-
-
Notifications
You must be signed in to change notification settings - Fork 32.2k
gh-125985: Add free threading scaling micro benchmarks #125986
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
2805c12
gh-125985: Add free threading scaling micro benchmarks
colesbury acd4627
Pull out reset_color
colesbury 0849582
Sort imports
colesbury 6e731c6
Set LC_NUMERIC=C and handle empty MAXMHZ
colesbury 3014c32
Update Tools/ftscalingbench/ftscalingbench.py
colesbury e225113
Merge branch 'main' into gh-125985-ftscalingbench
colesbury File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
# This script runs a set of small benchmarks to help identify scaling | ||
# bottlenecks in the free-threaded interpreter. The benchmarks consist | ||
# of patterns that ought to scale well, but haven't in the past. This is | ||
# typically due to reference count contention or lock contention. | ||
# | ||
# This is not intended to be a general multithreading benchmark suite, nor | ||
# are the benchmarks intended to be representative of real-world workloads. | ||
# | ||
# On Linux, to avoid confounding hardware effects, the script attempts to: | ||
# * Use a single CPU socket (to avoid NUMA effects) | ||
# * Use distinct physical cores (to avoid hyperthreading/SMT effects) | ||
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and | ||
# efficiency cores | ||
# | ||
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost") | ||
# | ||
# Intel: | ||
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo | ||
# | ||
# AMD: | ||
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost | ||
# | ||
|
||
import math | ||
import os | ||
import queue | ||
import sys | ||
import threading | ||
import time | ||
|
||
# The iterations in individual benchmarks are scaled by this factor. | ||
WORK_SCALE = 100 | ||
|
||
ALL_BENCHMARKS = {} | ||
|
||
threads = [] | ||
in_queues = [] | ||
out_queues = [] | ||
|
||
|
||
def register_benchmark(func): | ||
ALL_BENCHMARKS[func.__name__] = func | ||
return func | ||
|
||
@register_benchmark | ||
def object_cfunction(): | ||
accu = 0 | ||
tab = [1] * 100 | ||
for i in range(1000 * WORK_SCALE): | ||
tab.pop(0) | ||
tab.append(i) | ||
accu += tab[50] | ||
return accu | ||
|
||
@register_benchmark | ||
def cmodule_function(): | ||
for i in range(1000 * WORK_SCALE): | ||
math.floor(i * i) | ||
|
||
@register_benchmark | ||
def mult_constant(): | ||
x = 1.0 | ||
for i in range(3000 * WORK_SCALE): | ||
x *= 1.01 | ||
|
||
def simple_gen(): | ||
for i in range(10): | ||
yield i | ||
|
||
@register_benchmark | ||
def generator(): | ||
accu = 0 | ||
for i in range(100 * WORK_SCALE): | ||
for v in simple_gen(): | ||
accu += v | ||
return accu | ||
|
||
class Counter: | ||
def __init__(self): | ||
self.i = 0 | ||
|
||
def next_number(self): | ||
self.i += 1 | ||
return self.i | ||
|
||
@register_benchmark | ||
def pymethod(): | ||
c = Counter() | ||
for i in range(1000 * WORK_SCALE): | ||
c.next_number() | ||
return c.i | ||
|
||
def next_number(i): | ||
return i + 1 | ||
|
||
@register_benchmark | ||
def pyfunction(): | ||
accu = 0 | ||
for i in range(1000 * WORK_SCALE): | ||
accu = next_number(i) | ||
return accu | ||
|
||
def double(x): | ||
return x + x | ||
|
||
module = sys.modules[__name__] | ||
|
||
@register_benchmark | ||
def module_function(): | ||
total = 0 | ||
for i in range(1000 * WORK_SCALE): | ||
total += module.double(i) | ||
return total | ||
|
||
class MyObject: | ||
pass | ||
|
||
@register_benchmark | ||
def load_string_const(): | ||
accu = 0 | ||
for i in range(1000 * WORK_SCALE): | ||
if i == 'a string': | ||
accu += 7 | ||
else: | ||
accu += 1 | ||
return accu | ||
|
||
@register_benchmark | ||
def load_tuple_const(): | ||
accu = 0 | ||
for i in range(1000 * WORK_SCALE): | ||
if i == (1, 2): | ||
accu += 7 | ||
else: | ||
accu += 1 | ||
return accu | ||
|
||
@register_benchmark | ||
def create_pyobject(): | ||
for i in range(1000 * WORK_SCALE): | ||
o = MyObject() | ||
|
||
@register_benchmark | ||
def create_closure(): | ||
for i in range(1000 * WORK_SCALE): | ||
def foo(x): | ||
return x | ||
foo(i) | ||
|
||
@register_benchmark | ||
def create_dict(): | ||
for i in range(1000 * WORK_SCALE): | ||
d = { | ||
"key": "value", | ||
} | ||
|
||
thread_local = threading.local() | ||
|
||
@register_benchmark | ||
def thread_local_read(): | ||
tmp = thread_local | ||
tmp.x = 10 | ||
for i in range(500 * WORK_SCALE): | ||
_ = tmp.x | ||
_ = tmp.x | ||
_ = tmp.x | ||
_ = tmp.x | ||
_ = tmp.x | ||
|
||
|
||
def bench_one_thread(func): | ||
t0 = time.perf_counter_ns() | ||
func() | ||
t1 = time.perf_counter_ns() | ||
return t1 - t0 | ||
|
||
|
||
def bench_parallel(func): | ||
t0 = time.perf_counter_ns() | ||
for inq in in_queues: | ||
inq.put(func) | ||
for outq in out_queues: | ||
outq.get() | ||
t1 = time.perf_counter_ns() | ||
return t1 - t0 | ||
|
||
|
||
def benchmark(func): | ||
delta_one_thread = bench_one_thread(func) | ||
delta_many_threads = bench_parallel(func) | ||
|
||
speedup = delta_one_thread * len(threads) / delta_many_threads | ||
if speedup >= 1: | ||
factor = speedup | ||
direction = "faster" | ||
else: | ||
factor = 1 / speedup | ||
direction = "slower" | ||
|
||
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() | ||
color = reset_color = "" | ||
if use_color: | ||
if speedup <= 1.1: | ||
color = "\x1b[31m" # red | ||
elif speedup < len(threads)/2: | ||
color = "\x1b[33m" # yellow | ||
reset_color = "\x1b[0m" | ||
|
||
print(f"{color}{func.__name__:<18} {round(factor, 1):>4}x {direction}{reset_color}") | ||
|
||
def determine_num_threads_and_affinity(): | ||
if sys.platform != "linux": | ||
return [None] * os.cpu_count() | ||
|
||
# Try to use `lscpu -p` on Linux | ||
import subprocess | ||
try: | ||
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"], | ||
text=True, env={"LC_NUMERIC": "C"}) | ||
except (FileNotFoundError, subprocess.CalledProcessError): | ||
return [None] * os.cpu_count() | ||
|
||
table = [] | ||
for line in output.splitlines(): | ||
if line.startswith("#"): | ||
continue | ||
cpu, node, core, maxhz = line.split(",") | ||
if maxhz == "": | ||
maxhz = "0" | ||
table.append((int(cpu), int(node), int(core), float(maxhz))) | ||
mpage marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
cpus = [] | ||
cores = set() | ||
max_mhz_all = max(row[3] for row in table) | ||
for cpu, node, core, maxmhz in table: | ||
# Choose only CPUs on the same node, unique cores, and try to avoid | ||
# "efficiency" cores. | ||
mpage marked this conversation as resolved.
Show resolved
Hide resolved
|
||
if node == 0 and core not in cores and maxmhz == max_mhz_all: | ||
cpus.append(cpu) | ||
cores.add(core) | ||
return cpus | ||
|
||
|
||
def thread_run(cpu, in_queue, out_queue): | ||
if cpu is not None and hasattr(os, "sched_setaffinity"): | ||
# Set the affinity for the current thread | ||
os.sched_setaffinity(0, (cpu,)) | ||
|
||
while True: | ||
func = in_queue.get() | ||
if func is None: | ||
break | ||
func() | ||
out_queue.put(None) | ||
|
||
|
||
def initialize_threads(opts): | ||
if opts.threads == -1: | ||
cpus = determine_num_threads_and_affinity() | ||
else: | ||
cpus = [None] * opts.threads # don't set affinity | ||
|
||
print(f"Running benchmarks with {len(cpus)} threads") | ||
for cpu in cpus: | ||
inq = queue.Queue() | ||
outq = queue.Queue() | ||
in_queues.append(inq) | ||
out_queues.append(outq) | ||
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True) | ||
threads.append(t) | ||
t.start() | ||
|
||
|
||
def main(opts): | ||
global WORK_SCALE | ||
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled(): | ||
sys.stderr.write("expected to be run with the GIL disabled\n") | ||
|
||
benchmark_names = opts.benchmarks | ||
if benchmark_names: | ||
for name in benchmark_names: | ||
if name not in ALL_BENCHMARKS: | ||
sys.stderr.write(f"Unknown benchmark: {name}\n") | ||
sys.exit(1) | ||
else: | ||
benchmark_names = ALL_BENCHMARKS.keys() | ||
|
||
WORK_SCALE = opts.scale | ||
|
||
if not opts.baseline_only: | ||
initialize_threads(opts) | ||
|
||
do_bench = not opts.baseline_only and not opts.parallel_only | ||
for name in benchmark_names: | ||
func = ALL_BENCHMARKS[name] | ||
if do_bench: | ||
benchmark(func) | ||
continue | ||
|
||
if opts.parallel_only: | ||
delta_ns = bench_parallel(func) | ||
else: | ||
delta_ns = bench_one_thread(func) | ||
|
||
time_ms = delta_ns / 1_000_000 | ||
print(f"{func.__name__:<18} {time_ms:.1f} ms") | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-t", "--threads", type=int, default=-1, | ||
help="number of threads to use") | ||
parser.add_argument("--scale", type=int, default=100, | ||
help="work scale factor for the benchmark (default=100)") | ||
parser.add_argument("--baseline-only", default=False, action="store_true", | ||
help="only run the baseline benchmarks (single thread)") | ||
parser.add_argument("--parallel-only", default=False, action="store_true", | ||
help="only run the parallel benchmark (many threads)") | ||
parser.add_argument("benchmarks", nargs="*", | ||
help="benchmarks to run") | ||
options = parser.parse_args() | ||
main(options) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.