Skip to content

StateSpace.zero() now supports MIMO systems #205

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 2, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 34 additions & 12 deletions control/statesp.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,7 @@
import math
import numpy as np
from numpy import all, angle, any, array, asarray, concatenate, cos, delete, \
dot, empty, exp, eye, matrix, ones, poly, poly1d, roots, shape, sin, \
zeros, squeeze
dot, empty, exp, eye, isinf, matrix, ones, pad, shape, sin, zeros, squeeze
from numpy.random import rand, randn
from numpy.linalg import solve, eigvals, matrix_rank
from numpy.linalg.linalg import LinAlgError
Expand Down Expand Up @@ -516,17 +515,40 @@ def pole(self):
def zero(self):
"""Compute the zeros of a state space system."""

if self.inputs > 1 or self.outputs > 1:
raise NotImplementedError("StateSpace.zeros is currently \
implemented only for SISO systems.")
if not self.states:
return np.array([])

den = poly1d(poly(self.A))
# Compute the numerator based on zeros
#! TODO: This is currently limited to SISO systems
num = poly1d(poly(self.A - dot(self.B, self.C)) + ((self.D[0, 0] - 1) *
den))

return roots(num)
# Use AB08ND from Slycot if it's available, otherwise use
# scipy.lingalg.eigvals().
try:
from slycot import ab08nd

out = ab08nd(self.A.shape[0], self.B.shape[1], self.C.shape[0],
self.A, self.B, self.C, self.D)
nu = out[0]
return sp.linalg.eigvals(out[8][0:nu,0:nu], out[9][0:nu,0:nu])
except ImportError: # Slycot unavailable. Fall back to scipy.
if self.C.shape[0] != self.D.shape[1]:
raise NotImplementedError("StateSpace.zero only supports "
"systems with the same number of "
"inputs as outputs.")

# This implements the QZ algorithm for finding transmission zeros
# from
# https://dspace.mit.edu/bitstream/handle/1721.1/841/P-0802-06587335.pdf.
# The QZ algorithm solves the generalized eigenvalue problem: given
# `L = [A, B; C, D]` and `M = [I_nxn 0]`, find all finite λ for
# which there exist nontrivial solutions of the equation `Lz - λMz`.
#
# The generalized eigenvalue problem is only solvable if its
# arguments are square matrices.
L = concatenate((concatenate((self.A, self.B), axis=1),
concatenate((self.C, self.D), axis=1)), axis=0)
M = pad(eye(self.A.shape[0]), ((0, self.C.shape[0]),
(0, self.B.shape[1])), "constant")
return np.array([x for x in sp.linalg.eigvals(L, M,
overwrite_a=True)
if not isinf(x)])

# Feedback around a state space system
def feedback(self, other=1, sign=-1):
Expand Down
33 changes: 27 additions & 6 deletions control/tests/statesp_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,14 +43,35 @@ def testPole(self):
np.testing.assert_array_almost_equal(p, true_p)

def testZero(self):
"""Evaluate the zeros of a SISO system."""
"""Evaluate the zeros of a MIMO system."""

z = np.sort(self.sys1.zero())
true_z = np.sort([44.41465, -0.490252, -5.924398])

np.testing.assert_array_almost_equal(z, true_z)

A = np.array([[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 3, 0, 0, 0],
[0, 0, 0,-4, 0, 0],
[0, 0, 0, 0,-1, 0],
[0, 0, 0, 0, 0, 3]])
B = np.array([[0,-1],
[-1,0],
[1,-1],
[0, 0],
[0, 1],
[-1,-1]])
C = np.array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 1],
[0, 0, 1, 0, 0, 1]])
D = np.zeros((3,2))
sys = StateSpace(A, B, C, D)

sys = StateSpace(self.sys1.A, [[3.], [-2.], [4.]], [[-1., 3., 2.]], [[-4.]])
z = sys.zero()
z = np.sort(sys.zero())
true_z = np.sort([2., -1.])

np.testing.assert_array_almost_equal(z, [4.26864638637134,
-3.75932319318567 + 1.10087776649554j,
-3.75932319318567 - 1.10087776649554j])
np.testing.assert_array_almost_equal(z, true_z)

def testAdd(self):
"""Add two MIMO systems."""
Expand Down