-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathTensorBody.h
753 lines (655 loc) · 28.5 KB
/
TensorBody.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
#pragma once
#ifdef TORCH_ASSERT_NO_OPERATORS
#error This change adds a dependency on native_functions.yaml, \
meaning the file will need to be re-compiled every time an operator \
is changed or added. Consider if your change would be better placed in \
another file, or if a more specific header might achieve the same goal. \
See NOTE: [Tensor vs. TensorBase]
#endif
#include <c10/core/Device.h>
#include <c10/core/Layout.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/QScheme.h>
#include <c10/core/Stream.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#include <c10/core/ScalarTypeToTypeMeta.h>
#include <c10/core/Storage.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/UndefinedTensorImpl.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/Exception.h>
#include <c10/util/ExclusivelyOwned.h>
#include <c10/util/Deprecated.h>
#include <c10/util/MaybeOwned.h>
#include <optional>
#include <c10/util/OptionalArrayRef.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/macros/Export.h>
#include <ATen/core/CheckMemoryFormat.h>
#include <ATen/core/DeprecatedTypePropertiesRegistry.h>
#include <ATen/core/DeprecatedTypeProperties.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/core/QuantizerBase.h>
#include <c10/core/SymInt.h>
#include <ATen/core/TensorAccessor.h>
#include <ATen/core/TensorBase.h>
#include <ATen/MethodOperators.h>
namespace c10{
template<class T> class List;
template<class T> class IListRef;
}
namespace at {
struct Generator;
struct Type;
class DeprecatedTypeProperties;
class Tensor;
} // namespace at
namespace at {
namespace indexing {
struct TensorIndex;
} // namespace indexing
} // namespace at
namespace torch { namespace autograd {
struct Node;
}} // namespace torch::autograd
namespace at {
class OptionalTensorRef;
class TensorRef;
class Tensor;
using TensorList = ArrayRef<Tensor>;
using ITensorList = c10::IListRef<Tensor>;
using Stream = c10::Stream;
// Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
// has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
//
// For example:
//
// void func(Tensor a) {
// Tensor b = a;
// ...
// }
//
// In this example, when we say Tensor b = a, we are creating a new object that points to the
// same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
// destructor decrements the reference count by calling release() on the TensorImpl it points to.
// The existing constructors, operator overloads, etc. take care to implement the correct semantics.
//
// Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
// special care must be taken to handle this.
class TORCH_API Tensor: public TensorBase {
protected:
// Create a Tensor with a +0 reference count. Special care must be
// taken to avoid decrementing this reference count at destruction
// time. Intended to support MaybeOwnedTraits<Tensor>.
explicit Tensor(unsafe_borrow_t, const TensorBase& rhs): TensorBase(unsafe_borrow_t{}, rhs) {}
friend MaybeOwnedTraits<Tensor>;
friend OptionalTensorRef;
friend TensorRef;
public:
Tensor() = default;
// This constructor should not be used by end users and is an implementation
// detail invoked by autogenerated code.
explicit Tensor(
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
: TensorBase(std::move(tensor_impl)) {}
Tensor(const Tensor &tensor) = default;
Tensor(Tensor &&tensor) = default;
// Implicitly move-constructible from TensorBase, but must be explicit to increase refcount
explicit Tensor(const TensorBase &base): TensorBase(base) {}
/*implicit*/ Tensor(TensorBase &&base): TensorBase(std::move(base)) {}
// Creates a new wrapper from TensorImpl. Intentionally a free method because
// it should be used with care. Checks necessary invariants
static Tensor wrap_tensor_impl(
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) {
return TensorBase::wrap_tensor_impl(std::move(tensor_impl));
}
Tensor contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const {
return TensorBase::contiguous(memory_format);
}
Tensor conj() const {
if (!this->is_complex()) {
return *this;
}
switch (this->layout()) {
case at::kSparse:
case at::kSparseCsr:
case at::kSparseCsc:
case at::kSparseBsr:
case at::kSparseBsc:
return this->conj_physical();
default:
return this->_conj();
}
}
// Aliased by Dimname overloads, so need explicit using
using TensorBase::size;
using TensorBase::sym_size;
using TensorBase::stride;
/// Should be used if *this can reasonably be expected to be contiguous and
/// performance is important.
/// Compared to contiguous, it saves a reference count
/// increment/decrement if *this is already contiguous, at the cost
/// in all cases of an extra pointer of stack usage, an extra branch
/// to access, and an extra branch at destruction time.
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const &;
// Use .contiguous() instead. Trying to borrow from a prvalue Tensor
// will only lead to trouble and dangling references.
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) && = delete;
// The following overloads are very intruiging. Consider the following
// program:
//
// x[1] = 3;
//
// We would expect that the first entry of x is written to 3. But how can we
// actually achieve this? x[1] evaluates to a tensor...
//
// The answer is, using a ref-qualifier. x[1] is an rvalue, which cannot be
// (profitably) assigned to in the traditional sense, so we overload
// assignment to mean, "Actually, copy 3 into the tensor data." This is done
// with an rvalue-reference ref-qualified overload (the methods with && at the
// end of their type.)
//
// There's one more fly in the ointment: We also want
//
// Tensor x = y;
//
// to work, and we want it NOT to copy. So we need a traditional operator=
// overload. But we MUST specify a mutable lvalue ref-qualifier, to
// disambiguate the traditional overload from the rvalue-reference
// ref-qualified overload. Otherwise, it will be ambiguous, because
// a non ref-qualified method is eligible for all situations.
// Unfortunately, we have to write these constructors out manually
// to work around an MSVC bug:
// error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
// multiple versions of a defaulted special member functions are not allowed
// Tensor& operator=(const Tensor&) & = default;
// Tensor& operator=(Tensor&&) & = default;
// Also MSVC will wrongly issue the following warning with the aforementioned fix
// warning C4522: 'at::Tensor': multiple assignment operators specified
// Let's just skip the warning.
//
// TODO: temporarily disabled
Tensor& operator=(const TensorBase& x) & noexcept {
impl_ = x.getIntrusivePtr();
return *this;
}
Tensor& operator=(TensorBase&& x) & noexcept {
impl_ = x.unsafeReleaseIntrusivePtr();
return *this;
}
Tensor& operator=(const Tensor &x) & noexcept {
return operator=(static_cast<const TensorBase&>(x));
}
Tensor& operator=(Tensor &&x) & noexcept {
return operator=(static_cast<TensorBase&&>(x));
}
Tensor& operator=(const Scalar &v) && {
return fill_(v);
}
Tensor& operator=(const Tensor &rhs) && {
return copy_(rhs);
}
Tensor& operator=(Tensor&& rhs) && {
return copy_(rhs);
}
C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
DeprecatedTypeProperties & type() const {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
dispatchKeyToBackend(legacyExtractDispatchKey(key_set())),
scalar_type());
}
Tensor toType(ScalarType t) const {
return to(options().dtype(t), /*non_blocking*/ false, /*copy*/ false);
}
// TODO: Deprecate me
Tensor toBackend(Backend b) const {
return to(options().device(backendToDeviceType(b)).layout(layout_from_backend(b)), /*non_blocking*/ false, /*copy*/ false);
}
C10_DEPRECATED_MESSAGE("Tensor.is_variable() is deprecated; everything is a variable now. (If you want to assert that variable has been appropriately handled already, use at::impl::variable_excluded_from_dispatch())")
bool is_variable() const noexcept {
return !at::impl::variable_excluded_from_dispatch();
}
template<typename T>
C10_DEPRECATED_MESSAGE("Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead.")
T * data() const {
return data_ptr<T>();
}
template <typename T>
T item() const;
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const & {
return generic_packed_accessor<T,N,PtrTraits,index_t>();
}
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() && = delete;
Tensor operator~() const {
return bitwise_not();
}
Tensor operator-() const {
return neg();
}
Tensor& operator+=(const Tensor & other) {
return add_(other);
}
Tensor& operator+=(const Scalar & other) {
return add_(other);
}
Tensor& operator-=(const Tensor & other) {
return sub_(other);
}
Tensor& operator-=(const Scalar & other) {
return sub_(other);
}
Tensor& operator*=(const Tensor & other) {
return mul_(other);
}
Tensor& operator*=(const Scalar & other) {
return mul_(other);
}
Tensor& operator/=(const Tensor & other) {
return div_(other);
}
Tensor& operator/=(const Scalar & other) {
return div_(other);
}
Tensor& operator&=(const Tensor & other) {
return bitwise_and_(other);
}
Tensor& operator|=(const Tensor & other) {
return bitwise_or_(other);
}
Tensor& operator^=(const Tensor & other) {
return bitwise_xor_(other);
}
Tensor operator[](const Scalar & index) const {
if (!index.isIntegral(false)) {
TORCH_CHECK_INDEX(false, "Can only index tensors with integral scalars");
}
return this->operator[](index.toLong());
}
Tensor operator[](const Tensor & index) const {
// These properties are checked in the Scalar constructor, but we already
// check them here to provide more useful diagnostics for the user.
if (!index.defined()) {
TORCH_CHECK_INDEX(false, "Can only index with tensors that are defined");
}
if (index.dim() != 0) {
TORCH_CHECK_INDEX(false,
"Can only index with tensors that are scalars (zero-dim)");
}
// The Scalar(Tensor) constructor is explicit, so we need to call it.
return this->operator[](index.item());
}
Tensor operator[](int64_t index) const {
return select(0, index);
}
Tensor index(ArrayRef<at::indexing::TensorIndex> indices) const;
Tensor index(std::initializer_list<at::indexing::TensorIndex> indices) const;
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, Tensor const & rhs);
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, const Scalar& v);
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, Tensor const & rhs);
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, const Scalar& v);
Tensor cpu() const {
return to(options().device(c10::DeviceType::CPU), /*non_blocking*/ false, /*copy*/ false);
}
// TODO: The Python version also accepts arguments
Tensor cuda() const {
return to(options().device(c10::DeviceType::CUDA), /*non_blocking*/ false, /*copy*/ false);
}
Tensor hip() const {
return to(options().device(c10::DeviceType::HIP), /*non_blocking*/ false, /*copy*/ false);
}
Tensor ve() const {
return to(options().device(c10::DeviceType::VE), /*non_blocking*/ false, /*copy*/ false);
}
Tensor vulkan() const {
return to(options().device(c10::DeviceType::Vulkan), /*non_blocking*/ false, /*copy*/ false);
}
Tensor metal() const {
return to(options().device(c10::DeviceType::Metal), /*non_blocking*/ false, /*copy*/ false);
}
Tensor meta() const {
return to(options().device(c10::DeviceType::Meta), /*non_blocking*/ false, /*copy*/ false);
}
// ~~~~~ Autograd API ~~~~~
/// \fn bool is_leaf() const;
///
/// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
///
/// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
/// created by the user. This means that they are not the result of an operation and so
/// `grad_fn()` is `nullptr`.
///
/// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
/// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
///
/// Example:
/// @code
/// auto a = torch::rand(10, torch::requires_grad());
/// std::cout << a.is_leaf() << std::endl; // prints `true`
///
/// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
/// std::cout << b.is_leaf() << std::endl; // prints `false`
/// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
///
/// auto c = torch::rand(10, torch::requires_grad()) + 2;
/// std::cout << c.is_leaf() << std::endl; // prints `false`
/// // c was created by the addition operation
///
/// auto d = torch::rand(10).cuda();
/// std::cout << d.is_leaf() << std::endl; // prints `true`
/// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
///
/// auto e = torch::rand(10).cuda().requires_grad_();
/// std::cout << e.is_leaf() << std::endl; // prints `true`
/// // e requires gradients and has no operations creating it
///
/// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
/// std::cout << f.is_leaf() << std::endl; // prints `true`
/// // f requires grad, has no operation creating it
/// @endcode
/// \fn void backward(const Tensor & gradient={}, std::optional<bool> retain_graph=std::nullopt, bool create_graph=false, std::optional<TensorList> inputs=std::nullopt) const;
///
/// Computes the gradient of current tensor with respect to graph leaves.
///
/// The graph is differentiated using the chain rule. If the tensor is
/// non-scalar (i.e. its data has more than one element) and requires
/// gradient, the function additionally requires specifying ``gradient``.
/// It should be a tensor of matching type and location, that contains
/// the gradient of the differentiated function w.r.t. this Tensor.
///
/// This function accumulates gradients in the leaves - you might need to
/// zero them before calling it.
///
/// \param gradient Gradient w.r.t. the
/// tensor. If it is a tensor, it will be automatically converted
/// to a Tensor that does not require grad unless ``create_graph`` is True.
/// None values can be specified for scalar Tensors or ones that
/// don't require grad. If a None value would be acceptable then
/// this argument is optional.
/// \param retain_graph If ``false``, the graph used to compute
/// the grads will be freed. Note that in nearly all cases setting
/// this option to True is not needed and often can be worked around
/// in a much more efficient way. Defaults to the value of
/// ``create_graph``.
/// \param create_graph If ``true``, graph of the derivative will
/// be constructed, allowing to compute higher order derivative
/// products. Defaults to ``false``.
/// \param inputs Inputs w.r.t. which the gradient will be accumulated into
/// ``at::Tensor::grad``. All other Tensors will be ignored. If not
/// provided, the gradient is accumulated into all the leaf Tensors
/// that were used to compute the current tensor.
/// When inputs are provided and a given input is not a leaf,
/// the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients).
/// It is an implementation detail on which the user should not rely.
/// See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
void backward(const Tensor & gradient={}, std::optional<bool> retain_graph=std::nullopt, bool create_graph=false, std::optional<TensorList> inputs=std::nullopt) const {
// NB: Adding this wrapper to _backward here because we'd like our
// 'backwards' api to accept the 'inputs' argument optionally. Since code gen
// currently does not support optional of TensorList our approach is to replace
// backward in native_functions.yaml with _backward and call it here instead.
if (inputs.has_value()) {
TORCH_CHECK(inputs.value().size() > 0, "'inputs' argument to backward cannot be empty")
this->_backward(inputs.value(), gradient, retain_graph, create_graph);
} else {
this->_backward({}, gradient, retain_graph, create_graph);
}
}
/// \fn Tensor detach() const;
///
/// Returns a new Tensor, detached from the current graph.
/// The result will never require gradient.
/// \fn Tensor & detach_() const;
///
/// Detaches the Tensor from the graph that created it, making it a leaf.
/// Views cannot be detached in-place.
/// \fn void retain_grad() const;
///
/// Enables this Tensor to have their :attr:`grad` populated during
/// :func:`backward`. This is a no-op for leaf tensors.
/// \fn bool retains_grad() const;
///
/// Is ``true`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
/// populated during :func:`backward`, ``false`` otherwise.
const Tensor& set_requires_grad(bool requires_grad) const {
TensorBase::set_requires_grad(requires_grad);
return *this;
}
/// Return a mutable reference to the gradient. This is conventionally
/// used as `t.grad() = x` to set a gradient to a completely new tensor.
/// Note that this function work with a non-const Tensor and is not
/// thread safe.
Tensor& mutable_grad() const {
return impl_->mutable_grad();
}
/// This function returns an undefined tensor by default and returns a defined tensor
/// the first time a call to `backward()` computes gradients for this Tensor.
/// The attribute will then contain the gradients computed and future calls
/// to `backward()` will accumulate (add) gradients into it.
const Tensor& grad() const {
const Tensor& maybe_grad = impl_->grad();
if (!is_leaf() && !retains_grad() && !maybe_grad.defined()) {
TORCH_WARN(
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad "
"attribute won't be populated during autograd.backward(). If you indeed want the .grad "
"field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. "
"If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor "
"instead. See github.com/pytorch/pytorch/pull/30531 for more informations.");
}
return maybe_grad;
}
// The Forward AD API functions below are low level and are not to be used by end
// users who should use the API provided in torch/csrc/autograd.h
/// This function returns the forward gradient for this Tensor at the given level.
const Tensor& _fw_grad(uint64_t level) const {
return impl_->_fw_grad(level, *this);
}
/// This function can be used to set the value of the forward grad.
/// Note that the given new_grad might not be used directly if it has different
/// metadata (size/stride/storage offset) compared to this Tensor. In that case,
/// new_grad content will be copied into a new Tensor
void _set_fw_grad(const TensorBase& new_grad, uint64_t level, bool is_inplace_op) const {
impl_->_set_fw_grad(new_grad, *this, level, is_inplace_op);
}
// STOP. Thinking of adding a method here, which only makes use
// of other ATen methods? Define it in native_functions.yaml.
//example
//Tensor * add(Tensor & b);
${tensor_method_declarations}
// Special C++ only overloads for std()-like functions (See gh-40287)
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
// So, for example std(0) would select the std(unbiased=False) overload
Tensor var(int dim) const {
return var(IntArrayRef{dim});
}
Tensor std(int dim) const {
return std(IntArrayRef{dim});
}
// We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
// at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
// Before that change, we make this method to maintain BC for C++ usage like
// `x.to(y.dtype)`.
// TODO: remove following two after at::kDouble and its friends are TypeMeta's.
inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
template <typename F, typename... Args>
decltype(auto) m(F func, Args&&... params) const {
return func(*this, std::forward<Args>(params)...);
}
/// NOTE: This is similar to the legacy `.data()` function on `Variable`, and is intended
/// to be used from functions that need to access the `Variable`'s equivalent `Tensor`
/// (i.e. `Tensor` that shares the same storage and tensor metadata with the `Variable`).
///
/// One notable difference with the legacy `.data()` function is that changes to the
/// returned `Tensor`'s tensor metadata (e.g. sizes / strides / storage / storage_offset)
/// will not update the original `Variable`, due to the fact that this function
/// shallow-copies the `Variable`'s underlying TensorImpl.
at::Tensor tensor_data() const {
return TensorBase::tensor_data();
}
/// NOTE: `var.variable_data()` in C++ has the same semantics as `tensor.data`
/// in Python, which create a new `Variable` that shares the same storage and
/// tensor metadata with the original `Variable`, but with a completely new
/// autograd history.
///
/// NOTE: If we change the tensor metadata (e.g. sizes / strides /
/// storage / storage_offset) of a variable created from `var.variable_data()`, those
/// changes will not update the original variable `var`. In `.variable_data()`, we set
/// `allow_tensor_metadata_change_` to false to make such changes explicitly illegal,
/// in order to prevent users from changing metadata of `var.variable_data()`
/// and expecting the original variable `var` to also be updated.
at::Tensor variable_data() const {
return TensorBase::variable_data();
}
// Hooks
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename T>
using hook_return_void_t = std::enable_if_t<std::is_void<typename std::invoke_result_t<T&, Tensor>>::value, unsigned>;
template <typename T>
using hook_return_var_t = std::enable_if_t<std::is_same_v<typename std::invoke_result_t<T&, Tensor>, Tensor>, unsigned>;
/// Registers a backward hook.
///
/// The hook will be called every time a gradient with respect to the Tensor is computed.
/// The hook should have one of the following signature:
/// ```
/// hook(Tensor grad) -> Tensor
/// ```
/// ```
/// hook(Tensor grad) -> void
/// ```
/// The hook should not modify its argument, but it can optionally return a new gradient
/// which will be used in place of `grad`.
///
/// This function returns the index of the hook in the list which can be used to remove hook.
///
/// Example:
/// @code
/// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
/// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
/// v.backward(torch::tensor({1., 2., 3.}));
/// // This prints:
/// // ```
/// // 2
/// // 4
/// // 6
/// // [ CPUFloatType{3} ]
/// // ```
/// std::cout << v.grad() << std::endl;
/// v.remove_hook(h); // removes the hook
/// @endcode
template <typename T>
hook_return_void_t<T> register_hook(T&& hook) const;
template <typename T>
hook_return_var_t<T> register_hook(T&& hook) const;
// Variable methods
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tensor data() const {
return TensorBase::data();
}
void _backward(TensorList inputs, const std::optional<Tensor>& gradient, std::optional<bool> keep_graph, bool create_graph) const;
const Tensor& requires_grad_(bool _requires_grad=true) const {
TensorBase::requires_grad_(_requires_grad);
return *this;
}
};
namespace detail {
// Helper creator for Tensor class which doesn't requires the users to pass
// in an intrusive_ptr instead it just converts the argument passed to
// requested intrusive_ptr type.
template <typename T, typename... Args>
Tensor make_tensor(Args&&... args) {
return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
}
} // namespace detail
} // namespace at
namespace at {
${tensor_method_definitions}
} // namespace at
namespace c10 {
template <>
struct MaybeOwnedTraits<at::Tensor> {
using owned_type = at::Tensor;
using borrow_type = at::Tensor;
static borrow_type createBorrow(const owned_type& from) {
// NOTE: this can be implemented without the special
// unsafe_borrow_t Tensor constructor as
//
// return borrow_type(c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(from.unsafeGetTensorImpl()));
//
// but that hurts inlining due to the nullptr check in the
// Tensor(c10::intrusive_ptr<...>) constructor. We already know
// that from.impl_ isn't null because from is a valid Tensor, so
// we needn't do the check again. (using __builtin_assume can
// avoid this, but wouldn't be portable to MSVC.)
return borrow_type(borrow_type::unsafe_borrow_t{}, from);
}
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
lhs.unsafeReleaseTensorImpl();
// See above note: this can be implemented with public API
// similarly to createBorrow(), but that would hurt inlining.
lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
}
static void destroyBorrow(borrow_type& toDestroy) {
toDestroy.unsafeReleaseTensorImpl(); // "leak" it, but it was already +0.
}
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
return borrow;
}
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
return &borrow;
}
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
return true;
}
};
template <>
struct ExclusivelyOwnedTraits<at::Tensor> {
using repr_type = at::Tensor;
using pointer_type = at::Tensor*;
using const_pointer_type = const at::Tensor*;
static repr_type nullRepr() {
return at::Tensor();
}
template <class... Args>
static repr_type createInPlace(Args&&... args) {
return at::Tensor(std::forward<Args>(args)...);
}
static repr_type moveToRepr(at::Tensor&& x) {
return std::move(x);
}
static void destroyOwned(at::Tensor& x) {
return ExclusivelyOwnedTraits<at::TensorBase>::destroyOwned(x);
}
static at::Tensor take(at::Tensor& x) {
return std::move(x);
}
static pointer_type getImpl(repr_type& x) {
return &x;
}
static const_pointer_type getImpl(const repr_type& x) {
return &x;
}
};
} // namespace c10
namespace at {
inline c10::MaybeOwned<Tensor> borrow_from_optional_tensor(
const std::optional<Tensor>& opt) {
return opt.has_value()
? c10::MaybeOwned<Tensor>::borrowed(*opt)
: c10::MaybeOwned<Tensor>::owned(std::in_place);
}
inline c10::MaybeOwned<Tensor> Tensor::expect_contiguous(MemoryFormat memory_format) const & {
if (is_contiguous(memory_format)) {
return c10::MaybeOwned<Tensor>::borrowed(*this);
} else {
return c10::MaybeOwned<Tensor>::owned(__dispatch_contiguous(memory_format));
}
}
} // namespace at