Skip to content

Finishes the translation of library/statistics.po #474

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 18, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 32 additions & 3 deletions library/statistics.po
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ msgstr ""
"Project-Id-Version: Python 3.11\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-05-03 00:17+0000\n"
"PO-Revision-Date: 2023-07-14 00:44+0800\n"
"PO-Revision-Date: 2023-07-17 18:00+0800\n"
"Last-Translator: Adrian Liaw <adrianliaw2000@gmail.com>\n"
"Language-Team: Chinese - TAIWAN (https://github.com/python/python-docs-zh-"
"tw)\n"
Expand Down Expand Up @@ -1224,6 +1224,7 @@ msgid ""
"Dividing a constant by an instance of :class:`NormalDist` is not supported "
"because the result wouldn't be normally distributed."
msgstr ""
"不支援將常數除以 :class:`NormalDist` 的實例,因為結果將不符合常態分布。"

#: ../../library/statistics.rst:877
msgid ""
Expand All @@ -1233,6 +1234,10 @@ msgid ""
"Sum_of_normally_distributed_random_variables>`_ represented as instances of :"
"class:`NormalDist`. For example:"
msgstr ""
"由於常態分布源自於自變數的加法效應 (additive effects),因此可以\\ `將兩個獨立"
"的常態分布隨機變數相加與相減 <https://en.wikipedia.org/wiki/"
"Sum_of_normally_distributed_random_variables>`_,並且表示為 :class:"
"`NormalDist` 的實例。例如:"

#: ../../library/statistics.rst:897
msgid ":class:`NormalDist` Examples and Recipes"
Expand All @@ -1250,6 +1255,9 @@ msgid ""
"determine the percentage of students with test scores between 1100 and 1200, "
"after rounding to the nearest whole number:"
msgstr ""
"例如,給定 `SAT 測驗的歷史資料 <https://nces.ed.gov/programs/digest/d17/"
"tables/dt17_226.40.asp>`_,顯示成績為平均 1060、標準差 195 的常態分布。我們要"
"求出分數在 1100 與 1200 之間(四捨五入至最接近的整數)的學生的百分比:"

#: ../../library/statistics.rst:914
msgid ""
Expand All @@ -1265,13 +1273,19 @@ msgid ""
"analytically, :class:`NormalDist` can generate input samples for a `Monte "
"Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:"
msgstr ""
"欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入"
"樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
"Monte_Carlo_method>`_:"

#: ../../library/statistics.rst:940
msgid ""
"Normal distributions can be used to approximate `Binomial distributions "
"<https://mathworld.wolfram.com/BinomialDistribution.html>`_ when the sample "
"size is large and when the probability of a successful trial is near 50%."
msgstr ""
"當樣本數量夠大,且試驗成功的機率接近 50%,可以使用常態分布來近似\\ `二項分布 "
"(Binomial distributions) <https://mathworld.wolfram.com/BinomialDistribution."
"html>`_。"

#: ../../library/statistics.rst:945
msgid ""
Expand All @@ -1281,10 +1295,14 @@ msgid ""
"talks. Assuming the population preferences haven't changed, what is the "
"probability that the Python room will stay within its capacity limits?"
msgstr ""
"例如,一場有 750 位參加者的開源研討會中,有兩間可容納 500 人的會議室。一場是"
"關於 Python 的講座,另一場則是關於 Ruby 的。在過去的會議中,有 65% 的參加者傾"
"向參與 Python 講座。假設參與者的偏好沒有改變,那麼 Python 會議室未超過自身容"
"量限制的機率是?"

#: ../../library/statistics.rst:976
msgid "Normal distributions commonly arise in machine learning problems."
msgstr ""
msgstr "常態分布常在機器學習問題中出現。"

#: ../../library/statistics.rst:978
msgid ""
Expand All @@ -1293,19 +1311,24 @@ msgid ""
"challenge is to predict a person's gender from measurements of normally "
"distributed features including height, weight, and foot size."
msgstr ""
"維基百科有個 `Naive Bayesian Classifier 的優良範例 <https://en.wikipedia.org/"
"wiki/Naive_Bayes_classifier#Person_classification>`_。課題為從身高、體重與鞋"
"子尺寸等符合常態分布的特徵量測值中判斷一個人的性別。"

#: ../../library/statistics.rst:983
msgid ""
"We're given a training dataset with measurements for eight people. The "
"measurements are assumed to be normally distributed, so we summarize the "
"data with :class:`NormalDist`:"
msgstr ""
"給定一組包含八個人的量測值的訓練資料集。假設這些量測值服從常態分布,我們可以"
"利用 :class:`NormalDist` 來總結資料:"

#: ../../library/statistics.rst:996
msgid ""
"Next, we encounter a new person whose feature measurements are known but "
"whose gender is unknown:"
msgstr ""
msgstr "接著,我們遇到一個新的人,他的特徵量測值已知,但性別未知:"

#: ../../library/statistics.rst:1005
msgid ""
Expand All @@ -1314,10 +1337,16 @@ msgid ""
"the prior times the product of likelihoods for the feature measurements "
"given the gender:"
msgstr ""
"從可能為男性或女性的 50% `先驗機率 (prior probability) <https://en.wikipedia."
"org/wiki/Prior_probability>`_ 為開端,我們將後驗機率 (posterior probability) "
"計算為先驗機率乘以給定性別下,各特徵量測值的概度乘積:"

#: ../../library/statistics.rst:1020
msgid ""
"The final prediction goes to the largest posterior. This is known as the "
"`maximum a posteriori <https://en.wikipedia.org/wiki/"
"Maximum_a_posteriori_estimation>`_ or MAP:"
msgstr ""
"最終的預測結果將取決於最大的後驗機率。這被稱為\\ `最大後驗機率 (maximum a "
"posteriori) <https://en.wikipedia.org/wiki/"
"Maximum_a_posteriori_estimation>`_ 或者 MAP:"