-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolynomial_regression.py
63 lines (50 loc) · 1.48 KB
/
polynomial_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Improting the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
# Splitting the dataset into training set and test set
print(X)
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
"""
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test - sc_X.transform(X_test)
"""
# Linear Regression
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
#Polynomial Regression
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree = 4)
X_poly = poly_reg.fit_transform(X)
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, y)
print(X_poly)
# Visualizing linear regression result
"""
plt.scatter(X, y, color = 'red')
plt.plot(X, lin_reg.predict(X), color = 'blue')
plt.title('T or B')
plt.xlabel('Position')
plt.ylabel('salary')
plt.show()
"""
# Visualizing polynomial regression result
"""plt.scatter(X, y, color = 'green')
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'yellow')
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position')
plt.ylabel('salary')
plt.show()
"""
#
print(lin_reg.predict(6.5))
print("Polynomial:")
print(lin_reg_2.predict(poly_reg.fit_transform(6.5)))