b9E~M}3bJ6PTP8GMeK<&G20K6w%{p z6;n7A-XLLJF;-kM`-(Z3mWLcZJBQyh~nQ9u#_N97RSQAD8%L;o_5|01g@uC1vK6oTSgB+=2 z8GA1@Z;Ie>&yE^+Lih~^Z;>h}1L=G_LDUB zwGo5%vi4B9k`C7iQXJVHMzQlrgqg<^(wVEh_?dlUnNL5cXWplXE7hY8`N4;A;Q8%< zq+4+!;loOB!x&?O@WPFvKZ9Sp!l5+B^qpif>-gO2*DXGJEPefhOGX$M-)e8w?C_l~ zp0%5U1cCmp0nAtcfo&{x=|Ml-ra9ubJzxHzg> z<>fiR6G#-o5K5mL`>B($SQ%Y)OIXy6fXal=)ezy%vA2_gxXPCu=&W`SJq}1ufl>*# zk^Jc;3WWX>TH-gZ_mMI9zmA#rCdaa1&qDU&0P?$#f~|_!dI|FTpYqzqw!{GF*&A(2 za&r>}5H$Izkt!=I`2w{w*gfUR&>2>I4i2ov)8dAV^;xD|NAO!Xtav+km2_6xj_d- z8Sdc#FP~PBol7MA16>3|c9CYS-yp|^*35!f(#^?GRMR8RX3q; z-}Ri+v}!FrId2bqnr8Mes3T{NmV7)GXwawg9EE_=ALoRH8~#dy=^$|Q5HZ~7BD2&5 z@mfi1tD6hv%-0YTuu{e17=b3F5UA2ajfTKigSowc*H^0f4s+WZ#VT)eD+NKUJ9v#l+x5RnjDF!W!4zMaH3i@p;i-BVLja0%e7eOxZwtaFM zE)v5Y^|(P6ji9voXbcB6cyO%Yt$^V^CHEg5g@jE-3B?wjySeFd4x{Jq!x;cSZt<)` z3usQXuVdYGt~s|f%ias|A#`c!_~IvC3_6?QD|f<=DN5m!m(NBs?@>o{=USCRQBAMz zE~_w3M=GfX-iEZ@&WPBT?H9GaS)>w_Cx4amH}_A|&iy+uo~NP;6gT6jU*ku5HW0?} zh4Sga+F@0nWN6v}E-j_|WcEFT3)rM9)R?qc(XWPlJQj;|F$TjK^V#`U1AdeajQvu4;bWTj?T;aAE8uj*AZ{@zepvHd z$+bXPGIR*859XWqz-{3CMxnfI`NxiC-qrFDSYvWMthJ<}uY?)5Q(%xCA&tb{$$z(v z=pS>IeHlHN>1REbI_6&=om-;e_RIISjzKaZ(E~WPf1laC&IZNd)x&#GeppXB$mqNC zZv&Ejo^f3Irh%6D!a~B6zC+DTG86$68n7}l3JS^;0@>RA{k=7aMitChTjv5$Mf3Kn zQskTTk8U!VOVw31;jn~LHy?7mW^AKF{y2r{Z)P3^S(FoHYPwwH$6nZIjP;@ zKWJ|E>*MiRDTZwQP(cf&y3{;5IQ(FN^&1hMVPWD=nD=uFH}vcLQf!`jUs_^E!j|RqK$_X#J#VT)$c87iso8WHU`UOFTJsA#yMiV&`knYp4o* zG5qws9E}=Uf@ZCa93M*5EEH=<&Uls07=O)TACqRCq9wCS6UxIFVBDM2fb`#r1yOHO z67>}ARtZzX{Sbv5-mefE5;(9PMVg;`QJ|bnll3;7IUMKcS}p;Y?F_*2WJ63sOX_jQVy3gOR3byBYFyzd^p#jVXf-Q7m33k&5YJ-&6GKwzIy z@x1*w%tGwv&!2tc=WV??U32Y8S%Ibu{zJG}u~+UyKq}T}biJFYuL;Fb<;cx5qD|k} zzc@3jRyxz(jSAm(p&(-veG*L`!R88=?jz6TI(Y5DI)rk1Hz8qE{HEz{kq5>nevVCcXn%9wO9D;*=6e{9l4t*3{87`U!YoR`hU!V4)u)W&Dj_&nl)` z4-N_*ANS9D?E8TCK|gB-Ma^G-k6J->a;jt}E(@zIj^E}Z+w{1I zlT`iu9qHdj2CHs=S>g{i{F8a%3)zYO5yBVqqoO;t^OSns-&bS#c`pwpSP0A>p8v5( z=rl1yz@qmCa*jWk;ym+2^KS8T1s+Jl#E6!hk+1o zlZNm}?@%z+VFvE1g8b+Ffc41@_yI2Dwc8sO!%FWD?k~o+emWNF#%@YVN&>cBW%fO; zo5FR>nAQl!V3l`bL@1p&gIN|i$8Pp=*FS#9b$!O+yeX(SFA*wf<8?A@Ui*Wv%;6Wd zZ86&H&(0h%u{&vr%tFi5EDJA|rKBbF4^I#sE$^nJ7HlHMbsO1=yu0ost0e;Aw$r8b zNkxHE`iGuBmAPp@yl49BH6>adEwuU0n~Gyve1RxyYr|Miud=qLCSymiy{dmBhBT5# zd)WeTL((!B9vVt^d_`dNA7HDM@$Fpxs-=x4*74Q+s{9F{{rPyVU43z%#E*FjteGunihi`Uk zCG185iC*thKav>g?d)Ij{nQdRz-^D|40`Mq!<#R1NW>brH`IirO#Gd~PxGWjL+5(p zqM9aw0j-K>sfv58pgg7;%m5vX=lH2({Zk;uM2z^LusWb+$Bc`M-s6ep1Xw-?Is3w-ERV-zqyRDDEF@JJ_OB0pGtlBR6KfPK((a)jD0-x?MKB#SS|+;-=ul6 zd;$31((jzBjZ>ra)@w2cwmWZC+;B=PwxKoGn`nk< z86!B%socwP(|S|f(rE9Pe_B{XaA4EKQX7ElZb7dOBy)d%j;8&lNgu{(PPOzkLH2d7 z6-csVP2seLybzX*_y4P-#6!*BC=ZAsyqv9tY~OD`xL?h^Y5MK&D&^r95YUA`7EW?r zJupxnQ3quh=cf<9k^;i|ke6J~j&E5h42e*HDH6DhKG?FWq*;0F&2V=5E+*r!;1Yv7 zkq%!KLqHNwlCoV8X^VQx(aXQ{bVcq;39Pp>Z$0!l!DL4%!I_a;x~Bw z{`8vgk`##%pz_5O#}5t0H{maGuUSM%2}&=EN&kL7Q7k2>nCYAD^ek?aT1MU;lmt;O zrzjTUkb3KIi}sHfm+#i+6C92^?tMtH@ar$WL?4pm7w|3qWOUnLI{E$xX2yhlA;;cuw zT~fh#D+)qfU?LR!uDoRz;nBP3i!Lj(raJc+6&v^;79OR#kj-w~ z9T^#^hR8@QF+k1w%85XZn+9mrh(nG%uHNW3=W+QzHfHO+$}XTN@cO0m&^MoOw~i=N(zrF?n266k+-2+O{MD(QjuZ;= z`p7h;pv|RVGUxXQU@XfARO=ChoW7a;uacy2foo&}d!o@MD96*`YI~PS&v~;ZdBy$M zFEte&_t+mJdXF+3uv9R>Nb&;EB`6*|Eqi%sF8RCJPT3|YL9nlN9eP`mW7`9gJW74;#af=n#6bTOuGIi zwMVBqdjvjo3Gh4{>uYP7KsHOQ1zIfU=IYr;)a+EEn53WHPKreP0e;s_cOrJT za6mMgO@&<_9)@tlD>j-R_W$mYLF(M_$Cwi^@wEr z+r{6u7pm9np>!wFJPz@TY|77K+d|S8BJb0OJFthUKwI> zvtmTmnR0yit@yYUQeC5HHw#GyUu+gnSW08KR)Lc#s=ra4ZdJBboaUN-d0QNXW3khU zzyPH102ndvc2-_S2N{pOy}au`Yl>^@ zJF|H@$6vYNc_YA+dVafC3>l1Uc?lFZj@fGH+_in69`u+j9tE)8=JrOB5VtO|NS=Eq zxXj%9>V_?8fQZuCPlX|c3uwJV)YQ~AnN!_<^c(-w_AYn3M@VtCU6dFR%KR#S$TPPO zg`_M?rs4ARbp=6M^uHO=2`L;6;{-1?LgXilk%h3iK@qd~V|zRa8oIxHj)(EPLD72Q zO8oHpfOxEsQ8xtI597c)q63UIco0<~wsWG>{@*A=EkAQO`I!g$O8Ei#%gvRQF$B&N zaBP;W*!daG!NXbcxS7s&UU0P1|+4>1dG8ypvq*EhbStmg$uF;l=jJ;Di4j zMr5l0X_DjP#*iG^2hFnv^1{KZs$F4J`VN#S2imGsHeCLqS-xee$nP?tt0yT0L^am# zFpd(kNbAqP1+))E&)Wd6poe#x#_VR!8cA(kftD!v>RNlUX@rfkK8Dp0m2yUiw!11D z`{xy*W)H@^AP1!f`9;BY#Vr!39oOw?aC(<2@!x(fkUFti;eVbxo(G+Ml;qS0q3g?CnYa{29IQBUBUr z>%Tgn`PtIBugy00k0+6_^}(^Rj$0GXu*v_d;8YXEN>X-Qi0E%tm*9~xm6^m{DHpKyX3UYSEgo=_Z|l%-e+ZZbMM{yCBNl8(F6UE|H z&z@QYAc`fJZg5L?%-U3~REQWGxNSS-&YL!v#Ytm{4)JVuxpW2FazrxfP9%#taHy`nJv&qR%5loU!txXF+0)|}5NH8z0=VqiXv)T< zA>K3#l#o;iC4I>j&KT4~l2@kZnAC?;D0oMU%uvBW-JkBOXJXn8UuV#$=mjM2L?s)d zP}N}E<^-8hsIwQKThxTjlvjF_J_R% zDx#J>2o>eS;5I5|g{AAO|^>pVyFw*GCjt*ff@As@!P|4w$j9#gF_O2isXp z55&)RTZ{bH30CU#R15>)Bwmb;jLhX<6n%m5wk@qHnUZTge!t=MZ&K1>~t>E6`pvS&y()k>Bx>Vhf6y@>oY zLxgr}pvYaVgz70lWQzL&WO(46awKR}?wcN6Bf(yHhqP+=wUPmoaPOcuHCXhF*`kXM z;ju^4ppi^2%3u3!RgUtP+)I%Jc%1Nhd^DxH|DA&PZH{qNLx$`j#ga#M>K8)nZDY9G#qkWJ6T`$Ly7+ zyTR@PJ`>B!eu{(tWYS|}HnaJBJ#si|iohes1_=cXc3SxQ65aw{#$3qC(|^?gAWRTe z>-Ei2Gb;FTV{AK~>LV6K=4ESoXlx{8$?G=YaDK!*l$rgoc(g5LQ-YZpYzmC!yg%RZ ztb~@n0K~DT29Z%`L1E#a?4Ca(Z~^ne3E#7|ioKSFWtX#KUuMl)jGm+J<^)^8Xhja( z+_V|HvKA{R#Se^DGVqG_JA9fe(%bX1suuXps(A>a_Bbc_1fNv%n`$zCCyS@{s1~Of zu*IV19;NI}R{r6xn|hAsM&}( zalJ_37#V@}nl38|y$5U%jHtBGdhxS;O8@q~fmU+?z+aqWyITo|MjZ!62f=O7b)KO4 zCBxhyGg6)J2lK)w>=fq&d%5a3DHY%)ixt^9b-lKQVgD6{8)qHTNv7P7OKHx5dhar~ z#(}@2yH^7L%3)y1eM2yG)C(3UGf*5x2-)Y3MfrlqhHcD(dBbp!eMgO`AdmoG^bOE1 zNzA|x;tF!A6V^ug01V4p(nyBlL6F;8SA|goLwEZ!X%vGV(YQ{iFTD*tl8$sMXB|2Q zbx(PF8hf*hP<8+GhMLMef4bd6{`0jCyxQb|Ir|wxSo1F5Ghs=UJG~(b}(TEj4`PuZ;qJud5bz=#EcycSN zJBwWHui{)}Hz2L0qTC=%IT=fr1&T7jG=8sTvf!DJbXjub?v{XhtqqU=YLjKj2B+fd z1J%C93zW4|Tp{Uh!)I*-57B3WV&N9{gkEbOa%JckaPr3S&(YSxul=y9{V;Q_mTIa3 zpoNlOB-=%i+io2Xh}vf_68vmzKveeMls(?_3m<2%cO^aa-c@+hf20kU8Z7oWy?feX&35Ld z2~GL&7`Oi=hpNavE$@G(0=T4jj&5!jm>3uoxLlSlE;5#u9t*RLYWR!5%3z7(o>{rClmGIZ;i-~26 z`!kEc5c)~kmO66d3OwNh@N6tj!r>9k#o5OT*hicUih{*7Uat5O;fKU8Z5r0T*`B%i zKj750cl7;2H-6sOC<3YqtgAh*=;~_5YY>k1>+F(5MYDX}|UhgPANUWyD@7cj;vZ>4Vqd z{Zdpv;qZF zNJe4whhRQL_oxDEPa7ITMxVmQSJJJe)krfOoq$PRe&)$?gI(k3%zKeGi}CMn-s9uw2<((mx6g^ zE00!2l!bp@!Dj}d8TeUQyF6OUS6*=6Hb%!xPjLTjRj3A*%^`tj_xFql76zKs_tq$+ z{KD&CrV50vxppf-aq0H0Jg&cv1e$*-!_vvBBY9IT z&Pg8|Z-mgcbf`&I$f5hP>o@8nNEkC$Zo&GLIH=KRg&`CE z4mwfW+jkW^5PwDL=!q_#B8{Q2(EPvNjNThJdQ}fVNhU0)#PRKiwykWOqAsvVuU0nFHVVH|E-oQ z|BW9(7YO<$@?k=cY~8==*N;|(p4`UmwS+KxU=UHw$j6uz_7d!j|xTqUR^T%;u0zirB6wjB=f-|3lc1ppUJ||E-Qa z9@XS6aRA1@>6BXE{Xw9+l4fn%Zpbe!VqZ^gp+-H6-ee=M|VQRK;FPn0pNplAw(fe;e z+DFD_R^it(|N4oym{H2PHz$mjAt)0^(*H8LyPXyRD-MggV14~Hr3sJAVadD9J`bYS znw(+iWcH_DRIcY_BUIQWFLAT&cjZm4ho83Kxz=bccCK=-B?~Gu=2}8v@-Hz!%byig zo1}9$v3^zVg!vTnTtK8PPe_8KQQX;3-dKBVwrJ<=2c(-fH#MaV;Tr3jLxFrWN?0%# z;Rtv7Aw#E()U12)MbT^uhEnJ@1sInR_eAWJg)l(jE+JN;APw1v9?jCPCZ8XE zs<4J$U{r@bpg8tlV}ivC;o3x>k>9X?m>_4w{;8#(HzY1o-2K_R+T^_|W<`RJgLm9al=4_!v-JlP9`i`dd5&6$?v(@mT-=-9ijB z#sYwY_43e=CD66yEPJxD)#619(v*Bh&m{gD%eKWVeN<4$g-D>9iKGC)hi#7bE6QLn zO=RfARfOK#w|m_9{hB7bat8SQem=e|Azv^lsFFioPO}JjM;zXSZNHh2gUfzmW-k3V zsMHE(Ezi`RYuPWt(W7@N`9_E{SqFWNCSe$cu3of}nuOO#`;bhBe1z{c+eT#1R@m$5WQH8 z&UdBAmNFZOG4TTh|6LV9#yD+!2h9~T5@9_6)f(@@-V3~)|0_?4VATs_Pt zhDP|E1cYo{D{Kr;%8^Mh)h~%jghXkCG>*W`t<V-0`-`@tFGdLcY7=f|MT2eY>KuwbLc*+OSR8rzX~*~09_fVa!u068~V zJw8SIJ1_^YL;e^)ELljJnBd;QmDEKbEF^dxaXJ0O^^H=7lZ&b{O15`Rwz^MN< zBSq^AMF(2dHhs;{PZOU$JJ4hiFltsfI@jo0zq_{Z(Gp#?LHb^fjzq$?U5cTC4DgZv zQxHm*RsSu7z|Z_xiaJCtb!GT(Ora^!BBbO344!YgySr~O5OUo;43+cpDq1~uX|$s7 zaQ~_QK@8*NM#ds6yu8`9wY91d|7azg@@1XliH$ve7kV+vpg z_9UCoLK6Drs9FRulX@WI7FusH4AHGC+ZBwiuYlim9R)2cEHDEc!7MTXSKafKChJ-0 zGfiuLLFyq>I(OIMwjCgZL;>r3vtBp*d0xfRPRH#yV*>18vF?v?*2$AV1Ds|l-0o$j z2jPE+W1}g3x`;!ie!{aN`HOcm#!NQ3`5rXNZHaVB3~tN{AoE}u*l;9XHxeZMUD9K`eb3f(^Y^23HS^O5jmR=%Ia!~@gZ=+tc72K$$=!wk{9z?ha1aX3zp$Kg|B!i z+9zjlrNl~n64&@|x{b7yLTeq#cS#`D?{OqE=1(2853KmuhO7k*APN#}9%_Y=|8GA< z@15Qj5JIv_>i!1^oyBwgzXl3dIBQr&Ms(%+_LdUZNx@)>@$sle9j*<`pMieqzY?*Q zK3O^|%gxnoZs%vWMg8+jPEM|mxwHg2jy8WEE6tPO@>A_G#w_ZqVELP1zU#Q`QhrTp zZ*)$p8AMM2XUR7h^7%azDp`69^-WuZ+{ImCD&#`ch~4vM;TU<-$d6R`cTE>Nj;wF^ z9twL@EV6riWEl*ZlhM1X+Gs0|bEQj;IM~_WR6l2H13q_3(QAD{cgEH%Ki~IPz8y-_J(v?Vcl_>Q?O&9a`sb8z&i{CDOJ1g7v-9*BcDfrH38;c;4ty>sxI=QIAYQ7R=N-D*<+`)AEXhx>h!_VpS2Z8?fXM1+%vlDyGgqK)*T_ z%_5S

    6+S8H7z9VWI89S!GYg&bguvcur3WxnZpyo-@^)%2Yq;f0%y;Sdg-WuM+K_ zt(Z_!-OZepDC-mLyK=-3>fKA-N1bIk>@cwm9ZGbIg{kyfCZly7t3H<=JUAPz7b=_> zqv{@Na*L$!H*ng#xS8k-QDpBPr10=6+QSgEyTZFj~@wq>(CisJ|aRADB26 z@85Nh`!{%!iTsZim6SD^#Q5vVSKwY%*=K-bgZ}>p0$#mV;0`^9!C<>GU`A(WXTVc0 z?f9f4Zn)zgL=8OUp$y3>+uJi~ZfOzt+4E&-DH~fRnoK(+`JgYOK?oU>^8-$F-!LKM&m@_|#Y z8^T23{wAcFV4~#M>qcxGWDR%>7sR0gY7fy->AG~TM1m6({lmzRY3&+X1dVyylJnrn(q{^dkyQ{A2 zR{wi~co7j1EoMDW18K^Up*tCY7;8aN7e%-icU9&HqPo@ZJhh!k(<1;NuK(psP5?J{ zMD;wL4-kP>?cWdY@_`fqfC_zVCl@z~N3Y)6`Z9{917#DL{06DuYr`=WCd(8B<80B9 zeopS|rEhV&2H1;=*$L;CWA0HE4NDOW_k8xKjozG@5=OtWQucE)a+p{2?2){=d<+?|FNR@d@^HpUlNEz)JUYzR9)_b(( zMGk!51hKv16}9Bm_pP!FIj5$rymm-k`_4=nS-qYeX&UExzrL@vxMNc(w{^*gK3dSvwaz%d!4u%pFf_MP%k4?I){`GqyMNr_% ztdU~Da#pjK-O0G;@rv%uOvPCN>*@>C9cC1=nfia(&+)q!BMF^lJ-iSprCy$PfT0h=h=>M{+?Zr-nBeJb2qwce| z`#9fqq`0MtN@eTtXkTee9!bw7vpLL@Erkp0W1MeW@!QhYCT%NEeA21_i-F|ay03|K zMsiCigbm#3P2{~r{$QezxcG70@=7fZ;QPd|kCDIi4#zIB%TOWpHPod)-oK z9;^Yr-sd{wj@K4&jfknds|f z+_G;_T9@KwE=D0JqM&3MzL>TVG+<_XG$Vd7PX-T-b! zfTtvG)u^?5E%sPifcvDiu(?OB)%>p@pt*O#ZiLjsW3p}cawD?6N8c{_*w@#mWneWF zfw0#)8eaYRwc*vrmNNN-9oRW8vssxYK-?HlkdN+~WAg#28WJd= zWh|wzQ(JTv%lQg?{UZLEmg}I&zx@0v%*4F`xvo4w{lnWfm_~EU2eo8hTkZeI#MFou z=pe{wBXu%D6Pp?zDk6Wa8@t6J$_x<*N2FbMZiaoa)yWCN$F;`BmB9q$0W*oXuA%zC zY&SN+exmQR!PL5qLbz2D&IGan)bf(vu^S-~@c0|ya8RrnLsKGD%3W|A90z`-G(OH3 z3KrX`U}Y1o$oc2L;rLssAOEJjs8zW2s%8P~#0R7ciMsHFY^3wD^gM~V2wV-vAgUCirCPyA@J>x4+FPUYsJ6jcM?FRb6p28@6Tl4emeaj^6vY zt-d0+w(hsWaJ@;_uY3Qv5&Zw`y@34?yQqnRdUk)WsdaOUS8-JpJ%B2+CTvSfGofW7 z`xf8*C0~KB(-_%w2&}~lNyC){#@iK{cq$dEydZGGH7?s+F(PA>yb_3B_bK@~wqW!d z!Evm-|IxjT?@@7aRLu#hQNL(}w2Tfj5Xu3?6=r3wq9Gy@$QUS~rKL?Sad)Z0epOV5 zsq(VY9WoK~w&=ZwJBU7<Yr%kJ?oHTI^`G&M>*#hDg)2ntuU4fVxvHthKN_?Gc#54eVycgH4!Y|!%=L(YzseTiXVXUv1x$2_|RZ_F{B$BWn?$|(EZL;Hmq3k zor|@6h=M{auxnl4d*spm3D1V^&}k7(^D)QAxTm}BIx|EjhJJ^C9{rH3t_tJecBg2@ z1Or`ehnf`>9V$dUL}7ko+At1_i$`RdY7pqd5quqsLOB)wEK3hB$v`;)+!D?*s8g>i zye1Kjn!>bGNXg zA&$qlyk|-}UX=8kHq)4W{89XxHISN4{utO_9x_8km0&^!k!Yvgh{s^Fl5z?Zb zk-^k<&xKo-?$nUbOnaEPdy*VG(P5(3oVx)KHoCbA;p5*33km%O z##qfB)q5>h*9!MMY+O>nxG$byG)YX=AINt6VeG0w1!1#nQL2;+mDw4Qe`di6BYi5(ybibKc63~*VjMqovdRiGvmL} zHChW?i^Q$b7s&YdF=c8?1`GyI2)O;&aG72zBC>k4tMT*s_Jw4PZ7%P}&p;ZKX-x&3 zR3h`$Q(zQ+iq_9d9Q{e&5-u(Ye*BcPWt}}Vi+1ts_jX6{?G-4!C#w1aXDqyFFxSGF z-hj5-Rk0<<@@0TkYOWwJZxuk%HcX9;Yap$~!WX$u5}fm%ic&4Y$tk^VnHSn)Fn$p_Y*10i;GPwU`f&yeiQb_kU`RJZt@kxXUm`!4x)N^ow1am zRCWC3*`#&Y9G$VBHwy(?GA2oSE?M6P00(UJa;`Tn$8Rgyzoqp`gK?9I;vz+dnj)d- zfaAZjJj+v+m!qjhWuIwBD(5?CP)0`D(>|uc<>xe8PmbBIzcUSC`I)!rX@Rl~t_LHM zVeFiHzP_k9J~;`>W;2`@Am*}kvr~}^Q2KX-SAh4qeUcR)>Vjx8yqvx1|BkShyTW!z zSHmlI6s3x2mUT!i*Rgg;tSsMLa0kKLKKtx7vEd&k3CowatrY~~iH2I(a-sMyhNCf< z)L*gOlMAxasDr2oid*Sv3BNtlb_%mAyWydnm+_|nB=n8RC4+byAy$!; z0ApBl5|}*bMA4=2<+`}x%S6#7@#C&Ris9nleaZlT*))p;JUCWfOoFx)QCW<;O&NB- z4RsfRP2K|lSD{Lf2rD*N^eE-@AIP2XpDnk4e~$shjoX?$ydsl9VwgP-f9V~erDPls z%Q7pxdli&KG~*HWaI_2rRJLCF>B)wz+A?lFAGdg4D7eiQ)L&P$`%}50ZBwFP#=E<8 zo@Ln`O%+MlsmJ$z~^4APpR{huXSOy;utOd`l;~YO0GB4@z+j3P25_(8~I? zd}a3Mw&>nNxWFDz;H>x+Rj=p2Xc#df;k!Er3q70;poFsJ!#_p--WJC``*GD=Ipx+j z`mjCrXW)}Hw@)$r#w*$%yE7eTZ!Z)iR1?iA7ZH=w^*1H*p5DLP9rrbF|1bm#{u62q z7k&P4RSOD92pJ^q-**0l&=>rkfVS_Yt4pHkf3Vp_@HIlNy6m4%UqP_6dN* z<@RF!U!zubso4Z*h$g;&_nHJCaWNCd^yn{9sk79@5LB3>X6fS5NYvq9m!Dfd_-{Tm zh=mXz$pQ-bCL|Vr!D~53>LAU?SS5eS@L2h{p!+7lm?1prGWs`RWm|JE#7LrlN8p)( z0LbhkJMUn-&Y<)HW9m8s95qYJPno#}lB=tWq?%UO4oJ$d6;w2*sgaQ&0 zN(8Pn)JDNu!1d`TAd!|qFbUYs9>F~V=ApzL=1nQU&~X95c#-&O^=#?NMdlss=rmD9 z@${dM{y$mA((-Z($ypo>cKgzujJY8tZ9Xl3n9TlJW^CZ@Hu{4MK>Dpxvs?#Q;xRk! zeqVv41WK3|z6&`LSw!D;JVsAZ0*1)#4^1rz0s^$Sh=`;gH05_cf-d^*Bypu#qp*<~ zqLQiMBIt8|h29mt&F=fMX`=&8MgMjkrsxY8WBJ+oa^5{3yy)pQFWx*@puF>d5(^To z!EbMLzdfQ_t5xy5lm^1SkZV)jGJ2efH#-rF+9r&8FqCASOIMeMc$fJz4@BhWt(FCU zldCaWzo_ynbgiRpV00!%)n^KBdIXcOIe2t?=FRSN4M{O3)6AIK*o%DHhU*_hw8lJ|em+pDhs{+c@cUFq^%`VAf2 zTR{w?+}0vOr20}DO!3zFxAB=qBjZ-wLMt3h`V+o)$ep2($MqJN7~G?hhj{H4tR9L_ zwg!bfkU=4m2v9U)EcDbBKh#v11>{))gp>X<9p=W_A;ly*1V(*7gSQD{_7(z$9n`7l zQo5vA+&JkRJOp@_d1>ZXdDH#`ea`$@Gv?0kF90WxqG7)`;FdqO5 z_6($sM4b_N3GO~_FE~o$lqfGK3eK&Fy#FS11`hrEuGt+nvei;X83J{ox;uI6JDscX zqXdbuSBVI7AeW1zX){m3=l&J$ZB>F}Q zk?l)y{{diyGW;Y>0(}BWaCCb^OoRW}-0UsHd!O*6H2Io`UA(XTVP_Xg_mAX5LxZr^ z$?>gt{Zkyze_KSr`GcIOUlow4x(u^!p2Oj#78LwzLFN&Z7ZxebK@7gy9#^)J=8VC6 zZ>4lp->us?s%{nJ&0-NA+(cFgskJnf{%q&x9r^LWR#qQoeuhqsm=mwnwtc{hz#zW}AT*#Gw3 zrBw#^q@3UwaG|btJkurH1k-oQZ#`m%T%NhXbKD0$hG5+hXCC3^rq+2LzS;;FBn+XC zWyoeaKQ%*5zHiRn+k0#K($H5*agL3A`-Oty5=#OeA_>a*xGLB@WWI>&z<6wu{Ni7%Sq1`6MfcwRo^|JoWN88<#P=<)woW?tynO z#s$d)r1`;Z-~upwxIMY((TTuu#{%(yj6j(*NSO8AKKSq?^hg-xj=EGYvxmEUGf4OF z>pm4fK#C<8%D_{+aI-RIgxJWBy?t*h$9*vaMDMTG=lNTI&!03{Vn+iFN+8|y=_28W z^~gW{u)f4Q;vcbAg@up8jXmkkwd_8j<_I}LzqdMR_y1qxf|%Z@{F;xiZESeBRDlCe zOG`=Dl--08*t2SxzhJ>LV1pWJH{_g_oV9K$B4!5{MD?*ez0erLUIY`~O&4co(gNP~ zr8_&q{Njkh%-~cGu|CZwh4Q)`zl4ek8)IM)!Xk&gAE->|3jbq{7xnpBxe&ybSR4=74UYCF=&D{Q}h1+N#)=v1AGnQom1BxFAN5 zE44lPwih`N#Z?4yn;ctPqX7|_bYgOtUPg0FN|V*6zWms(2m9~swVNW5>hBfW8|N-6 zDqF?}Y?JX($1}KIwGNA9N#SN&)=Y6!W>y5xg7Q*v6%J@=z_@E%86f&@zKhoHFmKPC zBX?iRYmH4RsQ#?P(MOx9$8LgNvkw8~?EEx_(SJaGMAMPLR*V1qM_)mb9k5$kZFnEC ztNQc=QIrw0D@c0x?q(PlP?qxXRZh1u3pak0R-Ool@Q!fx{M42!vKUi<=;0{=gBI?I00gqn@(<0NclHM1BIEiZC>}iw z_jg=I;obpUR{Xwb=GOPjsWUQEidsgQRd|)qS8{GpRF^7gOg;Bb>GdW!O#}@R7g7O zoY~elpE6-hJ%+ExUR#FW{&57yz!)Rce5P1Ovo#ZrA!t6?0Z%#Pdv-&txOp#QcFz(g z6EdKMS&yX*nBf=jGl%0duiUop!zDGlmk@{U?|W~GbvQW>+@0lk-%@PVr|rlBE8tCh zji#!)o^x_B`wNsGWp_TE?S+0n0`@9HXA+w{&ySCWNPl_z%|G@L5PnGTPyfHM1JT_G zb8q<=kgy2sA7tyujG*915|OqRL*TaB+QOP8{gtNl!06~!>^GN;SSehnsLI8;xz5UJ zre&e>^%;^V?=r%Xm7UjpGt<*Or#3dUuO3Gh7BT^3rJ(7-e{q_-YWa)K5w~Oe&u{zPnE%4tNGpr-(ZSB>+$!W?_9s?PfX@; zFY87Ah-^Dy_k^qmWav)!AHHC2FA}lmo%Nf^j`BBHW z!%8v<_v;gql3bJ(744OklpKbY13OjliHPWaOXAI7*`d`|D~JHoI|(n?AHL>vj-v}( zb%}63)*ajmgL5B3z=q5tS=h@EdUnEvI|-Q#U0|GNJ*;F1<^;`c)uFw9e)Fv-17aWz zpF4}feO7L$CpG^!Dg#1|@_mrJ8I_a%apkqAQoSt;m47vcxI#sy;KRH#vgFQ9`Ox+Z zN5JpBw5B{MHYfwzaDu(k+O{h~t4q2-ho@i8{QUel5Io3#+tu@BRdt9aCs3UapjNlB zC{0+}IH*VeiTAd5%R=NDqF}_fmv;})@xffwwbgp#ke`_y*`qqx2O2U1>X}*`P6zpz zjy3)f^e1c0VVvW`uRBp-NUb*HvCS2XTcIH#WjUbEKs1rH_tSCafVGenW)+SvQblzLPn}lgs^cmz=(PTe z9&6J{Qb4+MKpN?kyxVinxtD+b`kH$A5j@EUjs0iF zPIA$EwQ}d(-uxjdii}I_zlTmXqlbx2FWK-?aB}4cl(n??3dhFwAk@@d25Z|2Sy?3H zbQy|ORgH;h2J(OZPU7d#MC5cO^My}Ne^x6jwED12)zj0Hn31vI{AWg}yDn6kI4mc% zF1>506`NLfO@xauXYfe>X|+R;ZI+)npL66}_dD1RgXiQ43ci@t@!`9{%u4dpJE!GA zai(`oLC=lZW?bz+fV5k= z79-W%@P);C{rR1G5#PwHPQHMr?G2UdXm_W`(Cysw<*`KzhLpO@fIG}T3_!I+ENA)e zVKf13%7Wv(1NzQ=7bi2E1s^XIuvU=Pi)vF~{34)ATF=curSd55wT)slH#_^&r0ncr zO$3t?o-Q^L21M>kdHqw@gFu|(M)bvYv2C^A_-vHwnQ)XSq%&f}qV29ZEG_4c;&uYHzJikb2|PhT-Q;jYLh#nkw_H=+=rnH<~Z}KsQ_Xp{?K>*VTDl;f&AR zgWvm3QZ)A(yX{97hWDzzO=pU$F5h}TnY@$9IyTsqEpe)67`V(|R~qu*3qJ|4eNyB7 z>Lj~+;}>?nk+u&{u$IqPvNZR}4bi;?&Dj}^_M{FfI#j#@wKH0tP`|GOmyZh1H(5H; zr{KxH<+DkX$(x!08~>~Knh+IUr6-Ej?|z)hlM=pPU;Frdg`DkGjV|kC*xLCU)KhsR zacjEIoGk*e{Qh2_JNAc6ndyiuQXf>SrTwX11X*;j=C^4Yt+TaUZV1#}RncV|9FdCYD>J z=GTe{627zOqV?D%OG|ULLY~cp#-G05g^igcp7nLW78v&*fa^if^7+?HHa|#|zJbLd z9i9Xi5pH|iBL6B26avOSB>$(dntv)!`)+GM;L>O3Np4r5d^X-w4`y6rrclwBxdTZM z!BEW{c}6W}Y@RhlsHhpZ5&~o!;EGG5Vptaa3*LxDezeZcA6X8tBm~k8SNKVlc1b2z zSOUpuL64osIyo7C^NJ}i#@b-HQx|w=2eEx`NDr}^i(xL6g5!k0{Q$>-F0V9!U@Hj% zPt3qR`D21mWv1Ftem!u9r-O$4ycbx$3HC?f0WR>5tTqMy{LzN}B`HaV=U$ZYez#t& zYUDHbS$iKD0!cxnu7RW#eAnMpG*+k2w(%8_WIgl(vI^>|*B?zXWLwqYk-!F`Wc*Bl zG2+X(#6P*TAFuRqMbi#0Sh*N8RgF+t`uOnnO>{;?aSnOqYMQd!eDP-wMLQs!G0s#>c4(hlUku8W{mu)`^;O9asj< z?zBK3>4QR&HpE6mC_WMu-Nw?eE^K3@`320%P0pWCxW7}s=J6>9bDvo3%=6vu{jkY( z5#~F2$zpNOYeg29lVxv5;3A7ml7<{$F-JOp32=QBBbC%h(zMZXR=d}#aEwLJhx4l4#+Aa+u@sR8tTx8I9+9@QS)wt2 z<8sP|srv=za92X8OqIOvA3Ucj2VK(uR=hBOQ9qJa$raknSkj7sN1qvdS23G*JE~4c z6K79{sK#gC)0LzA_V;i-{D9_x&@aNrrl@V{tu1y^g;m@)o5;w>S0%k%nh4>qvUnl@ zGGFwc@B#zMapAycd&BYfY$_SWJn=v{#2cb~Dpngxz=5Jx9nG6p>xr?I%DU0q9gS8u zyz9ShTsKR2b#nK}V=`-}p)hRjOX1a?A)7Ux675%%-;cXFzIob|dpLp5FscU)#~JTUS2S&Pdu|8L8X z^Mx%`8IMdKN!8&4J<|7%T|0+6zKO1169pq6JhB*;=#b_pF1!Vn?vU0!=kM<;9|9Wl zN9U?J6uF@_!iC9{MR$|3<5q0@dF&*+wj}|gd>(kLtcKQ)L|+G#3uf_vNv1ZU`lg(5 zW(@@_G(tYLCXg4OJJ&Or3fNQjVQBmqXF&U#Ys=C>A87{7*!l0%F^98Gr4&8(#Jpuz zuK+~4#IQ9kQCBc&t6PHjYf$J%a)#DG&eK5hE3*$zz}%Mq+|p=7=t5OcFh#00h*OY3 zke_?mr`jIA`q!GvcYkRT{MH|7S&0?YFV3Nr$f)q} zvwxAMBT6+$f%K7BJte4NG6(<@PYMj^qbUdoZu*eGHCsw9HqziT_2c)Zej@0~~Hj*fEwruJ7=#?a|d zEMd+nw_TFCnr&hX_Wl76n3)-|{bwhpzkjWXS30RC#pEwQl%_w!7f}-g>+Prai|H3MYdiOiSiF??>rn; ztfv31R>vN%%skbixfzDuW~K4Emw56VsdJWGZ*Q z<>FMClkdxzgSmf-Wcq$y^_psS8_K?h>U!GAKQ$j#;s5x}wFcHSZwKwpb>}W-d~WF? zT_W-tip2jbBX20acC^Ox`<{rA+>mp;)QUc0ZX}~eRONlp5ki5RNgk3 z0paG&$noaR(_h!hbXrnhAEyBT{{?a*jb&+`JN2|rmsDJV>{iXzcH*tPCoipjrz^Y! z!V#10@~%vQ_c*{k0ikTv+aufa(Es`M%ERCqS!4Pr`%cefr{=TrYpH^EiBJ2aHe@a- z=*o~Q?-2nc`-nPSGW-GIrv}wU+}P%>a@!8+!C$}La*4->VR4D0t%6)t5J{-^>OF4e z=|a`?G$SLUxkLzAZpYF@Wq}^yL@Ff&o7 z6Yq7yLHpu?TJ%VchF$2GDu@Ny859*Pgn#w-*BB!@?4O{=jn)Ywx_{L zy8N@i*&5ykWO8VEK>>+&4VyPBU*!C=C^C=n)x_XELZZ(cweWCY_@7&@;q;Q_dolAu ze5;N|C!}13~ z_#N~tAVu-H@^~a{pL}Hz{1immakko&ASwr8ebX{e5BZ2Od;7yL*bsZ4RlPLuIttxH z7Yk|$x*JI{!MH6Vcz%iv{~`u@s%{J@Ey<08$i2;Q3AI3lTU;8scwa}E!OoRtv*?Qw|CFc;zVEDPrl1(KuSc{<`bqM z^QLL{uQ>oOAMWw@_G!yeV5^X?Qr>D{;iH=aH6rD2@Jz)r0=FL21kqotF4(4lo(54F z`%K%oXTE+EY&-Kdr4EC6cYK(d^Zjqui+U-kzBy?Tu`)c3ABrTLM@^%Qd&FUXeScjy zGk@Z5yLpuCuK+X-)(VX3o<8s((o0{Yy|?26*@w6e>hQ-DSqE?4W%$_57|2^$HBsGz zvQW#lETaFF9WXP$xMcY*#!n_H>OPp|cY9^bGQuxx29FF23$X2t{mpyW>UCmTW8V4X zYuN%9GElB8DbO64MP81M&L)1;d?_KJt)*4-87w?G=|iItd;~#Z{oXVJvx8dx{tb0M zX>=Ob(bAg0ugn!YU^I3lg?(h!OK#t;RJKJsm~>giz_a!BoAz}~y$BkwBM*&-k9p(0qwYrtiXK=8gv-`l&T}AFM&SVmIG$k^a#xY=dh%GxgLuouo!ji6c;$7gn52SJAMLs-kkYETtJRLG z8?n`dZhoLk+=@LMd?0IUm0gE@p)xJKSJ$lgoErcihqGVOt)WQGYSy{>H&?z#vpOWa z5_-o#Nl7W%u~<-E9^05=rcDKJyj$aDR_}dfVp9I&S{+Bw+_EN!^i8m>sX`;U-qiY| zKqSKN`C*Eb>ftG!c7ZML%m)w;3V8cL87QiA{0t>R%UB#GF6M9!5Yb^GJq#g){4tOg zhy@}PR|LZXgUJzjpqF5<781lKsLyXsjA7}}7+qGT^D(Jg6HBbGdjPQ_Zh~DwcJ>%1 z@Am|XM)>EG2J&D5-He>=!D~2F(+2I0F7C*M83~lrPRCs%K@1qI6BpQKP>&eYZKt22 zSp|=HQ1f$Y<%-c|aO556)fNU9{tt2)5O+;3t^^RIr;8{KDrnd5-PGltY`L#fgMYdC zrOWj~CJd~I5`p{}#vhd9raHUCsDZ*E<>X4cVE7mMo)_l)RLE?>4bdN91(`cEokarU z7(3f2y~Zk;?C$xnn^P-WASo<_sQvg@O)fx!6P$w8MiA&KuE->U#RLKt@rX_jTkx2B zO%%A@RCT2IdSA@cY<~T%8yMH=^YHjgY$C0agOGz;V$I%W?UC!GgP1KGyTSuS_wNcY zPQcn{QpDPQFS-BA!Ze_)nqDb47ccQrctmFoO9?vP_Tha>oy_ex+XL@AFW2!Ip|r}# zqjx%#sF3s8xNA4(qElws3RSaP*ZFD-5hg0a*p{X>su;)YcKk3}r@kRfCGx#rkEdu3<-*#&pB`TAYK|Jxu~j=W`IXDugbX7kef{-8Rfw(F*RSr?N3V1} z8ah>1#c5@IdCz*^$BJ&Om9bk}UpUJAPUx%x>@%2^xdKZP&KeLoA!x5zYpmJl>$Cs^ z3e2VN4?cgpH=5U=j4<9w=+ksWs07s4#H@X4&V=Ay2wrVSy{o;LH7cg^3 zlDWXv0P;N)D60I}EFgzdrrG->A2zb&anPw=8_;n*RD>lLiOmpTvU&Hpr|7t0_3oUV zmzikdJ2_~lO)>k6lLMKk;Byjoi*9jqdwT?;lAE7jEh&j^N^9e<@&IKzbIrhe7`-d4 z{PWhZk@hx))Y2}va{H+6T*94Cl>M8h1JNT6rz(mHQoN%pyg~x&Hd4GmnvGtnbE?&B z$oIxZ;0htp3L;)r6M%j9v3$2L$~KyLw3e#zLZD47A%?E`f61X_1eUzl$C<1qdB!rZDzyKtaTW$~nI( z0&eJCVgfC&1e_={o~yT?1LpCb=ci+r0;y7+2b6cNvlP1HXL*iq*TMHpZ;AYSZhyQV zPm!n=MKeH(sr?S9y;l~8XOCJOZ*In}O~1Q8Ik|$mx2Bl7eOua$9{XEFl#I3&9|=H= zS4NiPbbsbZR8Xn1HxMKORO{)=%E}M^0XN6cf9C5emYbCOz$ZX4w93!e!A(WJRE^;h z;mSA{O?&~iWDwktGbdC<6yZRRyfjjpRhgbbbqZLC2Rd*z#1qJVYP#8UlEGG4&J=wU zi=Y}HVN`!#CHy%SBS;<&!iPh`xzI`-#$4ih9cy+ya4eWc@ROrQoWpVJZbwaEIkd01 zSl1#mNP&s?7cv6jffIppGh??gcmq<&3*7BGV{wCcM2}#x62p4^I{#IY93w`$KqeXB z`f!gB|DoX>6ZioCk0WvlsOz%LMu1(D!7wk%LPeJr~Jl6MW#m>6glry z^p$9-knZfVJ5@n4CKcxKFuMCPwkqOpQVByib+9uWg2r^=(NFocv;4gZ?%a&*#N4Qy z+!1Wu7G*2B-_XEShEFee(Pjp$V7e|hR|tBVuLWNy$z5MB`8;K zKpJm{!B5bXK_$)^=$#F*!dU)%HeTfeo^DIA$k#!F3y>_8F)9o&SQ!{)PmjIJ^yHpV?{oxMRW zHq^H_pWe;0PaAhK;e)6cz0zLHkGf|>HOnJ3R_B_Zk7EM?zk#In?U&?!468X{J|nMz zn8B*mbE>R24yzYO^rfL=M~GHbE!tN=AWiOIj@Rk}>mK6@E(6jWsX$U827TOBXxN;m z?T4#&{rBSz^!sB*hh>?Q0)xBk2LdcM73ePl4ki6)w#RT1K?oKHs{dH-grR2pA9(o5 za=MsCM}tMycK5zsNPPp+izrF%N&c^BH$Hw<0L;U~HCk*7QNt=?N#~P<|80 z8&_|y0y5J#xL>`l&eqX(EXt@&=W4A?`*_^XCD|JB=UTyz!qryphrhWPPk` zSqs6x`$Po8ezG$e6lX_WBpGV(?#iCBUX2TI#{{i@=X_Fy92-+k{R9nXbRgjI$C0BWwrEev$3?)e*WrgR~x2tHt7>qLA+rr_JEdFok7OGMEoJ)BTDJZEOh9=5SDgOWv^HdtYX>Q5W&XbG#i_wmw$)KBkP2Bq^PG#9ML8)g zZLY>{@@wIT4rYqxjYNG@8rlGvcMxK*aH#WTnn|`HA#&IUqCS1ifk=dI_{fng3QBO=cgmAQaBUKZx}@Hj@{+ z3u2pJEWF2_^c4-9`r6Bl!WLJwWWyE`#Qsh4CO+2Nu+IDC#@o>Godp|FLV%Cf!_Y&& zVSnAgqjPVnI6v9$RPwWkAnCK^Yx2?m^hS`5d)v^_(?8KpTWubug+)aH-SEKer$W3r zL@Rm{oPlOfAX`XUH1E+?KF$L!<{CL1aRKxKCw3(`76;Za@cPxE%TIQXhzu>TW`dDB14olZfu7S={*Ky z*H-GVOi>mBhi+k3zHGZcQSZI5*MN**n2Df1He^$Kg!TXadw-rT@M78(Skd@0bogN2 zhFxGii96*Zt_<{J_~C{`4SO6CtP@ zdHQ=$`;AH0!?d>)eH$Aro786uFOxS46?{WYic)|{P&^;`9tZisDLAjQl&memzxU4c zmv8=2_`U33a|V~}_~C3RM$hQmn~kF7@rL>*3FqLu5w+I$Ki}#qo!HK4ay0o2{vLZ$ z@#ot|3w$QLy$Ml~B-#>L2Nmi8kP$4S z$~}tt%^>rg^1e3qdv;vnWdy2~Ob6x8`g4IpJgberq3Vt_Y)yE|OvJIs25CQ_vzwqbPWlu~ijdII zG%02T*fG{xhy);gV?YuI1r`XNkP*Av#M*XZ-}(~8pKmMcTX2zO-kkmkM+P``2)k}+ z#8?2&ov-)#=c>V@XSPyD(LNV@x?8K}osyGhE7wksw(!;q)jr!0CxSpFyWY%y#`)tm zi`$N4-Fe7s=`WlXs^h9H)*Qlt$RmR*|KrUXliR;=fBdZJD5}ByS7NafoBRkXw!YOWs(a+obA7<<^7}7VE><+2v4dXKDN!Axi^J^d z@=UG$#kxhDbl;MBFvUk0?&;X|VltqXOussadPcJOzs^P@yW!>K)z$gTTS#d+aoNBx zzM`uu3l>g+i30!_k4w1E8z@W%i^fPTE?*iL;|Ha2@|0Q=VgSObTtGd=%{^B(_3$CE zz#SqudZKWj%Qy-+H%|qwfQ!5T^LqZ)-3uUbO$i^Ce)KGnF%uJce1@`A-w#`fn1Rc&2-S<$}Z`hw)8<>q;DW^52IX=2*y zyDr-ojk)BBo~s2O&6vt4yLMn6gNjQWB7T4K7@G*K9@tyMtHAn((K9P@#t8k##SspKHcI@ z{tz^*nyDs09}i7W_Y;-{zD_R34vYb^;SBy8+5{Sqy-$qTNH9O4dh6Ab@nH29rh=@% z&d!jZ0XC>-VerVf!a=LvExT+@4M;5Y&BgYB@z#da{wIHI#iI@D*RwJTJA?`@jp|5t zw}8+TdaK)Tf6IOT9sk;w#jo&{%U;edQZg`<0|Js)9oq7@V$Up$jp<#I{-vXbl_~}R zngaJy(-wb!fA9NeW0vyXo?c%Gq2@;g(m^%zZ;3+zM#PhF z%=dO*zw2pG#ml*QN#Y%|a6+`pRdYXlw4}Uw%7n?yr)&u+1~H5GgqnSS@^j$G!ppdr zY7>cgl0mik+>jUzZytG4L$>#Ho+PBl4M7c=4&Pmaca@-AeVQ=6BngboLXfOivM)!; zfD5S+Gd7nX;iZusLNqTdNKZ6buugDE5KD+(NJl8SYOJXNW2VE?(L?Zs`MQP)Z9IxP zv4?S^)WB!u%_~!RsR;{;bqAF%k{F~0@m;o<>^-r-p9H-CY$X06#uG7nzz-JQ_kMdI zw>w(DIC#$L5GT6Dl#-I}RU~mN@Lo@~ z&#Lu-%KEU>fppV-yT>?Hb^u(U^-wrwOX&p$7@-t#lpNdbC*<1dtorx-am)m(1w%{y z>(6mdd`kzakZor6NM04lNoge(7Xi7odQJTUR|GU5OLag6N)8?)&Z z?PiDGpqDfHd^B1o#24%{AU1P5J7u4XeFxGi`u`qYan4GB;Jh(CJ-wMfKs14c&5xOx z)SKH*o5`&X6nMN6zBK!Njad9H8hG+JrKLN@U)Q=)3$>X8Y9_oFru)a8G7k4L{w<*uwxrT6 zuX?JGg$)%2jDAz2>T>DZDTlzybkKzB77HFJ!Av{1$Tnf|rb?wO(YaH!DI^e%#1Y=u zuyywal2bGheVeP}6#>OyWfXTBR}WgCH^h;hOrYICx3qw zTbYUCmumg8%5ck*z@_^Q-Q@l?*FibIef}-=d(PZYSu?1vc_IFXJU<)rNF>@gxD zA~9!YXEA`K*{SOqw4HkBkMe<3Dh8;u=c=TOIXTKVeccC9! zC$UX7Gt(ED&@f8!+%}>n6wF~727Zn&og>es71*}v64^;gtuVNki;;{W-Amfb z53k*6-aVIuCAQuNPh)yA!EwOKoD)uuIqacjM;Q%&3-1BF7=)`N%XgI|=8^cbYZ}gQ zw(_d45gI+1el@^)@ZiphVpBgEm0{s^Ja`0x`Fd2e}{!&yb;dj;ztvi^ruPDqe zRMkxM#yFVLHSw-f0per(ur$ViJ!@}?sq$L^8X+T$5TqbO#kOa;9O6CNf_T`iK^cx% zN55t8TLarlQDqI!ZPwN6Pw{C$w&81n{f160eNV!F4xlq3@Sv2&^$l8r!dD$4ec-5Y z#w!87G}%wLH)kn~uPWPRe5~2Kuf`7AUz#IBT-*6+IySb^NH$STo67nQ%yh&HiYmJQ zy_T6e^pdW{LIMI6v$L~}y(JPaRey1ci>G~v68jF%gH7O_S(^nZkip_z5Rjm1PzY1g z2#WaN^-?cgw9Uai*)3K)=v{KU;WK`IhDHB706JCo*3weAbLZw|s~CR4BInX+k+MFj zIl*fF>4@|-!eD|V8sG*yoX)8^k|rcQXBWfaBA)M!4>Rp^aPW0grV`W-0nDlKN(OVQ?pNNWrP*EBpkWjA6U`Smujfa_Ji9&x~4#C6-FVMovg|8_Dg zp|rZ3LvmW6E$Qcw{rr>h^a#Pn*}mA4DS}5%cg<7_W688*8Wb)!8JMrO^M)I)v!UG%%&?}p_;zwNmMF(EOsMi=Pa z{f-!GlkKTY*|%da9&Gk!M&1(N4%Obu3S20gySye82lJzeyLK4^irzcsUtYei3O>Ca zVDz2*`3hnNy}#X+eW^!#b?h~j)QopUa2xIw;S;UJt<+(jSu9Nv>ozf$91#K2wzIPv z-Kzy78h}FltcB>%1l4|*<*#69!(ns@oI~;N9P$ZXiq9C1@7%Ca`i_{; zR}iS#NU3cFbIiT=a1HwxiA7h4mS;*0rZBqvVN$Zzd(`B)I4?ESI~?PVpq6JO&c*v6 z2z|EY5<`sWLI-gJRHtzEhH7XJSr0V;5s;*n5bp|Pc-QM6Z5pk+|K zSyAxL9%t}zDitZ`=u>1=TVIcq{rWMCAd3cLbE^=g5qdK>L`MmpK*Rp3xK54HWoY{?SXN$~*ZNd{>2a z1KQHiZJajoQtM3U7#=XNmY|L5&ddL=Jt1)0oBZ-9I@Zj$EzwYVcR6vw##tR{d7{en78P^>=Z@DR$) zx9B|eZ8tQeCJ@H~Ay25D0pSe6`nYz>gUz~z=$iG`nVez(RL8>S3xD>jr^d&tDFW%r zCS=ABaQ7c}$l=VCc3RQfimiSn6yw3ExOrQyLT;tUWq9stSOHaw*`LzSFMALYJ1i6#fB&cZJrf}RJ9cc_O6vR2X<0=dU}6nr^5Q) z-nZkElh>G7mtW;ETD3_!vc7H+duaO>M{zTE$tBU*6)6+c+Nlveb{c{`b{xVrT*{zt zYLF0fm2>gm`m^yRKHET9q0ONL_s(>n2kl{4AJ#H9M||^gcL^PCK!mkC>CWb&G;i>sTMclHP(RYYV_8kcQk)FW_x@3 zNxT^z3e4)%2IyOqO2OeD@c3II3Qj?=M-~Oxr6<77(qfpEF4&bi#mJw%^La(9Sba%NO-&VGYkj{t zlo{j6$V5-3-X7>N*$7eYTXx&owbdNDXA*}odxXcE!DQee%$)Ls�aMQxPz@nu6E` zpMc?gi@L57>1Kc4v>c!E`x@Cvrf5B`Iw{^1?Em7Aq&zPW`T&_I;yL?gssR8+R|T2g z;C+JQ+XmfEfwt6Vi{c-X`LAlnkB-S1lxA}dq!IG*+17U%+nN2KtoTkMQ?;8Bvw7L; z{t6ixQm z4Ga^~5*T~aw}S1*CC;?K>a}RWNN-W;*yw{bCp)ryw36F~MgJN&`!F&6FOm)?(|B*L zwv_9i?PqSTsdpqKDT(0eQ})p`ky;j+aEn4ez*e$~Qi2OIdofkke*iVzZ&ST={g6k^$n7%#RlqdGOj8K{NX81t&C@2a5dC)s$b#JiIJ3flcVWkMINg7D9xo8dza{6OB#_a|$g zlKGe`YWH#dgE}aB70T`HaoUs)YTq4tMYPonX*v zk4Wt^3&tIIe|C~TO&MJ|nVXq(|8B@QL>B9KPQ^f(2FovdUJbq2Kfja@k8Q)AB}qh)mp#n^FjcuM5)(uL7pZkB*ZS; zPTb$mo%<`DC=%HkA3u^qlEI6MSIWi26dfHC(|mj5ia^-#@bbRGrm;}EcMhT}bdxm|-<)JE)cmVupV%+Bn4>ZVAjWe8!e|2|1T|YP&HVXn`H8wZ{ zDfR&7q-v?oH#=TVPBRpg?jh)9eph(OSC+yWI-JHvRj;NG1AX(8O`n^U(7uQ&7!i>* z0%Ob{y@05JUlC=GEES4_x6gd7{${yjbQ3`g~zqQV8&Z98Z{yju6mnv;p5Q8|JdfEF`?gXO(iF;%kEDN98)DFM=+z#X& zi9udOk10}u?%n((Z|eZAZ^h4#kTv;WLux$YfA(vD2DWqbsFgF!zYmWpr;7&4Uf#Z+ z=15;kAgYy8M9V9H4T|?yphd+OZBmQ=VL8Wtti_mR@BBQv8dDkM8J}`;Ro#Cjl znr2`AvENT>o9wBZ?0H}Cn2=K37xF~VON(L?2W;GhlR(j4!u=8!0d?!(ctvgPB;^0_ ze{2&0p#tInkS1DS%W!aTu()Uhy0*5a3ot?BRLk*n06f0^J;HR=% z_1A)wKfFxt&^!cDuV+^BjE|jR+$^Ep5h?=HeR6mjt5jqH!JEiM8C1lHWvK?hZ90MU z!3_xhrm$LMdB2dP6vSb|*E_%8OqSA{18vp$Fy!-;x9v})ydjExyZ&C_3{0W)_zO`Y zT9SV1Uee({>Z1CI$FG?$o)pc&rMiz7=t0ULZe%c&De}jUAB7_JQ^N89yc78_?fCeZ z%?yH;^RIc~qOf)Hjjw~s9Y z)h{nj2$=xC*Tpv?3b_IY!V$mX6{zOoG50aTxj~x6^K;N*i!cRe+F&+1T_G`?{KZs; z$^@$r$Gqh)fDQNkwXNE!sqjF1^j#%xju+v|JCpL$0ZT`GXEB`9$yy9a-ce99W27ID)K zFF)C_%O+)#N0P|PsCIPpJ`QSW%FwCFRBM8;)ohwo$l+WU2zM-o+-+Jf5-N9LB*M%B z9ic4&Cg~^$y1iWGlM%Zo(g@H=TjX}CLVjCVJ$*zgFpigJYv-5>Vjp7SJQ~AO_t>2Q z28MjF=$49D$63dvnDE`X{8y&Gch=c7JbTT+DuvUobJ1hbe@YIAkw_)R`DoPSmNF5Z z2E^a~+hl%eTIVO9rUBX2$VE1#Ne7>KHyhd{nwlm*$=R45a$vV~vUWJEel#}l;WFyK zrp=Hc8fLi8>({|aNqm*T2L!@^g!@HD$E(C_(--q~^b}wnX69TM9a_;p=ESKnF~)IO z;fVd8eSJ1z3JL*kGys`_PTI4ws>ZRMMdOY6m|UHmU*KzU7ga%m!R(#Q6SlVmYLa17bbC>dfc+9-oH)UL{u;oHIeKIE}qUVH-;GKu0T1! z(63_P+*J1}=B+*lIi|IPOiCrzrzp) z3xd}{4+NJLh*cHlY`=$!A*iN<{pCXnNs#ovxC0>MYdxVRpInWPotUFhbKiX3w z2oxqm(2Q(8d@s4lzVHm)fGXIle54WL6R`=~kU%H4IlFADa?|ZA=Wef?8uJI>Z}Kc`FFewTC>ZCzC+u5yg+VS8M@AMM2Ess%!eg!!W7Qd~x+F zem*2-Q_;8BLcqpoW96mUT&jr83&sXBGmBD6GT~&oWBh(Qx5Ej<(3)$=moy{G(SN%; z!$twWz~f@tdzau2VaEH`1Ag0O1&jUH6JbSJzNcluq;m+=&cc>Io^l!A%MqK>?f%9O zJ9jtZM`J>pnI2h7jd^|oXjfr9xyYE^6TtI3fws0dTORoT4a-O)kMCa`d)_kt{c?(L z<=PYfF5MqLs!vWfKSgURDHSi5mhTHFs~D;d4eiVLpL=-HK^jg;*2G-EJd?FMYu_|}qZgB*Crp= zgOdrL$EA0fWu$DfCFZhG#5T1XkBg1J2_+P8Z0q=iFp|3>h?a|<{g11hMly#CQF1be2jMrC z*hpnjL)fm!6C*^5F8(Bs0g#x}syKE(h8-o-?xyj2F8@(gno?2Q6pE`q=EiXseyK(Bn1>l*K+ZqDh<5^iPprnu_klU;J)pm73y) zupg??MCT|T?T{NZj`f+*!Qua7T$4V~kbJ)i)j@o{xw$boGA|Mvfm%8^JSQQE)G}&G zaQ`FDAM_mvdA^lDJG<8~F_G}{!PZdEcGC+?`}lF}yY+BZq02gr05-c>0igzDYNu~L zt5FWvhRA-8{gz=8f-F;ipu%O&X!y+0mbL&{rsi}182xaRG1PvuL=u1YC~pC9yjpC_ z$4`A}$Ff=978~i^vOkr$T4Fn?{DLYARX2(%D&oLkM`y*Sq)fvG0^p2o#Qi!UW-oYaweWkq;k{1#8#7GOf>m(U+_|diCkh@G%;9-vDd|7Q{ee zXV?!U^To{9IoJdAV5fyDi*UJId@7wq1#!w%hi87obA&5&>7ovAK4MUT_&~ad90(k? zuK-XqSdBOq-ryM){?&O5UoAqZ3bR`B+>*BC(SM9sd|pjPIJU6XZmYH?%C*;{8K?N@ ze3+#)f@Q;d^|O92oibV!G!4!o#CC)RdzladCiZ=9=7JykF37X`=RH;i$zDdIzBM?? z4uEJC=*uZI7g4`3E&hG4V-U1KyCZOH_J%`$Em?c5ySuw@GJlQG8$0l)m@nQ@_?lv; zVqP){kC@@G^K%2a8w#7-K$$a6?>-HzCh_~@AeW6fJD&2Y{8aTLk?K#_4k9Vy%XW7a zFYHO4a20)Ou@WVz9V4Edxe-DssQJZ9HKKglmpVK5h1zq+~JZ`MTVQkn|}w5by4k2T#Yxx!K7R-R*drt9<%1B zQyh{1?@T~oV*^nG_$IIT0GYi*Yv{x17}dUBj)+H(qin|uWuI2+04StryZJiS#1vgQ zFnGoC&6~NrO=?YwmCp@cCmRo;T0^y)lE50x7pwtE-l^0H@Aj5o@34BBqd0?=c0eqr zvao7fV2V|p<`GfBbP=t}n}n&U!equl)JJ%(y<5L{!gT%JvdtoY>Ct#fbLFGBSfADa zY@10x0OrmrUb^qH+(K`e<)-w?Y-&(8CXiIGJJyvNn2&gWVVS`|SV&^`{e_xOfA;K40S>N0Fj+{9m#K=ZNxbo`a2gOFFwvyQ}U;er>g^5c68v@U{7NqF;Gw> z;Xs2MpHj6Dt1GQb!llTUK>w(v#eKE}M0~+QYKn8>1~jp%h8B;0-BwH)zo{j{OF|H6 zy1401?Jd_|C7WQ{>cl&Cv%Q}66^`L`IJ>ye?e6L-1~GuAI`q04Lg$H%!aOvup#%mR>HRaM(sI(13z`_f#H zMxc24mB-Ltyf&EQ{>5Y=+xeEo%2ZVA3;-^a21 zll?+xC3G!OuUkiOK)1ZNOqLlQNx0%qKrfkC-f$(EX1+GGPq9yO_dG2mW$FIo5FpyR z8s_t;M7jrHvtM$%p9+-+SG=hoym}2hOyYv|-N1^P;=zM{cw|rz1PdGW7JP^*H*Qwj zpRbRT$V700i6JNqBo-16L<#Z)>7jCQP?$=?ffEmm)Vc8$ckoZ3IHSKt17EgfXDK{sXg(D>*GRo zU%u^Xw7YI(1z8J#r?rkeaFN#s-Gtx3uvAeZa3z=p_(uck65d1^O$8@4?e!TYkcjQq zbegFzT7n(c0lzB^g#F3wnoJCn*uIm~-0>P&oRV8i+n&|a-kXcIW;I&QSH@Z8u*5@G zk!emUij65JIh;XEV15`%D=glxU-EnOJ*PT&NoIx^x;dm#(ea|lc_}Bse z$M<@Vok^FUi;Jzb#l^*5Ot)Z8Y<7?z-9J_HN@uwKh-m()z|)+r8)Pl-;V|Fbx3`q{ zN_@=N>|On5ujPra_l4A5`>mt2{ts7g9aUAheSrcJ(s1Z*JTypmw{%E%BVE$n(ka~t zNOwy~H_{DKhmdY~oBO->jW-_u%5do3-(G93Ip;SQ5%-1@nS$<7|LIaIM%LeoMZl3G zB)y?)PNIyPj!O4MW0D2na^{E}gMpRxbJ$Q6P_n>)@^9DB|2g!0xWDJ!H;uOj38ewW z_{-^n0~hK;%Rl}mAP~$k;a4pb3kIxI=iR4ZjY}D}e*l+Q|4 z_jjEuPqaBRODtjvr~@`$GIul@SZ{Ci5VQR}wl+vnC_3$P7{}Aaw5Ls3KvdfUTZuQt)loydKVN; zm0WERo1fH`avqx?p^c&`Rpmh>zOL8Dp1>Sgr+mxVRV%$P1i`ewvXlE?**oJQRMbTj zLR_qhtOhv>F2$uu*@qVb;Q;6Fm>dxY%Ip6QMYAbI{z_EoY$sQ}d@-<3CgY~>Jp6uM zT3@ics&$WkAW!1tfjH)-jgOFsF*jqg`h7BZEP5JjY1>+~5d@k-T`*)wc|3)@(v^E3 z7n&BC8u)C{LCXy#ClSaqd?qw7!X_kKMhejBm-^ooB5G9N+=s3iy-pI{SfB=0Z=41P(x52a6Bwfu~1rhs3hdd z!#yxOA04^jbAA^9*W?1R^nPHi)F_=&2J*(XDSz05hUt-E3Gh!Rk}HOg9VH;UxmX9| zJ}pCqLZL0yTTaUAp)YrG{54w1>hE6OirDR5fsRDOi@ZM^B%rP(-!aUvBP&K^DI3HM zPHWgJ3P^)5sR$8r9OktRFSu{v$j^_N986Be{!^||p%q0qMlgocLB*;G2hKnIsG_D; zh=hb>b5dKM(}`MKDlrqwWGk_$C-Vax`rCRC2!ODnD9HyhozTjZ{DSHMpi+WlktjsZ zc<-LoT(3X4J2>^6NAmJ0tXibLj4T^CV5h51__ocU%i;@$)EDC#fdB-WJlNl}|Dst^ zM+BeeOgr1qCxvf|)ba8nyWnYlcR!Y^pEl__9Mu^Vktb|$i|?4R27(aWKPTo^d#B|Z z&d$taAUtkB|92M{2&764%cEIsuyzcAtSqZlc-s*W5hb;^qYn&Ps>%-2;^N~#n^5HU zRJ65;C#N)q`S=7aUgmR8;vpkPH@z|0MRPUxjcyQn^MiImo@n1{@eSbyY83EBQ z;mDgKP~7lP=)@VnYWY1*%{F1P2%w}k{h!d@(m`OZp|nKS($TdD-rZsK601-e7^ErZ zHUV{^o4Enn4w|^&1;q`t5J-OAJLk>{+&Z*+2SR37n(6&1m0?OGh5X0GxlH;ot09J& zB5l{^Vq!@uFw|R%FYQOUsfi-m?iCT=UZJjLC-9!B??nJrmq>40{m3I9mKmD0R|{4- zm@9A=ykOP|SHuX<0C2m)zj zK6zxx?~$EntRUrC;Na`tGD!ncx=&Xr1A<4W;MyvVldN>^KPjzd=GONA>W@ZJ7!a#w zw(Gn9*H%Kj^88<)@lqGc)6>&&<>g0(oH94bX7uy~=xAwU0Qb4oN>d@_S4L`%U;0!~ zve2o{PUi=~uEHhQn3&UbPCHUKnqg?EmUTkPFwnbm<-SoOk@pF1@PMJz91hIJBZ^pm z+>HZgq0nifDl+vdE`xR&z z@&n{jBsAlH54^;I`_Lht1ri-TpJ(8-|3P|%8{m2l&^|~0ZnIk};q7NFY$x zvhMJVH=-6xDo!`7GK7u=T@C^9dwOcNLmxc&;c!oiYwEheHfzGz?OW6X3+4S;#1VNR zZHCj`P$vIS;K_GV3Q>}^viu~T4cr3xgXk$JM1gf23+e_26M70zaz^&XU$)8i5P!3; z(*S$1v2zgaK0&8Nt_N(}SH&i$;YfQEjYw|lzHLAj3&u%y)DvTlWuP0Hj0F{Rf@!tBEiLnL5hcDZ&;$);2WnN9t-kN zK?%LQgQwDG7tJoPaMNtphJ|A4Q4iaGCUZbhkpmPiXrhX8TW$}N;|za~wgl#Wa%`H$sPQMs1~5&@KqR_}CpaIM$% zQHdL5p3{D%DJDj;D~JS0-!j=mLvywYDy`q7V}ufg$`T=Y|4;0WVC5@4`YB~Ta^fZw zEIRD1x*P?vpWt1%dyfW;k@R?Km=xmMRThbGTysuLy$|@{Es(sFkhK}6j>t`|`EF`c zg3rYf-481=z#x2zB6npX1aRSb=Sdc55p2(EddLrd#`agUla_(QlMDSDDjphK&r=Gy zZvjK7dHMM(U|?X>ot&J?S65d{>gqny;h;fLLCd)+9ks4TXm~g-K*slRKU;dI=9rHD z{$o;H6R!+_(#l4-U1eGk#C#X&Zhj^j4@)(qbC0}!EwYhul){-_iDj)68WBW69YBAS ziuc+@U10lK(0=X1doCX1m4p9?0XR8Ym^0xvxgCaR{2hqi%=DnV0LyPxZ5Q=ai+%GtUOTyRZKl@95dhaI6 z^wFzC4JMP%gcc43C_bD0sQAtHgQ!g9DkVI+UlLCrobq~=bPHS;vsy_~5}-_J-HsZy zQgf?X=ku`B6)&_WE}M?!^?zDqQZ8V?OQAM~)a32|+sF76 z_`I&HOg%kY=@}V+HnObIwj7^i&ygL0z{1^$Z`TWhCV}Rw74R0wEuD}cyL)i3Y&i)n zq79_%jeFl5W5W92;a1~ zuRrP-3y6!7$9uH^#IoCNdQMJ_cgaxH0c?m?BBbemG2VGt#+Np4GGhU4tYwdm4}iKi zPI!npHsWOD)0w>UBkOi0WE!WV z@6Dy3x0u;_hDa*w$;eQEYfHOA;8Nkh6t2vN=xKjH17nl1A>#MinCd#o{UVVM z;}uISxOoyxC#yQ2HWVL1a(teQ3He;DJ}iV(RCgu9jr(Uk(A;}!Gn8Z9x&SV2k8DVw%az@rB-mAQkVyyspVwuE$?4l9;Zi_A$-aL5_lyS*2_yA8=>F1S zmG(S21R=nO`G9)j#a04H^=@fymyafvjS^=r_qEcbb6|9Y_dI@i4vxOW^gV7c9Z>lB zzOm8a0Ier^wT3K0;kdQ=HypJ+A`nxCDhQIsZ>9%0)cMv}$N|Wu-G)(QFzr@}ZyTWG zDvG#ojfx;%^8lqQQ6iPibnl;iR)3Il2f8n$MM1U3#|tT&cnr`f7YJy=ZiY?}j61QL zh%Q7JS<1=&v#dD8l&RKF18~-NE_Dlfq+Rj%=^mx_Erh=m#7-By~Zf1RCmULv_zinNx`sCS+$;4Oyx2r# z*;W*3LV*u}0apDzSJZx~vvLrE1!mTIo1OPgU6zz&VB@`kc0<2l;J0V?Vfv2vEKtP| zdwuK^l6zeqZxFB~_43#85-^ML7;I&iQ~V;fWdB8=;r3H4Q%{vEiygq=sllKgTeNuF z7ijZ}h1nM=LSg{nq|sASiUGRZZxJ8~$_8F;Q=R}#&T$aIw~X~l6pJ`(ipG;Lt{zbq z2sN`JGD0gt5H)H8%s$iLeY4C&Z@x)hO|0bqqda%hHuA8Nr*h)(qk({g=|{s?vB~aB zI{Av)Dc%gYO;3UVHVe^K*GrPyM*nlKznmOy`IXdJ$k!vy3i@V)OyRMLYCu7~SN%icx{0RNK>?&CFFO#@oo0AyfE1p2g+3_G)=1 z@M~ver2UmK8$;;5*&%G|6u-QoyD@h=BWD9F4D}Z=^1%3bpAc$8s8Nm1x0Mq5h3npF zOxl{YUxp={XqHkfPm^ymUlS&-v!{nhmu#BWeRDSI+cUoNv)^X1yAEHaCgj1+|0$BFzr@8ZAFy#p}u z5o>`T!ZWSR6Lei!8RhaEzwP4C$$g69R)>+`8`2hBb8DI`N~6M zs%(odm_4*_d*;k|Dw=JS(YDOqZO9A);+8aX?DdmHj5VV`U_~V*B}i~)+PGpQ$hy;&r!GPdt77;={Xi4z ziqm;j=+YWI|8K*~HfcL|H&~pj<1*KP?E_sh@9OahN^B1@Y84pMZ?#e?TzM~1E|N=G zZ1P4%c_2Kza9FzHwzlP|>FInj0s>4I3>VD004f!edR#nJ_nI_X;(WWE+O)(F_JR

    #_d4hu(y;gvbY8^0qzl~-RL|_^JaTnzr&NRDJYPQuRSTVxoUQqk;;*;+ ztb6$1C2=*2io{PMOz+Gp`HQD8{W5%=eO>IJ&8p|_I$^tZC%)AB!YgRfOm$`#*EuOA z*W-DAVfd`RdQYyy=PGzw7JLkPr@f=6Mxc2x~T<+jrz`l=_L?U67lH zlCq~K)xcnBLTTwjQ+3b3e~$9j)@9aKRx+a94lgLH>%Bj}Jt#q1jGRkqZo-4UH}-z< zq4Biji0oxVDmX`-OsJSk zu1#Tk#do=FGcS#*8%#PH@9F806B7$c%*?DfaOD%XwEWOD8A=?`8o?Xc8p-R`TyShb zhc#jJy4a}~2Nu~8EF_QVY-3$*GSIKIJXOh45il~a1ZhGaRa0QQ=7QcGE zoPPuubV8{Ng*pTQ*-7H6ob(T2X>atR&rfL%QRB}W7ZbOuD#-zQHQ&L3w=`II26sx$sBxi=0V^-F{KGfA z8|U`tF4PlWZiJ?2cNGg@1FY)4gQ3m%U?&FHH(vO!_g{&UX+U&cx0kPV3F>Csu+->} zoOh)TUYRW?t!K}{8AZk{a+^;^tG)N?u;=2oP{1FDxgAwDUScN7%Bn zCKOy-SJzw6PwM!01m|sCVPayUiMxx-N?23y2QV$)xAGAet1mxP`Ws!?0zDTc5CeMI z`tt@tq1$*CzSKXa_G^W6F!OO*>ixXCLm;A}q)eWhQ!j35(E>gP z)~lNvdv6tYVPsHdBYS068Cg0_PgX%ufe@v|2d+@44D75w*ql>Ic`D!qKE zuP3>*dux!5J57pCt3l$pKTW}l<>2$!TOXO#vjG;r$UDZV2^#5JU;~){zu1C)2j4_) z92zufoQmdwKiN*{T+npTXTB8$u)9(1ksz7DmL%YmQpatj7ParR{<7_PUjH}m!6Pug z;CF}Y#BYX00VH_-;W;W~M$iVR&J| zLsti*t+iFv=L_r~^}Xq`1X^I(=ZGZyUOtGXiV_6RJ9c0}4AY z+R0xXB@wmb2Y_?K_8Z@}xecO-V}_2GTYq^W%{a=~iHu&uZ}ywXChWOSa6@nn@mY@iS^K|&g~QeqXJrCG)SKKFuJ zXp(EUR26TvKr8D26IWSL0UR@FHBBA-;t$~wCT^-f$!K%}1)#SJI{x^xk9Fo{OG8~E zUo!sT+h9E-moXwW5zaneMB;&|GU~a(Xzc!&S(=6P&&qXOpTk;E}RpG zmo(=V^FlP!d<6ejQ@$a+EJjE72L?hH7Zmg+r>9%pTwSf=cy2dIY%!>UKYqL@`}s34 zBNM^e@!wCdkqbrc67v+Ug{!ORSoO9E2@S1#o7PspojpyFppqH`l><`~=Jd<3?K=96yWf&)n4Nk9I?TfeCk1+sL zIPQAg7lvI7Xo6cFd|BpP-g9qYYMFJ(w|Z`V^-IpVpWm3d^nZ>kpb`1HR5M!uJCXTp z3nO#BINLGE4A{iB>O(C;0c^xyx0bmy#} z_ZNQIghwu^1y5xg+3>!C1dpcca&{vkxBC>;VQHpg-A)CD4#UG+!NK>q)25&w0M$3} z>-Sx8KdKR&Gkiyoe-rGG{Bi9m^K|*~01r5F9OzlbCnuvhJ%NiJ?`mnu)B!K-wV4~N`hU^WgF|N3*xDtb~(I zT#l89zQr>z`;bVii^82s<5Jc&(<%ltwo+U450nd)fFx$ z4*|2+$M^OXR(6ZDo^5wr*8-Vo82~nqk#Q1L2^H48DFqv|;@huvcwWvo+Ai4Zw>XLl z3kp`A5ob8IJ^#)>PH5CWF1yB#U!aqKvU9@a&$(6m&#CEniSxO!o~9L9_oM8Z*{hxO zJtLE#&|Hsw|6p=+TZD zQ83xd(Ns>;nn*^-m-d8p&&VgDv?1-<-)q8i_{79NscC8Hfmar#Sjz6|>Utn8Eq%?- z&h8ZvEiW%`qG)1I8dC7Hvn3>m18EklT&R5V*Q|H+Z1(X$#x>IFWHW6|Dxc;Zwi>%= zq=MxD&u}9c%b;Nfw8saFc%m2F5@5Po4ThGrDwRb1$wuL+mFprL4RY{acszT^Ft{)O z9R1jJZWlMbqvZQHmb^#0ow<>Yg6yhMCHCkF_9=kdQr?fk9k8#qRleU~N3c#I(1cZ11tn#%k*e3m!wdFP(gz<4?P8 zr$e9a#n3ohVk>=e^T@4r`dZ!Y_DYH4RR>$fywnE)l^^!y6N5u+{!yy!eQqVo3rq3%90m_$tK8Zd2zd*uMWx z^0$*SGl?&|!$|;-_$#(DARs_6;RAJ7*9$gDHaXJP-@h?)Gan^7J1q}(hod>zU4jP! z!{djCX%e_*miazuXjB3=chTWtZ9qGuD$3|g4+l(zxJ8n0^8f+@0uDA`YrusOwnc3; z$-u#%KN`nUooM zNeA=x-mQ3f|C)}&(}m+uNdc@#?R{gle;c zP_7tdhTV#*BGarLO=yky>K+MhNboYaiTWI6^7I@5GQ97ZY?e%(LPEYN=r?@X-Ixc_ zkosPB;nMsgJ-f+pG|1+4@X$%4J3)4BxJgxmTxi);$aqFZN2>vJKQ_dpHNUe{U-;uk z%6{JWuIX_IvIbs@TH4yv=%}dql~Hum)MhLG9_P20`QI9NY<@5moljfTwtq(^81s`$ z5n&@}KRYo;Y+%DDD>KBReJGdg?HBO~wHlpXQK66e1B$>#sn53B2OKiM=^+DAvy!m^ zhlfomftrE_amG4% zM7xGipkN^wKZXR6m*dEnScAT}@n zKok0nU9qQ^+aw+u6vv-l4|Ac6nq=`GfZsA^SJ}3Fos@ohf(SqS&B>}BpP@GE==R_F z$jh%3JBXdx$iL8t`8t25@_c`}f1Mtj9(^Yr1#<2pEegRavJv4E&u{zjm^EvAuKb0Q zB(6evfl_Cre?dt_Zl%MHff%CGk<{P{23Cw-A1y?*-u~@=IIM~QeVpFDKYJb9I_oHj9`m~inC5GzYML=1YL1m0iFh+=e4JJ;0IOkv~Wx14l0 zZ=&D5&E|UXifbn+uJ&!2$i!ngk-z{^ZP!C#j)jf)7uied;6MgMlDD=l=N7mnNk~lRFPD@!IZ4E{L{O;DA7X(bVR67`Z*z0B&nA=1iK@;iCl-oM#- z1t2lo2jRP6mc^$hU6!ZzWkM5v$;dciAO_|YU>~bYmwvTzabf-6T(#B7&m`AzDY(tH zakpY<=S5cZcgS?5)D|iNd~tJvK~ofQakS87@Uz+5I($d%tmv0|qu6?vpWN54Eq%#v z3n-rdj;2YDjEW|vp%LDloG9r1FiidBGiDX#Vf`({~Ip83JI&l*{VWpFhRwnwn9#q>uUqHD?a{5F(NM`~=D} zN@nKJ#3Xh)LBY7Xdif9|6;)MvU{$Nwdy$VYIzg_kS=e@>Q(Pth9DWb0rpEBdH*Vtf zz!ww8f+P!DO+rVEAzfavBDpLsDoSH+fg9O?_MR5Vd!p=lH-k7a8_b%szP_H?-!I_; zXwGHL&7Z$#X0qog4??buB0+UL3?8+GJp2Gh6ldRM& zjgs|uh(GjO$RbVpKpgD+(3TK{{imZ1JFFRy{>=}rLs%0`*vVmsZwS8HEwB8`Fue9R zXt%C=w?0|ua9__ky*;|&^wmcOExh-_&JP~3KLMoxt{~E9{nasU&G8ZV`_KNYOdAYN zvpJ$UKCX~@Z|G0H%RvvqK7Fkoq#|DbP~|uBaIgMX*+}k7yUausXZURU7?7PNr>>rC z(n+eJX7KR%IMC7e#2-P&fv1ZwqEY zOye)_Hla1cg8J6hR%&f6TWGZ@L6{^Wz$=G&=83Ys=WjcviJF=M;&@bDyFKoEV}NLg z;Yk*ehV%eO43cb-^Ybz>F&U*vJWBXPW>qy8Nu+mvXrfeXY<+TV*Im}zFBse=rb%F0 zS{34VAEnLAh$SWZb>fJqVo`^wI5>jD#Cqv?cs>byfDI1_FuJ%!Z|K4$1FpXGi@V3_ zSMHPd2CW5+kB|QbXr8`{i;vCYMk?E}C)~@AQrYXnXt70Z5o@cu}Y zj?KoUF{`~{@xO4mrIy=tN=Pv^;pTmLO=Iry&Y{hZxf#SaVWi5e<`HCxr`_5k`hxP` zvFhhf#<#I?YG$UOX>IW*uzH^I#}4Cn7S~-;(^bZZ1HS zu)7(6eMn7SKH3S;EWT%Fo3E#KIiAw2>CrgM}-=Ksp zstl5Y*JJxZf;1_n9XVG+eCzBg;Ge^@8oI-^+~ee#g>lW$)3+&RpPEMKEEV<^=0wCXE<;) z!}NVTdlm0Ic_w=$etz=s+jjE5^^dDa4B4IL?#_PM<`>TQ=LNMLdImt9KN~((e?{|T zHh6sC{&Du&N%o9l?#{$#748z5W&d5>@4G-}2R5X!NGlBv4$ed$*kOM3HhIoN5CoBS zWjuR)`a8^2g0vmjz9O4=h>Hhf3f3ejHYF{z*xOfO;}D3!wbISaXo+DJG8GsN4d7TX z)P*#mhHIwB&xBxqC=%#l^$yGmc2*qWZTn8%lL*@<(DF&CLCwjS&(qt}{(kxWN%ncO zP#3fLe-Bxhb{e<_84m=f^ML~(!BoJLBO@Pykc3R&?mQDIDJdhCz%TMO;L^mepmPaI z2?d21%!HwxogH}W>3;~e2FPRXjT<5?UJW8546qR5+2$J*g4nsEY$bGX1`eDK=S}xf z5m>RLVSMG-!ecJTl-n#4C{6~qVa*XMHB?Uq5{Rutqyu)^)GtGpT@ALBkyNt1U4O$q z_qmns_vIfEx%M*rvU)~Q1E%5RZ{JV`9!QEgI61fY<;Q9P%rWi$&PC~Mz=G3$48ePB zjJToJwGQ1$6s%iED%G|N#WECbq|ksdjb?jZDBPmd-#RbtqAUt0d%EzzHsIEUbRo+~3Ck+Kr~GKlf?MnIqW8oP1<))C}X166;_k^@b$VHVkcZ^c{2ExTs91 zoOGDW0@zy*7Z1Lyu}uAao-UsB+WSL;mc4C=(*MwRx;GTR>-3oqptrMr{8-@X?oQv> z*!a7kfHFZ5lZ3?X=Js|!Buent?5x@qc0W&YYH9}X^9?viNWYJk8*Q`TdyZ`$Q3>w- zU!FWM@8jOzw3P7ftI_-<9w#K9Y=B1^f)q_9_B5^?$JBE%@t7sx4s@+0)11=EZ8naq zaIZWw>q7B>Xr?Gd8a{q~X$M-HQCi2-lJN7op)XUnBjU1)EQ~4MvQJFYM?B?k*B2M6 zv(!LlLNc&JSKQmX-S6vHtuZ#cj_xL)ugy?5AhN{jY#A{X2+EpH$_7W*7f4(y@MYv- zRXRSo@b~kDV34cP#0v#r2X%h(FmB2xiKSJb%)bV;@?_H1uA>dAte`@!!?n_^9t-T+ zoiG+?T>QH|wDuFA7aC;vFVD|wkLTSu-7S7ggsR%RgZ^mltNDANj%S@>Owa2T8Ec!c zTlX5|7^QdiPIolqws({e>_I0|?IDCteb2&IxV^XqcK02+@)cfZWWfPYguf|EGS>kS zs@mGt5&}+ufEIM=c{E4&j{1Gp4nU&3n1?TYKH#ehxJ0C7 z_wDUA*D3aoSI1-4Gmx$rC)9SpOR!X{8uCWV4At8JuZuHE zD=poB)jfELnfwbnI=Xl&dr47II*_Hv)b3kJihu9{35Q0KU~XAU&NLXc!Lca~nU_(4 zb?hB;9Ot$wInXr?8|8#46JJxax zd0EfssQi1B#o;jFp@;i>?f9&~{r4y+4X|))3 zzGV8q>|?N%l^V^3t|DP`B6R@CN!6j94KkW`k%B$1^kH@yxczo{Irc_Bm1YW8A_^m7 z)WbCwu#)6{iN~d8#tc2$5xy!bC62&XI6CRRmUaK?^F+Ka`dI&_?r*bA`oCIo2}>i# z;&tEAY&YHdU9p=W+*iqg=Gl6+Xc|~%w)px|XQ*StioPp>l z7VAEmS4X!y({gjKC=qOfxYYq68&5W2K+soEN)amEY3YyhBy2-r8ux~?6vj6#qYa)+&eI3iU)h{C#tkmZeN=eAf(~ag< z;YwMo@?HSiQy*xHpK2SEY}%sR;HQJc8RUmNd+PeT5~#oE*#E3nqVDW(W}4C5{oW@V z!*$|V^lR?_%uv&S0<+Z6x79>6W^ek8K*tw<^ew&|5Q=X&dL||pGPidqf3UKo0Lq8e zkLuXHk~VAegy`>Y4h)z0;?m)yO7+ibA^-?>6<(k}KR>tl!n$+y{(n^u_{!3K-;Vjq zvU=p+jeTF_GEpiM&KLvkFnfIpP^`fXX3ED_aSrKSB(G;7jI|^K%Z8+A`AWjis1z(R zhnsK4DBqhUhv{l1iKSJ%>Jz|aQ9Ay-yW@9}iFLK{Vtr)i;JNR8K;-|(kU6;H>-%zl zR(=cp5eG)#zVR&jHe4O3YmYFUFEI{{t!M2*|C}h)tyX*mZae*z9sI9t4ZF8EH(a3S znJ4^%si!?d73bEL6RFR`XGV9A4o$Cs@JC82suVy^!#t^;J(OT`|N1q3min{~m*U$d zy7{sukE#x^{b5VNl&zwrNuY8G%AxYd@fqv8T6}R2~GeRZpS* zxkIgEueD%lvv1C)(j9uO?Ut?A`9#vxH;wd3hOMU~$r|)lCD5KRzGHPHsDo^i4Tn(qS=(Ql&C{Iy3pqwIny~qmbGnm!o}RBF%3Wd2n>DV2()5 zou^eX0$Ne830?iSV@T#SbQV<4y-HTSf94Ni1`(6`A2Cpx_p(=tu7-uYKiTnr*vLW4 zy>wJ(^L@p8mCt>>@POU$+S(Xqk}X}&nfEiEUAO{>11@5gA9>+^hag4+ycwn@x3sqF ztesU`n#kSQQCFYn#E|F|Q&Cykx9Nm~LtR!zMj7D0lcS=L-W5DQ0)&Fz46Z4!LhrpM z51>3h^z?}Oe%Z;gX4r9Vu}T$CgDiv=H{uc_qOwztQv=+n^Fx{>-$>Z?U|s)90`S-i zElhO(gN5Dl=H|22BnnUEebH`GKl1?@}#AcN_7sm^@Il@>~C*DXn)m}yOA?3 za$c`X$l%u3H(>sk%%~W@p`PJoBk}*Fmbc%07f&CE@7`Y<7aM!T&(D9Y;#Ob6Gz!v? z-%a^LVHR04LqVi1X4l77W1{wRt;`jXxof#`Su2g&@sthTHnE?Qq+&y-9aSY>=|{bF zYaj_^U|>Mb*S9mjqC$Qw|M1Y7b2&GKt1**q*V%9x$gjGt2*s|Lnd{QYWD~siBdIVF%@2 zgM)x)sKBN2qMG;%zrR_(q|i+_jash`o~g>-9?9gnu%KWrmB@LJZx0QG$(qJm%G%62 z*f9OlVf%bq>1b9ip*^8t~CEFXW(Iw79Y9MM}la$%jcQVqeH zrJUNBq;zVpxUzCQLxb;>$l~JqTBEnGFJ*Vvj7C`4P(RbEvj4;}Js1X-yy3iN!du4Y z_v)%%(ltMFA{oGYi#c!iBVGWyP5KYzkxy}@GX*F%KbZ>FCu}nC?Mm*K40N=K|8C>H zJ&4tJ(U-w<8~WmsaMlIc^X|U>g@WnVw??T{`2S_Q-Y9m`{_Nvrn3HSBf}MN4=>nVA z(gJrQ;i}tbCS9fyvhr40()&IeBD4mmi0a&e-Bg$4c_)>%rP!~Yb_{5^wC=Q$F#GuX zI=Dtuy45oYOxPQZ?SJ&w1Y_zjqP1RufB2hfU-B1z4`UDX1`&`nZw9n*X^5M9YYoF? zpd%`C*LB*W6_u)%e0MYd$n}JFVym#p0Szg6PT<3QuBPTpRp-f<;J#J;M91VC$^|Ql zOAY6;m4be3HTxR?@COA4rvSV#4L`pw9Sh56VEjP26G%I8G|PZ(?lVR^vOEJAv?2;| z4-ak~sqd<4YUA^6rhzpz8`MaZpSJcP3V^Bs*p#JdLJ!re8H#dZ>G?QkB=#-6tnNRK zV!!n(c86z0;^WHVi$un#Z|_S^p8TY3aCRdAa_;~49K#m zXx`nU8^UQ=D6X4KjrKRYN!CkNULH%91(@>S8&nAa&vPzh6)oJD3t>YIBl7p}-^l

    ?!LZ3FPh)dsuo@_IDbo3+$5{4Zl~7_-fWz%d+M1O3{?jB zdqIT2!@T_Ee6n3*W%_4copy$D+oX4RcGfhr`?D|O{D!B3zP>)v4Cvk~@_$hK&FM?Q zI5o0%ylBp->q!1UrgB0;Lh{ht#{9R&{yGQgSbCHt(a?`26#F*Xgvq_>17J)7#Ixn7 zovK5SUW=PSykk6Npi9-mUkR}MQ*5#_e{9ES}>?Uu}aO&4x^t(%&ncPTy0QmU`-&sCSmwG_It zd8|``nq~M?jZW5T)*vV|P2w?`DaPe563HzZ*V2d1Hziv~R~Pl&yLS)3iFsaK&3c(B zmd~Q?VZHqYtS3vj3f`q|sAns%f{6qu7bC+DDyyj6+@Ar4t>j+~xm-ka-nWLY^kYiJ zj{vX}C(wr%+l-hJWL;liTcz_87 z;1I`G0n1EQZZ7w~YqtMyFM$ShyXXdR9q_6NoL$#O61jgV}LQH@f z-(~Doi8DwtL!*_xC=t6T5nm&lfUkwQkG;=T2mBu^JKdB__f>tfW8wQN5+wk=wM|za z@Te`XtXu;mKmi7W>9hGLsx<%neVoEXG2ko{c7LVHeKb39Z|#%13a5&PJV`^_Pq z29!Cm{8P|AxSpHINn$zr`pHsjkRs2?8h}3@(XsHf<&asSL%2#^;0*Q)v^j1C$s}zy z4zsQx&toim0=u#ae&#O7NlPP0(3k?W865>h4>2~jnUkBFuaP;DH=sbrSI6OnhQh1r zeQ5z};p~-CO z*D27`J(TfX3yX@VT}(|2rytrGn`e#w$Eg8@ly``UXNp!7*IGqA6Ug7m<#UtUSXd}^ zu(oE~)${;MyKzkovmACv;Ux)BEfsp;krq>DpKx(9Qb3Wo@3Ra2wp!yB&H zdJv3T$d9sho#R%;HVzI7NsS!W$_2u1bt2*bJ;6@JGen!caGxpdyx_8l_nU$>DCezLz zb{2OM#}2W3fBhP9jTi~2Wct8W-8xw>QDnRZ=LA`nbi)oV0*hN=NVQ>iY@-#A=S2}T z<~m>YM0#$ngIFLfFrjXrp1w>CVc(Fu^$o5>iv_&{(|-&BZBx;4(xle0V@U?VJq$t0 zFC?NQz2$kY-8G}Bqt6p8GIFf&_#;`e$?}Tjss10X-a0DkuInF0LJ1L=p`?UiD3R{2 z0fug*k&s4dX#|HDdgzn}C8ebWhElp4X%LWBLh$`^UH9|5@Aa}=vljlroU_mF{n>k) zz^#GG3+`K(kifEffT@749*VIYjEUv{X7id=P;ff>@Wq}$&Al~l^OFBH^hd9L5z5a4 zV`M!Q#k`=ufBpIa^y(A(By)V#T56+MG4&7{sP#7Cn4K?C$+dG_iS0&lA9JgK-y|^7 z;DOw1n@OQAkGhR3$5Em;Z7QJ6=R0W{v-g!CfD!&!TFU!^^M!i<(vLLu=anWT35W*b zZ(`Gj6=bmm9u#%o-)4b~_#E3)c_g%bLj6yCU$M08sK2&*_inANf$Tv^vy;0DjT)dC z4iOFVqGoU6?75CTZQi_j!$eOnjf{-cW-119R9MI1g~ zbu<*orlv@7**KZlj0#B(tYr~E00((SMn+bwQ=b`{`RveH9 zboM|g*<~^WOB;XK&q}AZvvI3SVgM9AdY>gIErh_2t<@JhRG{qcW_+&uwsO1WoId;7A1iHTE9phl+FL%?4P_+S*U@6S&19Oz0S zUBmHRE{F)9jG9ezVR%sp?a@>)%7Sf?Xqu;2ne(s|Ute%KPv%H+ZC~iO-Z@be3NG zZ9MKhEe=V}5KOEaSX6NvXqTQW|6C7%&XA1foxjnMFc$-SzJGARcg`QTaRSp35&rUQ zaCCNm#9u}KmL#S-??_&cFw$>mEnon|Y1gOaio#S;?0NKt)LCBa5u0kR%N{&!wC+KC z7edb7GA9!J2E@3(89^9=IB#2Moc$uAY}cY{c0SW1(#EBf@6zkGIAIP40WB_&;UGRG zOm|FotOV>s{f@t$AJpD-`b;)_e;XZgDgoq<4}bg^pAqDzZuO)%biH}pU+)2|nDJ$+ zvmPxbjCJaN0qdQWWdhYlRVue^sf4ttsgF zJkooA-T8>Rfc0pO2_C9eqaY$k8 z?JHWsU(@57=Cp*rXC`)}v0?}X@Rc?u;fb?aj|{C(blKHn8u9G0Kho7EX6KJaHasPU zliT?1cA4Z5D~;OVRR4KS9=7u%)IuxCv{@VilGZ2hGvEfWHyDltjzrospFNi>O|6!M zcJO;_6%~xch}rX*7e^J6K_h#IF6a0@ z6tT;%-W7&6H_{;MYg*jk~4PP7lDZ+%CHr`@(;&OxyXE}gR zKpV`1jD_EmNMGW9#6JbEVQooHe+@KS2hb4^ru?QR!$R0IE-rUvpylA-K9)PasCAb& zvbDyW3o8JSS;VHxuSNaiNKP8?!1qOi5y+b3`Yz`obOv{x{Q!W&wXb+vrj$Obn(?_z z*!6*rE9O1!hMrnDl1L`C74cb!d-n;mrm;g{+kjvLQ;)JVvz z98@0dducel2jiH`rN|Yl+7;o=yU=kNMA$`He%Zq>lbG5AO?CmX-EGcI4Zm3L5 zP21{gYTWjK^-xy?6r4M@wzlU$q52Bwg$OV<&Xg%B6TsG2UwK{=r7}c#@>E2Pp$Dsx zsVL08db#dEmGU2k%0^35^TpS%UqMK6AZE^giHjy6ogQruiCTSl>cR+?6PK9LmW_WDVoh8aLQe?g zhf1qqXc^C-!=f4ll<>45ON?r8dRNF076f-(Tv}Z};UcL20sQ(cYseYV;u9pj_cIWs z3r%4dy#%%!rqMdO7onx9`vGqIbS~s{B*#^_d{CprCajRNa*`HUHYF~ z(gF`X#4Cb%h;xW{$kBcd!r?b7D5!6=6C0^eQON0;ni$yuX72$duYdZ5w6zoNB%jpy>HwMM3=Kfd{>Q*w55bK_V8bFN@0KbZ`u zYGc&fSbYuz5OKlUOp_XxM?ega_?P#%AT zd688c_@j;x_O}|8GCzS?bbTz_`pc48onVnb2|P@^(x2|K74Ywl=8x$>MqJvO>jG{S#zhB` zad4C{D1liUYF!qSmPUCOcHa5O++o0s<9v*$Y6&0+q})5*9;t;^KX4>&c{L_<3p8Vw zJ_}xIoS2wss6nXP!k-=T%W^iah`81Lpt?+nE;|s8-w7cXHnNa)9;oJ2bxPr_w%^NC zo1ffIC$*S?*vh$~nRiL%$*Jx1Kx3`&zDBDhea^A5T&TbS6EKiMNmW%>o;e+wmkhKi za7%G((9gVBcKJpK6pF5~a&q>@A(H0jcY)fB-0A7*ecZ>>j!;yXMH{nzSXdY$ZER_& z;zbGnM)cK{FN58S-yT5gcRYXjj4_0P5lE3le*i`<%zmSq^&zzA2HIKHc6XJCg#bg2 zhe!3y1+aAs-}!KJw1@}qCKkYN9s{!rY;0^E+I1pEly8TDqOd%k4ft7OzrUOYdFaSL znd-Y#*EbN*SJKF7-u?`KyT%~O(iHGo+Vk={HG#@}KO3u-ze?W_=Yr`5MN2uEs97z{ zOz)J`L_&T{04$q9tOVZcF{#`BM8eWcF@xXIHUra|Fw2bxh3Xf6Lb3e}`NeZ0eDb-J zxcau$o6wuXhzGMupm`U9BWP9t_7rL`k2R2b%?TK?=NeB?5E4pC*2t>aJRlj*Y2Olt{;rU@pp~V{odsH@{TeARNkPiE_nhqJ|43W@5ZWyZiKed&C*4`=Zn;h}viEbej<@iL=yF9DQ?Oz`BD z1QbnNr_wp>iVJ}sO7D^Gc_OO;B{n-gZV8jAudddDGXe~(u+Oh(eCJFs#Ovznrj1(S zK=ANC0fi7*R+(?ft*zn=DZq-62vTBPW?&&jF@Qj-J-?cIIENi-{C4^o5O~N+0=&p? zWh(}fqt8e8_GVZCHa;FiM)tBHu+eC=3n%x2nw;DQkC3n)7}APs$i&JDuX_XZ_Yki| z=H%qWKd-}#I`_+{14RKi_NZrrSc$i9eWFF;&V%a_0?+mIn5NmMd8b7s30z{3Bc!*3 zFYmZ(OOSk>gI9HrqfGApw{!iT8r{4!irSc7f@+2Ctd8C3bjGbcmcLa#_D4^irHZv% z8QT3JFtYPkaQS$!=TU#ym$FyT!Mh@UBUT$YJyAHQn5LRK5xrH`qwr0+&9Z6EivH$v zu&T-*9Q0k_2sk#5hL&wrbwJ5o_O4M3$TUw20qvW>B$|h_=QKIyw&D$H@(XGU?mMqg z#^-t`Ws(}J0=6)}NBeJ6?ZHYz?u}rUc`jU@dpKql(hLh;cJlaaI>PVnST;YRlmv2= z<^8Jlerw8X3IXY&OQ`sds)V&W9-4@$mh+FoKS zBu{e7q+!Br%lQMB%0p%#rNfzM8u|4p*8}c&x-TM%3@@!px$_#n*k?AXrMp1Y z?2J}~K`b=&O|DSBMXt>HLDxw@)%eko%k$oHgtfsU=p>Zw9d zKRXa{${GZhLnf5zOQcnI4-WKzadt3EJZMr_*nNig(xSmGm~(|6KEQFAiB;&6q#?oL znD*E;xEsU~4DmA7Wsh;65K9<9ypO)j%KQk%z&6CSBtbL6mC{(!gwhn#o~PNyf4pdp zw*YdEX%!Ymz=U8As%Q#Ov`}x5WBcTlo{^n*#@619u=#JMWcPaWIt%q}%7cKqxCg?_ zu|(CD_D6>t@mzx{dialR&LG(#eTcj24`tY#m7%P0x#=NJMNU@M0onn zGi>n>CR6#R1&=~sAH|n%7vz`pM77*wS{*pGrH4fDXNEML4jxBV<%Y|L= z9w?NQtx$FK;mPgEv3A&(>O|vV9j8+qeCO6@k)^Nd*%yoq+T1f^*gg15`}engTAUpp zYlVb_pnrO#Lr^(6Re)4d0)_{OMR~&Rz{ev)L&)l$CzICqQkal8Oe%0gJR~M-MuB%M zL^N`D+Eovt;;XhW7AYrR!qQl(LTca|1}Rh5RvkhZJO|X3^EEXa-CSe)SS0w@2?EBh zB@ANA>b#|#UtehaHb<{uH}7D#8KJv(9pzvKtqR-Q$merfX{s>E@3s)JaaPHioi$+M z;7~Iyf&1<5?=L1mI~|km=$2OT))Cj_upl>97X(fCZnVDE69rEP?=k`w(BTIzNYQ#8 zcYY+7n@dNba5C6~q%I#d0I^eK1k0CqaN&2#F(ai1JxGwG4|00m^&s{gnwSQR2N9Np;)qjNgVTjWX5K13U;IJ_-~PtWyT|q@p2{UKzBlAF%-!xLTNU?_@Ju`ne@80b+`SI!BY!}t zSZG;3__P=jkHK><1XG)#kTj2sVar2fZ0<*iUBi`9rz+V6=8$e+a4{2^hSTs>fDP2! zX)5u@v5P;Ot{qOK%E3zh)PS7L#HMP&OV2OTTY7YSciaTPqn-nB!)mXWFE`2a{g1;qt0TwXlyhJS}et=U>PR{ZG=nsz+6gCVci?r>TbJp+_$v0+-E5*UD6t~Lc zwO~=}|3$-FFTZf2u<%pC`6ZS`Ckkc}r|&x&LG-JC{R1z$nK&;QLW3l!skm z`Kn#Do$#B7^@DM96W;sJ`Xp`y>(D@ONy_0`T2|I0dhp|i_JkRI$tuxSEEI1LoC5tv zIxSwA>o_jV$?!{OJdifV`_mC|@o9Mrj=$~R4=CzS16gdldo|mU7ITVXW>9xoyBjfZ7wJd!%mc1BzTp}G>9l-v{pU}s(I?u+kF_S4 zrr&&~);v@B_VxK6{0Bpv0%a{+#7_Dj%5`AZ1f)T6)0N}Z^VA-)Z?a81zisHZKwTlzp4c+Vl@pLSe4}X*6ybf$+;o5`&u_}y z5yrIVJ9B8T_6-&90SrKHfulwn=A~7#5)wf2KwS&i2mO#zBbq(I&w8E!#{7Rz^v^@d zBRNKs!F_F^MIQlb(d^sLTqkIH1f23RsS5mD6|4Ye^^{uFnWAtXA z8`gxxAMK;Kov*IZS5}33bB-CRtD)mDgbj@8(3)T_6lMUi zOfM|;3kp$VM|vV0u?mx_Dp4tt6j&8N7*7pL~Y09RhTph=xV;{5NJog@6MX1$hz~Py^6kNr<06qKgB8M|uj_-{cR`paR8JrBjQg zr%}Y2TAtaDY|qj(E)=P?oaC*8?)rV`=qdrccdgD~;4%MKxb3JeNxpr)yNW#{ayH^Ia$mG8C})5p$v(432?3$tq8 z+c0xaZuLy{o}Czqo)CD0EE!rd`~SKj*b4V7>=f3u3=zfj_G%s#j+-F z@b9B>V*o1;xk`{!l|Vi*V%&Wn%augJ*2N<~5E^l)aDYLicQK54cQ!gOxGfH~R-31Jo3~20)obD*d!SYwV&da~3xx z`T3#vjoNAPcwkm?AW(j)#I~!fSv;WE*Cr zs|7eY)%W3jP2D0%cp&ZgFHOB7GYxa`p))N-@K4a=7fda=5wX@3&cG`;N$=e+RO#2H zfGfkf`UeK|x=u3G6oFM_1uzOM+K+AWeI7!)umeKTN@IqZ`Il}p9Epkt3CWIYD?g`m znx-lY4&Ae3*8}Uz)?EDJJEgRC-f zcJ*P&ubtl&r)CaOb)a)P8OMz!)Niu5+7PSn2DH_O;68o%NCZ*o3EE~2tzd6iArY>c zF6~HCXeXU!VCNt9N{v=1@fgCQ`tM6~i@oOzURws%@X1>PrOZ}hX3fv?48%AxeioQ5 zrDJp$JZJXy_R6wu8K5*nM>md)I-2n%QE4~yQ`%v=YMQ7)z9zp*s&0Teva1M!-MdeV%p=t zIX+ZX3Eef_deIopi6|SWXAjgn#TtKKeC>;E6ua@hj)p)lFrXW;|6PrJ04&A z>_l(C9?a)pkEgqg{Gh)KKjLmMJQWS&8Ur7S>(deR^&A(e-V5$hcn>7V=sjjtz>WtZ zl8it$R+V0&+br$#NkLl z0tk--+pilQ8X{A|gR4fUDC>ocKUIC-)V5VnL_nSzUi!s>J~h8KrGSlN3v7|jO!Op3 zKt%Q{2@q^TN}q)4XMyW9zKC=+b%}HXVt{T!i%j8zgtq~#Li8bEsMS&47uI+O&9xe- z@d?_`pQpAL70C}~17KIJ&wZ_t1J8JT$+P)eXrMgyVjtRNI6u;Efdf~W=g1#8KF0@L zJWK@Yxc*V6v8QpapEOWkyj@jj{vZ8;fMD%s+ViuomoFw{*Ug>a@dl1n$8(-CYdW&f zcxQoln!IF2YfE$nWp&CKhJ}nW35Wibl@#1|Tv8_0O-fM($2>Q)M+4QqZ(pPP2S;nO z7Ix8CIDSvCQHq^AMM|xV$-FSRi)Gj0cH5qFU57v8!s5pl_bLL?c$T^~Z0tu7G{mC& zMMwdQHCKjrxkV9-7P1W+26TVYdul|{2g3hyNg6HN{Cwm3=S1${rAfg4`l3e~8yX_B zr{|OK(37^-)~sx7Y_gOQ(HdHRbl6pY`e1D_Zc=c>6VhdwZr^v4c@|_8ehGuc4onDX zMvwqyV9Vbk^A5RRA~$ebpU)X#twjh*U@Fo4pBMnegiL(UFK5BeM^{Hk-kLSrpqpc*Qn3nID8?^H4{?CKg ziGM(kAAf9^9mNIV5AzKR4U5g^<#OQn%4J^EB&P_slK)o_wxlCLDaI+AR4=Rd{K!df zP${|iAVEA(BM#n}kyTqon4AdYM+4;;-Q_DPr3>OA8~=n9{0`}@NZVHg#20TaMK2C( zY^PaQFi&{MGS=FS`t0lft2H_5er8h<~~DwA+WR-enb%shM4u&d1-z>eNq> zv)YNqcKKu9W>z9-w^>UadT9VEP^CZNoH(30SU-0R(^JYhKl@_odDuNdqGE+x zl8|Th4Kzj;n0VCi`L~*w)iCG2v0Dzntmx3^9(DakJ$k96#kVYJEh_GdWTcf)h_#QsC|;t>N>AeB$_JG(W8BUQG9BLj4}_O zgtgGJM5GY6Zaku;Ktz^ThxO+4Ef&hs;ZuX2_UTTmAiM{^?qiZ}7lQpO8iC74iom*uz}IwWLt% zOv32!0#dx_Cslg?tI1^5P~4`TRu}<31r|*gF@f<_YCHBvNoiHd5F$vkasR#p= z*qxY53=ZpnFxBLd^2Tl;e)zgy6k+QmAF;+&p=DVFmph(#qv-cH!4q9g(@*;H5gK`p z#)Fz>ss6#ON37%7;o;$-^z@0$KzIq;!`q*%EG-4ugN{m9%v3Q)xJ!Y$Wl?=ZKX)_f-*w*WU%;Y?xxh)mG;03g0E}#BQ~1 zRpRRgE}P^?hUi#>Wt#W#tq|z)AnBRDcO5^>J1V)11KR@`_MZza7x7C z5)VkdHUyZ}@oek0tYrcyL)+=>>rc{M4o=aVZYG7v@&uJ-#HO8W#hd_i3@GwBGb(;R z#mZqZ7;)n$a8@!jOuu{6iH4rB;`Z#Zs>nCqP!uK!hrVe-hKYSzZH+MmU0I#7Hm zMs0BXdwOH1JNdiG?^mR z(0KpoI`{OP!dGfvvB!DiGc34NrRinH?*qkArhMA)a~g*UCUUV3D~203EH3*0Xg!ut zyru-4BD}V{qNYyfd!O|7M?ji1s3y%Gk?86MhMFk=36sCWr{C?jve`CrS_-9{ZRc$J4IgH$h=?d9aweRtdah8Y4PR!Xn0?xSCHLa0o?}vA0X*gqGU2Oj4VE-u z++UyX@1-~I>SrM?9EjKY3DVN_|ejeIlJ;?kuW{;v_PL%-UZZtseI)l_>69^I7#iJeA05CTB^bCwYGb zx_v)Y6%`nOn}KonL!SiSqK(Tk`MY;fO2{Xl5B*jik6Sf2`Vmhhd>QBuiNRU}LoI{R z35zy0j@}PknSa5{C*hHd+FcPIS}<|{4;Lc^EzCPXLZPqNf19G2;%(Qw*0&*ZwB8IH{fBwvjEiq zr+`PRtg=M8=S@G{A9djda9m}a)#Eq{ga|`~tqJ=`IzQhYS+Ikl@toSFPc=(l;l!$Q z8@BuVh%4h4t0HDr?D+Fm2&nGc!*chm-LAIgs?MlaTe5N_EL1v|>3D#i7Z7j7^+fmoj>XV)TWba{t~ zfkY*hJxW67Ma_qX?dJFXeI-^3Tl0;bNX45%J!)`b2^==#R3{jW=*1v7&CImNZ?=@f zLMGoBe;qqE1x+xjLP^S}cG4plLs;{)DaSZS_^>UyKj@mO%Vq2pN~$}E^Hlns)FJ7Q zaI3aIcxV4Y)73Z|h^1fK5UcVFtiriXW#1+2h{n!(Adj=HbzH-oIF!oQX88(IFTzV^ z{TYEXefPf)UX@#%w1cGa=drV#NeiV3l00JZz<+n^{EF7+2^!qFffobj*BUSK+XBvPODdj}Qv$oOSP;m)}L6r=B@O)rLk-7(7)fc?tCa3wjfj^g%ySP`j zf~~jA5zJ?PGTroqp&ek*BhZx&EfmTb~57a#WnsF~&??n_XoA;Lg z&f%QjloGh?PuB<=4N9d+kcwIPDJ9`h@po`EblLoV>$*gy@y6}V5a#d8)Mb|tdWb~Q;qFQQ%JDzK=s=i|U+>g3_`cH4j6@Pa-Z zH0_6yi)w!y2lZH!@t9IzF_dbM+hhY_8Kv#wiOO62%8Yp_lT%#tT32CH8X_)XDXUC_ z;*5sJFevE%+3w=RV;rYUS7=@cttyzIovU|)X-%P#^cfKv84*38ycb%wxV&LZT1E~hd+q4Q z-s{<_c9d1eABD=(HR{XZ4nHCfvmJ>^A4yxpsmY4gPpQ-1&m-HhZaIg1gFfxQUu=g8 zU5Wkmm6*AlDGSI7YCFj|T~p!8#E@+}`O40W@IIeN;qWpuwvy`K5N2{&Ay8$giE~&aw0w?vjsq@DNX$P7mZuxx@0hNULv! zs(fvX5ls8ETrCi~6=%Zi)2>M5+;!vCDh0q{Y;-GoEM%fBc2!3B1WUR zV{v$OzBhEwmRNg7_kqOO!w~!;#xnsoxS|xrBIoBEGe%s7BuNEsCI~Jdci378$-Wns zFkyhNNogv7I7(y-hji;_{e-1Xk_oS}fv>jz5wUoFD%|2mJMqE^@-D~MfPhuzja^8W zsAD_6^00h&A78XhrbO7Tju=7O35|T)ODG~DqKCis0N8tC`|}Bc*!Mu@-Tm~wvA&5u zLjA3~FO>>--x*0m$avvR5U@Upjroep}S}*(`;!pkz`XVAZvn;kv z0E&YG9Ic}jmhSz@OVy9>o`p|m_81%J#yBGx)JclmyfNxW;+YocK$(kG_quK-N`_IsA&0lQ7?szxE5O$t~|K&wCX8<#X*DS*3^Em9g@{00=CO0 z1Z1jF^J(qINc@wYC7Ggy7+*y<8U#+XLY}Av9iba9dNDCDzW9isD>yUmL`a&K={@&q z=k3k)`aOB>09h;?Q^&lsw>r-sexNVKwVTzJ z6Hld3NcX9juEuRN(w$6oM{1RoZRsCD!BFbXeQ_S6o{8Iqmn}?E-ip@;2K-vVJ*SYj zvhQ#NfSp{xGC!VBbstSCp)6&W1^N(50f(d}GZ$ymoV>V_IO_7DvF(Bpc7w!%5g`K< z*bHEGE^!eEz~yDGUBNnfuHco%{}8(H?-S?PcIVWg{ba#}(Q{(aOL{t`hjtc^uD8!# zK?tt+Q8iuaNCE0jSm=vLShKX{8QWTf3#F?l4>}#U54^g~!%M1$U{S-?VIIE^mdNi! zqjx-zCy{Yg`zzWuzuVQewxIg1J06d+$Me|LN+X$Ks{#ipR<<$;fCFrMeuXuk(+J?P zbg_%^E5l=0L*gM3Y$3V%f+5#9GkBHMu?%;LI4^JHP}c&cm&lk#7wrC6RkuDx?r(W< zWe1*y%NU$BZ83j>+~Y@AhJa&&{xV`6FMBc<_=>5B{N?EOMUR-1#6opb=WJ07pVS)DQ|FQ9POF&N~)=PXal5kQHh0 z3|uD*$@@0#^Ag>~hkuuq5r_|D-s{HUMOLZ-qf&iA;FeBVVt1PXBqrg#MuacfxI-Eicdru_9MYiN4HrS|({dI_*P-i4{_H1r&NM-$~ zL0(sNh%W)NJfJsN^p}@e9WOQ|$OAohb`w6Od}yaSNXR4X$1t2+ks{tDCUMD&6_PB2+o3_iqom`a4ONkY}#NA)OVRP*%9 z4J?W!SYv3kadIXWaDI}%FR4QzDx=bFY^>(^3uDrwiOuU#UXd_WXDp=0 zn5@H}+%TIgT0I4_5?q!LyL@f#F#(eB=-u}QeHO(kXR1a$t{x^7=`$_&t6@qhPMPBZ zH)95g_y!gV%gN6|2Wrv!gYSBOCj&_IkH*wB}5vMx-tmJ#i zSHv*vJ-4&VB4bn{XY>bqn$F*M^v1wIfTn61ZilAWaC|YUbO=1Ax_j}mtq;Q|Y$_^C$Q3v%5H56Ci{q}ZH|8CWJ`pO!$6%-dKH>{W0YZF8EEEiD4v`AjMg{Y zFeu+q(}VWwmQuRSiJ}LNqK2zi>&D5@eGH7Z1QNycAsD59+dpz<;a0UMQD|cS#XgoL z*2#)J5(puNT(FoDqne+V6z{oSxc_r{j6Ae`bz?_-otqU9ef)dw$Y3P&sxj%ZX=t$X z26b$>%ZPNXe)soWhDElHWQK~^>&w)93Uw~bBx;6ys?g+RnrCF2OQ@)w> z`fx%vZ5))GsNNFG`Mh4m@W%lU%J$)Z&I$N}P2eK^xxvX~>VMeX#y41ObE*rRJd2Si?;7tPnq(P(W|0 z-l2szyy{;*Mu2S7%>z9)8QbYTWhPT6cC!o3e?18i8|rLT=NtWaKa*fSQnj7kH=-*1 zQeGlq#CPM+Fr-l-C42Esj62m+shwSn*l4(l7Dylnl z0YNOi%qqIAhc65G24QiRK0`x@xJfb^V-=7N(<83W=KLY6)I@hDaH*7yoans1a~?1N z_PLf+TbnI?!c?r3WSx%n``k(_4a-|1f=K_>4nJ~Teknf>jh^KPX1(_IJo?p#od+Xi zL}p-v1R|-1!zYNCV>djLM1tB)uOzPw(@#^y9OzVbu1ga|Jt~wwg;|}L);N4QP+}L> zf9S|jMzAn&D5XbFsht?nv-1PGy`9U~4Ds@9FI3YDK*^LTFJIKYSU%?6g%PLS~S z)T{Q`IJN!J-@e*_j9FX86_U{ai5doW#X2Q1y)|4NrvEtr0))pheY+T?k(ibxt|m+L z{hZ#6XoF(Ak(kSKv-jfXzy$Q{Z3nm4_Z-fI4|NU&4eWxVGdv}anD_5xZ$z{X-yL zFZjn85Vq-%6WK8loMa4)|4D)9bWcEi6^MT7Jbx7pxO}Rts8>r0Q)Pnh11=KBb35gG zgKlPm^!CWI+0_>Y_G*Kao`-6VfUQz9B2k(&nwc0R_o zM$22fDUB922bGUsx0LnG{yed0XmN^I=luF6Yuu#Ibg`-nqt8@y)-{#TbCHbE>CM!K z$c5O3rFyW_n)M<}v;oemsfKL>h^#`w3|gfbw1^MZuH}jy4-+nB_q;Ca%?sS16Uu z#2NFasR9m~Y$=~l#_#iP@1}Tq(e^d+N`Z)&?%#ZNJ#mcd13g9>Kw3i>CG{W;Ay%>{ zx_G9cHJ@Jdfott1^IfA9IH_9f&OqiJJb)5vyD{j{(y7$@`D6inOym^lEk@Yi_+IISM9bGH-oh-600Jw zrPf7jZx4Q~r+=|Lr(9SNp8EAw-{>~4f+Qf;zv92dBUYXas~539=mkt%3pVqA!?#A>Bomx47kr2g79%a56uuuB= z_V$Ql{DTFgcxV2s+mkg39?K*d(EXD6�zlcgF%^Ih?BeJ8rQupwu!xf{erKg?OSA zIPMfTgd)at@G2$&eHF9*t-bpy#zVYhQL0^tO5Q2kzKK0-;gx;mx@ypLeTn$){Q8sA za*~ykiahgU#>=^}oji@+%j5-9{`OB{K@*KEx8t=X5}Tr@W^X(op^X-i2M2~0y9k1{ z|IvVeQ+V_!*7NIl`I3R&tbWR)HaX?%e=NAQjtqeHeuGRx7c1GZ0?A0iVkLAjbP|$a z@LP7z`;SWx6Crwc<>Ob%yx&BUv>gXU6hiUvj#y95l-YBK>kBFrbyYjmXA17gF5IQV zq~N9Y{%Ia6GLVp2emyy{XUSUqkhzAt!)NoHIx&Aw$V=mp;o3IHZ16_}(TPy5`SDdi z)uL1@$C`7dRTDdbvng`5_4*B1eg_r~|J!l{H;X%cA~$JNZ1C>qdBy6=5wMW))T1l3 z_Pd&5iTOqNO4P+>IONGimC%1*R~E_bxFEG8!I$qS)S%zwRe+>U+5Sg)fTX(YZa> z=B3^Ps)E2demZ6G(c9*oJ({eo8{Dez9~?>%?K4!$(NUqGPF*Bho3(x5w~MQoO`PVy zg6#B1H6MkW1LaD>cFu^|%wGn4lEWKOjUR<~rQhUR#r%mi4AS~t5Rsw&euw#2(n^cy z<8IZo(V1^VrvJSR0;Cn58Za}H{BWVflP~dsp!$wAGszANlaR?nwllxg2BPB^I{nIy zbxfk#OOEKsbFH(VQy_;~OCFjRm=s_o?tgI;Af!jl=H%Dptj${eJH~5j*^EU!`m%%h zBxZO<i+!$4{pPT#szm?eVaJ4@RlmnRk~Y)9N>ogyKLlUCxd`<7tG>0~ zd7!c3sqDKHboqmWIYDzqPdsNX$UfPigG4p?gTqaj`uXTCT{C`BVXC)I%}XG3v%!xD z1BsGZ5AFQ2QSMJMV9lG5i{-dU`Tw|j@31DfrG5Bp8=%q>5v6K?fPnN~1w!v4O$hdEu3;XV$Eld+xbsJpoew zru91YdR@IUpWf5htmvLA;0M9-FDO**p5-`19wlzu`FAZ5To%~>{k$brVfjPLTH{9X zzRYas*WI)*p1z`6@X0T>KWL%x$!Q~_Dy&0@n-Jb{ z1G8|?(4qbLB;ALK>_;waV5S?jn?N{+S}0H|n$^~^K5;zKS&}!q;4Q_}VsE)87IQf0 zZJtCCOc^D)M&h?lG`+SL1r%$Af7fD~Pc3(UllZ02No-2^ng3k(U;CccA5TQgBH?@7 z!Lx~bn!7#zu@41{Qd$?31~YZu1T&ee3+5ljG95oP|GR|ylEBVs^z|Dkkeae7@> z#Z0GU)}5a-Q0cBhP*o|#42mbQGS(3mVwyx~NRuwPEy^@hQ%kXEe)Rf{3@WQ3Yzx#8 zG6wqh{+UGh>M0N-g`RzYuB0=0fB2^=QpV5Ya1`&!i8=^fh;@zlomTR zt>d&gI!JorG@sYybMif{7>*@B-1V@JL<4X7#U~#pOLEEhI}LWJG9t?gJq=}B?K3^2 zF-VwPsz#2o)qz|zP+uW~{3G-CW2@h9^Q}L3wF@g#ALeImP&4m^5i>RPY^{o$;ir8# zLN(eXD>yNB-c#;LloN-el67N41m_C&f|!us!Jzjo3sa`_*z}vtv<~AY%4l7Gg}-aa zzb#YuNQTH#-4KX^PJzLo&3PoM&Hw3Te!{5t3l!7#jb4Kva6P`Slw3`X)G+b1V2S^s zLa+1!tXSw{V5Id%R!*CWzeyqZe7}a3;lqF@;`&J zCvNf7<@WdRXIZV!_Y|c4n)eQ{rzCzQ75W|6=CCe82%@;WPH%Qt5%dRVWhLj#Vr&9% zQJ-l6bbDH6qyAh5(e2UQiL^8Gx98<0hK(28K%y>z3V_}<;}rKD^G{}&4uiVHEjwMxYF%QOT6D3Qr)S@Q^8f#R9RKVUqXt`iw_GAhrJ z@UwL~Q{ef^^pOm9>U^=d_QgY9-_~{c`P$y&KbEl)f?Ry6nBZcn6m7a{A|~K!l26#v z^}UVRjUrD*EY^lIreknc^H@Br98LHEbaG+Mg0xW!)G&F4vtrStF=*yK=9qjwqy{7j z;twD@V0(PD8j>}n=O17h4s5(p-Pg%I&S6teHrFTS12FnBtr)Oi`kfR|cQ*)biYcQq zUk@U3>N!Rd|KD@|XReKqsRVbS^CVu6S422oZ=&|t>kiXc^NZO4)N#KMoy;>tD$(DNfu^mgrXCVgRc*nKx-Z#fN za5#rhPlMU&^pwFyo$oUKdH9(dpk+Izt|Y(470b*3Z=M=wjb}OYird%XlJNda)4iJPNjhM`!hLp)kV&j@da7c`SvR_R z^ND(c&L5nZj!l!gb0v!PDAj@TeA;C^qPE|aXz)+Sf15v-CVqSJP-(RK7qw(h3pXA3 zGFKMdCC~KVSvuMj^<9zy>}0+B=V;mDtin8DoW(mw|IFQ}ZZ9=&aMcyD6BPa%23kXK z`iuGF1+p4=F0$M>ZvpW(OoRKv@D?9=xsU`Uj~h5Nt-OTFQ5IQ9xr;w zTNH5bW(9N^>b6^u_*Pe@kv~ftE6M-1{XYi+@s7PG!Xoh3%TqJv>kBZJ3TGI5{K~lW z63{QX7~Qa9L55(fiJ5})VgLDs0s*K;Rt%ba*ti5dL9nF1!P#M?LlgU|i!MA3YYV+txL={? zZ|61u=L#zhLc$dJ;wOZ@MiMby7OK5>_~NZ}pTtjyp1M32Y~?<4&VU#bpF!67*VaU$ z0?Uup-WbV4exf}=hyZO6)CxEAZ*8}*r?#B zi?g{-s(Sp#r9am=h)?G9kj?*58y{zl9a?tO&t3T)B}dE|8|O8wH$QH45=6u_syYsb z5cqfyHcM9EtQ0ID0uS%s(P%>kwQQeUgvby@>ir$S4SEBcEGj);v&XYU1cMBq7Cnb= z;O4k}I%mi4=WcA5(W|caj;&9dy0}S@_oMOxp(-QS=E{Wol6`;o=l|Zx(Q*xpMg{yn zDO1D$tM}iRu-dX+7Efb>0C~tN-)YGtO$2X6hV0EZ$QMwpxL$`7a91ir;<+kd4H`K` z2h z_G7>-@fWx`my2%$7O}9M`s)rg<<4s|j%m?GBZWVg$HhD>&-QBlHY#6!0CD=AYGF?= z&i3e)y-TU_GXMwn6-mUzVec6ee^w)#ssUjjSGqAG@?3@p{_gp`G$_EBPCuFCsZ|H- zC)3|y3a*Xe&z(w3U^P&#H0v@L)__#5KH2s=ccBypVM!gr0g&H!198H^tURrqYwKTl zm8T0SkwKpF4CcH(DH96#9p07Xh#oJ7@s>T@mR>vZ;JypshwVGtrIj)@K3fp+TG1WI=>>4$aS--gVawe|da#mQ62M=1Ls- z=B~-`*zTa(Us9_VC9v2?}?ru0R@NP?IOL_7?85>LXjL+BWDMnsx-O2 z*~b_krs_kxe?Bz*N{z;K$ixMU4v^f@lXA*O4qfqT`z_Ei9)KDs3n zXJ~KmB%Wn(n-K_>eLJo z(}%sJ@<)IDO)vj#u52|x!gEMDEzawmT79=6Q>uWpgmz?Bg<(iTx&XWqA1E_l2>?3Y z=4_!FpaQ3Q(da*aPm9T<0@XnI8^wV5;`rlZlv?D_!GqOnA;6O`L{dSG=1l>Mkiy5f zR!zU7LIIp_m9LU#XbErvtTXa6j@k@hwHtWx;_i@n+$1)u2CINsTIW=4w1ye^WYPO~ z!azyz-x{g2t{>`7X7kkIhJa23G{$~2*#9Zt>y+Qh_m^wAz|ZcJ+L}WHSIo#V$a3PO zT}?vONQQ|Z7&`HQkjb$MXZ*xgXcbpiMX=bM{K<^0o}*OR+>d+3JB=-kWfORMLV1NTShvNeIDXlq#QnTuE{iWwnbZE`A=M>C7;z#Ct}oxL z#zvPOb`qd16bt-b`OQbJ6mcdyaR2T1 zXN){LrBI1`Fw4ZPnv+^h-4)*0J)I7%{9<$mTvzg7R&Ff9-T@k9`=px(EaU3@c=1dXn6+l>A){wAcbQPLbd$UcQ!3O$ zpRWUHCiTgU%N798RI?EIekKNQ9p*DXmm`hA&Vbhi_KfuXgQ9ZifiQ2PB{3azWdpNt!N zRR9U)_HlsGS)DEKI+uv@Ft~q#x!FEmx7DL~<4k>uwcMq|f#7&urZ#!meI0>@Akzib_xNkW3nr=U|?d52#^W~D&3qDiHu#HL#x*Laq0M!-E?RCxBSqmY!BCdIko%b z-w8gHz35(lV*e(SK@D}LKSv<(Kc9KqK%w+PsO5yYMU8ssfZCu)zqP`{b$R6^QnBJQ z$XidcMIMqU^y>vet7NXQ#6>(w(~glmfOKE{VXXe%8xU2YRUyw4sCX{58*@ z5g8}V2jDY(r_(sLQkM(M9z?tkb;0kkAKOQ$>+~vAKaOG;$id1x*RL4;XYe~rP1ipR zWKNt!mc{{_qZ1ubhSs}mVE(XyhVQ)$mHedZS`<{~$FipHRfH;>_~ZZSGYCmR^PY2G zFQ?&IPLTqHmt6722&1cryxRyPRCe5cW^9OH~9e3*8zgY7uw&Hm+N_fh_}j~B>+FPBvX7*4ZJ~^Px`Y-YLJ1kKiXpW zqxmy7aE;YmrN8YL_grP)&EUq`R+p`72wHN7Q(v~9c>8Naj3x+7md|YF;(f{eE8KIY z3-^&`9+UiYb6v1TEvgJX)PAV_!OnbjNHp(jfO1OKl*;|ZYBC3B+oB-4v32D6(Zu5x zx+UGlKnAA72QR1eAoFd6j78y$KYM~g=<%}@akUBU3B<~MU7L>cFnF!A3 zIVtd|nCLZM5V?)ZLOKjYARxQ(Ilz&@uMtG>NFU9C>GK~xAhkp6yuaEypq*%-zJ`)6 zwzY6Ax~$NC{Fg-U`l`iLbMGrfim&ee7ems`gB^cq+&-I7Q8<&DPXi2&fLenT(&ZSD zBSHX2Y*^3TBJb)QQYM!2AOor?QPJ2}eB=#yywyZ35Hro&D2ZRI+57$!r3|pYga<(4 zG|W?nYX0YEGu72BO8=uPs1gKn3k&dV(FQuO?kzJjDhWgF?&7Y3 zS^)at4#9e}l!xpo?;3<=H3Z6-5@q;u2@oE~$P%A54oh1Og4fBADjj%EJ3my_}+MQ1xx-0As2U!L9K}9}BI+VA?>>JQmgf zXh-;Bg+!3bzKe2i@QIbKE3}o)Flv3#{ASzqA;lUMr4*=>^WtO*^v~(y1@bAmjzJWVmv1-&2lQH*{l18h_jAD>6m=z6D-pNPqAuTqp;aCl5AfYKtM)hJjA# z)Iv+AhA5bsni+X2LfBWP_`DW7zl>Eje90)G9|uG%mOsY2;e9VY0sunEte4l)GBs#B z!G{_;HPA=-%4Vopf&ec>J2rRfXDQ|IcR2?6pR@gkkZJ9%&vI`WT_pjV(Eg<@<8&PN z9iHsDq;+r1sxHjcl~}QJe+EQB#95DjP3X$Lvo_F1$avC0bwj#k7K{3l+HakEnK$C8vIAY`>jR}2{uZeg!7`IJY>`2ro5u(O?gp$!yyqW zWk5CvrS97tc|j71h z1_e-XzWx;~$3PXm;*+zj>Nz8)#AvMBRG_?PketB0x0jms8IU8)rZhR5n&cB10I{aB zL-LhLR;eU-KyawmGhh?X4kj9T-L~7 zN2FbgQLYPBppXXxQS^j2D!)Om6vaJ?9im{NQe26T2Baa4=*=h0f@cF@?4WNfYCty8 zAa&jGTXdC(w#o0TSNI*D67<#jfPKF2(-jV=3tUa!sc{Su-73C4m5R6(PEf;B5mfg6 zZ`qj0S9p&Zf^PUd-l^gZkqH0emM{kM2Go=H2)<#MwGj6{d->#pm$DBupF}C}ibLG` z<<{;Y9?=ZrWKBVlO8e(OadsxIv8W0x+)OG93XRqKINnzxrZ2ESQgzMT&A8EuQ8Of-u^mJT)qr25S_Qt@)3xt%>;mj}7WY()B0$7&21@7-W!zrGj z@mj}GWy=IgSwfFi{2O*r<%Khikv3@gX0U6<(q=@Ep+F)}AJeG>3Q<`9sTW_ApMAY@E=&F#0RilP`h z-TBxwUHQZQ?s=F44f2a_^Rb8WARqy!dt9u^IadlzbP1=jV&%uDcFQ_AZ~V{HfXCW9 zk;;-hJ~8xj6*rT;;~ zX26qHn`wKpycMrczv{7Tz7S5-<2iB%D_CzG5}z-r`u`H(w-23i&HtA!d^q% zdQdy8(jW3XbBc!kyeJA~D)Mf+)IV$804ZuQniLBJW}7*4PD+$Cr}P0TlyHKtN(e>~ zK&Ggef>g*U5E3Ofd_FYqfC>&` z6L@|dfvxyV^*ILCaq8mhtE-=g{;9Gs#1Fl*mm7oniR@k%2voo{KY;_1`(jNsd;cCV zTKv4cVq15o2k6((f)y9s=gH`ofkt#?Kj&4u?sA7aLCi@nPnTwrXp~o|qJVjp|Edy8 zftCktB-2SP-w2s2YoMCEUhI@gRMdK`7(7SlYZL>V3;9mUZ5Re9a%t3qe(?n=P`u)$ zk;}`V8D`=ZH*sZ&1@;}wPc1I<4pvjgByK+PQGn+(a!Tb@4p^8^VAu^R@>zxRU5U4)f@S6&^KRE|j~*0FtN>34Pv<81;nE2#)F; zU3>;J+%85i1g?^sHZTKsG^&1FNg;%pXfYn%xA<`;p=w$zkeXTtV*p30x=M%0fo$Ze z1>;07WtLBw^s#Q#REk38=NY^bW;N>ZjR0+M7?kBrGdxf;V88a_`<&yEp6bSJ3cwuv$skmgxzA)Fm@wQ|fQ2>oE+Or5 zZ3IrHb>4)*e1CQRaEFRa3L)cCCXjKWHR|DVARkNg(~FA9L;YhB@2C{0F>zB;0<|Yv z$N@ij0HoTz-m9nzVBe`T1+U|!0&)0XNP;7g&1bqYEBo(JtWoZjCZ4;lh!4m8x$8pS zg4|$=`%8QYxZA(OwWk@#DemF!0xE9=w6miP;aEr(#oYD>=1VIVwk9Dd!W6|du1dtv z=~gZhMVQ$bOwTll(G}uqs47_*SF+G5u4zSL^=A$eM@5_`F2`=sVkcUkwPrd zv3C=gUy%Z)kVsumq=0D(K;K>#H}vQcA=EWinoMOS2$51QnE315A*ubd7BtKUs-8+X z=8_i-o^N1Q&k!Ht(!6J4qf-3OK<*5mP|9^PRBiMBDB4e%Mp z0*RQ*6xadMvKq{}qDsur55^{IAbNnQ{g)9{+Z!~H(@gz(V+#KyMNpwA5;Y+&=5Q(& zZbWuvTO{nsxJ%}_6^dn;?}v2Py<9K+?N^J>C3(`T2f?2qFA#R06JO#&=HDm zKvC_Rqv7J6OaHd+_EFc;L<1Be1~(~IOJW%)Umzp zvwqN7$yZx%OE)cd7~MnGC?wznA*2LMt?J2TEFF{RgB%^mpGGY#t@JA>$xJmF%|mGzP^-T z&7+FXq}Uy#h((7yrxWvGJP_?v$ebKqgEyXTup0ye?7P=f^D*j3urVs_`^!iTni#Yg zl{_k6-s(R&k3(-gMi7Cd9t}^bOoiS8Rq#`f`248gm&7qvV$(|=?U33dCPp%yf%4j! zD_R7qm7c;`_jd;W_roL|7%rerj6%ko@<^e4bVE<>P=Qh7&Zr#3YyJ?m)FCn{U`QZ6 zR6TtqL+=;)jeER?_z3RPgHE1S53v4pZ9V&-!(*EhG{4U) zq!#gD2=c}n=II>NNj|(vz6ngyUY?=Q;Kv9GYIuJMf zAU8&!fsT++X1-U1*KYIrLGEj^RJAb3<%T>vnwKIp-YU?7m`K5_?;)e9i5a%|$U`K` zfstWn8uAP}+0F$#;@zY-?mJ>u~v5BajNru z-1q;tu*}`+#Oir-kL?o9WUEIa<~cULJwavp6EE(CK|9~@0mK#|6{D39d8QB&8x(v; z>T;H%O+_OHGPBtx6=cX83ITx`e#;feMOf1t6_aPtkcTt4HixQ34;@fZ1+CbOK3kYr z>k{AIF*9h|-4h(1pU70ma}YEJR`hjx3$*Hyw4;1Qtv-scdt0DF6TK3TU|^$DP34KX zr;38ATD>I$#)_TarwEZpGsj*JdwuN#GDb$MP~pBWN1dG`Fa$-|Y;Oz+8+y$^F6SE7 zLH-cBMTiMq*$=fxtdhI5Fdhz!ze3o4osGs#dg16f2(X2mjLwX0gYy47%m5E}oy*)L z(%dd!ct%u|+Z^&FH94J-+0{gb%LyW!Nq8;n8DAckoHm1dniU~AiVX1xA{@42+ZG9X zKn^b^&!j;P2H+aS7lEf0+jc~h+Q`qA<94yq3qXor z)mZLh+dtSe!@Ct00!Da3__IUh?#U^#=L>x(#gakDWp2bl0$Ct$Oi=rDIgdkb(awG+ zsv%Ridr8(Mz$h|Ge zSN>yHW(ooo#u{-9%!a}QUS0rHO@M9wCLp<*@oT4vq$;t)JFDA!_l&%`7n0~Zh!))T z2R31{(&JFv8OZTx3~T`lS$cQ_&dP)BvgSR0-Ej*~f-aGZm|9!>(KY3saXpjm(Bx;i zbj_TzWBQ4_^TK2H*|QY|7nvIWbjok~(QF(GU+$kv zeHM9qDhRu*j{*N?vRUx(Yl*)4yEIX@1%ON824)5_tv!51qk|eI6XQhxV9S925e&$2 z;XL0E3kM5BvtSJek06Ndt`UAgbfMO=*V zRFvL%(uUK;(b#>Qhn8StYer?aUnK^uu6>5HoSj^gINkEuLR&U1O9i{|ejwq89aw%I@@4!R(w>cwUE) zJx}bd?X7pc=Viyrd45^4mL)PD2yW|~v}V;z!tTWh(tWL^N5Fb$x33>ahytA%VJiaU z6<7o2>~P&>raG|P4^q8{LIIgAzkWT#1ay`i@L2;rvD|G;6-cQNxN7jcJo?opJ{xn= zno`-VlIiL9UCnZ#sQEB3L%y^>q=zBV$2bIhh%)k``I>uCKKlb2e`P{|n;{s)_2M$V zFz}*9Z6jYc4~|toBqcUlMDxE+LH}XDNnV}8GyK>x#@Bz22Ooo7Z(=U6b0=V*nZH*q z`PxDF1s&G+363)!HyatRykLb|3#c8G5?vF$^s82us~?g^i1cF5c0=bAIA`7Zev(WY-D**XDDW$p*b1HUbeFeVKLcz_kj*@2&VpUGxZvBS|0X$HkM4eQXb)`0h( z+x;NRPDvRgEK%WYksj)%(p1VjpvF>R{q?9Z2~q1* zB(#0T@6>;03k+RwkB@d086?=W$yZGmD>TGW9?&O?Tc>CZ9zsgJ(bKCVb#>tpVnD#p*drkY!UmLI^m}lVf=G+RWIAA zcC+i%7@6ZVFt))U7bCYL*?(H4sa(l}u9}Xvb>Q^TP0;5S5#I!(I_s?F^}$-k z`L!rGcMhgr?BTgy$7WMTI1D0h!r2AJ5BX5gv#Guu)Xb^_W?=qp=vl!Ae@u)M{e}W$ zsD9gIHMSOZ@^o_3vnBr2ZEk%Ykn|Yj`0HIK_*5_yH_Ps1amIU6!9U;U60<7x(}>r8+jOZ*=_v z?%sBjk|ho?TxXOw+-7H<6$@Xdf#L;3KK+@n$KuK^ zpN-rlQ{aj`pF{-jX0*vcWASf|Hjd+Jp%MK3NCB1CGkFfEUpw>Zu_Z@Etn~w#X-<1 z|3a$Ctpl@d#C*8p5DK_DkY~B@hqzKiFtO9Hr0ywz7 zyPfY3dADudM3=~5FA8ifK*z@@;@SPDA*IdC8+#YEbIql^PknxC+53qOI%(%994C9qak59Ao&bC!STN88N79`<|5qfuMnUoEI?}!*j;_q>Qms z;&1pv;74#?b7|9C84It8&xl7mI3a`c`tHAjq^JP0CdAm(flsF!^)L^v`3TuG@>FsrBb}dY=^2nEW8; z7S9PsB7GEm{oG|qz+>cR z_6>*6>%VHs)UV`($G-A0XQ)45NK*FNuBz~!_pm4mnqY>BjiYXD#r}oq^Bh1CC#uD) z;E(f8Crs(dJqFnFC3kvt!T^w1lpgf@pjDJg@5NbTJ~Al4D*QM-z*U#enal{lU!QmR zU+n;jM2C~h`IfWTe@5AXGz#;s(xfGO5AQ>RHL%oZy4vi@v`596{hEbG_m-(n2RnN_c@(4o_zK9f_42;m|Q|z=nG_p`?K6#BO1 zgL^>YQq`EVONCzi!NJ4~7Eu1cFxowb`4?5YZCnj-#v$M%nHFqoC&cP z7nQQ_5TKB4-M^d~{C6R_EIa8W`jg24krMH2-_fE4Uf1d4v-fxkd**V&Uj?w;(F>O2 ztL+Z(v|$Wbca$acNGgeXaong*k&3VG2cd+-ZiU72((%D2^zf()m2%t!q)oYTXRCV^ z&Uq7Y{+GJ)4tPBM`NVGsSS^o~i>LpDnD?eM9zODmy6Z3$AP2y*K#G-ZqP>$_ix$vL zugyCC1|$uj3HWyeWxVnLX~Z5T!Aq0|5>mB%0br-g(H z?+1qYfmy}gJfD$b)fY%y*;qQrhS_isq3N3|1OG!YWE+tV(sWK6B7OWL6x;wC7D*~-vpk(%83pW^IFFwDFp`WsYT=O`vs(60w23R!0 z??rk&9wB>sJB)YpNtM6MxFaylmP2nOsaO&i602)_w@!Y#HVA^F|NeLN|+IkwynIZXG2vR~9B@8fZ=c&KNlx?l+8hSuN`) zTy1qA*V66N+uEwpqFw@YTBZ%NQ>32ItoZq5BRt)E~6Z}j-hR)8p zb5P#&RsaqZ^TQZR+RE&X#UuFV?wAmthfRR}S!X*x138GwjyV596PQs{D+x;8Q{t1} zvBe6sGPrk_cTgSp?K$Cx#=^?wI{2fvKn}|gAa!JDvLM$*f%XMkW-mE#I6;;@+v*RM zl9z?HwXy1Sp=#B7B9|B>d0E2 zmH?UwtMxPFi!H3n_wOrN`q3>`rIF)6xtD%cnE+uX4Qu?OF6LP%5TATe;zWxvZ{n)YQq!wyQpa4@HQ6`Cmq3uO7+R4`+v_86W zR%wKb&G)F>F^2hZub{ijh9T*)ySYT`&9iqrgfjz{j6}ut%8CilcP=~&rqN5@Zydwk zfY5^tnz!j~bXG6KQ{hjuE`FF_PIx;zwco1TPKdJHtk=K3MQ$@O-obH_BBX`Sj=PJ> zJW{TZ^X)|u|C*I757E16#Q!I-Z0k#x1S>E`)Uk%E-#3=Ctq$Q|nax9xFA1-76?=&l zUrru>t~;DN#f&`dJGd1vdFH{^s=Mpw8Y`=osMp>~7b(DMm@A>?2aKDLqxWZkuuPuy zuZ{q!-sLB@XYc;DyZ50Ha0$U)9)LgUeTJM{UB|iCRa*To^P?Mf==58FNH-h$Bx2fi z^V2Um5HOt0QkB^R7myq;`^kSfQR93-LD`#-BoH6%TNe{Q9(O=4Bt8(a{K{dSJ>2N3 z4+z}5AY8qu;kD5HISqa-cyAkvA)ZA#FGuJ&0xA4p4TG#z3q9(@J8TckyOvx?MoIct z4JLEHPx-FbDKYkNihb;Bc98VsONAGNZ(^R0NlRDe*(QWm$|>fF$8MaqIOuosEVUf& zrMVoZ4)sls+dY)wjPBy)#`z7@5AeGf1*F#wGIL9N`goZ?j4!-T%l^ER88J#)?%P^I z_h)mM?`!vz{5=vra1a7;>M#Unu;h^rKY5 zdVRp!2D6KqM$Y*453-v-k@~@md5PFR4_l0MlI!+UP5%6aDNEL9yWt_UzVTR=#ggbB zq|6N_`?75hW}8wAJLG2P)1TPl%_X;+Ocr7$i(jvAFH|5P>`CQ>`+M%xz?oG^x!d*N zS3c~-rbvz;oWyMx46S?r*+n#2?B12n1_D=;g{ubG;QSggvr$j?Pv2Foz2oiSKUem4 zTYE3e!NOgt^|1CYA|nS*^0{@p+KC@l5ka8GtL1ia4<5Iy=|nyIPTM!ZB{Pq_`cAU= zy48C#u92sEU+5&?eQ7Hl^`8}RnH>XWP|Afwcwd57K$C{{A?KNI)ATJSvt*MqFcUA$@M3MwH|jWqh}m2k&e8LHJCzOlwep&~ z)@Cvw5^Gu>X5#q!L6RZP%C{~VYkT)yplEd}YE&+<0((bw<@Udy?9hteCj8gyHSa)> zFl>I6`srj~`&af_+<=mJsa^r@@`skBv|(v^gnt$f0_@*|p3b*-ocxtg?ukd|f>3Wm z!o!lUNl{L@`hg9bg3H06e zIjJk28u0VyRVisDK9a~Bm|B&sdgat1wYw}rtI}E%T$pZe;js)c~<>PJ7`=q>aIfi!!#=wzhs%;_9`~k4-J-V1o!q- zNBHRYuC`MO!6tsPXiRq}*R?%-h;E=V-H9Z+IJ-gIN_hmOa01?A{n%$Q7U| z!J1@6lcX!A$@{!%JiiX!kC7J8Ha@Dc^y04YdxGtQ--N||<-gZ6@38$LD>~^MZwF#P zP4(w?RNyeQ(e*j%CGbzVfFFsgaRfNTh>ca!}@@4bda}UN+_0yBxiD(>XRt%Mr~!IM(r#V{`q)_0i8-J!SC5c+S?d z=j$_#wXyy!)P;-nEJ>F_vti`~ zx5IyblA*oHbRzlUg)iQ@gRO}6N4B)*56NFFvknHB;4%k%e}IvL zyiLMi*B|EVO||Z-PS!qk&?dj*6A%6sc2o3a^u3fR^|N7SoeklROZOr}1DQ{GmB2z?W^Yi+uyCJ{aiC%!Z3vu;nL-yy9-6Z06MyiH0%a$hEd znWIHGo*W@$$#$PI5!?`;7NQs8-SltcLidHAvYfJ!p zBoI@)^Phca*iJxF{^#4ynu#`AD27>g4EI&j){y(RRH5uG4l12Kmku8=7~C%#eqXrk z=t}_JA1MCBRSak9YOeI`7`O1FpottgTr||9kK1 z<(ZmuCsF#ERoidN7nu!HggQO8Zo?)N2OJl0k%u(Cr z+92BXr9tl*2}AdzXF8wiGWjzerm@f|hy8Hos5h+N>Q+yvESJ)$0^(~#UBRp5oqF~S zP1b$&(& z+TOtaM;OCjy4u*4(a&*@r{F^8C9$RaFRQK1g^neB_J`#oC#x)NQX=^+`X2Omburr+ ziQO6eYBk)J%xxOn+5X?Ft}e||7x^AUyX3%2pWYG!gxCG=Ss@3Kq#32NBh^2lW7eYxQ9qbeZSeAk0Qh0))KqUTiE@Os)>-P9 ztNp83Az_hWdr5KwM%{elU<~hX{a=3NR*p?iM{0eoX&ZEP#GxS z8{~*p`<*FHmNrhJcyw&$yOSkqM|z8&Ewv{2My*Z4F9|b8M#i|Ij>WBFGH9^GbM}#n z1wXo9`9VOW+x;l-=~?%yK%M@4y51#9qTq$LTQhFfC$;3>AA8l=+1VW6ors;l%k=OR zZ4>n_1(lvylWNUex%|6|o>cL5_>0qi;9unbXzZ`(G07Z;j#jo^jgP7!We`%UbPK3cGA#{{(prCMi!9mspT(BC14&f?#7KQQhtA6B(rlRPL&UOf$w06pDeqfcBsX_xWc414hK=0hF`o0N*R zQIEZ5j40RMGZ_HhVB6U!HU*$5!4H1^@R|<~@$~(MZh9$E(O{H5b+ARP19xpM$lk%Z z(JOqUfOwBagAC9YxK#58=2AH491~eX7Yy*-@t7Yq#Kqqefnx=y~DGw@Svk80n-V-ZqQ29CtQ*1 zu_e{X`d{;3l?RWWP4d9oM&Ug{ziSyEIk~^eIr4eY)>?Ga%v^JD*WDn*x+CzzIR1hI z2@BPm5mcjj;J^7)kRw99(%>y$Nxb~gsW<$Wz&svSRdkGsC;3!GGe1(GJXPLneO`Iq zS&y$KajMPFkSRg{bqA!zk)zQ~UT(fSjEv_Qce_+|i1KenIZxL*&aQxJO=EdG!Nlh0 zn$ubweZzG(rO#2PcFM2F?S(}-x=BKsCbB;&u*W!MGl+=%R#H>bdG)3>-B-?T;)~Sk zaBc`48QGk>YGp$3UD(D{?chbqFke5v|Cy(%PA(zvqUF}D`FREm2E#rnClk!Mkd?7z zUaV7k_u=l`pDXHnx>E}AkUH9C=KdxlON>l&oo7=0Ch7w_sYOEcxq~ z@k^nH208~U+g~>2GI)@fMoP9bEm=${E2i|Tc>L2Bw}Z`RP4bkJID(n8Gyxzp23$A4 zSqPUK&XFyBEEBv^83w$Ps_cnYzEwvUMHK*3f?8W!;dVJ%1!|q?!Y*Ga*mMdjBjskB zyl8b(R>n%xDs09%K7?Fe&HLYvBQ*h23p%5uxxqDBisiATxBDNGy>f=-s=G>sS^V`( zQV2

      1{=1`Sv5M_5eLh3<=oA0HFxH_v(hwtKaE)_jw<^z|dsivmfl&dmoi+uH8QTZ>E;aB^3w!u&T69q(XT~jA-r0 zgeQrdMwu6Td~bd-s_N7^HYD+Ub=sO1rZfD%r~A*hO`3QiZ$s^1yuSu>{6}8?wEFIs zU*}&W67;T>bU7$$nCK)`V!BgfqDYd>wLkQ-u`LiERZGy_* z?;4%9IH*~}}q|Q(aHZ}pbo zkf9}%l#&pT8agDUQ@Ruoq(Kpo?ijioq`PD24v7Kj9Ol`a^SpmN?}u}}U*3;%UGSUP z`?vSH*S*%g_sy@Fuh~cy>V;>Q$O7TQhAkRzIcg9R=?ZOYWOoEmAxy<4H>04!cuR2zcXUXY{T@g@ zJKbL!ZjWpL7p7-+@5Tp_g9hWlWUmyK8vk0}t3vnIhwa-Bc)r8&q&q&FX3j*t8>1L5 zsrH-%aWe0&6s8q)+UD?c_X_p_F8_wOzX(k}%T=O+Wdq_PeH{0G7gljoW1)Cpl|@vM zm8yM>go5wkut$AbLV6G_PMM`NN14hqdQbzy%Jcedq)c$N&t)3WD%RSH(k`V*gjUqAQ0 zsBIm#-wPxcfmLe_yRS5hc6PiLKWC+~pah^hm})k=rwrviSm^ZVhEXOcuScJ124!h- zjHfzpwE0Xj$+DkU7ZemYEd_HQ1l@W-;_J!LYroKhrXm-%&qY&ZwImA2Qk47{$Y;oVEU6#J>Ir+gH=rl$Ss37~{5`KEN z28~y^I@1#kZT%}dOcXh|&odkt?3!0~rc1oCw0K4k({pvILgu7yhMZp`b|oDG@2QP0 zgl{aM?%(bx6agv1;7Wp*-cl07Vn>Hl#pdasPK6MhgQWoUK*iKYt*1EO_^MY)`rE!L z-^1;LFy1-)DnheZVB+Zr1 zc{PD3=gK)7Upuvq5^}=aOz>q+@x%WGs58bX{flyxbcSE)YQ4_L7Pgf1rqY`T$nRVx z;oYw{*pjuL^CnrRPFe<8Y6#=sJ+$LJZu?B+jlIXu9!-_Q9%KyF1R+&N^oy37%xm9U zFd`h>0&ZqKm6R~(lj%IM5N8+Zl%;{M9Jz)zp#^HnrA~l@;NmW>IZ=?9R*oTm{1Eiz zQ;@!cagyf83`8Bfc8GwEAcv9427(AEcssXhf2Dr2K) zwY4o7LeLhLItaMW0xB3Sia?E&T<`cvuX}yYw6bf(VxaLr?fY4&&r#06rRu=xO-5o7Lnc5GKTU ziEU2J9I^7Ac}Qt!sLHJ}vBQ+I^+L#bm0w^s4}J(Yw_>whmZ(!L(u<^n$3{mR=c|`V z@w=T^XMFZ8`OrUU!3|glS*TWlHos!Ne>v$tNcW4JFyf_~to#*6m53|!wHC%6wiuMP zYinEjiB9X2T@?W+SXWw2F%vyot>G>sPCHAK5<5^><+pu%`B$=s9OfG>NYPnX28%3j z4!&eA_}WKAbqmStOH*5W`3}GZ1aEk3l*1y9I~E^T@CatC@}`pK?tEWVynf3gH6_K$ z7)+BimzUyQ7?OHQv3To^Xmrb*myuI0XW7s>=VBBUL9VrFTCbM&;9bbG zTt$+>6c?vRGZNPKpDvd|1$itrK$uzt!cY`5ME+&f7!XKsDJU$NR0{#u@I)R)oehdp zI*&Mr`0_caUM~a3_j1C6GVt*qeut00gA9)2Um0BSQFOv6QZbXeWUEk=3yl`N;wzz0 z6x6UoDsQL?5sAfZy6qto7~o>q?2~Ch!ikPl0kN-gwX7rZ$=+F9pH{}} zq;|Wfp)#dYmX$e4Hm8S@7=9|pPRwfLDVNY6kXchgCJ(1{JzooP^bB{VhFC&+yVah- za`TDBN{d$iM|2TD7JDpvtmOMtPfw3gWs=2FpGCb?0x?@xv(R}QNJo8r)yRzsc{$-T zk7E=ZI<4o0~IHv850nT zEH<+-#tJBH*SnPc8RSYf4uZ2I!RvVEq; zv0w-&mZ31oQp=f1>*{ULqL{+;pW*yM5Jps{O#ota^Gn>)APcufUF25Z-mkIodWqqB z*U^rUq$>pR2ky<>wH($ioFFrrfDJ+?PeWg$Wv8{5!)fx!8PBmhsKq^|3m(%+= zg-6l*VzmhG=+c?p&m3)U5BY^G7@5=mTnM!xw(WfB4HD`opd-cuXNFTz3& zfjEw4&d5W!eP$vr^6YRJF-9F89=W`%zO=ZQ`^s+hrD+YDLB~UWm3+;Rqk*ZZDN9l? zLKE8VPv3Ma1&{}dh(-*`(%Zy*Bmca*Pg5N9MT_%loVrb>xbGyW#f@LM22Sj>*QsI9 z_ED-FtfYQiNsZy=r!OiLcOK;Gbe4Nk1k&~Kx@pc{dk6EB6J(jx(Smz=6A?~TxA=;! zW~Y#Hf>WIhZq2P0EE8V#N|;l!5Vd@Pd35_tbd$Ccwve^6N)Z!RY!dB1duM{N-(RV> z`317@e&FvPJYGZ$yz##8yv6G4mPjVZWf4kO3NiGfXLsER58ri=0HQMT5a%&RhlQLT zka4=W=iE}qa#Z@UNqzkMG`^+o3qk{$=(?w>~qBHF(ypuX2V>hlFG9= z_hD~5KnoxBPeXs%yi8IuNIFRqF$rA@_d9H+V0uQ8N0HzW%`&6KER7#}*P0LIPSDg6 zTF0Ob=cFVCgl3zRE&&!V$X`2eA|d>E`pG0hvzWkFb0_`1gmG9Xy&{za{#|>A4i<owkjk#qc0?H;pi84L&6U1DIUp zrn zX4r4H$P}QM?oZV@3L@W~IH4Yeg_#9@RGnD-R--4}`m^Y#O2s(J(w;+C-|Ov>ETH9hRrUx7>Xi3Znj;>CoOI5l{na;W%#( zl7C~CzRlL9&agYOObJ@1p`>|P2Q!H=JKPxE0I8JOa(|+rdu?GME44QUH8pieo7GHp zS&{vwa_dZg8$gqhE9xZ+pMgOk`asYyHKO(hSqbb11GJb~rv_8ykKDDJ2IRq(P9>S2 z^$V3_#*^qUscF6c6L6=Je5!U-pz*`AwG%@3R31A=dpdt=>|ChJ#a^&9pBU2}PGU&u z=0_8g_|z|`>-S!#hQ0NVa%<~!zM)u-&)v{l_xI|sAgj274eF9<9!|TDr}I`W0H@gA zHx#>qRR6D^AYRnPDOc>Rr5U>KT#BvMD5Puw)MueM(x{JOCkAIP47aQ$CcK1>G-tK7 z7bjfMT8RKli7Pd8c#Qr0r$e4?!-_yx(f9Ue0lg+Dly>Z5isH;IhZEs?Szm$0fMvYA zM>H+PDr7zq8Pkvv6PY}8dl(P4)XCXd0FJ=P>+|iJoe>Z$AVU|Y`=d8+qyJ`7FJ;|Z z>5dXmHZVvVZSeH01N_`bPA)8UH_>(b)zWy8KJZX&FTpH>=X99jK~(Z#uItJp&AWytMYxYQmFH(vXaY5r7FI7xS;9jq|HJ)hTB=B+%K z1p?ZxW}VlSyn?X)oEtE(`B_+{G}u}k9mjz6HTqrPmkIamD9dgUD?rI8NUSjEmLK=I zhZ$fHUb?-Ib(=}8z0#`X^HdA@QRy}YPD08~PC3q{<7W<|rH6zvI213Tz*o>((EHUa zh8Xa{47*A3-t9io4-$5*J`m+Ey-@hlvL`PkSus%`fVa;;JEq(COG+dXtRA zhL6RS-NF!TeDRs@qZ7&Ts;XrI;%b0z(KnUsHuQ^q%q>?VJ2S!y?SVSHc;{!hu6J76 z(|zFJIv9QhD7wimv9Mg{es(ZeV7VC{e(%vU<1Y`09BM5|e8ZBzg4S~kYyF9i?z^o- z>VDYdm?RsO7xq`2iiky9n)dp%&%EqCDG6TL42HR_m+82wmG;_N)$J!9j>YFmJ`lA* zPj_w&FTAPQd=MYBC#dYM1Ml1D$!B8fFPwo2;Qf7C`P+~S=oCkJ< z_t&Q?3bvQ+q`^%V^869Fzw=g92Ll!mF=JOQ5*-+s9=EPmJ>S=1X6#To zFqiAF#IiknEE_6`@8_#R)Od52o3Z7ONjv)@z(AEA8WF6S?cnPCqSWTwTj%y$bxv!? zr%Pv%_NJLnfEad0VK$iZ#fB!IQ$S$$Vk4(uBnKiKM9MAOohaC_^0bBZ{jVG1LjKPC ztJyywDqIDQy+CXcE=O}lA&)sJ-v2|Fevwl|jN3CnCF3gJJe8)Z44Xl}EbSk6;%k+c zYvMccgB1|xeE`fIhs)D=Xl%<}-b!l+ zO@&A^U?Fc*uYH3vtw|wSmtM8;DK`P)#-y(z?K*exL9gW%H$2=@&mvhGM%RPQZ8XL5Wd+LY~EJty<@ASEr#gNp(PfX3%N9yuDkKguKbnXgyF!$1>1Y5>61& z5yg^7nd}2 z)2zD%*D0fpDlq;*Osxz~B|2Sx;qUVI()D=qbYRWbhvpWtR!lW4^yFZDCa4ml%nuC@2PrY;5gt%$lmVUq4_`0K(kU$pk}2Wb?776e zjTMtoHCbV0rIfAED*we-v&z;VXwzyS#=_e}DGO-n=su7{gnhnqdY0RUdH+5h`^R0N z0=zQ)Og-h=6Zc9nM=AT;ib-Xv#Z>vfY?)wEZU&W#d)G14+7E-4quCZ&NT=rR)~Ea; z;h{)*<6&Sq`s=B+Xddzy=10JW_2Bw_e+M4&S@wO(}3fuhg`4&le z^gw(4Fi=6`)Y18pu#k>|&}_aFDf^Q!z<(jJ3}h>DAA*l&!m zk#bv_J8Vx+5VIS6O@N+<1d+Y66(!+!DIKe}Hxof;Vn0s+-XDQ&emjM0Pnb{;Ij;jf zU+zCJ@d;%tCoJW#-gSW0UdF7mlY}PD<+L2wJLXs;>q-{ETHZ5U{DPjE+?8cE---2T z_uJxOo7mQ`Uo@l5VyWY`DTcz8$hD})gm}#w1Vk?qf^nxXR0uv4(2#|Pi_kFVFQhu8 zw`laHiiMuZr|8ezT3lc_6$Ob?i?@xl*i_ox!DLyF!4jbeCq!e@k&9u{`~`+uMZNW7 zBh}%8;*%7+AmTsP^1PT&j*}!;YL9lbwx1iLkSa4>{)e|2rW*as?tzj6QAsvdi@2+r zpa6WFG=xo!`l(ojYii3$X#vxgyms8<_}^~R{$*dv53riYSrtnZE*;w z29mu8YaFfI#|w3<gcoY=z4hW3nc$0klRfWb0bmva$C~KepswzV@Y3P*Bi}<+4zSWK>JZ*Q`>w^5bn+dr07A<=HQt z_tKs~#BxDd!YkLKEtykHMf}z>#~p1k<+c-G){Qn?p1tL_p8xa&m2mXd-&Zq@)G`ZhR5}5*mX6) z4KF;|cqnE%u*t^i67w^QTVz;GTdDb>+y(2i(S9m9XQ8*Tgl|^H9F3M_6q!Um`}hS% z@A{kX(DK>O2c^`a+NtZtmdkudEtAd^;Tnngycs(Cbw$!qMGmlh>H1jf8<+Pa8Qq&7 z`o|dY z$zm$Ca*1w>dH0c;QNZmQ6hTQOZh3rd663go0?o3uzFWx-IM8Z_n~^*PzYmk5}#IaQ5e= zpgL@C=s5mRzBski%|&TOF{x%fx&CtS`(;XZodV7#k6nYtO3GE)S%v;I+VvV)78^)3 zu@;~{O-apWM!R|{|B$r5hjT&Xra7kogxrIboz2xEEQY_R*9}l(+L&MvwKrP+UH#m7 zs%H||vmSp23g@tixwkx`tKa?(c&l*{AQ?7~&6S-m*I;b14tcZLR{kYMu5ZZnI;#as zYAYh;alWDJx3WP`vLSH)t`+VlYs-~nyN%#_%GIJ^7@q{4k~PLpxfe1P$$g0TSBt9c z$ch89Vs-19Y}~jjHO&xUS=~op&91*>gIF&pj}6YWDqXxMYyfK zW_js!Bui^tQqtN_3mt~1f)WE7Ed#~2pY^uNKUR2hB zPfW2bmoIJZ_<7#T{74R);4llRWr~>|*Z1*)`NW%oa6_?M!Wb1Q1oue720Tf1#~1FZ z33=iCbv_%EwF)$sYI>6K<#<$XeD#1w*!w)aT$}j9+cPTOmos5Y$vA9Cp_<%Pj@9L( z?(@*r>9ueyD#&E}OuGaWio5*BZmKAG5s=@(aG(7t6@=kJMFek#2*E*Q&YRu&P|{)U z_GZsbG1NMf2#^(?a)jGu*(I_E2kV%wE{wtkwA|ib7cNoJ+t5jlO2dz9zLzaDP>yW6 zU(98*4_a@aZ`NpKmXX;|j_fnr!SQ5J?rHfRV?O0%6XZeBM`7tqE`uD7%!9ehbxI-E z(+yU6LsNPzvznIfIIveSz+2odwH9si;Y^vSwOF0kIU-$y()i6{bQ>b;#5l`YhDvu_ zNH;QZ9>!HJFmZ0&x3|PlMCpFgrBF}r;$K_4zStHlHWbxNspgcdww%Y5=bQM_vn+uF z`0ch~9Sd$!nW^`*(yC00RweI6-6mrm(dFV^Z4GVp+HT^5eGmPy)rK;iqj-5}b5GH6 zqtvNJk?giykJejGWPxP$<B{7l~np@7wfAP(07f&NFJeE-22<*}11 z((DWEibs!aWjS ztUMA|x|#t^1a_stgJ5)ku;4I8(PaOW5%A2r$-uD${gWMx!%nl1jk#^UbfnGiI2W)l zl$Nl~a^7z+Z(hi^@)XH%I(j&=y(}{I%17;mP-{pU2Wqp9zCy?x1}aDHNs7GvDR+)- zkti=t|9uB{V~vT?LR(z%ygGJ9syUyqNY~eB8>z+_nhQ0w$4;&}A-R^`U(0#PRC;6> zR`q53nyqCk86pPvVY$<+_A_kmSG9Jzui5lYg^=+8#*m)V9}cvu+nr8pX5L)Y<@Ga9 z>z2pX^qQZp7`-*+2gUp#@|S=mY19tDhW#V8&T&&kjr0Wj(rD>%eUW(q+n-GLwk!g_ zgV0N!6wj)4E5!Ls=j0AXAB?@0S_IdY3DxOJ-TWv!6My1O6JNa~=P@!RhBwN%t&N2P z*^guIeoC)Z9v6n-Ej{gz-sll$IxKmn98w@k4L_C?am@qAWMmMr6d6ZaR?XO7a$~Yc zHwA`+5p%|?p9x^jALC8qd2>59NH5HZ+t|f;;55b& ze55yc>qtCD9Yj<0LVtow7C<{F2n{<@w5 zG*HqBu|KI=e|Nl?>&uROwgQy5aVNBX>TmCNOmb;oiNikW`eBt+A{{!K$QCk22 diff --git a/doc/images/ml_map.svg b/doc/images/ml_map.svg new file mode 100644 index 0000000000000..629b4c91172fb --- /dev/null +++ b/doc/images/ml_map.svg @@ -0,0 +1,4 @@ + + + +
      START
      START
      >50
      samples
      >50...
      get
      more
      data
      get...
      NO
      NO
      predicting a
      category
      predicting...
      YES
      YES
      do you have
      labeled
      data
      do you hav...
      YES
      YES
      predicting a
      quantity
      predicting...
      NO
      NO
      just
      looking
      just...
      NO
      NO
      predicting
      structure
      predicting...
      NO
      NO
      tough
      luck
      tough...
      <100K
      samples
      <100K...
      YES
      YES
      SGD
      Classifier
      SGD...
      NO
      NO
      Linear
      SVC
      Linear...
      YES
      YES
      text
      data
      text...
      😭
      😭
      Kernel
      Approximation
      Kernel...
      😭
      😭
      KNeighbors
      Classifier
      KNeighbors...
      NO
      NO
      SVC
      SVC
      Ensemble
      Classifiers
      Ensemble...
      😭
      😭
      Naive
      Bayes
      Naive...
      YES
      YES
      classification
      classification
      number of
      categories
      known
      number of...
      NO
      NO
      <10K
      samples
      <10K...
      <10K
      samples
      <10K...
      NO
      NO
      NO
      NO
      YES
      YES
      MeanShift
      MeanShift
      VBGMM
      VBGMM
      YES
      YES
      MiniBatch
      KMeans
      MiniBatch...
      NO
      NO
      clustering
      clustering
      KMeans
      KMeans
      YES
      YES
      Spectral
      Clustering
      Spectral...
      GMM
      GMM
      😭
      😭
      <100K
      samples
      <100K...
      YES
      YES
      few features
      should be
      important
      few features...
      YES
      YES
      SGD
      Regressor
      SGD...
      NO
      NO
      Lasso
      Lasso
      ElasticNet
      ElasticNet
      YES
      YES
      RidgeRegression
      RidgeRegression
      SVR(kernel="linear")
      SVR(kernel="linea...
      NO
      NO
      SVR(kernel="rbf")
      SVR(kernel="rbf...
      Ensemble
      Regressors
      Ensemble...
      😭
      😭
      regression
      regression
      Ramdomized
      PCA
      Ramdomized...
      YES
      YES
      <10K
      samples
      <10K...
      😭
      😭
      Kernel
      Approximation
      Kernel...
      NO
      NO
      IsoMap
      IsoMap
      Spectral
      Embedding
      Spectral...
      YES
      YES
      LLE
      LLE
      😭
      😭
      dimensionality
      reduction
      dimensionality...
      scikit-learn
      algorithm cheat sheet
      scikit-learn...
      Text is not SVG - cannot display
      diff --git a/doc/includes/big_toc_css.rst b/doc/includes/big_toc_css.rst deleted file mode 100644 index a8ba83e99c5b8..0000000000000 --- a/doc/includes/big_toc_css.rst +++ /dev/null @@ -1,40 +0,0 @@ -.. - File to ..include in a document with a big table of content, to give - it 'style' - -.. raw:: html - - - - - diff --git a/doc/includes/bigger_toc_css.rst b/doc/includes/bigger_toc_css.rst deleted file mode 100644 index d866bd145d883..0000000000000 --- a/doc/includes/bigger_toc_css.rst +++ /dev/null @@ -1,60 +0,0 @@ -.. - File to ..include in a document with a very big table of content, to - give it 'style' - -.. raw:: html - - - - - diff --git a/doc/index.rst.template b/doc/index.rst.template new file mode 100644 index 0000000000000..df058f5fb6185 --- /dev/null +++ b/doc/index.rst.template @@ -0,0 +1,25 @@ +.. title:: Index + +.. Define the overall structure, that affects the prev-next buttons and the order + of the sections in the top navbar. + +.. toctree:: + :hidden: + :maxdepth: 2 + + Install + user_guide + API + auto_examples/index + Community + getting_started + Tutorials + whats_new + Glossary + Development <{{ development_link }}> + FAQ + support + related_projects + roadmap + Governance + about diff --git a/doc/inspection.rst b/doc/inspection.rst index 57c1cfc3275e8..95d121ec10d7d 100644 --- a/doc/inspection.rst +++ b/doc/inspection.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _inspection: Inspection @@ -21,9 +15,9 @@ predictions from a model and what affects them. This can be used to evaluate assumptions and biases of a model, design a better model, or to diagnose issues with model performance. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` .. toctree:: diff --git a/doc/install.rst b/doc/install.rst index 89851171f4588..be924b012ce65 100644 --- a/doc/install.rst +++ b/doc/install.rst @@ -6,21 +6,21 @@ Installing scikit-learn There are different ways to install scikit-learn: - * :ref:`Install the latest official release `. This - is the best approach for most users. It will provide a stable version - and pre-built packages are available for most platforms. +* :ref:`Install the latest official release `. This + is the best approach for most users. It will provide a stable version + and pre-built packages are available for most platforms. - * Install the version of scikit-learn provided by your - :ref:`operating system or Python distribution `. - This is a quick option for those who have operating systems or Python - distributions that distribute scikit-learn. - It might not provide the latest release version. +* Install the version of scikit-learn provided by your + :ref:`operating system or Python distribution `. + This is a quick option for those who have operating systems or Python + distributions that distribute scikit-learn. + It might not provide the latest release version. - * :ref:`Building the package from source - `. This is best for users who want the - latest-and-greatest features and aren't afraid of running - brand-new code. This is also needed for users who wish to contribute to the - project. +* :ref:`Building the package from source + `. This is best for users who want the + latest-and-greatest features and aren't afraid of running + brand-new code. This is also needed for users who wish to contribute to the + project. .. _install_official_release: @@ -28,117 +28,132 @@ There are different ways to install scikit-learn: Installing the latest release ============================= -.. This quickstart installation is a hack of the awesome - https://spacy.io/usage/#quickstart page. - See the original javascript implementation - https://github.com/ines/quickstart - - -.. raw:: html - -
      - Operating System - - - - - -
      - Packager - - - -
      - - - - -.. raw:: html - -
      - Install the 64bit version of Python 3, for instance from https://www.python.org.Install Python 3 using homebrew (brew install python) or by manually installing the package from https://www.python.org.Install python3 and python3-pip using the package manager of the Linux Distribution.Install conda using the Anaconda or miniconda - installers or the miniforge installers - (no administrator permission required for any of those). -
      - -Then run: - -.. raw:: html - -
      -
      pip3 install -U scikit-learn
      - -
      pip install -U scikit-learn
      - -
      pip install -U scikit-learn
      - -
      python3 -m venv sklearn-venv
      -  source sklearn-venv/bin/activate
      -  pip3 install -U scikit-learn
      - -
      python -m venv sklearn-venv
      -  sklearn-venv\Scripts\activate
      -  pip install -U scikit-learn
      - -
      python -m venv sklearn-venv
      -  source sklearn-venv/bin/activate
      -  pip install -U scikit-learn
      - -
      conda create -n sklearn-env -c conda-forge scikit-learn
      -  conda activate sklearn-env
      -
      - -In order to check your installation you can use - -.. raw:: html - -
      -
      python3 -m pip show scikit-learn  # to see which version and where scikit-learn is installed
      -  python3 -m pip freeze  # to see all packages installed in the active virtualenv
      -  python3 -c "import sklearn; sklearn.show_versions()"
      - -
      python -m pip show scikit-learn  # to see which version and where scikit-learn is installed
      -  python -m pip freeze  # to see all packages installed in the active virtualenv
      -  python -c "import sklearn; sklearn.show_versions()"
      - -
      python -m pip show scikit-learn  # to see which version and where scikit-learn is installed
      -  python -m pip freeze  # to see all packages installed in the active virtualenv
      -  python -c "import sklearn; sklearn.show_versions()"
      - -
      python -m pip show scikit-learn  # to see which version and where scikit-learn is installed
      -  python -m pip freeze  # to see all packages installed in the active virtualenv
      -  python -c "import sklearn; sklearn.show_versions()"
      - -
      conda list scikit-learn  # to see which scikit-learn version is installed
      -  conda list  # to see all packages installed in the active conda environment
      -  python -c "import sklearn; sklearn.show_versions()"
      -
      - -Note that in order to avoid potential conflicts with other packages it is -strongly recommended to use a `virtual environment (venv) -`_ or a `conda environment -`_. - -Using such an isolated environment makes it possible to install a specific -version of scikit-learn with pip or conda and its dependencies independently of -any previously installed Python packages. In particular under Linux is it -discouraged to install pip packages alongside the packages managed by the +.. `scss/install.scss` overrides some default sphinx-design styling for the tabs + +.. div:: install-instructions + + .. tab-set:: + + .. tab-item:: pip + :class-label: tab-6 + :sync: packager-pip + + .. tab-set:: + + .. tab-item:: Windows + :class-label: tab-4 + :sync: os-windows + + Install the 64-bit version of Python 3, for instance from the + `official website `__. + + Now create a `virtual environment (venv) + `_ and install scikit-learn. + Note that the virtual environment is optional but strongly recommended, in + order to avoid potential conflicts with other packages. + + .. prompt:: powershell + + python -m venv sklearn-env + sklearn-env\Scripts\activate # activate + pip install -U scikit-learn + + In order to check your installation, you can use: + + .. prompt:: powershell + + python -m pip show scikit-learn # show scikit-learn version and location + python -m pip freeze # show all installed packages in the environment + python -c "import sklearn; sklearn.show_versions()" + + .. tab-item:: macOS + :class-label: tab-4 + :sync: os-macos + + Install Python 3 using `homebrew `_ (`brew install python`) + or by manually installing the package from the `official website + `__. + + Now create a `virtual environment (venv) + `_ and install scikit-learn. + Note that the virtual environment is optional but strongly recommended, in + order to avoid potential conflicts with other packges. + + .. prompt:: bash + + python -m venv sklearn-env + source sklearn-env/bin/activate # activate + pip install -U scikit-learn + + In order to check your installation, you can use: + + .. prompt:: bash + + python -m pip show scikit-learn # show scikit-learn version and location + python -m pip freeze # show all installed packages in the environment + python -c "import sklearn; sklearn.show_versions()" + + .. tab-item:: Linux + :class-label: tab-4 + :sync: os-linux + + Python 3 is usually installed by default on most Linux distributions. To + check if you have it installed, try: + + .. prompt:: bash + + python3 --version + pip3 --version + + If you don't have Python 3 installed, please install `python3` and + `python3-pip` from your distribution's package manager. + + Now create a `virtual environment (venv) + `_ and install scikit-learn. + Note that the virtual environment is optional but strongly recommended, in + order to avoid potential conflicts with other packages. + + .. prompt:: bash + + python3 -m venv sklearn-env + source sklearn-env/bin/activate # activate + pip3 install -U scikit-learn + + In order to check your installation, you can use: + + .. prompt:: bash + + python3 -m pip show scikit-learn # show scikit-learn version and location + python3 -m pip freeze # show all installed packages in the environment + python3 -c "import sklearn; sklearn.show_versions()" + + .. tab-item:: conda + :class-label: tab-6 + :sync: packager-conda + + Install conda using the `Anaconda or miniconda installers + `__ + or the `miniforge installers + `__ (no administrator + permission required for any of those). Then run: + + .. prompt:: bash + + conda create -n sklearn-env -c conda-forge scikit-learn + conda activate sklearn-env + + In order to check your installation, you can use: + + .. prompt:: bash + + conda list scikit-learn # show scikit-learn version and location + conda list # show all installed packages in the environment + python -c "import sklearn; sklearn.show_versions()" + +Using an isolated environment such as pip venv or conda makes it possible to +install a specific version of scikit-learn with pip or conda and its dependencies +independently of any previously installed Python packages. In particular under Linux +it is discouraged to install pip packages alongside the packages managed by the package manager of the distribution (apt, dnf, pacman...). Note that you should always remember to activate the environment of your choice @@ -150,11 +165,10 @@ and NumPy and SciPy are not recompiled from source, which can happen when using particular configurations of operating system and hardware (such as Linux on a Raspberry Pi). - -Scikit-learn plotting capabilities (i.e., functions start with "plot\_" -and classes end with "Display") require Matplotlib. The examples require +Scikit-learn plotting capabilities (i.e., functions starting with `plot\_` +and classes ending with `Display`) require Matplotlib. The examples require Matplotlib and some examples require scikit-image, pandas, or seaborn. The -minimum version of Scikit-learn dependencies are listed below along with its +minimum version of scikit-learn dependencies are listed below along with its purpose. .. include:: min_dependency_table.rst @@ -164,12 +178,11 @@ purpose. Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. Scikit-learn 0.21 supported Python 3.5-3.7. Scikit-learn 0.22 supported Python 3.5-3.8. - Scikit-learn 0.23 - 0.24 require Python 3.6 or newer. + Scikit-learn 0.23-0.24 required Python 3.6 or newer. Scikit-learn 1.0 supported Python 3.7-3.10. Scikit-learn 1.1, 1.2 and 1.3 support Python 3.8-3.12 Scikit-learn 1.4 requires Python 3.9 or newer. - .. _install_by_distribution: Third party distributions of scikit-learn @@ -193,7 +206,7 @@ Alpine Linux's package is provided through the `official repositories ``py3-scikit-learn`` for Python. It can be installed by typing the following command: -.. prompt:: bash $ +.. prompt:: bash sudo apk add py3-scikit-learn @@ -206,7 +219,7 @@ Arch Linux's package is provided through the `official repositories ``python-scikit-learn`` for Python. It can be installed by typing the following command: -.. prompt:: bash $ +.. prompt:: bash sudo pacman -S python-scikit-learn @@ -221,7 +234,7 @@ Note that scikit-learn requires Python 3, hence the need to use the `python3-` suffixed package names. Packages can be installed using ``apt-get``: -.. prompt:: bash $ +.. prompt:: bash sudo apt-get install python3-sklearn python3-sklearn-lib python3-sklearn-doc @@ -233,7 +246,7 @@ The Fedora package is called ``python3-scikit-learn`` for the python 3 version, the only one available in Fedora. It can be installed using ``dnf``: -.. prompt:: bash $ +.. prompt:: bash sudo dnf install python3-scikit-learn @@ -241,10 +254,8 @@ It can be installed using ``dnf``: NetBSD ------ -scikit-learn is available via `pkgsrc-wip -`_: - - https://pkgsrc.se/math/py-scikit-learn +scikit-learn is available via `pkgsrc-wip `_: +https://pkgsrc.se/math/py-scikit-learn MacPorts for Mac OSX @@ -255,7 +266,7 @@ where ``XY`` denotes the Python version. It can be installed by typing the following command: -.. prompt:: bash $ +.. prompt:: bash sudo port install py39-scikit-learn @@ -277,7 +288,7 @@ Intel Extension for Scikit-learn Intel maintains an optimized x86_64 package, available in PyPI (via `pip`), and in the `main`, `conda-forge` and `intel` conda channels: -.. prompt:: bash $ +.. prompt:: bash conda install scikit-learn-intelex @@ -303,7 +314,7 @@ with `scikit-learn-intelex`, please report the issue on their WinPython for Windows ------------------------ +--------------------- The `WinPython `_ project distributes scikit-learn as an additional plugin. @@ -312,6 +323,10 @@ scikit-learn as an additional plugin. Troubleshooting =============== +If you encounter unexpected failures when installing scikit-learn, you may submit +an issue to the `issue tracker `_. +Before that, please also make sure to check the following common issues. + .. _windows_longpath: Error caused by file path length limit on Windows @@ -341,6 +356,6 @@ using the ``regedit`` tool: #. Reinstall scikit-learn (ignoring the previous broken installation): -.. prompt:: bash $ + .. prompt:: powershell - pip install --exists-action=i scikit-learn + pip install --exists-action=i scikit-learn diff --git a/doc/js/scripts/api-search.js b/doc/js/scripts/api-search.js new file mode 100644 index 0000000000000..2148e0c429aaa --- /dev/null +++ b/doc/js/scripts/api-search.js @@ -0,0 +1,12 @@ +/** + * This script is for initializing the search table on the API index page. See + * DataTables documentation for more information: https://datatables.net/ + */ + +document.addEventListener("DOMContentLoaded", function () { + new DataTable("table.apisearch-table", { + order: [], // Keep original order + lengthMenu: [10, 25, 50, 100, { label: "All", value: -1 }], + pageLength: -1, // Show all entries by default + }); +}); diff --git a/doc/js/scripts/dropdown.js b/doc/js/scripts/dropdown.js new file mode 100644 index 0000000000000..ec2e6d9419a28 --- /dev/null +++ b/doc/js/scripts/dropdown.js @@ -0,0 +1,61 @@ +/** + * This script is used to add the functionality of collapsing/expanding all dropdowns + * on the page to the sphinx-design dropdowns. This is because some browsers cannot + * search into collapsed
      (such as Firefox). + * + * The reason why the buttons are added to the page with JS (dynamic) instead of with + * sphinx (static) is that the button will not work without JS activated, so we do not + * want them to show up in that case. + */ + +function addToggleAllButtons() { + // Get all sphinx-design dropdowns + const allDropdowns = document.querySelectorAll("details.sd-dropdown"); + + function collapseAll() { + // Function to collapse all dropdowns on the page + console.log("[SK] Collapsing all dropdowns..."); + allDropdowns.forEach((dropdown) => { + dropdown.removeAttribute("open"); + }); + } + + function expandAll() { + // Function to expand all dropdowns on the page + console.log("[SK] Expanding all dropdowns..."); + allDropdowns.forEach((dropdown) => { + dropdown.setAttribute("open", ""); + }); + } + + const buttonConfigs = new Map([ + ["up", { desc: "Collapse", action: collapseAll }], + ["down", { desc: "Expand", action: expandAll }], + ]); + + allDropdowns.forEach((dropdown) => { + // Get the summary element of the dropdown, where we will place the buttons + const summaryTitle = dropdown.querySelector("summary.sd-summary-title"); + for (const [direction, config] of buttonConfigs) { + // Button with icon inside + var newButton = document.createElement("button"); + var newIcon = document.createElement("i"); + newIcon.classList.add("fa-solid", `fa-angles-${direction}`); + newButton.appendChild(newIcon); + // Class for styling; `sd-summary-up/down` is implemented by sphinx-design; + // `sk-toggle-all` is implemented by us + newButton.classList.add(`sd-summary-${direction}`, `sk-toggle-all`); + // Bootstrap tooltip configurations + newButton.setAttribute("data-bs-toggle", "tooltip"); + newButton.setAttribute("data-bs-placement", "top"); + newButton.setAttribute("data-bs-offset", "0,10"); + newButton.setAttribute("data-bs-title", `${config.desc} all dropdowns`); + // Assign the collapse/expand action to the button + newButton.onclick = config.action; + // Append the button to the summary element + summaryTitle.appendChild(newButton); + } + }); +} + +document.addEventListener("DOMContentLoaded", addToggleAllButtons); diff --git a/doc/js/scripts/vendor/svg-pan-zoom.min.js b/doc/js/scripts/vendor/svg-pan-zoom.min.js new file mode 100644 index 0000000000000..bde44a689bfe1 --- /dev/null +++ b/doc/js/scripts/vendor/svg-pan-zoom.min.js @@ -0,0 +1,31 @@ +/** + * svg-pan-zoom v3.6.2 + * + * https://github.com/bumbu/svg-pan-zoom + * + * Copyright 2009-2010 Andrea Leofreddi + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * * Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +!function s(r,a,l){function u(e,t){if(!a[e]){if(!r[e]){var o="function"==typeof require&&require;if(!t&&o)return o(e,!0);if(h)return h(e,!0);var n=new Error("Cannot find module '"+e+"'");throw n.code="MODULE_NOT_FOUND",n}var i=a[e]={exports:{}};r[e][0].call(i.exports,function(t){return u(r[e][1][t]||t)},i,i.exports,s,r,a,l)}return a[e].exports}for(var h="function"==typeof require&&require,t=0;tthis.options.maxZoom*n.zoom&&(t=this.options.maxZoom*n.zoom/this.getZoom());var i=this.viewport.getCTM(),s=e.matrixTransform(i.inverse()),r=this.svg.createSVGMatrix().translate(s.x,s.y).scale(t).translate(-s.x,-s.y),a=i.multiply(r);a.a!==i.a&&this.viewport.setCTM(a)},i.prototype.zoom=function(t,e){this.zoomAtPoint(t,a.getSvgCenterPoint(this.svg,this.width,this.height),e)},i.prototype.publicZoom=function(t,e){e&&(t=this.computeFromRelativeZoom(t)),this.zoom(t,e)},i.prototype.publicZoomAtPoint=function(t,e,o){if(o&&(t=this.computeFromRelativeZoom(t)),"SVGPoint"!==r.getType(e)){if(!("x"in e&&"y"in e))throw new Error("Given point is invalid");e=a.createSVGPoint(this.svg,e.x,e.y)}this.zoomAtPoint(t,e,o)},i.prototype.getZoom=function(){return this.viewport.getZoom()},i.prototype.getRelativeZoom=function(){return this.viewport.getRelativeZoom()},i.prototype.computeFromRelativeZoom=function(t){return t*this.viewport.getOriginalState().zoom},i.prototype.resetZoom=function(){var t=this.viewport.getOriginalState();this.zoom(t.zoom,!0)},i.prototype.resetPan=function(){this.pan(this.viewport.getOriginalState())},i.prototype.reset=function(){this.resetZoom(),this.resetPan()},i.prototype.handleDblClick=function(t){var e;if((this.options.preventMouseEventsDefault&&(t.preventDefault?t.preventDefault():t.returnValue=!1),this.options.controlIconsEnabled)&&-1<(t.target.getAttribute("class")||"").indexOf("svg-pan-zoom-control"))return!1;e=t.shiftKey?1/(2*(1+this.options.zoomScaleSensitivity)):2*(1+this.options.zoomScaleSensitivity);var o=a.getEventPoint(t,this.svg).matrixTransform(this.svg.getScreenCTM().inverse());this.zoomAtPoint(e,o)},i.prototype.handleMouseDown=function(t,e){this.options.preventMouseEventsDefault&&(t.preventDefault?t.preventDefault():t.returnValue=!1),r.mouseAndTouchNormalize(t,this.svg),this.options.dblClickZoomEnabled&&r.isDblClick(t,e)?this.handleDblClick(t):(this.state="pan",this.firstEventCTM=this.viewport.getCTM(),this.stateOrigin=a.getEventPoint(t,this.svg).matrixTransform(this.firstEventCTM.inverse()))},i.prototype.handleMouseMove=function(t){if(this.options.preventMouseEventsDefault&&(t.preventDefault?t.preventDefault():t.returnValue=!1),"pan"===this.state&&this.options.panEnabled){var e=a.getEventPoint(t,this.svg).matrixTransform(this.firstEventCTM.inverse()),o=this.firstEventCTM.translate(e.x-this.stateOrigin.x,e.y-this.stateOrigin.y);this.viewport.setCTM(o)}},i.prototype.handleMouseUp=function(t){this.options.preventMouseEventsDefault&&(t.preventDefault?t.preventDefault():t.returnValue=!1),"pan"===this.state&&(this.state="none")},i.prototype.fit=function(){var t=this.viewport.getViewBox(),e=Math.min(this.width/t.width,this.height/t.height);this.zoom(e,!0)},i.prototype.contain=function(){var t=this.viewport.getViewBox(),e=Math.max(this.width/t.width,this.height/t.height);this.zoom(e,!0)},i.prototype.center=function(){var t=this.viewport.getViewBox(),e=.5*(this.width-(t.width+2*t.x)*this.getZoom()),o=.5*(this.height-(t.height+2*t.y)*this.getZoom());this.getPublicInstance().pan({x:e,y:o})},i.prototype.updateBBox=function(){this.viewport.simpleViewBoxCache()},i.prototype.pan=function(t){var e=this.viewport.getCTM();e.e=t.x,e.f=t.y,this.viewport.setCTM(e)},i.prototype.panBy=function(t){var e=this.viewport.getCTM();e.e+=t.x,e.f+=t.y,this.viewport.setCTM(e)},i.prototype.getPan=function(){var t=this.viewport.getState();return{x:t.x,y:t.y}},i.prototype.resize=function(){var t=a.getBoundingClientRectNormalized(this.svg);this.width=t.width,this.height=t.height;var e=this.viewport;e.options.width=this.width,e.options.height=this.height,e.processCTM(),this.options.controlIconsEnabled&&(this.getPublicInstance().disableControlIcons(),this.getPublicInstance().enableControlIcons())},i.prototype.destroy=function(){var e=this;for(var t in this.beforeZoom=null,this.onZoom=null,this.beforePan=null,this.onPan=null,(this.onUpdatedCTM=null)!=this.options.customEventsHandler&&this.options.customEventsHandler.destroy({svgElement:this.svg,eventsListenerElement:this.options.eventsListenerElement,instance:this.getPublicInstance()}),this.eventListeners)(this.options.eventsListenerElement||this.svg).removeEventListener(t,this.eventListeners[t],!this.options.preventMouseEventsDefault&&h);this.disableMouseWheelZoom(),this.getPublicInstance().disableControlIcons(),this.reset(),c=c.filter(function(t){return t.svg!==e.svg}),delete this.options,delete this.viewport,delete this.publicInstance,delete this.pi,this.getPublicInstance=function(){return null}},i.prototype.getPublicInstance=function(){var o=this;return this.publicInstance||(this.publicInstance=this.pi={enablePan:function(){return o.options.panEnabled=!0,o.pi},disablePan:function(){return o.options.panEnabled=!1,o.pi},isPanEnabled:function(){return!!o.options.panEnabled},pan:function(t){return o.pan(t),o.pi},panBy:function(t){return o.panBy(t),o.pi},getPan:function(){return o.getPan()},setBeforePan:function(t){return o.options.beforePan=null===t?null:r.proxy(t,o.publicInstance),o.pi},setOnPan:function(t){return o.options.onPan=null===t?null:r.proxy(t,o.publicInstance),o.pi},enableZoom:function(){return o.options.zoomEnabled=!0,o.pi},disableZoom:function(){return o.options.zoomEnabled=!1,o.pi},isZoomEnabled:function(){return!!o.options.zoomEnabled},enableControlIcons:function(){return o.options.controlIconsEnabled||(o.options.controlIconsEnabled=!0,s.enable(o)),o.pi},disableControlIcons:function(){return o.options.controlIconsEnabled&&(o.options.controlIconsEnabled=!1,s.disable(o)),o.pi},isControlIconsEnabled:function(){return!!o.options.controlIconsEnabled},enableDblClickZoom:function(){return o.options.dblClickZoomEnabled=!0,o.pi},disableDblClickZoom:function(){return o.options.dblClickZoomEnabled=!1,o.pi},isDblClickZoomEnabled:function(){return!!o.options.dblClickZoomEnabled},enableMouseWheelZoom:function(){return o.enableMouseWheelZoom(),o.pi},disableMouseWheelZoom:function(){return o.disableMouseWheelZoom(),o.pi},isMouseWheelZoomEnabled:function(){return!!o.options.mouseWheelZoomEnabled},setZoomScaleSensitivity:function(t){return o.options.zoomScaleSensitivity=t,o.pi},setMinZoom:function(t){return o.options.minZoom=t,o.pi},setMaxZoom:function(t){return o.options.maxZoom=t,o.pi},setBeforeZoom:function(t){return o.options.beforeZoom=null===t?null:r.proxy(t,o.publicInstance),o.pi},setOnZoom:function(t){return o.options.onZoom=null===t?null:r.proxy(t,o.publicInstance),o.pi},zoom:function(t){return o.publicZoom(t,!0),o.pi},zoomBy:function(t){return o.publicZoom(t,!1),o.pi},zoomAtPoint:function(t,e){return o.publicZoomAtPoint(t,e,!0),o.pi},zoomAtPointBy:function(t,e){return o.publicZoomAtPoint(t,e,!1),o.pi},zoomIn:function(){return this.zoomBy(1+o.options.zoomScaleSensitivity),o.pi},zoomOut:function(){return this.zoomBy(1/(1+o.options.zoomScaleSensitivity)),o.pi},getZoom:function(){return o.getRelativeZoom()},setOnUpdatedCTM:function(t){return o.options.onUpdatedCTM=null===t?null:r.proxy(t,o.publicInstance),o.pi},resetZoom:function(){return o.resetZoom(),o.pi},resetPan:function(){return o.resetPan(),o.pi},reset:function(){return o.reset(),o.pi},fit:function(){return o.fit(),o.pi},contain:function(){return o.contain(),o.pi},center:function(){return o.center(),o.pi},updateBBox:function(){return o.updateBBox(),o.pi},resize:function(){return o.resize(),o.pi},getSizes:function(){return{width:o.width,height:o.height,realZoom:o.getZoom(),viewBox:o.viewport.getViewBox()}},destroy:function(){return o.destroy(),o.pi}}),this.publicInstance};var c=[];e.exports=function(t,e){var o=r.getSvg(t);if(null===o)return null;for(var n=c.length-1;0<=n;n--)if(c[n].svg===o)return c[n].instance.getPublicInstance();return c.push({svg:o,instance:new i(o,e)}),c[c.length-1].instance.getPublicInstance()}},{"./control-icons":1,"./shadow-viewport":2,"./svg-utilities":5,"./uniwheel":6,"./utilities":7}],5:[function(t,e,o){var l=t("./utilities"),s="unknown";document.documentMode&&(s="ie"),e.exports={svgNS:"http://www.w3.org/2000/svg",xmlNS:"http://www.w3.org/XML/1998/namespace",xmlnsNS:"http://www.w3.org/2000/xmlns/",xlinkNS:"http://www.w3.org/1999/xlink",evNS:"http://www.w3.org/2001/xml-events",getBoundingClientRectNormalized:function(t){if(t.clientWidth&&t.clientHeight)return{width:t.clientWidth,height:t.clientHeight};if(t.getBoundingClientRect())return t.getBoundingClientRect();throw new Error("Cannot get BoundingClientRect for SVG.")},getOrCreateViewport:function(t,e){var o=null;if(!(o=l.isElement(e)?e:t.querySelector(e))){var n=Array.prototype.slice.call(t.childNodes||t.children).filter(function(t){return"defs"!==t.nodeName&&"#text"!==t.nodeName});1===n.length&&"g"===n[0].nodeName&&null===n[0].getAttribute("transform")&&(o=n[0])}if(!o){var i="viewport-"+(new Date).toISOString().replace(/\D/g,"");(o=document.createElementNS(this.svgNS,"g")).setAttribute("id",i);var s=t.childNodes||t.children;if(s&&0`__:: +.. dropdown:: Using ONNX - from skl2onnx import to_onnx - onx = to_onnx(clf, X[:1].astype(numpy.float32), target_opset=12) - with open("filename.onnx", "wb") as f: - f.write(onx.SerializeToString()) + To convert the model to `ONNX` format, you need to give the converter some + information about the input as well, about which you can read more `here + `__:: -You can load the model in Python and use the `ONNX` runtime to get -predictions:: + from skl2onnx import to_onnx + onx = to_onnx(clf, X[:1].astype(numpy.float32), target_opset=12) + with open("filename.onnx", "wb") as f: + f.write(onx.SerializeToString()) - from onnxruntime import InferenceSession - with open("filename.onnx", "rb") as f: - onx = f.read() - sess = InferenceSession(onx, providers=["CPUExecutionProvider"]) - pred_ort = sess.run(None, {"X": X_test.astype(numpy.float32)})[0] + You can load the model in Python and use the `ONNX` runtime to get + predictions:: - -|details-end| + from onnxruntime import InferenceSession + with open("filename.onnx", "rb") as f: + onx = f.read() + sess = InferenceSession(onx, providers=["CPUExecutionProvider"]) + pred_ort = sess.run(None, {"X": X_test.astype(numpy.float32)})[0] .. _skops_persistence: @@ -154,33 +145,30 @@ Therefore it provides a more secure format than :mod:`pickle`, :mod:`joblib`, and `cloudpickle`_. -|details-start| -**Using skops** -|details-split| +.. dropdown:: Using skops -The API is very similar to :mod:`pickle`, and you can persist your models as -explained in the `documentation -`__ using -:func:`skops.io.dump` and :func:`skops.io.dumps`:: + The API is very similar to :mod:`pickle`, and you can persist your models as + explained in the `documentation + `__ using + :func:`skops.io.dump` and :func:`skops.io.dumps`:: - import skops.io as sio - obj = sio.dump(clf, "filename.skops") + import skops.io as sio + obj = sio.dump(clf, "filename.skops") -And you can load them back using :func:`skops.io.load` and -:func:`skops.io.loads`. However, you need to specify the types which are -trusted by you. You can get existing unknown types in a dumped object / file -using :func:`skops.io.get_untrusted_types`, and after checking its contents, -pass it to the load function:: + And you can load them back using :func:`skops.io.load` and + :func:`skops.io.loads`. However, you need to specify the types which are + trusted by you. You can get existing unknown types in a dumped object / file + using :func:`skops.io.get_untrusted_types`, and after checking its contents, + pass it to the load function:: - unknown_types = sio.get_untrusted_types(file="filename.skops") - # investigate the contents of unknown_types, and only load if you trust - # everything you see. - clf = sio.load("filename.skops", trusted=unknown_types) + unknown_types = sio.get_untrusted_types(file="filename.skops") + # investigate the contents of unknown_types, and only load if you trust + # everything you see. + clf = sio.load("filename.skops", trusted=unknown_types) -Please report issues and feature requests related to this format on the `skops -issue tracker `__. + Please report issues and feature requests related to this format on the `skops + issue tracker `__. -|details-end| .. _pickle_persistence: @@ -201,31 +189,27 @@ come with slight variations: :class:`~sklearn.preprocessing.FunctionTransformer` and using a custom function to transform the data. -|details-start| -**Using** ``pickle``, ``joblib``, **or** ``cloudpickle`` -|details-split| - -Depending on your use-case, you can choose one of these three methods to -persist and load your scikit-learn model, and they all follow the same API:: +.. dropdown:: Using `pickle`, `joblib`, or `cloudpickle` - # Here you can replace pickle with joblib or cloudpickle - from pickle import dump - with open("filename.pkl", "wb") as f: - dump(clf, f, protocol=5) + Depending on your use-case, you can choose one of these three methods to + persist and load your scikit-learn model, and they all follow the same API:: -Using `protocol=5` is recommended to reduce memory usage and make it faster to -store and load any large NumPy array stored as a fitted attribute in the model. -You can alternatively pass `protocol=pickle.HIGHEST_PROTOCOL` which is -equivalent to `protocol=5` in Python 3.8 and later (at the time of writing). + # Here you can replace pickle with joblib or cloudpickle + from pickle import dump + with open("filename.pkl", "wb") as f: + dump(clf, f, protocol=5) -And later when needed, you can load the same object from the persisted file:: + Using `protocol=5` is recommended to reduce memory usage and make it faster to + store and load any large NumPy array stored as a fitted attribute in the model. + You can alternatively pass `protocol=pickle.HIGHEST_PROTOCOL` which is + equivalent to `protocol=5` in Python 3.8 and later (at the time of writing). - # Here you can replace pickle with joblib or cloudpickle - from pickle import load - with open("filename.pkl", "rb") as f: - clf = load(f) + And later when needed, you can load the same object from the persisted file:: -|details-end| + # Here you can replace pickle with joblib or cloudpickle + from pickle import load + with open("filename.pkl", "rb") as f: + clf = load(f) .. _persistence_limitations: @@ -296,25 +280,21 @@ recipe (e.g. a Python script) and training set information, and metadata about all the dependencies to be able to automatically reconstruct the same training environment for the updated software. -|details-start| -**InconsistentVersionWarning** -|details-split| - -When an estimator is loaded with a scikit-learn version that is inconsistent -with the version the estimator was pickled with, a -:class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning -can be caught to obtain the original version the estimator was pickled with:: +.. dropdown:: InconsistentVersionWarning - from sklearn.exceptions import InconsistentVersionWarning - warnings.simplefilter("error", InconsistentVersionWarning) + When an estimator is loaded with a scikit-learn version that is inconsistent + with the version the estimator was pickled with, a + :class:`~sklearn.exceptions.InconsistentVersionWarning` is raised. This warning + can be caught to obtain the original version the estimator was pickled with:: - try: - with open("model_from_prevision_version.pickle", "rb") as f: - est = pickle.load(f) - except InconsistentVersionWarning as w: - print(w.original_sklearn_version) + from sklearn.exceptions import InconsistentVersionWarning + warnings.simplefilter("error", InconsistentVersionWarning) -|details-end| + try: + with open("model_from_prevision_version.pickle", "rb") as f: + est = pickle.load(f) + except InconsistentVersionWarning as w: + print(w.original_sklearn_version) Serving the model artifact diff --git a/doc/model_selection.rst b/doc/model_selection.rst index 522544aefc820..b78c9ff4c3aa8 100644 --- a/doc/model_selection.rst +++ b/doc/model_selection.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _model_selection: Model selection and evaluation diff --git a/doc/modules/array_api.rst b/doc/modules/array_api.rst index 310df6b12a6ec..9ad4f2f640924 100644 --- a/doc/modules/array_api.rst +++ b/doc/modules/array_api.rst @@ -1,7 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - .. _array_api: ================================ diff --git a/doc/modules/biclustering.rst b/doc/modules/biclustering.rst index 2189e85e0f0ef..503a535c408f0 100644 --- a/doc/modules/biclustering.rst +++ b/doc/modules/biclustering.rst @@ -147,21 +147,21 @@ Then the rows of :math:`Z` are clustered using :ref:`k-means and the remaining ``n_columns`` labels provide the column partitioning. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_coclustering.py`: A simple example - showing how to generate a data matrix with biclusters and apply - this method to it. +* :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_coclustering.py`: A simple example + showing how to generate a data matrix with biclusters and apply + this method to it. - * :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py`: An example of finding - biclusters in the twenty newsgroup dataset. +* :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py`: An example of finding + biclusters in the twenty newsgroup dataset. -.. topic:: References: +.. rubric:: References - * Dhillon, Inderjit S, 2001. :doi:`Co-clustering documents and words using - bipartite spectral graph partitioning - <10.1145/502512.502550>` +* Dhillon, Inderjit S, 2001. :doi:`Co-clustering documents and words using + bipartite spectral graph partitioning + <10.1145/502512.502550>` .. _spectral_biclustering: @@ -234,17 +234,17 @@ Similarly, projecting the columns to :math:`A^{\top} * U` and clustering this :math:`n \times q` matrix yields the column labels. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_biclustering.py`: a simple example - showing how to generate a checkerboard matrix and bicluster it. +* :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_biclustering.py`: a simple example + showing how to generate a checkerboard matrix and bicluster it. -.. topic:: References: +.. rubric:: References - * Kluger, Yuval, et. al., 2003. :doi:`Spectral biclustering of microarray - data: coclustering genes and conditions - <10.1101/gr.648603>` +* Kluger, Yuval, et. al., 2003. :doi:`Spectral biclustering of microarray + data: coclustering genes and conditions + <10.1101/gr.648603>` .. _biclustering_evaluation: @@ -298,8 +298,8 @@ are totally dissimilar. The maximum score, 1, occurs when both sets are identical. -.. topic:: References: +.. rubric:: References - * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis - for bicluster acquisition - `__. +* Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis + for bicluster acquisition + `__. diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst index c0a6edb837b2f..a2bfa152d2b26 100644 --- a/doc/modules/calibration.rst +++ b/doc/modules/calibration.rst @@ -262,51 +262,51 @@ probabilities, the calibrated probabilities for each class are predicted separately. As those probabilities do not necessarily sum to one, a postprocessing is performed to normalize them. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py` - * :ref:`sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py` - * :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py` - * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py` - -.. topic:: References: - - .. [1] Allan H. Murphy (1973). - :doi:`"A New Vector Partition of the Probability Score" - <10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2>` - Journal of Applied Meteorology and Climatology - - .. [2] `On the combination of forecast probabilities for - consecutive precipitation periods. - `_ - Wea. Forecasting, 5, 640–650., Wilks, D. S., 1990a - - .. [3] `Predicting Good Probabilities with Supervised Learning - `_, - A. Niculescu-Mizil & R. Caruana, ICML 2005 - - - .. [4] `Probabilistic Outputs for Support Vector Machines and Comparisons - to Regularized Likelihood Methods. - `_ - J. Platt, (1999) - - .. [5] `Transforming Classifier Scores into Accurate Multiclass - Probability Estimates. - `_ - B. Zadrozny & C. Elkan, (KDD 2002) - - .. [6] `Predicting accurate probabilities with a ranking loss. - `_ - Menon AK, Jiang XJ, Vembu S, Elkan C, Ohno-Machado L. - Proc Int Conf Mach Learn. 2012;2012:703-710 - - .. [7] `Beyond sigmoids: How to obtain well-calibrated probabilities from - binary classifiers with beta calibration - `_ - Kull, M., Silva Filho, T. M., & Flach, P. (2017). - - .. [8] Mario V. Wüthrich, Michael Merz (2023). - :doi:`"Statistical Foundations of Actuarial Learning and its Applications" - <10.1007/978-3-031-12409-9>` - Springer Actuarial +.. rubric:: Examples + +* :ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py` +* :ref:`sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py` +* :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py` +* :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py` + +.. rubric:: References + +.. [1] Allan H. Murphy (1973). + :doi:`"A New Vector Partition of the Probability Score" + <10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2>` + Journal of Applied Meteorology and Climatology + +.. [2] `On the combination of forecast probabilities for + consecutive precipitation periods. + `_ + Wea. Forecasting, 5, 640–650., Wilks, D. S., 1990a + +.. [3] `Predicting Good Probabilities with Supervised Learning + `_, + A. Niculescu-Mizil & R. Caruana, ICML 2005 + + +.. [4] `Probabilistic Outputs for Support Vector Machines and Comparisons + to Regularized Likelihood Methods. + `_ + J. Platt, (1999) + +.. [5] `Transforming Classifier Scores into Accurate Multiclass + Probability Estimates. + `_ + B. Zadrozny & C. Elkan, (KDD 2002) + +.. [6] `Predicting accurate probabilities with a ranking loss. + `_ + Menon AK, Jiang XJ, Vembu S, Elkan C, Ohno-Machado L. + Proc Int Conf Mach Learn. 2012;2012:703-710 + +.. [7] `Beyond sigmoids: How to obtain well-calibrated probabilities from + binary classifiers with beta calibration + `_ + Kull, M., Silva Filho, T. M., & Flach, P. (2017). + +.. [8] Mario V. Wüthrich, Michael Merz (2023). + :doi:`"Statistical Foundations of Actuarial Learning and its Applications" + <10.1007/978-3-031-12409-9>` + Springer Actuarial diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst deleted file mode 100644 index 1da5b337ad7a4..0000000000000 --- a/doc/modules/classes.rst +++ /dev/null @@ -1,1916 +0,0 @@ -.. _api_ref: - -============= -API Reference -============= - -This is the class and function reference of scikit-learn. Please refer to -the :ref:`full user guide ` for further details, as the class and -function raw specifications may not be enough to give full guidelines on their -uses. -For reference on concepts repeated across the API, see :ref:`glossary`. - -:mod:`sklearn`: Settings and information tools -============================================== - -.. automodule:: sklearn - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - config_context - get_config - set_config - show_versions - -:mod:`sklearn.base`: Base classes and utility functions -======================================================= - -.. automodule:: sklearn.base - :no-members: - :no-inherited-members: - -Base classes ------------- -.. currentmodule:: sklearn - -.. autosummary:: - :nosignatures: - :toctree: generated/ - :template: class.rst - - base.BaseEstimator - base.BiclusterMixin - base.ClassifierMixin - base.ClusterMixin - base.DensityMixin - base.RegressorMixin - base.TransformerMixin - base.MetaEstimatorMixin - base.OneToOneFeatureMixin - base.OutlierMixin - base.ClassNamePrefixFeaturesOutMixin - feature_selection.SelectorMixin - -Functions ---------- -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - base.clone - base.is_classifier - base.is_regressor - -.. _calibration_ref: - -:mod:`sklearn.calibration`: Probability Calibration -=================================================== - -.. automodule:: sklearn.calibration - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`calibration` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - calibration.CalibratedClassifierCV - - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - calibration.calibration_curve - -.. _cluster_ref: - -:mod:`sklearn.cluster`: Clustering -================================== - -.. automodule:: sklearn.cluster - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`clustering` and :ref:`biclustering` sections for -further details. - -Classes -------- -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - cluster.AffinityPropagation - cluster.AgglomerativeClustering - cluster.Birch - cluster.DBSCAN - cluster.HDBSCAN - cluster.FeatureAgglomeration - cluster.KMeans - cluster.BisectingKMeans - cluster.MiniBatchKMeans - cluster.MeanShift - cluster.OPTICS - cluster.SpectralClustering - cluster.SpectralBiclustering - cluster.SpectralCoclustering - -Functions ---------- -.. autosummary:: - :toctree: generated/ - :template: function.rst - - cluster.affinity_propagation - cluster.cluster_optics_dbscan - cluster.cluster_optics_xi - cluster.compute_optics_graph - cluster.dbscan - cluster.estimate_bandwidth - cluster.k_means - cluster.kmeans_plusplus - cluster.mean_shift - cluster.spectral_clustering - cluster.ward_tree - -.. _compose_ref: - -:mod:`sklearn.compose`: Composite Estimators -============================================ - -.. automodule:: sklearn.compose - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`combining_estimators` section for further -details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - compose.ColumnTransformer - compose.TransformedTargetRegressor - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - compose.make_column_transformer - compose.make_column_selector - -.. _covariance_ref: - -:mod:`sklearn.covariance`: Covariance Estimators -================================================ - -.. automodule:: sklearn.covariance - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`covariance` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - covariance.EmpiricalCovariance - covariance.EllipticEnvelope - covariance.GraphicalLasso - covariance.GraphicalLassoCV - covariance.LedoitWolf - covariance.MinCovDet - covariance.OAS - covariance.ShrunkCovariance - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - covariance.empirical_covariance - covariance.graphical_lasso - covariance.ledoit_wolf - covariance.ledoit_wolf_shrinkage - covariance.oas - covariance.shrunk_covariance - -.. _cross_decomposition_ref: - -:mod:`sklearn.cross_decomposition`: Cross decomposition -======================================================= - -.. automodule:: sklearn.cross_decomposition - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`cross_decomposition` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - cross_decomposition.CCA - cross_decomposition.PLSCanonical - cross_decomposition.PLSRegression - cross_decomposition.PLSSVD - -.. _datasets_ref: - -:mod:`sklearn.datasets`: Datasets -================================= - -.. automodule:: sklearn.datasets - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`datasets` section for further details. - -Loaders -------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - datasets.clear_data_home - datasets.dump_svmlight_file - datasets.fetch_20newsgroups - datasets.fetch_20newsgroups_vectorized - datasets.fetch_california_housing - datasets.fetch_covtype - datasets.fetch_kddcup99 - datasets.fetch_lfw_pairs - datasets.fetch_lfw_people - datasets.fetch_olivetti_faces - datasets.fetch_openml - datasets.fetch_rcv1 - datasets.fetch_species_distributions - datasets.get_data_home - datasets.load_breast_cancer - datasets.load_diabetes - datasets.load_digits - datasets.load_files - datasets.load_iris - datasets.load_linnerud - datasets.load_sample_image - datasets.load_sample_images - datasets.load_svmlight_file - datasets.load_svmlight_files - datasets.load_wine - -Samples generator ------------------ - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - datasets.make_biclusters - datasets.make_blobs - datasets.make_checkerboard - datasets.make_circles - datasets.make_classification - datasets.make_friedman1 - datasets.make_friedman2 - datasets.make_friedman3 - datasets.make_gaussian_quantiles - datasets.make_hastie_10_2 - datasets.make_low_rank_matrix - datasets.make_moons - datasets.make_multilabel_classification - datasets.make_regression - datasets.make_s_curve - datasets.make_sparse_coded_signal - datasets.make_sparse_spd_matrix - datasets.make_sparse_uncorrelated - datasets.make_spd_matrix - datasets.make_swiss_roll - - -.. _decomposition_ref: - -:mod:`sklearn.decomposition`: Matrix Decomposition -================================================== - -.. automodule:: sklearn.decomposition - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`decompositions` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - decomposition.DictionaryLearning - decomposition.FactorAnalysis - decomposition.FastICA - decomposition.IncrementalPCA - decomposition.KernelPCA - decomposition.LatentDirichletAllocation - decomposition.MiniBatchDictionaryLearning - decomposition.MiniBatchSparsePCA - decomposition.NMF - decomposition.MiniBatchNMF - decomposition.PCA - decomposition.SparsePCA - decomposition.SparseCoder - decomposition.TruncatedSVD - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - decomposition.dict_learning - decomposition.dict_learning_online - decomposition.fastica - decomposition.non_negative_factorization - decomposition.sparse_encode - -.. _lda_ref: - -:mod:`sklearn.discriminant_analysis`: Discriminant Analysis -=========================================================== - -.. automodule:: sklearn.discriminant_analysis - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`lda_qda` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - discriminant_analysis.LinearDiscriminantAnalysis - discriminant_analysis.QuadraticDiscriminantAnalysis - -.. _dummy_ref: - -:mod:`sklearn.dummy`: Dummy estimators -====================================== - -.. automodule:: sklearn.dummy - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`model_evaluation` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - dummy.DummyClassifier - dummy.DummyRegressor - -.. autosummary:: - :toctree: generated/ - :template: function.rst - -.. _ensemble_ref: - -:mod:`sklearn.ensemble`: Ensemble Methods -========================================= - -.. automodule:: sklearn.ensemble - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`ensemble` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - ensemble.AdaBoostClassifier - ensemble.AdaBoostRegressor - ensemble.BaggingClassifier - ensemble.BaggingRegressor - ensemble.ExtraTreesClassifier - ensemble.ExtraTreesRegressor - ensemble.GradientBoostingClassifier - ensemble.GradientBoostingRegressor - ensemble.IsolationForest - ensemble.RandomForestClassifier - ensemble.RandomForestRegressor - ensemble.RandomTreesEmbedding - ensemble.StackingClassifier - ensemble.StackingRegressor - ensemble.VotingClassifier - ensemble.VotingRegressor - ensemble.HistGradientBoostingRegressor - ensemble.HistGradientBoostingClassifier - - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - -.. _exceptions_ref: - -:mod:`sklearn.exceptions`: Exceptions and warnings -================================================== - -.. automodule:: sklearn.exceptions - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - exceptions.ConvergenceWarning - exceptions.DataConversionWarning - exceptions.DataDimensionalityWarning - exceptions.EfficiencyWarning - exceptions.FitFailedWarning - exceptions.InconsistentVersionWarning - exceptions.NotFittedError - exceptions.UndefinedMetricWarning - - -:mod:`sklearn.experimental`: Experimental -========================================= - -.. automodule:: sklearn.experimental - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - - experimental.enable_iterative_imputer - experimental.enable_halving_search_cv - - -.. _feature_extraction_ref: - -:mod:`sklearn.feature_extraction`: Feature Extraction -===================================================== - -.. automodule:: sklearn.feature_extraction - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`feature_extraction` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - feature_extraction.DictVectorizer - feature_extraction.FeatureHasher - -From images ------------ - -.. automodule:: sklearn.feature_extraction.image - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - feature_extraction.image.extract_patches_2d - feature_extraction.image.grid_to_graph - feature_extraction.image.img_to_graph - feature_extraction.image.reconstruct_from_patches_2d - - :template: class.rst - - feature_extraction.image.PatchExtractor - -.. _text_feature_extraction_ref: - -From text ---------- - -.. automodule:: sklearn.feature_extraction.text - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - feature_extraction.text.CountVectorizer - feature_extraction.text.HashingVectorizer - feature_extraction.text.TfidfTransformer - feature_extraction.text.TfidfVectorizer - - -.. _feature_selection_ref: - -:mod:`sklearn.feature_selection`: Feature Selection -=================================================== - -.. automodule:: sklearn.feature_selection - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`feature_selection` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - feature_selection.GenericUnivariateSelect - feature_selection.SelectPercentile - feature_selection.SelectKBest - feature_selection.SelectFpr - feature_selection.SelectFdr - feature_selection.SelectFromModel - feature_selection.SelectFwe - feature_selection.SequentialFeatureSelector - feature_selection.RFE - feature_selection.RFECV - feature_selection.VarianceThreshold - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - feature_selection.chi2 - feature_selection.f_classif - feature_selection.f_regression - feature_selection.r_regression - feature_selection.mutual_info_classif - feature_selection.mutual_info_regression - - -.. _gaussian_process_ref: - -:mod:`sklearn.gaussian_process`: Gaussian Processes -=================================================== - -.. automodule:: sklearn.gaussian_process - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`gaussian_process` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - gaussian_process.GaussianProcessClassifier - gaussian_process.GaussianProcessRegressor - -Kernels -------- - -.. automodule:: sklearn.gaussian_process.kernels - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class_with_call.rst - - gaussian_process.kernels.CompoundKernel - gaussian_process.kernels.ConstantKernel - gaussian_process.kernels.DotProduct - gaussian_process.kernels.ExpSineSquared - gaussian_process.kernels.Exponentiation - gaussian_process.kernels.Hyperparameter - gaussian_process.kernels.Kernel - gaussian_process.kernels.Matern - gaussian_process.kernels.PairwiseKernel - gaussian_process.kernels.Product - gaussian_process.kernels.RBF - gaussian_process.kernels.RationalQuadratic - gaussian_process.kernels.Sum - gaussian_process.kernels.WhiteKernel - - -.. _impute_ref: - -:mod:`sklearn.impute`: Impute -============================= - -.. automodule:: sklearn.impute - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`Impute` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - impute.SimpleImputer - impute.IterativeImputer - impute.MissingIndicator - impute.KNNImputer - - -.. _inspection_ref: - -:mod:`sklearn.inspection`: Inspection -===================================== - -.. automodule:: sklearn.inspection - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - inspection.partial_dependence - inspection.permutation_importance - -Plotting --------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: display_only_from_estimator.rst - - inspection.DecisionBoundaryDisplay - inspection.PartialDependenceDisplay - -.. _isotonic_ref: - -:mod:`sklearn.isotonic`: Isotonic regression -============================================ - -.. automodule:: sklearn.isotonic - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`isotonic` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - isotonic.IsotonicRegression - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - isotonic.check_increasing - isotonic.isotonic_regression - - -.. _kernel_approximation_ref: - -:mod:`sklearn.kernel_approximation`: Kernel Approximation -========================================================= - -.. automodule:: sklearn.kernel_approximation - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`kernel_approximation` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - kernel_approximation.AdditiveChi2Sampler - kernel_approximation.Nystroem - kernel_approximation.PolynomialCountSketch - kernel_approximation.RBFSampler - kernel_approximation.SkewedChi2Sampler - -.. _kernel_ridge_ref: - -:mod:`sklearn.kernel_ridge`: Kernel Ridge Regression -==================================================== - -.. automodule:: sklearn.kernel_ridge - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`kernel_ridge` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - kernel_ridge.KernelRidge - -.. _linear_model_ref: - -:mod:`sklearn.linear_model`: Linear Models -========================================== - -.. automodule:: sklearn.linear_model - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`linear_model` section for further details. - -The following subsections are only rough guidelines: the same estimator can -fall into multiple categories, depending on its parameters. - -.. currentmodule:: sklearn - -Linear classifiers ------------------- -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.LogisticRegression - linear_model.LogisticRegressionCV - linear_model.PassiveAggressiveClassifier - linear_model.Perceptron - linear_model.RidgeClassifier - linear_model.RidgeClassifierCV - linear_model.SGDClassifier - linear_model.SGDOneClassSVM - -Classical linear regressors ---------------------------- - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.LinearRegression - linear_model.Ridge - linear_model.RidgeCV - linear_model.SGDRegressor - -Regressors with variable selection ----------------------------------- - -The following estimators have built-in variable selection fitting -procedures, but any estimator using a L1 or elastic-net penalty also -performs variable selection: typically :class:`~linear_model.SGDRegressor` -or :class:`~sklearn.linear_model.SGDClassifier` with an appropriate penalty. - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.ElasticNet - linear_model.ElasticNetCV - linear_model.Lars - linear_model.LarsCV - linear_model.Lasso - linear_model.LassoCV - linear_model.LassoLars - linear_model.LassoLarsCV - linear_model.LassoLarsIC - linear_model.OrthogonalMatchingPursuit - linear_model.OrthogonalMatchingPursuitCV - -Bayesian regressors -------------------- - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.ARDRegression - linear_model.BayesianRidge - -Multi-task linear regressors with variable selection ----------------------------------------------------- - -These estimators fit multiple regression problems (or tasks) jointly, while -inducing sparse coefficients. While the inferred coefficients may differ -between the tasks, they are constrained to agree on the features that are -selected (non-zero coefficients). - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.MultiTaskElasticNet - linear_model.MultiTaskElasticNetCV - linear_model.MultiTaskLasso - linear_model.MultiTaskLassoCV - -Outlier-robust regressors -------------------------- - -Any estimator using the Huber loss would also be robust to outliers, e.g. -:class:`~linear_model.SGDRegressor` with ``loss='huber'``. - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.HuberRegressor - linear_model.QuantileRegressor - linear_model.RANSACRegressor - linear_model.TheilSenRegressor - -Generalized linear models (GLM) for regression ----------------------------------------------- - -These models allow for response variables to have error distributions other -than a normal distribution: - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - linear_model.PoissonRegressor - linear_model.TweedieRegressor - linear_model.GammaRegressor - - -Miscellaneous -------------- - -.. autosummary:: - :toctree: generated/ - :template: classes.rst - - linear_model.PassiveAggressiveRegressor - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - linear_model.enet_path - linear_model.lars_path - linear_model.lars_path_gram - linear_model.lasso_path - linear_model.orthogonal_mp - linear_model.orthogonal_mp_gram - linear_model.ridge_regression - - -.. _manifold_ref: - -:mod:`sklearn.manifold`: Manifold Learning -========================================== - -.. automodule:: sklearn.manifold - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`manifold` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated - :template: class.rst - - manifold.Isomap - manifold.LocallyLinearEmbedding - manifold.MDS - manifold.SpectralEmbedding - manifold.TSNE - -.. autosummary:: - :toctree: generated - :template: function.rst - - manifold.locally_linear_embedding - manifold.smacof - manifold.spectral_embedding - manifold.trustworthiness - - -.. _metrics_ref: - -:mod:`sklearn.metrics`: Metrics -=============================== - -See the :ref:`model_evaluation` section and the :ref:`metrics` section of the -user guide for further details. - -.. automodule:: sklearn.metrics - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -Model Selection Interface -------------------------- -See the :ref:`scoring_parameter` section of the user guide for further -details. - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.check_scoring - metrics.get_scorer - metrics.get_scorer_names - metrics.make_scorer - -Classification metrics ----------------------- - -See the :ref:`classification_metrics` section of the user guide for further -details. - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.accuracy_score - metrics.auc - metrics.average_precision_score - metrics.balanced_accuracy_score - metrics.brier_score_loss - metrics.class_likelihood_ratios - metrics.classification_report - metrics.cohen_kappa_score - metrics.confusion_matrix - metrics.d2_log_loss_score - metrics.dcg_score - metrics.det_curve - metrics.f1_score - metrics.fbeta_score - metrics.hamming_loss - metrics.hinge_loss - metrics.jaccard_score - metrics.log_loss - metrics.matthews_corrcoef - metrics.multilabel_confusion_matrix - metrics.ndcg_score - metrics.precision_recall_curve - metrics.precision_recall_fscore_support - metrics.precision_score - metrics.recall_score - metrics.roc_auc_score - metrics.roc_curve - metrics.top_k_accuracy_score - metrics.zero_one_loss - -Regression metrics ------------------- - -See the :ref:`regression_metrics` section of the user guide for further -details. - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.explained_variance_score - metrics.max_error - metrics.mean_absolute_error - metrics.mean_squared_error - metrics.mean_squared_log_error - metrics.median_absolute_error - metrics.mean_absolute_percentage_error - metrics.r2_score - metrics.root_mean_squared_log_error - metrics.root_mean_squared_error - metrics.mean_poisson_deviance - metrics.mean_gamma_deviance - metrics.mean_tweedie_deviance - metrics.d2_tweedie_score - metrics.mean_pinball_loss - metrics.d2_pinball_score - metrics.d2_absolute_error_score - -Multilabel ranking metrics --------------------------- -See the :ref:`multilabel_ranking_metrics` section of the user guide for further -details. - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.coverage_error - metrics.label_ranking_average_precision_score - metrics.label_ranking_loss - - -Clustering metrics ------------------- - -See the :ref:`clustering_evaluation` section of the user guide for further -details. - -.. automodule:: sklearn.metrics.cluster - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.adjusted_mutual_info_score - metrics.adjusted_rand_score - metrics.calinski_harabasz_score - metrics.davies_bouldin_score - metrics.completeness_score - metrics.cluster.contingency_matrix - metrics.cluster.pair_confusion_matrix - metrics.fowlkes_mallows_score - metrics.homogeneity_completeness_v_measure - metrics.homogeneity_score - metrics.mutual_info_score - metrics.normalized_mutual_info_score - metrics.rand_score - metrics.silhouette_score - metrics.silhouette_samples - metrics.v_measure_score - -Biclustering metrics --------------------- - -See the :ref:`biclustering_evaluation` section of the user guide for -further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.consensus_score - -Distance metrics ----------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - metrics.DistanceMetric - -Pairwise metrics ----------------- - -See the :ref:`metrics` section of the user guide for further details. - -.. automodule:: sklearn.metrics.pairwise - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - metrics.pairwise.additive_chi2_kernel - metrics.pairwise.chi2_kernel - metrics.pairwise.cosine_similarity - metrics.pairwise.cosine_distances - metrics.pairwise.distance_metrics - metrics.pairwise.euclidean_distances - metrics.pairwise.haversine_distances - metrics.pairwise.kernel_metrics - metrics.pairwise.laplacian_kernel - metrics.pairwise.linear_kernel - metrics.pairwise.manhattan_distances - metrics.pairwise.nan_euclidean_distances - metrics.pairwise.pairwise_kernels - metrics.pairwise.polynomial_kernel - metrics.pairwise.rbf_kernel - metrics.pairwise.sigmoid_kernel - metrics.pairwise.paired_euclidean_distances - metrics.pairwise.paired_manhattan_distances - metrics.pairwise.paired_cosine_distances - metrics.pairwise.paired_distances - metrics.pairwise_distances - metrics.pairwise_distances_argmin - metrics.pairwise_distances_argmin_min - metrics.pairwise_distances_chunked - - -Plotting --------- - -See the :ref:`visualizations` section of the user guide for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: display_all_class_methods.rst - - metrics.ConfusionMatrixDisplay - metrics.DetCurveDisplay - metrics.PrecisionRecallDisplay - metrics.PredictionErrorDisplay - metrics.RocCurveDisplay - calibration.CalibrationDisplay - -.. _mixture_ref: - -:mod:`sklearn.mixture`: Gaussian Mixture Models -=============================================== - -.. automodule:: sklearn.mixture - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`mixture` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - mixture.BayesianGaussianMixture - mixture.GaussianMixture - -.. _modelselection_ref: - -:mod:`sklearn.model_selection`: Model Selection -=============================================== - -.. automodule:: sklearn.model_selection - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`cross_validation`, :ref:`grid_search` and -:ref:`learning_curve` sections for further details. - -Splitter Classes ----------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - model_selection.GroupKFold - model_selection.GroupShuffleSplit - model_selection.KFold - model_selection.LeaveOneGroupOut - model_selection.LeavePGroupsOut - model_selection.LeaveOneOut - model_selection.LeavePOut - model_selection.PredefinedSplit - model_selection.RepeatedKFold - model_selection.RepeatedStratifiedKFold - model_selection.ShuffleSplit - model_selection.StratifiedKFold - model_selection.StratifiedShuffleSplit - model_selection.StratifiedGroupKFold - model_selection.TimeSeriesSplit - -Splitter Functions ------------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - model_selection.check_cv - model_selection.train_test_split - -.. _hyper_parameter_optimizers: - -Hyper-parameter optimizers --------------------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - model_selection.GridSearchCV - model_selection.HalvingGridSearchCV - model_selection.ParameterGrid - model_selection.ParameterSampler - model_selection.RandomizedSearchCV - model_selection.HalvingRandomSearchCV - -Post-fit model tuning ---------------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - model_selection.FixedThresholdClassifier - model_selection.TunedThresholdClassifierCV - -Model validation ----------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - model_selection.cross_validate - model_selection.cross_val_predict - model_selection.cross_val_score - model_selection.learning_curve - model_selection.permutation_test_score - model_selection.validation_curve - -Visualization -------------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: display_only_from_estimator.rst - - model_selection.LearningCurveDisplay - model_selection.ValidationCurveDisplay - -.. _multiclass_ref: - -:mod:`sklearn.multiclass`: Multiclass classification -==================================================== - -.. automodule:: sklearn.multiclass - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`multiclass_classification` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - multiclass.OneVsRestClassifier - multiclass.OneVsOneClassifier - multiclass.OutputCodeClassifier - -.. _multioutput_ref: - -:mod:`sklearn.multioutput`: Multioutput regression and classification -===================================================================== - -.. automodule:: sklearn.multioutput - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`multilabel_classification`, -:ref:`multiclass_multioutput_classification`, and -:ref:`multioutput_regression` sections for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated - :template: class.rst - - multioutput.ClassifierChain - multioutput.MultiOutputRegressor - multioutput.MultiOutputClassifier - multioutput.RegressorChain - -.. _naive_bayes_ref: - -:mod:`sklearn.naive_bayes`: Naive Bayes -======================================= - -.. automodule:: sklearn.naive_bayes - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`naive_bayes` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - naive_bayes.BernoulliNB - naive_bayes.CategoricalNB - naive_bayes.ComplementNB - naive_bayes.GaussianNB - naive_bayes.MultinomialNB - - -.. _neighbors_ref: - -:mod:`sklearn.neighbors`: Nearest Neighbors -=========================================== - -.. automodule:: sklearn.neighbors - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`neighbors` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - neighbors.BallTree - neighbors.KDTree - neighbors.KernelDensity - neighbors.KNeighborsClassifier - neighbors.KNeighborsRegressor - neighbors.KNeighborsTransformer - neighbors.LocalOutlierFactor - neighbors.RadiusNeighborsClassifier - neighbors.RadiusNeighborsRegressor - neighbors.RadiusNeighborsTransformer - neighbors.NearestCentroid - neighbors.NearestNeighbors - neighbors.NeighborhoodComponentsAnalysis - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - neighbors.kneighbors_graph - neighbors.radius_neighbors_graph - neighbors.sort_graph_by_row_values - -.. _neural_network_ref: - -:mod:`sklearn.neural_network`: Neural network models -==================================================== - -.. automodule:: sklearn.neural_network - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`neural_networks_supervised` and :ref:`neural_networks_unsupervised` sections for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - neural_network.BernoulliRBM - neural_network.MLPClassifier - neural_network.MLPRegressor - -.. _pipeline_ref: - -:mod:`sklearn.pipeline`: Pipeline -================================= - -.. automodule:: sklearn.pipeline - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`combining_estimators` section for further -details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - pipeline.FeatureUnion - pipeline.Pipeline - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - pipeline.make_pipeline - pipeline.make_union - -.. _preprocessing_ref: - -:mod:`sklearn.preprocessing`: Preprocessing and Normalization -============================================================= - -.. automodule:: sklearn.preprocessing - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`preprocessing` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - preprocessing.Binarizer - preprocessing.FunctionTransformer - preprocessing.KBinsDiscretizer - preprocessing.KernelCenterer - preprocessing.LabelBinarizer - preprocessing.LabelEncoder - preprocessing.MultiLabelBinarizer - preprocessing.MaxAbsScaler - preprocessing.MinMaxScaler - preprocessing.Normalizer - preprocessing.OneHotEncoder - preprocessing.OrdinalEncoder - preprocessing.PolynomialFeatures - preprocessing.PowerTransformer - preprocessing.QuantileTransformer - preprocessing.RobustScaler - preprocessing.SplineTransformer - preprocessing.StandardScaler - preprocessing.TargetEncoder - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - preprocessing.add_dummy_feature - preprocessing.binarize - preprocessing.label_binarize - preprocessing.maxabs_scale - preprocessing.minmax_scale - preprocessing.normalize - preprocessing.quantile_transform - preprocessing.robust_scale - preprocessing.scale - preprocessing.power_transform - - -.. _random_projection_ref: - -:mod:`sklearn.random_projection`: Random projection -=================================================== - -.. automodule:: sklearn.random_projection - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`random_projection` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - random_projection.GaussianRandomProjection - random_projection.SparseRandomProjection - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - random_projection.johnson_lindenstrauss_min_dim - - -.. _semi_supervised_ref: - -:mod:`sklearn.semi_supervised`: Semi-Supervised Learning -======================================================== - -.. automodule:: sklearn.semi_supervised - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`semi_supervised` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - semi_supervised.LabelPropagation - semi_supervised.LabelSpreading - semi_supervised.SelfTrainingClassifier - - -.. _svm_ref: - -:mod:`sklearn.svm`: Support Vector Machines -=========================================== - -.. automodule:: sklearn.svm - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`svm` section for further details. - -Estimators ----------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - svm.LinearSVC - svm.LinearSVR - svm.NuSVC - svm.NuSVR - svm.OneClassSVM - svm.SVC - svm.SVR - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - svm.l1_min_c - -.. _tree_ref: - -:mod:`sklearn.tree`: Decision Trees -=================================== - -.. automodule:: sklearn.tree - :no-members: - :no-inherited-members: - -**User guide:** See the :ref:`tree` section for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - tree.DecisionTreeClassifier - tree.DecisionTreeRegressor - tree.ExtraTreeClassifier - tree.ExtraTreeRegressor - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - tree.export_graphviz - tree.export_text - -Plotting --------- - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - tree.plot_tree - -.. _utils_ref: - -:mod:`sklearn.utils`: Utilities -=============================== - -.. automodule:: sklearn.utils - :no-members: - :no-inherited-members: - -**Developer guide:** See the :ref:`developers-utils` page for further details. - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - utils.Bunch - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.as_float_array - utils.assert_all_finite - utils.deprecated - utils.estimator_html_repr - utils.gen_batches - utils.gen_even_slices - utils.indexable - utils.murmurhash3_32 - utils.resample - utils._safe_indexing - utils.safe_mask - utils.safe_sqr - utils.shuffle - -Input and parameter validation ------------------------------- - -.. automodule:: sklearn.utils.validation - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.check_X_y - utils.check_array - utils.check_scalar - utils.check_consistent_length - utils.check_random_state - utils.validation.check_is_fitted - utils.validation.check_memory - utils.validation.check_symmetric - utils.validation.column_or_1d - utils.validation.has_fit_parameter - -Utilities used in meta-estimators ---------------------------------- - -.. automodule:: sklearn.utils.metaestimators - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.metaestimators.available_if - -Utilities to handle weights based on class labels -------------------------------------------------- - -.. automodule:: sklearn.utils.class_weight - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.class_weight.compute_class_weight - utils.class_weight.compute_sample_weight - -Utilities to deal with multiclass target in classifiers -------------------------------------------------------- - -.. automodule:: sklearn.utils.multiclass - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.multiclass.type_of_target - utils.multiclass.is_multilabel - utils.multiclass.unique_labels - -Utilities for optimal mathematical operations ---------------------------------------------- - -.. automodule:: sklearn.utils.extmath - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.extmath.safe_sparse_dot - utils.extmath.randomized_range_finder - utils.extmath.randomized_svd - utils.extmath.fast_logdet - utils.extmath.density - utils.extmath.weighted_mode - -Utilities to work with sparse matrices and arrays -------------------------------------------------- - -.. automodule:: sklearn.utils.sparsefuncs - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.sparsefuncs.incr_mean_variance_axis - utils.sparsefuncs.inplace_column_scale - utils.sparsefuncs.inplace_row_scale - utils.sparsefuncs.inplace_swap_row - utils.sparsefuncs.inplace_swap_column - utils.sparsefuncs.mean_variance_axis - utils.sparsefuncs.inplace_csr_column_scale - -.. automodule:: sklearn.utils.sparsefuncs_fast - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.sparsefuncs_fast.inplace_csr_row_normalize_l1 - utils.sparsefuncs_fast.inplace_csr_row_normalize_l2 - -Utilities to work with graphs ------------------------------ - -.. automodule:: sklearn.utils.graph - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.graph.single_source_shortest_path_length - -Utilities for random sampling ------------------------------ - -.. automodule:: sklearn.utils.random - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.random.sample_without_replacement - - -Utilities to operate on arrays ------------------------------- - -.. automodule:: sklearn.utils.arrayfuncs - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.arrayfuncs.min_pos - -Metadata routing ----------------- - -.. automodule:: sklearn.utils.metadata_routing - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.metadata_routing.get_routing_for_object - utils.metadata_routing.process_routing - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - utils.metadata_routing.MetadataRouter - utils.metadata_routing.MetadataRequest - utils.metadata_routing.MethodMapping - -Scikit-learn object discovery ------------------------------ - -.. automodule:: sklearn.utils.discovery - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.discovery.all_estimators - utils.discovery.all_displays - utils.discovery.all_functions - -Scikit-learn compatibility checker ----------------------------------- - -.. automodule:: sklearn.utils.estimator_checks - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.estimator_checks.check_estimator - utils.estimator_checks.parametrize_with_checks - -Utilities for parallel computing --------------------------------- - -.. automodule:: sklearn.utils.parallel - :no-members: - :no-inherited-members: - -.. currentmodule:: sklearn - -.. autosummary:: - :toctree: generated/ - :template: function.rst - - utils.parallel.delayed - utils.parallel_backend - utils.register_parallel_backend - -.. autosummary:: - :toctree: generated/ - :template: class.rst - - utils.parallel.Parallel - - -Recently deprecated -=================== diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst index ed27b369171e5..2de39d0317bf5 100644 --- a/doc/modules/clustering.rst +++ b/doc/modules/clustering.rst @@ -241,13 +241,13 @@ K-means can be used for vector quantization. This is achieved using the performing vector quantization on an image refer to :ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py`. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_cluster_iris.py`: Example usage of - :class:`KMeans` using the iris dataset +* :ref:`sphx_glr_auto_examples_cluster_plot_cluster_iris.py`: Example usage of + :class:`KMeans` using the iris dataset - * :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering - using :class:`KMeans` and :class:`MiniBatchKMeans` based on sparse data +* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering + using :class:`KMeans` and :class:`MiniBatchKMeans` based on sparse data Low-level parallelism --------------------- @@ -257,24 +257,20 @@ chunks of data (256 samples) are processed in parallel, which in addition yields a low memory footprint. For more details on how to control the number of threads, please refer to our :ref:`parallelism` notes. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_assumptions.py`: Demonstrating - when k-means performs intuitively and when it does not - * :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`: Clustering - handwritten digits +* :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_assumptions.py`: Demonstrating when + k-means performs intuitively and when it does not +* :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`: Clustering handwritten digits +.. dropdown:: References -|details-start| -**References** -|details-split| + * `"k-means++: The advantages of careful seeding" + `_ + Arthur, David, and Sergei Vassilvitskii, + *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete + algorithms*, Society for Industrial and Applied Mathematics (2007) -* `"k-means++: The advantages of careful seeding" - `_ Arthur, David, and - Sergei Vassilvitskii, *Proceedings of the eighteenth annual ACM-SIAM symposium - on Discrete algorithms*, Society for Industrial and Applied Mathematics (2007) - -|details-end| .. _mini_batch_kmeans: @@ -310,24 +306,22 @@ small, as shown in the example and cited reference. :scale: 100 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`: Comparison of - :class:`KMeans` and :class:`MiniBatchKMeans` +* :ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`: Comparison of + :class:`KMeans` and :class:`MiniBatchKMeans` - * :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering - using :class:`KMeans` and :class:`MiniBatchKMeans` based on sparse data +* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering + using :class:`KMeans` and :class:`MiniBatchKMeans` based on sparse data -|details-start| -**References** -|details-split| +* :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py` -* `"Web Scale K-Means clustering" - `_ - D. Sculley, *Proceedings of the 19th international conference on World - wide web* (2010) +.. dropdown:: References -|details-end| + * `"Web Scale K-Means clustering" + `_ + D. Sculley, *Proceedings of the 19th international conference on World + wide web* (2010) .. _affinity_propagation: @@ -364,55 +358,50 @@ convergence. Further, the memory complexity is of the order sparse similarity matrix is used. This makes Affinity Propagation most appropriate for small to medium sized datasets. -|details-start| -**Algorithm description** -|details-split| - -The messages sent between points belong to one of two categories. The first is -the responsibility :math:`r(i, k)`, which is the accumulated evidence that -sample :math:`k` should be the exemplar for sample :math:`i`. The second is the -availability :math:`a(i, k)` which is the accumulated evidence that sample -:math:`i` should choose sample :math:`k` to be its exemplar, and considers the -values for all other samples that :math:`k` should be an exemplar. In this way, -exemplars are chosen by samples if they are (1) similar enough to many samples -and (2) chosen by many samples to be representative of themselves. +.. dropdown:: Algorithm description -More formally, the responsibility of a sample :math:`k` to be the exemplar of -sample :math:`i` is given by: + The messages sent between points belong to one of two categories. The first is + the responsibility :math:`r(i, k)`, which is the accumulated evidence that + sample :math:`k` should be the exemplar for sample :math:`i`. The second is the + availability :math:`a(i, k)` which is the accumulated evidence that sample + :math:`i` should choose sample :math:`k` to be its exemplar, and considers the + values for all other samples that :math:`k` should be an exemplar. In this way, + exemplars are chosen by samples if they are (1) similar enough to many samples + and (2) chosen by many samples to be representative of themselves. -.. math:: + More formally, the responsibility of a sample :math:`k` to be the exemplar of + sample :math:`i` is given by: - r(i, k) \leftarrow s(i, k) - max [ a(i, k') + s(i, k') \forall k' \neq k ] + .. math:: -Where :math:`s(i, k)` is the similarity between samples :math:`i` and :math:`k`. -The availability of sample :math:`k` to be the exemplar of sample :math:`i` is -given by: - -.. math:: + r(i, k) \leftarrow s(i, k) - max [ a(i, k') + s(i, k') \forall k' \neq k ] - a(i, k) \leftarrow min [0, r(k, k) + \sum_{i'~s.t.~i' \notin \{i, k\}}{r(i', - k)}] + Where :math:`s(i, k)` is the similarity between samples :math:`i` and :math:`k`. + The availability of sample :math:`k` to be the exemplar of sample :math:`i` is + given by: -To begin with, all values for :math:`r` and :math:`a` are set to zero, and the -calculation of each iterates until convergence. As discussed above, in order to -avoid numerical oscillations when updating the messages, the damping factor -:math:`\lambda` is introduced to iteration process: + .. math:: -.. math:: r_{t+1}(i, k) = \lambda\cdot r_{t}(i, k) + (1-\lambda)\cdot r_{t+1}(i, k) -.. math:: a_{t+1}(i, k) = \lambda\cdot a_{t}(i, k) + (1-\lambda)\cdot a_{t+1}(i, k) + a(i, k) \leftarrow min [0, r(k, k) + \sum_{i'~s.t.~i' \notin \{i, k\}}{r(i', + k)}] -where :math:`t` indicates the iteration times. + To begin with, all values for :math:`r` and :math:`a` are set to zero, and the + calculation of each iterates until convergence. As discussed above, in order to + avoid numerical oscillations when updating the messages, the damping factor + :math:`\lambda` is introduced to iteration process: -|details-end| + .. math:: r_{t+1}(i, k) = \lambda\cdot r_{t}(i, k) + (1-\lambda)\cdot r_{t+1}(i, k) + .. math:: a_{t+1}(i, k) = \lambda\cdot a_{t}(i, k) + (1-\lambda)\cdot a_{t+1}(i, k) + where :math:`t` indicates the iteration times. -.. topic:: Examples: - * :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`: Affinity - Propagation on a synthetic 2D datasets with 3 classes. +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py` Affinity - Propagation on Financial time series to find groups of companies +* :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`: Affinity + Propagation on a synthetic 2D datasets with 3 classes +* :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py` Affinity Propagation + on financial time series to find groups of companies .. _mean_shift: @@ -425,43 +414,40 @@ for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -The position of centroid candidates is iteratively adjusted using a technique -called hill climbing, which finds local maxima of the estimated probability -density. Given a candidate centroid :math:`x` for iteration :math:`t`, the -candidate is updated according to the following equation: + The position of centroid candidates is iteratively adjusted using a technique + called hill climbing, which finds local maxima of the estimated probability + density. Given a candidate centroid :math:`x` for iteration :math:`t`, the + candidate is updated according to the following equation: -.. math:: + .. math:: - x^{t+1} = x^t + m(x^t) + x^{t+1} = x^t + m(x^t) -Where :math:`m` is the *mean shift* vector that is computed for each centroid -that points towards a region of the maximum increase in the density of points. -To compute :math:`m` we define :math:`N(x)` as the neighborhood of samples -within a given distance around :math:`x`. Then :math:`m` is computed using the -following equation, effectively updating a centroid to be the mean of the -samples within its neighborhood: + Where :math:`m` is the *mean shift* vector that is computed for each centroid + that points towards a region of the maximum increase in the density of points. + To compute :math:`m` we define :math:`N(x)` as the neighborhood of samples + within a given distance around :math:`x`. Then :math:`m` is computed using the + following equation, effectively updating a centroid to be the mean of the + samples within its neighborhood: -.. math:: + .. math:: - m(x) = \frac{1}{|N(x)|} \sum_{x_j \in N(x)}x_j - x + m(x) = \frac{1}{|N(x)|} \sum_{x_j \in N(x)}x_j - x -In general, the equation for :math:`m` depends on a kernel used for density -estimation. The generic formula is: + In general, the equation for :math:`m` depends on a kernel used for density + estimation. The generic formula is: -.. math:: + .. math:: - m(x) = \frac{\sum_{x_j \in N(x)}K(x_j - x)x_j}{\sum_{x_j \in N(x)}K(x_j - - x)} - x + m(x) = \frac{\sum_{x_j \in N(x)}K(x_j - x)x_j}{\sum_{x_j \in N(x)}K(x_j - + x)} - x -In our implementation, :math:`K(x)` is equal to 1 if :math:`x` is small enough -and is equal to 0 otherwise. Effectively :math:`K(y - x)` indicates whether -:math:`y` is in the neighborhood of :math:`x`. + In our implementation, :math:`K(x)` is equal to 1 if :math:`x` is small enough + and is equal to 0 otherwise. Effectively :math:`K(y - x)` indicates whether + :math:`y` is in the neighborhood of :math:`x`. -|details-end| The algorithm automatically sets the number of clusters, instead of relying on a parameter ``bandwidth``, which dictates the size of the region to search through. @@ -483,21 +469,17 @@ given sample. :scale: 50 -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py`: Mean Shift - clustering on a synthetic 2D datasets with 3 classes. +.. rubric:: Examples +* :ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py`: Mean Shift clustering + on a synthetic 2D datasets with 3 classes. -|details-start| -**References** -|details-split| +.. dropdown:: References -* :doi:`"Mean shift: A robust approach toward feature space analysis" - <10.1109/34.1000236>` D. Comaniciu and P. Meer, *IEEE Transactions on Pattern - Analysis and Machine Intelligence* (2002) + * :doi:`"Mean shift: A robust approach toward feature space analysis" + <10.1109/34.1000236>` D. Comaniciu and P. Meer, *IEEE Transactions on Pattern + Analysis and Machine Intelligence* (2002) -|details-end| .. _spectral_clustering: @@ -547,13 +529,13 @@ computed using a function of a gradient of the image. See the examples for such an application. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_segmentation_toy.py`: Segmenting - objects from a noisy background using spectral clustering. +* :ref:`sphx_glr_auto_examples_cluster_plot_segmentation_toy.py`: Segmenting objects + from a noisy background using spectral clustering. +* :ref:`sphx_glr_auto_examples_cluster_plot_coin_segmentation.py`: Spectral clustering + to split the image of coins in regions. - * :ref:`sphx_glr_auto_examples_cluster_plot_coin_segmentation.py`: Spectral - clustering to split the image of coins in regions. .. |coin_kmeans| image:: ../auto_examples/cluster/images/sphx_glr_plot_coin_segmentation_001.png :target: ../auto_examples/cluster/plot_coin_segmentation.html @@ -588,18 +570,15 @@ below. |coin_kmeans| |coin_discretize| |coin_cluster_qr| ================================ ================================ ================================ -|details-start| -**References** -|details-split| +.. dropdown:: References -* `"Multiclass spectral clustering" - `_ - Stella X. Yu, Jianbo Shi, 2003 + * `"Multiclass spectral clustering" + `_ + Stella X. Yu, Jianbo Shi, 2003 -* :doi:`"Simple, direct, and efficient multi-way spectral clustering"<10.1093/imaiai/iay008>` - Anil Damle, Victor Minden, Lexing Ying, 2019 + * :doi:`"Simple, direct, and efficient multi-way spectral clustering"<10.1093/imaiai/iay008>` + Anil Damle, Victor Minden, Lexing Ying, 2019 -|details-end| .. _spectral_clustering_graph: @@ -615,28 +594,25 @@ graph, and SpectralClustering is initialized with `affinity='precomputed'`:: ... assign_labels='discretize') >>> sc.fit_predict(adjacency_matrix) # doctest: +SKIP -|details-start| -**References** -|details-split| +.. dropdown:: References -* :doi:`"A Tutorial on Spectral Clustering" <10.1007/s11222-007-9033-z>` Ulrike - von Luxburg, 2007 + * :doi:`"A Tutorial on Spectral Clustering" <10.1007/s11222-007-9033-z>` Ulrike + von Luxburg, 2007 -* :doi:`"Normalized cuts and image segmentation" <10.1109/34.868688>` Jianbo - Shi, Jitendra Malik, 2000 + * :doi:`"Normalized cuts and image segmentation" <10.1109/34.868688>` Jianbo + Shi, Jitendra Malik, 2000 -* `"A Random Walks View of Spectral Segmentation" - `_ - Marina Meila, Jianbo Shi, 2001 + * `"A Random Walks View of Spectral Segmentation" + `_ + Marina Meila, Jianbo Shi, 2001 -* `"On Spectral Clustering: Analysis and an algorithm" - `_ - Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001 + * `"On Spectral Clustering: Analysis and an algorithm" + `_ + Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001 -* :arxiv:`"Preconditioned Spectral Clustering for Stochastic Block Partition - Streaming Graph Challenge" <1708.07481>` David Zhuzhunashvili, Andrew Knyazev + * :arxiv:`"Preconditioned Spectral Clustering for Stochastic Block Partition + Streaming Graph Challenge" <1708.07481>` David Zhuzhunashvili, Andrew Knyazev -|details-end| .. _hierarchical_clustering: @@ -697,10 +673,10 @@ while not robust to noisy data, can be computed very efficiently and can therefore be useful to provide hierarchical clustering of larger datasets. Single linkage can also perform well on non-globular data. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_digits_linkage.py`: exploration of - the different linkage strategies in a real dataset. +* :ref:`sphx_glr_auto_examples_cluster_plot_digits_linkage.py`: exploration of the + different linkage strategies in a real dataset. * :ref:`sphx_glr_auto_examples_cluster_plot_linkage_comparison.py`: exploration of the different linkage strategies in toy datasets. @@ -717,9 +693,9 @@ of the data, though more so in the case of small sample sizes. :target: ../auto_examples/cluster/plot_agglomerative_dendrogram.html :scale: 42 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py` Adding connectivity constraints @@ -788,20 +764,20 @@ enable only merging of neighboring pixels on an image, as in the :target: ../auto_examples/cluster/plot_agglomerative_clustering.html :scale: 38 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_coin_ward_segmentation.py`: Ward - clustering to split the image of coins in regions. +* :ref:`sphx_glr_auto_examples_cluster_plot_coin_ward_segmentation.py`: Ward + clustering to split the image of coins in regions. - * :ref:`sphx_glr_auto_examples_cluster_plot_ward_structured_vs_unstructured.py`: Example - of Ward algorithm on a swiss-roll, comparison of structured approaches - versus unstructured approaches. +* :ref:`sphx_glr_auto_examples_cluster_plot_ward_structured_vs_unstructured.py`: Example + of Ward algorithm on a swiss-roll, comparison of structured approaches + versus unstructured approaches. - * :ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py`: Example - of dimensionality reduction with feature agglomeration based on Ward - hierarchical clustering. +* :ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py`: Example + of dimensionality reduction with feature agglomeration based on Ward + hierarchical clustering. - * :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py` Varying the metric @@ -835,9 +811,9 @@ each class. :target: ../auto_examples/cluster/plot_agglomerative_clustering_metrics.html :scale: 32 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering_metrics.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering_metrics.py` Bisecting K-Means @@ -881,26 +857,23 @@ Difference between Bisecting K-Means and regular K-Means can be seen on example While the regular K-Means algorithm tends to create non-related clusters, clusters from Bisecting K-Means are well ordered and create quite a visible hierarchy. -|details-start| -**References** -|details-split| - -* `"A Comparison of Document Clustering Techniques" - `_ Michael - Steinbach, George Karypis and Vipin Kumar, Department of Computer Science and - Egineering, University of Minnesota (June 2000) -* `"Performance Analysis of K-Means and Bisecting K-Means Algorithms in Weblog - Data" - `_ - K.Abirami and Dr.P.Mayilvahanan, International Journal of Emerging - Technologies in Engineering Research (IJETER) Volume 4, Issue 8, (August 2016) -* `"Bisecting K-means Algorithm Based on K-valued Self-determining and - Clustering Center Optimization" - `_ Jian Di, Xinyue Gou School - of Control and Computer Engineering,North China Electric Power University, - Baoding, Hebei, China (August 2017) - -|details-end| +.. dropdown:: References + + * `"A Comparison of Document Clustering Techniques" + `_ Michael + Steinbach, George Karypis and Vipin Kumar, Department of Computer Science and + Egineering, University of Minnesota (June 2000) + * `"Performance Analysis of K-Means and Bisecting K-Means Algorithms in Weblog + Data" + `_ + K.Abirami and Dr.P.Mayilvahanan, International Journal of Emerging + Technologies in Engineering Research (IJETER) Volume 4, Issue 8, (August 2016) + * `"Bisecting K-means Algorithm Based on K-valued Self-determining and + Clustering Center Optimization" + `_ Jian Di, Xinyue Gou School + of Control and Computer Engineering,North China Electric Power University, + Baoding, Hebei, China (August 2017) + .. _dbscan: @@ -954,79 +927,68 @@ samples that are still part of a cluster. Moreover, the outliers are indicated by black points below. .. |dbscan_results| image:: ../auto_examples/cluster/images/sphx_glr_plot_dbscan_002.png - :target: ../auto_examples/cluster/plot_dbscan.html - :scale: 50 + :target: ../auto_examples/cluster/plot_dbscan.html + :scale: 50 .. centered:: |dbscan_results| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_dbscan.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_dbscan.py` -|details-start| -**Implementation** -|details-split| +.. dropdown:: Implementation -The DBSCAN algorithm is deterministic, always generating the same clusters when -given the same data in the same order. However, the results can differ when -data is provided in a different order. First, even though the core samples will -always be assigned to the same clusters, the labels of those clusters will -depend on the order in which those samples are encountered in the data. Second -and more importantly, the clusters to which non-core samples are assigned can -differ depending on the data order. This would happen when a non-core sample -has a distance lower than ``eps`` to two core samples in different clusters. By -the triangular inequality, those two core samples must be more distant than -``eps`` from each other, or they would be in the same cluster. The non-core -sample is assigned to whichever cluster is generated first in a pass through the -data, and so the results will depend on the data ordering. + The DBSCAN algorithm is deterministic, always generating the same clusters when + given the same data in the same order. However, the results can differ when + data is provided in a different order. First, even though the core samples will + always be assigned to the same clusters, the labels of those clusters will + depend on the order in which those samples are encountered in the data. Second + and more importantly, the clusters to which non-core samples are assigned can + differ depending on the data order. This would happen when a non-core sample + has a distance lower than ``eps`` to two core samples in different clusters. By + the triangular inequality, those two core samples must be more distant than + ``eps`` from each other, or they would be in the same cluster. The non-core + sample is assigned to whichever cluster is generated first in a pass through the + data, and so the results will depend on the data ordering. -The current implementation uses ball trees and kd-trees to determine the -neighborhood of points, which avoids calculating the full distance matrix (as -was done in scikit-learn versions before 0.14). The possibility to use custom -metrics is retained; for details, see :class:`NearestNeighbors`. + The current implementation uses ball trees and kd-trees to determine the + neighborhood of points, which avoids calculating the full distance matrix (as + was done in scikit-learn versions before 0.14). The possibility to use custom + metrics is retained; for details, see :class:`NearestNeighbors`. -|details-end| +.. dropdown:: Memory consumption for large sample sizes -|details-start| -**Memory consumption for large sample sizes** -|details-split| + This implementation is by default not memory efficient because it constructs a + full pairwise similarity matrix in the case where kd-trees or ball-trees cannot + be used (e.g., with sparse matrices). This matrix will consume :math:`n^2` + floats. A couple of mechanisms for getting around this are: -This implementation is by default not memory efficient because it constructs a -full pairwise similarity matrix in the case where kd-trees or ball-trees cannot -be used (e.g., with sparse matrices). This matrix will consume :math:`n^2` -floats. A couple of mechanisms for getting around this are: + - Use :ref:`OPTICS ` clustering in conjunction with the `extract_dbscan` + method. OPTICS clustering also calculates the full pairwise matrix, but only + keeps one row in memory at a time (memory complexity n). -- Use :ref:`OPTICS ` clustering in conjunction with the `extract_dbscan` - method. OPTICS clustering also calculates the full pairwise matrix, but only - keeps one row in memory at a time (memory complexity n). + - A sparse radius neighborhood graph (where missing entries are presumed to be + out of eps) can be precomputed in a memory-efficient way and dbscan can be run + over this with ``metric='precomputed'``. See + :meth:`sklearn.neighbors.NearestNeighbors.radius_neighbors_graph`. -- A sparse radius neighborhood graph (where missing entries are presumed to be - out of eps) can be precomputed in a memory-efficient way and dbscan can be run - over this with ``metric='precomputed'``. See - :meth:`sklearn.neighbors.NearestNeighbors.radius_neighbors_graph`. + - The dataset can be compressed, either by removing exact duplicates if these + occur in your data, or by using BIRCH. Then you only have a relatively small + number of representatives for a large number of points. You can then provide a + ``sample_weight`` when fitting DBSCAN. -- The dataset can be compressed, either by removing exact duplicates if these - occur in your data, or by using BIRCH. Then you only have a relatively small - number of representatives for a large number of points. You can then provide a - ``sample_weight`` when fitting DBSCAN. - -|details-end| - -|details-start| -**References** -|details-split| +.. dropdown:: References * `A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise `_ Ester, M., H. P. Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, - AAAI Press, pp. 226–231. 1996 + AAAI Press, pp. 226-231. 1996 * :doi:`DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. <10.1145/3068335>` Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). In ACM Transactions on Database Systems (TODS), 42(3), 19. -|details-end| .. _hdbscan: @@ -1046,9 +1008,9 @@ scales by building an alternative representation of the clustering problem. This implementation is adapted from the original implementation of HDBSCAN, `scikit-learn-contrib/hdbscan `_ based on [LJ2017]_. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_hdbscan.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_hdbscan.py` Mutual Reachability Graph ------------------------- @@ -1109,11 +1071,11 @@ it relies solely on the choice of `min_samples`, which tends to be a more robust hyperparameter. .. |hdbscan_ground_truth| image:: ../auto_examples/cluster/images/sphx_glr_plot_hdbscan_005.png - :target: ../auto_examples/cluster/plot_hdbscan.html - :scale: 75 + :target: ../auto_examples/cluster/plot_hdbscan.html + :scale: 75 .. |hdbscan_results| image:: ../auto_examples/cluster/images/sphx_glr_plot_hdbscan_007.png - :target: ../auto_examples/cluster/plot_hdbscan.html - :scale: 75 + :target: ../auto_examples/cluster/plot_hdbscan.html + :scale: 75 .. centered:: |hdbscan_ground_truth| .. centered:: |hdbscan_results| @@ -1124,19 +1086,19 @@ than `minimum_cluster_size` many samples are considered noise. In practice, one can set `minimum_cluster_size = min_samples` to couple the parameters and simplify the hyperparameter space. -.. topic:: References: +.. rubric:: References - .. [CM2013] Campello, R.J.G.B., Moulavi, D., Sander, J. (2013). Density-Based - Clustering Based on Hierarchical Density Estimates. In: Pei, J., Tseng, V.S., - Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data - Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, - Berlin, Heidelberg. :doi:`Density-Based Clustering Based on Hierarchical - Density Estimates <10.1007/978-3-642-37456-2_14>` +.. [CM2013] Campello, R.J.G.B., Moulavi, D., Sander, J. (2013). Density-Based + Clustering Based on Hierarchical Density Estimates. In: Pei, J., Tseng, V.S., + Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data + Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, + Berlin, Heidelberg. :doi:`Density-Based Clustering Based on Hierarchical + Density Estimates <10.1007/978-3-642-37456-2_14>` - .. [LJ2017] L. McInnes and J. Healy, (2017). Accelerated Hierarchical Density - Based Clustering. In: IEEE International Conference on Data Mining Workshops - (ICDMW), 2017, pp. 33-42. :doi:`Accelerated Hierarchical Density Based - Clustering <10.1109/ICDMW.2017.12>` +.. [LJ2017] L. McInnes and J. Healy, (2017). Accelerated Hierarchical Density + Based Clustering. In: IEEE International Conference on Data Mining Workshops + (ICDMW), 2017, pp. 33-42. :doi:`Accelerated Hierarchical Density Based + Clustering <10.1109/ICDMW.2017.12>` .. _optics: @@ -1182,58 +1144,48 @@ the linear segment clusters of the reachability plot. Note that the blue and red clusters are adjacent in the reachability plot, and can be hierarchically represented as children of a larger parent cluster. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_optics.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_optics.py` -|details-start| -**Comparison with DBSCAN** -|details-split| +.. dropdown:: Comparison with DBSCAN -The results from OPTICS ``cluster_optics_dbscan`` method and DBSCAN are very -similar, but not always identical; specifically, labeling of periphery and noise -points. This is in part because the first samples of each dense area processed -by OPTICS have a large reachability value while being close to other points in -their area, and will thus sometimes be marked as noise rather than periphery. -This affects adjacent points when they are considered as candidates for being -marked as either periphery or noise. + The results from OPTICS ``cluster_optics_dbscan`` method and DBSCAN are very + similar, but not always identical; specifically, labeling of periphery and noise + points. This is in part because the first samples of each dense area processed + by OPTICS have a large reachability value while being close to other points in + their area, and will thus sometimes be marked as noise rather than periphery. + This affects adjacent points when they are considered as candidates for being + marked as either periphery or noise. -Note that for any single value of ``eps``, DBSCAN will tend to have a shorter -run time than OPTICS; however, for repeated runs at varying ``eps`` values, a -single run of OPTICS may require less cumulative runtime than DBSCAN. It is also -important to note that OPTICS' output is close to DBSCAN's only if ``eps`` and -``max_eps`` are close. + Note that for any single value of ``eps``, DBSCAN will tend to have a shorter + run time than OPTICS; however, for repeated runs at varying ``eps`` values, a + single run of OPTICS may require less cumulative runtime than DBSCAN. It is also + important to note that OPTICS' output is close to DBSCAN's only if ``eps`` and + ``max_eps`` are close. -|details-end| +.. dropdown:: Computational Complexity -|details-start| -**Computational Complexity** -|details-split| + Spatial indexing trees are used to avoid calculating the full distance matrix, + and allow for efficient memory usage on large sets of samples. Different + distance metrics can be supplied via the ``metric`` keyword. -Spatial indexing trees are used to avoid calculating the full distance matrix, -and allow for efficient memory usage on large sets of samples. Different -distance metrics can be supplied via the ``metric`` keyword. + For large datasets, similar (but not identical) results can be obtained via + :class:`HDBSCAN`. The HDBSCAN implementation is multithreaded, and has better + algorithmic runtime complexity than OPTICS, at the cost of worse memory scaling. + For extremely large datasets that exhaust system memory using HDBSCAN, OPTICS + will maintain :math:`n` (as opposed to :math:`n^2`) memory scaling; however, + tuning of the ``max_eps`` parameter will likely need to be used to give a + solution in a reasonable amount of wall time. -For large datasets, similar (but not identical) results can be obtained via -:class:`HDBSCAN`. The HDBSCAN implementation is multithreaded, and has better -algorithmic runtime complexity than OPTICS, at the cost of worse memory scaling. -For extremely large datasets that exhaust system memory using HDBSCAN, OPTICS -will maintain :math:`n` (as opposed to :math:`n^2`) memory scaling; however, -tuning of the ``max_eps`` parameter will likely need to be used to give a -solution in a reasonable amount of wall time. -|details-end| +.. dropdown:: References -|details-start| -**References** -|details-split| + * "OPTICS: ordering points to identify the clustering structure." Ankerst, + Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. In ACM Sigmod + Record, vol. 28, no. 2, pp. 49-60. ACM, 1999. -* "OPTICS: ordering points to identify the clustering structure." Ankerst, - Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. In ACM Sigmod - Record, vol. 28, no. 2, pp. 49-60. ACM, 1999. - -|details-end| .. _birch: @@ -1269,75 +1221,60 @@ If ``n_clusters`` is set to None, the subclusters from the leaves are directly read off, otherwise a global clustering step labels these subclusters into global clusters (labels) and the samples are mapped to the global label of the nearest subcluster. -|details-start| -**Algorithm description** -|details-split| - -- A new sample is inserted into the root of the CF Tree which is a CF Node. It - is then merged with the subcluster of the root, that has the smallest radius - after merging, constrained by the threshold and branching factor conditions. - If the subcluster has any child node, then this is done repeatedly till it - reaches a leaf. After finding the nearest subcluster in the leaf, the - properties of this subcluster and the parent subclusters are recursively - updated. - -- If the radius of the subcluster obtained by merging the new sample and the - nearest subcluster is greater than the square of the threshold and if the - number of subclusters is greater than the branching factor, then a space is - temporarily allocated to this new sample. The two farthest subclusters are - taken and the subclusters are divided into two groups on the basis of the - distance between these subclusters. - -- If this split node has a parent subcluster and there is room for a new - subcluster, then the parent is split into two. If there is no room, then this - node is again split into two and the process is continued recursively, till it - reaches the root. - -|details-end| - -|details-start| -**BIRCH or MiniBatchKMeans?** -|details-split| - -- BIRCH does not scale very well to high dimensional data. As a rule of thumb if - ``n_features`` is greater than twenty, it is generally better to use MiniBatchKMeans. -- If the number of instances of data needs to be reduced, or if one wants a - large number of subclusters either as a preprocessing step or otherwise, - BIRCH is more useful than MiniBatchKMeans. - -.. image:: ../auto_examples/cluster/images/sphx_glr_plot_birch_vs_minibatchkmeans_001.png +.. dropdown:: Algorithm description + + - A new sample is inserted into the root of the CF Tree which is a CF Node. It + is then merged with the subcluster of the root, that has the smallest radius + after merging, constrained by the threshold and branching factor conditions. + If the subcluster has any child node, then this is done repeatedly till it + reaches a leaf. After finding the nearest subcluster in the leaf, the + properties of this subcluster and the parent subclusters are recursively + updated. + + - If the radius of the subcluster obtained by merging the new sample and the + nearest subcluster is greater than the square of the threshold and if the + number of subclusters is greater than the branching factor, then a space is + temporarily allocated to this new sample. The two farthest subclusters are + taken and the subclusters are divided into two groups on the basis of the + distance between these subclusters. + + - If this split node has a parent subcluster and there is room for a new + subcluster, then the parent is split into two. If there is no room, then this + node is again split into two and the process is continued recursively, till it + reaches the root. + +.. dropdown:: BIRCH or MiniBatchKMeans? + + - BIRCH does not scale very well to high dimensional data. As a rule of thumb if + ``n_features`` is greater than twenty, it is generally better to use MiniBatchKMeans. + - If the number of instances of data needs to be reduced, or if one wants a + large number of subclusters either as a preprocessing step or otherwise, + BIRCH is more useful than MiniBatchKMeans. + + .. image:: ../auto_examples/cluster/images/sphx_glr_plot_birch_vs_minibatchkmeans_001.png :target: ../auto_examples/cluster/plot_birch_vs_minibatchkmeans.html -|details-end| - -|details-start| -**How to use partial_fit?** -|details-split| +.. dropdown:: How to use partial_fit? -To avoid the computation of global clustering, for every call of ``partial_fit`` -the user is advised + To avoid the computation of global clustering, for every call of ``partial_fit`` + the user is advised: -1. To set ``n_clusters=None`` initially -2. Train all data by multiple calls to partial_fit. -3. Set ``n_clusters`` to a required value using - ``brc.set_params(n_clusters=n_clusters)``. -4. Call ``partial_fit`` finally with no arguments, i.e. ``brc.partial_fit()`` - which performs the global clustering. + 1. To set ``n_clusters=None`` initially. + 2. Train all data by multiple calls to partial_fit. + 3. Set ``n_clusters`` to a required value using + ``brc.set_params(n_clusters=n_clusters)``. + 4. Call ``partial_fit`` finally with no arguments, i.e. ``brc.partial_fit()`` + which performs the global clustering. -|details-end| +.. dropdown:: References -|details-start| -**References** -|details-split| + * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data + clustering method for large databases. + https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf -* Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data - clustering method for large databases. - https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf + * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm + https://code.google.com/archive/p/jbirch -* Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm - https://code.google.com/archive/p/jbirch - -|details-end| .. _clustering_evaluation: @@ -1460,64 +1397,53 @@ will not necessarily be close to zero.:: ground truth clustering resulting in a high proportion of pair labels that agree, which leads subsequently to a high score. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: - Analysis of the impact of the dataset size on the value of clustering measures - for random assignments. - - -|details-start| -**Mathematical formulation** -|details-split| +.. rubric:: Examples -If C is a ground truth class assignment and K the clustering, let us define -:math:`a` and :math:`b` as: +* :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: + Analysis of the impact of the dataset size on the value of + clustering measures for random assignments. -- :math:`a`, the number of pairs of elements that are in the same set in C and - in the same set in K +.. dropdown:: Mathematical formulation -- :math:`b`, the number of pairs of elements that are in different sets in C and - in different sets in K + If C is a ground truth class assignment and K the clustering, let us define + :math:`a` and :math:`b` as: -The unadjusted Rand index is then given by: + - :math:`a`, the number of pairs of elements that are in the same set in C and + in the same set in K -.. math:: \text{RI} = \frac{a + b}{C_2^{n_{samples}}} + - :math:`b`, the number of pairs of elements that are in different sets in C and + in different sets in K -where :math:`C_2^{n_{samples}}` is the total number of possible pairs in the -dataset. It does not matter if the calculation is performed on ordered pairs or -unordered pairs as long as the calculation is performed consistently. + The unadjusted Rand index is then given by: -However, the Rand index does not guarantee that random label assignments will -get a value close to zero (esp. if the number of clusters is in the same order -of magnitude as the number of samples). + .. math:: \text{RI} = \frac{a + b}{C_2^{n_{samples}}} -To counter this effect we can discount the expected RI :math:`E[\text{RI}]` of -random labelings by defining the adjusted Rand index as follows: + where :math:`C_2^{n_{samples}}` is the total number of possible pairs in the + dataset. It does not matter if the calculation is performed on ordered pairs or + unordered pairs as long as the calculation is performed consistently. -.. math:: \text{ARI} = \frac{\text{RI} - E[\text{RI}]}{\max(\text{RI}) - E[\text{RI}]} + However, the Rand index does not guarantee that random label assignments will + get a value close to zero (esp. if the number of clusters is in the same order + of magnitude as the number of samples). -|details-end| + To counter this effect we can discount the expected RI :math:`E[\text{RI}]` of + random labelings by defining the adjusted Rand index as follows: -|details-start| -**References** -|details-split| + .. math:: \text{ARI} = \frac{\text{RI} - E[\text{RI}]}{\max(\text{RI}) - E[\text{RI}]} -* `Comparing Partitions - `_ L. Hubert and P. - Arabie, Journal of Classification 1985 +.. dropdown:: References -* `Properties of the Hubert-Arabie adjusted Rand index - `_ D. Steinley, Psychological - Methods 2004 + * `Comparing Partitions + `_ L. Hubert and P. + Arabie, Journal of Classification 1985 -* `Wikipedia entry for the Rand index - `_ + * `Properties of the Hubert-Arabie adjusted Rand index + `_ D. Steinley, Psychological + Methods 2004 -* `Wikipedia entry for the adjusted Rand index - `_ + * `Wikipedia entry for the Rand index + `_ -|details-end| .. _mutual_info_score: @@ -1598,80 +1524,77 @@ Bad (e.g. independent labelings) have non-positive scores:: - NMI and MI are not adjusted against chance. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: Analysis - of the impact of the dataset size on the value of clustering measures for - random assignments. This example also includes the Adjusted Rand Index. +* :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: Analysis + of the impact of the dataset size on the value of clustering measures for random + assignments. This example also includes the Adjusted Rand Index. +.. dropdown:: Mathematical formulation -|details-start| -**Mathematical formulation** -|details-split| + Assume two label assignments (of the same N objects), :math:`U` and :math:`V`. + Their entropy is the amount of uncertainty for a partition set, defined by: -Assume two label assignments (of the same N objects), :math:`U` and :math:`V`. -Their entropy is the amount of uncertainty for a partition set, defined by: + .. math:: H(U) = - \sum_{i=1}^{|U|}P(i)\log(P(i)) -.. math:: H(U) = - \sum_{i=1}^{|U|}P(i)\log(P(i)) + where :math:`P(i) = |U_i| / N` is the probability that an object picked at + random from :math:`U` falls into class :math:`U_i`. Likewise for :math:`V`: -where :math:`P(i) = |U_i| / N` is the probability that an object picked at -random from :math:`U` falls into class :math:`U_i`. Likewise for :math:`V`: + .. math:: H(V) = - \sum_{j=1}^{|V|}P'(j)\log(P'(j)) -.. math:: H(V) = - \sum_{j=1}^{|V|}P'(j)\log(P'(j)) + With :math:`P'(j) = |V_j| / N`. The mutual information (MI) between :math:`U` + and :math:`V` is calculated by: -With :math:`P'(j) = |V_j| / N`. The mutual information (MI) between :math:`U` -and :math:`V` is calculated by: + .. math:: \text{MI}(U, V) = \sum_{i=1}^{|U|}\sum_{j=1}^{|V|}P(i, j)\log\left(\frac{P(i,j)}{P(i)P'(j)}\right) -.. math:: \text{MI}(U, V) = \sum_{i=1}^{|U|}\sum_{j=1}^{|V|}P(i, j)\log\left(\frac{P(i,j)}{P(i)P'(j)}\right) + where :math:`P(i, j) = |U_i \cap V_j| / N` is the probability that an object + picked at random falls into both classes :math:`U_i` and :math:`V_j`. -where :math:`P(i, j) = |U_i \cap V_j| / N` is the probability that an object -picked at random falls into both classes :math:`U_i` and :math:`V_j`. + It also can be expressed in set cardinality formulation: -It also can be expressed in set cardinality formulation: + .. math:: \text{MI}(U, V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \frac{|U_i \cap V_j|}{N}\log\left(\frac{N|U_i \cap V_j|}{|U_i||V_j|}\right) -.. math:: \text{MI}(U, V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \frac{|U_i \cap V_j|}{N}\log\left(\frac{N|U_i \cap V_j|}{|U_i||V_j|}\right) + The normalized mutual information is defined as -The normalized mutual information is defined as + .. math:: \text{NMI}(U, V) = \frac{\text{MI}(U, V)}{\text{mean}(H(U), H(V))} -.. math:: \text{NMI}(U, V) = \frac{\text{MI}(U, V)}{\text{mean}(H(U), H(V))} + This value of the mutual information and also the normalized variant is not + adjusted for chance and will tend to increase as the number of different labels + (clusters) increases, regardless of the actual amount of "mutual information" + between the label assignments. -This value of the mutual information and also the normalized variant is not -adjusted for chance and will tend to increase as the number of different labels -(clusters) increases, regardless of the actual amount of "mutual information" -between the label assignments. + The expected value for the mutual information can be calculated using the + following equation [VEB2009]_. In this equation, :math:`a_i = |U_i|` (the number + of elements in :math:`U_i`) and :math:`b_j = |V_j|` (the number of elements in + :math:`V_j`). -The expected value for the mutual information can be calculated using the -following equation [VEB2009]_. In this equation, :math:`a_i = |U_i|` (the number -of elements in :math:`U_i`) and :math:`b_j = |V_j|` (the number of elements in -:math:`V_j`). + .. math:: E[\text{MI}(U,V)]=\sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \sum_{n_{ij}=(a_i+b_j-N)^+ + }^{\min(a_i, b_j)} \frac{n_{ij}}{N}\log \left( \frac{ N.n_{ij}}{a_i b_j}\right) + \frac{a_i!b_j!(N-a_i)!(N-b_j)!}{N!n_{ij}!(a_i-n_{ij})!(b_j-n_{ij})! + (N-a_i-b_j+n_{ij})!} -.. math:: E[\text{MI}(U,V)]=\sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \sum_{n_{ij}=(a_i+b_j-N)^+ - }^{\min(a_i, b_j)} \frac{n_{ij}}{N}\log \left( \frac{ N.n_{ij}}{a_i b_j}\right) - \frac{a_i!b_j!(N-a_i)!(N-b_j)!}{N!n_{ij}!(a_i-n_{ij})!(b_j-n_{ij})! - (N-a_i-b_j+n_{ij})!} + Using the expected value, the adjusted mutual information can then be calculated + using a similar form to that of the adjusted Rand index: -Using the expected value, the adjusted mutual information can then be calculated -using a similar form to that of the adjusted Rand index: + .. math:: \text{AMI} = \frac{\text{MI} - E[\text{MI}]}{\text{mean}(H(U), H(V)) - E[\text{MI}]} -.. math:: \text{AMI} = \frac{\text{MI} - E[\text{MI}]}{\text{mean}(H(U), H(V)) - E[\text{MI}]} + For normalized mutual information and adjusted mutual information, the + normalizing value is typically some *generalized* mean of the entropies of each + clustering. Various generalized means exist, and no firm rules exist for + preferring one over the others. The decision is largely a field-by-field basis; + for instance, in community detection, the arithmetic mean is most common. Each + normalizing method provides "qualitatively similar behaviours" [YAT2016]_. In + our implementation, this is controlled by the ``average_method`` parameter. -For normalized mutual information and adjusted mutual information, the -normalizing value is typically some *generalized* mean of the entropies of each -clustering. Various generalized means exist, and no firm rules exist for -preferring one over the others. The decision is largely a field-by-field basis; -for instance, in community detection, the arithmetic mean is most common. Each -normalizing method provides "qualitatively similar behaviours" [YAT2016]_. In -our implementation, this is controlled by the ``average_method`` parameter. + Vinh et al. (2010) named variants of NMI and AMI by their averaging method + [VEB2010]_. Their 'sqrt' and 'sum' averages are the geometric and arithmetic + means; we use these more broadly common names. -Vinh et al. (2010) named variants of NMI and AMI by their averaging method -[VEB2010]_. Their 'sqrt' and 'sum' averages are the geometric and arithmetic -means; we use these more broadly common names. + .. rubric:: References -.. topic:: References: - - * Strehl, Alexander, and Joydeep Ghosh (2002). "Cluster ensembles – a + * Strehl, Alexander, and Joydeep Ghosh (2002). "Cluster ensembles - a knowledge reuse framework for combining multiple partitions". Journal of - Machine Learning Research 3: 583–617. `doi:10.1162/153244303321897735 + Machine Learning Research 3: 583-617. `doi:10.1162/153244303321897735 `_. * `Wikipedia entry for the (normalized) Mutual Information @@ -1696,7 +1619,6 @@ means; we use these more broadly common names. Reports 6: 30750. `doi:10.1038/srep30750 `_. -|details-end| .. _homogeneity_completeness: @@ -1814,57 +1736,53 @@ homogeneous but not complete:: almost never available in practice or requires manual assignment by human annotators (as in the supervised learning setting). -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: Analysis - of the impact of the dataset size on the value of clustering measures for - random assignments. +.. rubric:: Examples +* :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`: Analysis + of the impact of the dataset size on the value of clustering measures for + random assignments. -|details-start| -**Mathematical formulation** -|details-split| +.. dropdown:: Mathematical formulation -Homogeneity and completeness scores are formally given by: + Homogeneity and completeness scores are formally given by: -.. math:: h = 1 - \frac{H(C|K)}{H(C)} + .. math:: h = 1 - \frac{H(C|K)}{H(C)} -.. math:: c = 1 - \frac{H(K|C)}{H(K)} + .. math:: c = 1 - \frac{H(K|C)}{H(K)} -where :math:`H(C|K)` is the **conditional entropy of the classes given the -cluster assignments** and is given by: + where :math:`H(C|K)` is the **conditional entropy of the classes given the + cluster assignments** and is given by: -.. math:: H(C|K) = - \sum_{c=1}^{|C|} \sum_{k=1}^{|K|} \frac{n_{c,k}}{n} - \cdot \log\left(\frac{n_{c,k}}{n_k}\right) + .. math:: H(C|K) = - \sum_{c=1}^{|C|} \sum_{k=1}^{|K|} \frac{n_{c,k}}{n} + \cdot \log\left(\frac{n_{c,k}}{n_k}\right) -and :math:`H(C)` is the **entropy of the classes** and is given by: + and :math:`H(C)` is the **entropy of the classes** and is given by: -.. math:: H(C) = - \sum_{c=1}^{|C|} \frac{n_c}{n} \cdot \log\left(\frac{n_c}{n}\right) + .. math:: H(C) = - \sum_{c=1}^{|C|} \frac{n_c}{n} \cdot \log\left(\frac{n_c}{n}\right) -with :math:`n` the total number of samples, :math:`n_c` and :math:`n_k` the -number of samples respectively belonging to class :math:`c` and cluster -:math:`k`, and finally :math:`n_{c,k}` the number of samples from class -:math:`c` assigned to cluster :math:`k`. + with :math:`n` the total number of samples, :math:`n_c` and :math:`n_k` the + number of samples respectively belonging to class :math:`c` and cluster + :math:`k`, and finally :math:`n_{c,k}` the number of samples from class + :math:`c` assigned to cluster :math:`k`. -The **conditional entropy of clusters given class** :math:`H(K|C)` and the -**entropy of clusters** :math:`H(K)` are defined in a symmetric manner. + The **conditional entropy of clusters given class** :math:`H(K|C)` and the + **entropy of clusters** :math:`H(K)` are defined in a symmetric manner. -Rosenberg and Hirschberg further define **V-measure** as the **harmonic mean of -homogeneity and completeness**: + Rosenberg and Hirschberg further define **V-measure** as the **harmonic mean of + homogeneity and completeness**: -.. math:: v = 2 \cdot \frac{h \cdot c}{h + c} + .. math:: v = 2 \cdot \frac{h \cdot c}{h + c} -|details-end| +.. rubric:: References -.. topic:: References: +* `V-Measure: A conditional entropy-based external cluster evaluation measure + `_ Andrew Rosenberg and Julia + Hirschberg, 2007 - * `V-Measure: A conditional entropy-based external cluster evaluation measure - `_ Andrew Rosenberg and Julia - Hirschberg, 2007 +.. [B2011] `Identification and Characterization of Events in Social Media + `_, Hila + Becker, PhD Thesis. - .. [B2011] `Identification and Characterization of Events in Social Media - `_, Hila - Becker, PhD Thesis. .. _fowlkes_mallows_scores: @@ -1941,19 +1859,15 @@ Bad (e.g. independent labelings) have zero scores:: manual assignment by human annotators (as in the supervised learning setting). -|details-start| -**References** -|details-split| +.. dropdown:: References -* E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two - hierarchical clusterings". Journal of the American Statistical - Association. - https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008 + * E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two + hierarchical clusterings". Journal of the American Statistical Association. + https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478008 -* `Wikipedia entry for the Fowlkes-Mallows Index - `_ + * `Wikipedia entry for the Fowlkes-Mallows Index + `_ -|details-end| .. _silhouette_coefficient: @@ -1997,7 +1911,6 @@ cluster analysis. >>> metrics.silhouette_score(X, labels, metric='euclidean') 0.55... - .. topic:: Advantages: - The score is bounded between -1 for incorrect clustering and +1 for highly @@ -2012,23 +1925,18 @@ cluster analysis. other concepts of clusters, such as density based clusters like those obtained through DBSCAN. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py` : In - this example the silhouette analysis is used to choose an optimal value for - n_clusters. +.. rubric:: Examples +* :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py` : In + this example the silhouette analysis is used to choose an optimal value for + n_clusters. -|details-start| -**References** -|details-split| +.. dropdown:: References -* Peter J. Rousseeuw (1987). :doi:`"Silhouettes: a Graphical Aid to the - Interpretation and Validation of Cluster - Analysis"<10.1016/0377-0427(87)90125-7>` . Computational and Applied - Mathematics 20: 53–65. + * Peter J. Rousseeuw (1987). :doi:`"Silhouettes: a Graphical Aid to the + Interpretation and Validation of Cluster Analysis"<10.1016/0377-0427(87)90125-7>`. + Computational and Applied Mathematics 20: 53-65. -|details-end| .. _calinski_harabasz_index: @@ -2074,42 +1982,35 @@ cluster analysis: other concepts of clusters, such as density based clusters like those obtained through DBSCAN. -|details-start| -**Mathematical formulation** -|details-split| +.. dropdown:: Mathematical formulation -For a set of data :math:`E` of size :math:`n_E` which has been clustered into -:math:`k` clusters, the Calinski-Harabasz score :math:`s` is defined as the -ratio of the between-clusters dispersion mean and the within-cluster -dispersion: + For a set of data :math:`E` of size :math:`n_E` which has been clustered into + :math:`k` clusters, the Calinski-Harabasz score :math:`s` is defined as the + ratio of the between-clusters dispersion mean and the within-cluster + dispersion: -.. math:: - s = \frac{\mathrm{tr}(B_k)}{\mathrm{tr}(W_k)} \times \frac{n_E - k}{k - 1} - -where :math:`\mathrm{tr}(B_k)` is trace of the between group dispersion matrix -and :math:`\mathrm{tr}(W_k)` is the trace of the within-cluster dispersion -matrix defined by: + .. math:: + s = \frac{\mathrm{tr}(B_k)}{\mathrm{tr}(W_k)} \times \frac{n_E - k}{k - 1} -.. math:: W_k = \sum_{q=1}^k \sum_{x \in C_q} (x - c_q) (x - c_q)^T + where :math:`\mathrm{tr}(B_k)` is trace of the between group dispersion matrix + and :math:`\mathrm{tr}(W_k)` is the trace of the within-cluster dispersion + matrix defined by: -.. math:: B_k = \sum_{q=1}^k n_q (c_q - c_E) (c_q - c_E)^T + .. math:: W_k = \sum_{q=1}^k \sum_{x \in C_q} (x - c_q) (x - c_q)^T -with :math:`C_q` the set of points in cluster :math:`q`, :math:`c_q` the -center of cluster :math:`q`, :math:`c_E` the center of :math:`E`, and -:math:`n_q` the number of points in cluster :math:`q`. + .. math:: B_k = \sum_{q=1}^k n_q (c_q - c_E) (c_q - c_E)^T -|details-end| + with :math:`C_q` the set of points in cluster :math:`q`, :math:`c_q` the + center of cluster :math:`q`, :math:`c_E` the center of :math:`E`, and + :math:`n_q` the number of points in cluster :math:`q`. -|details-start| -**References** -|details-split| +.. dropdown:: References -* Caliński, T., & Harabasz, J. (1974). `"A Dendrite Method for Cluster Analysis" - `_. - :doi:`Communications in Statistics-theory and Methods 3: 1-27 - <10.1080/03610927408827101>`. + * Caliński, T., & Harabasz, J. (1974). `"A Dendrite Method for Cluster Analysis" + `_. + :doi:`Communications in Statistics-theory and Methods 3: 1-27 + <10.1080/03610927408827101>`. -|details-end| .. _davies-bouldin_index: @@ -2156,49 +2057,41 @@ cluster analysis as follows: - The usage of centroid distance limits the distance metric to Euclidean space. +.. dropdown:: Mathematical formulation -|details-start| -**Mathematical formulation** -|details-split| - -The index is defined as the average similarity between each cluster :math:`C_i` -for :math:`i=1, ..., k` and its most similar one :math:`C_j`. In the context of -this index, similarity is defined as a measure :math:`R_{ij}` that trades off: - -- :math:`s_i`, the average distance between each point of cluster :math:`i` and - the centroid of that cluster -- also know as cluster diameter. -- :math:`d_{ij}`, the distance between cluster centroids :math:`i` and - :math:`j`. + The index is defined as the average similarity between each cluster :math:`C_i` + for :math:`i=1, ..., k` and its most similar one :math:`C_j`. In the context of + this index, similarity is defined as a measure :math:`R_{ij}` that trades off: -A simple choice to construct :math:`R_{ij}` so that it is nonnegative and -symmetric is: + - :math:`s_i`, the average distance between each point of cluster :math:`i` and + the centroid of that cluster -- also know as cluster diameter. + - :math:`d_{ij}`, the distance between cluster centroids :math:`i` and + :math:`j`. -.. math:: - R_{ij} = \frac{s_i + s_j}{d_{ij}} + A simple choice to construct :math:`R_{ij}` so that it is nonnegative and + symmetric is: -Then the Davies-Bouldin index is defined as: + .. math:: + R_{ij} = \frac{s_i + s_j}{d_{ij}} -.. math:: - DB = \frac{1}{k} \sum_{i=1}^k \max_{i \neq j} R_{ij} + Then the Davies-Bouldin index is defined as: -|details-end| + .. math:: + DB = \frac{1}{k} \sum_{i=1}^k \max_{i \neq j} R_{ij} -|details-start| -**References** -|details-split| +.. dropdown:: References -* Davies, David L.; Bouldin, Donald W. (1979). :doi:`"A Cluster Separation - Measure" <10.1109/TPAMI.1979.4766909>` IEEE Transactions on Pattern Analysis - and Machine Intelligence. PAMI-1 (2): 224-227. + * Davies, David L.; Bouldin, Donald W. (1979). :doi:`"A Cluster Separation + Measure" <10.1109/TPAMI.1979.4766909>` IEEE Transactions on Pattern Analysis + and Machine Intelligence. PAMI-1 (2): 224-227. -* Halkidi, Maria; Batistakis, Yannis; Vazirgiannis, Michalis (2001). :doi:`"On - Clustering Validation Techniques" <10.1023/A:1012801612483>` Journal of - Intelligent Information Systems, 17(2-3), 107-145. + * Halkidi, Maria; Batistakis, Yannis; Vazirgiannis, Michalis (2001). :doi:`"On + Clustering Validation Techniques" <10.1023/A:1012801612483>` Journal of + Intelligent Information Systems, 17(2-3), 107-145. -* `Wikipedia entry for Davies-Bouldin index - `_. + * `Wikipedia entry for Davies-Bouldin index + `_. -|details-end| .. _contingency_matrix: @@ -2248,15 +2141,11 @@ of classes. - It doesn't give a single metric to use as an objective for clustering optimisation. +.. dropdown:: References -|details-start| -**References** -|details-split| + * `Wikipedia entry for contingency matrix + `_ -* `Wikipedia entry for contingency matrix - `_ - -|details-end| .. _pair_confusion_matrix: @@ -2334,11 +2223,7 @@ diagonal entries:: array([[ 0, 0], [12, 0]]) -|details-start| -**References** -|details-split| - - * :doi:`"Comparing Partitions" <10.1007/BF01908075>` L. Hubert and P. Arabie, - Journal of Classification 1985 +.. dropdown:: References -|details-end| + * :doi:`"Comparing Partitions" <10.1007/BF01908075>` L. Hubert and P. Arabie, + Journal of Classification 1985 diff --git a/doc/modules/compose.rst b/doc/modules/compose.rst index 28931cf52f283..655ea551e0375 100644 --- a/doc/modules/compose.rst +++ b/doc/modules/compose.rst @@ -79,20 +79,16 @@ is an estimator object:: >>> pipe Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC())]) -|details-start| -**Shorthand version using :func:`make_pipeline`** -|details-split| +.. dropdown:: Shorthand version using :func:`make_pipeline` -The utility function :func:`make_pipeline` is a shorthand -for constructing pipelines; -it takes a variable number of estimators and returns a pipeline, -filling in the names automatically:: + The utility function :func:`make_pipeline` is a shorthand + for constructing pipelines; + it takes a variable number of estimators and returns a pipeline, + filling in the names automatically:: - >>> from sklearn.pipeline import make_pipeline - >>> make_pipeline(PCA(), SVC()) - Pipeline(steps=[('pca', PCA()), ('svc', SVC())]) - -|details-end| + >>> from sklearn.pipeline import make_pipeline + >>> make_pipeline(PCA(), SVC()) + Pipeline(steps=[('pca', PCA()), ('svc', SVC())]) Access pipeline steps ..................... @@ -108,27 +104,23 @@ permitted). This is convenient for performing only some of the transformations >>> pipe[-1:] Pipeline(steps=[('clf', SVC())]) -|details-start| -**Accessing a step by name or position** -|details-split| - -A specific step can also be accessed by index or name by indexing (with ``[idx]``) the -pipeline:: +.. dropdown:: Accessing a step by name or position - >>> pipe.steps[0] - ('reduce_dim', PCA()) - >>> pipe[0] - PCA() - >>> pipe['reduce_dim'] - PCA() + A specific step can also be accessed by index or name by indexing (with ``[idx]``) the + pipeline:: -`Pipeline`'s `named_steps` attribute allows accessing steps by name with tab -completion in interactive environments:: + >>> pipe.steps[0] + ('reduce_dim', PCA()) + >>> pipe[0] + PCA() + >>> pipe['reduce_dim'] + PCA() - >>> pipe.named_steps.reduce_dim is pipe['reduce_dim'] - True + `Pipeline`'s `named_steps` attribute allows accessing steps by name with tab + completion in interactive environments:: -|details-end| + >>> pipe.named_steps.reduce_dim is pipe['reduce_dim'] + True Tracking feature names in a pipeline .................................... @@ -149,17 +141,13 @@ pipeline slicing to get the feature names going into each step:: >>> pipe[:-1].get_feature_names_out() array(['x2', 'x3'], ...) -|details-start| -**Customize feature names** -|details-split| - -You can also provide custom feature names for the input data using -``get_feature_names_out``:: +.. dropdown:: Customize feature names - >>> pipe[:-1].get_feature_names_out(iris.feature_names) - array(['petal length (cm)', 'petal width (cm)'], ...) + You can also provide custom feature names for the input data using + ``get_feature_names_out``:: -|details-end| + >>> pipe[:-1].get_feature_names_out(iris.feature_names) + array(['petal length (cm)', 'petal width (cm)'], ...) .. _pipeline_nested_parameters: @@ -175,40 +163,37 @@ syntax:: >>> pipe.set_params(clf__C=10) Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC(C=10))]) -|details-start| -**When does it matter?** -|details-split| +.. dropdown:: When does it matter? -This is particularly important for doing grid searches:: + This is particularly important for doing grid searches:: - >>> from sklearn.model_selection import GridSearchCV - >>> param_grid = dict(reduce_dim__n_components=[2, 5, 10], - ... clf__C=[0.1, 10, 100]) - >>> grid_search = GridSearchCV(pipe, param_grid=param_grid) + >>> from sklearn.model_selection import GridSearchCV + >>> param_grid = dict(reduce_dim__n_components=[2, 5, 10], + ... clf__C=[0.1, 10, 100]) + >>> grid_search = GridSearchCV(pipe, param_grid=param_grid) -Individual steps may also be replaced as parameters, and non-final steps may be -ignored by setting them to ``'passthrough'``:: + Individual steps may also be replaced as parameters, and non-final steps may be + ignored by setting them to ``'passthrough'``:: - >>> param_grid = dict(reduce_dim=['passthrough', PCA(5), PCA(10)], - ... clf=[SVC(), LogisticRegression()], - ... clf__C=[0.1, 10, 100]) - >>> grid_search = GridSearchCV(pipe, param_grid=param_grid) + >>> param_grid = dict(reduce_dim=['passthrough', PCA(5), PCA(10)], + ... clf=[SVC(), LogisticRegression()], + ... clf__C=[0.1, 10, 100]) + >>> grid_search = GridSearchCV(pipe, param_grid=param_grid) -.. topic:: See Also: + .. seealso:: - * :ref:`composite_grid_search` + * :ref:`composite_grid_search` -|details-end| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py` - * :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` - * :ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py` - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py` - * :ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py` - * :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py` - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py` +* :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` +* :ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py` +* :ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py` +* :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py` .. _pipeline_cache: @@ -245,53 +230,49 @@ object:: >>> # Clear the cache directory when you don't need it anymore >>> rmtree(cachedir) -|details-start| -**Warning: Side effect of caching transformers** -|details-split| - -Using a :class:`Pipeline` without cache enabled, it is possible to -inspect the original instance such as:: - - >>> from sklearn.datasets import load_digits - >>> X_digits, y_digits = load_digits(return_X_y=True) - >>> pca1 = PCA(n_components=10) - >>> svm1 = SVC() - >>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)]) - >>> pipe.fit(X_digits, y_digits) - Pipeline(steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())]) - >>> # The pca instance can be inspected directly - >>> pca1.components_.shape - (10, 64) - - -Enabling caching triggers a clone of the transformers before fitting. -Therefore, the transformer instance given to the pipeline cannot be -inspected directly. -In following example, accessing the :class:`~sklearn.decomposition.PCA` -instance ``pca2`` will raise an ``AttributeError`` since ``pca2`` will be an -unfitted transformer. -Instead, use the attribute ``named_steps`` to inspect estimators within -the pipeline:: - - >>> cachedir = mkdtemp() - >>> pca2 = PCA(n_components=10) - >>> svm2 = SVC() - >>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)], - ... memory=cachedir) - >>> cached_pipe.fit(X_digits, y_digits) - Pipeline(memory=..., - steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())]) - >>> cached_pipe.named_steps['reduce_dim'].components_.shape - (10, 64) - >>> # Remove the cache directory - >>> rmtree(cachedir) - - -|details-end| - -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py` +.. dropdown:: Side effect of caching transformers + :color: warning + + Using a :class:`Pipeline` without cache enabled, it is possible to + inspect the original instance such as:: + + >>> from sklearn.datasets import load_digits + >>> X_digits, y_digits = load_digits(return_X_y=True) + >>> pca1 = PCA(n_components=10) + >>> svm1 = SVC() + >>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)]) + >>> pipe.fit(X_digits, y_digits) + Pipeline(steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())]) + >>> # The pca instance can be inspected directly + >>> pca1.components_.shape + (10, 64) + + Enabling caching triggers a clone of the transformers before fitting. + Therefore, the transformer instance given to the pipeline cannot be + inspected directly. + In following example, accessing the :class:`~sklearn.decomposition.PCA` + instance ``pca2`` will raise an ``AttributeError`` since ``pca2`` will be an + unfitted transformer. + Instead, use the attribute ``named_steps`` to inspect estimators within + the pipeline:: + + >>> cachedir = mkdtemp() + >>> pca2 = PCA(n_components=10) + >>> svm2 = SVC() + >>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)], + ... memory=cachedir) + >>> cached_pipe.fit(X_digits, y_digits) + Pipeline(memory=..., + steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())]) + >>> cached_pipe.named_steps['reduce_dim'].components_.shape + (10, 64) + >>> # Remove the cache directory + >>> rmtree(cachedir) + + +.. rubric:: Examples + +* :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py` .. _transformed_target_regressor: @@ -364,9 +345,9 @@ each other. However, it is possible to bypass this checking by setting pair of functions ``func`` and ``inverse_func``. However, setting both options will raise an error. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` +* :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` .. _feature_union: @@ -428,9 +409,9 @@ and ignored by setting to ``'drop'``:: FeatureUnion(transformer_list=[('linear_pca', PCA()), ('kernel_pca', 'drop')]) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_compose_plot_feature_union.py` +* :ref:`sphx_glr_auto_examples_compose_plot_feature_union.py` .. _column_transformer: @@ -623,7 +604,7 @@ As an alternative, the HTML can be written to a file using >>> with open('my_estimator.html', 'w') as f: # doctest: +SKIP ... f.write(estimator_html_repr(clf)) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_compose_plot_column_transformer.py` - * :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py` +* :ref:`sphx_glr_auto_examples_compose_plot_column_transformer.py` +* :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py` diff --git a/doc/modules/covariance.rst b/doc/modules/covariance.rst index 50927f9a677f6..847e489c87333 100644 --- a/doc/modules/covariance.rst +++ b/doc/modules/covariance.rst @@ -40,11 +40,10 @@ on whether the data are centered, so one may want to use the same mean vector as the training set. If not, both should be centered by the user, and ``assume_centered=True`` should be used. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for - an example on how to fit an :class:`EmpiricalCovariance` object - to data. +* See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for + an example on how to fit an :class:`EmpiricalCovariance` object to data. .. _shrunk_covariance: @@ -84,11 +83,10 @@ Tr}\hat{\Sigma}}{p}\rm Id`. Choosing the amount of shrinkage, :math:`\alpha` amounts to setting a bias/variance trade-off, and is discussed below. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for - an example on how to fit a :class:`ShrunkCovariance` object - to data. +* See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for + an example on how to fit a :class:`ShrunkCovariance` object to data. Ledoit-Wolf shrinkage @@ -121,18 +119,18 @@ fitting a :class:`LedoitWolf` object to the same sample. Since the population covariance is already a multiple of the identity matrix, the Ledoit-Wolf solution is indeed a reasonable estimate. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for - an example on how to fit a :class:`LedoitWolf` object to data and - for visualizing the performances of the Ledoit-Wolf estimator in - terms of likelihood. +* See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for + an example on how to fit a :class:`LedoitWolf` object to data and + for visualizing the performances of the Ledoit-Wolf estimator in + terms of likelihood. -.. topic:: References: +.. rubric:: References - .. [1] O. Ledoit and M. Wolf, "A Well-Conditioned Estimator for Large-Dimensional - Covariance Matrices", Journal of Multivariate Analysis, Volume 88, Issue 2, - February 2004, pages 365-411. +.. [1] O. Ledoit and M. Wolf, "A Well-Conditioned Estimator for Large-Dimensional + Covariance Matrices", Journal of Multivariate Analysis, Volume 88, Issue 2, + February 2004, pages 365-411. .. _oracle_approximating_shrinkage: @@ -158,22 +156,21 @@ object to the same sample. Bias-variance trade-off when setting the shrinkage: comparing the choices of Ledoit-Wolf and OAS estimators -.. topic:: References: +.. rubric:: References - .. [2] :arxiv:`"Shrinkage algorithms for MMSE covariance estimation.", - Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. O. - IEEE Transactions on Signal Processing, 58(10), 5016-5029, 2010. - <0907.4698>` +.. [2] :arxiv:`"Shrinkage algorithms for MMSE covariance estimation.", + Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. O. + IEEE Transactions on Signal Processing, 58(10), 5016-5029, 2010. + <0907.4698>` -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for - an example on how to fit an :class:`OAS` object - to data. +* See :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` for + an example on how to fit an :class:`OAS` object to data. - * See :ref:`sphx_glr_auto_examples_covariance_plot_lw_vs_oas.py` to visualize the - Mean Squared Error difference between a :class:`LedoitWolf` and - an :class:`OAS` estimator of the covariance. +* See :ref:`sphx_glr_auto_examples_covariance_plot_lw_vs_oas.py` to visualize the + Mean Squared Error difference between a :class:`LedoitWolf` and + an :class:`OAS` estimator of the covariance. .. figure:: ../auto_examples/covariance/images/sphx_glr_plot_lw_vs_oas_001.png @@ -254,20 +251,20 @@ problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R ``glasso`` package. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_covariance_plot_sparse_cov.py`: example on synthetic - data showing some recovery of a structure, and comparing to other - covariance estimators. +* :ref:`sphx_glr_auto_examples_covariance_plot_sparse_cov.py`: example on synthetic + data showing some recovery of a structure, and comparing to other + covariance estimators. - * :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py`: example on real - stock market data, finding which symbols are most linked. +* :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py`: example on real + stock market data, finding which symbols are most linked. -.. topic:: References: +.. rubric:: References - * Friedman et al, `"Sparse inverse covariance estimation with the - graphical lasso" `_, - Biostatistics 9, pp 432, 2008 +* Friedman et al, `"Sparse inverse covariance estimation with the + graphical lasso" `_, + Biostatistics 9, pp 432, 2008 .. _robust_covariance: @@ -313,24 +310,24 @@ the same time. Raw estimates can be accessed as ``raw_location_`` and ``raw_covariance_`` attributes of a :class:`MinCovDet` robust covariance estimator object. -.. topic:: References: +.. rubric:: References - .. [3] P. J. Rousseeuw. Least median of squares regression. - J. Am Stat Ass, 79:871, 1984. - .. [4] A Fast Algorithm for the Minimum Covariance Determinant Estimator, - 1999, American Statistical Association and the American Society - for Quality, TECHNOMETRICS. +.. [3] P. J. Rousseeuw. Least median of squares regression. + J. Am Stat Ass, 79:871, 1984. +.. [4] A Fast Algorithm for the Minimum Covariance Determinant Estimator, + 1999, American Statistical Association and the American Society + for Quality, TECHNOMETRICS. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_robust_vs_empirical_covariance.py` for - an example on how to fit a :class:`MinCovDet` object to data and see how - the estimate remains accurate despite the presence of outliers. +* See :ref:`sphx_glr_auto_examples_covariance_plot_robust_vs_empirical_covariance.py` for + an example on how to fit a :class:`MinCovDet` object to data and see how + the estimate remains accurate despite the presence of outliers. - * See :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py` to - visualize the difference between :class:`EmpiricalCovariance` and - :class:`MinCovDet` covariance estimators in terms of Mahalanobis distance - (so we get a better estimate of the precision matrix too). +* See :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py` to + visualize the difference between :class:`EmpiricalCovariance` and + :class:`MinCovDet` covariance estimators in terms of Mahalanobis distance + (so we get a better estimate of the precision matrix too). .. |robust_vs_emp| image:: ../auto_examples/covariance/images/sphx_glr_plot_robust_vs_empirical_covariance_001.png :target: ../auto_examples/covariance/plot_robust_vs_empirical_covariance.html diff --git a/doc/modules/cross_decomposition.rst b/doc/modules/cross_decomposition.rst index 8f8d217f87144..2d630de699c7a 100644 --- a/doc/modules/cross_decomposition.rst +++ b/doc/modules/cross_decomposition.rst @@ -92,42 +92,35 @@ Step *a)* may be performed in two ways: either by computing the whole SVD of values, or by directly computing the singular vectors using the power method (cf section 11.3 in [1]_), which corresponds to the `'nipals'` option of the `algorithm` parameter. -|details-start| -**Transforming data** -|details-split| +.. dropdown:: Transforming data -To transform :math:`X` into :math:`\bar{X}`, we need to find a projection -matrix :math:`P` such that :math:`\bar{X} = XP`. We know that for the -training data, :math:`\Xi = XP`, and :math:`X = \Xi \Gamma^T`. Setting -:math:`P = U(\Gamma^T U)^{-1}` where :math:`U` is the matrix with the -:math:`u_k` in the columns, we have :math:`XP = X U(\Gamma^T U)^{-1} = \Xi -(\Gamma^T U) (\Gamma^T U)^{-1} = \Xi` as desired. The rotation matrix -:math:`P` can be accessed from the `x_rotations_` attribute. + To transform :math:`X` into :math:`\bar{X}`, we need to find a projection + matrix :math:`P` such that :math:`\bar{X} = XP`. We know that for the + training data, :math:`\Xi = XP`, and :math:`X = \Xi \Gamma^T`. Setting + :math:`P = U(\Gamma^T U)^{-1}` where :math:`U` is the matrix with the + :math:`u_k` in the columns, we have :math:`XP = X U(\Gamma^T U)^{-1} = \Xi + (\Gamma^T U) (\Gamma^T U)^{-1} = \Xi` as desired. The rotation matrix + :math:`P` can be accessed from the `x_rotations_` attribute. -Similarly, :math:`Y` can be transformed using the rotation matrix -:math:`V(\Delta^T V)^{-1}`, accessed via the `y_rotations_` attribute. -|details-end| + Similarly, :math:`Y` can be transformed using the rotation matrix + :math:`V(\Delta^T V)^{-1}`, accessed via the `y_rotations_` attribute. -|details-start| -**Predicting the targets Y** -|details-split| +.. dropdown:: Predicting the targets `Y` -To predict the targets of some data :math:`X`, we are looking for a -coefficient matrix :math:`\beta \in R^{d \times t}` such that :math:`Y = -X\beta`. + To predict the targets of some data :math:`X`, we are looking for a + coefficient matrix :math:`\beta \in R^{d \times t}` such that :math:`Y = + X\beta`. -The idea is to try to predict the transformed targets :math:`\Omega` as a -function of the transformed samples :math:`\Xi`, by computing :math:`\alpha -\in \mathbb{R}` such that :math:`\Omega = \alpha \Xi`. + The idea is to try to predict the transformed targets :math:`\Omega` as a + function of the transformed samples :math:`\Xi`, by computing :math:`\alpha + \in \mathbb{R}` such that :math:`\Omega = \alpha \Xi`. -Then, we have :math:`Y = \Omega \Delta^T = \alpha \Xi \Delta^T`, and since -:math:`\Xi` is the transformed training data we have that :math:`Y = X \alpha -P \Delta^T`, and as a result the coefficient matrix :math:`\beta = \alpha P -\Delta^T`. + Then, we have :math:`Y = \Omega \Delta^T = \alpha \Xi \Delta^T`, and since + :math:`\Xi` is the transformed training data we have that :math:`Y = X \alpha + P \Delta^T`, and as a result the coefficient matrix :math:`\beta = \alpha P + \Delta^T`. -:math:`\beta` can be accessed through the `coef_` attribute. - -|details-end| + :math:`\beta` can be accessed through the `coef_` attribute. PLSSVD ------ @@ -184,18 +177,13 @@ Since :class:`CCA` involves the inversion of :math:`X_k^TX_k` and :math:`Y_k^TY_k`, this estimator can be unstable if the number of features or targets is greater than the number of samples. -|details-start| -**Reference** -|details-split| - - .. [1] `A survey of Partial Least Squares (PLS) methods, with emphasis on - the two-block case - `_ - JA Wegelin +.. rubric:: References -|details-end| +.. [1] `A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block + case `_, + JA Wegelin -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py` - * :ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py` +* :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py` +* :ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py` diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst index 34f14fe6846a2..defcd91a6008a 100644 --- a/doc/modules/cross_validation.rst +++ b/doc/modules/cross_validation.rst @@ -170,36 +170,33 @@ indices, for example:: >>> cross_val_score(clf, X, y, cv=custom_cv) array([1. , 0.973...]) -|details-start| -**Data transformation with held out data** -|details-split| +.. dropdown:: Data transformation with held-out data - Just as it is important to test a predictor on data held-out from - training, preprocessing (such as standardization, feature selection, etc.) - and similar :ref:`data transformations ` similarly should - be learnt from a training set and applied to held-out data for prediction:: + Just as it is important to test a predictor on data held-out from + training, preprocessing (such as standardization, feature selection, etc.) + and similar :ref:`data transformations ` similarly should + be learnt from a training set and applied to held-out data for prediction:: - >>> from sklearn import preprocessing - >>> X_train, X_test, y_train, y_test = train_test_split( - ... X, y, test_size=0.4, random_state=0) - >>> scaler = preprocessing.StandardScaler().fit(X_train) - >>> X_train_transformed = scaler.transform(X_train) - >>> clf = svm.SVC(C=1).fit(X_train_transformed, y_train) - >>> X_test_transformed = scaler.transform(X_test) - >>> clf.score(X_test_transformed, y_test) - 0.9333... + >>> from sklearn import preprocessing + >>> X_train, X_test, y_train, y_test = train_test_split( + ... X, y, test_size=0.4, random_state=0) + >>> scaler = preprocessing.StandardScaler().fit(X_train) + >>> X_train_transformed = scaler.transform(X_train) + >>> clf = svm.SVC(C=1).fit(X_train_transformed, y_train) + >>> X_test_transformed = scaler.transform(X_test) + >>> clf.score(X_test_transformed, y_test) + 0.9333... - A :class:`Pipeline ` makes it easier to compose - estimators, providing this behavior under cross-validation:: + A :class:`Pipeline ` makes it easier to compose + estimators, providing this behavior under cross-validation:: - >>> from sklearn.pipeline import make_pipeline - >>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1)) - >>> cross_val_score(clf, X, y, cv=cv) - array([0.977..., 0.933..., 0.955..., 0.933..., 0.977...]) + >>> from sklearn.pipeline import make_pipeline + >>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1)) + >>> cross_val_score(clf, X, y, cv=cv) + array([0.977..., 0.933..., 0.955..., 0.933..., 0.977...]) - See :ref:`combining_estimators`. + See :ref:`combining_estimators`. -|details-end| .. _multimetric_cross_validation: @@ -294,14 +291,14 @@ The function :func:`cross_val_predict` is appropriate for: The available cross validation iterators are introduced in the following section. -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`, - * :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`, - * :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`, - * :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py`, - * :ref:`sphx_glr_auto_examples_model_selection_plot_cv_predict.py`, - * :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py`. +* :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`, +* :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`, +* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`, +* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py`, +* :ref:`sphx_glr_auto_examples_model_selection_plot_cv_predict.py`, +* :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py`. Cross validation iterators ========================== @@ -442,23 +439,19 @@ then 5- or 10- fold cross validation can overestimate the generalization error. As a general rule, most authors, and empirical evidence, suggest that 5- or 10- fold cross validation should be preferred to LOO. -|details-start| -**References** -|details-split| +.. dropdown:: References - * ``_; - * T. Hastie, R. Tibshirani, J. Friedman, `The Elements of Statistical Learning - `_, Springer 2009 - * L. Breiman, P. Spector `Submodel selection and evaluation in regression: The X-random case - `_, International Statistical Review 1992; - * R. Kohavi, `A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection - `_, Intl. Jnt. Conf. AI - * R. Bharat Rao, G. Fung, R. Rosales, `On the Dangers of Cross-Validation. An Experimental Evaluation - `_, SIAM 2008; - * G. James, D. Witten, T. Hastie, R Tibshirani, `An Introduction to - Statistical Learning `_, Springer 2013. - -|details-end| + * ``_; + * T. Hastie, R. Tibshirani, J. Friedman, `The Elements of Statistical Learning + `_, Springer 2009 + * L. Breiman, P. Spector `Submodel selection and evaluation in regression: The X-random case + `_, International Statistical Review 1992; + * R. Kohavi, `A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection + `_, Intl. Jnt. Conf. AI + * R. Bharat Rao, G. Fung, R. Rosales, `On the Dangers of Cross-Validation. An Experimental Evaluation + `_, SIAM 2008; + * G. James, D. Witten, T. Hastie, R Tibshirani, `An Introduction to + Statistical Learning `_, Springer 2013. .. _leave_p_out: @@ -700,30 +693,27 @@ Example:: [ 0 1 4 5 6 7 8 9 11 12 13 14] [ 2 3 10 15 16 17] [ 1 2 3 8 9 10 12 13 14 15 16 17] [ 0 4 5 6 7 11] -|details-start| -**Implementation notes** -|details-split| +.. dropdown:: Implementation notes -- With the current implementation full shuffle is not possible in most - scenarios. When shuffle=True, the following happens: + - With the current implementation full shuffle is not possible in most + scenarios. When shuffle=True, the following happens: - 1. All groups are shuffled. - 2. Groups are sorted by standard deviation of classes using stable sort. - 3. Sorted groups are iterated over and assigned to folds. + 1. All groups are shuffled. + 2. Groups are sorted by standard deviation of classes using stable sort. + 3. Sorted groups are iterated over and assigned to folds. - That means that only groups with the same standard deviation of class - distribution will be shuffled, which might be useful when each group has only - a single class. -- The algorithm greedily assigns each group to one of n_splits test sets, - choosing the test set that minimises the variance in class distribution - across test sets. Group assignment proceeds from groups with highest to - lowest variance in class frequency, i.e. large groups peaked on one or few - classes are assigned first. -- This split is suboptimal in a sense that it might produce imbalanced splits - even if perfect stratification is possible. If you have relatively close - distribution of classes in each group, using :class:`GroupKFold` is better. + That means that only groups with the same standard deviation of class + distribution will be shuffled, which might be useful when each group has only + a single class. + - The algorithm greedily assigns each group to one of n_splits test sets, + choosing the test set that minimises the variance in class distribution + across test sets. Group assignment proceeds from groups with highest to + lowest variance in class frequency, i.e. large groups peaked on one or few + classes are assigned first. + - This split is suboptimal in a sense that it might produce imbalanced splits + even if perfect stratification is possible. If you have relatively close + distribution of classes in each group, using :class:`GroupKFold` is better. -|details-end| Here is a visualization of cross-validation behavior for uneven groups: @@ -999,16 +989,12 @@ using brute force and internally fits ``(n_permutations + 1) * n_cv`` models. It is therefore only tractable with small datasets for which fitting an individual model is very fast. -.. topic:: Examples - - * :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py` +.. rubric:: Examples -|details-start| -**References** -|details-split| +* :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py` - * Ojala and Garriga. `Permutation Tests for Studying Classifier Performance - `_. - J. Mach. Learn. Res. 2010. +.. dropdown:: References -|details-end| + * Ojala and Garriga. `Permutation Tests for Studying Classifier Performance + `_. + J. Mach. Learn. Res. 2010. diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst index e34818a322c7d..926a4482f1428 100644 --- a/doc/modules/decomposition.rst +++ b/doc/modules/decomposition.rst @@ -51,11 +51,11 @@ data based on the amount of variance it explains. As such it implements a :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` .. _IncrementalPCA: @@ -97,9 +97,9 @@ input data for each feature before applying the SVD. :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py` .. _RandomizedPCA: @@ -160,20 +160,20 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with ``transform`` even when ``whiten=False`` (default). -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` +* :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` -.. topic:: References: +.. rubric:: References - * Algorithm 4.3 in - :arxiv:`"Finding structure with randomness: Stochastic algorithms for - constructing approximate matrix decompositions" <0909.4061>` - Halko, et al., 2009 +* Algorithm 4.3 in + :arxiv:`"Finding structure with randomness: Stochastic algorithms for + constructing approximate matrix decompositions" <0909.4061>` + Halko, et al., 2009 - * :arxiv:`"An implementation of a randomized algorithm for principal component - analysis" <1412.3510>` A. Szlam et al. 2014 +* :arxiv:`"An implementation of a randomized algorithm for principal component + analysis" <1412.3510>` A. Szlam et al. 2014 .. _SparsePCA: @@ -248,18 +248,18 @@ factorization, while larger values shrink many coefficients to zero. the algorithm is online along the features direction, not the samples direction. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` -.. topic:: References: +.. rubric:: References - .. [Mrl09] `"Online Dictionary Learning for Sparse Coding" - `_ - J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 - .. [Jen09] `"Structured Sparse Principal Component Analysis" - `_ - R. Jenatton, G. Obozinski, F. Bach, 2009 +.. [Mrl09] `"Online Dictionary Learning for Sparse Coding" + `_ + J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 +.. [Jen09] `"Structured Sparse Principal Component Analysis" + `_ + R. Jenatton, G. Obozinski, F. Bach, 2009 .. _kernel_PCA: @@ -288,24 +288,23 @@ prediction (kernel dependency estimation). :class:`KernelPCA` supports both :meth:`KernelPCA.inverse_transform` is an approximation. See the example linked below for more details. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py` - * :ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py` +* :ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py` +.. rubric:: References -.. topic:: References: +.. [Scholkopf1997] Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. + `"Kernel principal component analysis." + `_ + International conference on artificial neural networks. + Springer, Berlin, Heidelberg, 1997. - .. [Scholkopf1997] Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. - `"Kernel principal component analysis." - `_ - International conference on artificial neural networks. - Springer, Berlin, Heidelberg, 1997. - - .. [Bakir2003] Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf. - `"Learning to find pre-images." - `_ - Advances in neural information processing systems 16 (2003): 449-456. +.. [Bakir2003] Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf. + `"Learning to find pre-images." + `_ + Advances in neural information processing systems 16 (2003): 449-456. .. _kPCA_Solvers: @@ -323,36 +322,33 @@ is much smaller than its size. This is a situation where approximate eigensolvers can provide speedup with very low precision loss. -|details-start| -**Eigensolvers** -|details-split| - -The optional parameter ``eigen_solver='randomized'`` can be used to -*significantly* reduce the computation time when the number of requested -``n_components`` is small compared with the number of samples. It relies on -randomized decomposition methods to find an approximate solution in a shorter -time. +.. dropdown:: Eigensolvers -The time complexity of the randomized :class:`KernelPCA` is -:math:`O(n_{\mathrm{samples}}^2 \cdot n_{\mathrm{components}})` -instead of :math:`O(n_{\mathrm{samples}}^3)` for the exact method -implemented with ``eigen_solver='dense'``. + The optional parameter ``eigen_solver='randomized'`` can be used to + *significantly* reduce the computation time when the number of requested + ``n_components`` is small compared with the number of samples. It relies on + randomized decomposition methods to find an approximate solution in a shorter + time. -The memory footprint of randomized :class:`KernelPCA` is also proportional to -:math:`2 \cdot n_{\mathrm{samples}} \cdot n_{\mathrm{components}}` instead of -:math:`n_{\mathrm{samples}}^2` for the exact method. + The time complexity of the randomized :class:`KernelPCA` is + :math:`O(n_{\mathrm{samples}}^2 \cdot n_{\mathrm{components}})` + instead of :math:`O(n_{\mathrm{samples}}^3)` for the exact method + implemented with ``eigen_solver='dense'``. -Note: this technique is the same as in :ref:`RandomizedPCA`. + The memory footprint of randomized :class:`KernelPCA` is also proportional to + :math:`2 \cdot n_{\mathrm{samples}} \cdot n_{\mathrm{components}}` instead of + :math:`n_{\mathrm{samples}}^2` for the exact method. -In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as -an alternate way to get an approximate decomposition. In practice, this method -only provides reasonable execution times when the number of components to find -is extremely small. It is enabled by default when the desired number of -components is less than 10 (strict) and the number of samples is more than 200 -(strict). See :class:`KernelPCA` for details. + Note: this technique is the same as in :ref:`RandomizedPCA`. + In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as + an alternate way to get an approximate decomposition. In practice, this method + only provides reasonable execution times when the number of components to find + is extremely small. It is enabled by default when the desired number of + components is less than 10 (strict) and the number of samples is more than 200 + (strict). See :class:`KernelPCA` for details. -.. topic:: References: + .. rubric:: References * *dense* solver: `scipy.linalg.eigh documentation @@ -374,8 +370,6 @@ components is less than 10 (strict) and the number of samples is more than 200 `_ R. B. Lehoucq, D. C. Sorensen, and C. Yang, (1998) -|details-end| - .. _LSA: @@ -392,72 +386,67 @@ When the columnwise (per-feature) means of :math:`X` are subtracted from the feature values, truncated SVD on the resulting matrix is equivalent to PCA. -|details-start| -**About truncated SVD and latent semantic analysis (LSA)** -|details-split| - -When truncated SVD is applied to term-document matrices -(as returned by :class:`~sklearn.feature_extraction.text.CountVectorizer` or -:class:`~sklearn.feature_extraction.text.TfidfVectorizer`), -this transformation is known as -`latent semantic analysis `_ -(LSA), because it transforms such matrices -to a "semantic" space of low dimensionality. -In particular, LSA is known to combat the effects of synonymy and polysemy -(both of which roughly mean there are multiple meanings per word), -which cause term-document matrices to be overly sparse -and exhibit poor similarity under measures such as cosine similarity. +.. dropdown:: About truncated SVD and latent semantic analysis (LSA) -.. note:: - LSA is also known as latent semantic indexing, LSI, - though strictly that refers to its use in persistent indexes - for information retrieval purposes. + When truncated SVD is applied to term-document matrices + (as returned by :class:`~sklearn.feature_extraction.text.CountVectorizer` or + :class:`~sklearn.feature_extraction.text.TfidfVectorizer`), + this transformation is known as + `latent semantic analysis `_ + (LSA), because it transforms such matrices + to a "semantic" space of low dimensionality. + In particular, LSA is known to combat the effects of synonymy and polysemy + (both of which roughly mean there are multiple meanings per word), + which cause term-document matrices to be overly sparse + and exhibit poor similarity under measures such as cosine similarity. -Mathematically, truncated SVD applied to training samples :math:`X` -produces a low-rank approximation :math:`X`: + .. note:: + LSA is also known as latent semantic indexing, LSI, + though strictly that refers to its use in persistent indexes + for information retrieval purposes. -.. math:: - X \approx X_k = U_k \Sigma_k V_k^\top + Mathematically, truncated SVD applied to training samples :math:`X` + produces a low-rank approximation :math:`X`: -After this operation, :math:`U_k \Sigma_k` -is the transformed training set with :math:`k` features -(called ``n_components`` in the API). + .. math:: + X \approx X_k = U_k \Sigma_k V_k^\top -To also transform a test set :math:`X`, we multiply it with :math:`V_k`: + After this operation, :math:`U_k \Sigma_k` + is the transformed training set with :math:`k` features + (called ``n_components`` in the API). -.. math:: - X' = X V_k - -.. note:: - Most treatments of LSA in the natural language processing (NLP) - and information retrieval (IR) literature - swap the axes of the matrix :math:`X` so that it has shape - ``n_features`` × ``n_samples``. - We present LSA in a different way that matches the scikit-learn API better, - but the singular values found are the same. + To also transform a test set :math:`X`, we multiply it with :math:`V_k`: + .. math:: + X' = X V_k -While the :class:`TruncatedSVD` transformer -works with any feature matrix, -using it on tf–idf matrices is recommended over raw frequency counts -in an LSA/document processing setting. -In particular, sublinear scaling and inverse document frequency -should be turned on (``sublinear_tf=True, use_idf=True``) -to bring the feature values closer to a Gaussian distribution, -compensating for LSA's erroneous assumptions about textual data. + .. note:: + Most treatments of LSA in the natural language processing (NLP) + and information retrieval (IR) literature + swap the axes of the matrix :math:`X` so that it has shape + ``(n_features, n_samples)``. + We present LSA in a different way that matches the scikit-learn API better, + but the singular values found are the same. -|details-end| + While the :class:`TruncatedSVD` transformer + works with any feature matrix, + using it on tf-idf matrices is recommended over raw frequency counts + in an LSA/document processing setting. + In particular, sublinear scaling and inverse document frequency + should be turned on (``sublinear_tf=True, use_idf=True``) + to bring the feature values closer to a Gaussian distribution, + compensating for LSA's erroneous assumptions about textual data. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py` +* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py` -.. topic:: References: +.. rubric:: References - * Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), - *Introduction to Information Retrieval*, Cambridge University Press, - chapter 18: `Matrix decompositions & latent semantic indexing - `_ +* Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), + *Introduction to Information Retrieval*, Cambridge University Press, + chapter 18: `Matrix decompositions & latent semantic indexing + `_ @@ -511,9 +500,9 @@ the split code is filled with the negative part of the code vector, only with a positive sign. Therefore, the split_code is non-negative. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_sparse_coding.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_sparse_coding.py` Generic dictionary learning @@ -593,16 +582,16 @@ extracted from part of the image of a raccoon face looks like. :scale: 50% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_image_denoising.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_image_denoising.py` -.. topic:: References: +.. rubric:: References - * `"Online dictionary learning for sparse coding" - `_ - J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 +* `"Online dictionary learning for sparse coding" + `_ + J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009 .. _MiniBatchDictionaryLearning: @@ -733,10 +722,10 @@ Varimax rotation maximizes the sum of the variances of the squared loadings, i.e., it tends to produce sparser factors, which are influenced by only a few features each (the "simple structure"). See e.g., the first example below. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` .. _ICA: @@ -775,11 +764,11 @@ components with some sparsity: .. centered:: |pca_img4| |ica_img4| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py` - * :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` .. _NMF: @@ -902,24 +891,20 @@ Note that this definition is not valid if :math:`\beta \in (0; 1)`, yet it can be continuously extended to the definitions of :math:`d_{KL}` and :math:`d_{IS}` respectively. -|details-start| -**NMF implemented solvers** -|details-split| - -:class:`NMF` implements two solvers, using Coordinate Descent ('cd') [5]_, and -Multiplicative Update ('mu') [6]_. The 'mu' solver can optimize every -beta-divergence, including of course the Frobenius norm (:math:`\beta=2`), the -(generalized) Kullback-Leibler divergence (:math:`\beta=1`) and the -Itakura-Saito divergence (:math:`\beta=0`). Note that for -:math:`\beta \in (1; 2)`, the 'mu' solver is significantly faster than for other -values of :math:`\beta`. Note also that with a negative (or 0, i.e. -'itakura-saito') :math:`\beta`, the input matrix cannot contain zero values. +.. dropdown:: NMF implemented solvers -The 'cd' solver can only optimize the Frobenius norm. Due to the -underlying non-convexity of NMF, the different solvers may converge to -different minima, even when optimizing the same distance function. + :class:`NMF` implements two solvers, using Coordinate Descent ('cd') [5]_, and + Multiplicative Update ('mu') [6]_. The 'mu' solver can optimize every + beta-divergence, including of course the Frobenius norm (:math:`\beta=2`), the + (generalized) Kullback-Leibler divergence (:math:`\beta=1`) and the + Itakura-Saito divergence (:math:`\beta=0`). Note that for + :math:`\beta \in (1; 2)`, the 'mu' solver is significantly faster than for other + values of :math:`\beta`. Note also that with a negative (or 0, i.e. + 'itakura-saito') :math:`\beta`, the input matrix cannot contain zero values. -|details-end| + The 'cd' solver can only optimize the Frobenius norm. Due to the + underlying non-convexity of NMF, the different solvers may converge to + different minima, even when optimizing the same distance function. NMF is best used with the ``fit_transform`` method, which returns the matrix W. The matrix H is stored into the fitted model in the ``components_`` attribute; @@ -937,10 +922,10 @@ stored components:: -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` - * :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` +* :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` +* :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` .. _MiniBatchNMF: @@ -965,33 +950,33 @@ The estimator also implements ``partial_fit``, which updates ``H`` by iterating only once over a mini-batch. This can be used for online learning when the data is not readily available from the start, or when the data does not fit into memory. -.. topic:: References: +.. rubric:: References - .. [1] `"Learning the parts of objects by non-negative matrix factorization" - `_ - D. Lee, S. Seung, 1999 +.. [1] `"Learning the parts of objects by non-negative matrix factorization" + `_ + D. Lee, S. Seung, 1999 - .. [2] `"Non-negative Matrix Factorization with Sparseness Constraints" - `_ - P. Hoyer, 2004 +.. [2] `"Non-negative Matrix Factorization with Sparseness Constraints" + `_ + P. Hoyer, 2004 - .. [4] `"SVD based initialization: A head start for nonnegative - matrix factorization" - `_ - C. Boutsidis, E. Gallopoulos, 2008 +.. [4] `"SVD based initialization: A head start for nonnegative + matrix factorization" + `_ + C. Boutsidis, E. Gallopoulos, 2008 - .. [5] `"Fast local algorithms for large scale nonnegative matrix and tensor - factorizations." - `_ - A. Cichocki, A. Phan, 2009 +.. [5] `"Fast local algorithms for large scale nonnegative matrix and tensor + factorizations." + `_ + A. Cichocki, A. Phan, 2009 - .. [6] :arxiv:`"Algorithms for nonnegative matrix factorization with - the beta-divergence" <1010.1763>` - C. Fevotte, J. Idier, 2011 +.. [6] :arxiv:`"Algorithms for nonnegative matrix factorization with + the beta-divergence" <1010.1763>` + C. Fevotte, J. Idier, 2011 - .. [7] :arxiv:`"Online algorithms for nonnegative matrix factorization with the - Itakura-Saito divergence" <1106.4198>` - A. Lefevre, F. Bach, C. Fevotte, 2011 +.. [7] :arxiv:`"Online algorithms for nonnegative matrix factorization with the + Itakura-Saito divergence" <1106.4198>` + A. Lefevre, F. Bach, C. Fevotte, 2011 .. _LatentDirichletAllocation: @@ -1023,51 +1008,48 @@ of topics in the corpus and the distribution of words in the documents. The goal of LDA is to use the observed words to infer the hidden topic structure. -|details-start| -**Details on modeling text corpora** -|details-split| +.. dropdown:: Details on modeling text corpora -When modeling text corpora, the model assumes the following generative process -for a corpus with :math:`D` documents and :math:`K` topics, with :math:`K` -corresponding to `n_components` in the API: + When modeling text corpora, the model assumes the following generative process + for a corpus with :math:`D` documents and :math:`K` topics, with :math:`K` + corresponding to `n_components` in the API: -1. For each topic :math:`k \in K`, draw :math:`\beta_k \sim - \mathrm{Dirichlet}(\eta)`. This provides a distribution over the words, - i.e. the probability of a word appearing in topic :math:`k`. - :math:`\eta` corresponds to `topic_word_prior`. + 1. For each topic :math:`k \in K`, draw :math:`\beta_k \sim + \mathrm{Dirichlet}(\eta)`. This provides a distribution over the words, + i.e. the probability of a word appearing in topic :math:`k`. + :math:`\eta` corresponds to `topic_word_prior`. -2. For each document :math:`d \in D`, draw the topic proportions - :math:`\theta_d \sim \mathrm{Dirichlet}(\alpha)`. :math:`\alpha` - corresponds to `doc_topic_prior`. + 2. For each document :math:`d \in D`, draw the topic proportions + :math:`\theta_d \sim \mathrm{Dirichlet}(\alpha)`. :math:`\alpha` + corresponds to `doc_topic_prior`. -3. For each word :math:`i` in document :math:`d`: + 3. For each word :math:`i` in document :math:`d`: - a. Draw the topic assignment :math:`z_{di} \sim \mathrm{Multinomial} - (\theta_d)` - b. Draw the observed word :math:`w_{ij} \sim \mathrm{Multinomial} - (\beta_{z_{di}})` + a. Draw the topic assignment :math:`z_{di} \sim \mathrm{Multinomial} + (\theta_d)` + b. Draw the observed word :math:`w_{ij} \sim \mathrm{Multinomial} + (\beta_{z_{di}})` -For parameter estimation, the posterior distribution is: + For parameter estimation, the posterior distribution is: -.. math:: - p(z, \theta, \beta |w, \alpha, \eta) = - \frac{p(z, \theta, \beta|\alpha, \eta)}{p(w|\alpha, \eta)} + .. math:: + p(z, \theta, \beta |w, \alpha, \eta) = + \frac{p(z, \theta, \beta|\alpha, \eta)}{p(w|\alpha, \eta)} -Since the posterior is intractable, variational Bayesian method -uses a simpler distribution :math:`q(z,\theta,\beta | \lambda, \phi, \gamma)` -to approximate it, and those variational parameters :math:`\lambda`, -:math:`\phi`, :math:`\gamma` are optimized to maximize the Evidence -Lower Bound (ELBO): + Since the posterior is intractable, variational Bayesian method + uses a simpler distribution :math:`q(z,\theta,\beta | \lambda, \phi, \gamma)` + to approximate it, and those variational parameters :math:`\lambda`, + :math:`\phi`, :math:`\gamma` are optimized to maximize the Evidence + Lower Bound (ELBO): -.. math:: - \log\: P(w | \alpha, \eta) \geq L(w,\phi,\gamma,\lambda) \overset{\triangle}{=} - E_{q}[\log\:p(w,z,\theta,\beta|\alpha,\eta)] - E_{q}[\log\:q(z, \theta, \beta)] + .. math:: + \log\: P(w | \alpha, \eta) \geq L(w,\phi,\gamma,\lambda) \overset{\triangle}{=} + E_{q}[\log\:p(w,z,\theta,\beta|\alpha,\eta)] - E_{q}[\log\:q(z, \theta, \beta)] -Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence -between :math:`q(z,\theta,\beta)` and the true posterior -:math:`p(z, \theta, \beta |w, \alpha, \eta)`. + Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence + between :math:`q(z,\theta,\beta)` and the true posterior + :math:`p(z, \theta, \beta |w, \alpha, \eta)`. -|details-end| :class:`LatentDirichletAllocation` implements the online variational Bayes algorithm and supports both online and batch update methods. @@ -1089,27 +1071,27 @@ can be calculated from ``transform`` method. :class:`LatentDirichletAllocation` also implements ``partial_fit`` method. This is used when data can be fetched sequentially. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` +* :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` -.. topic:: References: +.. rubric:: References - * `"Latent Dirichlet Allocation" - `_ - D. Blei, A. Ng, M. Jordan, 2003 +* `"Latent Dirichlet Allocation" + `_ + D. Blei, A. Ng, M. Jordan, 2003 - * `"Online Learning for Latent Dirichlet Allocation” - `_ - M. Hoffman, D. Blei, F. Bach, 2010 +* `"Online Learning for Latent Dirichlet Allocation” + `_ + M. Hoffman, D. Blei, F. Bach, 2010 - * `"Stochastic Variational Inference" - `_ - M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013 +* `"Stochastic Variational Inference" + `_ + M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013 - * `"The varimax criterion for analytic rotation in factor analysis" - `_ - H. F. Kaiser, 1958 +* `"The varimax criterion for analytic rotation in factor analysis" + `_ + H. F. Kaiser, 1958 See also :ref:`nca_dim_reduction` for dimensionality reduction with Neighborhood Components Analysis. diff --git a/doc/modules/density.rst b/doc/modules/density.rst index 5a9b456010aa3..39264f226185d 100644 --- a/doc/modules/density.rst +++ b/doc/modules/density.rst @@ -113,37 +113,34 @@ forms, which are shown in the following figure: .. centered:: |kde_kernels| -|details-start| -**kernels' mathematical expressions** -|details-split| +.. dropdown:: Kernels' mathematical expressions -The form of these kernels is as follows: + The form of these kernels is as follows: -* Gaussian kernel (``kernel = 'gaussian'``) + * Gaussian kernel (``kernel = 'gaussian'``) - :math:`K(x; h) \propto \exp(- \frac{x^2}{2h^2} )` + :math:`K(x; h) \propto \exp(- \frac{x^2}{2h^2} )` -* Tophat kernel (``kernel = 'tophat'``) + * Tophat kernel (``kernel = 'tophat'``) - :math:`K(x; h) \propto 1` if :math:`x < h` + :math:`K(x; h) \propto 1` if :math:`x < h` -* Epanechnikov kernel (``kernel = 'epanechnikov'``) + * Epanechnikov kernel (``kernel = 'epanechnikov'``) - :math:`K(x; h) \propto 1 - \frac{x^2}{h^2}` + :math:`K(x; h) \propto 1 - \frac{x^2}{h^2}` -* Exponential kernel (``kernel = 'exponential'``) + * Exponential kernel (``kernel = 'exponential'``) - :math:`K(x; h) \propto \exp(-x/h)` + :math:`K(x; h) \propto \exp(-x/h)` -* Linear kernel (``kernel = 'linear'``) + * Linear kernel (``kernel = 'linear'``) - :math:`K(x; h) \propto 1 - x/h` if :math:`x < h` + :math:`K(x; h) \propto 1 - x/h` if :math:`x < h` -* Cosine kernel (``kernel = 'cosine'``) + * Cosine kernel (``kernel = 'cosine'``) - :math:`K(x; h) \propto \cos(\frac{\pi x}{2h})` if :math:`x < h` + :math:`K(x; h) \propto \cos(\frac{\pi x}{2h})` if :math:`x < h` -|details-end| The kernel density estimator can be used with any of the valid distance metrics (see :class:`~sklearn.metrics.DistanceMetric` for a list of @@ -177,14 +174,14 @@ on a PCA projection of the data: The "new" data consists of linear combinations of the input data, with weights probabilistically drawn given the KDE model. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_plot_kde_1d.py`: computation of simple kernel - density estimates in one dimension. +* :ref:`sphx_glr_auto_examples_neighbors_plot_kde_1d.py`: computation of simple kernel + density estimates in one dimension. - * :ref:`sphx_glr_auto_examples_neighbors_plot_digits_kde_sampling.py`: an example of using - Kernel Density estimation to learn a generative model of the hand-written - digits data, and drawing new samples from this model. +* :ref:`sphx_glr_auto_examples_neighbors_plot_digits_kde_sampling.py`: an example of using + Kernel Density estimation to learn a generative model of the hand-written + digits data, and drawing new samples from this model. - * :ref:`sphx_glr_auto_examples_neighbors_plot_species_kde.py`: an example of Kernel Density - estimation using the Haversine distance metric to visualize geospatial data +* :ref:`sphx_glr_auto_examples_neighbors_plot_species_kde.py`: an example of Kernel Density + estimation using the Haversine distance metric to visualize geospatial data diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 40e3894a836fc..08c831431d197 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -18,10 +18,6 @@ trees, in averaging methods such as :ref:`Bagging methods `, :ref:`model stacking `, or :ref:`Voting `, or in boosting, as :ref:`AdaBoost `. -.. contents:: - :local: - :depth: 1 - .. _gradient_boosting: Gradient-boosted trees @@ -78,10 +74,10 @@ estimators is slightly different, and some of the features from :class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor` are not yet supported, for instance some loss functions. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` Usage ^^^^^ @@ -126,43 +122,40 @@ in [XGBoost]_): \mathcal{L}(\phi) = \sum_i l(\hat{y}_i, y_i) + \frac12 \sum_k \lambda ||w_k||^2 -|details-start| -**Details on l2 regularization**: -|details-split| - -It is important to notice that the loss term :math:`l(\hat{y}_i, y_i)` describes -only half of the actual loss function except for the pinball loss and absolute -error. - -The index :math:`k` refers to the k-th tree in the ensemble of trees. In the -case of regression and binary classification, gradient boosting models grow one -tree per iteration, then :math:`k` runs up to `max_iter`. In the case of -multiclass classification problems, the maximal value of the index :math:`k` is -`n_classes` :math:`\times` `max_iter`. - -If :math:`T_k` denotes the number of leaves in the k-th tree, then :math:`w_k` -is a vector of length :math:`T_k`, which contains the leaf values of the form `w -= -sum_gradient / (sum_hessian + l2_regularization)` (see equation (5) in -[XGBoost]_). - -The leaf values :math:`w_k` are derived by dividing the sum of the gradients of -the loss function by the combined sum of hessians. Adding the regularization to -the denominator penalizes the leaves with small hessians (flat regions), -resulting in smaller updates. Those :math:`w_k` values contribute then to the -model's prediction for a given input that ends up in the corresponding leaf. The -final prediction is the sum of the base prediction and the contributions from -each tree. The result of that sum is then transformed by the inverse link -function depending on the choice of the loss function (see -:ref:`gradient_boosting_formulation`). - -Notice that the original paper [XGBoost]_ introduces a term :math:`\gamma\sum_k -T_k` that penalizes the number of leaves (making it a smooth version of -`max_leaf_nodes`) not presented here as it is not implemented in scikit-learn; -whereas :math:`\lambda` penalizes the magnitude of the individual tree -predictions before being rescaled by the learning rate, see -:ref:`gradient_boosting_shrinkage`. - -|details-end| +.. dropdown:: Details on l2 regularization + + It is important to notice that the loss term :math:`l(\hat{y}_i, y_i)` describes + only half of the actual loss function except for the pinball loss and absolute + error. + + The index :math:`k` refers to the k-th tree in the ensemble of trees. In the + case of regression and binary classification, gradient boosting models grow one + tree per iteration, then :math:`k` runs up to `max_iter`. In the case of + multiclass classification problems, the maximal value of the index :math:`k` is + `n_classes` :math:`\times` `max_iter`. + + If :math:`T_k` denotes the number of leaves in the k-th tree, then :math:`w_k` + is a vector of length :math:`T_k`, which contains the leaf values of the form `w + = -sum_gradient / (sum_hessian + l2_regularization)` (see equation (5) in + [XGBoost]_). + + The leaf values :math:`w_k` are derived by dividing the sum of the gradients of + the loss function by the combined sum of hessians. Adding the regularization to + the denominator penalizes the leaves with small hessians (flat regions), + resulting in smaller updates. Those :math:`w_k` values contribute then to the + model's prediction for a given input that ends up in the corresponding leaf. The + final prediction is the sum of the base prediction and the contributions from + each tree. The result of that sum is then transformed by the inverse link + function depending on the choice of the loss function (see + :ref:`gradient_boosting_formulation`). + + Notice that the original paper [XGBoost]_ introduces a term :math:`\gamma\sum_k + T_k` that penalizes the number of leaves (making it a smooth version of + `max_leaf_nodes`) not presented here as it is not implemented in scikit-learn; + whereas :math:`\lambda` penalizes the magnitude of the individual tree + predictions before being rescaled by the learning rate, see + :ref:`gradient_boosting_shrinkage`. + Note that **early-stopping is enabled by default if the number of samples is larger than 10,000**. The early-stopping behaviour is controlled via the @@ -213,9 +206,9 @@ If no missing values were encountered for a given feature during training, then samples with missing values are mapped to whichever child has the most samples. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` .. _sw_hgbdt: @@ -302,30 +295,25 @@ the most samples (just like for continuous features). When predicting, categories that were not seen during fit time will be treated as missing values. -|details-start| -**Split finding with categorical features**: -|details-split| +.. dropdown:: Split finding with categorical features -The canonical way of considering -categorical splits in a tree is to consider -all of the :math:`2^{K - 1} - 1` partitions, where :math:`K` is the number of -categories. This can quickly become prohibitive when :math:`K` is large. -Fortunately, since gradient boosting trees are always regression trees (even -for classification problems), there exist a faster strategy that can yield -equivalent splits. First, the categories of a feature are sorted according to -the variance of the target, for each category `k`. Once the categories are -sorted, one can consider *continuous partitions*, i.e. treat the categories -as if they were ordered continuous values (see Fisher [Fisher1958]_ for a -formal proof). As a result, only :math:`K - 1` splits need to be considered -instead of :math:`2^{K - 1} - 1`. The initial sorting is a -:math:`\mathcal{O}(K \log(K))` operation, leading to a total complexity of -:math:`\mathcal{O}(K \log(K) + K)`, instead of :math:`\mathcal{O}(2^K)`. + The canonical way of considering categorical splits in a tree is to consider + all of the :math:`2^{K - 1} - 1` partitions, where :math:`K` is the number of + categories. This can quickly become prohibitive when :math:`K` is large. + Fortunately, since gradient boosting trees are always regression trees (even + for classification problems), there exist a faster strategy that can yield + equivalent splits. First, the categories of a feature are sorted according to + the variance of the target, for each category `k`. Once the categories are + sorted, one can consider *continuous partitions*, i.e. treat the categories + as if they were ordered continuous values (see Fisher [Fisher1958]_ for a + formal proof). As a result, only :math:`K - 1` splits need to be considered + instead of :math:`2^{K - 1} - 1`. The initial sorting is a + :math:`\mathcal{O}(K \log(K))` operation, leading to a total complexity of + :math:`\mathcal{O}(K \log(K) + K)`, instead of :math:`\mathcal{O}(2^K)`. -|details-end| +.. rubric:: Examples -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py` .. _monotonic_cst_gbdt: @@ -378,10 +366,10 @@ Also, monotonic constraints are not supported for multiclass classification. Since categories are unordered quantities, it is not possible to enforce monotonic constraints on categorical features. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` .. _interaction_cst_hgbt: @@ -414,16 +402,16 @@ Note that features not listed in ``interaction_cst`` are automatically assigned an interaction group for themselves. With again 3 features, this means that ``[{0}]`` is equivalent to ``[{0}, {1, 2}]``. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` -.. topic:: References +.. rubric:: References - .. [Mayer2022] M. Mayer, S.C. Bourassa, M. Hoesli, and D.F. Scognamiglio. - 2022. :doi:`Machine Learning Applications to Land and Structure Valuation - <10.3390/jrfm15050193>`. - Journal of Risk and Financial Management 15, no. 5: 193 +.. [Mayer2022] M. Mayer, S.C. Bourassa, M. Hoesli, and D.F. Scognamiglio. + 2022. :doi:`Machine Learning Applications to Land and Structure Valuation + <10.3390/jrfm15050193>`. + Journal of Risk and Financial Management 15, no. 5: 193 Low-level parallelism ^^^^^^^^^^^^^^^^^^^^^ @@ -479,18 +467,18 @@ Finally, many parts of the implementation of :class:`HistGradientBoostingClassifier` and :class:`HistGradientBoostingRegressor` are parallelized. -.. topic:: References +.. rubric:: References - .. [XGBoost] Tianqi Chen, Carlos Guestrin, :arxiv:`"XGBoost: A Scalable Tree - Boosting System" <1603.02754>` +.. [XGBoost] Tianqi Chen, Carlos Guestrin, :arxiv:`"XGBoost: A Scalable Tree + Boosting System" <1603.02754>` - .. [LightGBM] Ke et. al. `"LightGBM: A Highly Efficient Gradient - BoostingDecision Tree" `_ +.. [LightGBM] Ke et. al. `"LightGBM: A Highly Efficient Gradient + BoostingDecision Tree" `_ - .. [Fisher1958] Fisher, W.D. (1958). `"On Grouping for Maximum Homogeneity" - `_ - Journal of the American Statistical Association, 53, 789-798. +.. [Fisher1958] Fisher, W.D. (1958). `"On Grouping for Maximum Homogeneity" + `_ + Journal of the American Statistical Association, 53, 789-798. @@ -501,96 +489,88 @@ The usage and the parameters of :class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor` are described below. The 2 most important parameters of these estimators are `n_estimators` and `learning_rate`. -|details-start| -**Classification** -|details-split| - -:class:`GradientBoostingClassifier` supports both binary and multi-class -classification. -The following example shows how to fit a gradient boosting classifier -with 100 decision stumps as weak learners:: - - >>> from sklearn.datasets import make_hastie_10_2 - >>> from sklearn.ensemble import GradientBoostingClassifier - - >>> X, y = make_hastie_10_2(random_state=0) - >>> X_train, X_test = X[:2000], X[2000:] - >>> y_train, y_test = y[:2000], y[2000:] - - >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, - ... max_depth=1, random_state=0).fit(X_train, y_train) - >>> clf.score(X_test, y_test) - 0.913... - -The number of weak learners (i.e. regression trees) is controlled by the -parameter ``n_estimators``; :ref:`The size of each tree -` can be controlled either by setting the tree -depth via ``max_depth`` or by setting the number of leaf nodes via -``max_leaf_nodes``. The ``learning_rate`` is a hyper-parameter in the range -(0.0, 1.0] that controls overfitting via :ref:`shrinkage -` . - -.. note:: - - Classification with more than 2 classes requires the induction - of ``n_classes`` regression trees at each iteration, - thus, the total number of induced trees equals - ``n_classes * n_estimators``. For datasets with a large number - of classes we strongly recommend to use - :class:`HistGradientBoostingClassifier` as an alternative to - :class:`GradientBoostingClassifier` . - -|details-end| - -|details-start| -**Regression** -|details-split| - -:class:`GradientBoostingRegressor` supports a number of -:ref:`different loss functions ` -for regression which can be specified via the argument -``loss``; the default loss function for regression is squared error -(``'squared_error'``). - -:: - - >>> import numpy as np - >>> from sklearn.metrics import mean_squared_error - >>> from sklearn.datasets import make_friedman1 - >>> from sklearn.ensemble import GradientBoostingRegressor - - >>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0) - >>> X_train, X_test = X[:200], X[200:] - >>> y_train, y_test = y[:200], y[200:] - >>> est = GradientBoostingRegressor( - ... n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, - ... loss='squared_error' - ... ).fit(X_train, y_train) - >>> mean_squared_error(y_test, est.predict(X_test)) - 5.00... - -The figure below shows the results of applying :class:`GradientBoostingRegressor` -with least squares loss and 500 base learners to the diabetes dataset -(:func:`sklearn.datasets.load_diabetes`). -The plot shows the train and test error at each iteration. -The train error at each iteration is stored in the -`train_score_` attribute of the gradient boosting model. -The test error at each iterations can be obtained -via the :meth:`~GradientBoostingRegressor.staged_predict` method which returns a -generator that yields the predictions at each stage. Plots like these can be used -to determine the optimal number of trees (i.e. ``n_estimators``) by early stopping. - -.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regression_001.png - :target: ../auto_examples/ensemble/plot_gradient_boosting_regression.html - :align: center - :scale: 75 - -|details-end| +.. dropdown:: Classification + + :class:`GradientBoostingClassifier` supports both binary and multi-class + classification. + The following example shows how to fit a gradient boosting classifier + with 100 decision stumps as weak learners:: + + >>> from sklearn.datasets import make_hastie_10_2 + >>> from sklearn.ensemble import GradientBoostingClassifier + + >>> X, y = make_hastie_10_2(random_state=0) + >>> X_train, X_test = X[:2000], X[2000:] + >>> y_train, y_test = y[:2000], y[2000:] + + >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, + ... max_depth=1, random_state=0).fit(X_train, y_train) + >>> clf.score(X_test, y_test) + 0.913... + + The number of weak learners (i.e. regression trees) is controlled by the + parameter ``n_estimators``; :ref:`The size of each tree + ` can be controlled either by setting the tree + depth via ``max_depth`` or by setting the number of leaf nodes via + ``max_leaf_nodes``. The ``learning_rate`` is a hyper-parameter in the range + (0.0, 1.0] that controls overfitting via :ref:`shrinkage + ` . + + .. note:: + + Classification with more than 2 classes requires the induction + of ``n_classes`` regression trees at each iteration, + thus, the total number of induced trees equals + ``n_classes * n_estimators``. For datasets with a large number + of classes we strongly recommend to use + :class:`HistGradientBoostingClassifier` as an alternative to + :class:`GradientBoostingClassifier` . + +.. dropdown:: Regression + + :class:`GradientBoostingRegressor` supports a number of + :ref:`different loss functions ` + for regression which can be specified via the argument + ``loss``; the default loss function for regression is squared error + (``'squared_error'``). + + :: + + >>> import numpy as np + >>> from sklearn.metrics import mean_squared_error + >>> from sklearn.datasets import make_friedman1 + >>> from sklearn.ensemble import GradientBoostingRegressor + + >>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0) + >>> X_train, X_test = X[:200], X[200:] + >>> y_train, y_test = y[:200], y[200:] + >>> est = GradientBoostingRegressor( + ... n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, + ... loss='squared_error' + ... ).fit(X_train, y_train) + >>> mean_squared_error(y_test, est.predict(X_test)) + 5.00... + + The figure below shows the results of applying :class:`GradientBoostingRegressor` + with least squares loss and 500 base learners to the diabetes dataset + (:func:`sklearn.datasets.load_diabetes`). + The plot shows the train and test error at each iteration. + The train error at each iteration is stored in the + `train_score_` attribute of the gradient boosting model. + The test error at each iterations can be obtained + via the :meth:`~GradientBoostingRegressor.staged_predict` method which returns a + generator that yields the predictions at each stage. Plots like these can be used + to determine the optimal number of trees (i.e. ``n_estimators``) by early stopping. + + .. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regression_001.png + :target: ../auto_examples/ensemble/plot_gradient_boosting_regression.html + :align: center + :scale: 75 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` .. _gradient_boosting_warm_start: @@ -660,116 +640,108 @@ Mathematical formulation We first present GBRT for regression, and then detail the classification case. -|details-start| -**Regression** -|details-split| +.. dropdown:: Regression -GBRT regressors are additive models whose prediction :math:`\hat{y}_i` for a -given input :math:`x_i` is of the following form: + GBRT regressors are additive models whose prediction :math:`\hat{y}_i` for a + given input :math:`x_i` is of the following form: -.. math:: - - \hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i) - -where the :math:`h_m` are estimators called *weak learners* in the context -of boosting. Gradient Tree Boosting uses :ref:`decision tree regressors -` of fixed size as weak learners. The constant M corresponds to the -`n_estimators` parameter. + .. math:: -Similar to other boosting algorithms, a GBRT is built in a greedy fashion: + \hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i) -.. math:: + where the :math:`h_m` are estimators called *weak learners* in the context + of boosting. Gradient Tree Boosting uses :ref:`decision tree regressors + ` of fixed size as weak learners. The constant M corresponds to the + `n_estimators` parameter. - F_m(x) = F_{m-1}(x) + h_m(x), + Similar to other boosting algorithms, a GBRT is built in a greedy fashion: -where the newly added tree :math:`h_m` is fitted in order to minimize a sum -of losses :math:`L_m`, given the previous ensemble :math:`F_{m-1}`: + .. math:: -.. math:: + F_m(x) = F_{m-1}(x) + h_m(x), - h_m = \arg\min_{h} L_m = \arg\min_{h} \sum_{i=1}^{n} - l(y_i, F_{m-1}(x_i) + h(x_i)), + where the newly added tree :math:`h_m` is fitted in order to minimize a sum + of losses :math:`L_m`, given the previous ensemble :math:`F_{m-1}`: -where :math:`l(y_i, F(x_i))` is defined by the `loss` parameter, detailed -in the next section. + .. math:: -By default, the initial model :math:`F_{0}` is chosen as the constant that -minimizes the loss: for a least-squares loss, this is the empirical mean of -the target values. The initial model can also be specified via the ``init`` -argument. + h_m = \arg\min_{h} L_m = \arg\min_{h} \sum_{i=1}^{n} + l(y_i, F_{m-1}(x_i) + h(x_i)), -Using a first-order Taylor approximation, the value of :math:`l` can be -approximated as follows: + where :math:`l(y_i, F(x_i))` is defined by the `loss` parameter, detailed + in the next section. -.. math:: + By default, the initial model :math:`F_{0}` is chosen as the constant that + minimizes the loss: for a least-squares loss, this is the empirical mean of + the target values. The initial model can also be specified via the ``init`` + argument. - l(y_i, F_{m-1}(x_i) + h_m(x_i)) \approx - l(y_i, F_{m-1}(x_i)) - + h_m(x_i) - \left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} \right]_{F=F_{m - 1}}. + Using a first-order Taylor approximation, the value of :math:`l` can be + approximated as follows: -.. note:: + .. math:: - Briefly, a first-order Taylor approximation says that - :math:`l(z) \approx l(a) + (z - a) \frac{\partial l}{\partial z}(a)`. - Here, :math:`z` corresponds to :math:`F_{m - 1}(x_i) + h_m(x_i)`, and - :math:`a` corresponds to :math:`F_{m-1}(x_i)` + l(y_i, F_{m-1}(x_i) + h_m(x_i)) \approx + l(y_i, F_{m-1}(x_i)) + + h_m(x_i) + \left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} \right]_{F=F_{m - 1}}. -The quantity :math:`\left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} -\right]_{F=F_{m - 1}}` is the derivative of the loss with respect to its -second parameter, evaluated at :math:`F_{m-1}(x)`. It is easy to compute for -any given :math:`F_{m - 1}(x_i)` in a closed form since the loss is -differentiable. We will denote it by :math:`g_i`. + .. note:: -Removing the constant terms, we have: + Briefly, a first-order Taylor approximation says that + :math:`l(z) \approx l(a) + (z - a) \frac{\partial l}{\partial z}(a)`. + Here, :math:`z` corresponds to :math:`F_{m - 1}(x_i) + h_m(x_i)`, and + :math:`a` corresponds to :math:`F_{m-1}(x_i)` -.. math:: + The quantity :math:`\left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} + \right]_{F=F_{m - 1}}` is the derivative of the loss with respect to its + second parameter, evaluated at :math:`F_{m-1}(x)`. It is easy to compute for + any given :math:`F_{m - 1}(x_i)` in a closed form since the loss is + differentiable. We will denote it by :math:`g_i`. - h_m \approx \arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i + Removing the constant terms, we have: -This is minimized if :math:`h(x_i)` is fitted to predict a value that is -proportional to the negative gradient :math:`-g_i`. Therefore, at each -iteration, **the estimator** :math:`h_m` **is fitted to predict the negative -gradients of the samples**. The gradients are updated at each iteration. -This can be considered as some kind of gradient descent in a functional -space. + .. math:: -.. note:: + h_m \approx \arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i - For some losses, e.g. ``'absolute_error'`` where the gradients - are :math:`\pm 1`, the values predicted by a fitted :math:`h_m` are not - accurate enough: the tree can only output integer values. As a result, the - leaves values of the tree :math:`h_m` are modified once the tree is - fitted, such that the leaves values minimize the loss :math:`L_m`. The - update is loss-dependent: for the absolute error loss, the value of - a leaf is updated to the median of the samples in that leaf. + This is minimized if :math:`h(x_i)` is fitted to predict a value that is + proportional to the negative gradient :math:`-g_i`. Therefore, at each + iteration, **the estimator** :math:`h_m` **is fitted to predict the negative + gradients of the samples**. The gradients are updated at each iteration. + This can be considered as some kind of gradient descent in a functional + space. -|details-end| + .. note:: -|details-start| -**Classification** -|details-split| + For some losses, e.g. ``'absolute_error'`` where the gradients + are :math:`\pm 1`, the values predicted by a fitted :math:`h_m` are not + accurate enough: the tree can only output integer values. As a result, the + leaves values of the tree :math:`h_m` are modified once the tree is + fitted, such that the leaves values minimize the loss :math:`L_m`. The + update is loss-dependent: for the absolute error loss, the value of + a leaf is updated to the median of the samples in that leaf. -Gradient boosting for classification is very similar to the regression case. -However, the sum of the trees :math:`F_M(x_i) = \sum_m h_m(x_i)` is not -homogeneous to a prediction: it cannot be a class, since the trees predict -continuous values. +.. dropdown:: Classification -The mapping from the value :math:`F_M(x_i)` to a class or a probability is -loss-dependent. For the log-loss, the probability that -:math:`x_i` belongs to the positive class is modeled as :math:`p(y_i = 1 | -x_i) = \sigma(F_M(x_i))` where :math:`\sigma` is the sigmoid or expit function. + Gradient boosting for classification is very similar to the regression case. + However, the sum of the trees :math:`F_M(x_i) = \sum_m h_m(x_i)` is not + homogeneous to a prediction: it cannot be a class, since the trees predict + continuous values. -For multiclass classification, K trees (for K classes) are built at each of -the :math:`M` iterations. The probability that :math:`x_i` belongs to class -k is modeled as a softmax of the :math:`F_{M,k}(x_i)` values. + The mapping from the value :math:`F_M(x_i)` to a class or a probability is + loss-dependent. For the log-loss, the probability that + :math:`x_i` belongs to the positive class is modeled as :math:`p(y_i = 1 | + x_i) = \sigma(F_M(x_i))` where :math:`\sigma` is the sigmoid or expit function. -Note that even for a classification task, the :math:`h_m` sub-estimator is -still a regressor, not a classifier. This is because the sub-estimators are -trained to predict (negative) *gradients*, which are always continuous -quantities. + For multiclass classification, K trees (for K classes) are built at each of + the :math:`M` iterations. The probability that :math:`x_i` belongs to class + k is modeled as a softmax of the :math:`F_{M,k}(x_i)` values. -|details-end| + Note that even for a classification task, the :math:`h_m` sub-estimator is + still a regressor, not a classifier. This is because the sub-estimators are + trained to predict (negative) *gradients*, which are always continuous + quantities. .. _gradient_boosting_loss: @@ -779,9 +751,7 @@ Loss Functions The following loss functions are supported and can be specified using the parameter ``loss``: -|details-start| -**Regression** -|details-split| +.. dropdown:: Regression * Squared error (``'squared_error'``): The natural choice for regression due to its superior computational properties. The initial model is @@ -798,12 +768,7 @@ the parameter ``loss``: can be used to create prediction intervals (see :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`). -|details-end| - - -|details-start| -**Classification** -|details-split| +.. dropdown:: Classification * Binary log-loss (``'log-loss'``): The binomial negative log-likelihood loss function for binary classification. It provides @@ -821,8 +786,6 @@ the parameter ``loss``: examples than ``'log-loss'``; can only be used for binary classification. -|details-end| - .. _gradient_boosting_shrinkage: Shrinkage via learning rate @@ -889,11 +852,11 @@ the optimal number of iterations. OOB estimates are usually very pessimistic thu we recommend to use cross-validation instead and only use OOB if cross-validation is too time consuming. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py` Interpretation with feature importance ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -936,22 +899,22 @@ Note that this computation of feature importance is based on entropy, and it is distinct from :func:`sklearn.inspection.permutation_importance` which is based on permutation of the features. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` -.. topic:: References +.. rubric:: References - .. [Friedman2001] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient - boosting machine <10.1214/aos/1013203451>`. - Annals of Statistics, 29, 1189-1232. +.. [Friedman2001] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient + boosting machine <10.1214/aos/1013203451>`. + Annals of Statistics, 29, 1189-1232. - .. [Friedman2002] Friedman, J.H. (2002). `Stochastic gradient boosting. - `_. - Computational Statistics & Data Analysis, 38, 367-378. +.. [Friedman2002] Friedman, J.H. (2002). `Stochastic gradient boosting. + `_. + Computational Statistics & Data Analysis, 38, 367-378. - .. [R2007] G. Ridgeway (2006). `Generalized Boosted Models: A guide to the gbm - package `_ +.. [R2007] G. Ridgeway (2006). `Generalized Boosted Models: A guide to the gbm + package `_ .. _forest: @@ -1035,9 +998,9 @@ characteristics of the dataset and the modeling task. It's a good idea to try both models and compare their performance and computational efficiency on your specific problem to determine which model is the best fit. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` Extremely Randomized Trees -------------------------- @@ -1134,20 +1097,20 @@ fast). Significant speedup can still be achieved though when building a large number of trees, or when building a single tree requires a fair amount of time (e.g., on large datasets). -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py` -.. topic:: References +.. rubric:: References - .. [B2001] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. +.. [B2001] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. - .. [B1998] L. Breiman, "Arcing Classifiers", Annals of Statistics 1998. +.. [B1998] L. Breiman, "Arcing Classifiers", Annals of Statistics 1998. - * P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized - trees", Machine Learning, 63(1), 3-42, 2006. +* P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized + trees", Machine Learning, 63(1), 3-42, 2006. .. _random_forest_feature_importance: @@ -1199,16 +1162,16 @@ In practice those estimates are stored as an attribute named the value, the more important is the contribution of the matching feature to the prediction function. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py` -.. topic:: References +.. rubric:: References - .. [L2014] G. Louppe, :arxiv:`"Understanding Random Forests: From Theory to - Practice" <1407.7502>`, - PhD Thesis, U. of Liege, 2014. +.. [L2014] G. Louppe, :arxiv:`"Understanding Random Forests: From Theory to + Practice" <1407.7502>`, + PhD Thesis, U. of Liege, 2014. .. _random_trees_embedding: @@ -1231,15 +1194,15 @@ As neighboring data points are more likely to lie within the same leaf of a tree, the transformation performs an implicit, non-parametric density estimation. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py` - * :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` compares non-linear - dimensionality reduction techniques on handwritten digits. +* :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` compares non-linear + dimensionality reduction techniques on handwritten digits. - * :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py` compares - supervised and unsupervised tree based feature transformations. +* :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py` compares + supervised and unsupervised tree based feature transformations. .. seealso:: @@ -1335,24 +1298,23 @@ subsets of 50% of the samples and 50% of the features. >>> bagging = BaggingClassifier(KNeighborsClassifier(), ... max_samples=0.5, max_features=0.5) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py` -.. topic:: References +.. rubric:: References - .. [B1999] L. Breiman, "Pasting small votes for classification in large - databases and on-line", Machine Learning, 36(1), 85-103, 1999. +.. [B1999] L. Breiman, "Pasting small votes for classification in large + databases and on-line", Machine Learning, 36(1), 85-103, 1999. - .. [B1996] L. Breiman, "Bagging predictors", Machine Learning, 24(2), - 123-140, 1996. +.. [B1996] L. Breiman, "Bagging predictors", Machine Learning, 24(2), + 123-140, 1996. - .. [H1998] T. Ho, "The random subspace method for constructing decision - forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844, - 1998. +.. [H1998] T. Ho, "The random subspace method for constructing decision + forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998. - .. [LG2012] G. Louppe and P. Geurts, "Ensembles on Random Patches", - Machine Learning and Knowledge Discovery in Databases, 346-361, 2012. +.. [LG2012] G. Louppe and P. Geurts, "Ensembles on Random Patches", + Machine Learning and Knowledge Discovery in Databases, 346-361, 2012. @@ -1507,29 +1469,25 @@ Optionally, weights can be provided for the individual classifiers:: ... voting='soft', weights=[2,5,1] ... ) -|details-start| -**Using the `VotingClassifier` with `GridSearchCV`** -|details-split| - -The :class:`VotingClassifier` can also be used together with -:class:`~sklearn.model_selection.GridSearchCV` in order to tune the -hyperparameters of the individual estimators:: +.. dropdown:: Using the :class:`VotingClassifier` with :class:`~sklearn.model_selection.GridSearchCV` - >>> from sklearn.model_selection import GridSearchCV - >>> clf1 = LogisticRegression(random_state=1) - >>> clf2 = RandomForestClassifier(random_state=1) - >>> clf3 = GaussianNB() - >>> eclf = VotingClassifier( - ... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], - ... voting='soft' - ... ) + The :class:`VotingClassifier` can also be used together with + :class:`~sklearn.model_selection.GridSearchCV` in order to tune the + hyperparameters of the individual estimators:: - >>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]} + >>> from sklearn.model_selection import GridSearchCV + >>> clf1 = LogisticRegression(random_state=1) + >>> clf2 = RandomForestClassifier(random_state=1) + >>> clf3 = GaussianNB() + >>> eclf = VotingClassifier( + ... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], + ... voting='soft' + ... ) - >>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) - >>> grid = grid.fit(iris.data, iris.target) + >>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]} -|details-end| + >>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) + >>> grid = grid.fit(iris.data, iris.target) .. _voting_regressor: @@ -1567,9 +1525,9 @@ The following example shows how to fit the VotingRegressor:: :align: center :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py` +* :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py` .. _stacking: @@ -1688,10 +1646,10 @@ computationally expensive. ... .format(multi_layer_regressor.score(X_test, y_test))) R2 score: 0.53 -.. topic:: References +.. rubric:: References - .. [W1992] Wolpert, David H. "Stacked generalization." Neural networks 5.2 - (1992): 241-259. +.. [W1992] Wolpert, David H. "Stacked generalization." Neural networks 5.2 + (1992): 241-259. @@ -1757,27 +1715,26 @@ The main parameters to tune to obtain good results are ``n_estimators`` and the complexity of the base estimators (e.g., its depth ``max_depth`` or minimum required number of samples to consider a split ``min_samples_split``). -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py` shows the performance - of AdaBoost on a multi-class problem. +* :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py` shows the performance + of AdaBoost on a multi-class problem. - * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py` shows the decision boundary - and decision function values for a non-linearly separable two-class problem - using AdaBoost-SAMME. +* :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py` shows the decision boundary + and decision function values for a non-linearly separable two-class problem + using AdaBoost-SAMME. - * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py` demonstrates regression - with the AdaBoost.R2 algorithm. +* :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py` demonstrates regression + with the AdaBoost.R2 algorithm. -.. topic:: References +.. rubric:: References - .. [FS1995] Y. Freund, and R. Schapire, "A Decision-Theoretic Generalization of - On-Line Learning and an Application to Boosting", 1997. +.. [FS1995] Y. Freund, and R. Schapire, "A Decision-Theoretic Generalization of + On-Line Learning and an Application to Boosting", 1997. - .. [ZZRH2009] J. Zhu, H. Zou, S. Rosset, T. Hastie. "Multi-class AdaBoost", - 2009. +.. [ZZRH2009] J. Zhu, H. Zou, S. Rosset, T. Hastie. "Multi-class AdaBoost", 2009. - .. [D1997] H. Drucker. "Improving Regressors using Boosting Techniques", 1997. +.. [D1997] H. Drucker. "Improving Regressors using Boosting Techniques", 1997. - .. [HTF] T. Hastie, R. Tibshirani and J. Friedman, "Elements of - Statistical Learning Ed. 2", Springer, 2009. +.. [HTF] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning + Ed. 2", Springer, 2009. diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst index 7ac538a89849b..2181014644e15 100644 --- a/doc/modules/feature_extraction.rst +++ b/doc/modules/feature_extraction.rst @@ -206,35 +206,32 @@ Note the use of a generator comprehension, which introduces laziness into the feature extraction: tokens are only processed on demand from the hasher. -|details-start| -**Implementation details** -|details-split| +.. dropdown:: Implementation details -:class:`FeatureHasher` uses the signed 32-bit variant of MurmurHash3. -As a result (and because of limitations in ``scipy.sparse``), -the maximum number of features supported is currently :math:`2^{31} - 1`. + :class:`FeatureHasher` uses the signed 32-bit variant of MurmurHash3. + As a result (and because of limitations in ``scipy.sparse``), + the maximum number of features supported is currently :math:`2^{31} - 1`. -The original formulation of the hashing trick by Weinberger et al. -used two separate hash functions :math:`h` and :math:`\xi` -to determine the column index and sign of a feature, respectively. -The present implementation works under the assumption -that the sign bit of MurmurHash3 is independent of its other bits. + The original formulation of the hashing trick by Weinberger et al. + used two separate hash functions :math:`h` and :math:`\xi` + to determine the column index and sign of a feature, respectively. + The present implementation works under the assumption + that the sign bit of MurmurHash3 is independent of its other bits. -Since a simple modulo is used to transform the hash function to a column index, -it is advisable to use a power of two as the ``n_features`` parameter; -otherwise the features will not be mapped evenly to the columns. + Since a simple modulo is used to transform the hash function to a column index, + it is advisable to use a power of two as the ``n_features`` parameter; + otherwise the features will not be mapped evenly to the columns. -.. topic:: References: + .. rubric:: References * `MurmurHash3 `_. -|details-end| -.. topic:: References: +.. rubric:: References - * Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and - Josh Attenberg (2009). `Feature hashing for large scale multitask learning - `_. Proc. ICML. +* Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and + Josh Attenberg (2009). `Feature hashing for large scale multitask learning + `_. Proc. ICML. .. _text_feature_extraction: @@ -310,7 +307,7 @@ counting in a single class:: This model has many parameters, however the default values are quite reasonable (please see the :ref:`reference documentation -` for the details):: +` for the details):: >>> vectorizer = CountVectorizer() >>> vectorizer @@ -422,12 +419,12 @@ tokenizer, so if *we've* is in ``stop_words``, but *ve* is not, *ve* will be retained from *we've* in transformed text. Our vectorizers will try to identify and warn about some kinds of inconsistencies. -.. topic:: References +.. rubric:: References - .. [NQY18] J. Nothman, H. Qin and R. Yurchak (2018). - `"Stop Word Lists in Free Open-source Software Packages" - `__. - In *Proc. Workshop for NLP Open Source Software*. +.. [NQY18] J. Nothman, H. Qin and R. Yurchak (2018). + `"Stop Word Lists in Free Open-source Software Packages" + `__. + In *Proc. Workshop for NLP Open Source Software*. .. _tfidf: @@ -492,132 +489,126 @@ class:: TfidfTransformer(smooth_idf=False) Again please see the :ref:`reference documentation -` for the details on all the parameters. - -|details-start| -**Numeric example of a tf-idf matrix** -|details-split| - -Let's take an example with the following counts. The first term is present -100% of the time hence not very interesting. The two other features only -in less than 50% of the time hence probably more representative of the -content of the documents:: - - >>> counts = [[3, 0, 1], - ... [2, 0, 0], - ... [3, 0, 0], - ... [4, 0, 0], - ... [3, 2, 0], - ... [3, 0, 2]] - ... - >>> tfidf = transformer.fit_transform(counts) - >>> tfidf - <6x3 sparse matrix of type '<... 'numpy.float64'>' - with 9 stored elements in Compressed Sparse ... format> +` for the details on all the parameters. - >>> tfidf.toarray() - array([[0.81940995, 0. , 0.57320793], - [1. , 0. , 0. ], - [1. , 0. , 0. ], - [1. , 0. , 0. ], - [0.47330339, 0.88089948, 0. ], - [0.58149261, 0. , 0.81355169]]) +.. dropdown:: Numeric example of a tf-idf matrix -Each row is normalized to have unit Euclidean norm: + Let's take an example with the following counts. The first term is present + 100% of the time hence not very interesting. The two other features only + in less than 50% of the time hence probably more representative of the + content of the documents:: -:math:`v_{norm} = \frac{v}{||v||_2} = \frac{v}{\sqrt{v{_1}^2 + -v{_2}^2 + \dots + v{_n}^2}}` + >>> counts = [[3, 0, 1], + ... [2, 0, 0], + ... [3, 0, 0], + ... [4, 0, 0], + ... [3, 2, 0], + ... [3, 0, 2]] + ... + >>> tfidf = transformer.fit_transform(counts) + >>> tfidf + <6x3 sparse matrix of type '<... 'numpy.float64'>' + with 9 stored elements in Compressed Sparse ... format> -For example, we can compute the tf-idf of the first term in the first -document in the `counts` array as follows: + >>> tfidf.toarray() + array([[0.81940995, 0. , 0.57320793], + [1. , 0. , 0. ], + [1. , 0. , 0. ], + [1. , 0. , 0. ], + [0.47330339, 0.88089948, 0. ], + [0.58149261, 0. , 0.81355169]]) -:math:`n = 6` + Each row is normalized to have unit Euclidean norm: -:math:`\text{df}(t)_{\text{term1}} = 6` + :math:`v_{norm} = \frac{v}{||v||_2} = \frac{v}{\sqrt{v{_1}^2 + + v{_2}^2 + \dots + v{_n}^2}}` -:math:`\text{idf}(t)_{\text{term1}} = -\log \frac{n}{\text{df}(t)} + 1 = \log(1)+1 = 1` + For example, we can compute the tf-idf of the first term in the first + document in the `counts` array as follows: -:math:`\text{tf-idf}_{\text{term1}} = \text{tf} \times \text{idf} = 3 \times 1 = 3` + :math:`n = 6` -Now, if we repeat this computation for the remaining 2 terms in the document, -we get + :math:`\text{df}(t)_{\text{term1}} = 6` -:math:`\text{tf-idf}_{\text{term2}} = 0 \times (\log(6/1)+1) = 0` + :math:`\text{idf}(t)_{\text{term1}} = + \log \frac{n}{\text{df}(t)} + 1 = \log(1)+1 = 1` -:math:`\text{tf-idf}_{\text{term3}} = 1 \times (\log(6/2)+1) \approx 2.0986` + :math:`\text{tf-idf}_{\text{term1}} = \text{tf} \times \text{idf} = 3 \times 1 = 3` -and the vector of raw tf-idfs: + Now, if we repeat this computation for the remaining 2 terms in the document, + we get -:math:`\text{tf-idf}_{\text{raw}} = [3, 0, 2.0986].` + :math:`\text{tf-idf}_{\text{term2}} = 0 \times (\log(6/1)+1) = 0` + :math:`\text{tf-idf}_{\text{term3}} = 1 \times (\log(6/2)+1) \approx 2.0986` -Then, applying the Euclidean (L2) norm, we obtain the following tf-idfs -for document 1: + and the vector of raw tf-idfs: -:math:`\frac{[3, 0, 2.0986]}{\sqrt{\big(3^2 + 0^2 + 2.0986^2\big)}} -= [ 0.819, 0, 0.573].` + :math:`\text{tf-idf}_{\text{raw}} = [3, 0, 2.0986].` -Furthermore, the default parameter ``smooth_idf=True`` adds "1" to the numerator -and denominator as if an extra document was seen containing every term in the -collection exactly once, which prevents zero divisions: -:math:`\text{idf}(t) = \log{\frac{1 + n}{1+\text{df}(t)}} + 1` + Then, applying the Euclidean (L2) norm, we obtain the following tf-idfs + for document 1: -Using this modification, the tf-idf of the third term in document 1 changes to -1.8473: + :math:`\frac{[3, 0, 2.0986]}{\sqrt{\big(3^2 + 0^2 + 2.0986^2\big)}} + = [ 0.819, 0, 0.573].` -:math:`\text{tf-idf}_{\text{term3}} = 1 \times \log(7/3)+1 \approx 1.8473` + Furthermore, the default parameter ``smooth_idf=True`` adds "1" to the numerator + and denominator as if an extra document was seen containing every term in the + collection exactly once, which prevents zero divisions: -And the L2-normalized tf-idf changes to + :math:`\text{idf}(t) = \log{\frac{1 + n}{1+\text{df}(t)}} + 1` -:math:`\frac{[3, 0, 1.8473]}{\sqrt{\big(3^2 + 0^2 + 1.8473^2\big)}} -= [0.8515, 0, 0.5243]`:: + Using this modification, the tf-idf of the third term in document 1 changes to + 1.8473: - >>> transformer = TfidfTransformer() - >>> transformer.fit_transform(counts).toarray() - array([[0.85151335, 0. , 0.52433293], - [1. , 0. , 0. ], - [1. , 0. , 0. ], - [1. , 0. , 0. ], - [0.55422893, 0.83236428, 0. ], - [0.63035731, 0. , 0.77630514]]) + :math:`\text{tf-idf}_{\text{term3}} = 1 \times \log(7/3)+1 \approx 1.8473` -The weights of each -feature computed by the ``fit`` method call are stored in a model -attribute:: + And the L2-normalized tf-idf changes to - >>> transformer.idf_ - array([1. ..., 2.25..., 1.84...]) + :math:`\frac{[3, 0, 1.8473]}{\sqrt{\big(3^2 + 0^2 + 1.8473^2\big)}} + = [0.8515, 0, 0.5243]`:: + >>> transformer = TfidfTransformer() + >>> transformer.fit_transform(counts).toarray() + array([[0.85151335, 0. , 0.52433293], + [1. , 0. , 0. ], + [1. , 0. , 0. ], + [1. , 0. , 0. ], + [0.55422893, 0.83236428, 0. ], + [0.63035731, 0. , 0.77630514]]) + The weights of each + feature computed by the ``fit`` method call are stored in a model + attribute:: + >>> transformer.idf_ + array([1. ..., 2.25..., 1.84...]) -As tf–idf is very often used for text features, there is also another -class called :class:`TfidfVectorizer` that combines all the options of -:class:`CountVectorizer` and :class:`TfidfTransformer` in a single model:: + As tf-idf is very often used for text features, there is also another + class called :class:`TfidfVectorizer` that combines all the options of + :class:`CountVectorizer` and :class:`TfidfTransformer` in a single model:: - >>> from sklearn.feature_extraction.text import TfidfVectorizer - >>> vectorizer = TfidfVectorizer() - >>> vectorizer.fit_transform(corpus) - <4x9 sparse matrix of type '<... 'numpy.float64'>' - with 19 stored elements in Compressed Sparse ... format> + >>> from sklearn.feature_extraction.text import TfidfVectorizer + >>> vectorizer = TfidfVectorizer() + >>> vectorizer.fit_transform(corpus) + <4x9 sparse matrix of type '<... 'numpy.float64'>' + with 19 stored elements in Compressed Sparse ... format> -While the tf–idf normalization is often very useful, there might -be cases where the binary occurrence markers might offer better -features. This can be achieved by using the ``binary`` parameter -of :class:`CountVectorizer`. In particular, some estimators such as -:ref:`bernoulli_naive_bayes` explicitly model discrete boolean random -variables. Also, very short texts are likely to have noisy tf–idf values -while the binary occurrence info is more stable. + While the tf-idf normalization is often very useful, there might + be cases where the binary occurrence markers might offer better + features. This can be achieved by using the ``binary`` parameter + of :class:`CountVectorizer`. In particular, some estimators such as + :ref:`bernoulli_naive_bayes` explicitly model discrete boolean random + variables. Also, very short texts are likely to have noisy tf-idf values + while the binary occurrence info is more stable. -As usual the best way to adjust the feature extraction parameters -is to use a cross-validated grid search, for instance by pipelining the -feature extractor with a classifier: + As usual the best way to adjust the feature extraction parameters + is to use a cross-validated grid search, for instance by pipelining the + feature extractor with a classifier: -* :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` + * :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` -|details-end| Decoding text files ------------------- @@ -646,64 +637,60 @@ or ``"replace"``. See the documentation for the Python function ``bytes.decode`` for more details (type ``help(bytes.decode)`` at the Python prompt). -|details-start| -**Troubleshooting decoding text** -|details-split| - -If you are having trouble decoding text, here are some things to try: - -- Find out what the actual encoding of the text is. The file might come - with a header or README that tells you the encoding, or there might be some - standard encoding you can assume based on where the text comes from. - -- You may be able to find out what kind of encoding it is in general - using the UNIX command ``file``. The Python ``chardet`` module comes with - a script called ``chardetect.py`` that will guess the specific encoding, - though you cannot rely on its guess being correct. - -- You could try UTF-8 and disregard the errors. You can decode byte - strings with ``bytes.decode(errors='replace')`` to replace all - decoding errors with a meaningless character, or set - ``decode_error='replace'`` in the vectorizer. This may damage the - usefulness of your features. - -- Real text may come from a variety of sources that may have used different - encodings, or even be sloppily decoded in a different encoding than the - one it was encoded with. This is common in text retrieved from the Web. - The Python package `ftfy`_ can automatically sort out some classes of - decoding errors, so you could try decoding the unknown text as ``latin-1`` - and then using ``ftfy`` to fix errors. - -- If the text is in a mish-mash of encodings that is simply too hard to sort - out (which is the case for the 20 Newsgroups dataset), you can fall back on - a simple single-byte encoding such as ``latin-1``. Some text may display - incorrectly, but at least the same sequence of bytes will always represent - the same feature. - -For example, the following snippet uses ``chardet`` -(not shipped with scikit-learn, must be installed separately) -to figure out the encoding of three texts. -It then vectorizes the texts and prints the learned vocabulary. -The output is not shown here. - - >>> import chardet # doctest: +SKIP - >>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut" - >>> text2 = b"holdselig sind deine Ger\xfcche" - >>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00 \x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00 \x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00 \x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00 \x00f\x00o\x00r\x00t\x00" - >>> decoded = [x.decode(chardet.detect(x)['encoding']) - ... for x in (text1, text2, text3)] # doctest: +SKIP - >>> v = CountVectorizer().fit(decoded).vocabulary_ # doctest: +SKIP - >>> for term in v: print(v) # doctest: +SKIP - -(Depending on the version of ``chardet``, it might get the first one wrong.) - -For an introduction to Unicode and character encodings in general, -see Joel Spolsky's `Absolute Minimum Every Software Developer Must Know -About Unicode `_. - -.. _`ftfy`: https://github.com/LuminosoInsight/python-ftfy - -|details-end| +.. dropdown:: Troubleshooting decoding text + + If you are having trouble decoding text, here are some things to try: + + - Find out what the actual encoding of the text is. The file might come + with a header or README that tells you the encoding, or there might be some + standard encoding you can assume based on where the text comes from. + + - You may be able to find out what kind of encoding it is in general + using the UNIX command ``file``. The Python ``chardet`` module comes with + a script called ``chardetect.py`` that will guess the specific encoding, + though you cannot rely on its guess being correct. + + - You could try UTF-8 and disregard the errors. You can decode byte + strings with ``bytes.decode(errors='replace')`` to replace all + decoding errors with a meaningless character, or set + ``decode_error='replace'`` in the vectorizer. This may damage the + usefulness of your features. + + - Real text may come from a variety of sources that may have used different + encodings, or even be sloppily decoded in a different encoding than the + one it was encoded with. This is common in text retrieved from the Web. + The Python package `ftfy `__ + can automatically sort out some classes of + decoding errors, so you could try decoding the unknown text as ``latin-1`` + and then using ``ftfy`` to fix errors. + + - If the text is in a mish-mash of encodings that is simply too hard to sort + out (which is the case for the 20 Newsgroups dataset), you can fall back on + a simple single-byte encoding such as ``latin-1``. Some text may display + incorrectly, but at least the same sequence of bytes will always represent + the same feature. + + For example, the following snippet uses ``chardet`` + (not shipped with scikit-learn, must be installed separately) + to figure out the encoding of three texts. + It then vectorizes the texts and prints the learned vocabulary. + The output is not shown here. + + >>> import chardet # doctest: +SKIP + >>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut" + >>> text2 = b"holdselig sind deine Ger\xfcche" + >>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00 \x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00 \x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00 \x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00 \x00f\x00o\x00r\x00t\x00" + >>> decoded = [x.decode(chardet.detect(x)['encoding']) + ... for x in (text1, text2, text3)] # doctest: +SKIP + >>> v = CountVectorizer().fit(decoded).vocabulary_ # doctest: +SKIP + >>> for term in v: print(v) # doctest: +SKIP + + (Depending on the version of ``chardet``, it might get the first one wrong.) + + For an introduction to Unicode and character encodings in general, + see Joel Spolsky's `Absolute Minimum Every Software Developer Must Know + About Unicode `_. + Applications and examples ------------------------- @@ -884,28 +871,25 @@ The :class:`HashingVectorizer` also comes with the following limitations: model. A :class:`TfidfTransformer` can be appended to it in a pipeline if required. -|details-start| -**Performing out-of-core scaling with HashingVectorizer** -|details-split| +.. dropdown:: Performing out-of-core scaling with HashingVectorizer -An interesting development of using a :class:`HashingVectorizer` is the ability -to perform `out-of-core`_ scaling. This means that we can learn from data that -does not fit into the computer's main memory. + An interesting development of using a :class:`HashingVectorizer` is the ability + to perform `out-of-core`_ scaling. This means that we can learn from data that + does not fit into the computer's main memory. -.. _out-of-core: https://en.wikipedia.org/wiki/Out-of-core_algorithm + .. _out-of-core: https://en.wikipedia.org/wiki/Out-of-core_algorithm -A strategy to implement out-of-core scaling is to stream data to the estimator -in mini-batches. Each mini-batch is vectorized using :class:`HashingVectorizer` -so as to guarantee that the input space of the estimator has always the same -dimensionality. The amount of memory used at any time is thus bounded by the -size of a mini-batch. Although there is no limit to the amount of data that can -be ingested using such an approach, from a practical point of view the learning -time is often limited by the CPU time one wants to spend on the task. + A strategy to implement out-of-core scaling is to stream data to the estimator + in mini-batches. Each mini-batch is vectorized using :class:`HashingVectorizer` + so as to guarantee that the input space of the estimator has always the same + dimensionality. The amount of memory used at any time is thus bounded by the + size of a mini-batch. Although there is no limit to the amount of data that can + be ingested using such an approach, from a practical point of view the learning + time is often limited by the CPU time one wants to spend on the task. -For a full-fledged example of out-of-core scaling in a text classification -task see :ref:`sphx_glr_auto_examples_applications_plot_out_of_core_classification.py`. + For a full-fledged example of out-of-core scaling in a text classification + task see :ref:`sphx_glr_auto_examples_applications_plot_out_of_core_classification.py`. -|details-end| Customizing the vectorizer classes ---------------------------------- @@ -945,65 +929,58 @@ parameters it is possible to derive from the class and override the ``build_preprocessor``, ``build_tokenizer`` and ``build_analyzer`` factory methods instead of passing custom functions. -|details-start| -**Tips and tricks** -|details-split| - -Some tips and tricks: - -* If documents are pre-tokenized by an external package, then store them in - files (or strings) with the tokens separated by whitespace and pass - ``analyzer=str.split`` -* Fancy token-level analysis such as stemming, lemmatizing, compound - splitting, filtering based on part-of-speech, etc. are not included in the - scikit-learn codebase, but can be added by customizing either the - tokenizer or the analyzer. - Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using - `NLTK `_:: - - >>> from nltk import word_tokenize # doctest: +SKIP - >>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP - >>> class LemmaTokenizer: - ... def __init__(self): - ... self.wnl = WordNetLemmatizer() - ... def __call__(self, doc): - ... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)] - ... - >>> vect = CountVectorizer(tokenizer=LemmaTokenizer()) # doctest: +SKIP - - (Note that this will not filter out punctuation.) - - - The following example will, for instance, transform some British spelling - to American spelling:: - - >>> import re - >>> def to_british(tokens): - ... for t in tokens: - ... t = re.sub(r"(...)our$", r"\1or", t) - ... t = re.sub(r"([bt])re$", r"\1er", t) - ... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t) - ... t = re.sub(r"ogue$", "og", t) - ... yield t - ... - >>> class CustomVectorizer(CountVectorizer): - ... def build_tokenizer(self): - ... tokenize = super().build_tokenizer() - ... return lambda doc: list(to_british(tokenize(doc))) - ... - >>> print(CustomVectorizer().build_analyzer()(u"color colour")) - [...'color', ...'color'] - - for other styles of preprocessing; examples include stemming, lemmatization, - or normalizing numerical tokens, with the latter illustrated in: - - * :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py` - - -Customizing the vectorizer can also be useful when handling Asian languages -that do not use an explicit word separator such as whitespace. - -|details-end| +.. dropdown:: Tips and tricks + :color: success + + * If documents are pre-tokenized by an external package, then store them in + files (or strings) with the tokens separated by whitespace and pass + ``analyzer=str.split`` + * Fancy token-level analysis such as stemming, lemmatizing, compound + splitting, filtering based on part-of-speech, etc. are not included in the + scikit-learn codebase, but can be added by customizing either the + tokenizer or the analyzer. + Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using + `NLTK `_:: + + >>> from nltk import word_tokenize # doctest: +SKIP + >>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP + >>> class LemmaTokenizer: + ... def __init__(self): + ... self.wnl = WordNetLemmatizer() + ... def __call__(self, doc): + ... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)] + ... + >>> vect = CountVectorizer(tokenizer=LemmaTokenizer()) # doctest: +SKIP + + (Note that this will not filter out punctuation.) + + The following example will, for instance, transform some British spelling + to American spelling:: + + >>> import re + >>> def to_british(tokens): + ... for t in tokens: + ... t = re.sub(r"(...)our$", r"\1or", t) + ... t = re.sub(r"([bt])re$", r"\1er", t) + ... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t) + ... t = re.sub(r"ogue$", "og", t) + ... yield t + ... + >>> class CustomVectorizer(CountVectorizer): + ... def build_tokenizer(self): + ... tokenize = super().build_tokenizer() + ... return lambda doc: list(to_british(tokenize(doc))) + ... + >>> print(CustomVectorizer().build_analyzer()(u"color colour")) + [...'color', ...'color'] + + for other styles of preprocessing; examples include stemming, lemmatization, + or normalizing numerical tokens, with the latter illustrated in: + + * :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py` + + Customizing the vectorizer can also be useful when handling Asian languages + that do not use an explicit word separator such as whitespace. .. _image_feature_extraction: diff --git a/doc/modules/feature_selection.rst b/doc/modules/feature_selection.rst index 1b5ce57b0074f..6746f2f65da00 100644 --- a/doc/modules/feature_selection.rst +++ b/doc/modules/feature_selection.rst @@ -114,11 +114,11 @@ applied to non-negative features, such as frequencies. feature selection as well. One needs to provide a `score_func` where `y=None`. The `score_func` should use internally `X` to compute the scores. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection.py` +* :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection.py` - * :ref:`sphx_glr_auto_examples_feature_selection_plot_f_test_vs_mi.py` +* :ref:`sphx_glr_auto_examples_feature_selection_plot_f_test_vs_mi.py` .. _rfe: @@ -144,14 +144,14 @@ of selected features and aggregated together. Finally, the scores are averaged across folds and the number of features selected is set to the number of features that maximize the cross-validation score. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_digits.py`: A recursive feature elimination example - showing the relevance of pixels in a digit classification task. +* :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_digits.py`: A recursive feature elimination example + showing the relevance of pixels in a digit classification task. - * :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`: A recursive feature - elimination example with automatic tuning of the number of features - selected with cross-validation. +* :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`: A recursive feature + elimination example with automatic tuning of the number of features + selected with cross-validation. .. _select_from_model: @@ -171,9 +171,9 @@ Available heuristics are "mean", "median" and float multiples of these like For examples on how it is to be used refer to the sections below. -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py` +* :ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py` .. _l1_feature_selection: @@ -207,42 +207,39 @@ With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected. With Lasso, the higher the alpha parameter, the fewer features selected. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py`. +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py`. .. _compressive_sensing: -|details-start| -**L1-recovery and compressive sensing** -|details-split| - -For a good choice of alpha, the :ref:`lasso` can fully recover the -exact set of non-zero variables using only few observations, provided -certain specific conditions are met. In particular, the number of -samples should be "sufficiently large", or L1 models will perform at -random, where "sufficiently large" depends on the number of non-zero -coefficients, the logarithm of the number of features, the amount of -noise, the smallest absolute value of non-zero coefficients, and the -structure of the design matrix X. In addition, the design matrix must -display certain specific properties, such as not being too correlated. - -There is no general rule to select an alpha parameter for recovery of -non-zero coefficients. It can by set by cross-validation -(:class:`~sklearn.linear_model.LassoCV` or -:class:`~sklearn.linear_model.LassoLarsCV`), though this may lead to -under-penalized models: including a small number of non-relevant variables -is not detrimental to prediction score. BIC -(:class:`~sklearn.linear_model.LassoLarsIC`) tends, on the opposite, to set -high values of alpha. - -.. topic:: Reference - - Richard G. Baraniuk "Compressive Sensing", IEEE Signal - Processing Magazine [120] July 2007 - http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf - -|details-end| +.. dropdown:: L1-recovery and compressive sensing + + For a good choice of alpha, the :ref:`lasso` can fully recover the + exact set of non-zero variables using only few observations, provided + certain specific conditions are met. In particular, the number of + samples should be "sufficiently large", or L1 models will perform at + random, where "sufficiently large" depends on the number of non-zero + coefficients, the logarithm of the number of features, the amount of + noise, the smallest absolute value of non-zero coefficients, and the + structure of the design matrix X. In addition, the design matrix must + display certain specific properties, such as not being too correlated. + + There is no general rule to select an alpha parameter for recovery of + non-zero coefficients. It can by set by cross-validation + (:class:`~sklearn.linear_model.LassoCV` or + :class:`~sklearn.linear_model.LassoLarsCV`), though this may lead to + under-penalized models: including a small number of non-relevant variables + is not detrimental to prediction score. BIC + (:class:`~sklearn.linear_model.LassoLarsIC`) tends, on the opposite, to set + high values of alpha. + + .. rubric:: References + + Richard G. Baraniuk "Compressive Sensing", IEEE Signal + Processing Magazine [120] July 2007 + http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf + Tree-based feature selection ---------------------------- @@ -268,14 +265,13 @@ meta-transformer):: >>> X_new.shape # doctest: +SKIP (150, 2) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py`: example on - synthetic data showing the recovery of the actually meaningful - features. +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py`: example on + synthetic data showing the recovery of the actually meaningful features. - * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`: example - on face recognition data. +* :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`: example + on face recognition data. .. _sequential_feature_selection: @@ -299,38 +295,35 @@ instead of starting with no features and greedily adding features, we start with *all* the features and greedily *remove* features from the set. The `direction` parameter controls whether forward or backward SFS is used. -|details-start| -**Detail on Sequential Feature Selection** -|details-split| - -In general, forward and backward selection do not yield equivalent results. -Also, one may be much faster than the other depending on the requested number -of selected features: if we have 10 features and ask for 7 selected features, -forward selection would need to perform 7 iterations while backward selection -would only need to perform 3. - -SFS differs from :class:`~sklearn.feature_selection.RFE` and -:class:`~sklearn.feature_selection.SelectFromModel` in that it does not -require the underlying model to expose a `coef_` or `feature_importances_` -attribute. It may however be slower considering that more models need to be -evaluated, compared to the other approaches. For example in backward -selection, the iteration going from `m` features to `m - 1` features using k-fold -cross-validation requires fitting `m * k` models, while -:class:`~sklearn.feature_selection.RFE` would require only a single fit, and -:class:`~sklearn.feature_selection.SelectFromModel` always just does a single -fit and requires no iterations. - -.. topic:: Reference - - .. [sfs] Ferri et al, `Comparative study of techniques for +.. dropdown:: Details on Sequential Feature Selection + + In general, forward and backward selection do not yield equivalent results. + Also, one may be much faster than the other depending on the requested number + of selected features: if we have 10 features and ask for 7 selected features, + forward selection would need to perform 7 iterations while backward selection + would only need to perform 3. + + SFS differs from :class:`~sklearn.feature_selection.RFE` and + :class:`~sklearn.feature_selection.SelectFromModel` in that it does not + require the underlying model to expose a `coef_` or `feature_importances_` + attribute. It may however be slower considering that more models need to be + evaluated, compared to the other approaches. For example in backward + selection, the iteration going from `m` features to `m - 1` features using k-fold + cross-validation requires fitting `m * k` models, while + :class:`~sklearn.feature_selection.RFE` would require only a single fit, and + :class:`~sklearn.feature_selection.SelectFromModel` always just does a single + fit and requires no iterations. + + .. rubric:: References + + .. [sfs] Ferri et al, `Comparative study of techniques for large-scale feature selection `_. -|details-end| -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py` +* :ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py` Feature selection as part of a pipeline ======================================= diff --git a/doc/modules/gaussian_process.rst b/doc/modules/gaussian_process.rst index 58e56a557ed73..fb87120205f96 100644 --- a/doc/modules/gaussian_process.rst +++ b/doc/modules/gaussian_process.rst @@ -88,12 +88,12 @@ the API of standard scikit-learn estimators, :class:`GaussianProcessRegressor`: externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo. -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_targets.py` - * :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy.py` - * :ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py` - * :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_co2.py` +* :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_targets.py` +* :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy.py` +* :ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py` +* :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_co2.py` .. _gpc: @@ -239,93 +239,88 @@ also invariant to rotations in the input space. For more details, we refer to Chapter 4 of [RW2006]_. For guidance on how to best combine different kernels, we refer to [Duv2014]_. -|details-start| -**Gaussian Process Kernel API** -|details-split| - -The main usage of a :class:`Kernel` is to compute the GP's covariance between -datapoints. For this, the method ``__call__`` of the kernel can be called. This -method can either be used to compute the "auto-covariance" of all pairs of -datapoints in a 2d array X, or the "cross-covariance" of all combinations -of datapoints of a 2d array X with datapoints in a 2d array Y. The following -identity holds true for all kernels k (except for the :class:`WhiteKernel`): -``k(X) == K(X, Y=X)`` - -If only the diagonal of the auto-covariance is being used, the method ``diag()`` -of a kernel can be called, which is more computationally efficient than the -equivalent call to ``__call__``: ``np.diag(k(X, X)) == k.diag(X)`` - -Kernels are parameterized by a vector :math:`\theta` of hyperparameters. These -hyperparameters can for instance control length-scales or periodicity of a -kernel (see below). All kernels support computing analytic gradients -of the kernel's auto-covariance with respect to :math:`log(\theta)` via setting -``eval_gradient=True`` in the ``__call__`` method. -That is, a ``(len(X), len(X), len(theta))`` array is returned where the entry -``[i, j, l]`` contains :math:`\frac{\partial k_\theta(x_i, x_j)}{\partial log(\theta_l)}`. -This gradient is used by the Gaussian process (both regressor and classifier) -in computing the gradient of the log-marginal-likelihood, which in turn is used -to determine the value of :math:`\theta`, which maximizes the log-marginal-likelihood, -via gradient ascent. For each hyperparameter, the initial value and the -bounds need to be specified when creating an instance of the kernel. The -current value of :math:`\theta` can be get and set via the property -``theta`` of the kernel object. Moreover, the bounds of the hyperparameters can be -accessed by the property ``bounds`` of the kernel. Note that both properties -(theta and bounds) return log-transformed values of the internally used values -since those are typically more amenable to gradient-based optimization. -The specification of each hyperparameter is stored in the form of an instance of -:class:`Hyperparameter` in the respective kernel. Note that a kernel using a -hyperparameter with name "x" must have the attributes self.x and self.x_bounds. - -The abstract base class for all kernels is :class:`Kernel`. Kernel implements a -similar interface as :class:`~sklearn.base.BaseEstimator`, providing the -methods ``get_params()``, ``set_params()``, and ``clone()``. This allows -setting kernel values also via meta-estimators such as -:class:`~sklearn.pipeline.Pipeline` or -:class:`~sklearn.model_selection.GridSearchCV`. Note that due to the nested -structure of kernels (by applying kernel operators, see below), the names of -kernel parameters might become relatively complicated. In general, for a binary -kernel operator, parameters of the left operand are prefixed with ``k1__`` and -parameters of the right operand with ``k2__``. An additional convenience method -is ``clone_with_theta(theta)``, which returns a cloned version of the kernel -but with the hyperparameters set to ``theta``. An illustrative example: - - >>> from sklearn.gaussian_process.kernels import ConstantKernel, RBF - >>> kernel = ConstantKernel(constant_value=1.0, constant_value_bounds=(0.0, 10.0)) * RBF(length_scale=0.5, length_scale_bounds=(0.0, 10.0)) + RBF(length_scale=2.0, length_scale_bounds=(0.0, 10.0)) - >>> for hyperparameter in kernel.hyperparameters: print(hyperparameter) - Hyperparameter(name='k1__k1__constant_value', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) - Hyperparameter(name='k1__k2__length_scale', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) - Hyperparameter(name='k2__length_scale', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) - >>> params = kernel.get_params() - >>> for key in sorted(params): print("%s : %s" % (key, params[key])) - k1 : 1**2 * RBF(length_scale=0.5) - k1__k1 : 1**2 - k1__k1__constant_value : 1.0 - k1__k1__constant_value_bounds : (0.0, 10.0) - k1__k2 : RBF(length_scale=0.5) - k1__k2__length_scale : 0.5 - k1__k2__length_scale_bounds : (0.0, 10.0) - k2 : RBF(length_scale=2) - k2__length_scale : 2.0 - k2__length_scale_bounds : (0.0, 10.0) - >>> print(kernel.theta) # Note: log-transformed - [ 0. -0.69314718 0.69314718] - >>> print(kernel.bounds) # Note: log-transformed - [[ -inf 2.30258509] - [ -inf 2.30258509] - [ -inf 2.30258509]] - - -All Gaussian process kernels are interoperable with :mod:`sklearn.metrics.pairwise` -and vice versa: instances of subclasses of :class:`Kernel` can be passed as -``metric`` to ``pairwise_kernels`` from :mod:`sklearn.metrics.pairwise`. Moreover, -kernel functions from pairwise can be used as GP kernels by using the wrapper -class :class:`PairwiseKernel`. The only caveat is that the gradient of -the hyperparameters is not analytic but numeric and all those kernels support -only isotropic distances. The parameter ``gamma`` is considered to be a -hyperparameter and may be optimized. The other kernel parameters are set -directly at initialization and are kept fixed. - -|details-end| +.. dropdown:: Gaussian Process Kernel API + + The main usage of a :class:`Kernel` is to compute the GP's covariance between + datapoints. For this, the method ``__call__`` of the kernel can be called. This + method can either be used to compute the "auto-covariance" of all pairs of + datapoints in a 2d array X, or the "cross-covariance" of all combinations + of datapoints of a 2d array X with datapoints in a 2d array Y. The following + identity holds true for all kernels k (except for the :class:`WhiteKernel`): + ``k(X) == K(X, Y=X)`` + + If only the diagonal of the auto-covariance is being used, the method ``diag()`` + of a kernel can be called, which is more computationally efficient than the + equivalent call to ``__call__``: ``np.diag(k(X, X)) == k.diag(X)`` + + Kernels are parameterized by a vector :math:`\theta` of hyperparameters. These + hyperparameters can for instance control length-scales or periodicity of a + kernel (see below). All kernels support computing analytic gradients + of the kernel's auto-covariance with respect to :math:`log(\theta)` via setting + ``eval_gradient=True`` in the ``__call__`` method. + That is, a ``(len(X), len(X), len(theta))`` array is returned where the entry + ``[i, j, l]`` contains :math:`\frac{\partial k_\theta(x_i, x_j)}{\partial log(\theta_l)}`. + This gradient is used by the Gaussian process (both regressor and classifier) + in computing the gradient of the log-marginal-likelihood, which in turn is used + to determine the value of :math:`\theta`, which maximizes the log-marginal-likelihood, + via gradient ascent. For each hyperparameter, the initial value and the + bounds need to be specified when creating an instance of the kernel. The + current value of :math:`\theta` can be get and set via the property + ``theta`` of the kernel object. Moreover, the bounds of the hyperparameters can be + accessed by the property ``bounds`` of the kernel. Note that both properties + (theta and bounds) return log-transformed values of the internally used values + since those are typically more amenable to gradient-based optimization. + The specification of each hyperparameter is stored in the form of an instance of + :class:`Hyperparameter` in the respective kernel. Note that a kernel using a + hyperparameter with name "x" must have the attributes self.x and self.x_bounds. + + The abstract base class for all kernels is :class:`Kernel`. Kernel implements a + similar interface as :class:`~sklearn.base.BaseEstimator`, providing the + methods ``get_params()``, ``set_params()``, and ``clone()``. This allows + setting kernel values also via meta-estimators such as + :class:`~sklearn.pipeline.Pipeline` or + :class:`~sklearn.model_selection.GridSearchCV`. Note that due to the nested + structure of kernels (by applying kernel operators, see below), the names of + kernel parameters might become relatively complicated. In general, for a binary + kernel operator, parameters of the left operand are prefixed with ``k1__`` and + parameters of the right operand with ``k2__``. An additional convenience method + is ``clone_with_theta(theta)``, which returns a cloned version of the kernel + but with the hyperparameters set to ``theta``. An illustrative example: + + >>> from sklearn.gaussian_process.kernels import ConstantKernel, RBF + >>> kernel = ConstantKernel(constant_value=1.0, constant_value_bounds=(0.0, 10.0)) * RBF(length_scale=0.5, length_scale_bounds=(0.0, 10.0)) + RBF(length_scale=2.0, length_scale_bounds=(0.0, 10.0)) + >>> for hyperparameter in kernel.hyperparameters: print(hyperparameter) + Hyperparameter(name='k1__k1__constant_value', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) + Hyperparameter(name='k1__k2__length_scale', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) + Hyperparameter(name='k2__length_scale', value_type='numeric', bounds=array([[ 0., 10.]]), n_elements=1, fixed=False) + >>> params = kernel.get_params() + >>> for key in sorted(params): print("%s : %s" % (key, params[key])) + k1 : 1**2 * RBF(length_scale=0.5) + k1__k1 : 1**2 + k1__k1__constant_value : 1.0 + k1__k1__constant_value_bounds : (0.0, 10.0) + k1__k2 : RBF(length_scale=0.5) + k1__k2__length_scale : 0.5 + k1__k2__length_scale_bounds : (0.0, 10.0) + k2 : RBF(length_scale=2) + k2__length_scale : 2.0 + k2__length_scale_bounds : (0.0, 10.0) + >>> print(kernel.theta) # Note: log-transformed + [ 0. -0.69314718 0.69314718] + >>> print(kernel.bounds) # Note: log-transformed + [[ -inf 2.30258509] + [ -inf 2.30258509] + [ -inf 2.30258509]] + + All Gaussian process kernels are interoperable with :mod:`sklearn.metrics.pairwise` + and vice versa: instances of subclasses of :class:`Kernel` can be passed as + ``metric`` to ``pairwise_kernels`` from :mod:`sklearn.metrics.pairwise`. Moreover, + kernel functions from pairwise can be used as GP kernels by using the wrapper + class :class:`PairwiseKernel`. The only caveat is that the gradient of + the hyperparameters is not analytic but numeric and all those kernels support + only isotropic distances. The parameter ``gamma`` is considered to be a + hyperparameter and may be optimized. The other kernel parameters are set + directly at initialization and are kept fixed. Basic kernels ------------- @@ -388,42 +383,38 @@ The :class:`Matern` kernel is a stationary kernel and a generalization of the :class:`RBF` kernel. It has an additional parameter :math:`\nu` which controls the smoothness of the resulting function. It is parameterized by a length-scale parameter :math:`l>0`, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs :math:`x` (anisotropic variant of the kernel). -|details-start| -**Mathematical implementation of Matérn kernel** -|details-split| +.. dropdown:: Mathematical implementation of Matérn kernel -The kernel is given by: - -.. math:: + The kernel is given by: - k(x_i, x_j) = \frac{1}{\Gamma(\nu)2^{\nu-1}}\Bigg(\frac{\sqrt{2\nu}}{l} d(x_i , x_j )\Bigg)^\nu K_\nu\Bigg(\frac{\sqrt{2\nu}}{l} d(x_i , x_j )\Bigg), + .. math:: -where :math:`d(\cdot,\cdot)` is the Euclidean distance, :math:`K_\nu(\cdot)` is a modified Bessel function and :math:`\Gamma(\cdot)` is the gamma function. -As :math:`\nu\rightarrow\infty`, the Matérn kernel converges to the RBF kernel. -When :math:`\nu = 1/2`, the Matérn kernel becomes identical to the absolute -exponential kernel, i.e., + k(x_i, x_j) = \frac{1}{\Gamma(\nu)2^{\nu-1}}\Bigg(\frac{\sqrt{2\nu}}{l} d(x_i , x_j )\Bigg)^\nu K_\nu\Bigg(\frac{\sqrt{2\nu}}{l} d(x_i , x_j )\Bigg), -.. math:: - k(x_i, x_j) = \exp \Bigg(- \frac{1}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{1}{2} + where :math:`d(\cdot,\cdot)` is the Euclidean distance, :math:`K_\nu(\cdot)` is a modified Bessel function and :math:`\Gamma(\cdot)` is the gamma function. + As :math:`\nu\rightarrow\infty`, the Matérn kernel converges to the RBF kernel. + When :math:`\nu = 1/2`, the Matérn kernel becomes identical to the absolute + exponential kernel, i.e., -In particular, :math:`\nu = 3/2`: + .. math:: + k(x_i, x_j) = \exp \Bigg(- \frac{1}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{1}{2} -.. math:: - k(x_i, x_j) = \Bigg(1 + \frac{\sqrt{3}}{l} d(x_i , x_j )\Bigg) \exp \Bigg(-\frac{\sqrt{3}}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{3}{2} + In particular, :math:`\nu = 3/2`: -and :math:`\nu = 5/2`: + .. math:: + k(x_i, x_j) = \Bigg(1 + \frac{\sqrt{3}}{l} d(x_i , x_j )\Bigg) \exp \Bigg(-\frac{\sqrt{3}}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{3}{2} -.. math:: - k(x_i, x_j) = \Bigg(1 + \frac{\sqrt{5}}{l} d(x_i , x_j ) +\frac{5}{3l} d(x_i , x_j )^2 \Bigg) \exp \Bigg(-\frac{\sqrt{5}}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{5}{2} + and :math:`\nu = 5/2`: -are popular choices for learning functions that are not infinitely -differentiable (as assumed by the RBF kernel) but at least once (:math:`\nu = -3/2`) or twice differentiable (:math:`\nu = 5/2`). + .. math:: + k(x_i, x_j) = \Bigg(1 + \frac{\sqrt{5}}{l} d(x_i , x_j ) +\frac{5}{3l} d(x_i , x_j )^2 \Bigg) \exp \Bigg(-\frac{\sqrt{5}}{l} d(x_i , x_j ) \Bigg) \quad \quad \nu= \tfrac{5}{2} -The flexibility of controlling the smoothness of the learned function via :math:`\nu` -allows adapting to the properties of the true underlying functional relation. + are popular choices for learning functions that are not infinitely + differentiable (as assumed by the RBF kernel) but at least once (:math:`\nu = + 3/2`) or twice differentiable (:math:`\nu = 5/2`). -|details-end| + The flexibility of controlling the smoothness of the learned function via :math:`\nu` + allows adapting to the properties of the true underlying functional relation. The prior and posterior of a GP resulting from a Matérn kernel are shown in the following figure: diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst index 01c5a5c72ee52..12ee76d8e4d39 100644 --- a/doc/modules/grid_search.rst +++ b/doc/modules/grid_search.rst @@ -72,35 +72,35 @@ evaluated and the best combination is retained. .. currentmodule:: sklearn.model_selection -.. topic:: Examples: +.. rubric:: Examples - - See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` for an example of - Grid Search computation on the digits dataset. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` for an example of + Grid Search computation on the digits dataset. - - See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` for an example - of Grid Search coupling parameters from a text documents feature - extractor (n-gram count vectorizer and TF-IDF transformer) with a - classifier (here a linear SVM trained with SGD with either elastic - net or L2 penalty) using a :class:`~sklearn.pipeline.Pipeline` instance. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` for an example + of Grid Search coupling parameters from a text documents feature + extractor (n-gram count vectorizer and TF-IDF transformer) with a + classifier (here a linear SVM trained with SGD with either elastic + net or L2 penalty) using a :class:`~sklearn.pipeline.Pipeline` instance. - - See :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py` - for an example of Grid Search within a cross validation loop on the iris - dataset. This is the best practice for evaluating the performance of a - model with grid search. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py` + for an example of Grid Search within a cross validation loop on the iris + dataset. This is the best practice for evaluating the performance of a + model with grid search. - - See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py` - for an example of :class:`GridSearchCV` being used to evaluate multiple - metrics simultaneously. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py` + for an example of :class:`GridSearchCV` being used to evaluate multiple + metrics simultaneously. - - See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_refit_callable.py` - for an example of using ``refit=callable`` interface in - :class:`GridSearchCV`. The example shows how this interface adds certain - amount of flexibility in identifying the "best" estimator. This interface - can also be used in multiple metrics evaluation. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_refit_callable.py` + for an example of using ``refit=callable`` interface in + :class:`GridSearchCV`. The example shows how this interface adds certain + amount of flexibility in identifying the "best" estimator. This interface + can also be used in multiple metrics evaluation. - - See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_stats.py` - for an example of how to do a statistical comparison on the outputs of - :class:`GridSearchCV`. +- See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_stats.py` + for an example of how to do a statistical comparison on the outputs of + :class:`GridSearchCV`. .. _randomized_parameter_search: @@ -161,16 +161,16 @@ variable that is log-uniformly distributed between ``1e0`` and ``1e3``:: 'kernel': ['rbf'], 'class_weight':['balanced', None]} -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_model_selection_plot_randomized_search.py` compares the usage and efficiency - of randomized search and grid search. +* :ref:`sphx_glr_auto_examples_model_selection_plot_randomized_search.py` compares the usage and efficiency + of randomized search and grid search. -.. topic:: References: +.. rubric:: References - * Bergstra, J. and Bengio, Y., - Random search for hyper-parameter optimization, - The Journal of Machine Learning Research (2012) +* Bergstra, J. and Bengio, Y., + Random search for hyper-parameter optimization, + The Journal of Machine Learning Research (2012) .. _successive_halving_user_guide: @@ -222,10 +222,10 @@ need to explicitly import ``enable_halving_search_cv``:: >>> from sklearn.model_selection import HalvingGridSearchCV >>> from sklearn.model_selection import HalvingRandomSearchCV -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py` - * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py` Choosing ``min_resources`` and the number of candidates ------------------------------------------------------- @@ -528,15 +528,16 @@ In the example above, the best parameter combination is ``{'criterion': since it has reached the last iteration (3) with the highest score: 0.96. -.. topic:: References: +.. rubric:: References - .. [1] K. Jamieson, A. Talwalkar, - `Non-stochastic Best Arm Identification and Hyperparameter - Optimization `_, in - proc. of Machine Learning Research, 2016. - .. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, - :arxiv:`Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization - <1603.06560>`, in Machine Learning Research 18, 2018. +.. [1] K. Jamieson, A. Talwalkar, + `Non-stochastic Best Arm Identification and Hyperparameter + Optimization `_, in + proc. of Machine Learning Research, 2016. + +.. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, + :arxiv:`Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization + <1603.06560>`, in Machine Learning Research 18, 2018. .. _grid_search_tips: diff --git a/doc/modules/impute.rst b/doc/modules/impute.rst index f5879cbffc0a5..1431f26132338 100644 --- a/doc/modules/impute.rst +++ b/doc/modules/impute.rst @@ -224,13 +224,13 @@ neighbors of samples with missing values:: For another example on usage, see :ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`. -.. topic:: References +.. rubric:: References - .. [OL2001] `Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, - Trevor Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, - Missing value estimation methods for DNA microarrays, BIOINFORMATICS - Vol. 17 no. 6, 2001 Pages 520-525. - `_ +.. [OL2001] `Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, + Trevor Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, + Missing value estimation methods for DNA microarrays, BIOINFORMATICS + Vol. 17 no. 6, 2001 Pages 520-525. + `_ Keeping the number of features constant ======================================= diff --git a/doc/modules/isotonic.rst b/doc/modules/isotonic.rst index 6cfdc1669de5d..50fbdb24e72c7 100644 --- a/doc/modules/isotonic.rst +++ b/doc/modules/isotonic.rst @@ -32,6 +32,6 @@ thus form a function that is piecewise linear: :target: ../auto_examples/miscellaneous/plot_isotonic_regression.html :align: center -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_isotonic_regression.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_isotonic_regression.py` diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst index 0c67c36178e3b..305c3cc6601fb 100644 --- a/doc/modules/kernel_approximation.rst +++ b/doc/modules/kernel_approximation.rst @@ -88,12 +88,12 @@ function or a precomputed kernel matrix. The number of samples used - which is also the dimensionality of the features computed - is given by the parameter ``n_components``. -.. topic:: Examples: +.. rubric:: Examples - * See the example entitled - :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`, - that shows an efficient machine learning pipeline that uses a - :class:`Nystroem` kernel. +* See the example entitled + :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`, + that shows an efficient machine learning pipeline that uses a + :class:`Nystroem` kernel. .. _rbf_kernel_approx: @@ -143,9 +143,9 @@ use of larger feature spaces more efficient. Comparing an exact RBF kernel (left) with the approximation (right) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py` .. _additive_chi_kernel_approx: @@ -241,9 +241,9 @@ In addition, this method can transform samples in time, where :math:`n_{\text{components}}` is the desired output dimension, determined by ``n_components``. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py` +* :ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py` .. _tensor_sketch_kernel_approx: @@ -283,29 +283,29 @@ The classes in this submodule allow to approximate the embedding or store training examples. -.. topic:: References: - - .. [WS2001] `"Using the Nyström method to speed up kernel machines" - `_ - Williams, C.K.I.; Seeger, M. - 2001. - .. [RR2007] `"Random features for large-scale kernel machines" - `_ - Rahimi, A. and Recht, B. - Advances in neural information processing 2007, - .. [LS2010] `"Random Fourier approximations for skewed multiplicative histogram kernels" - `_ - Li, F., Ionescu, C., and Sminchisescu, C. - - Pattern Recognition, DAGM 2010, Lecture Notes in Computer Science. - .. [VZ2010] `"Efficient additive kernels via explicit feature maps" - `_ - Vedaldi, A. and Zisserman, A. - Computer Vision and Pattern Recognition 2010 - .. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection" - `_ - Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010 - .. [PP2013] :doi:`"Fast and scalable polynomial kernels via explicit feature maps" - <10.1145/2487575.2487591>` - Pham, N., & Pagh, R. - 2013 - .. [CCF2002] `"Finding frequent items in data streams" - `_ - Charikar, M., Chen, K., & Farach-Colton - 2002 - .. [WIKICS] `"Wikipedia: Count sketch" - `_ +.. rubric:: References + +.. [WS2001] `"Using the Nyström method to speed up kernel machines" + `_ + Williams, C.K.I.; Seeger, M. - 2001. +.. [RR2007] `"Random features for large-scale kernel machines" + `_ + Rahimi, A. and Recht, B. - Advances in neural information processing 2007, +.. [LS2010] `"Random Fourier approximations for skewed multiplicative histogram kernels" + `_ + Li, F., Ionescu, C., and Sminchisescu, C. + - Pattern Recognition, DAGM 2010, Lecture Notes in Computer Science. +.. [VZ2010] `"Efficient additive kernels via explicit feature maps" + `_ + Vedaldi, A. and Zisserman, A. - Computer Vision and Pattern Recognition 2010 +.. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection" + `_ + Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010 +.. [PP2013] :doi:`"Fast and scalable polynomial kernels via explicit feature maps" + <10.1145/2487575.2487591>` + Pham, N., & Pagh, R. - 2013 +.. [CCF2002] `"Finding frequent items in data streams" + `_ + Charikar, M., Chen, K., & Farach-Colton - 2002 +.. [WIKICS] `"Wikipedia: Count sketch" + `_ diff --git a/doc/modules/kernel_ridge.rst b/doc/modules/kernel_ridge.rst index 5d25ce71f5ea1..fcc19a49628c4 100644 --- a/doc/modules/kernel_ridge.rst +++ b/doc/modules/kernel_ridge.rst @@ -55,11 +55,11 @@ dense model. :target: ../auto_examples/miscellaneous/plot_kernel_ridge_regression.html :align: center -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_ridge_regression.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_ridge_regression.py` -.. topic:: References: +.. rubric:: References - .. [M2012] "Machine Learning: A Probabilistic Perspective" - Murphy, K. P. - chapter 14.4.3, pp. 492-493, The MIT Press, 2012 +.. [M2012] "Machine Learning: A Probabilistic Perspective" + Murphy, K. P. - chapter 14.4.3, pp. 492-493, The MIT Press, 2012 diff --git a/doc/modules/lda_qda.rst b/doc/modules/lda_qda.rst index 850a848fe3f73..0d264ec662a9f 100644 --- a/doc/modules/lda_qda.rst +++ b/doc/modules/lda_qda.rst @@ -29,10 +29,10 @@ Discriminant Analysis can only learn linear boundaries, while Quadratic Discriminant Analysis can learn quadratic boundaries and is therefore more flexible. -.. topic:: Examples: +.. rubric:: Examples - :ref:`sphx_glr_auto_examples_classification_plot_lda_qda.py`: Comparison of LDA and QDA - on synthetic data. +* :ref:`sphx_glr_auto_examples_classification_plot_lda_qda.py`: Comparison of LDA and + QDA on synthetic data. Dimensionality reduction using Linear Discriminant Analysis =========================================================== @@ -49,10 +49,10 @@ This is implemented in the `transform` method. The desired dimensionality can be set using the ``n_components`` parameter. This parameter has no influence on the `fit` and `predict` methods. -.. topic:: Examples: +.. rubric:: Examples - :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py`: Comparison of LDA and PCA - for dimensionality reduction of the Iris dataset +* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py`: Comparison of LDA and + PCA for dimensionality reduction of the Iris dataset .. _lda_qda_math: @@ -194,7 +194,7 @@ Oracle Approximating Shrinkage estimator :class:`sklearn.covariance.OAS` yields a smaller Mean Squared Error than the one given by Ledoit and Wolf's formula used with shrinkage="auto". In LDA, the data are assumed to be gaussian conditionally to the class. If these assumptions hold, using LDA with -the OAS estimator of covariance will yield a better classification +the OAS estimator of covariance will yield a better classification accuracy than if Ledoit and Wolf or the empirical covariance estimator is used. The covariance estimator can be chosen using with the ``covariance_estimator`` @@ -210,10 +210,10 @@ class. A covariance estimator should have a :term:`fit` method and a .. centered:: |shrinkage| -.. topic:: Examples: +.. rubric:: Examples - :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers - with Empirical, Ledoit Wolf and OAS covariance estimator. +* :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers + with Empirical, Ledoit Wolf and OAS covariance estimator. Estimation algorithms ===================== @@ -253,13 +253,13 @@ transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. -.. topic:: References: +.. rubric:: References - .. [1] "The Elements of Statistical Learning", Hastie T., Tibshirani R., - Friedman J., Section 4.3, p.106-119, 2008. +.. [1] "The Elements of Statistical Learning", Hastie T., Tibshirani R., + Friedman J., Section 4.3, p.106-119, 2008. - .. [2] Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. - The Journal of Portfolio Management 30(4), 110-119, 2004. +.. [2] Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. + The Journal of Portfolio Management 30(4), 110-119, 2004. - .. [3] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification - (Second Edition), section 2.6.2. +.. [3] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification + (Second Edition), section 2.6.2. diff --git a/doc/modules/learning_curve.rst b/doc/modules/learning_curve.rst index 3d458a1a67416..f5af5a748500a 100644 --- a/doc/modules/learning_curve.rst +++ b/doc/modules/learning_curve.rst @@ -39,11 +39,11 @@ easy to see whether the estimator suffers from bias or variance. However, in high-dimensional spaces, models can become very difficult to visualize. For this reason, it is often helpful to use the tools described below. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_model_selection_plot_underfitting_overfitting.py` - * :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py` - * :ref:`sphx_glr_auto_examples_model_selection_plot_learning_curve.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_underfitting_overfitting.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_learning_curve.py` .. _validation_curve: diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst index 275ee01eb022f..d06101adabdb5 100644 --- a/doc/modules/linear_model.rst +++ b/doc/modules/linear_model.rst @@ -57,9 +57,9 @@ to random errors in the observed target, producing a large variance. This situation of *multicollinearity* can arise, for example, when data are collected without an experimental design. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py` Non-Negative Least Squares -------------------------- @@ -71,9 +71,9 @@ quantities (e.g., frequency counts or prices of goods). parameter: when set to `True` `Non-Negative Least Squares `_ are then applied. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py` Ordinary Least Squares Complexity --------------------------------- @@ -172,11 +172,11 @@ Machines `_ with a linear kernel. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py` - * :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` - * :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py` +* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` Ridge Complexity ---------------- @@ -216,13 +216,11 @@ cross-validation with :class:`~sklearn.model_selection.GridSearchCV`, for example `cv=10` for 10-fold cross-validation, rather than Leave-One-Out Cross-Validation. -.. topic:: References: - +.. dropdown:: References .. [RL2007] "Notes on Regularized Least Squares", Rifkin & Lippert (`technical report `_, - `course slides - `_). + `course slides `_). .. _lasso: @@ -262,11 +260,11 @@ for another implementation:: The function :func:`lasso_path` is useful for lower-level tasks, as it computes the coefficients along the full path of possible values. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` - * :ref:`sphx_glr_auto_examples_applications_plot_tomography_l1_reconstruction.py` - * :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` +* :ref:`sphx_glr_auto_examples_applications_plot_tomography_l1_reconstruction.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` .. note:: **Feature selection with Lasso** @@ -275,23 +273,19 @@ computes the coefficients along the full path of possible values. thus be used to perform feature selection, as detailed in :ref:`l1_feature_selection`. -|details-start| -**References** -|details-split| - -The following two references explain the iterations -used in the coordinate descent solver of scikit-learn, as well as -the duality gap computation used for convergence control. +.. dropdown:: References -* "Regularization Path For Generalized linear Models by Coordinate Descent", - Friedman, Hastie & Tibshirani, J Stat Softw, 2010 (`Paper - `__). -* "An Interior-Point Method for Large-Scale L1-Regularized Least Squares," - S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, - in IEEE Journal of Selected Topics in Signal Processing, 2007 - (`Paper `__) + The following two references explain the iterations + used in the coordinate descent solver of scikit-learn, as well as + the duality gap computation used for convergence control. -|details-end| + * "Regularization Path For Generalized linear Models by Coordinate Descent", + Friedman, Hastie & Tibshirani, J Stat Softw, 2010 (`Paper + `__). + * "An Interior-Point Method for Large-Scale L1-Regularized Least Squares," + S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, + in IEEE Journal of Selected Topics in Signal Processing, 2007 + (`Paper `__) Setting regularization parameter -------------------------------- @@ -348,10 +342,10 @@ the problem is badly conditioned (e.g. more features than samples). :align: center :scale: 50% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py` .. _aic_bic: @@ -362,59 +356,57 @@ The definition of AIC (and thus BIC) might differ in the literature. In this section, we give more information regarding the criterion computed in scikit-learn. -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -The AIC criterion is defined as: + The AIC criterion is defined as: -.. math:: - AIC = -2 \log(\hat{L}) + 2 d + .. math:: + AIC = -2 \log(\hat{L}) + 2 d -where :math:`\hat{L}` is the maximum likelihood of the model and -:math:`d` is the number of parameters (as well referred to as degrees of -freedom in the previous section). + where :math:`\hat{L}` is the maximum likelihood of the model and + :math:`d` is the number of parameters (as well referred to as degrees of + freedom in the previous section). -The definition of BIC replace the constant :math:`2` by :math:`\log(N)`: + The definition of BIC replace the constant :math:`2` by :math:`\log(N)`: -.. math:: - BIC = -2 \log(\hat{L}) + \log(N) d + .. math:: + BIC = -2 \log(\hat{L}) + \log(N) d -where :math:`N` is the number of samples. + where :math:`N` is the number of samples. -For a linear Gaussian model, the maximum log-likelihood is defined as: + For a linear Gaussian model, the maximum log-likelihood is defined as: -.. math:: - \log(\hat{L}) = - \frac{n}{2} \log(2 \pi) - \frac{n}{2} \ln(\sigma^2) - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{2\sigma^2} + .. math:: + \log(\hat{L}) = - \frac{n}{2} \log(2 \pi) - \frac{n}{2} \ln(\sigma^2) - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{2\sigma^2} -where :math:`\sigma^2` is an estimate of the noise variance, -:math:`y_i` and :math:`\hat{y}_i` are respectively the true and predicted -targets, and :math:`n` is the number of samples. + where :math:`\sigma^2` is an estimate of the noise variance, + :math:`y_i` and :math:`\hat{y}_i` are respectively the true and predicted + targets, and :math:`n` is the number of samples. -Plugging the maximum log-likelihood in the AIC formula yields: + Plugging the maximum log-likelihood in the AIC formula yields: -.. math:: - AIC = n \log(2 \pi \sigma^2) + \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sigma^2} + 2 d + .. math:: + AIC = n \log(2 \pi \sigma^2) + \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sigma^2} + 2 d -The first term of the above expression is sometimes discarded since it is a -constant when :math:`\sigma^2` is provided. In addition, -it is sometimes stated that the AIC is equivalent to the :math:`C_p` statistic -[12]_. In a strict sense, however, it is equivalent only up to some constant -and a multiplicative factor. + The first term of the above expression is sometimes discarded since it is a + constant when :math:`\sigma^2` is provided. In addition, + it is sometimes stated that the AIC is equivalent to the :math:`C_p` statistic + [12]_. In a strict sense, however, it is equivalent only up to some constant + and a multiplicative factor. -At last, we mentioned above that :math:`\sigma^2` is an estimate of the -noise variance. In :class:`LassoLarsIC` when the parameter `noise_variance` is -not provided (default), the noise variance is estimated via the unbiased -estimator [13]_ defined as: + At last, we mentioned above that :math:`\sigma^2` is an estimate of the + noise variance. In :class:`LassoLarsIC` when the parameter `noise_variance` is + not provided (default), the noise variance is estimated via the unbiased + estimator [13]_ defined as: -.. math:: - \sigma^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - p} + .. math:: + \sigma^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - p} -where :math:`p` is the number of features and :math:`\hat{y}_i` is the -predicted target using an ordinary least squares regression. Note, that this -formula is valid only when `n_samples > n_features`. + where :math:`p` is the number of features and :math:`\hat{y}_i` is the + predicted target using an ordinary least squares regression. Note, that this + formula is valid only when `n_samples > n_features`. -.. topic:: References: + .. rubric:: References .. [12] :arxiv:`Zou, Hui, Trevor Hastie, and Robert Tibshirani. "On the degrees of freedom of the lasso." @@ -426,8 +418,6 @@ formula is valid only when `n_samples > n_features`. Neural computation 15.7 (2003): 1691-1714. <10.1162/089976603321891864>` -|details-end| - Comparison with the regularization parameter of SVM ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -463,33 +453,29 @@ the MultiTaskLasso are full columns. .. centered:: Fitting a time-series model, imposing that any active feature be active at all times. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_linear_model_plot_multi_task_lasso_support.py` +.. rubric:: Examples +* :ref:`sphx_glr_auto_examples_linear_model_plot_multi_task_lasso_support.py` -|details-start| -**Mathematical details** -|details-split| -Mathematically, it consists of a linear model trained with a mixed -:math:`\ell_1` :math:`\ell_2`-norm for regularization. -The objective function to minimize is: +.. dropdown:: Mathematical details -.. math:: \min_{W} { \frac{1}{2n_{\text{samples}}} ||X W - Y||_{\text{Fro}} ^ 2 + \alpha ||W||_{21}} + Mathematically, it consists of a linear model trained with a mixed + :math:`\ell_1` :math:`\ell_2`-norm for regularization. + The objective function to minimize is: -where :math:`\text{Fro}` indicates the Frobenius norm + .. math:: \min_{W} { \frac{1}{2n_{\text{samples}}} ||X W - Y||_{\text{Fro}} ^ 2 + \alpha ||W||_{21}} -.. math:: ||A||_{\text{Fro}} = \sqrt{\sum_{ij} a_{ij}^2} + where :math:`\text{Fro}` indicates the Frobenius norm -and :math:`\ell_1` :math:`\ell_2` reads + .. math:: ||A||_{\text{Fro}} = \sqrt{\sum_{ij} a_{ij}^2} -.. math:: ||A||_{2 1} = \sum_i \sqrt{\sum_j a_{ij}^2}. + and :math:`\ell_1` :math:`\ell_2` reads -The implementation in the class :class:`MultiTaskLasso` uses -coordinate descent as the algorithm to fit the coefficients. + .. math:: ||A||_{2 1} = \sum_i \sqrt{\sum_j a_{ij}^2}. -|details-end| + The implementation in the class :class:`MultiTaskLasso` uses + coordinate descent as the algorithm to fit the coefficients. .. _elastic_net: @@ -526,29 +512,25 @@ The objective function to minimize is in this case The class :class:`ElasticNetCV` can be used to set the parameters ``alpha`` (:math:`\alpha`) and ``l1_ratio`` (:math:`\rho`) by cross-validation. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py` -|details-start| -**References** -|details-split| +.. dropdown:: References -The following two references explain the iterations -used in the coordinate descent solver of scikit-learn, as well as -the duality gap computation used for convergence control. + The following two references explain the iterations + used in the coordinate descent solver of scikit-learn, as well as + the duality gap computation used for convergence control. -* "Regularization Path For Generalized linear Models by Coordinate Descent", - Friedman, Hastie & Tibshirani, J Stat Softw, 2010 (`Paper - `__). -* "An Interior-Point Method for Large-Scale L1-Regularized Least Squares," - S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, - in IEEE Journal of Selected Topics in Signal Processing, 2007 - (`Paper `__) - -|details-end| + * "Regularization Path For Generalized linear Models by Coordinate Descent", + Friedman, Hastie & Tibshirani, J Stat Softw, 2010 (`Paper + `__). + * "An Interior-Point Method for Large-Scale L1-Regularized Least Squares," + S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, + in IEEE Journal of Selected Topics in Signal Processing, 2007 + (`Paper `__) .. _multi_task_elastic_net: @@ -641,37 +623,33 @@ function of the norm of its coefficients. >>> reg.coef_ array([0.6..., 0. ]) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars.py` The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a common operation is to retrieve the path with one of the functions :func:`lars_path` or :func:`lars_path_gram`. -|details-start| -**Mathematical formulation** -|details-split| - -The algorithm is similar to forward stepwise regression, but instead -of including features at each step, the estimated coefficients are -increased in a direction equiangular to each one's correlations with -the residual. +.. dropdown:: Mathematical formulation -Instead of giving a vector result, the LARS solution consists of a -curve denoting the solution for each value of the :math:`\ell_1` norm of the -parameter vector. The full coefficients path is stored in the array -``coef_path_`` of shape `(n_features, max_features + 1)`. The first -column is always zero. + The algorithm is similar to forward stepwise regression, but instead + of including features at each step, the estimated coefficients are + increased in a direction equiangular to each one's correlations with + the residual. -.. topic:: References: + Instead of giving a vector result, the LARS solution consists of a + curve denoting the solution for each value of the :math:`\ell_1` norm of the + parameter vector. The full coefficients path is stored in the array + ``coef_path_`` of shape `(n_features, max_features + 1)`. The first + column is always zero. - * Original Algorithm is detailed in the paper `Least Angle Regression - `_ - by Hastie et al. + .. rubric:: References -|details-end| + * Original Algorithm is detailed in the paper `Least Angle Regression + `_ + by Hastie et al. .. _omp: @@ -702,21 +680,17 @@ residual is recomputed using an orthogonal projection on the space of the previously chosen dictionary elements. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_linear_model_plot_omp.py` +.. rubric:: Examples -|details-start| -**References** -|details-split| +* :ref:`sphx_glr_auto_examples_linear_model_plot_omp.py` -* https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf +.. dropdown:: References -* `Matching pursuits with time-frequency dictionaries - `_, - S. G. Mallat, Z. Zhang, + * https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf -|details-end| + * `Matching pursuits with time-frequency dictionaries + `_, + S. G. Mallat, Z. Zhang, .. _bayesian_regression: @@ -755,17 +729,13 @@ The disadvantages of Bayesian regression include: - Inference of the model can be time consuming. -|details-start| -**References** -|details-split| +.. dropdown:: References -* A good introduction to Bayesian methods is given in C. Bishop: Pattern - Recognition and Machine learning + * A good introduction to Bayesian methods is given in C. Bishop: Pattern + Recognition and Machine learning -* Original Algorithm is detailed in the book `Bayesian learning for neural - networks` by Radford M. Neal - -|details-end| + * Original Algorithm is detailed in the book `Bayesian learning for neural + networks` by Radford M. Neal .. _bayesian_ridge_regression: @@ -822,21 +792,17 @@ Due to the Bayesian framework, the weights found are slightly different to the ones found by :ref:`ordinary_least_squares`. However, Bayesian Ridge Regression is more robust to ill-posed problems. -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py` +.. rubric:: Examples -|details-start| -**References** -|details-split| +* :ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py` -* Section 3.3 in Christopher M. Bishop: Pattern Recognition and Machine Learning, 2006 +.. dropdown:: References -* David J. C. MacKay, `Bayesian Interpolation `_, 1992. + * Section 3.3 in Christopher M. Bishop: Pattern Recognition and Machine Learning, 2006 -* Michael E. Tipping, `Sparse Bayesian Learning and the Relevance Vector Machine `_, 2001. + * David J. C. MacKay, `Bayesian Interpolation `_, 1992. -|details-end| + * Michael E. Tipping, `Sparse Bayesian Learning and the Relevance Vector Machine `_, 2001. .. _automatic_relevance_determination: @@ -868,20 +834,20 @@ ARD is also known in the literature as *Sparse Bayesian Learning* and *Relevance Vector Machine* [3]_ [4]_. For a worked-out comparison between ARD and `Bayesian Ridge Regression`_, see the example below. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_ard.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_ard.py` -.. topic:: References: +.. rubric:: References - .. [1] Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1 +.. [1] Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1 - .. [2] David Wipf and Srikantan Nagarajan: `A New View of Automatic Relevance Determination `_ +.. [2] David Wipf and Srikantan Nagarajan: `A New View of Automatic Relevance Determination `_ - .. [3] Michael E. Tipping: `Sparse Bayesian Learning and the Relevance Vector Machine `_ +.. [3] Michael E. Tipping: `Sparse Bayesian Learning and the Relevance Vector Machine `_ - .. [4] Tristan Fletcher: `Relevance Vector Machines Explained `_ +.. [4] Tristan Fletcher: `Relevance Vector Machines Explained `_ .. _Logistic_regression: @@ -918,17 +884,13 @@ regularization. implemented in scikit-learn, so it expects a categorical target, making the Logistic Regression a classifier. -.. topic:: Examples - - * :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_l1_l2_sparsity.py` +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py` - - * :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py` - - * :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_20newsgroups.py` - - * :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_mnist.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_l1_l2_sparsity.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_20newsgroups.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_mnist.py` Binary Case ----------- @@ -1000,47 +962,43 @@ logistic regression, see also `log-linear model especially important when using regularization. The choice of overparameterization can be detrimental for unpenalized models since then the solution may not be unique, as shown in [16]_. -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -Let :math:`y_i \in {1, \ldots, K}` be the label (ordinal) encoded target variable for observation :math:`i`. -Instead of a single coefficient vector, we now have -a matrix of coefficients :math:`W` where each row vector :math:`W_k` corresponds to class -:math:`k`. We aim at predicting the class probabilities :math:`P(y_i=k|X_i)` via -:meth:`~sklearn.linear_model.LogisticRegression.predict_proba` as: + Let :math:`y_i \in {1, \ldots, K}` be the label (ordinal) encoded target variable for observation :math:`i`. + Instead of a single coefficient vector, we now have + a matrix of coefficients :math:`W` where each row vector :math:`W_k` corresponds to class + :math:`k`. We aim at predicting the class probabilities :math:`P(y_i=k|X_i)` via + :meth:`~sklearn.linear_model.LogisticRegression.predict_proba` as: -.. math:: \hat{p}_k(X_i) = \frac{\exp(X_i W_k + W_{0, k})}{\sum_{l=0}^{K-1} \exp(X_i W_l + W_{0, l})}. + .. math:: \hat{p}_k(X_i) = \frac{\exp(X_i W_k + W_{0, k})}{\sum_{l=0}^{K-1} \exp(X_i W_l + W_{0, l})}. -The objective for the optimization becomes - -.. math:: - \min_W -\frac{1}{S}\sum_{i=1}^n \sum_{k=0}^{K-1} s_{ik} [y_i = k] \log(\hat{p}_k(X_i)) - + \frac{r(W)}{S C}\,. + The objective for the optimization becomes -Where :math:`[P]` represents the Iverson bracket which evaluates to :math:`0` -if :math:`P` is false, otherwise it evaluates to :math:`1`. + .. math:: + \min_W -\frac{1}{S}\sum_{i=1}^n \sum_{k=0}^{K-1} s_{ik} [y_i = k] \log(\hat{p}_k(X_i)) + + \frac{r(W)}{S C}\,, -Again, :math:`s_{ik}` are the weights assigned by the user (multiplication of sample -weights and class weights) with their sum :math:`S = \sum_{i=1}^n \sum_{k=0}^{K-1} s_{ik}`. + where :math:`[P]` represents the Iverson bracket which evaluates to :math:`0` + if :math:`P` is false, otherwise it evaluates to :math:`1`. -We currently provide four choices -for the regularization term :math:`r(W)` via the `penalty` argument, where :math:`m` -is the number of features: + Again, :math:`s_{ik}` are the weights assigned by the user (multiplication of sample + weights and class weights) with their sum :math:`S = \sum_{i=1}^n \sum_{k=0}^{K-1} s_{ik}`. -+----------------+----------------------------------------------------------------------------------+ -| penalty | :math:`r(W)` | -+================+==================================================================================+ -| `None` | :math:`0` | -+----------------+----------------------------------------------------------------------------------+ -| :math:`\ell_1` | :math:`\|W\|_{1,1} = \sum_{i=1}^m\sum_{j=1}^{K}|W_{i,j}|` | -+----------------+----------------------------------------------------------------------------------+ -| :math:`\ell_2` | :math:`\frac{1}{2}\|W\|_F^2 = \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^{K} W_{i,j}^2` | -+----------------+----------------------------------------------------------------------------------+ -| `ElasticNet` | :math:`\frac{1 - \rho}{2}\|W\|_F^2 + \rho \|W\|_{1,1}` | -+----------------+----------------------------------------------------------------------------------+ + We currently provide four choices + for the regularization term :math:`r(W)` via the `penalty` argument, where :math:`m` + is the number of features: -|details-end| + +----------------+----------------------------------------------------------------------------------+ + | penalty | :math:`r(W)` | + +================+==================================================================================+ + | `None` | :math:`0` | + +----------------+----------------------------------------------------------------------------------+ + | :math:`\ell_1` | :math:`\|W\|_{1,1} = \sum_{i=1}^m\sum_{j=1}^{K}|W_{i,j}|` | + +----------------+----------------------------------------------------------------------------------+ + | :math:`\ell_2` | :math:`\frac{1}{2}\|W\|_F^2 = \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^{K} W_{i,j}^2` | + +----------------+----------------------------------------------------------------------------------+ + | `ElasticNet` | :math:`\frac{1 - \rho}{2}\|W\|_F^2 + \rho \|W\|_{1,1}` | + +----------------+----------------------------------------------------------------------------------+ Solvers ------- @@ -1097,56 +1055,54 @@ with ``fit_intercept=False`` and having many samples with ``decision_function`` zero, is likely to be a underfit, bad model and you are advised to set ``fit_intercept=True`` and increase the ``intercept_scaling``. -|details-start| -**Solvers' details** -|details-split| - -* The solver "liblinear" uses a coordinate descent (CD) algorithm, and relies - on the excellent C++ `LIBLINEAR library - `_, which is shipped with - scikit-learn. However, the CD algorithm implemented in liblinear cannot learn - a true multinomial (multiclass) model; instead, the optimization problem is - decomposed in a "one-vs-rest" fashion so separate binary classifiers are - trained for all classes. This happens under the hood, so - :class:`LogisticRegression` instances using this solver behave as multiclass - classifiers. For :math:`\ell_1` regularization :func:`sklearn.svm.l1_min_c` allows to - calculate the lower bound for C in order to get a non "null" (all feature - weights to zero) model. - -* The "lbfgs", "newton-cg" and "sag" solvers only support :math:`\ell_2` - regularization or no regularization, and are found to converge faster for some - high-dimensional data. Setting `multi_class` to "multinomial" with these solvers - learns a true multinomial logistic regression model [5]_, which means that its - probability estimates should be better calibrated than the default "one-vs-rest" - setting. - -* The "sag" solver uses Stochastic Average Gradient descent [6]_. It is faster - than other solvers for large datasets, when both the number of samples and the - number of features are large. - -* The "saga" solver [7]_ is a variant of "sag" that also supports the - non-smooth `penalty="l1"`. This is therefore the solver of choice for sparse - multinomial logistic regression. It is also the only solver that supports - `penalty="elasticnet"`. - -* The "lbfgs" is an optimization algorithm that approximates the - Broyden–Fletcher–Goldfarb–Shanno algorithm [8]_, which belongs to - quasi-Newton methods. As such, it can deal with a wide range of different training - data and is therefore the default solver. Its performance, however, suffers on poorly - scaled datasets and on datasets with one-hot encoded categorical features with rare - categories. - -* The "newton-cholesky" solver is an exact Newton solver that calculates the hessian - matrix and solves the resulting linear system. It is a very good choice for - `n_samples` >> `n_features`, but has a few shortcomings: Only :math:`\ell_2` - regularization is supported. Furthermore, because the hessian matrix is explicitly - computed, the memory usage has a quadratic dependency on `n_features` as well as on - `n_classes`. As a consequence, only the one-vs-rest scheme is implemented for the - multiclass case. - -For a comparison of some of these solvers, see [9]_. - -.. topic:: References: +.. dropdown:: Solvers' details + + * The solver "liblinear" uses a coordinate descent (CD) algorithm, and relies + on the excellent C++ `LIBLINEAR library + `_, which is shipped with + scikit-learn. However, the CD algorithm implemented in liblinear cannot learn + a true multinomial (multiclass) model; instead, the optimization problem is + decomposed in a "one-vs-rest" fashion so separate binary classifiers are + trained for all classes. This happens under the hood, so + :class:`LogisticRegression` instances using this solver behave as multiclass + classifiers. For :math:`\ell_1` regularization :func:`sklearn.svm.l1_min_c` allows to + calculate the lower bound for C in order to get a non "null" (all feature + weights to zero) model. + + * The "lbfgs", "newton-cg" and "sag" solvers only support :math:`\ell_2` + regularization or no regularization, and are found to converge faster for some + high-dimensional data. Setting `multi_class` to "multinomial" with these solvers + learns a true multinomial logistic regression model [5]_, which means that its + probability estimates should be better calibrated than the default "one-vs-rest" + setting. + + * The "sag" solver uses Stochastic Average Gradient descent [6]_. It is faster + than other solvers for large datasets, when both the number of samples and the + number of features are large. + + * The "saga" solver [7]_ is a variant of "sag" that also supports the + non-smooth `penalty="l1"`. This is therefore the solver of choice for sparse + multinomial logistic regression. It is also the only solver that supports + `penalty="elasticnet"`. + + * The "lbfgs" is an optimization algorithm that approximates the + Broyden–Fletcher–Goldfarb–Shanno algorithm [8]_, which belongs to + quasi-Newton methods. As such, it can deal with a wide range of different training + data and is therefore the default solver. Its performance, however, suffers on poorly + scaled datasets and on datasets with one-hot encoded categorical features with rare + categories. + + * The "newton-cholesky" solver is an exact Newton solver that calculates the hessian + matrix and solves the resulting linear system. It is a very good choice for + `n_samples` >> `n_features`, but has a few shortcomings: Only :math:`\ell_2` + regularization is supported. Furthermore, because the hessian matrix is explicitly + computed, the memory usage has a quadratic dependency on `n_features` as well as on + `n_classes`. As a consequence, only the one-vs-rest scheme is implemented for the + multiclass case. + + For a comparison of some of these solvers, see [9]_. + + .. rubric:: References .. [5] Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 4.3.4 @@ -1165,8 +1121,6 @@ For a comparison of some of these solvers, see [9]_. "A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression." <1311.6529>` -|details-end| - .. note:: **Feature selection with sparse logistic regression** @@ -1263,38 +1217,34 @@ The choice of the distribution depends on the problem at hand: used for multiclass classification. -|details-start| -**Examples of use cases** -|details-split| - -* Agriculture / weather modeling: number of rain events per year (Poisson), - amount of rainfall per event (Gamma), total rainfall per year (Tweedie / - Compound Poisson Gamma). -* Risk modeling / insurance policy pricing: number of claim events / - policyholder per year (Poisson), cost per event (Gamma), total cost per - policyholder per year (Tweedie / Compound Poisson Gamma). -* Credit Default: probability that a loan can't be paid back (Bernoulli). -* Fraud Detection: probability that a financial transaction like a cash transfer - is a fraudulent transaction (Bernoulli). -* Predictive maintenance: number of production interruption events per year - (Poisson), duration of interruption (Gamma), total interruption time per year - (Tweedie / Compound Poisson Gamma). -* Medical Drug Testing: probability of curing a patient in a set of trials or - probability that a patient will experience side effects (Bernoulli). -* News Classification: classification of news articles into three categories - namely Business News, Politics and Entertainment news (Categorical). +.. dropdown:: Examples of use cases -|details-end| + * Agriculture / weather modeling: number of rain events per year (Poisson), + amount of rainfall per event (Gamma), total rainfall per year (Tweedie / + Compound Poisson Gamma). + * Risk modeling / insurance policy pricing: number of claim events / + policyholder per year (Poisson), cost per event (Gamma), total cost per + policyholder per year (Tweedie / Compound Poisson Gamma). + * Credit Default: probability that a loan can't be paid back (Bernoulli). + * Fraud Detection: probability that a financial transaction like a cash transfer + is a fraudulent transaction (Bernoulli). + * Predictive maintenance: number of production interruption events per year + (Poisson), duration of interruption (Gamma), total interruption time per year + (Tweedie / Compound Poisson Gamma). + * Medical Drug Testing: probability of curing a patient in a set of trials or + probability that a patient will experience side effects (Bernoulli). + * News Classification: classification of news articles into three categories + namely Business News, Politics and Entertainment news (Categorical). -.. topic:: References: +.. rubric:: References - .. [10] McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, - Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5. +.. [10] McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, + Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5. - .. [11] Jørgensen, B. (1992). The theory of exponential dispersion models - and analysis of deviance. Monografias de matemática, no. 51. See also - `Exponential dispersion model. - `_ +.. [11] Jørgensen, B. (1992). The theory of exponential dispersion models + and analysis of deviance. Monografias de matemática, no. 51. See also + `Exponential dispersion model. + `_ Usage ----- @@ -1328,37 +1278,33 @@ Usage example:: -0.7638... -.. topic:: Examples - - * :ref:`sphx_glr_auto_examples_linear_model_plot_poisson_regression_non_normal_loss.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py` +.. rubric:: Examples -|details-start| -**Practical considerations** -|details-split| +* :ref:`sphx_glr_auto_examples_linear_model_plot_poisson_regression_non_normal_loss.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py` -The feature matrix `X` should be standardized before fitting. This ensures -that the penalty treats features equally. +.. dropdown:: Practical considerations -Since the linear predictor :math:`Xw` can be negative and Poisson, -Gamma and Inverse Gaussian distributions don't support negative values, it -is necessary to apply an inverse link function that guarantees the -non-negativeness. For example with `link='log'`, the inverse link function -becomes :math:`h(Xw)=\exp(Xw)`. + The feature matrix `X` should be standardized before fitting. This ensures + that the penalty treats features equally. -If you want to model a relative frequency, i.e. counts per exposure (time, -volume, ...) you can do so by using a Poisson distribution and passing -:math:`y=\frac{\mathrm{counts}}{\mathrm{exposure}}` as target values -together with :math:`\mathrm{exposure}` as sample weights. For a concrete -example see e.g. -:ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py`. + Since the linear predictor :math:`Xw` can be negative and Poisson, + Gamma and Inverse Gaussian distributions don't support negative values, it + is necessary to apply an inverse link function that guarantees the + non-negativeness. For example with `link='log'`, the inverse link function + becomes :math:`h(Xw)=\exp(Xw)`. -When performing cross-validation for the `power` parameter of -`TweedieRegressor`, it is advisable to specify an explicit `scoring` function, -because the default scorer :meth:`TweedieRegressor.score` is a function of -`power` itself. + If you want to model a relative frequency, i.e. counts per exposure (time, + volume, ...) you can do so by using a Poisson distribution and passing + :math:`y=\frac{\mathrm{counts}}{\mathrm{exposure}}` as target values + together with :math:`\mathrm{exposure}` as sample weights. For a concrete + example see e.g. + :ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py`. -|details-end| + When performing cross-validation for the `power` parameter of + `TweedieRegressor`, it is advisable to specify an explicit `scoring` function, + because the default scorer :meth:`TweedieRegressor.score` is a function of + `power` itself. Stochastic Gradient Descent - SGD ================================= @@ -1416,15 +1362,11 @@ For classification, :class:`PassiveAggressiveClassifier` can be used with ``loss='epsilon_insensitive'`` (PA-I) or ``loss='squared_epsilon_insensitive'`` (PA-II). -|details-start| -**References** -|details-split| +.. dropdown:: References -* `"Online Passive-Aggressive Algorithms" - `_ - K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR 7 (2006) - -|details-end| + * `"Online Passive-Aggressive Algorithms" + `_ + K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR 7 (2006) Robustness regression: outliers and modeling errors ===================================================== @@ -1534,56 +1476,48 @@ estimated only from the determined inliers. :align: center :scale: 50% -.. topic:: Examples - - * :ref:`sphx_glr_auto_examples_linear_model_plot_ransac.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` - -|details-start| -**Details of the algorithm** -|details-split| - -Each iteration performs the following steps: - -1. Select ``min_samples`` random samples from the original data and check - whether the set of data is valid (see ``is_data_valid``). -2. Fit a model to the random subset (``estimator.fit``) and check - whether the estimated model is valid (see ``is_model_valid``). -3. Classify all data as inliers or outliers by calculating the residuals - to the estimated model (``estimator.predict(X) - y``) - all data - samples with absolute residuals smaller than or equal to the - ``residual_threshold`` are considered as inliers. -4. Save fitted model as best model if number of inlier samples is - maximal. In case the current estimated model has the same number of - inliers, it is only considered as the best model if it has better score. - -These steps are performed either a maximum number of times (``max_trials``) or -until one of the special stop criteria are met (see ``stop_n_inliers`` and -``stop_score``). The final model is estimated using all inlier samples (consensus -set) of the previously determined best model. - -The ``is_data_valid`` and ``is_model_valid`` functions allow to identify and reject -degenerate combinations of random sub-samples. If the estimated model is not -needed for identifying degenerate cases, ``is_data_valid`` should be used as it -is called prior to fitting the model and thus leading to better computational -performance. - -|details-end| - -|details-start| -**References** -|details-split| - -* https://en.wikipedia.org/wiki/RANSAC -* `"Random Sample Consensus: A Paradigm for Model Fitting with Applications to - Image Analysis and Automated Cartography" - `_ - Martin A. Fischler and Robert C. Bolles - SRI International (1981) -* `"Performance Evaluation of RANSAC Family" - `_ - Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC (2009) - -|details-end| +.. rubric:: Examples + +* :ref:`sphx_glr_auto_examples_linear_model_plot_ransac.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` + +.. dropdown:: Details of the algorithm + + Each iteration performs the following steps: + + 1. Select ``min_samples`` random samples from the original data and check + whether the set of data is valid (see ``is_data_valid``). + 2. Fit a model to the random subset (``estimator.fit``) and check + whether the estimated model is valid (see ``is_model_valid``). + 3. Classify all data as inliers or outliers by calculating the residuals + to the estimated model (``estimator.predict(X) - y``) - all data + samples with absolute residuals smaller than or equal to the + ``residual_threshold`` are considered as inliers. + 4. Save fitted model as best model if number of inlier samples is + maximal. In case the current estimated model has the same number of + inliers, it is only considered as the best model if it has better score. + + These steps are performed either a maximum number of times (``max_trials``) or + until one of the special stop criteria are met (see ``stop_n_inliers`` and + ``stop_score``). The final model is estimated using all inlier samples (consensus + set) of the previously determined best model. + + The ``is_data_valid`` and ``is_model_valid`` functions allow to identify and reject + degenerate combinations of random sub-samples. If the estimated model is not + needed for identifying degenerate cases, ``is_data_valid`` should be used as it + is called prior to fitting the model and thus leading to better computational + performance. + +.. dropdown:: References + + * https://en.wikipedia.org/wiki/RANSAC + * `"Random Sample Consensus: A Paradigm for Model Fitting with Applications to + Image Analysis and Automated Cartography" + `_ + Martin A. Fischler and Robert C. Bolles - SRI International (1981) + * `"Performance Evaluation of RANSAC Family" + `_ + Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC (2009) .. _theil_sen_regression: @@ -1596,47 +1530,45 @@ that the robustness of the estimator decreases quickly with the dimensionality of the problem. It loses its robustness properties and becomes no better than an ordinary least squares in high dimension. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_theilsen.py` - * :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_theilsen.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` -|details-start| -**Theoretical considerations** -|details-split| +.. dropdown:: Theoretical considerations -:class:`TheilSenRegressor` is comparable to the :ref:`Ordinary Least Squares -(OLS) ` in terms of asymptotic efficiency and as an -unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric -method which means it makes no assumption about the underlying -distribution of the data. Since Theil-Sen is a median-based estimator, it -is more robust against corrupted data aka outliers. In univariate -setting, Theil-Sen has a breakdown point of about 29.3% in case of a -simple linear regression which means that it can tolerate arbitrary -corrupted data of up to 29.3%. + :class:`TheilSenRegressor` is comparable to the :ref:`Ordinary Least Squares + (OLS) ` in terms of asymptotic efficiency and as an + unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric + method which means it makes no assumption about the underlying + distribution of the data. Since Theil-Sen is a median-based estimator, it + is more robust against corrupted data aka outliers. In univariate + setting, Theil-Sen has a breakdown point of about 29.3% in case of a + simple linear regression which means that it can tolerate arbitrary + corrupted data of up to 29.3%. -.. figure:: ../auto_examples/linear_model/images/sphx_glr_plot_theilsen_001.png - :target: ../auto_examples/linear_model/plot_theilsen.html - :align: center - :scale: 50% + .. figure:: ../auto_examples/linear_model/images/sphx_glr_plot_theilsen_001.png + :target: ../auto_examples/linear_model/plot_theilsen.html + :align: center + :scale: 50% -The implementation of :class:`TheilSenRegressor` in scikit-learn follows a -generalization to a multivariate linear regression model [#f1]_ using the -spatial median which is a generalization of the median to multiple -dimensions [#f2]_. + The implementation of :class:`TheilSenRegressor` in scikit-learn follows a + generalization to a multivariate linear regression model [#f1]_ using the + spatial median which is a generalization of the median to multiple + dimensions [#f2]_. -In terms of time and space complexity, Theil-Sen scales according to + In terms of time and space complexity, Theil-Sen scales according to -.. math:: - \binom{n_{\text{samples}}}{n_{\text{subsamples}}} + .. math:: + \binom{n_{\text{samples}}}{n_{\text{subsamples}}} -which makes it infeasible to be applied exhaustively to problems with a -large number of samples and features. Therefore, the magnitude of a -subpopulation can be chosen to limit the time and space complexity by -considering only a random subset of all possible combinations. + which makes it infeasible to be applied exhaustively to problems with a + large number of samples and features. Therefore, the magnitude of a + subpopulation can be chosen to limit the time and space complexity by + considering only a random subset of all possible combinations. -.. topic:: References: + .. rubric:: References .. [#f1] Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: `Theil-Sen Estimators in a Multiple Linear Regression Model. `_ @@ -1644,8 +1576,6 @@ considering only a random subset of all possible combinations. Also see the `Wikipedia page `_ -|details-end| - .. _huber_regression: @@ -1664,39 +1594,35 @@ but gives a lesser weight to them. :align: center :scale: 50% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_huber_vs_ridge.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_huber_vs_ridge.py` -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -The loss function that :class:`HuberRegressor` minimizes is given by + The loss function that :class:`HuberRegressor` minimizes is given by -.. math:: + .. math:: - \min_{w, \sigma} {\sum_{i=1}^n\left(\sigma + H_{\epsilon}\left(\frac{X_{i}w - y_{i}}{\sigma}\right)\sigma\right) + \alpha {||w||_2}^2} + \min_{w, \sigma} {\sum_{i=1}^n\left(\sigma + H_{\epsilon}\left(\frac{X_{i}w - y_{i}}{\sigma}\right)\sigma\right) + \alpha {||w||_2}^2} -where + where -.. math:: + .. math:: - H_{\epsilon}(z) = \begin{cases} - z^2, & \text {if } |z| < \epsilon, \\ - 2\epsilon|z| - \epsilon^2, & \text{otherwise} - \end{cases} + H_{\epsilon}(z) = \begin{cases} + z^2, & \text {if } |z| < \epsilon, \\ + 2\epsilon|z| - \epsilon^2, & \text{otherwise} + \end{cases} -It is advised to set the parameter ``epsilon`` to 1.35 to achieve 95% -statistical efficiency. + It is advised to set the parameter ``epsilon`` to 1.35 to achieve 95% + statistical efficiency. -.. topic:: References: + .. rubric:: References * Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale estimates, pg 172 -|details-end| - The :class:`HuberRegressor` differs from using :class:`SGDRegressor` with loss set to `huber` in the following ways. @@ -1746,59 +1672,51 @@ Most implementations of quantile regression are based on linear programming problem. The current implementation is based on :func:`scipy.optimize.linprog`. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_quantile_regression.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_quantile_regression.py` -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -As a linear model, the :class:`QuantileRegressor` gives linear predictions -:math:`\hat{y}(w, X) = Xw` for the :math:`q`-th quantile, :math:`q \in (0, 1)`. -The weights or coefficients :math:`w` are then found by the following -minimization problem: + As a linear model, the :class:`QuantileRegressor` gives linear predictions + :math:`\hat{y}(w, X) = Xw` for the :math:`q`-th quantile, :math:`q \in (0, 1)`. + The weights or coefficients :math:`w` are then found by the following + minimization problem: -.. math:: - \min_{w} {\frac{1}{n_{\text{samples}}} - \sum_i PB_q(y_i - X_i w) + \alpha ||w||_1}. + .. math:: + \min_{w} {\frac{1}{n_{\text{samples}}} + \sum_i PB_q(y_i - X_i w) + \alpha ||w||_1}. -This consists of the pinball loss (also known as linear loss), -see also :class:`~sklearn.metrics.mean_pinball_loss`, + This consists of the pinball loss (also known as linear loss), + see also :class:`~sklearn.metrics.mean_pinball_loss`, -.. math:: - PB_q(t) = q \max(t, 0) + (1 - q) \max(-t, 0) = - \begin{cases} - q t, & t > 0, \\ - 0, & t = 0, \\ - (q-1) t, & t < 0 - \end{cases} - -and the L1 penalty controlled by parameter ``alpha``, similar to -:class:`Lasso`. + .. math:: + PB_q(t) = q \max(t, 0) + (1 - q) \max(-t, 0) = + \begin{cases} + q t, & t > 0, \\ + 0, & t = 0, \\ + (q-1) t, & t < 0 + \end{cases} -As the pinball loss is only linear in the residuals, quantile regression is -much more robust to outliers than squared error based estimation of the mean. -Somewhat in between is the :class:`HuberRegressor`. + and the L1 penalty controlled by parameter ``alpha``, similar to + :class:`Lasso`. -|details-end| + As the pinball loss is only linear in the residuals, quantile regression is + much more robust to outliers than squared error based estimation of the mean. + Somewhat in between is the :class:`HuberRegressor`. -|details-start| -**References** -|details-split| +.. dropdown:: References -* Koenker, R., & Bassett Jr, G. (1978). `Regression quantiles. - `_ - Econometrica: journal of the Econometric Society, 33-50. + * Koenker, R., & Bassett Jr, G. (1978). `Regression quantiles. + `_ + Econometrica: journal of the Econometric Society, 33-50. -* Portnoy, S., & Koenker, R. (1997). :doi:`The Gaussian hare and the Laplacian - tortoise: computability of squared-error versus absolute-error estimators. - Statistical Science, 12, 279-300 <10.1214/ss/1030037960>`. + * Portnoy, S., & Koenker, R. (1997). :doi:`The Gaussian hare and the Laplacian + tortoise: computability of squared-error versus absolute-error estimators. + Statistical Science, 12, 279-300 <10.1214/ss/1030037960>`. -* Koenker, R. (2005). :doi:`Quantile Regression <10.1017/CBO9780511754098>`. - Cambridge University Press. - -|details-end| + * Koenker, R. (2005). :doi:`Quantile Regression <10.1017/CBO9780511754098>`. + Cambridge University Press. .. _polynomial_regression: @@ -1813,38 +1731,34 @@ on nonlinear functions of the data. This approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range of data. -|details-start| -**Mathematical details** -|details-split| - -For example, a simple linear regression can be extended by constructing -**polynomial features** from the coefficients. In the standard linear -regression case, you might have a model that looks like this for -two-dimensional data: +.. dropdown:: Mathematical details -.. math:: \hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2 + For example, a simple linear regression can be extended by constructing + **polynomial features** from the coefficients. In the standard linear + regression case, you might have a model that looks like this for + two-dimensional data: -If we want to fit a paraboloid to the data instead of a plane, we can combine -the features in second-order polynomials, so that the model looks like this: + .. math:: \hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2 -.. math:: \hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2 + If we want to fit a paraboloid to the data instead of a plane, we can combine + the features in second-order polynomials, so that the model looks like this: -The (sometimes surprising) observation is that this is *still a linear model*: -to see this, imagine creating a new set of features + .. math:: \hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2 -.. math:: z = [x_1, x_2, x_1 x_2, x_1^2, x_2^2] + The (sometimes surprising) observation is that this is *still a linear model*: + to see this, imagine creating a new set of features -With this re-labeling of the data, our problem can be written + .. math:: z = [x_1, x_2, x_1 x_2, x_1^2, x_2^2] -.. math:: \hat{y}(w, z) = w_0 + w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + With this re-labeling of the data, our problem can be written -We see that the resulting *polynomial regression* is in the same class of -linear models we considered above (i.e. the model is linear in :math:`w`) -and can be solved by the same techniques. By considering linear fits within -a higher-dimensional space built with these basis functions, the model has the -flexibility to fit a much broader range of data. + .. math:: \hat{y}(w, z) = w_0 + w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 -|details-end| + We see that the resulting *polynomial regression* is in the same class of + linear models we considered above (i.e. the model is linear in :math:`w`) + and can be solved by the same techniques. By considering linear fits within + a higher-dimensional space built with these basis functions, the model has the + flexibility to fit a much broader range of data. Here is an example of applying this idea to one-dimensional data, using polynomial features of varying degrees: diff --git a/doc/modules/manifold.rst b/doc/modules/manifold.rst index 7cc6776e37daa..785fba3097edf 100644 --- a/doc/modules/manifold.rst +++ b/doc/modules/manifold.rst @@ -102,13 +102,13 @@ unsupervised: it learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` for an example of - dimensionality reduction on handwritten digits. +* See :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` for an example of + dimensionality reduction on handwritten digits. - * See :ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py` for an example of - dimensionality reduction on a toy "S-curve" dataset. +* See :ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py` for an example of + dimensionality reduction on a toy "S-curve" dataset. The manifold learning implementations available in scikit-learn are summarized below @@ -130,47 +130,43 @@ distances between all points. Isomap can be performed with the object :align: center :scale: 50 -|details-start| -**Complexity** -|details-split| +.. dropdown:: Complexity -The Isomap algorithm comprises three stages: + The Isomap algorithm comprises three stages: -1. **Nearest neighbor search.** Isomap uses - :class:`~sklearn.neighbors.BallTree` for efficient neighbor search. - The cost is approximately :math:`O[D \log(k) N \log(N)]`, for :math:`k` - nearest neighbors of :math:`N` points in :math:`D` dimensions. + 1. **Nearest neighbor search.** Isomap uses + :class:`~sklearn.neighbors.BallTree` for efficient neighbor search. + The cost is approximately :math:`O[D \log(k) N \log(N)]`, for :math:`k` + nearest neighbors of :math:`N` points in :math:`D` dimensions. -2. **Shortest-path graph search.** The most efficient known algorithms - for this are *Dijkstra's Algorithm*, which is approximately - :math:`O[N^2(k + \log(N))]`, or the *Floyd-Warshall algorithm*, which - is :math:`O[N^3]`. The algorithm can be selected by the user with - the ``path_method`` keyword of ``Isomap``. If unspecified, the code - attempts to choose the best algorithm for the input data. + 2. **Shortest-path graph search.** The most efficient known algorithms + for this are *Dijkstra's Algorithm*, which is approximately + :math:`O[N^2(k + \log(N))]`, or the *Floyd-Warshall algorithm*, which + is :math:`O[N^3]`. The algorithm can be selected by the user with + the ``path_method`` keyword of ``Isomap``. If unspecified, the code + attempts to choose the best algorithm for the input data. -3. **Partial eigenvalue decomposition.** The embedding is encoded in the - eigenvectors corresponding to the :math:`d` largest eigenvalues of the - :math:`N \times N` isomap kernel. For a dense solver, the cost is - approximately :math:`O[d N^2]`. This cost can often be improved using - the ``ARPACK`` solver. The eigensolver can be specified by the user - with the ``eigen_solver`` keyword of ``Isomap``. If unspecified, the - code attempts to choose the best algorithm for the input data. + 3. **Partial eigenvalue decomposition.** The embedding is encoded in the + eigenvectors corresponding to the :math:`d` largest eigenvalues of the + :math:`N \times N` isomap kernel. For a dense solver, the cost is + approximately :math:`O[d N^2]`. This cost can often be improved using + the ``ARPACK`` solver. The eigensolver can be specified by the user + with the ``eigen_solver`` keyword of ``Isomap``. If unspecified, the + code attempts to choose the best algorithm for the input data. -The overall complexity of Isomap is -:math:`O[D \log(k) N \log(N)] + O[N^2(k + \log(N))] + O[d N^2]`. + The overall complexity of Isomap is + :math:`O[D \log(k) N \log(N)] + O[N^2(k + \log(N))] + O[d N^2]`. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -|details-end| +.. rubric:: References -.. topic:: References: - - * `"A global geometric framework for nonlinear dimensionality reduction" - `_ - Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. Science 290 (5500) +* `"A global geometric framework for nonlinear dimensionality reduction" + `_ + Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. Science 290 (5500) .. _locally_linear_embedding: @@ -191,36 +187,32 @@ Locally linear embedding can be performed with function :align: center :scale: 50 -|details-start| -**Complexity** -|details-split| - -The standard LLE algorithm comprises three stages: +.. dropdown:: Complexity -1. **Nearest Neighbors Search**. See discussion under Isomap above. + The standard LLE algorithm comprises three stages: -2. **Weight Matrix Construction**. :math:`O[D N k^3]`. - The construction of the LLE weight matrix involves the solution of a - :math:`k \times k` linear equation for each of the :math:`N` local - neighborhoods + 1. **Nearest Neighbors Search**. See discussion under Isomap above. -3. **Partial Eigenvalue Decomposition**. See discussion under Isomap above. + 2. **Weight Matrix Construction**. :math:`O[D N k^3]`. + The construction of the LLE weight matrix involves the solution of a + :math:`k \times k` linear equation for each of the :math:`N` local + neighborhoods. -The overall complexity of standard LLE is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[d N^2]`. + 3. **Partial Eigenvalue Decomposition**. See discussion under Isomap above. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + The overall complexity of standard LLE is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[d N^2]`. -|details-end| + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -.. topic:: References: +.. rubric:: References - * `"Nonlinear dimensionality reduction by locally linear embedding" - `_ - Roweis, S. & Saul, L. Science 290:2323 (2000) +* `"Nonlinear dimensionality reduction by locally linear embedding" + `_ + Roweis, S. & Saul, L. Science 290:2323 (2000) Modified Locally Linear Embedding @@ -248,38 +240,34 @@ It requires ``n_neighbors > n_components``. :align: center :scale: 50 -|details-start| -**Complexity** -|details-split| - -The MLLE algorithm comprises three stages: +.. dropdown:: Complexity -1. **Nearest Neighbors Search**. Same as standard LLE + The MLLE algorithm comprises three stages: -2. **Weight Matrix Construction**. Approximately - :math:`O[D N k^3] + O[N (k-D) k^2]`. The first term is exactly equivalent - to that of standard LLE. The second term has to do with constructing the - weight matrix from multiple weights. In practice, the added cost of - constructing the MLLE weight matrix is relatively small compared to the - cost of stages 1 and 3. + 1. **Nearest Neighbors Search**. Same as standard LLE -3. **Partial Eigenvalue Decomposition**. Same as standard LLE + 2. **Weight Matrix Construction**. Approximately + :math:`O[D N k^3] + O[N (k-D) k^2]`. The first term is exactly equivalent + to that of standard LLE. The second term has to do with constructing the + weight matrix from multiple weights. In practice, the added cost of + constructing the MLLE weight matrix is relatively small compared to the + cost of stages 1 and 3. -The overall complexity of MLLE is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N (k-D) k^2] + O[d N^2]`. + 3. **Partial Eigenvalue Decomposition**. Same as standard LLE -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + The overall complexity of MLLE is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N (k-D) k^2] + O[d N^2]`. -|details-end| + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -.. topic:: References: +.. rubric:: References - * `"MLLE: Modified Locally Linear Embedding Using Multiple Weights" - `_ - Zhang, Z. & Wang, J. +* `"MLLE: Modified Locally Linear Embedding Using Multiple Weights" + `_ + Zhang, Z. & Wang, J. Hessian Eigenmapping @@ -301,36 +289,32 @@ It requires ``n_neighbors > n_components * (n_components + 3) / 2``. :align: center :scale: 50 -|details-start| -**Complexity** -|details-split| +.. dropdown:: Complexity The HLLE algorithm comprises three stages: -1. **Nearest Neighbors Search**. Same as standard LLE + 1. **Nearest Neighbors Search**. Same as standard LLE -2. **Weight Matrix Construction**. Approximately - :math:`O[D N k^3] + O[N d^6]`. The first term reflects a similar - cost to that of standard LLE. The second term comes from a QR - decomposition of the local hessian estimator. + 2. **Weight Matrix Construction**. Approximately + :math:`O[D N k^3] + O[N d^6]`. The first term reflects a similar + cost to that of standard LLE. The second term comes from a QR + decomposition of the local hessian estimator. -3. **Partial Eigenvalue Decomposition**. Same as standard LLE + 3. **Partial Eigenvalue Decomposition**. Same as standard LLE -The overall complexity of standard HLLE is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N d^6] + O[d N^2]`. + The overall complexity of standard HLLE is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N d^6] + O[d N^2]`. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -|details-end| +.. rubric:: References -.. topic:: References: - - * `"Hessian Eigenmaps: Locally linear embedding techniques for - high-dimensional data" `_ - Donoho, D. & Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003) +* `"Hessian Eigenmaps: Locally linear embedding techniques for + high-dimensional data" `_ + Donoho, D. & Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003) .. _spectral_embedding: @@ -348,38 +332,34 @@ preserving local distances. Spectral embedding can be performed with the function :func:`spectral_embedding` or its object-oriented counterpart :class:`SpectralEmbedding`. -|details-start| -**Complexity** -|details-split| - -The Spectral Embedding (Laplacian Eigenmaps) algorithm comprises three stages: +.. dropdown:: Complexity -1. **Weighted Graph Construction**. Transform the raw input data into - graph representation using affinity (adjacency) matrix representation. + The Spectral Embedding (Laplacian Eigenmaps) algorithm comprises three stages: -2. **Graph Laplacian Construction**. unnormalized Graph Laplacian - is constructed as :math:`L = D - A` for and normalized one as - :math:`L = D^{-\frac{1}{2}} (D - A) D^{-\frac{1}{2}}`. + 1. **Weighted Graph Construction**. Transform the raw input data into + graph representation using affinity (adjacency) matrix representation. -3. **Partial Eigenvalue Decomposition**. Eigenvalue decomposition is - done on graph Laplacian + 2. **Graph Laplacian Construction**. unnormalized Graph Laplacian + is constructed as :math:`L = D - A` for and normalized one as + :math:`L = D^{-\frac{1}{2}} (D - A) D^{-\frac{1}{2}}`. -The overall complexity of spectral embedding is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[d N^2]`. + 3. **Partial Eigenvalue Decomposition**. Eigenvalue decomposition is + done on graph Laplacian. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + The overall complexity of spectral embedding is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[d N^2]`. -|details-end| + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -.. topic:: References: +.. rubric:: References - * `"Laplacian Eigenmaps for Dimensionality Reduction - and Data Representation" - `_ - M. Belkin, P. Niyogi, Neural Computation, June 2003; 15 (6):1373-1396 +* `"Laplacian Eigenmaps for Dimensionality Reduction + and Data Representation" + `_ + M. Belkin, P. Niyogi, Neural Computation, June 2003; 15 (6):1373-1396 Local Tangent Space Alignment @@ -399,36 +379,32 @@ tangent spaces to learn the embedding. LTSA can be performed with function :align: center :scale: 50 -|details-start| -**Complexity** -|details-split| +.. dropdown:: Complexity -The LTSA algorithm comprises three stages: + The LTSA algorithm comprises three stages: -1. **Nearest Neighbors Search**. Same as standard LLE + 1. **Nearest Neighbors Search**. Same as standard LLE -2. **Weight Matrix Construction**. Approximately - :math:`O[D N k^3] + O[k^2 d]`. The first term reflects a similar - cost to that of standard LLE. + 2. **Weight Matrix Construction**. Approximately + :math:`O[D N k^3] + O[k^2 d]`. The first term reflects a similar + cost to that of standard LLE. -3. **Partial Eigenvalue Decomposition**. Same as standard LLE + 3. **Partial Eigenvalue Decomposition**. Same as standard LLE -The overall complexity of standard LTSA is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[k^2 d] + O[d N^2]`. + The overall complexity of standard LTSA is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[k^2 d] + O[d N^2]`. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension -|details-end| +.. rubric:: References -.. topic:: References: - - * :arxiv:`"Principal manifolds and nonlinear dimensionality reduction via - tangent space alignment" - ` - Zhang, Z. & Zha, H. Journal of Shanghai Univ. 8:406 (2004) +* :arxiv:`"Principal manifolds and nonlinear dimensionality reduction via + tangent space alignment" + ` + Zhang, Z. & Zha, H. Journal of Shanghai Univ. 8:406 (2004) .. _multidimensional_scaling: @@ -467,67 +443,59 @@ the similarities chosen in some optimal ways. The objective, called the stress, is then defined by :math:`\sum_{i < j} d_{ij}(X) - \hat{d}_{ij}(X)` -|details-start| -**Metric MDS** -|details-split| - -The simplest metric :class:`MDS` model, called *absolute MDS*, disparities are defined by -:math:`\hat{d}_{ij} = S_{ij}`. With absolute MDS, the value :math:`S_{ij}` -should then correspond exactly to the distance between point :math:`i` and -:math:`j` in the embedding point. +.. dropdown:: Metric MDS -Most commonly, disparities are set to :math:`\hat{d}_{ij} = b S_{ij}`. + The simplest metric :class:`MDS` model, called *absolute MDS*, disparities are defined by + :math:`\hat{d}_{ij} = S_{ij}`. With absolute MDS, the value :math:`S_{ij}` + should then correspond exactly to the distance between point :math:`i` and + :math:`j` in the embedding point. -|details-end| + Most commonly, disparities are set to :math:`\hat{d}_{ij} = b S_{ij}`. -|details-start| -**Nonmetric MDS** -|details-split| +.. dropdown:: Nonmetric MDS -Non metric :class:`MDS` focuses on the ordination of the data. If -:math:`S_{ij} > S_{jk}`, then the embedding should enforce :math:`d_{ij} < -d_{jk}`. For this reason, we discuss it in terms of dissimilarities -(:math:`\delta_{ij}`) instead of similarities (:math:`S_{ij}`). Note that -dissimilarities can easily be obtained from similarities through a simple -transform, e.g. :math:`\delta_{ij}=c_1-c_2 S_{ij}` for some real constants -:math:`c_1, c_2`. A simple algorithm to enforce proper ordination is to use a -monotonic regression of :math:`d_{ij}` on :math:`\delta_{ij}`, yielding -disparities :math:`\hat{d}_{ij}` in the same order as :math:`\delta_{ij}`. + Non metric :class:`MDS` focuses on the ordination of the data. If + :math:`S_{ij} > S_{jk}`, then the embedding should enforce :math:`d_{ij} < + d_{jk}`. For this reason, we discuss it in terms of dissimilarities + (:math:`\delta_{ij}`) instead of similarities (:math:`S_{ij}`). Note that + dissimilarities can easily be obtained from similarities through a simple + transform, e.g. :math:`\delta_{ij}=c_1-c_2 S_{ij}` for some real constants + :math:`c_1, c_2`. A simple algorithm to enforce proper ordination is to use a + monotonic regression of :math:`d_{ij}` on :math:`\delta_{ij}`, yielding + disparities :math:`\hat{d}_{ij}` in the same order as :math:`\delta_{ij}`. -A trivial solution to this problem is to set all the points on the origin. In -order to avoid that, the disparities :math:`\hat{d}_{ij}` are normalized. Note -that since we only care about relative ordering, our objective should be -invariant to simple translation and scaling, however the stress used in metric -MDS is sensitive to scaling. To address this, non-metric MDS may use a -normalized stress, known as Stress-1 defined as + A trivial solution to this problem is to set all the points on the origin. In + order to avoid that, the disparities :math:`\hat{d}_{ij}` are normalized. Note + that since we only care about relative ordering, our objective should be + invariant to simple translation and scaling, however the stress used in metric + MDS is sensitive to scaling. To address this, non-metric MDS may use a + normalized stress, known as Stress-1 defined as -.. math:: - \sqrt{\frac{\sum_{i < j} (d_{ij} - \hat{d}_{ij})^2}{\sum_{i < j} d_{ij}^2}}. + .. math:: + \sqrt{\frac{\sum_{i < j} (d_{ij} - \hat{d}_{ij})^2}{\sum_{i < j} d_{ij}^2}}. -The use of normalized Stress-1 can be enabled by setting `normalized_stress=True`, -however it is only compatible with the non-metric MDS problem and will be ignored -in the metric case. - -.. figure:: ../auto_examples/manifold/images/sphx_glr_plot_mds_001.png - :target: ../auto_examples/manifold/plot_mds.html - :align: center - :scale: 60 + The use of normalized Stress-1 can be enabled by setting `normalized_stress=True`, + however it is only compatible with the non-metric MDS problem and will be ignored + in the metric case. -|details-end| + .. figure:: ../auto_examples/manifold/images/sphx_glr_plot_mds_001.png + :target: ../auto_examples/manifold/plot_mds.html + :align: center + :scale: 60 -.. topic:: References: +.. rubric:: References - * `"Modern Multidimensional Scaling - Theory and Applications" - `_ - Borg, I.; Groenen P. Springer Series in Statistics (1997) +* `"Modern Multidimensional Scaling - Theory and Applications" + `_ + Borg, I.; Groenen P. Springer Series in Statistics (1997) - * `"Nonmetric multidimensional scaling: a numerical method" - `_ - Kruskal, J. Psychometrika, 29 (1964) +* `"Nonmetric multidimensional scaling: a numerical method" + `_ + Kruskal, J. Psychometrika, 29 (1964) - * `"Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" - `_ - Kruskal, J. Psychometrika, 29, (1964) +* `"Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" + `_ + Kruskal, J. Psychometrika, 29, (1964) .. _t_sne: @@ -575,120 +543,110 @@ The disadvantages to using t-SNE are roughly: :align: center :scale: 50 -|details-start| -**Optimizing t-SNE** -|details-split| - -The main purpose of t-SNE is visualization of high-dimensional data. Hence, -it works best when the data will be embedded on two or three dimensions. - -Optimizing the KL divergence can be a little bit tricky sometimes. There are -five parameters that control the optimization of t-SNE and therefore possibly -the quality of the resulting embedding: - -* perplexity -* early exaggeration factor -* learning rate -* maximum number of iterations -* angle (not used in the exact method) - -The perplexity is defined as :math:`k=2^{(S)}` where :math:`S` is the Shannon -entropy of the conditional probability distribution. The perplexity of a -:math:`k`-sided die is :math:`k`, so that :math:`k` is effectively the number of -nearest neighbors t-SNE considers when generating the conditional probabilities. -Larger perplexities lead to more nearest neighbors and less sensitive to small -structure. Conversely a lower perplexity considers a smaller number of -neighbors, and thus ignores more global information in favour of the -local neighborhood. As dataset sizes get larger more points will be -required to get a reasonable sample of the local neighborhood, and hence -larger perplexities may be required. Similarly noisier datasets will require -larger perplexity values to encompass enough local neighbors to see beyond -the background noise. - -The maximum number of iterations is usually high enough and does not need -any tuning. The optimization consists of two phases: the early exaggeration -phase and the final optimization. During early exaggeration the joint -probabilities in the original space will be artificially increased by -multiplication with a given factor. Larger factors result in larger gaps -between natural clusters in the data. If the factor is too high, the KL -divergence could increase during this phase. Usually it does not have to be -tuned. A critical parameter is the learning rate. If it is too low gradient -descent will get stuck in a bad local minimum. If it is too high the KL -divergence will increase during optimization. A heuristic suggested in -Belkina et al. (2019) is to set the learning rate to the sample size -divided by the early exaggeration factor. We implement this heuristic -as `learning_rate='auto'` argument. More tips can be found in -Laurens van der Maaten's FAQ (see references). The last parameter, angle, -is a tradeoff between performance and accuracy. Larger angles imply that we -can approximate larger regions by a single point, leading to better speed -but less accurate results. - -`"How to Use t-SNE Effectively" `_ -provides a good discussion of the effects of the various parameters, as well -as interactive plots to explore the effects of different parameters. - -|details-end| - -|details-start| -**Barnes-Hut t-SNE** -|details-split| - -The Barnes-Hut t-SNE that has been implemented here is usually much slower than -other manifold learning algorithms. The optimization is quite difficult -and the computation of the gradient is :math:`O[d N log(N)]`, where :math:`d` -is the number of output dimensions and :math:`N` is the number of samples. The -Barnes-Hut method improves on the exact method where t-SNE complexity is -:math:`O[d N^2]`, but has several other notable differences: - -* The Barnes-Hut implementation only works when the target dimensionality is 3 - or less. The 2D case is typical when building visualizations. -* Barnes-Hut only works with dense input data. Sparse data matrices can only be - embedded with the exact method or can be approximated by a dense low rank - projection for instance using :class:`~sklearn.decomposition.PCA` -* Barnes-Hut is an approximation of the exact method. The approximation is - parameterized with the angle parameter, therefore the angle parameter is - unused when method="exact" -* Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed - hundred of thousands of data points while the exact method can handle - thousands of samples before becoming computationally intractable - -For visualization purpose (which is the main use case of t-SNE), using the -Barnes-Hut method is strongly recommended. The exact t-SNE method is useful -for checking the theoretically properties of the embedding possibly in higher -dimensional space but limit to small datasets due to computational constraints. - -Also note that the digits labels roughly match the natural grouping found by -t-SNE while the linear 2D projection of the PCA model yields a representation -where label regions largely overlap. This is a strong clue that this data can -be well separated by non linear methods that focus on the local structure (e.g. -an SVM with a Gaussian RBF kernel). However, failing to visualize well -separated homogeneously labeled groups with t-SNE in 2D does not necessarily -imply that the data cannot be correctly classified by a supervised model. It -might be the case that 2 dimensions are not high enough to accurately represent -the internal structure of the data. - -|details-end| - -.. topic:: References: - - * `"Visualizing High-Dimensional Data Using t-SNE" - `_ - van der Maaten, L.J.P.; Hinton, G. Journal of Machine Learning Research - (2008) - - * `"t-Distributed Stochastic Neighbor Embedding" - `_ - van der Maaten, L.J.P. - - * `"Accelerating t-SNE using Tree-Based Algorithms" - `_ - van der Maaten, L.J.P.; Journal of Machine Learning Research 15(Oct):3221-3245, 2014. - - * `"Automated optimized parameters for T-distributed stochastic neighbor - embedding improve visualization and analysis of large datasets" - `_ - Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., - Snyder-Cappione, J.E., Nature Communications 10, 5415 (2019). +.. dropdown:: Optimizing t-SNE + + The main purpose of t-SNE is visualization of high-dimensional data. Hence, + it works best when the data will be embedded on two or three dimensions. + + Optimizing the KL divergence can be a little bit tricky sometimes. There are + five parameters that control the optimization of t-SNE and therefore possibly + the quality of the resulting embedding: + + * perplexity + * early exaggeration factor + * learning rate + * maximum number of iterations + * angle (not used in the exact method) + + The perplexity is defined as :math:`k=2^{(S)}` where :math:`S` is the Shannon + entropy of the conditional probability distribution. The perplexity of a + :math:`k`-sided die is :math:`k`, so that :math:`k` is effectively the number of + nearest neighbors t-SNE considers when generating the conditional probabilities. + Larger perplexities lead to more nearest neighbors and less sensitive to small + structure. Conversely a lower perplexity considers a smaller number of + neighbors, and thus ignores more global information in favour of the + local neighborhood. As dataset sizes get larger more points will be + required to get a reasonable sample of the local neighborhood, and hence + larger perplexities may be required. Similarly noisier datasets will require + larger perplexity values to encompass enough local neighbors to see beyond + the background noise. + + The maximum number of iterations is usually high enough and does not need + any tuning. The optimization consists of two phases: the early exaggeration + phase and the final optimization. During early exaggeration the joint + probabilities in the original space will be artificially increased by + multiplication with a given factor. Larger factors result in larger gaps + between natural clusters in the data. If the factor is too high, the KL + divergence could increase during this phase. Usually it does not have to be + tuned. A critical parameter is the learning rate. If it is too low gradient + descent will get stuck in a bad local minimum. If it is too high the KL + divergence will increase during optimization. A heuristic suggested in + Belkina et al. (2019) is to set the learning rate to the sample size + divided by the early exaggeration factor. We implement this heuristic + as `learning_rate='auto'` argument. More tips can be found in + Laurens van der Maaten's FAQ (see references). The last parameter, angle, + is a tradeoff between performance and accuracy. Larger angles imply that we + can approximate larger regions by a single point, leading to better speed + but less accurate results. + + `"How to Use t-SNE Effectively" `_ + provides a good discussion of the effects of the various parameters, as well + as interactive plots to explore the effects of different parameters. + +.. dropdown:: Barnes-Hut t-SNE + + The Barnes-Hut t-SNE that has been implemented here is usually much slower than + other manifold learning algorithms. The optimization is quite difficult + and the computation of the gradient is :math:`O[d N log(N)]`, where :math:`d` + is the number of output dimensions and :math:`N` is the number of samples. The + Barnes-Hut method improves on the exact method where t-SNE complexity is + :math:`O[d N^2]`, but has several other notable differences: + + * The Barnes-Hut implementation only works when the target dimensionality is 3 + or less. The 2D case is typical when building visualizations. + * Barnes-Hut only works with dense input data. Sparse data matrices can only be + embedded with the exact method or can be approximated by a dense low rank + projection for instance using :class:`~sklearn.decomposition.PCA` + * Barnes-Hut is an approximation of the exact method. The approximation is + parameterized with the angle parameter, therefore the angle parameter is + unused when method="exact" + * Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed + hundred of thousands of data points while the exact method can handle + thousands of samples before becoming computationally intractable + + For visualization purpose (which is the main use case of t-SNE), using the + Barnes-Hut method is strongly recommended. The exact t-SNE method is useful + for checking the theoretically properties of the embedding possibly in higher + dimensional space but limit to small datasets due to computational constraints. + + Also note that the digits labels roughly match the natural grouping found by + t-SNE while the linear 2D projection of the PCA model yields a representation + where label regions largely overlap. This is a strong clue that this data can + be well separated by non linear methods that focus on the local structure (e.g. + an SVM with a Gaussian RBF kernel). However, failing to visualize well + separated homogeneously labeled groups with t-SNE in 2D does not necessarily + imply that the data cannot be correctly classified by a supervised model. It + might be the case that 2 dimensions are not high enough to accurately represent + the internal structure of the data. + +.. rubric:: References + +* `"Visualizing High-Dimensional Data Using t-SNE" + `_ + van der Maaten, L.J.P.; Hinton, G. Journal of Machine Learning Research (2008) + +* `"t-Distributed Stochastic Neighbor Embedding" + `_ van der Maaten, L.J.P. + +* `"Accelerating t-SNE using Tree-Based Algorithms" + `_ + van der Maaten, L.J.P.; Journal of Machine Learning Research 15(Oct):3221-3245, 2014. + +* `"Automated optimized parameters for T-distributed stochastic neighbor + embedding improve visualization and analysis of large datasets" + `_ + Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., + Snyder-Cappione, J.E., Nature Communications 10, 5415 (2019). Tips on practical use ===================== diff --git a/doc/modules/metrics.rst b/doc/modules/metrics.rst index caea39319e869..63ea797223c22 100644 --- a/doc/modules/metrics.rst +++ b/doc/modules/metrics.rst @@ -87,11 +87,11 @@ represented as tf-idf vectors. can produce normalized vectors, in which case :func:`cosine_similarity` is equivalent to :func:`linear_kernel`, only slower.) -.. topic:: References: +.. rubric:: References - * C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to - Information Retrieval. Cambridge University Press. - https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html +* C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to + Information Retrieval. Cambridge University Press. + https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html .. _linear_kernel: @@ -222,10 +222,10 @@ which is a distance between discrete probability distributions. The chi squared kernel is most commonly used on histograms (bags) of visual words. -.. topic:: References: +.. rubric:: References - * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. - Local features and kernels for classification of texture and object - categories: A comprehensive study - International Journal of Computer Vision 2007 - https://hal.archives-ouvertes.fr/hal-00171412/document +* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. + Local features and kernels for classification of texture and object + categories: A comprehensive study + International Journal of Computer Vision 2007 + https://hal.archives-ouvertes.fr/hal-00171412/document diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst index df5d8020a1369..1fd72c3158336 100644 --- a/doc/modules/mixture.rst +++ b/doc/modules/mixture.rst @@ -60,128 +60,111 @@ full covariance. :align: center :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_covariances.py` for an example of - using the Gaussian mixture as clustering on the iris dataset. +* See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_covariances.py` for an example of + using the Gaussian mixture as clustering on the iris dataset. - * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_pdf.py` for an example on plotting the - density estimation. +* See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_pdf.py` for an example on plotting the + density estimation. -|details-start| -**Pros and cons of class GaussianMixture** -|details-split| +.. dropdown:: Pros and cons of class GaussianMixture -.. topic:: Pros: + .. rubric:: Pros - :Speed: It is the fastest algorithm for learning mixture models + :Speed: It is the fastest algorithm for learning mixture models - :Agnostic: As this algorithm maximizes only the likelihood, it - will not bias the means towards zero, or bias the cluster sizes to - have specific structures that might or might not apply. + :Agnostic: As this algorithm maximizes only the likelihood, it + will not bias the means towards zero, or bias the cluster sizes to + have specific structures that might or might not apply. -.. topic:: Cons: + .. rubric:: Cons - :Singularities: When one has insufficiently many points per - mixture, estimating the covariance matrices becomes difficult, - and the algorithm is known to diverge and find solutions with - infinite likelihood unless one regularizes the covariances artificially. + :Singularities: When one has insufficiently many points per + mixture, estimating the covariance matrices becomes difficult, + and the algorithm is known to diverge and find solutions with + infinite likelihood unless one regularizes the covariances artificially. - :Number of components: This algorithm will always use all the - components it has access to, needing held-out data - or information theoretical criteria to decide how many components to use - in the absence of external cues. + :Number of components: This algorithm will always use all the + components it has access to, needing held-out data + or information theoretical criteria to decide how many components to use + in the absence of external cues. -|details-end| +.. dropdown:: Selecting the number of components in a classical Gaussian Mixture model + The BIC criterion can be used to select the number of components in a Gaussian + Mixture in an efficient way. In theory, it recovers the true number of + components only in the asymptotic regime (i.e. if much data is available and + assuming that the data was actually generated i.i.d. from a mixture of Gaussian + distribution). Note that using a :ref:`Variational Bayesian Gaussian mixture ` + avoids the specification of the number of components for a Gaussian mixture + model. -|details-start| -**Selecting the number of components in a classical Gaussian Mixture model** -|details-split| + .. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_selection_002.png + :target: ../auto_examples/mixture/plot_gmm_selection.html + :align: center + :scale: 50% -The BIC criterion can be used to select the number of components in a Gaussian -Mixture in an efficient way. In theory, it recovers the true number of -components only in the asymptotic regime (i.e. if much data is available and -assuming that the data was actually generated i.i.d. from a mixture of Gaussian -distribution). Note that using a :ref:`Variational Bayesian Gaussian mixture ` -avoids the specification of the number of components for a Gaussian mixture -model. + .. rubric:: Examples -.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_selection_002.png - :target: ../auto_examples/mixture/plot_gmm_selection.html - :align: center - :scale: 50% - -.. topic:: Examples: - - * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_selection.py` for an example - of model selection performed with classical Gaussian mixture. - -|details-end| + * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_selection.py` for an example + of model selection performed with classical Gaussian mixture. .. _expectation_maximization: -|details-start| -**Estimation algorithm expectation-maximization** -|details-split| - -The main difficulty in learning Gaussian mixture models from unlabeled -data is that one usually doesn't know which points came from -which latent component (if one has access to this information it gets -very easy to fit a separate Gaussian distribution to each set of -points). `Expectation-maximization -`_ -is a well-founded statistical -algorithm to get around this problem by an iterative process. First -one assumes random components (randomly centered on data points, -learned from k-means, or even just normally distributed around the -origin) and computes for each point a probability of being generated by -each component of the model. Then, one tweaks the -parameters to maximize the likelihood of the data given those -assignments. Repeating this process is guaranteed to always converge -to a local optimum. - -|details-end| - -|details-start| -**Choice of the Initialization method** -|details-split| - -There is a choice of four initialization methods (as well as inputting user defined -initial means) to generate the initial centers for the model components: - -k-means (default) - This applies a traditional k-means clustering algorithm. - This can be computationally expensive compared to other initialization methods. - -k-means++ - This uses the initialization method of k-means clustering: k-means++. - This will pick the first center at random from the data. Subsequent centers will be - chosen from a weighted distribution of the data favouring points further away from - existing centers. k-means++ is the default initialization for k-means so will be - quicker than running a full k-means but can still take a significant amount of - time for large data sets with many components. - -random_from_data - This will pick random data points from the input data as the initial - centers. This is a very fast method of initialization but can produce non-convergent - results if the chosen points are too close to each other. - -random - Centers are chosen as a small perturbation away from the mean of all data. - This method is simple but can lead to the model taking longer to converge. - -.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png - :target: ../auto_examples/mixture/plot_gmm_init.html - :align: center - :scale: 50% - -.. topic:: Examples: - - * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of - using different initializations in Gaussian Mixture. - -|details-end| +.. dropdown:: Estimation algorithm expectation-maximization + + The main difficulty in learning Gaussian mixture models from unlabeled + data is that one usually doesn't know which points came from + which latent component (if one has access to this information it gets + very easy to fit a separate Gaussian distribution to each set of + points). `Expectation-maximization + `_ + is a well-founded statistical + algorithm to get around this problem by an iterative process. First + one assumes random components (randomly centered on data points, + learned from k-means, or even just normally distributed around the + origin) and computes for each point a probability of being generated by + each component of the model. Then, one tweaks the + parameters to maximize the likelihood of the data given those + assignments. Repeating this process is guaranteed to always converge + to a local optimum. + +.. dropdown:: Choice of the Initialization method + + There is a choice of four initialization methods (as well as inputting user defined + initial means) to generate the initial centers for the model components: + + k-means (default) + This applies a traditional k-means clustering algorithm. + This can be computationally expensive compared to other initialization methods. + + k-means++ + This uses the initialization method of k-means clustering: k-means++. + This will pick the first center at random from the data. Subsequent centers will be + chosen from a weighted distribution of the data favouring points further away from + existing centers. k-means++ is the default initialization for k-means so will be + quicker than running a full k-means but can still take a significant amount of + time for large data sets with many components. + + random_from_data + This will pick random data points from the input data as the initial + centers. This is a very fast method of initialization but can produce non-convergent + results if the chosen points are too close to each other. + + random + Centers are chosen as a small perturbation away from the mean of all data. + This method is simple but can lead to the model taking longer to converge. + + .. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png + :target: ../auto_examples/mixture/plot_gmm_init.html + :align: center + :scale: 50% + + .. rubric:: Examples + + * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of + using different initializations in Gaussian Mixture. .. _bgmm: @@ -276,63 +259,58 @@ from the two resulting mixtures. -.. topic:: Examples: - - * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm.py` for an example on - plotting the confidence ellipsoids for both :class:`GaussianMixture` - and :class:`BayesianGaussianMixture`. - - * :ref:`sphx_glr_auto_examples_mixture_plot_gmm_sin.py` shows using - :class:`GaussianMixture` and :class:`BayesianGaussianMixture` to fit a - sine wave. +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_mixture_plot_concentration_prior.py` - for an example plotting the confidence ellipsoids for the - :class:`BayesianGaussianMixture` with different - ``weight_concentration_prior_type`` for different values of the parameter - ``weight_concentration_prior``. +* See :ref:`sphx_glr_auto_examples_mixture_plot_gmm.py` for an example on + plotting the confidence ellipsoids for both :class:`GaussianMixture` + and :class:`BayesianGaussianMixture`. -|details-start| -**Pros and cons of variational inference with BayesianGaussianMixture** -|details-split| +* :ref:`sphx_glr_auto_examples_mixture_plot_gmm_sin.py` shows using + :class:`GaussianMixture` and :class:`BayesianGaussianMixture` to fit a + sine wave. -.. topic:: Pros: +* See :ref:`sphx_glr_auto_examples_mixture_plot_concentration_prior.py` + for an example plotting the confidence ellipsoids for the + :class:`BayesianGaussianMixture` with different + ``weight_concentration_prior_type`` for different values of the parameter + ``weight_concentration_prior``. - :Automatic selection: when ``weight_concentration_prior`` is small enough and - ``n_components`` is larger than what is found necessary by the model, the - Variational Bayesian mixture model has a natural tendency to set some mixture - weights values close to zero. This makes it possible to let the model choose - a suitable number of effective components automatically. Only an upper bound - of this number needs to be provided. Note however that the "ideal" number of - active components is very application specific and is typically ill-defined - in a data exploration setting. +.. dropdown:: Pros and cons of variational inference with BayesianGaussianMixture - :Less sensitivity to the number of parameters: unlike finite models, which will - almost always use all components as much as they can, and hence will produce - wildly different solutions for different numbers of components, the - variational inference with a Dirichlet process prior - (``weight_concentration_prior_type='dirichlet_process'``) won't change much - with changes to the parameters, leading to more stability and less tuning. + .. rubric:: Pros - :Regularization: due to the incorporation of prior information, - variational solutions have less pathological special cases than - expectation-maximization solutions. + :Automatic selection: when ``weight_concentration_prior`` is small enough and + ``n_components`` is larger than what is found necessary by the model, the + Variational Bayesian mixture model has a natural tendency to set some mixture + weights values close to zero. This makes it possible to let the model choose + a suitable number of effective components automatically. Only an upper bound + of this number needs to be provided. Note however that the "ideal" number of + active components is very application specific and is typically ill-defined + in a data exploration setting. + :Less sensitivity to the number of parameters: unlike finite models, which will + almost always use all components as much as they can, and hence will produce + wildly different solutions for different numbers of components, the + variational inference with a Dirichlet process prior + (``weight_concentration_prior_type='dirichlet_process'``) won't change much + with changes to the parameters, leading to more stability and less tuning. -.. topic:: Cons: + :Regularization: due to the incorporation of prior information, + variational solutions have less pathological special cases than + expectation-maximization solutions. - :Speed: the extra parametrization necessary for variational inference makes - inference slower, although not by much. + .. rubric:: Cons - :Hyperparameters: this algorithm needs an extra hyperparameter - that might need experimental tuning via cross-validation. + :Speed: the extra parametrization necessary for variational inference makes + inference slower, although not by much. - :Bias: there are many implicit biases in the inference algorithms (and also in - the Dirichlet process if used), and whenever there is a mismatch between - these biases and the data it might be possible to fit better models using a - finite mixture. + :Hyperparameters: this algorithm needs an extra hyperparameter + that might need experimental tuning via cross-validation. -|details-end| + :Bias: there are many implicit biases in the inference algorithms (and also in + the Dirichlet process if used), and whenever there is a mismatch between + these biases and the data it might be possible to fit better models using a + finite mixture. .. _dirichlet_process: diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst index 056bf9a56d42c..81615b4419bba 100644 --- a/doc/modules/model_evaluation.rst +++ b/doc/modules/model_evaluation.rst @@ -172,58 +172,53 @@ measuring a prediction error given ground truth and prediction: parameter description below). -|details-start| -**Custom scorer objects** -|details-split| - - -The second use case is to build a completely custom scorer object -from a simple python function using :func:`make_scorer`, which can -take several parameters: - -* the python function you want to use (``my_custom_loss_func`` - in the example below) - -* whether the python function returns a score (``greater_is_better=True``, - the default) or a loss (``greater_is_better=False``). If a loss, the output - of the python function is negated by the scorer object, conforming to - the cross validation convention that scorers return higher values for better models. - -* for classification metrics only: whether the python function you provided requires - continuous decision certainties. If the scoring function only accepts probability - estimates (e.g. :func:`metrics.log_loss`) then one needs to set the parameter - `response_method`, thus in this case `response_method="predict_proba"`. Some scoring - function do not necessarily require probability estimates but rather non-thresholded - decision values (e.g. :func:`metrics.roc_auc_score`). In this case, one provides a - list such as `response_method=["decision_function", "predict_proba"]`. In this case, - the scorer will use the first available method, in the order given in the list, - to compute the scores. - -* any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`. - -Here is an example of building custom scorers, and of using the -``greater_is_better`` parameter:: - - >>> import numpy as np - >>> def my_custom_loss_func(y_true, y_pred): - ... diff = np.abs(y_true - y_pred).max() - ... return np.log1p(diff) - ... - >>> # score will negate the return value of my_custom_loss_func, - >>> # which will be np.log(2), 0.693, given the values for X - >>> # and y defined below. - >>> score = make_scorer(my_custom_loss_func, greater_is_better=False) - >>> X = [[1], [1]] - >>> y = [0, 1] - >>> from sklearn.dummy import DummyClassifier - >>> clf = DummyClassifier(strategy='most_frequent', random_state=0) - >>> clf = clf.fit(X, y) - >>> my_custom_loss_func(y, clf.predict(X)) - 0.69... - >>> score(clf, X, y) - -0.69... - -|details-end| +.. dropdown:: Custom scorer objects + + The second use case is to build a completely custom scorer object + from a simple python function using :func:`make_scorer`, which can + take several parameters: + + * the python function you want to use (``my_custom_loss_func`` + in the example below) + + * whether the python function returns a score (``greater_is_better=True``, + the default) or a loss (``greater_is_better=False``). If a loss, the output + of the python function is negated by the scorer object, conforming to + the cross validation convention that scorers return higher values for better models. + + * for classification metrics only: whether the python function you provided requires + continuous decision certainties. If the scoring function only accepts probability + estimates (e.g. :func:`metrics.log_loss`) then one needs to set the parameter + `response_method`, thus in this case `response_method="predict_proba"`. Some scoring + function do not necessarily require probability estimates but rather non-thresholded + decision values (e.g. :func:`metrics.roc_auc_score`). In this case, one provides a + list such as `response_method=["decision_function", "predict_proba"]`. In this case, + the scorer will use the first available method, in the order given in the list, + to compute the scores. + + * any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`. + + Here is an example of building custom scorers, and of using the + ``greater_is_better`` parameter:: + + >>> import numpy as np + >>> def my_custom_loss_func(y_true, y_pred): + ... diff = np.abs(y_true - y_pred).max() + ... return np.log1p(diff) + ... + >>> # score will negate the return value of my_custom_loss_func, + >>> # which will be np.log(2), 0.693, given the values for X + >>> # and y defined below. + >>> score = make_scorer(my_custom_loss_func, greater_is_better=False) + >>> X = [[1], [1]] + >>> y = [0, 1] + >>> from sklearn.dummy import DummyClassifier + >>> clf = DummyClassifier(strategy='most_frequent', random_state=0) + >>> clf = clf.fit(X, y) + >>> my_custom_loss_func(y, clf.predict(X)) + 0.69... + >>> score(clf, X, y) + -0.69... .. _diy_scoring: @@ -234,51 +229,47 @@ You can generate even more flexible model scorers by constructing your own scoring object from scratch, without using the :func:`make_scorer` factory. -|details-start| -**How to build a scorer from scratch** -|details-split| +.. dropdown:: How to build a scorer from scratch -For a callable to be a scorer, it needs to meet the protocol specified by -the following two rules: + For a callable to be a scorer, it needs to meet the protocol specified by + the following two rules: -- It can be called with parameters ``(estimator, X, y)``, where ``estimator`` - is the model that should be evaluated, ``X`` is validation data, and ``y`` is - the ground truth target for ``X`` (in the supervised case) or ``None`` (in the - unsupervised case). + - It can be called with parameters ``(estimator, X, y)``, where ``estimator`` + is the model that should be evaluated, ``X`` is validation data, and ``y`` is + the ground truth target for ``X`` (in the supervised case) or ``None`` (in the + unsupervised case). -- It returns a floating point number that quantifies the - ``estimator`` prediction quality on ``X``, with reference to ``y``. - Again, by convention higher numbers are better, so if your scorer - returns loss, that value should be negated. + - It returns a floating point number that quantifies the + ``estimator`` prediction quality on ``X``, with reference to ``y``. + Again, by convention higher numbers are better, so if your scorer + returns loss, that value should be negated. -- Advanced: If it requires extra metadata to be passed to it, it should expose - a ``get_metadata_routing`` method returning the requested metadata. The user - should be able to set the requested metadata via a ``set_score_request`` - method. Please see :ref:`User Guide ` and :ref:`Developer - Guide ` for - more details. + - Advanced: If it requires extra metadata to be passed to it, it should expose + a ``get_metadata_routing`` method returning the requested metadata. The user + should be able to set the requested metadata via a ``set_score_request`` + method. Please see :ref:`User Guide ` and :ref:`Developer + Guide ` for + more details. -.. note:: **Using custom scorers in functions where n_jobs > 1** + .. note:: **Using custom scorers in functions where n_jobs > 1** - While defining the custom scoring function alongside the calling function - should work out of the box with the default joblib backend (loky), - importing it from another module will be a more robust approach and work - independently of the joblib backend. + While defining the custom scoring function alongside the calling function + should work out of the box with the default joblib backend (loky), + importing it from another module will be a more robust approach and work + independently of the joblib backend. - For example, to use ``n_jobs`` greater than 1 in the example below, - ``custom_scoring_function`` function is saved in a user-created module - (``custom_scorer_module.py``) and imported:: + For example, to use ``n_jobs`` greater than 1 in the example below, + ``custom_scoring_function`` function is saved in a user-created module + (``custom_scorer_module.py``) and imported:: - >>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP - >>> cross_val_score(model, - ... X_train, - ... y_train, - ... scoring=make_scorer(custom_scoring_function, greater_is_better=False), - ... cv=5, - ... n_jobs=-1) # doctest: +SKIP - -|details-end| + >>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP + >>> cross_val_score(model, + ... X_train, + ... y_train, + ... scoring=make_scorer(custom_scoring_function, greater_is_better=False), + ... cv=5, + ... n_jobs=-1) # doctest: +SKIP .. _multimetric_scoring: @@ -474,11 +465,11 @@ In the multilabel case with binary label indicators:: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py` - for an example of accuracy score usage using permutations of - the dataset. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py` + for an example of accuracy score usage using permutations of + the dataset. .. _top_k_accuracy_score: @@ -589,22 +580,20 @@ or *informedness*. * Balanced Accuracy as described in [Urbanowicz2015]_: the average of sensitivity and specificity is computed for each class and then averaged over total number of classes. -.. topic:: References: - - .. [Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià, - B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge - `_, - IJCNN 2015. - .. [Mosley2013] L. Mosley, `A balanced approach to the multi-class imbalance problem - `_, - IJCV 2010. - .. [Kelleher2015] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, `Fundamentals of - Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, - and Case Studies `_, - 2015. - .. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. :doi:`ExSTraCS 2.0: description - and evaluation of a scalable learning classifier - system <10.1007/s12065-015-0128-8>`, Evol. Intel. (2015) 8: 89. +.. rubric:: References + +.. [Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià, + B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge + `_, IJCNN 2015. +.. [Mosley2013] L. Mosley, `A balanced approach to the multi-class imbalance problem + `_, IJCV 2010. +.. [Kelleher2015] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, `Fundamentals of + Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, + and Case Studies `_, + 2015. +.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. :doi:`ExSTraCS 2.0: description + and evaluation of a scalable learning classifier + system <10.1007/s12065-015-0128-8>`, Evol. Intel. (2015) 8: 89. .. _cohen_kappa: @@ -683,19 +672,19 @@ false negatives and true positives as follows:: >>> tn, fp, fn, tp (2, 1, 2, 3) -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py` - for an example of using a confusion matrix to evaluate classifier output - quality. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py` + for an example of using a confusion matrix to evaluate classifier output + quality. - * See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py` - for an example of using a confusion matrix to classify - hand-written digits. +* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py` + for an example of using a confusion matrix to classify + hand-written digits. - * See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` - for an example of using a confusion matrix to classify text - documents. +* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` + for an example of using a confusion matrix to classify text + documents. .. _classification_report: @@ -722,15 +711,15 @@ and inferred labels:: weighted avg 0.67 0.60 0.59 5 -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py` - for an example of classification report usage for - hand-written digits. +* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py` + for an example of classification report usage for + hand-written digits. - * See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` - for an example of classification report usage for - grid search with nested cross-validation. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` + for an example of classification report usage for + grid search with nested cross-validation. .. _hamming_loss: @@ -848,31 +837,31 @@ precision-recall curve as follows. :scale: 75 :align: center -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` - for an example of :func:`precision_score` and :func:`recall_score` usage - to estimate parameters using grid search with nested cross-validation. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` + for an example of :func:`precision_score` and :func:`recall_score` usage + to estimate parameters using grid search with nested cross-validation. - * See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py` - for an example of :func:`precision_recall_curve` usage to evaluate - classifier output quality. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py` + for an example of :func:`precision_recall_curve` usage to evaluate + classifier output quality. -.. topic:: References: +.. rubric:: References - .. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval - `_, - 2008. - .. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, - `The Pascal Visual Object Classes (VOC) Challenge - `_, - IJCV 2010. - .. [Davis2006] J. Davis, M. Goadrich, `The Relationship Between Precision-Recall and ROC Curves - `_, - ICML 2006. - .. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right - `_, - NIPS 2015. +.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval + `_, + 2008. +.. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, + `The Pascal Visual Object Classes (VOC) Challenge + `_, + IJCV 2010. +.. [Davis2006] J. Davis, M. Goadrich, `The Relationship Between Precision-Recall and ROC Curves + `_, + ICML 2006. +.. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right + `_, + NIPS 2015. Binary classification ^^^^^^^^^^^^^^^^^^^^^ @@ -1041,10 +1030,10 @@ Similarly, labels not present in the data sample may be accounted for in macro-a >>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro') 0.166... -.. topic:: References: +.. rubric:: References - .. [OB2019] :arxiv:`Opitz, J., & Burst, S. (2019). "Macro f1 and macro f1." - <1911.03347>` +.. [OB2019] :arxiv:`Opitz, J., & Burst, S. (2019). "Macro f1 and macro f1." + <1911.03347>` .. _jaccard_similarity_score: @@ -1496,65 +1485,57 @@ correspond to the probability estimates that a sample belongs to a particular class. The OvO and OvR algorithms support weighting uniformly (``average='macro'``) and by prevalence (``average='weighted'``). -|details-start| -**One-vs-one Algorithm** -|details-split| +.. dropdown:: One-vs-one Algorithm -Computes the average AUC of all possible pairwise -combinations of classes. [HT2001]_ defines a multiclass AUC metric weighted -uniformly: + Computes the average AUC of all possible pairwise + combinations of classes. [HT2001]_ defines a multiclass AUC metric weighted + uniformly: -.. math:: + .. math:: - \frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c (\text{AUC}(j | k) + - \text{AUC}(k | j)) + \frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c (\text{AUC}(j | k) + + \text{AUC}(k | j)) -where :math:`c` is the number of classes and :math:`\text{AUC}(j | k)` is the -AUC with class :math:`j` as the positive class and class :math:`k` as the -negative class. In general, -:math:`\text{AUC}(j | k) \neq \text{AUC}(k | j))` in the multiclass -case. This algorithm is used by setting the keyword argument ``multiclass`` -to ``'ovo'`` and ``average`` to ``'macro'``. + where :math:`c` is the number of classes and :math:`\text{AUC}(j | k)` is the + AUC with class :math:`j` as the positive class and class :math:`k` as the + negative class. In general, + :math:`\text{AUC}(j | k) \neq \text{AUC}(k | j))` in the multiclass + case. This algorithm is used by setting the keyword argument ``multiclass`` + to ``'ovo'`` and ``average`` to ``'macro'``. -The [HT2001]_ multiclass AUC metric can be extended to be weighted by the -prevalence: + The [HT2001]_ multiclass AUC metric can be extended to be weighted by the + prevalence: -.. math:: + .. math:: - \frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c p(j \cup k)( - \text{AUC}(j | k) + \text{AUC}(k | j)) + \frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c p(j \cup k)( + \text{AUC}(j | k) + \text{AUC}(k | j)) -where :math:`c` is the number of classes. This algorithm is used by setting -the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to -``'weighted'``. The ``'weighted'`` option returns a prevalence-weighted average -as described in [FC2009]_. + where :math:`c` is the number of classes. This algorithm is used by setting + the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to + ``'weighted'``. The ``'weighted'`` option returns a prevalence-weighted average + as described in [FC2009]_. -|details-end| +.. dropdown:: One-vs-rest Algorithm -|details-start| -**One-vs-rest Algorithm** -|details-split| + Computes the AUC of each class against the rest + [PD2000]_. The algorithm is functionally the same as the multilabel case. To + enable this algorithm set the keyword argument ``multiclass`` to ``'ovr'``. + Additionally to ``'macro'`` [F2006]_ and ``'weighted'`` [F2001]_ averaging, OvR + supports ``'micro'`` averaging. -Computes the AUC of each class against the rest -[PD2000]_. The algorithm is functionally the same as the multilabel case. To -enable this algorithm set the keyword argument ``multiclass`` to ``'ovr'``. -Additionally to ``'macro'`` [F2006]_ and ``'weighted'`` [F2001]_ averaging, OvR -supports ``'micro'`` averaging. + In applications where a high false positive rate is not tolerable the parameter + ``max_fpr`` of :func:`roc_auc_score` can be used to summarize the ROC curve up + to the given limit. -In applications where a high false positive rate is not tolerable the parameter -``max_fpr`` of :func:`roc_auc_score` can be used to summarize the ROC curve up -to the given limit. + The following figure shows the micro-averaged ROC curve and its corresponding + ROC-AUC score for a classifier aimed to distinguish the different species in + the :ref:`iris_dataset`: -The following figure shows the micro-averaged ROC curve and its corresponding -ROC-AUC score for a classifier aimed to distinguish the different species in -the :ref:`iris_dataset`: - -.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png - :target: ../auto_examples/model_selection/plot_roc.html - :scale: 75 - :align: center - -|details-end| + .. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png + :target: ../auto_examples/model_selection/plot_roc.html + :scale: 75 + :align: center .. _roc_auc_multilabel: @@ -1584,46 +1565,43 @@ And the decision values do not require such processing. >>> roc_auc_score(y, y_score, average=None) array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...]) -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py` - for an example of using ROC to - evaluate the quality of the output of a classifier. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py` for an example of + using ROC to evaluate the quality of the output of a classifier. - * See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py` - for an example of using ROC to - evaluate classifier output quality, using cross-validation. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py` for an + example of using ROC to evaluate classifier output quality, using cross-validation. - * See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` - for an example of using ROC to - model species distribution. +* See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` + for an example of using ROC to model species distribution. -.. topic:: References: +.. rubric:: References - .. [HT2001] Hand, D.J. and Till, R.J., (2001). `A simple generalisation - of the area under the ROC curve for multiple class classification problems. - `_ - Machine learning, 45(2), pp. 171-186. +.. [HT2001] Hand, D.J. and Till, R.J., (2001). `A simple generalisation + of the area under the ROC curve for multiple class classification problems. + `_ + Machine learning, 45(2), pp. 171-186. - .. [FC2009] Ferri, Cèsar & Hernandez-Orallo, Jose & Modroiu, R. (2009). - `An Experimental Comparison of Performance Measures for Classification. - `_ - Pattern Recognition Letters. 30. 27-38. +.. [FC2009] Ferri, Cèsar & Hernandez-Orallo, Jose & Modroiu, R. (2009). + `An Experimental Comparison of Performance Measures for Classification. + `_ + Pattern Recognition Letters. 30. 27-38. - .. [PD2000] Provost, F., Domingos, P. (2000). `Well-trained PETs: Improving - probability estimation trees - `_ - (Section 6.2), CeDER Working Paper #IS-00-04, Stern School of Business, - New York University. +.. [PD2000] Provost, F., Domingos, P. (2000). `Well-trained PETs: Improving + probability estimation trees + `_ + (Section 6.2), CeDER Working Paper #IS-00-04, Stern School of Business, + New York University. - .. [F2006] Fawcett, T., 2006. `An introduction to ROC analysis. - `_ - Pattern Recognition Letters, 27(8), pp. 861-874. +.. [F2006] Fawcett, T., 2006. `An introduction to ROC analysis. + `_ + Pattern Recognition Letters, 27(8), pp. 861-874. - .. [F2001] Fawcett, T., 2001. `Using rule sets to maximize - ROC performance `_ - In Data Mining, 2001. - Proceedings IEEE International Conference, pp. 131-138. +.. [F2001] Fawcett, T., 2001. `Using rule sets to maximize + ROC performance `_ + In Data Mining, 2001. + Proceedings IEEE International Conference, pp. 131-138. .. _det_curve: @@ -1659,67 +1637,57 @@ same classification task: :scale: 75 :align: center -.. topic:: Examples: - - * See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py` - for an example comparison between receiver operating characteristic (ROC) - curves and Detection error tradeoff (DET) curves. +.. dropdown:: Properties -|details-start| -**Properties** -|details-split| + * DET curves form a linear curve in normal deviate scale if the detection + scores are normally (or close-to normally) distributed. + It was shown by [Navratil2007]_ that the reverse is not necessarily true and + even more general distributions are able to produce linear DET curves. -* DET curves form a linear curve in normal deviate scale if the detection - scores are normally (or close-to normally) distributed. - It was shown by [Navratil2007]_ that the reverse is not necessarily true and - even more general distributions are able to produce linear DET curves. + * The normal deviate scale transformation spreads out the points such that a + comparatively larger space of plot is occupied. + Therefore curves with similar classification performance might be easier to + distinguish on a DET plot. -* The normal deviate scale transformation spreads out the points such that a - comparatively larger space of plot is occupied. - Therefore curves with similar classification performance might be easier to - distinguish on a DET plot. + * With False Negative Rate being "inverse" to True Positive Rate the point + of perfection for DET curves is the origin (in contrast to the top left + corner for ROC curves). -* With False Negative Rate being "inverse" to True Positive Rate the point - of perfection for DET curves is the origin (in contrast to the top left - corner for ROC curves). +.. dropdown:: Applications and limitations -|details-end| + DET curves are intuitive to read and hence allow quick visual assessment of a + classifier's performance. + Additionally DET curves can be consulted for threshold analysis and operating + point selection. + This is particularly helpful if a comparison of error types is required. -|details-start| -**Applications and limitations** -|details-split| + On the other hand DET curves do not provide their metric as a single number. + Therefore for either automated evaluation or comparison to other + classification tasks metrics like the derived area under ROC curve might be + better suited. -DET curves are intuitive to read and hence allow quick visual assessment of a -classifier's performance. -Additionally DET curves can be consulted for threshold analysis and operating -point selection. -This is particularly helpful if a comparison of error types is required. +.. rubric:: Examples -On the other hand DET curves do not provide their metric as a single number. -Therefore for either automated evaluation or comparison to other -classification tasks metrics like the derived area under ROC curve might be -better suited. +* See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py` + for an example comparison between receiver operating characteristic (ROC) + curves and Detection error tradeoff (DET) curves. -|details-end| +.. rubric:: References -.. topic:: References: +.. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff. + Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC. + Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054. + Accessed February 19, 2018. - .. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff. - Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC. - Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054. - Accessed February 19, 2018. +.. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, + `The DET Curve in Assessment of Detection Task Performance + `_, NIST 1997. - .. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, - `The DET Curve in Assessment of Detection Task Performance - `_, - NIST 1997. - - .. [Navratil2007] J. Navractil and D. Klusacek, - "`On Linear DETs, - `_" - 2007 IEEE International Conference on Acoustics, - Speech and Signal Processing - ICASSP '07, Honolulu, - HI, 2007, pp. IV-229-IV-232. +.. [Navratil2007] J. Navractil and D. Klusacek, + `"On Linear DETs" `_, + 2007 IEEE International Conference on Acoustics, + Speech and Signal Processing - ICASSP '07, Honolulu, + HI, 2007, pp. IV-229-IV-232. .. _zero_one_loss: @@ -1767,11 +1735,11 @@ set [0,1] has an error:: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False) 1.0 -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` - for an example of zero one loss usage to perform recursive feature - elimination with cross-validation. +* See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` + for an example of zero one loss usage to perform recursive feature + elimination with cross-validation. .. _brier_score_loss: @@ -1827,28 +1795,27 @@ necessarily mean a better calibrated model. "Only when refinement loss remains the same does a lower Brier score loss always mean better calibration" [Bella2012]_, [Flach2008]_. -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py` - for an example of Brier score loss usage to perform probability - calibration of classifiers. +* See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py` + for an example of Brier score loss usage to perform probability + calibration of classifiers. -.. topic:: References: +.. rubric:: References - .. [Brier1950] G. Brier, `Verification of forecasts expressed in terms of - probability - `_, - Monthly weather review 78.1 (1950) +.. [Brier1950] G. Brier, `Verification of forecasts expressed in terms of probability + `_, + Monthly weather review 78.1 (1950) - .. [Bella2012] Bella, Ferri, Hernández-Orallo, and Ramírez-Quintana - `"Calibration of Machine Learning Models" - `_ - in Khosrow-Pour, M. "Machine learning: concepts, methodologies, tools - and applications." Hershey, PA: Information Science Reference (2012). +.. [Bella2012] Bella, Ferri, Hernández-Orallo, and Ramírez-Quintana + `"Calibration of Machine Learning Models" + `_ + in Khosrow-Pour, M. "Machine learning: concepts, methodologies, tools + and applications." Hershey, PA: Information Science Reference (2012). - .. [Flach2008] Flach, Peter, and Edson Matsubara. `"On classification, ranking, - and probability estimation." `_ - Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008). +.. [Flach2008] Flach, Peter, and Edson Matsubara. `"On classification, ranking, + and probability estimation." `_ + Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008). .. _class_likelihood_ratios: @@ -1901,82 +1868,72 @@ counts ``tp`` (see `the wikipedia page `_ for the actual formulas). -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_model_selection_plot_likelihood_ratios.py` +* :ref:`sphx_glr_auto_examples_model_selection_plot_likelihood_ratios.py` -|details-start| -**Interpretation across varying prevalence** -|details-split| +.. dropdown:: Interpretation across varying prevalence -Both class likelihood ratios are interpretable in terms of an odds ratio -(pre-test and post-tests): + Both class likelihood ratios are interpretable in terms of an odds ratio + (pre-test and post-tests): -.. math:: + .. math:: - \text{post-test odds} = \text{Likelihood ratio} \times \text{pre-test odds}. + \text{post-test odds} = \text{Likelihood ratio} \times \text{pre-test odds}. -Odds are in general related to probabilities via + Odds are in general related to probabilities via -.. math:: + .. math:: - \text{odds} = \frac{\text{probability}}{1 - \text{probability}}, + \text{odds} = \frac{\text{probability}}{1 - \text{probability}}, -or equivalently + or equivalently -.. math:: + .. math:: - \text{probability} = \frac{\text{odds}}{1 + \text{odds}}. + \text{probability} = \frac{\text{odds}}{1 + \text{odds}}. -On a given population, the pre-test probability is given by the prevalence. By -converting odds to probabilities, the likelihood ratios can be translated into a -probability of truly belonging to either class before and after a classifier -prediction: + On a given population, the pre-test probability is given by the prevalence. By + converting odds to probabilities, the likelihood ratios can be translated into a + probability of truly belonging to either class before and after a classifier + prediction: -.. math:: + .. math:: - \text{post-test odds} = \text{Likelihood ratio} \times - \frac{\text{pre-test probability}}{1 - \text{pre-test probability}}, + \text{post-test odds} = \text{Likelihood ratio} \times + \frac{\text{pre-test probability}}{1 - \text{pre-test probability}}, -.. math:: - - \text{post-test probability} = \frac{\text{post-test odds}}{1 + \text{post-test odds}}. - -|details-end| + .. math:: -|details-start| -**Mathematical divergences** -|details-split| + \text{post-test probability} = \frac{\text{post-test odds}}{1 + \text{post-test odds}}. -The positive likelihood ratio is undefined when :math:`fp = 0`, which can be -interpreted as the classifier perfectly identifying positive cases. If :math:`fp -= 0` and additionally :math:`tp = 0`, this leads to a zero/zero division. This -happens, for instance, when using a `DummyClassifier` that always predicts the -negative class and therefore the interpretation as a perfect classifier is lost. +.. dropdown:: Mathematical divergences -The negative likelihood ratio is undefined when :math:`tn = 0`. Such divergence -is invalid, as :math:`LR_- > 1` would indicate an increase in the odds of a -sample belonging to the positive class after being classified as negative, as if -the act of classifying caused the positive condition. This includes the case of -a `DummyClassifier` that always predicts the positive class (i.e. when -:math:`tn=fn=0`). + The positive likelihood ratio is undefined when :math:`fp = 0`, which can be + interpreted as the classifier perfectly identifying positive cases. If :math:`fp + = 0` and additionally :math:`tp = 0`, this leads to a zero/zero division. This + happens, for instance, when using a `DummyClassifier` that always predicts the + negative class and therefore the interpretation as a perfect classifier is lost. -Both class likelihood ratios are undefined when :math:`tp=fn=0`, which means -that no samples of the positive class were present in the testing set. This can -also happen when cross-validating highly imbalanced data. + The negative likelihood ratio is undefined when :math:`tn = 0`. Such divergence + is invalid, as :math:`LR_- > 1` would indicate an increase in the odds of a + sample belonging to the positive class after being classified as negative, as if + the act of classifying caused the positive condition. This includes the case of + a `DummyClassifier` that always predicts the positive class (i.e. when + :math:`tn=fn=0`). -In all the previous cases the :func:`class_likelihood_ratios` function raises by -default an appropriate warning message and returns `nan` to avoid pollution when -averaging over cross-validation folds. + Both class likelihood ratios are undefined when :math:`tp=fn=0`, which means + that no samples of the positive class were present in the testing set. This can + also happen when cross-validating highly imbalanced data. -For a worked-out demonstration of the :func:`class_likelihood_ratios` function, -see the example below. + In all the previous cases the :func:`class_likelihood_ratios` function raises by + default an appropriate warning message and returns `nan` to avoid pollution when + averaging over cross-validation folds. -|details-end| + For a worked-out demonstration of the :func:`class_likelihood_ratios` function, + see the example below. -|details-start| -**References** -|details-split| +.. dropdown:: References * `Wikipedia entry for Likelihood ratios in diagnostic testing `_ @@ -1986,7 +1943,6 @@ see the example below. values with disease prevalence. Statistics in medicine, 16(9), 981-991. -|details-end| .. _d2_score_classification: @@ -2011,47 +1967,44 @@ model can be arbitrarily worse). A constant model that always predicts :math:`y_{\text{null}}`, disregarding the input features, would get a D² score of 0.0. -|details-start| -**D2 log loss score** -|details-split| +.. dropdown:: D2 log loss score -The :func:`d2_log_loss_score` function implements the special case -of D² with the log loss, see :ref:`log_loss`, i.e.: + The :func:`d2_log_loss_score` function implements the special case + of D² with the log loss, see :ref:`log_loss`, i.e.: -.. math:: + .. math:: - \text{dev}(y, \hat{y}) = \text{log_loss}(y, \hat{y}). + \text{dev}(y, \hat{y}) = \text{log_loss}(y, \hat{y}). -Here are some usage examples of the :func:`d2_log_loss_score` function:: + Here are some usage examples of the :func:`d2_log_loss_score` function:: - >>> from sklearn.metrics import d2_log_loss_score - >>> y_true = [1, 1, 2, 3] - >>> y_pred = [ - ... [0.5, 0.25, 0.25], - ... [0.5, 0.25, 0.25], - ... [0.5, 0.25, 0.25], - ... [0.5, 0.25, 0.25], - ... ] - >>> d2_log_loss_score(y_true, y_pred) - 0.0 - >>> y_true = [1, 2, 3] - >>> y_pred = [ - ... [0.98, 0.01, 0.01], - ... [0.01, 0.98, 0.01], - ... [0.01, 0.01, 0.98], - ... ] - >>> d2_log_loss_score(y_true, y_pred) - 0.981... - >>> y_true = [1, 2, 3] - >>> y_pred = [ - ... [0.1, 0.6, 0.3], - ... [0.1, 0.6, 0.3], - ... [0.4, 0.5, 0.1], - ... ] - >>> d2_log_loss_score(y_true, y_pred) - -0.552... + >>> from sklearn.metrics import d2_log_loss_score + >>> y_true = [1, 1, 2, 3] + >>> y_pred = [ + ... [0.5, 0.25, 0.25], + ... [0.5, 0.25, 0.25], + ... [0.5, 0.25, 0.25], + ... [0.5, 0.25, 0.25], + ... ] + >>> d2_log_loss_score(y_true, y_pred) + 0.0 + >>> y_true = [1, 2, 3] + >>> y_pred = [ + ... [0.98, 0.01, 0.01], + ... [0.01, 0.98, 0.01], + ... [0.01, 0.01, 0.98], + ... ] + >>> d2_log_loss_score(y_true, y_pred) + 0.981... + >>> y_true = [1, 2, 3] + >>> y_pred = [ + ... [0.1, 0.6, 0.3], + ... [0.1, 0.6, 0.3], + ... [0.4, 0.5, 0.1], + ... ] + >>> d2_log_loss_score(y_true, y_pred) + -0.552... -|details-end| .. _multilabel_ranking_metrics: @@ -2191,14 +2144,11 @@ Here is a small example of usage of this function:: 0.0 -|details-start| -**References** -|details-split| +.. dropdown:: References * Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. -|details-end| .. _ndcg: @@ -2244,9 +2194,7 @@ DCG score is and the NDCG score is the DCG score divided by the DCG score obtained for :math:`y`. -|details-start| -**References** -|details-split| +.. dropdown:: References * `Wikipedia entry for Discounted Cumulative Gain `_ @@ -2264,7 +2212,6 @@ and the NDCG score is the DCG score divided by the DCG score obtained for European conference on information retrieval (pp. 414-421). Springer, Berlin, Heidelberg. -|details-end| .. _regression_metrics: @@ -2374,11 +2321,11 @@ Here is a small example of usage of the :func:`r2_score` function:: >>> r2_score(y_true, y_pred, force_finite=False) -inf -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` - for an example of R² score usage to - evaluate Lasso and Elastic Net on sparse signals. +* See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` + for an example of R² score usage to + evaluate Lasso and Elastic Net on sparse signals. .. _mean_absolute_error: @@ -2445,11 +2392,10 @@ function:: >>> mean_squared_error(y_true, y_pred) 0.7083... -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` - for an example of mean squared error usage to - evaluate gradient boosting regression. +* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` + for an example of mean squared error usage to evaluate gradient boosting regression. Taking the square root of the MSE, called the root mean squared error (RMSE), is another common metric that provides a measure in the same units as the target variable. RSME is @@ -2787,12 +2733,12 @@ It is also possible to build scorer objects for hyper-parameter tuning. The sign of the loss must be switched to ensure that greater means better as explained in the example linked below. -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py` - for an example of using the pinball loss to evaluate and tune the - hyper-parameters of quantile regression models on data with non-symmetric - noise and outliers. +* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py` + for an example of using the pinball loss to evaluate and tune the + hyper-parameters of quantile regression models on data with non-symmetric + noise and outliers. .. _d2_score: @@ -2818,77 +2764,66 @@ model can be arbitrarily worse). A constant model that always predicts :math:`y_{\text{null}}`, disregarding the input features, would get a D² score of 0.0. -|details-start| -**D² Tweedie score** -|details-split| - -The :func:`d2_tweedie_score` function implements the special case of D² -where :math:`\text{dev}(y, \hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`. -It is also known as D² Tweedie and is related to McFadden's likelihood ratio index. +.. dropdown:: D² Tweedie score -The argument ``power`` defines the Tweedie power as for -:func:`mean_tweedie_deviance`. Note that for `power=0`, -:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets). + The :func:`d2_tweedie_score` function implements the special case of D² + where :math:`\text{dev}(y, \hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`. + It is also known as D² Tweedie and is related to McFadden's likelihood ratio index. -A scorer object with a specific choice of ``power`` can be built by:: + The argument ``power`` defines the Tweedie power as for + :func:`mean_tweedie_deviance`. Note that for `power=0`, + :func:`d2_tweedie_score` equals :func:`r2_score` (for single targets). - >>> from sklearn.metrics import d2_tweedie_score, make_scorer - >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5) + A scorer object with a specific choice of ``power`` can be built by:: -|details-end| + >>> from sklearn.metrics import d2_tweedie_score, make_scorer + >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5) -|details-start| -**D² pinball score** -|details-split| +.. dropdown:: D² pinball score -The :func:`d2_pinball_score` function implements the special case -of D² with the pinball loss, see :ref:`pinball_loss`, i.e.: - -.. math:: + The :func:`d2_pinball_score` function implements the special case + of D² with the pinball loss, see :ref:`pinball_loss`, i.e.: - \text{dev}(y, \hat{y}) = \text{pinball}(y, \hat{y}). + .. math:: -The argument ``alpha`` defines the slope of the pinball loss as for -:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the -quantile level ``alpha`` for which the pinball loss and also D² -are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score` -equals :func:`d2_absolute_error_score`. + \text{dev}(y, \hat{y}) = \text{pinball}(y, \hat{y}). -A scorer object with a specific choice of ``alpha`` can be built by:: + The argument ``alpha`` defines the slope of the pinball loss as for + :func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the + quantile level ``alpha`` for which the pinball loss and also D² + are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score` + equals :func:`d2_absolute_error_score`. - >>> from sklearn.metrics import d2_pinball_score, make_scorer - >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8) + A scorer object with a specific choice of ``alpha`` can be built by:: -|details-end| + >>> from sklearn.metrics import d2_pinball_score, make_scorer + >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8) -|details-start| -**D² absolute error score** -|details-split| +.. dropdown:: D² absolute error score -The :func:`d2_absolute_error_score` function implements the special case of -the :ref:`mean_absolute_error`: + The :func:`d2_absolute_error_score` function implements the special case of + the :ref:`mean_absolute_error`: -.. math:: + .. math:: - \text{dev}(y, \hat{y}) = \text{MAE}(y, \hat{y}). + \text{dev}(y, \hat{y}) = \text{MAE}(y, \hat{y}). -Here are some usage examples of the :func:`d2_absolute_error_score` function:: + Here are some usage examples of the :func:`d2_absolute_error_score` function:: - >>> from sklearn.metrics import d2_absolute_error_score - >>> y_true = [3, -0.5, 2, 7] - >>> y_pred = [2.5, 0.0, 2, 8] - >>> d2_absolute_error_score(y_true, y_pred) - 0.764... - >>> y_true = [1, 2, 3] - >>> y_pred = [1, 2, 3] - >>> d2_absolute_error_score(y_true, y_pred) - 1.0 - >>> y_true = [1, 2, 3] - >>> y_pred = [2, 2, 2] - >>> d2_absolute_error_score(y_true, y_pred) - 0.0 + >>> from sklearn.metrics import d2_absolute_error_score + >>> y_true = [3, -0.5, 2, 7] + >>> y_pred = [2.5, 0.0, 2, 8] + >>> d2_absolute_error_score(y_true, y_pred) + 0.764... + >>> y_true = [1, 2, 3] + >>> y_pred = [1, 2, 3] + >>> d2_absolute_error_score(y_true, y_pred) + 1.0 + >>> y_true = [1, 2, 3] + >>> y_pred = [2, 2, 2] + >>> d2_absolute_error_score(y_true, y_pred) + 0.0 -|details-end| .. _visualization_regression_evaluation: @@ -2958,12 +2893,12 @@ model might be useful. Refer to the example below to see a model evaluation that makes use of this display. -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` for - an example on how to use :class:`~sklearn.metrics.PredictionErrorDisplay` - to visualize the prediction quality improvement of a regression model - obtained by transforming the target before learning. +* See :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` for + an example on how to use :class:`~sklearn.metrics.PredictionErrorDisplay` + to visualize the prediction quality improvement of a regression model + obtained by transforming the target before learning. .. _clustering_metrics: diff --git a/doc/modules/multiclass.rst b/doc/modules/multiclass.rst index 42762690ce8f7..b5f7611bdfd91 100644 --- a/doc/modules/multiclass.rst +++ b/doc/modules/multiclass.rst @@ -222,9 +222,9 @@ in which cell [i, j] indicates the presence of label j in sample i. :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_multilabel.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_multilabel.py` .. _ovo_classification: @@ -263,10 +263,10 @@ Below is an example of multiclass learning using OvO:: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) -.. topic:: References: +.. rubric:: References - * "Pattern Recognition and Machine Learning. Springer", - Christopher M. Bishop, page 183, (First Edition) +* "Pattern Recognition and Machine Learning. Springer", + Christopher M. Bishop, page 183, (First Edition) .. _ecoc: @@ -321,21 +321,16 @@ Below is an example of multiclass learning using Output-Codes:: 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) -.. topic:: References: +.. rubric:: References - * "Solving multiclass learning problems via error-correcting output codes", - Dietterich T., Bakiri G., - Journal of Artificial Intelligence Research 2, - 1995. +* "Solving multiclass learning problems via error-correcting output codes", + Dietterich T., Bakiri G., Journal of Artificial Intelligence Research 2, 1995. - .. [3] "The error coding method and PICTs", - James G., Hastie T., - Journal of Computational and Graphical statistics 7, - 1998. +.. [3] "The error coding method and PICTs", James G., Hastie T., + Journal of Computational and Graphical statistics 7, 1998. - * "The Elements of Statistical Learning", - Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) - 2008. +* "The Elements of Statistical Learning", + Hastie T., Tibshirani R., Friedman J., page 606 (second-edition), 2008. .. _multilabel_classification: @@ -432,10 +427,10 @@ one does not know the optimal ordering of the models in the chain so typically many randomly ordered chains are fit and their predictions are averaged together. -.. topic:: References: +.. rubric:: References - Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, - "Classifier Chains for Multi-label Classification", 2009. +* Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, + "Classifier Chains for Multi-label Classification", 2009. .. _multiclass_multioutput_classification: diff --git a/doc/modules/naive_bayes.rst b/doc/modules/naive_bayes.rst index 05ca928dfae0b..6e80ec6145919 100644 --- a/doc/modules/naive_bayes.rst +++ b/doc/modules/naive_bayes.rst @@ -69,15 +69,11 @@ On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the probability outputs from ``predict_proba`` are not to be taken too seriously. -|details-start| -**References** -|details-split| +.. dropdown:: References -* H. Zhang (2004). `The optimality of Naive Bayes. - `_ - Proc. FLAIRS. - -|details-end| + * H. Zhang (2004). `The optimality of Naive Bayes. + `_ + Proc. FLAIRS. .. _gaussian_naive_bayes: @@ -153,47 +149,40 @@ The inventors of CNB show empirically that the parameter estimates for CNB are more stable than those for MNB. Further, CNB regularly outperforms MNB (often by a considerable margin) on text classification tasks. -|details-start| -**Weights calculation** -|details-split| - -The procedure for calculating the weights is as follows: +.. dropdown:: Weights calculation -.. math:: + The procedure for calculating the weights is as follows: - \hat{\theta}_{ci} = \frac{\alpha_i + \sum_{j:y_j \neq c} d_{ij}} - {\alpha + \sum_{j:y_j \neq c} \sum_{k} d_{kj}} + .. math:: - w_{ci} = \log \hat{\theta}_{ci} + \hat{\theta}_{ci} = \frac{\alpha_i + \sum_{j:y_j \neq c} d_{ij}} + {\alpha + \sum_{j:y_j \neq c} \sum_{k} d_{kj}} - w_{ci} = \frac{w_{ci}}{\sum_{j} |w_{cj}|} + w_{ci} = \log \hat{\theta}_{ci} -where the summations are over all documents :math:`j` not in class :math:`c`, -:math:`d_{ij}` is either the count or tf-idf value of term :math:`i` in document -:math:`j`, :math:`\alpha_i` is a smoothing hyperparameter like that found in -MNB, and :math:`\alpha = \sum_{i} \alpha_i`. The second normalization addresses -the tendency for longer documents to dominate parameter estimates in MNB. The -classification rule is: + w_{ci} = \frac{w_{ci}}{\sum_{j} |w_{cj}|} -.. math:: + where the summations are over all documents :math:`j` not in class :math:`c`, + :math:`d_{ij}` is either the count or tf-idf value of term :math:`i` in document + :math:`j`, :math:`\alpha_i` is a smoothing hyperparameter like that found in + MNB, and :math:`\alpha = \sum_{i} \alpha_i`. The second normalization addresses + the tendency for longer documents to dominate parameter estimates in MNB. The + classification rule is: - \hat{c} = \arg\min_c \sum_{i} t_i w_{ci} + .. math:: -i.e., a document is assigned to the class that is the *poorest* complement -match. + \hat{c} = \arg\min_c \sum_{i} t_i w_{ci} -|details-end| + i.e., a document is assigned to the class that is the *poorest* complement + match. -|details-start| -**References** -|details-split| +.. dropdown:: References -* Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). - `Tackling the poor assumptions of naive bayes text classifiers. - `_ - In ICML (Vol. 3, pp. 616-623). + * Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). + `Tackling the poor assumptions of naive bayes text classifiers. + `_ + In ICML (Vol. 3, pp. 616-623). -|details-end| .. _bernoulli_naive_bayes: @@ -224,24 +213,21 @@ count vectors) may be used to train and use this classifier. :class:`BernoulliNB might perform better on some datasets, especially those with shorter documents. It is advisable to evaluate both models, if time permits. -|details-start| -**References** -|details-split| +.. dropdown:: References -* C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to - Information Retrieval. Cambridge University Press, pp. 234-265. + * C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to + Information Retrieval. Cambridge University Press, pp. 234-265. -* A. McCallum and K. Nigam (1998). - `A comparison of event models for Naive Bayes text classification. - `_ - Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. + * A. McCallum and K. Nigam (1998). + `A comparison of event models for Naive Bayes text classification. + `_ + Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. -* V. Metsis, I. Androutsopoulos and G. Paliouras (2006). - `Spam filtering with Naive Bayes -- Which Naive Bayes? - `_ - 3rd Conf. on Email and Anti-Spam (CEAS). + * V. Metsis, I. Androutsopoulos and G. Paliouras (2006). + `Spam filtering with Naive Bayes -- Which Naive Bayes? + `_ + 3rd Conf. on Email and Anti-Spam (CEAS). -|details-end| .. _categorical_naive_bayes: @@ -258,25 +244,21 @@ For each feature :math:`i` in the training set :math:`X`, of X conditioned on the class y. The index set of the samples is defined as :math:`J = \{ 1, \dots, m \}`, with :math:`m` as the number of samples. -|details-start| -**Probability calculation** -|details-split| - -The probability of category :math:`t` in feature :math:`i` given class -:math:`c` is estimated as: +.. dropdown:: Probability calculation -.. math:: + The probability of category :math:`t` in feature :math:`i` given class + :math:`c` is estimated as: - P(x_i = t \mid y = c \: ;\, \alpha) = \frac{ N_{tic} + \alpha}{N_{c} + - \alpha n_i}, + .. math:: -where :math:`N_{tic} = |\{j \in J \mid x_{ij} = t, y_j = c\}|` is the number -of times category :math:`t` appears in the samples :math:`x_{i}`, which belong -to class :math:`c`, :math:`N_{c} = |\{ j \in J\mid y_j = c\}|` is the number -of samples with class c, :math:`\alpha` is a smoothing parameter and -:math:`n_i` is the number of available categories of feature :math:`i`. + P(x_i = t \mid y = c \: ;\, \alpha) = \frac{ N_{tic} + \alpha}{N_{c} + + \alpha n_i}, -|details-end| + where :math:`N_{tic} = |\{j \in J \mid x_{ij} = t, y_j = c\}|` is the number + of times category :math:`t` appears in the samples :math:`x_{i}`, which belong + to class :math:`c`, :math:`N_{c} = |\{ j \in J\mid y_j = c\}|` is the number + of samples with class c, :math:`\alpha` is a smoothing parameter and + :math:`n_i` is the number of available categories of feature :math:`i`. :class:`CategoricalNB` assumes that the sample matrix :math:`X` is encoded (for instance with the help of :class:`~sklearn.preprocessing.OrdinalEncoder`) such diff --git a/doc/modules/neighbors.rst b/doc/modules/neighbors.rst index b081b29572d8a..de0eff67018bc 100644 --- a/doc/modules/neighbors.rst +++ b/doc/modules/neighbors.rst @@ -192,10 +192,10 @@ distance can be supplied to compute the weights. .. centered:: |classification_1| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_plot_classification.py`: an example of - classification using nearest neighbors. +* :ref:`sphx_glr_auto_examples_neighbors_plot_classification.py`: an example of + classification using nearest neighbors. .. _regression: @@ -241,13 +241,13 @@ the lower half of those faces. :align: center -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_plot_regression.py`: an example of regression - using nearest neighbors. +* :ref:`sphx_glr_auto_examples_neighbors_plot_regression.py`: an example of regression + using nearest neighbors. - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py`: an example of - multi-output regression using nearest neighbors. +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py`: + an example of multi-output regression using nearest neighbors. Nearest Neighbor Algorithms @@ -304,15 +304,13 @@ In scikit-learn, KD tree neighbors searches are specified using the keyword ``algorithm = 'kd_tree'``, and are computed using the class :class:`KDTree`. -|details-start| -**References** -|details-split| - * `"Multidimensional binary search trees used for associative searching" - `_, - Bentley, J.L., Communications of the ACM (1975) +.. dropdown:: References + + * `"Multidimensional binary search trees used for associative searching" + `_, + Bentley, J.L., Communications of the ACM (1975) -|details-end| .. _ball_tree: @@ -345,156 +343,142 @@ neighbors searches are specified using the keyword ``algorithm = 'ball_tree'``, and are computed using the class :class:`BallTree`. Alternatively, the user can work with the :class:`BallTree` class directly. -|details-start| -**References** -|details-split| - - * `"Five Balltree Construction Algorithms" - `_, - Omohundro, S.M., International Computer Science Institute - Technical Report (1989) - -|details-end| - -|details-start| -**Choice of Nearest Neighbors Algorithm** -|details-split| - -The optimal algorithm for a given dataset is a complicated choice, and -depends on a number of factors: - -* number of samples :math:`N` (i.e. ``n_samples``) and dimensionality - :math:`D` (i.e. ``n_features``). - - * *Brute force* query time grows as :math:`O[D N]` - * *Ball tree* query time grows as approximately :math:`O[D \log(N)]` - * *KD tree* query time changes with :math:`D` in a way that is difficult - to precisely characterise. For small :math:`D` (less than 20 or so) - the cost is approximately :math:`O[D\log(N)]`, and the KD tree - query can be very efficient. - For larger :math:`D`, the cost increases to nearly :math:`O[DN]`, and - the overhead due to the tree - structure can lead to queries which are slower than brute force. - - For small data sets (:math:`N` less than 30 or so), :math:`\log(N)` is - comparable to :math:`N`, and brute force algorithms can be more efficient - than a tree-based approach. Both :class:`KDTree` and :class:`BallTree` - address this through providing a *leaf size* parameter: this controls the - number of samples at which a query switches to brute-force. This allows both - algorithms to approach the efficiency of a brute-force computation for small - :math:`N`. - -* data structure: *intrinsic dimensionality* of the data and/or *sparsity* - of the data. Intrinsic dimensionality refers to the dimension - :math:`d \le D` of a manifold on which the data lies, which can be linearly - or non-linearly embedded in the parameter space. Sparsity refers to the - degree to which the data fills the parameter space (this is to be - distinguished from the concept as used in "sparse" matrices. The data - matrix may have no zero entries, but the **structure** can still be - "sparse" in this sense). - - * *Brute force* query time is unchanged by data structure. - * *Ball tree* and *KD tree* query times can be greatly influenced - by data structure. In general, sparser data with a smaller intrinsic - dimensionality leads to faster query times. Because the KD tree - internal representation is aligned with the parameter axes, it will not - generally show as much improvement as ball tree for arbitrarily - structured data. - - Datasets used in machine learning tend to be very structured, and are - very well-suited for tree-based queries. - -* number of neighbors :math:`k` requested for a query point. - - * *Brute force* query time is largely unaffected by the value of :math:`k` - * *Ball tree* and *KD tree* query time will become slower as :math:`k` - increases. This is due to two effects: first, a larger :math:`k` leads - to the necessity to search a larger portion of the parameter space. - Second, using :math:`k > 1` requires internal queueing of results - as the tree is traversed. - - As :math:`k` becomes large compared to :math:`N`, the ability to prune - branches in a tree-based query is reduced. In this situation, Brute force - queries can be more efficient. - -* number of query points. Both the ball tree and the KD Tree - require a construction phase. The cost of this construction becomes - negligible when amortized over many queries. If only a small number of - queries will be performed, however, the construction can make up - a significant fraction of the total cost. If very few query points - will be required, brute force is better than a tree-based method. - -Currently, ``algorithm = 'auto'`` selects ``'brute'`` if any of the following -conditions are verified: - -* input data is sparse -* ``metric = 'precomputed'`` -* :math:`D > 15` -* :math:`k >= N/2` -* ``effective_metric_`` isn't in the ``VALID_METRICS`` list for either - ``'kd_tree'`` or ``'ball_tree'`` - -Otherwise, it selects the first out of ``'kd_tree'`` and ``'ball_tree'`` that -has ``effective_metric_`` in its ``VALID_METRICS`` list. This heuristic is -based on the following assumptions: - -* the number of query points is at least the same order as the number of - training points -* ``leaf_size`` is close to its default value of ``30`` -* when :math:`D > 15`, the intrinsic dimensionality of the data is generally - too high for tree-based methods - -|details-end| - -|details-start| -**Effect of ``leaf_size``** -|details-split| - -As noted above, for small sample sizes a brute force search can be more -efficient than a tree-based query. This fact is accounted for in the ball -tree and KD tree by internally switching to brute force searches within -leaf nodes. The level of this switch can be specified with the parameter -``leaf_size``. This parameter choice has many effects: - -**construction time** - A larger ``leaf_size`` leads to a faster tree construction time, because - fewer nodes need to be created - -**query time** - Both a large or small ``leaf_size`` can lead to suboptimal query cost. - For ``leaf_size`` approaching 1, the overhead involved in traversing - nodes can significantly slow query times. For ``leaf_size`` approaching - the size of the training set, queries become essentially brute force. - A good compromise between these is ``leaf_size = 30``, the default value - of the parameter. - -**memory** - As ``leaf_size`` increases, the memory required to store a tree structure - decreases. This is especially important in the case of ball tree, which - stores a :math:`D`-dimensional centroid for each node. The required - storage space for :class:`BallTree` is approximately ``1 / leaf_size`` times - the size of the training set. - -``leaf_size`` is not referenced for brute force queries. -|details-end| - -|details-start| -**Valid Metrics for Nearest Neighbor Algorithms** -|details-split| - -For a list of available metrics, see the documentation of the -:class:`~sklearn.metrics.DistanceMetric` class and the metrics listed in -`sklearn.metrics.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`. Note that the "cosine" -metric uses :func:`~sklearn.metrics.pairwise.cosine_distances`. - -A list of valid metrics for any of the above algorithms can be obtained by using their -``valid_metric`` attribute. For example, valid metrics for ``KDTree`` can be generated by: - - >>> from sklearn.neighbors import KDTree - >>> print(sorted(KDTree.valid_metrics)) - ['chebyshev', 'cityblock', 'euclidean', 'infinity', 'l1', 'l2', 'manhattan', 'minkowski', 'p'] -|details-end| +.. dropdown:: References + + * `"Five Balltree Construction Algorithms" + `_, + Omohundro, S.M., International Computer Science Institute + Technical Report (1989) + +.. dropdown:: Choice of Nearest Neighbors Algorithm + + The optimal algorithm for a given dataset is a complicated choice, and + depends on a number of factors: + + * number of samples :math:`N` (i.e. ``n_samples``) and dimensionality + :math:`D` (i.e. ``n_features``). + + * *Brute force* query time grows as :math:`O[D N]` + * *Ball tree* query time grows as approximately :math:`O[D \log(N)]` + * *KD tree* query time changes with :math:`D` in a way that is difficult + to precisely characterise. For small :math:`D` (less than 20 or so) + the cost is approximately :math:`O[D\log(N)]`, and the KD tree + query can be very efficient. + For larger :math:`D`, the cost increases to nearly :math:`O[DN]`, and + the overhead due to the tree + structure can lead to queries which are slower than brute force. + + For small data sets (:math:`N` less than 30 or so), :math:`\log(N)` is + comparable to :math:`N`, and brute force algorithms can be more efficient + than a tree-based approach. Both :class:`KDTree` and :class:`BallTree` + address this through providing a *leaf size* parameter: this controls the + number of samples at which a query switches to brute-force. This allows both + algorithms to approach the efficiency of a brute-force computation for small + :math:`N`. + + * data structure: *intrinsic dimensionality* of the data and/or *sparsity* + of the data. Intrinsic dimensionality refers to the dimension + :math:`d \le D` of a manifold on which the data lies, which can be linearly + or non-linearly embedded in the parameter space. Sparsity refers to the + degree to which the data fills the parameter space (this is to be + distinguished from the concept as used in "sparse" matrices. The data + matrix may have no zero entries, but the **structure** can still be + "sparse" in this sense). + + * *Brute force* query time is unchanged by data structure. + * *Ball tree* and *KD tree* query times can be greatly influenced + by data structure. In general, sparser data with a smaller intrinsic + dimensionality leads to faster query times. Because the KD tree + internal representation is aligned with the parameter axes, it will not + generally show as much improvement as ball tree for arbitrarily + structured data. + + Datasets used in machine learning tend to be very structured, and are + very well-suited for tree-based queries. + + * number of neighbors :math:`k` requested for a query point. + + * *Brute force* query time is largely unaffected by the value of :math:`k` + * *Ball tree* and *KD tree* query time will become slower as :math:`k` + increases. This is due to two effects: first, a larger :math:`k` leads + to the necessity to search a larger portion of the parameter space. + Second, using :math:`k > 1` requires internal queueing of results + as the tree is traversed. + + As :math:`k` becomes large compared to :math:`N`, the ability to prune + branches in a tree-based query is reduced. In this situation, Brute force + queries can be more efficient. + + * number of query points. Both the ball tree and the KD Tree + require a construction phase. The cost of this construction becomes + negligible when amortized over many queries. If only a small number of + queries will be performed, however, the construction can make up + a significant fraction of the total cost. If very few query points + will be required, brute force is better than a tree-based method. + + Currently, ``algorithm = 'auto'`` selects ``'brute'`` if any of the following + conditions are verified: + + * input data is sparse + * ``metric = 'precomputed'`` + * :math:`D > 15` + * :math:`k >= N/2` + * ``effective_metric_`` isn't in the ``VALID_METRICS`` list for either + ``'kd_tree'`` or ``'ball_tree'`` + + Otherwise, it selects the first out of ``'kd_tree'`` and ``'ball_tree'`` that + has ``effective_metric_`` in its ``VALID_METRICS`` list. This heuristic is + based on the following assumptions: + + * the number of query points is at least the same order as the number of + training points + * ``leaf_size`` is close to its default value of ``30`` + * when :math:`D > 15`, the intrinsic dimensionality of the data is generally + too high for tree-based methods + +.. dropdown:: Effect of ``leaf_size`` + + As noted above, for small sample sizes a brute force search can be more + efficient than a tree-based query. This fact is accounted for in the ball + tree and KD tree by internally switching to brute force searches within + leaf nodes. The level of this switch can be specified with the parameter + ``leaf_size``. This parameter choice has many effects: + + **construction time** + A larger ``leaf_size`` leads to a faster tree construction time, because + fewer nodes need to be created + + **query time** + Both a large or small ``leaf_size`` can lead to suboptimal query cost. + For ``leaf_size`` approaching 1, the overhead involved in traversing + nodes can significantly slow query times. For ``leaf_size`` approaching + the size of the training set, queries become essentially brute force. + A good compromise between these is ``leaf_size = 30``, the default value + of the parameter. + + **memory** + As ``leaf_size`` increases, the memory required to store a tree structure + decreases. This is especially important in the case of ball tree, which + stores a :math:`D`-dimensional centroid for each node. The required + storage space for :class:`BallTree` is approximately ``1 / leaf_size`` times + the size of the training set. + + ``leaf_size`` is not referenced for brute force queries. + +.. dropdown:: Valid Metrics for Nearest Neighbor Algorithms + + For a list of available metrics, see the documentation of the + :class:`~sklearn.metrics.DistanceMetric` class and the metrics listed in + `sklearn.metrics.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`. Note that the "cosine" + metric uses :func:`~sklearn.metrics.pairwise.cosine_distances`. + + A list of valid metrics for any of the above algorithms can be obtained by using their + ``valid_metric`` attribute. For example, valid metrics for ``KDTree`` can be generated by: + + >>> from sklearn.neighbors import KDTree + >>> print(sorted(KDTree.valid_metrics)) + ['chebyshev', 'cityblock', 'euclidean', 'infinity', 'l1', 'l2', 'manhattan', 'minkowski', 'p'] .. _nearest_centroid_classifier: @@ -547,10 +531,10 @@ the model from 0.81 to 0.82. .. centered:: |nearest_centroid_1| |nearest_centroid_2| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_plot_nearest_centroid.py`: an example of - classification using nearest centroid with different shrink thresholds. +* :ref:`sphx_glr_auto_examples_neighbors_plot_nearest_centroid.py`: an example of + classification using nearest centroid with different shrink thresholds. .. _neighbors_transformer: @@ -635,17 +619,17 @@ implementation with special data types. The precomputed neighbors include one extra neighbor in a custom nearest neighbors estimator, since unnecessary neighbors will be filtered by following estimators. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`: - an example of pipelining :class:`KNeighborsTransformer` and - :class:`~sklearn.manifold.TSNE`. Also proposes two custom nearest neighbors - estimators based on external packages. +* :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`: + an example of pipelining :class:`KNeighborsTransformer` and + :class:`~sklearn.manifold.TSNE`. Also proposes two custom nearest neighbors + estimators based on external packages. - * :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py`: - an example of pipelining :class:`KNeighborsTransformer` and - :class:`KNeighborsClassifier` to enable caching of the neighbors graph - during a hyper-parameter grid-search. +* :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py`: + an example of pipelining :class:`KNeighborsTransformer` and + :class:`KNeighborsClassifier` to enable caching of the neighbors graph + during a hyper-parameter grid-search. .. _nca: @@ -769,11 +753,11 @@ by each method. Each data sample belongs to one of 10 classes. .. centered:: |nca_dim_reduction_1| |nca_dim_reduction_2| |nca_dim_reduction_3| -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neighbors_plot_nca_classification.py` - * :ref:`sphx_glr_auto_examples_neighbors_plot_nca_dim_reduction.py` - * :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` +* :ref:`sphx_glr_auto_examples_neighbors_plot_nca_classification.py` +* :ref:`sphx_glr_auto_examples_neighbors_plot_nca_dim_reduction.py` +* :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` .. _nca_mathematical_formulation: @@ -806,20 +790,17 @@ space: p_{i j} = \frac{\exp(-||L x_i - L x_j||^2)}{\sum\limits_{k \ne i} {\exp{-(||L x_i - L x_k||^2)}}} , \quad p_{i i} = 0 -|details-start| -**Mahalanobis distance** -|details-split| +.. dropdown:: Mahalanobis distance -NCA can be seen as learning a (squared) Mahalanobis distance metric: + NCA can be seen as learning a (squared) Mahalanobis distance metric: -.. math:: + .. math:: - || L(x_i - x_j)||^2 = (x_i - x_j)^TM(x_i - x_j), + || L(x_i - x_j)||^2 = (x_i - x_j)^TM(x_i - x_j), -where :math:`M = L^T L` is a symmetric positive semi-definite matrix of size -``(n_features, n_features)``. + where :math:`M = L^T L` is a symmetric positive semi-definite matrix of size + ``(n_features, n_features)``. -|details-end| Implementation -------------- @@ -851,14 +832,12 @@ complexity equals ``n_components * n_features * n_samples_test``. There is no added space complexity in the operation. -.. topic:: References: - - .. [1] `"Neighbourhood Components Analysis" - `_, - J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Advances in - Neural Information Processing Systems, Vol. 17, May 2005, pp. 513-520. +.. rubric:: References - `Wikipedia entry on Neighborhood Components Analysis - `_ +.. [1] `"Neighbourhood Components Analysis" + `_, + J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Advances in + Neural Information Processing Systems, Vol. 17, May 2005, pp. 513-520. -|details-end| +* `Wikipedia entry on Neighborhood Components Analysis + `_ diff --git a/doc/modules/neural_networks_supervised.rst b/doc/modules/neural_networks_supervised.rst index 7ee2387068c81..5c6baecb7e2ff 100644 --- a/doc/modules/neural_networks_supervised.rst +++ b/doc/modules/neural_networks_supervised.rst @@ -49,33 +49,30 @@ The module contains the public attributes ``coefs_`` and ``intercepts_``. :math:`i+1`. ``intercepts_`` is a list of bias vectors, where the vector at index :math:`i` represents the bias values added to layer :math:`i+1`. -|details-start| -**Advantages and disadvantages of Multi-layer Perceptron** -|details-split| +.. dropdown:: Advantages and disadvantages of Multi-layer Perceptron -The advantages of Multi-layer Perceptron are: + The advantages of Multi-layer Perceptron are: -+ Capability to learn non-linear models. + + Capability to learn non-linear models. -+ Capability to learn models in real-time (on-line learning) - using ``partial_fit``. + + Capability to learn models in real-time (on-line learning) + using ``partial_fit``. -The disadvantages of Multi-layer Perceptron (MLP) include: + The disadvantages of Multi-layer Perceptron (MLP) include: -+ MLP with hidden layers have a non-convex loss function where there exists - more than one local minimum. Therefore different random weight - initializations can lead to different validation accuracy. + + MLP with hidden layers have a non-convex loss function where there exists + more than one local minimum. Therefore different random weight + initializations can lead to different validation accuracy. -+ MLP requires tuning a number of hyperparameters such as the number of - hidden neurons, layers, and iterations. + + MLP requires tuning a number of hyperparameters such as the number of + hidden neurons, layers, and iterations. -+ MLP is sensitive to feature scaling. + + MLP is sensitive to feature scaling. -Please see :ref:`Tips on Practical Use ` section that addresses -some of these disadvantages. + Please see :ref:`Tips on Practical Use ` section that addresses + some of these disadvantages. -|details-end| Classification ============== @@ -148,11 +145,11 @@ indices where the value is `1` represents the assigned classes of that sample:: See the examples below and the docstring of :meth:`MLPClassifier.fit` for further information. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py` - * See :ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py` for - visualized representation of trained weights. +* :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py` +* See :ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py` for + visualized representation of trained weights. Regression ========== @@ -181,9 +178,9 @@ decision function with value of alpha. See the examples below for further information. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_alpha.py` +* :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_alpha.py` Algorithms ========== @@ -234,83 +231,78 @@ of iterations. Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and few hidden layers for training. -|details-start| -Mathematical formulation -|details-split| +.. dropdown:: Mathematical formulation -Given a set of training examples :math:`(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)` -where :math:`x_i \in \mathbf{R}^n` and :math:`y_i \in \{0, 1\}`, a one hidden -layer one hidden neuron MLP learns the function :math:`f(x) = W_2 g(W_1^T x + b_1) + b_2` -where :math:`W_1 \in \mathbf{R}^m` and :math:`W_2, b_1, b_2 \in \mathbf{R}` are -model parameters. :math:`W_1, W_2` represent the weights of the input layer and -hidden layer, respectively; and :math:`b_1, b_2` represent the bias added to -the hidden layer and the output layer, respectively. -:math:`g(\cdot) : R \rightarrow R` is the activation function, set by default as -the hyperbolic tan. It is given as, + Given a set of training examples :math:`(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)` + where :math:`x_i \in \mathbf{R}^n` and :math:`y_i \in \{0, 1\}`, a one hidden + layer one hidden neuron MLP learns the function :math:`f(x) = W_2 g(W_1^T x + b_1) + b_2` + where :math:`W_1 \in \mathbf{R}^m` and :math:`W_2, b_1, b_2 \in \mathbf{R}` are + model parameters. :math:`W_1, W_2` represent the weights of the input layer and + hidden layer, respectively; and :math:`b_1, b_2` represent the bias added to + the hidden layer and the output layer, respectively. + :math:`g(\cdot) : R \rightarrow R` is the activation function, set by default as + the hyperbolic tan. It is given as, -.. math:: - g(z)= \frac{e^z-e^{-z}}{e^z+e^{-z}} - -For binary classification, :math:`f(x)` passes through the logistic function -:math:`g(z)=1/(1+e^{-z})` to obtain output values between zero and one. A -threshold, set to 0.5, would assign samples of outputs larger or equal 0.5 -to the positive class, and the rest to the negative class. + .. math:: + g(z)= \frac{e^z-e^{-z}}{e^z+e^{-z}} -If there are more than two classes, :math:`f(x)` itself would be a vector of -size (n_classes,). Instead of passing through logistic function, it passes -through the softmax function, which is written as, - -.. math:: - \text{softmax}(z)_i = \frac{\exp(z_i)}{\sum_{l=1}^k\exp(z_l)} + For binary classification, :math:`f(x)` passes through the logistic function + :math:`g(z)=1/(1+e^{-z})` to obtain output values between zero and one. A + threshold, set to 0.5, would assign samples of outputs larger or equal 0.5 + to the positive class, and the rest to the negative class. -where :math:`z_i` represents the :math:`i` th element of the input to softmax, -which corresponds to class :math:`i`, and :math:`K` is the number of classes. -The result is a vector containing the probabilities that sample :math:`x` -belong to each class. The output is the class with the highest probability. + If there are more than two classes, :math:`f(x)` itself would be a vector of + size (n_classes,). Instead of passing through logistic function, it passes + through the softmax function, which is written as, -In regression, the output remains as :math:`f(x)`; therefore, output activation -function is just the identity function. + .. math:: + \text{softmax}(z)_i = \frac{\exp(z_i)}{\sum_{l=1}^k\exp(z_l)} -MLP uses different loss functions depending on the problem type. The loss -function for classification is Average Cross-Entropy, which in binary case is -given as, + where :math:`z_i` represents the :math:`i` th element of the input to softmax, + which corresponds to class :math:`i`, and :math:`K` is the number of classes. + The result is a vector containing the probabilities that sample :math:`x` + belong to each class. The output is the class with the highest probability. -.. math:: + In regression, the output remains as :math:`f(x)`; therefore, output activation + function is just the identity function. - Loss(\hat{y},y,W) = -\dfrac{1}{n}\sum_{i=0}^n(y_i \ln {\hat{y_i}} + (1-y_i) \ln{(1-\hat{y_i})}) + \dfrac{\alpha}{2n} ||W||_2^2 + MLP uses different loss functions depending on the problem type. The loss + function for classification is Average Cross-Entropy, which in binary case is + given as, -where :math:`\alpha ||W||_2^2` is an L2-regularization term (aka penalty) -that penalizes complex models; and :math:`\alpha > 0` is a non-negative -hyperparameter that controls the magnitude of the penalty. + .. math:: -For regression, MLP uses the Mean Square Error loss function; written as, + Loss(\hat{y},y,W) = -\dfrac{1}{n}\sum_{i=0}^n(y_i \ln {\hat{y_i}} + (1-y_i) \ln{(1-\hat{y_i})}) + \dfrac{\alpha}{2n} ||W||_2^2 -.. math:: + where :math:`\alpha ||W||_2^2` is an L2-regularization term (aka penalty) + that penalizes complex models; and :math:`\alpha > 0` is a non-negative + hyperparameter that controls the magnitude of the penalty. - Loss(\hat{y},y,W) = \frac{1}{2n}\sum_{i=0}^n||\hat{y}_i - y_i ||_2^2 + \frac{\alpha}{2n} ||W||_2^2 + For regression, MLP uses the Mean Square Error loss function; written as, + .. math:: -Starting from initial random weights, multi-layer perceptron (MLP) minimizes -the loss function by repeatedly updating these weights. After computing the -loss, a backward pass propagates it from the output layer to the previous -layers, providing each weight parameter with an update value meant to decrease -the loss. + Loss(\hat{y},y,W) = \frac{1}{2n}\sum_{i=0}^n||\hat{y}_i - y_i ||_2^2 + \frac{\alpha}{2n} ||W||_2^2 -In gradient descent, the gradient :math:`\nabla Loss_{W}` of the loss with respect -to the weights is computed and deducted from :math:`W`. -More formally, this is expressed as, + Starting from initial random weights, multi-layer perceptron (MLP) minimizes + the loss function by repeatedly updating these weights. After computing the + loss, a backward pass propagates it from the output layer to the previous + layers, providing each weight parameter with an update value meant to decrease + the loss. -.. math:: - W^{i+1} = W^i - \epsilon \nabla {Loss}_{W}^{i} + In gradient descent, the gradient :math:`\nabla Loss_{W}` of the loss with respect + to the weights is computed and deducted from :math:`W`. + More formally, this is expressed as, + .. math:: + W^{i+1} = W^i - \epsilon \nabla {Loss}_{W}^{i} -where :math:`i` is the iteration step, and :math:`\epsilon` is the learning rate -with a value larger than 0. + where :math:`i` is the iteration step, and :math:`\epsilon` is the learning rate + with a value larger than 0. -The algorithm stops when it reaches a preset maximum number of iterations; or -when the improvement in loss is below a certain, small number. + The algorithm stops when it reaches a preset maximum number of iterations; or + when the improvement in loss is below a certain, small number. -|details-end| .. _mlp_tips: @@ -361,25 +353,19 @@ or want to do additional monitoring, using ``warm_start=True`` and ... # additional monitoring / inspection MLPClassifier(... -|details-start| -**References** -|details-split| - - * `"Learning representations by back-propagating errors." - `_ - Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. +.. dropdown:: References - * `"Stochastic Gradient Descent" `_ L. Bottou - Website, 2010. + * `"Learning representations by back-propagating errors." + `_ + Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. - * `"Backpropagation" `_ - Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011. + * `"Stochastic Gradient Descent" `_ L. Bottou - Website, 2010. - * `"Efficient BackProp" `_ - Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks - of the Trade 1998. + * `"Backpropagation" `_ + Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011. - * :arxiv:`"Adam: A method for stochastic optimization." - <1412.6980>` - Kingma, Diederik, and Jimmy Ba (2014) + * `"Efficient BackProp" `_ + Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade 1998. -|details-end| + * :arxiv:`"Adam: A method for stochastic optimization." <1412.6980>` + Kingma, Diederik, and Jimmy Ba (2014) diff --git a/doc/modules/neural_networks_unsupervised.rst b/doc/modules/neural_networks_unsupervised.rst index aca56ae8aaf2e..7f6c0016d183b 100644 --- a/doc/modules/neural_networks_unsupervised.rst +++ b/doc/modules/neural_networks_unsupervised.rst @@ -37,9 +37,9 @@ weights of independent RBMs. This method is known as unsupervised pre-training. :align: center :scale: 100% -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_neural_networks_plot_rbm_logistic_classification.py` +* :ref:`sphx_glr_auto_examples_neural_networks_plot_rbm_logistic_classification.py` Graphical model and parametrization @@ -57,7 +57,7 @@ visible and hidden unit, omitted from the image for simplicity. The energy function measures the quality of a joint assignment: -.. math:: +.. math:: E(\mathbf{v}, \mathbf{h}) = -\sum_i \sum_j w_{ij}v_ih_j - \sum_i b_iv_i - \sum_j c_jh_j @@ -149,13 +149,13 @@ step, in PCD we keep a number of chains (fantasy particles) that are updated :math:`k` Gibbs steps after each weight update. This allows the particles to explore the space more thoroughly. -.. topic:: References: +.. rubric:: References - * `"A fast learning algorithm for deep belief nets" - `_ - G. Hinton, S. Osindero, Y.-W. Teh, 2006 +* `"A fast learning algorithm for deep belief nets" + `_, + G. Hinton, S. Osindero, Y.-W. Teh, 2006 - * `"Training Restricted Boltzmann Machines using Approximations to - the Likelihood Gradient" - `_ - T. Tieleman, 2008 +* `"Training Restricted Boltzmann Machines using Approximations to + the Likelihood Gradient" + `_, + T. Tieleman, 2008 diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst index d003b645eb19c..0c6891ed119bd 100644 --- a/doc/modules/outlier_detection.rst +++ b/doc/modules/outlier_detection.rst @@ -123,19 +123,19 @@ refer to the example :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` and the sections hereunder. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` - for a comparison of the :class:`svm.OneClassSVM`, the - :class:`ensemble.IsolationForest`, the - :class:`neighbors.LocalOutlierFactor` and - :class:`covariance.EllipticEnvelope`. +* See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` + for a comparison of the :class:`svm.OneClassSVM`, the + :class:`ensemble.IsolationForest`, the + :class:`neighbors.LocalOutlierFactor` and + :class:`covariance.EllipticEnvelope`. - * See :ref:`sphx_glr_auto_examples_miscellaneous_plot_outlier_detection_bench.py` - for an example showing how to evaluate outlier detection estimators, - the :class:`neighbors.LocalOutlierFactor` and the - :class:`ensemble.IsolationForest`, using ROC curves from - :class:`metrics.RocCurveDisplay`. +* See :ref:`sphx_glr_auto_examples_miscellaneous_plot_outlier_detection_bench.py` + for an example showing how to evaluate outlier detection estimators, + the :class:`neighbors.LocalOutlierFactor` and the + :class:`ensemble.IsolationForest`, using ROC curves from + :class:`metrics.RocCurveDisplay`. Novelty Detection ================= @@ -167,18 +167,18 @@ implementation. The `nu` parameter, also known as the margin of the One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the frontier. -.. topic:: References: +.. rubric:: References - * `Estimating the support of a high-dimensional distribution - `_ - Schölkopf, Bernhard, et al. Neural computation 13.7 (2001): 1443-1471. +* `Estimating the support of a high-dimensional distribution + `_ + Schölkopf, Bernhard, et al. Neural computation 13.7 (2001): 1443-1471. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_svm_plot_oneclass.py` for visualizing the - frontier learned around some data by a - :class:`svm.OneClassSVM` object. - * :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` +* See :ref:`sphx_glr_auto_examples_svm_plot_oneclass.py` for visualizing the + frontier learned around some data by a :class:`svm.OneClassSVM` object. + +* :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` .. figure:: ../auto_examples/svm/images/sphx_glr_plot_oneclass_001.png :target: ../auto_examples/svm/plot_oneclass.html @@ -196,11 +196,11 @@ approximate the solution of a kernelized :class:`svm.OneClassSVM` whose complexity is at best quadratic in the number of samples. See section :ref:`sgd_online_one_class_svm` for more details. -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py` - for an illustration of the approximation of a kernelized One-Class SVM - with the `linear_model.SGDOneClassSVM` combined with kernel approximation. +* See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py` + for an illustration of the approximation of a kernelized One-Class SVM + with the `linear_model.SGDOneClassSVM` combined with kernel approximation. Outlier Detection @@ -238,18 +238,18 @@ This strategy is illustrated below. :align: center :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py` for - an illustration of the difference between using a standard - (:class:`covariance.EmpiricalCovariance`) or a robust estimate - (:class:`covariance.MinCovDet`) of location and covariance to - assess the degree of outlyingness of an observation. +* See :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py` for + an illustration of the difference between using a standard + (:class:`covariance.EmpiricalCovariance`) or a robust estimate + (:class:`covariance.MinCovDet`) of location and covariance to + assess the degree of outlyingness of an observation. -.. topic:: References: +.. rubric:: References - * Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the minimum - covariance determinant estimator" Technometrics 41(3), 212 (1999) +* Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the minimum + covariance determinant estimator" Technometrics 41(3), 212 (1999) .. _isolation_forest: @@ -299,22 +299,22 @@ allows you to add more trees to an already fitted model:: >>> clf.set_params(n_estimators=20) # add 10 more trees # doctest: +SKIP >>> clf.fit(X) # fit the added trees # doctest: +SKIP -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py` for - an illustration of the use of IsolationForest. +* See :ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py` for + an illustration of the use of IsolationForest. - * See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` - for a comparison of :class:`ensemble.IsolationForest` with - :class:`neighbors.LocalOutlierFactor`, - :class:`svm.OneClassSVM` (tuned to perform like an outlier detection - method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based - outlier detection with :class:`covariance.EllipticEnvelope`. +* See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` + for a comparison of :class:`ensemble.IsolationForest` with + :class:`neighbors.LocalOutlierFactor`, + :class:`svm.OneClassSVM` (tuned to perform like an outlier detection + method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based + outlier detection with :class:`covariance.EllipticEnvelope`. -.. topic:: References: +.. rubric:: References - * Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." - Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. +* Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." + Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. .. _local_outlier_factor: @@ -370,20 +370,20 @@ This strategy is illustrated below. :align: center :scale: 75% -.. topic:: Examples: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_neighbors_plot_lof_outlier_detection.py` - for an illustration of the use of :class:`neighbors.LocalOutlierFactor`. +* See :ref:`sphx_glr_auto_examples_neighbors_plot_lof_outlier_detection.py` + for an illustration of the use of :class:`neighbors.LocalOutlierFactor`. - * See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` - for a comparison with other anomaly detection methods. +* See :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` + for a comparison with other anomaly detection methods. -.. topic:: References: +.. rubric:: References - * Breunig, Kriegel, Ng, and Sander (2000) - `LOF: identifying density-based local outliers. - `_ - Proc. ACM SIGMOD +* Breunig, Kriegel, Ng, and Sander (2000) + `LOF: identifying density-based local outliers. + `_ + Proc. ACM SIGMOD .. _novelty_with_lof: diff --git a/doc/modules/partial_dependence.rst b/doc/modules/partial_dependence.rst index 94f7206140b90..40f691a9e6dcc 100644 --- a/doc/modules/partial_dependence.rst +++ b/doc/modules/partial_dependence.rst @@ -79,25 +79,21 @@ parameter takes a list of indices, names of the categorical features or a boolea mask. The graphical representation of partial dependence for categorical features is a bar plot or a 2D heatmap. -|details-start| -**PDPs for multi-class classification** -|details-split| - -For multi-class classification, you need to set the class label for which -the PDPs should be created via the ``target`` argument:: - - >>> from sklearn.datasets import load_iris - >>> iris = load_iris() - >>> mc_clf = GradientBoostingClassifier(n_estimators=10, - ... max_depth=1).fit(iris.data, iris.target) - >>> features = [3, 2, (3, 2)] - >>> PartialDependenceDisplay.from_estimator(mc_clf, X, features, target=0) - <...> +.. dropdown:: PDPs for multi-class classification + + For multi-class classification, you need to set the class label for which + the PDPs should be created via the ``target`` argument:: -The same parameter ``target`` is used to specify the target in multi-output -regression settings. + >>> from sklearn.datasets import load_iris + >>> iris = load_iris() + >>> mc_clf = GradientBoostingClassifier(n_estimators=10, + ... max_depth=1).fit(iris.data, iris.target) + >>> features = [3, 2, (3, 2)] + >>> PartialDependenceDisplay.from_estimator(mc_clf, X, features, target=0) + <...> -|details-end| + The same parameter ``target`` is used to specify the target in multi-output + regression settings. If you need the raw values of the partial dependence function rather than the plots, you can use the @@ -266,9 +262,9 @@ estimators that support it, and 'brute' is used for the rest. interpreting PDPs is that the features should be independent. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` .. rubric:: Footnotes @@ -276,21 +272,20 @@ estimators that support it, and 'brute' is used for the rest. class (the positive class for binary classification), or the decision function. -.. topic:: References +.. rubric:: References - .. [H2009] T. Hastie, R. Tibshirani and J. Friedman, - `The Elements of Statistical Learning - `_, - Second Edition, Section 10.13.2, Springer, 2009. +.. [H2009] T. Hastie, R. Tibshirani and J. Friedman, + `The Elements of Statistical Learning + `_, + Second Edition, Section 10.13.2, Springer, 2009. - .. [M2019] C. Molnar, - `Interpretable Machine Learning - `_, - Section 5.1, 2019. +.. [M2019] C. Molnar, + `Interpretable Machine Learning + `_, + Section 5.1, 2019. - .. [G2015] :arxiv:`A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, - "Peeking Inside the Black Box: Visualizing Statistical - Learning With Plots of Individual Conditional Expectation" - Journal of Computational and Graphical Statistics, - 24(1): 44-65, Springer, 2015. - <1309.6392>` +.. [G2015] :arxiv:`A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, + "Peeking Inside the Black Box: Visualizing Statistical + Learning With Plots of Individual Conditional Expectation" + Journal of Computational and Graphical Statistics, + 24(1): 44-65, Springer, 2015. <1309.6392>` diff --git a/doc/modules/permutation_importance.rst b/doc/modules/permutation_importance.rst index 368c6a6409aa0..12a20a8bcaa6c 100644 --- a/doc/modules/permutation_importance.rst +++ b/doc/modules/permutation_importance.rst @@ -110,48 +110,44 @@ which is more computationally efficient than sequentially calling :func:`permutation_importance` several times with a different scorer, as it reuses model predictions. -|details-start| -**Example of permutation feature importance using multiple scorers** -|details-split| - -In the example below we use a list of metrics, but more input formats are -possible, as documented in :ref:`multimetric_scoring`. - - >>> scoring = ['r2', 'neg_mean_absolute_percentage_error', 'neg_mean_squared_error'] - >>> r_multi = permutation_importance( - ... model, X_val, y_val, n_repeats=30, random_state=0, scoring=scoring) - ... - >>> for metric in r_multi: - ... print(f"{metric}") - ... r = r_multi[metric] - ... for i in r.importances_mean.argsort()[::-1]: - ... if r.importances_mean[i] - 2 * r.importances_std[i] > 0: - ... print(f" {diabetes.feature_names[i]:<8}" - ... f"{r.importances_mean[i]:.3f}" - ... f" +/- {r.importances_std[i]:.3f}") - ... - r2 - s5 0.204 +/- 0.050 - bmi 0.176 +/- 0.048 - bp 0.088 +/- 0.033 - sex 0.056 +/- 0.023 - neg_mean_absolute_percentage_error - s5 0.081 +/- 0.020 - bmi 0.064 +/- 0.015 - bp 0.029 +/- 0.010 - neg_mean_squared_error - s5 1013.866 +/- 246.445 - bmi 872.726 +/- 240.298 - bp 438.663 +/- 163.022 - sex 277.376 +/- 115.123 - -The ranking of the features is approximately the same for different metrics even -if the scales of the importance values are very different. However, this is not -guaranteed and different metrics might lead to significantly different feature -importances, in particular for models trained for imbalanced classification problems, -for which **the choice of the classification metric can be critical**. - -|details-end| +.. dropdown:: Example of permutation feature importance using multiple scorers + + In the example below we use a list of metrics, but more input formats are + possible, as documented in :ref:`multimetric_scoring`. + + >>> scoring = ['r2', 'neg_mean_absolute_percentage_error', 'neg_mean_squared_error'] + >>> r_multi = permutation_importance( + ... model, X_val, y_val, n_repeats=30, random_state=0, scoring=scoring) + ... + >>> for metric in r_multi: + ... print(f"{metric}") + ... r = r_multi[metric] + ... for i in r.importances_mean.argsort()[::-1]: + ... if r.importances_mean[i] - 2 * r.importances_std[i] > 0: + ... print(f" {diabetes.feature_names[i]:<8}" + ... f"{r.importances_mean[i]:.3f}" + ... f" +/- {r.importances_std[i]:.3f}") + ... + r2 + s5 0.204 +/- 0.050 + bmi 0.176 +/- 0.048 + bp 0.088 +/- 0.033 + sex 0.056 +/- 0.023 + neg_mean_absolute_percentage_error + s5 0.081 +/- 0.020 + bmi 0.064 +/- 0.015 + bp 0.029 +/- 0.010 + neg_mean_squared_error + s5 1013.866 +/- 246.445 + bmi 872.726 +/- 240.298 + bp 438.663 +/- 163.022 + sex 277.376 +/- 115.123 + + The ranking of the features is approximately the same for different metrics even + if the scales of the importance values are very different. However, this is not + guaranteed and different metrics might lead to significantly different feature + importances, in particular for models trained for imbalanced classification problems, + for which **the choice of the classification metric can be critical**. Outline of the permutation importance algorithm ----------------------------------------------- @@ -228,12 +224,12 @@ keep one feature from each cluster. For more details on such strategy, see the example :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py`. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance.py` - * :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance.py` +* :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py` -.. topic:: References: +.. rubric:: References - .. [1] L. Breiman, :doi:`"Random Forests" <10.1023/A:1010933404324>`, - Machine Learning, 45(1), 5-32, 2001. +.. [1] L. Breiman, :doi:`"Random Forests" <10.1023/A:1010933404324>`, + Machine Learning, 45(1), 5-32, 2001. diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst index 99678f2b3e45b..90889ad5af7e0 100644 --- a/doc/modules/preprocessing.rst +++ b/doc/modules/preprocessing.rst @@ -219,28 +219,22 @@ of the data is likely to not work very well. In these cases, you can use :class:`RobustScaler` as a drop-in replacement instead. It uses more robust estimates for the center and range of your data. -|details-start| -**References** -|details-split| -Further discussion on the importance of centering and scaling data is -available on this FAQ: `Should I normalize/standardize/rescale the data? -`_ +.. dropdown:: References -|details-end| + Further discussion on the importance of centering and scaling data is + available on this FAQ: `Should I normalize/standardize/rescale the data? + `_ -|details-start| -**Scaling vs Whitening** -|details-split| +.. dropdown:: Scaling vs Whitening -It is sometimes not enough to center and scale the features -independently, since a downstream model can further make some assumption -on the linear independence of the features. + It is sometimes not enough to center and scale the features + independently, since a downstream model can further make some assumption + on the linear independence of the features. -To address this issue you can use :class:`~sklearn.decomposition.PCA` with -``whiten=True`` to further remove the linear correlation across features. + To address this issue you can use :class:`~sklearn.decomposition.PCA` with + ``whiten=True`` to further remove the linear correlation across features. -|details-end| .. _kernel_centering: @@ -255,63 +249,59 @@ followed by the removal of the mean in that space. In other words, :class:`KernelCenterer` computes the centered Gram matrix associated to a positive semidefinite kernel :math:`K`. -|details-start| -**Mathematical formulation** -|details-split| +.. dropdown:: Mathematical formulation -We can have a look at the mathematical formulation now that we have the -intuition. Let :math:`K` be a kernel matrix of shape `(n_samples, n_samples)` -computed from :math:`X`, a data matrix of shape `(n_samples, n_features)`, -during the `fit` step. :math:`K` is defined by + We can have a look at the mathematical formulation now that we have the + intuition. Let :math:`K` be a kernel matrix of shape `(n_samples, n_samples)` + computed from :math:`X`, a data matrix of shape `(n_samples, n_features)`, + during the `fit` step. :math:`K` is defined by -.. math:: - K(X, X) = \phi(X) . \phi(X)^{T} + .. math:: + K(X, X) = \phi(X) . \phi(X)^{T} -:math:`\phi(X)` is a function mapping of :math:`X` to a Hilbert space. A -centered kernel :math:`\tilde{K}` is defined as: + :math:`\phi(X)` is a function mapping of :math:`X` to a Hilbert space. A + centered kernel :math:`\tilde{K}` is defined as: -.. math:: - \tilde{K}(X, X) = \tilde{\phi}(X) . \tilde{\phi}(X)^{T} + .. math:: + \tilde{K}(X, X) = \tilde{\phi}(X) . \tilde{\phi}(X)^{T} -where :math:`\tilde{\phi}(X)` results from centering :math:`\phi(X)` in the -Hilbert space. + where :math:`\tilde{\phi}(X)` results from centering :math:`\phi(X)` in the + Hilbert space. -Thus, one could compute :math:`\tilde{K}` by mapping :math:`X` using the -function :math:`\phi(\cdot)` and center the data in this new space. However, -kernels are often used because they allows some algebra calculations that -avoid computing explicitly this mapping using :math:`\phi(\cdot)`. Indeed, one -can implicitly center as shown in Appendix B in [Scholkopf1998]_: + Thus, one could compute :math:`\tilde{K}` by mapping :math:`X` using the + function :math:`\phi(\cdot)` and center the data in this new space. However, + kernels are often used because they allows some algebra calculations that + avoid computing explicitly this mapping using :math:`\phi(\cdot)`. Indeed, one + can implicitly center as shown in Appendix B in [Scholkopf1998]_: -.. math:: - \tilde{K} = K - 1_{\text{n}_{samples}} K - K 1_{\text{n}_{samples}} + 1_{\text{n}_{samples}} K 1_{\text{n}_{samples}} + .. math:: + \tilde{K} = K - 1_{\text{n}_{samples}} K - K 1_{\text{n}_{samples}} + 1_{\text{n}_{samples}} K 1_{\text{n}_{samples}} -:math:`1_{\text{n}_{samples}}` is a matrix of `(n_samples, n_samples)` where -all entries are equal to :math:`\frac{1}{\text{n}_{samples}}`. In the -`transform` step, the kernel becomes :math:`K_{test}(X, Y)` defined as: + :math:`1_{\text{n}_{samples}}` is a matrix of `(n_samples, n_samples)` where + all entries are equal to :math:`\frac{1}{\text{n}_{samples}}`. In the + `transform` step, the kernel becomes :math:`K_{test}(X, Y)` defined as: -.. math:: - K_{test}(X, Y) = \phi(Y) . \phi(X)^{T} + .. math:: + K_{test}(X, Y) = \phi(Y) . \phi(X)^{T} -:math:`Y` is the test dataset of shape `(n_samples_test, n_features)` and thus -:math:`K_{test}` is of shape `(n_samples_test, n_samples)`. In this case, -centering :math:`K_{test}` is done as: + :math:`Y` is the test dataset of shape `(n_samples_test, n_features)` and thus + :math:`K_{test}` is of shape `(n_samples_test, n_samples)`. In this case, + centering :math:`K_{test}` is done as: -.. math:: - \tilde{K}_{test}(X, Y) = K_{test} - 1'_{\text{n}_{samples}} K - K_{test} 1_{\text{n}_{samples}} + 1'_{\text{n}_{samples}} K 1_{\text{n}_{samples}} + .. math:: + \tilde{K}_{test}(X, Y) = K_{test} - 1'_{\text{n}_{samples}} K - K_{test} 1_{\text{n}_{samples}} + 1'_{\text{n}_{samples}} K 1_{\text{n}_{samples}} -:math:`1'_{\text{n}_{samples}}` is a matrix of shape -`(n_samples_test, n_samples)` where all entries are equal to -:math:`\frac{1}{\text{n}_{samples}}`. + :math:`1'_{\text{n}_{samples}}` is a matrix of shape + `(n_samples_test, n_samples)` where all entries are equal to + :math:`\frac{1}{\text{n}_{samples}}`. -.. topic:: References + .. rubric:: References .. [Scholkopf1998] B. Schölkopf, A. Smola, and K.R. Müller, `"Nonlinear component analysis as a kernel eigenvalue problem." `_ Neural computation 10.5 (1998): 1299-1319. -|details-end| - .. _preprocessing_transformer: Non-linear transformation @@ -383,54 +373,46 @@ possible in order to stabilize variance and minimize skewness. :class:`PowerTransformer` currently provides two such power transformations, the Yeo-Johnson transform and the Box-Cox transform. -|details-start| -**Yeo-Johnson transform** -|details-split| - -.. math:: - x_i^{(\lambda)} = - \begin{cases} - [(x_i + 1)^\lambda - 1] / \lambda & \text{if } \lambda \neq 0, x_i \geq 0, \\[8pt] - \ln{(x_i + 1)} & \text{if } \lambda = 0, x_i \geq 0 \\[8pt] - -[(-x_i + 1)^{2 - \lambda} - 1] / (2 - \lambda) & \text{if } \lambda \neq 2, x_i < 0, \\[8pt] - - \ln (- x_i + 1) & \text{if } \lambda = 2, x_i < 0 - \end{cases} - -|details-end| - -|details-start| -**Box-Cox transform** -|details-split| - -.. math:: - x_i^{(\lambda)} = - \begin{cases} - \dfrac{x_i^\lambda - 1}{\lambda} & \text{if } \lambda \neq 0, \\[8pt] - \ln{(x_i)} & \text{if } \lambda = 0, - \end{cases} - - -Box-Cox can only be applied to strictly positive data. In both methods, the -transformation is parameterized by :math:`\lambda`, which is determined through -maximum likelihood estimation. Here is an example of using Box-Cox to map -samples drawn from a lognormal distribution to a normal distribution:: - - >>> pt = preprocessing.PowerTransformer(method='box-cox', standardize=False) - >>> X_lognormal = np.random.RandomState(616).lognormal(size=(3, 3)) - >>> X_lognormal - array([[1.28..., 1.18..., 0.84...], - [0.94..., 1.60..., 0.38...], - [1.35..., 0.21..., 1.09...]]) - >>> pt.fit_transform(X_lognormal) - array([[ 0.49..., 0.17..., -0.15...], - [-0.05..., 0.58..., -0.57...], - [ 0.69..., -0.84..., 0.10...]]) - -While the above example sets the `standardize` option to `False`, -:class:`PowerTransformer` will apply zero-mean, unit-variance normalization -to the transformed output by default. - -|details-end| +.. dropdown:: Yeo-Johnson transform + + .. math:: + x_i^{(\lambda)} = + \begin{cases} + [(x_i + 1)^\lambda - 1] / \lambda & \text{if } \lambda \neq 0, x_i \geq 0, \\[8pt] + \ln{(x_i + 1)} & \text{if } \lambda = 0, x_i \geq 0 \\[8pt] + -[(-x_i + 1)^{2 - \lambda} - 1] / (2 - \lambda) & \text{if } \lambda \neq 2, x_i < 0, \\[8pt] + - \ln (- x_i + 1) & \text{if } \lambda = 2, x_i < 0 + \end{cases} + +.. dropdown:: Box-Cox transform + + .. math:: + x_i^{(\lambda)} = + \begin{cases} + \dfrac{x_i^\lambda - 1}{\lambda} & \text{if } \lambda \neq 0, \\[8pt] + \ln{(x_i)} & \text{if } \lambda = 0, + \end{cases} + + Box-Cox can only be applied to strictly positive data. In both methods, the + transformation is parameterized by :math:`\lambda`, which is determined through + maximum likelihood estimation. Here is an example of using Box-Cox to map + samples drawn from a lognormal distribution to a normal distribution:: + + >>> pt = preprocessing.PowerTransformer(method='box-cox', standardize=False) + >>> X_lognormal = np.random.RandomState(616).lognormal(size=(3, 3)) + >>> X_lognormal + array([[1.28..., 1.18..., 0.84...], + [0.94..., 1.60..., 0.38...], + [1.35..., 0.21..., 1.09...]]) + >>> pt.fit_transform(X_lognormal) + array([[ 0.49..., 0.17..., -0.15...], + [-0.05..., 0.58..., -0.57...], + [ 0.69..., -0.84..., 0.10...]]) + + While the above example sets the `standardize` option to `False`, + :class:`PowerTransformer` will apply zero-mean, unit-variance normalization + to the transformed output by default. + Below are examples of Box-Cox and Yeo-Johnson applied to various probability distributions. Note that when applied to certain distributions, the power @@ -518,9 +500,8 @@ The normalizer instance can then be used on sample vectors as any transformer:: Note: L2 normalization is also known as spatial sign preprocessing. -|details-start| -**Sparse input** -|details-split| +.. dropdown:: Sparse input + :func:`normalize` and :class:`Normalizer` accept **both dense array-like and sparse matrices from scipy.sparse as input**. @@ -529,12 +510,11 @@ Note: L2 normalization is also known as spatial sign preprocessing. efficient Cython routines. To avoid unnecessary memory copies, it is recommended to choose the CSR representation upstream. -|details-end| - .. _preprocessing_categorical_features: Encoding categorical features ============================= + Often features are not given as continuous values but categorical. For example a person could have features ``["male", "female"]``, ``["from Europe", "from US", "from Asia"]``, @@ -721,42 +701,39 @@ not dropped:: >>> drop_enc.inverse_transform(X_trans) array([['female', None, None]], dtype=object) -|details-start| -**Support of categorical features with missing values** -|details-split| +.. dropdown:: Support of categorical features with missing values -:class:`OneHotEncoder` supports categorical features with missing values by -considering the missing values as an additional category:: + :class:`OneHotEncoder` supports categorical features with missing values by + considering the missing values as an additional category:: - >>> X = [['male', 'Safari'], - ... ['female', None], - ... [np.nan, 'Firefox']] - >>> enc = preprocessing.OneHotEncoder(handle_unknown='error').fit(X) - >>> enc.categories_ - [array(['female', 'male', nan], dtype=object), - array(['Firefox', 'Safari', None], dtype=object)] - >>> enc.transform(X).toarray() - array([[0., 1., 0., 0., 1., 0.], - [1., 0., 0., 0., 0., 1.], - [0., 0., 1., 1., 0., 0.]]) - -If a feature contains both `np.nan` and `None`, they will be considered -separate categories:: - - >>> X = [['Safari'], [None], [np.nan], ['Firefox']] - >>> enc = preprocessing.OneHotEncoder(handle_unknown='error').fit(X) - >>> enc.categories_ - [array(['Firefox', 'Safari', None, nan], dtype=object)] - >>> enc.transform(X).toarray() - array([[0., 1., 0., 0.], - [0., 0., 1., 0.], - [0., 0., 0., 1.], - [1., 0., 0., 0.]]) + >>> X = [['male', 'Safari'], + ... ['female', None], + ... [np.nan, 'Firefox']] + >>> enc = preprocessing.OneHotEncoder(handle_unknown='error').fit(X) + >>> enc.categories_ + [array(['female', 'male', nan], dtype=object), + array(['Firefox', 'Safari', None], dtype=object)] + >>> enc.transform(X).toarray() + array([[0., 1., 0., 0., 1., 0.], + [1., 0., 0., 0., 0., 1.], + [0., 0., 1., 1., 0., 0.]]) + + If a feature contains both `np.nan` and `None`, they will be considered + separate categories:: + + >>> X = [['Safari'], [None], [np.nan], ['Firefox']] + >>> enc = preprocessing.OneHotEncoder(handle_unknown='error').fit(X) + >>> enc.categories_ + [array(['Firefox', 'Safari', None, nan], dtype=object)] + >>> enc.transform(X).toarray() + array([[0., 1., 0., 0.], + [0., 0., 1., 0.], + [0., 0., 0., 1.], + [1., 0., 0., 0.]]) -See :ref:`dict_feature_extraction` for categorical features that are -represented as a dict, not as scalars. + See :ref:`dict_feature_extraction` for categorical features that are + represented as a dict, not as scalars. -|details-end| .. _encoder_infrequent_categories: @@ -910,66 +887,55 @@ cardinality, where one-hot encoding would inflate the feature space making it more expensive for a downstream model to process. A classical example of high cardinality categories are location based such as zip code or region. -|details-start| -**Binary classification targets** -|details-split| - -For the binary classification target, the target encoding is given by: - -.. math:: - S_i = \lambda_i\frac{n_{iY}}{n_i} + (1 - \lambda_i)\frac{n_Y}{n} +.. dropdown:: Binary classification targets -where :math:`S_i` is the encoding for category :math:`i`, :math:`n_{iY}` is the -number of observations with :math:`Y=1` and category :math:`i`, :math:`n_i` is -the number of observations with category :math:`i`, :math:`n_Y` is the number of -observations with :math:`Y=1`, :math:`n` is the number of observations, and -:math:`\lambda_i` is a shrinkage factor for category :math:`i`. The shrinkage -factor is given by: + For the binary classification target, the target encoding is given by: -.. math:: - \lambda_i = \frac{n_i}{m + n_i} + .. math:: + S_i = \lambda_i\frac{n_{iY}}{n_i} + (1 - \lambda_i)\frac{n_Y}{n} -where :math:`m` is a smoothing factor, which is controlled with the `smooth` -parameter in :class:`TargetEncoder`. Large smoothing factors will put more -weight on the global mean. When `smooth="auto"`, the smoothing factor is -computed as an empirical Bayes estimate: :math:`m=\sigma_i^2/\tau^2`, where -:math:`\sigma_i^2` is the variance of `y` with category :math:`i` and -:math:`\tau^2` is the global variance of `y`. + where :math:`S_i` is the encoding for category :math:`i`, :math:`n_{iY}` is the + number of observations with :math:`Y=1` and category :math:`i`, :math:`n_i` is + the number of observations with category :math:`i`, :math:`n_Y` is the number of + observations with :math:`Y=1`, :math:`n` is the number of observations, and + :math:`\lambda_i` is a shrinkage factor for category :math:`i`. The shrinkage + factor is given by: -|details-end| + .. math:: + \lambda_i = \frac{n_i}{m + n_i} -|details-start| -**Multiclass classification targets** -|details-split| + where :math:`m` is a smoothing factor, which is controlled with the `smooth` + parameter in :class:`TargetEncoder`. Large smoothing factors will put more + weight on the global mean. When `smooth="auto"`, the smoothing factor is + computed as an empirical Bayes estimate: :math:`m=\sigma_i^2/\tau^2`, where + :math:`\sigma_i^2` is the variance of `y` with category :math:`i` and + :math:`\tau^2` is the global variance of `y`. -For multiclass classification targets, the formulation is similar to binary -classification: +.. dropdown:: Multiclass classification targets -.. math:: - S_{ij} = \lambda_i\frac{n_{iY_j}}{n_i} + (1 - \lambda_i)\frac{n_{Y_j}}{n} + For multiclass classification targets, the formulation is similar to binary + classification: -where :math:`S_{ij}` is the encoding for category :math:`i` and class :math:`j`, -:math:`n_{iY_j}` is the number of observations with :math:`Y=j` and category -:math:`i`, :math:`n_i` is the number of observations with category :math:`i`, -:math:`n_{Y_j}` is the number of observations with :math:`Y=j`, :math:`n` is the -number of observations, and :math:`\lambda_i` is a shrinkage factor for category -:math:`i`. + .. math:: + S_{ij} = \lambda_i\frac{n_{iY_j}}{n_i} + (1 - \lambda_i)\frac{n_{Y_j}}{n} -|details-end| + where :math:`S_{ij}` is the encoding for category :math:`i` and class :math:`j`, + :math:`n_{iY_j}` is the number of observations with :math:`Y=j` and category + :math:`i`, :math:`n_i` is the number of observations with category :math:`i`, + :math:`n_{Y_j}` is the number of observations with :math:`Y=j`, :math:`n` is the + number of observations, and :math:`\lambda_i` is a shrinkage factor for category + :math:`i`. -|details-start| -**Continuous targets** -|details-split| +.. dropdown:: Continuous targets -For continuous targets, the formulation is similar to binary classification: + For continuous targets, the formulation is similar to binary classification: -.. math:: - S_i = \lambda_i\frac{\sum_{k\in L_i}Y_k}{n_i} + (1 - \lambda_i)\frac{\sum_{k=1}^{n}Y_k}{n} + .. math:: + S_i = \lambda_i\frac{\sum_{k\in L_i}Y_k}{n_i} + (1 - \lambda_i)\frac{\sum_{k=1}^{n}Y_k}{n} -where :math:`L_i` is the set of observations with category :math:`i` and -:math:`n_i` is the number of observations with category :math:`i`. + where :math:`L_i` is the set of observations with category :math:`i` and + :math:`n_i` is the number of observations with category :math:`i`. -|details-end| :meth:`~TargetEncoder.fit_transform` internally relies on a :term:`cross fitting` scheme to prevent target information from leaking into the train-time @@ -1005,21 +971,21 @@ encoding learned in :meth:`~TargetEncoder.fit_transform`. that are not seen during `fit` are encoded with the target mean, i.e. `target_mean_`. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py` - * :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder_cross_val.py` +* :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py` +* :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder_cross_val.py` -.. topic:: References +.. rubric:: References - .. [MIC] :doi:`Micci-Barreca, Daniele. "A preprocessing scheme for high-cardinality - categorical attributes in classification and prediction problems" - SIGKDD Explor. Newsl. 3, 1 (July 2001), 27–32. <10.1145/507533.507538>` +.. [MIC] :doi:`Micci-Barreca, Daniele. "A preprocessing scheme for high-cardinality + categorical attributes in classification and prediction problems" + SIGKDD Explor. Newsl. 3, 1 (July 2001), 27-32. <10.1145/507533.507538>` - .. [PAR] :doi:`Pargent, F., Pfisterer, F., Thomas, J. et al. "Regularized target - encoding outperforms traditional methods in supervised machine learning with - high cardinality features" Comput Stat 37, 2671–2692 (2022) - <10.1007/s00180-022-01207-6>` +.. [PAR] :doi:`Pargent, F., Pfisterer, F., Thomas, J. et al. "Regularized target + encoding outperforms traditional methods in supervised machine learning with + high cardinality features" Comput Stat 37, 2671-2692 (2022) + <10.1007/s00180-022-01207-6>` .. _preprocessing_discretization: @@ -1097,11 +1063,11 @@ For instance, we can use the Pandas function :func:`pandas.cut`:: ['infant', 'kid', 'teen', 'adult', 'senior citizen'] Categories (5, object): ['infant' < 'kid' < 'teen' < 'adult' < 'senior citizen'] -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py` - * :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py` - * :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py` +* :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py` +* :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py` +* :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py` .. _preprocessing_binarization: @@ -1294,23 +1260,20 @@ Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as ``encode='onehot-dense'`` and ``n_bins = n_knots - 1`` if ``knots = strategy``. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` - * :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py` +* :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` +* :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py` -|details-start| -**References** -|details-split| +.. dropdown:: References - * Eilers, P., & Marx, B. (1996). :doi:`Flexible Smoothing with B-splines and - Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121. + * Eilers, P., & Marx, B. (1996). :doi:`Flexible Smoothing with B-splines and + Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121. - * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of - spline function procedures in R <10.1186/s12874-019-0666-3>`. - BMC Med Res Methodol 19, 46 (2019). + * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of + spline function procedures in R <10.1186/s12874-019-0666-3>`. + BMC Med Res Methodol 19, 46 (2019). -|details-end| .. _function_transformer: diff --git a/doc/modules/random_projection.rst b/doc/modules/random_projection.rst index 6931feb34ad1d..173aee434576c 100644 --- a/doc/modules/random_projection.rst +++ b/doc/modules/random_projection.rst @@ -19,19 +19,19 @@ samples of the dataset. Thus random projection is a suitable approximation technique for distance based method. -.. topic:: References: +.. rubric:: References - * Sanjoy Dasgupta. 2000. - `Experiments with random projection. `_ - In Proceedings of the Sixteenth conference on Uncertainty in artificial - intelligence (UAI'00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan - Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151. +* Sanjoy Dasgupta. 2000. + `Experiments with random projection. `_ + In Proceedings of the Sixteenth conference on Uncertainty in artificial + intelligence (UAI'00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan + Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151. - * Ella Bingham and Heikki Mannila. 2001. - `Random projection in dimensionality reduction: applications to image and text data. `_ - In Proceedings of the seventh ACM SIGKDD international conference on - Knowledge discovery and data mining (KDD '01). ACM, New York, NY, USA, - 245-250. +* Ella Bingham and Heikki Mannila. 2001. + `Random projection in dimensionality reduction: applications to image and text data. `_ + In Proceedings of the seventh ACM SIGKDD international conference on + Knowledge discovery and data mining (KDD '01). ACM, New York, NY, USA, + 245-250. .. _johnson_lindenstrauss: @@ -74,17 +74,17 @@ bounded distortion introduced by the random projection:: :scale: 75 :align: center -.. topic:: Example: +.. rubric:: Examples - * See :ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py` - for a theoretical explication on the Johnson-Lindenstrauss lemma and an - empirical validation using sparse random matrices. +* See :ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py` + for a theoretical explication on the Johnson-Lindenstrauss lemma and an + empirical validation using sparse random matrices. -.. topic:: References: +.. rubric:: References - * Sanjoy Dasgupta and Anupam Gupta, 1999. - `An elementary proof of the Johnson-Lindenstrauss Lemma. - `_ +* Sanjoy Dasgupta and Anupam Gupta, 1999. + `An elementary proof of the Johnson-Lindenstrauss Lemma. + `_ .. _gaussian_random_matrix: @@ -148,18 +148,17 @@ projection transformer:: (100, 3947) -.. topic:: References: +.. rubric:: References - * D. Achlioptas. 2003. - `Database-friendly random projections: Johnson-Lindenstrauss with binary - coins `_. - Journal of Computer and System Sciences 66 (2003) 671–687 +* D. Achlioptas. 2003. + `Database-friendly random projections: Johnson-Lindenstrauss with binary + coins `_. + Journal of Computer and System Sciences 66 (2003) 671-687. - * Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. - `Very sparse random projections. `_ - In Proceedings of the 12th ACM SIGKDD international conference on - Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA, - 287-296. +* Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. + `Very sparse random projections. `_ + In Proceedings of the 12th ACM SIGKDD international conference on + Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA, 287-296. .. _random_projection_inverse_transform: diff --git a/doc/modules/semi_supervised.rst b/doc/modules/semi_supervised.rst index f8cae0a9ddcdf..8ba33638c6eec 100644 --- a/doc/modules/semi_supervised.rst +++ b/doc/modules/semi_supervised.rst @@ -60,18 +60,18 @@ until all samples have labels or no new samples are selected in that iteration. When using the self-training classifier, the :ref:`calibration ` of the classifier is important. -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_self_training_varying_threshold.py` - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_self_training_varying_threshold.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py` -.. topic:: References +.. rubric:: References - .. [1] :doi:`"Unsupervised word sense disambiguation rivaling supervised methods" - <10.3115/981658.981684>` - David Yarowsky, Proceedings of the 33rd annual meeting on Association for - Computational Linguistics (ACL '95). Association for Computational Linguistics, - Stroudsburg, PA, USA, 189-196. +.. [1] :doi:`"Unsupervised word sense disambiguation rivaling supervised methods" + <10.3115/981658.981684>` + David Yarowsky, Proceedings of the 33rd annual meeting on Association for + Computational Linguistics (ACL '95). Association for Computational Linguistics, + Stroudsburg, PA, USA, 189-196. .. _label_propagation: @@ -134,18 +134,18 @@ algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much more memory-friendly sparse matrix which can drastically reduce running times. -.. topic:: Examples +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py` - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_structure.py` - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits.py` - * :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits_active_learning.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_structure.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits.py` +* :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits_active_learning.py` -.. topic:: References +.. rubric:: References - [2] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised - Learning (2006), pp. 193-216 +[2] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised +Learning (2006), pp. 193-216 - [3] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient - Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 - https://www.gatsby.ucl.ac.uk/aistats/fullpapers/204.pdf +[3] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient +Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 +https://www.gatsby.ucl.ac.uk/aistats/fullpapers/204.pdf diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst index a7981e9d4ec28..73df123b4ed19 100644 --- a/doc/modules/sgd.rst +++ b/doc/modules/sgd.rst @@ -189,14 +189,14 @@ For classification with a logistic loss, another variant of SGD with an averaging strategy is available with Stochastic Average Gradient (SAG) algorithm, available as a solver in :class:`LogisticRegression`. -.. topic:: Examples: +.. rubric:: Examples - - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_separating_hyperplane.py`, - - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_iris.py` - - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_weighted_samples.py` - - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_comparison.py` - - :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` - (See the Note in the example) +- :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_separating_hyperplane.py` +- :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_iris.py` +- :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_weighted_samples.py` +- :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_comparison.py` +- :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` + (See the Note in the example) Regression ========== @@ -249,44 +249,40 @@ quadratic in the number of samples. with a large number of training samples (> 10,000) for which the SGD variant can be several orders of magnitude faster. -|details-start| -**Mathematical details** -|details-split| +.. dropdown:: Mathematical details -Its implementation is based on the implementation of the stochastic -gradient descent. Indeed, the original optimization problem of the One-Class -SVM is given by + Its implementation is based on the implementation of the stochastic + gradient descent. Indeed, the original optimization problem of the One-Class + SVM is given by -.. math:: - - \begin{aligned} - \min_{w, \rho, \xi} & \quad \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \xi_i \\ - \text{s.t.} & \quad \langle w, x_i \rangle \geq \rho - \xi_i \quad 1 \leq i \leq n \\ - & \quad \xi_i \geq 0 \quad 1 \leq i \leq n - \end{aligned} + .. math:: -where :math:`\nu \in (0, 1]` is the user-specified parameter controlling the -proportion of outliers and the proportion of support vectors. Getting rid of -the slack variables :math:`\xi_i` this problem is equivalent to + \begin{aligned} + \min_{w, \rho, \xi} & \quad \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \xi_i \\ + \text{s.t.} & \quad \langle w, x_i \rangle \geq \rho - \xi_i \quad 1 \leq i \leq n \\ + & \quad \xi_i \geq 0 \quad 1 \leq i \leq n + \end{aligned} -.. math:: + where :math:`\nu \in (0, 1]` is the user-specified parameter controlling the + proportion of outliers and the proportion of support vectors. Getting rid of + the slack variables :math:`\xi_i` this problem is equivalent to - \min_{w, \rho} \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \max(0, \rho - \langle w, x_i \rangle) \, . + .. math:: -Multiplying by the constant :math:`\nu` and introducing the intercept -:math:`b = 1 - \rho` we obtain the following equivalent optimization problem + \min_{w, \rho} \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \max(0, \rho - \langle w, x_i \rangle) \, . -.. math:: + Multiplying by the constant :math:`\nu` and introducing the intercept + :math:`b = 1 - \rho` we obtain the following equivalent optimization problem - \min_{w, b} \frac{\nu}{2}\Vert w \Vert^2 + b\nu + \frac{1}{n} \sum_{i=1}^n \max(0, 1 - (\langle w, x_i \rangle + b)) \, . + .. math:: -This is similar to the optimization problems studied in section -:ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \leq i \leq n` and -:math:`\alpha = \nu/2`, :math:`L` being the hinge loss function and :math:`R` -being the L2 norm. We just need to add the term :math:`b\nu` in the -optimization loop. + \min_{w, b} \frac{\nu}{2}\Vert w \Vert^2 + b\nu + \frac{1}{n} \sum_{i=1}^n \max(0, 1 - (\langle w, x_i \rangle + b)) \, . -|details-end| + This is similar to the optimization problems studied in section + :ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \leq i \leq n` and + :math:`\alpha = \nu/2`, :math:`L` being the hinge loss function and :math:`R` + being the L2 norm. We just need to add the term :math:`b\nu` in the + optimization loop. As :class:`SGDClassifier` and :class:`SGDRegressor`, :class:`SGDOneClassSVM` supports averaged SGD. Averaging can be enabled by setting ``average=True``. @@ -305,9 +301,9 @@ efficiency, however, use the CSR matrix format as defined in `scipy.sparse.csr_matrix `_. -.. topic:: Examples: +.. rubric:: Examples - - :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` +- :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` Complexity ========== @@ -385,11 +381,11 @@ Tips on Practical Use * We found that Averaged SGD works best with a larger number of features and a higher eta0. -.. topic:: References: +.. rubric:: References - * `"Efficient BackProp" `_ - Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks - of the Trade 1998. +* `"Efficient BackProp" `_ + Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks + of the Trade 1998. .. _sgd_mathematical_formulation: @@ -416,32 +412,28 @@ where :math:`L` is a loss function that measures model (mis)fit and complexity; :math:`\alpha > 0` is a non-negative hyperparameter that controls the regularization strength. -|details-start| -**Loss functions details** -|details-split| - -Different choices for :math:`L` entail different classifiers or regressors: - -- Hinge (soft-margin): equivalent to Support Vector Classification. - :math:`L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))`. -- Perceptron: - :math:`L(y_i, f(x_i)) = \max(0, - y_i f(x_i))`. -- Modified Huber: - :math:`L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))^2` if :math:`y_i f(x_i) > - -1`, and :math:`L(y_i, f(x_i)) = -4 y_i f(x_i)` otherwise. -- Log Loss: equivalent to Logistic Regression. - :math:`L(y_i, f(x_i)) = \log(1 + \exp (-y_i f(x_i)))`. -- Squared Error: Linear regression (Ridge or Lasso depending on - :math:`R`). - :math:`L(y_i, f(x_i)) = \frac{1}{2}(y_i - f(x_i))^2`. -- Huber: less sensitive to outliers than least-squares. It is equivalent to - least squares when :math:`|y_i - f(x_i)| \leq \varepsilon`, and - :math:`L(y_i, f(x_i)) = \varepsilon |y_i - f(x_i)| - \frac{1}{2} - \varepsilon^2` otherwise. -- Epsilon-Insensitive: (soft-margin) equivalent to Support Vector Regression. - :math:`L(y_i, f(x_i)) = \max(0, |y_i - f(x_i)| - \varepsilon)`. - -|details-end| +.. dropdown:: Loss functions details + + Different choices for :math:`L` entail different classifiers or regressors: + + - Hinge (soft-margin): equivalent to Support Vector Classification. + :math:`L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))`. + - Perceptron: + :math:`L(y_i, f(x_i)) = \max(0, - y_i f(x_i))`. + - Modified Huber: + :math:`L(y_i, f(x_i)) = \max(0, 1 - y_i f(x_i))^2` if :math:`y_i f(x_i) > + -1`, and :math:`L(y_i, f(x_i)) = -4 y_i f(x_i)` otherwise. + - Log Loss: equivalent to Logistic Regression. + :math:`L(y_i, f(x_i)) = \log(1 + \exp (-y_i f(x_i)))`. + - Squared Error: Linear regression (Ridge or Lasso depending on + :math:`R`). + :math:`L(y_i, f(x_i)) = \frac{1}{2}(y_i - f(x_i))^2`. + - Huber: less sensitive to outliers than least-squares. It is equivalent to + least squares when :math:`|y_i - f(x_i)| \leq \varepsilon`, and + :math:`L(y_i, f(x_i)) = \varepsilon |y_i - f(x_i)| - \frac{1}{2} + \varepsilon^2` otherwise. + - Epsilon-Insensitive: (soft-margin) equivalent to Support Vector Regression. + :math:`L(y_i, f(x_i)) = \max(0, |y_i - f(x_i)| - \varepsilon)`. All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as shown in the Figure below. @@ -553,32 +545,29 @@ We use the truncated gradient algorithm proposed in [#3]_ for L1 regularization (and the Elastic Net). The code is written in Cython. -.. topic:: References: +.. rubric:: References - .. [#1] `"Stochastic Gradient Descent" - `_ L. Bottou - Website, 2010. +.. [#1] `"Stochastic Gradient Descent" + `_ L. Bottou - Website, 2010. - .. [#2] :doi:`"Pegasos: Primal estimated sub-gradient solver for svm" - <10.1145/1273496.1273598>` - S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. +.. [#2] :doi:`"Pegasos: Primal estimated sub-gradient solver for svm" + <10.1145/1273496.1273598>` + S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. - .. [#3] `"Stochastic gradient descent training for l1-regularized - log-linear models with cumulative penalty" - `_ - Y. Tsuruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL - '09. +.. [#3] `"Stochastic gradient descent training for l1-regularized + log-linear models with cumulative penalty" + `_ + Y. Tsuruoka, J. Tsujii, S. Ananiadou - In Proceedings of the AFNLP/ACL'09. - .. [#4] :arxiv:`"Towards Optimal One Pass Large Scale Learning with - Averaged Stochastic Gradient Descent" - <1107.2490v2>` - Xu, Wei (2011) +.. [#4] :arxiv:`"Towards Optimal One Pass Large Scale Learning with + Averaged Stochastic Gradient Descent" + <1107.2490v2>`. Xu, Wei (2011) - .. [#5] :doi:`"Regularization and variable selection via the elastic net" - <10.1111/j.1467-9868.2005.00503.x>` - H. Zou, T. Hastie - Journal of the Royal Statistical Society Series B, - 67 (2), 301-320. +.. [#5] :doi:`"Regularization and variable selection via the elastic net" + <10.1111/j.1467-9868.2005.00503.x>` + H. Zou, T. Hastie - Journal of the Royal Statistical Society Series B, + 67 (2), 301-320. - .. [#6] :doi:`"Solving large scale linear prediction problems using stochastic - gradient descent algorithms" - <10.1145/1015330.1015332>` - T. Zhang - In Proceedings of ICML '04. +.. [#6] :doi:`"Solving large scale linear prediction problems using stochastic + gradient descent algorithms" <10.1145/1015330.1015332>` + T. Zhang - In Proceedings of ICML '04. diff --git a/doc/modules/svm.rst b/doc/modules/svm.rst index e3bc1395819e9..47115e43a89e0 100644 --- a/doc/modules/svm.rst +++ b/doc/modules/svm.rst @@ -108,11 +108,10 @@ properties of these support vectors can be found in attributes >>> clf.n_support_ array([1, 1]...) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane.py`, - * :ref:`sphx_glr_auto_examples_svm_plot_svm_nonlinear.py` - * :ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py`, +* :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane.py` +* :ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py` .. _svm_multi_class: @@ -154,65 +153,61 @@ multi-class strategy, thus training `n_classes` models. See :ref:`svm_mathematical_formulation` for a complete description of the decision function. -|details-start| -**Details on multi-class strategies** -|details-split| - -Note that the :class:`LinearSVC` also implements an alternative multi-class -strategy, the so-called multi-class SVM formulated by Crammer and Singer -[#8]_, by using the option ``multi_class='crammer_singer'``. In practice, -one-vs-rest classification is usually preferred, since the results are mostly -similar, but the runtime is significantly less. - -For "one-vs-rest" :class:`LinearSVC` the attributes ``coef_`` and ``intercept_`` -have the shape ``(n_classes, n_features)`` and ``(n_classes,)`` respectively. -Each row of the coefficients corresponds to one of the ``n_classes`` -"one-vs-rest" classifiers and similar for the intercepts, in the -order of the "one" class. - -In the case of "one-vs-one" :class:`SVC` and :class:`NuSVC`, the layout of -the attributes is a little more involved. In the case of a linear -kernel, the attributes ``coef_`` and ``intercept_`` have the shape -``(n_classes * (n_classes - 1) / 2, n_features)`` and ``(n_classes * -(n_classes - 1) / 2)`` respectively. This is similar to the layout for -:class:`LinearSVC` described above, with each row now corresponding -to a binary classifier. The order for classes -0 to n is "0 vs 1", "0 vs 2" , ... "0 vs n", "1 vs 2", "1 vs 3", "1 vs n", . . -. "n-1 vs n". - -The shape of ``dual_coef_`` is ``(n_classes-1, n_SV)`` with -a somewhat hard to grasp layout. -The columns correspond to the support vectors involved in any -of the ``n_classes * (n_classes - 1) / 2`` "one-vs-one" classifiers. -Each support vector ``v`` has a dual coefficient in each of the -``n_classes - 1`` classifiers comparing the class of ``v`` against another class. -Note that some, but not all, of these dual coefficients, may be zero. -The ``n_classes - 1`` entries in each column are these dual coefficients, -ordered by the opposing class. - -This might be clearer with an example: consider a three class problem with -class 0 having three support vectors -:math:`v^{0}_0, v^{1}_0, v^{2}_0` and class 1 and 2 having two support vectors -:math:`v^{0}_1, v^{1}_1` and :math:`v^{0}_2, v^{1}_2` respectively. For each -support vector :math:`v^{j}_i`, there are two dual coefficients. Let's call -the coefficient of support vector :math:`v^{j}_i` in the classifier between -classes :math:`i` and :math:`k` :math:`\alpha^{j}_{i,k}`. -Then ``dual_coef_`` looks like this: - -+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ -|:math:`\alpha^{0}_{0,1}`|:math:`\alpha^{1}_{0,1}`|:math:`\alpha^{2}_{0,1}`|:math:`\alpha^{0}_{1,0}`|:math:`\alpha^{1}_{1,0}`|:math:`\alpha^{0}_{2,0}`|:math:`\alpha^{1}_{2,0}`| -+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ -|:math:`\alpha^{0}_{0,2}`|:math:`\alpha^{1}_{0,2}`|:math:`\alpha^{2}_{0,2}`|:math:`\alpha^{0}_{1,2}`|:math:`\alpha^{1}_{1,2}`|:math:`\alpha^{0}_{2,1}`|:math:`\alpha^{1}_{2,1}`| -+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ -|Coefficients |Coefficients |Coefficients | -|for SVs of class 0 |for SVs of class 1 |for SVs of class 2 | -+--------------------------------------------------------------------------+-------------------------------------------------+-------------------------------------------------+ - -|details-end| - -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_svm_plot_iris_svc.py`, +.. dropdown:: Details on multi-class strategies + + Note that the :class:`LinearSVC` also implements an alternative multi-class + strategy, the so-called multi-class SVM formulated by Crammer and Singer + [#8]_, by using the option ``multi_class='crammer_singer'``. In practice, + one-vs-rest classification is usually preferred, since the results are mostly + similar, but the runtime is significantly less. + + For "one-vs-rest" :class:`LinearSVC` the attributes ``coef_`` and ``intercept_`` + have the shape ``(n_classes, n_features)`` and ``(n_classes,)`` respectively. + Each row of the coefficients corresponds to one of the ``n_classes`` + "one-vs-rest" classifiers and similar for the intercepts, in the + order of the "one" class. + + In the case of "one-vs-one" :class:`SVC` and :class:`NuSVC`, the layout of + the attributes is a little more involved. In the case of a linear + kernel, the attributes ``coef_`` and ``intercept_`` have the shape + ``(n_classes * (n_classes - 1) / 2, n_features)`` and ``(n_classes * + (n_classes - 1) / 2)`` respectively. This is similar to the layout for + :class:`LinearSVC` described above, with each row now corresponding + to a binary classifier. The order for classes + 0 to n is "0 vs 1", "0 vs 2" , ... "0 vs n", "1 vs 2", "1 vs 3", "1 vs n", . . + . "n-1 vs n". + + The shape of ``dual_coef_`` is ``(n_classes-1, n_SV)`` with + a somewhat hard to grasp layout. + The columns correspond to the support vectors involved in any + of the ``n_classes * (n_classes - 1) / 2`` "one-vs-one" classifiers. + Each support vector ``v`` has a dual coefficient in each of the + ``n_classes - 1`` classifiers comparing the class of ``v`` against another class. + Note that some, but not all, of these dual coefficients, may be zero. + The ``n_classes - 1`` entries in each column are these dual coefficients, + ordered by the opposing class. + + This might be clearer with an example: consider a three class problem with + class 0 having three support vectors + :math:`v^{0}_0, v^{1}_0, v^{2}_0` and class 1 and 2 having two support vectors + :math:`v^{0}_1, v^{1}_1` and :math:`v^{0}_2, v^{1}_2` respectively. For each + support vector :math:`v^{j}_i`, there are two dual coefficients. Let's call + the coefficient of support vector :math:`v^{j}_i` in the classifier between + classes :math:`i` and :math:`k` :math:`\alpha^{j}_{i,k}`. + Then ``dual_coef_`` looks like this: + + +------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ + |:math:`\alpha^{0}_{0,1}`|:math:`\alpha^{1}_{0,1}`|:math:`\alpha^{2}_{0,1}`|:math:`\alpha^{0}_{1,0}`|:math:`\alpha^{1}_{1,0}`|:math:`\alpha^{0}_{2,0}`|:math:`\alpha^{1}_{2,0}`| + +------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ + |:math:`\alpha^{0}_{0,2}`|:math:`\alpha^{1}_{0,2}`|:math:`\alpha^{2}_{0,2}`|:math:`\alpha^{0}_{1,2}`|:math:`\alpha^{1}_{1,2}`|:math:`\alpha^{0}_{2,1}`|:math:`\alpha^{1}_{2,1}`| + +------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+------------------------+ + |Coefficients |Coefficients |Coefficients | + |for SVs of class 0 |for SVs of class 1 |for SVs of class 2 | + +--------------------------------------------------------------------------+-------------------------------------------------+-------------------------------------------------+ + +.. rubric:: Examples + +* :ref:`sphx_glr_auto_examples_svm_plot_iris_svc.py` .. _scores_probabilities: @@ -295,10 +290,10 @@ to the sample weights: :align: center :scale: 75 -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` - * :ref:`sphx_glr_auto_examples_svm_plot_weighted_samples.py`, +* :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` +* :ref:`sphx_glr_auto_examples_svm_plot_weighted_samples.py` .. _svm_regression: @@ -343,9 +338,9 @@ floating point values instead of integer values:: array([1.5]) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` +* :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` .. _svm_outlier_detection: @@ -516,11 +511,10 @@ Proper choice of ``C`` and ``gamma`` is critical to the SVM's performance. One is advised to use :class:`~sklearn.model_selection.GridSearchCV` with ``C`` and ``gamma`` spaced exponentially far apart to choose good values. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_svm_plot_rbf_parameters.py` - * :ref:`sphx_glr_auto_examples_svm_plot_svm_nonlinear.py` - * :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py` +* :ref:`sphx_glr_auto_examples_svm_plot_rbf_parameters.py` +* :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py` Custom Kernels -------------- @@ -539,60 +533,52 @@ classifiers, except that: use of ``fit()`` and ``predict()`` you will have unexpected results. -|details-start| -**Using Python functions as kernels** -|details-split| +.. dropdown:: Using Python functions as kernels -You can use your own defined kernels by passing a function to the -``kernel`` parameter. + You can use your own defined kernels by passing a function to the + ``kernel`` parameter. -Your kernel must take as arguments two matrices of shape -``(n_samples_1, n_features)``, ``(n_samples_2, n_features)`` -and return a kernel matrix of shape ``(n_samples_1, n_samples_2)``. + Your kernel must take as arguments two matrices of shape + ``(n_samples_1, n_features)``, ``(n_samples_2, n_features)`` + and return a kernel matrix of shape ``(n_samples_1, n_samples_2)``. -The following code defines a linear kernel and creates a classifier -instance that will use that kernel:: + The following code defines a linear kernel and creates a classifier + instance that will use that kernel:: - >>> import numpy as np - >>> from sklearn import svm - >>> def my_kernel(X, Y): - ... return np.dot(X, Y.T) - ... - >>> clf = svm.SVC(kernel=my_kernel) - -|details-end| + >>> import numpy as np + >>> from sklearn import svm + >>> def my_kernel(X, Y): + ... return np.dot(X, Y.T) + ... + >>> clf = svm.SVC(kernel=my_kernel) -|details-start| -**Using the Gram matrix** -|details-split| +.. dropdown:: Using the Gram matrix -You can pass pre-computed kernels by using the ``kernel='precomputed'`` -option. You should then pass Gram matrix instead of X to the `fit` and -`predict` methods. The kernel values between *all* training vectors and the -test vectors must be provided: + You can pass pre-computed kernels by using the ``kernel='precomputed'`` + option. You should then pass Gram matrix instead of X to the `fit` and + `predict` methods. The kernel values between *all* training vectors and the + test vectors must be provided: - >>> import numpy as np - >>> from sklearn.datasets import make_classification - >>> from sklearn.model_selection import train_test_split - >>> from sklearn import svm - >>> X, y = make_classification(n_samples=10, random_state=0) - >>> X_train , X_test , y_train, y_test = train_test_split(X, y, random_state=0) - >>> clf = svm.SVC(kernel='precomputed') - >>> # linear kernel computation - >>> gram_train = np.dot(X_train, X_train.T) - >>> clf.fit(gram_train, y_train) - SVC(kernel='precomputed') - >>> # predict on training examples - >>> gram_test = np.dot(X_test, X_train.T) - >>> clf.predict(gram_test) - array([0, 1, 0]) + >>> import numpy as np + >>> from sklearn.datasets import make_classification + >>> from sklearn.model_selection import train_test_split + >>> from sklearn import svm + >>> X, y = make_classification(n_samples=10, random_state=0) + >>> X_train , X_test , y_train, y_test = train_test_split(X, y, random_state=0) + >>> clf = svm.SVC(kernel='precomputed') + >>> # linear kernel computation + >>> gram_train = np.dot(X_train, X_train.T) + >>> clf.fit(gram_train, y_train) + SVC(kernel='precomputed') + >>> # predict on training examples + >>> gram_test = np.dot(X_test, X_train.T) + >>> clf.predict(gram_test) + array([0, 1, 0]) -|details-end| +.. rubric:: Examples -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_svm_plot_custom_kernel.py`. +* :ref:`sphx_glr_auto_examples_svm_plot_custom_kernel.py` .. _svm_mathematical_formulation: @@ -689,43 +675,35 @@ term :math:`b` estimator used is :class:`~sklearn.linear_model.Ridge` regression, the relation between them is given as :math:`C = \frac{1}{alpha}`. -|details-start| -**LinearSVC** -|details-split| +.. dropdown:: LinearSVC -The primal problem can be equivalently formulated as + The primal problem can be equivalently formulated as -.. math:: + .. math:: - \min_ {w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{n}\max(0, 1 - y_i (w^T \phi(x_i) + b)), + \min_ {w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{n}\max(0, 1 - y_i (w^T \phi(x_i) + b)), -where we make use of the `hinge loss -`_. This is the form that is -directly optimized by :class:`LinearSVC`, but unlike the dual form, this one -does not involve inner products between samples, so the famous kernel trick -cannot be applied. This is why only the linear kernel is supported by -:class:`LinearSVC` (:math:`\phi` is the identity function). - -|details-end| + where we make use of the `hinge loss + `_. This is the form that is + directly optimized by :class:`LinearSVC`, but unlike the dual form, this one + does not involve inner products between samples, so the famous kernel trick + cannot be applied. This is why only the linear kernel is supported by + :class:`LinearSVC` (:math:`\phi` is the identity function). .. _nu_svc: -|details-start| -**NuSVC** -|details-split| - -The :math:`\nu`-SVC formulation [#7]_ is a reparameterization of the -:math:`C`-SVC and therefore mathematically equivalent. +.. dropdown:: NuSVC -We introduce a new parameter :math:`\nu` (instead of :math:`C`) which -controls the number of support vectors and *margin errors*: -:math:`\nu \in (0, 1]` is an upper bound on the fraction of margin errors and -a lower bound of the fraction of support vectors. A margin error corresponds -to a sample that lies on the wrong side of its margin boundary: it is either -misclassified, or it is correctly classified but does not lie beyond the -margin. + The :math:`\nu`-SVC formulation [#7]_ is a reparameterization of the + :math:`C`-SVC and therefore mathematically equivalent. -|details-end| + We introduce a new parameter :math:`\nu` (instead of :math:`C`) which + controls the number of support vectors and *margin errors*: + :math:`\nu \in (0, 1]` is an upper bound on the fraction of margin errors and + a lower bound of the fraction of support vectors. A margin error corresponds + to a sample that lies on the wrong side of its margin boundary: it is either + misclassified, or it is correctly classified but does not lie beyond the + margin. SVR --- @@ -774,21 +752,17 @@ which holds the difference :math:`\alpha_i - \alpha_i^*`, ``support_vectors_`` w holds the support vectors, and ``intercept_`` which holds the independent term :math:`b` -|details-start| -**LinearSVR** -|details-split| +.. dropdown:: LinearSVR -The primal problem can be equivalently formulated as - -.. math:: + The primal problem can be equivalently formulated as - \min_ {w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{n}\max(0, |y_i - (w^T \phi(x_i) + b)| - \varepsilon), + .. math:: -where we make use of the epsilon-insensitive loss, i.e. errors of less than -:math:`\varepsilon` are ignored. This is the form that is directly optimized -by :class:`LinearSVR`. + \min_ {w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{n}\max(0, |y_i - (w^T \phi(x_i) + b)| - \varepsilon), -|details-end| + where we make use of the epsilon-insensitive loss, i.e. errors of less than + :math:`\varepsilon` are ignored. This is the form that is directly optimized + by :class:`LinearSVR`. .. _svm_implementation_details: @@ -804,38 +778,37 @@ used, please refer to their respective papers. .. _`libsvm`: https://www.csie.ntu.edu.tw/~cjlin/libsvm/ .. _`liblinear`: https://www.csie.ntu.edu.tw/~cjlin/liblinear/ -.. topic:: References: +.. rubric:: References - .. [#1] Platt `"Probabilistic outputs for SVMs and comparisons to - regularized likelihood methods" - `_. +.. [#1] Platt `"Probabilistic outputs for SVMs and comparisons to + regularized likelihood methods" + `_. - .. [#2] Wu, Lin and Weng, `"Probability estimates for multi-class - classification by pairwise coupling" - `_, JMLR - 5:975-1005, 2004. +.. [#2] Wu, Lin and Weng, `"Probability estimates for multi-class + classification by pairwise coupling" + `_, + JMLR 5:975-1005, 2004. - .. [#3] Fan, Rong-En, et al., - `"LIBLINEAR: A library for large linear classification." - `_, - Journal of machine learning research 9.Aug (2008): 1871-1874. +.. [#3] Fan, Rong-En, et al., + `"LIBLINEAR: A library for large linear classification." + `_, + Journal of machine learning research 9.Aug (2008): 1871-1874. - .. [#4] Chang and Lin, `LIBSVM: A Library for Support Vector Machines - `_. +.. [#4] Chang and Lin, `LIBSVM: A Library for Support Vector Machines + `_. - .. [#5] Bishop, `Pattern recognition and machine learning - `_, - chapter 7 Sparse Kernel Machines +.. [#5] Bishop, `Pattern recognition and machine learning + `_, + chapter 7 Sparse Kernel Machines - .. [#6] :doi:`"A Tutorial on Support Vector Regression" - <10.1023/B:STCO.0000035301.49549.88>` - Alex J. Smola, Bernhard Schölkopf - Statistics and Computing archive - Volume 14 Issue 3, August 2004, p. 199-222. +.. [#6] :doi:`"A Tutorial on Support Vector Regression" + <10.1023/B:STCO.0000035301.49549.88>` + Alex J. Smola, Bernhard Schölkopf - Statistics and Computing archive + Volume 14 Issue 3, August 2004, p. 199-222. - .. [#7] Schölkopf et. al `New Support Vector Algorithms - `_ +.. [#7] Schölkopf et. al `New Support Vector Algorithms + `_ - .. [#8] Crammer and Singer `On the Algorithmic Implementation ofMulticlass - Kernel-based Vector Machines - `_, - JMLR 2001. +.. [#8] Crammer and Singer `On the Algorithmic Implementation ofMulticlass + Kernel-based Vector Machines + `_, JMLR 2001. diff --git a/doc/modules/tree.rst b/doc/modules/tree.rst index b54b913573a34..9b475d6c09f5f 100644 --- a/doc/modules/tree.rst +++ b/doc/modules/tree.rst @@ -146,82 +146,78 @@ Once trained, you can plot the tree with the :func:`plot_tree` function:: :scale: 75 :align: center -|details-start| -**Alternative ways to export trees** -|details-split| - -We can also export the tree in `Graphviz -`_ format using the :func:`export_graphviz` -exporter. If you use the `conda `_ package manager, the graphviz binaries -and the python package can be installed with `conda install python-graphviz`. - -Alternatively binaries for graphviz can be downloaded from the graphviz project homepage, -and the Python wrapper installed from pypi with `pip install graphviz`. - -Below is an example graphviz export of the above tree trained on the entire -iris dataset; the results are saved in an output file `iris.pdf`:: - - - >>> import graphviz # doctest: +SKIP - >>> dot_data = tree.export_graphviz(clf, out_file=None) # doctest: +SKIP - >>> graph = graphviz.Source(dot_data) # doctest: +SKIP - >>> graph.render("iris") # doctest: +SKIP - -The :func:`export_graphviz` exporter also supports a variety of aesthetic -options, including coloring nodes by their class (or value for regression) and -using explicit variable and class names if desired. Jupyter notebooks also -render these plots inline automatically:: - - >>> dot_data = tree.export_graphviz(clf, out_file=None, # doctest: +SKIP - ... feature_names=iris.feature_names, # doctest: +SKIP - ... class_names=iris.target_names, # doctest: +SKIP - ... filled=True, rounded=True, # doctest: +SKIP - ... special_characters=True) # doctest: +SKIP - >>> graph = graphviz.Source(dot_data) # doctest: +SKIP - >>> graph # doctest: +SKIP - -.. only:: html - - .. figure:: ../images/iris.svg - :align: center - -.. only:: latex - - .. figure:: ../images/iris.pdf - :align: center - -.. figure:: ../auto_examples/tree/images/sphx_glr_plot_iris_dtc_001.png - :target: ../auto_examples/tree/plot_iris_dtc.html - :align: center - :scale: 75 - -Alternatively, the tree can also be exported in textual format with the -function :func:`export_text`. This method doesn't require the installation -of external libraries and is more compact: - - >>> from sklearn.datasets import load_iris - >>> from sklearn.tree import DecisionTreeClassifier - >>> from sklearn.tree import export_text - >>> iris = load_iris() - >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) - >>> decision_tree = decision_tree.fit(iris.data, iris.target) - >>> r = export_text(decision_tree, feature_names=iris['feature_names']) - >>> print(r) - |--- petal width (cm) <= 0.80 - | |--- class: 0 - |--- petal width (cm) > 0.80 - | |--- petal width (cm) <= 1.75 - | | |--- class: 1 - | |--- petal width (cm) > 1.75 - | | |--- class: 2 - - -|details-end| - -.. topic:: Examples: - - * :ref:`sphx_glr_auto_examples_tree_plot_iris_dtc.py` - * :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` +.. dropdown:: Alternative ways to export trees + + We can also export the tree in `Graphviz + `_ format using the :func:`export_graphviz` + exporter. If you use the `conda `_ package manager, the graphviz binaries + and the python package can be installed with `conda install python-graphviz`. + + Alternatively binaries for graphviz can be downloaded from the graphviz project homepage, + and the Python wrapper installed from pypi with `pip install graphviz`. + + Below is an example graphviz export of the above tree trained on the entire + iris dataset; the results are saved in an output file `iris.pdf`:: + + + >>> import graphviz # doctest: +SKIP + >>> dot_data = tree.export_graphviz(clf, out_file=None) # doctest: +SKIP + >>> graph = graphviz.Source(dot_data) # doctest: +SKIP + >>> graph.render("iris") # doctest: +SKIP + + The :func:`export_graphviz` exporter also supports a variety of aesthetic + options, including coloring nodes by their class (or value for regression) and + using explicit variable and class names if desired. Jupyter notebooks also + render these plots inline automatically:: + + >>> dot_data = tree.export_graphviz(clf, out_file=None, # doctest: +SKIP + ... feature_names=iris.feature_names, # doctest: +SKIP + ... class_names=iris.target_names, # doctest: +SKIP + ... filled=True, rounded=True, # doctest: +SKIP + ... special_characters=True) # doctest: +SKIP + >>> graph = graphviz.Source(dot_data) # doctest: +SKIP + >>> graph # doctest: +SKIP + + .. only:: html + + .. figure:: ../images/iris.svg + :align: center + + .. only:: latex + + .. figure:: ../images/iris.pdf + :align: center + + .. figure:: ../auto_examples/tree/images/sphx_glr_plot_iris_dtc_001.png + :target: ../auto_examples/tree/plot_iris_dtc.html + :align: center + :scale: 75 + + Alternatively, the tree can also be exported in textual format with the + function :func:`export_text`. This method doesn't require the installation + of external libraries and is more compact: + + >>> from sklearn.datasets import load_iris + >>> from sklearn.tree import DecisionTreeClassifier + >>> from sklearn.tree import export_text + >>> iris = load_iris() + >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) + >>> decision_tree = decision_tree.fit(iris.data, iris.target) + >>> r = export_text(decision_tree, feature_names=iris['feature_names']) + >>> print(r) + |--- petal width (cm) <= 0.80 + | |--- class: 0 + |--- petal width (cm) > 0.80 + | |--- petal width (cm) <= 1.75 + | | |--- class: 1 + | |--- petal width (cm) > 1.75 + | | |--- class: 2 + + +.. rubric:: Examples + +* :ref:`sphx_glr_auto_examples_tree_plot_iris_dtc.py` +* :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` .. _tree_regression: @@ -248,9 +244,9 @@ instead of integer values:: >>> clf.predict([[1, 1]]) array([0.5]) -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_tree_plot_tree_regression.py` +* :ref:`sphx_glr_auto_examples_tree_plot_tree_regression.py` .. _tree_multioutput: @@ -306,21 +302,17 @@ the lower half of those faces. :scale: 75 :align: center -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py` - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py` +* :ref:`sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py` -|details-start| -**References** -|details-split| +.. rubric:: References * M. Dumont et al, `Fast multi-class image annotation with random subwindows and multiple output randomized trees - `_, International Conference on - Computer Vision Theory and Applications 2009 - -|details-end| + `_, + International Conference on Computer Vision Theory and Applications 2009 .. _tree_complexity: @@ -412,36 +404,32 @@ Tree algorithms: ID3, C4.5, C5.0 and CART What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented in scikit-learn? -|details-start| -**Various decision tree algorithms** -|details-split| - -ID3_ (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. -The algorithm creates a multiway tree, finding for each node (i.e. in -a greedy manner) the categorical feature that will yield the largest -information gain for categorical targets. Trees are grown to their -maximum size and then a pruning step is usually applied to improve the -ability of the tree to generalize to unseen data. - -C4.5 is the successor to ID3 and removed the restriction that features -must be categorical by dynamically defining a discrete attribute (based -on numerical variables) that partitions the continuous attribute value -into a discrete set of intervals. C4.5 converts the trained trees -(i.e. the output of the ID3 algorithm) into sets of if-then rules. -The accuracy of each rule is then evaluated to determine the order -in which they should be applied. Pruning is done by removing a rule's -precondition if the accuracy of the rule improves without it. - -C5.0 is Quinlan's latest version release under a proprietary license. -It uses less memory and builds smaller rulesets than C4.5 while being -more accurate. - -CART (Classification and Regression Trees) is very similar to C4.5, but -it differs in that it supports numerical target variables (regression) and -does not compute rule sets. CART constructs binary trees using the feature -and threshold that yield the largest information gain at each node. - -|details-end| +.. dropdown:: Various decision tree algorithms + + ID3_ (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. + The algorithm creates a multiway tree, finding for each node (i.e. in + a greedy manner) the categorical feature that will yield the largest + information gain for categorical targets. Trees are grown to their + maximum size and then a pruning step is usually applied to improve the + ability of the tree to generalize to unseen data. + + C4.5 is the successor to ID3 and removed the restriction that features + must be categorical by dynamically defining a discrete attribute (based + on numerical variables) that partitions the continuous attribute value + into a discrete set of intervals. C4.5 converts the trained trees + (i.e. the output of the ID3 algorithm) into sets of if-then rules. + The accuracy of each rule is then evaluated to determine the order + in which they should be applied. Pruning is done by removing a rule's + precondition if the accuracy of the rule improves without it. + + C5.0 is Quinlan's latest version release under a proprietary license. + It uses less memory and builds smaller rulesets than C4.5 while being + more accurate. + + CART (Classification and Regression Trees) is very similar to C4.5, but + it differs in that it supports numerical target variables (regression) and + does not compute rule sets. CART constructs binary trees using the feature + and threshold that yield the largest information gain at each node. scikit-learn uses an optimized version of the CART algorithm; however, the scikit-learn implementation does not support categorical variables for now. @@ -515,39 +503,35 @@ Log Loss or Entropy: H(Q_m) = - \sum_k p_{mk} \log(p_{mk}) -|details-start| -**Shannon entropy** -|details-split| - -The entropy criterion computes the Shannon entropy of the possible classes. It -takes the class frequencies of the training data points that reached a given -leaf :math:`m` as their probability. Using the **Shannon entropy as tree node -splitting criterion is equivalent to minimizing the log loss** (also known as -cross-entropy and multinomial deviance) between the true labels :math:`y_i` -and the probabilistic predictions :math:`T_k(x_i)` of the tree model :math:`T` for class :math:`k`. +.. dropdown:: Shannon entropy -To see this, first recall that the log loss of a tree model :math:`T` -computed on a dataset :math:`D` is defined as follows: + The entropy criterion computes the Shannon entropy of the possible classes. It + takes the class frequencies of the training data points that reached a given + leaf :math:`m` as their probability. Using the **Shannon entropy as tree node + splitting criterion is equivalent to minimizing the log loss** (also known as + cross-entropy and multinomial deviance) between the true labels :math:`y_i` + and the probabilistic predictions :math:`T_k(x_i)` of the tree model :math:`T` for class :math:`k`. -.. math:: + To see this, first recall that the log loss of a tree model :math:`T` + computed on a dataset :math:`D` is defined as follows: - \mathrm{LL}(D, T) = -\frac{1}{n} \sum_{(x_i, y_i) \in D} \sum_k I(y_i = k) \log(T_k(x_i)) + .. math:: -where :math:`D` is a training dataset of :math:`n` pairs :math:`(x_i, y_i)`. + \mathrm{LL}(D, T) = -\frac{1}{n} \sum_{(x_i, y_i) \in D} \sum_k I(y_i = k) \log(T_k(x_i)) -In a classification tree, the predicted class probabilities within leaf nodes -are constant, that is: for all :math:`(x_i, y_i) \in Q_m`, one has: -:math:`T_k(x_i) = p_{mk}` for each class :math:`k`. + where :math:`D` is a training dataset of :math:`n` pairs :math:`(x_i, y_i)`. -This property makes it possible to rewrite :math:`\mathrm{LL}(D, T)` as the -sum of the Shannon entropies computed for each leaf of :math:`T` weighted by -the number of training data points that reached each leaf: + In a classification tree, the predicted class probabilities within leaf nodes + are constant, that is: for all :math:`(x_i, y_i) \in Q_m`, one has: + :math:`T_k(x_i) = p_{mk}` for each class :math:`k`. -.. math:: + This property makes it possible to rewrite :math:`\mathrm{LL}(D, T)` as the + sum of the Shannon entropies computed for each leaf of :math:`T` weighted by + the number of training data points that reached each leaf: - \mathrm{LL}(D, T) = \sum_{m \in T} \frac{n_m}{n} H(Q_m) + .. math:: -|details-end| + \mathrm{LL}(D, T) = \sum_{m \in T} \frac{n_m}{n} H(Q_m) Regression criteria ------------------- @@ -685,13 +669,11 @@ with the smallest value of :math:`\alpha_{eff}` is the weakest link and will be pruned. This process stops when the pruned tree's minimal :math:`\alpha_{eff}` is greater than the ``ccp_alpha`` parameter. -.. topic:: Examples: +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py` +* :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py` -|details-start| -**References** -|details-split| +.. rubric:: References .. [BRE] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984. @@ -705,5 +687,3 @@ be pruned. This process stops when the pruned tree's minimal * T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009. - -|details-end| diff --git a/doc/modules/unsupervised_reduction.rst b/doc/modules/unsupervised_reduction.rst index 90c80714c3131..f94d6ac301e47 100644 --- a/doc/modules/unsupervised_reduction.rst +++ b/doc/modules/unsupervised_reduction.rst @@ -24,9 +24,9 @@ PCA: principal component analysis :class:`decomposition.PCA` looks for a combination of features that capture well the variance of the original features. See :ref:`decompositions`. -.. topic:: **Examples** +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py` +* :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py` Random projections ------------------- @@ -35,9 +35,9 @@ The module: :mod:`~sklearn.random_projection` provides several tools for data reduction by random projections. See the relevant section of the documentation: :ref:`random_projection`. -.. topic:: **Examples** +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py` +* :ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py` Feature agglomeration ------------------------ @@ -46,10 +46,10 @@ Feature agglomeration :ref:`hierarchical_clustering` to group together features that behave similarly. -.. topic:: **Examples** +.. rubric:: Examples - * :ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py` - * :ref:`sphx_glr_auto_examples_cluster_plot_digits_agglomeration.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py` +* :ref:`sphx_glr_auto_examples_cluster_plot_digits_agglomeration.py` .. topic:: **Feature scaling** diff --git a/doc/preface.rst b/doc/preface.rst deleted file mode 100644 index 447083a3a8136..0000000000000 --- a/doc/preface.rst +++ /dev/null @@ -1,32 +0,0 @@ -.. This helps define the TOC ordering for "about us" sections. Particularly - useful for PDF output as this section is not linked from elsewhere. - -.. Places global toc into the sidebar - -:globalsidebartoc: True - -.. _preface_menu: - -.. include:: includes/big_toc_css.rst -.. include:: tune_toc.rst - -======================= -Welcome to scikit-learn -======================= - -| - -.. toctree:: - :maxdepth: 2 - - install - faq - support - related_projects - about - testimonials/testimonials - whats_new - roadmap - governance - -| diff --git a/doc/scss/api-search.scss b/doc/scss/api-search.scss new file mode 100644 index 0000000000000..5e9bbfdcf27ba --- /dev/null +++ b/doc/scss/api-search.scss @@ -0,0 +1,114 @@ +/** + * This is the styling for the API index page (`api/index`), in particular for the API + * search table. It involves overriding the style sheet of DataTables which does not + * fit well into the theme, especially in dark theme; see https://datatables.net/ + */ + +.dt-container { + margin-bottom: 2rem; + + // Fix the selection box for entries per page + select.dt-input { + padding: 0 !important; + margin-right: 0.4rem !important; + + > option { + color: var(--pst-color-text-base); + background-color: var(--pst-color-background); + } + } + + // Fix the search box + input.dt-input { + width: 50%; + line-height: normal; + padding: 0.1rem 0.3rem !important; + margin-left: 0.4rem !important; + } + + table.dataTable { + th { + // Fix border color of the header + border-color: inherit; + + // Disabled the bottom margin of

      in table cells to avoid making it too tall + p { + margin-bottom: 0; + } + + // Fix the ascending/descending order buttons in the header + span.dt-column-order { + &::before, + &::after { + color: var(--pst-color-text-base); + line-height: 0.7rem !important; + } + } + } + + td { + // Fix color of text warning no records found + &.dt-empty { + color: var(--pst-color-text-base) !important; + } + } + + // Fix border color of the last row + tr:last-child > * { + border-bottom-color: var(--bs-table-border-color) !important; + } + } + + div.dt-paging button.dt-paging-button { + padding: 0 0.5rem; + + &.disabled { + color: var(--pst-color-border) !important; + + // Overwrite the !important color assigned by DataTables because we must keep + // the color of disabled buttons consistent with and without hovering + &:hover { + color: var(--pst-color-border) !important; + } + } + + // Fix colors of paging buttons + &.current, + &:not(.disabled):not(.current):hover { + color: var(--pst-color-on-surface) !important; + border-color: var(--pst-color-surface) !important; + background: var(--pst-color-surface) !important; + } + + // Highlight the border of the current selected paging button + &.current { + border-color: var(--pst-color-text-base) !important; + } + } +} + +// Styling the object description cells in the table +div.sk-apisearch-desc { + p { + margin-bottom: 0; + } + + div.caption > p { + a, + code { + color: var(--pst-color-text-muted); + } + + code { + padding: 0; + font-size: 0.7rem; + font-weight: var(--pst-font-weight-caption); + background-color: transparent; + } + + .sd-badge { + font-size: 0.7rem; + margin-left: 0.3rem; + } + } +} diff --git a/doc/scss/api.scss b/doc/scss/api.scss new file mode 100644 index 0000000000000..d7110def4ac09 --- /dev/null +++ b/doc/scss/api.scss @@ -0,0 +1,52 @@ +/** + * This is the styling for API reference pages, currently under `modules/generated`. + * Note that it should be applied *ONLY* to API reference pages, as the selectors are + * designed based on how `autodoc` and `autosummary` generate the stuff. + */ + +// Make the admonitions more compact +div.versionadded, +div.versionchanged, +div.deprecated { + margin: 1rem auto; + + > p { + margin: 0.3rem auto; + } +} + +// Make docstrings more compact +dd { + p:not(table *) { + margin-bottom: 0.5rem !important; + } + + ul { + margin-bottom: 0.5rem !important; + padding-left: 2rem !important; + } +} + +// The first method is too close the the docstring above +dl.py.method:first-of-type { + margin-top: 2rem; +} + +// https://github.com/pydata/pydata-sphinx-theme/blob/8cf45f835bfdafc5f3821014a18f3b7e0fc2d44b/src/pydata_sphinx_theme/assets/styles/content/_api.scss +dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.simple) { + margin-bottom: 1.5rem; + + dd { + margin-left: 1.2rem; + } + + // "Parameters", "Returns", etc. in the docstring + dt.field-odd, + dt.field-even { + margin: 0.5rem 0; + + + dd > dl { + margin-bottom: 0.5rem; + } + } +} diff --git a/doc/scss/colors.scss b/doc/scss/colors.scss new file mode 100644 index 0000000000000..bbc6aa6c2a3d6 --- /dev/null +++ b/doc/scss/colors.scss @@ -0,0 +1,51 @@ +/** + * This is the style sheet for customized colors of scikit-learn. + * Tints and shades are generated by https://colorkit.co/color-shades-generator/ + * + * This file is compiled into styles/colors.css by sphinxcontrib.sass, see: + * https://sass-lang.com/guide/ + */ + +:root { + /* scikit-learn cyan */ + --sk-cyan-tint-9: #edf7fd; + --sk-cyan-tint-8: #daeffa; + --sk-cyan-tint-7: #c8e6f8; + --sk-cyan-tint-6: #b5def5; + --sk-cyan-tint-5: #a2d6f2; + --sk-cyan-tint-4: #8fcdef; + --sk-cyan-tint-3: #7ac5ec; + --sk-cyan-tint-2: #64bce9; + --sk-cyan-tint-1: #4bb4e5; + --sk-cyan: #29abe2; + --sk-cyan-shades-1: #2294c4; + --sk-cyan-shades-2: #1c7ea8; + --sk-cyan-shades-3: #15688c; + --sk-cyan-shades-4: #0f5471; + --sk-cyan-shades-5: #094057; + --sk-cyan-shades-6: #052d3e; + --sk-cyan-shades-7: #021b27; + --sk-cyan-shades-8: #010b12; + --sk-cyan-shades-9: #000103; + + /* scikit-learn orange */ + --sk-orange-tint-9: #fff5ec; + --sk-orange-tint-8: #ffead9; + --sk-orange-tint-7: #ffe0c5; + --sk-orange-tint-6: #ffd5b2; + --sk-orange-tint-5: #fecb9e; + --sk-orange-tint-4: #fdc08a; + --sk-orange-tint-3: #fcb575; + --sk-orange-tint-2: #fbaa5e; + --sk-orange-tint-1: #f99f44; + --sk-orange: #f7931e; + --sk-orange-shades-1: #d77f19; + --sk-orange-shades-2: #b76c13; + --sk-orange-shades-3: #99590e; + --sk-orange-shades-4: #7c4709; + --sk-orange-shades-5: #603605; + --sk-orange-shades-6: #452503; + --sk-orange-shades-7: #2c1601; + --sk-orange-shades-8: #150800; + --sk-orange-shades-9: #030100; +} diff --git a/doc/scss/custom.scss b/doc/scss/custom.scss new file mode 100644 index 0000000000000..ce4451fce4467 --- /dev/null +++ b/doc/scss/custom.scss @@ -0,0 +1,192 @@ +/** + * This is a general styling sheet. + * It should be used for customizations that affect multiple pages. + * + * This file is compiled into styles/custom.css by sphinxcontrib.sass, see: + * https://sass-lang.com/guide/ + */ + +/* Global */ + +code.literal { + border: 0; +} + +/* Version switcher */ + +.version-switcher__menu a.list-group-item.sk-avail-docs-link { + display: flex; + align-items: center; + + &:after { + content: var(--pst-icon-external-link); + font: var(--fa-font-solid); + font-size: 0.75rem; + margin-left: 0.5rem; + } +} + +/* Primary sidebar */ + +.bd-sidebar-primary { + width: 22.5%; + min-width: 16rem; + + // The version switcher button in the sidebar is ill-styled + button.version-switcher__button { + margin-bottom: unset; + margin-left: 0.3rem; + font-size: 1rem; + } + + // The section navigation part is to close to the right boundary (originally an even + // larger negative right margin was used) + nav.bd-links { + margin-right: -0.5rem; + } +} + +/* Article content */ + +.bd-article { + h1 { + font-weight: 500; + margin-bottom: 2rem; + } + + h2 { + font-weight: 500; + margin-bottom: 1.5rem; + } + + // Avoid changing the aspect ratio of images; add some padding so that at least + // there is some space between image and background in dark mode + img { + height: unset !important; + padding: 1%; + } + + // Resize table of contents to make the top few levels of headings more visible + li.toctree-l1 { + padding-bottom: 0.5em; + + > a { + font-size: 150%; + font-weight: bold; + } + } + + li.toctree-l2, + li.toctree-l3, + li.toctree-l4 { + margin-left: 15px; + } +} + +/* Dropdowns (sphinx-design) */ + +details.sd-dropdown { + &:hover > summary.sd-summary-title > a.headerlink { + visibility: visible; + } + + > summary.sd-summary-title { + > a.headerlink { + font-size: 1rem; + } + + // See `js/scripts/dropdown.js`: this is styling the "expand/collapse all" button + > button.sk-toggle-all { + color: var(--pst-sd-dropdown-color); + top: 0.9rem !important; + right: 3rem !important; + pointer-events: auto !important; + display: none; + border: none; + background: transparent; + } + } + + &[open] > summary.sd-summary-title:hover > .sd-summary-up.sk-toggle-all, + &:not([open]) + > summary.sd-summary-title:hover + > .sd-summary-down.sk-toggle-all { + display: block; + } +} + +/* scikit-learn buttons */ + +a.btn { + &.sk-btn-orange { + background-color: var(--sk-orange-tint-1); + color: black !important; + + &:hover { + background-color: var(--sk-orange-tint-3); + } + } + + &.sk-btn-cyan { + background-color: var(--sk-cyan-shades-2); + color: white !important; + + &:hover { + background-color: var(--sk-cyan-shades-1); + } + } +} + +/* scikit-learn avatar grid, see build_tools/generate_authors_table.py */ + +div.sk-authors-container { + display: flex; + flex-wrap: wrap; + justify-content: center; + + > div { + width: 6rem; + margin: 0.5rem; + font-size: 0.9rem; + } +} + +/* scikit-learn text-image grid, used in testimonials and sponsors pages */ + +@mixin sk-text-image-grid($img-max-height) { + display: flex; + align-items: center; + flex-wrap: wrap; + + div.text-box, + div.image-box { + width: 50%; + + @media screen and (max-width: 500px) { + width: 100%; + } + } + + div.text-box .annotation { + font-size: 0.9rem; + font-style: italic; + color: var(--pst-color-text-muted); + } + + div.image-box { + text-align: center; + + img { + max-height: $img-max-height; + max-width: 50%; + } + } +} + +div.sk-text-image-grid-small { + @include sk-text-image-grid(60px); +} + +div.sk-text-image-grid-large { + @include sk-text-image-grid(100px); +} diff --git a/doc/scss/index.scss b/doc/scss/index.scss new file mode 100644 index 0000000000000..4e3f371f236d4 --- /dev/null +++ b/doc/scss/index.scss @@ -0,0 +1,175 @@ +/** + * Styling sheet for the scikit-learn landing page. This should be loaded only for the + * landing page. + * + * This file is compiled into styles/index.css by sphinxcontrib.sass, see: + * https://sass-lang.com/guide/ + */ + +/* Theme-aware colors for the landing page */ + +html { + &[data-theme="light"] { + --sk-landing-bg-1: var(--sk-cyan-shades-3); + --sk-landing-bg-2: var(--sk-cyan); + --sk-landing-bg-3: var(--sk-orange-tint-8); + --sk-landing-bg-4: var(--sk-orange-tint-3); + } + + &[data-theme="dark"] { + --sk-landing-bg-1: var(--sk-cyan-shades-5); + --sk-landing-bg-2: var(--sk-cyan-shades-2); + --sk-landing-bg-3: var(--sk-orange-tint-4); + --sk-landing-bg-4: var(--sk-orange-tint-1); + } +} + +/* General */ + +div.sk-landing-container { + max-width: 1400px; +} + +/* Top bar */ + +div.sk-landing-top-bar { + background-image: linear-gradient( + 160deg, + var(--sk-landing-bg-1) 0%, + var(--sk-landing-bg-2) 17%, + var(--sk-landing-bg-3) 59%, + var(--sk-landing-bg-4) 100% + ); + + .sk-landing-header, + .sk-landing-subheader { + color: white; + text-shadow: 0px 0px 8px var(--sk-landing-bg-1); + } + + .sk-landing-header { + font-size: 3.2rem; + margin-bottom: 0.5rem; + } + + .sk-landing-subheader { + letter-spacing: 0.17rem; + margin-top: 0; + font-weight: 500; + } + + a.sk-btn-orange { + font-size: 1.1rem; + font-weight: 500; + } + + ul.sk-landing-header-body { + margin-top: auto; + margin-bottom: auto; + font-size: 1.2rem; + font-weight: 500; + color: black; + } +} + +/* Body */ + +div.sk-landing-body { + div.card { + background-color: var(--pst-color-background); + border-color: var(--pst-color-border); + } + + .sk-px-xl-4 { + @media screen and (min-width: 1200px) { + padding-left: 1.3rem !important; + padding-right: 1.3rem !important; + } + } + + .card-body { + p { + margin-bottom: 0.8rem; + } + + .sk-card-title { + font-weight: 700; + margin: 0 0 1rem 0; + } + } + + .sk-card-img-container { + display: flex; + justify-content: center; + align-items: end; + margin-bottom: 1rem; + + img { + max-width: unset; + height: 15rem; + } + } +} + +/* More info */ + +div.sk-landing-more-info { + font-size: 0.96rem; + background-color: var(--pst-color-surface); + + .sk-landing-call-header { + font-weight: 700; + margin-top: 0; + + html[data-theme="light"] & { + color: var(--sk-orange-shades-1); + } + + html[data-theme="dark"] & { + color: var(--sk-orange); + } + } + + ul.sk-landing-call-list > li { + margin-bottom: 0.25rem; + } + + .sk-who-uses-carousel { + min-height: 200px; + + .carousel-item img { + max-height: 100px; + max-width: 50%; + margin: 0.5rem; + } + } + + .sk-more-testimonials { + text-align: right !important; + } +} + +/* Footer */ + +div.sk-landing-footer { + a.sk-footer-funding-link { + text-decoration: none; + + p.sk-footer-funding-text { + color: var(--pst-color-link); + + &:hover { + color: var(--pst-color-secondary); + } + } + + div.sk-footer-funding-logos > img { + max-height: 40px; + max-width: 85px; + margin: 0 8px 8px 8px; + padding: 5px; + border-radius: 3px; + background-color: white; + } + } +} diff --git a/doc/scss/install.scss b/doc/scss/install.scss new file mode 100644 index 0000000000000..965b3d589e86d --- /dev/null +++ b/doc/scss/install.scss @@ -0,0 +1,33 @@ +/** + * Styling for the installation page, including overriding some default styling of + * sphinx-design. This style sheet should be included only for the install page. + * + * This file is compiled into styles/install.css by sphinxcontrib.sass, see: + * https://sass-lang.com/guide/ + */ + +.install-instructions .sd-tab-set { + .sd-tab-content { + box-shadow: 0 -0.0625rem var(--pst-color-border); + padding: 0.5rem 0 0 0; + + > p:first-child { + margin-top: 1.25rem !important; + } + } + + > label.sd-tab-label { + border-top: none !important; + padding: 0 0 0.1rem 0; + margin: 0; + text-align: center; + + &.tab-6 { + width: 50% !important; + } + + &.tab-4 { + width: calc(100% / 3) !important; + } + } +} diff --git a/doc/sphinxext/add_toctree_functions.py b/doc/sphinxext/add_toctree_functions.py deleted file mode 100644 index 4459ab971f4c4..0000000000000 --- a/doc/sphinxext/add_toctree_functions.py +++ /dev/null @@ -1,160 +0,0 @@ -"""Inspired by https://github.com/pandas-dev/pydata-sphinx-theme - -BSD 3-Clause License - -Copyright (c) 2018, pandas -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - -* Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - -* Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - -* Neither the name of the copyright holder nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -""" - -import docutils - - -def add_toctree_functions(app, pagename, templatename, context, doctree): - """Add functions so Jinja templates can add toctree objects. - - This converts the docutils nodes into a nested dictionary that Jinja can - use in our templating. - """ - from sphinx.environment.adapters.toctree import TocTree - - def get_nav_object(maxdepth=None, collapse=True, numbered=False, **kwargs): - """Return a list of nav links that can be accessed from Jinja. - - Parameters - ---------- - maxdepth: int - How many layers of TocTree will be returned - collapse: bool - Whether to only include sub-pages of the currently-active page, - instead of sub-pages of all top-level pages of the site. - numbered: bool - Whether to add section number to title - kwargs: key/val pairs - Passed to the `TocTree.get_toctree_for` Sphinx method - """ - # The TocTree will contain the full site TocTree including sub-pages. - # "collapse=True" collapses sub-pages of non-active TOC pages. - # maxdepth controls how many TOC levels are returned - toctree = TocTree(app.env).get_toctree_for( - pagename, app.builder, collapse=collapse, maxdepth=maxdepth, **kwargs - ) - # If no toctree is defined (AKA a single-page site), skip this - if toctree is None: - return [] - - # toctree has this structure - # - # - # - # - # `list_item`s are the actual TOC links and are the only thing we want - toc_items = [ - item - for child in toctree.children - for item in child - if isinstance(item, docutils.nodes.list_item) - ] - - # Now convert our docutils nodes into dicts that Jinja can use - nav = [ - docutils_node_to_jinja(child, only_pages=True, numbered=numbered) - for child in toc_items - ] - - return nav - - context["get_nav_object"] = get_nav_object - - -def docutils_node_to_jinja(list_item, only_pages=False, numbered=False): - """Convert a docutils node to a structure that can be read by Jinja. - - Parameters - ---------- - list_item : docutils list_item node - A parent item, potentially with children, corresponding to the level - of a TocTree. - only_pages : bool - Only include items for full pages in the output dictionary. Exclude - anchor links (TOC items with a URL that starts with #) - numbered: bool - Whether to add section number to title - - Returns - ------- - nav : dict - The TocTree, converted into a dictionary with key/values that work - within Jinja. - """ - if not list_item.children: - return None - - # We assume this structure of a list item: - # - # - # <-- the thing we want - reference = list_item.children[0].children[0] - title = reference.astext() - url = reference.attributes["refuri"] - active = "current" in list_item.attributes["classes"] - - secnumber = reference.attributes.get("secnumber", None) - if numbered and secnumber is not None: - secnumber = ".".join(str(n) for n in secnumber) - title = f"{secnumber}. {title}" - - # If we've got an anchor link, skip it if we wish - if only_pages and "#" in url: - return None - - # Converting the docutils attributes into jinja-friendly objects - nav = {} - nav["title"] = title - nav["url"] = url - nav["active"] = active - - # Recursively convert children as well - # If there are sub-pages for this list_item, there should be two children: - # a paragraph, and a bullet_list. - nav["children"] = [] - if len(list_item.children) > 1: - # The `.children` of the bullet_list has the nodes of the sub-pages. - subpage_list = list_item.children[1].children - for sub_page in subpage_list: - child_nav = docutils_node_to_jinja( - sub_page, only_pages=only_pages, numbered=numbered - ) - if child_nav is not None: - nav["children"].append(child_nav) - return nav - - -def setup(app): - app.connect("html-page-context", add_toctree_functions) - - return {"parallel_read_safe": True, "parallel_write_safe": True} diff --git a/doc/sphinxext/autoshortsummary.py b/doc/sphinxext/autoshortsummary.py new file mode 100644 index 0000000000000..8451f3133d05b --- /dev/null +++ b/doc/sphinxext/autoshortsummary.py @@ -0,0 +1,53 @@ +from sphinx.ext.autodoc import ModuleLevelDocumenter + + +class ShortSummaryDocumenter(ModuleLevelDocumenter): + """An autodocumenter that only renders the short summary of the object.""" + + # Defines the usage: .. autoshortsummary:: {{ object }} + objtype = "shortsummary" + + # Disable content indentation + content_indent = "" + + # Avoid being selected as the default documenter for some objects, because we are + # returning `can_document_member` as True for all objects + priority = -99 + + @classmethod + def can_document_member(cls, member, membername, isattr, parent): + """Allow documenting any object.""" + return True + + def get_object_members(self, want_all): + """Document no members.""" + return (False, []) + + def add_directive_header(self, sig): + """Override default behavior to add no directive header or options.""" + pass + + def add_content(self, more_content): + """Override default behavior to add only the first line of the docstring. + + Modified based on the part of processing docstrings in the original + implementation of this method. + + https://github.com/sphinx-doc/sphinx/blob/faa33a53a389f6f8bc1f6ae97d6015fa92393c4a/sphinx/ext/autodoc/__init__.py#L609-L622 + """ + sourcename = self.get_sourcename() + docstrings = self.get_doc() + + if docstrings is not None: + if not docstrings: + docstrings.append([]) + # Get the first non-empty line of the processed docstring; this could lead + # to unexpected results if the object does not have a short summary line. + short_summary = next( + (s for s in self.process_doc(docstrings) if s), "" + ) + self.add_line(short_summary, sourcename, 0) + + +def setup(app): + app.add_autodocumenter(ShortSummaryDocumenter) diff --git a/doc/sphinxext/dropdown_anchors.py b/doc/sphinxext/dropdown_anchors.py new file mode 100644 index 0000000000000..eb0b414de6ae8 --- /dev/null +++ b/doc/sphinxext/dropdown_anchors.py @@ -0,0 +1,78 @@ +import re + +from docutils import nodes +from sphinx.transforms.post_transforms import SphinxPostTransform +from sphinx_design.dropdown import dropdown_main, dropdown_title + + +class DropdownAnchorAdder(SphinxPostTransform): + """Insert anchor links to the sphinx-design dropdowns. + + Some of the dropdowns were originally headers that had automatic anchors, so we + need to make sure that the old anchors still work. See the original implementation + (in JS): https://github.com/scikit-learn/scikit-learn/pull/27409 + + The structure of each sphinx-design dropdown node is expected to be: + + + + ...icon <-- This exists if the "icon" option of the sphinx-design + dropdown is set; we do not use it in our documentation + + ...title <-- This may contain multiple nodes, e.g. literal nodes if + there are inline codes; we use the concatenated text of + all these nodes to generate the anchor ID + + Here we insert the anchor link! + + <-- The "dropdown closed" marker + <-- The "dropdown open" marker + + + ...main contents + + + """ + + default_priority = 9999 # Apply later than everything else + formats = ["html"] + + def run(self): + """Run the post transformation.""" + # Counter to store the duplicated summary text to add it as a suffix in the + # anchor ID + anchor_id_counters = {} + + for sd_dropdown in self.document.findall(dropdown_main): + # Grab the dropdown title + sd_dropdown_title = sd_dropdown.next_node(dropdown_title) + + # Concatenate the text of relevant nodes as the title text + # Since we do not have the prefix icon, the relevant nodes are the very + # first child node until the third last node (last two are markers) + title_text = "".join( + node.astext() for node in sd_dropdown_title.children[:-2] + ) + + # The ID uses the first line, lowercased, with spaces replaced by dashes; + # suffix the anchor ID with a counter if it already exists + anchor_id = re.sub(r"\s+", "-", title_text.strip().split("\n")[0]).lower() + if anchor_id in anchor_id_counters: + anchor_id_counters[anchor_id] += 1 + anchor_id = f"{anchor_id}-{anchor_id_counters[anchor_id]}" + else: + anchor_id_counters[anchor_id] = 1 + sd_dropdown["ids"].append(anchor_id) + + # Create the anchor element and insert after the title text; we do this + # directly with raw HTML + anchor_html = ( + f'#' + ) + anchor_node = nodes.raw("", anchor_html, format="html") + sd_dropdown_title.insert(-2, anchor_node) # before the two markers + + +def setup(app): + app.add_post_transform(DropdownAnchorAdder) diff --git a/doc/sphinxext/move_gallery_links.py b/doc/sphinxext/move_gallery_links.py new file mode 100644 index 0000000000000..dff27f7358c7f --- /dev/null +++ b/doc/sphinxext/move_gallery_links.py @@ -0,0 +1,193 @@ +""" +This script intends to better integrate sphinx-gallery into pydata-sphinx-theme. In +particular, it moves the download links and badge links in the footer of each generated +example page into the secondary sidebar, then removes the footer and the top note +pointing to the footer. + +The download links are for Python source code and Jupyter notebook respectively, and +the badge links are for JupyterLite and Binder. + +Currently this is achieved via post-processing the HTML generated by sphinx-gallery. +This hack can be removed if the following upstream issue is resolved: +https://github.com/sphinx-gallery/sphinx-gallery/issues/1258 +""" + +from pathlib import Path + +from bs4 import BeautifulSoup +from sphinx.util.display import status_iterator +from sphinx.util.logging import getLogger + +logger = getLogger(__name__) + + +def move_gallery_links(app, exception): + if exception is not None: + return + + for gallery_dir in app.config.sphinx_gallery_conf["gallery_dirs"]: + html_gallery_dir = Path(app.builder.outdir, gallery_dir) + + # Get all gallery example files to be tweaked; tuples (file, docname) + flat = [] + for file in html_gallery_dir.rglob("*.html"): + if file.name in ("index.html", "sg_execution_times.html"): + # These are not gallery example pages, skip + continue + + # Extract the documentation name from the path + docname = file.relative_to(app.builder.outdir).with_suffix("").as_posix() + if docname in app.config.html_context["redirects"]: + # This is a redirected page, skip + continue + if docname not in app.project.docnames: + # This should not happen, warn + logger.warning(f"Document {docname} not found but {file} exists") + continue + flat.append((file, docname)) + + for html_file, _ in status_iterator( + flat, + length=len(flat), + summary="Tweaking gallery links... ", + verbosity=app.verbosity, + stringify_func=lambda x: x[1], # display docname + ): + with html_file.open("r", encoding="utf-8") as f: + html = f.read() + soup = BeautifulSoup(html, "html.parser") + + # Find the secondary sidebar; it should exist in all gallery example pages + secondary_sidebar = soup.find("div", class_="sidebar-secondary-items") + if secondary_sidebar is None: + logger.warning(f"Secondary sidebar not found in {html_file}") + continue + + def _create_secondary_sidebar_component(items): + """Create a new component in the secondary sidebar. + + `items` should be a list of dictionaries with "element" being the bs4 + tag of the component and "title" being the title (None if not needed). + """ + component = soup.new_tag("div", **{"class": "sidebar-secondary-item"}) + for item in items: + item_wrapper = soup.new_tag("div") + item_wrapper.append(item["element"]) + if item["title"]: + item_wrapper["title"] = item["title"] + component.append(item_wrapper) + secondary_sidebar.append(component) + + def _create_download_link(link, is_jupyter=False): + """Create a download link to be appended to a component. + + `link` should be the bs4 tag of the original download link, either for + the Python source code (is_jupyter=False) of for the Jupyter notebook + (is_jupyter=True). `link` will not be removed; instead the whole + footnote would be removed where `link` is located. + + This returns a dictionary with "element" being the bs4 tag of the new + download link and "title" being the name of the file to download. + """ + new_link = soup.new_tag("a", href=link["href"], download="") + + # Place a download icon at the beginning of the new link + download_icon = soup.new_tag("i", **{"class": "fa-solid fa-download"}) + new_link.append(download_icon) + + # Create the text of the new link; it is shortend to fit better into + # the secondary sidebar. The leading space before "Download ..." is + # intentional to create a small gap between the icon and the text, + # being consistent with the other pydata-sphinx-theme components + link_type = "Jupyter notebook" if is_jupyter else "source code" + new_text = soup.new_string(f" Download {link_type}") + new_link.append(new_text) + + # Get the file name to download and use it as the title of the new link + # which will show up when hovering over the link; the file name is + # expected to be in the last span of `link` + link_spans = link.find_all("span") + title = link_spans[-1].text if link_spans else None + + return {"element": new_link, "title": title} + + def _create_badge_link(link): + """Create a badge link to be appended to a component. + + `link` should be the bs4 tag of the original badge link, either for + binder or JupyterLite. `link` will not be removed; instead the whole + footnote would be removed where `link` is located. + + This returns a dictionary with "element" being the bs4 tag of the new + download link and "title" being `None` (no need). + """ + new_link = soup.new_tag("a", href=link["href"]) + + # The link would essentially be an anchor wrapper outside the image of + # the badge; we get the src and alt attributes by finding the original + # image and limit the height to 20px (fixed) so that the secondary + # sidebar will appear neater + badge_img = link.find("img") + new_img = soup.new_tag( + "img", src=badge_img["src"], alt=badge_img["alt"], height=20 + ) + new_link.append(new_img) + + return {"element": new_link, "title": None} + + try: + # `sg_note` is the "go to the end" note at the top of the page + # `sg_footer` is the footer with the download links and badge links + # These will be removed at the end if new links are successfully created + sg_note = soup.find("div", class_="sphx-glr-download-link-note") + sg_footer = soup.find("div", class_="sphx-glr-footer") + + # If any one of these two is not found, we directly give up tweaking + if sg_note is None or sg_footer is None: + continue + + # Move the download links into the secondary sidebar + py_link_div = sg_footer.find("div", class_="sphx-glr-download-python") + ipy_link_div = sg_footer.find("div", class_="sphx-glr-download-jupyter") + _create_secondary_sidebar_component( + [ + _create_download_link(py_link_div.a, is_jupyter=False), + _create_download_link(ipy_link_div.a, is_jupyter=True), + ] + ) + + # Move the badge links into the secondary sidebar + lite_link_div = sg_footer.find("div", class_="lite-badge") + binder_link_div = sg_footer.find("div", class_="binder-badge") + _create_secondary_sidebar_component( + [ + _create_badge_link(lite_link_div.a), + _create_badge_link(binder_link_div.a), + ] + ) + + # Remove the sourcelink component from the secondary sidebar; the reason + # we do not remove it by configuration is that we need the secondary + # sidebar to be present for this script to work, while in-page toc alone + # could have been empty + sourcelink = secondary_sidebar.find("div", class_="sourcelink") + if sourcelink is not None: + sourcelink.parent.extract() # because sourcelink has a wrapper div + + # Remove the the top note and the whole footer + sg_note.extract() + sg_footer.extract() + + except Exception: + # If any step fails we directly skip the file + continue + + # Write the modified file back + with html_file.open("w", encoding="utf-8") as f: + f.write(str(soup)) + + +def setup(app): + # Default priority is 500 which sphinx-gallery uses for its build-finished events; + # we need a larger priority to run after sphinx-gallery (larger is later) + app.connect("build-finished", move_gallery_links, priority=900) diff --git a/doc/sphinxext/override_pst_pagetoc.py b/doc/sphinxext/override_pst_pagetoc.py new file mode 100644 index 0000000000000..f5697de8ef155 --- /dev/null +++ b/doc/sphinxext/override_pst_pagetoc.py @@ -0,0 +1,84 @@ +from functools import cache + +from sphinx.util.logging import getLogger + +logger = getLogger(__name__) + + +def override_pst_pagetoc(app, pagename, templatename, context, doctree): + """Overrides the `generate_toc_html` function of pydata-sphinx-theme for API.""" + + @cache + def generate_api_toc_html(kind="html"): + """Generate the in-page toc for an API page. + + This relies on the `generate_toc_html` function added by pydata-sphinx-theme + into the context. We save the original function into `pst_generate_toc_html` + and override `generate_toc_html` with this function for generated API pages. + + The pagetoc of an API page would look like the following: + +

        <-- Unwrap +
      • <-- Unwrap + {{obj}} <-- Decompose + +
          +
        • + ...object +
            <-- Set visible if exists +
          • ...method 1
          • <-- Shorten +
          • ...method 2
          • <-- Shorten + ...more methods <-- Shorten +
          +
        • +
        • ...gallery examples
        • +
        + +
      • <-- Unwrapped +
      <-- Unwrapped + """ + soup = context["pst_generate_toc_html"](kind="soup") + + try: + # Unwrap the outermost level + soup.ul.unwrap() + soup.li.unwrap() + soup.a.decompose() + + # Get all toc-h2 level entries, where the first one should be the function + # or class, and the second one, if exists, should be the examples; there + # should be no more than two entries at this level for generated API pages + lis = soup.ul.select("li.toc-h2") + main_li = lis[0] + meth_list = main_li.ul + + if meth_list is not None: + # This is a class API page, we remove the class name from the method + # names to make them better fit into the secondary sidebar; also we + # make the toc-h3 level entries always visible to more easily navigate + # through the methods + meth_list["class"].append("visible") + for meth in meth_list.find_all("li", {"class": "toc-h3"}): + target = meth.a.code.span + target.string = target.string.split(".", 1)[1] + + # This corresponds to the behavior of `generate_toc_html` + return str(soup) if kind == "html" else soup + + except Exception as e: + # Upon any failure we return the original pagetoc + logger.warning( + f"Failed to generate API pagetoc for {pagename}: {e}; falling back" + ) + return context["pst_generate_toc_html"](kind=kind) + + # Override the pydata-sphinx-theme implementation for generate API pages + if pagename.startswith("modules/generated/"): + context["pst_generate_toc_html"] = context["generate_toc_html"] + context["generate_toc_html"] = generate_api_toc_html + + +def setup(app): + # Need to be triggered after `pydata_sphinx_theme.toctree.add_toctree_functions`, + # and since default priority is 500 we set 900 for safety + app.connect("html-page-context", override_pst_pagetoc, priority=900) diff --git a/doc/supervised_learning.rst b/doc/supervised_learning.rst index 71fb3007c2e3c..ba24e8ee23c6f 100644 --- a/doc/supervised_learning.rst +++ b/doc/supervised_learning.rst @@ -1,9 +1,3 @@ -.. Places parent toc into the sidebar - -:parenttoc: True - -.. include:: includes/big_toc_css.rst - .. _supervised-learning: Supervised learning diff --git a/doc/templates/base.rst b/doc/templates/base.rst new file mode 100644 index 0000000000000..ee86bd8a18dbe --- /dev/null +++ b/doc/templates/base.rst @@ -0,0 +1,36 @@ +{{ objname | escape | underline(line="=") }} + +{% if objtype == "module" -%} + +.. automodule:: {{ fullname }} + +{%- elif objtype == "function" -%} + +.. currentmodule:: {{ module }} + +.. autofunction:: {{ objname }} + +.. minigallery:: {{ module }}.{{ objname }} + :add-heading: Gallery examples + :heading-level: - + +{%- elif objtype == "class" -%} + +.. currentmodule:: {{ module }} + +.. autoclass:: {{ objname }} + :members: + :inherited-members: + :special-members: __call__ + +.. minigallery:: {{ module }}.{{ objname }} {% for meth in methods %}{{ module }}.{{ objname }}.{{ meth }} {% endfor %} + :add-heading: Gallery examples + :heading-level: - + +{%- else -%} + +.. currentmodule:: {{ module }} + +.. auto{{ objtype }}:: {{ objname }} + +{%- endif -%} diff --git a/doc/templates/class.rst b/doc/templates/class.rst deleted file mode 100644 index 1e98be4099b73..0000000000000 --- a/doc/templates/class.rst +++ /dev/null @@ -1,17 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}============== - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/class_with_call.rst b/doc/templates/class_with_call.rst deleted file mode 100644 index bc1567709c9d3..0000000000000 --- a/doc/templates/class_with_call.rst +++ /dev/null @@ -1,21 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}=============== - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - - {% block methods %} - .. automethod:: __call__ - {% endblock %} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/deprecated_class.rst b/doc/templates/deprecated_class.rst deleted file mode 100644 index 5c31936f6fc36..0000000000000 --- a/doc/templates/deprecated_class.rst +++ /dev/null @@ -1,28 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}============== - -.. meta:: - :robots: noindex - -.. warning:: - **DEPRECATED** - - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - - {% block methods %} - .. automethod:: __init__ - {% endblock %} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/deprecated_class_with_call.rst b/doc/templates/deprecated_class_with_call.rst deleted file mode 100644 index 072a31112be50..0000000000000 --- a/doc/templates/deprecated_class_with_call.rst +++ /dev/null @@ -1,29 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}=============== - -.. meta:: - :robots: noindex - -.. warning:: - **DEPRECATED** - - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - - {% block methods %} - .. automethod:: __init__ - .. automethod:: __call__ - {% endblock %} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/deprecated_class_without_init.rst b/doc/templates/deprecated_class_without_init.rst deleted file mode 100644 index a26afbead5451..0000000000000 --- a/doc/templates/deprecated_class_without_init.rst +++ /dev/null @@ -1,24 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}============== - -.. meta:: - :robots: noindex - -.. warning:: - **DEPRECATED** - - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/deprecated_function.rst b/doc/templates/deprecated_function.rst deleted file mode 100644 index ead5abec27076..0000000000000 --- a/doc/templates/deprecated_function.rst +++ /dev/null @@ -1,24 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}==================== - -.. meta:: - :robots: noindex - -.. warning:: - **DEPRECATED** - - -.. currentmodule:: {{ module }} - -.. autofunction:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/display_all_class_methods.rst b/doc/templates/display_all_class_methods.rst deleted file mode 100644 index b179473cf841e..0000000000000 --- a/doc/templates/display_all_class_methods.rst +++ /dev/null @@ -1,19 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}============== - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples -.. include:: {{module}}.{{objname}}.from_estimator.examples -.. include:: {{module}}.{{objname}}.from_predictions.examples - -.. raw:: html - -
      diff --git a/doc/templates/display_only_from_estimator.rst b/doc/templates/display_only_from_estimator.rst deleted file mode 100644 index 9981910dc8be7..0000000000000 --- a/doc/templates/display_only_from_estimator.rst +++ /dev/null @@ -1,18 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}============== - -.. currentmodule:: {{ module }} - -.. autoclass:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples -.. include:: {{module}}.{{objname}}.from_estimator.examples - -.. raw:: html - -
      diff --git a/doc/templates/function.rst b/doc/templates/function.rst deleted file mode 100644 index 93d368ecfe6d5..0000000000000 --- a/doc/templates/function.rst +++ /dev/null @@ -1,17 +0,0 @@ -.. - The empty line below should not be removed. It is added such that the `rst_prolog` - is added before the :mod: directive. Otherwise, the rendering will show as a - paragraph instead of a header. - -:mod:`{{module}}`.{{objname}} -{{ underline }}==================== - -.. currentmodule:: {{ module }} - -.. autofunction:: {{ objname }} - -.. include:: {{module}}.{{objname}}.examples - -.. raw:: html - -
      diff --git a/doc/templates/generate_deprecated.sh b/doc/templates/generate_deprecated.sh deleted file mode 100755 index a7301fb5dc419..0000000000000 --- a/doc/templates/generate_deprecated.sh +++ /dev/null @@ -1,8 +0,0 @@ -#!/bin/bash -for f in [^d]*; do (head -n2 < $f; echo ' -.. meta:: - :robots: noindex - -.. warning:: - **DEPRECATED** -'; tail -n+3 $f) > deprecated_$f; done diff --git a/doc/templates/index.html b/doc/templates/index.html index 74816a4b473d3..61457be2494ea 100644 --- a/doc/templates/index.html +++ b/doc/templates/index.html @@ -1,25 +1,27 @@ {% extends "layout.html" %} {% set title = 'scikit-learn: machine learning in Python' %} -{% if theme_link_to_live_contributing_page|tobool %} +{% if is_devrelease|tobool %} + {%- set contributing_link = pathto("developers/contributing") %} + {%- set contributing_attrs = "" %} +{%- else %} {%- set contributing_link = "https://scikit-learn.org/dev/developers/contributing.html" %} {%- set contributing_attrs = 'target="_blank" rel="noopener noreferrer"' %} -{%- else %} - {%- set contributing_link = pathto('developers/contributing') %} - {%- set contributing_attrs = '' %} {%- endif %} +{%- import "static/webpack-macros.html" as _webpack with context %} -{% block content %} -
      +{% block docs_navbar %} +{{ super() }} + +
      -

      scikit-learn

      -

      Machine Learning in Python

      - Getting Started - Release Highlights for {{ release_highlights_version }} - GitHub +

      scikit-learn

      +

      Machine Learning in Python

      + Getting Started + Release Highlights for {{ release_highlights_version }}
        @@ -33,236 +35,279 @@

        Machine Learning in

      -
      +{% endblock docs_navbar %} + +{% block docs_main %} + +
      +
      -
      +
      -

      Classification

      -

      Identifying which category an object belongs to.

      -

      Applications: Spam detection, image recognition.
      - Algorithms: - Gradient boosting, - nearest neighbors, - random forest, - logistic regression, - and more...

      +

      + Classification +

      +

      Identifying which category an object belongs to.

      +

      + Applications: Spam detection, image recognition.
      + Algorithms: + Gradient boosting, + nearest neighbors, + random forest, + logistic regression, + and more... +

      -
      +
      -
      +
      -

      Regression

      -

      Predicting a continuous-valued attribute associated with an object.

      -

      Applications: Drug response, Stock prices.
      - Algorithms: - Gradient boosting, - nearest neighbors, - random forest, - ridge, - and more...

      +

      + Regression +

      +

      Predicting a continuous-valued attribute associated with an object.

      +

      + Applications: Drug response, stock prices.
      + Algorithms: + Gradient boosting, + nearest neighbors, + random forest, + ridge, + and more... +

      -
      +
      -
      +
      -

      Clustering

      -

      Automatic grouping of similar objects into sets.

      -

      Applications: Customer segmentation, Grouping experiment outcomes
      - Algorithms: - k-Means, - HDBSCAN, - hierarchical - clustering, - and more...

      +

      + Clustering +

      +

      Automatic grouping of similar objects into sets.

      +

      + Applications: Customer segmentation, grouping experiment outcomes.
      + Algorithms: + k-Means, + HDBSCAN, + hierarchical clustering, + and more... +

      -
      +
      -
      +
      -

      Dimensionality reduction

      -

      Reducing the number of random variables to consider.

      -

      Applications: Visualization, Increased efficiency
      - Algorithms: - PCA, - feature selection, - non-negative matrix factorization, - and more...

      +

      + Dimensionality reduction +

      +

      Reducing the number of random variables to consider.

      +

      + Applications: Visualization, increased efficiency.
      + Algorithms: + PCA, + feature selection, + non-negative matrix factorization, + and more... +

      -
      +
      -
      +
      -

      Model selection

      -

      Comparing, validating and choosing parameters and models.

      -

      Applications: Improved accuracy via parameter tuning
      - Algorithms: - grid search, - cross validation, - metrics, - and more...

      +

      + Model selection +

      +

      Comparing, validating and choosing parameters and models.

      +

      + Applications: Improved accuracy via parameter tuning.
      + Algorithms: + Grid search, + cross validation, + metrics, + and more... +

      -
      +
      -
      +
      -

      Preprocessing

      -

      Feature extraction and normalization.

      -

      Applications: Transforming input data such as text for use with machine learning algorithms.
      - Algorithms: - preprocessing, - feature extraction, - and more...

      +

      + Preprocessing +

      +

      Feature extraction and normalization.

      +

      + Applications: Transforming input data such as text for use with machine learning algorithms.
      + Algorithms: + Preprocessing, + feature extraction, + and more... +

      -
      -
      -
      +{% endblock docs_main %} + +{% block footer %} + +
      +
      +

      News

        -
      • On-going development: - scikit-learn 1.6 (Changelog) -
      • -
      • May 2024. scikit-learn 1.5.0 is available for download (Changelog). -
      • -
      • April 2024. scikit-learn 1.4.2 is available for download (Changelog). -
      • -
      • February 2024. scikit-learn 1.4.1.post1 is available for download (Changelog). -
      • -
      • January 2024. scikit-learn 1.4.0 is available for download (Changelog). -
      • -
      • All releases: - What's new (Changelog) -
      • +
      • On-going development: scikit-learn 1.6 (Changelog).
      • +
      • May 2024. scikit-learn 1.5.0 is available for download (Changelog).
      • +
      • April 2024. scikit-learn 1.4.2 is available for download (Changelog).
      • +
      • February 2024. scikit-learn 1.4.1.post1 is available for download (Changelog).
      • +
      • January 2024. scikit-learn 1.4.0 is available for download (Changelog).
      • +
      • October 2023. scikit-learn 1.3.2 is available for download (Changelog).
      • +
      • September 2023. scikit-learn 1.3.1 is available for download (Changelog).
      • +
      • June 2023. scikit-learn 1.3.0 is available for download (Changelog).
      • +
      • All releases: What's new (Changelog).
      +

      Community

      - - Help us, donate! - Cite us! +

      + Help us, donate! + Cite us! +

      +

      Who uses scikit-learn?

      -
      -
      + +