@@ -282,19 +282,14 @@ def lqe(A, G, C, QN, RN, NN=None):
282
282
283
283
A P + P A^T - (P C^T + G N) R^{-1} (C P + N^T G^T) + G Q G^T = 0
284
284
285
- E : 2D array (or matrix)
285
+ E : 1D array
286
286
Eigenvalues of estimator poles eig(A - L C)
287
287
288
288
Notes
289
289
-----
290
290
The return type for 2D arrays depends on the default class set for
291
291
state space operations. See :func:`~control.use_numpy_matrix`.
292
292
293
- The return type for `E` differs from the equivalent return values in the
294
- :func:`~control.lqr`, :func:`~control.care`, and other similar
295
- functions. The return type will be changed to a 1D array in a future
296
- release.
297
-
298
293
Examples
299
294
--------
300
295
>>> K, P, E = lqe(A, G, C, QN, RN)
@@ -317,7 +312,7 @@ def lqe(A, G, C, QN, RN, NN=None):
317
312
A , G , C = np .array (A , ndmin = 2 ), np .array (G , ndmin = 2 ), np .array (C , ndmin = 2 )
318
313
QN , RN = np .array (QN , ndmin = 2 ), np .array (RN , ndmin = 2 )
319
314
P , E , LT = care (A .T , C .T , np .dot (np .dot (G , QN ), G .T ), RN )
320
- return _ssmatrix (LT .T ), _ssmatrix (P ), _ssmatrix ( E )
315
+ return _ssmatrix (LT .T ), _ssmatrix (P ), E
321
316
322
317
323
318
# Contributed by Roberto Bucher <roberto.bucher@supsi.ch>
0 commit comments