Skip to content

fix time series inconsistency between continuous and discrete time simulations #295

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 2, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 85 additions & 18 deletions control/tests/timeresp_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@

import unittest
import numpy as np
# import scipy as sp
from control.timeresp import *
from control.statesp import *
from control.xferfcn import TransferFunction, _convert_to_transfer_function
Expand Down Expand Up @@ -309,7 +308,7 @@ def check(u, x0, xtrue):
def test_discrete_initial(self):
h1 = TransferFunction([1.], [1., 0.], 1.)
t, yout = impulse_response(h1, np.arange(4))
np.testing.assert_array_equal(yout[0], [0., 1., 0., 0.])
np.testing.assert_array_equal(yout, [0., 1., 0., 0.])

@unittest.skipIf(not slycot_check(), "slycot not installed")
def test_step_robustness(self):
Expand Down Expand Up @@ -345,27 +344,32 @@ def test_time_vector(self):
# No timebase in system => output should match input
#
# Initial response
tout, yout = initial_response(self.siso_dtf1, Tin2, siso_x0)
tout, yout = initial_response(self.siso_dtf1, Tin2, siso_x0,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Impulse response
tout, yout = impulse_response(self.siso_dtf1, Tin2)
tout, yout = impulse_response(self.siso_dtf1, Tin2,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Step response
tout, yout = step_response(self.siso_dtf1, Tin2)
tout, yout = step_response(self.siso_dtf1, Tin2,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Forced response with specified time vector
tout, yout, xout = forced_response(self.siso_dtf1, Tin2, np.sin(Tin2))
tout, yout, xout = forced_response(self.siso_dtf1, Tin2, np.sin(Tin2),
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Forced response with no time vector, no sample time (should use 1)
tout, yout, xout = forced_response(self.siso_dtf1, None, np.sin(Tin1))
tout, yout, xout = forced_response(self.siso_dtf1, None, np.sin(Tin1),
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin1)

Expand All @@ -380,49 +384,58 @@ def test_time_vector(self):
# Matching timebase in system => output should match input
#
# Initial response
tout, yout = initial_response(self.siso_dtf2, Tin2, siso_x0)
tout, yout = initial_response(self.siso_dtf2, Tin2, siso_x0,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Impulse response
tout, yout = impulse_response(self.siso_dtf2, Tin2)
tout, yout = impulse_response(self.siso_dtf2, Tin2,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Step response
tout, yout = step_response(self.siso_dtf2, Tin2)
tout, yout = step_response(self.siso_dtf2, Tin2,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Forced response
tout, yout, xout = forced_response(self.siso_dtf2, Tin2, np.sin(Tin2))
tout, yout, xout = forced_response(self.siso_dtf2, Tin2, np.sin(Tin2),
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Forced response with no time vector, use sample time
tout, yout, xout = forced_response(self.siso_dtf2, None, np.sin(Tin2))
tout, yout, xout = forced_response(self.siso_dtf2, None, np.sin(Tin2),
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin2)

# Compatible timebase in system => output should match input
#
# Initial response
tout, yout = initial_response(self.siso_dtf2, Tin1, siso_x0)
tout, yout = initial_response(self.siso_dtf2, Tin1, siso_x0,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin1)

# Impulse response
tout, yout = impulse_response(self.siso_dtf2, Tin1)
tout, yout = impulse_response(self.siso_dtf2, Tin1,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin1)

# Step response
tout, yout = step_response(self.siso_dtf2, Tin1)
tout, yout = step_response(self.siso_dtf2, Tin1,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin1)

# Forced response
tout, yout, xout = forced_response(self.siso_dtf2, Tin1, np.sin(Tin1))
tout, yout, xout = forced_response(self.siso_dtf2, Tin1, np.sin(Tin1),
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
np.testing.assert_array_equal(tout, Tin1)

Expand All @@ -431,7 +444,8 @@ def test_time_vector(self):
#
# Initial response
tout, yout, xout = forced_response(self.siso_dtf2, Tin1,
np.sin(Tin1), interpolate=True)
np.sin(Tin1), interpolate=True,
squeeze=False)
self.assertEqual(np.shape(tout), np.shape(yout[0,:]))
self.assertTrue(np.allclose(tout[1:] - tout[:-1], self.siso_dtf2.dt))

Expand All @@ -442,9 +456,62 @@ def test_time_vector(self):
#
# Initial response
with self.assertRaises(Exception) as context:
tout, yout = initial_response(self.siso_dtf2, Tin3, siso_x0)
tout, yout = initial_response(self.siso_dtf2, Tin3, siso_x0,
squeeze=False)
self.assertTrue(isinstance(context.exception, ValueError))

def test_time_series_data_convention(self):
"""Make sure time series data matches documentation conventions"""
# SISO continuous time
t, y = step_response(self.siso_ss1)
self.assertTrue(isinstance(t, np.ndarray)
and not isinstance(t, np.matrix))
self.assertTrue(len(t.shape) == 1)
self.assertTrue(len(y.shape) == 1) # SISO returns "scalar" output
self.assertTrue(len(t) == len(y)) # Allows direct plotting of output

# SISO discrete time
t, y = step_response(self.siso_dss1)
self.assertTrue(isinstance(t, np.ndarray)
and not isinstance(t, np.matrix))
self.assertTrue(len(t.shape) == 1)
self.assertTrue(len(y.shape) == 1) # SISO returns "scalar" output
self.assertTrue(len(t) == len(y)) # Allows direct plotting of output

# MIMO continuous time
tin = np.linspace(0, 10, 100)
uin = [np.sin(tin), np.cos(tin)]
t, y, x = forced_response(self.mimo_ss1, tin, uin)
self.assertTrue(isinstance(t, np.ndarray)
and not isinstance(t, np.matrix))
self.assertTrue(len(t.shape) == 1)
self.assertTrue(len(y[0].shape) == 1)
self.assertTrue(len(y[1].shape) == 1)
self.assertTrue(len(t) == len(y[0]))
self.assertTrue(len(t) == len(y[1]))

# MIMO discrete time
tin = np.linspace(0, 10, 100)
uin = [np.sin(tin), np.cos(tin)]
t, y, x = forced_response(self.mimo_dss1, tin, uin)
self.assertTrue(isinstance(t, np.ndarray)
and not isinstance(t, np.matrix))
self.assertTrue(len(t.shape) == 1)
self.assertTrue(len(y[0].shape) == 1)
self.assertTrue(len(y[1].shape) == 1)
self.assertTrue(len(t) == len(y[0]))
self.assertTrue(len(t) == len(y[1]))

# Allow input time as 2D array (output should be 1D)
tin = np.array(np.linspace(0, 10, 100), ndmin=2)
t, y = step_response(self.siso_ss1, tin)
self.assertTrue(isinstance(t, np.ndarray)
and not isinstance(t, np.matrix))
self.assertTrue(len(t.shape) == 1)
self.assertTrue(len(y.shape) == 1) # SISO returns "scalar" output
self.assertTrue(len(t) == len(y)) # Allows direct plotting of output


def suite():
return unittest.TestLoader().loadTestsFromTestCase(TestTimeresp)

Expand Down
Loading