@@ -9,7 +9,7 @@ msgstr ""
9
9
"Project-Id-Version : Python 3.11\n "
10
10
"Report-Msgid-Bugs-To : \n "
11
11
"POT-Creation-Date : 2023-05-03 00:17+0000\n "
12
- "PO-Revision-Date : 2023-07-14 00:44 +0800\n "
12
+ "PO-Revision-Date : 2023-07-17 18:00 +0800\n "
13
13
"Last-Translator : Adrian Liaw <adrianliaw2000@gmail.com>\n "
14
14
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
15
15
"tw)\n "
@@ -1224,6 +1224,7 @@ msgid ""
1224
1224
"Dividing a constant by an instance of :class:`NormalDist` is not supported "
1225
1225
"because the result wouldn't be normally distributed."
1226
1226
msgstr ""
1227
+ "不支援將常數除以 :class:`NormalDist` 的實例,因為結果將不符合常態分布。"
1227
1228
1228
1229
#: ../../library/statistics.rst:877
1229
1230
msgid ""
@@ -1233,6 +1234,10 @@ msgid ""
1233
1234
"Sum_of_normally_distributed_random_variables>`_ represented as instances of :"
1234
1235
"class:`NormalDist`. For example:"
1235
1236
msgstr ""
1237
+ "由於常態分布源自於自變數的加法效應 (additive effects),因此可以\\ `將兩個獨立"
1238
+ "的常態分布隨機變數相加與相減 <https://en.wikipedia.org/wiki/"
1239
+ "Sum_of_normally_distributed_random_variables>`_,並且表示為 :class:"
1240
+ "`NormalDist` 的實例。例如:"
1236
1241
1237
1242
#: ../../library/statistics.rst:897
1238
1243
msgid ":class:`NormalDist` Examples and Recipes"
@@ -1250,6 +1255,9 @@ msgid ""
1250
1255
"determine the percentage of students with test scores between 1100 and 1200, "
1251
1256
"after rounding to the nearest whole number:"
1252
1257
msgstr ""
1258
+ "例如,給定 `SAT 測驗的歷史資料 <https://nces.ed.gov/programs/digest/d17/"
1259
+ "tables/dt17_226.40.asp>`_,顯示成績為平均 1060、標準差 195 的常態分布。我們要"
1260
+ "求出分數在 1100 與 1200 之間(四捨五入至最接近的整數)的學生的百分比:"
1253
1261
1254
1262
#: ../../library/statistics.rst:914
1255
1263
msgid ""
@@ -1265,13 +1273,19 @@ msgid ""
1265
1273
"analytically, :class:`NormalDist` can generate input samples for a `Monte "
1266
1274
"Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:"
1267
1275
msgstr ""
1276
+ "欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入"
1277
+ "樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
1278
+ "Monte_Carlo_method>`_:"
1268
1279
1269
1280
#: ../../library/statistics.rst:940
1270
1281
msgid ""
1271
1282
"Normal distributions can be used to approximate `Binomial distributions "
1272
1283
"<https://mathworld.wolfram.com/BinomialDistribution.html>`_ when the sample "
1273
1284
"size is large and when the probability of a successful trial is near 50%."
1274
1285
msgstr ""
1286
+ "當樣本數量夠大,且試驗成功的機率接近 50%,可以使用常態分布來近似\\ `二項分布 "
1287
+ "(Binomial distributions) <https://mathworld.wolfram.com/BinomialDistribution."
1288
+ "html>`_。"
1275
1289
1276
1290
#: ../../library/statistics.rst:945
1277
1291
msgid ""
@@ -1281,10 +1295,14 @@ msgid ""
1281
1295
"talks. Assuming the population preferences haven't changed, what is the "
1282
1296
"probability that the Python room will stay within its capacity limits?"
1283
1297
msgstr ""
1298
+ "例如,一場有 750 位參加者的開源研討會中,有兩間可容納 500 人的會議室。一場是"
1299
+ "關於 Python 的講座,另一場則是關於 Ruby 的。在過去的會議中,有 65% 的參加者傾"
1300
+ "向參與 Python 講座。假設參與者的偏好沒有改變,那麼 Python 會議室未超過自身容"
1301
+ "量限制的機率是?"
1284
1302
1285
1303
#: ../../library/statistics.rst:976
1286
1304
msgid "Normal distributions commonly arise in machine learning problems."
1287
- msgstr ""
1305
+ msgstr "常態分布常在機器學習問題中出現。 "
1288
1306
1289
1307
#: ../../library/statistics.rst:978
1290
1308
msgid ""
@@ -1293,19 +1311,24 @@ msgid ""
1293
1311
"challenge is to predict a person's gender from measurements of normally "
1294
1312
"distributed features including height, weight, and foot size."
1295
1313
msgstr ""
1314
+ "維基百科有個 `Naive Bayesian Classifier 的優良範例 <https://en.wikipedia.org/"
1315
+ "wiki/Naive_Bayes_classifier#Person_classification>`_。課題為從身高、體重與鞋"
1316
+ "子尺寸等符合常態分布的特徵量測值中判斷一個人的性別。"
1296
1317
1297
1318
#: ../../library/statistics.rst:983
1298
1319
msgid ""
1299
1320
"We're given a training dataset with measurements for eight people. The "
1300
1321
"measurements are assumed to be normally distributed, so we summarize the "
1301
1322
"data with :class:`NormalDist`:"
1302
1323
msgstr ""
1324
+ "給定一組包含八個人的量測值的訓練資料集。假設這些量測值服從常態分布,我們可以"
1325
+ "利用 :class:`NormalDist` 來總結資料:"
1303
1326
1304
1327
#: ../../library/statistics.rst:996
1305
1328
msgid ""
1306
1329
"Next, we encounter a new person whose feature measurements are known but "
1307
1330
"whose gender is unknown:"
1308
- msgstr ""
1331
+ msgstr "接著,我們遇到一個新的人,他的特徵量測值已知,但性別未知: "
1309
1332
1310
1333
#: ../../library/statistics.rst:1005
1311
1334
msgid ""
@@ -1314,10 +1337,16 @@ msgid ""
1314
1337
"the prior times the product of likelihoods for the feature measurements "
1315
1338
"given the gender:"
1316
1339
msgstr ""
1340
+ "從可能為男性或女性的 50% `先驗機率 (prior probability) <https://en.wikipedia."
1341
+ "org/wiki/Prior_probability>`_ 為開端,我們將後驗機率 (posterior probability) "
1342
+ "計算為先驗機率乘以給定性別下,各特徵量測值的概度乘積:"
1317
1343
1318
1344
#: ../../library/statistics.rst:1020
1319
1345
msgid ""
1320
1346
"The final prediction goes to the largest posterior. This is known as the "
1321
1347
"`maximum a posteriori <https://en.wikipedia.org/wiki/"
1322
1348
"Maximum_a_posteriori_estimation>`_ or MAP:"
1323
1349
msgstr ""
1350
+ "最終的預測結果將取決於最大的後驗機率。這被稱為\\ `最大後驗機率 (maximum a "
1351
+ "posteriori) <https://en.wikipedia.org/wiki/"
1352
+ "Maximum_a_posteriori_estimation>`_ 或者 MAP:"
0 commit comments