diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml
new file mode 100644
index 0000000..5ac3bc4
--- /dev/null
+++ b/.github/workflows/testing.yml
@@ -0,0 +1,76 @@
+name: Build & run notebooks
+
+on:
+ push:
+ branches: [ master ]
+ pull_request:
+ branches: [ master ]
+ workflow_dispatch:
+ inputs:
+ nipype_branch:
+ description: 'Build specific Nipype branch'
+ required: true
+ default: 'master'
+
+
+jobs:
+ build:
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v2
+ - name: generate the Dockerfile from generate.sh
+ run: |
+ BRANCH=${{ github.event.inputs.nipype_branch }}
+ BRANCH=${BRANCH:-"master"}
+ bash generate.sh $BRANCH
+ # In this step, this action saves a list of existing images,
+ # the cache is created without them in the post run.
+ # It also restores the cache if it exists.
+ - uses: satackey/action-docker-layer-caching@v0.0.11
+ with:
+ key: tutorial-docker-cache-{hash}
+ restore-keys: |
+ tutorial-docker-cache-
+ layer-tutorial-docker-cache-
+ - name: build the image
+ run: docker build . --file Dockerfile -t nipype_tutorial:latest
+
+ test_1:
+ needs: build
+ runs-on: ubuntu-latest
+ steps:
+ - uses: satackey/action-docker-layer-caching@v0.0.11
+ with:
+ key: tutorial-docker-cache-{hash}
+ restore-keys: |
+ tutorial-docker-cache-
+ layer-tutorial-docker-cache-
+ - name: run test 1
+ run: docker run --rm nipype_tutorial:latest python /home/neuro/nipype_tutorial/test_notebooks.py 1
+
+ test_2:
+ needs: build
+ runs-on: ubuntu-latest
+ steps:
+ - uses: satackey/action-docker-layer-caching@v0.0.11
+ with:
+ key: tutorial-docker-cache-{hash}
+ restore-keys: |
+ tutorial-docker-cache-
+ layer-tutorial-docker-cache-
+ - name: run test 2
+ run: docker run --rm nipype_tutorial:latest python /home/neuro/nipype_tutorial/test_notebooks.py 2
+
+ test_3:
+ needs: build
+ runs-on: ubuntu-latest
+ steps:
+ - uses: satackey/action-docker-layer-caching@v0.0.11
+ with:
+ key: tutorial-docker-cache-{hash}
+ restore-keys: |
+ tutorial-docker-cache-
+ layer-tutorial-docker-cache-
+ - name: run test 3
+ run: docker run --rm nipype_tutorial:latest python /home/neuro/nipype_tutorial/test_notebooks.py 3
diff --git a/.gitmodules b/.gitmodules
deleted file mode 100644
index 5751490..0000000
--- a/.gitmodules
+++ /dev/null
@@ -1,3 +0,0 @@
-[submodule "notebooks/reveal.js"]
- path = notebooks/reveal.js
- url = https://github.com/hakimel/reveal.js
diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md
new file mode 100644
index 0000000..91493dc
--- /dev/null
+++ b/CODE_OF_CONDUCT.md
@@ -0,0 +1,46 @@
+# Contributor Covenant Code of Conduct
+
+## Our Pledge
+
+In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
+
+## Our Standards
+
+Examples of behavior that contributes to creating a positive environment include:
+
+* Using welcoming and inclusive language
+* Being respectful of differing viewpoints and experiences
+* Gracefully accepting constructive criticism
+* Focusing on what is best for the community
+* Showing empathy towards other community members
+
+Examples of unacceptable behavior by participants include:
+
+* The use of sexualized language or imagery and unwelcome sexual attention or advances
+* Trolling, insulting/derogatory comments, and personal or political attacks
+* Public or private harassment
+* Publishing others' private information, such as a physical or electronic address, without explicit permission
+* Other conduct which could reasonably be considered inappropriate in a professional setting
+
+## Our Responsibilities
+
+Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
+
+Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
+
+## Scope
+
+This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
+
+## Enforcement
+
+Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at michaelnotter@hotmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
+
+Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.
+
+## Attribution
+
+This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version]
+
+[homepage]: http://contributor-covenant.org
+[version]: http://contributor-covenant.org/version/1/4/
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
new file mode 100644
index 0000000..9b2e17b
--- /dev/null
+++ b/CONTRIBUTING.md
@@ -0,0 +1,89 @@
+# Contributing to `nipype_tutorial`
+
+Welcome to the `nipype_tutorial` repository! We're excited you're here and want to contribute.
+
+These guidelines are designed to make it as easy as possible to get involved.
+If you have any questions that aren't discussed below, please let us know by opening an [issue][link_issues]!
+
+Before you start you'll need to set up a free [GitHub][link_github] account and sign in.
+Here are some [instructions][link_signupinstructions] on how to do just that!
+
+### Labels
+
+The current list of labels are [here][link_labels] and include:
+
+* [][link_helpwanted]
+*These issues contain a task that a member of the team has determined we need additional help with.*
+
+ If you feel that you can contribute to one of these issues, we especially encourage you to do so!
+
+* [][link_bugs]
+*These issues point to problems in the project.*
+
+ If you find new a bug, please give as much detail as possible in your issue, including steps to recreate the error.
+ If you experience the same bug as one already listed, please add any additional information that you have as a comment.
+
+* [][link_feature]
+*These issues are asking for enhancements to be added to the project.*
+
+ Please try to make sure that your requested feature is distinct from any others that have already been requested or implemented.
+ If you find one that's similar but there are subtle differences please reference the other request in your issue.
+
+## Making a change
+
+We appreciate all contributions to `nipype_tutorial`, but those accepted fastest will follow a workflow similar to the following:
+
+**1. Comment on an existing issue or open a new issue referencing your addition.**
+
+This allows other members of the `nipype_tutorial` development team to confirm that you aren't overlapping with work that's currently underway and that everyone is on the same page with the goal of the work you're going to carry out.
+
+[This blog][link_pushpullblog] is a nice explanation of why putting this work in up front is so useful to everyone involved.
+
+**2. [Fork][link_fork] the [`nipype_tutorial` repository][link_nipype_tutorial] to your profile.**
+
+This is now your own unique copy of `nipype_tutorial`.
+Changes here won't effect anyone else's work, so it's a safe space to explore edits to the code!
+
+Make sure to [keep your fork up to date][link_updateupstreamwiki] with the original repository.
+
+**3. Make the changes you've discussed.**
+
+Try to keep the changes focused.
+If you feel tempted to "branch out" then please make a [new branch][link_branches].
+
+**4. Submit a [pull request][link_pullrequest].**
+
+A member of the development team will review your changes to confirm that they can be merged into the main codebase.
+
+## Recognizing contributions
+
+We welcome and recognize all contributions from documentation to testing to code development.
+You can see a list of our current contributors in the [contributors tab][link_contributors].
+
+## Thank you!
+
+You're awesome. :wave::smiley:
+
+
+
+*— Based on contributing guidelines from the [STEMMRoleModels][link_stemmrolemodels] project.*
+
+[link_github]: https://github.com/
+[link_nipype_tutorial]: https://github.com/rmarkello/nipype_tutorial
+[link_signupinstructions]: https://help.github.com/articles/signing-up-for-a-new-github-account
+[link_react]: https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments
+[link_issues]: https://github.com/rmarkello/nipype_tutorial/issues
+[link_labels]: https://github.com/rmarkello/nipype_tutorial/labels
+[link_discussingissues]: https://help.github.com/articles/discussing-projects-in-issues-and-pull-requests
+
+[link_bugs]: https://github.com/rmarkello/nipype_tutorial/labels/bug
+[link_helpwanted]: https://github.com/rmarkello/nipype_tutorial/labels/help%20wanted
+[link_feature]: https://github.com/rmarkello/nipype_tutorial/labels/enhancement
+
+[link_pullrequest]: https://help.github.com/articles/creating-a-pull-request/
+[link_fork]: https://help.github.com/articles/fork-a-repo/
+[link_pushpullblog]: https://www.igvita.com/2011/12/19/dont-push-your-pull-requests/
+[link_branches]: https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/
+[link_updateupstreamwiki]: https://help.github.com/articles/syncing-a-fork/
+[link_contributors]: https://github.com/rmarkello/nipype_tutorial/graphs/contributors
+[link_stemmrolemodels]: https://github.com/KirstieJane/STEMMRoleModels
diff --git a/Dockerfile b/Dockerfile
deleted file mode 100644
index b7042e6..0000000
--- a/Dockerfile
+++ /dev/null
@@ -1,39 +0,0 @@
-# This Dockerfile is based on the dockerfile 'fmriprep' from the Poldrack
-# Lab (https://github.com/poldracklab/fmriprep). The jupyter notebook foundation
-# is based on jupyter/docker-stacks's base-notebook.
-#
-# This means that the same copyrights apply to this Dockerfile, as they do for
-# the above mentioned dockerfiles. For more information see:
-# https://github.com/miykael/nipype_env
-
-FROM miykael/nipype_level1
-MAINTAINER Michael Notter
-
-#-------------------------
-# Your Docker Instructions
-#-------------------------
-
-# <-- Change the level above (under FROM) -->
-
-# <-- Put your docker instructions here -->
-
-
-#------------------------------------------
-# Copy Tutorial Notebooks into Docker Image
-#------------------------------------------
-USER root
-COPY index.ipynb /home/$NB_USER/work/index.ipynb
-COPY notebooks /home/$NB_USER/work/notebooks
-COPY static /home/$NB_USER/work/static
-
-
-#------------------------------------------------
-# Create /output folder and give power to NB_USER
-#------------------------------------------------
-USER root
-RUN mkdir -p /output
-RUN chown -R $NB_USER:users /home/$NB_USER && \
- chown -R $NB_USER:users /output
-
-# Set default user to NB_USER
-USER $NB_USER
diff --git a/LICENSE b/LICENSE
index ec1055a..13bd7ed 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,4 +1,6 @@
-Copyright (c) 2017,
+BSD 3-Clause License
+
+Copyright (c) 2017, Michael Notter and the nipype_tutorial developers
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -11,7 +13,7 @@ modification, are permitted provided that the following conditions are met:
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
-* Neither the name of crn_base nor the names of its
+* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
diff --git a/README.md b/README.md
index 1e38132..4a35427 100644
--- a/README.md
+++ b/README.md
@@ -1,17 +1,24 @@
# Nipype Tutorial Notebooks
+[](https://github.com/miykael/nipype_tutorial/actions?query=workflow%3ACI)
+[](https://github.com/miykael/nipype_tutorial/issues/)
+[](https://github.com/miykael/nipype_tutorial/pulls/)
+[](https://GitHub.com/miykael/nipype_tutorial/graphs/contributors/)
+[](https://github.com/miykael/nipype_tutorial/commits/master)
+[](https://github.com/miykael/nipype_tutorial/archive/master.zip)
+[](https://hub.docker.com/r/miykael/nipype_tutorial/)
+[](http://hits.dwyl.io/miykael/nipype_tutorial)
-This is the Nipype Tutorial in Notebooks. There are multiple ways of how you can profit from this tutorial:
+This is the Nipype Tutorial in Jupyter Notebook format. You can access the tutorial in two ways:
-1. [Nipype Tutorial Homepage](https://miykael.github.io/nipype_tutorial/): You can find all notebooks used in this tutorial on this homepage.
-2. [Nipype Course](https://github.com/miykael/nipype_course): Run the notebooks of this tutorial in an interactive docker image and on real example data. The nipype course is the best interactive way to learn Nipype.
-3. [Your own Nipype environment](https://github.com/miykael/nipype_env): The Dockerfiles for the nipype course are based on the [level3](https://github.com/miykael/nipype_env/blob/master/level3/Dockerfile) version of the [Nipype Environment](https://github.com/miykael/nipype_env). If you want to use docker for your own analysis, that is not based on some example dataset, you can adapt the [Dockerfile from this tutorial](https://github.com/miykael/nipype_tutorial/blob/master/Dockerfile) to the level that you need, and than run it on your own system.
+1. [Nipype Tutorial Homepage](https://miykael.github.io/nipype_tutorial/): This website contains a static, read-only version of all the notebooks.
+2. [Nipype Tutorial Docker Image](https://miykael.github.io/nipype_tutorial/notebooks/introduction_docker.html): This guide explains how to use Docker to run the notebooks interactively on your own computer. The nipype tutorial docker image is the best interactive way to learn Nipype.
# Feedback, Help & Support
-If you want to help with this tutorial or have any questions, fell free to fork the repo of the [Notebooks](https://github.com/miykael/nipype_tutorial) or interact with other contributors on the slack channel [brainhack.slack.com/messages/nipype/](https://brainhack.slack.com/messages/nipype/). If you have any questions or found a problem, open a new [issue on github](https://github.com/miykael/nipype_tutorial/issues).
+If you want to help with this tutorial or have any questions, feel free to fork the repo of the [Notebooks](https://github.com/miykael/nipype_tutorial) or interact with other contributors on the slack channel [brainhack.slack.com/messages/nipype/](https://brainhack.slack.com/messages/nipype/). If you have any questions or found a problem, open a new [issue on github](https://github.com/miykael/nipype_tutorial/issues).
# Thanks and Acknowledgment
-A huge thanks to [Michael Waskom](https://github.com/mwaskom), [Oscar Esteban](https://github.com/oesteban), [Chris Gorgolewski](https://github.com/chrisfilo) and [Satrajit Ghosh](https://github.com/satra) for their input to this tutorial!
+A huge thanks to [Michael Waskom](https://github.com/mwaskom), [Oscar Esteban](https://github.com/oesteban), [Chris Gorgolewski](https://github.com/chrisfilo) and [Satrajit Ghosh](https://github.com/satra) for their input to this tutorial! And a huge thanks to [Dorota Jarecka](https://github.com/djarecka/) who updated this tutorial to Python 3 and is helping me with keeping this tutorial updated and running!
diff --git a/casts/cast_ipython.rc b/casts/cast_ipython.rc
new file mode 100644
index 0000000..7a68fee
--- /dev/null
+++ b/casts/cast_ipython.rc
@@ -0,0 +1,16 @@
+# This file contains ipython configuration variables to be used for generating
+# asciinema demos to guarantee consistent appearance.
+
+# make a fake temporary home dir and go into it
+SCREENCAST_HOME=~/demo
+if [ ! -e "$SCREENCAST_HOME" ]; then
+ mkdir -p ${SCREENCAST_HOME} || {
+ echo "FAILED to create $SCREENCAST_HOME" >&2
+ exit 1; # we need demo directory!
+ }
+fi
+cd $SCREENCAST_HOME
+ipython
+
+# cleanup at the end
+trap "cd ; rm -rf ~/demo > /dev/null 2>&1" EXIT
diff --git a/casts/cast_live_python b/casts/cast_live_python
new file mode 100644
index 0000000..6637128
--- /dev/null
+++ b/casts/cast_live_python
@@ -0,0 +1,112 @@
+#!/bin/bash
+#
+set -u -e
+
+test ! -e $1 && echo "input file does not exist" && exit 1
+title="$(echo $(basename $1) | sed -e 's/.sh$//')"
+bashrc_file="$(dirname $0)/cast_ipython.rc"
+
+# shortcut for making xdotool use the right window
+function xdt() {
+ winid=$1
+ shift
+ xdotool windowactivate --sync $winid
+ if [ "$#" -gt 0 ]; then
+ xdotool "$@"
+ fi
+}
+
+# make sure the target xterm is up and running
+width=106
+height=29
+fs=15
+text_width=$(($width - 8))
+
+geometry=${width}x${height}
+this_window=$(xdotool getwindowfocus)
+
+# For consistent appearance
+xterm +sb -fa Hermit -fs $fs -bg white -fg black -geometry $geometry -title Screencast-xterm -e "bash --rcfile cast_ipython.rc" &
+xterm_pid=$!
+sleep 2
+
+xterm_window=$(xdotool search --pid $xterm_pid)
+
+# By default should stay in the xterm window, so when we need to deal with
+# current one (waiting etc), then switch
+function wait () {
+ xdt $this_window
+ read -p "$@" in
+ echo "$in"
+ xdt $xterm_window
+}
+function instruct () {
+ xdt $this_window
+ wait "$@"
+}
+function type () {
+ xdt $xterm_window type --clearmodifiers --delay 40 "$1"
+}
+function key () {
+ xdt $xterm_window key --clearmodifiers $*
+}
+function sleep () {
+ xdotool sleep $1
+}
+function execute () {
+ xdt $xterm_window sleep 0.5 key Return
+ sleep 0.2
+}
+function say()
+{
+ ac=$(instruct "SAY: $1")
+ if [ "$ac" != "s" ] ; then
+ echo "skipping"
+ return
+ fi
+ type "$(printf "#\n# $1" | fmt -w ${text_width} --prefix '# ')"
+ key Return
+}
+function show () {
+ xdt $xterm_window type --clearmodifiers --delay 10 "$(printf "\n$1" | sed -e 's/^/# /g')"
+ sleep 0.1
+ key Return
+}
+function run () {
+ help="Press Enter to type, s to skip this action"
+ ac=$(instruct "EXEC: $1. $help")
+ if [ "$ac" = "s" ]; then
+ echo "skipping"
+ return
+ fi
+ type "$1"
+ ac=$(instruct "EXEC: $1. $help")
+ if [ "$ac" = "s" ]; then
+ echo "skipping"
+ return
+ fi
+ execute
+}
+function run_expfail () {
+ # TODO we could announce or visualize the expected failure
+ run "$1"
+}
+
+xdt $xterm_window sleep 0.1
+
+echo "xterm PID $xterm_pid (window $xterm_window) this window $this_window"
+
+# now get the process tree attached to the terminal so we can
+# figure out when it is idle, and when it is not
+# XXX must happen after asciinema is running
+xterm_pstree="$(pstree -p -A $xterm_pid)"
+
+. $1
+
+sleep 1
+
+show "$(cowsay "Demo was using $(datalad --version 2>&1 | head -n1). Discover more at http://datalad.org")"
+
+# key Control_L+d
+
+echo "INSTRUCTION: Press Ctrl-D or run exit to close the terminal"
diff --git a/casts/nipype_tutorial_showcase.sh b/casts/nipype_tutorial_showcase.sh
new file mode 100644
index 0000000..0c52414
--- /dev/null
+++ b/casts/nipype_tutorial_showcase.sh
@@ -0,0 +1,101 @@
+say "Nipype Showcase"
+show "Import nipype building blocks"
+run "from nipype import Node, Workflow"
+
+say "Import relevant interfaces"
+show "Import relevant interfaces"
+run "from nipype.interfaces.fsl import SliceTimer, MCFLIRT, Smooth"
+
+say "Create SliceTime correction node"
+show "Create SliceTime correction node"
+run "slicetimer = Node(SliceTimer(index_dir=False,
+ interleaved=True,
+ time_repetition=2.5),
+ name='slicetimer')
+"
+
+say "Create Motion correction node"
+show "Create Motion correction node"
+run "mcflirt = Node(MCFLIRT(mean_vol=True,
+ save_plots=True),
+ name='mcflirt')
+"
+
+say "Create Smoothing node"
+show "Create Smoothing node"
+run "smooth = Node(Smooth(fwhm=4), name='smooth')"
+
+say "Create Workflow"
+show "Create Workflow"
+run "preproc01 = Workflow(name='preproc_flow', base_dir='.')"
+
+say "Connect nodes within the workflow"
+show "Connect nodes within the workflow"
+run "preproc01.connect([(slicetimer, mcflirt, [('slice_time_corrected_file', 'in_file')]),
+ (mcflirt, smooth, [('out_file', 'in_file')])
+ ])
+"
+
+say "Create a visualization of the workflow"
+show "Create a visualization of the workflow"
+run "preproc01.write_graph(graph2use='orig')"
+
+say "Visualize the figure"
+show "Visualize the figure"
+run "!eog preproc_flow/graph_detailed.png
+"
+
+say "Feed some input to the workflow"
+show "Feed some input to the workflow"
+run "slicetimer.inputs.in_file = 'path/to/your/func.nii.gz'"
+
+say "Run the Workflow and stop the time"
+show "Run the Workflow and stop the time"
+run "%time preproc01.run('MultiProc', plugin_args={'n_procs': 5})"
+
+say "Investigate the output"
+show "Investigate the output"
+run "!tree preproc_flow -I '*js|*json|*pklz|_report|*.dot|*html'"
+
+say "Change the size of the smoothing kernel"
+show "Change the size of the smoothing kernel"
+run "smooth.inputs.fwhm = 2"
+
+say "Rerun the workflow"
+show "Rerun the workflow"
+run "%time preproc01.run('MultiProc', plugin_args={'n_procs': 5})"
+
+say "Create 4 additional copies of the workflow"
+show "Create 4 additional copies of the workflow"
+run "preproc02 = preproc01.clone('preproc02')
+preproc03 = preproc01.clone('preproc03')
+preproc04 = preproc01.clone('preproc04')
+preproc05 = preproc01.clone('preproc05')
+"
+
+say "Create a new workflow - metaflow"
+show "Create a new workflow - metaflow"
+run "metaflow = Workflow(name='metaflow', base_dir='.')"
+
+say "Add the 5 workflows to this metaflow"
+show "Add the 5 workflows to this metaflow"
+run "metaflow.add_nodes([preproc01, preproc02, preproc03,
+ preproc04, preproc05])
+"
+
+say "Visualize the workflow"
+show "Visualize the workflow"
+run "metaflow.write_graph(graph2use='flat')
+!eog metaflow/graph_detailed.png
+"
+
+say "Run this metaflow in parallel"
+show "Run this metaflow in parallel"
+run "%time metaflow.run('MultiProc', plugin_args={'n_procs': 5})"
+
+say "Investigate the output"
+show "Investigate the output"
+run "!tree metaflow -I '*js|*json|*pklz|_report|*.dot|*html'"
+
+say "The End."
+show "The End."
diff --git a/docs/index.html b/docs/index.html
new file mode 100644
index 0000000..0ac42d3
--- /dev/null
+++ b/docs/index.html
@@ -0,0 +1,12133 @@
+
+
+
+index
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%html
+
+ <!–– TUTORIAL USERS: PLEASE EXECUTE THIS CELL ––>
+
+<style>.container { width:75% !important; }</style>
+<link rel='stylesheet' type='text/css' href='static/css/mobile.css'>
+<link rel='stylesheet' type='text/css' href='static/css/homepage.css'>
+
+<body>
+ <article id="homepage">
+ <a id="library-section"></a>
+ <div class="library-section">
+ <div class="section-separator library-section-separator">
+ <center><img src="static/images/logoNipype_tutorial.png" width=700></center>
+ <p>Welcome to the Nipype Tutorial! It covers the basic concepts and most common use cases of Nipype and will teach
+ you everything so that you can start creating your own workflows in no time. We recommend that you start with
+ the introduction section to familiarize yourself with the tools used in this tutorial and then move on to the
+ basic concepts section to learn everything you need to know for your everyday life with Nipype. The workflow
+ examples section shows you a real example of how you can use Nipype to analyze an actual dataset. For a very
+ quick non-imaging introduction, you can check the Nipype Quickstart notebooks in the introduction section.
+ </p><p>
+ All of the notebooks used in this tutorial can be found on <a href="https://github.com/miykael/nipype_tutorial">github.com/miykael/nipype_tutorial</a>.
+ But if you want to have the real experience and want to go through the computations by yourself, we highly
+ recommend you to use a Docker container. More about the Docker image that can be used to run the tutorial can be found
+ <a href="https://miykael.github.io/nipype_tutorial/notebooks/introduction_docker.html">here</a>.
+ This docker container gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of
+ Nipype yourself.
+ </p><p>
+ To run the tutorial locally on your system, we will use a <a href="http://www.docker.com/">Docker</a> container. For this you
+ need to install Docker and download a docker image that provides you a neuroimaging environment based on a Debian system,
+ with working Python 3 software (including Nipype, dipy, matplotlib, nibabel, nipy, numpy, pandas, scipy, seaborn and more),
+ FSL, ANTs and SPM12 (no license needed). We used <a href="https://github.com/kaczmarj/neurodocker">Neurodocker</a> to create this docker image.
+ </p><p>
+ If you do not want to run the tutorial locally, you can also use
+ <a href="https://mybinder.org/v2/gh/miykael/nipype_tutorial/master">Binder service</a>.
+ Binder automatically launches the Docker container for you and you have access to all of the notebooks.
+ Note, that Binder provides between 1G and 4G RAM memory, some notebooks from Workflow Examples might not work.
+ All notebooks from Introduction and Basic Concepts parts should work.
+ </p><p>
+ For everything that isn't covered in this tutorial, check out the <a href="http://nipype.readthedocs.io/en/latest/">main homepage</a>.
+ And if you haven't had enough and want to learn even more about Nipype and Neuroimaging, make sure to look at
+ the <a href="https://miykael.github.io/nipype-beginner-s-guide/">detailed beginner's guide</a>.
+ </p>
+ </div>
+
+ <!--Comment: to change the color of the title or section, change the second h2 class argument and the third div
+ argument to either color01, color02, ... color06 or color07-->
+
+ <!--to change the number of rows per column, change the last number in 'pure-u-1-3'.
+ For example, to have three columns, change the value to 'pure-u-1-3'-->
+
+ <h2 class="domain-header color01"><a class="domain-title">Introduction</a></h2>
+ <div class="pure-g domain-table-container color01">
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_nipype.html">Nipype</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_jupyter-notebook.html">Jupyter-Notebook</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_dataset.html">BIDS & Tutorial Dataset</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_docker.html">Docker</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_neurodocker.html">Neurodocker</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_python.html">Python</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_showcase.html">Nipype Showcase</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_quickstart.html">Nipype Quickstart</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/introduction_quickstart_non-neuroimaging.html">Nipype Quickstart (non-neuroimaging examples)</a>
+ </div>
+ <p>This section is meant as a general overview. It should give you a short introduction to the main topics that
+ you need to understand to use Nipype and this tutorial. The section also contains a very short neuroimaging showcase, as well as quick non-imaging introduction to Nipype workflows.</p>
+
+ <h2 class="domain-header color02"><a class="domain-title">Basic Concepts</a></h2>
+ <div class="pure-g domain-table-container color02">
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_interfaces.html">Interfaces</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_nodes.html">Nodes</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_workflow.html">Workflow</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_graph_visualization.html">Graph Visualization</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_data_input.html">Data Input</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_data_input_bids.html">Data Input with BIDS</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_data_output.html">Data Output</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_plugins.html">Execution Plugins</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_function_interface.html">Function Interface</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_iteration.html">Iteration / Iterables</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_mapnodes.html">MapNodes</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_joinnodes.html">JoinNode, synchronize & itersource</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_error_and_crashes.html">Errors & Crashes</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_debug.html">Debugging Nipype Workflows</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_model_specification_fmri.html">fMRI Model Specification</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_execution_configuration.html">Execution Configuration</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/basic_import_workflows.html">Import existing Workflows</a>
+ </div>
+ <p>This section will introduce you to all of the key players in Nipype. Basic concepts that you need to learn to
+ fully understand and appreciate Nipype. Once you understand this section, you will know all that you need to know
+ to create any kind of Nipype workflow.</p>
+
+ <h2 class="domain-header color03"><a class="domain-title">Workflow Examples</a></h2>
+ <div class="pure-g domain-table-container color03">
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/example_preprocessing.html">Example 1: Preprocessing</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/example_1stlevel.html">Example 1: 1st-level Analysis</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/example_normalize.html">Example 1: Normalize Data</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/example_2ndlevel.html">Example 1: 2nd-level Analysis</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/handson_preprocessing.html">Hands-on 1: Preprocessing</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/handson_analysis.html">Hands-on 1: Analysis</a>
+ </div>
+ <p>In this section, you will find some practical examples and hands-on that show you how to use Nipype in a "real world" scenario.</p>
+
+ <h2 class="domain-header color04"><a class="domain-title">Advanced Concepts</a></h2>
+ <div class="pure-g domain-table-container color04">
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_create_interfaces.html">Create Interfaces</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_interfaces_caching.html">Interfaces Caching</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_command_line_interface.html">Nipype Command Line Interface</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_aws.html">Amazon Web Services (AWS)</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_sphinx_ext.html">Sphinx extensions</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_spmmcr.html">SPM with MATLAB Common Runtime (MCR)</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/advanced_mipav.html">Using MIPAV, JIST, and CBS Tools</a> </div>
+ <p>This section is for more advanced users and Nipype developers.</p>
+
+ <h2 class="domain-header color05"><a class="domain-title">Useful Resources & Links</a></h2>
+ <div class="pure-g domain-table-container color05">
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/resources_installation.html">Install Nipype</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/resources_resources.html">Useful Resources & Links</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/resources_help.html">Where to find Help</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="notebooks/resources_python_cheat_sheet.html">Python Cheat Sheet</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="http://nipype.readthedocs.io/en/latest/">Nipype (main homepage)</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://miykael.github.io/nipype-beginner-s-guide/">Nipype Beginner's Guide</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://github.com/miykael/nipype_tutorial">Github of Nipype Tutorial</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://github.com/kaczmarj/neurodocker">Neurodocker</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="http://nipy.org/nibabel/">NiBabel</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="http://nilearn.github.io/">Nilearn</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://openneuro.org/">OpenNeuro</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="http://bids-apps.neuroimaging.io">BIDS Apps</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="http://fmriprep.readthedocs.io/en/latest/index.html">fmriprep</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://mriqc.readthedocs.io/en/latest/#">MRIQC</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://mindboggle.info/">Mindboggle</a>
+ <a class="subject-link pure-u-1-4" target="_blank" href="https://timvanmourik.github.io/Porcupine/">PORcupine</a>
+ </div>
+ <p>This section will give you helpful links and resources so that you always know where to go to learn more.</p>
+
+ </div>
+ </article>
+</body>
+
+<!--The following code will cause the code cell to disappear-->
+
+<script>
+code_show=true;
+function code_toggle() {
+ if (code_show){
+ $('div.input').hide();
+ } else {
+ $('div.input').show();
+ }
+ code_show = !code_show
+}
+$( document ).ready(code_toggle);
+</script>
+
+<hr/>
+
+<h2>You want to help with this tutorial?</h2>
+<p>Find the github repo of this tutorial under <a href="https://github.com/miykael/nipype_tutorial">https://github.com/miykael/nipype_tutorial</a>.
+ Feel free to send a pull request or leave an <a href="https://github.com/miykael/nipype_tutorial/issues">issue</a> with your feedback or ideas.
+</p>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Welcome to the Nipype Tutorial! It covers the basic concepts and most common use cases of Nipype and will teach
+ you everything so that you can start creating your own workflows in no time. We recommend that you start with
+ the introduction section to familiarize yourself with the tools used in this tutorial and then move on to the
+ basic concepts section to learn everything you need to know for your everyday life with Nipype. The workflow
+ examples section shows you a real example of how you can use Nipype to analyze an actual dataset. For a very
+ quick non-imaging introduction, you can check the Nipype Quickstart notebooks in the introduction section.
+
+ All of the notebooks used in this tutorial can be found on github.com/miykael/nipype_tutorial.
+ But if you want to have the real experience and want to go through the computations by yourself, we highly
+ recommend you to use a Docker container. More about the Docker image that can be used to run the tutorial can be found
+ here.
+ This docker container gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of
+ Nipype yourself.
+
+ To run the tutorial locally on your system, we will use a Docker container. For this you
+ need to install Docker and download a docker image that provides you a neuroimaging environment based on a Debian system,
+ with working Python 3 software (including Nipype, dipy, matplotlib, nibabel, nipy, numpy, pandas, scipy, seaborn and more),
+ FSL, ANTs and SPM12 (no license needed). We used Neurodocker to create this docker image.
+
+ If you do not want to run the tutorial locally, you can also use
+ Binder service.
+ Binder automatically launches the Docker container for you and you have access to all of the notebooks.
+ Note, that Binder provides between 1G and 4G RAM memory, some notebooks from Workflow Examples might not work.
+ All notebooks from Introduction and Basic Concepts parts should work.
+
+ For everything that isn't covered in this tutorial, check out the main homepage.
+ And if you haven't had enough and want to learn even more about Nipype and Neuroimaging, make sure to look at
+ the detailed beginner's guide.
+
This section is meant as a general overview. It should give you a short introduction to the main topics that
+ you need to understand to use Nipype and this tutorial. The section also contains a very short neuroimaging showcase, as well as quick non-imaging introduction to Nipype workflows.
This section will introduce you to all of the key players in Nipype. Basic concepts that you need to learn to
+ fully understand and appreciate Nipype. Once you understand this section, you will know all that you need to know
+ to create any kind of Nipype workflow.
Several groups have been successfully using Nipype on AWS. This procedure
+involves setting a temporary cluster using StarCluster and potentially
+transferring files to/from S3. The latter is supported by Nipype through
+DataSink and S3DataGrabber.
The DataSink class now supports sending output data directly to an AWS S3
+bucket. It does this through the introduction of several input attributes to the
+DataSink interface and by parsing the base_directory attribute. This class
+uses the boto3 and
+botocore Python packages to
+interact with AWS. To configure the DataSink to write data to S3, the user must
+set the base_directory property to an S3-style filepath.
With the "s3://" prefix in the path, the DataSink knows that the output
+directory to send files is on S3 in the bucket "mybucket". "path/to/output/dir"
+is the relative directory path within the bucket "mybucket" where output data
+will be uploaded to (Note: if the relative path specified contains folders that
+don’t exist in the bucket, the DataSink will create them). The DataSink treats
+the S3 base directory exactly as it would a local directory, maintaining support
+for containers, substitutions, subfolders, "." notation, etc. to route output
+data appropriately.
+
There are four new attributes introduced with S3-compatibility: creds_path,
+encrypt_bucket_keys, local_copy, and bucket.
creds_path is a file path where the user's AWS credentials file (typically
+a csv) is stored. This credentials file should contain the AWS access key id and
+secret access key and should be formatted as one of the following (these formats
+are how Amazon provides the credentials file by default when first downloaded).
User Name,Access Key Id,Secret Access Key
+"username",ABCDEFGHIJKLMNOP,zyx123wvu456/ABC890+gHiJk
+
+
+
The creds_path is necessary when writing files to a bucket that has
+restricted access (almost no buckets are publicly writable). If creds_path
+is not specified, the DataSink will check the AWS_ACCESS_KEY_ID and
+AWS_SECRET_ACCESS_KEY environment variables and use those values for bucket
+access.
+
encrypt_bucket_keys is a boolean flag that indicates whether to encrypt the
+output data on S3, using server-side AES-256 encryption. This is useful if the
+data being output is sensitive and one desires an extra layer of security on the
+data. By default, this is turned off.
+
local_copy is a string of the filepath where local copies of the output data
+are stored in addition to those sent to S3. This is useful if one wants to keep
+a backup version of the data stored on their local computer. By default, this is
+turned off.
+
bucket is a boto3 Bucket object that the user can use to overwrite the
+bucket specified in their base_directory. This can be useful if one has to
+manually create a bucket instance on their own using special credentials (or
+using a mock server like fakes3). This is
+typically used for developers unit-testing the DataSink class. Most users do not
+need to use this attribute for actual workflows. This is an optional argument.
+
Finally, the user needs only to specify the input attributes for any incoming
+data to the node, and the outputs will be written to their S3 bucket.
The Nipype Command Line Interface allows a variety of operations:
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+nipypecli
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Usage: nipypecli [OPTIONS] COMMAND [ARGS]...
+
+Options:
+ -h, --help Show this message and exit.
+
+Commands:
+ convert Export nipype interfaces to other formats.
+ crash Display Nipype crash files.
+ run Run a Nipype Interface.
+ search Search for tracebacks content.
+ show Print the content of Nipype node .pklz file.
+ version Print current version of Nipype.
+
+
+
+
+
+
+
+
+
+
+
+
+
+**Note**: These have replaced previous nipype command line tools such as `nipype_display_crash`, `nipype_crash_search`, `nipype2boutiques`, `nipype_cmd` and `nipype_display_pklz`.
+
This section is meant for the more advanced user. In it we will discuss how you can create your own interface, i.e. wrapping your own code, so that you can use it with Nipype.
+
In this notebook we will show you:
+
+
Example of an already implemented interface
+
What are the main parts of a Nipype interface?
+
How to wrap a CommandLine interface?
+
How to wrap a Python interface?
+
How to wrap a MATLAB interface?
+
+
But before we can start, let's recap again the difference between interfaces and workflows.
Nipype offers a series of Python interfaces to various external packages (e.g. FSL, SPM or FreeSurfer) even if they themselves are written in programming languages other than python. Such interfaces know what sort of options their corresponding tool has and how to execute it.
+
To illustrate why interfaces are so useful, let's have a look at the brain extraction algorithm BET from FSL. Once in its original framework and once in the Nipype framework.
+
+
+
+
+
+
+
+
+
The tool can be run directly in a bash shell using the following command line:
Now we can verify that the result is exactly the same as before. Please note that, since we are using a Python environment, we use the result of the execution to point our plot_anat function to the output image of running BET:
Wraps command **None**
+
+Implements functionality to interact with command line programs
+class must be instantiated with a command argument
+
+Parameters
+----------
+
+command : string
+ define base immutable `command` you wish to run
+
+args : string, optional
+ optional arguments passed to base `command`
+
+
+Examples
+--------
+>>> import pprint
+>>> from nipype.interfaces.base import CommandLine
+>>> cli = CommandLine(command='ls', environ={'DISPLAY': ':1'})
+>>> cli.inputs.args = '-al'
+>>> cli.cmdline
+'ls -al'
+
+# Use get_traitsfree() to check all inputs set
+>>> pprint.pprint(cli.inputs.get_traitsfree()) # doctest:
+{'args': '-al',
+ 'environ': {'DISPLAY': ':1'},
+ 'ignore_exception': False}
+
+>>> cli.inputs.get_hashval()[0][0]
+('args', '-al')
+>>> cli.inputs.get_hashval()[1]
+'11c37f97649cd61627f4afe5136af8c0'
+
+Inputs::
+
+ [Mandatory]
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ None
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
As a quick example, let's wrap bash's ls with Nipype:
Now, we have a Python object nipype_ls that is a runnable nipype interface. After execution, Nipype interface returns a result object. We can retrieve the output of our ls invocation from the result.runtime property:
Let's create a Nipype Interface for a very simple tool called antsTransformInfo from the ANTs package. This tool is so simple it does not even have a usage description for bash. Using it with a file, gives us the following result:
It only accepts one text file (containing an ITK transform file) as input, and it is a positional argument.
+
It prints out the properties of the transform in the input file. For the purpose of this notebook, we are only interested in extracting the translation values.
+
+
For the first item of this roadmap, we will just need to derive a new Python class from the nipype.interfaces.base.CommandLine base. To indicate the appropriate command line, we set the member _cmd:
This is enough to have a nipype compatible interface for this tool:
+
+
+
+
+
+
+
In [ ]:
+
+
+
TransformInfo.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **antsTransformInfo**
+
+
+Inputs::
+
+ [Mandatory]
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ None
+
+
+
However, the args argument is too generic and does not deviate much from just running it in bash, or directly using subprocess.Popen. Let's define the inputs specification for the interface, extending the nipype.interfaces.base.CommandLineInputSpec class.
+
The inputs are implemented using the Enthought traits package. For now, we'll use the File trait extension of nipype:
Our interface now has one mandatory input, and inherits some optional inputs from the CommandLineInputSpec:
+
+
+
+
+
+
+
In [ ]:
+
+
+
TransformInfo.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **antsTransformInfo**
+
+
+Inputs::
+
+ [Mandatory]
+ in_file: (an existing file name)
+ the input transform file
+ flag: %s, position: 0
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ None
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
One interesting feature of the Nipype interface is that the underlying command line can be checked using the object property cmdline. The command line can only be built when the mandatory inputs are set, so let's instantiate our new Interface for the first time, and check the underlying command line:
Nipype will make sure that the parameters fulfill their prescribed attributes. For instance, in_file is mandatory. An error is issued if we build the command line or try to run this interface without it:
It crashed with...
+TraitError: The trait 'in_file' of a TransformInfoInputSpec instance is an existing file name, but the path 'idontexist.tfm' does not exist.
+
The outputs are defined in a similar way. Let's define a custom output for our interface which is a list of three float element. The output traits are derived from a simpler base class called TraitedSpec. We also import the two data representations we need List and Float:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.baseimportTraitedSpec,traits
+
+classTransformInfoOutputSpec(TraitedSpec):
+ translation=traits.List(traits.Float,desc='the translation component of the input transform')
+
+classTransformInfo(CommandLine):
+ _cmd='antsTransformInfo'
+ input_spec=TransformInfoInputSpec
+ output_spec=TransformInfoOutputSpec
+
+
+
+
+
+
+
+
+
+
+
+
And now, our new output is in place:
+
+
+
+
+
+
+
In [ ]:
+
+
+
TransformInfo.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **antsTransformInfo**
+
+
+Inputs::
+
+ [Mandatory]
+ in_file: (an existing file name)
+ the input transform file
+ flag: %s, position: 0
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ translation: (a list of items which are a float)
+ the translation component of the input transform
+
+
+
If we run the interface, we'll be able to see that this tool only writes some text to the standard output, but we just want to extract the Translation field and generate a Python object from it.
We need to complete the functionality of the run() member of our interface to parse the standard output. This is done extending its _run_interface() member.
+
When we define outputs, generally they need to be explicitly wired in the _list_outputs() member of the core class. Let's see how we can complete those:
+
+
+
+
+
+
+
In [ ]:
+
+
+
classTransformInfo(CommandLine):
+ _cmd='antsTransformInfo'
+ input_spec=TransformInfoInputSpec
+ output_spec=TransformInfoOutputSpec
+
+ def_run_interface(self,runtime):
+ importre
+
+ # Run the command line as a natural CommandLine interface
+ runtime=super(TransformInfo,self)._run_interface(runtime)
+
+ # Search transform in the standard output
+ expr_tra=re.compile('Translation:\s+\[(?P<translation>[0-9\.-]+,\s[0-9\.-]+,\s[0-9\.-]+)\]')
+ trans=[float(v)forvinexpr_tra.search(runtime.stdout).group('translation').split(', ')]
+
+ # Save it for later use in _list_outputs
+ setattr(self,'_result',trans)
+
+ # Good to go
+ returnruntime
+
+ def_list_outputs(self):
+
+ # Get the attribute saved during _run_interface
+ return{'translation':getattr(self,'_result')}
+
+
+
+
+
+
+
+
+
+
+
+
Let's run this interface (we set terminal_output='allatonce' to reduce the length of this manual, default would otherwise be 'stream'):
fromnipype.interfaces.baseimport(CommandLine,CommandLineInputSpec,
+ TraitedSpec,traits,File)
+
+classTransformInfoInputSpec(CommandLineInputSpec):
+ in_file=File(exists=True,mandatory=True,argstr='%s',position=0,
+ desc='the input transform file')
+
+classTransformInfoOutputSpec(TraitedSpec):
+ translation=traits.List(traits.Float,desc='the translation component of the input transform')
+
+classTransformInfo(CommandLine):
+ _cmd='antsTransformInfo'
+ input_spec=TransformInfoInputSpec
+ output_spec=TransformInfoOutputSpec
+
+ def_run_interface(self,runtime):
+ importre
+
+ # Run the command line as a natural CommandLine interface
+ runtime=super(TransformInfo,self)._run_interface(runtime)
+
+ # Search transform in the standard output
+ expr_tra=re.compile('Translation:\s+\[(?P<translation>[0-9\.-]+,\s[0-9\.-]+,\s[0-9\.-]+)\]')
+ trans=[float(v)forvinexpr_tra.search(runtime.stdout).group('translation').split(', ')]
+
+ # Save it for later use in _list_outputs
+ setattr(self,'_result',trans)
+
+ # Good to go
+ returnruntime
+
+ def_list_outputs(self):
+
+ # Get the attribute saved during _run_interface
+ return{'translation':getattr(self,'_result')}
+
Wrapping up - fast use case for simple CommandLine wrapper¶
For more standard neuroimaging software, generally we will just have to specify simple flags, i.e. input and output images and some additional parameters. If that is the case, then there is no need to extend the run() method.
+
Let's look at a quick, partial, implementation of FSL's BET:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.baseimportCommandLineInputSpec,File,TraitedSpec
+
+classCustomBETInputSpec(CommandLineInputSpec):
+ in_file=File(exists=True,mandatory=True,argstr='%s',position=0,desc='the input image')
+ mask=traits.Bool(mandatory=False,argstr='-m',position=2,desc='create binary mask image')
+
+ # Do not set exists=True for output files!
+ out_file=File(mandatory=True,argstr='%s',position=1,desc='the output image')
+
+classCustomBETOutputSpec(TraitedSpec):
+ out_file=File(desc='the output image')
+ mask_file=File(desc="path/name of binary brain mask (if generated)")
+
+classCustomBET(CommandLine):
+ _cmd='bet'
+ input_spec=CustomBETInputSpec
+ output_spec=CustomBETOutputSpec
+
+ def_list_outputs(self):
+
+ # Get the attribute saved during _run_interface
+ return{'out_file':self.inputs.out_file,
+ 'mask_file':self.inputs.out_file.replace('brain','brain_mask')}
+
CommandLine interface is great, but my tool is already in Python - can I wrap it natively?
+
Sure. Let's solve the following problem: Let's say we have a Python function that takes an input image and a list of three translations (x, y, z) in mm, and then writes a resampled image after the translation has been applied:
+
+
+
+
+
+
+
In [ ]:
+
+
+
deftranslate_image(img,translation,out_file):
+
+ importnibabelasnb
+ importnumpyasnp
+ fromscipy.ndimage.interpolationimportaffine_transform
+
+ # Load the data
+ nii=nb.load(img)
+ data=nii.get_data()
+
+ # Create the transformation matrix
+ matrix=np.eye(3)
+ trans=(np.array(translation)/nii.header.get_zooms()[:3])*np.array([1.0,-1.0,-1.0])
+
+ # Apply the transformation matrix
+ newdata=affine_transform(data,matrix=matrix,offset=trans)
+
+ # Save the new data in a new NIfTI image
+ nb.Nifti1Image(newdata,nii.affine,nii.header).to_filename(out_file)
+
+ print('Translated file now is here: %s'%out_file)
+
+
+
+
+
+
+
+
+
+
+
+
Let's see how this function operates:
+
+
+
+
+
+
+
In [ ]:
+
+
+
orig_image='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
+translation=[20.0,-20.0,-20.0]
+translated_image='translated.nii.gz'
+
+# Let's run the translate_image function on our inputs
+translate_image(orig_image,
+ translation,
+ translated_image)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Translated file now is here: translated.nii.gz
+
+
+
+
+
+
+
+
+
+
+
+
+
Now that the function was executed, let's plot the original and the translated image.
Don't reinvent the wheel if it's not necessary. If like in this case, we have a well-defined function we want to run with Nipype, it is fairly easy to solve it with the Function interface:
The arguments of translate_image should ideally be listed in the same order and with the same names as in the signature of the function. The same should be the case for the outputs. Finally, the Function interface takes a function input that is pointed to your python code.
+
Note: The inputs and outputs do not pass any kind of conformity checking: the function node will take any kind of data type for their inputs and outputs.
+
There are some other limitations to the Function interface when used inside workflows. Additionally, the function must be totally self-contained, since it will run with no global context. In practice, it means that all the imported modules and variables must be defined within the context of the function.
Now, we face the problem of interfacing something different from a command line. Therefore, the CommandLine base class will not help us here. The specification of the inputs and outputs, though, will work the same way.
+
Let's start from that point on. Our Python function takes in three inputs: (1) the input image, (2) the translation and (3) an output image.
+
The specification of inputs and outputs must be familiar to you at this point. Please note that now, input specification is derived from BaseInterfaceInputSpec, which is a bit thinner than CommandLineInputSpec. The output specification can be derived from TraitedSpec as before:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.baseimportBaseInterfaceInputSpec,File,TraitedSpec
+
+classTranslateImageInputSpec(BaseInterfaceInputSpec):
+ in_file=File(exists=True,mandatory=True,desc='the input image')
+ out_file=File(mandatory=True,desc='the output image')# Do not set exists=True !!
+ translation=traits.List([50.0,0.0,0.0],traits.Float,usedefault=True,
+ desc='the translation component of the input transform')
+
+classTranslateImageOutputSpec(TraitedSpec):
+ out_file=File(desc='the output image')
+
+
+
+
+
+
+
+
+
+
+
+
Similarily to the change of base class for the input specification, the core of our new interface will derive from BaseInterface instead of CommandLineInterface:
At this point, we have defined a pure python interface but it is unable to do anything because we didn't implement a _run_interface() method yet.
+
+
+
+
+
+
+
In [ ]:
+
+
+
TranslateImage.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Inputs::
+
+ [Mandatory]
+ in_file: (an existing file name)
+ the input image
+ out_file: (a file name)
+ the output image
+
+ [Optional]
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ translation: (a list of items which are a float, nipype default
+ value: [50.0, 0.0, 0.0])
+ the translation component of the input transform
+
+Outputs::
+
+ out_file: (a file name)
+ the output image
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
What happens if we try to run such an interface without specifying the _run_interface() function?
Translated file now is here: translated_nipype.nii.gz
+It crashed with...
+NotImplementedError:
+
+
+
+
+
+
+
+
+
+
+
+
+
... but still, it crashes becasue we haven't specified any _list_outputs() method. I.e. our python function is called, but the interface crashes when the execution arrives to retrieving the outputs.
+
Let's fix that:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.baseimportBaseInterfaceInputSpec,BaseInterface,File,TraitedSpec
+
+classTranslateImageInputSpec(BaseInterfaceInputSpec):
+ in_file=File(exists=True,mandatory=True,desc='the input image')
+ out_file=File(mandatory=True,desc='the output image')# Do not set exists=True !!
+ translation=traits.List([50.0,0.0,0.0],traits.Float,usedefault=True,
+ desc='the translation component of the input transform')
+
+classTranslateImageOutputSpec(TraitedSpec):
+ out_file=File(desc='the output image')
+
+classTranslateImage(BaseInterface):
+ input_spec=TranslateImageInputSpec
+ output_spec=TranslateImageOutputSpec
+
+ def_run_interface(self,runtime):
+
+ # Call our python code here:
+ translate_image(
+ self.inputs.in_file,
+ self.inputs.translation,
+ self.inputs.out_file
+ )
+ # And we are done
+ returnruntime
+
+ def_list_outputs(self):
+ return{'out_file':self.inputs.out_file}
+
+
+
+
+
+
+
+
+
+
+
+
Now, we have everything together. So let's run it and visualize the output file.
Last but not least, let's take a look at how we would create a MATLAB interface. For this purpose, let's say we want to run some matlab code that counts the number of voxels in an MRI image with intensity larger than zero. Such a value could give us an estimation of the brain volume (in voxels) of a skull-stripped image.
+
In MATLAB, our code looks as follows:
+
+
load input_image.mat;
+ total = sum(data(:) > 0)
+
The following example uses scipy.io.savemat to convert the input image to MATLAB format. Once the file is loaded we can quickly extract the estimated total volume.
+
Note: For the purpose of this example, we will be using the freely available MATLAB alternative Octave. But the implementation of a MATLAB interface will be identical.
As before, we need to specify an InputSpec and an OutputSpec class. The input class will expect a file as an input and the script containing the code that we would like to run, and the output class will give us back the total volume.
+
In the context of a MATLAB interface, this is implemented as follows:
Now, we have to specify what should happen, once the interface is run. As we said earlier, we want to:
+
+
load the image data and save it in a mat file
+
load the script
+
replace the put the relevant information into the script
+
run the script
+
extract the results
+
+
This all can be implemented with the following code:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Specify the interface inputs
+in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
+script_file='/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m'
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
!cat scripts/brainvolume.m
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
load input_image.mat;
+total = sum(data(:) > 0)
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
importre
+importnibabelasnb
+fromscipy.ioimportsavemat
+
+# 1. save the image in matlab format as tmp_image.mat
+tmp_image='tmp_image'
+data=nb.load(in_file).get_data()
+savemat(tmp_image,{b'data':data},do_compression=False)
+
# 3. replace the input_image.mat file with the actual input of this interface
+withopen('newscript.m','w')asscript_file:
+ script_file.write(script_content.replace('input_image.mat','tmp_image.mat'))
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# 4. run the matlab script
+mlab=CommandLine('octave',args='newscript.m',terminal_output='stream')
+result=mlab.run()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
180514-09:10:47,710 interface INFO:
+ stderr 2018-05-14T09:10:47.710712:octave: X11 DISPLAY environment variable not set
+180514-09:10:47,712 interface INFO:
+ stderr 2018-05-14T09:10:47.710712:octave: disabling GUI features
+180514-09:10:48,96 interface INFO:
+ stdout 2018-05-14T09:10:48.096074:total = 5308353
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# 5. extract the volume estimation from the output
+expr_tra=re.compile('total\ =\s+(?P<total>[0-9]+)')
+volume=int(expr_tra.search(result.runtime.stdout).groupdict()['total'])
+print(volume)
+
180514-09:10:48,732 interface INFO:
+ stderr 2018-05-14T09:10:48.732647:octave: X11 DISPLAY environment variable not set
+180514-09:10:48,734 interface INFO:
+ stderr 2018-05-14T09:10:48.732647:octave: disabling GUI features
+180514-09:10:48,870 interface INFO:
+ stdout 2018-05-14T09:10:48.870043:total = 5308353
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
print(result.outputs)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+volume = 5308353
+
+
+
+
+
+
+
+
+
+
+
+
+
+
We see in the example above that everything works fine. But now, let's say that we want to save the total brain volume to a file and give the location of this file back as an output. How would you do that?
Modify the BrainVolumeMATLAB interface so that it has one more output called out_file, that points to a text file where we write the volume in voxels. The name of the out_file can be hard coded to volume.txt.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.baseimport(CommandLine,traits,TraitedSpec,
+ BaseInterface,BaseInterfaceInputSpec,File)
+importos
+importre
+importnibabelasnb
+fromscipy.ioimportsavemat
+
+classBrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):
+ in_file=File(exists=True,mandatory=True)
+ script_file=File(exists=True,mandatory=True)
+
+classBrainVolumeMATLABOutputSpec(TraitedSpec):
+ volume=traits.Int(desc='brain volume')
+ out_file=File(desc='output file containing total brain volume')# This line was added
+
+classBrainVolumeMATLAB(BaseInterface):
+ input_spec=BrainVolumeMATLABInputSpec
+ output_spec=BrainVolumeMATLABOutputSpec
+
+ def_run_interface(self,runtime):
+ # Save the image in matlab format as tmp_image.mat
+ tmp_image='tmp_image'
+ data=nb.load(self.inputs.in_file).get_data()
+ savemat(tmp_image,{b'data':data},do_compression=False)
+
+ # Load script
+ withopen(self.inputs.script_file)asscript_file:
+ script_content=script_file.read()
+
+ # Replace the input_image.mat file for the actual input of this interface
+ withopen('newscript.m','w')asscript_file:
+ script_file.write(script_content.replace('input_image.mat','tmp_image.mat'))
+
+ # Run a matlab command
+ mlab=CommandLine('octave',args='newscript.m',terminal_output='stream')
+ result=mlab.run()
+
+ expr_tra=re.compile('total\ =\s+(?P<total>[0-9]+)')
+ volume=int(expr_tra.search(result.runtime.stdout).groupdict()['total'])
+ setattr(self,'_result',volume)
+
+ # Write total brain volume into a file
+ out_fname=os.path.abspath('volume.txt')
+ setattr(self,'_out_file',out_fname)
+ withopen('volume.txt','w')asout_file:
+ out_file.write('%d'%volume)
+
+ returnresult.runtime
+
+ def_list_outputs(self):
+ outputs=self._outputs().get()
+ outputs['volume']=getattr(self,'_result')
+ outputs['out_file']=getattr(self,'_out_file')
+ returnoutputs
+
Pipelines (also called workflows) specify processing by an execution graph. This is useful because it opens the door to dependency checking and enables
+
+
to minimize recomputations,
+
to have the execution engine transparently deal with intermediate file manipulations.
+
+
They, however, do not blend in well with arbitrary Python code, as they must rely on their own execution engine.
+
+
+
+
Interfaces give fine control of the execution of each step with a thin wrapper on the underlying software. As a result that can easily be inserted in Python code.
+
However, they force the user to specify explicit input and output file names and cannot do any caching.
+
+
This is why nipype exposes an intermediate mechanism, caching that provides transparent output file management and caching within imperative Python code rather than a workflow.
I mean, there's no problem with SPM's batch system...
-
-
ok, ok... it get's tiring to have a separate batch script for each subject and MATLAB license issues are sometimes a pain. But hey, the nice looking GUI makes it so easy to use!
The GUI might look a bit old fashion but the command line interface gives me all the flexibility I need!
-
-
I don't care that it might be more difficult to learn than other neuroimaging softwares. At least it doesn't take me 20 clicks to do simple motion correction. And once you figure out the underlying commands, it's rather simple to script.
+
Note that the caching directory is a subdirectory called nipype_mem of the given base_dir. This is done to avoid polluting the base director.
+
In the corresponding execution context, nipype interfaces can be turned into callables that can be used as functions using the Memory.cache method. For instance, if we want to run the fslMerge command on a set of files:
You and your problems with fMRI data. I'm perfectly happy with FreeSurfer's command line interface. It gives me all I need to do surface based analyses.
-
-
Of course, you can run your sequential FreeSurfer scripts as you want. But wouldn't it be nice to optimize computation time by using parallel computation?
+
Note that the Memory.cache method takes interfaces classes, and not instances.
+
The resulting fsl_merge object can be applied as a function to parameters, that will form the inputs of the merge fsl commands. Those inputs are given as keyword arguments, bearing the same name as the name in the inputs specs of the interface. In IPython, you can also get the argument list by using the fsl_merge? syntax to inspect the docs:
-
-
-
+
+
-
Let's imagine you want to do smoothing on the surface, with two different FWHM values, on both hemispheres and this on six subjects, all in parallel? With Nipype this is as simple as that:
Let's assume we want to do preprocessing that uses SPM for motion correction, FreeSurfer for coregistration, ANTS for normalization and FSL for smoothing. Normally this would be a hell of a mess. It would mean switching between multiple scripts in different programming languages with a lot of manual intervention. Nipype comes to the rescue!
# Where can the raw data be found?
-grabber=nipype.DataGrabber()
-grabber.inputs.base_directory='~/experiment_folder/data'
-grabber.inputs.subject_id=['subject1','subject2','subject3']
+
The results are standard nipype nodes results. In particular, they expose an outputs attribute that carries all the outputs of the process, as specified by the docs.
-# Where should the output data be stored at?
-sink=nipype.DataSink()
-sink.inputs.base_directory='~/experiment_folder/output_folder'
+
+
+
+
+
+
In [ ]:
+
+
+
results.outputs.merged_file
-
-
-
-
-
-
# Create a workflow to connect all those nodes
-preprocflow=nipype.Workflow()
-# Connect the nodes to each other
-preprocflow.connect([(grabber->realign),
- (realign->coreg),
- (coreg->normalize),
- (normalize->smooth),
- (smooth->sink)
- ])
+
+
-# Run the workflow in parallel
-preprocflow.run(mode='parallel')
-
If you are trying to use MIPAV, JIST or CBS Tools interfaces you need to configure CLASSPATH environmental variable correctly. It needs to include extensions shipped with MIPAV, MIPAV itself and MIPAV plugins.
+
For example, in order to use the standalone MCR version of spm, you need to ensure that the following commands are executed at the beginning of your script:
+
+
+
+
+
+
+
+
+
+
# location of additional JAVA libraries to use
+JAVALIB=/Applications/mipav/jre/Contents/Home/lib/ext/
+
+# location of the MIPAV installation to use
+MIPAV=/Applications/mipav
+# location of the plugin installation to use
+# please replace 'ThisUser' by your user name
+PLUGINS=/Users/ThisUser/mipav/plugins
+
+export CLASSPATH=$JAVALIB/*:$MIPAV:$MIPAV/lib/*:$PLUGINS
To help users document their Nipype-based code, the software is shipped
+with a set of extensions (currently only one) to customize the appearance
+and simplify the generation process.
A directive for including a nipype workflow graph in a Sphinx document.
+
This code is forked from the plot_figure sphinx extension of matplotlib.
+
By default, in HTML output, workflow will include a .png file with a link to a high-res .png. In LaTeX output, it will include a .pdf. The source code for the workflow may be included as inline content to the directive workflow:
The workflow directive supports the following options:
+
+
graph2use: {'hierarchical', 'colored', 'flat', 'orig', 'exec'}
+ Specify the type of graph to be generated.
+
+
+
simple_form: bool
+ Whether the graph will be in detailed or simple form.
+
+
+
format: {'python', 'doctest'}
+ Specify the format of the input
+
+
+
include-source: bool
+ Whether to display the source code. The default can be changed using the workflow_include_source variable in conf.py
+
+
+
encoding: str
+ If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the :encoding: option. The encoding will not be inferred using the -*- coding -*- metacomment.
+
+
Additionally, this directive supports all of the options of the image directive, except for target (since workflow will add its own target). These include alt, height, width, scale, align and class.
The workflow directive has the following configuration options:
+
+
graph2use
+ Select a graph type to use
+
+
+
simple_form
+ determines if the node name shown in the visualization is either of the form nodename (package) when set to True or nodename.Class.package when set to False.
+
+
+
wf_include_source
+ Default value for the include-source option
+
+
+
wf_html_show_source_link
+ Whether to show a link to the source in HTML.
+
+
+
wf_pre_code
+ Code that should be executed before each workflow.
+
+
+
wf_basedir
+ Base directory, to which workflow:: file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.)
+
+
+
wf_formats
+ File formats to generate. List of tuples or strings:
+
[(suffix, dpi), suffix, ...]
+
+ that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, ....
+
+
+
wf_html_show_formats
+ Whether to show links to the files in HTML.
+
+
+
wf_rcparams
+ A dictionary containing any non-standard rcParams that should be applied before each workflow.
+
+
+
wf_apply_rcparams
+ By default, rcParams are applied when context option is not used in a workflow directive. This configuration option overrides this behavior and applies rcParams before each workflow.
+
+
+
wf_working_directory
+ By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also, its path will be added to sys.path so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to sys.path) where data files and helper modules for all code are located.
+
+
+
wf_template
+ Provide a customized template for preparing restructured text.
If you want to enforce the standalone MCR version of spm for nipype globally, you can do so by setting the following environment variables:
+
+
SPMMCRCMD
+ Specifies the command to use to run the spm standalone MCR version. You may still override the command as described above.
+
+
+
FORCE_SPMMCR
+ Set this to any value in order to enforce the use of spm standalone MCR version in nipype globally. Technically, this sets the use_mcr flag of the spm interface to True.
To do any computation, you need to have data. Getting the data in the framework of a workflow is therefore the first step of every analysis. Nipype provides many different modules to grab or select the data:
To be able to import data, you first need to be aware of the structure of your dataset. The structure of the dataset for this tutorial is according to BIDS, and looks as follows:
DataGrabber is an interface for collecting files from hard drive. It is very flexible and supports almost any file organization of your data you can imagine.
+
You can use it as a trivial use case of getting a fixed file. By default, DataGrabber stores its outputs in a field called outfiles.
Two special inputs were used in these previous cases. The input base_directory
+indicates in which directory to search, while the input template indicates the
+string template to match. So in the previous case DataGrabber is looking for
+path matches of the form /data/ds000114/s*/ses-test/func/*fingerfootlips*.nii.gz.
+
+**Note**: When used with wildcards (e.g., `s*` and `*fingerfootlips*` above) `DataGrabber` does not return data in sorted order. In order to force it to return data in a sorted order, one needs to set the input `sorted = True`. However, when explicitly specifying an order as we will see below, `sorted` should be set to `False`.
+
More use cases arise when the template can be filled by other inputs. In the
+example below, we define an input field for DataGrabber called subject_id. This is
+then used to set the template (see %d in the template).
DataGrabber is a generic data grabber module that wraps around glob to select your neuroimaging data in an intelligent way. As an example, let's assume we want to grab the anatomical and functional images of a certain subject.
+
First, we need to create the DataGrabber node. This node needs to have some input fields for all dynamic parameters (e.g. subject identifier, task identifier), as well as the two desired output fields anat and func.
Therefore, we need the parameters subject_id and ses_name for the anatomical image and the parameters subject_id, ses_name and task_name for the functional image. In the context of DataGabber, this is specified as follows:
You'll notice that we use %s, %02d and * for placeholders in the data paths. %s is a placeholder for a string and is filled out by task_name or ses_name. %02d is a placeholder for a integer number and is filled out by subject_id. * is used as a wild card, e.g. a placeholder for any possible string combination. This is all to set up the DataGrabber node.
+
+
+
+
+
+
+
+
+
Above, two more fields are introduced: field_template and template_args. These fields are both dictionaries whose keys correspond to the outfields keyword. The field_template reflects the search path for each output field, while the template_args reflect the inputs that satisfy the template. The inputs can either be one of the named inputs specified by the infields keyword arg or it can be raw strings or integers corresponding to the template. For the func output, the %s in the field_template is satisfied by subject_id and the %d is filled in by the list of numbers.
+
+
+
+
+
+
+
+
+
Now it is up to you how you want to feed the dynamic parameters into the node. You can either do this by using another node (e.g. IdentityInterface) and feed subject_id, ses_name and task_name as connections to the DataGrabber node or specify them directly as node inputs.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Using the IdentityInterface
+fromnipypeimportIdentityInterface
+infosource=Node(IdentityInterface(fields=['subject_id','task_name']),
+ name="infosource")
+infosource.inputs.task_name="fingerfootlips"
+infosource.inputs.ses_name="test"
+subject_id_list=[1,2]
+infosource.iterables=[('subject_id',subject_id_list)]
+
+
+
+
+
+
+
+
+
+
+
+
Now you only have to connect infosource with your DataGrabber and run the workflow to iterate over subjects 1 and 2.
+
+
+
+
+
+
+
+
+
You can also provide the inputs to the DataGrabber node directly, for one subject you can do this as follows:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Specifying the input fields of DataGrabber directly
+dg.inputs.subject_id=1
+dg.inputs.ses_name="test"
+dg.inputs.task_name="fingerfootlips"
+
+
+
+
+
+
+
+
+
+
+
+
Now let's run the DataGrabber node and let's look at the output:
SelectFiles is a more flexible alternative to DataGrabber. It is built on Python format strings, which are similar to the Python string interpolation feature you are likely already familiar with, but advantageous in several respects. Format strings allow you to replace named sections of template strings set off by curly braces ({}), possibly filtered through a set of functions that control how the values are rendered into the string. As a very basic example, we could write
+
+
+
+
+
+
+
In [ ]:
+
+
+
msg="This workflow uses {package}."
+
+
+
+
+
+
+
+
+
+
+
+
and then format it with keyword arguments:
+
+
+
+
+
+
+
In [ ]:
+
+
+
print(msg.format(package="FSL"))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
This workflow uses FSL.
+
+
+
+
+
+
+
+
+
+
+
+
+
SelectFiles uses the {}-based string formatting syntax to plug values into string templates and collect the data. These templates can also be combined with glob wild cards. The field names in the formatting template (i.e. the terms in braces) will become inputs fields on the interface, and the keys in the templates dictionary will form the output fields.
Perfect! But why is SelectFiles more flexible than DataGrabber? First, you perhaps noticed that with the {}-based string, we can reuse the same input (e.g. subject_id) multiple time in the same string, without feeding it multiple times into the template.
+
Additionally, you can also select multiple files without the need of an iterable node. For example, let's assume we want to select anatomical images for all subjects at once. We can do this by using the eildcard * in a template:
There's an additional parameter, force_lists, which controls how SelectFiles behaves in cases where only a single file matches the template. The default behavior is that when a template matches multiple files they are returned as a list, while a single file is returned as a string. There may be situations where you want to force the outputs to always be returned as a list (for example, you are writing a workflow that expects to operate on several runs of data, but some of your subjects only have a single run). In this case, force_lists can be used to tune the outputs of the interface. You can either use a boolean value, which will be applied to every output the interface has, or you can provide a list of the output fields that should be coerced to a list.
+
Returning to our previous example, you may want to ensure that the anat files are returned as a list, but you only ever will have a single T1 file. In this case, you would do
FreeSurferSource is a specific case of a file grabber that facilitates the data import of outputs from the FreeSurfer recon-all algorithm. This, of course, requires that you've already run recon-all on your subject.
+
+
+
+
+
+
+
+
+
For the tutorial dataset ds000114, recon-all was already run. So, let's make sure that you have the anatomy output of one subject on your system:
+
+
+
+
+
+
+
In [ ]:
+
+
+
!datalad get -r -J 4 /data/ds000114/derivatives/freesurfer/sub-01
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[INFO ] Installing <Dataset path=/data/ds000114/derivatives/freesurfer> underneath /data/ds000114/derivatives/freesurfer/sub-01 recursively
+get(notneeded): /data/ds000114/derivatives/freesurfer/sub-01 (directory) [nothing to get from /data/ds000114/derivatives/freesurfer/sub-01]
+
+
+
+
+
+
+
+
+
+
+
+
+
Now, before you can run FreeSurferSource, you first have to specify the path to the FreeSurfer output folder, i.e. you have to specify the SUBJECTS_DIR variable. This can be done as follows:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.freesurferimportFSCommand
+fromos.pathimportabspathasopap
+
+# Path to your freesurfer output folder
+fs_dir=opap('/data/ds000114/derivatives/freesurfer/')
+
+# Set SUBJECTS_DIR
+FSCommand.set_default_subjects_dir(fs_dir)
+
+
+
+
+
+
+
+
+
+
+
+
To create the FreeSurferSource node, do as follows:
It seems to be working as it should. But as you can see, the inflated output actually contains the file location for both hemispheres. With FreeSurferSource we can also restrict the file selection to a single hemisphere. To do this, we use the hemi input filed:
DataGrabber and SelectFiles are great if you are dealing with generic datasets with arbitrary organization. However, if you have decided to use Brain Imaging Data Structure (BIDS) to organize your data (or got your hands on a BIDS dataset) you can take advantage of a formal structure BIDS imposes. In this short tutorial, you will learn how to do this.
+
+
+
+
+
+
+
+
+
pybids - a Python API for working with BIDS datasets¶
pybids is a lightweight python API for querying BIDS folder structure for specific files and metadata. You can install it from PyPi:
+
+
pip install pybids
+
Please note it should be already installed in the tutorial Docker image.
We can also ask for a specific subset of data. Note that we are using extension filter to get just the imaging data (BIDS allows both .nii and .nii.gz so we need to include both).
You probably noticed that this method does not only return the file paths, but objects with relevant query fields. We can easily extract just the file paths.
BIDSDataGrabber: Including pybids in your nipype workflow¶
This is great, but what we really want is to include this into our nipype workflows. To do this, we can import BIDSDataGrabber, which provides an Interface for BIDSLayout.get
This results in a single output field bold, which returns all files with type:bold for subject:"01"
+
Now, lets put it in a workflow. We are not going to analyze any data, but for demonstration purposes, we will add a couple of nodes that pretend to analyze their inputs
In the previous example, we demonstrated how to use pybids to "analyze" one subject. How can we scale it for all subjects? Easy - using iterables (more in Iteration/Iterables).
Can we incorporate this into our pipeline? Yes, we can! To do so, let's use a Function node to use BIDSLayout in a custom way.
+(More about MapNode in MapNode)
Similarly important to data input is data output. Using a data output module allows you to restructure and rename computed output and to spatially differentiate relevant output files from the temporary computed intermediate files in the working directory. Nipype provides the following modules to handle data stream output:
A workflow working directory is like a cache. It contains not only the outputs of various processing stages, it also contains various extraneous information such as execution reports, hashfiles determining the input state of processes. All of this is embedded in a hierarchical structure that reflects the iterables that have been used in the workflow. This makes navigating the working directory a not so pleasant experience. And typically the user is interested in preserving only a small percentage of these outputs. The DataSink interface can be used to extract components from this cache and store it at a different location. For XNAT-based storage, see XNATSink.
+
+Unlike other interfaces, a [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink)'s inputs are defined and created by using the workflow connect statement. Currently disconnecting an input from the [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) does not remove that connection port.
+
Let's assume we have the following workflow.
+
+
The following code segment defines the DataSink node and sets the base_directory in which all outputs will be stored. The container input creates a subdirectory within the base_directory. If you are iterating a workflow over subjects, it may be useful to save it within a folder with the subject id.
However, this will not work as only one connection is allowed per input port. So we need to create a second port. We can store the files in a separate folder.
The period (.) indicates that a subfolder called par should be created. But if we wanted to store it in the same folder as the realigned files, we would use the .@ syntax. The @ tells the DataSink interface to not create the subfolder. This will allow us to create different named input ports for DataSink and allow the user to store the files in the same folder.
As discussed in Iterables, one can run a workflow iterating over various inputs using the iterables attribute of nodes. This means that a given workflow can have multiple outputs depending on how many iterables are there. Iterables create working directory subfolders such as _iterable_name_value. The parameterization input parameter controls whether the data stored using DataSink is in a folder structure that contains this iterable information or not. It is generally recommended to set this to True when using multiple nested iterables.
The substitutions and regexp_substitutions inputs allow users to modify the output destination path and name of a file. Substitutions are a list of 2-tuples and are carried out in the order in which they were entered. Assuming that the output path of a file is:
+**Note**: In order to figure out which substitutions are needed it is often useful to run the workflow on a limited set of iterables and then determine the substitutions.
+
Before we can use DataSink we first need to run a workflow. For this purpose, let's create a very short preprocessing workflow that realigns and smooths one functional image of one subject.
+
+
+
+
+
+
+
+
+
First, let's create a SelectFiles node. For an explanation of this step, see the Data Input tutorial.
Third, let's create the workflow that will contain those three nodes. For an explanation about this step, see the Workflow tutorial.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipypeimportWorkflow
+fromos.pathimportabspath
+
+# Create a preprocessing workflow
+wf=Workflow(name="preprocWF")
+wf.base_dir='/output/working_dir'
+
+# Connect the three nodes to each other
+wf.connect([(sf,mcflirt,[("func","in_file")]),
+ (mcflirt,smooth,[("out_file","in_file")])])
+
+
+
+
+
+
+
+
+
+
+
+
Now that everything is set up, let's run the preprocessing workflow.
<networkx.classes.digraph.DiGraph at 0x7f865b210cc0>
+
+
+
+
+
+
+
+
+
+
+
+
+
After the execution of the workflow we have all the data hidden in the working directory 'working_dir'. Let's take a closer look at the content of this folder:
As we can see, there is way too much content that we might not really care about. To relocate and rename all the files that are relevant to you, you can use DataSink.
DataSink is Nipype's standard output module to restructure your output files. It allows you to relocate and rename files that you deem relevant.
+
Based on the preprocessing pipeline above, let's say we want to keep the smoothed functional images as well as the motion correction parameters. To do this, we first need to create the DataSink object.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.ioimportDataSink
+
+# Create DataSink object
+sinker=Node(DataSink(),name='sinker')
+
+# Name of the output folder
+sinker.inputs.base_directory='/output/working_dir/preprocWF_output'
+
+# Connect DataSink with the relevant nodes
+wf.connect([(smooth,sinker,[('out_file','in_file')]),
+ (mcflirt,sinker,[('mean_img','mean_img'),
+ ('par_file','par_file')]),
+ ])
+wf.run()
+
This looks nice. It is what we asked it to do. But having a specific output folder for each individual output file might be suboptimal. So let's change the code above to save the output in one folder, which we will call 'preproc'.
+
For this we can use the same code as above. We only have to change the connection part:
This is already much better. But what if you want to rename the output files to represent something a bit more readable. For this DataSink has the substitution input field.
+
For example, let's assume we want to get rid of the string 'task-fingerfootlips' and 'bold_mcf' and that we want to rename the mean file, as well as adapt the file ending of the motion parameter file:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Define substitution strings
+substitutions=[('_task-fingerfootlips',''),
+ ("_ses-test",""),
+ ('_bold_mcf',''),
+ ('.nii.gz_mean_reg','_mean'),
+ ('.nii.gz.par','.par')]
+
+# Feed the substitution strings to the DataSink node
+sinker.inputs.substitutions=substitutions
+
+# Run the workflow again with the substitutions in place
+wf.run()
+
Create a simple workflow for skullstriping with FSL, the first node should use BET interface and the second node will be a DataSink. Test two methods of connecting the nodes and check the content of the output directory.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipypeimportNode,Workflow
+fromnipype.interfaces.ioimportDataSink
+fromnipype.interfaces.fslimportBET
+
+# Skullstrip process
+ex1_skullstrip=Node(BET(mask=True),name="ex1_skullstrip")
+ex1_skullstrip.inputs.in_file="/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz"
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create DataSink node
+ex1_sinker=Node(DataSink(),name='ex1_sinker')
+ex1_sinker.inputs.base_directory='/output/working_dir/ex1_output'
+
+# and a workflow
+ex1_wf=Workflow(name="ex1",base_dir='/output/working_dir')
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# let's try the first method of connecting the BET node to the DataSink node
+ex1_wf.connect([(ex1_skullstrip,ex1_sinker,[('mask_file','mask_file'),
+ ('out_file','out_file')]),
+ ])
+ex1_wf.run()
+
# now we can try the other method of connecting the node to DataSink
+ex1_wf.connect([(ex1_skullstrip,ex1_sinker,[('mask_file','bet.@mask_file'),
+ ('out_file','bet.@out_file')]),
+ ])
+ex1_wf.run()
+
Throughout Nipype we try to provide meaningful error messages. If you run into an error that does not have a meaningful error message please let us know so that we can improve error reporting.
+
Here are some notes that may help to debug workflows or understanding performance issues.
+
+
Always run your workflow first on a single iterable (e.g. subject) and
+gradually increase the execution distribution complexity (Linear->MultiProc->
+SGE).
+
+
Use the debug config mode. This can be done by setting:
When running in distributed mode on cluster engines, it is possible for a
+ node to fail without generating a crash file in the crashdump directory. In
+ such cases, it will store a crash file in the batch directory.
+
+
All Nipype crashfiles can be inspected with the nipypecli crash
+ utility.
+
+
The nipypecli search command allows you to search for regular expressions
+ in the tracebacks of the Nipype crashfiles within a log folder.
+
+
Nipype determines the hash of the input state of a node. If any input
+ contains strings that represent files on the system path, the hash evaluation
+ mechanism will determine the timestamp or content hash of each of those
+ files. Thus any node with an input containing huge dictionaries (or lists) of
+ file names can cause serious performance penalties.
+
+
For HUGE data processing, stop_on_first_crash: False, is needed to get the
+ bulk of processing done, and then stop_on_first_crash: True, is needed for
+ debugging and finding failing cases. Setting stop_on_first_crash: False
+ is a reasonable option when you would expect 90% of the data to execute
+ properly.
+
+
Sometimes nipype will hang as if nothing is going on and if you hit Ctrl+C
+ you will get a ConcurrentLogHandler error. Simply remove the pypeline.lock
+ file in your home directory and continue.
+
+
On many clusters with shared NFS mounts synchronization of files across
+ clusters may not happen before the typical NFS cache timeouts. When using
+ PBS/LSF/SGE/Condor plugins in such cases the workflow may crash because it
+ cannot retrieve the node result. Setting the job_finished_timeout can help:
Probably the most important chapter in this section is about how to handle error and crashes. Because at the beginning you will run into a few.
+
For example:
+
+
You specified filenames or paths that don't exist.
+
You try to give an interface a string as input, where a float value is expected or you try to specify a parameter that doesn't exist. Be sure to use the right input type and input name.
+
You wanted to give a list of inputs [func1.nii, func2.nii, func3.nii] to a node that only expects one input file. MapNode is your solution.
+
You wanted to run SPM's motion correction on compressed NIfTI files, i.e. *.nii.gz? SPM cannot handle that. Nipype's Gunzip interface can help.
+
You haven't set up all necessary environment variables. Nipype, for example, doesn't find your MATLAB or SPM version.
+
You forget to specify a mandatory input field.
+
You try to connect a node to an input field that another node is already connected to.
+
+
Important note about crashfiles. Crashfiles are only created when you run a workflow, not during building a workflow. If you have a typo in a folder path, because they didn't happen during runtime, but still during workflow building.
When creating a new workflow, very often the initial errors are OSError, meaning Nipype cannot find the right files. For example, let's try to run a workflow on sub-11, that in our dataset doesn't exist.
Hidden, in the log file you can find the relevant information:
+
+
OSError: No files were found matching func template: /data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz
+Interface SelectFiles failed to run.
+
+170904-05:48:13,727 workflow INFO:
+ ***********************************
+170904-05:48:13,728 workflow ERROR:
+ could not run node: preprocWF.selectfiles
+170904-05:48:13,730 workflow INFO:
+ crashfile: /repos/nipype_tutorial/notebooks/crash-20170904-054813-neuro-selectfiles-15f5400a-452e-4e0c-ae99-fc0d4b9a44f3.pklz
+170904-05:48:13,731 workflow INFO:
+ ***********************************
+
+
+
This part tells you that it's an OSError and that it looked for the file /data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz.
+
After the line ***********************************, you can additional see, that it's the node preprocWF.selectfiles that crasehd and that you can find a crashfile to this crash under /opt/tutorial/notebooks.
To get the full picture of the error, we can read the content of the crashfile (that has pklz format by default) with the bash command nipypecli crash. We will get the same information as above, but additionally, we can also see directly the input values of the Node that crashed.
+
+File: /home/neuro/nipype_tutorial/notebooks/crash-20180514-091524-neuro-selectfiles-648d7b9b-092e-479a-b79c-c04ce2ba5774.pklz
+Node: preprocWF.selectfiles
+Working directory: /home/neuro/nipype_tutorial/notebooks/working_dir/preprocWF/selectfiles
+
+
+Node inputs:
+
+base_directory = /data/ds000114
+force_lists = False
+ignore_exception = False
+raise_on_empty = True
+sort_filelist = True
+subject_id = sub-11
+
+
+
+Traceback:
+Traceback (most recent call last):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/plugins/linear.py", line 44, in run
+ node.run(updatehash=updatehash)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 480, in run
+ result = self._run_interface(execute=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 564, in _run_interface
+ return self._run_command(execute)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 644, in _run_command
+ result = self._interface.run(cwd=outdir)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/base/core.py", line 521, in run
+ outputs = self.aggregate_outputs(runtime)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/base/core.py", line 595, in aggregate_outputs
+ predicted_outputs = self._list_outputs()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/io.py", line 1402, in _list_outputs
+ raise IOError(msg)
+OSError: No files were found matching func template: /data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz
+
+
+
+Rerunning node
+180514-09:15:27,681 workflow INFO:
+ [Node] Setting-up "preprocWF.selectfiles" in "/home/neuro/nipype_tutorial/notebooks/working_dir/preprocWF/selectfiles".
+180514-09:15:27,685 workflow INFO:
+ [Node] Running "selectfiles" ("nipype.interfaces.io.SelectFiles")
+180514-09:15:27,688 workflow WARNING:
+ [Node] Error on "preprocWF.selectfiles" (/home/neuro/nipype_tutorial/notebooks/working_dir/preprocWF/selectfiles)
+Traceback (most recent call last):
+ File "/opt/conda/envs/neuro/bin/nipypecli", line 11, in <module>
+ load_entry_point('nipype==1.0.4.dev0', 'console_scripts', 'nipypecli')()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/click/core.py", line 722, in __call__
+ return self.main(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/click/core.py", line 697, in main
+ rv = self.invoke(ctx)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/click/core.py", line 1066, in invoke
+ return _process_result(sub_ctx.command.invoke(sub_ctx))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/click/core.py", line 895, in invoke
+ return ctx.invoke(self.callback, **ctx.params)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/click/core.py", line 535, in invoke
+ return callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/scripts/cli.py", line 94, in crash
+ display_crash_file(crashfile, rerun, debug, dir)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/scripts/crash_files.py", line 81, in display_crash_file
+ node.run()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 480, in run
+ result = self._run_interface(execute=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 564, in _run_interface
+ return self._run_command(execute)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 644, in _run_command
+ result = self._interface.run(cwd=outdir)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/base/core.py", line 521, in run
+ outputs = self.aggregate_outputs(runtime)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/base/core.py", line 595, in aggregate_outputs
+ predicted_outputs = self._list_outputs()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/interfaces/io.py", line 1402, in _list_outputs
+ raise IOError(msg)
+OSError: No files were found matching func template: /data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz
+
+
+
+
+
+
+
+
+
+
+
+
+
When running in the terminal you can also try options that enable the Python or Ipython debugger when re-executing: -d or -i.
+
If you don't want to have an option to rerun the crashed workflow, you can change the format of crashfile to a text format. You can either change this in a configuration file (you can read more here), or you can directly change the wf.config dictionary before running the workflow.
TraitError: The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' <class 'str'> was specified.
+
+
+
+
+
+
+
+
+
+
+
+
+
This will give you the error: TraitError: The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' <type 'str'> was specified.
+
To make sure that you are using the right input types, just check the help section of a given interface. There you can see fwhm: (a float).
+
+
+
+
+
+
+
In [ ]:
+
+
+
IsotropicSmooth.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **fslmaths**
+
+Use fslmaths to spatially smooth an image with a gaussian kernel.
+
+Inputs::
+
+ [Mandatory]
+ fwhm: (a float)
+ fwhm of smoothing kernel [mm]
+ flag: -s %.5f, position: 4
+ mutually_exclusive: sigma
+ in_file: (an existing file name)
+ image to operate on
+ flag: %s, position: 2
+ sigma: (a float)
+ sigma of smoothing kernel [mm]
+ flag: -s %.5f, position: 4
+ mutually_exclusive: fwhm
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
+ or 'input')
+ datatype to use for calculations (default is float)
+ flag: -dt %s, position: 1
+ nan2zeros: (a boolean)
+ change NaNs to zeros before doing anything
+ flag: -nan, position: 3
+ out_file: (a file name)
+ image to write
+ flag: %s, position: -2
+ output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
+ or 'input')
+ datatype to use for output (default uses input type)
+ flag: -odt %s, position: -1
+ output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
+ 'NIFTI_PAIR_GZ')
+ FSL output type
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ out_file: (an existing file name)
+ image written after calculations
+
+References::
+BibTeX('@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}', key='JenkinsonBeckmannBehrensWoolrichSmith2012')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
In a similar way, you will also get an error message if the input type is correct but you have a type in the name:
+
+
TraitError: The 'output_type' trait of an IsotropicSmoothInput instance must be u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or u'NIFTI', but a value of 'NIFTIiii' <type 'str'> was specified.
TraitError: The 'output_type' trait of an IsotropicSmoothInput instance must be 'NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or 'NIFTI_PAIR_GZ', but a value of 'NIFTIiii' <class 'str'> was specified.
+
+
+
+
+
+
+
+
+
+
+
+
+
Example Crash 3: Giving an array as input where a single file is expected¶
As you can see in the MapNode example, if you try to feed an array as an input into a field that only expects a single file, you will get a TraitError.
TraitError: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz', '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'] <class 'list'> was specified.
+
TraitError: The trait 'in_file' of a DynamicTraitedSpec instance is an existing file name, but the path '/data/ds000114/sub-01/func/sub-01_task-fingerfootlips_bold.nii.gz' does not exist.
+
+
+
+
+
+
+
+
+
+
+
+
+
By the way, not that those crashes don't create a crashfile, because they didn't happen during runtime, but still during workflow building.
SPM12 has a problem with handling *.nii.gz files. For it a compressed functional image has no temporal dimension and therefore seems to be just a 3D file. So if we try to run the Realign interface on a compressed file, we will get a TraitError error.
TraitError: Each element of the 'in_files' trait of a RealignInputSpec instance must be an existing, uncompressed file (valid extensions: [.img, .hdr, .nii]) or a list of items which are an existing, uncompressed file (valid extensions: [.img, .hdr, .nii]), but a value of '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz' <class 'str'> was specified.
+
+
+
+
+
+
+
+
+
+
+
+
+
This issue can be solved by unzipping the compressed NIfTI file before giving it as an input to an SPM node. This can either be done by using the Gunzip interface from Nipype or even better if the input is coming from a FSL interface, most of them have an input filed output_type='NIFTI', that you can set to NIFIT.
+
+
+
+
+
+
+
+
+
Example Crash 5: Nipype cannot find the right software¶
Especially at the beginning, just after installation, you sometimes forgot to specify some environment variables. If you try to use an interface where the environment variables of the software are not specified, e.g. if you try to run:
IOError: command 'mri_convert' could not be found on host mnotter
+Interface MRIConvert failed to run.
+
+
+
+
+
+
+
+
+
Or if you try to use SPM, but forgot to tell Nipype where to find it. If you forgot to tell the system where to find MATLAB (or MCR), then you will get the same kind of error as above. But if you forgot to specify which SPM you want to use, you'll get the following RuntimeError:
+
+
Standard error:
+MATLAB code threw an exception:
+SPM not in matlab path
+
+
+
+
You can solve this issue by specifying the path to your SPM version:
ValueError: Realign requires a value for input 'in_files'. For a list of required inputs, see Realign.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
This gives you the error:
+
+
ValueError: Realign requires a value for input 'in_files'. For a list of required inputs, see Realign.help()
+
+
+
+
+
+
+
+
+
As described by the error text, if we use the help() function, we can actually see, which inputs are mandatory and which are optional.
+
+
+
+
+
+
+
In [ ]:
+
+
+
realign.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Use spm_realign for estimating within modality rigid body alignment
+
+http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#page=25
+
+Examples
+--------
+
+>>> import nipype.interfaces.spm as spm
+>>> realign = spm.Realign()
+>>> realign.inputs.in_files = 'functional.nii'
+>>> realign.inputs.register_to_mean = True
+>>> realign.run() # doctest: +SKIP
+
+Inputs::
+
+ [Mandatory]
+ in_files: (a list of items which are an existing, uncompressed file
+ (valid extensions: [.img, .hdr, .nii]) or a list of items which are
+ an existing, uncompressed file (valid extensions: [.img, .hdr,
+ .nii]))
+ list of filenames to realign
+
+ [Optional]
+ fwhm: (a floating point number >= 0.0)
+ gaussian smoothing kernel width
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ interp: (0 <= a long integer <= 7)
+ degree of b-spline used for interpolation
+ jobtype: ('estwrite' or 'estimate' or 'write', nipype default value:
+ estwrite)
+ one of: estimate, write, estwrite
+ matlab_cmd: (a unicode string)
+ matlab command to use
+ mfile: (a boolean, nipype default value: True)
+ Run m-code using m-file
+ out_prefix: (a string, nipype default value: r)
+ realigned output prefix
+ paths: (a list of items which are a directory name)
+ Paths to add to matlabpath
+ quality: (0.0 <= a floating point number <= 1.0)
+ 0.1 = fast, 1.0 = precise
+ register_to_mean: (a boolean)
+ Indicate whether realignment is done to the mean image
+ separation: (a floating point number >= 0.0)
+ sampling separation in mm
+ use_mcr: (a boolean)
+ Run m-code using SPM MCR
+ use_v8struct: (a boolean, nipype default value: True)
+ Generate SPM8 and higher compatible jobs
+ weight_img: (an existing file name)
+ filename of weighting image
+ wrap: (a list of from 3 to 3 items which are an integer (int or
+ long))
+ Check if interpolation should wrap in [x,y,z]
+ write_interp: (0 <= a long integer <= 7)
+ degree of b-spline used for interpolation
+ write_mask: (a boolean)
+ True/False mask output image
+ write_which: (a list of items which are a value of class 'int',
+ nipype default value: [2, 1])
+ determines which images to reslice
+ write_wrap: (a list of from 3 to 3 items which are an integer (int or
+ long))
+ Check if interpolation should wrap in [x,y,z]
+
+Outputs::
+
+ mean_image: (an existing file name)
+ Mean image file from the realignment
+ modified_in_files: (a list of items which are a list of items which
+ are an existing file name or an existing file name)
+ Copies of all files passed to in_files. Headers will have been
+ modified to align all images with the first, or optionally to first
+ do that, extract a mean image, and re-align to that mean image.
+ realigned_files: (a list of items which are a list of items which are
+ an existing file name or an existing file name)
+ If jobtype is write or estwrite, these will be the resliced files.
+ Otherwise, they will be copies of in_files that have had their
+ headers rewritten.
+ realignment_parameters: (a list of items which are an existing file
+ name)
+ Estimated translation and rotation parameters
+
+References::
+BibTeX('@book{FrackowiakFristonFrithDolanMazziotta1997,author={R.S.J. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, and J.C. Mazziotta},title={Human Brain Function},publisher={Academic Press USA},year={1997},}', key='FrackowiakFristonFrithDolanMazziotta1997')
+
+
TraitError: Cannot set the undefined 'output_type' attribute of a 'DespikeInputSpec' object.
+
+
+
+
+
+
+
+
+
+
+
+
+
This results in the TraitError:
+
+
TraitError: Cannot set the undefined 'output_type' attribute of a 'DespikeInputSpec' object.
+
+
+
So what went wrong? If you use the help() function, you will see that the correct input filed is called outputtype and not output_type.
+
+
+
+
+
+
+
+
+
Example Crash 7: Trying to connect a node to an input field that is already occupied¶
Sometimes when you build a new workflow, you might forget that an output field was already connected and you try to connect a new node to the already occupied field.
+
First, let's create a simple workflow:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipypeimportSelectFiles,Node,Workflow
+fromos.pathimportabspathasopap
+fromnipype.interfaces.fslimportMCFLIRT,IsotropicSmooth
+
+# Create SelectFiles node
+templates={'func':'{subject_id}/func/{subject_id}_task-fingerfootlips_bold.nii.gz'}
+sf=Node(SelectFiles(templates),
+ name='selectfiles')
+sf.inputs.base_directory=opap('/data/ds000114')
+sf.inputs.subject_id='sub-01'
+
+# Create Motion Correction Node
+mcflirt=Node(MCFLIRT(mean_vol=True,
+ save_plots=True),
+ name='mcflirt')
+
+# Create Smoothing node
+smooth=Node(IsotropicSmooth(fwhm=4),
+ name='smooth')
+
+# Create a preprocessing workflow
+wf=Workflow(name="preprocWF")
+wf.base_dir='working_dir'
+
+# Connect the three nodes to each other
+wf.connect([(sf,mcflirt,[("func","in_file")]),
+ (mcflirt,smooth,[("out_file","in_file")])])
+
+
+
+
+
+
+
+
+
+
+
+
Now, let's create a new node and connect it to the already occupied input field in_file of the smooth node:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create a new node
+mcflirt_NEW=Node(MCFLIRT(mean_vol=True),
+ name='mcflirt_NEW')
+
+# Connect it to an already connected input field
+try:
+ wf.connect([(mcflirt_NEW,smooth,[("out_file","in_file")])])
+except(Exception)aserr:
+ print("Exception:",err)
+else:
+ raise
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Exception: Trying to connect preprocWF.mcflirt_NEW:out_file to preprocWF.smooth:in_file but input 'in_file' of node 'preprocWF.smooth' is already
+connected.
+
+
Nipype gives you many liberties on how to create workflows, but the execution of them uses a lot of default parameters. But you have of course all the freedom to change them as you like.
+
Nipype looks for the configuration options in the local folder under the name nipype.cfg and in ~/.nipype/nipype.cfg (in this order). It can be divided into Logging and Execution options. A few of the possible options are the following:
workflow_level: How detailed the logs regarding workflow should be
+ (possible values: INFO and DEBUG; default value: INFO)
+
+
+
utils_level: How detailed the logs regarding nipype utils, like file operations (for example overwriting warning) or the resource profiler, should be
+ (possible values: INFO and DEBUG; default value: INFO)
+
+
+
interface_level: How detailed the logs regarding interface execution should be
+ (possible values: INFO and DEBUG; default value: INFO)
+
+
+
filemanip_level (deprecated as of 1.0): How detailed the logs regarding file operations (for example overwriting warning) should be
+ (possible values: INFO and DEBUG)
+
+
+
log_to_file: Indicates whether logging should also send the output to a file
+ (possible values: true and false; default value: false)
+
+
+
log_directory: Where to store logs.
+ (string, default value: home directory)
+
+
+
log_size: Size of a single log file.
+ (integer, default value: 254000)
+
+
+
log_rotate: How many rotations should the log file make.
+ (integer, default value: 4)
plugin: This defines which execution plugin to use.
+ (possible values: Linear, MultiProc, SGE, IPython; default value: Linear)
+
+
+
stop_on_first_crash: Should the workflow stop upon the first node crashing or try to execute as many
+ nodes as possible?
+ (possible values: true and false; default value: false)
+
+
+
stop_on_first_rerun: Should the workflow stop upon the first node trying to recompute (by that we mean rerunning a node that has been run before - this can happen due changed inputs and/or hash_method since the last run).
+ (possible values: true and false; default value: false)
+
+
+
hash_method: Should the input files be checked for changes using their content (slow, but 100% accurate) or just their size and modification date (fast, but potentially prone to errors)?
+ (possible values: content and timestamp; default value: timestamp)
+
+
+
keep_inputs: Ensures that all inputs that are created in the nodes working directory are
+ kept after node execution
+ (possible values: true and false; default value: false)
+
+
+
single_thread_matlab: Should all of the Matlab interfaces (including SPM) use only one thread? This is useful if you are parallelizing your workflow using MultiProc or IPython on a single multicore machine.
+ (possible values: true and false; default value: true)
+
+
+
display_variable: Override the $DISPLAY environment variable for interfaces that require an X server. This option is useful if there is a running X server, but $DISPLAY was not defined in nipype's environment. For example, if an X server is listening on the default port of 6000, set display_variable = :0 to enable nipype interfaces to use it. It may also point to displays provided by VNC, xnest or Xvfb.
+ If neither display_variable nor the $DISPLAY environment variable is set, nipype will try to configure a new virtual server using Xvfb.
+ (possible values: any X server address; default value: not set)
+
+
+
remove_unnecessary_outputs: This will remove any interface outputs not needed by the workflow. If the
+ required outputs from a node changes, rerunning the workflow will rerun the
+ node. Outputs of leaf nodes (nodes whose outputs are not connected to any
+ other nodes) will never be deleted independent of this parameter.
+ (possible values: true and false; default value: true)
+
+
+
try_hard_link_datasink: When the DataSink is used to produce an organized output file outside
+ of nipypes internal cache structure, a file system hard link will be
+ attempted first. A hard link allows multiple file paths to point to the
+ same physical storage location on disk if the conditions allow. By
+ referring to the same physical file on disk (instead of copying files
+ byte-by-byte) we can avoid unnecessary data duplication. If hard links
+ are not supported for the source or destination paths specified, then
+ a standard byte-by-byte copy is used.
+ (possible values: true and false; default value: true)
+
+
+
use_relative_paths: Should the paths stored in results (and used to look for inputs)
+ be relative or absolute. Relative paths allow moving the whole
+ working directory around but may cause problems with
+ symlinks.
+ (possible values: true and false; default value: false)
+
+
+
local_hash_check: Perform the hash check on the job submission machine. This option minimizes
+ the number of jobs submitted to a cluster engine or a multiprocessing pool
+ to only those that need to be rerun.
+ (possible values: true and false; default value: true)
+
+
+
job_finished_timeout: When batch jobs are submitted through, SGE/PBS/Condor they could be killed
+ externally. Nipype checks to see if a results file exists to determine if
+ the node has completed. This timeout determines for how long this check is
+ done after a job finish is detected. (float in seconds; default value: 5)
+
+
+
remove_node_directories (EXPERIMENTAL): Removes directories whose outputs have already been used
+ up. Doesn't work with IdentiInterface or any node that patches
+ data through (without copying)
+ (possible values: true and false; default value: false)
+
+
+
stop_on_unknown_version: If this is set to True, an underlying interface will raise an error, when no
+ version information is available. Please notify developers or submit a patch.
+
+
+
parameterize_dirs: If this is set to True, the node's output directory will contain full
+ parameterization of any iterable, otherwise parameterizations over 32
+ characters will be replaced by their hash.
+ (possible values: true and false; default value: true)
+
+
+
poll_sleep_duration: This controls how long the job submission loop will sleep between submitting
+ all pending jobs and checking for job completion. To be nice to cluster
+ schedulers the default is set to 2 seconds.
+
+
+
xvfb_max_wait: Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x
+ parameter of an Interface is True.
+
+
+
crashfile_format: This option controls the file type of any crashfile generated. Pklz
+ crashfiles allow interactive debugging and rerunning of nodes, while text
+ crashfiles allow portability across machines and shorter load time.
+ (possible values: pklz and txt; default value: pklz)
enabled: Enables monitoring the resources occupation (possible values: true and
+ false; default value: false). All the following options will be
+ dismissed if the resource monitor is not enabled.
+
+
+
sample_frequency: Sampling period (in seconds) between measurements of resources (memory, cpus)
+ being used by an interface
+ (default value: 1)
+
+
+
summary_file: Indicates where the summary file collecting all profiling information from the
+ resource monitor should be stored after execution of a workflow.
+ The summary_file does not apply to interfaces run independently.
+ (unset by default, in which case the summary file will be written out to
+ <base_dir>/resource_monitor.json of the top-level workflow).
+
+
+
summary_append: Append to an existing summary file (only applies to workflows).
+ (default value: true, possible values: true or false).
You can also directly set global config options in your workflow script. An
+example is shown below. This needs to be called before you import the
+pipeline or the logger. Otherwise, logging level will not be reset.
The configuration options can be changed globally (i.e. for all workflows), for just a workflow, or for just a node. The implementations look as follows (note that you should first create directories if you want to change crashdump_dir and log_directory):
Satra once called the Function module, the "do anything you want card". Which is a perfect description. Because it allows you to put any code you want into an empty node, which you then can put in your workflow exactly where it needs to be.
The most important component of a working Function interface is a Python function. There are several ways to associate a function with a Function interface, but the most common way will involve functions you code yourself as part of your Nipype scripts. Consider the following function:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create a small example function
+defadd_two(x_input):
+ returnx_input+2
+
+
+
+
+
+
+
+
+
+
+
+
This simple function takes a value, adds 2 to it, and returns that new value.
+
Just as Nipype interfaces have inputs and outputs, Python functions have inputs, in the form of parameters or arguments, and outputs, in the form of their return values. When you define a Function interface object with an existing function, as in the case of add_two() above, you must pass the constructor information about the function's inputs, its outputs, and the function itself. For example,
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import Node and Function module
+fromnipypeimportNode,Function
+
+# Create Node
+addtwo=Node(Function(input_names=["x_input"],
+ output_names=["val_output"],
+ function=add_two),
+ name='add_node')
+
+
+
+
+
+
+
+
+
+
+
+
Then you can set the inputs and run just as you would with any other interface:
<nipype.interfaces.base.support.InterfaceResult at 0x7fe2f6fc5c18>
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
addtwo.result.outputs
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
+val_output = 6
+
+
+
+
+
+
+
+
+
+
+
+
+
You need to be careful that the name of the input paramter to the node is the same name as the input parameter to the function, i.e. x_input. But you don't have to specify input_names or output_names. You can also just use:
Chances are, you will want to write functions that do more complicated processing, particularly using the growing stack of Python packages geared towards neuroimaging, such as Nibabel, Nipy, or PyMVPA.
+
While this is completely possible (and, indeed, an intended use of the Function interface), it does come with one important constraint. The function code you write is executed in a standalone environment, which means that any external functions or classes you use have to be imported within the function itself:
Without explicitly importing Nibabel in the body of the function, this would fail.
+
Alternatively, it is possible to provide a list of strings corresponding to the imports needed to execute a function as a parameter of the Function constructor. This allows for the use of external functions that do not import all external definitions inside the function body.
To use an existing function object (as we have been doing so far) with a Function interface, it must be passed to the constructor. However, it is also possible to dynamically set how a Function interface will process its inputs using the special function_str input.
+
This input takes not a function object, but actually a single string that can be parsed to define a function. In the equivalent case to our example above, the string would be
+
+
+
+
+
+
+
In [ ]:
+
+
+
add_two_str="def add_two(val):\n return val + 2\n"
+
+
+
+
+
+
+
+
+
+
+
+
Unlike when using a function object, this input can be set like any other, meaning that you could write a function that outputs different function strings depending on some run-time contingencies, and connect that output the function_str input of a downstream Function interface.
+
+
+
+
+
+
+
+
+
Important - Function Nodes are closed environments¶
There's only one trap that you should be aware of when using the Function module.
+
If you want to use another module inside a function, you have to import it again inside the function. Let's take a look at the following example:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipypeimportNode,Function
+
+# Create the Function object
+defget_random_array(array_shape):
+
+ # Import random function
+ fromnumpy.randomimportrandom
+
+ returnrandom(array_shape)
+
+# Create Function Node that executes get_random_array
+rndArray=Node(Function(input_names=["array_shape"],
+ output_names=["random_array"],
+ function=get_random_array),
+ name='rndArray_node')
+
+# Specify the array_shape of the random array
+rndArray.inputs.array_shape=(3,3)
+
+# Run node
+rndArray.run()
+
+# Print output
+print(rndArray.result.outputs)
+
We've learned from the Workflow tutorial that every Nipype workflow is a directed acyclic graph. Some workflow structures are easy to understand directly from the script and some others are too complex for that. Luckily, there is the write_graph method!
write_graph allows us to visualize any workflow in five different ways:
+
+
orig - creates a top-level graph without expanding internal workflow nodes
+
flat - expands workflow nodes recursively
+
hierarchical - expands workflow nodes recursively with a notion on the hierarchy
+
colored - expands workflow nodes recursively with a notion on hierarchy in color
+
exec - expands workflows to depict iterables
+
+
Which graph visualization should be used is chosen by the graph2use parameter.
+
Additionally, we can also choose the format of the output file (png or svg) with the format parameter.
+
A third parameter, called simple_form can be used to specify if the node names used in the graph should be of the form nodename (package) or nodename.Class.package.
Instead of creating a new workflow from scratch, let's just import one from the Nipype workflow library.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import the function to create an spm fmri preprocessing workflow
+fromnipype.workflows.fmri.spmimportcreate_spm_preproc
+
+# Create the workflow object
+spmflow=create_spm_preproc()
+
+
+
+
+
+
+
+
+
+
+
+
For a reason that will become clearer under the exec visualization, let's add an iternode at the beginning of the spmflow and connect them together under a new workflow, called metaflow. The iternode will cause the workflow to be executed three times, once with the fwhm value set to 4, once set to 6 and once set to 8. For more about this see the Iteration tutorial.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import relevant modules
+fromnipypeimportIdentityInterface,Node,Workflow
+
+# Create an iternode that iterates over three different fwhm values
+inputNode=Node(IdentityInterface(fields=['fwhm']),name='iternode')
+inputNode.iterables=('fwhm',[4,6,8])
+
+# Connect inputNode and spmflow in a workflow
+metaflow=Workflow(name='metaflow')
+metaflow.connect(inputNode,"fwhm",spmflow,"inputspec.fwhm")
+
This visualization gives us a basic overview of all the nodes and internal workflows in a workflow and shows in a simple way the dependencies between them.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type orig
+spmflow.write_graph(graph2use='orig',dotfilename='./graph_orig.dot')
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_orig.png")
+
This visualization gives us already more information about the internal structure of the spmflow workflow. As we can, the internal workflow getmask from the orig visualization above was replaced by the individual nodes contained in this internal workflow.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type flat
+spmflow.write_graph(graph2use='flat',dotfilename='./graph_flat.dot')
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_flat.png")
+
To better appreciate this visualization, let's look at the metaflow workflow that has one hierarchical level more than the spmflow.
+
As you can see, this visualization makes it much clearer which elements of a workflow are nodes and which ones are internal workflows. Also, each connection is shown as an individual arrow, and not just represented by one single arrow between two nodes. Additionally, iternodes and mapnodes are visualized differently than normal nodes to make them pop out more.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type hierarchical
+metaflow.write_graph(graph2use='hierarchical',dotfilename='./graph_hierarchical.dot')
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_hierarchical.png")
+
This visualization is almost the same as the hierarchical above. The only difference is that individual nodes and different hierarchy levels are colored coded differently.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type colored
+metaflow.write_graph(graph2use='colored',dotfilename='./graph_colored.dot')
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_colored.png")
+
This visualization is the most different from the rest. Like the flat visualization, it depicts all individual nodes. But additionally, it drops the utility nodes from the workflow and expands workflows to depict iterables (can be seen in the detailed_graph visualization further down below).
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type exec
+metaflow.write_graph(graph2use='exec',dotfilename='./graph_exec.dot')
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_exec.png")
+
The orig, flat and exec visualization also create a detailed graph whenever write_graph is executed. A detailed graph shows a node with not just the node name, but also with all its input and output parameters.
In the middle left of the figure, we have three preproc.smooth nodes of the spm interface with the names "a0", "a1" and "a2". Those represent the three smoothing nodes with the fwhm parameter set to 4, 6 and 8. Now if those nodes would be connected to another workflow, this would mean that the workflow that follows would be depicted three times, each time for another input coming from the preproc.smooth node.
+
Therefore, the detailed exec visualization makes all individual execution elements very clear and allows it to see which elements can be executed in parallel.
Last but not least is the third write_graph argument, simple_form. If this parameter is set to False, this means that the node names in the visualization will be written in the form of nodename.Class.package, instead of nodename (package). For example, let's look at the origvisualization with simple_form set to False.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Write graph of type orig
+spmflow.write_graph(graph2use='orig',dotfilename='./graph_orig_notSimple.dot',simple_form=False)
+
+# Visualize graph
+fromIPython.displayimportImage
+Image(filename="graph_orig_notSimple.png")
+
Nipype doesn't just allow you to create your own workflows. It also already comes with predefined workflows, developed by the community, for the community. For a full list of all workflows, look under the Workflows section of the main homepage.
+
But to give you a short overview, there are workflows about:
+
Functional MRI workflows:
+
+
from fsl about resting state, fixed_effects, modelfit, featreg, susan_smooth and many more
+
from spm about DARTEL and VBM
+
+
Structural MRI workflows
+
+
from ants about ANTSBuildTemplate and antsRegistrationBuildTemplate
+
from freesurfer about bem, recon and tessellation
+
+
Diffusion workflows:
+
+
from camino about connectivity_mapping, diffusion and group_connectivity
+
from dipy about denoise
+
from fsl about artifacts, dti, epi, tbss and many more
+
from mrtrix about connectivity_mapping, diffusion and group_connectivity
Let's consider the example of a functional MRI workflow, that uses FSL's Susan algorithm to smooth some data. To load such a workflow, we only need the following command:
Once a workflow is created, we need to make sure that the mandatory inputs are specified. To see which inputs we have to define, we can use the command:
+
create_susan_smooth?
+
Which gives us the output:
+
+
Create a SUSAN smoothing workflow
+
+Parameters
+----------
+Inputs:
+ inputnode.in_files : functional runs (filename or list of filenames)
+ inputnode.fwhm : fwhm for smoothing with SUSAN
+ inputnode.mask_file : mask used for estimating SUSAN thresholds (but not for smoothing)
+
+Outputs:
+ outputnode.smoothed_files : functional runs (filename or list of filenames)
+
+
+
+
+
+
+
+
+
As we can see, we also need a mask file. For the sake of convenience, let's take the mean image of a functional image and threshold it at the 50% percentile:
In Nipype, interfaces are python modules that allow you to use various external packages (e.g. FSL, SPM or FreeSurfer), even if they themselves are written in another programming language than python. Such an interface knows what sort of options an external program has and how to execute it.
Interfaces are the building blocks that solve well-defined tasks. We solve more complex tasks by combining interfaces with workflows:
+
+
+
Interfaces
+
Workflows
+
+
+
+
Wrap *unitary* tasks
+
Wrap *meta*-tasks
+
implemented with nipype interfaces wrapped inside ``Node`` objects
+
subworkflows can also be added to a workflow without any wrapping
+
+
+
+
Keep track of the inputs and outputs, and check their expected types
+
Do not have inputs/outputs, but expose them from the interfaces wrapped inside
+
+
+
Do not cache results (unless you use [interface caching](advanced_interfaces_caching.ipynb))
+
Cache results
+
+
+
Run by a nipype plugin
+
Run by a nipype plugin
+
+
+
+
+
+
+
+
+
+
+
To illustrate why interfaces are so useful, let's have a look at the brain extraction algorithm BET from FSL. Once in its original framework and once in the Nipype framework.
Perfect! Exactly what we want. Hmm... what else could we want from BET? Well, it's actually a fairly complicated program. As is the case for all FSL binaries, just call it with the help flag -h to see all its options.
+
+
+
+
+
+
+
In [ ]:
+
+
+
!bet -h
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Usage: bet <input> <output> [options]
+
+Main bet2 options:
+ -o generate brain surface outline overlaid onto original image
+ -m generate binary brain mask
+ -s generate approximate skull image
+ -n don't generate segmented brain image output
+ -f <f> fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates
+ -g <g> vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top
+ -r <r> head radius (mm not voxels); initial surface sphere is set to half of this
+ -c <x y z> centre-of-gravity (voxels not mm) of initial mesh surface.
+ -t apply thresholding to segmented brain image and mask
+ -e generates brain surface as mesh in .vtk format
+
+Variations on default bet2 functionality (mutually exclusive options):
+ (default) just run bet2
+ -R robust brain centre estimation (iterates BET several times)
+ -S eye & optic nerve cleanup (can be useful in SIENA)
+ -B bias field & neck cleanup (can be useful in SIENA)
+ -Z improve BET if FOV is very small in Z (by temporarily padding end slices)
+ -F apply to 4D FMRI data (uses -f 0.3 and dilates brain mask slightly)
+ -A run bet2 and then betsurf to get additional skull and scalp surfaces (includes registrations)
+ -A2 <T2> as with -A, when also feeding in non-brain-extracted T2 (includes registrations)
+
+Miscellaneous options:
+ -v verbose (switch on diagnostic messages)
+ -h display this help, then exits
+ -d debug (don't delete temporary intermediate images)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
We see that BET can also return a binary brain mask as a result of the skull-strip, which can be useful for masking our GLM analyses (among other things). Let's run it again including that option and see the result.
/opt/conda/envs/neuro/lib/python3.6/site-packages/nilearn/image/resampling.py:518: UserWarning: Casting data from int32 to float32
+ warnings.warn("Casting data from %s to %s" % (data.dtype.name, aux))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Now let's look at the BET interface in Nipype. First, we have to import it.
First things first, we need to import the BET class from Nipype's interfaces module:
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.fslimportBET
+
+
+
+
+
+
+
+
+
+
+
+
Now that we have the BET function accessible, we just have to specify the input and output file. And finally we have to run the command. So exactly like in the original framework.
This is not surprising, because Nipype used exactly the same bash code that we were using in the original framework example above. To verify this, we can call the cmdline function of the constructed BET instance.
+
+
+
+
+
+
+
In [ ]:
+
+
+
print(skullstrip.cmdline)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
bet /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz /output/T1w_nipype_bet.nii.gz
+
+
+
+
+
+
+
+
+
+
+
+
+
Another way to set the inputs on an interface object is to use them as keyword arguments when you construct the interface instance. Let's write the Nipype code from above in this way, but let's also add the option to create a brain mask.
/opt/conda/envs/neuro/lib/python3.6/site-packages/nilearn/image/resampling.py:518: UserWarning: Casting data from int32 to float32
+ warnings.warn("Casting data from %s to %s" % (data.dtype.name, aux))
+
But how did we know what the names of the input parameters are? In the original framework we were able to just run BET, without any additional parameters to get an information page. In the Nipype framework we can achieve the same thing by using the help() function on an interface class. For the BET example, this is:
+
+
+
+
+
+
+
In [ ]:
+
+
+
BET.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **bet**
+
+Use FSL BET command for skull stripping.
+
+For complete details, see the `BET Documentation.
+<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide>`_
+
+Examples
+--------
+>>> from nipype.interfaces import fsl
+>>> btr = fsl.BET()
+>>> btr.inputs.in_file = 'structural.nii'
+>>> btr.inputs.frac = 0.7
+>>> btr.inputs.out_file = 'brain_anat.nii'
+>>> btr.cmdline
+'bet structural.nii brain_anat.nii -f 0.70'
+>>> res = btr.run() # doctest: +SKIP
+
+Inputs::
+
+ [Mandatory]
+ in_file: (an existing file name)
+ input file to skull strip
+ flag: %s, position: 0
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ center: (a list of at most 3 items which are an integer (int or
+ long))
+ center of gravity in voxels
+ flag: -c %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ frac: (a float)
+ fractional intensity threshold
+ flag: -f %.2f
+ functional: (a boolean)
+ apply to 4D fMRI data
+ flag: -F
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ mask: (a boolean)
+ create binary mask image
+ flag: -m
+ mesh: (a boolean)
+ generate a vtk mesh brain surface
+ flag: -e
+ no_output: (a boolean)
+ Don't generate segmented output
+ flag: -n
+ out_file: (a file name)
+ name of output skull stripped image
+ flag: %s, position: 1
+ outline: (a boolean)
+ create surface outline image
+ flag: -o
+ output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
+ 'NIFTI_PAIR_GZ')
+ FSL output type
+ padding: (a boolean)
+ improve BET if FOV is very small in Z (by temporarily padding end
+ slices)
+ flag: -Z
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ radius: (an integer (int or long))
+ head radius
+ flag: -r %d
+ reduce_bias: (a boolean)
+ bias field and neck cleanup
+ flag: -B
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ remove_eyes: (a boolean)
+ eye & optic nerve cleanup (can be useful in SIENA)
+ flag: -S
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ robust: (a boolean)
+ robust brain centre estimation (iterates BET several times)
+ flag: -R
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ skull: (a boolean)
+ create skull image
+ flag: -s
+ surfaces: (a boolean)
+ run bet2 and then betsurf to get additional skull and scalp surfaces
+ (includes registrations)
+ flag: -A
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ t2_guided: (a file name)
+ as with creating surfaces, when also feeding in non-brain-extracted
+ T2 (includes registrations)
+ flag: -A2 %s
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+ threshold: (a boolean)
+ apply thresholding to segmented brain image and mask
+ flag: -t
+ vertical_gradient: (a float)
+ vertical gradient in fractional intensity threshold (-1, 1)
+ flag: -g %.2f
+
+Outputs::
+
+ inskull_mask_file: (a file name)
+ path/name of inskull mask (if generated)
+ inskull_mesh_file: (a file name)
+ path/name of inskull mesh outline (if generated)
+ mask_file: (a file name)
+ path/name of binary brain mask (if generated)
+ meshfile: (a file name)
+ path/name of vtk mesh file (if generated)
+ out_file: (a file name)
+ path/name of skullstripped file (if generated)
+ outline_file: (a file name)
+ path/name of outline file (if generated)
+ outskin_mask_file: (a file name)
+ path/name of outskin mask (if generated)
+ outskin_mesh_file: (a file name)
+ path/name of outskin mesh outline (if generated)
+ outskull_mask_file: (a file name)
+ path/name of outskull mask (if generated)
+ outskull_mesh_file: (a file name)
+ path/name of outskull mesh outline (if generated)
+ skull_mask_file: (a file name)
+ path/name of skull mask (if generated)
+
+References::
+BibTeX('@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}', key='JenkinsonBeckmannBehrensWoolrichSmith2012')
+
+
+
+
+
+
+
+
+
+
+
+
+
+
As you can see, we get three different informations. First, a general explanation of the class.
+
+
Wraps command **bet**
+
+Use FSL BET command for skull stripping.
+
+For complete details, see the `BET Documentation.
+<http://www.fmrib.ox.ac.uk/fsl/bet2/index.html>`_
+
+Examples
+--------
+>>> from nipype.interfaces import fsl
+>>> from nipype.testing import example_data
+>>> btr = fsl.BET()
+>>> btr.inputs.in_file = example_data('structural.nii')
+>>> btr.inputs.frac = 0.7
+>>> res = btr.run() # doctest: +SKIP
+
+
+
Second, a list of all possible input parameters.
+
+
Inputs:
+
+ [Mandatory]
+ in_file: (an existing file name)
+ input file to skull strip
+ flag: %s, position: 0
+
+ [Optional]
+ args: (a string)
+ Additional parameters to the command
+ flag: %s
+ center: (a list of at most 3 items which are an integer (int or
+ long))
+ center of gravity in voxels
+ flag: -c %s
+ environ: (a dictionary with keys which are a value of type 'str' and
+ with values which are a value of type 'str', nipype default value:
+ {})
+ Environment variables
+ frac: (a float)
+ fractional intensity threshold
+ flag: -f %.2f
+ functional: (a boolean)
+ apply to 4D fMRI data
+ flag: -F
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ mask: (a boolean)
+ create binary mask image
+ flag: -m
+ mesh: (a boolean)
+ generate a vtk mesh brain surface
+ flag: -e
+ no_output: (a boolean)
+ Don't generate segmented output
+ flag: -n
+ out_file: (a file name)
+ name of output skull stripped image
+ flag: %s, position: 1
+ outline: (a boolean)
+ create surface outline image
+ flag: -o
+ output_type: ('NIFTI_PAIR' or 'NIFTI_PAIR_GZ' or 'NIFTI_GZ' or
+ 'NIFTI')
+ FSL output type
+ padding: (a boolean)
+ improve BET if FOV is very small in Z (by temporarily padding end
+ slices)
+ flag: -Z
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ radius: (an integer (int or long))
+ head radius
+ flag: -r %d
+ reduce_bias: (a boolean)
+ bias field and neck cleanup
+ flag: -B
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ remove_eyes: (a boolean)
+ eye & optic nerve cleanup (can be useful in SIENA)
+ flag: -S
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ robust: (a boolean)
+ robust brain centre estimation (iterates BET several times)
+ flag: -R
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ skull: (a boolean)
+ create skull image
+ flag: -s
+ surfaces: (a boolean)
+ run bet2 and then betsurf to get additional skull and scalp surfaces
+ (includes registrations)
+ flag: -A
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ t2_guided: (a file name)
+ as with creating surfaces, when also feeding in non-brain-extracted
+ T2 (includes registrations)
+ flag: -A2 %s
+ mutually_exclusive: functional, reduce_bias, robust, padding,
+ remove_eyes, surfaces, t2_guided
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+ threshold: (a boolean)
+ apply thresholding to segmented brain image and mask
+ flag: -t
+ vertical_gradient: (a float)
+ vertical gradient in fractional intensity threshold (-1, 1)
+ flag: -g %.2f
+
+
+
And third, a list of all possible output parameters.
+
+
Outputs:
+
+ inskull_mask_file: (a file name)
+ path/name of inskull mask (if generated)
+ inskull_mesh_file: (a file name)
+ path/name of inskull mesh outline (if generated)
+ mask_file: (a file name)
+ path/name of binary brain mask (if generated)
+ meshfile: (a file name)
+ path/name of vtk mesh file (if generated)
+ out_file: (a file name)
+ path/name of skullstripped file (if generated)
+ outline_file: (a file name)
+ path/name of outline file (if generated)
+ outskin_mask_file: (a file name)
+ path/name of outskin mask (if generated)
+ outskin_mesh_file: (a file name)
+ path/name of outskin mesh outline (if generated)
+ outskull_mask_file: (a file name)
+ path/name of outskull mask (if generated)
+ outskull_mesh_file: (a file name)
+ path/name of outskull mesh outline (if generated)
+ skull_mask_file: (a file name)
+ path/name of skull mask (if generated)
+
+
+
+
+
+
+
+
+
So here we see that Nipype also has output parameters. This is very practical. Because instead of typing the full path name to the mask volume, we can also more directly use the mask_file parameter.
To execute any interface class we use the run method on that object. For FSL, Freesurfer, and other programs, this will just make a system call with the command line we saw above. For MATLAB-based programs like SPM, it will actually generate a .m file and run a MATLAB process to execute it. All of that is handled in the background.
+
But what happens if we didn't specify all necessary inputs? For instance, you need to give BET a file to work on. If you try and run it without setting the input in_file, you'll get a Python exception before anything actually gets executed:
ValueError: BET requires a value for input 'in_file'. For a list of required inputs, see BET.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
Nipype also knows some things about what sort of values should get passed to the inputs, and will raise (hopefully) informative exceptions when they are violated -- before anything gets processed. For example, BET just lets you say "create a mask," it doesn't let you name it. You may forget this, and try to give it a name. In this case, Nipype will raise a TraitError telling you what you did wrong:
TraitError: The 'mask' trait of a BETInputSpec instance must be a boolean, but a value of 'mask_file.nii' <class 'str'> was specified.
+
+
+
+
+
+
+
+
+
+
+
+
+
Additionally, Nipype knows that, for inputs corresponding to files you are going to process, they should exist in your file system. If you pass a string that doesn't correspond to an existing file, it will error and let you know:
TraitError: The trait 'in_file' of a BETInputSpec instance is an existing file name, but the path '/data/oops_a_typo.nii' does not exist.
+
+
+
+
+
+
+
+
+
+
+
+
+
It turns out that for default output files, you don't even need to specify a name. Nipype will know what files are going to be created and will generate a name for you:
bet /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz /home/neuro/nipype_tutorial/notebooks/sub-01_ses-test_T1w_brain.nii.gz
+
+
+
+
+
+
+
+
+
+
+
+
+
Note that it is going to write the output file to the local directory.
+
What if you just ran this interface and wanted to know what it called the file that was produced? As you might have noticed before, calling the run method returned an object called InterfaceResult that we saved under the variable res. Let's inspect that object:
We see that four possible files can be generated by BET. Here we ran it in the most simple way possible, so it just generated an out_file, which is the skull-stripped image. Let's see what happens when we generate a mask. By the way, you can also set inputs at runtime by including them as arguments to the run method:
A major motivating objective for Nipype is to streamline the integration of different analysis packages, so that you can use the algorithms you feel are best suited to your particular problem.
+
Say that you want to use BET, as SPM does not offer a way to create an explicit mask from functional data, but that otherwise you want your processing to occur in SPM. Although possible to do this in a MATLAB script, it might not be all that clean, particularly if you want your skullstrip to happen in the middle of your workflow (for instance, after realignment). Nipype provides a unified representation of interfaces across analysis packages.
Import IsotropicSmooth from nipype.interfaces.fsl and find the FSL command that is being run. What are the mandatory inputs for this interface?
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.fslimportIsotropicSmooth
+# all this information can be found when we run `help` method.
+# note that you can either provide `in_file` and `fwhm` or `in_file` and `sigma`
+IsotropicSmooth.help()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Wraps command **fslmaths**
+
+Use fslmaths to spatially smooth an image with a gaussian kernel.
+
+Inputs::
+
+ [Mandatory]
+ fwhm: (a float)
+ fwhm of smoothing kernel [mm]
+ flag: -s %.5f, position: 4
+ mutually_exclusive: sigma
+ in_file: (an existing file name)
+ image to operate on
+ flag: %s, position: 2
+ sigma: (a float)
+ sigma of smoothing kernel [mm]
+ flag: -s %.5f, position: 4
+ mutually_exclusive: fwhm
+
+ [Optional]
+ args: (a unicode string)
+ Additional parameters to the command
+ flag: %s
+ environ: (a dictionary with keys which are a bytes or None or a value
+ of class 'str' and with values which are a bytes or None or a value
+ of class 'str', nipype default value: {})
+ Environment variables
+ ignore_exception: (a boolean, nipype default value: False)
+ Print an error message instead of throwing an exception in case the
+ interface fails to run
+ internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
+ or 'input')
+ datatype to use for calculations (default is float)
+ flag: -dt %s, position: 1
+ nan2zeros: (a boolean)
+ change NaNs to zeros before doing anything
+ flag: -nan, position: 3
+ out_file: (a file name)
+ image to write
+ flag: %s, position: -2
+ output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
+ or 'input')
+ datatype to use for output (default uses input type)
+ flag: -odt %s, position: -1
+ output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
+ 'NIFTI_PAIR_GZ')
+ FSL output type
+ terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
+ Control terminal output: `stream` - displays to terminal immediately
+ (default), `allatonce` - waits till command is finished to display
+ output, `file` - writes output to file, `none` - output is ignored
+
+Outputs::
+
+ out_file: (an existing file name)
+ image written after calculations
+
+References::
+BibTeX('@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}', key='JenkinsonBeckmannBehrensWoolrichSmith2012')
+
+
# we will be using plot_anat from nilearn package
+%matplotlib inline
+fromnilearn.plottingimportplot_anat
+plot_anat('/output/T1w_nipype_smooth.nii.gz',title='after smoothing',
+ display_mode='ortho',dim=-1,draw_cross=False,annotate=False);
+
Some steps in a neuroimaging analysis are repetitive. Running the same preprocessing on multiple subjects or doing statistical inference on multiple files. To prevent the creation of multiple individual scripts, Nipype has as execution plugin for Workflow, called iterables.
+
+
If you are interested in more advanced procedures, such as synchronizing multiple iterables or using conditional iterables, check out the synchronizeand intersource section in the JoinNode notebook.
Let's assume we have a workflow with two nodes, node (A) does simple skull stripping, and is followed by a node (B) that does isometric smoothing. Now, let's say, that we are curious about the effect of different smoothing kernels. Therefore, we want to run the smoothing node with FWHM set to 2mm, 8mm, and 16mm.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipypeimportNode,Workflow
+fromnipype.interfaces.fslimportBET,IsotropicSmooth
+
+# Initiate a skull stripping Node with BET
+skullstrip=Node(BET(mask=True,
+ in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'),
+ name="skullstrip")
+
Now, to use iterables and therefore smooth with different fwhm is as simple as that:
+
+
+
+
+
+
+
In [ ]:
+
+
+
isosmooth.iterables=("fwhm",[4,8,16])
+
+
+
+
+
+
+
+
+
+
+
+
And to wrap it up. We need to create a workflow, connect the nodes and finally, can run the workflow in parallel.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create the workflow
+wf=Workflow(name="smoothflow")
+wf.base_dir="/output"
+wf.connect(skullstrip,'out_file',isosmooth,'in_file')
+
+# Run it in parallel (one core for each smoothing kernel)
+wf.run('MultiProc',plugin_args={'n_procs':3})
+
<networkx.classes.digraph.DiGraph at 0x7f77bd100470>
+
+
+
+
+
+
+
+
+
+
+
+
+
Note, that iterables is set on a specific node (isosmooth in this case), but Workflow is needed to expend the graph to three subgraphs with three different versions of the isosmooth node.
+
If we visualize the graph with exec, we can see where the parallelization actually takes place.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Visualize the detailed graph
+fromIPython.displayimportImage
+wf.write_graph(graph2use='exec',format='png',simple_form=True)
+Image(filename='/output/smoothflow/graph_detailed.png')
+
IdentityInterface (special use case of iterables)¶
We often want to start our worflow from creating subgraphs, e.g. for running preprocessing for all subjects. We can easily do it with setting iterables on the IdentityInterface. The IdentityInterface interface allows you to create Nodes that does simple identity mapping, i.e. Nodes that only work on parameters/strings.
+
For example, you want to start your workflow by collecting anatomical files for 5 subjects.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# First, let's specify the list of subjects
+subject_list=['01','02','03','04','05']
+
Create a workflow to calculate various powers of 2 using two nodes, one for IdentityInterface with iterables, and one for Function interface to calculate the power of 2.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# lets start from the Identity node
+fromnipypeimportFunction,Node,Workflow
+fromnipype.interfaces.utilityimportIdentityInterface
+
+iden=Node(IdentityInterface(fields=['number']),name="identity")
+iden.iterables=[("number",range(8))]
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# the second node should use the Function interface
+defpower_of_two(n):
+ return2**n
+
+# Create Node
+power=Node(Function(input_names=["n"],
+ output_names=["pow"],
+ function=power_of_two),
+ name='power')
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
#and now the workflow
+wf_ex1=Workflow(name="exercise1")
+wf_ex1.connect(iden,"number",power,"n")
+res_ex1=wf_ex1.run()
+
+# we can print the results
+foriinrange(8):
+ print(list(res_ex1.nodes())[i].result.outputs)
+
JoinNode has the opposite effect of iterables. Where iterables split up the execution workflow into many different branches, a JoinNode merges them back into on node. A JoinNode generalizes MapNode to operate in conjunction with an upstream iterable node to reassemble downstream results, e.g.:
Let's consider the very simple example depicted at the top of this page:
+
+
+
+
+
+
+
+
+
fromnipypeimportNode,JoinNode,Workflow
+
+# Specify fake input node A
+a=Node(interface=A(),name="a")
+
+# Iterate over fake node B's input 'in_file?
+b=Node(interface=B(),name="b")
+b.iterables=('in_file',[file1,file2])
+
+# Pass results on to fake node C
+c=Node(interface=C(),name="c")
+
+# Join forked execution workflow in fake node D
+d=JoinNode(interface=D(),
+ joinsource="b",
+ joinfield="in_files",
+ name="d")
+
+# Put everything into a workflow as usual
+workflow=Workflow(name="workflow")
+workflow.connect([(a,b,[('subject','subject')]),
+ (b,c,[('out_file','in_file')])
+ (c,d,[('out_file','in_files')])
+ ])
+
+
+
+
+
+
+
+
+
+
As you can see, setting up a JoinNode is rather simple. The only difference to a normal Node is the joinsource and the joinfield. joinsource specifies from which node the information to join is coming and the joinfield specifies the input field of the JoinNode where the information to join will be entering the node.
+
+
+
+
+
+
+
+
+
This example assumes that interface A has one output subject, interface B has two inputs subject and in_file and one output out_file, interface C has one input in_file and one output out_file, and interface D has one list input in_files. The images variable is a list of three input image file names.
+
As with iterables and the MapNodeiterfield, the joinfield can be a list of fields. Thus, the declaration in the previous example is equivalent to the following:
In this example, the node Cout_file outputs are collected into the JoinNodeDin_files input list. The in_files order is the same as the upstream B node iterables order.
+
The JoinNode input can be filtered for unique values by specifying the unique flag, e.g.:
The Nodeiterables parameter can be be a single field or a list of fields. If it is a list, then execution is performed over all permutations of the list items. For example:
+
+
+
+
+
+
+
+
+
b.iterables=[("m",[1,2]),("n",[3,4])]
+
+
+
+
+
+
+
+
+
+
results in the execution graph:
+
+
where B13 has inputs m = 1, n = 3, B14 has inputs m = 1, n = 4, etc.
+
The synchronize parameter synchronizes the iterables lists, e.g.:
In this example, all interfaces have input in_file and output out_file. In addition, interface B has input m and interface D has input n. A Python dictionary associates the B node input value with the downstream D node n iterable values.
+
This example can be extended with a summary JoinNode:
The combination of iterables, MapNode, JoinNode, synchronize and itersource enables the creation of arbitrarily complex workflow graphs. The astute workflow builder will recognize that this flexibility is both a blessing and a curse. These advanced features are handy additions to the Nipype toolkit when used judiciously.
Let's consider another example where we have one node that iterates over 3 different numbers and generates random numbers. Another node joins those three different numbers (each coming from a separate branch of the workflow) into one list. To make the whole thing a bit more realistic, the second node will use the Function interface to do something with those numbers, before we spit them out again.
We extend the workflow by using three nodes. Note that even this workflow, the joinsource corresponds to the node containing iterables and the joinfield corresponds to the input port of the JoinNode that aggregates the iterable branches. As before the graph below shows how the execution process is set up.
You have list of DOB of the subjects in a few various format : ["10 February 1984", "March 5 1990", "April 2 1782", "June 6, 1988", "12 May 1992"], and you want to sort the list.
+
You can use Node with iterables to extract day, month and year, and use datetime.datetime to unify the format that can be compared, and JoinNode to sort the list.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# the list of all DOB
+dob_subjects=["10 February 1984","March 5 1990","April 2 1782","June 6, 1988","12 May 1992"]
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# let's start from creating Node with iterable to split all strings from the list
+fromnipypeimportNode,JoinNode,Function,Workflow
+
+defsplit_dob(dob_string):
+ returndob_string.split()
+
+split_node=Node(Function(input_names=["dob_string"],
+ output_names=["split_list"],
+ function=split_dob),
+ name="splitting")
+
+#split_node.inputs.dob_string = "10 February 1984"
+split_node.iterables=("dob_string",dob_subjects)
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# and now let's work on the date format more, independently for every element
+
+# sometimes the second element has an extra "," that we should remove
+defremove_comma(str_list):
+ str_list[1]=str_list[1].replace(",","")
+ returnstr_list
+
+cleaning_node=Node(Function(input_names=["str_list"],
+ output_names=["str_list_clean"],
+ function=remove_comma),
+ name="cleaning")
+
+
+# now we can extract year, month, day from our list and create ``datetime.datetim`` object
+defdatetime_format(date_list):
+ importdatetime
+ # year is always the last
+ year=int(date_list[2])
+ #day and month can be in the first or second position
+ # we can use datetime.datetime.strptime to convert name of the month to integer
+ try:
+ day=int(date_list[0])
+ month=datetime.datetime.strptime(date_list[1],"%B").month
+ except(ValueError):
+ day=int(date_list[1])
+ month=datetime.datetime.strptime(date_list[0],"%B").month
+ # and create datetime.datetime format
+ returndatetime.datetime(year,month,day)
+
+
+datetime_node=Node(Function(input_names=["date_list"],
+ output_names=["datetime"],
+ function=datetime_format),
+ name="datetime")
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# now we are ready to create JoinNode and sort the list of DOB
+
+defsorting_dob(datetime_list):
+ datetime_list.sort()
+ returndatetime_list
+
+sorting_node=JoinNode(Function(input_names=["datetime_list"],
+ output_names=["dob_sorted"],
+ function=sorting_dob),
+ joinsource=split_node,# this is the node that used iterables for x
+ joinfield=['datetime_list'],
+ name="sorting")
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# and we're ready to create workflow
+
+ex1_wf=Workflow(name="sorting_dob")
+ex1_wf.connect(split_node,"split_list",cleaning_node,"str_list")
+ex1_wf.connect(cleaning_node,"str_list_clean",datetime_node,"date_list")
+ex1_wf.connect(datetime_node,"datetime",sorting_node,"datetime_list")
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# you can check the graph
+fromIPython.displayimportImage
+ex1_wf.write_graph(graph2use='exec')
+Image(filename='graph_detailed.png')
+
# you can check list of all nodes
+ex1_res.nodes()
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
NodeView((<nipype.pipeline.engine.nodes.JoinNode object at 0x7f9d6ff0b898>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e128>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e4a8>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4eba8>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e898>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e940>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e2e8>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e9b0>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4e8d0>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff4eeb8>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff84978>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff84eb8>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff84278>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff842b0>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff84128>, <nipype.pipeline.engine.nodes.Node object at 0x7f9d6ff84be0>))
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# and check the results from sorting_dob.sorting
+list(ex1_res.nodes())[0].result.outputs
+
If you want to iterate over a list of inputs, but need to feed all iterated outputs afterward as one input (an array) to the next node, you need to use a MapNode. A MapNode is quite similar to a normal Node, but it can take a list of inputs and operate over each input separately, ultimately returning a list of outputs.
+
Imagine that you have a list of items (let's say files) and you want to execute the same node on them (for example some smoothing or masking). Some nodes accept multiple files and do exactly the same thing on them, but some don't (they expect only one file). MapNode can solve this problem. Imagine you have the following workflow:
+
+
Node A outputs a list of files, but node B accepts only one file. Additionally, C expects a list of files. What you would like is to run B for every file in the output of A and collect the results as a list and feed it to C. Something like this:
We see that this function just takes a numeric input and returns its squared value.
+
+
+
+
+
+
+
In [ ]:
+
+
+
square.run(x=2).outputs.f_x
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
4
+
+
+
+
+
+
+
+
+
+
+
+
+
What if we wanted to square a list of numbers? We could set an iterable and just split up the workflow in multiple sub-workflows. But say we were making a simple workflow that squared a list of numbers and then summed them. The sum node would expect a list, but using an iterable would make a bunch of sum nodes, and each would get one number from the list. The solution here is to use a MapNode.
Because iterfield can take a list of names, you can operate over multiple sets of data, as long as they're the same length. The values in each list will be paired; it does not compute a combinatoric product of the lists.
As in the case of iterables, each underlying MapNode execution can happen in parallel. Hopefully, you see how these tools allow you to write flexible, reusable workflows that will help you process large amounts of data efficiently and reproducibly.
+
+
+
+
+
+
+
+
+
In more advanced applications it is useful to be able to iterate over items of nested lists (for example [[1,2],[3,4]]). MapNode allows you to do this with the "nested=True" parameter. Outputs will preserve the same nested structure as the inputs.
Let's consider we have multiple functional images (A) and each of them should be motioned corrected (B1, B2, B3,..). But afterward, we want to put them all together into a GLM, i.e. the input for the GLM should be an array of [B1, B2, B3, ...]. Iterables can't do that. They would split up the pipeline. Therefore, we need MapNodes.
+
+
Let's look at a simple example, where we want to motion correct two functional images. For this we need two nodes:
+
+
Gunzip, to unzip the files (plural)
+
Realign, to do the motion correction
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.algorithms.miscimportGunzip
+fromnipype.interfaces.spmimportRealign
+fromnipypeimportNode,MapNode,Workflow
+
+# Here we specify a list of files (for this tutorial, we just add the same file twice)
+files=['/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz',
+ '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz']
+
+realign=Node(Realign(register_to_mean=True),
+ name='motion_correction')
+
+
+
+
+
+
+
+
+
+
+
+
If we try to specify the input for the Gunzip node with a simple Node, we get the following error:
TraitError: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz', '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'] <class 'list'> was specified.
+
+
+
+
+
+
+
+
+
+
+
+
+
TraitError: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz', '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'] <class 'list'> was specified.
+
NodeView((<nipype.pipeline.engine.nodes.Node object at 0x7f2dc6ac79e8>, <nipype.pipeline.engine.nodes.MapNode object at 0x7f2dc6ac7b70>, <nipype.pipeline.engine.nodes.Node object at 0x7f2dc6ac7c18>))
Nipype provides also an interfaces to create a first level Model for an fMRI analysis. Such a model is needed to specify the study-specific information, such as condition, their onsets, and durations. For more information, make sure to check out nipype.algorithms.modelgen.
The SpecifyModel provides a generic mechanism for model specification. A mandatory input called subject_info provides paradigm specification for each run corresponding to a subject. This has to be in the form of a Bunch or a list of Bunch objects (one for each run). Each Bunch object contains the following attributes.
regressor_names: list of names corresponding to each column. Should be None if automatically assigned.
+
+
+
regressors: list of lists. values for each regressor - must correspond to the number of volumes in the functional run
+
+
+
amplitudes: lists of amplitudes for each event. This will be ignored by SPM's Level1Design.
+
+
The following two (tmod, pmod) will be ignored by any Level1Design class other than SPM:
+
+
tmod: lists of conditions that should be temporally modulated. Should default to None if not being used.
+
+
pmod: list of Bunch corresponding to conditions
+
+
name: name of parametric modulator
+
param: values of the modulator
+
poly: degree of modulation
+
+
+
+
+
+
+
+
+
+
+
+
Together with this information, one needs to specify:
+
+
whether the durations and event onsets are specified in terms of scan volumes or secs.
+
+
the high-pass filter cutoff,
+
+
the repetition time per scan
+
+
functional data files corresponding to each run.
+
+
+
Optionally you can specify realignment parameters, outlier indices. Outlier files should contain a list of numbers, one per row indicating which scans should not be included in the analysis. The numbers are 0-based
Alternatively, you can provide condition, onset, duration and amplitude
+information through event files. The event files have to be in 1, 2 or 3
+column format with the columns corresponding to Onsets, Durations and
+Amplitudes and they have to have the name event_name.run
+e.g.: Words.run001.txt.
+
The event_name part will be used to create the condition names. Words.run001.txt may look like:
In addition to standard models, SpecifySparseModel allows model generation for sparse and sparse-clustered acquisition experiments. Details of the model generation and utility are provided in Ghosh et al. (2009) OHBM 2009
From the Interface tutorial, you learned that interfaces are the core pieces of Nipype that run the code of your desire. But to streamline your analysis and to execute multiple interfaces in a sensible order, you have to put them in something that we call a Node.
+
In Nipype, a node is an object that executes a certain function. This function can be anything from a Nipype interface to a user-specified function or an external script. Each node consists of a name, an interface category and at least one input field, and at least one output field.
+
Following is a simple node from the utility interface, with the name name_of_node, the input field IN and the output field OUT:
+
+
Once you connect multiple nodes to each other, you create a directed graph. In Nipype we call such graphs either workflows or pipelines. Directed connections can only be established from an output field (below node1_out) of a node to an input field (below node2_in) of another node.
+
+
This is all there is to Nipype. Connecting specific nodes with certain functions to other specific nodes with other functions. So let us now take a closer look at the different kind of nodes that exist and see when they should be used.
nodename: Variable name of the node in the python environment.
+
Nodetype: Type of node to be created. This can be a Node, MapNode or JoinNode.
+
interface_function: Function the node should execute. Can be user specific or coming from an Interface.
+
labelname: Label name of the node in the workflow environment (defines the name of the working directory)
+
+
+
+
+
+
+
+
+
+
Let us take a look at an example: For this, we need the Node module from Nipype, as well as the Function module. The second only serves a support function for this example. It isn't a prerequisite for a Node.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import Node and Function module
+fromnipypeimportNode,Function
+
+# Create a small example function
+defadd_two(x_input):
+ returnx_input+2
+
+# Create Node
+addtwo=Node(Function(input_names=["x_input"],
+ output_names=["val_output"],
+ function=add_two),
+ name='add_node')
+
+
+
+
+
+
+
+
+
+
+
+
As specified before, addtwo is the nodename, Node is the Nodetype, Function(...) is the interface_function and add_node is the labelname of the this node. In this particular case, we created an artificial input field, called x_input, an artificial output field called val_output and specified that this node should run the function add_two().
+
But before we can run this node, we need to declare the value of the input field x_input:
+
+
+
+
+
+
+
In [ ]:
+
+
+
addtwo.inputs.x_input=4
+
+
+
+
+
+
+
+
+
+
+
+
After all input fields are specified, we can run the node with run():
Let's get back to the BET example from the Interface tutorial. The only thing that differs from this example, is that we will put the BET() constructor inside a Node and give it a name.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import BET from the FSL interface
+fromnipype.interfaces.fslimportBET
+
+# Import the Node module
+fromnipypeimportNode
+
+# Create Node
+bet=Node(BET(frac=0.3),name='bet_node')
+
+
+
+
+
+
+
+
+
+
+
+
In the Interface tutorial, we were able to specify the input file with the in_file parameter. This works exactly the same way in this case, where the interface is in a node. The only thing that we have to be careful about when we use a node is to specify where this node should be executed. This is only relevant for when we execute a node by itself, but not when we use them in a Workflow.
As we know from the Interface tutorial, the skull stripped output is stored under res.outputs.out_file. So let's take a look at the before and the after:
The workflow engine supports a plugin architecture for workflow execution. The available plugins allow local and distributed execution of workflows and debugging. Each available plugin is described below.
+
Current plugins are available for Linear, Multiprocessing, IPython distributed processing platforms and for direct processing on SGE, PBS, HTCondor, LSF, OAR, and SLURM. We anticipate future plugins for the Soma workflow.
+
+**Note**:
+Currently, the distributed processing plugins rely on the availability of a shared filesystem across computational nodes.
+A variety of config options can control how execution behaves in this distributed context. These are listed later on in this page.
+
status_callback : a function handle
+max_jobs : maximum number of concurrent jobs
+max_tries : number of times to try submitting a job
+retry_timeout : amount of time to wait between tries
+
+
+
+**Note**: Except for the status_callback, the remaining arguments only apply to the distributed plugins: MultiProc / IPython(X) / SGE / PBS / HTCondor / HTCondorDAGMan / LSF
+
This plugin runs the workflow one node at a time in a single process locally. The order of the nodes is determined by a topological sort of the workflow:
Uses the Python multiprocessing library to distribute jobs as new processes on a local system.
+
Optional arguments:
+
+
n_procs: Number of processes to launch in parallel, if not set number of processors/threads will be automatically detected
+
+
memory_gb: Total memory available to be shared by all simultaneous tasks currently running, if not set it will be automatically set to 90% of system RAM.
+
+
raise_insufficient: Raise exception when the estimated resources of a node exceed the total amount of resources available (memory and threads), when False (default), only a warning will be issued.
+
+
maxtasksperchild: number of nodes to run on each process before refreshing the worker (default: 10).
+
+
+
To distribute processing on a multicore machine, simply call:
+
workflow.run(plugin='MultiProc')
+
+
This will use all available CPUs. If on the other hand, you would like to restrict the number of used resources (to say 2 CPUs), you can call:
This plugin provides access to distributed computing using IPython parallel machinery.
+
+**Note**:
+Please read the [IPython](https://ipython.org/) documentation to determine how to set up your cluster for distributed processing. This typically involves calling ipcluster.
+
Once the clients have been started, any pipeline executed with:
template: custom template file to use
+qsub_args: any other command line args to be passed to qsub.
+max_jobname_len: (PBS only) maximum length of the job name. Default 15.
+
+
+
For example, the following snippet executes the workflow on myqueue with a custom template:
this would apply only to the node and is useful in situations, where a particular node might use more resources than other nodes in a workflow.
+
+**Note**: Setting the keyword `overwrite` would overwrite any global configuration with this local configuration:
+```node.plugin_args = {'qsub_args': '-l nodes=1:ppn=3', 'overwrite': True}```
+
SGEGraph is an execution plugin working with Sun Grid Engine that allows for submitting the entire graph of dependent jobs at once. This way Nipype does not need to run a monitoring process - SGE takes care of this. The use of SGEGraph is preferred over SGE since the latter adds an unnecessary load on the submit machine.
+
+**Note**: When rerunning unfinished workflows using SGEGraph you may decide not to submit jobs for Nodes that previously finished running. This can speed up execution, but new or modified inputs that would previously trigger a Node to rerun will be ignored. The following option turns on this functionality:
+```workflow.run(plugin='SGEGraph', plugin_args = {'dont_resubmit_completed_jobs': True})```
+
Submitting via SLURM is almost identical to SGE above except for the optional arguments field:
+
workflow.run(plugin='SLURM')
+
+
Optional arguments:
+
+
template: custom template file to use
+sbatch_args: any other command line args to be passed to bsub.
+jobid_re: regular expression for custom job submission id search
SLURMGraph is an execution plugin working with SLURM that allows for submitting the entire graph of dependent jobs at once. This way Nipype does not need to run a monitoring process - SLURM takes care of this. The use of SLURMGraph plugin is preferred over the vanilla SLURM plugin since the latter adds an unnecessary load on the submit machine.
+
+**Note**: When rerunning unfinished workflows using SLURMGraph you may decide not to submit jobs for Nodes that previously finished running. This can speed up execution, but new or modified inputs that would previously trigger a Node to rerun will be ignored. The following option turns on this functionality:
+```workflow.run(plugin='SLURMGraph', plugin_args = {'dont_resubmit_completed_jobs': True})```
+
With its DAGMan component, HTCondor (previously Condor) allows for submitting the entire graphs of dependent jobs at once (similar to SGEGraph and SLURMGraph). With the CondorDAGMan plug-in, Nipype can utilize this functionality to submit complete workflows directly and in a single step. Consequently, and in contrast to other plug-ins, workflow execution returns almost instantaneously -- Nipype is only used to generate the workflow graph, while job scheduling and dependency resolution are entirely managed by HTCondor.
+
Please note that although DAGMan supports specification of data dependencies as well as data provisioning on compute nodes this functionality is currently not supported by this plug-in. As with all other batch systems supported by Nipype, only HTCondor pools with a shared file system can be used to process Nipype workflows.
+
Workflow execution with HTCondor DAGMan is done by calling:
+
workflow.run(plugin='CondorDAGMan')
+
+
Job execution behavior can be tweaked with the following optional plug-in arguments. The value of most arguments can be a literal string or a filename, wherein the latter case the content of the file will be used as the argument value:
+
+
submit_template : submit spec template for individual jobs in a DAG (see CondorDAGManPlugin.default_submit_template for the default.
+
initial_specs : additional submit specs that are prepended to any job's submit file
+
override_specs : additional submit specs that are appended to any job's submit file
+
wrapper_cmd : path to an executable that will be started instead of a node script. This is useful for wrapper script that executes certain functionality prior to or after a node runs. If this option is given the wrapper command is called with the respective Python executable and the path to the node script as final arguments
+
wrapper_args : optional additional arguments to a wrapper command
+
dagman_args : arguments to be prepended to the job execution script in the dagman call
+
block : if True the plugin call will block until Condor has finished processing the entire workflow (default: False)
+
+
Please see the HTCondor documentation for details on possible configuration options and command line arguments.
+
Using the wrapper_cmd argument it is possible to combine Nipype workflow execution with checkpoint/migration functionality offered by, for example, DMTCP. This is especially useful in the case of workflows with long-running nodes, such as Freesurfer's recon-all pipeline, where Condor's job prioritization algorithm could lead to jobs being evicted from compute nodes in order to maximize overall throughput. With checkpoint/migration enabled such a job would be checkpointed prior eviction and resume work from the checkpointed state after being rescheduled -- instead of restarting from scratch.
+
On a Debian system, executing a workflow with support for checkpoint/migration for all nodes could look like this:
In order to use nipype with OAR you simply need to call:
+
workflow.run(plugin='OAR')
+
+
Optional arguments:
+
+
template: custom template file to use
+oar_args: any other command line args to be passed to qsub.
+max_jobname_len: (PBS only) maximum length of the job name. Default 15.
+
+
+
For example, the following snippet executes the workflow on myqueue with
+a custom template:
this would apply only to the node and is useful in situations, where a particular node might use more resources than other nodes in a workflow. You need to set the 'overwrite' flag to bypass the general settings-template you defined for the other nodes.
+**Note**: This plug-in is deprecated and users should migrate to the more robust and more versatile ``CondorDAGMan`` plug-in.
+
Despite the differences between HTCondor and SGE-like batch systems the plugin usage (incl. supported arguments) is almost identical. The HTCondor plugin relies on a qsub emulation script for HTCondor, called condor_qsub that can be obtained from a Git repository on git.debian.org. This script is currently not shipped with a standard HTCondor distribution but is included in the HTCondor package from http://neuro.debian.net. It is sufficient to download this script and install it in any location on a system that is included in the PATH configuration.
+
Running a workflow in a HTCondor pool is done by calling:
+
workflow.run(plugin='Condor')
+
+
The plugin supports a limited set of qsub arguments (qsub_args) that cover the most common use cases. The condor_qsub emulation script translates qsub arguments into the corresponding HTCondor terminology and handles the actual job submission. For details on supported options see the manpage of condor_qsub.
+
Optional arguments:
+
+
qsub_args: any other command line args to be passed to condor_qsub.
Although it would be possible to write analysis scripts using just Nipype Interfaces, and this may provide some advantages over directly making command-line calls, the main benefits of Nipype are the workflows.
+
A workflow controls the setup and the execution of individual interfaces. Let's assume you want to run multiple interfaces in a specific order, where some have to wait for others to finish while others can be executed in parallel. The nice thing about a nipype workflow is, that the workflow will take care of input and output of each interface and arrange the execution of each interface in the most efficient way.
+
A workflow therefore consists of multiple Nodes, each representing a specific Interface and directed connection between those nodes. Those connections specify which output of which node should be used as an input for another node. To better understand why this is so great, let's look at an example.
Before we can start, let's first load some helper functions:
+
+
+
+
+
+
+
In [ ]:
+
+
+
importnumpyasnp
+importnibabelasnb
+importmatplotlib.pyplotasplt
+
+# Let's create a short helper function to plot 3D NIfTI images
+defplot_slice(fname):
+
+ # Load the image
+ img=nb.load(fname)
+ data=img.get_data()
+
+ # Cut in the middle of the brain
+ cut=int(data.shape[-1]/2)+10
+
+ # Plot the data
+ plt.imshow(np.rot90(data[...,cut]),cmap="gray")
+ plt.gca().set_axis_off()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Populating the interactive namespace from numpy and matplotlib
+
Now let's see what this would look like if we used Nipype, but only the Interfaces functionality. It's simple enough to write a basic procedural script, this time in Python, to do the same thing as above:
This is more verbose, although it does have its advantages. There's the automated input validation we saw previously, some of the options are named more meaningfully, and you don't need to remember, for example, that fslmaths' smoothing kernel is set in sigma instead of FWHM -- Nipype does that conversion behind the scenes.
As we can see above, the inputs for the mask routine in_file and mask_file are actually the output of skullstrip and smooth. We therefore somehow want to connect them. This can be accomplished by saving the executed routines under a given object and then using the output of those objects as input for other routines.
Here we didn't need to name the intermediate files; Nipype did that behind the scenes, and then we passed the result object (which knows those names) onto the next step in the processing stream. This is somewhat more concise than the example above, but it's still a procedural script. And the dependency relationship between the stages of processing is not particularly obvious. To address these issues, and to provide solutions to problems we might not know we have yet, Nipype offers Workflows.
What we've implicitly done above is to encode our processing stream as a directed acyclic graphs: each stage of processing is a node in this graph, and some nodes are unidirectionally dependent on others. In this case, there is one input file and several output files, but there are no cycles -- there's a clear line of directionality to the processing. What the Node and Workflow classes do is make these relationships more explicit.
+
The basic architecture is that the Node provides a light wrapper around an Interface. It exposes the inputs and outputs of the Interface as its own, but it adds some additional functionality that allows you to connect Nodes into a Workflow.
+
Let's rewrite the above script with these tools:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Import Node and Workflow object and FSL interface
+fromnipypeimportNode,Workflow
+fromnipype.interfacesimportfsl
+
+# For reasons that will later become clear, it's important to
+# pass filenames to Nodes as absolute paths
+fromos.pathimportabspath
+in_file=abspath("/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz")
+
+# Skullstrip process
+skullstrip=Node(fsl.BET(in_file=in_file,mask=True),name="skullstrip")
+
+# Smooth process
+smooth=Node(fsl.IsotropicSmooth(in_file=in_file,fwhm=4),name="smooth")
+
+# Mask process
+mask=Node(fsl.ApplyMask(),name="mask")
+
+
+
+
+
+
+
+
+
+
+
+
This looks mostly similar to what we did above, but we've left out the two crucial inputs to the ApplyMask step. We'll set those up by defining a Workflow object and then making connections among the Nodes.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Initiation of a workflow
+wf=Workflow(name="smoothflow",base_dir="/output/working_dir")
+
+
+
+
+
+
+
+
+
+
+
+
The Workflow object has a method called connect that is going to do most of the work here. This routine also checks if inputs and outputs are actually provided by the nodes that are being connected.
With the first approach, you can establish one connection at a time. With the second you can establish multiple connects between two nodes at once. In either case, you're providing it with four pieces of information to define the connection:
+
+
The source node object
+
The name of the output field from the source node
+
The destination node object
+
The name of the input field from the destination node
+
+
We'll illustrate each method in the following cell:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# First the "simple", but more restricted method
+wf.connect(skullstrip,"mask_file",mask,"mask_file")
+
+# Now the more complicated method
+wf.connect([(smooth,mask,[("out_file","in_file")])])
+
+
+
+
+
+
+
+
+
+
+
+
Now the workflow is complete!
+
Above, we mentioned that the workflow can be thought of as a directed acyclic graph. In fact, that's literally how it's represented behind the scenes, and we can use that to explore the workflow visually:
This representation makes the dependency structure of the workflow obvious. (By the way, the names of the nodes in this graph are the names we gave our Node objects above, so pick something meaningful for those!)
+
Certain graph types also allow you to further inspect the individual connections between the nodes. For example:
Here you see very clearly, that the output mask_file of the skullstrip node is used as the input mask_file of the mask node. For more information on graph visualization, see the Graph Visualization section.
+
+
+
+
+
+
+
+
+
But let's come back to our example. At this point, all we've done is define the workflow. We haven't executed any code yet. Much like Interface objects, the Workflow object has a run method that we can call so that it executes. Let's do that and then examine the results.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Specify the base directory for the working directory
+wf.base_dir="/output/working_dir"
+
+# Execute the workflow
+wf.run()
+
<networkx.classes.digraph.DiGraph at 0x7f7d60ccfd30>
+
+
+
+
+
+
+
+
+
+
+
+
+
The specification of base_dir is very important (and is why we needed to use absolute paths above) because otherwise all the outputs would be saved somewhere in the temporary files. Unlike interfaces, which by default spit out results to the local directly, the Workflow engine executes things off in its own directory hierarchy.
+
Let's take a look at the resulting images to convince ourselves we've done the same thing as before:
As you can see, the name of the working directory is the name we gave the workflow base_dir. And the name of the folder within is the name of the workflow object smoothflow. Each node of the workflow has its' own subfolder in the smoothflow folder. And each of those subfolders contains the output of the node as well as some additional files.
Nipype workflows are just DAGs (Directed Acyclic Graphs) that the runner Plugin takes in and uses to compose an ordered list of nodes for execution. As a matter of fact, running a workflow will return a graph object. That's why you often see something like <networkx.classes.digraph.DiGraph at 0x7f83542f1550> at the end of execution stream when running a workflow.
+
The principal implication is that Workflows don't have inputs and outputs, you can just access them through the Node decoration.
+
In practical terms, this has one clear consequence: from the resulting object of the workflow execution, you don't generally have access to the value of the outputs of the interfaces. This is particularly true for Plugins with an asynchronous execution.
When you start writing full-fledged analysis workflows, things can get quite complicated. Some aspects of neuroimaging analysis can be thought of as a coherent step at a level more abstract than the execution of a single command line binary. For instance, in the standard FEAT script in FSL, several calls are made in the process of using susan to perform nonlinear smoothing on an image. In Nipype, you can write nested workflows, where a sub-workflow can take the place of a Node in a given script.
+
Let's use the prepackaged susan workflow that ships with Nipype to replace our Gaussian filtering node and demonstrate how this works.
We see that the workflow has an inputnode and an outputnode. While not strictly necessary, this is standard practice for workflows (especially those that are intended to be used as nested workflows in the context of a longer analysis graph) and makes it more clear how to connect inputs and outputs from this workflow.
+
Let's take a look at what those inputs and outputs are. Like Nodes, Workflows have inputs and outputs attributes that take a second sub-attribute corresponding to the specific node we want to make connections to.
Let's see how we would write a new workflow that uses this nested smoothing step.
+
The susan workflow actually expects to receive and output a list of files (it's intended to be executed on each of several runs of fMRI data). We'll cover exactly how that works in later tutorials, but for the moment we need to add an additional Function node to deal with the fact that susan is outputting a list. We can use a simple lambda function to do this:
Now let's create a new workflow susanflow that contains the susan workflow as a sub-node. To be sure, let's also recreate the skullstrip and the mask node from the examples above.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Initiate workflow with name and base directory
+wf2=Workflow(name="susanflow",base_dir="/output/working_dir")
+
+# Create new skullstrip and mask nodes
+skullstrip2=Node(fsl.BET(in_file=in_file,mask=True),name="skullstrip")
+mask2=Node(fsl.ApplyMask(),name="mask")
+
+# Connect the nodes to each other and to the susan workflow
+wf2.connect([(skullstrip2,mask2,[("mask_file","mask_file")]),
+ (skullstrip2,susan,[("mask_file","inputnode.mask_file")]),
+ (susan,list_extract,[("outputnode.smoothed_files",
+ "list_out")]),
+ (list_extract,mask2,[("out_file","in_file")])
+ ])
+
+# Specify the remaining input variables for the susan workflow
+susan.inputs.inputnode.in_files=abspath(
+ "/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz")
+susan.inputs.inputnode.fwhm=4
+
+
+
+
+
+
+
+
+
+
+
+
First, let's see what this new processing graph looks like.
We can see how there is a nested smoothing workflow (blue) in the place of our previous smooth node. This provides a very detailed view, but what if you just wanted to give a higher-level summary of the processing steps? After all, that is the purpose of encapsulating smaller streams in a nested workflow. That, fortunately, is an option when writing out the graph:
So far, we've seen that you can build up rather complex analysis workflows. But at the moment, it's not been made clear why this is worth the extra trouble from writing a simple procedural script. To demonstrate the first added benefit of the Nipype, let's just rerun the susanflow workflow from above and measure the execution times.
<networkx.classes.digraph.DiGraph at 0x7f7d5cb44518>
+
+
+
+
+
+
+
+
+
+
+
+
+
That happened quickly! Workflows (actually this is handled by the Node code) are smart and know if their inputs have changed from the last time they are run. If they have not, they don't recompute; they just turn around and pass out the resulting files from the previous run. This is done on a node-by-node basis, also.
+
Let's go back to the first workflow example. What happened if we just tweak one thing:
<networkx.classes.digraph.DiGraph at 0x7f7d5c21cfd0>
+
+
+
+
+
+
+
+
+
+
+
+
+
By changing an input value of the smooth node, this node will be re-executed. This triggers a cascade such that any file depending on the smooth node (in this case, the mask node, also recompute). However, the skullstrip node hasn't changed since the first time it ran, so it just coughed up its original files.
+
That's one of the main benefits of using Workflows: efficient recomputing.
+
Another benefit of Workflows is parallel execution, which is covered under Plugins and Distributed Computing. With Nipype it is very easy to up a workflow to an extremely parallel cluster computing environment.
+
In this case, that just means that the skullstrip and smooth Nodes execute together, but when you scale up to Workflows with many subjects and many runs per subject, each can run together, such that (in the case of unlimited computing resources), you could process 50 subjects with 10 runs of functional data in essentially the time it would take to process a single run.
+
To emphasize the contribution of Nipype here, you can write and test your workflow on one subject computing on your local CPU, where it is easier to debug. Then, with the change of a single function parameter, you can scale your processing up to a 1000+ node SGE cluster.
skipping the first 3 dummy scans using fsl.ExtractROI
+
applying motion correction using fsl.MCFLIRT (register to the mean volume, use NIFTI as output type)
+
correcting for slice wise acquisition using fsl.SliceTimer (assumed that slices were acquired with interleaved order and time repetition was 2.5, use NIFTI as output type)
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your solution here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# importing Node and Workflow
+fromnipypeimportWorkflow,Node
+# importing all interfaces
+fromnipype.interfaces.fslimportExtractROI,MCFLIRT,SliceTimer
+
+
+
+
+
+
+
+
+
+
+
+
Defining all nodes
+
+
+
+
+
+
+
In [ ]:
+
+
+
# extracting all time levels but not the first four
+extract=Node(ExtractROI(t_min=4,t_size=-1,output_type='NIFTI'),
+ name="extract")
+
+# using MCFLIRT for motion correction to the mean volume
+mcflirt=Node(MCFLIRT(mean_vol=True,
+ output_type='NIFTI'),
+ name="mcflirt")
+
+# correcting for slice wise acquisition (acquired with interleaved order and time repetition was 2.5)
+slicetimer=Node(SliceTimer(interleaved=True,
+ output_type='NIFTI',
+ time_repetition=2.5),
+ name="slicetimer")
+
+
+
+
+
+
+
+
+
+
+
+
Creating a workflow
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Initiation of a workflow
+wf_ex1=Workflow(name="exercise1",base_dir="/output/working_dir")
+
+# connect nodes with each other
+wf_ex1.connect([(extract,mcflirt,[('roi_file','in_file')]),
+ (mcflirt,slicetimer,[('out_file','in_file')])])
+
+# providing a input file for the first extract node
+extract.inputs.in_file="/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz"
+
In this example, we will take the preprocessed output from the first example and run for each subject a 1st-level analysis. For this we need to do the following steps:
+
+
Extract onset times of stimuli from TVA file
+
Specify the model (TR, high pass filter, onset times, etc.)
+
Specify contrasts to compute
+
Estimate contrasts
+
+
In the previous example, we used two different smoothing kernels of fwhm=4 and fwhm=8. Therefore, let us also run the 1st-level analysis for those two versions.
To do any GLM analysis, we need to also define the contrasts that we want to investigate. If we recap, we had three different conditions in the fingerfootlips task in this dataset:
+
+
finger
+
foot
+
lips
+
+
Therefore, we could create the following contrasts (seven T-contrasts and two F-contrasts):
The next step is now to get information such as stimuli onset, duration and other regressors into the GLM model. For this we need to create a helper function, in our case called subjectinfo.
+
To recap, let's see what we have in the TSV file for each run:
Let's check the structure of the output folder, to see if we have everything we wanted to save. You should have nine contrast images (con_*.nii for T-contrasts and ess_*.nii for T-contrasts) and nine statistic images (spmT_*.nii and spmF_*.nii) for every subject and smoothing kernel.
What you might see is that the hemisphere of the main cluster differs significantly between subjects. This is because all subjects were asked to use the dominant hand, either right or left. There were three subjects (sub-01, sub-06 and sub-10) that were left-handed. This can be seen in the pictures above, where we find the main cluster in the left hemisphere for right-handed subject and on the right hemisphere for left-handed subjects.
+
Because of this, We will use only right-handed subjects for the following anlysis.
Last but not least, the 2nd-level analysis. After we removed left-handed subjects and normalized all subject data into template space, we can now do the group analysis. To show the flexibility of Nipype, we will run the group analysis on data with two different smoothing kernel (fwhm= [4, 8]) and two different normalizations (ANTs and SPM).
+
This example will also directly include thresholding of the output, as well as some visualization.
It's always a good idea to specify all parameters that might change between experiments at the beginning of your script.
+
+
+
+
+
+
+
In [ ]:
+
+
+
experiment_dir='/output'
+output_dir='datasink'
+working_dir='workingdir'
+
+# Smoothing withds used during preprocessing
+fwhm=[4,8]
+
+# Which contrasts to use for the 2nd-level analysis
+contrast_list=['con_0001','con_0002','con_0003','con_0004','con_0005','con_0006','con_0007']
+
+mask="/data/ds000114/derivatives/fmriprep/mni_icbm152_nlin_asym_09c/1mm_brainmask.nii.gz"
+
Specify where the input data can be found & where and how to save the output data.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Infosource - a function free node to iterate over the list of subject names
+infosource=Node(IdentityInterface(fields=['contrast_id','fwhm_id']),
+ name="infosource")
+infosource.iterables=[('contrast_id',contrast_list),
+ ('fwhm_id',fwhm)]
+
+# SelectFiles - to grab the data (alternativ to DataGrabber)
+templates={'cons':opj(output_dir,'norm_spm','sub-*_fwhm{fwhm_id}',
+ 'w{contrast_id}.nii')}
+selectfiles=Node(SelectFiles(templates,
+ base_directory=experiment_dir,
+ sort_filelist=True),
+ name="selectfiles")
+
+# Datasink - creates output folder for important outputs
+datasink=Node(DataSink(base_directory=experiment_dir,
+ container=output_dir),
+ name="datasink")
+
+# Use the following DataSink output substitutions
+substitutions=[('_contrast_id_','')]
+subjFolders=[('%s_fwhm_id_%s'%(con,f),'spm_%s_fwhm%s'%(con,f))
+ forfinfwhm
+ forconincontrast_list]
+substitutions.extend(subjFolders)
+datasink.inputs.substitutions=substitutions
+
Now we create a lot of outputs, but how do they look like? And also, what was the influence of different smoothing kernels and normalization?
+
Keep in mind, that the group analysis was only done on N=7 subjects, and that we chose a voxel-wise threshold of p<0.005. Nonetheless, we corrected for multiple comparisons with a cluster-wise FDR threshold of p<0.05.
The results are more or less what you would expect: The peaks are more or less at the same places for the two normalization approaches and a wider smoothing has the effect of bigger clusters, while losing the sensitivity for smaller clusters.
+
+
+
+
+
+
+
+
+
Now, let's see other contrast -- Finger > others. Since we removed left-handed subjects, the activation is seen on the left part of the brain.
This example covers the normalization of data. Some people prefer to normalize the data during the preprocessing, just before smoothing. I prefer to do the 1st-level analysis completely in subject space and only normalize the contrasts for the 2nd-level analysis. But both approaches are fine.
+
For the current example, we will take the computed 1st-level contrasts from the previous experiment (again once done with fwhm=4mm and fwhm=8mm) and normalize them into MNI-space. To show two different approaches, we will do the normalization once with ANTs and once with SPM.
Before we can start with the ANTs example, we first need to download the already computed deforamation field. The data can be found in the derivatives/fmriprep folder of the dataset and can be downloaded with the following datalad command:
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+datalad get -J 4 /data/ds000114/derivatives/fmriprep/sub-0[2345789]/anat/*h5
+
We're using the precomputed warp field from fmriprep, as this step otherwise would take a up to 10 hours or more for all subjects to complete. If you're nonetheless interested in computing the warp parameters with ANTs yourself, without using fmriprep, either check out the script ANTS_registration.py or even quicker, use RegistrationSynQuick, Nipype's implementation of antsRegistrationSynQuick.sh.
The normalization with ANTs requires that you first compute the transformation matrix that would bring the anatomical images of each subject into template space. Depending on your system this might take a few hours per subject. To facilitate this step, the transformation matrix is already computed for the T1 images.
It's always a good idea to specify all parameters that might change between experiments at the beginning of your script. And remember that we decided to run the group analysis without subject sub-01, sub-06 and sub-10 because they are left handed (see this section).
+
+
+
+
+
+
+
In [ ]:
+
+
+
experiment_dir='/output'
+output_dir='datasink'
+working_dir='workingdir'
+
+# list of subject identifiers (remember we use only right handed subjects)
+subject_list=['02','03','04','05','07','08','09']
+
+# task name
+task_name="fingerfootlips"
+
+# Smoothing widths used during preprocessing
+fwhm=[4,8]
+
+# Template to normalize to
+template='/data/ds000114/derivatives/fmriprep/mni_icbm152_nlin_asym_09c/1mm_T1.nii.gz'
+
+
+
+
+
+
+
+
+
+
+
+
Note if you're not using the corresponding docker image, than the template file might not be in your data directory. To get mni_icbm152_nlin_asym_09c, either download it from this website, unpack it and move it to /data/ds000114/derivatives/fmriprep/ or run the following command in a cell:
Specify where the input data can be found & where and how to save the output data.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Infosource - a function free node to iterate over the list of subject names
+infosource=Node(IdentityInterface(fields=['subject_id','fwhm_id']),
+ name="infosource")
+infosource.iterables=[('subject_id',subject_list),
+ ('fwhm_id',fwhm)]
+
+# SelectFiles - to grab the data (alternativ to DataGrabber)
+templates={'con':opj(output_dir,'1stLevel',
+ 'sub-{subject_id}/fwhm-{fwhm_id}','???_00??.nii'),
+ 'transform':opj('/data/ds000114/derivatives/fmriprep/','sub-{subject_id}','anat',
+ 'sub-{subject_id}_t1w_space-mni152nlin2009casym_warp.h5')}
+selectfiles=Node(SelectFiles(templates,
+ base_directory=experiment_dir,
+ sort_filelist=True),
+ name="selectfiles")
+
+# Datasink - creates output folder for important outputs
+datasink=Node(DataSink(base_directory=experiment_dir,
+ container=output_dir),
+ name="datasink")
+
+# Use the following DataSink output substitutions
+substitutions=[('_subject_id_','sub-')]
+subjFolders=[('_fwhm_id_%ssub-%s'%(f,sub),'sub-%s_fwhm%s'%(sub,f))
+ forfinfwhm
+ forsubinsubject_list]
+subjFolders+=[('_apply2con%s/'%(i),'')foriinrange(9)]# number of contrast used in 1stlevel an.
+substitutions.extend(subjFolders)
+datasink.inputs.substitutions=substitutions
+
Create a workflow and connect the interface nodes and the I/O stream to each other.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Initiation of the ANTs normalization workflow
+antsflow=Workflow(name='antsflow')
+antsflow.base_dir=opj(experiment_dir,working_dir)
+
+# Connect up the ANTs normalization components
+antsflow.connect([(infosource,selectfiles,[('subject_id','subject_id'),
+ ('fwhm_id','fwhm_id')]),
+ (selectfiles,apply2con,[('con','input_image'),
+ ('transform','transforms')]),
+ (apply2con,datasink,[('output_image','norm_ants.@con')]),
+ ])
+
It's always a good idea to specify all parameters that might change between experiments at the beginning of your script. And remember that we decided to run the group analysis without subject sub-01, sub-06 and sub-10 because they are left handed (see this section).
+
+
+
+
+
+
+
In [ ]:
+
+
+
experiment_dir='/output'
+output_dir='datasink'
+working_dir='workingdir'
+
+# list of subject identifiers
+subject_list=['02','03','04','05','07','08','09']
+
+# task name
+task_name="fingerfootlips"
+
+# Smoothing withds used during preprocessing
+fwhm=[4,8]
+
+template='/opt/spm12-r7219/spm12_mcr/spm12/tpm/TPM.nii'
+
Specify where the input data can be found & where and how to save the output data.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Infosource - a function free node to iterate over the list of subject names
+infosource=Node(IdentityInterface(fields=['subject_id','fwhm_id']),
+ name="infosource")
+infosource.iterables=[('subject_id',subject_list),
+ ('fwhm_id',fwhm)]
+
+# SelectFiles - to grab the data (alternativ to DataGrabber)
+templates={'con':opj(output_dir,'1stLevel',
+ 'sub-{subject_id}/fwhm-{fwhm_id}','???_00??.nii'),
+ 'anat':opj('/data/ds000114/derivatives','fmriprep','sub-{subject_id}',
+ 'anat','sub-{subject_id}_t1w_preproc.nii.gz')}
+
+selectfiles=Node(SelectFiles(templates,
+ base_directory=experiment_dir,
+ sort_filelist=True),
+ name="selectfiles")
+
+# Datasink - creates output folder for important outputs
+datasink=Node(DataSink(base_directory=experiment_dir,
+ container=output_dir),
+ name="datasink")
+
+# Use the following DataSink output substitutions
+substitutions=[('_subject_id_','sub-')]
+subjFolders=[('_fwhm_id_%ssub-%s'%(f,sub),'sub-%s_fwhm%s'%(sub,f))
+ forfinfwhm
+ forsubinsubject_list]
+substitutions.extend(subjFolders)
+datasink.inputs.substitutions=substitutions
+
Before we can start with anything we first need to download the data (the other 9 subjects in the dataset). This can be done very quickly with the following datalad command.
+
Note: This might take a while, as datalad needs to download ~700MB of data
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+datalad get -J 4 /data/ds000114/derivatives/fmriprep/sub-*/anat/*preproc.nii.gz \
+ /data/ds000114/sub-*/ses-test/func/*fingerfootlips*
+
For every subject we have one anatomical T1w and 5 functional images. As a short recap, the image properties of the anatomy and the fingerfootlips functional image are:
It's always a good idea to specify all parameters that might change between experiments at the beginning of your script. We will use one functional image for fingerfootlips task for ten subjects.
+
+
+
+
+
+
+
In [ ]:
+
+
+
experiment_dir='/output'
+output_dir='datasink'
+working_dir='workingdir'
+
+# list of subject identifiers
+subject_list=['01','02','03','04','05','06','07','08','09','10']
+
+# list of session identifiers
+task_list=['fingerfootlips']
+
+# Smoothing widths to apply
+fwhm=[4,8]
+
+# TR of functional images
+withopen('/data/ds000114/task-fingerfootlips_bold.json','rt')asfp:
+ task_info=json.load(fp)
+TR=task_info['RepetitionTime']
+
+# Isometric resample of functional images to voxel size (in mm)
+iso_size=4
+
Now that everything is ready, we can run the preprocessing workflow. Change n_procs to the number of jobs/cores you want to use. Note that if you're using a Docker container and FLIRT fails to run without any good reason, you might need to change memory settings in the Docker preferences (6 GB should be enough for this workflow).
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 117, in _handle_events
+ handler_func(fileobj, events)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
Hands-on 2: How to create a fMRI analysis workflow¶
The purpose of this section is that you set-up a complete fMRI analysis workflow yourself. So that in the end, you are able to perform the analysis from A-Z, i.e. from preprocessing to group analysis. This section will cover the analysis part, the previous section Hands-on 1: Preprocessing handles the preprocessing part.
+
We will use this opportunity to show you some nice additional interfaces/nodes that might not be relevant to your usual analysis. But it's always nice to know that they exist. And hopefully, this will encourage you to investigate all other interfaces that Nipype can bring to the tip of your finger.
+
Important: You will not be able to go through this notebook if you haven't preprocessed your subjects first.
In this notebook we will create a workflow that performs 1st-level analysis and normalizes the resulting beta weights to the MNI template. In concrete steps this means:
It's always best to have all relevant module imports at the beginning of your script. So let's import what we most certainly need.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Get the Node and Workflow object
+fromnipypeimportNode,Workflow
+
+# Specify which SPM to use
+fromnipype.interfaces.matlabimportMatlabCommand
+MatlabCommand.set_default_paths('/opt/spm12-r7219/spm12_mcr/spm12')
+
+
+
+
+
+
+
+
+
+
+
+
Note: Ideally you would also put the imports of all the interfaces that you use here at the top. But as we will develop the workflow step by step, we can also import the relevant modules as we go.
Let's create all the nodes that we need! Make sure to specify all relevant inputs and keep in mind which ones you later on need to connect in your pipeline.
We recommend to create the workflow and establish all its connections at a later place in your script. This helps to have everything nicely together. But for this hands-on example, it makes sense to establish the connections between the nodes as we go.
+
And for this, we first need to create a workflow:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create the workflow here
+# Hint: use 'base_dir' to specify where to store the working directory
+
Specify 1st-level model parameters (stimuli onsets, duration, etc.)¶
+
+
+
+
+
+
+
+
The specify the 1st-level model we need the subject-specific onset times and duration of the stimuli. Luckily, as we are working with a BIDS dataset, this information is nicely stored in a tsv file:
Good! Now we can create the node that will create the SPM model. For this we will be using SpecifySPMModel. As a reminder the TR of the acquisition is 2.5s and we want to use a high pass filter of 128.
This node will also need some additional inputs, such as the preprocessed functional images, the motion parameters etc. We will specify those once we take care of the workflow data input stream.
To do any GLM analysis, we need to also define the contrasts that we want to investigate. If we recap, we had three different conditions in the fingerfootlips task in this dataset:
+
+
finger
+
foot
+
lips
+
+
Therefore, we could create the following contrasts (seven T-contrasts and two F-contrasts):
Before we can estimate the 1st-level contrasts, we first need to create the 1st-level design. Here you can also specify what kind of basis function you want (HRF, FIR, Fourier, etc.), if you want to use time and dispersion derivatives and how you want to model the serial correlation.
+
In this example, I propose that you use an HRF basis function, that we model time derivatives and that we model the serial correlation with AR(1).
Now that the contrasts were estimated in subject space we can put them into a common reference space by normalizing them to a specific template. In this case, we will be using SPM12's Normalize routine and normalize to the SPM12 tissue probability map TPM.nii.
+
At this step, you can also specify the voxel resolution of the output volumes. If you don't specify it, it will normalize to a voxel resolution of 2x2x2mm. As a training exercise, set the voxel resolution to 4x4x4mm.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.spmimportNormalize12
+
+# Location of the template
+template='/opt/spm12-r7219/spm12_mcr/spm12/tpm/TPM.nii'
+
As in the preprocessing hands-on, we will again be using SelectFiles and iterables. So, what do we need?
+
From the preprocessing pipeline, we need the functional images, the motion parameters and the list of outliers. Also, for the normalization, we need the subject-specific anatomy.
SPM12 can accept NIfTI files as input, but online if they are not compressed ('unzipped'). Therefore, we need to use a Gunzip node to unzip the detrend file and another one to unzip the anatomy image, before we can feed it to the model specification node.
First, let's look at the 1st-level Design Matrix of subject one, to verify that everything is as it should be.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromscipy.ioimportloadmat
+
+# Using scipy's loadmat function we can access SPM.mat
+spmmat=loadmat('/output/datasink_handson/1stLevel/sub-07/SPM.mat',
+ struct_as_record=False)
+
+
+
+
+
+
+
+
+
+
+
+
The design matrix and the names of the regressors are a bit hidden in the spmmat variable, but they can be accessed as follows:
Now before we can plot it, we just need to normalize the desing matrix in such a way, that each column has a maximum amplitude of 1. This is just for visualization purposes, otherwise the rotation parameters with their rather small values will not show up in the figure.
To make sure that the necessary imports are done, here they are again:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Get the Node and Workflow object
+fromnipypeimportNode,Workflow
+
+# Specify which SPM to use
+fromnipype.interfaces.matlabimportMatlabCommand
+MatlabCommand.set_default_paths('/opt/spm12-r7219/spm12_mcr/spm12')
+
This step depends on your study design and the tests you want to perform. If you're using SPM to do the group analysis, you have the liberty to choose between a factorial design, a multiple regression design, one-sample T-Test design, a paired T-Test design or a two-sample T-Test design.
+
For the current example, we will be using a one-sample T-Test design.
To finish the EstimateContrast node, we also need to specify which contrast should be computed. For a 2nd-level one-sample t-test design, this is rather straightforward:
And to close, we will use SPM Threshold. With this routine, we can set a specific voxel threshold (i.e. p<0.001) and apply an FDR cluster threshold (i.e. p<0.05).
+
As we only have 5 subjects, I recommend to set the voxel threshold to 0.01 and to leave the cluster threshold at 0.05.
We could run our 2nd-level workflow as it is. All the major nodes are there. But I nonetheless suggest that we use a gray matter mask to restrict the analysis to only gray matter voxels.
+
In the 1st-level analysis, we normalized to SPM12's TPM.nii tissue probability atlas. Therefore, we could just take the gray matter probability map of this TPM.nii image (the first volume) and threshold it at a certain probability value to get a binary mask. This can of course also all be done in Nipype, but sometimes the direct bash code is quicker:
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+TEMPLATE='/opt/spm12-r7219/spm12_mcr/spm12/tpm/TPM.nii'
+
+# Extract the first volume with `fslroi`
+fslroi $TEMPLATE GM_PM.nii.gz 01
+
+# Threshold the probability mask at 10%
+fslmaths GM_PM.nii -thr 0.10 -bin /output/datasink_handson/GM_mask.nii.gz
+
+# Unzip the mask and delete the GM_PM.nii file
+gunzip /output/datasink_handson/GM_mask.nii.gz
+rm GM_PM.nii.gz
+
We are using * to tell SelectFiles that it can grab all available subjects and any contrast, with a specific contrast id, independnet if it's an t-contrast (con) or an F-contrast (ess) contrast.
+
So, let's specify over which contrast the workflow should iterate.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# list of contrast identifiers
+contrast_id_list=['0001','0002','0003','0004','0005',
+ '0006','0007','0008','0009']
+sf.iterables=[('cont_id',contrast_id_list)]
+
+
+
+
+
+
+
+
+
+
+
+
Now we need to connect the SelectFiles to the OneSampleTTestDesign node.
Let's take a look at the results. Keep in mind that we only have N=6 subjects and that we set the voxel threshold to a very liberal p<0.01. Interpretation of the results should, therefore, be taken with a lot of caution.
Hands-on 1: How to create a fMRI preprocessing workflow¶
The purpose of this section is that you set-up a complete fMRI analysis workflow yourself. So that in the end you are able to perform the analysis from A-Z, i.e. from preprocessing to group analysis. This section will cover the preprocessing part, and the section Hands-on 2: Analysis will handle the analysis part.
+
We will use this opportunity to show you some nice additional interfaces/nodes that might not be relevant to your usual analysis. But it's always nice to know that they exist. And hopefully, this will encourage you to investigate all other interfaces that Nipype can bring to the tip of your finger.
Before we can start with anything we first need to download the data. For this hands-on, we will only use the right-handed subjects 2-4 and 7-9. This can be done very quickly with the following datalad command.
+
Note: This might take a while, as datalad needs to download ~200MB of data
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+datalad get -J 4 /data/ds000114/sub-0[234789]/ses-test/anat/sub-0[234789]_ses-test_T1w.nii.gz \
+ /data/ds000114/sub-0[234789]/ses-test/func/*fingerfootlips*
+
So let's get our hands dirty. First things first, it's always good to know which interfaces you want to use in your workflow and in which order you want to execute them. For the preprocessing workflow, I recommend that we use the following nodes:
It's always best to have all relevant module imports at the beginning of your script. So let's import what we most certainly need.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Get the Node and Workflow object
+fromnipypeimportNode,Workflow
+
+# Specify which SPM to use
+fromnipype.interfaces.matlabimportMatlabCommand
+MatlabCommand.set_default_paths('/opt/spm12-r7219/spm12_mcr/spm12')
+
+
+
+
+
+
+
+
+
+
+
+
Note: Ideally you would also put the imports of all the interfaces that you use here at the top. But as we will develop the workflow step by step, we can also import the relevant modules as we go.
Let's create all the nodes that we need! Make sure to specify all relevant inputs and keep in mind which ones you later on need to connect in your pipeline.
We recommend to create the workflow and establish all its connections at a later place in your script. This helps to have everything nicely together. But for this hands-on example it makes sense to establish the connections between the nodes as we go.
+
And for this, we first need to create a workflow:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create the workflow here
+# Hint: use 'base_dir' to specify where to store the working directory
+
I've already created the Gunzip node as a template for the other nodes. Also, we've specified an in_file here so that we can directly test the nodes without worrying about the Input/Output data stream to the workflow. This will be taken care of in a later section.
The functional images of this dataset were recorded with 4 dummy scans at the beginning (see the corresponding publication). But those dummy scans were not yet taken out from the functional images.
+
To better illustrate this, let's plot the time course of a random voxel of the just defined func_file:
In the figure above, we see that at the very beginning there are extreme values, which hint to the fact that steady state wasn't reached yet. Therefore, we want to exclude the dummy scans from the original data. This can be achieved with FSL's ExtractROI.
Now to the next step. Let's us SPM's SliceTiming to correct for slice wise acquisition of the volumes. As a reminder, the tutorial dataset was recorded...
+
+
with a time repetition (TR) of 2.5 seconds
+
with 30 slices per volume
+
in an interleaved fashion, i.e. slice order is [1, 3, 5, 7, ..., 2, 4, 6, ..., 30]
+
with a time acquisition (TA) of 2.4167 seconds, i.e. TR-(TR/num_slices)
We will use the really cool and useful ArtifactDetection tool from Nipype to detect motion and intensity outliers in the functional images. The interface is initiated as follows:
norm_threshold - Threshold to use to detect motion-related outliers when composite motion is being used
+
zintensity_threshold - Intensity Z-threshold use to detection images that deviate from the mean
+
mask_type - Type of mask that should be used to mask the functional data. spm_global uses an spm_global like calculation to determine the brain mask
+
parameter_source - Source of movement parameters
+
use_differences - If you want to use differences between successive motion (first element) and intensity parameter (second element) estimates in order to determine outliers
+
+
+
+
+
+
+
+
+
+
And this is how you connect this node to the rest of the workflow:
Now let's work on the anatomical image. In particular, let's use SPM's NewSegment to create probability maps for the gray matter, white matter tissue and CSF.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.spmimportNewSegment
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Use the following tissue specification to get a GM and WM probability map
+tpm_img='/opt/spm12-r7219/spm12_mcr/spm12/tpm/TPM.nii'
+tissue1=((tpm_img,1),1,(True,False),(False,False))
+tissue2=((tpm_img,2),1,(True,False),(False,False))
+tissue3=((tpm_img,3),2,(True,False),(False,False))
+tissue4=((tpm_img,4),3,(False,False),(False,False))
+tissue5=((tpm_img,5),4,(False,False),(False,False))
+tissue6=((tpm_img,6),2,(False,False),(False,False))
+tissues=[tissue1,tissue2,tissue3,tissue4,tissue5,tissue6]
+
We will again be using a Gunzip node to unzip the anatomical image that we then want to use as input to the segmentation node. We again also need to specify the anatomical image that we want to use in this case. As before, this will later also be handled directly by the Input/Output stream.
As a next step, we will make sure that the functional images are coregistered to the anatomical image. For this, we will use FSL's FLIRT function. As we just created a white matter probability map, we can use this together with the a Boundary-Based Registration (BBR) cost function do optimize the image coregistration. As some helpful notes...
+
+
use a degree of freedom of 6
+
specify the cost function as bbr
+
use the schedule='/usr/share/fsl/5.0/etc/flirtsch/bbr.sch'
As mentioned above, the bbr routine can use the subject-specific white matter probability map to guide the coregistration. But for this, we need to create a binary mask out of the WM probability map. This can easily be done by FSL's Threshold interface.
Now, to select the WM probability map that the NewSegment node created, we need some helper function. Because the output field partial_volume_files form the segmentation node, will give us a list of files, i.e. [[GM_prob], [WM_prob], [], [], [], []]. Therefore, using the following function, we can select only the last element of this list.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Select WM segmentation file from segmentation output
+defget_wm(files):
+ returnfiles[1][0]
+
+# Connecting the segmentation node with the threshold node
+preproc.connect([(segment,threshold_WM,[(('native_class_images',get_wm),
+ 'in_file')])])
+
+
+
+
+
+
+
+
+
+
+
+
Now we can just connect this Threshold node to the coregistration node from above.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Connect Threshold node to coregistration node above here
+
Now that we know the coregistration matrix to correctly overlay the functional mean image on the subject-specific anatomy, we need to apply to coregistration to the whole time series. This can be achieved with FSL's FLIRT as follows:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Specify the isometric voxel resolution you want after coregistration
+desired_voxel_iso=4
+
+# Apply coregistration warp to functional images
+applywarp=Node(FLIRT(interp='spline',
+ apply_isoxfm=desired_voxel_iso,
+ output_type='NIFTI'),
+ name="applywarp")
+
+
+
+
+
+
+
+
+
+
+
+
Important: As you can see above, we also specified a variable desired_voxel_iso. This is very important at this stage, otherwise FLIRT will transform your functional images to a resolution of the anatomical image, which will dramatically increase the file size (e.g. to 1-10GB per file). If you don't want to change the voxel resolution, use the additional parameter no_resample=True. Important, for this to work, you still need to define apply_isoxfm=desired_voxel_iso.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Connecting the ApplyWarp node to all the other nodes
+preproc.connect([(mcflirt,applywarp,[('out_file','in_file')]),
+ (coreg,applywarp,[('out_matrix_file','in_matrix_file')]),
+ (gunzip_anat,applywarp,[('out_file','reference')])
+ ])
+
Next step is image smoothing. The most simple way to do this is to use FSL's or SPM's Smooth function. But for learning purposes, let's use FSL's SUSAN workflow as it is implemented in Nipype. Note that this time, we are importing a workflow instead of an interface.
There are many possible approaches on how you can mask your functional images. One of them is not at all, one is with a simple brain mask and one that only considers certain kind of brain tissue, e.g. gray matter.
+
For the current example, we want to create a dilated gray matter mask. For this purpose we need to:
+
+
Resample the gray matter probability map to the same resolution as the functional images
+
Threshold this resampled probability map at a specific value
+
Dilate this mask by some voxels to make the mask less conservative and more inclusive
+
+
The first step can be done in many ways (eg. using freesurfer's mri_convert, nibabel) but in our case, we will use FSL's FLIRT. The trick is to use the probability mask, as input file and a reference file.
The second and third step can luckily be done with just one node. We can take almost the same Threshold node as above. We just need to add another additional argument: -dilF - which applies a maximum filtering of all voxels.
To apply the mask to the smoothed functional images, we will use FSL's ApplyMask interface.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.fslimportApplyMask
+
+
+
+
+
+
+
+
+
+
+
+
Important: The susan workflow gives out a list of files, i.e. [smoothed_func.nii] instead of just the filename directly. If we would use a normal Node for ApplyMask this would lead to the following error:
+
+
TraitError: The 'in_file' trait of an ApplyMaskInput instance must be an existing file name, but a value of ['/output/work_preproc/susan/smooth/mapflow/_smooth0/asub-07_ses-test_task-fingerfootlips_bold_mcf_flirt_smooth.nii.gz'] <class 'list'> was specified.
+
+
+
+
To prevent this we will be using a MapNode and specify the in_file as it's iterfield. Like this, the node is capable to handle a list of inputs as it will know that it has to apply itself iteratively to the list of inputs.
Last but not least. Let's use Nipype's TSNR module to remove linear and quadratic trends in the functionally smoothed images. For this, you only have to specify the regress_poly parameter in the node initiation.
This is all nice and well. But so far we still had to specify the input values for gunzip_anat and gunzip_func ourselves. How can we scale this up to multiple subjects and/or multiple functional images and make the workflow take the input directly from the BIDS dataset?
+
For this, we need SelectFiles and iterables! It's rather simple, specify a template and fill-up the placeholder variables.
Now we are ready to run the workflow! Be careful about the n_procs parameter if you run a workflow in 'MultiProc' mode. n_procs specifies the number of jobs/cores your computer will use to run the workflow. If this number is too high your computer will try to execute too many things at once and will most likely crash.
+
Note: If you're using a Docker container and FLIRT fails to run without any good reason, you might need to change memory settings in the Docker preferences (6 GB should be enough for this workflow).
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2666, in run_cell
+ self.events.trigger('post_run_cell', result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/events.py", line 88, in trigger
+ func(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/pylab/backend_inline.py", line 160, in configure_once
+ activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
The results look fine, but we don't need all those temporary files. So let's use Datasink to keep only those files that we actually need for the 1st and 2nd level analysis.
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
Much better! But we're still not there yet. There are many unnecessary file specifiers that we can get rid off. To do so, we can use DataSink's substitutions parameter. For this, we create a list of tuples: on the left, we specify the string that we want to replace and on the right, with what we want to replace it with.
+
+
+
+
+
+
+
In [ ]:
+
+
+
## Use the following substitutions for the DataSink output
+substitutions=[('asub','sub'),
+ ('_ses-test_task-fingerfootlips_bold_roi_mcf',''),
+ ('.nii.gz.par','.par'),
+ ]
+
+# To get rid of the folder '_subject_id_07' and renaming detrend
+substitutions+=[('_subject_id_%s/detrend'%s,
+ '_subject_id_%s/sub-%s_detrend'%(s,s))forsinsubject_list]
+substitutions+=[('_subject_id_%s/'%s,'')forsinsubject_list]
+datasink.inputs.substitutions=substitutions
+
+
+
+
+
+
+
+
+
+
+
+
Before we run the preprocessing workflow again, let's first delete the current output folder:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Delets the current output folder
+!rm -rf /output/datasink_handson
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Runs the preprocessing workflow again, this time with substitutions
+preproc.run('MultiProc',plugin_args={'n_procs':8})
+
Run Preprocessing workflow on 6 right-handed subjects¶
+
+
+
+
+
+
+
+
Perfect! Now let's run the whole workflow for right-handed subjects. For this, you just need to change the subject_list variable and run again the places where this variable is used (i.e. sf.iterables and in DataSinksubstitutions.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Update 'subject_list' and its dependencies here
+
# To get rid of the folder '_subject_id_02' and renaming detrend
+substitutions+=[('_subject_id_%s/detrend'%s,
+ '_subject_id_%s/sub-%s_detrend'%(s,s))forsinsubject_list]
+substitutions+=[('_subject_id_%s/'%s,'')forsinsubject_list]
+datasink.inputs.substitutions=substitutions
+
+
+
+
+
+
+
+
+
+
+
+
Now we can run the workflow again, this time for all right-handed subjects in parallel.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Runs the preprocessing workflow again, this time with substitutions
+preproc.run('MultiProc',plugin_args={'n_procs':8})
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:542: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+/opt/conda/envs/neuro/lib/python3.6/site-packages/nipype/algorithms/rapidart.py:398: UserWarning:
+This call to matplotlib.use() has no effect because the backend has already
+been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+or matplotlib.backends is imported for the first time.
+
+The backend was *originally* set to 'module://ipykernel.pylab.backend_inline' by the following code:
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 193, in _run_module_as_main
+ "__main__", mod_spec)
+ File "/opt/conda/envs/neuro/lib/python3.6/runpy.py", line 85, in _run_code
+ exec(code, run_globals)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/__main__.py", line 3, in <module>
+ app.launch_new_instance()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/traitlets/config/application.py", line 658, in launch_instance
+ app.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 486, in start
+ self.io_loop.start()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/platform/asyncio.py", line 127, in start
+ self.asyncio_loop.run_forever()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 422, in run_forever
+ self._run_once()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/base_events.py", line 1432, in _run_once
+ handle._run()
+ File "/opt/conda/envs/neuro/lib/python3.6/asyncio/events.py", line 145, in _run
+ self._callback(*self._args)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/ioloop.py", line 759, in _run_callback
+ ret = callback()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 536, in <lambda>
+ self.io_loop.add_callback(lambda : self._handle_events(self.socket, 0))
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 450, in _handle_events
+ self._handle_recv()
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 480, in _handle_recv
+ self._run_callback(callback, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 432, in _run_callback
+ callback(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/tornado/stack_context.py", line 276, in null_wrapper
+ return fn(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
+ return self.dispatch_shell(stream, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
+ handler(stream, idents, msg)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
+ user_expressions, allow_stdin)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 208, in do_execute
+ res = shell.run_cell(code, store_history=store_history, silent=silent)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 537, in run_cell
+ return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2662, in run_cell
+ raw_cell, store_history, silent, shell_futures)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2785, in _run_cell
+ interactivity=interactivity, compiler=compiler, result=result)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2903, in run_ast_nodes
+ if self.run_code(code, result):
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2963, in run_code
+ exec(code_obj, self.user_global_ns, self.user_ns)
+ File "<ipython-input-87-f5f275df5bdf>", line 1, in <module>
+ get_ipython().run_line_magic('matplotlib', 'inline')
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2131, in run_line_magic
+ result = fn(*args,**kwargs)
+ File "<decorator-gen-107>", line 2, in matplotlib
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magic.py", line 187, in <lambda>
+ call = lambda f, *a, **k: f(*a, **k)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/magics/pylab.py", line 99, in matplotlib
+ gui, backend = self.shell.enable_matplotlib(args.gui)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3051, in enable_matplotlib
+ pt.activate_matplotlib(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/IPython/core/pylabtools.py", line 311, in activate_matplotlib
+ matplotlib.pyplot.switch_backend(backend)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/pyplot.py", line 231, in switch_backend
+ matplotlib.use(newbackend, warn=False, force=True)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/__init__.py", line 1410, in use
+ reload(sys.modules['matplotlib.backends'])
+ File "/opt/conda/envs/neuro/lib/python3.6/importlib/__init__.py", line 166, in reload
+ _bootstrap._exec(spec, module)
+ File "/opt/conda/envs/neuro/lib/python3.6/site-packages/matplotlib/backends/__init__.py", line 16, in <module>
+ line for line in traceback.format_stack()
+
+
+ matplotlib.use(config.get("execution", "matplotlib_backend"))
+
The dataset for this tutorial is structured according to the Brain Imaging Data Structure (BIDS). BIDS is a simple and intuitive way to organize and describe your neuroimaging and behavioral data. Neuroimaging experiments result in complicated data that can be arranged in many different ways. So far there is no consensus on how to organize and share data obtained in neuroimaging experiments. BIDS tackles this problem by suggesting a new standard for the arrangement of neuroimaging datasets.
+
+
+
+
+
+
+
+
+
The idea of BIDS is that the file and folder names follow a strict set of rules:
+
+
+
+
+
+
+
+
+
+
Using the same structure for all of your studies will allow you to easily reuse all of your scripts between studies. But additionally, it also has the advantage that sharing code with and using scripts from other researchers will be much easier.
For this tutorial, we will be using a subset of the fMRI dataset (ds000114) publicly available on openfmri.org. If you're using the suggested Docker image you probably have all data needed to run the tutorial within the Docker container.
+If you want to have data locally you can use Datalad to download a subset of the dataset, via the datalad repository. In order to install dataset with all subrepositories you can run:
In order to download data, you can use datalad get foldername command, to download all files in the folder foldername. For this tutorial we only want to download part of the dataset, i.e. the anatomical and the functional fingerfootlips images:
Subject from the ds000114 dataset did five behavioral tasks. In our dataset two of them are included.
+
The motor task consisted of finger tapping, foot twitching and lip pouching interleaved with fixation at a cross.
+
The landmark task was designed to mimic the line bisection task used in neurological practice to diagnose spatial hemineglect. Two conditions were contrasted, specifically judging if a horizontal line had been bisected exactly in the middle, versus judging if a horizontal line was bisected at all. More about the dataset and studies you can find here.
+
To each of the functional images above, we therefore also have a tab-separated values file (tva), containing information such as stimuli onset, duration, type, etc. So let's have a look at one of them:
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%bash
+cd /data/ds000114
+datalad get /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-linebisection_events.tsv
+
Docker is an open-source project that automates the deployment of applications inside software containers. Those containers wrap up a piece of software in a complete filesystem that contains everything it needs to run: code, system tools, software libraries, such as Python, FSL, AFNI, SPM, FreeSurfer, ANTs, etc. This guarantees that it will always run the same, regardless of the environment it is running in.
+
Important: You don't need Docker to run Nipype on your system. For Mac and Linux users, it probably is much simpler to install Nipype directly on your system. For more information on how to do this see the Nipype website. But for Windows users, or users that don't want to set up all the dependencies themselves, Docker is the way to go.
If you want to run this Nipype Tutorial with the example dataset locally on your own system, you need to use the docker image, provided under miykael/nipype_tutorial. This docker image sets up a Linux environment on your system, with functioning Python, Nipype, FSL, ANTs and SPM12 software package, some example data, and all the tutorial notebooks to learn Nipype. Alternatively, you can also build your own docker image from Dockerfile or create a different Dockerfile using Neurodocker.
Before you can do anything, you first need to install Docker on your system. The installation process differs per system. Luckily, the docker homepage has nice instructions for...
After installing docker on your system and making sure that the hello-world example was running, we are good to go to start the Nipype Tutorial image. The exact implementation is a bit different for Windows user, but the general commands look similar.
+
The suggested Docker image, miykael/nipype_tutorial, already contains all tutorial notebooks and data used in the tutorial, so the simplest way to run container is:
However, if you want to use your version of notebooks, safe notebook outputs locally or use you local data, you can also mount your local directories, e.g.:
The -it flag tells docker that it should open an interactive container instance.
+
The --rm flag tells docker that the container should automatically be removed after we close docker.
+
The -p flag specifies which port we want to make available for docker.
+
The -v flag tells docker which folders should be mount to make them accessible inside the container. Here: /path/to/nipype_tutorial is your local directory where you downloaded Nipype Tutorial repository. /path/to/data/ is a directory where you have dataset ds000114, and /path/to/output can be an empty directory that will be used for output. The second part of the -v flag (here: /home/neuro/nipype_tutorial, /data or /output) specifies under which path the mounted folders can be found inside the container. Important: To use the tutorial, data and output folder, you first need to create them on your system!
+
miykael/nipype_tutorial tells docker which image you want to run.
+
jupyter notebook tells that you want to run directly the jupyter notebook command within the container. Alternatively, you can also use jupyter-lab, bash or ipython.
+
+
Note that when you run this docker image without any more specification than it will prompt you a URL link in your terminal that you will need to copy paste into your browser to get to the notebooks.
Running a docker image on a Linux or Mac OS is very simple. Make sure that the folders tutorial, data, and output exist. Then just open a new terminal and use the command from above. Once the docker image is downloaded, open the shown URL link in your browser and you are good to go. The URL will look something like:
Running a docker image on Windows is a bit trickier than on Ubuntu. Assuming you've installed the DockerToolbox, open the Docker Quickstart Terminal. Once the docker terminal is ready (when you see the whale), execute the following steps (see also figure):
+
+
We need to check the IP address of your docker machine. For this, use the command:
+
docker-machine ip
+
In my case, this returned 192.168.99.100
+
+
If you haven't already created a new folder to store your container output into, do so. You can create the folder either in the explorer as usual or do it with the command mkdir -p in the docker console. For example like this:
+
mkdir -p /c/Users/username/output
+
Please replace username with the name of the current user on your system. Pay attention that the folder paths in the docker terminal are not a backslash (\) as we usually have in Windows. Also, C:\ needs to be specified as /c/.
+
+
Now, we can open run the container with the command from above:
This URL will not work on a Windows system. To make it work, you need to replace the string localhost with the IP address of your docker machine, that we acquired under step 1. Afterward, your URL should look something like this:
You don't have to open a jupyter notebook when you run miykael/nipype_tutorial. You can also access the docker container directly with bash or ipython by adding it to the end of your command, i.e.:
To delete a specific docker image, first use the docker images command to list all installed containers and then use the IMAGE ID and the rmi instruction to delete the container:
If you don't want to depend on an internet connection, you can also export an already downloaded docker image and then later on import it on another PC. To do so, use the following two commands:
+
+
# Export docker image miykael/nipype_tutorial
+docker save -o nipype_tutorial.tar miykael/nipype_tutorial
+
+# Import docker image on another PC
+docker load --input nipype_tutorial.tar
+
+
+
It might be possible that you run into administrator privileges issues because you ran your docker command with sudo. This means that other users don't have access rights to nipype_tutorial.tar. To avoid this, just change the rights of nipype_tutorial.tar with the command:
Jupyter Notebook started as a web application, based on IPython that can run Python code directly in the webbrowser. Now, Jupyter Notebook can handle over 40 programming languages and is the interactive, open source web application to run any scientific code.
+
You might also want to try a new Jupyter environment JupyterLab.
One of the most useful things about Jupyter Notebook is its tab completion.
+
Try this: click just after read_csv( in the cell below and press Shift+Tab 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# NBVAL_SKIP
+# Use TAB completion for function info
+pd.read_csv(
+
+
+
+
+
+
+
+
+
+
+
+
After the first time, you should see this:
+
+
After the second time:
+
+
After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the read_csv function:
+
+
I find this amazingly useful. I think of this as "the more confused I am, the more times I should press Shift+Tab".
+
Okay, let's try tab completion for function names!
+
+
+
+
+
+
+
In [ ]:
+
+
+
# NBVAL_SKIP
+# Use TAB completion to see possible function names
+pd.r
+
There's an additional way on how you can reach the help box shown above after the fourth Shift+Tab press. Instead, you can also use obj? or obj?? to get help or more help for an object.
IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.
+
Some useful magic functions are:
+
+
+
Magic Name
+
Effect
+
+
+
+
+
%env
+
Get, set, or list environment variables
+
+
+
%pdb
+
Control the automatic calling of the pdb interactive debugger
+
+
+
%pylab
+
Load numpy and matplotlib to work interactively
+
+
+
%%debug
+
Activates debugging mode in cell
+
+
+
%%html
+
Render the cell as a block of HTML
+
+
+
%%latex
+
Render the cell as a block of latex
+
+
+
%%sh
+
%%sh script magic
+
+
+
%%time
+
Time execution of a Python statement or expression
+
+
+
+
You can run %magic to get a list of magic functions or %quickref for a reference sheet.
This page covers the steps to create containers with Neurodocker. Neurodocker is a brilliant tool to create your own neuroimaging docker container. Neurodocker is a command-line program that enables users to generate Docker containers and Singularity images that include neuroimaging software.
docker run --rm kaczmarj/neurodocker:v0.4.0 generate [docker|singularity] --help
+
+
+
Note: choose between docker and singularity in [docker|singularity].
+
+
Users must specify a base Docker image and the package manager. Any Docker
+image on DockerHub can be used as your base image. Common base images
+include debian:stretch, ubuntu:16.04, centos:7, and the various
+neurodebian images. If users would like to install software from the
+NeuroDebian repositories, it is recommended to use a neurodebian base
+image. The package manager is apt or yum, depending on the base
+image.
+
Next, users should configure the container to fit their needs. This includes
+installing neuroimaging software, installing packages from the chosen package
+manager, installing Python and Python packages, copying files from the local
+machine into the container, and other operations. The list of supported
+neuroimaging software packages is available in the neurodocker help
+message.
+
The neurodocker command will generate a Dockerfile or Singularity recipe.
+The Dockerfile can be used with the docker build command to build a
+Docker image. The Singularity recipe can be used to build a Singularity
+container with the singularity build command.
+
+
+
+
+
+
+
+
+
+
Create a Dockerfile or Singularity recipe with FSL, Python 3.6, and Nipype¶
This command prints a Dockerfile (the specification for a Docker image) or a
+Singularity recipe (the specification for a Singularity container) to the
+terminal.
This example installs AFNI and ANTs from the NeuroDebian repositories. It also
+installs git and vim.
+
+
docker run --rm kaczmarj/neurodocker:v0.4.0 generate [docker|singularity] \
+ --base neurodebian:stretch --pkg-manager apt \
+ --install afni ants git vim
+
+
+
Note: the --install option will install software using the package manager.
+Because the NeuroDebian repositories are enabled in the chosen base image, AFNI
+and ANTs may be installed using the package manager. git and vim are
+available in the default repositories.
Create a container with dcm2niix, Nipype, and jupyter notebook. Install
+Miniconda as a non-root user, and activate the Miniconda environment upon
+running the container.
Most of the functionality in Python is provided by modules. To use a module in a Python program it first has to be imported. A module can be imported using the import statement. For example, to import the module math, which contains many standard mathematical functions, we can do:
+
+
+
+
+
+
+
In [ ]:
+
+
+
importmath
+
+
+
+
+
+
+
+
+
+
+
+
This includes the whole module and makes it available for use later in the program. For example, we can do:
+
+
+
+
+
+
+
In [ ]:
+
+
+
importmath
+
+x=math.cos(2*math.pi)
+
+print(x)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1.0
+
+
+
+
+
+
+
+
+
+
+
+
+
Importing the whole module us often times unnecessary and can lead to longer loading time or increase the memory consumption. An alternative to the previous method, we can also choose to import only a few selected functions from a module by explicitly listing which ones we want to import:
+
+
+
+
+
+
+
In [ ]:
+
+
+
frommathimportcos,pi
+
+x=cos(2*pi)
+
+print(x)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1.0
+
+
+
+
+
+
+
+
+
+
+
+
+
It is also possible to give an imported module or symbol your own access name with the as additional:
Using the function help we can get a description of almost all functions.
+
+
+
+
+
+
+
In [ ]:
+
+
+
help(math.log)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Help on built-in function log in module math:
+
+log(...)
+ log(x[, base])
+
+ Return the logarithm of x to the given base.
+ If the base not specified, returns the natural logarithm (base e) of x.
+
+
Variable names in Python can contain alphanumerical characters a-z, A-Z, 0-9 and some special characters such as _. Normal variable names must start with a letter.
+
By convention, variable names start with a lower-case letter, and Class names start with a capital letter.
+
In addition, there are a number of Python keywords that cannot be used as variable names. These keywords are:
+
+
and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield
The assignment operator in Python is =. Python is a dynamically typed language, so we do not need to specify the type of a variable when we create one.
+
Assigning a value to a new variable creates the variable:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# variable assignments
+x=1.0
+
+
+
+
+
+
+
+
+
+
+
+
Although not explicitly specified, a variable does have a type associated with it. The type is derived from the value it was assigned.
+
+
+
+
+
+
+
In [ ]:
+
+
+
type(x)
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
float
+
+
+
+
+
+
+
+
+
+
+
+
+
If we assign a new value to a variable, its type can change.
+
+
+
+
+
+
+
In [ ]:
+
+
+
x=1
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
type(x)
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
int
+
+
+
+
+
+
+
+
+
+
+
+
+
If we try to use a variable that has not yet been defined we get an NameError (Note, that we will use in the notebooks try/except blocks to handle the exception, so the notebook doesn't stop. The code below will try to execute print function and if the NameError occurs the error message will be printed. Otherwise, an error will be raised. Later in this notebook you will learn more about exception handling.):
In Python 2.7, what kind of division (/) will be executed, depends on the type of the numbers involved. If all numbers are integers, the division will be an integer division, otherwise, it will be a float division. In Python 3 this has been changed and fractions aren't lost when dividing integers (for integer division you can use another operator, //).
+
+
+
+
+
+
+
In [ ]:
+
+
+
# In Python 3 these two operations will give the same result
+# (in Python 2 the first one will be treated as an integer division).
+print(1/2)
+print(1/2.0)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
0.5
+0.5
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Note! The power operator in python isn't ^, but **
+2**2
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
4
+
+
+
+
+
+
+
+
+
+
+
+
+
+
The boolean operators are spelled out as words and, not, or.
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
TrueandFalse
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
False
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
notFalse
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
True
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
TrueorFalse
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
True
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Comparison operators >, <, >= (greater or equal), <= (less or equal), == (equal), != (not equal) and is (identical).
print("str1"+"str2"+"str3")# strings added with + are concatenated without space
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
str1str2str3
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
print("str1""str2""str3")# The print function concatenates strings differently
+print("str1","str2","str3")# depending on how the inputs are specified
+print(("str1","str2","str3"))# See the three different outputs below
+
print("str1",1.0,False)# The print function converts all arguments to strings
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
str1 1.0 False
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
print("value = %f"%1.0) # we can use C-style string formatting
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
value = 1.000000
+
+
+
+
+
+
+
+
+
+
+
+
+
Python has two string formatting styles. An example of the old style is below, specifier %.2f transforms the input number into a string, that corresponds to a floating point number with 2 decimal places and the specifier %d transforms the input number into a string, corresponding to a decimal number.
You can specify multi-line strings using triple quotes - (""" or '''). You can use single quotes and double quotes freely within the triple quotes. An example is:
+
+
+
+
+
+
+
In [ ]:
+
+
+
'''This is a multi-line string. This is the first line.
+This is the second line.
+"What's your name?," I asked.
+He said "Bond, James Bond."
+'''
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
'This is a multi-line string. This is the first line.\nThis is the second line.\n"What\'s your name?," I asked.\nHe said "Bond, James Bond."\n'
Lists are very similar to strings, except that each element can be of any type.
+
The syntax for creating lists in Python is [...]:
+
+
+
+
+
+
+
In [ ]:
+
+
+
l=[1,2,3,4]
+
+print(type(l))
+print(l)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
<class 'list'>
+[1, 2, 3, 4]
+
+
+
+
+
+
+
+
+
+
+
+
+
We can use the same slicing techniques to manipulate lists as we could use on strings:
+
+
+
+
+
+
+
In [ ]:
+
+
+
print(l)
+print(l[1:3])
+print(l[::2])
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[1, 2, 3, 4]
+[2, 3]
+[1, 3]
+
+
+
+
+
+
+
+
+
+
+
+
+
Heads up MATLAB users: Indexing starts at 0!
+
+
+
+
+
+
+
In [ ]:
+
+
+
l[0]
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
1
+
+
+
+
+
+
+
+
+
+
+
+
+
Elements in a list do not all have to be of the same type:
+
+
+
+
+
+
+
In [ ]:
+
+
+
l=[1,'a',1.0]
+
+print(l)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[1, 'a', 1.0]
+
+
+
+
+
+
+
+
+
+
+
+
+
Python lists can be inhomogeneous and arbitrarily nested:
+
+
+
+
+
+
+
In [ ]:
+
+
+
nested_list=[1,[2,[3,[4,[5]]]]]
+
+nested_list
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
[1, [2, [3, [4, [5]]]]]
+
+
+
+
+
+
+
+
+
+
+
+
+
Lists play a very important role in Python and are for example used in loops and other flow control structures (discussed below). There are a number of convenient functions for generating lists of various types, for example, the range function (note that in Python 3 range creates a generator, so you have to use list function to get a list):
Whitespace is important in Python. Actually, whitespace at the beginning of the line is important. This is called indentation. Leading whitespace (spaces and tabs) at the beginning of the logical line is used to determine the indentation level of the logical line, which in turn is used to determine the grouping of statements.
+
This means that statements which go together must have the same indentation, for example:
+
+
+
+
+
+
+
In [ ]:
+
+
+
i=5
+
+print('Value is ',i)
+print('I repeat, the value is ',i)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Value is 5
+I repeat, the value is 5
+
+
+
+
+
+
+
+
+
+
+
+
+
Each such set of statements is called a block. We will see examples of how blocks are important later on.
+One thing you should remember is that wrong indentation rises IndentationError.
The Python syntax for conditional execution of code use the keywords if, elif (else if), else:
+
+
+
+
+
+
+
In [ ]:
+
+
+
statement1=False
+statement2=False
+
+ifstatement1:
+ print("statement1 is True")
+
+elifstatement2:
+ print("statement2 is True")
+
+else:
+ print("statement1 and statement2 are False")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
statement1 and statement2 are False
+
+
+
+
+
+
+
+
+
+
+
+
+
For the first time, here we encountered a peculiar and unusual aspect of the Python programming language: Program blocks are defined by their indentation level. In Python, the extent of a code block is defined by the indentation level (usually a tab or say four white spaces). This means that we have to be careful to indent our code correctly, or else we will get syntax errors.
+
Examples:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Good indentation
+statement1=statement2=True
+
+ifstatement1:
+ ifstatement2:
+ print("both statement1 and statement2 are True")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
both statement1 and statement2 are True
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Bad indentation! This would lead to error
+#if statement1:
+# if statement2:
+# print("both statement1 and statement2 are True") # this line is not properly indented
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
statement1=False
+
+ifstatement1:
+ print("printed if statement1 is True")
+
+ print("still inside the if block")
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
ifstatement1:
+ print("printed if statement1 is True")
+
+print("now outside the if block")
+
In Python, loops can be programmed in a number of different ways. The most common is the for loop, which is used together with iterable objects, such as lists. The basic syntax is:
The for loop iterates over the elements of the supplied list and executes the containing block once for each element. Any kind of list can be used in the for loop. For example:
+
+
+
+
+
+
+
In [ ]:
+
+
+
forxinrange(4):# by default range start at 0
+ print(x),
+
To control the flow of a certain loop you can also use break, continue and pass.
+
+
+
+
+
+
+
In [ ]:
+
+
+
rangelist=list(range(10))
+print(list(rangelist))
+
+fornumberinrangelist:
+ # Check if number is one of
+ # the numbers in the tuple.
+ ifnumberin[4,5,7,9]:
+ # "Break" terminates a for without
+ # executing the "else" clause.
+ break
+ else:
+ # "Continue" starts the next iteration
+ # of the loop. It's rather useless here,
+ # as it's the last statement of the loop.
+ print(number)
+ continue
+else:
+ # The "else" clause is optional and is
+ # executed only if the loop didn't "break".
+ pass# Do nothing
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
+0
+1
+2
+3
+
+
+
+
+
+
+
+
+
+
+
+
+
List comprehensions: Creating lists using for loops:
A function in Python is defined using the keyword def, followed by a function name, a signature within parentheses (), and a colon :. The following code, with one additional level of indentation, is the function body.
+
+
+
+
+
+
+
In [ ]:
+
+
+
defsay_hello():
+ # block belonging to the function
+ print('hello world')
+
+say_hello()# call the function
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
hello world
+
+
+
+
+
+
+
+
+
+
+
+
+
Following an example where we also feed two arguments into the function.
Very important: Variables inside a function are treated as local variables and therefore don't interfere with variables outside the scope of the function.
+
+
+
+
+
+
+
In [ ]:
+
+
+
x=50
+
+deffunc(x):
+ print('x is',x)
+ x=2
+ print('Changed local x to',x)
+
+func(x)
+print('x is still',x)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
x is 50
+Changed local x to 2
+x is still 50
+
+
+
+
+
+
+
+
+
+
+
+
+
The local scope of a variable inside a function can be extended with the keyword global.
+
+
+
+
+
+
+
In [ ]:
+
+
+
x=50
+
+deffunc():
+ globalx
+
+ print('x is',x)
+ x=2
+ print('Changed global x to',x)
+
+func()
+print('Value of x is',x)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
x is 50
+Changed global x to 2
+Value of x is 2
+
+
+
+
+
+
+
+
+
+
+
+
+
Optionally, but highly recommended, we can define a so called "docstring", which is a description of the functions purpose and behavior. The docstring should follow directly after the function definition, before the code in the function body.
+
+
+
+
+
+
+
In [ ]:
+
+
+
deffunc1(s):
+ """
+ Print a string 's' and tell how many characters it has
+ """
+
+ print(s+" has "+str(len(s))+" characters")
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
help(func1)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Help on function func1 in module __main__:
+
+func1(s)
+ Print a string 's' and tell how many characters it has
+
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
func1("test")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
test has 4 characters
+
+
+
+
+
+
+
+
+
+
+
+
+
Functions that return a value use the return keyword:
+
+
+
+
+
+
+
In [ ]:
+
+
+
defsquare(x):
+ """
+ Return the square of x.
+ """
+ returnx**2
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
square(4)
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
16
+
+
+
+
+
+
+
+
+
+
+
+
+
We can return multiple values from a function using tuples (see above):
+
+
+
+
+
+
+
In [ ]:
+
+
+
defpowers(x):
+ """
+ Return a few powers of x.
+ """
+ returnx**2,x**3,x**4
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
powers(3)
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
(9, 27, 81)
+
+
+
+
+
+
+
+
+
+
+
+
+
And if we know that a function returns multiple outputs, we can store them directly in multiple variables.
In a definition of a function, we can give default values to the arguments the function takes:
+
+
+
+
+
+
+
In [ ]:
+
+
+
defmyfunc(x,p=2,debug=False):
+ ifdebug:
+ print("evaluating myfunc for x = "+str(x)+" using exponent p = "+str(p))
+ returnx**p
+
+
+
+
+
+
+
+
+
+
+
+
If we don't provide a value of the debug argument when calling the the function myfunc it defaults to the value provided in the function definition:
+
+
+
+
+
+
+
In [ ]:
+
+
+
myfunc(5)
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
25
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
myfunc(5,debug=True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
evaluating myfunc for x = 5 using exponent p = 2
+
+
+
+
+
+
+
Out[ ]:
+
+
+
+
+
+
25
+
+
+
+
+
+
+
+
+
+
+
+
+
If we explicitly list the name of the arguments in the function calls, they do not need to come in the same order as in the function definition. This is called keyword arguments and is often very useful in functions that take a lot of optional arguments.
+
+
+
+
+
+
+
In [ ]:
+
+
+
myfunc(p=3,debug=True,x=7)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
evaluating myfunc for x = 7 using exponent p = 3
+
Sometimes you might want to define a function that can take any number of parameters, i.e. variable number of arguments, this can be achieved by using one (*args) or two (**kwargs) asterisks in the function declaration. *args is used to pass a non-keyworded, variable-length argument list and the **kwargs is used to pass a keyworded, variable-length argument list.
Classes are the key features of object-oriented programming. A class is a structure for representing an object and the operations that can be performed on the object.
+
In Python, a class can contain attributes (variables) and methods (functions).
+
A class is defined almost like a function, but using the class keyword, and the class definition usually contains a number of class method definitions (a function in a class).
+
+
Each class method should have an argument self as it first argument. This object is a self-reference.
+
+
Some class method names have special meaning, for example:
+
+
__init__: The name of the method that is invoked when the object is first created.
+
__str__ : A method that is invoked when a simple string representation of the class is needed, as for example when printed.
classPoint:
+ """
+ Simple class for representing a point in a Cartesian coordinate system.
+ """
+
+ def__init__(self,x,y):
+ """
+ Create a new Point at x, y.
+ """
+ self.x=x
+ self.y=y
+
+ deftranslate(self,dx,dy):
+ """
+ Translate the point by dx and dy in the x and y direction.
+ """
+ self.x+=dx
+ self.y+=dy
+
+ def__str__(self):
+ return("Point at [%f, %f]"%(self.x,self.y))
+
+
+
+
+
+
+
+
+
+
+
+
To create a new instance of a class:
+
+
+
+
+
+
+
In [ ]:
+
+
+
p1=Point(0,0)# this will invoke the __init__ method in the Point class
+
+print(p1)# this will invoke the __str__ method
+
One of the most important concepts in good programming is to reuse code and avoid repetitions.
+
The idea is to write functions and classes with a well-defined purpose and scope, and reuse these instead of repeating similar code in different part of a program (modular programming). The result is usually that readability and maintainability of a program are greatly improved. What this means in practice is that our programs have fewer bugs, are easier to extend and debug/troubleshoot.
+
Python supports modular programming at different levels. Functions and classes are examples of tools for low-level modular programming. Python modules are a higher-level modular programming construct, where we can collect related variables, functions, and classes in a module. A python module is defined in a python file (with file-ending .py), and it can be made accessible to other Python modules and programs using the import statement.
+
Consider the following example: the file mymodule.py contains simple example implementations of a variable, function and a class:
+
+
+
+
+
+
+
In [ ]:
+
+
+
%%file mymodule.py
+"""
+Example of a python module. Contains a variable called my_variable,
+a function called my_function, and a class called MyClass.
+"""
+
+my_variable = 0
+
+def my_function():
+ """
+ Example function
+ """
+ return my_variable
+
+class MyClass:
+ """
+ Example class.
+ """
+
+ def __init__(self):
+ self.variable = my_variable
+
+ def set_variable(self, new_value):
+ """
+ Set self.variable to a new value
+ """
+ self.variable = new_value
+
+ def get_variable(self):
+ return self.variable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Writing mymodule.py
+
+
+
+
+
+
+
+
+
+
+
+
+
Note:%%file is called a cell-magic function and creates a file that has the following lines as content.
+
We can import the module mymodule into our Python program using import:
+
+
+
+
+
+
+
In [ ]:
+
+
+
importmymodule
+
+
+
+
+
+
+
+
+
+
+
+
Use help(module) to get a summary of what the module provides:
+
+
+
+
+
+
+
In [ ]:
+
+
+
help(mymodule)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Help on module mymodule:
+
+NAME
+ mymodule
+
+DESCRIPTION
+ Example of a python module. Contains a variable called my_variable,
+ a function called my_function, and a class called MyClass.
+
+CLASSES
+ builtins.object
+ MyClass
+
+ class MyClass(builtins.object)
+ | Example class.
+ |
+ | Methods defined here:
+ |
+ | __init__(self)
+ | Initialize self. See help(type(self)) for accurate signature.
+ |
+ | get_variable(self)
+ |
+ | set_variable(self, new_value)
+ | Set self.variable to a new value
+ |
+ | ----------------------------------------------------------------------
+ | Data descriptors defined here:
+ |
+ | __dict__
+ | dictionary for instance variables (if defined)
+ |
+ | __weakref__
+ | list of weak references to the object (if defined)
+
+FUNCTIONS
+ my_function()
+ Example function
+
+DATA
+ my_variable = 0
+
+FILE
+ /home/neuro/nipype_tutorial/notebooks/mymodule.py
+
+
+
In Python errors are managed with a special language construct called "Exceptions". When errors occur exceptions can be raised, which interrupts the normal program flow and fallback to somewhere else in the code where the closest try-except statement is defined.
+
+
+
+
+
+
+
+
+
To generate an exception we can use the raise statement, which takes an argument that must be an instance of the class BaseExpection or a class derived from it.
+
+
+
+
+
+
+
In [ ]:
+
+
+
try:
+ raiseException("description of the error")
+except(Exception)aserr:
+ print("Exception:",err)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Exception: description of the error
+
+
+
+
+
+
+
+
+
+
+
+
+
A typical use of exceptions is to abort functions when some error condition occurs, for example:
+
+
def my_function(arguments):
+
+ if not verify(arguments):
+ raise Exception("Invalid arguments")
+
+ # rest of the code goes here
+
+
+
+
+
+
+
+
+
To gracefully catch errors that are generated by functions and class methods, or by the Python interpreter itself, use the try and except statements:
+
+
try:
+ # normal code goes here
+except:
+ # code for error handling goes here
+ # this code is not executed unless the code
+ # above generated an error
+
+
+
For example:
+
+
+
+
+
+
+
In [ ]:
+
+
+
try:
+ print("test")
+ # generate an error: the variable test is not defined
+ print(test)
+except:
+ print("Caught an exception")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
test
+Caught an exception
+
+
+
+
+
+
+
+
+
+
+
+
+
To get information about the error, we can access the Exception class instance that describes the exception by using for example:
+
+
except Exception as e:
+
+
+
+
+
+
+
In [ ]:
+
+
+
try:
+ print("test")
+ # generate an error: the variable test is not defined
+ print(test)
+exceptExceptionase:
+ print("Caught an exception:"+str(e))
+finally:
+ print("This block is executed after the try- and except-block.")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
test
+Caught an exception:name 'test' is not defined
+This block is executed after the try- and except-block.
+
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
defsome_function():
+ try:
+ # Division by zero raises an exception
+ 10/0
+ exceptZeroDivisionError:
+ print("Oops, invalid.")
+ else:
+ # Exception didn't occur, we're good.
+ pass
+ finally:
+ # This is executed after the code block is run
+ # and all exceptions have been handled, even
+ # if a new exception is raised while handling.
+ print("We're done with that.")
+
+some_function()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Oops, invalid.
+We're done with that.
+
+
+
+
+
+
+
+
+
+
+
+
+
You will see more exception handling examples in this and other notebooks.
This section should give you a basic knowledge about how to read and write CSV or TXT files. First, let us create a CSV and TXT file about demographic information of 10 subjects (experiment_id, subject_id, gender, age).
%%file demographics.txt
+ds102 sub001 F 21.94
+ds102 sub002 M 22.79
+ds102 sub003 M 19.65
+ds102 sub004 M 25.98
+ds102 sub005 M 23.24
+ds102 sub006 M 23.27
+ds102 sub007 D 34.72
+ds102 sub008 D 22.22
+ds102 sub009 M 22.7
+ds102 sub010 D 25.24
+
Parsing comma-separated-values (CSV) files is a common task. There are many tools available in Python to deal with this. Let's start by using the built-in csv module.
+
+
+
+
+
+
+
In [ ]:
+
+
+
importcsv
+
+
+
+
+
+
+
+
+
+
+
+
Before you can read or write any kind of file, you first have to open the file and go through its content with a reader function or write the output line by line with a write function.
+
+
+
+
+
+
+
In [ ]:
+
+
+
f=open('demographics.csv','r')# open the file with reading rights = 'r'
+data=[iforiincsv.reader(f)]# go through file and read each line
+f.close()# close the file again
+
+forlineindata:
+ print(line)
+
Now, we want to write the same data without the first experiment_id column in CSV format to a csv-file. First, let's delete the first column in the dataset.
Now, we first have to open a file again, but this time with writing permissions = 'w'. After it, we can go through the file and write each line to the new csv-file.
+
+
+
+
+
+
+
In [ ]:
+
+
+
f=open('demographics_new.csv','w')# open a file with writing rights = 'w'
+fw=csv.writer(f)# create csv writer
+fw.writerows(data_new)# write content to file
+f.close()# close file
+
+
+
+
+
+
+
+
+
+
+
+
Lets now check the content of demographics_new.csv.
The reading of txt files is quite similar to the reading of csv-files. The only difference is in the name of the reading function and the formatting that has to be applied to the input or output.
+
+
+
+
+
+
+
In [ ]:
+
+
+
f=open('demographics.txt','r')# open file with reading rights = 'r'
+
+# go through file and trim the new line '\n' at the end
+datatxt=[i.splitlines()foriinf.readlines()]
+
+# go through data and split elements in line by tabulators '\t'
+datatxt=[i[0].split('\t')foriindatatxt]
+
+f.close()# close file again
+
+forlineindatatxt:
+ print(line)
+
f=open('demograhics_new.txt','w')# open file with writing rights = 'w'
+
+datatxt_new=[line[1:]forlineindatatxt]# delete first column of array
+
+# Go through datatxt array and write each line with specific format to file
+forlineindatatxt_new:
+ f.write("%s\t%s\t%s\n"%(line[0],line[1],line[2]))
+
+f.close()# close file
+
The previous methods to open or write a file always required that you also close the file again with the close() function. If you don't want to worry about this, you can also use the with open approach. For example:
Interfaces are the core pieces of Nipype. The interfaces are python modules that allow you to use various external packages (e.g. FSL, SPM or FreeSurfer), even if they themselves are written in another programming language than python.
+
Let's try to use bet from FSL:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# will use a T1w from ds000114 dataset
+input_file=abspath("/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz")
+
Import IsotropicSmooth from nipype.interfaces.fsl and find out the FSL command that is being run. What are the mandatory inputs for this interface?
+
+
+
+
+
+
+
In [ ]:
+
+
+
# type your code here
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.interfaces.fslimportIsotropicSmooth
+# all this information can be found when we run `help` method.
+# note that you can either provide `in_file` and `fwhm` or `in_file` and `sigma`
+IsotropicSmooth.help()
+
Interfaces are the core pieces of Nipype that run the code of your desire. But to streamline your analysis and to execute multiple interfaces in a sensible order, you have to put them in something that we call a Node and create a Workflow.
+
In Nipype, a node is an object that executes a certain function. This function can be anything from a Nipype interface to a user-specified function or an external script. Each node consists of a name, an interface, and at least one input field and at least one output field.
+
Once you have multiple nodes you can use Workflow to connect with each other and create a directed graph. Nipype workflow will take care of input and output of each interface and arrange the execution of each interface in the most efficient way.
+
+
+
+
+
+
+
+
+
Let's create the first node using BET interface:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# we will be typing here
+
+
+
+
+
+
+
+
+
+
+
+
If you're lost the code is here:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Create Node
+bet_node=Node(BET(),name='bet')
+# Specify node inputs
+bet_node.inputs.in_file=input_file
+bet_node.inputs.mask=True
+
+# bet node can be also defined this way:
+#bet_node = Node(BET(in_file=input_file, mask=True), name='bet_node')
+
As you can see the interface takes two mandatory inputs: in_file and mask_file. We want to use the output of smooth_node as in_file and one of the output of bet_file (the mask_file) as mask_file input.
+
+
+
+
+
+
+
+
+
Let's initialize a Workflow:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# will be writing the code here:
+
+
+
+
+
+
+
+
+
+
+
+
if you're lost, the full code is here:
+
+
+
+
+
+
+
In [ ]:
+
+
+
# Initiation of a workflow
+wf=Workflow(name="smoothflow",base_dir="/output/working_dir")
+
+
+
+
+
+
+
+
+
+
+
+
It's very important to specify base_dir (as absolute path), because otherwise all the outputs would be saved somewhere in the temporary files.
+
+
+
+
+
+
+
+
+
let's connect the bet_node output to mask_node input`
Some steps in a neuroimaging analysis are repetitive. Running the same preprocessing on multiple subjects or doing statistical inference on multiple files. To prevent the creation of multiple individual scripts, Nipype has as execution plugin for Workflow, called iterables.
+
+
+
+
+
+
+
+
+
+
Let's assume we have a workflow with two nodes, node (A) does simple skull stripping, and is followed by a node (B) that does isometric smoothing. Now, let's say, that we are curious about the effect of different smoothing kernels. Therefore, we want to run the smoothing node with FWHM set to 2mm, 8mm, and 16mm.
# Initiation of a workflow
+wf_it=Workflow(name="smoothflow_it",base_dir="/output/working_dir")
+wf_it.connect(bet_node_it,"mask_file",mask_node_it,"mask_file")
+wf_it.connect(smooth_node_it,"out_file",mask_node_it,"in_file")
+
If you want to iterate over a list of inputs, but need to feed all iterated outputs afterward as one input (an array) to the next node, you need to use a MapNode. A MapNode is quite similar to a normal Node, but it can take a list of inputs and operate over each input separately, ultimately returning a list of outputs.
+
Imagine that you have a list of items (let's say files) and you want to execute the same node on them (for example some smoothing or masking). Some nodes accept multiple files and do exactly the same thing on them, but some don't (they expect only one file). MapNode can solve this problem. Imagine you have the following workflow:
+
+
Node A outputs a list of files, but node B accepts only one file. Additionally, C expects a list of files. What you would like is to run B for every file in the output of A and collect the results as a list and feed it to C.
+
+
+
+
+
+
+
+
+
Let's run a simple numerical example using nipype Function interface
This time the workflow didn't execute cleanly and we got an error. We can use nipypecli to read the crashfile (note, that if you have multiple crashfiles in the directory you'll have to provide a full name):
+
+
+
+
+
+
+
In [ ]:
+
+
+
!nipypecli crash crash*
+
+
+
+
+
+
+
+
+
+
+
+
It clearly shows the problematic Node and its input. We tried to add an integer to a list, this operation is not allowed in Python.
#write your code here
+
+# 1. write 3 functions: one that returns a list of number from a specific range,
+# second that returns n! (you can use math.factorial) and third, that sums the elements from a list
+
+# 2. create a workflow and define the working directory
+
+# 3. define 3 nodes using Node and MapNode and connect them within the workflow
+
+# 4. run the workflow and check the results
+
Create a workflow to calculate the following sum for chosen $n$ and five different values of $x$: $0$, $\frac{1}{2} \pi$, $\pi$, $\frac{3}{2} \pi$, and $ 2 \pi$.
# write your solution here
+
+# 1. write 3 functions: one that returns a list of number from a range between 0 and some n,
+# second that returns a term for a specific k, and third, that sums the elements from a list
+
+# 2. create a workflow and define the working directory
+
+# 3. define 3 nodes using Node and MapNode and connect them within the workflow
+
+# 4. use iterables for 4 values of x
+
+# 5. run the workflow and check the final results for every value of x
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
# we can reuse function from previous exercise, but they need some edits
+fromnipypeimportWorkflow,Node,MapNode,JoinNode,Function
+importos
+importmath
+
+defrange_fun(n_max):
+ returnlist(range(n_max+1))
+
+defterm(k,x):
+ importmath
+ fract=math.factorial(2*k+1)
+ polyn=x**(2*k+1)
+ return(-1)**k*polyn/fract
+
+defsumming(terms):
+ returnsum(terms)
+
+wf_ex2=Workflow('ex2')
+wf_ex2.base_dir=os.getcwd()
+
+range_nd=Node(Function(input_names=['n_max'],
+ output_names=['range_list'],
+ function=range_fun),
+ name='range_list')
+
+term_nd=MapNode(Function(input_names=['k','x'],
+ output_names=['term_out'],
+ function=term),
+ iterfield=['k'],
+ name='term')
+
+summing_nd=Node(Function(input_names=['terms'],
+ output_names=['sum_out'],
+ function=summing),
+ name='summing')
+
+
+range_nd.inputs.n_max=15
+
+x_list=[0,0.5*math.pi,math.pi,1.5*math.pi,2*math.pi]
+
+term_nd.iterables=('x',x_list)
+
+wf_ex2.add_nodes([range_nd])
+wf_ex2.connect(range_nd,'range_list',term_nd,'k')
+wf_ex2.connect(term_nd,'term_out',summing_nd,"terms")
+
+
+eg=wf_ex2.run()
+
Great, we just implemented pretty good Sine function! Those number should be approximately 0, 1, 0, -1 and 0. If they are not, try to increase $n_max$.
Use JoinNode to combine results from Exercise 2 in one container, e.g. a dictionary, that takes value $x$ as a key and the result from summing Node as a value.
+
+
+
+
+
+
+
In [ ]:
+
+
+
# write your code here
+
+# 1. create an additional function that takes 2 lists and combines them into one container, e.g. dictionary
+
+# 2. use JoinNode to define a new node that merges results from Exercise 2 and connect it to the workflow
+
+# 3. run the workflow and check the results of the merging node
+
+
+
+
+
+
+
+
+
+
In [ ]:
+
+
+
defmerge_results(results,x):
+ returndict(zip(x,results))
+
+join_nd=JoinNode(Function(input_names=['results','x'],
+ output_names=['results_cont'],
+ function=merge_results),
+ name='merge',
+ joinsource=term_nd,# this is the node that used iterables for x
+ joinfield=['results'])
+
+# taking the list of arguments from the previous part
+join_nd.inputs.x=x_list
+
+# connecting a new node to the summing_nd
+wf_ex2.connect(summing_nd,"sum_out",join_nd,"results")
+
+eg=wf_ex2.run()
+
Now, we can put all the nodes into this preprocessing workflow. We specify the data flow / execution flow of the workflow by connecting the corresponding nodes to each other.
Interesting, now it only took ~15s to execute the whole workflow again. What happened?
+
As you can see from the log above, Nipype didn't execute the two nodes slicetimer and mclfirt again. This, because their input values didn't change from the last execution. The preproc01 workflow therefore only had to rerun the node smooth.
Ok, ok... Rerunning a workflow again is faster. That's nice and all, but I want more. You spoke of parallel execution!
+
We saw that the preproc01 workflow takes about ~2min to execute completely. So, if we would run the workflow on five functional images, it should take about ~10min total. This, of course, assuming the execution will be done sequentially. Now, let's see how long it takes if we run it in parallel.
NeuroStars.org is a platform similar to StackOverflow but dedicated to neuroscience and neuroinformatics. If you have a problem or would like to ask a question about how to do something in Nipype please submit a question to NeuroStars.org with a nipype tag.
gitter.im stands under the motto 'where developers come to talk'. It is a place where developers change thoughts, opinions, ideas, and feedback to a specific software. Nipype's gitter channel can be found under https://gitter.im/nipy/nipype. Use it to directly speak with the community.
github.com is where the source code of Nipype is stored. Feel free to fork the repo and submit changes if you want. If you found a bug in the scripts or have a specific idea for changes, please open a new issue and let the community help you.
The easiest way to get nipype running on Mac OS X is to install Miniconda and follow the instructions above. If you have a non-conda environment you can install nipype by typing:
+
+
pip install nipype
+
+
+
Note that the above procedure may require the availability of gcc on your system path to compile the traits package.
If you downloaded the source distribution named something
+like nipype-x.y.tar.gz, then unpack the tarball, change into the
+nipype-x.y directory and install nipype using:
+
+
pip install .
+
+
+
Note: Depending on permissions you may need to use sudo.
Nipype provides wrappers around many neuroimaging tools and contains some algorithms. These tools will need to be installed for Nipype to run. You can create containers with different versions of these tools installed using Neurodocker (see the Neurodocker Tutorial).
The number of tests and time will vary depending on which interfaces you have installed on your system.
+
Don’t worry if some modules are being skipped or marked as xfailed. As long as no main modules cause any problems, you’re fine. The number of tests and time will vary depending on which interfaces you have installed on your system. But if you receive an OK, errors=0 and failures=0 then everything is ready.
a=['red','blue','green']# manually initialization
+b=list(range(5))# initialization through a function
+c=[nu**2fornuinb]# initialize through list comprehension
+d=[nu**2fornuinbifnu<3]# list comprehension with condition
+e=c[0]# access element
+f=c[1:2]# access a slice of the list
+g=['re','bl']+['gr']# list concatenation
+h=['re']*5# repeat a list
+['re','bl'].index('re')# returns index of 're'
+'re'in['re','bl']# true if 're' in list
+sorted([3,2,1])# returns sorted list
+z=['red']+['green','blue']# list concatenation
+
a=2# assignment
+b=[2,3]# assign a list
+a+=1# change and assign, try also `*=` and `/=`
+3+2# addition
+3/2# integer division (python2) or float division (python3)
+3//2# integer division
+3*2# multiplication
+3**2# exponent
+3%2# remainder
+abs(-3)# absolute value
+1==1# equal
+2>1# larger
+2<1# smaller
+1!=2# not equal
+1!=2and2<3# logical AND
+1!=2or2<3# logical OR
+not1==2# logical NOT
+ainb# test if a is in b
+aisb# test if objects point to the same memory (id)
+
<object>?# Information about the object
+<object>.<TAB># tab completion
+
+# measure runtime of a function:
+%timeit range(1000)
+100000loops,bestof3:7.76usperloop
+
+# run scripts and debug
+%run
+%run -d # run in debug mode
+%run -t # measures execution time
+%run -p # runs a profiler
+%debug # jumps to the debugger after an exception
+
+%pdb # run debugger automatically on exception
+
+# examine history
+%history
+%history ~1/1-5 # lines 1-5 of last session
+
+# run shell commands
+!make # prefix command with "!"
+
+# clean namespace
+%reset
+
np.array([2,3,4])# direct initialization
+np.empty(20,dtype=np.float32)# single precision array with 20 entries
+np.zeros(200)# initialize 200 zeros
+np.ones((3,3),dtype=np.int32)# 3 x 3 integer matrix with ones
+np.eye(200)# ones on the diagonal
+np.zeros_like(a)# returns array with zeros and the shape of a
+np.linspace(0.,10.,100)# 100 points from 0 to 10
+np.arange(0,100,2)# points from 0 to <100 with step width 2
+np.logspace(-5,2,100)# 100 log-spaced points between 1e-5 and 1e2
+a=np.array([[2,3],[4,5]])
+np.copy(a)# copy array to new memory
+
np.fromfile(fname/object,dtype=np.float32,count=5)# read binary data from file
+np.loadtxt(fname/object,skiprows=2,delimiter=',')# read ascii data from file
+
a.shape# a tuple with the lengths of each axis
+len(a)# length of axis 0
+a.ndim# number of dimensions (axes)
+a.sort(axis=1)# sort array along axis
+a.flatten()# collapse array to one dimension
+a.conj()# return complex conjugate
+a.astype(np.int16)# cast to integer
+np.argmax(a,axis=0)# return index of maximum along a given axis
+np.cumsum(a)# return cumulative sum
+np.any(a)# True if any element is True
+np.all(a)# True if all elements are True
+np.argsort(a,axis=1)# return sorted index array along axis
+
a=np.arange(100)# initialization with 0 - 99
+a[:3]=0# set the first three indices to zero
+a[1:5]=1# set indices 1-4 to 1
+start,stop,step=10,20,2
+a[start:stop:step]# general form of indexing/slicing
+a[None,:]# transform to column vector
+a[[1,1,3,8]]# return array with values of the indices
+a=a.reshape(10,10)# transform to 10 x 10 matrix
+a.T# return transposed view
+np.transpose(a,(1,0))# transpose array to new axis order
+a[a<2]# returns array that fulfills element-wise condition
+
y,x=np.arange(10),np.arange(1,11)
+a*5# multiplication with scalar
+a+5# addition with scalar
+a+b# addition with array b
+a/b# division with b (np.NaN for division by zero)
+np.exp(a)# exponential (complex and real)
+np.power(a,b)# a to the power b
+np.sin(a)# sine
+np.cos(a)# cosine
+np.arctan2(y,x)# arctan(y/x)
+np.arcsin(x)# arcsin
+np.radians(a)# degrees to radians
+np.degrees(a)# radians to degrees
+np.var(a)# variance of array
+np.std(a,axis=0)# standard deviation
+
np.fft.fft(y)# complex fourier transform of y
+freqs=np.fft.fftfreq(len(y))# fft frequencies for a given length
+np.fft.fftshift(freqs)# shifts zero frequency to the middle
+np.fft.rfft(y)# real fourier transform of y
+np.fft.rfftfreq(len(y))# real fft frequencies for a given length
+
np.random.normal(loc=0,scale=2,size=100)# 100 normal distributed random numbers
+np.random.seed(23032)# resets the seed value
+np.random.rand(200)# 200 random numbers in [0, 1)
+np.random.uniform(1,30,200)# 200 random numbers in [1, 30)
+np.random.randint(1,15,300)# 300 random integers between [1, 15]
+
fig=plt.figure(figsize=(5,2),facecolor='black')# initialize figure
+ax=fig.add_subplot(3,2,2)# add second subplot in a 3 x 2 grid
+fig,axes=plt.subplots(5,2,figsize=(5,5))# return fig and array of axes in a 5 x 2 grid
+ax=fig.add_axes(left=.3,bottom=.1,width=.6,height=.8)# manually add axes at a certain position
+
fig.suptitle('title')# big figure title
+fig.subplots_adjust(bottom=0.1,
+ right=0.8,
+ top=0.9,
+ wspace=0.2,
+ hspace=0.5)# adjust subplot positions
+fig.tight_layout(pad=0.1,
+ h_pad=0.5,
+ w_pad=0.5,
+ rect=None)# adjust subplots to fit perfectly into fig
+ax.set_xlabel()# set xlabel
+ax.set_ylabel()# set ylabel
+ax.set_xlim(1,2)# sets x limits
+ax.set_ylim(3,4)# sets y limits
+ax.set_title('blabla')# sets the axis title
+ax.set(xlabel='bla')# set multiple parameters at once
+ax.legend(loc='upper center')# activate legend
+ax.grid(True,which='both')# activate grid
+bbox=ax.get_position()# returns the axes bounding box
+bbox.x0+bbox.width# bounding box parameters
+
ax.plot(x,y,'-o',c='red',lw=2,label='bla')# plots a line
+ax.scatter(x,y,s=20,c=color)# scatter plot
+ax.pcolormesh(xx,yy,zz,shading='gouraud')# fast colormesh function
+ax.colormesh(xx,yy,zz,norm=norm)# slower colormesh function
+ax.contour(xx,yy,zz,cmap='jet')# contour line plot
+ax.contourf(xx,yy,zz,vmin=2,vmax=4)# filled contours plot
+n,bins,patch=ax.hist(x,50)# histogram
+ax.imshow(matrix,origin='lower',extent=(x1,x2,y1,y2))# show image
+ax.specgram(y,FS=0.1,noverlap=128,scale='linear')# plot a spectrogram
+
Running Nipype Interfaces from the command line (nipype_cmd)¶
+
+
+
+
+
+
+
+
The primary use of Nipype is to build automated non-interactive pipelines.
+However, sometimes there is a need to run some interfaces quickly from the command line.
+This is especially useful when running Interfaces wrapping code that does not have
+command line equivalents (nipy or SPM). Being able to run Nipype interfaces opens new
+possibilities such as the inclusion of SPM processing steps in bash scripts.
+
To run Nipype Interfaces you need to use the nipype_cmd tool that should already be installed.
+The tool allows you to list Interfaces available in a certain package:
After selecting a particular Interface you can learn what inputs it requires:
+
+
+
+
+
+
+
+
+
+
$nipype_cmd nipype.interfaces.nipy ComputeMask --help
+
+usage:nipype_cmd nipype.interfaces.nipy ComputeMask [-h] [--M M] [--cc CC]
+ [--ignore_exception IGNORE_EXCEPTION]
+ [--m M]
+ [--reference_volume REFERENCE_VOLUME]
+ mean_volume
+
+Run ComputeMask
+
+positional arguments:
+ mean_volume mean EPI image, used to compute the threshold for the
+ mask
+
+optional arguments:
+ -h, --help show this help message and exit
+ --M M upper fraction of the histogram to be discarded
+ --cc CC Keep only the largest connected component
+ --ignore_exception IGNORE_EXCEPTION
+ Print an error message instead of throwing an
+ exception in case the interface fails to run
+ --m M lower fraction of the histogram to be discarded
+ --reference_volume REFERENCE_VOLUME
+ reference volume used to compute the mask. If none is
+ give, the mean volume is used.
The latest version of Nipype supports system resource scheduling and profiling. These features allow users to ensure high throughput of their data processing while also controlling the amount of computing resources a given workflow will use.
Each Node instance interface has two parameters that specify its expected thread and memory usage: num_threads and estimated_memory_gb. If a particular node is expected to use 8 threads and 2 GB of memory:
The MultiProc workflow plugin schedules node execution based on the resources used by the current running nodes and the total resources available to the workflow. The plugin utilizes the plugin arguments n_procs and memory_gb to set the maximum resources a workflow can utilize. To limit a workflow to using 8 cores and 10 GB of RAM:
If these values are not specifically set then the plugin will assume it can use all of the processors and memory on the system. For example, if the machine has 16 cores and 12 GB of RAM, the workflow will internally assume those values for n_procs and memory_gb, respectively.
+
The plugin will then queue eligible nodes for execution based on their expected usage via the num_threads and estimated_memory_gb interface parameters. If the plugin sees that only 3 of its 8 processors and 4 GB of its 10 GB of RAM is being used by running nodes, it will attempt to execute the next available node as long as its num_threads <= 5 and estimated_memory_gb <= 6. If this is not the case, it will continue to check every available node in the queue until it sees a node that meets these conditions, or it waits for an executing node to finish to earn back the necessary resources. The priority of the queue is highest for nodes with the most estimated_memory_gb followed by nodes with the most expected num_threads.
It is not always easy to estimate the amount of resources a particular function or command uses. To help with this, Nipype provides some feedback about the system resources used by every node during workflow execution via the built-in runtime profiler. The runtime profiler is automatically enabled if the psutil Python package is installed and found on the system.
+
If the package is not found, the workflow will run normally without the runtime profiler.
+
The runtime profiler records the number of threads and the amount of memory (GB) used as runtime_threads and runtime_memory_gb in the Node's result.runtime attribute. Since the node object is pickled and written to disk in its working directory, these values are available for analysis after node or workflow execution by manually parsing the pickle file contents.
+
Nipype also provides a logging mechanism for saving node runtime statistics to a JSON-style log file via the log_nodes_cb logger function. This is enabled by setting the status_callback parameter to point to this function in the plugin_args when using the MultiProc plugin.
After the workflow finishes executing, the log file at /home/neuro/run_stats.log can be parsed for the runtime statistics. Here is an example of what the contents would look like:
Here it can be seen that the number of threads was underestimated while the amount of memory needed was overestimated. The next time this workflow is run the user can change the node interface num_threads and estimated_memory_gb parameters to reflect this for a higher pipeline throughput. Note, sometimes the "runtime_threads" value is higher than expected, particularly for multi-threaded applications. Tools can implement multi-threading in different ways under-the-hood; the profiler merely traverses the process tree to return all running threads associated with that process, some of which may include active thread-monitoring daemons or transient processes.
Nipype provides the ability to visualize the workflow execution based on the runtimes and system resources each node takes. It does this using the log file generated from the callback logger after workflow execution - as shown above. The pandas Python package is required to use this feature.
+
+
+
+
+
+
+
In [ ]:
+
+
+
fromnipype.utils.profilerimportlog_nodes_cb
+args_dict={'n_procs':8,'memory_gb':10,'status_callback':log_nodes_cb}
+workflow.run(plugin='MultiProc',plugin_args=args_dict)
+
+# ...workflow finishes and writes callback log to '/home/user/run_stats.log'
+
+fromnipype.utils.draw_gantt_chartimportgenerate_gantt_chart
+generate_gantt_chart('/home/neuro/run_stats.log',cores=8)
+# ...creates gantt chart in '/home/user/run_stats.log.html'
+
+
+
+
+
+
+
+
+
+
+
+
The generate_gantt_chart function will create an html file that can be viewed in a browser. Below is an example of the gantt chart displayed in a web browser. Note that when the cursor is hovered over any particular node bubble or resource bubble, some additional information is shown in a pop-up.
Saving Workflows and Nodes to a file (experimental)¶
On top of the standard way of saving (i.e. serializing) objects in Python
+(see pickle) Nipype
+provides methods to turn Workflows and nodes into human readable code.
+This is useful if you want to save a Workflow that you have generated
+on the fly for future use.
\n",
" All of the notebooks used in this tutorial can be found on github.com/miykael/nipype_tutorial.\n",
" But if you want to have the real experience and want to go through the computations by yourself, we highly\n",
- " recommend you to do the Nipype Course. This course\n",
- " gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of\n",
- " Nipype yourself. For the tutorial, you need to install a Docker image on your system that provides you a \n",
- " neuroimaging environment based on a Debian system, with working Python software (including Nipype, dipy, matplotlib,\n",
- " nibabel, nipy, numpy, pandas, scipy, seaborn and more), FSL, AFNI, ANTs and SPM12 (no license needed). This\n",
- " neuroimaging environment is based on the docker images under github.com/miykael/nipype_env,\n",
- " which allow you to run toolboxes like FSL, AFNI and ANTs on any system, including Windows.\n",
+ " recommend you to use a Docker container. More about the Docker image that can be used to run the tutorial can be found \n",
+ " here.\n",
+ " This docker container gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of\n",
+ " Nipype yourself.\n",
"
\n",
+ " To run the tutorial locally on your system, we will use a Docker container. For this you\n",
+ " need to install Docker and download a docker image that provides you a neuroimaging environment based on a Debian system,\n",
+ " with working Python 3 software (including Nipype, dipy, matplotlib, nibabel, nipy, numpy, pandas, scipy, seaborn and more),\n",
+ " FSL, ANTs and SPM12 (no license needed). We used Neurodocker to create this docker image.\n",
+ "
\n",
+ " If you do not want to run the tutorial locally, you can also use \n",
+ " Binder service. \n",
+ " Binder automatically launches the Docker container for you and you have access to all of the notebooks. \n",
+ " Note, that Binder provides between 1G and 4G RAM memory, some notebooks from Workflow Examples might not work. \n",
+ " All notebooks from Introduction and Basic Concepts parts should work.\n",
+ "
\n",
" For everything that isn't covered in this tutorial, check out the main homepage.\n",
" And if you haven't had enough and want to learn even more about Nipype and Neuroimaging, make sure to look at\n",
" the detailed beginner's guide.\n",
@@ -46,66 +52,92 @@
"
\n",
"\n",
" \n",
+ " argument to either color01, color02, ... color06 or color07-->\n",
"\n",
" \n",
- " \n",
- "
This section is meant as a general overview. It should give you a short introduction to the main topics that\n",
- " you need to understand to use Nipype and this tutorial.
\n",
+ " you need to understand to use Nipype and this tutorial. The section also contains a very short neuroimaging showcase, as well as quick non-imaging introduction to Nipype workflows.\n",
"\n",
- "
This section will introduce you to all of the key players in Nipype. Basic concepts that you need to learn to\n",
" fully understand and appreciate Nipype. Once you understand this section, you will know all that you need to know\n",
" to create any kind of Nipype workflow.
\n",
"To inspect the html code of this page, click: "
@@ -144,9 +176,12 @@
],
"source": [
"%%html\n",
+ "\n",
+ " \n",
+ "\n",
"\n",
- "\n",
- "\n",
+ "\n",
+ "\n",
" \n",
"\n",
" \n",
@@ -158,18 +193,27 @@
" you everything so that you can start creating your own workflows in no time. We recommend that you start with\n",
" the introduction section to familiarize yourself with the tools used in this tutorial and then move on to the\n",
" basic concepts section to learn everything you need to know for your everyday life with Nipype. The workflow\n",
- " examples section shows you a real example how you can use Nipype to analyze an actual dataset.\n",
+ " examples section shows you a real example of how you can use Nipype to analyze an actual dataset. For a very \n",
+ " quick non-imaging introduction, you can check the Nipype Quickstart notebooks in the introduction section.\n",
"
\n",
" All of the notebooks used in this tutorial can be found on github.com/miykael/nipype_tutorial.\n",
" But if you want to have the real experience and want to go through the computations by yourself, we highly\n",
- " recommend you to do the Nipype Course. This course\n",
- " gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of\n",
- " Nipype yourself. For the tutorial, you need to install a Docker image on your system that provides you a \n",
- " neuroimaging environment based on a Debian system, with working Python software (including Nipype, dipy, matplotlib,\n",
- " nibabel, nipy, numpy, pandas, scipy, seaborn and more), FSL, AFNI, ANTs and SPM12 (no license needed). This\n",
- " neuroimaging environment is based on the docker images under github.com/miykael/nipype_env,\n",
- " which allow you to run toolboxes like FSL, AFNI and ANTs on any system, including Windows.\n",
+ " recommend you to use a Docker container. More about the Docker image that can be used to run the tutorial can be found \n",
+ " here.\n",
+ " This docker container gives you the opportunity to adapt the commands to your liking and discover the flexibility and real power of\n",
+ " Nipype yourself.\n",
+ "
\n",
+ " To run the tutorial locally on your system, we will use a Docker container. For this you\n",
+ " need to install Docker and download a docker image that provides you a neuroimaging environment based on a Debian system,\n",
+ " with working Python 3 software (including Nipype, dipy, matplotlib, nibabel, nipy, numpy, pandas, scipy, seaborn and more),\n",
+ " FSL, ANTs and SPM12 (no license needed). We used Neurodocker to create this docker image.\n",
"
\n",
+ " If you do not want to run the tutorial locally, you can also use \n",
+ " Binder service. \n",
+ " Binder automatically launches the Docker container for you and you have access to all of the notebooks. \n",
+ " Note, that Binder provides between 1G and 4G RAM memory, some notebooks from Workflow Examples might not work. \n",
+ " All notebooks from Introduction and Basic Concepts parts should work.\n",
+ "
\n",
" For everything that isn't covered in this tutorial, check out the main homepage.\n",
" And if you haven't had enough and want to learn even more about Nipype and Neuroimaging, make sure to look at\n",
" the detailed beginner's guide.\n",
@@ -177,66 +221,92 @@
"
\n",
"\n",
" \n",
+ " argument to either color01, color02, ... color06 or color07-->\n",
"\n",
" \n",
- " \n",
- "
This section is meant as a general overview. It should give you a short introduction to the main topics that\n",
- " you need to understand to use Nipype and this tutorial.
\n",
+ " you need to understand to use Nipype and this tutorial. The section also contains a very short neuroimaging showcase, as well as quick non-imaging introduction to Nipype workflows.\n",
"\n",
- "
This section will introduce you to all of the key players in Nipype. Basic concepts that you need to learn to\n",
" fully understand and appreciate Nipype. Once you understand this section, you will know all that you need to know\n",
" to create any kind of Nipype workflow.
\n",
"To inspect the html code of this page, click: "
@@ -272,21 +342,21 @@
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
}
},
"nbformat": 4,
- "nbformat_minor": 0
+ "nbformat_minor": 2
}
diff --git a/notebooks/advanced_aws.ipynb b/notebooks/advanced_aws.ipynb
new file mode 100644
index 0000000..f5ca670
--- /dev/null
+++ b/notebooks/advanced_aws.ipynb
@@ -0,0 +1,166 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Using Nipype with Amazon Web Services (AWS)\n",
+ "\n",
+ "Several groups have been successfully using Nipype on AWS. This procedure\n",
+ "involves setting a temporary cluster using StarCluster and potentially\n",
+ "transferring files to/from S3. The latter is supported by Nipype through\n",
+ "`DataSink` and `S3DataGrabber`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Using DataSink with S3\n",
+ "\n",
+ "The `DataSink` class now supports sending output data directly to an AWS S3\n",
+ "bucket. It does this through the introduction of several input attributes to the\n",
+ "`DataSink` interface and by parsing the `base_directory` attribute. This class\n",
+ "uses the [boto3](https://boto3.readthedocs.org/en/latest/) and\n",
+ "[botocore](https://botocore.readthedocs.org/en/latest/) Python packages to\n",
+ "interact with AWS. To configure the `DataSink` to write data to S3, the user must\n",
+ "set the ``base_directory`` property to an S3-style filepath.\n",
+ "\n",
+ "For example:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.io import DataSink\n",
+ "ds = DataSink()\n",
+ "ds.inputs.base_directory = 's3://mybucket/path/to/output/dir'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "With the `\"s3://\"` prefix in the path, the `DataSink` knows that the output\n",
+ "directory to send files is on S3 in the bucket `\"mybucket\"`. `\"path/to/output/dir\"`\n",
+ "is the relative directory path within the bucket `\"mybucket\"` where output data\n",
+ "will be uploaded to (***Note***: if the relative path specified contains folders that\n",
+ "don’t exist in the bucket, the `DataSink` will create them). The `DataSink` treats\n",
+ "the S3 base directory exactly as it would a local directory, maintaining support\n",
+ "for containers, substitutions, subfolders, `\".\"` notation, etc. to route output\n",
+ "data appropriately.\n",
+ "\n",
+ "There are four new attributes introduced with S3-compatibility: ``creds_path``,\n",
+ "``encrypt_bucket_keys``, ``local_copy``, and ``bucket``."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds.inputs.creds_path = '/home/neuro/aws_creds/credentials.csv'\n",
+ "ds.inputs.encrypt_bucket_keys = True\n",
+ "ds.local_copy = '/home/neuro/workflow_outputs/local_backup'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "``creds_path`` is a file path where the user's AWS credentials file (typically\n",
+ "a csv) is stored. This credentials file should contain the AWS access key id and\n",
+ "secret access key and should be formatted as one of the following (these formats\n",
+ "are how Amazon provides the credentials file by default when first downloaded).\n",
+ "\n",
+ "Root-account user:\n",
+ "\n",
+ "\tAWSAccessKeyID=ABCDEFGHIJKLMNOP\n",
+ "\tAWSSecretKey=zyx123wvu456/ABC890+gHiJk\n",
+ "\n",
+ "IAM-user:\n",
+ "\n",
+ "\tUser Name,Access Key Id,Secret Access Key\n",
+ "\t\"username\",ABCDEFGHIJKLMNOP,zyx123wvu456/ABC890+gHiJk\n",
+ "\n",
+ "The ``creds_path`` is necessary when writing files to a bucket that has\n",
+ "restricted access (almost no buckets are publicly writable). If ``creds_path``\n",
+ "is not specified, the DataSink will check the ``AWS_ACCESS_KEY_ID`` and\n",
+ "``AWS_SECRET_ACCESS_KEY`` environment variables and use those values for bucket\n",
+ "access.\n",
+ "\n",
+ "``encrypt_bucket_keys`` is a boolean flag that indicates whether to encrypt the\n",
+ "output data on S3, using server-side AES-256 encryption. This is useful if the\n",
+ "data being output is sensitive and one desires an extra layer of security on the\n",
+ "data. By default, this is turned off.\n",
+ "\n",
+ "``local_copy`` is a string of the filepath where local copies of the output data\n",
+ "are stored in addition to those sent to S3. This is useful if one wants to keep\n",
+ "a backup version of the data stored on their local computer. By default, this is\n",
+ "turned off.\n",
+ "\n",
+ "``bucket`` is a boto3 Bucket object that the user can use to overwrite the\n",
+ "bucket specified in their ``base_directory``. This can be useful if one has to\n",
+ "manually create a bucket instance on their own using special credentials (or\n",
+ "using a mock server like [fakes3](https://github.com/jubos/fake-s3)). This is\n",
+ "typically used for developers unit-testing the DataSink class. Most users do not\n",
+ "need to use this attribute for actual workflows. This is an optional argument.\n",
+ "\n",
+ "Finally, the user needs only to specify the input attributes for any incoming\n",
+ "data to the node, and the outputs will be written to their S3 bucket."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "workflow.connect(inputnode, 'subject_id', ds, 'container')\n",
+ "workflow.connect(realigner, 'realigned_files', ds, 'motion')\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So, for example, outputs for `sub001`’s `realigned_file1.nii.gz` will be in:\n",
+ "\n",
+ " s3://mybucket/path/to/output/dir/sub001/motion/realigned_file1.nii.gz"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Using S3DataGrabber\n",
+ "Coming soon..."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/advanced_create_interfaces.ipynb b/notebooks/advanced_create_interfaces.ipynb
new file mode 100644
index 0000000..33c47db
--- /dev/null
+++ b/notebooks/advanced_create_interfaces.ipynb
@@ -0,0 +1,1528 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Create interfaces\n",
+ "\n",
+ "This section is meant for the more advanced user. In it we will discuss how you can create your own interface, i.e. wrapping your own code, so that you can use it with Nipype.\n",
+ "\n",
+ "In this notebook we will show you:\n",
+ "\n",
+ "1. Example of an already implemented interface\n",
+ "2. What are the main parts of a Nipype interface?\n",
+ "3. How to wrap a CommandLine interface?\n",
+ "4. How to wrap a Python interface?\n",
+ "5. How to wrap a MATLAB interface?\n",
+ "\n",
+ "But before we can start, let's recap again the difference between interfaces and workflows."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interfaces vs. Workflows\n",
+ "\n",
+ "Interfaces are the building blocks that solve well-defined tasks. We solve more complex tasks by combining interfaces with workflows:\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
Interfaces
\n",
+ "
Workflows
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Wrap *unitary* tasks
\n",
+ "
Wrap *meta*-tasks\n",
+ "
implemented with nipype interfaces wrapped inside ``Node`` objects
\n",
+ "
subworkflows can also be added to a workflow without any wrapping
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
Keep track of the inputs and outputs, and check their expected types
\n",
+ "
Do not have inputs/outputs, but expose them from the interfaces wrapped inside
\n",
+ "
\n",
+ "
\n",
+ "
Do not cache results (unless you use [interface caching](advanced_interfaces_caching.ipynb))
\n",
+ "
Cache results
\n",
+ "
\n",
+ "
\n",
+ "
Run by a nipype plugin
\n",
+ "
Run by a nipype plugin
\n",
+ "
\n",
+ " \n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example of an already implemented interface"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For this notebook, we'll work on the following T1-weighted dataset located in ``/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nilearn.plotting import plot_anat\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat('/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz', dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example of interface: FSL's `BET`\n",
+ "\n",
+ "Nipype offers a series of Python interfaces to various external packages (e.g. FSL, SPM or FreeSurfer) even if they themselves are written in programming languages other than python. Such interfaces know what sort of options their corresponding tool has and how to execute it.\n",
+ "\n",
+ "To illustrate why interfaces are so useful, let's have a look at the brain extraction algorithm [BET](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) from FSL. Once in its original framework and once in the Nipype framework."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The tool can be run directly in a bash shell using the following command line:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%bash\n",
+ "bet /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz \\\n",
+ " /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w_bet.nii.gz"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "... which yields the following:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat('/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w_bet.nii.gz', dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using nipype, the equivalent is a bit more verbose:\n",
+ " - line 1: The first line imports the interface\n",
+ " - line 2: Then, the interface is instantiated. We provide here the input file.\n",
+ " - line 3: Finally, we run the interface\n",
+ " - line 4: The output file name can be automatically handled by nipype, and we will use that feature here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.fsl import BET\n",
+ "skullstrip = BET(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz')\n",
+ "res = skullstrip.run()\n",
+ "print(res.outputs.out_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we can verify that the result is exactly the same as before. Please note that, since we are using a Python environment, we use the result of the execution to point our ``plot_anat`` function to the output image of running BET:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat(res.outputs.out_file, dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# What are the main parts of a Nipype interface?\n",
+ "\n",
+ "Nipype is designed to ease writing interfaces for new software. Nipype interfaces are designed with three elements that are intuitive:\n",
+ " - A specification of inputs (or the ``InputSpec``)\n",
+ " - A specification of outputs (or the ``OutputSpec``)\n",
+ " - An interface *core* which implements the ``run()`` method we've seen before for BET, and which puts together inputs and outputs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# The ``CommandLine`` interface\n",
+ "\n",
+ "## A quick example\n",
+ "\n",
+ "The easiest and quickest way to run any command line is the ``CommandLine`` interface, which has a very simple specification of inputs ready to use:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import CommandLine\n",
+ "CommandLine.help()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As a quick example, let's wrap bash's ``ls`` with Nipype:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "nipype_ls = CommandLine('ls', args='-lh', terminal_output='allatonce')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we have a Python object ``nipype_ls`` that is a runnable nipype interface. After execution, Nipype interface returns a result object. We can retrieve the output of our ``ls`` invocation from the ``result.runtime`` property:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "result = nipype_ls.run()\n",
+ "print(result.runtime.stdout)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create your own `CommandLine` interface\n",
+ "\n",
+ "Let's create a Nipype Interface for a very simple tool called ``antsTransformInfo`` from the [ANTs](http://stnava.github.io/ANTs/) package. This tool is so simple it does not even have a usage description for bash. Using it with a file, gives us the following result: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%bash\n",
+ "antsTransformInfo /home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### So let's plan our implementation:\n",
+ "\n",
+ " 1. The command line name is ``antsTransformInfo``.\n",
+ " 2. It only accepts one text file (containing an ITK transform file) as input, and it is a positional argument.\n",
+ " 3. It prints out the properties of the transform in the input file. For the purpose of this notebook, we are only interested in extracting the translation values.\n",
+ " \n",
+ "For the first item of this roadmap, we will just need to derive a new Python class from the ``nipype.interfaces.base.CommandLine`` base. To indicate the appropriate command line, we set the member ``_cmd``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class TransformInfo(CommandLine):\n",
+ " _cmd = 'antsTransformInfo'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is enough to have a nipype compatible interface for this tool:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TransformInfo.help()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Specifying the inputs\n",
+ "\n",
+ "However, the ``args`` argument is too generic and does not deviate much from just running it in bash, or directly using ``subprocess.Popen``. Let's define the inputs specification for the interface, extending the ``nipype.interfaces.base.CommandLineInputSpec`` class.\n",
+ "\n",
+ "The inputs are implemented using the Enthought traits package. For now, we'll use the ``File`` trait extension of nipype:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import CommandLineInputSpec, File\n",
+ "\n",
+ "class TransformInfoInputSpec(CommandLineInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True, argstr='%s',\n",
+ " position=0, desc='the input transform file')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some settings are done for this ``File`` object:\n",
+ "- ``exists=True`` indicates Nipype that the file must exist when it is set\n",
+ "- ``mandatory=True`` checks that this input was set before running because the program would crash otherwise\n",
+ "- ``argstr='%s'`` indicates how this input parameter should be formatted\n",
+ "- ``position=0`` indicates that this is the first positional argument\n",
+ "\n",
+ "We can now decorate our ``TransformInfo`` core class with its input, by setting the ``input_spec`` member:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class TransformInfo(CommandLine):\n",
+ " _cmd = 'antsTransformInfo'\n",
+ " input_spec = TransformInfoInputSpec"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our interface now has one mandatory input, and inherits some optional inputs from the ``CommandLineInputSpec``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TransformInfo.help()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "One interesting feature of the Nipype interface is that the underlying command line can be checked using the object property ``cmdline``. The command line can only be built when the mandatory inputs are set, so let's instantiate our new Interface for the first time, and check the underlying command line:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm')\n",
+ "print(my_info_interface.cmdline)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nipype will make sure that the parameters fulfill their prescribed attributes. For instance, ``in_file`` is mandatory. An error is issued if we build the command line or try to run this interface without it:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " TransformInfo().cmdline\n",
+ "\n",
+ "except(ValueError) as err:\n",
+ " print('It crashed with...')\n",
+ " print(\"ValueError:\", err)\n",
+ "else:\n",
+ " raise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It will also complain if we try to set a non-existent file:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " my_info_interface.inputs.in_file = 'idontexist.tfm'\n",
+ "\n",
+ "except(Exception) as err:\n",
+ " print('It crashed with...')\n",
+ " print(\"TraitError:\", err)\n",
+ "else:\n",
+ " raise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Specifying the outputs\n",
+ "The outputs are defined in a similar way. Let's define a custom output for our interface which is a list of three float element. The output traits are derived from a simpler base class called ``TraitedSpec``. We also import the two data representations we need ``List`` and ``Float``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import TraitedSpec, traits\n",
+ "\n",
+ "class TransformInfoOutputSpec(TraitedSpec):\n",
+ " translation = traits.List(traits.Float, desc='the translation component of the input transform')\n",
+ " \n",
+ "class TransformInfo(CommandLine):\n",
+ " _cmd = 'antsTransformInfo'\n",
+ " input_spec = TransformInfoInputSpec\n",
+ " output_spec = TransformInfoOutputSpec"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And now, our new output is in place:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TransformInfo.help()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### We are almost there - final needs\n",
+ "If we run the interface, we'll be able to see that this tool only writes some text to the standard output, but we just want to extract the ``Translation`` field and generate a Python object from it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',\n",
+ " terminal_output='allatonce')\n",
+ "result = my_info_interface.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(result.runtime.stdout)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We need to complete the functionality of the ``run()`` member of our interface to parse the standard output. This is done extending its ``_run_interface()`` member.\n",
+ "\n",
+ "When we define outputs, generally they need to be explicitly wired in the ``_list_outputs()`` member of the core class. Let's see how we can *complete* those:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class TransformInfo(CommandLine):\n",
+ " _cmd = 'antsTransformInfo'\n",
+ " input_spec = TransformInfoInputSpec\n",
+ " output_spec = TransformInfoOutputSpec\n",
+ " \n",
+ " def _run_interface(self, runtime):\n",
+ " import re\n",
+ " \n",
+ " # Run the command line as a natural CommandLine interface\n",
+ " runtime = super(TransformInfo, self)._run_interface(runtime)\n",
+ "\n",
+ " # Search transform in the standard output\n",
+ " expr_tra = re.compile('Translation:\\s+\\[(?P[0-9\\.-]+,\\s[0-9\\.-]+,\\s[0-9\\.-]+)\\]')\n",
+ " trans = [float(v) for v in expr_tra.search(runtime.stdout).group('translation').split(', ')]\n",
+ " \n",
+ " # Save it for later use in _list_outputs\n",
+ " setattr(self, '_result', trans)\n",
+ " \n",
+ " # Good to go\n",
+ " return runtime\n",
+ " \n",
+ " def _list_outputs(self):\n",
+ " \n",
+ " # Get the attribute saved during _run_interface\n",
+ " return {'translation': getattr(self, '_result')}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's run this interface (we set ``terminal_output='allatonce'`` to reduce the length of this manual, default would otherwise be `'stream'`):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',\n",
+ " terminal_output='allatonce')\n",
+ "result = my_info_interface.run()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we can retrieve our outcome of interest as an output:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "result.outputs.translation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Summary of a `CommandLine` interface\n",
+ "\n",
+ "Now putting it all togehter, it looks as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import (CommandLine, CommandLineInputSpec,\n",
+ " TraitedSpec, traits, File)\n",
+ "\n",
+ "class TransformInfoInputSpec(CommandLineInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True, argstr='%s', position=0,\n",
+ " desc='the input transform file')\n",
+ "\n",
+ "class TransformInfoOutputSpec(TraitedSpec):\n",
+ " translation = traits.List(traits.Float, desc='the translation component of the input transform')\n",
+ "\n",
+ "class TransformInfo(CommandLine):\n",
+ " _cmd = 'antsTransformInfo'\n",
+ " input_spec = TransformInfoInputSpec\n",
+ " output_spec = TransformInfoOutputSpec\n",
+ " \n",
+ " def _run_interface(self, runtime):\n",
+ " import re\n",
+ " \n",
+ " # Run the command line as a natural CommandLine interface\n",
+ " runtime = super(TransformInfo, self)._run_interface(runtime)\n",
+ "\n",
+ " # Search transform in the standard output\n",
+ " expr_tra = re.compile('Translation:\\s+\\[(?P[0-9\\.-]+,\\s[0-9\\.-]+,\\s[0-9\\.-]+)\\]')\n",
+ " trans = [float(v) for v in expr_tra.search(runtime.stdout).group('translation').split(', ')]\n",
+ " \n",
+ " # Save it for later use in _list_outputs\n",
+ " setattr(self, '_result', trans)\n",
+ " \n",
+ " # Good to go\n",
+ " return runtime\n",
+ " \n",
+ " def _list_outputs(self):\n",
+ " \n",
+ " # Get the attribute saved during _run_interface\n",
+ " return {'translation': getattr(self, '_result')}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',\n",
+ " terminal_output='allatonce')\n",
+ "result = my_info_interface.run()\n",
+ "result.outputs.translation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Wrapping up - fast use case for simple `CommandLine` wrapper\n",
+ "\n",
+ "For more standard neuroimaging software, generally we will just have to specify simple flags, i.e. input and output images and some additional parameters. If that is the case, then there is no need to extend the ``run()`` method.\n",
+ "\n",
+ "Let's look at a quick, partial, implementation of FSL's BET:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import CommandLineInputSpec, File, TraitedSpec\n",
+ "\n",
+ "class CustomBETInputSpec(CommandLineInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True, argstr='%s', position=0, desc='the input image')\n",
+ " mask = traits.Bool(mandatory=False, argstr='-m', position=2, desc='create binary mask image')\n",
+ "\n",
+ " # Do not set exists=True for output files!\n",
+ " out_file = File(mandatory=True, argstr='%s', position=1, desc='the output image')\n",
+ " \n",
+ "class CustomBETOutputSpec(TraitedSpec):\n",
+ " out_file = File(desc='the output image')\n",
+ " mask_file = File(desc=\"path/name of binary brain mask (if generated)\")\n",
+ " \n",
+ "class CustomBET(CommandLine):\n",
+ " _cmd = 'bet'\n",
+ " input_spec = CustomBETInputSpec\n",
+ " output_spec = CustomBETOutputSpec\n",
+ " \n",
+ " def _list_outputs(self):\n",
+ "\n",
+ " # Get the attribute saved during _run_interface\n",
+ " return {'out_file': self.inputs.out_file,\n",
+ " 'mask_file': self.inputs.out_file.replace('brain', 'brain_mask')}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "my_custom_bet = CustomBET()\n",
+ "my_custom_bet.inputs.in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'\n",
+ "my_custom_bet.inputs.out_file = 'sub-01_T1w_brain.nii.gz'\n",
+ "my_custom_bet.inputs.mask = True\n",
+ "result = my_custom_bet.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat(result.outputs.out_file, dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Create your own `Python` interface\n",
+ "\n",
+ "`CommandLine` interface is great, but my tool is already in Python - can I wrap it natively?\n",
+ "\n",
+ "Sure. Let's solve the following problem: Let's say we have a Python function that takes an input image and a list of three translations (x, y, z) in mm, and then writes a resampled image after the translation has been applied:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def translate_image(img, translation, out_file):\n",
+ "\n",
+ " import nibabel as nb\n",
+ " import numpy as np\n",
+ " from scipy.ndimage.interpolation import affine_transform\n",
+ " \n",
+ " # Load the data\n",
+ " nii = nb.load(img)\n",
+ " data = nii.get_data()\n",
+ " \n",
+ " # Create the transformation matrix\n",
+ " matrix = np.eye(3)\n",
+ " trans = (np.array(translation) / nii.header.get_zooms()[:3]) * np.array([1.0, -1.0, -1.0])\n",
+ " \n",
+ " # Apply the transformation matrix\n",
+ " newdata = affine_transform(data, matrix=matrix, offset=trans)\n",
+ " \n",
+ " # Save the new data in a new NIfTI image\n",
+ " nb.Nifti1Image(newdata, nii.affine, nii.header).to_filename(out_file)\n",
+ " \n",
+ " print('Translated file now is here: %s' % out_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's see how this function operates:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "orig_image = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'\n",
+ "translation = [20.0, -20.0, -20.0]\n",
+ "translated_image = 'translated.nii.gz'\n",
+ "\n",
+ "# Let's run the translate_image function on our inputs\n",
+ "translate_image(orig_image,\n",
+ " translation,\n",
+ " translated_image)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that the function was executed, let's plot the original and the translated image."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat(orig_image, dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat('translated.nii.gz', dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Perfect, we see that the translation was applied."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Quick approach - ``Function`` interface\n",
+ "\n",
+ "Don't reinvent the wheel if it's not necessary. If like in this case, we have a well-defined function we want to run with Nipype, it is fairly easy to solve it with the ``Function`` interface:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.utility import Function\n",
+ "\n",
+ "my_python_interface = Function(\n",
+ " input_names=['img', 'translation', 'out_file'],\n",
+ " output_names=['out_file'],\n",
+ " function=translate_image\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The arguments of ``translate_image`` should ideally be listed in the same order and with the same names as in the signature of the function. The same should be the case for the outputs. Finally, the ``Function`` interface takes a ``function`` input that is pointed to your python code.\n",
+ "\n",
+ "***Note***: The inputs and outputs do not pass any kind of conformity checking: the function node will take any kind of data type for their inputs and outputs.\n",
+ "\n",
+ "There are some other limitations to the ``Function`` interface when used inside workflows. Additionally, the function must be totally self-contained, since it will run with no global context. In practice, it means that **all the imported modules and variables must be defined within the context of the function**.\n",
+ "\n",
+ "For more, check out the [Function Node](basic_function_nodes.ipynb) notebook."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Back to our `Function` interface. You can run it as any other interface object of Nipype:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set inputs\n",
+ "my_python_interface.inputs.img = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'\n",
+ "my_python_interface.inputs.translation = [-35.0, 35.0, 35.0]\n",
+ "my_python_interface.inputs.out_file = 'translated_functioninterface.nii.gz'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Run the interface\n",
+ "result = my_python_interface.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Plot the result\n",
+ "plot_anat('translated_functioninterface.nii.gz', dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Complete approach - pure `Python` interface\n",
+ "\n",
+ "Now, we face the problem of interfacing something different from a command line. Therefore, the ``CommandLine`` base class will not help us here. The specification of the inputs and outputs, though, will work the same way.\n",
+ "\n",
+ "Let's start from that point on. Our Python function takes in three inputs: (1) the input image, (2) the translation and (3) an output image.\n",
+ "\n",
+ "The specification of inputs and outputs must be familiar to you at this point. Please note that now, input specification is derived from ``BaseInterfaceInputSpec``, which is a bit thinner than ``CommandLineInputSpec``. The output specification can be derived from ``TraitedSpec`` as before:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import BaseInterfaceInputSpec, File, TraitedSpec\n",
+ "\n",
+ "class TranslateImageInputSpec(BaseInterfaceInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True, desc='the input image')\n",
+ " out_file = File(mandatory=True, desc='the output image') # Do not set exists=True !!\n",
+ " translation = traits.List([50.0, 0.0, 0.0], traits.Float, usedefault=True,\n",
+ " desc='the translation component of the input transform')\n",
+ " \n",
+ "class TranslateImageOutputSpec(TraitedSpec):\n",
+ " out_file = File(desc='the output image')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Similarily to the change of base class for the input specification, the core of our new interface will derive from ``BaseInterface`` instead of ``CommandLineInterface``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import BaseInterface\n",
+ "\n",
+ "class TranslateImage(BaseInterface):\n",
+ " input_spec = TranslateImageInputSpec\n",
+ " output_spec = TranslateImageOutputSpec"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "At this point, we have defined a pure python interface but it is unable to do anything because we didn't implement a ``_run_interface()`` method yet."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TranslateImage.help()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "What happens if we try to run such an interface without specifying the `_run_interface()` function?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "will_fail_at_run = TranslateImage(\n",
+ " in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " out_file='translated.nii.gz')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " result = will_fail_at_run.run()\n",
+ "\n",
+ "except(NotImplementedError) as err:\n",
+ " print('It crashed with...')\n",
+ " print(\"NotImplementedError:\", err)\n",
+ "else:\n",
+ " raise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So, let's implement the missing part. As we would imagine, this needs to be very similar to what we did before with the ``TransformInfo`` interface:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class TranslateImage(BaseInterface):\n",
+ " input_spec = TranslateImageInputSpec\n",
+ " output_spec = TranslateImageOutputSpec\n",
+ " \n",
+ " def _run_interface(self, runtime):\n",
+ " \n",
+ " # Call our python code here:\n",
+ " translate_image(\n",
+ " self.inputs.in_file,\n",
+ " self.inputs.translation,\n",
+ " self.inputs.out_file\n",
+ " )\n",
+ " \n",
+ " # And we are done\n",
+ " return runtime"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If we run it know, our interface will get further:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "half_works = TranslateImage(\n",
+ " in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " out_file='translated_nipype.nii.gz')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " result = half_works.run()\n",
+ "\n",
+ "except(NotImplementedError) as err:\n",
+ " print('It crashed with...')\n",
+ " print(\"NotImplementedError:\", err)\n",
+ "else:\n",
+ " raise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "... but still, it crashes becasue we haven't specified any ``_list_outputs()`` method. I.e. our python function is called, but the interface crashes when the execution arrives to retrieving the outputs.\n",
+ "\n",
+ "Let's fix that:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import BaseInterfaceInputSpec, BaseInterface, File, TraitedSpec\n",
+ "\n",
+ "class TranslateImageInputSpec(BaseInterfaceInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True, desc='the input image')\n",
+ " out_file = File(mandatory=True, desc='the output image') # Do not set exists=True !!\n",
+ " translation = traits.List([50.0, 0.0, 0.0], traits.Float, usedefault=True,\n",
+ " desc='the translation component of the input transform')\n",
+ " \n",
+ "class TranslateImageOutputSpec(TraitedSpec):\n",
+ " out_file = File(desc='the output image')\n",
+ "\n",
+ "class TranslateImage(BaseInterface):\n",
+ " input_spec = TranslateImageInputSpec\n",
+ " output_spec = TranslateImageOutputSpec\n",
+ " \n",
+ " def _run_interface(self, runtime):\n",
+ "\n",
+ " # Call our python code here:\n",
+ " translate_image(\n",
+ " self.inputs.in_file,\n",
+ " self.inputs.translation,\n",
+ " self.inputs.out_file\n",
+ " )\n",
+ " # And we are done\n",
+ " return runtime\n",
+ "\n",
+ " def _list_outputs(self):\n",
+ " return {'out_file': self.inputs.out_file}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we have everything together. So let's run it and visualize the output file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "this_works = TranslateImage(\n",
+ " in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " out_file='translated_nipype.nii.gz')\n",
+ "\n",
+ "result = this_works.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat(result.outputs.out_file, dim=-1);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Create your own `MATLAB` interface\n",
+ "\n",
+ "Last but not least, let's take a look at how we would create a `MATLAB` interface. For this purpose, let's say we want to run some matlab code that counts the number of voxels in an MRI image with intensity larger than zero. Such a value could give us an estimation of the brain volume (in voxels) of a skull-stripped image.\n",
+ "\n",
+ "In `MATLAB`, our code looks as follows:\n",
+ "\n",
+ " ```\n",
+ " load input_image.mat;\n",
+ " total = sum(data(:) > 0)\n",
+ " ```\n",
+ " \n",
+ "The following example uses ``scipy.io.savemat`` to convert the input image to `MATLAB` format. Once the file is loaded we can quickly extract the estimated total volume.\n",
+ "\n",
+ "***Note:*** For the purpose of this example, we will be using the freely available `MATLAB` alternative `Octave`. But the implementation of a `MATLAB` interface will be identical."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Preparation\n",
+ "\n",
+ "As before, we need to specify an `InputSpec` and an `OutputSpec` class. The input class will expect a `file` as an input and the `script` containing the code that we would like to run, and the output class will give us back the total `volume`.\n",
+ "\n",
+ "In the context of a `MATLAB` interface, this is implemented as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,\n",
+ " BaseInterface, BaseInterfaceInputSpec, File)\n",
+ "\n",
+ "class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True)\n",
+ " script_file = File(exists=True, mandatory=True)\n",
+ " \n",
+ "class BrainVolumeMATLABOutputSpec(TraitedSpec):\n",
+ " volume = traits.Int(desc='brain volume')\n",
+ "\n",
+ "class BrainVolumeMATLAB(BaseInterface):\n",
+ " input_spec = BrainVolumeMATLABInputSpec\n",
+ " output_spec = BrainVolumeMATLABOutputSpec"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Step by step implementation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we have to specify what should happen, once the interface is run. As we said earlier, we want to:\n",
+ "\n",
+ "1. load the image data and save it in a mat file\n",
+ "2. load the script\n",
+ "3. replace the put the relevant information into the script\n",
+ "4. run the script\n",
+ "5. extract the results\n",
+ "\n",
+ "This all can be implemented with the following code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Specify the interface inputs\n",
+ "in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'\n",
+ "script_file = '/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!cat scripts/brainvolume.m"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "import nibabel as nb\n",
+ "from scipy.io import savemat\n",
+ "\n",
+ "# 1. save the image in matlab format as tmp_image.mat\n",
+ "tmp_image = 'tmp_image.mat'\n",
+ "data = nb.load(in_file).get_data()\n",
+ "savemat(tmp_image, {'data': data}, do_compression=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 2. load script\n",
+ "with open(script_file) as script_file:\n",
+ " script_content = script_file.read()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 3. replace the input_image.mat file with the actual input of this interface\n",
+ "with open('newscript.m', 'w') as script_file:\n",
+ " script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 4. run the matlab script\n",
+ "mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')\n",
+ "result = mlab.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 5. extract the volume estimation from the output\n",
+ "expr_tra = re.compile('total\\ =\\s+(?P[0-9]+)')\n",
+ "volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])\n",
+ "print(volume)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Putting it all together\n",
+ "\n",
+ "Now we just need to put this all together in the `_run_interface()` method and add a `_list_outputs()` function:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,\n",
+ " BaseInterface, BaseInterfaceInputSpec, File)\n",
+ "import re\n",
+ "import nibabel as nb\n",
+ "from scipy.io import savemat\n",
+ "\n",
+ "class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True)\n",
+ " script_file = File(exists=True, mandatory=True)\n",
+ " \n",
+ "class BrainVolumeMATLABOutputSpec(TraitedSpec):\n",
+ " volume = traits.Int(desc='brain volume')\n",
+ "\n",
+ "class BrainVolumeMATLAB(BaseInterface):\n",
+ " input_spec = BrainVolumeMATLABInputSpec\n",
+ " output_spec = BrainVolumeMATLABOutputSpec\n",
+ "\n",
+ " def _run_interface(self, runtime): \n",
+ " # Save the image in matlab format as tmp_image.mat\n",
+ " tmp_image = 'tmp_image.mat'\n",
+ " data = nb.load(self.inputs.in_file).get_data()\n",
+ " savemat(tmp_image, {'data': data}, do_compression=False)\n",
+ " \n",
+ " # Load script\n",
+ " with open(self.inputs.script_file) as script_file:\n",
+ " script_content = script_file.read()\n",
+ " \n",
+ " # Replace the input_image.mat file for the actual input of this interface\n",
+ " with open('newscript.m', 'w') as script_file:\n",
+ " script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))\n",
+ "\n",
+ " # Run a matlab command\n",
+ " mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')\n",
+ " result = mlab.run()\n",
+ " \n",
+ " expr_tra = re.compile('total\\ =\\s+(?P[0-9]+)')\n",
+ " volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])\n",
+ " setattr(self, '_result', volume)\n",
+ " return result.runtime\n",
+ "\n",
+ " def _list_outputs(self):\n",
+ " outputs = self._outputs().get()\n",
+ " outputs['volume'] = getattr(self, '_result')\n",
+ " return outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's test it:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "matlab = BrainVolumeMATLAB(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " script_file='/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m')\n",
+ "result = matlab.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(result.outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We see in the example above that everything works fine. But now, let's say that we want to save the total brain volume to a file and give the location of this file back as an output. How would you do that?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exercise\n",
+ "\n",
+ "Modify the `BrainVolumeMATLAB` interface so that it has one more **output** called ``out_file``, that points to a text file where we write the volume in voxels. The name of the ``out_file`` can be hard coded to ``volume.txt``."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown",
+ "solution2_first": true
+ },
+ "outputs": [],
+ "source": [
+ "# Write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown"
+ },
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,\n",
+ " BaseInterface, BaseInterfaceInputSpec, File)\n",
+ "import os\n",
+ "import re\n",
+ "import nibabel as nb\n",
+ "from scipy.io import savemat\n",
+ "\n",
+ "class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):\n",
+ " in_file = File(exists=True, mandatory=True)\n",
+ " script_file = File(exists=True, mandatory=True)\n",
+ " \n",
+ "class BrainVolumeMATLABOutputSpec(TraitedSpec):\n",
+ " volume = traits.Int(desc='brain volume')\n",
+ " out_file = File(desc='output file containing total brain volume') # This line was added\n",
+ "\n",
+ "class BrainVolumeMATLAB(BaseInterface):\n",
+ " input_spec = BrainVolumeMATLABInputSpec\n",
+ " output_spec = BrainVolumeMATLABOutputSpec\n",
+ "\n",
+ " def _run_interface(self, runtime): \n",
+ " # Save the image in matlab format as tmp_image.mat\n",
+ " tmp_image = 'tmp_image.mat'\n",
+ " data = nb.load(self.inputs.in_file).get_data()\n",
+ " savemat(tmp_image, {'data': data}, do_compression=False)\n",
+ " \n",
+ " # Load script\n",
+ " with open(self.inputs.script_file) as script_file:\n",
+ " script_content = script_file.read()\n",
+ " \n",
+ " # Replace the input_image.mat file for the actual input of this interface\n",
+ " with open('newscript.m', 'w') as script_file:\n",
+ " script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))\n",
+ "\n",
+ " # Run a matlab command\n",
+ " mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')\n",
+ " result = mlab.run()\n",
+ " \n",
+ " expr_tra = re.compile('total\\ =\\s+(?P[0-9]+)')\n",
+ " volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])\n",
+ " setattr(self, '_result', volume)\n",
+ " \n",
+ " # Write total brain volume into a file\n",
+ " out_fname = os.path.abspath('volume.txt')\n",
+ " setattr(self, '_out_file', out_fname)\n",
+ " with open('volume.txt', 'w') as out_file:\n",
+ " out_file.write('%d' %volume)\n",
+ " \n",
+ " return result.runtime\n",
+ "\n",
+ " def _list_outputs(self):\n",
+ " outputs = self._outputs().get()\n",
+ " outputs['volume'] = getattr(self, '_result')\n",
+ " outputs['out_file'] = getattr(self, '_out_file')\n",
+ " return outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, let's test if it works."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "matlab = BrainVolumeMATLAB(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " script_file='/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m')\n",
+ "result = matlab.run()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "No errors, perfect. Did we get the right file?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(result.outputs.out_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And what about the content of this file?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!cat volume.txt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/advanced_interfaces_caching.ipynb b/notebooks/advanced_interfaces_caching.ipynb
new file mode 100644
index 0000000..d428ac7
--- /dev/null
+++ b/notebooks/advanced_interfaces_caching.ipynb
@@ -0,0 +1,232 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Interface caching\n",
+ "\n",
+ "This section details the interface-caching mechanism, exposed in the `nipype.caching` module."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interface caching: why and how\n",
+ "\n",
+ "* `Pipelines` (also called `workflows`) specify processing by an execution graph. This is useful because it opens the door to dependency checking and enables\n",
+ " - to minimize recomputations, \n",
+ " - to have the execution engine transparently deal with intermediate file manipulations.\n",
+ "\n",
+ " They, however, do not blend in well with arbitrary Python code, as they must rely on their own execution engine.\n",
+ "\n",
+ "\n",
+ "* `Interfaces` give fine control of the execution of each step with a thin wrapper on the underlying software. As a result that can easily be inserted in Python code. \n",
+ "\n",
+ " However, they force the user to specify explicit input and output file names and cannot do any caching.\n",
+ "\n",
+ "This is why nipype exposes an intermediate mechanism, `caching` that provides transparent output file management and caching within imperative Python code rather than a workflow."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## A big picture view: using the [`Memory`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#memory) object\n",
+ "\n",
+ "nipype caching relies on the [`Memory`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#memory) class: it creates an\n",
+ "execution context that is bound to a disk cache:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.caching import Memory\n",
+ "mem = Memory(base_dir='.')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the caching directory is a subdirectory called `nipype_mem` of the given `base_dir`. This is done to avoid polluting the base director.\n",
+ "\n",
+ "In the corresponding execution context, nipype interfaces can be turned into callables that can be used as functions using the [`Memory.cache`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.cache) method. For instance, if we want to run the fslMerge command on a set of files:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces import fsl\n",
+ "fsl_merge = mem.cache(fsl.Merge)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that the [`Memory.cache`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.cache) method takes interfaces **classes**, and not instances.\n",
+ "\n",
+ "The resulting `fsl_merge` object can be applied as a function to parameters, that will form the inputs of the `merge` fsl commands. Those inputs are given as keyword arguments, bearing the same name as the name in the inputs specs of the interface. In IPython, you can also get the argument list by using the `fsl_merge?` syntax to inspect the docs:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "In [3]: fsl_merge?\n",
+ "String Form:PipeFunc(nipype.interfaces.fsl.utils.Merge,\n",
+ " base_dir=/home/varoquau/dev/nipype/nipype/caching/nipype_mem)\n",
+ "Namespace: Interactive\n",
+ "File: /home/varoquau/dev/nipype/nipype/caching/memory.py\n",
+ "Definition: fsl_merge(self, **kwargs)\n",
+ "Docstring: Use fslmerge to concatenate images\n",
+ "\n",
+ "Inputs\n",
+ "------\n",
+ "\n",
+ "Mandatory:\n",
+ "dimension: dimension along which the file will be merged\n",
+ "in_files: None\n",
+ "\n",
+ "Optional:\n",
+ "args: Additional parameters to the command\n",
+ "environ: Environment variables (default={})\n",
+ "ignore_exception: Print an error message instead of throwing an exception in case the interface fails to run (default=False)\n",
+ "merged_file: None\n",
+ "output_type: FSL output type\n",
+ "\n",
+ "Outputs\n",
+ "-------\n",
+ "merged_file: None\n",
+ "Class Docstring:\n",
+ "...\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Thus `fsl_merge` is applied to parameters as such:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filepath = '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'\n",
+ "\n",
+ "results = fsl_merge(dimension='t', in_files=[filepath, filepath])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The results are standard nipype nodes results. In particular, they expose an `outputs` attribute that carries all the outputs of the process, as specified by the docs."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "results.outputs.merged_file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, and most important, if the node is applied to the same input parameters, it is not computed, and the results are reloaded from the disk:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "results = fsl_merge(dimension='t', in_files=[filepath, filepath])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once the [`Memory`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#memory) is set up and you are applying it to data, an important thing to keep in mind is that you are using up disk cache. It might be useful to clean it using the methods that [`Memory`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#memory) provides for this: [`Memory.clear_previous_runs`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.clear_previous_runs), [`Memory.clear_runs_since`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.clear_runs_since)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example\n",
+ "\n",
+ "A full-blown example showing how to stage multiple operations can be found in the [`caching_example.py`](http://nipype.readthedocs.io/en/latest/_downloads/howto_caching_example.py) file."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Usage patterns: working efficiently with caching\n",
+ "\n",
+ "The goal of the `caching` module is to enable writing plain Python code rather than workflows. Use it: instead of data grabber nodes, use for instance the `glob` module. To vary parameters, use `for` loops. To make reusable code, write Python functions.\n",
+ "\n",
+ "One good rule of thumb to respect is to avoid the usage of explicit filenames apart from the outermost inputs and outputs of your processing. The reason being that the caching mechanism of `nipy.caching` takes care of generating the unique hashes, ensuring that, when you vary parameters, files are not overridden by the output of different computations.\n",
+ "\n",
+ "
\n",
+ "**Debugging**: \n",
+ "If you need to inspect the running environment of the nodes, it may be useful to know where they were executed. With `nipype.caching`, you do not control this location as it is encoded by hashes. \n",
+ "To find out where an operation has been persisted, simply look in it's output variable: \n",
+ "```out.runtime.cwd```\n",
+ "
\n",
+ "\n",
+ "Finally, the more you explore different parameters, the more you risk creating cached results that will never be reused. Keep in mind that it may be useful to flush the cache using [`Memory.clear_previous_runs`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.clear_previous_runs) or [`Memory.clear_runs_since`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html#nipype.caching.memory.Memory.clear_runs_since)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## API reference\n",
+ "\n",
+ "For more info about the API, go to [`caching.memory`](http://nipype.readthedocs.io/en/latest/api/generated/nipype.caching.memory.html)."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/advanced_mipav.ipynb b/notebooks/advanced_mipav.ipynb
new file mode 100644
index 0000000..88c9ee4
--- /dev/null
+++ b/notebooks/advanced_mipav.ipynb
@@ -0,0 +1,54 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Using MIPAV, JIST, and CBS Tools\n",
+ "\n",
+ "If you are trying to use MIPAV, JIST or CBS Tools interfaces you need to configure CLASSPATH environmental variable correctly. It needs to include extensions shipped with MIPAV, MIPAV itself and MIPAV plugins.\n",
+ "\n",
+ "For example, in order to use the standalone MCR version of spm, you need to ensure that the following commands are executed at the beginning of your script:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "# location of additional JAVA libraries to use\n",
+ "JAVALIB=/Applications/mipav/jre/Contents/Home/lib/ext/\n",
+ "\n",
+ "# location of the MIPAV installation to use\n",
+ "MIPAV=/Applications/mipav\n",
+ "# location of the plugin installation to use\n",
+ "# please replace 'ThisUser' by your user name\n",
+ "PLUGINS=/Users/ThisUser/mipav/plugins\n",
+ "\n",
+ "export CLASSPATH=$JAVALIB/*:$MIPAV:$MIPAV/lib/*:$PLUGINS\n",
+ "```"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/z_development_interface.ipynb b/notebooks/advanced_nipypecli.ipynb
similarity index 55%
rename from notebooks/z_development_interface.ipynb
rename to notebooks/advanced_nipypecli.ipynb
index cf269d7..1152f56 100644
--- a/notebooks/z_development_interface.ipynb
+++ b/notebooks/advanced_nipypecli.ipynb
@@ -4,50 +4,48 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "http://nipype.readthedocs.io/en/latest/devel/cmd_interface_devel.html"
+ "# Nipype Command Line Interface\n",
+ "\n",
+ "The Nipype Command Line Interface allows a variety of operations:"
]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
+ "outputs": [],
"source": [
- "http://nipype.readthedocs.io/en/latest/devel/matlab_interface_devel.html"
+ "%%bash\n",
+ "nipypecli"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "http://nipype.readthedocs.io/en/latest/devel/python_interface_devel.html"
+ "
\n",
+ "**Note**: These have replaced previous nipype command line tools such as `nipype_display_crash`, `nipype_crash_search`, `nipype2boutiques`, `nipype_cmd` and `nipype_display_pklz`.\n",
+ "
"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
}
},
"nbformat": 4,
diff --git a/notebooks/advanced_sphinx_ext.ipynb b/notebooks/advanced_sphinx_ext.ipynb
new file mode 100644
index 0000000..576bd22
--- /dev/null
+++ b/notebooks/advanced_sphinx_ext.ipynb
@@ -0,0 +1,148 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Sphinx extensions\n",
+ "\n",
+ "To help users document their **Nipype**-based code, the software is shipped\n",
+ "with a set of extensions (currently only one) to customize the appearance\n",
+ "and simplify the generation process."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `nipype.sphinxext.plot_workflow` - Workflow plotting extension\n",
+ "\n",
+ "A directive for including a nipype workflow graph in a Sphinx document.\n",
+ "\n",
+ "This code is forked from the plot_figure sphinx extension of matplotlib.\n",
+ "\n",
+ "By default, in HTML output, `workflow` will include a .png file with a link to a high-res .png. In LaTeX output, it will include a .pdf. The source code for the workflow may be included as **inline content** to the directive `workflow`:\n",
+ "\n",
+ " .. workflow ::\n",
+ " :graph2use: flat\n",
+ " :simple_form: no\n",
+ "\n",
+ " from nipype.workflows.dmri.camino.connectivity_mapping import create_connectivity_pipeline\n",
+ " wf = create_connectivity_pipeline()\n",
+ " \n",
+ "For example, the following graph has been generated inserting the previous code block in this documentation:\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Options\n",
+ "\n",
+ "The ``workflow`` directive supports the following options:\n",
+ "\n",
+ "- `graph2use`: {`'hierarchical'`, `'colored'`, `'flat'`, `'orig'`, `'exec'`} \n",
+ " Specify the type of graph to be generated.\n",
+ "\n",
+ "\n",
+ "- `simple_form`: `bool` \n",
+ " Whether the graph will be in detailed or simple form.\n",
+ "\n",
+ "\n",
+ "- `format`: {`'python'`, `'doctest'`} \n",
+ " Specify the format of the input\n",
+ "\n",
+ "\n",
+ "- `include-source`: `bool` \n",
+ " Whether to display the source code. The default can be changed using the `workflow_include_source` variable in conf.py\n",
+ "\n",
+ "\n",
+ "- `encoding`: `str` \n",
+ " If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment.\n",
+ "\n",
+ "Additionally, this directive supports all of the options of the `image` directive, except for `target` (since workflow will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Configuration options\n",
+ "\n",
+ "The workflow directive has the following configuration options:\n",
+ "\n",
+ "- `graph2use` \n",
+ " Select a graph type to use\n",
+ "\n",
+ "\n",
+ "- `simple_form` \n",
+ " determines if the node name shown in the visualization is either of the form nodename (package) when set to True or nodename.Class.package when set to False.\n",
+ "\n",
+ "\n",
+ "- `wf_include_source` \n",
+ " Default value for the include-source option\n",
+ "\n",
+ "\n",
+ "- `wf_html_show_source_link` \n",
+ " Whether to show a link to the source in HTML.\n",
+ "\n",
+ "\n",
+ "- `wf_pre_code` \n",
+ " Code that should be executed before each workflow.\n",
+ "\n",
+ "\n",
+ "- `wf_basedir` \n",
+ " Base directory, to which ``workflow::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.)\n",
+ "\n",
+ "\n",
+ "- `wf_formats` \n",
+ " File formats to generate. List of tuples or strings: \n",
+ " [(suffix, dpi), suffix, ...] \n",
+ " that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, ....\n",
+ "\n",
+ "\n",
+ "- `wf_html_show_formats` \n",
+ " Whether to show links to the files in HTML.\n",
+ "\n",
+ "\n",
+ "- `wf_rcparams` \n",
+ " A dictionary containing any non-standard rcParams that should be applied before each workflow.\n",
+ "\n",
+ "\n",
+ "- `wf_apply_rcparams` \n",
+ " By default, rcParams are applied when `context` option is not used in a workflow directive. This configuration option overrides this behavior and applies rcParams before each workflow.\n",
+ "\n",
+ "\n",
+ "- `wf_working_directory` \n",
+ " By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also, its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located.\n",
+ "\n",
+ "\n",
+ "- `wf_template` \n",
+ " Provide a customized template for preparing restructured text."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/advanced_spmmcr.ipynb b/notebooks/advanced_spmmcr.ipynb
new file mode 100644
index 0000000..ca64a45
--- /dev/null
+++ b/notebooks/advanced_spmmcr.ipynb
@@ -0,0 +1,77 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Using SPM with MATLAB Common Runtime (MCR)\n",
+ "\n",
+ "In order to use the standalone MCR version of spm, you need to ensure that the following commands are executed at the beginning of your script:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces import spm\n",
+ "matlab_cmd = '/opt/spm12-r7219/run_spm12.sh /opt/matlabmcr-2010a/v713/ script'\n",
+ "spm.SPMCommand.set_mlab_paths(matlab_cmd=matlab_cmd, use_mcr=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can test it by calling:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "spm.SPMCommand().version"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you want to enforce the standalone MCR version of spm for nipype globally, you can do so by setting the following environment variables:\n",
+ "\n",
+ "- *`SPMMCRCMD`* \n",
+ " Specifies the command to use to run the spm standalone MCR version. You may still override the command as described above.\n",
+ "\n",
+ "\n",
+ "- *`FORCE_SPMMCR`* \n",
+ " Set this to any value in order to enforce the use of spm standalone MCR version in nipype globally. Technically, this sets the `use_mcr` flag of the spm interface to True.\n",
+ "\n",
+ "Information about the MCR version of SPM8 can be found at: http://en.wikibooks.org/wiki/SPM/Standalone"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/basic_configuration.ipynb b/notebooks/basic_configuration.ipynb
deleted file mode 100644
index 7aa5f88..0000000
--- a/notebooks/basic_configuration.ipynb
+++ /dev/null
@@ -1,163 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "# Execution Configuration Options\n",
- "\n",
- "Nipype gives you many liberties on how to create workflows, but the execution of them uses a lot of default parameters. But you have of course all the freedom to change them as you like.\n",
- "\n",
- "Nipype looks for the configuration options in the local folder under the name ``nipype.cfg`` and in ``~/.nipype/nipype.cfg`` (in this order). It can be divided into **Logging** and **Execution** options. A few of the possible options are the following:\n",
- "\n",
- "### Logging\n",
- "\n",
- "- **workflow_level**: How detailed the logs regarding workflow should be\n",
- "- **log_to_file**: Indicates whether logging should also send the output to a file\n",
- "\n",
- "### Execution\n",
- "\n",
- "- **stop_on_first_crash**: Should the workflow stop upon first node crashing or try to execute as many nodes as possible?\n",
- "- **remove_unnecessary_outputs**: This will remove any interface outputs not needed by the workflow. If the required outputs from a node changes, rerunning the workflow will rerun the node. Outputs of leaf nodes (nodes whose outputs are not connected to any other nodes) will never be deleted independent of this parameter.\n",
- "- **use_relative_paths**: Should the paths stored in results (and used to look for inputs) be relative or absolute. Relative paths allow moving the whole working directory around but may cause problems with symlinks. \n",
- "- **job_finished_timeout**: When batch jobs are submitted through, SGE/PBS/Condor they could be killed externally. Nipype checks to see if a results file exists to determine if the node has completed. This timeout determines for how long this check is done after a job finish is detected. (float in seconds; default value: 5)\n",
- "- **poll_sleep_duration**: This controls how long the job submission loop will sleep between submitting all pending jobs and checking for job completion. To be nice to cluster schedulers the default is set to 2\n",
- "\n",
- "\n",
- "For the full list, see [Configuration File](http://nipype.readthedocs.io/en/latest/users/config_file.html)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "# Global, workflow & node level\n",
- "\n",
- "The configuration options can be changed globally (i.e. for all workflows), for just a workflow, or for just a node. The implementations look as follows:"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "### At the global level:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [],
- "source": [
- "from nipype import config, logging\n",
- "\n",
- "config_dict={'execution': {'remove_unnecessary_outputs': 'true',\n",
- " 'keep_inputs': 'false',\n",
- " 'poll_sleep_duration': '60',\n",
- " 'stop_on_first_rerun': 'false',\n",
- " 'hash_method': 'timestamp',\n",
- " 'local_hash_check': 'true',\n",
- " 'create_report': 'true',\n",
- " 'crashdump_dir': '/home/user/crash_folder',\n",
- " 'use_relative_paths': 'false',\n",
- " 'job_finished_timeout': '5'},\n",
- " 'logging': {'workflow_level': 'INFO',\n",
- " 'filemanip_level': 'INFO',\n",
- " 'interface_level': 'INFO',\n",
- " 'log_directory': '/home/user/log_folder',\n",
- " 'log_to_file': 'true'}}\n",
- "config.update_config(config_dict)\n",
- "logging.update_logging(config)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "### At the workflow level:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
- "outputs": [],
- "source": [
- "# Change execution parameters\n",
- "wf.config['execution']['stop_on_first_crash'] = 'true'\n",
- "\n",
- "# Change logging parameters\n",
- "wf.config['logging'] = {'workflow_level' : 'DEBUG',\n",
- " 'filemanip_level' : 'DEBUG',\n",
- " 'interface_level' : 'DEBUG',\n",
- " 'log_to_file' : 'True',\n",
- " 'log_directory' : '/home/user/log_folder'}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "### At the node level:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
- "outputs": [],
- "source": [
- "bet.config = {'execution': {'keep_unnecessary_outputs': 'false'}}"
- ]
- }
- ],
- "metadata": {
- "anaconda-cloud": {},
- "kernelspec": {
- "display_name": "Python [default]",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/notebooks/basic_data_input.ipynb b/notebooks/basic_data_input.ipynb
index 6683f84..2857f8c 100644
--- a/notebooks/basic_data_input.ipynb
+++ b/notebooks/basic_data_input.ipynb
@@ -2,10 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Data Input\n",
"\n",
@@ -25,58 +22,181 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Dataset structure\n",
"\n",
- "To be able to import data, you first need to be aware about the structure of your dataset. The structure of the dataset for this tutorial is according to BIDS, and looks as follows:\n",
+ "To be able to import data, you first need to be aware of the structure of your dataset. The structure of the dataset for this tutorial is according to BIDS, and looks as follows:\n",
"\n",
- " ds102\n",
+ " ds000114\n",
" ├── CHANGES\n",
" ├── dataset_description.json\n",
- " ├── participants.tsv\n",
- " ├── README\n",
+ " ├── derivatives\n",
+ " │ ├── fmriprep\n",
+ " │ │ └── sub01...sub10\n",
+ " │ │ └── ...\n",
+ " │ ├── freesurfer\n",
+ " │ ├── fsaverage\n",
+ " │ ├── fsaverage5\n",
+ " │ │ └── sub01...sub10\n",
+ " │ │ └── ...\n",
+ " ├── dwi.bval\n",
+ " ├── dwi.bvec\n",
" ├── sub-01\n",
- " │ ├── anat\n",
- " │ │ └── sub-01_T1w.nii.gz\n",
- " │ └── func\n",
- " │ ├── sub-01_task-flanker_run-1_bold.nii.gz\n",
- " │ ├── sub-01_task-flanker_run-1_events.tsv\n",
- " │ ├── sub-01_task-flanker_run-2_bold.nii.gz\n",
- " │ └── sub-01_task-flanker_run-2_events.tsv\n",
- " ├── sub-02\n",
- " │ ├── anat\n",
- " │ │ └── sub-02_T1w.nii.gz\n",
- " │ └── func\n",
- " │ ├── sub-02_task-flanker_run-1_bold.nii.gz\n",
- " │ ├── sub-02_task-flanker_run-1_events.tsv\n",
- " │ ├── sub-02_task-flanker_run-2_bold.nii.gz\n",
- " │ └── sub-02_task-flanker_run-2_events.tsv\n",
- " ├── sub-03\n",
- " │ ├── anat\n",
- " │ │ └── sub-03_T1w.nii.gz\n",
- " │ └── func\n",
- " │ ├── sub-03_task-flanker_run-1_bold.nii.gz\n",
- " │ ├── sub-03_task-flanker_run-1_events.tsv\n",
- " │ ├── sub-03_task-flanker_run-2_bold.nii.gz\n",
- " │ └── sub-03_task-flanker_run-2_events.tsv\n",
- " ├── ...\n",
- " .\n",
- " └── task-flanker_bold.json"
+ " │ ├── ses-retest \n",
+ " │ ├── anat\n",
+ " │ │ └── sub-01_ses-retest_T1w.nii.gz\n",
+ " │ ├──func\n",
+ " │ ├── sub-01_ses-retest_task-covertverbgeneration_bold.nii.gz\n",
+ " │ ├── sub-01_ses-retest_task-fingerfootlips_bold.nii.gz\n",
+ " │ ├── sub-01_ses-retest_task-linebisection_bold.nii.gz\n",
+ " │ ├── sub-01_ses-retest_task-linebisection_events.tsv\n",
+ " │ ├── sub-01_ses-retest_task-overtverbgeneration_bold.nii.gz\n",
+ " │ └── sub-01_ses-retest_task-overtwordrepetition_bold.nii.gz\n",
+ " │ └── dwi\n",
+ " │ └── sub-01_ses-retest_dwi.nii.gz\n",
+ " │ ├── ses-test \n",
+ " │ ├── anat\n",
+ " │ │ └── sub-01_ses-test_T1w.nii.gz\n",
+ " │ ├──func\n",
+ " │ ├── sub-01_ses-test_task-covertverbgeneration_bold.nii.gz\n",
+ " │ ├── sub-01_ses-test_task-fingerfootlips_bold.nii.gz\n",
+ " │ ├── sub-01_ses-test_task-linebisection_bold.nii.gz\n",
+ " │ ├── sub-01_ses-test_task-linebisection_events.tsv\n",
+ " │ ├── sub-01_ses-test_task-overtverbgeneration_bold.nii.gz\n",
+ " │ └── sub-01_ses-test_task-overtwordrepetition_bold.nii.gz\n",
+ " │ └── dwi\n",
+ " │ └── sub-01_ses-retest_dwi.nii.gz\n",
+ " ├── sub-02..sub-10\n",
+ " │ └── ...\n",
+ " ├── task-covertverbgeneration_bold.json\n",
+ " ├── task-covertverbgeneration_events.tsv\n",
+ " ├── task-fingerfootlips_bold.json\n",
+ " ├── task-fingerfootlips_events.tsv\n",
+ " ├── task-linebisection_bold.json\n",
+ " ├── task-overtverbgeneration_bold.json\n",
+ " ├── task-overtverbgeneration_events.tsv\n",
+ " ├── task-overtwordrepetition_bold.json\n",
+ " └── task-overtwordrepetition_events.tsv"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# DataGrabber\n",
"\n",
+ "`DataGrabber` is an interface for collecting files from hard drive. It is very flexible and supports almost any file organization of your data you can imagine.\n",
+ "\n",
+ "You can use it as a trivial use case of getting a fixed file. By default, `DataGrabber` stores its outputs in a field called outfiles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import nipype.interfaces.io as nio\n",
+ "datasource1 = nio.DataGrabber()\n",
+ "datasource1.inputs.base_directory = '/data/ds000114'\n",
+ "datasource1.inputs.template = 'sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'\n",
+ "datasource1.inputs.sort_filelist = True\n",
+ "results = datasource1.run()\n",
+ "results.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Or you can get at all NIfTI files containing the word `'fingerfootlips'` in all directories starting with the letter `'s'`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import nipype.interfaces.io as nio\n",
+ "datasource2 = nio.DataGrabber()\n",
+ "datasource2.inputs.base_directory = '/data/ds000114'\n",
+ "datasource2.inputs.template = 's*/ses-test/func/*fingerfootlips*.nii.gz'\n",
+ "datasource2.inputs.sort_filelist = True\n",
+ "results = datasource2.run()\n",
+ "results.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Two special inputs were used in these previous cases. The input `base_directory`\n",
+ "indicates in which directory to search, while the input `template` indicates the\n",
+ "string template to match. So in the previous case `DataGrabber` is looking for\n",
+ "path matches of the form `/data/ds000114/s*/ses-test/func/*fingerfootlips*.nii.gz`.\n",
+ "\n",
+ "
\n",
+ "**Note**: When used with wildcards (e.g., `s*` and `*fingerfootlips*` above) `DataGrabber` does not return data in sorted order. In order to force it to return data in a sorted order, one needs to set the input `sorted = True`. However, when explicitly specifying an order as we will see below, `sorted` should be set to `False`.\n",
+ "
\n",
+ "\n",
+ "More use cases arise when the template can be filled by other inputs. In the\n",
+ "example below, we define an input field for `DataGrabber` called `subject_id`. This is\n",
+ "then used to set the template (see `%d` in the template)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "datasource3 = nio.DataGrabber(infields=['subject_id'])\n",
+ "datasource3.inputs.base_directory = '/data/ds000114'\n",
+ "datasource3.inputs.template = 'sub-%02d/ses-test/func/*fingerfootlips*.nii.gz'\n",
+ "datasource3.inputs.sort_filelist = True\n",
+ "datasource3.inputs.subject_id = [1, 7]\n",
+ "results = datasource3.run()\n",
+ "results.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This will return the functional images from subject 1 and 7 for the task `fingerfootlips`. We can take this a step further and pair subjects with task."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "datasource4 = nio.DataGrabber(infields=['subject_id', 'run'])\n",
+ "datasource4.inputs.base_directory = '/data/ds000114'\n",
+ "datasource4.inputs.template = 'sub-%02d/ses-test/func/*%s*.nii.gz'\n",
+ "datasource4.inputs.sort_filelist = True\n",
+ "datasource4.inputs.run = ['fingerfootlips', 'linebisection']\n",
+ "datasource4.inputs.subject_id = [1, 7]\n",
+ "results = datasource4.run()\n",
+ "results.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This will return the functional image of subject 1, task `'fingerfootlips'` and the functional image of subject 7 for the `'linebisection'` task."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## A more realistic use-case\n",
+ "\n",
"``DataGrabber`` is a generic data grabber module that wraps around ``glob`` to select your neuroimaging data in an intelligent way. As an example, let's assume we want to grab the anatomical and functional images of a certain subject.\n",
"\n",
"First, we need to create the ``DataGrabber`` node. This node needs to have some input fields for all dynamic parameters (e.g. subject identifier, task identifier), as well as the two desired output fields ``anat`` and ``func``."
@@ -85,22 +205,18 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import DataGrabber, Node\n",
"\n",
"# Create DataGrabber node\n",
- "dg = Node(DataGrabber(infields=['subject_id', 'task_id'],\n",
+ "dg = Node(DataGrabber(infields=['subject_id', 'ses_name', 'task_name'],\n",
" outfields=['anat', 'func']),\n",
" name='datagrabber')\n",
"\n",
"# Location of the dataset folder\n",
- "dg.inputs.base_directory = '/data/ds102'\n",
+ "dg.inputs.base_directory = '/data/ds000114'\n",
"\n",
"# Necessary default parameters\n",
"dg.inputs.template = '*'\n",
@@ -109,49 +225,40 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Second, we know that the two files we desire are the the following location:\n",
"\n",
- " anat = /data/ds102/sub-01/anat/sub-01_T1w.nii.gz\n",
- " func = /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz\n",
+ " anat = /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz\n",
+ " func = /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz\n",
"\n",
- "We see that the two files only have two dynamic parameters between subjects and conditions:\n",
+ "We see that the two files only have three dynamic parameters between subjects and task names:\n",
"\n",
" subject_id: in this case 'sub-01'\n",
- " task_id: in this case 1\n",
+ " task_name: in this case fingerfootlips\n",
+ " ses_name: test\n",
"\n",
"This means that we can rewrite the paths as follows:\n",
"\n",
- " anat = /data/ds102/[subject_id]/anat/[subject_id]_T1w.nii.gz\n",
- " func = /data/ds102/[subject_id]/func/[subject_id]_task-flanker_run-[task_id]_bold.nii.gz\n",
+ " anat = /data/ds102/[subject_id]/ses-[ses_name]/anat/sub-[subject_id]_ses-[ses_name]_T1w.nii.gz\n",
+ " func = /data/ds102/[subject_id]/ses-[ses_name]/func/sub-[subject_id]_ses-[ses_name]_task-[task_name]_bold.nii.gz\n",
"\n",
- "Therefore, we need the parameter ``subject_id`` for the anatomical image and the parameter ``subject_id`` and ``task_id`` for the functional image. In the context of DataGabber, this is specified as follows:"
+ "Therefore, we need the parameters ``subject_id`` and ``ses_name`` for the anatomical image and the parameters ``subject_id``, ``ses_name`` and ``task_name`` for the functional image. In the context of DataGabber, this is specified as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "dg.inputs.template_args = {'anat': [['subject_id']],\n",
- " 'func': [['subject_id', 'task_id']]}"
+ "dg.inputs.template_args = {'anat': [['subject_id', 'ses_name']],\n",
+ " 'func': [['subject_id', 'ses_name', 'task_name']]}"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Now, comes the most important part of DataGrabber. We need to specify the template structure to find the specific data. This can be done as follows."
]
@@ -159,153 +266,208 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "dg.inputs.field_template = {'anat': '%s/anat/*_T1w.nii.gz',\n",
- " 'func': '%s/func/*run-%d_bold.nii.gz'}"
+ "dg.inputs.field_template = {'anat': 'sub-%02d/ses-%s/anat/*_T1w.nii.gz',\n",
+ " 'func': 'sub-%02d/ses-%s/func/*task-%s_bold.nii.gz'}"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "You'll notice that we use ``%s``, ``%02d`` and ``*`` for placeholders in the data paths. ``%s`` is a placeholder for a string and is filled out by ``subject_id``. ``%02d`` is a placeholder for a integer number and is filled out by ``task_id``. ``*`` is used as a wild card, e.g. a placeholder for any possible string combination. This is all to set up the ``DataGrabber`` node."
+ "You'll notice that we use ``%s``, ``%02d`` and ``*`` for placeholders in the data paths. ``%s`` is a placeholder for a string and is filled out by ``task_name`` or ``ses_name``. ``%02d`` is a placeholder for a integer number and is filled out by ``subject_id``. ``*`` is used as a wild card, e.g. a placeholder for any possible string combination. This is all to set up the ``DataGrabber`` node."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "source": [
+ "Above, two more fields are introduced: `field_template` and `template_args`. These fields are both dictionaries whose keys correspond to the `outfields` keyword. The `field_template` reflects the search path for each output field, while the `template_args` reflect the inputs that satisfy the template. The inputs can either be one of the named inputs specified by the `infields` keyword arg or it can be raw strings or integers corresponding to the template. For the `func` output, the **%s** in the `field_template` is satisfied by `subject_id` and the **%d** is filled in by the list of numbers."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
- "Now it is up to you how you want to feed the dynamic parameters into the node. You can either do this by using another node (e.g. ``IdentityInterface``) and feed ``subject_id`` and ``task_id`` as connections to the ``DataGrabber`` node or specify them directly as node inputs."
+ "Now it is up to you how you want to feed the dynamic parameters into the node. You can either do this by using another node (e.g. ``IdentityInterface``) and feed ``subject_id``, ``ses_name`` and ``task_name`` as connections to the ``DataGrabber`` node or specify them directly as node inputs."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Using the IdentityInterface\n",
"from nipype import IdentityInterface\n",
- "infosource = Node(IdentityInterface(fields=['subject_id', 'contrasts']),\n",
+ "infosource = Node(IdentityInterface(fields=['subject_id', 'task_name']),\n",
" name=\"infosource\")\n",
- "infosource.inputs.contrasts = 1\n",
- "subject_list = ['sub-01',\n",
- " 'sub-02',\n",
- " 'sub-03',\n",
- " 'sub-04',\n",
- " 'sub-05']\n",
- "infosource.iterables = [('subject_id', subject_list)]"
+ "infosource.inputs.task_name = \"fingerfootlips\"\n",
+ "infosource.inputs.ses_name = \"test\"\n",
+ "subject_id_list = [1, 2]\n",
+ "infosource.iterables = [('subject_id', subject_id_list)]"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Now you only have to connect ``infosource`` with your ``DataGrabber`` and run the workflow to iterate over subjects 1, 2 and 3."
+ "Now you only have to connect ``infosource`` with your ``DataGrabber`` and run the workflow to iterate over subjects 1 and 2."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "If you specify the inputs to the ``DataGrabber`` node directly, you can do this as follows:"
+ "You can also provide the inputs to the ``DataGrabber`` node directly, for one subject you can do this as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Specifying the input fields of DataGrabber directly\n",
- "dg.inputs.subject_id = 'sub-01'\n",
- "dg.inputs.task_id = 1"
+ "dg.inputs.subject_id = 1\n",
+ "dg.inputs.ses_name = \"test\"\n",
+ "dg.inputs.task_name = \"fingerfootlips\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now let's run the ``DataGrabber`` node and let's look at the output:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dg.run().outputs"
]
},
{
"cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 1\n",
+ "Grab T1w images from both sessions - ``ses-test`` and ``ses-retest`` for ``sub-01``."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
- "deletable": true,
- "editable": true
+ "solution2": "hidden",
+ "solution2_first": true
},
+ "outputs": [],
"source": [
- "Now let's run the ``DataGrabber`` node and let's look at the output:"
+ "# write your solution here"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
+ "solution2": "hidden"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:53:31,59 workflow INFO:\n",
- "\t Executing node datagrabber in dir: /tmp/tmp6AloiV/datagrabber\n",
- "170301-21:53:31,84 workflow INFO:\n",
- "\t Runtime memory and threads stats unavailable\n",
- "\n",
- "anat = /data/ds102/sub-01/anat/sub-01_T1w.nii.gz\n",
- "func = /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "print dg.run().outputs"
+ "from nipype import DataGrabber, Node\n",
+ "\n",
+ "# Create DataGrabber node\n",
+ "ex1_dg = Node(DataGrabber(infields=['subject_id', 'ses_name'],\n",
+ " outfields=['anat']),\n",
+ " name='datagrabber')\n",
+ "\n",
+ "# Location of the dataset folder\n",
+ "ex1_dg.inputs.base_directory = '/data/ds000114'\n",
+ "\n",
+ "# Necessary default parameters\n",
+ "ex1_dg.inputs.template = '*'\n",
+ "ex1_dg.inputs.sort_filelist = True\n",
+ "\n",
+ "# specify the template\n",
+ "ex1_dg.inputs.template_args = {'anat': [['subject_id', 'ses_name']]}\n",
+ "ex1_dg.inputs.field_template = {'anat': 'sub-%02d/ses-%s/anat/*_T1w.nii.gz'}\n",
+ "\n",
+ "# specify subject_id and ses_name you're interested in\n",
+ "ex1_dg.inputs.subject_id = 1\n",
+ "ex1_dg.inputs.ses_name = [\"test\", \"retest\"]\n",
+ "\n",
+ "# and run the node\n",
+ "ex1_res = ex1_dg.run()"
]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
- "deletable": true,
- "editable": true
+ "solution2": "hidden"
},
+ "outputs": [],
+ "source": [
+ "# you can now check the output\n",
+ "ex1_res.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
"# SelectFiles\n",
"\n",
- "`SelectFiles` is a more flexible alternative to `DataGrabber`. It uses the {}-based string formating syntax to plug values into string templates and collect the data. These templates can also be combined with glob wild cards. The field names in the formatting template (i.e. the terms in braces) will become inputs fields on the interface, and the keys in the templates dictionary will form the output fields.\n",
+ "`SelectFiles` is a more flexible alternative to `DataGrabber`. It is built on Python [format strings](http://docs.python.org/2/library/string.html#format-string-syntax), which are similar to the Python string interpolation feature you are likely already familiar with, but advantageous in several respects. Format strings allow you to replace named sections of template strings set off by curly braces (`{}`), possibly filtered through a set of functions that control how the values are rendered into the string. As a very basic example, we could write"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "msg = \"This workflow uses {package}.\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "and then format it with keyword arguments:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(msg.format(package=\"FSL\"))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "`SelectFiles` uses the {}-based string formatting syntax to plug values into string templates and collect the data. These templates can also be combined with glob wild cards. The field names in the formatting template (i.e. the terms in braces) will become inputs fields on the interface, and the keys in the templates dictionary will form the output fields.\n",
"\n",
"Let's focus again on the data we want to import:\n",
"\n",
- " anat = /data/ds102/sub-01/anat/sub-01_T1w.nii.gz\n",
- " func = /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz\n",
+ " anat = /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz\n",
+ " func = /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz\n",
" \n",
- "Now, we can replace those paths with the accoridng {}-based strings.\n",
+ "Now, we can replace those paths with the according {}-based strings.\n",
"\n",
- " anat = /data/ds102/{subject_id}/anat/{subject_id}_T1w.nii.gz\n",
- " func = /data/ds102/{subject_id}/func/{subject_id}_task-flanker_run-{task_id}_bold.nii.gz\n",
+ " anat = /data/ds000114/sub-{subject_id}/ses-{ses_name}/anat/sub-{subject_id}_ses-{ses_name}_T1w.nii.gz\n",
+ " func = /data/ds000114/sub-{subject_id}/ses-{ses_name}/func/ \\\n",
+ " sub-{subject_id}_ses-{ses_name}_task-{task_name}_bold.nii.gz\n",
"\n",
"How would this look like as a `SelectFiles` node?"
]
@@ -313,37 +475,31 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import SelectFiles, Node\n",
"\n",
"# String template with {}-based strings\n",
- "templates = {'anat': '{subject_id}/anat/{subject_id}_T1w.nii.gz',\n",
- " 'func': '{subject_id}/func/{subject_id}_task-flanker_run-{task_id}_bold.nii.gz'}\n",
+ "templates = {'anat': 'sub-{subject_id}/ses-{ses_name}/anat/sub-{subject_id}_ses-{ses_name}_T1w.nii.gz',\n",
+ " 'func': 'sub-{subject_id}/ses-{ses_name}/func/sub-{subject_id}_ses-{ses_name}_task-{task_name}_bold.nii.gz'}\n",
"\n",
"# Create SelectFiles node\n",
"sf = Node(SelectFiles(templates),\n",
" name='selectfiles')\n",
"\n",
"# Location of the dataset folder\n",
- "sf.inputs.base_directory = '/data/ds102'\n",
+ "sf.inputs.base_directory = '/data/ds000114'\n",
"\n",
"# Feed {}-based placeholder strings with values\n",
- "sf.inputs.subject_id = 'sub-01'\n",
- "sf.inputs.task_id = '1'"
+ "sf.inputs.subject_id = '01'\n",
+ "sf.inputs.ses_name = \"test\"\n",
+ "sf.inputs.task_name = 'fingerfootlips'"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Let's check if we get what we wanted."
]
@@ -351,43 +507,21 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:53:57,750 workflow INFO:\n",
- "\t Executing node selectfiles in dir: /tmp/tmpejvdlC/selectfiles\n",
- "170301-21:53:57,763 workflow INFO:\n",
- "\t Runtime memory and threads stats unavailable\n",
- "\n",
- "anat = /data/ds102/sub-01/anat/sub-01_T1w.nii.gz\n",
- "func = /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz\n",
- "\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "print sf.run().outputs"
+ "sf.run().outputs"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Perfect! But why is `SelectFiles` more flexible than `DataGrabber`? First, you perhaps noticed that with the {}-based string, we can reuse the same input (e.g. `subject_id`) multiple time in the same string, without feeding it multiple times into the template.\n",
"\n",
- "Additionally, you can also select multiple files without the need of an iterable node. For example, let's assume we want to select both functional images (`'run-1'` and `'run-2'`) at once. We can do this by using the following file template:\n",
+ "Additionally, you can also select multiple files without the need of an iterable node. For example, let's assume we want to select anatomical images for all subjects at once. We can do this by using the eildcard ``*`` in a template:\n",
"\n",
- " {subject_id}_task-flanker_run-[1,2]_bold.nii.gz'\n",
+ " 'sub-*/anat/sub-*_T1w.nii.gz'\n",
"\n",
"Let's see how this works:"
]
@@ -395,92 +529,149 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:54:03,222 workflow INFO:\n",
- "\t Executing node selectfiles in dir: /tmp/tmpjgAYwb/selectfiles\n",
- "170301-21:54:03,259 workflow INFO:\n",
- "\t Runtime memory and threads stats unavailable\n",
- "\n",
- "anat = /data/ds102/sub-01/anat/sub-01_T1w.nii.gz\n",
- "func = ['/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz', '/data/ds102/sub-01/func/sub-01_task-flanker_run-2_bold.nii.gz']\n",
- "\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from nipype import SelectFiles, Node\n",
- "from os.path import abspath as opap\n",
"\n",
"# String template with {}-based strings\n",
- "templates = {'anat': '{subject_id}/anat/{subject_id}_T1w.nii.gz',\n",
- " 'func': '{subject_id}/func/{subject_id}_task-flanker_run-[1,2]_bold.nii.gz'}\n",
+ "templates = {'anat': 'sub-*/ses-{ses_name}/anat/sub-*_ses-{ses_name}_T1w.nii.gz'}\n",
+ "\n",
"\n",
"# Create SelectFiles node\n",
"sf = Node(SelectFiles(templates),\n",
" name='selectfiles')\n",
"\n",
"# Location of the dataset folder\n",
- "sf.inputs.base_directory = '/data/ds102'\n",
+ "sf.inputs.base_directory = '/data/ds000114'\n",
"\n",
"# Feed {}-based placeholder strings with values\n",
- "sf.inputs.subject_id = 'sub-01'\n",
+ "sf.inputs.ses_name = 'test'\n",
"\n",
"# Print SelectFiles output\n",
- "print sf.run().outputs"
+ "sf.run().outputs"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "As you can see, now `func` contains two file paths, one for the first and one for the second run. As a side node, you could have also gotten them same thing with the wild card `*`:\n",
+ "As you can see, now `anat` contains ten file paths, T1w images for all ten subject. \n",
"\n",
- " {subject_id}_task-flanker_run-*_bold.nii.gz'"
+ "As a side note, you could also use ``[]`` string formatting for some simple cases, e.g. for loading only subject 1 and 2: \n",
+ "\n",
+ " 'sub-0[1,2]/ses-test/anat/sub-0[1,2]_ses-test_T1w.nii.gz'"
]
},
{
"cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### `force_lists`\n",
+ "\n",
+ "There's an additional parameter, `force_lists`, which controls how `SelectFiles` behaves in cases where only a single file matches the template. The default behavior is that when a template matches multiple files they are returned as a list, while a single file is returned as a string. There may be situations where you want to force the outputs to always be returned as a list (for example, you are writing a workflow that expects to operate on several runs of data, but some of your subjects only have a single run). In this case, `force_lists` can be used to tune the outputs of the interface. You can either use a boolean value, which will be applied to every output the interface has, or you can provide a list of the output fields that should be coerced to a list.\n",
+ "\n",
+ "Returning to our previous example, you may want to ensure that the `anat` files are returned as a list, but you only ever will have a single `T1` file. In this case, you would do"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sf = SelectFiles(templates, force_lists=[\"anat\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 2\n",
+ "Use ``SelectFile`` to select again T1w images from both sessions - ``ses-test`` and ``ses-retest`` for ``sub-01``."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
- "deletable": true,
- "editable": true
+ "solution2": "hidden",
+ "solution2_first": true
},
+ "outputs": [],
"source": [
- "## FreeSurferSource\n",
+ "# write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "from nipype import SelectFiles, Node\n",
"\n",
- "***Note: FreeSurfer and the recon-all output is not included in this tutorial.***\n",
+ "# String template with {}-based strings\n",
+ "templates = {'anat': 'sub-01/ses-*/anat/sub-01_ses-*_T1w.nii.gz'}\n",
+ " \n",
"\n",
- "`FreeSurferSource` is a specific case of a file grabber that felicitates the data import of outputs from the FreeSurfer recon-all algorithm. This of course requires that you've already run `recon-all` on your subject.\n",
+ "# Create SelectFiles node\n",
+ "sf = Node(SelectFiles(templates),\n",
+ " name='selectfiles')\n",
"\n",
- "Before you can run `FreeSurferSource`, you first have to specify the path to the FreeSurfer output folder, i.e. you have to specify the SUBJECTS_DIR variable. This can be done as follows:"
+ "# Location of the dataset folder\n",
+ "sf.inputs.base_directory = '/data/ds000114'\n",
+ "\n",
+ "#sf.inputs.ses_name = \n",
+ "\n",
+ "sf.run().outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## FreeSurferSource\n",
+ "\n",
+ "`FreeSurferSource` is a specific case of a file grabber that facilitates the data import of outputs from the FreeSurfer recon-all algorithm. This, of course, requires that you've already run `recon-all` on your subject."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For the tutorial dataset ``ds000114``, `recon-all` was already run. So, let's make sure that you have the anatomy output of one subject on your system:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!datalad get -r -J 4 -d /data/ds000114 /data/ds000114/derivatives/freesurfer/sub-01"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, before you can run `FreeSurferSource`, you first have to specify the path to the FreeSurfer output folder, i.e. you have to specify the SUBJECTS_DIR variable. This can be done as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"from nipype.interfaces.freesurfer import FSCommand\n",
"from os.path import abspath as opap\n",
"\n",
"# Path to your freesurfer output folder\n",
- "fs_dir = opap('/data/ds102/freesurfer')\n",
+ "fs_dir = opap('/data/ds000114/derivatives/freesurfer/')\n",
"\n",
"# Set SUBJECTS_DIR\n",
"FSCommand.set_default_subjects_dir(fs_dir)"
@@ -488,10 +679,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"To create the `FreeSurferSource` node, do as follows:"
]
@@ -499,11 +687,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import Node\n",
@@ -516,10 +700,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Let's now run it for a specific subject."
]
@@ -527,32 +708,16 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170302-17:50:07,668 workflow INFO:\n",
- "\t Executing node fssource in dir: /tmp/tmpI0UTIX/fssource\n"
- ]
- }
- ],
- "source": [
- "fssource.inputs.subject_id = 'sub001'\n",
- "result = fssource.run()"
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fssource.inputs.subject_id = 'sub-01'\n",
+ "result = fssource.run() "
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Did it work? Let's try to access multiple FreeSurfer outputs:"
]
@@ -560,37 +725,16 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "aparc_aseg: [u'/data/ds102/freesurfer/sub001/mri/aparc.a2009s+aseg.mgz', u'/data/ds102/freesurfer/sub001/mri/aparc+aseg.mgz']\n",
- "\n",
- "brainmask: /data/ds102/freesurfer/sub001/mri/brainmask.mgz\n",
- "\n",
- "inflated: [u'/data/ds102/freesurfer/sub001/surf/rh.inflated', u'/data/ds102/freesurfer/sub001/surf/lh.inflated']\n",
- "\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "print 'aparc_aseg: %s\\n' % result.outputs.aparc_aseg\n",
- "print 'brainmask: %s\\n' % result.outputs.brainmask\n",
- "print 'inflated: %s\\n' % result.outputs.inflated"
+ "print('aparc_aseg: %s\\n' % result.outputs.aparc_aseg)\n",
+ "print('inflated: %s\\n' % result.outputs.inflated)"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"It seems to be working as it should. But as you can see, the `inflated` output actually contains the file location for both hemispheres. With `FreeSurferSource` we can also restrict the file selection to a single hemisphere. To do this, we use the `hemi` input filed:"
]
@@ -598,21 +742,8 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170302-17:50:13,835 workflow INFO:\n",
- "\t Executing node fssource in dir: /tmp/tmpI0UTIX/fssource\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"fssource.inputs.hemi = 'lh'\n",
"result = fssource.run()"
@@ -620,10 +751,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Let's take a look again at the `inflated` output."
]
@@ -631,33 +759,15 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "u'/data/ds102/freesurfer/sub001/surf/lh.inflated'"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"result.outputs.inflated"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Perfect!"
]
@@ -668,21 +778,21 @@
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
}
},
"nbformat": 4,
- "nbformat_minor": 0
+ "nbformat_minor": 2
}
diff --git a/notebooks/basic_data_input_bids.ipynb b/notebooks/basic_data_input_bids.ipynb
new file mode 100644
index 0000000..e87d70a
--- /dev/null
+++ b/notebooks/basic_data_input_bids.ipynb
@@ -0,0 +1,500 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Data input for BIDS datasets\n",
+ "`DataGrabber` and `SelectFiles` are great if you are dealing with generic datasets with arbitrary organization. However, if you have decided to use Brain Imaging Data Structure (BIDS) to organize your data (or got your hands on a BIDS dataset) you can take advantage of a formal structure BIDS imposes. In this short tutorial, you will learn how to do this."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## `pybids` - a Python API for working with BIDS datasets\n",
+ "`pybids` is a lightweight python API for querying BIDS folder structure for specific files and metadata. You can install it from PyPi:\n",
+ "```\n",
+ "pip install pybids\n",
+ "```\n",
+ "Please note it should be already installed in the tutorial Docker image."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## The `layout` object and simple queries\n",
+ "To begin working with pybids we need to initialize a layout object. We will need it to do all of our queries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from bids.layout import BIDSLayout\n",
+ "layout = BIDSLayout(\"/data/ds000114/\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!tree -L 4 /data/ds000114/"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's figure out what are the subject labels in this dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get_subjects()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "What datatypes are included in this dataset?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get_datatypes()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Which different data suffixes are included in this dataset?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get_suffixes(datatype='func')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "What are the different tasks included in this dataset?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get_tasks()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can also ask for all of the data for a particular subject and one datatype."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get(subject='01', datatype=\"anat\", session=\"test\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can also ask for a specific subset of data. Note that we are using extension filter to get just the imaging data (BIDS allows both .nii and .nii.gz so we need to include both)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get(subject='01', suffix='bold', extension=['.nii', '.nii.gz'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You probably noticed that this method does not only return the file paths, but objects with relevant query fields. We can easily extract just the file paths."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get(subject='01', suffix='bold', extension=['.nii', '.nii.gz'], return_type='file')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 1:\n",
+ "List all files for the \"linebisection\" task for subject 02."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown",
+ "solution2_first": true
+ },
+ "outputs": [],
+ "source": [
+ "#write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown"
+ },
+ "outputs": [],
+ "source": [
+ "from bids.layout import BIDSLayout\n",
+ "layout = BIDSLayout(\"/data/ds000114/\")\n",
+ "\n",
+ "layout.get(subject='02', return_type='file', task=\"linebisection\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## `BIDSDataGrabber`: Including `pybids` in your `nipype` workflow\n",
+ "This is great, but what we really want is to include this into our nipype workflows. To do this, we can import `BIDSDataGrabber`, which provides an `Interface` for `BIDSLayout.get`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype.interfaces.io import BIDSDataGrabber\n",
+ "from nipype.pipeline import Node, MapNode, Workflow\n",
+ "from nipype.interfaces.utility import Function\n",
+ "\n",
+ "bg = Node(BIDSDataGrabber(), name='bids-grabber')\n",
+ "bg.inputs.base_dir = '/data/ds000114'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can define static filters, that will apply to all queries, by modifying the appropriate input"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bg.inputs.subject = '01'\n",
+ "res = bg.run()\n",
+ "res.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that by default `BIDSDataGrabber` will fetch `nifti` files matching datatype `func` and `anat`, and output them as two output fields. \n",
+ "\n",
+ "To define custom fields, simply define the arguments to pass to `BIDSLayout.get` as dictionary, like so:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bg.inputs.output_query = {'bolds': dict(suffix='bold')}\n",
+ "res = bg.run()\n",
+ "res.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This results in a single output field `bold`, which returns all files with `suffix:bold` for `subject:\"01\"` \n",
+ "\n",
+ "Now, lets put it in a workflow. We are not going to analyze any data, but for demonstration purposes, we will add a couple of nodes that pretend to analyze their inputs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def printMe(paths):\n",
+ " print(\"\\n\\nanalyzing \" + str(paths) + \"\\n\\n\")\n",
+ " \n",
+ "analyzeBOLD = Node(Function(function=printMe, input_names=[\"paths\"],\n",
+ " output_names=[]), name=\"analyzeBOLD\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "wf = Workflow(name=\"bids_demo\")\n",
+ "wf.connect(bg, \"bolds\", analyzeBOLD, \"paths\")\n",
+ "wf.run()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 2:\n",
+ "Modify the `BIDSDataGrabber` and the workflow to collect T1ws images for subject `10`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown",
+ "solution2_first": true
+ },
+ "outputs": [],
+ "source": [
+ "# write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown"
+ },
+ "outputs": [],
+ "source": [
+ "from nipype.pipeline import Node, MapNode, Workflow\n",
+ "from nipype.interfaces.io import BIDSDataGrabber\n",
+ "\n",
+ "ex2_BIDSDataGrabber = BIDSDataGrabber()\n",
+ "ex2_BIDSDataGrabber.inputs.base_dir = '/data/ds000114'\n",
+ "ex2_BIDSDataGrabber.inputs.subject = '10'\n",
+ "ex2_BIDSDataGrabber.inputs.output_query = {'T1w': dict(datatype='anat')}\n",
+ "\n",
+ "ex2_res = ex2_BIDSDataGrabber.run()\n",
+ "ex2_res.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Iterating over subject labels\n",
+ "In the previous example, we demonstrated how to use `pybids` to \"analyze\" one subject. How can we scale it for all subjects? Easy - using `iterables` (more in [Iteration/Iterables](basic_iteration.ipynb))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bg_all = Node(BIDSDataGrabber(), name='bids-grabber')\n",
+ "bg_all.inputs.base_dir = '/data/ds000114'\n",
+ "bg_all.inputs.output_query = {'bolds': dict(suffix='bold')}\n",
+ "bg_all.iterables = ('subject', layout.get_subjects()[:2])\n",
+ "wf = Workflow(name=\"bids_demo\")\n",
+ "wf.connect(bg_all, \"bolds\", analyzeBOLD, \"paths\")\n",
+ "wf.run()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Accessing additional metadata\n",
+ "Querying different files is nice, but sometimes you want to access more metadata. For example `RepetitionTime`. `pybids` can help with that as well"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "layout.get_metadata('/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Can we incorporate this into our pipeline? Yes, we can! To do so, let's use a `Function` node to use `BIDSLayout` in a custom way.\n",
+ "(More about MapNode in [MapNode](basic_mapnodes.ipynb))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def printMetadata(path, data_dir):\n",
+ " from bids.layout import BIDSLayout\n",
+ " layout = BIDSLayout(data_dir)\n",
+ " print(\"\\n\\nanalyzing \" + path + \"\\nTR: \"+ str(layout.get_metadata(path)[\"RepetitionTime\"]) + \"\\n\\n\")\n",
+ " \n",
+ "analyzeBOLD2 = MapNode(Function(function=printMetadata, input_names=[\"path\", \"data_dir\"],\n",
+ " output_names=[]), name=\"analyzeBOLD2\", iterfield=\"path\")\n",
+ "analyzeBOLD2.inputs.data_dir = \"/data/ds000114/\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "wf = Workflow(name=\"bids_demo\")\n",
+ "wf.connect(bg, \"bolds\", analyzeBOLD2, \"path\")\n",
+ "wf.run()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 3:\n",
+ "Modify the `printMetadata` function to also print `EchoTime` "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown",
+ "solution2_first": true
+ },
+ "outputs": [],
+ "source": [
+ "# write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown"
+ },
+ "outputs": [],
+ "source": [
+ "from nipype.pipeline import Node, MapNode, Workflow\n",
+ "from nipype.interfaces.io import BIDSDataGrabber\n",
+ "\n",
+ "ex3_BIDSDataGrabber = Node(BIDSDataGrabber(), name='bids-grabber')\n",
+ "ex3_BIDSDataGrabber.inputs.base_dir = '/data/ds000114'\n",
+ "ex3_BIDSDataGrabber.inputs.subject = '01'\n",
+ "ex3_BIDSDataGrabber.inputs.output_query = {'bolds': dict(suffix='bold')}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "shown"
+ },
+ "outputs": [],
+ "source": [
+ "# and now modify analyzeBOLD2\n",
+ "def printMetadata_et(path, data_dir):\n",
+ " from bids.layout import BIDSLayout\n",
+ " layout = BIDSLayout(data_dir)\n",
+ " print(\"\\n\\nanalyzing \" + path + \"\\nTR: \"+ \n",
+ " str(layout.get_metadata(path)[\"RepetitionTime\"]) +\n",
+ " \"\\nET: \"+ str(layout.get_metadata(path)[\"EchoTime\"])+ \"\\n\\n\")\n",
+ " \n",
+ "ex3_analyzeBOLD2 = MapNode(Function(function=printMetadata_et, \n",
+ " input_names=[\"path\", \"data_dir\"],\n",
+ " output_names=[]), \n",
+ " name=\"ex3\", iterfield=\"path\")\n",
+ "ex3_analyzeBOLD2.inputs.data_dir = \"/data/ds000114/\"\n",
+ "\n",
+ "# and create a new workflow\n",
+ "ex3_wf = Workflow(name=\"ex3\")\n",
+ "ex3_wf.connect(ex3_BIDSDataGrabber, \"bolds\", ex3_analyzeBOLD2, \"path\")\n",
+ "ex3_wf.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/basic_data_output.ipynb b/notebooks/basic_data_output.ipynb
index 7bd7b07..959cccc 100644
--- a/notebooks/basic_data_output.ipynb
+++ b/notebooks/basic_data_output.ipynb
@@ -2,14 +2,11 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Data Output\n",
"\n",
- "Similarly important to data input is data output. Using a data output module allows you to restructure and rename computed output and to spatial differentiate relevant output files from the temporary computed intermediate files in the working directory. Nipype provides the following modules to handle data stream output:\n",
+ "Similarly important to data input is data output. Using a data output module allows you to restructure and rename computed output and to spatially differentiate relevant output files from the temporary computed intermediate files in the working directory. Nipype provides the following modules to handle data stream output:\n",
"\n",
" DataSink\n",
" JSONFileSink\n",
@@ -22,52 +19,178 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "source": [
+ "# DataSink\n",
+ "\n",
+ "A workflow working directory is like a **cache**. It contains not only the outputs of various processing stages, it also contains various extraneous information such as execution reports, hashfiles determining the input state of processes. All of this is embedded in a hierarchical structure that reflects the iterables that have been used in the workflow. This makes navigating the working directory a not so pleasant experience. And typically the user is interested in preserving only a small percentage of these outputs. The [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) interface can be used to extract components from this `cache` and store it at a different location. For XNAT-based storage, see [XNATSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#nipype-interfaces-io-xnatsink).\n",
+ "\n",
+ "
\n",
+ "Unlike other interfaces, a [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink)'s inputs are defined and created by using the workflow connect statement. Currently disconnecting an input from the [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) does not remove that connection port.\n",
+ "
\n",
+ "\n",
+ "Let's assume we have the following workflow.\n",
+ "\n",
+ "\n",
+ "\n",
+ "The following code segment defines the [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) node and sets the `base_directory` in which all outputs will be stored. The `container` input creates a subdirectory within the `base_directory`. If you are iterating a workflow over subjects, it may be useful to save it within a folder with the subject id.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "datasink = pe.Node(nio.DataSink(), name='sinker')\n",
+ "datasink.inputs.base_directory = '/path/to/output'\n",
+ "workflow.connect(inputnode, 'subject_id', datasink, 'container')\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If we wanted to save the realigned files and the realignment parameters to the same place the most intuitive option would be:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "workflow.connect(realigner, 'realigned_files', datasink, 'motion')\n",
+ "workflow.connect(realigner, 'realignment_parameters', datasink, 'motion')\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "However, this will not work as only one connection is allowed per input port. So we need to create a second port. We can store the files in a separate folder."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "workflow.connect(realigner, 'realigned_files', datasink, 'motion')\n",
+ "workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.par')\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The period (.) indicates that a subfolder called par should be created. But if we wanted to store it in the same folder as the realigned files, we would use the `.@` syntax. The @ tells the [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) interface to not create the subfolder. This will allow us to create different named input ports for [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) and allow the user to store the files in the same folder."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```python\n",
+ "workflow.connect(realigner, 'realigned_files', datasink, 'motion')\n",
+ "workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.@par')\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The syntax for the input port of [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) takes the following form:\n",
+ "\n",
+ " string[[.[@]]string[[.[@]]string] ...]\n",
+ " where parts between paired [] are optional."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
- "# Preparation\n",
+ "## MapNode\n",
+ "\n",
+ "In order to use [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) inside a MapNode, its inputs have to be defined inside the constructor using the `infields` keyword arg."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Parameterization\n",
+ "\n",
+ "As discussed in [Iterables](basic_iteration.ipynb), one can run a workflow iterating over various inputs using the iterables attribute of nodes. This means that a given workflow can have multiple outputs depending on how many iterables are there. Iterables create working directory subfolders such as `_iterable_name_value`. The `parameterization` input parameter controls whether the data stored using [DataSink](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.interfaces.io.html#datasink) is in a folder structure that contains this iterable information or not. It is generally recommended to set this to `True` when using multiple nested iterables."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Substitutions\n",
+ "\n",
+ "The ``substitutions`` and ``regexp_substitutions`` inputs allow users to modify the output destination path and name of a file. Substitutions are a list of 2-tuples and are carried out in the order in which they were entered. Assuming that the output path of a file is:\n",
+ "\n",
+ " /root/container/_variable_1/file_subject_realigned.nii\n",
+ "\n",
+ "we can use substitutions to clean up the output path.\n",
+ "\n",
+ "```python\n",
+ "datasink.inputs.substitutions = [('_variable', 'variable'),\n",
+ " ('file_subject_', '')]\n",
+ "```\n",
+ "\n",
+ "This will rewrite the file as:\n",
+ "\n",
+ " /root/container/variable_1/realigned.nii\n",
+ "\n",
+ "\n",
+ "
\n",
+ "**Note**: In order to figure out which substitutions are needed it is often useful to run the workflow on a limited set of iterables and then determine the substitutions.\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Realistic Example\n",
+ "\n",
+ "## Preparation\n",
"\n",
"Before we can use `DataSink` we first need to run a workflow. For this purpose, let's create a very short preprocessing workflow that realigns and smooths one functional image of one subject."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "First, let's create a `SelectFiles` node to . For an explanation about this step, see the [Data Input](basic_data_input.ipynb) tutorial."
+ "First, let's create a `SelectFiles` node. For an explanation of this step, see the [Data Input](basic_data_input.ipynb) tutorial."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import SelectFiles, Node\n",
"\n",
"# Create SelectFiles node\n",
- "templates={'func': '{subject_id}/func/{subject_id}_task-flanker_run-1_bold.nii.gz'}\n",
+ "templates={'func': '{subject}/{session}/func/{subject}_{session}_task-fingerfootlips_bold.nii.gz'}\n",
"sf = Node(SelectFiles(templates),\n",
" name='selectfiles')\n",
- "sf.inputs.base_directory = '/data/ds102'\n",
- "sf.inputs.subject_id = 'sub-01'"
+ "sf.inputs.base_directory = '/data/ds000114'\n",
+ "sf.inputs.subject = 'sub-01'\n",
+ "sf.inputs.session = 'ses-test'"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Second, let's create the motion correction and smoothing node. For an explanation about this step, see the [Nodes](basic_nodes.ipynb) and [Interfaces](basic_interfaces.ipynb) tutorial."
]
@@ -75,11 +198,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype.interfaces.fsl import MCFLIRT, IsotropicSmooth\n",
@@ -96,10 +215,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Third, let's create the workflow that will contain those three nodes. For an explanation about this step, see the [Workflow](basic_workflow.ipynb) tutorial."
]
@@ -107,11 +223,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import Workflow\n",
@@ -119,7 +231,7 @@
"\n",
"# Create a preprocessing workflow\n",
"wf = Workflow(name=\"preprocWF\")\n",
- "wf.base_dir = 'working_dir'\n",
+ "wf.base_dir = '/output/working_dir'\n",
"\n",
"# Connect the three nodes to each other\n",
"wf.connect([(sf, mcflirt, [(\"func\", \"in_file\")]),\n",
@@ -128,10 +240,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Now that everything is set up, let's run the preprocessing workflow."
]
@@ -139,11 +248,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"wf.run()"
@@ -151,78 +256,42 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "source": [
+ "After the execution of the workflow we have all the data hidden in the working directory `'working_dir'`. Let's take a closer look at the content of this folder:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
- "After the execution of the workflow we have all the data hidden in the working directory `'working_dir'`. Let's take a closer look at the content of this folder:\n",
- "\n",
- " working_dir\n",
- " └── preprocWF\n",
- " ├── d3.js\n",
- " ├── graph1.json\n",
- " ├── graph.json\n",
- " ├── index.html\n",
- " ├── mcflirt\n",
- " │ ├── _0x6148b774a1205e01fbc692453a68ee85.json\n",
- " │ ├── command.txt\n",
- " │ ├── _inputs.pklz\n",
- " │ ├── _node.pklz\n",
- " │ ├── _report\n",
- " │ │ └── report.rst\n",
- " │ ├── result_mcflirt.pklz\n",
- " │ └── sub-01_task-flanker_run-1_bold_mcf.nii.gz\n",
- " ├── selectfiles\n",
- " │ ├── _0x6a583c5c1c472209ca26f29f15c0bd38.json\n",
- " │ ├── _inputs.pklz\n",
- " │ ├── _node.pklz\n",
- " │ ├── _report\n",
- " │ │ └── report.rst\n",
- " │ └── result_selectfiles.pklz\n",
- " └── smooth\n",
- " ├── _0x553087282cd3b58a5c06b5f9699308bf.json\n",
- " ├── command.txt\n",
- " ├── _inputs.pklz\n",
- " ├── _node.pklz\n",
- " ├── _report\n",
- " │ └── report.rst\n",
- " ├── result_smooth.pklz\n",
- " └── sub-01_task-flanker_run-1_bold_mcf_smooth.nii.gz"
+ "! tree /output/working_dir/preprocWF"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "As we can see, there is way too much content that we might not really care about. To relocate and rename all the files that are relevant for you, you can use `DataSink`?"
+ "As we can see, there is way too much content that we might not really care about. To relocate and rename all the files that are relevant to you, you can use `DataSink`."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "# DataSink\n",
+ "## How to use `DataSink`\n",
"\n",
"`DataSink` is Nipype's standard output module to restructure your output files. It allows you to relocate and rename files that you deem relevant.\n",
"\n",
- "Based on the preprocessing pipeline above, let's say we want to keep the smoothed functional images as well as the motion correction paramters. To do this, we first need to create the `DataSink` object."
+ "Based on the preprocessing pipeline above, let's say we want to keep the smoothed functional images as well as the motion correction parameters. To do this, we first need to create the `DataSink` object."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype.interfaces.io import DataSink\n",
@@ -231,7 +300,7 @@
"sinker = Node(DataSink(), name='sinker')\n",
"\n",
"# Name of the output folder\n",
- "sinker.inputs.base_directory = 'output'\n",
+ "sinker.inputs.base_directory = '/output/working_dir/preprocWF_output'\n",
"\n",
"# Connect DataSink with the relevant nodes\n",
"wf.connect([(smooth, sinker, [('out_file', 'in_file')]),\n",
@@ -243,28 +312,23 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Let's take a look at the `output` folder:\n",
- "\n",
- " output\n",
- " ├── in_file\n",
- " │ └── sub-01_task-flanker_run-1_bold_mcf_smooth.nii.gz\n",
- " ├── mean_img\n",
- " │ └── sub-01_task-flanker_run-1_bold_mcf.nii.gz_mean_reg.nii.gz\n",
- " └── par_file\n",
- " └── sub-01_task-flanker_run-1_bold_mcf.nii.gz.par"
+ "Let's take a look at the `output` folder:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! tree /output/working_dir/preprocWF_output"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"This looks nice. It is what we asked it to do. But having a specific output folder for each individual output file might be suboptimal. So let's change the code above to save the output in one folder, which we will call `'preproc'`.\n",
"\n",
@@ -274,11 +338,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"wf.connect([(smooth, sinker, [('out_file', 'preproc.@in_file')]),\n",
@@ -290,44 +350,38 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Let's take a look at the new output folder structure:\n",
- "\n",
- " output\n",
- " └── preproc\n",
- " ├── sub-01_task-flanker_run-1_bold_mcf.nii.gz_mean_reg.nii.gz\n",
- " ├── sub-01_task-flanker_run-1_bold_mcf.nii.gz.par\n",
- " └── sub-01_task-flanker_run-1_bold_mcf_smooth.nii.gz"
+ "Let's take a look at the new output folder structure:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! tree /output/working_dir/preprocWF_output"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "This is already much better. But what if you want to rename the output files to represent something a bit readable. For this `DataSink` has the `substitution` input field.\n",
+ "This is already much better. But what if you want to rename the output files to represent something a bit more readable. For this `DataSink` has the `substitution` input field.\n",
"\n",
- "For example, let's assume we want to get rid of the string `'task-flanker'` and `'bold_mcf'` and that we want to rename the mean file, as well as adapt the file ending of the motion parameter file:"
+ "For example, let's assume we want to get rid of the string `'task-fingerfootlips'` and `'bold_mcf'` and that we want to rename the mean file, as well as adapt the file ending of the motion parameter file:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Define substitution strings\n",
- "substitutions = [('_task-flanker', ''),\n",
+ "substitutions = [('_task-fingerfootlips', ''),\n",
+ " (\"_ses-test\", \"\"),\n",
" ('_bold_mcf', ''),\n",
" ('.nii.gz_mean_reg', '_mean'),\n",
" ('.nii.gz.par', '.par')]\n",
@@ -341,20 +395,132 @@
},
{
"cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, let's take a final look at the output folder:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! tree /output/working_dir/preprocWF_output"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Cool, much clearer filenames!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise 1\n",
+ "Create a simple workflow for skullstriping with FSL, the first node should use `BET` interface and the second node will be a ``DataSink``. Test two methods of connecting the nodes and check the content of the output directory."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
- "deletable": true,
- "editable": true
+ "solution2": "hidden",
+ "solution2_first": true
},
+ "outputs": [],
"source": [
- "Now, let's take a final look at the output folder:\n",
+ "# write your solution here"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "from nipype import Node, Workflow\n",
+ "from nipype.interfaces.io import DataSink\n",
+ "from nipype.interfaces.fsl import BET\n",
"\n",
- " output\n",
- " └── preproc\n",
- " ├── sub-01_run-1_mean.nii.gz\n",
- " ├── sub-01_run-1.par\n",
- " └── sub-01_run-1_smooth.nii.gz\n",
+ "# Skullstrip process\n",
+ "ex1_skullstrip = Node(BET(mask=True), name=\"ex1_skullstrip\")\n",
+ "ex1_skullstrip.inputs.in_file = \"/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# Create DataSink node\n",
+ "ex1_sinker = Node(DataSink(), name='ex1_sinker')\n",
+ "ex1_sinker.inputs.base_directory = '/output/working_dir/ex1_output'\n",
"\n",
- "Cool, much more clearly!"
+ "# and a workflow\n",
+ "ex1_wf = Workflow(name=\"ex1\", base_dir = '/output/working_dir')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# let's try the first method of connecting the BET node to the DataSink node\n",
+ "ex1_wf.connect([(ex1_skullstrip, ex1_sinker, [('mask_file', 'mask_file'),\n",
+ " ('out_file', 'out_file')]),\n",
+ " ])\n",
+ "ex1_wf.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# and we can check our sinker directory\n",
+ "! tree /output/working_dir/ex1_output"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# now we can try the other method of connecting the node to DataSink\n",
+ "ex1_wf.connect([(ex1_skullstrip, ex1_sinker, [('mask_file', 'bet.@mask_file'),\n",
+ " ('out_file', 'bet.@out_file')]),\n",
+ " ])\n",
+ "ex1_wf.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "solution2": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# and check the content of the output directory (you should see a new `bet` subdirectory with both files)\n",
+ "! tree /output/working_dir/ex1_output"
]
}
],
@@ -363,21 +529,21 @@
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
}
},
"nbformat": 4,
- "nbformat_minor": 0
+ "nbformat_minor": 2
}
diff --git a/notebooks/basic_debug.ipynb b/notebooks/basic_debug.ipynb
new file mode 100644
index 0000000..4db8088
--- /dev/null
+++ b/notebooks/basic_debug.ipynb
@@ -0,0 +1,98 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Debugging Nipype Workflows\n",
+ "\n",
+ "Throughout [Nipype](http://nipy.org/nipype/) we try to provide meaningful error messages. If you run into an error that does not have a meaningful error message please let us know so that we can improve error reporting.\n",
+ "\n",
+ "Here are some notes that may help to debug workflows or understanding performance issues.\n",
+ "\n",
+ "1. Always run your workflow first on a single iterable (e.g. subject) and\n",
+ " gradually increase the execution distribution complexity (Linear->MultiProc-> \n",
+ " SGE).\n",
+ "\n",
+ "- Use the debug config mode. This can be done by setting:\n",
+ "\n",
+ " ```python\n",
+ " from nipype import config\n",
+ " config.enable_debug_mode()\n",
+ " ```\n",
+ "\n",
+ " as the first import of your nipype script.\n",
+ " \n",
+ " **Note:**\n",
+ " - Turning on debug will rerun your workflows and will rerun them after debugging is turned off.\n",
+ " - Turning on debug mode will also override log levels specified elsewhere, such as in the nipype configuration. \n",
+ " - `workflow`, `interface` and `utils` loggers will all be set to level `DEBUG`.\n",
+ " \n",
+ "\n",
+ "- There are several configuration options that can help with debugging.\n",
+ " See [Configuration File](config_file.ipynb) for more details:\n",
+ "\n",
+ " keep_inputs\n",
+ " remove_unnecessary_outputs\n",
+ " stop_on_first_crash\n",
+ " stop_on_first_rerun\n",
+ "\n",
+ "- When running in distributed mode on cluster engines, it is possible for a\n",
+ " node to fail without generating a crash file in the crashdump directory. In\n",
+ " such cases, it will store a crash file in the `batch` directory.\n",
+ "\n",
+ "- All Nipype crashfiles can be inspected with the `nipypecli crash`\n",
+ " utility.\n",
+ "\n",
+ "- The `nipypecli search` command allows you to search for regular expressions\n",
+ " in the tracebacks of the Nipype crashfiles within a log folder.\n",
+ "\n",
+ "- Nipype determines the hash of the input state of a node. If any input\n",
+ " contains strings that represent files on the system path, the hash evaluation\n",
+ " mechanism will determine the timestamp or content hash of each of those\n",
+ " files. Thus any node with an input containing huge dictionaries (or lists) of\n",
+ " file names can cause serious performance penalties.\n",
+ "\n",
+ "- For HUGE data processing, `stop_on_first_crash: False`, is needed to get the\n",
+ " bulk of processing done, and then `stop_on_first_crash: True`, is needed for\n",
+ " debugging and finding failing cases. Setting `stop_on_first_crash: False`\n",
+ " is a reasonable option when you would expect 90% of the data to execute\n",
+ " properly.\n",
+ "\n",
+ "- Sometimes nipype will hang as if nothing is going on and if you hit `Ctrl+C`\n",
+ " you will get a `ConcurrentLogHandler` error. Simply remove the pypeline.lock\n",
+ " file in your home directory and continue.\n",
+ "\n",
+ "- On many clusters with shared NFS mounts synchronization of files across\n",
+ " clusters may not happen before the typical NFS cache timeouts. When using\n",
+ " PBS/LSF/SGE/Condor plugins in such cases the workflow may crash because it\n",
+ " cannot retrieve the node result. Setting the `job_finished_timeout` can help:\n",
+ "\n",
+ " ```python\n",
+ " workflow.config['execution']['job_finished_timeout'] = 65\n",
+ " ```"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/basic_error_and_crashes.ipynb b/notebooks/basic_error_and_crashes.ipynb
index a1f8713..04da46f 100644
--- a/notebooks/basic_error_and_crashes.ipynb
+++ b/notebooks/basic_error_and_crashes.ipynb
@@ -2,10 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Errors and Crashes\n",
"\n",
@@ -13,35 +10,41 @@
"\n",
"For example:\n",
"\n",
- "1. You specified file names or paths that **don't exist**.\n",
+ "1. You specified filenames or paths that **don't exist**.\n",
"2. You try to give an interface a ``string`` as input, where a ``float`` value is expected or you try to specify a parameter that doesn't exist. Be sure to use the right **``input type``** and input name.\n",
- "3. You wanted to give a list of inputs ``[func1.nii, func2.nii, func3.nii]`` to a node that only expects one input file . **``MapNode``** is your solution.\n",
+ "3. You wanted to give a list of inputs ``[func1.nii, func2.nii, func3.nii]`` to a node that only expects one input file. **``MapNode``** is your solution.\n",
"4. You wanted to run SPM's motion correction on compressed NIfTI files, i.e. ``*.nii.gz``? **SPM** cannot handle that. Nipype's **``Gunzip``** interface can help.\n",
- "5. You haven't set up all necessary **environment variables**. Nipype for example doesn't find your MATLAB or SPM version.\n",
+ "5. You haven't set up all necessary **environment variables**. Nipype, for example, doesn't find your MATLAB or SPM version.\n",
"6. You **forget** to specify a **mandatory input** field.\n",
"7. You try to **connect** a node to an input field that another node is **already connected** to.\n",
"\n",
- "**Important** note about ``crashfiles``. ``Crashfiles`` are only created when you run a workflow, not during building a workflow. If you have a typo in a folder path, because they didn't happen during runtime, but still during workflow building."
+ "**Important** note about ``crashfiles``. ``Crashfiles`` are only created when you run a workflow, not during building a workflow. If you have a typo in a folder path, because they didn't happen during runtime, but still during workflow building.\n",
+ "\n",
+ "We will start by removing old ``crashfiles``:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%bash\n",
+ "rm $(pwd)/crash-*"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## Example Crash 1: File doesn't exist\n",
"\n",
- "When creating a new workflow, very often the initial errors are ``IOError``, meaning Nipype cannot find the right files. For example, let's try to run a workflow on ``sub-06``, that in our dataset doesn't exist."
+ "When creating a new workflow, very often the initial errors are ``OSError``, meaning Nipype cannot find the right files. For example, let's try to run a workflow on ``sub-11``, that in our dataset doesn't exist."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"### Creating the crash"
]
@@ -49,81 +52,19 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-22:04:38,683 workflow INFO:\n",
- "\t ['check', 'execution', 'logging']\n",
- "170301-22:04:38,688 workflow INFO:\n",
- "\t Running serially.\n",
- "170301-22:04:38,689 workflow INFO:\n",
- "\t Executing node selectfiles in dir: /home/jovyan/work/notebooks/working_dir/preprocWF/selectfiles\n",
- "170301-22:04:38,700 workflow ERROR:\n",
- "\t ['Node selectfiles failed to run on host 74a339115575.']\n",
- "170301-22:04:38,704 workflow INFO:\n",
- "\t Saving crash info to /home/jovyan/work/notebooks/crash-20170301-220438-jovyan-selectfiles-63aef326-1156-4573-8c1c-d89cc999b0fe.pklz\n",
- "170301-22:04:38,705 workflow INFO:\n",
- "\t Traceback (most recent call last):\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/plugins/linear.py\", line 39, in run\n",
- " node.run(updatehash=updatehash)\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 394, in run\n",
- " self._run_interface()\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 504, in _run_interface\n",
- " self._result = self._run_command(execute)\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 630, in _run_command\n",
- " result = self._interface.run()\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.py\", line 1044, in run\n",
- " outputs = self.aggregate_outputs(runtime)\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.py\", line 1115, in aggregate_outputs\n",
- " predicted_outputs = self._list_outputs()\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/io.py\", line 1319, in _list_outputs\n",
- " raise IOError(msg)\n",
- "IOError: No files were found matching func template: /data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz\n",
- "Interface SelectFiles failed to run. \n",
- "\n",
- "170301-22:04:38,718 workflow INFO:\n",
- "\t ***********************************\n",
- "170301-22:04:38,720 workflow ERROR:\n",
- "\t could not run node: preprocWF.selectfiles\n",
- "170301-22:04:38,721 workflow INFO:\n",
- "\t crashfile: /home/jovyan/work/notebooks/crash-20170301-220438-jovyan-selectfiles-63aef326-1156-4573-8c1c-d89cc999b0fe.pklz\n",
- "170301-22:04:38,722 workflow INFO:\n",
- "\t ***********************************\n"
- ]
- },
- {
- "ename": "RuntimeError",
- "evalue": "Workflow did not execute cleanly. Check log for details",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;31m# Let's the workflow\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0mwf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/workflows.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, plugin, plugin_args, updatehash)\u001b[0m\n\u001b[1;32m 595\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstr2bool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'execution'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'create_report'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_write_report_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexecgraph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 597\u001b[0;31m \u001b[0mrunner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexecgraph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mupdatehash\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mupdatehash\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 598\u001b[0m \u001b[0mdatestr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutcnow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrftime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'%Y%m%dT%H%M%S'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 599\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstr2bool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'execution'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'write_provenance'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/plugins/linear.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, graph, config, updatehash)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_status_callback\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_status_callback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'exception'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 57\u001b[0;31m \u001b[0mreport_nodes_not_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnotrun\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/plugins/base.pyc\u001b[0m in \u001b[0;36mreport_nodes_not_run\u001b[0;34m(notrun)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_id\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"***********************************\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m raise RuntimeError(('Workflow did not execute cleanly. '\n\u001b[0m\u001b[1;32m 96\u001b[0m 'Check log for details'))\n\u001b[1;32m 97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mRuntimeError\u001b[0m: Workflow did not execute cleanly. Check log for details"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from nipype import SelectFiles, Node, Workflow\n",
"from os.path import abspath as opap\n",
"from nipype.interfaces.fsl import MCFLIRT, IsotropicSmooth\n",
"\n",
"# Create SelectFiles node\n",
- "templates={'func': '{subject_id}/func/{subject_id}_task-flanker_run-1_bold.nii.gz'}\n",
+ "templates={'func': '{subject_id}/ses-test/func/{subject_id}_ses-test_task-fingerfootlips_bold.nii.gz'}\n",
"sf = Node(SelectFiles(templates),\n",
" name='selectfiles')\n",
- "sf.inputs.base_directory = opap('/data/ds102')\n",
- "sf.inputs.subject_id = 'sub-06'\n",
+ "sf.inputs.base_directory = opap('/data/ds000114')\n",
+ "sf.inputs.subject_id = 'sub-11'\n",
"\n",
"# Create Motion Correction Node\n",
"mcflirt = Node(MCFLIRT(mean_vol=True,\n",
@@ -142,817 +83,364 @@
"wf.connect([(sf, mcflirt, [(\"func\", \"in_file\")]),\n",
" (mcflirt, smooth, [(\"out_file\", \"in_file\")])])\n",
"\n",
- "# Let's the workflow\n",
- "wf.run()"
+ "# Let's run the workflow\n",
+ "try:\n",
+ " wf.run()\n",
+ "except(RuntimeError) as err:\n",
+ " print(\"RuntimeError:\", err)\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"### Investigating the crash\n",
"\n",
"Hidden, in the log file you can find the relevant information:\n",
"\n",
- " IOError: No files were found matching func template: /data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz\n",
+ " OSError: No files were found matching func template: /data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz\n",
" Interface SelectFiles failed to run. \n",
"\n",
- " 170301-13:04:17,458 workflow INFO:\n",
+ " 170904-05:48:13,727 workflow INFO:\n",
" ***********************************\n",
- " 170301-13:04:17,460 workflow ERROR:\n",
+ " 170904-05:48:13,728 workflow ERROR:\n",
" could not run node: preprocWF.selectfiles\n",
- " 170301-13:04:17,461 workflow INFO:\n",
- " crashfile: /home/jovyan/work/notebooks/crash-20170301-130417-mnotter-selectfiles-45206d1b-73d9-4e03-a91e-437335577b8d.pklz\n",
- " 170301-13:04:17,462 workflow INFO:\n",
+ " 170904-05:48:13,730 workflow INFO:\n",
+ " crashfile: /repos/nipype_tutorial/notebooks/crash-20170904-054813-neuro-selectfiles-15f5400a-452e-4e0c-ae99-fc0d4b9a44f3.pklz\n",
+ " 170904-05:48:13,731 workflow INFO:\n",
+ " ***********************************\n",
" \n",
- "This part tells you that it's an **``IOError``** and that it looked for the file **``/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz``**.\n",
+ "This part tells you that it's an **``OSError``** and that it looked for the file **``/data/ds000114/sub-11/ses-test/func/sub-11_ses-test_task-fingerfootlips_bold.nii.gz``**.\n",
"\n",
- "After the line ``***********************************``, you can additional see, that it's the node **``preprocWF.selectfiles``** that crasehd and that you can find a **``crashfile``** to this crash under **``/home/jovyan/work/notebooks/``**."
+ "After the line ``***********************************``, you can additional see, that it's the node **``preprocWF.selectfiles``** that crasehd and that you can find a **``crashfile``** to this crash under **``/opt/tutorial/notebooks``**."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"### Reading the ``crashfile``\n",
"\n",
- "To get the full picture of the error, we can read the content of the ``crashfile`` with the ``bash`` command ``nipype_display_crash``. We will get the same information as above, but additionally, we can also see directly the input values of the Node that crashed."
+ "To get the full picture of the error, we can read the content of the ``crashfile`` (that has `pklz` format by default) with the ``bash`` command ``nipypecli crash``. We will get the same information as above, but additionally, we can also see directly the input values of the Node that crashed."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r\n",
- "\r\n",
- "File: /home/jovyan/work/notebooks/crash-20170301-220438-jovyan-selectfiles-63aef326-1156-4573-8c1c-d89cc999b0fe.pklz\r\n",
- "Node: preprocWF.selectfiles\r\n",
- "Working directory: /home/jovyan/work/notebooks/working_dir/preprocWF/selectfiles\r\n",
- "\r\n",
- "\r\n",
- "Node inputs:\r\n",
- "\r\n",
- "base_directory = /data/ds102\r\n",
- "force_lists = False\r\n",
- "ignore_exception = False\r\n",
- "raise_on_empty = True\r\n",
- "sort_filelist = True\r\n",
- "subject_id = sub-06\r\n",
- "\r\n",
- "\r\n",
- "\r\n",
- "Traceback: \r\n",
- "Traceback (most recent call last):\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/plugins/linear.py\", line 39, in run\r\n",
- " node.run(updatehash=updatehash)\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 394, in run\r\n",
- " self._run_interface()\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 504, in _run_interface\r\n",
- " self._result = self._run_command(execute)\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.py\", line 630, in _run_command\r\n",
- " result = self._interface.run()\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.py\", line 1044, in run\r\n",
- " outputs = self.aggregate_outputs(runtime)\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.py\", line 1115, in aggregate_outputs\r\n",
- " predicted_outputs = self._list_outputs()\r\n",
- " File \"/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/io.py\", line 1319, in _list_outputs\r\n",
- " raise IOError(msg)\r\n",
- "IOError: No files were found matching func template: /data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz\r\n",
- "Interface SelectFiles failed to run. \r\n",
- "\r\n",
- "\r\n",
- "\r\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "!nipype_display_crash /home/jovyan/work/notebooks/crash-*selectfiles-*.pklz"
+ "!nipypecli crash $(pwd)/crash-*selectfiles-*.pklz"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "## Example Crash 2: Wrong Input Type or Typo in the parameter\n",
- "\n",
- "Very simple, if an interface expects a ``float`` as input, but you give it a ``string``, it will crash:"
+ "`nipypecli` allows you to rerun the crashed node using an additional option `-r`."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "TraitError",
- "evalue": "The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' was specified.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTraitError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnipype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfsl\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mIsotropicSmooth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msmooth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mIsotropicSmooth\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfwhm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'4'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/fsl/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 162\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFSLCommand\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 163\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_trait_change\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output_update\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'output_type'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, command, **inputs)\u001b[0m\n\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcommand\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1565\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCommandLine\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1566\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_environ\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1567\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_cmd'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 763\u001b[0m raise Exception('No input_spec in class: %s' %\n\u001b[1;32m 764\u001b[0m self.__class__.__name__)\n\u001b[0;32m--> 765\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_spec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 766\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimated_memory_gb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 767\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_threads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;31m# therefore these args were being ignored.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 361\u001b[0m \u001b[0;31m# super(TraitedSpec, self).__init__(*args, **kwargs)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseTraitedSpec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0mtraits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_exception_handler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreraise_exceptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0mundefined_traits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_handlers.pyc\u001b[0m in \u001b[0;36merror\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 170\u001b[0m \"\"\"\n\u001b[1;32m 171\u001b[0m raise TraitError( object, name, self.full_info( object, name, value ),\n\u001b[0;32m--> 172\u001b[0;31m value )\n\u001b[0m\u001b[1;32m 173\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfull_info\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTraitError\u001b[0m: The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' was specified."
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "from nipype.interfaces.fsl import IsotropicSmooth\n",
- "smooth = IsotropicSmooth(fwhm='4')"
+ "!nipypecli crash -r $(pwd)/crash-*selectfiles-*.pklz"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "This will give you the error: **``TraitError``**``: The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' was specified.``\n",
+ "When running in the terminal you can also try options that **enable the Python or Ipython debugger when re-executing: `-d` or `-i`**.\n",
"\n",
- "To make sure that you are using the right input types, just check the ``help`` section of a given interface. There you can see **``fwhm: (a float)``**."
+ "**If you don't want to have an option to rerun the crashed workflow, you can change the format of crashfile to a text format.** You can either change this in a configuration file (you can read more [here](basic_execution_configuration.ipynb)), or you can directly change the `wf.config` dictionary before running the workflow."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Wraps command **fslmaths**\n",
- "\n",
- "Use fslmaths to spatially smooth an image with a gaussian kernel.\n",
- "\n",
- "Inputs::\n",
- "\n",
- "\t[Mandatory]\n",
- "\tfwhm: (a float)\n",
- "\t\tfwhm of smoothing kernel [mm]\n",
- "\t\tflag: -s %.5f, position: 4\n",
- "\t\tmutually_exclusive: sigma\n",
- "\tin_file: (an existing file name)\n",
- "\t\timage to operate on\n",
- "\t\tflag: %s, position: 2\n",
- "\tsigma: (a float)\n",
- "\t\tsigma of smoothing kernel [mm]\n",
- "\t\tflag: -s %.5f, position: 4\n",
- "\t\tmutually_exclusive: fwhm\n",
- "\n",
- "\t[Optional]\n",
- "\targs: (a string)\n",
- "\t\tAdditional parameters to the command\n",
- "\t\tflag: %s\n",
- "\tenviron: (a dictionary with keys which are a value of type 'str' and\n",
- "\t\t with values which are a value of type 'str', nipype default value:\n",
- "\t\t {})\n",
- "\t\tEnvironment variables\n",
- "\tignore_exception: (a boolean, nipype default value: False)\n",
- "\t\tPrint an error message instead of throwing an exception in case the\n",
- "\t\tinterface fails to run\n",
- "\tinternal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'\n",
- "\t\t or 'input')\n",
- "\t\tdatatype to use for calculations (default is float)\n",
- "\t\tflag: -dt %s, position: 1\n",
- "\tnan2zeros: (a boolean)\n",
- "\t\tchange NaNs to zeros before doing anything\n",
- "\t\tflag: -nan, position: 3\n",
- "\tout_file: (a file name)\n",
- "\t\timage to write\n",
- "\t\tflag: %s, position: -2\n",
- "\toutput_datatype: ('float' or 'char' or 'int' or 'short' or 'double'\n",
- "\t\t or 'input')\n",
- "\t\tdatatype to use for output (default uses input type)\n",
- "\t\tflag: -odt %s, position: -1\n",
- "\toutput_type: ('NIFTI_PAIR' or 'NIFTI_PAIR_GZ' or 'NIFTI_GZ' or\n",
- "\t\t 'NIFTI')\n",
- "\t\tFSL output type\n",
- "\tterminal_output: ('stream' or 'allatonce' or 'file' or 'none')\n",
- "\t\tControl terminal output: `stream` - displays to terminal immediately\n",
- "\t\t(default), `allatonce` - waits till command is finished to display\n",
- "\t\toutput, `file` - writes output to file, `none` - output is ignored\n",
- "\n",
- "Outputs::\n",
- "\n",
- "\tout_file: (an existing file name)\n",
- "\t\timage written after calculations\n",
- "\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "IsotropicSmooth.help()"
+ "wf.config['execution']['crashfile_format'] = 'txt'\n",
+ "try:\n",
+ " wf.run()\n",
+ "except(RuntimeError) as err:\n",
+ " print(\"RuntimeError:\", err)\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "In a similar way, you will also get an error message if the input type is correct but you have a type in the name:\n",
- "\n",
- " TraitError: The 'output_type' trait of an IsotropicSmoothInput instance must be u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or u'NIFTI', but a value of 'NIFTIiii' was specified."
+ "Now you should have a new text file with your crash report. "
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "TraitError",
- "evalue": "The 'output_type' trait of an IsotropicSmoothInput instance must be 'NIFTI_PAIR' or 'NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI', but a value of 'NIFTIiii' was specified.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTraitError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnipype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfsl\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mIsotropicSmooth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msmooth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mIsotropicSmooth\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'NIFTIiii'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/fsl/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 162\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFSLCommand\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 163\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_trait_change\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output_update\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'output_type'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, command, **inputs)\u001b[0m\n\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcommand\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1565\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCommandLine\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1566\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_environ\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1567\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_cmd'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 763\u001b[0m raise Exception('No input_spec in class: %s' %\n\u001b[1;32m 764\u001b[0m self.__class__.__name__)\n\u001b[0;32m--> 765\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_spec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 766\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimated_memory_gb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 767\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_threads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;31m# therefore these args were being ignored.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 361\u001b[0m \u001b[0;31m# super(TraitedSpec, self).__init__(*args, **kwargs)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseTraitedSpec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0mtraits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_exception_handler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreraise_exceptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0mundefined_traits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_handlers.pyc\u001b[0m in \u001b[0;36merror\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 170\u001b[0m \"\"\"\n\u001b[1;32m 171\u001b[0m raise TraitError( object, name, self.full_info( object, name, value ),\n\u001b[0;32m--> 172\u001b[0;31m value )\n\u001b[0m\u001b[1;32m 173\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfull_info\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTraitError\u001b[0m: The 'output_type' trait of an IsotropicSmoothInput instance must be 'NIFTI_PAIR' or 'NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI', but a value of 'NIFTIiii' was specified."
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "from nipype.interfaces.fsl import IsotropicSmooth\n",
- "smooth = IsotropicSmooth(output_type='NIFTIiii')"
+ "!cat $(pwd)/crash-*selectfiles-*.txt"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "## Example Crash 3: Giving an array as input where a single file is expected\n",
+ "## Example Crash 2: Wrong Input Type or Typo in the parameter\n",
"\n",
- "As you an see in the [MapNode](basic_mapnodes.ipynb) example, if you try to feed an array as an input into a field that only expects a single file, you will get a **``TraitError``**."
+ "Very simple, if an interface expects a ``float`` as input, but you give it a ``string``, it will crash:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "TraitError",
- "evalue": "The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz', '/data/ds102/sub-01/func/sub-01_task-flanker_run-2_bold.nii.gz'] was specified.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTraitError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mgunzip\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGunzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'gunzip'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mgunzip\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0min_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiles\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/traits_extension.pyc\u001b[0m in \u001b[0;36mvalidate\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0mNote\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mThe\u001b[0m \u001b[0;34m'fast validator'\u001b[0m \u001b[0mversion\u001b[0m \u001b[0mperforms\u001b[0m \u001b[0mthis\u001b[0m \u001b[0mcheck\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mC\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \"\"\"\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mvalidated_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseFile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalidated_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_types.pyc\u001b[0m in \u001b[0;36mvalidate\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 348\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 349\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 350\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 351\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_editor\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mself\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_handlers.pyc\u001b[0m in \u001b[0;36merror\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 170\u001b[0m \"\"\"\n\u001b[1;32m 171\u001b[0m raise TraitError( object, name, self.full_info( object, name, value ),\n\u001b[0;32m--> 172\u001b[0;31m value )\n\u001b[0m\u001b[1;32m 173\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfull_info\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTraitError\u001b[0m: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz', '/data/ds102/sub-01/func/sub-01_task-flanker_run-2_bold.nii.gz'] was specified."
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "from nipype.algorithms.misc import Gunzip\n",
- "from nipype.pipeline.engine import Node\n",
- "\n",
- "files = ['/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz',\n",
- " '/data/ds102/sub-01/func/sub-01_task-flanker_run-2_bold.nii.gz']\n",
- "\n",
- "gunzip = Node(Gunzip(), name='gunzip',)\n",
- "gunzip.inputs.in_file = files"
+ "from nipype.interfaces.fsl import IsotropicSmooth\n",
+ "try:\n",
+ " smooth = IsotropicSmooth(fwhm='4')\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "This can be solved by using a ``MapNode``:"
+ "This will give you the error: **``TraitError``**``: The 'fwhm' trait of an IsotropicSmoothInput instance must be a float, but a value of '4' was specified.``\n",
+ "\n",
+ "To make sure that you are using the right input types, just check the ``help`` section of a given interface. There you can see **``fwhm: (a float)``**."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "from nipype.pipeline.engine import MapNode\n",
- "gunzip = MapNode(Gunzip(), name='gunzip', iterfield=['in_file'])\n",
- "gunzip.inputs.in_file = files"
+ "IsotropicSmooth.help()"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Now, make sure that you specify files that actually exist, otherwise you can the same problem as in crash example 1, but this time labeled as ``TraitError``:\n",
+ "In a similar way, you will also get an error message if the input type is correct but you have a type in the name:\n",
"\n",
- " TraitError: Each element of the 'in_file' trait of a DynamicTraitedSpec instance must be an existing file name, but a value of '/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz' was specified."
+ " TraitError: The 'output_type' trait of an IsotropicSmoothInput instance must be u'NIFTI_PAIR' or u'NIFTI_PAIR_GZ' or u'NIFTI_GZ' or u'NIFTI', but a value of 'NIFTIiii' was specified."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "TraitError",
- "evalue": "Each element of the 'in_file' trait of a DynamicTraitedSpec instance must be an existing file name, but a value of '/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz' was specified.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTraitError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m files = ['/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz',\n\u001b[1;32m 2\u001b[0m '/data/ds102/sub-06/func/sub-06_task-flanker_run-2_bold.nii.gz']\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mgunzip\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0min_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfiles\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36mvalidate\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 1974\u001b[0m isinstance(value[0], list)):\n\u001b[1;32m 1975\u001b[0m \u001b[0mnewvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1976\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mMultiPath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1977\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1978\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_types.pyc\u001b[0m in \u001b[0;36mvalidate\u001b[0;34m(self, object, name, value)\u001b[0m\n\u001b[1;32m 2335\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2336\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2337\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mTraitListObject\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2338\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2339\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/traits/trait_handlers.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, trait, object, name, value)\u001b[0m\n\u001b[1;32m 2311\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTraitError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexcp\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2312\u001b[0m \u001b[0mexcp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_prefix\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0;34m'Each element of the'\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2313\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mexcp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2314\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2315\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlen_error\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m)\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTraitError\u001b[0m: Each element of the 'in_file' trait of a DynamicTraitedSpec instance must be an existing file name, but a value of '/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz' was specified."
- ]
- }
- ],
- "source": [
- "files = ['/data/ds102/sub-06/func/sub-06_task-flanker_run-1_bold.nii.gz',\n",
- " '/data/ds102/sub-06/func/sub-06_task-flanker_run-2_bold.nii.gz']\n",
- "gunzip.inputs.in_file = files"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "outputs": [],
"source": [
- "**By the way, not that those crashes don't create a ``crashfile``, because they didn't happen during runtime, but still during workflow building.**"
+ "from nipype.interfaces.fsl import IsotropicSmooth\n",
+ "try:\n",
+ " smooth = IsotropicSmooth(output_type='NIFTIiii')\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "## Example Crash 4: SPM doesn't like ``*.nii.gz`` files\n",
- "\n",
- "SPM12 cannot handle compressed NIfTI files (``*nii.gz``). If you try to run the node nonetheless, it can give you different kind of problems:\n",
- "\n",
- "### SPM Problem 1 with ``*.nii.gz`` files\n",
+ "## Example Crash 3: Giving an array as input where a single file is expected\n",
"\n",
- "SPM12 has a problem with handling ``*.nii.gz`` files. For it a compressed functional image has no temporal dimension and therefore seems to be just a 3D file. So if we try to run the ``Realign`` interface on a compressed file, we will get a weired **``UnicodeEncodeError``** error."
+ "As you can see in the [MapNode](basic_mapnodes.ipynb) example, if you try to feed an array as an input into a field that only expects a single file, you will get a **``TraitError``**."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "UnicodeEncodeError",
- "evalue": "'ascii' codec can't encode character u'\\xf7' in position 2008: ordinal not in range(128)",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mUnicodeEncodeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/interactiveshell.pyc\u001b[0m in \u001b[0;36mrun_code\u001b[0;34m(self, code_obj, result)\u001b[0m\n\u001b[1;32m 2896\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2897\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror_in_exec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2898\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshowtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2899\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2900\u001b[0m \u001b[0moutflag\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/interactiveshell.pyc\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only)\u001b[0m\n\u001b[1;32m 1822\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1823\u001b[0m stb = self.InteractiveTB.structured_traceback(etype,\n\u001b[0;32m-> 1824\u001b[0;31m value, tb, tb_offset=tb_offset)\n\u001b[0m\u001b[1;32m 1825\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1826\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_showtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1410\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1411\u001b[0m return FormattedTB.structured_traceback(\n\u001b[0;32m-> 1412\u001b[0;31m self, etype, value, tb, tb_offset, number_of_lines_of_context)\n\u001b[0m\u001b[1;32m 1413\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1414\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1318\u001b[0m \u001b[0;31m# Verbose modes need a full traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1319\u001b[0m return VerboseTB.structured_traceback(\n\u001b[0;32m-> 1320\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1321\u001b[0m )\n\u001b[1;32m 1322\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, evalue, etb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1168\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1169\u001b[0m formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context,\n\u001b[0;32m-> 1170\u001b[0;31m tb_offset)\n\u001b[0m\u001b[1;32m 1171\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1172\u001b[0m \u001b[0mcolors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mColors\u001b[0m \u001b[0;31m# just a shorthand + quicker name lookup\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mformat_exception_as_a_whole\u001b[0;34m(self, etype, evalue, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1111\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1112\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1113\u001b[0;31m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfind_recursion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0morig_etype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mevalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1114\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1115\u001b[0m \u001b[0mframes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_records\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mfind_recursion\u001b[0;34m(etype, value, records)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;31m# quarter of the traceback (250 frames by default) is repeats, and find the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;31m# first frame (from in to out) that looks different.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 455\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_recursion_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 456\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/IPython/core/ultratb.pyc\u001b[0m in \u001b[0;36mis_recursion_error\u001b[0;34m(etype, value, records)\u001b[0m\n\u001b[1;32m 439\u001b[0m \u001b[0;31m# a recursion error.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 440\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mrecursion_error_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 441\u001b[0;31m \u001b[0;32mand\u001b[0m \u001b[0;34m\"recursion\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 442\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m500\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mUnicodeEncodeError\u001b[0m: 'ascii' codec can't encode character u'\\xf7' in position 2008: ordinal not in range(128)"
- ]
- }
- ],
- "source": [
- "from nipype.interfaces.spm import Realign\n",
- "realign = Realign(in_files='/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz')\n",
- "realign.run()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "outputs": [],
"source": [
- "But what does this **``UnicodeEncodeError``** mean?\n",
+ "from nipype.algorithms.misc import Gunzip\n",
+ "from nipype import Node\n",
+ "\n",
+ "files = ['/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz',\n",
+ " '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz']\n",
"\n",
- " UnicodeEncodeError: 'ascii' codec can't encode character u'\\xf7' in position 7984: ordinal not in range(128)"
+ "gunzip = Node(Gunzip(), name='gunzip',)\n",
+ "\n",
+ "try:\n",
+ " gunzip.inputs.in_file = files\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Well, to find out, we need to dig a bit deeper and check the corresponding MATLAB script. Because every SPM interface creates an executable MATLAB script, either in the current location or in the folder of the node. So what's written in this script?"
+ "This can be solved by using a ``MapNode``:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true,
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fprintf(1,'Executing %s at %s:\\n',mfilename(),datestr(now));\r\n",
- "ver,\r\n",
- "try,\r\n",
- " %% Generated by nipype.interfaces.spm\r\n",
- " if isempty(which('spm')),\r\n",
- " throw(MException('SPMCheck:NotFound', 'SPM not in matlab path'));\r\n",
- " end\r\n",
- " [name, version] = spm('ver');\r\n",
- " fprintf('SPM version: %s Release: %s\\n',name, version);\r\n",
- " fprintf('SPM path: %s\\n', which('spm'));\r\n",
- " spm('Defaults','fMRI');\r\n",
- "\r\n",
- " if strcmp(name, 'SPM8') || strcmp(name(1:5), 'SPM12'),\r\n",
- " spm_jobman('initcfg');\r\n",
- " spm_get_defaults('cmdline', 1);\r\n",
- " end\r\n",
- "\r\n",
- " jobs{1}.spm.spatial.realign.estwrite.roptions.prefix = 'r';\r\n",
- "jobs{1}.spm.spatial.realign.estwrite.roptions.which(1) = 2;\r\n",
- "jobs{1}.spm.spatial.realign.estwrite.roptions.which(2) = 1;\r\n",
- "jobs{1}.spm.spatial.realign.estwrite.data = {...\r\n",
- "{...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,1';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,2';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,3';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,4';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,5';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,6';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,7';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,8';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,9';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,10';...\r\n",
- "'...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,140';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,141';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,142';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,143';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,144';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,145';...\r\n",
- "'/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz,146';...\r\n",
- "};\r\n",
- "};\r\n",
- "\r\n",
- " spm_jobman('run', jobs);\r\n",
- "\r\n",
- " \r\n",
- " if strcmp(name, 'SPM8') || strcmp(name(1:5), 'SPM12'),\r\n",
- " close('all', 'force');\r\n",
- " end;\r\n",
- " \r\n",
- ",catch ME,\r\n",
- "fprintf(2,'MATLAB code threw an exception:\\n');\r\n",
- "fprintf(2,'%s\\n',ME.message);\r\n",
- "if length(ME.stack) ~= 0, fprintf(2,'File:%s\\nName:%s\\nLine:%d\\n',ME.stack.file,ME.stack.name,ME.stack.line);, end;\r\n",
- "end;"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "!cat /home/jovyan/work/notebooks/pyscript_realign.m"
+ "from nipype import MapNode\n",
+ "gunzip = MapNode(Gunzip(), name='gunzip', iterfield=['in_file'])\n",
+ "gunzip.inputs.in_file = files"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "All seems to be fine, right? It even detects that the functional image has a temporal dimension. So what's wrong with MATLAB? To find out, let's run the script directly in matlab ourselves..."
+ "Now, make sure that you specify files that actually exist, otherwise you will have a ``TraitError`` again:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true,
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "------------------------------------------\n",
- "Setting up environment variables\n",
- "---\n",
- "LD_LIBRARY_PATH is .:/opt/mcr/v91//runtime/glnxa64:/opt/mcr/v91//bin/glnxa64:/opt/mcr/v91//sys/os/glnxa64:/opt/mcr/v91//sys/opengl/lib/glnxa64\n",
- "SPM12 (6906): /opt/spm12/spm12_mcr/spm12\n",
- " ___ ____ __ __ \n",
- "/ __)( _ \\( \\/ ) \n",
- "\\__ \\ )___/ ) ( Statistical Parametric Mapping \n",
- "(___/(__) (_/\\/\\_) SPM12 - http://www.fil.ion.ucl.ac.uk/spm/\n",
- "\n",
- "Executing spm_jobman at 01-Mar-2017 22:05:54:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "MATLAB Version: 9.1.0.441655 (R2016b)\n",
- "MATLAB License Number: unknown\n",
- "Operating System: Linux 4.8.0-39-generic #42~16.04.1-Ubuntu SMP Mon Feb 20 15:06:07 UTC 2017 x86_64\n",
- "Java Version: Java 1.7.0_60-b19 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode\n",
- "----------------------------------------------------------------------------------------------------\n",
- "MATLAB Version 9.1 (R2016b)\n",
- "MATLAB Version 9.1 (R2016b)\n",
- "MATLAB Compiler Version 6.3 (R2016b)\n",
- "SPM version: SPM12 Release: 6906\n",
- "SPM path: /opt/spm12/spm12_mcr/spm12/spm.m\n",
- "Item 'Session', field 'val': Number of matching files (0) less than required (1).\n",
- "MATLAB code threw an exception:\n",
- "No executable modules, but still unresolved dependencies or incomplete module inputs.\n",
- "File:/opt/spm12/spm12_mcr/spm12/spm_jobman.m\n",
- "Name:/opt/spm12/spm12_mcr/spm12/spm_jobman.m\n",
- "Line:47\n",
- "File:opt/spm12/spm12_mcr/spm12/spm_jobman.m\n",
- "Name:/opt/spm12/spm12_mcr/spm12/spm_jobman.m\n",
- "Line:47\n",
- "File:opt/spm12/spm12_mcr/spm12/spm_standalone.m\n",
- "Name:fill_run_job\n",
- "Line:115\n",
- "File:pm_jobman\n",
- "Name:load_jobs\n",
- "Line:115\n",
- "File:pm_jobman\n",
- "Name:spm_standalone\n",
- "Line:461\n",
- "File:÷\n",
- "Name:ʼn\n",
- "Line:143Item 'Session', field 'val': Number of matching files (0) less than required (1).\n",
- "Execution failed: pyscript_realign.mBye for now...\n",
- "\n",
- "\n",
- "File:!\n",
- "Name:"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "!/opt/spm12/run_spm12.sh /opt/mcr/v91/ batch pyscript_realign.m"
+ "files = ['/data/ds000114/sub-01/func/sub-01_task-fingerfootlips_bold.nii.gz',\n",
+ " '/data/ds000114/sub-03/func/sub-03_task-fingerfootlips_bold.nii.gz']\n",
+ "\n",
+ "try:\n",
+ " gunzip.inputs.in_file = files\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Now, here's at least a hint. At the end of the output, we get the following lines:\n",
- "\n",
- " Item 'Session', field 'val': Number of matching files (0) less than required (1).\n",
- " MATLAB code threw an exception:\n",
- " No executable modules, but still unresolved dependencies or incomplete module inputs.\n",
- "\n",
- "It's not too clear from the output, but MATLAB tries to tell you, that it cannot read the compressed NIfTI files. Therefore, it doesn't find one single NIfTI file (``0 matching files, required 1``).\n",
- "\n",
- "**Solve** this issue by unzipping the compressed NIfTI file before giving it as an input to an SPM node. This can either be done by using the ``Gunzip`` interface from Nipype or even better, if the input is coming from a FSL interface, most of them have an input filed `output_type='NIFTI'`, that you can set to NIFIT."
+ "**By the way, not that those crashes don't create a ``crashfile``, because they didn't happen during runtime, but still during workflow building.**"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "### SPM problem 2 with ``*.nii.gz`` files\n",
+ "## Example Crash 4: SPM doesn't like ``*.nii.gz`` files\n",
"\n",
- "Even worse than the problem before, it might be even possible that SPM doesn't tell you at all what the problem is:"
+ "SPM12 cannot handle compressed NIfTI files (``*nii.gz``). If you try to run the node nonetheless, it can give you different kind of problems:\n",
+ "\n",
+ "### SPM Problem 1 with ``*.nii.gz`` files\n",
+ "\n",
+ "SPM12 has a problem with handling ``*.nii.gz`` files. For it a compressed functional image has no temporal dimension and therefore seems to be just a 3D file. So if we try to run the ``Realign`` interface on a compressed file, we will get a **``TraitError``** error."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "FileNotFoundError",
- "evalue": "File/Directory '['/data/ds102/sub-01/anat/ssub-01_T1w.nii.gz']' not found for Smooth output 'smoothed_files'.\nInterface Smooth failed to run. ",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnipype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSmooth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0msmooth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSmooth\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0min_files\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'/data/ds102/sub-01/anat/sub-01_T1w.nii.gz'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0msmooth\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[0mruntime\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1044\u001b[0;31m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maggregate_outputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1045\u001b[0m \u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mendTime\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misoformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutcnow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0mtimediff\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparseutc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mendTime\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mparseutc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartTime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36maggregate_outputs\u001b[0;34m(self, runtime, needed_outputs)\u001b[0m\n\u001b[1;32m 1136\u001b[0m msg = (\"File/Directory '%s' not found for %s output \"\n\u001b[1;32m 1137\u001b[0m \"'%s'.\" % (val, self.__class__.__name__, key))\n\u001b[0;32m-> 1138\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mFileNotFoundError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1139\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1140\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mFileNotFoundError\u001b[0m: File/Directory '['/data/ds102/sub-01/anat/ssub-01_T1w.nii.gz']' not found for Smooth output 'smoothed_files'.\nInterface Smooth failed to run. "
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from nipype.interfaces.spm import Smooth\n",
- "smooth = Smooth(in_files='/data/ds102/sub-01/anat/sub-01_T1w.nii.gz')\n",
- "smooth.run()"
+ "\n",
+ "try:\n",
+ " smooth = Smooth(in_files='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz')\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "As you can see, in this case you'll get the error:\n",
+ "### SPM problem 2 with ``*.nii.gz`` files\n",
"\n",
- " FileNotFoundError: File/Directory '[u'/data/workflow/smooth/ssub-01_T1w.nii.gz']' not found for Smooth output 'smoothed_files'.\n",
- " Interface Smooth failed to run.\n",
- " \n",
- "It's easy to overlook the additional **``s``** in front of the file name. The problem is, the error tells you that it cannot find the output file of **``smooth``**, but doesn't tell you what the problem in MATLAB was."
+ "Sometimes **``TraitError``** can be more misleading."
]
},
{
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
- "And even if you run the MATLAB script yourself, you will get no hints. In this case, good luck...\n",
+ "from nipype.interfaces.spm import Realign\n",
"\n",
- " ...\n",
- " ------------------------------------------------------------------------\n",
- " Running job #1\n",
- " ------------------------------------------------------------------------\n",
- " Running 'Smooth'\n",
- " Done 'Smooth'\n",
- " Done"
+ "try:\n",
+ " realign = Realign(in_files='/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz')\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "------------------------------------------\n",
- "Setting up environment variables\n",
- "---\n",
- "LD_LIBRARY_PATH is .:/opt/mcr/v91//runtime/glnxa64:/opt/mcr/v91//bin/glnxa64:/opt/mcr/v91//sys/os/glnxa64:/opt/mcr/v91//sys/opengl/lib/glnxa64\n",
- "SPM12 (6906): /opt/spm12/spm12_mcr/spm12\n",
- " ___ ____ __ __ \n",
- "/ __)( _ \\( \\/ ) \n",
- "\\__ \\ )___/ ) ( Statistical Parametric Mapping \n",
- "(___/(__) (_/\\/\\_) SPM12 - http://www.fil.ion.ucl.ac.uk/spm/\n",
- "\n",
- "Executing spm_jobman at 01-Mar-2017 22:07:12:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "MATLAB Version: 9.1.0.441655 (R2016b)\n",
- "MATLAB License Number: unknown\n",
- "Operating System: Linux 4.8.0-39-generic #42~16.04.1-Ubuntu SMP Mon Feb 20 15:06:07 UTC 2017 x86_64\n",
- "Java Version: Java 1.7.0_60-b19 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode\n",
- "----------------------------------------------------------------------------------------------------\n",
- "MATLAB Version 9.1 (R2016b)\n",
- "MATLAB Version 9.1 (R2016b)\n",
- "MATLAB Compiler Version 6.3 (R2016b)\n",
- "SPM version: SPM12 Release: 6906\n",
- "SPM path: /opt/spm12/spm12_mcr/spm12/spm.m\n",
- "\n",
- "\n",
- "------------------------------------------------------------------------\n",
- "Running job #1\n",
- "------------------------------------------------------------------------\n",
- "Running 'Smooth'\n",
- "Done 'Smooth'\n",
- "Done\n",
- "\n",
- "\n"
- ]
- }
- ],
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
- "!/opt/spm12/run_spm12.sh /opt/mcr/v91/ batch pyscript_smooth.m"
+ "**This issue can be solved by unzipping the compressed NIfTI file before giving it as an input to an SPM node.** This can either be done by using the ``Gunzip`` interface from Nipype or even better if the input is coming from a FSL interface, most of them have an input filed `output_type='NIFTI'`, that you can set to NIFIT."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## Example Crash 5: Nipype cannot find the right software\n",
"\n",
- "Especially at the beginning, just after installation, you sometimes forgot to specify some environment variables. If you try to use an interface where the environment variables of the software are not specified, you'll errors, such as:\n",
+ "Especially at the beginning, just after installation, you sometimes forgot to specify some environment variables. If you try to use an interface where the environment variables of the software are not specified, e.g. if you try to run:\n",
+ "\n",
+ "```python\n",
+ "from nipype.interfaces.freesurfer import MRIConvert\n",
+ "convert = MRIConvert(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',\n",
+ " out_type='nii')\n",
+ "```\n",
+ "\n",
+ "you might get an errors, such as:\n",
"\n",
" IOError: command 'mri_convert' could not be found on host mnotter\n",
" Interface MRIConvert failed to run."
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [],
- "source": [
- "from nipype.interfaces.freesurfer import MRIConvert\n",
- "convert = MRIConvert(in_file='/data/ds102/sub-01/anat/sub-01_T1w.nii.gz',\n",
- " out_type='nii')"
- ]
- },
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Or if you try to use SPM, but forgot to tell Nipype where to find it. If you forgot to tell the system where to find MATLAB (or MCR), than you will get same kind of error as above. But if you forgot to specify which SPM you want to use, you'll get the following **``RuntimeError``**:\n",
+ "Or if you try to use SPM, but forgot to tell Nipype where to find it. If you forgot to tell the system where to find MATLAB (or MCR), then you will get the same kind of error as above. But if you forgot to specify which SPM you want to use, you'll get the following **``RuntimeError``**:\n",
"\n",
" Standard error:\n",
" MATLAB code threw an exception:\n",
@@ -963,17 +451,13 @@
"\n",
"```python\n",
"from nipype.interfaces.matlab import MatlabCommand\n",
- "MatlabCommand.set_default_paths('/usr/local/MATLAB/R2017a/toolbox/spm12')\n",
+ "MatlabCommand.set_default_paths('/opt/spm12-r7219/spm12_mcr/spm12')\n",
"```"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## Example Crash 6: You forget mandatory inputs or use input fields that don't exist\n",
"\n",
@@ -987,38 +471,23 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "ValueError",
- "evalue": "Realign requires a value for input 'in_files'. For a list of required inputs, see Realign.help()",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnipype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspm\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mRealign\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mrealign\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRealign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mregister_to_mean\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mrealign\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 1026\u001b[0m \"\"\"\n\u001b[1;32m 1027\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1028\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_mandatory_inputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1029\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_version_requirements\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1030\u001b[0m \u001b[0minterface\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m_check_mandatory_inputs\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 938\u001b[0m \u001b[0;34m\"For a list of required inputs, see %s.help()\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 939\u001b[0m (self.__class__.__name__, name, self.__class__.__name__))\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misdefined\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 942\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_requires\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mValueError\u001b[0m: Realign requires a value for input 'in_files'. For a list of required inputs, see Realign.help()"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from nipype.interfaces.spm import Realign\n",
"realign = Realign(register_to_mean=True)\n",
- "realign.run()"
+ "\n",
+ "try:\n",
+ " realign.run()\n",
+ "except(ValueError) as err:\n",
+ " print(\"ValueError:\", err)\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"This gives you the error:\n",
"\n",
@@ -1027,10 +496,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"As described by the error text, if we use the ``help()`` function, we can actually see, which inputs are mandatory and which are optional."
]
@@ -1038,114 +504,15 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true,
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Use spm_realign for estimating within modality rigid body alignment\n",
- "\n",
- "http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#page=25\n",
- "\n",
- "Examples\n",
- "--------\n",
- "\n",
- ">>> import nipype.interfaces.spm as spm\n",
- ">>> realign = spm.Realign()\n",
- ">>> realign.inputs.in_files = 'functional.nii'\n",
- ">>> realign.inputs.register_to_mean = True\n",
- ">>> realign.run() # doctest: +SKIP\n",
- "\n",
- "Inputs::\n",
- "\n",
- "\t[Mandatory]\n",
- "\tin_files: (a list of items which are a list of items which are an\n",
- "\t\t existing file name or an existing file name)\n",
- "\t\tlist of filenames to realign\n",
- "\n",
- "\t[Optional]\n",
- "\tfwhm: (a floating point number >= 0.0)\n",
- "\t\tgaussian smoothing kernel width\n",
- "\tignore_exception: (a boolean, nipype default value: False)\n",
- "\t\tPrint an error message instead of throwing an exception in case the\n",
- "\t\tinterface fails to run\n",
- "\tinterp: (0 <= an integer <= 7)\n",
- "\t\tdegree of b-spline used for interpolation\n",
- "\tjobtype: ('estwrite' or 'estimate' or 'write', nipype default value:\n",
- "\t\t estwrite)\n",
- "\t\tone of: estimate, write, estwrite\n",
- "\tmatlab_cmd: (a string)\n",
- "\t\tmatlab command to use\n",
- "\tmfile: (a boolean, nipype default value: True)\n",
- "\t\tRun m-code using m-file\n",
- "\tout_prefix: (a string, nipype default value: r)\n",
- "\t\trealigned output prefix\n",
- "\tpaths: (a list of items which are a directory name)\n",
- "\t\tPaths to add to matlabpath\n",
- "\tquality: (0.0 <= a floating point number <= 1.0)\n",
- "\t\t0.1 = fast, 1.0 = precise\n",
- "\tregister_to_mean: (a boolean)\n",
- "\t\tIndicate whether realignment is done to the mean image\n",
- "\tseparation: (a floating point number >= 0.0)\n",
- "\t\tsampling separation in mm\n",
- "\tuse_mcr: (a boolean)\n",
- "\t\tRun m-code using SPM MCR\n",
- "\tuse_v8struct: (a boolean, nipype default value: True)\n",
- "\t\tGenerate SPM8 and higher compatible jobs\n",
- "\tweight_img: (an existing file name)\n",
- "\t\tfilename of weighting image\n",
- "\twrap: (a list of from 3 to 3 items which are an integer (int or\n",
- "\t\t long))\n",
- "\t\tCheck if interpolation should wrap in [x,y,z]\n",
- "\twrite_interp: (0 <= an integer <= 7)\n",
- "\t\tdegree of b-spline used for interpolation\n",
- "\twrite_mask: (a boolean)\n",
- "\t\tTrue/False mask output image\n",
- "\twrite_which: (a list of items which are a value of type 'int', nipype\n",
- "\t\t default value: [2, 1])\n",
- "\t\tdetermines which images to reslice\n",
- "\twrite_wrap: (a list of from 3 to 3 items which are an integer (int or\n",
- "\t\t long))\n",
- "\t\tCheck if interpolation should wrap in [x,y,z]\n",
- "\n",
- "Outputs::\n",
- "\n",
- "\tmean_image: (an existing file name)\n",
- "\t\tMean image file from the realignment\n",
- "\tmodified_in_files: (a list of items which are a list of items which\n",
- "\t\t are an existing file name or an existing file name)\n",
- "\t\tCopies of all files passed to in_files. Headers will have been\n",
- "\t\tmodified to align all images with the first, or optionally to first\n",
- "\t\tdo that, extract a mean image, and re-align to that mean image.\n",
- "\trealigned_files: (a list of items which are a list of items which are\n",
- "\t\t an existing file name or an existing file name)\n",
- "\t\tIf jobtype is write or estwrite, these will be the resliced files.\n",
- "\t\tOtherwise, they will be copies of in_files that have had their\n",
- "\t\theaders rewritten.\n",
- "\trealignment_parameters: (a list of items which are an existing file\n",
- "\t\t name)\n",
- "\t\tEstimated translation and rotation parameters\n",
- "\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"realign.help()"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"### Using input fields that don't exist\n",
"\n",
@@ -1155,41 +522,26 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "TraitError",
- "evalue": "Cannot set the undefined 'output_type' attribute of a 'DespikeInputSpec' object.",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTraitError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnipype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterfaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafni\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDespike\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m despike = Despike(in_file='../../ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz',\n\u001b[0;32m----> 3\u001b[0;31m output_type='NIFTI')\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mdespike\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/afni/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mAFNICommand\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_trait_change\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output_update\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'outputtype'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, command, **inputs)\u001b[0m\n\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcommand\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1565\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCommandLine\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1566\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_environ\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1567\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_cmd'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 763\u001b[0m raise Exception('No input_spec in class: %s' %\n\u001b[1;32m 764\u001b[0m self.__class__.__name__)\n\u001b[0;32m--> 765\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_spec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 766\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestimated_memory_gb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 767\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_threads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;31m# therefore these args were being ignored.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 361\u001b[0m \u001b[0;31m# super(TraitedSpec, self).__init__(*args, **kwargs)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 362\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseTraitedSpec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 363\u001b[0m \u001b[0mtraits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_exception_handler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreraise_exceptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m \u001b[0mundefined_traits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTraitError\u001b[0m: Cannot set the undefined 'output_type' attribute of a 'DespikeInputSpec' object."
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from nipype.interfaces.afni import Despike\n",
- "despike = Despike(in_file='../../ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz',\n",
- " output_type='NIFTI')\n",
- "despike.run()"
+ "\n",
+ "try:\n",
+ " despike = Despike(in_file='/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz',\n",
+ " output_type='NIFTI')\n",
+ "except(Exception) as err:\n",
+ " if \"TraitError\" in str(err.__class__):\n",
+ " print(\"TraitError:\", err)\n",
+ " else:\n",
+ " raise\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"This results in the **``TraitError``**:\n",
"\n",
@@ -1200,10 +552,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## Example Crash 7: Trying to connect a node to an input field that is already occupied\n",
"\n",
@@ -1215,11 +564,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from nipype import SelectFiles, Node, Workflow\n",
@@ -1227,10 +572,10 @@
"from nipype.interfaces.fsl import MCFLIRT, IsotropicSmooth\n",
"\n",
"# Create SelectFiles node\n",
- "templates={'func': '{subject_id}/func/{subject_id}_task-flanker_run-1_bold.nii.gz'}\n",
+ "templates={'func': '{subject_id}/func/{subject_id}_task-fingerfootlips_bold.nii.gz'}\n",
"sf = Node(SelectFiles(templates),\n",
" name='selectfiles')\n",
- "sf.inputs.base_directory = opap('/data/ds102')\n",
+ "sf.inputs.base_directory = opap('/data/ds000114')\n",
"sf.inputs.subject_id = 'sub-01'\n",
"\n",
"# Create Motion Correction Node\n",
@@ -1253,10 +598,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Now, let's create a new node and connect it to the already occupied input field ``in_file`` of the ``smooth`` node:"
]
@@ -1264,40 +606,25 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "ename": "Exception",
- "evalue": "\nTrying to connect preprocWF.mcflirt_NEW:out_file to preprocWF.smooth:in_file but input 'in_file' of node 'preprocWF.smooth' is already\nconnected.\n",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mException\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Connect it to an already connected input field\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mwf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmcflirt_NEW\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msmooth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"out_file\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"in_file\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/workflows.pyc\u001b[0m in \u001b[0;36mconnect\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[0mTrying\u001b[0m \u001b[0mto\u001b[0m \u001b[0mconnect\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m%\u001b[0m\u001b[0ms\u001b[0m \u001b[0mto\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m%\u001b[0m\u001b[0ms\u001b[0m \u001b[0mbut\u001b[0m \u001b[0minput\u001b[0m \u001b[0;34m'%s'\u001b[0m \u001b[0mof\u001b[0m \u001b[0mnode\u001b[0m \u001b[0;34m'%s'\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0malready\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 216\u001b[0m \u001b[0mconnected\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 217\u001b[0;31m \"\"\" % (srcnode, source, destnode, dest, dest, destnode))\n\u001b[0m\u001b[1;32m 218\u001b[0m if not (hasattr(destnode, '_interface') and\n\u001b[1;32m 219\u001b[0m '.io' in str(destnode._interface.__class__)):\n",
- "\u001b[0;31mException\u001b[0m: \nTrying to connect preprocWF.mcflirt_NEW:out_file to preprocWF.smooth:in_file but input 'in_file' of node 'preprocWF.smooth' is already\nconnected.\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Create a new node\n",
"mcflirt_NEW = Node(MCFLIRT(mean_vol=True),\n",
" name='mcflirt_NEW')\n",
"\n",
"# Connect it to an already connected input field\n",
- "wf.connect([(mcflirt_NEW, smooth, [(\"out_file\", \"in_file\")])])"
+ "try:\n",
+ " wf.connect([(mcflirt_NEW, smooth, [(\"out_file\", \"in_file\")])])\n",
+ "except(Exception) as err:\n",
+ " print(\"Exception:\", err)\n",
+ "else:\n",
+ " raise"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"This will lead to the error:\n",
"\n",
@@ -1313,21 +640,21 @@
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
}
},
"nbformat": 4,
- "nbformat_minor": 0
+ "nbformat_minor": 2
}
diff --git a/notebooks/basic_execution_configuration.ipynb b/notebooks/basic_execution_configuration.ipynb
new file mode 100644
index 0000000..582608d
--- /dev/null
+++ b/notebooks/basic_execution_configuration.ipynb
@@ -0,0 +1,434 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Execution Configuration Options\n",
+ "\n",
+ "Nipype gives you many liberties on how to create workflows, but the execution of them uses a lot of default parameters. But you have of course all the freedom to change them as you like.\n",
+ "\n",
+ "Nipype looks for the configuration options in the local folder under the name ``nipype.cfg`` and in ``~/.nipype/nipype.cfg`` (in this order). It can be divided into **Logging** and **Execution** options. A few of the possible options are the following:\n",
+ "\n",
+ "### Logging\n",
+ "\n",
+ "- **`workflow_level`**: How detailed the logs regarding workflow should be \n",
+ " (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)\n",
+ "\n",
+ "\n",
+ "- **`utils_level`**: How detailed the logs regarding nipype utils, like file operations (for example overwriting warning) or the resource profiler, should be \n",
+ " (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)\n",
+ "\n",
+ "\n",
+ "- **`interface_level`**: How detailed the logs regarding interface execution should be \n",
+ " (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)\n",
+ "\n",
+ "\n",
+ "- **`filemanip_level`** (deprecated as of 1.0): How detailed the logs regarding file operations (for example overwriting warning) should be \n",
+ " (possible values: ``INFO`` and ``DEBUG``)\n",
+ "\n",
+ "\n",
+ "- **`log_to_file`**: Indicates whether logging should also send the output to a file \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`log_directory`**: Where to store logs. \n",
+ " (string, default value: home directory)\n",
+ "\n",
+ "\n",
+ "- **`log_size`**: Size of a single log file. \n",
+ " (integer, default value: 254000)\n",
+ "\n",
+ "\n",
+ "- **`log_rotate`**: How many rotations should the log file make. \n",
+ " (integer, default value: 4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Execution\n",
+ "\n",
+ "- **`plugin`**: This defines which execution plugin to use. \n",
+ " (possible values: ``Linear``, ``MultiProc``, ``SGE``, ``IPython``; default value: ``Linear``)\n",
+ "\n",
+ "\n",
+ "- **`stop_on_first_crash`**: Should the workflow stop upon the first node crashing or try to execute as many\n",
+ " nodes as possible? \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`stop_on_first_rerun`**: Should the workflow stop upon the first node trying to recompute (by that we mean rerunning a node that has been run before - this can happen due changed inputs and/or hash_method since the last run). \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`hash_method`**: Should the input files be checked for changes using their content (slow, but 100% accurate) or just their size and modification date (fast, but potentially prone to errors)? \n",
+ " (possible values: ``content`` and ``timestamp``; default value: ``timestamp``)\n",
+ "\n",
+ "\n",
+ "- **`keep_inputs`**: Ensures that all inputs that are created in the nodes working directory are\n",
+ " kept after node execution \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`single_thread_matlab`**: Should all of the Matlab interfaces (including SPM) use only one thread? This is useful if you are parallelizing your workflow using MultiProc or IPython on a single multicore machine. \n",
+ " (possible values: ``true`` and ``false``; default value: ``true``)\n",
+ "\n",
+ "\n",
+ "- **`display_variable`**: Override the ``$DISPLAY`` environment variable for interfaces that require an X server. This option is useful if there is a running X server, but ``$DISPLAY`` was not defined in nipype's environment. For example, if an X server is listening on the default port of 6000, set ``display_variable = :0`` to enable nipype interfaces to use it. It may also point to displays provided by VNC, [xnest](http://www.x.org/archive/X11R7.5/doc/man/man1/Xnest.1.html) or [Xvfb](http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html). \n",
+ " If neither ``display_variable`` nor the ``$DISPLAY`` environment variable is set, nipype will try to configure a new virtual server using Xvfb. \n",
+ " (possible values: any X server address; default value: not set)\n",
+ "\n",
+ "\n",
+ "- **`remove_unnecessary_outputs`**: This will remove any interface outputs not needed by the workflow. If the\n",
+ " required outputs from a node changes, rerunning the workflow will rerun the\n",
+ " node. Outputs of leaf nodes (nodes whose outputs are not connected to any\n",
+ " other nodes) will never be deleted independent of this parameter. \n",
+ " (possible values: ``true`` and ``false``; default value: ``true``)\n",
+ "\n",
+ "\n",
+ "- **`try_hard_link_datasink`**: When the DataSink is used to produce an organized output file outside\n",
+ " of nipypes internal cache structure, a file system hard link will be\n",
+ " attempted first. A hard link allows multiple file paths to point to the\n",
+ " same physical storage location on disk if the conditions allow. By\n",
+ " referring to the same physical file on disk (instead of copying files\n",
+ " byte-by-byte) we can avoid unnecessary data duplication. If hard links\n",
+ " are not supported for the source or destination paths specified, then\n",
+ " a standard byte-by-byte copy is used. \n",
+ " (possible values: ``true`` and ``false``; default value: ``true``)\n",
+ "\n",
+ "\n",
+ "- **`use_relative_paths`**: Should the paths stored in results (and used to look for inputs)\n",
+ " be relative or absolute. Relative paths allow moving the whole\n",
+ " working directory around but may cause problems with\n",
+ " symlinks. \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`local_hash_check`**: Perform the hash check on the job submission machine. This option minimizes\n",
+ " the number of jobs submitted to a cluster engine or a multiprocessing pool\n",
+ " to only those that need to be rerun. \n",
+ " (possible values: ``true`` and ``false``; default value: ``true``)\n",
+ "\n",
+ "\n",
+ "- **`job_finished_timeout`**: When batch jobs are submitted through, SGE/PBS/Condor they could be killed\n",
+ " externally. Nipype checks to see if a results file exists to determine if\n",
+ " the node has completed. This timeout determines for how long this check is\n",
+ " done after a job finish is detected. (float in seconds; default value: 5)\n",
+ "\n",
+ "\n",
+ "- **`remove_node_directories`** (EXPERIMENTAL): Removes directories whose outputs have already been used\n",
+ " up. Doesn't work with IdentiInterface or any node that patches\n",
+ " data through (without copying) \n",
+ " (possible values: ``true`` and ``false``; default value: ``false``)\n",
+ "\n",
+ "\n",
+ "- **`stop_on_unknown_version`**: If this is set to True, an underlying interface will raise an error, when no\n",
+ " version information is available. Please notify developers or submit a patch.\n",
+ "\n",
+ "\n",
+ "- **`parameterize_dirs`**: If this is set to True, the node's output directory will contain full\n",
+ " parameterization of any iterable, otherwise parameterizations over 32\n",
+ " characters will be replaced by their hash. \n",
+ " (possible values: ``true`` and ``false``; default value: ``true``)\n",
+ "\n",
+ "\n",
+ "- **`poll_sleep_duration`**: This controls how long the job submission loop will sleep between submitting\n",
+ " all pending jobs and checking for job completion. To be nice to cluster\n",
+ " schedulers the default is set to 2 seconds.\n",
+ "\n",
+ "\n",
+ "- **`xvfb_max_wait`**: Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x\n",
+ " parameter of an Interface is True.\n",
+ "\n",
+ "\n",
+ "- **`crashfile_format`**: This option controls the file type of any crashfile generated. Pklz\n",
+ " crashfiles allow interactive debugging and rerunning of nodes, while text\n",
+ " crashfiles allow portability across machines and shorter load time. \n",
+ " (possible values: ``pklz`` and ``txt``; default value: ``pklz``)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Resource Monitor\n",
+ "\n",
+ "- **`enabled`**: Enables monitoring the resources occupation (possible values: ``true`` and\n",
+ " ``false``; default value: ``false``). All the following options will be\n",
+ " dismissed if the resource monitor is not enabled.\n",
+ "\n",
+ "\n",
+ "- **`sample_frequency`**: Sampling period (in seconds) between measurements of resources (memory, cpus)\n",
+ " being used by an interface \n",
+ " (default value: ``1``)\n",
+ "\n",
+ "\n",
+ "- **`summary_file`**: Indicates where the summary file collecting all profiling information from the\n",
+ " resource monitor should be stored after execution of a workflow.\n",
+ " The ``summary_file`` does not apply to interfaces run independently.\n",
+ " (unset by default, in which case the summary file will be written out to \n",
+ " ``/resource_monitor.json`` of the top-level workflow).\n",
+ "\n",
+ "\n",
+ "- **`summary_append`**: Append to an existing summary file (only applies to workflows). \n",
+ " (default value: ``true``, possible values: ``true`` or ``false``)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example\n",
+ "\n",
+ " [logging]\n",
+ " workflow_level = DEBUG\n",
+ "\n",
+ " [execution]\n",
+ " stop_on_first_crash = true\n",
+ " hash_method = timestamp\n",
+ " display_variable = :1\n",
+ "\n",
+ " [monitoring]\n",
+ " enabled = false\n",
+ " \n",
+ "`Workflow.config` property has a form of a nested dictionary reflecting the structure of the `.cfg` file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import Workflow\n",
+ "myworkflow = Workflow(name='myworkflow')\n",
+ "myworkflow.config['execution'] = {'stop_on_first_rerun': 'True',\n",
+ " 'hash_method': 'timestamp'}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can also directly set global config options in your workflow script. An\n",
+ "example is shown below. This needs to be called before you import the\n",
+ "pipeline or the logger. Otherwise, logging level will not be reset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import config\n",
+ "cfg = dict(logging=dict(workflow_level = 'DEBUG'),\n",
+ " execution={'stop_on_first_crash': False,\n",
+ " 'hash_method': 'content'})\n",
+ "config.update_config(cfg)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Enabling logging to file\n",
+ "\n",
+ "By default, logging to file is disabled. One can enable and write the file to\n",
+ "a location of choice as in the example below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from nipype import config, logging\n",
+ "config.update_config({'logging': {'log_directory': os.getcwd(),\n",
+ " 'log_to_file': True}})\n",
+ "logging.update_logging(config)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The logging update line is necessary to change the behavior of logging such as\n",
+ "output directory, logging level, etc."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Debug configuration\n",
+ "\n",
+ "To enable debug mode, one can insert the following lines:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import config\n",
+ "config.enable_debug_mode()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this mode the following variables are set:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "config.set('execution', 'stop_on_first_crash', 'true')\n",
+ "config.set('execution', 'remove_unnecessary_outputs', 'false')\n",
+ "config.set('execution', 'keep_inputs', 'true')\n",
+ "config.set('logging', 'workflow_level', 'DEBUG')\n",
+ "config.set('logging', 'interface_level', 'DEBUG')\n",
+ "config.set('logging', 'utils_level', 'DEBUG')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The primary loggers (`workflow`, `interface` and `utils`) are also reset to level `DEBUG`.\n",
+ "\n",
+ "You may wish to adjust these manually using:\n",
+ "```python\n",
+ "from nipype import logging\n",
+ "logging.getLogger().setLevel()\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Global, workflow & node level\n",
+ "\n",
+ "The configuration options can be changed globally (i.e. for all workflows), for just a workflow, or for just a node. The implementations look as follows (note that you should first create directories if you want to change `crashdump_dir` and `log_directory`):"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### At the global level:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import config, logging\n",
+ "import os\n",
+ "os.makedirs('/output/log_folder', exist_ok=True)\n",
+ "os.makedirs('/output/crash_folder', exist_ok=True)\n",
+ "\n",
+ "config_dict={'execution': {'remove_unnecessary_outputs': 'true',\n",
+ " 'keep_inputs': 'false',\n",
+ " 'poll_sleep_duration': '60',\n",
+ " 'stop_on_first_rerun': 'false',\n",
+ " 'hash_method': 'timestamp',\n",
+ " 'local_hash_check': 'true',\n",
+ " 'create_report': 'true',\n",
+ " 'crashdump_dir': '/output/crash_folder',\n",
+ " 'use_relative_paths': 'false',\n",
+ " 'job_finished_timeout': '5'},\n",
+ " 'logging': {'workflow_level': 'INFO',\n",
+ " 'filemanip_level': 'INFO',\n",
+ " 'interface_level': 'INFO',\n",
+ " 'log_directory': '/output/log_folder',\n",
+ " 'log_to_file': 'true'}}\n",
+ "config.update_config(config_dict)\n",
+ "logging.update_logging(config)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### At the workflow level:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import Workflow\n",
+ "wf = Workflow(name=\"config_test\")\n",
+ "\n",
+ "# Change execution parameters\n",
+ "wf.config['execution']['stop_on_first_crash'] = 'true'\n",
+ "\n",
+ "# Change logging parameters\n",
+ "wf.config['logging'] = {'workflow_level' : 'DEBUG',\n",
+ " 'filemanip_level' : 'DEBUG',\n",
+ " 'interface_level' : 'DEBUG',\n",
+ " 'log_to_file' : 'True',\n",
+ " 'log_directory' : '/output/log_folder'}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### At the node level:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import Node\n",
+ "from nipype.interfaces.fsl import BET\n",
+ "\n",
+ "bet = Node(BET(), name=\"config_test\")\n",
+ "\n",
+ "bet.config = {'execution': {'keep_unnecessary_outputs': 'false'}}"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/basic_function_interface.ipynb b/notebooks/basic_function_interface.ipynb
new file mode 100644
index 0000000..5dc2b89
--- /dev/null
+++ b/notebooks/basic_function_interface.ipynb
@@ -0,0 +1,293 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Function Interface\n",
+ "\n",
+ "Satra once called the `Function` module, the \"do anything you want card\". Which is a perfect description. Because it allows you to put any code you want into an empty node, which you then can put in your workflow exactly where it needs to be.\n",
+ "\n",
+ "## A Simple Function Interface\n",
+ "\n",
+ "You might have already seen the `Function` module in the [example section in the Node tutorial](basic_nodes.ipynb#Example-of-a-simple-node). Let's take a closer look at it again."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The most important component of a working `Function` interface is a Python function. There are several ways to associate a function with a `Function` interface, but the most common way will involve functions you code yourself as part of your Nipype scripts. Consider the following function:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a small example function\n",
+ "def add_two(x_input):\n",
+ " return x_input + 2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This simple function takes a value, adds 2 to it, and returns that new value.\n",
+ "\n",
+ "Just as Nipype interfaces have inputs and outputs, Python functions have inputs, in the form of parameters or arguments, and outputs, in the form of their return values. When you define a Function interface object with an existing function, as in the case of ``add_two()`` above, you must pass the constructor information about the function's inputs, its outputs, and the function itself. For example,"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Import Node and Function module\n",
+ "from nipype import Node, Function\n",
+ "\n",
+ "# Create Node\n",
+ "addtwo = Node(Function(input_names=[\"x_input\"],\n",
+ " output_names=[\"val_output\"],\n",
+ " function=add_two),\n",
+ " name='add_node')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then you can set the inputs and run just as you would with any other interface:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "addtwo.inputs.x_input = 4\n",
+ "addtwo.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "addtwo.result.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You need to be careful that the name of the input paramter to the node is the same name as the input parameter to the function, i.e. `x_input`. But you don't have to specify `input_names` or `output_names`. You can also just use:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "addtwo = Node(Function(function=add_two), name='add_node')\n",
+ "addtwo.inputs.x_input = 8\n",
+ "addtwo.run()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "addtwo.result.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Using External Packages\n",
+ "\n",
+ "Chances are, you will want to write functions that do more complicated processing, particularly using the growing stack of Python packages geared towards neuroimaging, such as [Nibabel](http://nipy.org/nibabel/), [Nipy](http://nipy.org/), or [PyMVPA](http://www.pymvpa.org/).\n",
+ "\n",
+ "While this is completely possible (and, indeed, an intended use of the Function interface), it does come with one important constraint. The function code you write is executed in a standalone environment, which means that any external functions or classes you use have to be imported within the function itself:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_n_trs(in_file):\n",
+ " import nibabel\n",
+ " f = nibabel.load(in_file)\n",
+ " return f.shape[-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Without explicitly importing Nibabel in the body of the function, this would fail.\n",
+ "\n",
+ "Alternatively, it is possible to provide a list of strings corresponding to the imports needed to execute a function as a parameter of the `Function` constructor. This allows for the use of external functions that do not import all external definitions inside the function body."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Advanced Use\n",
+ "\n",
+ "To use an existing function object (as we have been doing so far) with a Function interface, it must be passed to the constructor. However, it is also possible to dynamically set how a Function interface will process its inputs using the special ``function_str`` input.\n",
+ "\n",
+ "This input takes not a function object, but actually a single string that can be parsed to define a function. In the equivalent case to our example above, the string would be"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "add_two_str = \"def add_two(val):\\n return val + 2\\n\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Unlike when using a function object, this input can be set like any other, meaning that you could write a function that outputs different function strings depending on some run-time contingencies, and connect that output the ``function_str`` input of a downstream Function interface."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Important - Function Nodes are closed environments\n",
+ "\n",
+ "There's only one trap that you should be aware of when using the `Function` module.\n",
+ "\n",
+ "If you want to use another module inside a function, you have to import it again inside the function. Let's take a look at the following example:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import Node, Function\n",
+ "\n",
+ "# Create the Function object\n",
+ "def get_random_array(array_shape):\n",
+ "\n",
+ " # Import random function\n",
+ " from numpy.random import random\n",
+ " \n",
+ " return random(array_shape)\n",
+ "\n",
+ "# Create Function Node that executes get_random_array\n",
+ "rndArray = Node(Function(input_names=[\"array_shape\"],\n",
+ " output_names=[\"random_array\"],\n",
+ " function=get_random_array),\n",
+ " name='rndArray_node')\n",
+ "\n",
+ "# Specify the array_shape of the random array\n",
+ "rndArray.inputs.array_shape = (3, 3)\n",
+ "\n",
+ "# Run node\n",
+ "rndArray.run()\n",
+ "\n",
+ "# Print output\n",
+ "print(rndArray.result.outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, let's see what happens if we move the import of `random` outside the scope of `get_random_array`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nipype import Node, Function\n",
+ "\n",
+ "# Import random function\n",
+ "from numpy.random import random\n",
+ "\n",
+ "\n",
+ "# Create the Function object\n",
+ "def get_random_array(array_shape):\n",
+ " \n",
+ " return random(array_shape)\n",
+ "\n",
+ "# Create Function Node that executes get_random_array\n",
+ "rndArray = Node(Function(input_names=[\"array_shape\"],\n",
+ " output_names=[\"random_array\"],\n",
+ " function=get_random_array),\n",
+ " name='rndArray_node')\n",
+ "\n",
+ "# Specify the array_shape of the random array\n",
+ "rndArray.inputs.array_shape = (3, 3)\n",
+ "\n",
+ "# Run node\n",
+ "try:\n",
+ " rndArray.run()\n",
+ "except Exception as err:\n",
+ " print(err)\n",
+ "else:\n",
+ " raise"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As you can see, if we don't import `random` inside the scope of the function, we receive the following error:\n",
+ "\n",
+ " Exception raised while executing Node rndArray_node.\n",
+ "\n",
+ " Traceback (most recent call last):\n",
+ " [...]\n",
+ " File \"\", line 3, in get_random_array\n",
+ " NameError: name 'random' is not defined"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [default]",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/basic_function_nodes.ipynb b/notebooks/basic_function_nodes.ipynb
deleted file mode 100644
index ae092c6..0000000
--- a/notebooks/basic_function_nodes.ipynb
+++ /dev/null
@@ -1,232 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "# Function Node\n",
- "\n",
- "Satra once called the `Function` module, the \"do anything you want card\". Which is a perfect description. Because it allows you to put any code you want into an empty node, which you than can put in your workflow exactly where it needs to be.\n",
- "\n",
- "You might have already seen the `Function` module in the [example section in the Node tutorial](basic_nodes.ipynb#Example-of-a-simple-node). Let's take a closer look at it again."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
- "outputs": [],
- "source": [
- "# Import Node and Function module\n",
- "from nipype import Node, Function\n",
- "\n",
- "# Create a small example function\n",
- "def add_two(x_input):\n",
- " return x_input + 2\n",
- "\n",
- "# Create Node\n",
- "addtwo = Node(Function(input_names=[\"x_input\"],\n",
- " output_names=[\"val_output\"],\n",
- " function=add_two),\n",
- " name='add_node')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "# Trap 1\n",
- "\n",
- "There are only two traps that you should be aware when you're using the `Function` module. The first one is about naming the input variables. The variable name for the node input has to be the exactly the same name as the function input parameter, in this case this is `x_input`.\n",
- "\n",
- "Otherwise you get the following error:\n",
- "\n",
- " TypeError: add_two() got an unexpected keyword argument 'x_input'\n",
- " Interface Function failed to run."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "# Trap 2\n",
- "\n",
- "If you want to use another module inside a function, you have to import it again inside the function. Let's take a look at the following example:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:55:47,598 workflow INFO:\n",
- "\t Executing node rndArray_node in dir: /tmp/tmpv4BGTx/rndArray_node\n",
- "170301-21:55:47,633 workflow INFO:\n",
- "\t Runtime memory and threads stats unavailable\n",
- "\n",
- "random_array = [[ 0.55392783 0.56238157 0.26244335]\n",
- " [ 0.25663815 0.20904142 0.5810782 ]\n",
- " [ 0.18068192 0.65697574 0.1218128 ]]\n",
- "\n"
- ]
- }
- ],
- "source": [
- "from nipype import Node, Function\n",
- "\n",
- "# Create the Function object\n",
- "def get_random_array(array_shape):\n",
- "\n",
- " # Import random function\n",
- " from numpy.random import random\n",
- " \n",
- " return random(array_shape)\n",
- "\n",
- "# Create Function Node that executes get_random_array\n",
- "rndArray = Node(Function(input_names=[\"array_shape\"],\n",
- " output_names=[\"random_array\"],\n",
- " function=get_random_array),\n",
- " name='rndArray_node')\n",
- "\n",
- "# Specify the array_shape of the random array\n",
- "rndArray.inputs.array_shape = (3, 3)\n",
- "\n",
- "# Run node\n",
- "rndArray.run()\n",
- "\n",
- "# Print output\n",
- "print rndArray.result.outputs"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "Now, let's see what happens if we move the import of `random` outside the scope of `get_random_array`:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:55:47,697 workflow INFO:\n",
- "\t Executing node rndArray_node in dir: /tmp/tmpFBMKdD/rndArray_node\n"
- ]
- },
- {
- "ename": "NameError",
- "evalue": "global name 'random' is not defined\nInterface Function failed to run. ",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# Run node\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mrndArray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;31m# Print output\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, updatehash)\u001b[0m\n\u001b[1;32m 392\u001b[0m self.inputs.get_traitsfree())\n\u001b[1;32m 393\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 394\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_interface\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 395\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 396\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhashfile_unfinished\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.pyc\u001b[0m in \u001b[0;36m_run_interface\u001b[0;34m(self, execute, updatehash)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[0mold_cwd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetcwd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 504\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_command\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexecute\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 505\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mold_cwd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 506\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/pipeline/engine/nodes.pyc\u001b[0m in \u001b[0;36m_run_command\u001b[0;34m(self, execute, copyfiles)\u001b[0m\n\u001b[1;32m 628\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Running: %s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mcmd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 629\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 630\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_interface\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 631\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 632\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, **inputs)\u001b[0m\n\u001b[1;32m 1041\u001b[0m version=self.version)\n\u001b[1;32m 1042\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1043\u001b[0;31m \u001b[0mruntime\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1044\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maggregate_outputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1045\u001b[0m \u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mendTime\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misoformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutcnow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/base.pyc\u001b[0m in \u001b[0;36m_run_wrapper\u001b[0;34m(self, runtime)\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[0mruntime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menviron\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'DISPLAY'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m':%d'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mvdisp_num\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 999\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1000\u001b[0;31m \u001b[0mruntime\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run_interface\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1001\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1002\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_redirect_x\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/envs/python2/lib/python2.7/site-packages/nipype/interfaces/utility.pyc\u001b[0m in \u001b[0;36m_run_interface\u001b[0;34m(self, runtime)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[0msetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruntime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'runtime_threads'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_threads\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 498\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 499\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunction_handle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 500\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 501\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output_names\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m\u001b[0m in \u001b[0;36mget_random_array\u001b[0;34m(array_shape)\u001b[0m\n",
- "\u001b[0;31mNameError\u001b[0m: global name 'random' is not defined\nInterface Function failed to run. "
- ]
- }
- ],
- "source": [
- "from nipype import Node, Function\n",
- "\n",
- "# Import random function\n",
- "from numpy.random import random\n",
- "\n",
- "\n",
- "# Create the Function object\n",
- "def get_random_array(array_shape):\n",
- " \n",
- " return random(array_shape)\n",
- "\n",
- "# Create Function Node that executes get_random_array\n",
- "rndArray = Node(Function(input_names=[\"array_shape\"],\n",
- " output_names=[\"random_array\"],\n",
- " function=get_random_array),\n",
- " name='rndArray_node')\n",
- "\n",
- "# Specify the array_shape of the random array\n",
- "rndArray.inputs.array_shape = (3, 3)\n",
- "\n",
- "# Run node\n",
- "rndArray.run()\n",
- "\n",
- "# Print output\n",
- "print rndArray.result.outputs"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
- "source": [
- "As you can see, if we don't import `random` inside the scope of the function, we receive the following error:\n",
- "\n",
- " NameError: global name 'random' is not defined\n",
- " Interface Function failed to run. "
- ]
- }
- ],
- "metadata": {
- "anaconda-cloud": {},
- "kernelspec": {
- "display_name": "Python [default]",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/notebooks/basic_graph_visualization.ipynb b/notebooks/basic_graph_visualization.ipynb
index 4917872..6522844 100644
--- a/notebooks/basic_graph_visualization.ipynb
+++ b/notebooks/basic_graph_visualization.ipynb
@@ -2,23 +2,19 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Graph Visualization\n",
"\n",
- "We've learned from the [Workflow](./basic_workflow.ipynb) tutorial that every Nipype workflow is a directed acyclic graphs. Some workflow structures are easy to understand directly from the script and some others are too complex for that. Luckily, there is the ``write_graph`` method!\n",
+ "We've learned from the [Workflow](./basic_workflow.ipynb) tutorial that every Nipype workflow is a directed acyclic graph. Some workflow structures are easy to understand directly from the script and some others are too complex for that. Luckily, there is the ``write_graph`` method!\n",
"\n",
"## ``write_graph``\n",
"\n",
"**``write_graph``** allows us to visualize any workflow in five different ways:\n",
"\n",
- "- **``orig``** - creates a top level graph without expanding internal workflow nodes\n",
+ "- **``orig``** - creates a top-level graph without expanding internal workflow nodes\n",
"- **``flat``** - expands workflow nodes recursively\n",
- "- **``hierarchical``** - expands workflow nodes recursively with a notion on hierarchy\n",
+ "- **``hierarchical``** - expands workflow nodes recursively with a notion on the hierarchy\n",
"- **``colored``** - expands workflow nodes recursively with a notion on hierarchy in color\n",
"- **``exec``** - expands workflows to depict iterables\n",
"\n",
@@ -31,10 +27,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## Preparation\n",
"\n",
@@ -44,15 +37,11 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Import the function to create an spm fmri preprocessing workflow\n",
- "from nipype.workflows.fmri.spm import create_spm_preproc\n",
+ "from niflow.nipype1.workflows.fmri.spm import create_spm_preproc\n",
"\n",
"# Create the workflow object\n",
"spmflow = create_spm_preproc()"
@@ -60,10 +49,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"For a reason that will become clearer under the ``exec`` visualization, let's add an iternode at the beginning of the ``spmflow`` and connect them together under a new workflow, called ``metaflow``. The iternode will cause the workflow to be executed three times, once with the ``fwhm`` value set to 4, once set to 6 and once set to 8. For more about this see the [Iteration](./basic_iteration.ipynb) tutorial."
]
@@ -71,11 +57,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Import relevant modules\n",
@@ -92,10 +74,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``orig`` graph\n",
"\n",
@@ -105,49 +84,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:43,359 workflow INFO:\n",
- "\t Creating detailed dot file: /home/jovyan/work/notebooks/graph_orig_detailed.dot\n",
- "170301-21:50:43,913 workflow INFO:\n",
- "\t Creating dot file: /home/jovyan/work/notebooks/graph_orig.dot\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG7CAYAAAAsZfRkAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdd1gUV9sG8HtpIh2RKj0iiiCoWFARMQo2ROyxYmKNJYmaN9GYWBJjzJfEniIaE4MSRBFE\nTVQISpGmiEoXQUABAaUsILCw5/sjL/uKgAru7lCe33XtBTs7zLlnF52HM2fO8BhjDIQQQgghXYQM\n1wEIIYQQQqSJih9CCCGEdClU/BBCCCGkS5HjOgAhRDIEAgEqKioAACUlJQCAiooKCASCJq83p7S0\nFC0NCeTxeNDQ0GjxZ1VUVCAvLw8AkJeXh4qKCgBAU1OzyeuEECJtVPwQ0g7w+Xw8ffpU9ODz+ais\nrERlZSVKSkpE31dUVKC0tFT0nM/no6ysDEKhUPS1qqoKNTU1XO/Sa+nWrRuUlJQgIyMDdXV10VdV\nVVUoKytDWVkZGhoaUFFRET3X1NQUfa+mpoYePXpAU1MTPXr0gKqqKte7RAjpAHh0tRch4lVZWYn8\n/Hw8fvwYhYWFyMvLa1TYPP8oKSnB06dPRb0xz1NQUGh0sFdSUoKqqirU1dVFzxsKBTk5OdFXRUVF\ndO/eHbKyslBTUwMAUWGhpKSEbt26idpo6IlpjrKyMhQUFJp9rba2FpWVlS3+bENPEwDU1NSgqqpK\nVKABQHl5Oerr6/Hs2TNUV1eLeqHq6upEBV1lZSWqqqpQVlYmKgarqqpExWBtbW2TduXl5dGjRw/R\no6EoanhoaWnBwMAA2tra0NXVhb6+PpSVlVvcD0JI50TFDyGvic/nIycnBzk5OcjNzUVeXp6ouCkq\nKkJBQQEKCgpQVVXV6Od69uyJnj17tnhAfvGhqakJdXV1yMlRx+zLCAQClJeXNykkX1ZoFhUV4cmT\nJ422o6SkBH19fejq6kJHRwf6+vrQ0dGBgYEBjIyMYGxsDBMTE9GpO0JIx0fFDyH/VVBQgIyMDGRn\nZyM3Nxe5ubnIyckRPS8tLRWtq66ujl69ekFbWxsGBgbQ0dER9SRoa2tDT08Penp60NHRobEt7Uxt\nbW2jYrWwsBD5+fkoLCwUFbOFhYV49OgRysvLRT+nqakpKoaMjY1hZGQEIyMjmJiYoHfv3tDT0+Nw\nrwghrUHFD+lSSkpKkJmZiczMTCQlJSE5ORmZmZm4d++e6EAnLy+Pnj17wsDAAObm5jA3N4e+vn6j\n5y87XUQ6j2fPniE/Px+ZmZnIy8sTfd/w/MGDB6Kevm7duqFXr16wsrJC//79Rb8r5ubmMDU1hYwM\nXVxLSHtBxQ/plHJycpCYmIjExETcvXsXSUlJSEtLEx2olJWV0bt37yYPCwsL6Ovr04GKvBahUIi8\nvDxkZGTg3r17yMjIaPR4/vetT58+sLa2hrW1NWxsbGBtbQ0jIyOO94CQromKH9KhVVZW4tatW7h9\n+zbu3r0rKngaBtYaGhqif//+GDBgACwtLUUFjoGBAcfJSVfw8OFDUSGUlpaGO3fuICkpCY8ePQIA\naGhoNCqIBgwYgEGDBkFJSYnj5IR0blT8kA6jvr4eqampuHnzpugRFxeH2tpaqKuro3fv3rCyssLg\nwYNFBY+Ojg7XsQlpoqysDBkZGUhKSsLNmzeRnJyMO3fuoLCwELKysrC0tMTgwYNFjyFDhjS6So8Q\n8mao+CHtVllZGcLCwnD16lVER0fj1q1bePbsGVRUVEQHhCFDhmDo0KEwNTXlOi4hbywrKwuxsbGI\ni4tDXFwc4uPjUVFRASUlJQwcOBDDhw/HmDFjMHr0aNE0BoSQ1qPih7QblZWVCA8Px9WrVxEaGoqb\nN29CKBTCxsYGI0eOFBU6ffv2haysLNdxCZG4+vp6pKSkiIqhiIgIJCYmQlZWFoMHD4azszOcnZ0x\ncuRImq+IkFag4odwKi0tDQEBATh//jxiYmIgEAhgZWUl+k/dyckJPXv25DomIe1GUVERrl27htDQ\nUISGhiIlJQXy8vIYPnw4pkyZAg8PD1hYWHAdk5B2jYofIlWMMcTFxSEgIAABAQFISUmBtrY23Nzc\nMG7cODg7O9N8KYS0Qn5+PkJDQ3HlyhWcP38excXFsLKywrRp0zBt2jTY29uDx+NxHZOQdoWKHyIV\naWlpOHLkCHx8fPDo0SOYm5tj2rRpcHd3x8iRI+k0FiFiUF9fj4iICNEfFw8ePIChoSHmzZuHpUuX\nUo8QIf9FxQ+RmOrqapw5cwZeXl4ICwuDsbExPD094eHhAVtbW67jEdLpJSQkwN/fH7///jtyc3Ph\n5OSEZcuWYfr06VBUVOQ6HiGcoeKHiF1eXh5++OEHHDt2DHw+H25ubli2bBlcXFxo8kBCOFBfX49L\nly7By8sL58+fh7q6Ot5991189NFH0NfX5zoeIVJHRyIiNo8fP8bq1athbm4OHx8fbNy4ETk5OThz\n5gwmTJhAhQ8RiYuLg7Ozs1Tb5PF4ooe0OTs7Iy4uTurtNpCVlcWkSZNw9uxZ5OTkYP369fD29oa5\nuTnWrl2LwsJCzrIRwgU6GpE3JhAIsGvXLlhYWCAoKAh79+5FZmYmNm3axOngZUdHRzg6OnLWPmne\nkSNH4OLigg8++EBibTT32b+sk1vSvyvr1q3D+PHj4eXlJbE2Xpe+vj42b96MzMxMfP/99zh79iws\nLCzw7bffoq6ujut4hEgFFT/kjSQmJmLYsGH46quv8PHHHyM1NRUrV65sF7PRCoVCCIVCrmO8Ele9\nEVz466+/sHz5cvz888+YNm1am7fzqvestZ99S+uL67Px8PDAoUOHsGLFCvz1119vvD1xUFRUxPvv\nv4+0tDSsX78e27Ztw/Dhw5GcnMx1NEIkjsb8kDbz9/fHokWLYGdnh2PHjtGVJG3UcHDt7P8Ua2tr\n0bt3bxgbGyMiIuKNttXW96y1Pyfuz8bBwUF0I1R5eXmxbFNc0tLS4OnpicTERHh7e8Pd3Z3rSIRI\nDPX8kDY5ceIEZs2ahXnz5iE0NJQKH/JKZ86cQW5uLubNm8d1FM7MmzdPNA6uvbG0tER4eDg8PT0x\nffp0+Pj4cB2JEImh4oe0WmRkJDw9PbFx40YcPny43f0FC7Q8uPX55bm5uXB3d4eqqip0dXWxYMEC\nPHnypMX1k5OTMWHCBKipqUFFRQWTJ09GSkpKq9t9cfmL6yxdulS0rKysDB999BHMzc2hqKgILS0t\njBgxAhs3bkRsbGybcwJAYWEhVq1aBUNDQygoKKBXr15Yvnw5CgoKmqxbXV2Nb775BgMHDoSysjIU\nFRXRt29frFy5EtHR0S19DI2cO3cOAGBvby/R96y1A5vb0s7zP9Pw+PPPP0Xrm5qaNrvNIUOGNHov\n2hs5OTkcOHAAH374IRYvXvzany0hHQ4jpBXq6uqYpaUlmzx5MhMKhVzHeSkArLlf8Ybl8+fPZ8nJ\nyay0tJStWrWKAWCenp4trj9ixAgWERHB+Hw+Cw4OZnp6ekxTU5NlZWW1qt3XXc4YY+7u7gwA27t3\nL6uoqGA1NTUsNTWVeXh4NPmZ1uQsKChgJiYmTFdXl126dInx+XwWFhbGTExMmJmZGSspKRGtW15e\nzuzt7Zmqqirz8vJiBQUFjM/ns9DQUNavX78Ws7/I0tKSAWAFBQVv/N687D0T5/Ze1k5wcDADwPT1\n9VlNTU2j17y8vNiUKVOa/ExeXh4DwPr27dti9vZAKBQyV1dX1q9fP1ZXV8d1HELEjoof0ipBQUFM\nRkaGZWRkcB3llV51QLt69apoWVZWFgPADAwMWlz/4sWLjZb/9ttvDABbvHhxq9p93eWMMaampsYA\nMD8/v0bLHz161GLx8zo5V6xYwQCwo0ePNlrX39+fAWCbN28WLVu/fr2oAHtRfHz8axc/KioqDACr\nrq5u8lpHLH4YY8zW1pYBYL///nuj5TY2NuzKlStN1n/27BkDwFRVVVvcZnuRlpbGeDxek98nQjoD\nKn5Iq3z88cds0KBBXMd4La86oJWXl4uW1dTUMACMx+O1uH5paWmj5Q8fPhT95d+adl93OWOMLVmy\nRPS6kZERe++995ivr2+TnobW5jQwMGAAWF5eXqN1i4uLGQBmY2MjWmZsbMwAsAcPHjSb8XXJyMgw\nAM32GHbU4qehsLSzsxMtCwkJYf379292/fr6egaAycrKtrjN9sTOzo598sknXMcgROxozA9pladP\nn0JbW5vrGGKhqqoq+l5BQQHAy6/qUVdXb/S84W7zRUVFEkj3r19//RVnzpzBjBkzUFFRgaNHj2LO\nnDmwsLBAQkJCm3M2TGpnYGDQaNxKw7r3798XrZufnw8Abzxnk5KSEoB/r/rqLN555x3o6+sjISEB\n//zzDwBg3759Lc5h1LDvDe9Fe6etrd1kHBwhnQEVP6RVTE1NkZKS0ukvy27OiweB4uJiAGhSDDYM\nchUIBKJlZWVlbW53+vTpOH36NIqLixEWFgZXV1fk5ORgyZIlbc6pq6sL4N9ilv3bA9zoUVlZ2WTd\nhiKorXr16gUAKC0tbfKauN8zaVFQUMCaNWsAAD/88AMyMzMRFRWFBQsWNLt+SUkJgP+9F+2ZUChE\nSkoKzM3NuY5CiNhR8UNaZcaMGcjJycH58+e5jiJ1kZGRjZ4HBwcDAFxcXBotb+gheb5YuHXrVovb\nbegFEAgEqKqqEvW+AP8WBQ8fPgQAyMjIwNHREb6+vgDQ7BVcr5uzYYLBq1evNvn58PBwODg4iJ7P\nmDEDABAQENBk3ejoaAwbNqzFfXvewIEDAQDZ2dlNXhPneyZOr9POypUroaSkhIsXL2LdunVYunQp\nunfv3uz2Gvbdzs5OInnFKTAwEI8ePcL06dO5jkKI+HF4yo10UHPnzmVGRkassLCQ6ygvBTGP+5g4\ncSILDw9nfD6fhYSEMH19/Wav9lq0aBEDwNasWcNKS0tZSkoKmz9/fovbHz58OAPAIiIi2J9//tno\nKiEAzNXVlSUmJrLq6mpWUFDANm3axACwqVOntjlnUVERs7CwYPr6+szPz48VFxez8vJyFhQUxMzN\nzRsNBi8pKWHW1tZMVVWVHT58WHS1199//80sLCxYcHBwi5/B806cOMEAsEOHDjV5TZzv2fPvxYta\nu/xV7TRouFpQTk6O5ebmtvge7N+/nwFgJ0+ebHGd9qCgoID16tWLLViwgOsohEgEFT+k1YqKithb\nb73FBg0axIqLi7mO06yGg9mLB7XWLn/+taysLDZlyhSmqqrKlJWV2cSJE1lycnKTtouKiti8efOY\ntrY2U1ZWZm5ubiwnJ6fF7cfFxTFbW1umpKTEhg8fztLS0kSvRUREsMWLFzNTU1MmLy/P1NXVma2t\nLdu5cyerrKx8o5xPnz5l69evZ2ZmZkxeXp7p6uoyNzc3FhUV1WRdPp/PtmzZwiwtLZmCggLT0tJi\nLi4uLCws7BWfxP/U1NQwQ0NDNmrUKIm+Z+L87F/WzvPS09OZjIwMmzt37kvfg+HDhzNDQ8NmB6y3\nF0VFRczOzo5ZWFiwJ0+ecB2HEImg21uQNsnKyoKzszPk5OQQGBiI/v37cx1JYjrK7Sc6Qs4LFy7A\nzc0NPj4+mDNnDtdxxEYoFMLQ0BD+/v4YPnx4s+ucOHECCxcuRFBQECZPnizlhK/nzp078PDwAGMM\noaGhMDEx4ToSIRJBY35Im5iZmSE2Nhb6+vqwt7fH//3f/6G+vp7rWKSdmzx5Mn7++WesXLmy2TFE\nHdWFCxdgZGTUYuFz9uxZvP/++/jpp5/aZeFTV1eHb775BkOHDoWhoSFiYmKo8CGdG6f9TqTDEwgE\n7JtvvmHdunVjffv2ZUFBQVxHEju8Yq6X9qKj5GSMsZiYGObk5MR1jDcCgEVFRbGnT5+ywYMHs8DA\nwBbXdXJyYjExMVJM9/quXLnCBgwYwBQVFdk333xDMzqTLoFOexGxuHfvHj777DP4+flh5MiR+OST\nT+Dm5sZ1rDf24r2Z2us/l46SszNpeM+1tLSwZs0abNu2jdtArRQREYFt27YhJCQEU6ZMwZ49e9C7\nd2+uYxEiFXTai4iFhYUFTp06hfDwcCgrK2Pq1Kmws7PDoUOHmp3XpaNgL8x/0151lJydScN7XVxc\n3GEKn9LSUhw8eBC2trZwdHSEvLw8IiMjERQURIUP6VKo54dIRFxcHH766SecOnUKjDHMmjULy5Yt\nw8iRI7mORkiXEx4eDi8vL5w+fRoyMjKYM2cOVq1aBXt7e66jEcIJKn6IRJWVlcHHxwdeXl6Ij4+H\npaUlPDw84OHhgSFDhjQ5XUMIeXNCoRCxsbEICAiAv78/7t27B3t7eyxduhTvvPMO1NTUuI5ICKeo\n+CFSc/PmTZw8eRIBAQHIzMxEr169MHXqVHh4eGDMmDGQl5fnOiIhHVZtbS1CQ0MREBCAwMBA5Ofn\n46233oKHhwfmzZsnmmGbEELFD+HInTt3EBAQgICAANy6dQvq6upwcnLC2LFj4ezsDBsbG+oVIuQl\nhEIh7t69i9DQUPzzzz+4du0aysvLMXjwYEybNg3u7u6wsbHhOiYh7RIVP4Rz2dnZOH/+PEJCQhAW\nFoYnT56gZ8+ecHJygrOzM5ydndGvXz8qhkiXxhhDcnIyQkNDERoaimvXruHJkyfQ0tKCk5MT3n77\nbUyZMgXGxsZcRyWk3aPih7Q7mZmZCA4OFj1KSkqgpqYGGxsbDB48GIMHD4ajoyPMzMy4jkqIxOTn\n5+PGjRu4efMmbt68iejoaBQXF0NFRQXDhw/HuHHjMG7cOAwcOBAyMnThLiGtQcUPadfq6+tx69Yt\nREdHIzY2FnFxcUhLSwNjDEZGRhgyZAiGDBmCQYMGwdraGgYGBlxHJqTVHj16hKSkJMTHx4t+zx8+\nfAgZGRn06dMHQ4cOxZAhQ+Dg4AA7OzvIyspyHZmQDo2KH9LhlJWVIS4uTnSQiIuLw6NHjwAAPXr0\ngLW1NaytrWFjY4P+/fvD2toampqaHKcmBCgpKcHdu3eRlJQk+hoTE4OamhoAQK9evTBkyBAMHToU\nQ4cOhb29PdTV1TlOTUjnQ8UP6RSKi4sbHVQSExORlJSEsrIyAIChoSH69u2L3r17ix59+vSBubk5\nunXrxnF60pnU1NQgIyMDGRkZuHfvnuj71NRUUZGurq4Oa2tr9O7dG1evXkVOTg40NTUxffp0zJ49\nG2PHjqXeHUIkiIof0qllZ2cjKSkJiYmJSE9PFx2Q8vLyAAAyMjIwMjKChYWFqCgyMTGBoaEhjI2N\noa+vTwOtSSNCoRAFBQXIyclBbm4usrOzRQVORkYGcnNzIRQKAfzbk/N8sd3QG/nioOScnBycPXsW\nfn5+uH79OjQ1NTF58mTMmjULEydOhJycHBe7SkinRcUP6ZIqKysbHbCe/ws9Pz9fdPBSUFBAr169\nYGRkBBMTExgZGYkehoaG0NHRgY6ODv2V3knU1dWhqKgIjx8/xsOHD5Gbmyt6ZGdnIzc3F3l5eait\nrQXwb/FsYGDQqEfx+UJaSUmp1Rmys7MREBAAPz8/REZGQktLC5MmTaJCiBAxouKHkBcIBAI8evSo\n0QHv4cOHyMnJQXZ2Nh4+fIiSkhLR+jIyMtDW1oaOjg709fWhq6sLHR0dGBgYQEdHB3p6etDW1kaP\nHj3Qo0cPKCsrc7h3XU9FRQVKSkrw9OlTFBUVoaCgAIWFhcjLy0NhYSEeP36M/Px8FBYWorCwsNG9\n0TQ1NWFkZARjY2MYGxuLCt+GQtjAwECik3Omp6fj1KlTOHXqFO7evQsDAwPMmjULixYtwqBBgyTW\nLiGdHRU/hLRBRUUFHj58iKKiIuTn5+Px48eNDqgFBQWig2xDL0EDBQUFUSGkqakp+v7556qqqlBW\nVoa6ujpUVVWhpKQEZWVlaGpqQllZGQoKChztuXTV1taisrISJSUlqKysRGVlJSoqKlBaWoqqqirw\n+Xw8ffoUT58+FRU4Lz5v7v1/WaGqp6cHHR0dGBoatqtCNSUlBadOnYKPjw/S0tJgY2MDT09PzJ8/\nH7q6ulzHI6RDoeKHEAl78uQJiouLGx2cX/U9n8/Hs2fPWtymvLw8VFRUoKGhASUlJSgqKqJbt25Q\nUlKCjIyM6AohNTU1yMrKonv37lBUVIScnBxUVVVF2+HxeNDQ0Gi2DVlZ2RbvAVVeXo76+vpmX3u+\nVwwA+Hw+6urqUFVVherqatTX14PP5wP49y7jjDFUVlaitrYW1dXVqKysRFlZGSoqKiAQCFp8D5SU\nlKCiotJsIdnS91paWtDS0mpxmx1FVFQUfvvtN/j6+qKyshITJ06Ep6cnpkyZ0mUKY0LeBBU/hLRT\nQqEQZWVl4PP5OH36NLZs2QJbW1t88sknol6Qhh6R2tpaPHv2DNXV1airq2tSXJSWliIrKws6Ojqi\ny6qBf0/xVVRUNNt+dXV1iwWYkpJSi1fJqaioNDoV1NBTlZGRAR0dHZiamooKLlVVVcjJyUFRURHd\nu3eHgoJCox4uZWVlUZHX8H3DcxqI/u+VZefOncPx48fx999/Q0tLC56enli2bBneeustruMR0m5R\n8UNIO1ZfX4/PPvsM3377LZYtW4aDBw+2aYzJggULEB4ejqSkJKioqEgg6at9++232LJlC8LCwjB8\n+HBOMnRmubm5OHLkCI4ePYr8/HyMGzcOK1asgJubG900mJAXUPFDSDtVXFyMd955BxEREfjxxx+x\nZMmSNm3n2rVrcHZ2RkBAAKZOnSrmlK+PMQY3NzekpKTg1q1bLZ5SI2+mrq4O58+fxy+//ILLly9D\nV1cXy5Ytw6pVq6Cnp8d1PELaBSp+CGmHbt26henTp6O+vh7+/v6wt7dv03Zqa2thZ2eHPn36ICAg\nQMwpW6+wsBC2trYYPXo0fH19uY7T6WVlZcHLywtHjhxBWVkZZs+ejXXr1mHIkCFcRyOEU3Q3PELa\nGW9vb4wcORJmZma4ceNGmwsfAPjmm2+QnZ2NPXv2iDFh2+no6OC3336Dn58ffv/9d67jdHpmZmb4\n+uuvkZubC29vb9y7d09024zjx4+/dEA5IZ0ZFT+EtBN1dXX49NNPsWjRIqxbtw5XrlyBjo5Om7d3\n//597Nq1C9u2bYOZmZkYk74ZV1dXrF+/HqtXr0ZqairXcbqEbt26YdasWYiOjsaNGzdgZWWF9957\nD8bGxti2bZvoNjCEdBV02ouQdiAvLw8zZ85EYmIifv31V8ycOfONtzllyhQ8ePAAt27dancDXgUC\nARwdHSEQCHD9+nW6vxoHHjx4gD179uDo0aNQVFTE6tWrsWbNGmhra3MdjRCJo54fQjgWEREBe3t7\nPHnyBFFRUWIpfHx9fXHx4sU2Xx0mafLy8jhx4gQyMjKwadMmruN0Saampti3bx8ePHiANWvW4Mcf\nf4SpqSnWrl2LBw8ecB2PEIminh9COHT48GGsXbsWLi4u8Pb2Fk1O+Cb4fD769euHCRMm4MiRI2JI\nKTmnTp3C3LlzERgYCDc3N67jdGk1NTXw9fXFV199hQcPHmDu3Ln44osv0Lt3b66jESJ2VPwQwoFn\nz55h+fLl8PHxwY4dO7Bp0yaxTdr3wQcf4MSJE0hJSekQpzAWLVqEv//+GwkJCTAwMOA6TpcnEAjg\n7e2Nr776Crm5ufD09MTmzZthamrKdTRCxIaKH0KkLC8vD9OmTcP9+/dx8uRJuLq6im3b8fHxGDp0\nKLy8vNo8L5C0VVZWYvDgwdDT00NISAhkZWW5jkTwbxH0xx9/YOfOnXj48KGoCDIxMeE6GiFvjIof\nQqQoOjoa06dPh6qqKs6dOwdLS0uxbZsxhpEjR0JWVhZhYWEd6vYP8fHxcHBwwPbt2/Hpp59yHYc8\nRyAQwMfHR3Q6bMmSJdixYwfdTJV0aDTgmRAp+fPPPzF27FjY2toiNjZWrIUPAJw4cQIxMTHYs2dP\nhyp8AGDQoEHYtWsXPv/8c0RFRXEdhzxHXl4eixYtQlJSEvbt2ycq2r/++mtUVVVxHY+QNqGeH0Ik\njDGG7du3Y/v27Vi3bh1++OEHsZ/aqaqqEg1y/uWXX8S6bWlhjMHd3R23b99GQkICNDU1uY5EmlFZ\nWYmDBw/i66+/hoqKCrZu3Yp3330XcnJyXEcj5LVR8UOIBPH5fCxcuBB///03fv75Z3h6ekqknc8/\n/xz79u1Denp6h75/U1FREWxtbTFy5Ej4+flxHYe8xOPHj7Fjxw54eXnBwsICe/fuxfjx47mORchr\nodNehEhIRkYGhg8fjtjYWFy9elVihU9ubi5++OEHbN26tUMXPgCgra2NkydP4uzZs/j111+5jkNe\nQldXF4cOHUJSUhIsLCzg4uICDw8PZGZmch2NkFei4ocQCYiIiICDgwO6d++O2NhYDB8+XGJtbdiw\nAQYGBlizZo3E2pCmMWPGYOPGjVi3bh1SUlK4jkNewcLCAgEBAQgJCUFGRgb69euHDz74AHw+n+to\nhLSITnsRImanTp3C4sWLMXHiRHh7e0NJSUlibUVGRsLR0RFBQUGYPHmyxNqRtrq6OowePRp8Ph+x\nsbHo3r0715HIaxAIBDhw4AB27NgBVVVVfPfdd5gzZw7XsQhpgnp+CBETxhh2796NuXPnYvny5Th9\n+rRECx+hUIgPPvgAb7/9dqcqfABATk4O3t7eyM3NpUvfOxB5eXmsX78eaWlpcHFxwTvvvIPJkycj\nOzub62iENELFDyFiUFNTg0WLFmHLli04cOAA9u3bBxkZyf7zOnLkCG7fvo09e/ZItB2umJubw8vL\nCwcOHEBgYCDXcUgr6Orq4ujRowgLC8ODBw9gZWWF3bt3o76+nutohACg016EvLEnT55g+vTpuHXr\nFv78809MmjRJ4m2Wl5fD0tISc+fO7bTFT4N3330XAQEBSEhIgLGxMddxSCsJBALRgPx+/frBy8sL\n9vb2XMciXRz1/BDyBlJTUzFs2DDk5uYiKipKKoUPAGzfvh21tbXYsmWLVNrj0oEDB6Crq4uFCxdS\nz0EHJC8vj08++QTx8fFQVlaGg4MDtmzZAoFAwHU00oVR8UNIG0VERGDkyK+RDQ0AACAASURBVJHQ\n1tZGdHQ0+vfvL5V209PTcfDgQXz11VfQ0tKSSptcUlZWxqlTpxAXF4ddu3ZxHYe0kZWVFcLCwrBv\n3z7s3bsXw4YNQ1JSEtexSBdFxQ8hbXD27Fm4uLjA0dERISEh0NHRkVrbn376KSwtLbF8+XKptck1\nGxsb7Nq1C9u3b0dkZCTXcUgbycjI4P3338fdu3ehqqoKe3t77N69G0KhkOtopIuhMT+EtNL+/fvx\n0Ucf4d1338VPP/0k1Wn9o6OjMWLECFy4cAETJ06UWrvtAWMMHh4eiI+PR0JCAnr06MF1JPIG6uvr\n8d133+GLL76Avb09jh8/jrfeeovrWKSLoOKHkNfUcI+uHTt24IsvvsC2bduknmHUqFGQk5PD1atX\npd52e1BSUgI7OzvY29vjzJkzXMchYnDr1i0sXLgQubm58PLywuzZs7mORLoAOu1FyGuoqanB/Pnz\nsWvXLnh7e3NS+Pj7++P69ev47rvvpN52e6GpqYnjx48jMDAQhw8f5joOEYOBAwfixo0bWLRoEebM\nmYPVq1ejpqaG61ikk6OeH0JeobS0FNOmTUN8fDz8/Pzg6uoq9Qx1dXUYMGAA7OzscPLkSam3395s\n2bIF33//PWJiYjBgwACu4xAxCQgIwJIlS2BmZoZTp06hd+/eXEcinRQVP4S8RF5eHlxdXVFaWoqL\nFy/CxsaGkxw//fQTPvzwQyQnJ9O4CPxbDI4ZMwalpaWIi4uj2190ItnZ2ZgzZw5SUlJw+PBhuj0G\nkQg67UVICzIyMjBq1CjU19fj+vXrnBU+VVVV+PLLL7Fy5UoqfP5LTk4OPj4+yM/Px8aNG7mOQ8TI\nxMQEV69exfz58/HOO+9gw4YNNL8TETsqfghpRmJiIpycnKClpYVr167ByMiIsywHDx5EeXk5Nm/e\nzFmG9sjIyAiHDx/Gjz/+CF9fX67jEDFSVFTEjz/+CG9vb/z000+YPHkySktLuY5FOhE67UXIC2Ji\nYjBp0iQMGDAAgYGBUFNT4yxLRUUF3nrrLSxduhQ7d+7kLEd7tnz5cvj5+SEhIQEmJiZcxyFilpCQ\nAHd3dygoKODcuXPo168f15FIJ0A9P4Q858KFC3B2doajoyP++usvTgsfAPjhhx9QU1ODDRs2cJqj\nPdu/fz+MjY3p9hedlJ2dHaKjo9GzZ08MHz4c58+f5zoS6QSo+CHkv06ePAkPDw/MmjULp0+fhqKi\nIqd5SktLsXfvXmzYsIEm9HsJRUVFnDx5Ejdu3MCXX37JdRwiAfr6+ggNDYW7uzumTZuGAwcOcB2J\ndHCy27iYsISQdubAgQNYsWIFNmzYgIMHD0JWVpbrSNixYwfi4+Ph4+ODbt26cR2nXdPR0YGGhgY2\nbdoER0dHmJmZiV4rKyvDd999BxsbG7oqrAOTk5ODh4cHunXrho0bN6Kqqgrjxo0Dj8fjOhrpiBgh\nXdzu3bsZj8dju3fv5jqKSGFhIVNWVmb/93//x3WUDmXatGnM0NCQFRcXM8YYi46OZoaGhgwA279/\nP8fpiLh4e3szeXl5tmDBAlZbW8t1HNIB0YBn0qXt3r0bmzZtwp49e/DBBx9wHUdk06ZNOHLkCLKy\nsqCiosJ1nA6jpKQEAwcORP/+/TFq1Ch8/vnnAAChUIgxY8bgn3/+4TghEZeQkBB4eHhg2LBh8Pf3\nh6qqKteRSAdCxQ/psrZu3Yovv/wSBw4cwOrVq7mOI1JaWgpTU1Ns3rwZ//nPf7iO0+EEBgZi/vz5\nqKqqwvP/vcnKyqK4uBgaGhocpiPidOPGDUyePBkmJia4cOECtLW1uY5EOgga8Ey6HMYYNmzYgJ07\nd+LXX39tV4UPAOzduxeysrJYtWoV11E6nODgYLz33nuora3Fi3/XCYVCXLlyhaNkRBLs7e0RHh6O\noqIijBkzBgUFBVxHIh0EFT+kS2GM4cMPP8S+fftw7NgxeHp6ch2pkfLycuzfvx8ffvghdeO3gkAg\nwNatW+Hi4oKSkhIIBIIm68jKyuLcuXMcpCOS1KdPH0REREAgEGDs2LFUAJHXQsUP6TIYY1izZg1+\n/vln+Pr6YuHChVxHauLgwYOor6/HmjVruI7SoXz55ZfYsWMHGGMQCoXNrlNXV4dz587RXECdUK9e\nvRAWFgYej4cxY8YgLy+P60iknaPih3QJQqEQ7777Lo4ePYozZ85gxowZXEdqorKyEnv27MHatWuh\nqanJdZwOZe3atZg8eTJ4PN5LL30uLy/H9evXpZiMSIuenh7++ecfyMrKYuzYsVQAkZei4od0eowx\nrFq1Cj4+Pjh79iymTJnCdaRm/frrr6iqqsKHH37IdZQOR1tbG+fPn4evry+UlZUhLy/f7HoKCgoI\nCgqScjoiLbq6urhy5QoYY3j77bfpFBhpEV3tRTq9jz/+GPv27YOfnx/c3d25jtOs+vp6WFpaYsKE\nCTh48CDXcTq07OxsLFiwANevX2/2FJi5uTnu37/PQTIiLXl5eXB2dkb37t1x7do1qKurcx2JtDPU\n80M6tYY5fI4fP95uCx8AOHPmDLKysqjXRwxMTEwQFhaGH374AfLy8pCTk2v0emZmJtLT0zlKR6TB\nwMAAISEhePr0Kdzd3VFdXc11JNLOUPFDOq3PP/8c3377LX777TfMnTuX6zgvtWfPHnh4eKB3795c\nR+kUeDwePvjgA9y6dQv9+vVrdLsSeXl5ujlmF2BoaIiLFy/izp07mDt3Lg10J41Q8UM6pe+//x47\nd+7ETz/9hAULFnAd56XCw8MRHR1Nd26XgP79++PGjRv4+OOPISMjAzk5OdTV1cHf35/raEQKrK2t\nERAQgEuXLtEVlKQRGvNDOp3vv/8eH3/8MX788UesXLmS6zivNG3aNOTn5yMmJobrKJ1adHQ03nnn\nHTx48AAyMjIoLCyEgoICBAIBSktLIRAIUFFRAQCoqKhoMlcQYwylpaXNbltDQ6PJVWYKCgpQVlYG\nAKioqEBeXh6ampqQk5OjOZyk7MyZM5gzZw527NiBzZs3cx2HtANU/JBO5ejRo1i2bFm7u1dXS+7f\nv48+ffrA19cXM2fO5DpOh1JbW4uioiLk5+ejuLgYpaWlokdJSUmjrw2PZ8+eoaioCDU1NVzHh6Ki\nIrp37w4VFRUoKipCQ0ND9NDU1ISmpmajZRoaGtDW1oaenh60tbWhoKDA9S50KIcOHcLatWtx+vRp\nTJ8+nes4hGNU/JBOIygoCNOnT8dnn32Gbdu2cR3ntWzYsAGnT5/G/fv3mwzM7arq6urw6NEj5OTk\n4MGDB3j06BEKCgpQVFSER48eoaioCI8fP8aTJ08a/ZysrGyj4uH5rw2P7t27Q1lZGcXFxTAzMxP1\nxGhqakJWVhZqamoAgG7dukFJSalJNjU1tUbjh4B/r9QrLy9vsm5VVZWoyCovL0d9fT1KSkpQV1cH\nPp+P6upqPHv2DBUVFaiurm5SvL1YuL04ZkVLSwu6urrQ0dGBgYGBqDAyNDSEqakpjIyM0KtXL/q9\nes6qVavg7e2N6Oho9O/fn+s4hENU/JBOITo6GuPGjcP8+fPxyy+/cB3ntVRVVcHIyAgbN27Epk2b\nuI4jVfn5+UhLS0N6ejqysrKQm5uL7OxsZGdnIy8vT3SgV1BQgIGBgejgrq+v3+iAr6OjI3re2U8l\n8fl8FBYWigrBvLw8FBYW4vHjx8jPz0dhYSHy8/ORl5eH2tpaAP8WhAYGBjAxMYGJiQmMjY1hamqK\nPn36oG/fvtDT0+N4r6RLIBDg7bffxuPHjxEbG0uXwHdhVPyQDi8pKQmjR4/GqFGjcObMmQ7zl+7h\nw4exbt065OTkQEdHh+s4YicQCJCSkoKUlBSkp6cjNTUV6enpSE9PF/WUqKmpwczMTHRQNjY2hpGR\nEYyNjWFiYgJ9ff2XzthMmhIKhSgoKEB2djZycnJEj4bnWVlZjd5/S0tLUTHU8LVfv34tThTZ0RUU\nFGDw4MGwt7fH2bNnISND1/10RVT8kA7t4cOHGDFiBMzNzfH3339DUVGR60ivzdbWFgMHDsRvv/3G\ndZQ3VlZWhrt37yI5ORlJSUm4efMm4uPj8ezZM8jJycHY2Bjm5uYwNzeHlZUV+vfvD3Nzc5iZmVFx\nw4GSkhJkZmYiKSkJycnJyMzMFD2vrq6GvLw8LCwsMHjwYPTv3x9WVlYYNmxYpynSIyIiMHbsWHz1\n1Vf4z3/+w3UcwgEqfkiHVVxcDEdHR8jLy+PatWsd6n5YYWFhcHJyQmxsLIYMGcJ1nFapra1FfHw8\noqKicP36dcTGxiInJwcAoKOjA1tbW9jZ2cHW1ha2trawtLTstL0InY1AIEBqaipu374teiQkJKCo\nqAgAYGxsjGHDhmHEiBFwcHDAoEGDOuxn++233+Lzzz9HbGwsbG1tuY5DpIyKH9IhVVVVYfz48cjP\nz0dkZCT09fW5jtQqc+bMQXZ2NqKjo7mO8kplZWW4du0aIiMjcf36ddy4cQPV1dXo2bMnHBwc4ODg\ngIEDB8LW1rbDfQ7k9eTl5eH27du4desWoqKiEBUVhSdPnqB79+6wt7eHg4MDRo4cCScnpw4zjkYo\nFGLs2LEoKirCzZs3O1SvMXlzVPyQDkcgEMDd3R03btxAeHg4LC0tuY7UKvn5+TAxMcHRo0excOFC\nruM0UV9fj4SEBAQHByM4OBhhYWGora2Fubk5Ro4ciVGjRmHkyJGwsrKiU1ZdWF5eHiIjIxEREYHI\nyEjcunULPB4PdnZ2GDduHMaNGwcnJ6d23TOUlZUFW1tbrFq1Crt37+Y6DpEiKn5Ih8IYw7vvvosz\nZ84gNDQUgwcP5jpSq23duhU//fQTcnJy2s1fmyUlJQgMDERgYCBCQ0NRVlYGY2NjjB8/Hi4uLnj7\n7behpaXFdUzSjhUXFyMkJARXrlzBlStXkJOTAw0NDYwdOxbu7u6YOnUqNDQ0uI7ZxJEjR7BixQr8\n888/cHJy4joOkRIqfkiHsmHDBhw8eBDnzp2Dq6sr13FaTSAQwNTUFEuWLMFXX33FaZaGgsfPzw/B\nwcHg8Xh4++23MWHCBIwfPx59+/blNB/p2FJTU3HlyhVcunQJwcHBYIxh/PjxmDVrFtzd3dtVITRl\nyhRkZGTgzp07NHlkV8EI6SB++OEHJiMjw/7880+uo7TZiRMnmJycHMvJyeGk/bq6OhYYGMimTJnC\nFBQUWLdu3djUqVPZ8ePHWWlpKSeZSOdXWlrKjh8/ztzc3Fi3bt2YgoICc3NzY0FBQayuro7reCw7\nO5spKyuzXbt2cR2FSAn1/JAO4a+//oKbmxt2797doW8AOmrUKOjq6uLMmTNSbTc/Px9HjhyBl5cX\nHj16hHHjxmHhwoWYOnWqaFZjQqShrKwMQUFBOH78OIKDg2FsbIxly5bhvffe43TSxa+++gq7du1C\ncnIyTExMOMtBpIOKH9LuJSQkwNHREbNnz8bRo0e5jtNmKSkpsLKywpUrVzBu3DiptJmamort27fj\nzJkzUFdXx5IlS7B8+XL07t1bKu0T8jL37t3D4cOHcezYMZSXl2P27Nn44osv0KdPH6lnqa2txYAB\nAzBgwACcOnVK6u0T6aLih7Rr+fn5GDZsGMzNzXH58uUOfT7+gw8+wPnz53Hv3j2JzyqbmZmJ7du3\n48SJE+jXrx8+/fRTzJw5E926dZNou4S0RXV1Nfz8/PDNN98gPT0dCxYswNatW2FqairVHH/99Rcm\nTZqEy5cvY/z48VJtm0gXFT+k3Xr27BnGjBmD8vJyXL9+vUNNYviiZ8+ewdDQEB9//DE+/fRTibXD\n5/OxefNm/PLLLzAzM8PWrVsxd+5cmsKfdAhCoRAnT57E9u3bkZOTg5UrV2Lnzp1QUVGRWgZ3d3dk\nZ2cjPj6e/t10YvTJknZJKBRi/vz5uH//PoKCgjp04QMAfn5+KC8vx+LFiyXWRmhoKAYMGABfX1/8\n/PPPSEpKwrx58zrtf+A8Hk/06Eji4uLg7OzMdYzX4uzsjLi4OKm1JyMjgwULFiAlJQWHDh3CyZMn\nYWtri2vXrkktw9dff43ExEQ69dXZcTfWmpCWbdy4kSkoKLDQ0FCuo4jFqFGj2MyZMyWy7ZqaGrZu\n3TrG4/HY9OnT2ePHjyXSTnsEgDX339ioUaPYqFGjOEj0cl5eXkxDQ4OdPXuW6yivxd/fn6mrq7PD\nhw9z0n5BQQFzd3dnMjIy7MMPP2S1tbVSaXfhwoXMwsKCCQQCqbRHpI+KH9LuHD16lPF4PHb8+HGu\no4hFSkoK4/F47NKlS2LfdklJCXN2dmbq6ursxIkTYt9+e9dS8TNixAg2YsQIDhK17OLFi4zH43W4\nqRq8vb0Zj8djFy9e5CzD77//zlRVVdm4ceNYWVmZxNvLyspiCgoKzMvLS+JtEW7QmB/Srly7dg0u\nLi7YtGkTtm3bxnUcsfjoo48QGBiIjIwMsZ6Cari/WU5ODi5evAgbGxuxbbujaDjl1d7/G6utrUXv\n3r1hbGyMiIgIruO0moODA/Ly8pCRkcHZ7SoSEhIwadIk9O7dG5cuXUL37t0l2t7q1asRFBSE9PT0\ndjMTOxGfzjkYgHRIqamp8PDwgLu7O7Zu3cp1HLGoqamBt7c3li5dKvaxN0uXLsW9e/dw5cqVLln4\ndCRnzpxBbm4u5s2bx3WUNpk3bx5ycnKkPj/V8+zs7BAcHIzk5GSsWLFC4u199tlnKCoqwvHjxyXe\nFpE+Kn5Iu1BUVITJkyejb9++OH78eIcbxNoSPz8/lJaWwtPTU6zbPX36NHx9fXHixAlOb0Px/KDj\n+/fvY/r06dDU1GwyELmwsBCrVq2CoaEhFBQU0KtXLyxfvhwFBQVNthkcHIypU6dCU1MTioqKGDRo\nEP788882ZXpRUlISJk2aBBUVFaipqcHV1RXJycnN/szzy3Jzc+Hu7g5VVVXo6upiwYIFePLkyWtn\nOnfuHADA3t6+0fKysjJ89NFHMDc3h6KiIrS0tDBixAhs3LgRsbGxzWZJTk7GhAkToKamBhUVFUye\nPBkpKSktvgd5eXmYMWMGVFVVoaWlhcWLF6OsrAwPHjwQTXKpp6cHT09PlJaWNpt/yJAhjfaDK1ZW\nVvjjjz/g7e2NwMBAibZlYGCAhQsX4rvvvoNQKJRoW4QDHJ92I4TV1tYyJycnZmpq2ukG644ePZpN\nnz5d7Nvt378/mz9/vti32xb477ib8ePHs8jISFZVVcUuXrwoGotTUFDATExMmK6uLrt06RLj8/ks\nLCyMmZiYMDMzM1ZSUtJke9OmTWNFRUUsOzubjR8/ngFgf//9d4ttv87yjIwMpqGhwQwMDFhISAjj\n8/ksIiKCjRw58pXbmT9/PktOTmalpaVs1apVDADz9PR87ffI0tKSAWAFBQWNlru7uzMAbO/evayi\nooLV1NSw1NRU5uHh0SRPQ5YRI0awiIgIxufzWXBwMNPT02OamposKyur2fUXLFggyr569WoGgE2e\nPJl5eHg02adly5Y1mz8vL48BYH379n3tfZakOXPmsAEDBki8nbS0NCYjI8P8/f0l3haRLip+COfW\nrFnDunfvzm7evMl1FLFKTU1lPB6P/fXXX2Ld7p07dxgAFhMTI9bttlXDQbalK/NWrFjBALCjR482\nWu7v788AsM2bNzfZ3vMH8pSUFAaAOTo6ttj26yxfsGABA8D++OOPRssvXLjwyu1cvXpVtCwrK4sB\nYAYGBs3ub3NUVFQYAFZdXd1ouZqaGgPA/Pz8Gi1/9OhRi8XPiwOPf/vtNwaALV68+JXZG7b74vLc\n3FwGgPXq1avZ/M+ePWMAmKqq6mvvsyRdv36dAWBJSUkSb2vatGls6NChEm+HSBcVP4RTx48f75BX\nwLyOjRs3MhMTE1ZfXy/W7f7+++9MSUmJCYVCsW63rRoOppWVlc2+bmBgwACwvLy8RsuLi4sZAGZj\nY/PS7dfV1TEATEtLq8W2X2e5rq4uA8AePXrUaHlJSckrt1NeXi5aVlNTwwAwHo/30tzPk5GRYQCa\nfGZLliwRtWFkZMTee+895uvry2pqalrM8uINaB8+fMgAMH19/Vdmr6+vf+nylvap4XVZWdnX3mdJ\nqq+vZ4qKik0KWUmIiYlhAFh4eLjE2yLSQ2N+CGfi4+OxYsUKfPrpp5gzZw7XccSqrq4OJ06cgKen\np9gHOpeXl0NVVbXdjYtSUlJqdnlhYSGAf8dQPD8WpWfPngCA+/fvi9YtLS3F5s2b0a9fP9E+ysnJ\nAUCrxtg0p7i4GABE7TbQ0NB45c+qqqqKvm+4xQprxRVmDe9NbW1to+W//vorzpw5gxkzZqCiogJH\njx7FnDlzYGFhgYSEhGa3pa6u3uh5w/4UFRW9Mvvzv4vNLW9pnxpyt/QZS5uMjAzU1NRQVlYm8baG\nDh0KBwcH7Nu3T+JtEemh4odwoqCgAO7u7nB0dMSXX37JdRyx++uvv1BQUICFCxeKfdv6+vp48uQJ\nKisrxb5tSdDV1QUAPH36FOzf3uZGj+f3Y/bs2di1axfmzJmD7Oxs0Tri0FAkNBRBDV58Lgm9evUC\ngGYHFE+fPh2nT59GcXExwsLC4OrqipycHCxZsqTZbb1YBDbk19bWFnPq/ykpKQHwv/3gGp/PR3Fx\nMQwMDKTS3qpVqxAQEIC8vDyptEckj4ofInUCgQCzZ8+GkpISfH19ISsry3UksTt27BjGjBmDt956\nS+zbHj16NBhjOH/+vNi3LQnTpk0DAFy9erXJa+Hh4XBwcBA9j4yMBABs2LABPXr0APDvdAHi4OLi\nAgAICQlptLyhTUkaOHAgACA7O7vRch6Ph4cPHwL4tzfD0dERvr6+ANDkCq4GL+YNDg4G8L/9k4SG\n3HZ2dhJrozWCgoIgIyOD0aNHS6W9WbNmQU1NDb///rtU2iNSwNX5NtJ1LV++nKmqqrLExESuo0hE\ncXEx69atm0RnqJ45cyYbMGBAu5h+Hy2Ml2lQVFTELCwsmL6+PvPz82PFxcWsvLycBQUFMXNz80YD\nb11dXRkAtmnTJlZSUsKePHnC1q9f36qxPS0tv3//fpOrvcLDw9nEiRPFsv2XOXHiBAPADh061GQ7\nrq6uLDExkVVXV7OCggK2adMmBoBNnTq12TYnTpzIwsPDGZ/PZyEhIUxfX/+lV3uJY5/279/PALCT\nJ0++9j5LSm1tLbOysmJz586VarsffvghMzMzE/sYPsINKn6IVP3444+Mx+M1ubqlM9mzZw9TUVFh\nfD5fYm2kpqYyJSWlJldKSVvDAfP5R3OePn3K1q9fz8zMzJi8vDzT1dVlbm5uLCoqqtF6jx8/ZgsX\nLmQ6OjpMQUGBWVtbM19f32a331K7L8uTmJjIJk6cyJSVlZmqqiqbMmUKu3//PgPAZGRkXrpvr7P9\nltTU1DBDQ8Mm9xuLiIhgixcvZqampkxeXp6pq6szW1tbtnPnziYDyBvay8rKYlOmTGGqqqpMWVmZ\nTZw4kSUnJ79R9lft0/Dhw5mhoWGzA7Gl7T//+Q9TVlZm9+7dk2q7DbepaW7KBdLxUPFDpCYyMpIp\nKCiw7du3cx1FomxtbdnSpUsl3k7DPdB++eUXibfVmTVc/q2joyPRds6fP/9GVza2trdJXBru7XX+\n/Hmpt/2igwcPMh6Px3777TdO2h89erTEblBMpIuKHyIVeXl5zMDAgLm7u3fqbuP4+HgGgEVGRkql\nvS+//JLxeDz29ddfS6W9jg5Akx4DHx8fBoDNmTNH4u3/8ssvbb6rOxfFj7+/P1NTU2M///yzVNt9\nkVAoZDt27GA8Ho/t2rWLsxxHjhxhioqKTSbmJB0PFT9E4p49e8aGDBnCrKysGs0t0hmtXbuWWVhY\nSHUOHi8vLyYnJ8dcXV3Zw4cPpdZuRwSAubi4sPv377OKigoWHBzMjI2NmZqaGktJSZFKhpiYGObk\n5NTqn+Oi+HFycuJ8Ms38/Hw2depUJisr22TMlLSVlZUxRUVFduzYMU5zkDdHV3sRiVu7di3u3buH\ngICARnOLdDa1tbXw8fHBkiVLpDoHz9KlSxEWFoasrCxYW1vj8OHDUmu7owkODoaKigpGjBgBDQ0N\nvPPOOxg+fDhiYmKkdo+0oUOHNnvl28u8eM8xabl69SqGDh0qtfZe5OfnB2trayQmJuKff/7B+++/\nz1kWAFBTU8OECRPg4+PDaQ4iBlxXX6Rzaxgv0BXujePn58dkZGRYTk4OJ+1XVFSw1atXMx6Px1xc\nXDj/i52QtoqKimLjxo1jPB6PrV27tsXZw7ng6+vLZGVlWX5+PtdRyBugnh8iMXfv3sXy5cvxySef\nwMPDg+s4Enfs2DG4uLjAyMiIk/aVlZVx8OBBXL16FZWVlRg2bBjc3d1x+/ZtTvIQ0lrx8fFwc3OD\ng4MDqqurERYWhv3797ebmaUBwM3NDUpKSvDz8+M6CnkDVPwQieDz+Zg9ezaGDh3aKWdwflFBQQEu\nX74MT09PrqNg9OjRiIiIwMWLF5GXl4eBAwdiypQpuHDhAoRCIdfxCGmkvr4eQUFBmDRpEuzt7VFY\nWIi///4b4eHhGDVqFNfxmujevTvc3Nzg7+/PdRTyBqj4IWLHGMOSJUtQUlKCEydOiO7N1Jn9+eef\nUFJSwtSpU7mOIjJx4kTExsYiICAANTU1cHNzg7m5Ob7++msUFBRwHY90cQUFBdi5cyfMzc3h7u6O\nuro6nDt3DjExMXB1deU63ktNnToV4eHhb3y/OcIdHmNiunEOIf/13XffYdOmTQgJCZHa9PNcs7e3\nh62tLY4ePcp1lBalp6fjl19+we+//w4+nw8XFxfMmjULU6dOfa2bexLypkpKSnDu3Dn4+fnh8uXL\nUFNTw5IlS7BixQr07t2b63ivjc/nQ1tbG0eOHMGCBQu4jkPagIofIlZRUVFwcnLCzp078fHHH3Md\nRypSU1PRr18/hISEYOzYsVzHeaXq6mqcPn0ap06dwuXLl8EYw/jxSzG48gAAIABJREFU4zFz5ky4\nu7tDU1OT64ikEykpKUFAQABOnz6N4OBg8Hg8uLq6Yvbs2ZgxYwYUFRW5jtgmrq6uUFdXx6lTp7iO\nQtqAih8iNoWFhRg0aBAGDRqEwMBAqV6Sy6UtW7bg2LFjyMnJ6XA3aa2qqkJISAj8/Pzg7++P6upq\n2NnZYdy4cRg3bhxGjx4NBQUFrmOSDqS+vh4JCQkIDg5GcHAwwsLCwOPxMH78eMyaNQvu7u5QV1fn\nOuYbO3ToED799FMUFRV12AKuK6Pih4iFUCjEhAkTkJWVhbi4uC5zGoUxhrfeeguzZs3C7t27uY7z\nRsrLy3Hp0iVcvnwZly9fRk5ODjQ0NDB27FiMHz8eo0aNgpWVFWRkaKgg+R+hUIjk5GSEh4fjypUr\n+Oeff1BWVgYTExO4uLhg/PjxmDBhQqeb4ysnJwcmJia4fPkyxo8fz3Uc0kpU/BCx2Lx5M/bs2YPI\nyEgMGjSI6zhSEx4ejtGjR+P27dsYMGAA13HEKjU1FVeuXMGlS5dw7do1VFRUQF1dHQ4ODqLHsGHD\noKamxnVUIkXl5eWIjo5GVFQUoqKiEB0djbKyMqioqGDMmDFwcXGBi4sLLC0tuY4qcf369YO7uzu+\n+eYbrqOQVqLih7yxCxcuYOrUqfDy8sK7777LdRypWrlyJSIiIpCYmMh1FImqq6vDnTt3cP36dURF\nReH69et48OABZGVlYWVlhYEDB8LOzg62traws7NDjx49uI5MxODJkydISEjA7du3cfv2bdy6dQtJ\nSUkQCoUwMzPDiBEj4ODggBEjRsDGxqZLXNn5vLVr1yIqKgo3btzgOgppJSp+yBvJycnBwIED4e7u\njl9//ZXrOFJVW1sLAwMDfPLJJ11mcPfz8vPzERUVhZiYGNEB8vHjxwAAIyMj2NrawtbWFv3790ef\nPn3Qp0+fTnfqo7Pg8/lIT09Heno6EhMTRcXOw4cPAQB6enqiwnbYsGFwcHCAnp4ex6m5FxAQgBkz\nZuDx48fo2bMn13FIK1DxQ9qsrq4OY8aMQWlpKWJjY9vVLKzScPbsWcycORPZ2dkwNDTkOk67UFBQ\ngNu3bzfqLbh37x4EAgEAQF1dHdbW1rC2toaFhQUsLS1hbm4OExMTKCsrc5y+c6usrER2djYyMzOR\nlpYmKnbS0tKQn58PAJCXl4eFhYWo0GnozdPV1eU4fftUWlqKnj17wsfHB7NmzeI6DmkFKn5Im23a\ntAl79+5FTExMpxvv8jpmzJiBsrIyBAcHcx2l3WKM4erVq9i/fz8uXrwIxhjefvttVFdXIz09HXl5\neaJ1e/bsif9n777Dmjrf/4G/EwhDGUFkyrZOhKCogHvg1qo4sG60atVva9W6Wq12WbW1rXVUtMtZ\nBcWBq4LigIIDFQSKFUFA2cjeJPfvDz/kJwLKCHmScF7XxSUkh3PeieHkznOeYWVlBSsrK1hbW8Pa\n2hpWVlawsLCAubk5jI2NoampyfDRKK7S0lJkZmYiJSUFz549Q1JSEhITE/H06VMkJSUhKSmp2oR8\n5ubm6NSpk7RFrup7W1vbFnfpqqlcXV3h5OSEvXv3so7CaQDuVc5plKCgIHz33Xfw9vZukYVPXl4e\nLly4gD179rCOopDS0tJw/Phx/Prrr4iKikLXrl3x5ZdfYsGCBdX6AxUUFODp06dITExEYmKi9E37\n9u3b8PX1RWpqKl79fCYUCmFqagpjY2OYmprCxMQExsbGMDIyQps2bSAUCmFgYAChUCj9XtmmH6is\nrERubi5yc3ORk5Mj/f7FixfIyMhAZmYmYmJiUFZWhqysLKSmpiIvL0/6+zweD2ZmZtICctiwYdKC\n0sbGBjY2NtDR0WH4CFXLoEGD4O/vzzoGp4G4lh9Og2VkZMDJyQn9+/fH8ePHWcdh4tdff8WHH36I\n9PR0brTT/0gkEly9ehX79u3D6dOn0apVK3h6emLRokWNHgFYVlaGlJQUpKWlISMjA2lpaUhPT0dG\nRgZSU1OlxUBGRgZycnJq3YeOjg6EQiHatGkDDQ0NCIVCCAQC6OjoQEtLC9ra2tDR0YFAIIBQKJTO\nT1V126s0NTVrXN4tLi5GWVlZtdsqKipQWFgI4GXrV25urvS2kpISlJaWoqCgQFrolJWVSYucgoKC\nWh+HgYEBjI2NYWhoiPDwcOjq6mLq1KlwdHSsVhC2a9eOm5tJjvz9/TF+/HhkZWVxHf2VCFf8cBqk\naj6f+Ph43Lt3r8W+8bu7u8PAwIBb2RlAcnIyjh49il9++QWJiYlwdnbGwoULMXPmTLn3A3u1pSQ3\nNxdpaWn4/PPPoaOjg3HjxqG8vBw5OTmorKxEQUFBjULk1QIqNzcXr58ei4qKUF5eXu02DQ2NGv2V\neDxetbmuDAwMoK6uDl1dXWhra0NLSwu6urpQV1eHgYGBtCh7veXq1Z9flZCQgLlz5yI0NBSffvop\nNmzYoHQtXKoiOzsbRkZG8Pf3x5gxY1jH4dQXcTgN8PXXX5NAIKCwsDDWUZhJTU0lNTU18vX1ZR2F\nmdLSUvLx8SF3d3fi8XhkZmZGa9asobi4ONbRpMrLy2nMmDFkaGhIMTExMt9/fn4+AaCLFy/KfN/1\nIRaL6aeffiJNTU1ydXWlR48eMcnBIercuTOtW7eOdQxOA3BTtXLq7datW/jiiy/w3XffwcXFhXUc\nZnx9fdGqVasW+SkvJiYGa9euhYWFBd577z0AwPHjx5GUlIQtW7agffv2jBO+RERYtGgRgoKCcPbs\nWXTp0kXmx9DW1gbwsrMxC3w+H8uWLUN4eDjKy8vh5OSEHTt21Git4jS/vn37IiQkhHUMTgNwxQ+n\nXnJycuDp6Ylhw4bho48+Yh2HqWPHjmH8+PHSNz9Vl5+fj3379qFfv36wt7fHqVOnsHTpUiQkJCAg\nIABTpkxRuBFCq1atwuHDh3Hy5En06dOnWY6hrq4OdXV1ZsVPFXt7e4SFhWH16tVYuXIlRowYIZ2f\nhyMfbm5uuHv3LiorK1lH4dQTV/xw3oqIMG/ePIjFYhw4cKDFLFham+TkZISGhmLatGmsozS78PBw\nLFq0CObm5li2bBnMzc0REBCA2NhYbNq0CZaWlqwj1mrz5s348ccfcejQIYwcObJZj6WlpYWSkpJm\nPUZ9CAQCbNq0CSEhIUhMTES3bt2wb98+1rFaDGdnZxQXFyM2NpZ1FE49ccUP561+/vlnnDt3Dn/9\n9VeLn8X0r7/+glAoVNmFDNPS0rBjxw44ODigZ8+eCA4OxoYNG/D8+XP4+PjA3d1doYvfgwcPYv36\n9di+fTs8PT2b/XhaWlrMW35e5eLiggcPHuCDDz7A4sWLMWXKFGRlZbGOpfLs7e2hpaWFe/fusY7C\nqSeu+OG80f3797FmzRps2rQJ/fr1Yx2HuePHj2Py5MkqNZRYIpEgMDAQU6dOhZWVFTZu3Ig+ffog\nPDwc0dHRWLNmjVIM4T179izmz5+Pzz//HB9//LFcjqloxQ/wsi/Sli1bcOnSJYSFhaFbt244e/Ys\n61gqTSAQwMHBgSt+lAhX/HDqVFpaijlz5qB3795Yu3Yt6zjMPXnyBPfu3ZNLi4I8JCcnY+vWrbCz\ns8OwYcMQHx+PXbt2ISUlBd7e3o2em4eFa9euwdPTE++//z42bdokt+MqymWv2gwbNgxRUVEYP348\nxo8fj9mzZ9c5hxCn6Xr06MEVP0qEK344dVq+fDmSk5Nx+PBhbg4RAEeOHIGxsTEGDhzIOkqjlZWV\nwdfXF8OGDYO1tTV27NiBadOmIS4uDnfv3sXChQuVbo22hw8fYuLEiRg5ciR27dol12Nra2vXmOBQ\nkejr68Pb2xu+vr64ePEiHB0dce3aNdaxVFKPHj3w4MEDSCQS1lE49cAVP5xaXbx4Ed7e3vjll19g\nZWXFOo5C8PHxgaenp8KNbKoPZRmi3lBPnjzB8OHD0aNHDxw7dkzuRboiXvaqzeTJkxEdHQ2RSIQh\nQ4Zg0aJFKC4uZh1LpTg4OKCgoACJiYmso3DqgSt+ODVkZGTAy8sLc+fObRGjmuojMjIS0dHRSnXJ\nSxmHqDdERkYGRo0aBUtLS5w+fZrJoqeKfNnrdcbGxjh9+jSOHz8OHx8f9OrVC+Hh4axjqQx7e3vw\neDxER0ezjsKpB6744VRDRPDy8kLr1q2xY8cO1nEUho+PDywtLZttzhhZUtYh6g2Rn5+PkSNHgojg\n7+8PXV1dJjmUpeXnVVOmTMGDBw9gYmICV1dXrF27FhUVFaxjKT09PT20a9eOK36UBFf8cKr56aef\ncPnyZRw5coTZG4oiOnnyJKZMmaKww7yVfYh6Q5SUlGDcuHHIyMhAQEAATExMmGVRxuIHAKytrXHl\nyhXs3r0bO3fuRL9+/bg5amTA3t6eK36UBFf8cKSio6Px2WefYdOmTXB1dWUdR2FERkYiNjYWkydP\nZh2lGlUZot4QYrEYM2fORGRkJM6fPw8bGxumebS1tZXmstfreDweFi5ciDt37kAikaBHjx7YunUr\n12G3Cezt7RETE8M6BqceuOKHA+DlsPbp06fD2dmZG9b+mhMnTsDCwkJhCkJVGqLeEFXrdV26dAnn\nzp2DSCRiHUlpW35e1bVrV4SGhmLjxo3YsGEDhg8fjuTkZNaxlFKXLl3w6NEj1jE49cAVPxwAwCef\nfILExEQcOnSIG9b+mhMnTmDy5MlMLxup4hD1hlq9ejUOHjyIEydOoG/fvqzjAFCN4gd4uU7ZmjVr\nEBISgufPn3PLYzSSjY0NCgsLuVm1lQBX/HBw6dIl7NmzB3v27GF+GUHRREdH499//8WkSZOYHF9V\nh6g31LZt27B9+3bs27cPo0aNYh1HSlWKnyq9evXC/fv3sXjxYixevBhjxoxBamoq61hKw9bWFgCQ\nkJDAOAnnbbjip4XLzMzE3LlzMXPmTEyfPp11HIVz4sQJmJqaynWUl6oPUW+ow4cPY+3atdi+fTvm\nzp3LOk41ytznpy5aWlrYsmULbty4gUePHsHJyQmnTp1iHUspWFlZQU1NjSt+lABX/LRwS5YsgUAg\n4Ia11+HEiROYMmUK+Pzm/1NpCUPUG8rf3x9eXl747LPPsHz5ctZxahAIBCo7TLxv3764d+8eJkyY\nAA8PD0ydOhU5OTmsYyk0gUAAc3NzPH36lHUUzltwxU8L9scff8DPzw8HDx6EgYEB6zgK57///kNU\nVFSzjvJqSUPUGyosLAzvvfce5s2bh6+++op1nFrx+XyIxWLWMZqNnp4evL29ceHCBQQHB8PJyQlX\nr15lHUuh2dracsWPEuCKnxbq2bNnWLlyJT7++GMMHjyYdRyF5OPjAxMTE5l3rm2JQ9Qb6uHDhxg9\nejTc3d2xe/du1nHqpKamptLFT5VRo0YhIiICzs7OcHd3x6JFi1BUVMQ6lkKytbXlLnspAa74aYEk\nEglmz54NU1NTfP3116zjKKwTJ05g0qRJMhv91lKHqDdUfHw8RowYAScnJxw7dkyh+ze1lOIHAIyM\njODn54fjx4/jxIkTEIlECAkJYR1L4djY2HAtP0qAK35aoB9//BE3b97EgQMHoK2tzTqOQoqPj0dE\nRESTL3lxQ9QbJjMzE6NHj5a+0WppabGO9EYtqfipMmXKFERFRaFTp04YNGgQ1q5di/LyctaxFEZV\n8UNErKNw3oArflqYmJgYbNiwAV988QV69erFOo7C8vX1hZGREQYMGNCo3+eGqDdc1XpdlZWVuHz5\nMoRCIetIb8Xn81vkjMhmZmY4d+4cdu/ejV27dqFXr16IiIhgHUsh2NraorS0FGlpaayjcN6AK35a\nkIqKCsyZMwdOTk5Ys2YN6zgK7dSpUxg/fnyDLnlxQ9Qbr7y8HJMnT0ZaWhrz9boaoiW2/FSpWh4j\nMjISenp6cHV1xdatW1vs81Glaq407tKXYuPOxC3Ixo0b8e+//+LevXvcLM5vkJ6ejjt37mD9+vX1\n2j48PBz79u3DkSNHIBaLMW7cOAQEBGDo0KEtdqRWQ4jFYsyYMQO3b9/GtWvXpBPFKYOWXPxUsbOz\nQ1BQELZv347PP/8cZ8+exYEDB/DOO++wjsaEubk5eDwe1/Kj4LiWnxYiNDRUOktux44dWcdRaKdP\nn4aWlhaGDBlS5zbcEHXZICJ88MEHOH/+PPz9/eHk5MQ6UoNwxc9LVctj3L17F8XFxejRowf27dvX\nIvu9CAQC6OnpITMzk3UUzhtwxU8LUFRUhNmzZ2P48OFYuHAh6zgK78yZMxg5cmSNjsjcEHXZ+/TT\nT/HHH3/gyJEj6N+/P+s4DcYVP9U5ODggNDQUS5YswZIlSzB69GikpKSwjiV3RkZGXPGj4LjipwVY\nt24dXrx4gV9//ZVrjXiLwsJCBAUFYfz48dLbuCHqzWPXrl3YunUr9u/fj4kTJ7KOw5GRquUxbt68\niSdPnsDe3h5HjhxhHUuujI2NueJHwXHFj4oLCQnB7t278fPPP8Pc3Jx1HIV38eJFVFRUwN3dnRui\n3oyOHDmCZcuW4bvvvoOXlxfrOI1GRNwHijq4ubnhwYMHmD17NmbNmoWpU6fixYsXrGPJBdfyo/i4\n4keFFRUVYe7cuRgzZgxmzJjBOo5SOHjwINq1aweRSMQNUW8m58+fh5eXF1avXo2VK1eyjtMkXPHz\nZq1atcKOHTtw8eJF/PPPP7C3t8e5c+dYx2p2XPGj+LjiR4WtWrUKOTk52LdvH+soCq1qiHrfvn1x\n7tw5lJSUcEPUm8mtW7fg6emJadOmYfPmzazjNBlX/NTPiBEjEBUVBXd3d7z77rtYtGgRCgsLWcdq\nNlzxo/i4M7qKunr1Kvbu3YujR4/C1NSUdRyF9PoQ9d69ewN4uaCmnZ0d43SqJzo6GqNHj8bQoUPx\n+++/q0TRIJFIwOdznyHrQygU4tChQ3j33XexePFiBAQE4M8//2z0RKKKjCt+FB/3V6uCioqKsGDB\nArz77ruYNm0a6zgK5U1D1B0dHSESibjCpxkkJydj1KhRcHBwwPHjx1WmJY1r+Wm4quUxunXrhsGD\nB2PZsmUoKytjHUumqoqfljjUX1moxhmohXr48CFOnjyJlStXQldXV3r7ihUrkJ+fD29vb4bpFIdE\nIsHVq1exb98+nD59Gq1atYKnpycOHDhQbaTWuXPnMHv2bIZJVVNWVhaGDx8OoVCIU6dOKfx6XQ3B\nFT+NY2pqijNnzmD//v1YuXIlrl69ioMHD6J79+6sozXK+vXrERISArFYjJycHOklPVNTUxQXF6Oy\nshKlpaWYNWsWDh48yDgtBwBAHKX1f//3fwSAzM3N6dKlS0REFBgYSDwej3x8fBinYy8pKYm2bNlC\n1tbWBICcnZ3J29ubioqKamwbHh5OACg8PJxBUtWVn59Pzs7O1L59e0pNTWUdR+a2b99OFhYWrGMo\ntfj4eBowYAAJBALauHEjVVZWso7UYG5ubsTj8QhAnV98Pp/Wr1/POirnf7jLXkosICAAwMtLOSNH\njsR7772HuXPnYurUqZgyZQrjdGw0dhX1M2fOoF27dkr7yVMRVa3XlZycjAsXLqhk3zPiWn6azNbW\nFkFBQfjuu++wZcsW9OvXD//99x/rWA2ycOHCt74OJBIJN5+VAuGKHyX14sUL6QmialXpkydPIjs7\nGyNGjGAZjYmmrqJ++vRpeHh4cG9kMiKRSDBz5kyEhYXh0qVLKrukCtfhWTb4fD6WLVuG8PBwlJeX\nw8nJCTt27Kizz4y/vz+2bt0q55R18/T0fOu8X8bGxtyHKwXC/dUqqevXr9e4raKiAmVlZZg3bx7G\njBmj8tPKy2oV9adPnyIyMrLarM6cpvn4449x7tw5+Pv7q/QJn2v5kS17e3uEhYVJ54AaMWIEnj17\nVm2b5ORkTJ8+HWvXroWPjw+jpNVpa2tjxowZEAgEtd4vEAjg6enJvVYUCFf8KKnr16/X+odW1Qp0\n+fJldOnSRSUnFAsPD8eiRYtgbm6OZcuWwdzcHAEBAYiNjcWmTZtgaWnZoP2dPn0aQqFQKdeWUkTr\n16/Hnj17cPjwYZUcxvyqioqKOt/wOI0jEAiwadMmhISEIDExEd26dZPOVUZEmDNnDsrKysDj8TBv\n3jwkJCQwTvzS/PnzUVFRUet9FRUV3IcrBcMVP0oqMDAQ5eXldd5fWVmJ/Px8hIeHyzFV82nOVdTP\nnDmDMWPGQENDQ8apW549e/Zg8+bN8Pb2hoeHB+s4za6iooJ73TQTFxcXPHjwAB988AEWL16MKVOm\nYOvWrbh+/ToqKipARCgvL8ekSZPeeC6Ul169esHe3r7W85COjo7KfxBQOky7W3MaJTc3l/h8fp2j\nCtTV1UkgENBPP/3EOmqTiMViCggIoClTppBAICB9fX1auHChTEdkZWdnk7q6Ojc6TgaOHj1KfD6f\ntm3bxjqK3Kxbt466d+/OOobKu3z5MllZWZGmpmaN852amhqtWbOGdUQiIvr5559JTU2txvl4xowZ\nrKNxXsO1/Cih69evSy9vvU4gEMDIyAjBwcFYtmyZnJPJhjxXUT937hzU1NQwcuRIme2zJQoMDISX\nlxeWLl2KVatWsY4jN+Xl5dxlLzkYPHgw2rZtW+t5TywWY9u2bTh//jyDZNXNmjULampq1W4Ti8WY\nMGECo0ScunDFjxK6fv16rU3tfD4f7u7uiI6Oli7VoCwaO0S9qc6cOYOhQ4dWmySS0zC3b9/GxIkT\nMWXKFOzYsYN1HLniLnvJx7fffosHDx7U2aeGx+Nh1qxZSE1NlXOy6oRCISZNmlStIFZXV2+RI3AV\nHVf8KKGAgIBq17j5fD74fD42bNiAc+fOwcDAgFm26OhodOnSBb6+vvXavqlD1JuirKwMAQEBXEfE\nJoiJicHo0aMxaNAg/PHHHy1uNEt5eTlX/DSzBw8e4Msvv6yztRt4OdCjsLAQnp6eEIvFckxX0/vv\nvy8t0tTU1ODu7s59uFJAXPGjZPLz8xEdHS39WSAQQE9PD5cuXcKmTZuYzjkSEBAAV1dXPHr0CNu2\nbatzO1kNUW+qy5cvo6ioCOPGjWv2Y6miZ8+eYfTo0ejQoQOOHTumMut1NQRX/DS/VatWobKy8q3b\nVVRUICQkBN9//70cUtVt8ODBsLKykv7cEjr+KyOu+FEywcHB0k9AampqcHZ2RnR0NIYNG8Y012+/\n/YZRo0ahuLgYRIS7d+9WK9IA2Q9Rb6ozZ86gd+/eMDMzk+txVUHVel26urq4cOECWrduzToSE1yf\nn+b3/fffY/Xq1dKRVHw+v86CUyKR4LPPPkNYWJicU/5/PB4PixYtkuYZO3YssyycurW8j2rNrKys\nDAUFBcjPz0dubi7EYjHy8vKk90skkmo/A4C+vn61Fht9fX2oqalBKBRCX18furq60j/2Vyc3XLZs\nGbZu3cr0EzcRYdOmTfjyyy+r3S4QCPD7779j1apVOH78OH799VdERUWha9eu2LBhAxYsWIA2bdow\nSv3y/+H8+fP46KOPmGVQVsXFxRg/fjxKS0sREhLC9DIra1zLT/MTiUQQiUTYunUrsrKyEBQUhICA\nAPj7+yMtLQ1qamogomqXxSZOnIjo6OgmnWOqztUVFRUoLCxESUkJSktLAQB5eXk1LsO9em5v27Yt\n+Hw+bG1tcfPmzRrneOBldwV9fX0AgJaWFrS1taGjowOBQFDr9hzZ4hHVMX84RyolJQUJCQlITU1F\nWloaMjIykJ6ejrS0NGRmZiIjIwN5eXkoKChAWVlZs2TQ1NSErq4uioqKUFZWBmdnZ3Tv3h2mpqYw\nMjKCmZkZTE1NYWdnJ7eWjNLSUsyZMwcnTpyo9Xq8trY2KioqoKuri5kzZ2L+/PkQiURyyfY2d+7c\nQe/evREZGQkHBwfWcZRGRUUFxo0bh3v37uHmzZvo1KkT60hMeXh4QEtLC0ePHmUdpUWKiYlBQEAA\nLl26hGvXrqG0tBTq6uqorKzEmDFjsHXrVmRmZiI7Oxt5eXnIzc2Vfr3+c2FhIYqKilBeXl5rcSNv\nVcWRhoYGWrduDV1dXejr60MoFEq/Xv+5TZs2MDIygpGREYyNjZnmV3Rcy8//PHv2DDExMYiOjkZ8\nfDzi4+ORkJCAhIQEabUPvFyfxcjICCYmJjAzM0P79u1hZGQEoVAIXV1d6Ze+vj709PSgpqZWo4oX\nCoXSjqFEhNzcXOl9VZ8exGKxtPWosLAQBQUFKCgowIMHD1BZWYmysjLExcUhJCREWoBV0dLSgp2d\nHWxtbWFraws7OzvY29uja9eusLCwkMnzlZaWhtGjR+Phw4d1niRKS0vx0UcfYcuWLdDS0pLJcWXl\nwoULsLCwQLdu3VhHURoSiQSzZs1CaGgogoKCWnzhA7xs+dHT02Mdo8UQi8VIS0tDYmIikpOT8fz5\nc6SkpMDIyAgDBgxAXFwcMjIyUFRUhPPnz1cb/q6rq1tr4WBlZQWhUAgdHZ1qLS/q6urQ19eHQCCA\njo6OtHUGAFq3bl1ri19tLTa1tfYDL68SFBcXA4C0VamgoACVlZXVrhpUtTwVFhZKC7UXL14gPj6+\nWhFXUFBQbf/q6urSIsjMzEz6vbm5Odq1awdLS0tYW1vDzMysRbYytbjip6ysDPfv38edO3cQFRWF\nqKgoREdHS1+cJiYmeOedd2BnZ4eePXtKCwhbW1uYm5vL/BITj8ercdnA0NCwwfupqKhAamqqtGCr\nKt7u378PHx8faXEkFAphb28Pe3t7ODg4oFevXujevXuDmu6joqIwYsQIZGZmvrEjIp/PR3R0tMIV\nPgBw8eJFjBkzpsWNTmqKFStW4NSpUzh37pxM51pSZqWlpdDU1GQdQ6U8e/YMjx8/xn///Sctcp4+\nfYrk5GSkpKRUG0llZmYGMzMzmJiYoF27dujZs6f0A6q5ubn0Db9NmzY15t+RFz6fL5dLw2KxGNnZ\n2dIPw6mpqcjMzJRepcjIyEBsbCxSUlKQlpYmHRUnEAiqFUOBGbNCAAAgAElEQVSWlpawsbFBhw4d\n0LFjR7Rr167Zs7Og8pe9kpKSEBwcjFu3buHWrVu4f/8+ysvLYWBgAJFIhK5du6Jbt27SfxtTeCiD\n7OxsREVFISYmBg8fPkRMTAwiIiKQm5sLTU1NdO/eHS4uLujduzf69+9fZ+fjgIAATJw4EWVlZfUa\ngcHj8ZCQkABra2tZP6RGy8rKgomJCfz8/Lhh7vW0adMmfP311zh27BgmT57MOo7CcHNzg5ubG374\n4QfWUZRKUVERoqOjERsbi//++09a7Dx+/BhFRUUAXrai2NjYwMrKSvqmbGFhIf3ZzMysRY4wlIXK\nykqkpKQgKSkJSUlJSE5ORnJysvTnhIQE5OfnA3i5NEeHDh2kxVDHjh3RuXNndO3aVakHOqhc8VNY\nWIiwsDAEBgYiMDAQ4eHhUFdXR8eOHeHs7Ix+/fqhb9++6NKlS4ts6ntdSkoKQkJCEBwcjPDwcNy9\nexdlZWWws7ODu7s73N3dMXToULRp0wZ79+7F0qVLAaDe18P5fD4+//xzbNy4sTkfRoMcOnQI77//\nPrKysrj5N+ph7969WLJkCby9vbFgwQLWcRSKSCTCuHHj8PXXX7OOorBSUlIQHh4u7VYQHh6OR48e\nQSwWQ0NDAxYWFrCzs0PXrl1hb28POzs76WV7rmWWnZycHGkXkOjoaMTExCA+Ph6xsbHSAtXMzAzO\nzs5wdnaWdq1QlvdWlSh+4uLicPLkSfj5+eHu3bvg8XhwdnbG0KFDMXToUPTp00d6rZbzZiUlJQgJ\nCcGVK1dw5coV3Lt3DwBgYWGBxMREAC87X1cVP2Kx+K2F0MiRI3Hx4sXmDd4A06dPR1ZWFi5fvsw6\nisI7deoUpkyZgq+++grr1q1jHUfhvPPOO5g/fz733PxPRkYGwsLCEBoaitDQUNy/fx/5+fnSkU8i\nkQiOjo5wdHSESCSCjY2NUrxRcv4/iUSChIQEREREIDIyUvoVHx8PIoK+vj66d++OPn36wNXVFS4u\nLgrZ+Vppi5/Y2FgcP34cfn5+iIyMRNu2bTF+/HiMGTMGgwYNatHDb2UpJycHQUFB+O233xAUFISS\nkhKYmZnByckJbm5usLW1haamprQDYFWHQV1dXairq0NPT0/aaVARiMVimJiY4LPPPsPy5ctZx1Fo\nV69exejRo/H+++9j165drOMoJHNzc6xZs0Zp19FrCiJCZGQkbt68KS144uPjwefz0blzZ7i6uqJ3\n794QiUTo1q0bdHR0WEfmNKOCggI8fPgQkZGRuH37NsLCwhAbGwsiQvv27eHm5gYXFxcMGDAADg4O\nzFv1lKr4KS0thb+/P/bt24crV67A0NAQo0aNwpQpUzBy5EiFeYNVVWKxGKGhofD19cXJkyfx/Plz\nODs7Y+HChZg+fbpSnNxCQkLQr18/xMbGcqOV3uDOnTsYMmQI3n33XRw6dIj7dF4HfX19bN++He+/\n/z7rKHKRlpaGmzdvIjAwEOfPn8fz58+hq6sLR0dHaZeCPn36qGzfSU7DFBQUICIiQtq1IjQ0FNnZ\n2TAyMsKgQYPg7u6O4cOHw8bGRu7ZlKL4+e+//7B9+3b89ddfKC8vx/jx4zF//ny4u7tzJ2VGJBIJ\nAgIC8Ntvv+Hs2bPQ1NTEe++9h5UrV6JDhw6s49Vp/fr1OHr0KOLj41lHUViPHz9G//794eDggPPn\nz3OT+L2BQCDAwYMHpevSqZrKykpcu3YNp06dQkBAAB4/fgxtbW3069dP2ifQycmJOw9z6kUikeD+\n/fvSPrkhISEoKSlBx44dMXz4cEycOBEDBw6Uz8g8UmD37t2jKVOmEJ/Pp44dO9JPP/1EWVlZrGNx\nXpOZmUk//vgjdejQgdTU1MjT05Pu37/POlatunfvTh9++CHrGArr2bNnZG1tTS4uLlRYWMg6jkIr\nKysjAHT69GnWUWSqrKyMzp8/T/PnzydDQ0MCQE5OTrRu3Tq6cuUKlZSUsI7IURElJSUUEBBAa9eu\nJUdHRwJAbdu2pffff58uXrxIZWVlzXZshSx+oqOjafTo0QSAevToQT4+PiQWi1nH4rxFZWUlHT9+\nnLp37048Ho/Gjh1L//77L+tYUikpKcTj8ejChQusoyikrKws6tq1K9nb21N2djbrOArvxYsXBIAC\nAgJYR5GJf/75h7y8vEhfX594PB716tWLtmzZQnFxcayjcVqI//77j7799lvq2bMnASChUEjz58+n\nsLAwmR9LoYqfFy9e0LJly0ggEFCPHj3o0qVLrCNxGkEikdCFCxeoe/fuJBAIaPny5ZSbm8s6Fv36\n66+kra1NRUVFrKMonKKiIurbty9ZWFhQYmIi6zhK4dmzZwSA/vnnH9ZRGi0nJ4d27txJDg4OBIAc\nHR3phx9+4F4DHOaePn1K27dvl742RSIR7d69W2bvJQpT/Pj4+FDbtm3J2NiY9u/fz7X0qIDKykry\n9vYmIyMjMjY2ppMnTzLNM2nSJBozZgzTDIqovLycRo0aRW3btlWoljpF9+jRIwJADx48YB2lwRIT\nE2nRokXUqlUrat26Nc2bN69ZPl1zOLJQ1SrZqlUratWqFS1evJiSkpKatE/mxU9xcTEtWrSIANAH\nH3ygEC0EHNnKycmhBQsWEABasmQJkz4D5eXlpK+vT7t27ZL7sRWZRCKhOXPmkK6uLt29e5d1HKVy\n//59AkCPHz9mHaXekpKSaPHixaShoUE2Nja0e/duysvLYx2Lw6mX3Nxc2rlzJ1lbW5OmpiYtXbqU\nkpOTG7UvpsXP06dPycHBgQwMDJi3CnCan6+vLwmFQnJ0dGxy1d5QV69eJQBc/4XXLF++nDQ0NLhL\nzI1w48YNAkCpqamso7xVQUEBLV++nDQ1Ncna2pq8vb2pvLycdSwOp1HKyspo7969ZGVlRZqamrRi\nxYoGD9BgVvzExcWRtbU1OTo6UkJCAqsYLRIA6Ze8JSQkkKOjI9nY2FB8fLzcjrtq1Srq0qWL3I6n\nDL788kvi8/l0/Phx1lGU0pkzZwgAlZaWso7yRoGBgWRra0uGhob0yy+/NOsImpaouc6nt2/fpkGD\nBsl0n81l0KBBdPv2bbkft6ysjHbv3k1t2rQhOzs7CgoKqvfvMil+Hj16RObm5tSrVy9uVAkjrIof\nIqLs7Gzq2bMnWVhYyO2Sgb29Pa1cuVIux1IGe/fuJQC0Y8cO1lGU1oEDB0hbW5t1jDpVdSng8Xjk\n4eFBaWlprCOpLFmfT/fv309CoZBOnTols302Jz8/P9LX16d9+/YxOX5KSgqNHz+eeDweLV26tF5d\nK+T+7ldSUkIODg7Uu3dvpe/fw7KAaCrW2XNzc6lnz54kEomavQ9QUlISAaDAwMBmPY6yOH36NKmp\nqdFXX33FOopS27FjB5mZmbGOUav09HRycXGhNm3acC17MvC286Usz6cXLlwgHo9Hx44dk8n+5OXw\n4cPMpxI5cuQICYVC6tu3L2VmZr5xW7m/+y1ZsoSEQqFKXOpiXUA0hSJkT0pKIgMDA/roo4+a9Th7\n9uwhHR0dhb88IQ9Xr14lLS0tWrJkCesoSu+LL76gzp07s45RQ3Z2Njk4OFD79u3p0aNHrOOoBHkV\nP2VlZWRpaUl9+/Zt8r5YcHV1JSsrK6b9yaKjo8nGxoacnJwoJyenzu3kOid5SEgIfvnlF3h7ezNZ\ny4OjWCwtLbFnzx7s3LkToaGhzXacCxcuYNiwYdDU1Gy2YyiDiIgIeHh4YMKECdi5cyfrOEovLy8P\nQqGQdYxqJBIJpk6diry8PAQFBaFjx46sI3Ea4OTJk0hOTsb06dNZR2mU6dOnIykpCSdPnmSWoWvX\nrggKCkJWVhY8PT0hkUhq3U6uxc/mzZsxYMAATJ06VW7HjI6OxujRo6GjowM9PT2MGDECMTEx4PF4\n0q9XZWRkYPHixbCwsICGhgbatWuHhQsXIi0trdp2r/5e1X5eXdzw1f2npKRg0qRJ0NXVhaGhIebM\nmYO8vDw8ffoU7777LvT09GBqaoq5c+ciNze3xmMIDAzEu+++CwMDA2hpaaFHjx44duxYje3y8vKw\nfPly2NnZQUtLC4aGhujTpw8++eQT3L59+43PU8+ePatlnjZtWr2e36aaNm0a+vbti82bNzfL/svK\nynDt2jWMGjWqWfavLOLi4jBixAg4Ozvjzz//5NZikoHc3FyFK3527tyJ4OBgnDp1CpaWlkyz1Pd8\nJMtzZVpaGhYtWiQ9f1tYWOCDDz5Aenp6o7d927n+VcnJyRg/fjx0dXVhYmKCmTNnIjs7u97P2dmz\nZwG8PB839bmMiYnByJEjoaenBx0dHYwZMwb//vtvjccmq+ceAHr16lXtcbBiY2MDPz8/XLt2Db/8\n8kvtG8mrKSo9PZ3U1NTI19dXXoekuLg4EgqFZG5uTleuXKGCggIKDg6mvn371tpMmZaWRtbW1mRi\nYkJ///03FRQU0I0bN8ja2ppsbW1rNKHVto/a7p85cybFxMRQbm4uLV26lADQmDFjaOLEidLbFy9e\nTABowYIFte5nwoQJlJmZSYmJiTRs2DACUGN48vjx4wkA/fTTT1RYWEhlZWUUGxtLEydOrJHz9eyp\nqanUrVs3WrNmTb2fX1k5duwYqaurU0ZGhsz3ffHiRQLQomesff78OdnY2FDv3r2poKCAdRyV4eHh\nQdOmTWMdQ6qkpISMjIxo7dq1rKMQUePOR005V6amppKlpaX0fJ+fn0+BgYFkampK1tbW1Tp8N2Tb\nV/PVper+GTNmSHP+3//9HwGguXPn1vs569SpEwGocfzGPJd9+vSh4OBgKigokD42AwODGl1OZPU+\nRfSy4zEAhbkc/Mknn5CJiUmtXR7kVvycPHmS1NTU5HrynTlzJgGgQ4cOVbv9/Pnztb6YqyZb/O23\n36rd7ufnRwDo008/rXZ7ff8grl27Jr3t+fPntd6enJxMAKhdu3a17ufVF+y///5LAKh///7VttPT\n0yMANQrMqmPWlf3p06f0zjvv0DfffFPnY2lOeXl5xOfzyc/PT+b7XrZsGTk6Osp8v8oiNzeXRCIR\ndejQgdLT01nHUSlDhgyhDz74gHUMqbNnzxKfz6eUlBTWUYioceejppwrqyZSff18/+effxIAWrRo\nUaO2fTVfXWrLWbX8ibm5eZ2/9zodHZ1ap09ozHP5esfjqsc2Z86ct2ZvzPsU0csCHADp6urW+zE3\np2fPnhGPx6Pz58/XuE9uxc+WLVvI1tZWXocjIiITExMCQM+fP692e05OTq0vZnNzcwJQ4+SRlZVF\nAMjBwaHa7fX9g8jPz5feJhaL33g7j8d76+OqrKwkAGRoaFjtdi8vL+m+LS0taf78+XT8+PFa5/Wo\n2i42NpYsLS2pT58+bz1uc7K2tqZt27bJfL+dO3em1atXy3y/yqC4uJj69etHFhYW9PTpU9ZxVE6P\nHj0UppWFiGjjxo0KNZdVY85HTTlXmpmZ1Xq+rypCXn3Dbsi2r+arS1PP6VX4fD4BIIlEUu32xjyX\nr4+mrnpsr49QlOX7VNX9ampq9X7Mza1Tp070xRdf1LhdbsXPxo0byd7eXl6HIyIiNTU1AvDGF8ir\n1NXVpbfX9tWqVau37qM+9zfk9pycHFq3bh117txZ+qng1a/XnTx5kiZNmkQGBgbSbaysrOj+/fu1\nHsvMzIxatWpFAOjIkSN1Ppbm1rVrV9q4caNM91n1x64qq243RHl5OY0ZM4YMDQ0pJiaGdRyVZGdn\nR99++y3rGFLLly8nNzc31jGqaej56HUNub3q/P36+b60tJQAkEAgaNS2b8rR2Px1qavlh6jpz2XV\nY1NXV29S9jc9JkVr+SEicnFxoRUrVtS4XW69Htu0aYPMzEx5HQ4A0LZtWwBAVlZWtdtf/7mKiYkJ\nAODFixegl4Vhta+ioqLmDVyLqVOn4ttvv4WnpycSExOlWeri4eGBEydOICsrCzdu3MCIESOQlJQE\nLy+vWrffuXMndu3aBQBYunQpnj171iyP420yMjJgaGgo031evnwZWlpa6Nu3r0z3q+iICIsWLUJQ\nUBDOnj2LLl26sI6kkhStw7O5ubn0HKEoGno+agpjY2MAdZ/vq+5v6Lby1K5dOwCotUNxQ5/L1zta\nVz02IyMjGaf+/3JycgD8/8fBGhHh6dOnteaRW/EjEomQkZGBp0+fyuuQGD58OADgypUr1W4PCQmp\ndfsJEyYAAK5du1bjvps3b8LNza3aba1atQIAVFRUoLi4WFpsyVJV1pUrV6JNmzYAXo5gqg2Px5MW\nL3w+H/3798fx48cBoEYv/yqTJk2Cl5cXxo8fj9zcXHh5ecn95BkfH4+srCw4OTnJdL8BAQEYMGAA\ntLW1ZbpfRbdq1SocPnwYJ0+eRJ8+fVjHUUlEhPz8fIUqfoYOHYqUlBTcunWLdRQAjTsfNcW4ceMA\n1DzfBwYGVru/odsC8jnXA0D37t0BAImJidVub8xz+fr7XNVjq3pfbA5VuWV9Lm+sf/75B+np6XB3\nd695p5xanqi0tJQMDAxo69at8jokPXnypMZor5s3b9KoUaNqbbrLzMykDh06kJmZGfn6+lJWVhbl\n5+eTv78/2dnZVev4RfRyQicAFBwcTMeOHaOxY8dWu7+2YzT09hEjRhAAWrduHeXk5FB2djatWLGi\n1m0B0IgRIygqKopKS0spLS2N1q1bRwDo3XfffeOx0tPTycjIiICXIwrk6dtvvyVDQ0OZrjkkkUjI\n2NiYvvvuO5ntUxls3ryZ+Hy+0s0Oq2yq+gEq2qzhLi4uNGzYsBp9RlhoyvmoMbdXjdZ9dQTXlStX\nyMzMrMYIroZsSyT7c31djhw5QgBo9+7dNfbT0Ody1KhRdPPmTSooKJA+tjeN9qpv9jc9pp9//pkA\n0NGjR+v9mJuLRCKhwYMH1zlhpFyn+F2+fDmZm5tTcXGx3I4ZFRVFo0aNotatW5Ouri6NHTuWnjx5\nQgCIz+fX2P7Fixe0YsUKsrW1JYFAQCYmJjRu3DgKDQ2tse2dO3dIJBJRq1atyNXVtdpsqlUvkNdf\nKA29PT09nWbNmkXGxsakoaFB3bp1o+PHj9e6bXBwMM2ZM4dsbGxIIBCQvr4+iUQi+uabb6ioqEi6\nnb6+frXf9/X1rbWP0507dxr/xNdTUVERmZmZ0SeffCLT/d67d48A0IMHD2S6X0V24MAB4vF49OOP\nP7KOovJiYmIIAEVGRrKOUk1wcDCpqanJ/QNMXVnqcz6S1bmS6GVRs2jRIjI3Nyd1dXUyNzenhQsX\n1rquWUO2leW5/k3KysrIwsKC+vXr16jn8tXjJiQk0NixY0lXV5dat25No0aNqtH/T5bPPdHLItHC\nwkIhFs/dvn07qaurU1hYWK33y7X4SU1NJaFQSIsXL5bnYWuoGsZnbGzMNAfn5fQCBgYGMl90ccuW\nLWRiYqIQn4Dl4cyZM6Suri7zTuOc2l2/fp0AUGpqKusoNWzevJnU1NS41j8lde7cuSat7dXQ1iZZ\nqVrb69y5c3I/dm1Z+Hz+G0cQy/0ZOnHiBPF4PLmtVgugxsrhf/31FwEgT09PuWTg1O7kyZMEoFlO\n0kOHDqUZM2bIfL+KKCgoiLS0tBRqzhlV5+vrSzwejyoqKlhHqdXHH3+sMC1AnIbz9vZu9KruLIof\nPz8/0tPTo71798r1uLX5/vvvic/nv3WKEyYrWy5cuJB0dXXpxo0bzX4sADR8+HB68uQJFRYWUmBg\nIFlZWZGenh79+++/zX58Tu2uX79Ourq6zdIKWFJSQtra2vTnn3/KfN+KJjIykoRCIU2YMIEqKytZ\nx2kxdu/eXWOeLUXz008/EZ/Pp9GjR9OzZ89Yx+E00K1bt2jgwIEN/j0Wxc/AgQPp1q1bcj3m61JT\nU2nixInE4/Hq1QLOpPipqKigGTNmUKtWrejy5cvNeqzAwEDy8PAgExMTUldXJyMjI5o6dSpX+DB0\n7do10tHRoalTpzbL6r9///03AaDk5GSZ71uRxMXFkampKQ0ZMoRbsV7OFG1CwboEBwdTx44dSSgU\nkre3N+s4nGbWmH5GqsDHx4cMDQ3Jzs6OgoKC6vU7zJ6dqgJIS0uL+6NsQfbu3UtaWlo0a9asZmup\n+OSTT+Q+oaa8paenU4cOHahnz57VZmDlyMeSJUsa9amchcLCQvrwww+Jz+fToEGD6Pr166wjcTgy\nERQURAMGDCA+n08ff/xxjc7fb8JsaWd1dXUcOHAAK1euxOLFi+Hp6Ym8vDxWcTjNLCcnB5MnT8bS\npUuxatUq/Pnnn1BTU2uWY12+fBnDhg1rln0rgvz8fIwcORJEhHPnzkFXV5d1pBYnMzOzWSeLk6XW\nrVvj559/RnBwMHg8HgYOHIghQ4bg5s2brKNxOI1y/fp1DB48GIMHD4ZAIEBISAh+/PFH6XxM9cGs\n+AEANTU1fP311wgICMDNmzchEong5+fHMhKnGZw4cQIikQhhYWEIDAzEl19+CT6/eV566enpePjw\nocoWPyUlJRg3bhwyMjIQEBAgnZWcI18ZGRnMZgFuLDc3N1y9ehXXrl0DEWHAgAHo378/Dh8+jNLS\nUtbxOJw3KikpwaFDh9C3b18MGjQIPB4PN27cQGBgIFxdXRu8P6bFT5UhQ4bgwYMH6N+/PyZPngx3\nd3dERUWxjsVpoocPH2LIkCGYOnWq9P940KBBzXrMgIAACAQCDBgwoFmPw4JYLMbMmTMRERGB8+fP\nw8bGhnWkFisjI0NpWn5eN3DgQAQFBSEoKAjGxsaYN28e2rVrh+XLlyMmJoZ1PA6nmujoaCxbtgzt\n2rXD/PnzYW5ujuvXr+Pq1avo379/o/erEMUP8HItlUOHDiEkJAR5eXno3r07vLy8mmUadE7ziomJ\nwZw5c9CjRw8UFRUhNDQUf/75Z7NNCf+qgIAA9OnTBzo6Os1+LHmi/63XdenSJZw7dw4ikYh1pBYt\nMzNT6Vp+Xjdo0CCcPHkSiYmJWLlyJc6cOQN7e3u4uLhg27ZtiI+PZx2R00LFxcVh69at6N27N7p1\n64bz589j9erVSE5Ohq+vr2w+3DZXR6SmEIvFdPDgQerSpQvx+Xzy8PCg27dvs47FeYtbt27RhAkT\niM/nU9euXenQoUMkFovlmsHCwoK++eYbuR5THlatWkUCgYAuXLjAOkqLV1lZSXw+n3x8fFhHkSmx\nWEx///03eXl5kaGhIQEgJycn+uqrr2rMDMzhyFpUVBR9+eWXJBKJCAAZGhrSvHnzKCAgoFneRxSy\n+KkiFovp7Nmz0nVVnJ2d6aeffqIXL16wjsb5n/z8fDpw4AC5u7tLT5YHDhxgMufMw4cPCYDKFcpb\nt24lHo9Hf/zxB+soHHo5nwiAGmv9qZLKykq6efMmffTRR2Rubk4AyMzMjKZMmULe3t70/Plz1hE5\nSi4zM5N8fHxo4cKFZGNjQwCobdu2NGvWLDp79myzTIPyKh6RnJfwbqRr165h//798PPzg7q6OqZO\nnYrZs2ejX79+zTZqiFM7sViM4OBgHDhwAD4+PhCLxZg0aRIWLFiAgQMHMsv1448/4quvvkJmZqbK\nvCYOHz6M2bNnY/v27Vi+fDnrOBwAd+7cQe/evfHkyRPY2dmxjtPsJBIJ/vnnH1y+fBmBgYG4c+cO\nJBIJnJyc4O7ujkGDBsHV1RUGBgaso3IUWE5ODsLCwhAUFITAwEBERESAz+fDxcUF7u7uGD58OFxd\nXZttMMzrlKb4qZKTk4PDhw/jt99+Q0REBIyNjTFhwgR4eHhg8ODB0NDQYB1RJZWXl+Pq1avw8/PD\n6dOnkZmZCScnJ8yfPx8zZsxQiBPf6NGjoaOjAx8fH9ZRZMLf3x8eHh5Yu3YtvvrqK9ZxOP9z6tQp\nTJo0CcXFxdDS0mIdR+7y8vJw7do1BAYGIjAwELGxseDxeOjcuTNcXFzg5uYGNzc3dO3aVWU+hHAa\nRiwWIyoqCmFhYQgNDcWtW7fw6NEjEBG6dOkCd3d3aeGsp6fHJKPSFT+vio2NhZ+fH/z8/BAeHg6h\nUIhhw4bB3d0dQ4cORfv27VlHVGpPnjyRnuACAgKQn58PZ2dneHh4wMPDA506dWIdUaq8vByGhob4\n4YcfsGDBAtZxmiwsLAzu7u6YMWMGvL29WcfhvOLnn3/GN998g/T0dNZRFEJmZibCwsKkb3R37txB\nYWEhdHV14ezsDEdHRzg6OkIkEsHe3h7a2tqsI3NkqLi4GNHR0YiIiEBkZCQiIiJw79496WugV69e\ncHNzg6urK1xcXBRmlKRSFz+vSkxMxKlTp3D58mXcuHEDRUVFsLW1xdChQzFo0CD07t0bHTp0YB1T\noT1+/Bi3bt3C9evXERgYiKdPn6J169YYOHAghg8fjgkTJsDa2pp1zFoFBQVhyJAhiI+Ph62tLes4\nTfLw4UMMHDgQAwYMwIkTJ6Curs46EucVa9aswZUrV3D37l3WURSSWCxGdHQ0QkNDce/ePURERCAq\nKgpFRUVQU1NDhw4dpMVQ586d0aFDB3To0KFFtqIpk5KSEjx+/BiPHz/Go0ePEBERgYiICMTFxUEs\nFkNHRwfdunWDSCSCs7MzXF1dFbr1T2WKn1eVl5dLJ9S7cuUK7ty5g4qKChgaGkIkEmHAgAHo3bs3\nRCIRzM3NWcdl4vnz54iIiMDt27dx+/Zt3Lp1Cy9evICGhgZ69eqFoUOHwt3dHa6urhAIBKzjvtVn\nn30GHx8fPH78mHWUJomPj0e/fv3QqVMnXLx4kXtDUEDTp09HcXExTp8+zTqK0pBIJHjy5Im0daDq\nKzExERKJBDweD1ZWVtJCqEOHDujUqRNsbGxgbW2N1q1bs34ILUJhYSGSkpKQkJCAR48eSYudx48f\nIzk5GUQEPp8PGxsbaYteVSFrZ2cnt/46sqCSxc/rSktLcfv2bXzxxRe4ceMGzM3NkZSUBABo06YN\nunXrhq5du8LBwQFdu3bFO++8g3bt2oHH4zFO3jQSiQALtIcAACAASURBVAQpKSmIi4tDTEwMHj58\niOjoaERFRSEnJwcA0L59e7i4uKB3795wcXFB9+7doampyTh5w7m5uUEkEmHv3r2sozRaZmYm+vfv\nD01NTVy/fh1CoZB1JE4tBgwYAJFIhJ07d7KOovTKysoQFxeH//77D48fP672b1pamnS7Nm3awMrK\nCpaWlrCxsYGlpSUsLS1hZWUFExMTmJqacgXSWxQVFSEtLQ1paWlITk5GUlISkpOTkZiYKP3+xYsX\n0u3NzMzQsWNHaTFa9f0777yjlO8Rr2sRxc+jR48wffp0PH78GN9//z0WLlyI7OxsREZGSouBqn9z\nc3MBAJqamrC2toatra30y9zcHKampjA1NYWxsTGMjIyYFUhEhIyMDGRmZkpf0M+fP0dCQgKePn2K\nhIQEJCYmoqysDABgYGAAe3t72NvbS4s8kUiENm3aMMkvS4WFhWjTpg0OHToET09P1nEaJT8/H4MH\nD0ZeXh5CQkK4ZSsUmK2tLT744AOsWbOGdRSVVlBQgKdPn1Z7c05KSkJSUhISExORmpqKyspK6fat\nWrWSFkJGRkbVvjcwMIBQKKzxpayToRYWFiI3N7fGV05ODjIzM5Gamlrt/SE9PR3FxcXS31dXV4e5\nuTmsrKxgbW0tLSyrfra2tlb5NQNVvvg5ePAgli5dis6dO+Po0aNv7feTkpKC+Ph4JCQkSP+tKiZS\nU1NRUVEh3VZdXV1aBOnr60NXVxc6OjrQ19eX/qyhoQFNTc1qC67p6OhILyVVVFSgsLBQel9xcTHK\nyspQXl6OgoIC5OXlIS8vDwUFBSgsLEReXp70Rf3qH76GhgZMTU2rFWtVX3Z2dip9ee/ChQsYO3Ys\nUlJSYGpqyjpOg5WXl2Ps2LGIjo5GcHCw0vdZUmUSiQTa2tr4/fffMWPGDNZxWrTKykqkpaXV+kb/\n+vc5OTkoLy+vsQ91dXVpEaSnpwddXV1oa2ujdevW0NDQgJ6eHtTU1GBgYAA1NbVqI5P09fVrXObR\n0tKq0aG7pKSkxtppEomk2kLe+fn5EIvFyMnJgVgsRn5+PsrKylBcXCx9T8jLy5MWOa+e+6toamrC\nwMBAWviZmJjUKAKrvjc1NW3xfQlV9tHn5eVh8eLFOHbsGD788EN899139RoGb25uDnNzc/Tr16/W\n+7OyspCRkYGMjAykpKQgMzMTGRkZyM/PR0FBAQoKChAfH4/c3FwUFBSgoqJC+uJ9NZtEIgEA8Pl8\n6OvrS++rKpQEAgF0dXUhFAqhp6cHIyMj2NnZQU9PD8bGxggJCcHZs2fh6+uLPn36wNDQsInPmPIK\nCgpC165dlbLwEYvFmDFjBm7fvo1r165xhY+Cy8jIQHl5OSwtLVlHafHU1dVhYWEBCwuLem1fXFxc\nrYCo+nr27Bm2bdsGDQ0NDBkypFrB8ezZM1RWVkoLjoKCAgA1i5cqhYWF1T4gA4BAIKi1henV4klX\nVxfq6urViiw9PT2YmpqiVatW0NTUhFAohL6+fq0tWEKhkBtF10Aq2fITHByM9957D0SEQ4cOYfDg\nwawjyVxlZSUGDBiAgoIC3Llzp0V3jO3Zsyfc3NyUrg8GEWHhwoU4cuQI/v777yYt0seRj5Y2waGq\nKy4uhru7O9LT0xESEqKUH6A4jaM8XbPraceOHRgyZAh69OiBiIgIlSx8gJefeg4fPoykpCR89tln\nrOMwk5ubiwcPHijl//Onn36KP/74A0eOHOEKHyXx7Nkz8Hg8tGvXjnUUThNVVFRg0qRJiIuLw4UL\nF7jCp4VRmeKnpKQEXl5eWLlyJT799FOcOnVK5S8F2dnZYefOnfjxxx9x4cIF1nGYuH79OohINqv8\nytHu3buxdetW7N+/HxMnTmQdh1NPz549g7GxsUqMdmnJiAjvv/8+QkJCcOnSJYWasJUjHyrR5ycu\nLg4eHh5ISUnBhQsXMHz4cNaR5Gb27Nm4dOkSvLy8EBkZ2eJGCQUFBcHR0RFt27ZlHaXejhw5go8+\n+gjfffcdvLy8WMfhNEBycnK9+5hwFNfKlStx7Ngx+Pv7o0ePHqzjcBhQ+paf8+fPo1evXlBXV8ed\nO3daVOFT5ZdffkGrVq3g5eUFFezC9UZXr17FkCFDWMeot/Pnz8PLywurV6/GypUrWcfhNFB8fDzX\n10fJbd68GTt27MChQ4da5PsF5yWlLX4kEgnWr1+PcePGYfLkyfjnn39a7EgZfX19HDp0CJcvX1bq\nSf4aKjs7G9HR0UrT3+fWrVvw9PTEtGnTsHnzZtZxOI0QFxfHrRmoxA4dOoT169fjhx9+wNSpU1nH\n4TCklMVPcXExJk+ejO+//x779u3D/v37W/RoJwDo168f1q1bhxUrVuDhw4es48jF1atXwePx6pyW\nQJFER0dj9OjRGDJkCH7//Xelnz28pYqPj+eKHyXl7++PefPmYcOGDVi2bBnrOBzGlG6oe1ZWFiZM\nmIB///0Xp06dUrqOrs2ppQ1/X7JkCcLDw3Hr1i3WUd4oOTkZffv2hZ2dHS5duqTy/y+qKi0tDWZm\nZggKCsKgQYNYx+E0QFhYGNzd3TFjxgx4e3uzjsNRAErV8hMdHY1evXohLS0N//zzD1f4vKalDX8P\nCgpS+EteWVlZGD58OIRCIU6dOsUVPkrsyZMnAMC1/CiZhw8fYvTo0Rg+fDj27NnDOg5HQShN8XPl\nyhX069cPZmZmCA0N5YYm1qGlDH9PTU3Fo0ePFLr4KSgowMiRI1FeXo7Lly/DwMCAdSROE8TFxUFT\nU5Ob40eJxMfHY8SIERCJRDh69CjU1NRYR+IoCKUofv7880+MGjUKw4YNw5UrV2BkZMQ6kkKbPXs2\npk2bBi8vL6Snp7OO0yyCgoKgpqaGPn36sI5Sq/LyckyePBnJycm4ePEiN4GaCnjy5Anat29fYz0n\njmLKyMjAqFGjYGxszLW6cmpQ+L/iDRs2YN68eVi9ejWOHz/OrV9ST6o+/D0oKAguLi4KufKwRCLB\nzJkzERYWhkuXLqFjx46sI3FkoKr44Si+vLw8jBw5EkSEv//+G0KhkHUkjoJR2OKHiLBs2TJ8++23\n+O233/D1119zI2QaQNWHv1+9elVhL3l9/PHHOHfuHPz9/dG9e3fWcTgywg1zVw7FxcUYO3YsMjMz\nERAQ0OImfuXUj0IWP0SEDz/8EL/88guOHTvGzYLbSKo6/D05ORnx8fEKWfxs2LABe/bsweHDh7kO\n+SqGa/lRfBUVFZg8eTJiY2Nx+fJlWFtbs47EUVAKV/yIxWJ4eXlh//798PHxweTJk1lHUmobN25E\n9+7dMX36dJSWlrKOIxNXrlyBpqYm3NzcWEepZs+ePfjmm2/g7e0NDw8P1nE4MpSbm4vs7Gy88847\nrKNw6iCRSDB79mwEBwfj4sWL6NKlC+tIHAWmUMVPRUUFpk2bBl9fX/j7+2PChAmsIyk9VRz+fu3a\nNbi5uSlU/6+//voLH374IbZu3Yr58+ezjsORsbi4OADcMHdFtmLFCvj5+eHEiRPo2bMn6zgcBacw\nxU95eTmmTp2Kixcvwt/fn1tzRYZUbfj7jRs3MHDgQNYxpAIDA+Hl5YWlS5di1apVrONwmsGTJ0+g\npqbGXUZRUJ9++il27dqFo0ePcu8dnHpRiOLn/7F333FNXf//wF8Bwp5K2IrgAHGCWK2AGwu46q5W\nraOitVar1jrafurqcNXdVmodoHWLi6GCIsOFoIIMBUGUDRJ2QkJyfn/4TX4iQ8AkN8B5Ph55gBnn\nvJJg7jvnnnuPZIJaWFgYQkJCWtRClS1Fazn8PTMzE+np6XBzc2M6CgDg/v37mDBhAqZMmYLdu3cz\nHYeSk6SkJHTu3Bnq6upMR6HesXfvXvz+++84cOAAJk2axHQcqoVgvPipqqrCxIkTERsbi9DQUAwc\nOJDpSK1Wazj8PTw8HGw2Wyn+ThITE+Hl5YWhQ4fi8OHD9GjEVuzJkyfo0aMH0zGod/j5+WHZsmXY\ntm0b3d1MNQmjxY9IJMKsWbNw584dBAcHw8nJick4rV5rOPw9IiICzs7O0NHRYTRHZmYmvLy80LVr\nV5w8eRJqamqM5qHkKyEhAT179mQ6BvUWf39/zJs3Dz/88ANWrlzJdByqhWGs+CGEwNvbGwEBAbh8\n+TKdoKYgLf3w9/DwcMZ3eUnW69LT00NgYCDjhRglX1VVVUhNTaUjP0rk2rVrmD59Ory9vbFp0yam\n41AtEGPFz7Jly3D8+HFcuHCBng9FwVrq4e+FhYVISkpitPiprKzE+PHjwefz6XpdbURycjKqq6vp\nyI+SuHPnDiZNmoQpU6Zg7969TMehWihGip+tW7di//79OHbsGNzd3ZmI0Ka11MPfIyIiwGKx4Orq\nykj/QqEQkyZNQkpKCoKCgmBubs5IDkqxnjx5Ajabja5duzIdpc179OgRRo8ejZEjR+Lw4cN0nTWq\n2RT+l3Py5EmsXbsWO3bsoCcwZFBLPPw9IiICvXv3ZmSdHrFYjFmzZuH27dsIDg6GnZ2dwjNQzEhI\nSICdnR090othT548wciRI+Hs7Ezn2VEfTKHFT1hYGL744gssX74c3377rSK7purQ0g5/Dw8PZ2wX\n6YoVK+Dv74+zZ8/SifltzJMnT+guL4alpqZi1KhRsLOzg7+/PzQ0NJiORLVwCit+0tPTMWXKFIwb\nNw5bt25VVLfUe7SUw99LS0vx6NEjRub7rF+/Hvv27cPx48fpbto2KCEhgU52ZlBmZibc3d3RoUMH\nBAcH0wMMKJlQSPFTXl6O8ePHw8rKCkeOHKH7aZVISzn8/fbt2xCJRHBxcVFov3///Tc2btyIv/76\ni+6mbYMqKirw4sULWvwwJD8/H+7u7tIjK/X09JiORLUScq9CxGIxPv/8c+Tk5OD8+fO0aldCLeHw\n94iICNjZ2Sl0krG/vz+WLFmCX375BQsWLFBYv5TySExMhFgspru9GFBcXAwPDw9UV1fj6tWraN++\nPdORqFZE7sXPL7/8guDgYFy4cAE2Njby7o5qJmU//F3R831u3LiB6dOnY9GiRVi7dq3C+qWUy5Mn\nT6CpqQlbW1umo7QppaWlGDVqFAoLC3H9+nV6ZCUlc3Itfm7duoUNGzZg+/btCt9dQTWNMh/+zufz\n8eDBA4XN94mOjsb48eMxadIk7NmzRyF9UsopISEBDg4OUFVVZTpKm8Hj8TBu3DhkZGTg+vXr6NSp\nE9ORqFZIbsVPXl4eZsyYgQkTJuCbb76RVzeUDCnr4e93794Fn89XyMhPSkoKxo4di4EDB9LziFCI\ni4uju7wUSCAQYPLkyUhISMCNGzfoKSUouZHLJ7tYLMaMGTOgra2NgwcPyqMLSk6U8fD3iIgIWFlZ\nwdraWq79ZGVlwd3dHZ06dcKFCxfoeV3aOEIIYmJi0L9/f6ajtAnV1dX47LPPEBUVheDgYDrJnJIr\nuRQ/f/zxByIjI3Hq1CkYGBjIowtKjpg8/P3gwYNwcHDAokWL4Ovri+fPnyMiIgJDhw6Va7+vX7/G\nqFGjoKurS9frogAAz58/R1FRES1+FECyyPW1a9cQEBCAfv36MR2JauVkXvwkJCTgp59+woYNG+jJ\n4Fqohg5/j4iIwJAhQ5CRkSGXvnNycvD06VMcPHgQc+fORZcuXXDv3j1kZWVh586duHfvHoRCYbPa\nFggEdV4vWa+rtLQUgYGBaNeu3Yc8BaqViI6OBpvNRu/evZmO0qqJxWLMnTsXFy9exKVLl+j8UEox\niAzx+XzSp08f4uLiQqqrq2XZNMWAH3/8kWhqapK4uDgiFArJjz/+SFRUVAgAsnXrVrn0eejQIaKq\nqkoA1LioqKgQNptNABANDQ2yYMGCJrVbVVVFrKysyOeff04EAoH0eoFAQDw9PYmxsTFJSkqS9dOh\nWrAVK1YQR0dHpmO0amKxmCxcuJCoq6uTK1euMB2HakNkujjKxo0bkZaWhkePHtGjI1qBn3/+GaGh\noZg8eTIMDAwQExMDsVgMFouFS5cuYdWqVTLvs0OHDhCJRLWuF4vFEIvFAN6M4Ghqajap3bNnzyIr\nKwsnT55Efn4+/P39oa2tjQULFiAyMhI3b96Evb29TJ4D1TpER0fTXV5yRAjBkiVLcPjwYZw9exaj\nR49mOhLVlsiqioqPjydsNpvs27dPVk1SSmDv3r1EXV2dqKmp1RiJUVVVJVwuV+b9JSUl1Rr1efvC\nYrGIsbFxk/t2cnKSjiipqakRR0dHsmjRIqKurk6Cg4Nl/jyolk0kEhE9PT3i4+PDdJRWa9WqVYTN\nZpMLFy4wHYVqg2RS/IhEIuLi4kL69+9Pd3e1EiUlJWT69OnSgqOuIuTMmTMy77e8vLzB4gcA8ff3\nb1KbDx48qNUGm80m7du3J3/99ZfMnwPV8j158oQAIA8fPmQ6Squ0Zs0aoqqqSk6cOMF0FKqNksmE\n53/++Qf37t3DgQMH6O6uVuDu3buwt7fH2bNnAaDOI77U1NQQEBAg8751dHSgq6tb521sNhvjxo3D\np59+2qQ2d+zYATabXeM6oVCI0tJSbNq0CU+fPm12Xqp1io6OhqamJj3cWg5+/PFHbNu2DUePHsVn\nn33GdByqjfrg4qeoqAjr1q3DsmXL4OjoKItMFMPOnj2LnJycBo+qEgqFuHz5snQejizVdyp7NpuN\n/fv3N6mt/Px8nD17ts7nIhQKkZ+fj48++gh37txpVlaqdXrw4AEcHR1rFc3Uh1m/fj1+++03HD58\nGJ9//jnTcag27IOLn40bN0JNTQ3/+9//ZJGHUgLbtm3DgQMHoKGhATW1+ufEv379GrGxsTLvv641\n4FRUVLB161ZYWVk1qa33rVRfXV2N8vJyjBgxAsnJyU1qm2q9oqOj4ezszHSMVmXHjh3YuHEj/vzz\nT8yaNYvpOFQb90HFT1paGv7++29s3LgR+vr6sspEMYzFYsHb2xsxMTGws7OrtwBSV1eXyzIY1tbW\nNfpUU1NDnz59sGjRoia1IxAIsHfv3gZHsFRVVSEWi+Hi4gJjY+NmZ6ZaD6FQiLi4OHqklwzt2rUL\nq1atwr59+7Bw4UKm41DUhxU/3333HWxtbTF//nxZ5aGUSI8ePfDgwQOsXLkSLBar1nwugUCACxcu\nyLxfS0vLGn0RQnDo0KEmzyc7c+YMXr9+XedtKioqYLFY6NWrF0JDQ3H9+nVa/FAAgPj4ePD5fDry\nIyN79uzB8uXLsWXLFixevJjpOBQF4AOKnwcPHsDf3x/btm1rcNcI1bJpamri999/lxYH786BePTo\nkczXAOvQoQOqq6sBvBn1Wb16Nfr27dvkdv744486FyZVUVGBtbU1Tp06hdjYWAwfPvyDM1OtR3R0\nNPT09OiimjJw8OBBfPvtt/jtt9/kcl4wimquZhc/mzZtQr9+/eDl5SXLPJSSksyJmThxIoA3u8Yk\nP69evSrTvqysrCASiaCiogILCwv8+OOPTW4jJiYGsbGxNU6YqKamBiMjI/z6669ITk7GlClTpM+D\noiQiIiLw8ccf11k4U433zz//wNvbG7/88gvWrFnDdByKqqFZ/7sfP36My5cvY/369XTj0YYYGhri\n5MmTOHz4MLS0tKSjQFeuXJFpP5JJzWKxGAcPHoSWllaT29i5c6c0H5vNhpaWFlauXImMjAysXr2a\nrthO1Ss8PBxDhgxhOkaLduDAASxcuBDr16/H2rVrmY5DUbWwSF0ncXmPKVOmICUlBQ8fPqTFTxsj\nEolQWlqKFy9eYN68eXj06BG0tbVx8+ZN6ZwcHo8HPp9fbxuVlZWoqqqq93Y+n4/Zs2djxIgRdX5j\nVFFRgYGBgfTfmpqa0gLJyMgIBQUF6NGjB6qrq8Fms/HNN99g3bp1aN++fXOfNtVGPH/+HF26dEFk\nZCRdYLOZ/vnnHyxatAg///wzPQqYUlpNLn5SU1NhZ2eHU6dOYfLkyfLKRX0AgUAALpeL4uJicLlc\nlJeXg8vlgsfjgcfjobi4GJWVleDxeCgpKUFFRQUqKytRVlaGsrIy8Hg8lJeXQywWo6SkBABQUVFR\n76roys7IyAgAoKWlBU1NTWhoaEBbWxuGhobQ0tKClpYWjIyMpL8bGhpCW1sbWlpaMDAwgI6ODvT0\n9GBoaAgjIyMYGhrWeyJGqmU7dOgQlixZAi6XCw0NDabjtDg+Pj5YtGgRNmzYgJ9++onpOBRVrybP\nVN61axesra0xYcIEeeSh3iIUClFQUIDCwkLk5eUhPz8fhYWFKCoqkhY2bxc5kp+VlZV1ttfQxl1T\nUxO2trbQ0dGBlpaW9NQF7xYOLBYLhoaGNa4jhKBdu3bSflRVVRs89QGbzW6weBAIBKioqKj3dj6f\nDx6PJ/23ZCRJUqwJBAJkZ2fDwMBAOlIFAOXl5RAKhdLHv10QpqWlobKyEnw+v1ZxWN9zeLsYevun\n5MLhcGBsbAwOhwNTU1NwOBzo6OjU+7wo5t26dQsff/wxLXya4e+//8bixYuxadMm/PDDD0zHoagG\nNan44XK5OHr0KH755Re6jEUzicVi5OXlITMzE9nZ2Xj58iUKCgpQUFCAvLy8GsUOl8ut8Vg2mw0O\nh4N27drV2NDa2trWuRGW/JSMWrQU6urqSjUnp6KiAmVlZbWKzLoK0GfPnoHL5aKoqAiFhYW1ijht\nbW1wOByYmZlJCyPJv83MzNChQwdYWlrC0tKSboAZcOvWLcybN4/pGC3Ozp07sXLlSmzevBnr1q1j\nOg5FvVeTih8fHx+oqKhgzpw5corTshFCkJ2djfT0dGlx8+rVK2RlZSErKwuvXr1Cbm5ujZPuSUYF\njI2NYWZmBkdHR+kGUTJaYGxsDFNTU+koDKVYOjo60NHRgZmZWZMfW1lZiYKCAuTm5qKwsFBa6Er+\nnZeXh/j4eOTl5SE3N1d6iD8AmJiYwMLCAlZWVrCysoKFhQU6duwICwsLWFtbo1OnTkpVJLZ0r169\nQkZGBp3s3ER//PEHVq5ciV9//ZVObqZajEbP+REKhejcuTOmTZuGbdu2yTuX0uLz+cjOzkZaWlqt\ny9OnT1FeXi69r2RUxtzcHBYWFtKfkus6duwIPT09Bp8NpWy4XC6ys7ORk5ODtLQ06e+Sn6mpqTV2\nxUn+xuq6dOrUiR6u3QS+vr7w9vYGl8tt1hGGbdGOHTuwatUq7Ny5E8uWLWM6DkU1WqOLn//++w+z\nZ89GSkpKnWsvtSZisRgvXrxAUlISEhMT8fTpUyQkJCA1NRWFhYUA3pzfxsLCAjY2NrC1tZX+lPxu\nbm5ONzyUXHC5XLx48UJadKenp0t/z8jIkE5M19LSQpcuXWBvbw97e3s4ODhIf9fU1GT4WSif+fPn\nIzU1Fbdu3WI6Souwbds2rF69Grt27cLSpUuZjkNRTdLo4mfAgAGwsbHByZMn5Z1JYQgheP78OR49\neoTk5GQkJCTg6dOnSE5Olk6otbS0RPfu3WFvbw87OztpcWNjY0M3IJTSEYvFyMzMlBZEKSkpSE5O\nRmJiIp4/f47q6mqoqKjAxsYG3bt3l/5t9+7dG7169WrT84y6dOmCGTNmYOPGjUxHUXpbt27FmjVr\nsHv3bnzzzTdMx6GoJmtU8RMdHY2PPvoIUVFRGDRokCJyyZxIJJJuBBISEhATE4O7d+9KR3LMzc3R\no0cPODg4oEePHrC1tUXv3r1hYmLCcHKKkg2hUIhXr14hISEBiYmJSEtLQ0JCAh4/fozy8nKoqamh\nW7du6Nevn/T/wqBBg9rE+ZEyMzPRoUMHhISEYMSIEUzHUWpbtmzB2rVrsXfvXnz99ddMx6GoZmlU\n8bNo0SJERkbiyZMnisgkExkZGYiIiMDt27cRExODuLg48Pl8aGhooFevXnB0dISTkxMcHR3Ru3dv\nuo+farPEYrH0pKWxsbHSn0VFRVBRUUGXLl3g5OSEgQMHwtXVFX379m11R3seP34cc+fOBZfLpacj\naICk8Nm3bx9dpJRq0d5b/PB4PFhYWOB///sfli9frqhcTSIWi5GQkICIiAhERUUhPDwcmZmZUFdX\nR79+/dC/f384OjrC0dERDg4OtRbnpCiqtoyMDGkhFBsbizt37qCoqAh6enr4+OOP4erqCjc3N3z0\n0UfQ1tZmOu4HWbhwIZ48eYKoqCimoyitn3/+GZs2bcL+/fvx1VdfMR2Hoj7Ie4ufo0ePwtvbG5mZ\nmeBwOIrK9V4vX75EYGAggoKCEBERAS6XC319fQwaNAguLi7SD2U6okNRskEIQUJCAiIjIxEZGYmI\niAi8fPkSbDYbzs7O+OSTT+Dl5YV+/fq1uMn+tra2mDFjBjZv3sx0FKW0du1abN26Ff/++y891QnV\nKry3+Bk8eDBMTU1x5swZRWWqU3V1NaKiohAYGIjAwEA8efIEurq6GDlyJIYPHw5XV1f07t271Q3H\nU5Qye/XqFcLDwxEeHo6goCC8evUKJiYm8PT0hJeXF9zd3ZX+/FRPnz6Fvb09IiIi4OrqynQcpUII\nwbJly/Dnn3/i8OHDmDVrFtORKEomGix+nj17Bnt7ewQGBsLDw0ORuQC8maQcEhICPz8/BAQEoLi4\nGN26dcPo0aPh6emJwYMHt+mjUyhK2cTHx0u/oNy+fRsA4OrqihkzZmDKlClKeabxPXv24KeffkJh\nYSHdJf4WkUiEhQsXws/PD8ePH6drOVKtSoPFz48//ghfX1+kp6crdEQlPj4evr6++O+//5CTk4OP\nP/4Y06ZNw+jRo9G5c2eF5aAoqvmKi4tx7do1+Pv74+LFiyCEYNy4cZg1axY8PDygptbkpQXlYvTo\n0dDS0sLZs2eZjqI0qqurMW/ePJw+fRqnTp3C+PHjmY5EUTLVYPHTvXt3jB49Gtu3b5d7EB6PB19f\nX/z999949OgRbGxsMGvWLMyaNQtdunSRe/8URclPSUkJzp49C19fX0RERIDD4WDWrFn45ptvYG1t\nzViuqqoqtG/fHjt37sSCBQsYy6FMBAIBPvvsOVicIAAAIABJREFUM1y7dg0XLlzAyJEjmY5EUbJH\n6hEfH08AkKioqPruIhNcLpf873//I8bGxkRTU5PMmzePhIeHE7FYLNd+WwIA0ktbdf/+fTJ06FCm\nYzSLsrx/Q4cOJffv32c0w9vS09PJxo0biZWVFVFTUyPTpk0j8fHxjGS5evUqAUAyMjIY6V/ZVFRU\nkFGjRhFDQ0Ny+/ZtpuNQlNzU+6m8efNmYm5uTkQikVw65vP55LfffiNGRkakXbt2ZP369SQvL08u\nfbVkyrDxZMo///xDDA0Nib+/P9NRpFxdXYmrq2uj768M79/58+eJgYEB8fHxYTTHuwQCATl+/Djp\n3bs3UVFRIZ9//rnCi5AVK1YQBwcHhfaprIqLi4mLiwsxMTEhDx8+ZDoORclVvZ/Kw4YNI1988YVc\nOr116xaxs7MjOjo65KeffiLFxcVy6UeZNHcjKIuNJ1Mb4A/pNzAwkLBYLHLy5EkZp/owgwYNIoMG\nDWr0/RX12r+vn2PHjhEWi0UCAwPlnqWpRCIROXnyJOnatSvR1dUlO3bskNuXrnd17dqVrF69WiF9\nKbOioiIyYMAAYmZmxtgoHEUpUp2fljwej2hqapKjR4/KtDOxWEw2bdpEVFVVydixY8mLFy9k2r4y\no8VP41VVVZEOHToQFxcXOaRSLGUpfgghZODAgaRjx45EIBDIPU9z8Hg88vPPPxMNDQ0yatQoUlBQ\nINf+EhISCAASGRkp136UXW5uLunVqxextrYmKSkpTMehKIWo80xk9+7dA5/Px9ChQ2U2t0gkEmHe\nvHnYsGEDfvnlF1y6dInRiY6U8jp37hxevXqFGTNmMB2lVZkxYwZevnyJc+fOMR2lTpqamli/fj1u\n376N1NRUDBo0CJmZmXLr79KlS2jfvj0GDhwotz6U3cuXL+Hm5gaBQIDIyEh6cAnVZtRZ/MTExMDE\nxAQdO3aUWUcrVqzAqVOnEBAQgNWrV8usXXkJCQnBuHHjYGRkBE1NTTg5OdW5oj2LxZJenj9/jokT\nJ8LIyEh6neQ+797/yy+/rNFOQkICvLy8oKurCwMDA0yYMAEvX76sN19+fj6++uorWFlZQV1dHZaW\nlvD29kZubm6tfO/ru7FtAQCfz8fvv/8OR0dH6OjoQFNTE/b29li0aBHu3r3bpH7rc+nSJQCAs7Nz\nrefyvtcaaN57l5iYCA8PD+jr60NXVxejR49GUlJSvfd/V1PfP0X/fQFA//79a7y+ysrJyQm3b9+G\nhoYG3N3dUVFRIZd+Ll++jLFjx7bZE6Omp6dj6NChYLPZuHnzJqysrJiORFGKU9dw0MyZM4mHh4fM\nhpeuX7+ulPM3GgKAfPrpp6SgoIBkZGQQd3d3AoAEBwfXeV8AxN3dnURFRZHKykoSGBhYYzcEGtgt\nkZqaSgwNDYmFhQUJDQ0lZWVl5NatW+STTz6p83G5ubnE2tqamJqakqtXr5KysjISHh5OrK2tiY2N\nDeFyuXXmq0tT2iotLSXOzs5ET0+P/PPPPyQ3N5eUlZWRmzdvku7du9fqo6F+G2JnZ0cAkNzc3Fq3\nNfa1bup7N2jQIBIZGUnKyspISEgIMTMzI0ZGRiQ9Pf29z6mp719zMzb370siOzubACD29vYN3k9Z\nZGVlEQ6HQxYvXizztvPz84mqqio5d+6czNtuCRITE4mFhQVxdnYmhYWFTMehKIWr89PSycmJrFq1\nSmadjBw5knh6esqsPUUAUGPDl5SURAAQNze3Ou8LgNy8ebPB9urbOM2cOZMAIH5+fjWu9/f3r/Nx\nCxcuJADIv//+W+P68+fPEwBk3bp1je67KW2tWLGCACC7du2q1U5sbKzMih9dXV0CgPD5/Fq3Nfa1\nbup79+5E4CNHjhAAtSb91/Wcmvr+NTdjc/++JHg8HgFA9PT0GryfMjl48CDR0NCQ+ZGghw8fJhoa\nGqSsrEym7bYEMTExxNjYmAwePJiUlJQwHYeiGFHnpyWHwyF79+6VSQdCoZCw2Wxy/PhxmbTHlOrq\nagKAtG/fvtZtkg1PRUVFvY9vaONkampKAJCsrKwa1xcUFNT5OAsLCwKAZGdn17i+sLCQACC9evVq\ndN9Naatjx44EQKMnqje3+FFRUSEA6jzXU2Ne63c15r1794jDzMxMAoCYm5vXef+3NfX9a27G5v59\nSYhEIgKAqKqqvjePsqisrJTLCM24ceOIl5eXTNtsCcLCwoiBgQHx8PAglZWVTMehKMbUmvNTVVWF\nwsJCme3/LS0thVAohKmpqUzaU4Ti4mKsW7cO3bt3h56eHlgslvRU/K9fv673cdra2s3qr7CwEABg\nbGxc4/p3/y2Rn58PALCwsKgxJ0Ry/+fPnze676a0lZOTAwAwMzNrdPvNIXkdBQLBe+/zrua+dwYG\nBjX+LXn+BQUF783b1PdP0X9fEpLX80PbUSQtLS3o6+tLX2NZKCsrw7Vr1zBlyhSZtdkS+Pv7w8PD\nA6NGjcLFixehpaXFdCSKYkyt4qeoqAiEkHo/uJuqXbt2MDIyQlxcnEzaU4SpU6fit99+w7Rp05CR\nkQHyZoRMbv1JXut3P+BLSkrqvL+kkJS8V+9emjJBtCltSe4rKYLkxdLSEsCbIqGpmvvevVt0SN4L\nDofz3sc29f1T9N+XBJfLBfD/X9+WICMjA1wuV6Zr+l28eBEikQjjxo2TWZvK7siRI5g6dSrmzZuH\nkydPQl1dnelIFMWoWsWPUCgEAJn+55g+fTr2798PHo8nszblKSoqCgCwcuVKtGvXDsCbEbEPIfm2\nLRQKUVlZWaO4HDVqFAAgNDS0xmPu3LlTZ1uffvopACAsLKzWbREREfj4448b3XdT2po0aRIA4MKF\nC7Xue/fuXQwYMKDR/TbE0dERwJsNX1M1972TPE4iJCQEwP9/bxrS1PdP0X9fEpLXs2/fvh/UlyJt\n374dVlZWGDx4sMzaPHPmDEaOHCl97Vu7LVu2YO7cuVi5ciX2798PFZU6D/KlqLbl3f1gqampBACJ\niYmR2b61V69ekXbt2pG5c+e2iDW7JEfprF27lnC5XPL69WvpZN86XrJGn2AO/3dCtZMnT5IxY8ZI\nb3v+/Hmto4WioqLI4MGD62y7oKCAdO3alZibm5MzZ86QwsJCUlpaSi5fvkxsbW1JWFhYo/tuSltc\nLpf07NmT6OnpER8fH+nRXsHBwaRr164kJCSk0f025Pjx4wQA2b9/f63b3vdaN/e98/T0JBEREaSs\nrIyEhoYSc3PzRh/t1dT3T9F/XxJ79uwhAMh///3XYFvK4uLFi4TFYtWaSP4hSktLiaamJjl06JDM\n2lRWYrGYrFixgqiqqpK//vqL6TgUpVRqfaJKJnrK+qynV65cIerq6mTRokVEKBTKtG1Zy8vLI7Nm\nzSImJiZEXV2d9OzZk5w6dUq6EXp7Q/T2dQ1tpKKjo0mfPn2ItrY2GThwIHn69GmN2588eUI8PT2J\njo4O0dXVJaNGjZKegbaudouKisiKFSuIjY0NYbPZxNTUlIwdO5bcuXOnyX03pa2ysjLy448/Ejs7\nO6Kurk7at29PRo0aRcLDw5vcb32qqqqIlZVVrTW0GvNaN+W9e7vN9PR0MmbMGKKnp0d0dHSIp6cn\nSUxMbLD/tzXl/WPi74uQNwWSlZUVqaqqqueVVx7+/v5EQ0ODLFq0SKbtHjt2jLDZbPL69WuZtqts\nqqqqyLRp04iGhgY5ffo003EoSunU+iTl8/kEALlw4YLMO7t48SLR1tYmQ4YMIZmZmTJvn2o9rly5\nopBzQzVmVKU1kKztdeXKFaajNEggEJC1a9cSFotFFi9eLPM1vsaPHy/Tc5gpo7KyMjJq1Ciiq6tL\nrl27xnQcilJKdX7q6+vrk3/++UcuHcbFxRE7Ozuir69Pdu/erfSjQBRzDhw4IPdV3dtC8XP+/Hmi\nr69P/v77b6ajNCg8PJz06NGDaGtr1zrvlCy8fv2aaGhoEF9fX5m3rSxyc3OJk5MTMTMzI7GxsUzH\noSilVefMt65duyI5Obmx04aapFevXnj48CGWL1+O77//Ht26dYOPjw9EIpFc+qNaLm9vb1y9ehW7\ndu1iOkqLtnv3bly/fh0LFy5kOkqdEhMTMXXqVAwZMgQmJiaIjY3FvHnzZN7PqVOnoKqqKp3k39qk\np6fDzc0NxcXFiIiIkB44QFFUbSxCah9jO2/ePGRmZuLatWty7Tw1NRXr16/HiRMn0K1bNyxfvhyz\nZs2i55+gFOLdNbrq+K9AyVFYWBh27NiBwMBA9O3bF5s2bYKXl5fc+nN1dYW1tTWOHz8utz6Y8uTJ\nE3h4eMDMzAyBgYEwMTFhOhJFKbU6R3769OmD2NhYiMViuXbepUsXHDt2DPHx8Rg0aBCWLl0KKysr\nLFmypMYimRQlD+SdcxpR8peVlYWtW7eiZ8+eGDZsGEpKSuDv748HDx7ItfDJyMjA7du38fnnn8ut\nD6aEhYXB1dUV3bp1w40bN2jhQ1GNUGfxM2LECLx+/RrR0dEKCeHg4IB///0XL168wHfffYcbN27g\n448/hp2dHTZv3tys871QFKUcysvL4evrC3d3d3Ts2BFbtmzB4MGDcf/+fYSHh2PcuHG1RuFkzdfX\nF8bGxnB3d5drP4p24cIFeHp6Yvjw4QgMDIS+vj7TkSiqRahztxcAdOrUCXPmzMH69esVHOmNBw8e\nwM/PDydPnkRBQQEGDBiA0aNHw8vLC46OjnL/sKQoqvmysrIQGBiIoKAgXLt2DUKhEF5eXpg9eza8\nvLygoaGh0Dzdu3eHu7s79uzZo9B+5enPP//EN998g6+//hq7du2iJy+kqCaot/j5+uuvERYWhoSE\nBEVnqkEoFOLq1au4ePEiAgMDkZ2dDXNzc3h5ecHT0xPu7u702w5FMUwkEuHu3bsIDAxEYGAgHj9+\nDC0tLQwfPhxjxozBlClTGDuj8u3bt+Hi4oLo6Gg4OzszkkGWCCFYt24dtmzZgk2bNuGHH35gOhJF\ntTj1Fj/R0dH46KOPcPv27VrLJTCFEIJHjx4hKCgIAQEBuHfvHlRUVNC/f3+4urrC1dUVLi4ubea0\n9RTFFIFAgAcPHiAqKgoRERGIjIwEl8uFra0tvLy8MHr0aAwdOhSamppMR8W8efMQExODx48fMx3l\ng1VVVWHevHk4ffo09u/fD29vb6YjUVSLVG/xA7xZA8jJyQmHDh1SZKZGe/36Na5du4Zbt24hMjIS\niYmJAN7MIXJzc4OLiwvc3NxgbW3NcFKKatlKSkpw+/ZtabETHR0NHo8HMzMz6RcPDw8P2NnZMR21\nhvLycpibm+O3337DkiVLmI7zQbhcLiZMmIDY2FicPn0aHh4eTEeiqBarweLn77//xvLly/H8+XNY\nWFgoMlezlJWV4d69e4iMjERUVBQiIyPB5/NhaGiIHj16oF+/ftJL9+7d6T5yiqpDSUkJ4uPjERMT\nI70kJydDLBbD3Nwcrq6uGDlyJFxcXODg4KDU8+98fHywbNkyZGdnw8jIiOk4zZaeng4vLy+UlZXh\nypUrLWpxWopSRg0WP1VVVejSpQsmTpyI3bt3KzKXTPB4PERHRyMmJgYPHz5EbGwskpOTIRKJYGBg\nIB3Z6tu3L3r06AE7Ozvo6uoyHZuiFKK6uhrp6elISEhAXFyc9P/Iy5cvAQCWlpZwcnKCo6MjnJyc\nMHDgQJiamjKcumkGDBiAbt26wc/Pj+kozXb//n2MHTsWZmZmCAgIgJWVFdORKKrFa7D4AYB9+/Zh\n1apVLWb0530qKytrfNA/fPgQ8fHxEAgEYLFY6NixI+zt7dG9e3d0794d9vb2cHBwgLGxMdPRKapZ\neDwekpOTkZycjMTEROnvz549k/7d29jYwMnJqUax09LPFxMXF4c+ffrg5s2bGDp0KNNxmsXf3x+f\nf/45hg8fjpMnT9IvZxQlI+8tfvh8Puzt7TF48GD4+voqKpdCSb4BSzYMSUlJSExMxNOnT1FaWgoA\nMDY2Rrdu3WBrayu92NjYwNbWFpaWlko99E+1flwuF2lpaUhLS0N6err099TUVGRkZEAsFoPNZqNz\n585wcHCoVeDr6Ogw/RRkbvHixQgNDUVycnKL/P+5e/durFixAvPmzcNff/0FNTU1piNRVKvx3uIH\nAM6fP4/Jkyfj5s2bGDJkiCJyKY1Xr15JC6KUlBTphiU9PR18Ph8AoKGhARsbG2kxZGtrCysrK1ha\nWsLKygrm5uZQV1dn+JlQLRUhBHl5ecjOzkZWVhYyMzPx4sWLGsUOl8sFAKiqqsLS0lJanHfp0kVa\n6HTp0gVsNpvhZ6MYZWVlsLS0xObNm7F06VKm4zRJdXU1li5dCh8fH/zyyy9YvXo105EoqtVpVPED\nAB4eHsjJyUFMTAz9BvJ/srOza33TTk9PR3p6OnJycmos1mpmZgYLC4saBVHHjh1hYWEBMzMzcDgc\ncDgcqKqqMviMKEXjcrnIz89HQUEBMjMzkZ2djVevXtUodHJyciAQCKSPad++PaytrWuMPkp+t7a2\npoU2gF27duGnn35CZmYmDAwMmI7TaEVFRZg8eTKio6Nx7NgxjB8/nulIFNUqNbr4SUlJQZ8+ffD9\n998zdtbnlkQkEiE3N7fODZrk98zMTPB4vBqPkxRBHA4HJiYmMDU1hbGxMTgcDszNzWFsbIx27drB\n0NAQRkZG0NbWZugZUu8SCoUoLi4Gl8sFl8tFQUEBCgoKkJ+fj7y8PBQWFqKgoAA5OTkoKChAYWFh\njaJGTU0Npqam6NChAywsLGBlZVWrULa0tKQL/74HIQTdu3fHiBEjsH//fqbjNFpqairGjh2LsrIy\nXLp0CU5OTkxHoqhWq9HFD/Bm8vPy5csRERGBgQMHyjNXm1FUVIS8vLwaG0nJhjE3Nxf5+fkoLCxE\nfn4+Xr9+Xevx6urq0kLo7Z/v/q6rqwstLS3o6elBT08PWlpa0NXVhb6+PrS0tFrlnI/GEgqFKC8v\nR2lpKXg8HioqKlBSUgIej4fKykoUFxejoqICXC4XxcXF0gLn3Z8VFRW12tbR0ZEWsRwOB8bGxjAz\nM4OJiQmMjY1r3GZqakpH/mQgKCgIXl5eiIuLQ69evZiO0ygRERGYOHEiOnfujAsXLsDMzIzpSBTV\nqjWp+CGEwNPTE2lpaXj48GGb3mAyobq6GgUFBXVueN/dKL/7e3l5OYRCYYPtGxgYQEtLC9ra2jA0\nNASLxYK2tjY0NDSgoqIi3X2go6MDdXV1qKqqSpcW0dXVrTGf5O3b6qKnp1fv7tPi4uJ6V1nn8XjS\nuVYSkvkub9/G5XIhEokgEAjA5/NBCEFxcTGANye+4/F4KCsrQ1lZGaqrqxt8XSQjbHUVlvUVm0ZG\nRuBwOHRkjgFjxowBn89HSEgI01EaxcfHB0uWLMHEiRNx+PBhOrJHUQrQpOIHeDPPpU+fPnB3d8d/\n//0nr1yUHFRXV0s3+JWVlXWOcFRWVoLH40kLBUlxIBkdqe+60tLSGnOc+Hx+rV16Em8XInWRFFd1\nqauoMjAwgIqKCtTV1aUF+atXr8DlcjFixAjo6ekBgLSg09HRgZaWFvT19WuMiL09CvZ2IUi1HElJ\nSejZsyfOnj2LCRMmMB2nQUKhEN9++y3++usv/PTTT1i/fn2LPCqNolqiJhc/ABAaGopPPvkE27Zt\nw/Lly+WRi6I+yJMnTzBkyBC4urri3LlzdJJ+G/HFF1/g/v37SEhIUOozuBcWFmLatGm4f/8+Dh8+\njMmTJzMdiaLalGZ9OowYMQKbN2/G999/j7CwMBlHoqgP17NnTwQGBuLGjRuYO3cuxGIx05EoOXv5\n8iVOnDiBtWvXKnXh8+jRI/Tv3x8pKSkICwujhQ9FMaBZIz/Am10X06ZNw61btxATE0NPuU4ppZCQ\nEIwZMwZffvkl9u3bx3QcSo4WL16MgIAApKamKu35jE6ePIn58+fD2dkZZ86cafFn0aaolqrZX49Y\nLBYOHToEDoeDSZMmoaqqSpa5KEomRo4ciRMnTuDvv//Gpk2bmI5DyUlubi6OHDmCNWvWKGXhIxKJ\nsGbNGkyfPh0zZ85ESEgILXwoikEfNDasq6uLs2fPIjk5GUuWLJFVJoqSqQkTJuDff//Fzz//jJ07\ndzIdh5KDLVu2wNDQEHPnzmU6Si2FhYXw8PDAnj174OfnhwMHDihlgUZRbckHzwK1t7eHn58fJk6c\nCBsbG6xbt04WuShKpr744gtkZ2dj5cqVSruRpJonPT0df/31F3bu3AlNTU2m49Rw//59TJkyBSwW\nCxEREejXrx/TkSiKAqC6Xgana7azs4OpqSlWrlyJjh07wtHRUQbRKEq23NzcUFlZiR9++AFOTk7o\n1q0b05EoGVi8eDF4PB4OHjyoVCeJ9PX1xeTJk9G7d29cvXoVXbt2ZToSRVH/R2bH/y5cuBAZGRlY\nuHAhzM3N4eHhIaumKUpmfv/9d3C5XEyZMgXBwcEYPHgw05GoDxAdHY1Tp07h7NmzSrMric/nY8mS\nJTh06BC+//57/Prrr0p99BlFtUXNPtqrLoQQzJs3D6dPn8aNGzcwYMAAWTVNUTIjEokwY8YMBAcH\n48aNG3RXRAs2cuRIlJeX486dO0pxgsDU1FRMmjQJmZmZOHbsGDw9PZmORFFUHWT6dYTFYsHHxwdu\nbm4YO3YsUlJSZNk8RcmEqqoq/Pz8MGjQIHh6eiI5OZnpSFQzXL58GaGhodixY4dSFD4XL15E//79\noaamhpiYGFr4UJQSk+nIj0RZWRmGDh2K4uJihIWFoUOHDrLugqI+WGVlJT755BO8ePECkZGRsLa2\nZjoS1UiVlZXo2bMnBgwYgBMnTjCaRSAQYPXq1di9ezfmz5+PvXv3Kt3Ea4qiapJL8QMABQUFGDFi\nBEpLSxEWFoZOnTrJoxuK+iAlJSUYOnQoKioqEBERAVNTU6YjUY3www8/YO/evUhKSoKlpSVjOV68\neIHp06cjISEBf/75J2bOnMlYFoqiGk9us/A4HA5CQ0Ohr6+PoUOH4sWLF/LqiqKazcDAAFevXgWL\nxcInn3zS4IKrlHJ49uwZduzYgc2bNzNa+Jw7dw6Ojo4QCASIiYmhhQ9FtSByG/mRoCNAVEvw/Plz\nuLm5wc7ODkFBQXS3hRIbMWIECgsLERMTw8iCtTweD2vWrMGePXvg7e2NPXv2QENDQ+E5KIpqPrkf\nfykZAdLT08OwYcPoCBCllDp37oxr164hLi4O06ZNQ3V1NdORqDr4+fkhLCwMPj4+jBQ+SUlJGDBg\nAI4ePYrTp0/jwIEDtPChqBZIISef4HA4CAkJgba2NkaMGIHU1FRFdEtRTUJXglduOTk5+Pbbb7F4\n8WJGTqPh6+sLZ2dnaGtr4+HDh5gyZYrCM1AUJRsKO/OWqakpwsLC0L59e7i4uODBgweK6pqiGm3A\ngAHw9/fHmTNnsHTpUqbjUG/5+uuvYWBggN9++02h/ZaWlmLGjBmYM2cOvvzyS0RERMDGxkahGSiK\nki2FnnaUw+Hg5s2b6NevH4YOHYqgoCBFdk9RjUJXglc+R44cwcWLF3H48GHo6uoqrN8HDx7AyckJ\noaGhCAoKwu7du5XmTNIURTWfws+5rqOjg0uXLuGzzz7DuHHjcOjQIUVHoKj3oivBK4/s7GysWLEC\nS5cuxZAhQxTSJyEEu3fvhouLCzp16oRHjx7hk08+UUjfFEXJn0wWNm0qFRUVjB07FmVlZVi7di30\n9PTw8ccfKzoGRTWob9++0NDQwOrVq+mCvQwhhGDatGmoqqrCmTNnFDLqUlhYiKlTp+Kvv/7CunXr\ncPDgQejr68u9X4qiFEfxh0v8HxaLhW3btsHc3Bzfffcdnj59ir1790JdXZ2pSBRVy5o1a8DlcrFw\n4UJwOByMGTOG6Uhtyh9//IHQ0FCEh4dDW1tb7v2FhITgiy++gLq6OiIiIjBw4EC590lRlOIxvtTw\nihUrcOXKFZw6dQrDhg1Dbm4u05Eoqobff/8dc+bMwdSpUxEeHs50nDYjJiYG69atw8aNG+VehPB4\nPCxbtgyjRo2Cq6srHj58SAsfimrF5H6Sw8Z69uwZxo8fj7KyMvj7+6N///5MR6IoKboSvGKVl5fD\n2dkZ5ubmCAkJgaqqqtz6io+Px8yZM/HixQts27YN3t7ecuuLoijlwPjIj0S3bt0QFRUFBwcHDB48\nGEePHmU6EkVJ0ZXgFWvx4sUoKirC8ePH5Vb4iMVi7N69G87OztDV1cXDhw9p4UNRbYTSFD8A0K5d\nOwQFBWHx4sWYO3cuvvvuOwiFQqZjURQAQF1dHefOnYOdnR3c3d2RkZHBdKRW6dChQzh27BiOHj0K\nCwsLufTx4sULDBs2DGvWrMHGjRsREREBW1tbufRFUZTyUZrdXu86duwYFi1ahB49euDEiRP0g4lS\nGnQlePl59OgRBg0ahOXLl+OXX36RSx++vr5YsmQJrK2t4efnh759+8qlH4qilJdSjfy8bebMmYiJ\niYFAIICjoyP+++8/piNRFAC6Ery8FBUVYeLEiRg0aBA2btwo8/YLCgrw6aefYs6cOZg7dy4ePHhA\nCx+KaqOUtvgBADs7O9y9exdz5szBzJkzMXv2bFRUVDAdi6JgYmKCoKAg5OfnY8KECeDz+UxHatHE\nYjFmzpyJ6upqnDhxQubzfIKDg9GnTx88evQIN2/exO7du+mCpBTVhil18QMAGhoa2L17N86dO4cr\nV65gwIABiIuLYzoWRcHW1la6EvzUqVPpSvAf4H//+x9u3LiBc+fOgcPhyKzdyspKLFu2DJ6entJD\n2BV1lmiKopSX0hc/EhMmTMCjR49gZGSE/v37Y9OmTXQyNMU4yUrwN2/epCvBN9Pp06fx66+/Yt++\nfTI9xcXdu3fRt29fnDhxAufPn8fp06dhZGQks/Ypimq5WkzxAwAdO3ZEeHg49u7diy1btsDZ2Rmx\nsbFMx6LauAEDBuDChQt0JfhmiI2Nxdy4Cgx5AAAgAElEQVS5c7F06VJ8+eWXMmmzqqoK69atg6ur\nK7p164a4uDhMmDBBJm1TFNU6tKjiB3izLIa3tzfi4uLQrl07DBw4EGvWrIFAIGA6GtWGjRgxQroS\nvDwm67ZGOTk5GD9+PFxdXbF9+3aZtPngwQM4Oztj79692L9/Py5fvgwzMzOZtE1RVOvByMKmsmBk\nZITZs2dDT08Pv/32Gy5evIgBAwbQDzqKMd27d4e1tTWWL18OfX19ulhvA3g8Hjw8PEAIQXBw8Aev\n2yUUCrF9+3bMnDkTXbp0QWBgIEaNGgUWiyWjxBRFtSYtbuTnbSoqKli+fDkeP34MbW1tODs7Y+nS\npSgpKWE6GtVGffHFF/j111+xcuVKHD58mOk4SklyZNfz589x5coVGBoaflB7jx8/xkcffYSNGzdi\n06ZNuHXrFrp27SqjtBRFtUYtuviR6Nq1K8LDw3Ho0CGcOnUK9vb28PX1hZKev5Fq5dasWYNVq1Zh\nwYIFOH/+fI3b8vLy4OTkhA0bNjCUTnHmzZtXZwG4YsUKBAYG4vz58+jcuXOz2xcKhdiyZQv69+8P\nPT09PH78GKtXr4aKSqv4WKMoSp5IK8PlcsnSpUuJqqoqcXNzI3FxcUxHotogsVhMFixYQLS0tEhY\nWBghhJD09HTSqVMnwmKxiK6uLikrK2M4pfxERkYSAAQA2blzp/T67du3ExaLRfz8/D6o/bt37xIH\nBweira1Nfv/9dyISiT40MkVRbUirK34koqOjSf/+/QmbzSbffvstef36NdORqDamurqaTJ06lejr\n65MzZ84QMzMzwmazCQCiqqpK9u3bx3REuRkzZgxRU1OTFkCrV68mp0+fJioqKmTHjh31Pi4zM5Ms\nX76c8Hi8Om/n8Xhk9erV0i83KSkp8noKFEW1Yq22+CGEEJFIRA4cOEBMTEyIkZER2bp1a70fqhQl\nD3w+n3h4eBB9ff0axQAAYm1t3SpHLJ4+fUpYLFaN58pisYi6ujpZunRpvY+rqqoi/fv3JwDIunXr\nat1+9+5d0r17d6Kvr08OHDhAxGKxPJ8GRVGtWKveOa6iogJvb2+kpaVh9erV2LRpE7p27QofHx+I\nRCKm41FtwJ07dxAeHo7KyspaZ4B++fIlgoKCGEomP9u3b4eamlqN6wghEAqFEAgE9Z4I8ttvv8XD\nhw8BAFu2bJGeyZ3P52PNmjVwcXFBhw4dEB8fD29vb3okF0VRzcd09aVIWVlZZP78+URVVZU4OTmR\nkJAQpiNRrdilS5eIuro6UVVVrTEKIrmoqamRYcOGMR1TpvLy8oi6unqdzxcAUVFRIfPnz6814nXs\n2LFar03fvn1JVFQUHe2hKErmWvXIz7ssLCxw8OBBPHnyBJ07d8bIkSPh6uqK0NBQpqNRrcz58+fx\n6aeforq6ut5RxurqaoSFhSEhIUHB6eRn//79DR5lKRaLcfjwYcycOVP6usTFxWH+/Pk17lddXY24\nuDgsW7YMHTt2xJMnT+hoD0VRMtOmih8Je3t7nD59GuHh4dDQ0MDIkSMxfPhwhIeHMx2NaiVYLBa0\ntbXfuzq5mpoadu3apaBU8lVZWYndu3e/d809FRUVnD9/Hjk5OeByuRg7dmydBaJYLEZ8fDz279+P\nDh06yCs2RVFtUJssfiTc3NwQGhqKyMhI6OjoYMiQIXQkiJKJCRMmICMjAytWrICGhgbYbHad9xMK\nhfD19UVhYaGCE8reoUOHUF5eXu/t6urqUFNTw9y5c/H8+XNYWFhg+vTpyMnJqTUfSkIsFmP+/Pn0\nnF0URclUmy5+JFxcXHD58mXcunUL6urqGDlyJIYMGYIrV67QD12q2dq1a4fff/8dr169wvLly8Fm\ns6Gurl7rfoQQ+Pj4MJBQdkQiEbZv317nZGY2mw1VVVVMnToVT58+hY+PDywtLbFhwwZcv369wZEi\noVCI8PBwHD9+XJ7xKYpqY1iEbt1rCQ8Px5YtWxAUFAR7e3usXLkSM2fOhIaGBtPRqBYsIyMDmzdv\nxqFDh6CiolJjtIPD4SAzM7PO4qglOHPmDKZNm1bjywKbzYZYLMb06dPx888/o0uXLtLbAgICMHbs\n2EZ/uTA0NERWVtYHrwFGURQF0JGfOg0ePBgBAQF4+vQp3N3dsWTJEnTs2BHr16/H69evmY5HtVDW\n1tb4559/EBcXh3HjxgGA9JDw169f49y5c0zG+yBbtmyRLiuhrq4OFouFcePGISkpCX5+fjUKn7S0\nNEyfPr3BycuS3YSqqqro06cPvvrqK/rlg6IomaEjP42QnZ2NPXv24MCBA6iursbMmTOxePFi9OrV\ni+loVAsWFRWFVatW4c6dOwAAR0dH6Xyz0tJSiEQiCAQCVFRUSB9TXl7e4G6ikpKSes+jAwCamprQ\n0tKq93Ztbe0aRYaRkREAQEtLC5qammCxWLUWIo2IiMDgwYOlxcy0adOwfv162NnZ1Wqfz+fjo48+\nQlJSknTki8ViQVVVFdXV1dDQ0EDfvn0xdOhQuLi4wM3N7YMXPqUoinoXLX6aoKysDIcOHcKff/6J\nZ8+ewc3NDYsXL8bEiRNb7O4Kqmmqq6vB5XJRXFwMLpeL0tJSFBcXg8fjgcfjgcvlorKyEjweDyUl\nJaioqEBlZSXKyspQVlYGHo+H8vJyiEQilJaWAnjzd1XfhF9lJimUKisrUVVVBR0dHXTq1Ant2rWD\nlpYWDAwMoKurCy0tLejp6UFPTw8XL15EdHS0tA0dHR3069cPbm5uGDZsGIYMGVLrBIkURVGyRouf\nZiCEICQkBH/++ScuX74MDoeDL7/8Et7e3vSQ3BakoKAABQUFKCwsRF5eHvLz81FUVAQul1ujwHn7\n97KysjrbkoyoGBkZQUtLC1paWjA0NIS2tnadhcDbIyja2tpQV1dHRkYG+vbtCxaLBV1dXbDZbKip\nqUFPT0/aj4aGRoPzXt4duXnX+wqt4uJi6TwcsViMkpISAEBFRQUEAkGdRVtGRgZ4PB44HI604OPx\neCgtLUV5eTkqKytRXl6O0tJSZGVlobq6GkKhsM75PioqKjA0NISRkZH08u6/ORwOOBwOjI2NYWpq\nClNTU+jo6NT7nCiKot5Fi58PlJOTA19fX+zbtw/Z2dkYPnw4Zs2ahcmTJ9PJmQwoKyvDq1evkJmZ\niezsbGRmZqKwsBAFBQXSAkdS8LxdBLBYLHA4HLRr167WxrauDbDk3/r6+jA0NKQn32uGqqoqlJWV\n1So0G/p3UVERCgoKah1Sr6WlBQ6HAzMzM2lxZGJiAlNTU1hYWMDKygpWVlawsLCgo7QURdHiR1YE\nAgEuXryII0eO4OrVqzAwMMD06dMxZ84cODs7Mx2vVaisrERaWhoyMjKQlZWFrKwsvHz5UlrkvHr1\nqsbIjLa2NiwtLWttDCX/NjU1hYmJCYyNjcHhcN57QkJKefB4PBQWFiI3Nxf5+fkoLCxEfn4+8vLy\npCN6eXl50svb84tMTU1haWkJS0tLdOzYUVocdejQAZ06dUKHDh3o3wJFtXK0+JGD7Oxs+Pn54ciR\nI0hOTkbPnj0xZ84cTJs2DVZWVkzHU2pcLhdpaWl1Xl68eCGdzKupqQkLCwvY2trC3NwcFhYW0p+S\n68zNzemIDAXg//9dZWdnIycnR/pTct3bhTObzUaHDh1ga2tb50UyCZyiqJaLFj9ydufOHRw9ehSn\nT59GSUkJXFxc8Nlnn2Hy5MkwMTFhOh4jeDwekpOTkZSUhMTERCQlJSEpKQlpaWmoqqoC8Ka4qW/j\n06lTJzrHg5K5/Px8pKen11l4Z2ZmSgvvdu3aoUuXLujRowfs7e3h4OAABwcHdOrUSXq4P0VRyo0W\nPwoiEAhw9epVnDx5EpcuXQKPx8OIESMwbdo0TJgwodnfJq9du4aBAwdCX19fxok/nEAgQHx8POLi\n4pCcnIzExEQkJiZKR3DYbDa6du0KBwcH2Nvbo2vXrtICx8LCgun4FCUlEAjw4sULaTH07NkzaeGe\nmZkJ4M28I3t7e9jb26NHjx7o3r07+vbtC1tbW4bTUxT1Llr8MIDP5+P69es4c+YMzp8/Dz6fj4ED\nB2LKlCmYNGlSo3eNZWZmokOHDjAzM8O///4LLy8vOSevn1AoxLNnzxATE1Pjwufzoa6uLv2mbGtr\nCwcHB/To0QM9evSApqYmY5kpShZKS0uRkpKCtLQ0JCQkIDExEQkJCXj69ClEIhH09fXRq1cv9OvX\nT3rp3r07HSWiKAbR4odhpaWlCAgIwIULFxAUFITy8nI4Ozvj008/xfjx49GjR496H3v8+HHMnj0b\nAKTLCOzduxft27eXa2ZCCBITExEREYHbt28jNjYWycnJEIlEMDAwgJOTE5ycnODo6AgnJyd069aN\nTiCl2pyKigo8fvwYsbGxiI2NxcOHD5GQkAChUAg9PT307dtXeo4jV1fXNrsbnKKYQIsfJVJVVYUb\nN27gwoULuHTpEnJzc9G5c2d4enrC09MTQ4cOrXH4/IIFC3D06FHpGX/ZbDZ0dXWxa9cuaVEkC9XV\n1YiNjUVkZCTCw8MRGRmJ169fQ1dXFwMHDoSzs7O04LG1taWTjCmqHlVVVYiPj5cWRPfu3UN8fDxE\nIhHs7e3h6uoKNzc3uLm5wcbGhum4FNVq0eJHSYnFYty7dw+XL19GcHAwHj16BA0NDQwePFhaDH3y\nySfIyMio8TgVFRUQQuDh4QEfH59mH12WkpKCgIAABAUFISoqChUVFeBwODU+nPv27UvPxktRH6ik\npARRUVGIjIxEREQEoqOjUVVVBSsrK4wYMQJeXl4YNWoUXeaDomSIFj8tRG5uLoKCghAcHIzr16+D\ny+U2eH82mw0NDQ3s2LEDCxYseO9ojEAgQHh4OAICAhAQEICUlBQYGRlh1KhRGD58ONzc3GBvb09H\ndShKzvh8PqKjoxEeHo7r168jKioKAODq6govLy+MHj0aDg4ODKekqJaNFj8tkEgkwubNm7Fhw4Y6\nlwh4G4vFgouLCw4fPlxjZW3gze6sq1evws/PD4GBgSgrK0PPnj0xevRoeHl5YdCgQXRkh6IYxuVy\nce3aNQQEBCA4OBgFBQWwsbHB1KlTMXv2bFoIUVQz0OKnhfrqq69w6NAhCASC995XTU0Nqqqq2LBh\nA1atWoWEhAQcOXIE//33H/Ly8uDm5obPPvsMXl5esLa2VkB6iqKaQywW4/79+7h06RL+++8/ZGRk\noH///pg9ezamT58u94MdKKq1oMVPC9W1a1ekpqY2+XE6OjqoqKhA586dMWvWLMyePZtOrKSoFkgs\nFuPWrVs4evQozp07B4FAgDFjxmDZsmUYPHgw0/EoSqnRE020QAUFBXj+/HmN61RUVMBms8Fms2vN\ny1FTU4OKigpYLBbMzMwQGhqKlJQU/Pzzz7TwoWQiOjoaw4YNU2ifLBZLelG0YcOGITo6WuH9vk1F\nRQXDhg3DkSNHkJubi4MHDyIvLw9DhgzBRx99hIsXLzKaj/p/7d1pTFTX+wfwrwIjDLt2WIZhVRRU\nRAEVBbHxhQuodUm0UpUQEbClVk0bY5ekfWFqrHZLGrXW2mLci1otWCuoBaxY1xpZNBYUcBwYcIZt\n2Hl+L/qf+2eYQVHAy/J8khuZc8+957lncO7DmXPvZX0Zj/z0Q3l5eZg4cSJsbGwgk8ng5eUlPNfK\nxcUFLi4ucHJyQnp6Ovbs2YPm5ma8++67SEpKgrOzs9jhswHmhx9+wAcffID9+/dj0aJFvdLGjBkz\nAABZWVkG5frEp+PHWGf1e8rJkycRGxuLL774AmvXru2VNl7W1atXsX37dpw8eRJTpkzBjh07EB4e\nLnZYjPUpPJu1Hxo7duwz5/rcuHEDcXFxKCgowPr167F582YMHz78FUYors5OiIOl/Vfp7NmziI+P\nx+HDh7uV+Dyvz/TP1eqqzur31HuzePFi6HQ6rFq1CgqFAvPmzevW/nrS1KlTkZKSghs3bmDLli2I\niIjAmjVrsGPHDtjb24sdHmN9Ao/8DDC7du3Chg0bEBYWht27d2P06NFih/TKiZ18iN3+q9LU1IRR\no0bBw8MD2dnZ3drXy/bZi27X0+/NtGnToFQq8eDBA1hYWPTIPnva0aNHsWHDBlhbWyMlJQWBgYFi\nh8SY6HjOzwDyySef4J133sHGjRuRnp4+KBMf9uqkpKSgpKQE0dHRYocimujoaBQXFyMlJUXsUDq1\nfPly3LlzB97e3ggLC8PFixfFDokx0XHyM0Ds3LkTn3/+OZKTk7Ft27Y+/9BElUqFhIQEKBQKSCQS\nKBQKJCYmoqyszKBeZ5Nan1XesU5cXJzJ7fLy8jB37lzY2dnBxsYGUVFRyM/P79X2q6qqsHHjRvj4\n+MDS0hIjRozA9OnT8f777+Pvv/9+6TgBoLy8HOvWrRP61M3NDfHx8VCpVEZ1GxoasG3bNkyaNAnW\n1tawtLSEn58fEhMTkZOTY1TflNOnTwMAQkJCerXPXnRi88u0034b/XLkyBGhvpeXl8l9Tp482aAv\n+iqZTIa0tDTMnTsXCxcuREFBgdghMSYuYv1ebm4uSSQS2r59u9ihdMmTJ0/I3d2d5HI5ZWRkUHV1\nNaWnp5OLiwt5enqSSqUyqA+ATP2qvmh5x/XTp0+n7OxsqqmpEdp3dHSkoqKiXmv/jTfeIAD09ddf\nU21tLTU2NlJBQQEtXrzYaJsXiVOlUpGnpyc5OzvTuXPnqKamhjIzM8nT05O8vb1Jo9EIdaurqykk\nJIRsbW1p7969pFKpqKamhi5evEj+/v7P7Lv2xowZQwCM3q+e7rOe3N+z2klPTycA5OrqSo2NjQbr\n9u7dS/PnzzfaRqlUEgDy8/PrNPa+pKmpiaZOnUohISHU1tYmdjiMiYaTnwEgLi6Oxo8fT62trWKH\n0iVr164lAHTgwAGD8p9++okAUEJCgkF5b51I09LSTLYfExPTa+3b2dkRADp+/LhB+ePHjztNfroS\nZ0JCAgGgffv2GdQ9ceIEAaAPP/xQKNu0aZOQgHV08+bNLic/NjY2BIAaGhqM1vXH5IeIKDAwkADQ\nzz//bFAeEBBA58+fN6pfX19PAMjW1rbTffY1//zzDwGg9PR0sUNhTDSc/AwAI0eOpK1bt4odRpe5\nuroSAHr8+LFBeWlpKQEgNzc3g/LeOpFqtVqT7bu6uvZa+7GxscJ6d3d3WrNmDR09etRopOFF45TL\n5QSAlEqlQd2KigoCQAEBAUKZh4cHAaCHDx+ajLGrhg4dSgBMjiD01+RHn1hOnDhRKMvIyKBx48aZ\nrN/a2koAyMzMrNN99kUBAQG0ZcsWscNgTDR9e2II65KKigo4OTmJHUaXqdVqAMBrr71mUK5/XV5e\n/kri6HjZr759fXy94ccff0RKSgqWLl2K2tpa7Nu3D8uXL4evry9u37790nHq+0wulxvMW9HXbX9T\nzCdPngAAXFxcunUsUqkUALr0iJX+YsWKFXB1dcXt27dx4cIFAMA333yD9957z2R9/bHr+6K/cHZ2\nRkVFhdhhMCYaTn4GAB8fH9y5c0fsMLpMn6h1/PDVv+6YyOknmTY3NwtlVVVV3Y6jsrLSZPsymaxX\n21+yZAl++eUXVFRUIDMzE3PmzEFxcTFiY2NfOk79zSufPn0K+m9E12Cpq6szqqtPgl6Wm5sbAECr\n1Rqt6633rLdJJBIkJSUBAL788ksUFhbiypUrWLlypcn6Go0GwP/3RX/Q0tKC3NxcowcdMzaYcPIz\nAKxYsQIHDhx4ZSMm3bVgwQIAQEZGhkF5enq6wXo9/QhF+5P1rVu3Ot2//q/w5uZm6HQ6oxEmvcuX\nL5tsf/bs2b3W/pAhQ1BaWgrgv8cTzJgxA0ePHgUAk1dwdTVO/Q0GL126ZLR9VlYWpk2bJrxeunQp\nAODUqVNGdXNycjB16tROj629SZMmAQAePXpktK633rPu6ko7iYmJkEqlSEtLw/r16xEXFwcrKyuT\n+9Mf+8SJE3sl3t5w6NAhlJeXY9myZWKHwph4RP3SjfWIqqoq8vb2prlz51JTU5PY4TyX/sqk9ld7\nZWRkkKurq8mrvVavXk0AKCkpibRaLeXn59Nbb73V6fyN0NBQAkDZ2dl05MgRo6t09NvNmzePsrKy\nqKamRmjf1NVePdk+AJozZw7dvXuXGhoaSKVS0ZYtWwgALVy48KXjVKvV5OvrS66urnT8+HGqqKig\n6upqOnPmDPn4+NClS5eEuhqNhsaPH0+2trb0/fffC1d7/f777+Tr69vlibAHDx4kAPTdd98Zreut\n96yjFy1/Xjt669atIwBkbm5OJSUlnfbBt99+SwDo0KFDndbpS+7du0cODg6UlJQkdiiMiYqTnwHi\n6tWrZGtrS4sXLyadTid2OM+lUqkoISGB5HI5mZubk1wup/j4eJOXTavVaoqOjiaZTEbW1ta0YMEC\nKi4uFk5wHU9y165do8DAQJJKpRQaGkr37t0zWK/fpqioiObPn0+2trZkbW1N8+bNo7y8vF5tPzs7\nm2JiYsjLy4ssLCzI3t6eAgMDaevWrVRXV9etOJ8+fUqbNm0ib29vsrCwIGdnZ1qwYAFduXLFqG5N\nTQ19/PHHNGbMGJJIJDRixAiaPXs2ZWZmmni3TGtsbCSFQkHh4eG92mftt2m/3YuWP6+d9u7fv09D\nhw6lN99885l9EBoaSgqFwuSE9b4mLy+P3NzcKDQ0tF98RjDWm/jxFgNIdnY2Fi5cCC8vLxw7doy/\n0+9Ef3n8RH+IMzU1FQsWLMDhw4exfPlyscPpMW1tbVAoFDhx4gRCQ0NN1jl48CBWrVqFM2fOICoq\n6hVH+GKOHDmC+Ph4TJgwAampqfyMLzbo8ZyfASQ8PBzXr1/HkCFDMGHCBGzbtm1AXYnD+p6oqCjs\n3r0biYmJJucQ9Vepqalwd3fvNPE5efIk3n77bezatatPJz4lJSVYtGgRoqOjERsbiwsXLnDiwxjA\nc34GoubmZvr666/JxsaGPDw8aM+ePdTS0iJ2WH0GnnOvl76iv8RJ9N/XrjNnzhQ7jG4BQFeuXKGn\nT59ScHAw/frrr53WnTlzJl29evUVRvdiKisrafPmzWRlZUUjR46kP/74Q+yQGOtT+GuvAay4uBif\nffYZkpOT4e3tjU2bNiEmJqbTK1cGg47PZuqrv/79Jc6BRN/nI0aMQFJSEj799FNxA3oJjx49wldf\nfYV9+/ZBKpXio48+QkJCAoYNGyZ2aIz1KZz8DAL379/Hzp07kZycDKlUihUrVmD16tWYMmWK2KEx\nxrqpoaEBp0+fRnJyMs6dOwe5XI4NGzZg7dq1sLGxETs8xvokTn4GkfLycuzfvx/JycnIy8uDv78/\nVq9ejZUrV0KhUIgdHmOsi4gIf/31F5KTk3Hs2DHU1NRgzpw5iImJwZIlS2Bubi52iIz1aZz8DFLX\nrl1DcnIyDh8+DI1Gg7CwMERFRSEyMhIBAQFih8cY66CxsRF//vknUlNTcebMGRQVFWHChAmIiYlB\ndHR0tx9XwthgwsnPINfU1IS0tDScOnUKZ8+eRXl5OTw9PREZGYmoqCjMmjVrUM8RYkxMSqUSqamp\nSEtLw/nz51FXV4fAwEBERkZi2bJl/erO0oz1JZz8MEFbWxuuX7+O3377Dampqbh16xYsLS0RGhqK\niIgIhIeHY9q0abC2thY7VMYGpNLSUmRlZSE7OxuZmZnIzc2FlZUVZs2ahfnz5yMyMhLu7u5ih8lY\nv8fJD+vUkydPcPbsWWRmZiIrKwuFhYUwNzdHUFAQwsPDERERgbCwsF57DhNjAxkRoaCgANnZ2cjK\nykJWVhYePnwICwsLBAcHIzw8HLNmzcLrr7/Oo6+M9TBOfliXqVQqXLt2DZcvX0Z6ejpu3bqFtrY2\nuLq6Ijg4WFgmT57M8w8Y60CpVOLGjRvCkpOTg4qKCkilUkyaNAnh4eEICwtDREQE34iQsV7GyQ97\naRqNBjk5Obhx4wZu3ryJmzdvCk+5dnNzQ1BQEIKCghAYGIhx48bBx8eHr0JhA15tbS0KCgpw9+5d\n3Lp1Czdv3sTt27dRW1sLCwsLjB8/Xvi/ERISgqCgIP5/wdgrxskP61GVlZVCIqRf/v33XxARJBIJ\nRo8eDX9/f/j7+2Ps2LHw8/ODn58f34SN9TuVlZXIy8tDfn4+CgoKkJubi3v37gl/AFhaWiIgIEBI\ndIKDgxEQEACJRCJy5IwxTn5Yr6urq0NBQQHy8/ORl5cnnCgKCwvR0tICMzMzeHt7Y9SoURg5ciR8\nfHwMFr5RGxOLSqVCYWGh0VJQUAC1Wg0AsLW1hZ+fH8aOHWuQ2Ht7e8PMzEzkI2CMmcLJDxNNU1MT\n7t+/L/zl/ODBA+HkolQqhXpOTk4GyZCXlxfkcjnc3d3h5uYGR0dHEY+C9Vetra0oKytDaWkplEol\niouLUVRUZJDk6HQ6AIBEIoGXl5fwO+jr6yuMXHp4eIh8JIyxF8XJD+uTGhoaUFhYaHQyKiwsxMOH\nD1FbWyvUlUqlcHd3h1wuh0KhgEKhgFwuh4eHB5ydneHq6gqZTMZXzAwiGo0GZWVlUKvVKCkpgVKp\nRGlpqUGiU1ZWhpaWFmEbFxcXeHl5wdvb22j0UaFQYOjQoSIeEWOsJ3Hyw/ql6upqo5OZUqnE48eP\nhZOd/msJPRsbGzg7O8PJyQkymQxOTk5wcXGBTCaDTCaDi4sLhg8fDgcHBzg6OsLOzk6ko2Pttba2\nQqvVQqPRQKPRQK1WQ61Wo7y8HCqVSnjd/uempiZhe3Nzc7i4uMDDwwNyuRxubm7Cz+2TZZ6Lw9jg\nwckPG7AaGhqgUqk6PUGWlZWhrKwMFRUVUKvVBqMAAGBmZiYkQo6OjsLP7cscHR1hbW0NKysr2NnZ\nwcbGBlKpFDY2NrCzs4OVldWgvimkRqNBfX096uvrodVqUVdXh/r6elRXV6O2thZ1dXVCUqNPcNon\nOlqtFtXV1Ub7tbKygkwmE0b1ZIVfxL8AAAFuSURBVDJZp4mts7Mzj9owxgxw8sPY/1Gr1c89EZsq\nq6urQ2Nj4zP3bW9vDysrK0ilUmGOkrW1NSQSCczNzWFrawvgv8mz5ubmsLCwECZ629vbG5y8hw0b\nBqlUarKdIUOGwMHBweS65uZmg68LO9JqtWj/cdDQ0ID6+noQEbRaLQBAp9OhsbERbW1tqKqqAvDf\npd3Nzc1oampCXV0dqqqqoNPpUF9f/8w+sbW1hbW1tVFS2dm/+kUmkw3qhJIx1n2c/DDWA1pbW4XR\nDJ1Oh9raWlRXV0On00Gn00Gr1QoJgT6RqK6uRmtrq5A0AEBVVRXa2trQ2NgoTLbVaDQGbemTDVPa\n78uUZ00O1ydjehKJREgy9AmYpaWlMHdKvy8rKytYWloKSZydnR2kUimkUikcHByEpM/BwcFglIwx\nxsTCyQ9jjDHGBhX+IpwxxhhjgwonP4wxxhgbVDj5YYwxxtigYg7guNhBMMYYY4y9Kv8DYbcwlUKK\nzVoAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type orig\n",
"spmflow.write_graph(graph2use='orig', dotfilename='./graph_orig.dot')\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_orig.dot.png\")"
+ "Image(filename=\"graph_orig.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``flat`` graph\n",
"\n",
@@ -157,49 +107,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:45,88 workflow INFO:\n",
- "\t Creating detailed dot file: /home/jovyan/work/notebooks/graph_flat_detailed.dot\n",
- "170301-21:50:46,143 workflow INFO:\n",
- "\t Creating dot file: /home/jovyan/work/notebooks/graph_flat.dot\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAObCAYAAACo/5SeAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdd1QU5+I+8Gfp0kGpgliwAYoNxZpgQb0GRY3RGFsUwRa9GnPxmliTq2ii0STGgiTGGI0i\n9mBsaARBKVZAVESKIkWld9j5/ZEf+xUBY9ndoTyfc/Zkd3aY95lZTnJ48u68EkEQBBARERERERER\nEREp1moVsRMQERERERERERFR48AykoiIiIiIiIiIiJSCZSQREREREREREREphZrYAYiIiIiIiIga\nosLCQpSUlKCsrAz5+fkAgKysrGrv16S8vBx5eXm1HltDQwM6Ojq1vm9kZCR7rq2tDU1NTairq0NX\nV7fa+0REysQykoiIiIiIiBo1QRDw7NkzPHv2DFlZWcjNzUVWVhYKCgpQUFCA/Px8ZGdny17n5eUh\nJydH9jo3NxcVFRXIzc0FAOTk5EAqlYp8Vq9GV1cX6urq0NTUlJWWOjo6MDQ0hK6uLnR0dKCjowMj\nIyPZc11dXRgaGkJHRwf6+vowMjKCsbExjI2NoaWlJfYpEVEdxzKSiIiIiIiIGpQnT54gIyMDGRkZ\nSE1NRWZmJp4+fSorHJ8vHiuf1+TF8k1bW1tWwFlbW8teGxoaQiKRwNDQEACgp6cHNTU1aGlpoUmT\nJlBVVYW+vj4AwMDAACoqf98x7fmZijWpPG5NCgoKUFpaWuN7z8/EBID8/HyUlZWhpKQEhYWFkEql\nyMnJAQBZkVpUVITi4mIUFRXJCta8vDzk5eUhLS2tShlbWc4KglBtbG1tbRgbG1cpKJ9/mJmZwcTE\nBObm5jA3N4epqSk0NDRqvQZE1PBIhJr+7UFERERERERUx6SnpyMlJQUpKSlITk5Geno6Hj9+jMzM\nTKSlpSEtLQ0ZGRkoKyuT/YyamhpMTU3RtGnTWgsyY2PjKu8bGBjIikWqXVFREXJycqoVu7WVvk+f\nPkV6ejoKCgqqHKeypDQ1NYWlpSVMTU1hamoKKysr2NjYwNraGlZWViwtiRqG1SwjiYiIiIiISHTl\n5eVISkpCQkKCrGxMSkqqUj4WFxfL9jc3N4eZmRksLS1hYmICMzMzWFhYwNTUVPaeqakpTExMap1d\nSOIoLCzE48ePkZ6ejoyMjGrPMzIykJaWhkePHsnuqSmRSGBubo4WLVrA2toa1tbWsLGxQYsWLWBj\nYwNbW1vZ7FMiqtNYRhIREREREZFylJeXIzk5GQkJCdUesbGxKCoqAgBoaWnB0tISrVu3hoWFhex5\n5WsbG5uXfr2ZGo6srCwkJCQgNTUVjx8/rvY8KSkJFRUVAP5elKfy96TyYWdnBwcHB850Jao7WEYS\nERERERGRfJWXl+Pu3buIjo7GrVu3EB0djejoaCQmJqK8vBwA0KxZM9ja2qJt27Zo27YtbG1tYWtr\nizZt2sDY2FjkM6D6oqSkBElJSYiPj8e9e/eq/DMpKUn2+2ZiYoKOHTvC3t4enTt3hr29PRwcHLiq\nOJHysYwkIiIiIiKiN5eRkYHIyEjcvHlTVjrevn0bpaWlUFNTg62tLRwcHODg4ID27dvLSkfOVCNF\nKysrQ2JiIuLj43H37l3ExsYiOjoaMTExsgV8rKys4ODggE6dOsHBwQFdu3aFnZ0dVFVVRU5P1GCx\njCQiIiIiIqJXk5+fj+vXryMqKkr2uH37NgRBgIWFBezt7WFnZyf7Z7du3aCtrS12bKJqUlNTERsb\ni5iYGNk/r127hsLCQujo6KBLly7o3r277GFnZ8d7jxLJB8tIIiIiIiIiqllycjLOnz+Pv/76C+Hh\n4YiLi0NFRQUsLCzg5ORU5cGvVlN9V15ejujoaERERCA8PBwRERGIiYlBeXk5TExM4OTkhD59+sDF\nxQU9e/aEmpqa2JGJ6iOWkURERERERPS3x48f4/z587LH/fv3oaWlBWdnZzg7O8PJyQk9e/aElZWV\n2FGJlKKwsBDXrl2TFZQXL17Eo0ePoKuri/79+8PFxQUuLi7o2rUrv9pN9GpYRhIRERERETVWFRUV\nCA0NxZEjR3Dy5Encvn0b6urq6NWrl6xk6d27N7S0tMSOSlRn3L17V1bYX7hwAenp6TA0NISLiwtG\njRqF9957D02bNhU7JlFdxTKSiIiIiIioMSkuLsaZM2dw9OhRHDt2DJmZmejQoQNGjhyJgQMHol+/\nftDR0RE7JlG9IAgCYmNjcf78eZw8eRLnzp1DRUUF+vfvD3d3d4waNQo2NjZixySqS1hGEhERERER\nNXSCICAoKAh+fn44duwYioqK0LNnT7i7u8Pd3R3t27cXOyJRg5CXl4c///wThw8fRmBgIHJyctC9\ne3dMnToVkyZNgpGRkdgRicTGMpKIiIiIiKihSktLw65du+Dn54f4+Hj06dMHkydPxqhRo2BhYSF2\nPKIGrbS0FBcuXMCBAwewf/9+VFRU4P3338fMmTPRv39/seMRiYVlJBERERERUUMTERGB9evX4+jR\no9DV1cXkyZMxc+ZMODg4iB2NqFHKy8vDvn374Ovri8jISHTo0AHz58/H9OnToampKXY8ImVarSJ2\nAiIiIiIiIpKPyMhIDBs2DD179kRSUhJ++uknpKamYvPmzSwiqYqIiAi4uLgodUyJRCJ7KJuLiwsi\nIiKUPm4lPT09eHp6IiIiAlevXsWAAQOwaNEitG7dGt999x3KyspEy0akbCwjiYiIiIiI6rn09HRM\nmTIFPXv2RH5+Pk6dOoXw8HBMmjRJ1JWw+/fvz6+j1kE7d+6Eq6srFixYoLAxavrsX/bFTEX/rsyf\nPx9DhgyBr6+vwsZ4VV27dsX27duRkJCACRMmwNvbGw4ODvjjjz/EjkakFCwjiYiIiIiI6rEDBw7A\n3t4ewcHBOHDgAEJCQuDq6ip2LACAVCqFVCoVO8Y/Emu2nhhOnjwJT09PbNu2De7u7m98nH+6Zq/7\n2de2v7w+m9GjR2PLli3w8vLCyZMn3/p48mBhYYENGzbg9u3b6NKlC9577z1MmzYNubm5YkcjUije\nM5KIiIiIiKgeqqiowJIlS7BhwwbMmjUL69evh66urtix6qXKsquh/3lcWloKW1tbtGjRAiEhIW91\nrDe9Zq/7c/L+bHr37o3U1FTEx8dDXV1dLseUl2PHjsHLywtGRkY4duwYbG1txY5EpAi8ZyQRERER\nEVF9IwgCvLy88P3332PXrl348ccfWUTSPwoICEBKSgomTpwodhTRTJw4EcnJyQgICBA7SjUjR45E\nVFQUdHV10adPH8TFxYkdiUghWEYSERERERHVM19++SV+/fVXHDlyBFOmTBE7To1qW6zk+e0pKSkY\nNWoU9PT0YGZmhkmTJuHp06e17h8bG4thw4ZBX18furq6GDFiBG7fvv3a4764/cV9PDw8ZNtycnKw\ncOFCtG7dGlpaWmjatCn69OmDxYsXIzw8/I1zAkBGRgZmz54NKysraGhooHnz5vD09ERaWlq1fYuL\ni+Hj44OuXbtCR0cHWlpa6NChA2bNmoXLly/X9jFUcezYMQBAjx49FHrNXnehmjcZ5/mfqXz8/vvv\nsv1btmxZ4zGdnJyqXIu6xtLSEufOnUPr1q0xYsQI5OXliR2JSP4EIiIiIiIiqjdiY2MFdXV14bvv\nvhM7yj8CINT0Z2fl9o8++kiIjY0VsrOzhdmzZwsAhGnTptW6f58+fYSQkBAhLy9POHv2rGBubi4Y\nGRkJDx48eK1xX3W7IAjCqFGjBADCpk2bhPz8fKGkpESIi4sTRo8eXe1nXidnWlqaYGNjI5iZmQmn\nTp0S8vLyhIsXLwo2NjZCq1athKysLNm+ubm5Qo8ePQQ9PT3B19dXSEtLE/Ly8oTz588LHTt2rDX7\ni9q3by8AENLS0t762rzsmsnzeC8b5+zZswIAwcLCQigpKanynq+vr/Dee+9V+5nU1FQBgNChQ4da\ns9cF6enpgomJiTB//nyxoxDJ2yqWkURERERERPXI3LlzhQ4dOggVFRViR/lH/1QwXbhwQbbtwYMH\nAgDB0tKy1v0DAwOrbN+1a5cAQJg6deprjfuq2wVBEPT19QUAgr+/f5Xtjx49qrWMfJWcXl5eAgDB\nz8+vyr6HDh0SAAhLly6VbVu0aJGsEH3R1atXX7mM1NXVFQAIxcXF1d6rj2WkIAiCo6OjAED45Zdf\nqmzv1KmTcObMmWr7FxUVCQAEPT29Wo9ZV3z33XeCrq6ukJubK3YUInlaxa9pExERERER1SMXL17E\nmDFjoKJS//+c69atm+y5paUlAODx48e17t+nT58qrwcPHgwAOH36tALS/W3s2LEAgHHjxqFFixbw\n8PDAgQMH0KxZs1oXVXmVnMePHwcADB8+vMq+AwYMqPI+ABw8eBAAalz9umvXrq+8uEthYSEAQEND\n45X2rw8WLlwIAPj2229l24KCgiCVSmXX/XmV5155LeqycePGIT8/H1FRUWJHIZKr+v9fLyIiIiIi\nokbk2bNnaNasmdgx5EJPT0/2vLIkelmxZmBgUOV15XXIzMxUQLq//fTTTwgICMDYsWORn58PPz8/\njB8/Hm3btsX169ffOGdGRgaAv0vY5+97WLnv/fv3ZftWFrTm5uZvdS7a2toA/l5Vu6H48MMPYWFh\ngevXryMoKAgAsHnzZixYsKDG/SvPvfJa1GXNmjWDRCKpdh9VovqOZSQREREREVE90rJlS8TGxood\nQxQvljJPnjwBAJiYmFTZXrloSVlZmWxbTk7OG487ZswYHDx4EE+ePMHFixcxdOhQJCcn4+OPP37j\nnGZmZgD+LpcFQaj2KCgoqLbvy2aNvormzZsDALKzs6u9J+9rpiwaGhqYN28eAGDjxo1ISEhAWFgY\nJk2aVOP+WVlZAP7vWtRlsbGxEAQBrVq1EjsKkVyxjCQiIiIiIqpHxo4dC39/f1nB1ZhcunSpyuuz\nZ88CAFxdXatsr5xB+Hx5d+3atVqPWzlLrqysDIWFhVVmnkokEjx8+BAAoKKigv79+2P//v0AUOMK\n2a+as/Ir1xcuXKj288HBwejdu7fsdeVXxY8cOVJt38uXL6NXr161ntvzunbtCgBISkqq9p48r5k8\nvco4s2bNgra2NgIDAzF//nx4eHigSZMmNR6v8ty7dOmikLzy9OOPP6JNmzayz42ooWAZSURERERE\nVI/MmDEDBgYG8PLyglQqFTuOUm3btg0hISHIz89HUFAQ/vvf/8LIyAgrV66sst+QIUMAAF9//TVy\ncnIQFxeHnTt31nrczp07AwDCw8Nx/PjxKkUgAHh4eCAmJgYlJSVIT0/HunXrAABDhw5945wrV65E\n27ZtMXfuXBw8eBBPnz5FXl4eTpw4gWnTpsHHx6fKvg4ODli+fDl8fX2Rnp6O/Px8nDp1ClOmTMGa\nNWte6fq5ubkBACIjI6u9J+9rJi+vMo6xsTGmTp0KQRBw6tQpzJkzp9bjRUREAABGjhypkLzycubM\nGfj6+mLlypWyWatEDYZYS+cQERERERHRmzl//rygqakpzJ49u86uqo3/vwoyXlgN+XW3P//egwcP\nhPfee0/Q09MTdHR0hOHDhwuxsbHVxs7MzBQmTpwomJiYCDo6OoKbm5uQnJxc6/EjIiIER0dHQVtb\nW3B2dhbu3Lkjey8kJESYOnWq0LJlS0FdXV0wMDAQHB0dhf/9739CQUHBW+V89uyZsGjRIqFVq1aC\nurq6YGZmJri5uQlhYWHV9s3LyxO++OILoX379oKGhobQtGlTwdXVVbh48eI/fBL/p6SkRLCyshL6\n9eun0Gsmz8/+ZeM87+7du4KKioowYcKEl14DZ2dnwcrKSigpKXnpfmIKDQ0V9PT0hI8++kjsKESK\nsEoiCK+47BYRERERERHVGUeOHMGECRMwdOhQ/Prrr9DX1xc7ksJUzgyr63++1oecf/zxB9zc3LBv\n3z6MHz9e7DhyI5VKYWVlhUOHDsHZ2bnGfX777TdMnjwZx48fx4gRI5Sc8NXs2bMHM2fOxNChQ+Hv\n7w91dXWxIxHJ22p+TZuIiIiIiKgecnd3R1BQEMLDw9GpUyecPn1a7EhUD4wYMQLbtm3DrFmzarwH\nZX31xx9/wNrautYi8vDhw5gzZw62bt1aJ4vIJ0+eYMKECZgyZQrmzZuHgIAAFpHUYLGMJCIiIiIi\nqqf69OmD2NhYDBs2DEOHDsWQIUMa7Urb9Oo8PT1x6tQpbNq0Sewob0UikeDy5cvIysrCqlWr8Pnn\nn9e67+bNm3HmzBl4eXkpMeE/Kysrw44dO2BnZ4eLFy/i6NGj+Prrr6Gqqip2NCKF4de0iYiIiIiI\nGoCzZ8/i008/xe3btzFhwgQsXboUHTp0EDvWW3tx8Y66+idsfcnZkFRe86ZNm2LevHnVFjKqy0pL\nS/H777/jyy+/RHJyMmbNmoXVq1fDwMBA7GhEiraaZSQREREREVEDUV5ejj179mDt2rW4f/8+hg8f\njpkzZ+Jf//oX1NTUxI5H1Ojdu3cPfn5+2LVrF3JycjBjxgx4e3vD2tpa7GhEysIykoiIiIiIqKGp\nqKjAoUOHsGPHDgQFBcHc3Bwff/wxZsyYgVatWokdj6hRKS4uxuHDh+Hr64sLFy6gefPmmD59OmbN\nmgULCwux4xEpG8tIIiIiIiKihiwhIUE2EystLQ39+vXD6NGjMWrUKBaTRApSVFSE06dP48iRIzh2\n7Bhyc3Px3nvvwcPDA8OGDeM9IakxYxlJRERERETUGJSXlyMwMBAHDhxAYGAgsrKy0KVLF7i7u8Pd\n3R2Ojo5iRySq1549e4YTJ07g6NGj+PPPP1FcXAxnZ2eMHj0aH330EWdBEv2NZSQREREREVFjU1ZW\nhr/++guHDx/GsWPH8PDhQ9jY2GDgwIFwcXGBi4sLrKysxI5JVKcVFRUhLCwM58+fx/nz53HlyhWo\nqqpi4MCBcHd3x8iRI2Fubi52TKK6hmUkERERERFRYyYIAiIjIxEYGIjz58/j8uXLKCkpQdu2beHi\n4oJ3330XLi4uLFWo0SstLcWVK1dk5ePly5dRXFwMW1tbuLi4YPDgwRg2bBj09fXFjkpUl7GMJCIi\nIiIiov9TVFSEqKgoXLp0CWfPnkVwcDBKSkpgYWGB7t27yx79+vWDkZGR2HGJFCY1NRWXLl1CSEgI\noqKicPXqVRQVFcHCwgL9+vXD4MGD4erqipYtW4odlag+YRlJREREREREtSsoKEBoaCiuXLmCiIgI\nRERE4PHjx1BVVUXHjh3h5OQEJycnODo6wt7eHgYGBmJHJnotFRUViI+Px61btxAVFYXw8HBERkYi\nNzcXmpqa6Nq1K5ycnNCzZ0/06dMHrVu3FjsyUX3GMpKIiIiIiIheT0pKCiIiIhAeHo7w8HBERUUh\nNzcXAGBjYwN7e3t06tQJDg4OsLe3h52dHTQ1NUVOTQQkJycjOjq62qOsrAwqKiro0KEDevbsKSsf\nHR0doa6uLnZsooaEZSQRERERERG9HUEQkJiYKCt2bt26hZiYGMTFxaG0tBRqampo06YN2rdvj7Zt\n28LW1lb2aNGiBVRUVMQ+BWpAsrOzce/ePcTHxyM+Ph737t3DvXv3cPv2beTk5AAArKysZKV55W0J\nJBIJhg4divHjx8PNzQ16enoinwlRg8QykoiIiIiIiBSjrKwMd+/eRUxMDKKjo6sURNnZ2QAATU1N\ntG7dWlZStmnTBi1atECLFi1gbW3N+1JSNaWlpXj48CFSUlKQnJyMxMREWeEYHx+PJ0+eAADU1dXR\nsmVLWfFtZ2cHe3t7ODg4VPu9ys7OxrFjx+Dv74/Tp09DRUUFgwcPxrhx4zB69GgWk0TywzKSiIiI\niIiIlO/Jkyey8uj5kjIhIQFPnz6V7aejowMbGxtYW1vLHpWvzc3NYW5uDmNjYxHPhOSpuLgY6enp\nSE1NRWpqKlJSUpCUlISUlBTZIy0tDZVVhqamJmxsbGSF4/Mzb1u2bAk1NbXXzpCVlYXjx4/D398f\np06dgpqaGgYNGoRx48Zh7Nix0NHRkfdpEzUmLCOJiIiIiIiobiksLKxWQD3/Ojk5GcXFxbL9NTQ0\nYGpqCgsLC5iZmcHMzAwWFhYwNTWVFZZNmzaFsbExjIyMeP9KJcvKysKzZ8/w9OlTZGZmIiMjA6mp\nqcjIyEBaWhrS0tKQkZGBx48fy75GDQASiQTm5uawsbGBlZVVlSK68mFubq7Q7JmZmTh06BD279+P\nixcvQltbGyNHjsRHH30EV1dXqKqqKnR8ogaIZSQRERERERHVPxkZGbICKy0tDZmZmXj06BEyMzOr\nFFwZGRl48c9eHR0dGBsby8rJmp7r6elBR0cH2traMDIygo6ODnR0dKCrqwtDQ0NIJBKRzly5CgoK\nUFBQgPz8fGRnZ6OgoACFhYXIzc1Fbm4u8vLy8OzZM1nhWPl4/nVN17+yODY1NYWlpWWV4riyWLaw\nsICGhoZIZ15dWloaAgIC8Pvvv+PSpUuwsLDA5MmTMW3aNHTo0EHseET1BctIIiIiIiIiarjKy8uR\nmZlZpSh7sSyr6Xl+fj7KyspqPa62tja0tbWhr68PfX19qKqqQkdHBxoaGtDQ0ICOjg5UVFRgYGAA\nANDT04OamhqaNGkCLS0t2XHU1dWhq6tb4xhaWlpo0qRJte1SqbTKDMIXzzcvL0/2WhAE2f05c3Jy\nIJVKUVxcjKKiIlRUVMhWQa98Ly8vD4WFhSgoKEBWVtZLr62+vj709PReWuo+/7xp06YwMTFpEF9z\njo+Px+7du/HLL78gOTkZzs7OmDp1Kj788EPZZ05ENWIZSURERERERPS8oqIirFy5Ehs3boSzszN2\n7NiBsrIy2SzBrKysajMGBUFAbm4uKioqUFRUhOLiYlkxWF5ejitXrsDa2hoqKiooLS2VjVVYWIiS\nkpIac7ysEK0sQGvy4uIshoaGKC0tRXx8PDp37oxmzZpBR0cHEokEhoaGAP6vLH1xBmjlaz09PRgY\nGMhe6+vrv8mlbXCkUilCQ0Px66+/Yu/evSgvL4ebmxs8PT0xePBgseMR1UUsI4mIiIiIiIgqhYaG\nYsaMGUhNTcXq1avxySefQEVF5a2OuWDBAvz222+4ffs2TExM5JT09UilUgwdOhQPHjzA1atXWSYq\nQE5ODvbs2YPt27fj1q1b6NatG7y8vDBx4sRaZ78SNUKr3+7fqEREREREREQNQGFhIZYsWYL+/fuj\nVatWuHXrFhYsWPDWRWRkZCS2bNmCb775RrQiEgBUVFSwZ88e5Ofn45NPPhEtR0NmYGCAuXPn4ubN\nm7h06RIcHBywYMECNG/eHHPnzsWdO3fEjkhUJ3BmJBERERERETVqp06dgpeXF3Jzc+Hj4wNPT0+5\nHLeiogI9e/aErq4uLly4UCcWvTl58iRGjBiB3bt3Y9KkSWLHafCePXuGX375BT/++CPu37+PoUOH\nYsGCBRg6dGid+H0gEgFnRhIREREREVHjlJ2dDS8vLwwfPhydOnVCdHS03IpIANi0aRNiYmKwbdu2\nOlM8DR8+HPPnz8fs2bM5U08JjI2NsXDhQty5cwenT5+Gmpoa/vWvf6Fdu3bYvHkz8vPzxY5IpHSc\nGUlERERERESNzvHjxzF79mxUVFTghx9+wNixY+V6/OTkZNjb22Px4sVYsWKFXI/9tkpKStC7d2+o\nqKggNDQUGhoaYkdqVO7evYstW7Zg586dUFNTw7Rp0+Dt7Q1LS0uxoxEpA2dGEhERERERUeORnp6O\nKVOmYOTIkejTpw+io6PlXkQCwCeffAJLS0t4e3vL/dhvS1NTEwcOHMDdu3fx+eefix2n0amcFZmc\nnIzFixdj7969sLW1xbx58/DgwQOx4xEpHMtIIiIiIiIiahT8/f3h4OCA4OBgnD59GgcOHEDTpk3l\nPk5AQACOHz+OrVu3QktLS+7HlwdbW1ts3rwZGzZswIkTJ8SO0yg1bdoUy5YtQ1JSEtatW4cTJ06g\nXbt2mDRpEm7evCl2PCKFYRlJREREREREDVpqairc3d0xfvx4jBkzBjdv3sSQIUMUMlZeXh7+/e9/\nY9q0aRg4cKBCxpCXjz/+GBMnTsSMGTPw+PFjseM0Wtra2vjkk0+QkJCAQ4cOIS4uDl26dIGbmxuu\nXr0qdjwiuWMZSURERERERA2SIAjYsWMHOnTogJiYGAQFBWH79u3Q09NT2Jiff/45ioqKsG7dOoWN\nIU/btm2DoaEhpk2bBqlUKnacRk1FRQVubm6IiIjAoUOHkJKSAicnJ3zwwQeIiYkROx6R3LCMJCIi\nIiIiogYnISEBgwcPxty5czFnzhzcunUL7777rkLHjIiIwI8//ogNGzbAxMREoWPJi66uLn777Tdc\nuHABGzZsEDsOAZBIJHB3d8e1a9dw4MABxMXFoXPnzpg4cSLi4uLEjkf01lhGEhERERERUYNRXl6O\nzZs3o3Pnznjy5AnCwsLg4+Oj8Hs3SqVSzJs3D/3798eUKVMUOpa89ejRA19++SWWLl2Ky5cvix2H\n/j+JRIKxY8fixo0bOHLkCOLi4mBvb48PPvgAiYmJYscjemMSQRAEsUMQERERERERva3o6GjMmDED\n165dw6JFi7B69WpoaGgoZWw/Pz94eXnh6tWr6Ny5s1LGlCepVIphw4bh/v37uHbtGvT19cWORC+Q\nSqXYu3cvvvjiC2RmZmLhwoX4z3/+w8+K6pvVnBlJRERERERE9VpZWRnWrVuH7t27Q1VVFTdu3ICP\nj4/Sisjc3Fx88cUXmDt3br0sIoG/71e4Z88eFBYWYubMmWLHoRqoqKhg0qRJuHv3Lr799lv4+vqi\ndevWWLduHUpKSsSOR/TKWEYSERERERFRvXXt2jX06tULq1evxurVqxEcHIyOHTsqNcOyZcsglUqx\natUqpY4rb6ampti1axf8/f3xyy+/iB2HaqGhoQFPT0/ExcVh+vTpWLlyJRwcHHD8+HGxoxG9EpaR\nREREREREVO8UFRVhyZIlcHJygp6eHq5fvw5vb2+oqqoqNUdsbCy2bt2KNYR5J+UAACAASURBVGvW\nwNDQUKljK8LQoUOxaNEizJ07l4ul1HFGRkZYv3497ty5AycnJ4waNQojRozA3bt3xY5G9FK8ZyQR\nERERERHVK8HBwfDw8EB6ejrWr1+PmTNnQiKRiJJl4MCByM/Px+XLl6Gi0jDm+5SVlaF///4oLCxE\neHi4whf/Ifm4ePEi5s+fj9jYWMyePRtffvkl7ydJdRHvGUlERERERET1Q25uLhYsWIB3330Xbdu2\nRXR0NDw9PUUrIo8ePYoLFy5g8+bNDaaIBAB1dXX89ttvSEpKwtKlS8WOQ69owIABiIqKwrfffos9\ne/bAzs4O+/btEzsWUTWcGUlERERERER1XmBgIGbNmoWSkhJ8/fXXmDJliqh5ysrK4ODggG7dujXY\nwufAgQOYMGECjhw5gpEjR4odh17DkydP8Pnnn2Pnzp1wdXXF1q1b0bJlS7FjEQGcGUlERERERER1\nWVZWFry8vDBixAg4OzsjJiZG9CISALZs2YLExER89dVXYkdRmA8++ACTJk2Ch4cHUlNTxY5Dr6FZ\ns2bYvn07goODkZKSAnt7e6xbtw4VFRViRyPizEgiIiIiIiKqm/z9/TF37lyoqanhxx9/hLu7u9iR\nAPxdkLZt2xYeHh7w8fERO45CFRQUoHv37jA3N8e5c+eUvkAQvb2ysjJs3LgRK1asgJ2dHXx9fdG9\ne3exY1HjxZmRREREREREVLekpaVh7NixGD9+PIYNG4aYmJg6U0QCwJdffgkVFRX897//FTuKwuno\n6OC3335DWFgY1q9fL3YcegPq6urw9vZGVFQUtLS00Lt3b6xYsQJlZWViR6NGimUkERERERER1Rn+\n/v6wt7fH9evXcebMGezevRtGRkZix5K5f/8+tmzZgpUrV8LAwEDsOErRvXt3rFmzBsuXL0doaKjY\ncegN2dvbIyQkBN988w2+/vpr9O3bF3fu3BE7FjVCLCOJiIiIiIhIdImJiXB1dcWECRPw/vvv48aN\nGxg0aJDYsapZtmwZWrVqBU9PT7GjKNWiRYswfPhwTJgwAVlZWWLHoTekoqKC+fPnIzo6GhoaGuja\ntSvWrVsHqVQqdjRqRFhGEhERERERkWgEQcCOHTvQqVMnpKamIjQ0FNu3b4eurq7Y0aq5efMm9u/f\nj//9739QU1MTO45SSSQS+Pn5oby8vNEVsQ1R69atceHCBaxYsQLLli3DsGHD8OjRI7FjUSPBMpKI\niIiIiIhEER8fDxcXF8ybNw9z585FVFQUevXqJXasWnl7e6Nbt24YM2aM2FFEYWJigr179+Lw4cPw\n8/MTOw69JTU1NXh7eyM4OBiJiYlwdHTEH3/8IXYsagRYRhIREREREZFSlZeXY926dXBwcEBOTg4u\nX74MHx8faGpqih2tVsHBwfjzzz/h4+MDiUQidhzRvPvuu1i8eDEWLFiA27dvix2H5KBXr164du0a\n3Nzc4ObmhiVLlqC8vFzsWNSASQRBEMQOQURERERERI3DzZs3MWPGDMTExGDFihVYvHgxVFVVxY71\nj/r27QsdHR2cPn1a7CiiKy8vx4ABA5CXl4fw8HA0adJE7EgkJ7t378acOXPQrVs3/P7777C0tBQ7\nEjU8qzkzkoiIiIiIiBSuuLgYK1euhJOTEzQ1NXH16lV4e3vXiyLy6NGjCAsLw5o1a8SOUieoqalh\nz549SElJgbe3t9hxSI6mTJmCiIgIPHv2DI6Ojjh16pTYkagBYhlJREREREREChUaGopu3brh66+/\nxurVq3Hx4kV06NBB7FivRBAErFixAmPGjEGPHj3EjlNntG7dGr6+vvjhhx9w9OhRseOQHHXs2BFh\nYWEYNGgQRowYgbVr14JfqiV5YhlJREREREREClFYWIglS5ZgwIABsLGxwe3bt+Ht7Q0Vlfrzp+iR\nI0dw8+ZNLFu2TOwodc64ceMwbdo0fPzxx0hOThY7DsmRnp4efv/9d2zcuBHLly/H5MmTUVxcLHYs\naiB4z0giIiIiIiKSu4sXL8LDwwOZmZlYt24dPD09xY70RpycnNCiRQsEBASIHaVOKigoQI8ePWBq\naoqgoKB68bV7ej1nzpzB+PHj0bJlSxw9ehTW1tZiR6L6jfeMJCIiIiIiIvnJycmBl5cX3n33XbRv\n3x7R0dH1tog8duwYoqKisHTpUrGj1Fk6Ojo4cOAAIiIisHbtWrHjkAIMGTIE4eHhKC4uhrOzMyIj\nI8WORPUcZ0YSERERERGRXJw4cQKzZ89GWVkZfvjhB7z//vtiR3orPXv2RPPmzXH48GGxo9R5mzdv\nxuLFi3HhwgX07dtX7DikAFlZWfjggw8QGhqKPXv2YPTo0WJHovqJMyOJiIiIiIjo7WRkZGDKlClw\nc3ND7969ERMTU++LyBMnTiAiIoKzIl/R/PnzMWLECHz44Yd49uxZlfdiYmKwadMmkZKRvBgZGeHk\nyZOYOnUqxo0bh+3bt4sdieopzowkIiIiIiKiN+bv7485c+ZAR0cHO3bsgKurq9iR5KJ3795o1qwZ\njh8/LnaUeiMrKwtdunRBjx49ZPfY3L59O+bPn4/S0lLcvXsXbdu2FTklycO6deuwZMkSeHt7w8fH\nR+w4VL+sVhM7AREREREREdU/jx8/xpw5c3D06FHMnDkT33zzDfT09MSOJRcXL17E5cuXcenSJbGj\n1CtGRkbYvXs3Bg0ahE2bNuGvv/7C0aNHIQgC1NXVcfz4cSxatEjsmCQH3t7eMDMzw8yZM5Gfn4/v\nvvsOKir88i29Gs6MJCIiIiIiolcmCAJ8fX3x2WefwcTEBL6+vnBxcRE7lly5ubkhKysLISEhYkep\nl6ZPn479+/ejtLQU5eXlAACJRII+ffrwmjYwR48exYQJEzB8+HDs3bsXWlpaYkeiuo/3jCQiIiIi\nIqJXk5CQgCFDhmDu3LmYNm0abty40eCKyDt37iAwMBCfffaZ2FHqHUEQsHnzZuzevRslJSWyIrLy\nvbCwMDx9+lTEhCRvo0aNQmBgIM6dO4f3338fJSUlYkeieoBlJBEREREREb2UVCrFjh070LlzZ2Rk\nZCA0NBSbN2+Gjo6O2NHkbv369bC1tYWbm5vYUeqV9PR0DB48GIsWLUJFRQUqKipq3O/UqVNKTkaK\n5uLigrNnzyIkJATvv/8+SktLxY5EdRzLSCIiIiIiIqpVdHQ0evfujXnz5mHevHmIjIyEk5OT2LEU\nIj09HXv37sXixYt5/7vXNGLECAQFBUEqlda6j4qKCo4eParEVKQsTk5OCAoKwqVLl+Du7s4ZkvRS\n/LcrERERERERVVNWVoZ169ahR48eUFFRwfXr1+Hj4wMNDQ2xoynMd999B319fUyePFnsKPXOjz/+\niFatWkFNrfZ1csvLyxEYGIiysjIlJiNl6datGwIDA3Hp0iWMGTOGhSTVimUkERERERERVXH9+nU4\nOztj1apVWLVqFUJCQmBnZyd2LIUqKSmBr68vZs+ezUU43kDPnj0RExODTz/9FBKJpNaZpfn5+VzE\npgFzdnbGyZMnERwcjIkTJ7J4phqxjCQiIiIiIiIAQFFREZYsWYIePXpAR0cH169fh7e3N1RVVcWO\npnAHDx5EVlYWZs6cKXaUeqtJkybw8fHB6dOnYWJiAnV19Wr7aGho4Pjx4yKkI2Xp06cPTp48idOn\nT2PmzJkQBEHsSFTHsIwkIiIiIiIihISEoGvXrti2bRs2bNiACxcuoF27dmLHUpqtW7di1KhRaN68\nudhR6r3Bgwfjzp07mDp1KgBAIpHI3istLYW/v79Y0UhJ+vbti6NHj2Lfvn1YtmyZ2HGojmEZSURE\nRERE1IgVFhZiyZIleOedd9CmTRvcunULCxYsaFQLuMTGxuLSpUuYPXu22FEaDAMDA/j6+uLAgQPQ\n19evMkvy4cOHuH37tojpSBkGDhyIn3/+GWvWrMF3330ndhyqQxrPf12IiIiIiIioij///BMdO3bE\njh07sHXrVvzxxx+wtrYWO5bS/fDDD7C1tcXAgQPFjtLgjBs3DrGxsXjnnXdkBbeamhq/qt1ITJw4\nEV999RUWLlyIgIAAseNQHSER+OV9IiIiIiKiRiU7Oxve3t7YsWMHxo0bhy1btsDExETsWKLIz89H\n8+bNsXLlSixcuFDsOA2WIAjw9fXFv//9bxQVFaFXr14ICwtDdnY2ysrKkJ+fj8LCQtkKzNnZ2dXu\nNVhaWoqCgoJqx1ZTU4Oenl617dra2tDU1AQAGBkZyfZr0qQJFylSsjlz5mDXrl04c+YM+vbtK3Yc\nEtdqNbETEBERERERkfIcP34cs2bNglQqRUBAAMaMGSN2JFHt27cPpaWlsvsb0qsrKChAWloa0tPT\n8fTpU2RnZ1d5ZGVlVXmdk5MDXV1dlJWV4cqVK6LfCkBPTw9qamowMjKClpYWDA0NqzyMjIyqvDY2\nNoapqSlMTU1hYmJS5V6Y9HLff/89Hj9+jDFjxiAqKgpWVlZiRyIRcWYkERERERFRI5Ceno558+Yh\nICAAkyZNwqZNm2BsbCx2LNE5OzvD1tYWe/bsETtKnVFUVITExESkpKQgOTkZjx49QkZGBlJTU5GZ\nmYn09HQ8fvy42izFFwu9F8s8AwMDaGtrQ11dHTk5OWjTpg0MDQ2hrq4OXV1daGlpoUmTJgAAXV3d\naqtxq6iowMDAoFre4uJiFBUVVduek5MDqVQKqVSKnJwc2QzMoqIiFBcXIy8vD+Xl5cjOzkZRUdFL\ny9ScnJwqx1ZTU4OJiQlMTU1haWkJU1NTmJmZwcLCAtbW1mjRogVatGgBMzOzt/04Goz8/Hw4OztD\nV1cXf/31l2zWKjU6q1lGEhERERERNXD+/v6YPXs29PX1sWPHDgwePFjsSHVCTEwMHBwccO7cuUZ1\nv8jy8nIkJibi7t27uHv3LhITE5GcnCx7ZGZmyvbV1dWFtbU1TExMZKVbTQWcsbGxrEhsiARBwNOn\nT5GRkVGlmE1LS0NaWhoyMjLw+PFj2evKqkVLSws2NjaycrJFixawtbVFu3bt0K5dO+jr64t8Zsp1\n7949ODk54cMPP8TWrVvFjkPiYBlJRERERETUUCUmJsLLywtnz56Fh4cHNmzYAF1dXbFj1RmLFi3C\nkSNHEB8fL/pXhhUhNzcX0dHRiIuLkxWPcXFxuH//PkpLSwEA5ubmaNWqVZXZfC1btpS95uzZ11da\nWiqbVZqcnFxllmlycjIePHggu/4WFhZo3769rJzs0KED7Ozs0KpVK5HPQnGOHTsGd3d37Ny5E9On\nTxc7Dikfy0giIiIiIqKGpnKxkMWLF8PMzAw7d+7EO++8I3asOqW0tBRWVlaYP38+vvjiC7HjvLXU\n1FRERUUhNjYWMTExiIqKQlxcHKRSKTQ0NGBlZQU7OzvY29ujdevWsLOzQ6dOnWr82jMpVnl5OZKT\nk5GQkICEhATExMQgNjYWCQkJePDgAQRBgL6+Pjp16gR7e3vY2dmhe/fu6NatG7S1tcWOLxf//e9/\nsXnzZoSHh8PBwUHsOKRcLCOJiIiIiIgakvv372PmzJkIDg7Gp59+ilWrVvHebDU4ePAgxo8fjwcP\nHqBFixZix3ktOTk5CAsLQ1hYGEJDQxEZGYns7GxIJBK0bt0aXbp0gaOjIxwdHdG5c2e0bNlS7Mj0\nivLy8nDr1i3cuHED169fx40bNxAdHY2CggKoqamhY8eO6N27N/r06QNnZ2e0b99e7MhvpKKiAgMG\nDEBxcTEuX75c7f6g1KCxjCQiIiIiImoIysvLsWXLFixduhRt27aFn58funfvLnasOmv48OGQSCQI\nDAwUO8o/SkpKwvnz5xEaGoqwsDDExsZCKpXC1tYWvXv3hrOzs6x41NPTEzsuyVlFRQXi4+Nx48YN\nREZGIiwsDJGRkSguLkazZs1k5WS/fv3g7OwMNTU1sSO/koSEBDg6OuLTTz/FypUrxY5DysMykoiI\niIiIqL67desWZsyYgVu3bsHb2xuff/45Zxq9xMOHD9GyZUvs378fY8eOFTtONQUFBQgLC8PZs2dx\n9uxZREVFQV1dHZ07d0bfvn3Rr18/vPPOOzA1NRU7KomkvLwcd+7cwaVLlxASEoLg4GAkJiZCR0cH\nvXv3xuDBgzF48OA6/z8kvv/+eyxatAihoaFwcnISOw4pB8tIIiIiIiKi+qqsrAwbN27E8uXL0aNH\nD/j5+aFDhw5ix6rzvvzyS2zevBmPHj2qM19hv3//Pvz9/REYGIiwsDBIpVI4OjrC1dUVQ4YMQd++\nfaGlpSV2TKrD7t27h9OnT+PMmTM4f/48cnNz0bJlSwwdOhRjxozBwIED69ysSUEQMGzYMKSkpODq\n1av8HW8cWEYSERERERHVR2FhYfDw8EBiYiKWL1+Ozz77rEGuCC1vgiCgbdu2GDVqFDZs2CBqlsoC\n0t/fH1evXkWzZs3w3nvvwdXVFYMGDeLMR3pj5eXluHLlCk6fPo3AwEBERkaiadOmcHd3x7hx4zBw\n4MA6M3s6KSkJnTp1wuLFi7F8+XKx45DisYwkIiIiIiKqT4qKirBq1Sp88803GDx4MLZv3w4bGxux\nY9UbQUFBGDRoEG7cuIHOnTsrffzc3Fz8+uuv+Omnn2QF5JgxY/D+++/DxcWlzs1co4bhwYMHOHjw\nIPz9/REREQFjY2OMHz8eXl5ecHR0FDse1q9fj5UrVyI2NpYLLjV8LCOJiIiIiIjqi+DgYHh4eCAj\nIwPr1q3DzJkzIZFIxI5Vr3z00UdISEhAWFiYUse9evUqtm3bhn379kEQBIwfPx4ffvghXFxcoKqq\nqtQs1LglJibC398fP/30E+Li4tC7d2/Mnj0b48aNE+1r0qWlpXB0dIS9vT0OHjwoSgZSmtWcw09E\nRERERFTH5eTkwMvLC++88w7atWuH6OhoeHp6soh8TTk5OThy5AhmzJihtDEDAwPh7OyM7t27IzQ0\nFGvWrMGjR4/g5+eHwYMHs4gkpWvZsiU+++wzxMbGIigoCNbW1pgxYwasrKywYsUK5OTkKD2ThoYG\nvv/+ewQEBODUqVNKH5+UizMjiYiIiIiI6rDAwEDMmjULpaWlWL9+PaZMmSJ2pHpry5Yt8Pb2Rmpq\nKvT19RU6VlBQEJYtW4awsDCMHDkSixYtwoABAxQ6JtGbSktLg6+vLzZt2gQAWLx4MT755BPo6uoq\nNYe7uzvu3buH69ev15l7WpLccWYkERERERFRXZSVlQUvLy+MGDECzs7OiI6OZhH5lvz8/PDBBx8o\ntIi8e/cuBg8ejEGDBkFPTw9XrlzBkSNHWERSnWZubo5ly5YhISEB8+bNg4+PD9q0aQNfX18ocw7b\nxo0bER8fj59//llpY5LysYwkIiIiIiKqY/z9/dG+fXucOHECR44cwYEDB9CsWTOxY9VrN2/exLVr\n1zB9+nSFHF8qlWLTpk3o0qULsrOzERwcjD///BNOTk4KGa8ukEgkskd9EhERARcXF7FjvBIXFxdE\nREQobTwDAwOsWrUKCQkJmDx5MubMmYPhw4fj4cOHShm/devW8PDwwKpVq1BUVKSUMUn5WEYSERER\nERHVEY8fP8aYMWMwfvx4jB49Grdv38aoUaPEjtUg7NixA+3atUPfvn3lfuyUlBS4uLjA29sbS5cu\nxeXLl9GvXz+5j1PXvGzGXP/+/dG/f38lpnk1O3fuhKurKxYsWCB2lFcyf/58DBkyBL6+vkodt2nT\npvjmm28QEhKCpKQkdOrUCXv37lXK2F988QWys7OVfs6kPCwjiYiIiIiIRCYIAnbv3g0HBwfcuHED\nZ8+exfbt2xV+X8PGoqSkBPv27cOMGTPkPovv2rVrcHZ2xrNnzxAeHo4vvvgCampqch2jPpJKpZBK\npWLHqOLkyZPw9PTEtm3b4O7uLnacVzJ69Ghs2bIFXl5eOHnypNLH79WrF65evYqpU6di0qRJWL58\nucLHtLCwwKxZs7B27VoUFhYqfDxSPi5gQ0REREREJKIHDx7A09MTFy5cwJw5c7BmzRro6OiIHatB\n8ff3x4cffoikpCQ0b95cbseNiYnBO++8g65duyIgIKBRlseV5W5drxZKS0tha2uLFi1aICQkROw4\nr613795ITU1FfHy8aAu7/PTTT/Dy8oK3tze++uorhY6VkZGBNm3aYNmyZfjPf/6j0LFI6biADRER\nERERkRikUil27NiBzp07Iy0tDZcuXcLmzZtZRCrA7t274erqKtciMicnB25ubrC3t8exY8caZRFZ\nnwQEBCAlJQUTJ04UO8obmThxIpKTkxEQECBahunTp2Pnzp1Ys2YNfvvtN4WOZWpqirlz52Ljxo0o\nLi5W6FikfCwjiYiIiIiIlCwmJgZ9+/bFvHnzMHfuXERGRqJnz55ix2qQMjIycOrUKbmvRL548WIU\nFxfj4MGDaNKkiVyP/TqeX0Tm/v37GDNmDIyMjKotLJORkYHZs2fDysoKGhoaaN68OTw9PZGWllbt\nmGfPnsXIkSNhZGQELS0tdOvWDb///vsbZXpRTEwM/vWvf0FXVxf6+voYOnQoYmNja/yZ57elpKRg\n1KhR0NPTg5mZGSZNmoSnT5++cqZjx44BAHr06FFle05ODhYuXIjWrVtDS0sLTZs2RZ8+fbB48WKE\nh4fXmCU2NhbDhg2Dvr4+dHV1MWLECNy+fbvWa5CamoqxY8dCT08PTZs2xdSpU5GTk4PExESMHDkS\n+vr6MDc3x7Rp05CdnV1j/sqFkCrPQyxTp07FggULMGfOHGRkZCh0rIULFyInJ0fhxSeJQCAiIiIi\nIiKlKCsrE3x8fARNTU2hS5cuwtWrV8WO1OBt3LhR0NfXFwoKCuR2zISEBEFNTU349ddf5XbMtwFA\nACAMGTJEuHTpklBYWCgEBgYKlX/yp6WlCTY2NoKZmZlw6tQpIS8vT7h48aJgY2MjtGrVSsjKyqp2\nPHd3dyEzM1NISkoShgwZIgAQ/vzzz1rHfpXt8fHxgqGhoWBpaSmcO3dOyMvLE0JCQoS+ffv+43E+\n+ugjITY2VsjOzhZmz54tABCmTZv2yteoffv2AgAhLS2tyvZRo0YJAIRNmzYJ+fn5QklJiRAXFyeM\nHj26Wp7KLH369BFCQkKEvLw84ezZs4K5ublgZGQkPHjwoMb9J02aJMs+d+5cAYAwYsQIYfTo0dXO\naebMmTXmT01NFQAIHTp0eOVzVpSCggLBwsJC+M9//qPwsaZOnSp06NBBkEqlCh+LlGYVy0giIiIi\nIiIluH79utCtWzehSZMmgo+Pj1BeXi52pEbB0dFR8PDwkOsx169fL5iYmNSZz7Cy9Dp//nyN73t5\neQkABD8/vyrbDx06JAAQli5dWu14zxdrt2/fFgAI/fv3r3XsV9k+adIkAUC1EvePP/74x+NcuHBB\ntu3BgwcCAMHS0rLG862Jrq6uAEAoLi6usl1fX18AIPj7+1fZ/ujRo1rLyMDAwCrbd+3aJQAQpk6d\n+o/ZK4/74vaUlBQBgNC8efMa8xcVFQkABD09vVc+Z0Vavny50KJFC4WXhLdu3RIkEolw8uRJhY5D\nSrWKC9gQEREREREpUHFxMXx8fLBmzRr06tULO3fuRPv27cWO1ShER0ejU6dOCA4ORr9+/eR23IkT\nJ6KoqAiHDx+W2zHfRuVXmwsKCqCtrV3t/ebNmyM1NRWpqamwsLCQbX/69CmaNWuGTp064ebNm7Ue\nv6KiAmpqamjatCmePHlS49gvVgs1bTc3N0d6ejoePXoES0tL2fbs7GwYGRm99Di5ubnQ09MD8Pdi\nNJqampBIJK+8Yreqqqpshe/nvwo+ffp0/PzzzwAAa2truLq6wtXVFe7u7tDQ0KgxS3Z2NgwMDGTb\nHz16BCsrK1hYWCA1NfWl2aVSKVRVVWvdXts5Vb6vqqqK8vLyVzpnRQoKCsKgQYOQkZEBExMThY7l\n6uoKADh9+rRCxyGl4QI2REREREREinLp0iV07doV3377Lb7++mv89ddfLCKV6Oeff0bLli3Rt29f\nuR43Nze3ShlVV9RURAKQ3dvP0tKyyr0MmzVrBgC4f/++bN/s7GwsXboUHTt2hJ6eHiQSCdTU1ADg\nte7RWJPKIrNy3EqGhob/+LOVpR0AWUn4OnOrKq9NaWlple0//fQTAgICMHbsWOTn58PPzw/jx49H\n27Ztcf369RqP9eJnX3k+mZmZ/5hdRUXlpdtrO6fK3LV9xspW+Znl5uYqfKxFixbh7NmziIuLU/hY\npBwsI4mIiIiIiOSssLAQS5YswYABA9CqVStER0djwYIFVYoIUqzy8nLs3bsX06ZNq3EhlbdhYWGB\npKQkuR5TkczMzAAAz549gyAI1R4FBQWyfT/44AOsXbsW48ePR1JSkmwfeags7V6cXfnia0WoXEm9\npgVixowZg4MHD+LJkye4ePEihg4diuTkZHz88cc1HuvFUrYyvyJnCGZlZQGAXFeEfxuJiYlQUVGB\nubm5wscaOnQoWrduDT8/P4WPRcrB/xISERERERHJ0alTp2BnZ4cdO3Zg69atCAwMhLW1tdixGp1T\np04hPT0dkyZNkvuxBw4ciNDQ0FpnwtU17u7uAIALFy5Uey84OBi9e/eWvb506RIA4NNPP4WxsTEA\noKSkRC45Kr9ue+7cuSrbK8dUpK5duwJAtRJZIpHg4cOHAP6endi/f3/s378fAKqtkF3pxbxnz54F\n8H/npwiVubt06aKwMV7HkSNH0KtXL+jo6Ch8LIlEgilTpmDXrl1y+10kcbGMJCIiIiIikoPs7Gx4\neXlh+PDh6NmzJ+Li4uDp6Sl2rEZr9+7d6N+/P9q0aSP3Y48aNQpGRkZYu3at3I+tCCtXrkTbtm0x\nd+5cHDx4EE+fPkVeXh5OnDiBadOmwcfHR7Zv//79AQBr165FdnY2nj17hqVLl8oth6GhIZYsWYKg\noCDk5+cjJCQE27dvl8vxX8bNzQ0AEBkZWe09Dw8PxMTE4P+xd99hEQeUrAAAIABJREFUUdzr28Dv\npYn0IlWKggqKCoJYKNZFMdgVu0ZRwRqPLRATE9EYTRSjRmMhnljyeowcI4kVWEQRxUYXKyCCdHHp\nfXfePzy7PxBQUGB24flcF9fC7DBzb53ZZ7+lsrISOTk5+PHHHwG8bZHXkMOHDyMiIgIlJSW4du0a\nvvrqK2hqamLLli2tlv/+/fsAgIkTJ7baPprq6dOnOHPmDLy8vNpsnx4eHuDz+bhw4UKb7ZO0HprA\nhhBCCCGEEEI+0YULF7B8+XIIBAIcOHAA06ZNYztSh1ZYWAgDAwP88ssvWLx4cavsw9/fH8uXLweP\nx8OIESNaZR9N0VAX9IY+5vP5fHz//fc4f/48Xr16BS0tLQwaNAibNm3CkCFDxOvl5uZiw4YNCAoK\nQkFBAXr16oXNmzdj5syZ9bb/7r4/tBwAEhMTsXHjRoSHh0NGRgbDhw/Hvn37YG5uDhkZGQgEgkZv\nW1O235iqqiqYm5ujW7duuHnzpnj5rVu34O/vjxs3biAjIwNKSkro1q0bZsyYgX/96191xmgU7ffF\nixdYvXo1bty4AaFQiGHDhsHPzw+9e/f+6Owfuk1Dhw7Fq1evkJycXG9inbZUWVkJZ2dnCIVC3L17\nVzwZT1sYP348BAIBrly50mb7JK1iKxUjCSGEEEIIIeQj5eTkYPXq1QgICIC7uzsOHToEbW1ttmN1\neEeOHMHatWuRmZnZpMlRPtbMmTMREhKCsLAwWFtbt9p+2rvMzEx07doVurq6yMnJabX9XLp0CRMm\nTMB//vOfOsXVpmps5vDW9v/+3//D/PnzceHCBbi5ubXpvmurqanBjBkzEBYWhjt37rT5ZFyBgYGY\nNm0aUlNTaegL6UazaRNCCCGEEELIxwgICEDfvn1x//59BAcH4+zZs1SIlBAnT57ElClTWrUQCQAn\nTpyAra0tRo4cibCwsFbdV3vB4XCQlJRUZ1l4eDgAYOTIka26bzc3Nxw+fBjLli1DYGBgq+6rpZw/\nfx4rVqzAoUOHWC1EFhcXY8KECQgODsbFixfbvBAJvH38NDQ0cPbs2TbfN2lZVIwkhBBCCCGEkGbI\nzMzE5MmTMXPmTEydOhUJCQlwcXFhOxb5n6SkJERGRmLBggWtvi9FRUVcunQJ48aNw5gxY+Dj44Oq\nqqpW36+0W7lyJVJSUlBaWorQ0FB4e3tDTU2tVcdcFPH09ERQUBD27t3b6vtqCfv27UNISEibjs/4\nrsjISAwcOBCxsbG4fv06HB0dWckhLy+PyZMniycYItKLipGEEEIIIYQQ0gQMw+Do0aOwtLREYmIi\nrl27hiNHjkBFRYXtaKSWU6dOwcDAAFwut03216lTJ/zxxx84ePAgDh48CDs7O8TExLTJvqURj8eD\niooKHBwcoKGhgdmzZ2PIkCG4e/cuLC0t2yTDoEGDGpxZ/H1qj+nY0DidreX69esYNGhQm+2vtoqK\nCvj4+MDZ2RlmZmZ48OABBg4cyEoWkZkzZ+L+/fv1WtcS6UJjRhJCCCGEEELIByQnJ2Pp0qW4efMm\n1q9fjy1btkBRUZHtWKQBFhYWGD9+PPz8/Np838nJyVi4cCHu3bsHT09PfPXVVzA0NGzzHIR8CoFA\ngP/85z/w9fVFXl4efv75ZyxatIjtWADejlvZtWtX/Otf/8JXX33FdhzycWjMSEIIIYQQQghpTE1N\nDfbt2wdra2vk5+cjMjISO3fupEKkhIqKisKzZ88+anKSlmBubo4bN27gl19+wd9//40ePXpg/fr1\nyMvLYyUPIc0hFApx9uxZ9OvXD4sWLYKzszMSEhIkphAJAHJycpgyZQp11ZZyVIwkhBBCCCGEkAYk\nJCTAwcEBGzduxKpVq3D//n3WuyiS9ztz5gzMzMxgb2/PWgYZGRl4enri+fPn2LlzJ06fPg0zMzOs\nWLEC8fHxrOUipDFFRUU4ePAg+vfvj9mzZ8PW1haJiYn497//LZGzVk+fPh1xcXFITU1lOwr5SFSM\nJIQQQgghhJBaqqur8eOPP2LgwIGQk5NDXFwcdu7cCQUFBbajkfdgGAYBAQGYPXt2m47p15hOnTrh\niy++QHJyMr7//ntcu3YN1tbWcHR0xKlTp1BRUcF2RNLBxcTEwMvLC127doW3tzeGDBmC+Ph4/PHH\nH+jVqxfb8Ro1fPhwqKur4+LFi2xHIR+JxowkhBBCCCGEkP+JiYnB4sWL8fTpU3z77bfYsGEDZGVl\n2Y5FmiAiIgLOzs6Ij49Hv3792I5TD8MwCAsLw+HDhxEYGAhVVVVMnToV06dPx6hRoyAvL892RNIB\nJCcnIyAgAAEBAYiOjkafPn2wbNkyLFiwAOrq6mzHa7Lp06ejtLQUV65cYTsKaT4aM5IQQgghhBBC\nysvL4ePjA3t7e6iqqiI2Nhbe3t5UiJQiZ86cQe/evSWyEAm8nYF51KhROHv2LNLS0uDj44O4uDi4\nurrCwMAAS5YswdWrV1FdXc12VNLOJCUlYceOHbCzs0OPHj3g5+eHgQMH4saNG0hMTMTq1aulqhAJ\nAG5ubggLC0NJSQnbUchHoJaRhBBCCCGEkA7t5s2bWLJkCXJycvDTTz9h6dKlEtHNlzSdUCiEkZER\nli9fjs2bN7Mdp1nS0tJw/vx5BAQE4Pbt21BSUsLQoUPB5XLB5XJhZ2fHdkQiZUpLSxEZGQkejwce\nj4eoqChoaWnBzc0N7u7ucHV1lfqWuLm5uTAwMMBff/2FSZMmsR2HNM9WKkYSQgghhBBCOqSioiJs\n3rwZBw4cwLhx43D48GEYGRmxHYt8BFEX7cTERPTp04ftOB/t5cuXuHz5MoKDg3Ht2jUUFRWhW7du\ncHFxAZfLhaOjI7p27cp2TCJhysvLERUVhevXryM4OBh37tyBQCDAgAED4OLigrFjx8LZ2bndtfQe\nNGgQbG1tcfjwYbajkOahYiQhhBBCCCGk47l8+TKWLVuGyspK7Nq1CwsWLGA7EvkE69evx4ULF/Ds\n2TO2o7SYmpoa3L17F8HBwQgODsb9+/chEAhgbGwMe3t7WFtbY9y4cbCxsZH6Vm6keV69eoXbt28j\nMjISkZGRiI6ORnV1Nbp27QoXFxeMGTMGXC4XOjo6bEdtVV999RXOnz+PJ0+esB2FNA8VIwkhhBBC\nCCEdB5/Ph4+PD44ePQp3d3f8+uuv6NKlC9uxyCcyNzfHzJkz8cMPP7AdpVWUl5eDx+Phv//9L27d\nuoWUlBQoKCigsrISSkpKsLW1hY2NDaytrWFjYwMrKyt07tyZ7dikBbx48QJxcXGIjY1FXFwcoqKi\nkJ6eDjk5OfTr1w8ODg4YOnQoHBwc0L17d7bjtqng4GCMHTsWr169ohbD0oWKkYQQQgghhJCOISAg\nACtXroScnBx+/fVXTJ48me1IpAXExMTA1tYW9+7dg729PdtxWoRAIEBsbKx4zL+IiAhUVFTAzMxM\nPJbkyJEjkZeXh8jISNy/fx9xcXFISEhASUkJ5OTk0KtXL1hbW8Pa2hqWlpawtLSEmZkZtaKUUDk5\nOXjy5AmePXuGhIQExMXFIS4uDoWFhZCRkYG5uTlsbGxgY2MDBwcH2NvbQ1lZme3YrCorK4OmpiZ+\n//13zJkzh+04pOmoGEkIIYQQQghp37Kzs7Fy5UqcP38e8+bNw759+6Cpqcl2LNJCvv32W/z+++9I\nS0uT6omHUlJSxMXHkJAQFBQUQF9fH87OzuByuRg7dixMTU3fuw2hUIjk5GRxK7q4uDjEx8cjLS0N\nACAnJ4du3brBwsICFhYW6NWrF3r16oVu3brByMiICpWtLC8vD2lpaUhKSsKzZ8/w5MkTPH/+HM+e\nPUNhYSEAQFVVFX369BEXHq2trdGvXz+oqKiwnF4yOTk5oXfv3vD392c7Cmk6KkYSQgghhBBC2q+A\ngAAsW7YMGhoaOHr0KEaPHs12JNLC+vfvjxEjRmD//v1sR2kWUfExIiICoaGhyMzMRJcuXTBkyBA4\nOTm16EzapaWlePbsmbjwJWqBV7sIJiMjAwMDA3Tr1g0mJiYwNTWFiYkJTExMYGxsDF1dXejo6LS7\nSVBaSklJCTIzM5GTk4PU1FSkpaWJf16+fInU1FSUl5cDeFsU7t69O3r16lWnKGxhYQFDQ0OWb4l0\n+fbbb3H69GkkJSWxHYU0HRUjCSGEEEIIIe1PamoqPD09ERoaiiVLlsDPz49aFrVD6enpMDExQUhI\nCLhcLttx3isnJwfh4eHg8XgICgrCy5cvoaysjKFDh4q7Xg8YMAAyMjJtmis3Nxepqal4+fKluHhW\n+28+ny9eV0ZGBjo6OtDV1YW+vj709PSgq6sLAwMDaGtrQ0NDAxoaGtDU1BT/rqGh0aa3pyVUVFSA\nz+ejoKAABQUF4t/fvHmDvLw8ZGdnIz09HQUFBcjKykJOTo640AgACgoKMDY2Fhdzu3XrJi7umpqa\nwtTUlFqhtpCQkBCMGTMGWVlZ0NfXZzsOaZqtcmwnIIQQQgghhJCWwjAM/P39sX79epiamuL27dsY\nPHgw27FIK7l06RKUlZXh7OzMdpR6iouLcffuXXHX6+joaMjKysLa2hqzZs0Cl8vFsGHDoKCgwGpO\nXV1d6OrqYtCgQQ1eX1xcjFevXiEvL09ceBP9npubi+fPnyMzMxN8Ph8lJSX1/p/D4dQpUHbq1AnK\nysro3LkzFBUVoaqqCjk5OWhqakJOTg6qqqri/21oOAUVFZV6hbzCwkIIhcI6y8rKylBZWQkAqKqq\nQmlpqXhZUVERBAIB+Hw+ampqUFxcjLKyMnHRsaKiot5+5eXloampCV1dXSgpKSEmJgZOTk7w8vKC\ngYEBdHR0YGBgAD09Pejr67d5UbmjGjx4MGRkZHDnzh0aB1iKUMtIQgghhBBCSLuQlJSEJUuW4Pbt\n21i3bh18fX3RqVMntmORVjRp0iRwOBwEBgayHQVlZWW4ffu2uPgYExMDDocDGxsbcLlcODo6YsSI\nEXWKbe1NTU1NnRaFtVsVii6rqqpQUlKC8vJy8Pl8JCUlwdDQEIWFhaiurhYXNEVFwncVFBTg3TKG\nsrJyvaKugoKCeIIXeXl5qKio1CmAysvLQ0NDQ3ydsrJyndactVt3ampq1pkspqamBn5+fti8eTOG\nDx+O33//HUZGRi19d5Im6tu3LyZMmIAdO3awHYU0DXXTJoQQQgghhEg3UWHgu+++Q+/evXHs2DHY\n2tqyHYu0ssrKSnTp0gW7d++Gl5dXm++/pqYGcXFx4uLjzZs3UVlZWWfG69GjR0NLS6vNs0mLhQsX\nIjw8HI8fP27WFwe3b9+Go6Mj0tPTWS0C3r9/H/Pnz0d2djZ++eUXzJ8/n7UsHdmSJUuQnJyMsLAw\ntqOQpqFu2oQQQgghhBDpFR8fj8WLFyMxMRG+vr7YsGEDTbDRQdy4cQMlJSVwdXVtk/0JhULExMQg\nIiICt27dQlBQEIqKimBgYAAnJyfs378f48aNg7GxcZvkkXZxcXE4deoUTp8+3ewWzKIu2Wy/1u3t\n7RETEwNfX18sXLgQFy5cwKFDh6Ctrc1qro5m8ODBOHPmDGpqaiAnR2UuaUCPEiGEEEIIIUTqVFRU\nYOfOndixYwfs7e0RHR0NS0tLtmORNnTlyhX07dsXpqamrbYP0YzXPB4PoaGhePPmDXR1dTF8+HDs\n2rULjo6OsLKyarX9t2cbN27EwIEDMWPGjGb/r0AgAACJGJexc+fO2LlzJ0aPHg0PDw/07dsXv/32\nG9zc3NiO1mEMHjwYpaWlePz4Mfr168d2HNIEVIwkhBBCCCGESJXbt29jyZIlePnyJbZu3YqNGzdK\nRFGCtC0ej4exY8e26DazsrIQEREBHo+HK1euID09HSoqKhgyZAi+/PJLcLlc2NragsPhtOh+O5pL\nly4hJCQEN2/e/Kj7UtQyUpJe9y4uLkhISMDq1asxYcIELF26FHv27Kkz1iRpHX369IGioiJiY2Op\nGCklqBhJCCGEEEIIkQplZWXYunUrdu/eDRcXF1y9ehUmJiZsxyIsyMvLQ2JiInbu3PnJ27l+/bq4\n63VUVBQ6d+4MW1tbzJkzB1wuF8OHD683ezP5eAKBAD4+Ppg6dSqcnJw+ahuS0k37XRoaGjh16hQm\nTpyIZcuWITw8HKdOncLAgQPZjtauycnJoU+fPoiLi6NxO6UEFSMJIYQQQgghEi88PBxLlixBXl4e\nfv31V3h6erIdibDo+vXrkJGRgaOjY7P+r7S0FJGRkY3OeL1z5044OTlBUVGxlZKTY8eO4enTpzh3\n7txHb0OSumk3xN3dHc7Ozli8eDGGDh2K9evXY9u2bVTUbkXW1taIi4tjOwZpIipGEkIIIYQQQiRW\nYWEhvvzyS/j7+8PNzQ1hYWHo2rUr27EIy27cuAFbW1toaGi8d713Z7wODw9HVVWVeMZrb29vuLi4\nfHA7pGWUlJRgy5YtWL58OXr16vXR25HEbtrv0tfXx8WLF+Hv749169YhLCwMJ0+ehIWFBdvR2iVr\na2v8888/bMcgTUTFSEIIIYQQQohEunjxIpYvX47q6mqcPXsW06dPZzsSkRBhYWEYP358veUCgQCx\nsbHi4mNERAQqKirExcf58+dj9OjRVNBmya5du1BSUoKvv/76k7Yjqd2038XhcODp6QlnZ2csWLAA\nAwYMwI4dO/DFF1/QuKMtzNraGvn5+cjMzIShoSHbccgHUDGSEEIIIYQQIlFyc3OxYcMGnDp1Cu7u\n7jh06BC0tbXZjkUkRG5uLh4/fozdu3cDqDvjNY/HA5/Ph56eHoYNG4Z9+/ZhzJgx6NatG7uhCTIz\nM+Hn54dvv/0Wurq6n7QtSe+m/a7evXsjMjISfn5+2LhxIy5duoTff/+diuItSDSr/aNHj6gYKQWk\n45VLCCGEEEII6RACAgJgZWWF8PBwBAUF4ezZs1SIJHWcO3cOHA4HZ8+ehZGREczNzbFhwwbw+Xx4\ne3vjwYMHyMrKwtmzZ+Hp6UmFSAmxefNmaGpqYtWqVZ+8LWlpGVmbnJwcvL29ERERgZcvX6Jv3774\n448/2I7Vbujo6EBbWxtPnjxhOwppAmoZSQghhBBCCGFdVlYWVqxYgb///htLly7F7t27oaqqynYs\nIgFyc3Nx48YN8Hg8hISE4MWLF5CRkcGrV6+wevVqODo6YsiQIZCTo4+3kio+Ph4nTpzAiRMnoKSk\n9Mnbk7aWkbUNGjQIsbGx8PHxwYIFC/DPP//g8OHD0NLSYjua1LO0tMTTp0/ZjkGagN6tCSGEEEII\nIaxhGAb+/v7YuHEjdHR0EBoaipEjR7Idi7CopKQEd+7cEXe7jo6OhqysLKytrTFjxgxcvnwZ9vb2\nOHbsGNtRSRNt3LgR/fv3x+zZs1tke9Iwgc37dO7cGfv27YObmxs8PDzQt29fHDt2DOPGjWM7mlSz\ntLSklpFSQjpfuYQQQgghhBCpl5KSAhcXF6xcuRILFy5EXFwcFSI7oLKyMvB4PGzZsgUuLi7Q0tLC\n2LFjceHCBdjZ2eHPP//E69ev8eDBA2zfvh0pKSlwcHBgOzZpomvXriE4OBi7du1qseKhtBcjRcaM\nGYOHDx9i1KhRcHNzg5eXF8rKytiOJbUsLCyoGCklqGUkIYQQQgghpE0JhUL89ttvWLduHczMzHD7\n9m3Y29uzHYu0kXdnvL558yYqKyvFM157enpi1KhRDY4VmpCQgNLSUgwePJiF5KS5hEIh1q5diwkT\nJmD06NEttl2BQCBV40W+j4aGBv744w9MmjQJy5Ytw82bN3Hq1CnY2dmxHU3qWFhYICMjA2VlZS0y\nHABpPVSMJIQQQgghhLSZhw8fYvHixYiJicG6deuwdetWKCgosB2LtLLaM14HBwejsLAQ+vr6cHZ2\nxv79++Hq6goTE5MPbufu3btQVVVF79692yA1+VSnT59GYmIizpw506LbFQqFUt8q8l3u7u4YPHgw\nFi5ciCFDhmD9+vXYtm0b5OXl2Y4mNYyNjcEwDNLT02FhYcF2HPIeVIwkhBBCCCGEtLrq6mrs2bMH\n3333HQYMGIDY2Fj06dOH7VikldQuPl67dg35+fno0qULRo4cCV9fXzg5OX1Uy6/79+9j4MCB7aZV\nXHtWXV2NLVu2YMGCBS1ePG6PxUgAMDExQWhoKPz9/bF27Vpcv34dJ0+eRK9evdiOJhVEX2hQMVLy\nUTGSEEIIIYQQ0qpiY2OxePFiPH78GL6+vtiwYQMVk9qZ7Oxs3Lx5EzweD0FBQXj58iWUlZUxdOhQ\nbNy4EVwuFwMGDPjkAlJcXBycnZ1bKDVpTceOHUN6ejq++eabFt92e+qm/S4OhwNPT084OTlh/vz5\nsLGxwY4dO/DFF1+Aw+GwHU+iaWtrQ0VFBWlpaWxHIR9AxUhCCCGEEEJIqygvL4evry92794NBwcH\nxMbGUgufduL169eIjIzErVu36s14PWvWLHC5XAwbNqxFu+ALhUI8fvwYy5cvb7FtktZRUVGB7du3\nw9PTE2ZmZi2+/fbaMrK2Pn364O7du/j++++xfv16XLlyBceOHUPXrl3ZjibRjIyMkJ6eznYM8gFU\njCSEEEIIIYS0uIiICCxZsgTZ2dnw8/PD6tWr233xoD0rKyvD7du3xV2vY2JiwOFwYGNjAy6Xi+++\n+w4jRoyAqqpqq2VITk5GaWkp+vXr12r7IC3jwIEDyM/Ph4+PT6tsvyMUIwFATk4OW7Zswbhx4zB/\n/nz07dsXBw8exJw5c9iOJrGMjY2pGCkFqBhJCCGEEEIIaTFFRUXYvHkzDhw4AFdXV4SEhMDY2Jjt\nWKSZampqEBcX1+iM197e3uByudDU1GyzTAkJCZCRkaGxRiVcSUkJdu3ahTVr1rRaK7723E27IYMH\nD0ZcXBx8fHwwb948BAYG4siRI236+pMWJiYm1E1bClAxkhBCCCGEENIirl69Ci8vLxQXF+PQoUPw\n9PRkOxJpIoFAgNjYWERERODWrVsICgpCUVERDAwM4OTkhP379+Ozzz6DkZERaxkTEhJgZmYGZWVl\n1jKQD/Pz80NlZSU2btzYavvoKC0ja+vcuTP27duHzz77DB4eHrCxscHx48cxcuRItqNJFGNjY0RE\nRLAdg3wAFSMJIYQQQgghn6SgoADe3t44evQo3N3dcfDgQejo6LAdi3xA7RmvQ0ND8ebNG+jq6mL4\n8OHYtWsXXFxc0L17d7Zjij18+BB9+/ZlOwZ5Dz6fj71792LDhg3Q0tJqtf10tJaRtY0dOxaxsbHw\n8vLC6NGjsXTpUvz8889QUlJiO5pEMDExoW7aUoCKkYQQQgghhJCPduHCBSxbtgxCoRDnzp3D1KlT\n2Y5EGpGVlYWIiAjweDxcuXIF6enpUFFRwZAhQ/Dll1+Cy+XC1tZWYmfsffr0KcaPH892DPIeP/30\nE+Tl5bFmzZpW3U9HbBlZm46ODv766y8EBATAy8sLEREROHXqFGxtbdmOxjpjY2OUlZUhPz8f2tra\nbMchjaBiJCGEEEIIIaTZcnJysGrVKpw7dw7z5s3D3r17W7UlFGm+vLw8XL9+HTweDxEREXj06BE6\nd+4MR0dHeHh4wMnJCcOHD4e8vDzbUT+IYRikpKSgR48ebEchjcjPz8fBgwfxzTfftOpERgAVI0Xc\n3d0xaNAgLFq0CEOGDMGmTZuwefPmDttqFHjbMhIA0tPTqRgpwagYSQghhBBCCGmWgIAALF++HGpq\naggODgaXy2U7EgFQWlqKyMhIcdfr6OhoyMjIwMbGBhMmTMC+ffvg5OQERUVFtqM2W1ZWFkpLS6kY\nKcF2796NTp06Yfny5a2+r47cTftdpqamCA0Nxf79++Ht7Y2goCCcPHkSPXv2ZDsaK3R1dQEAubm5\nLCch70NfJRBCCCGEEEKaJDU1FWPHjsWsWbMwbdo0xMfHUyGSReXl5YiIiMCPP/4IFxcXaGlpwcXF\nBQEBAbCzs8Off/6J169f48GDB9i5cye4XK5UFiIBICkpCQCoGCmhRK0iN27c2OqtIgFqGfkuDoeD\nNWvWICoqClVVVbCxscG+ffvAMAzb0dqcuro65OTk8ObNG7ajkPeglpGEEEIIIYSQ92IYBv7+/tiw\nYQP09PRw7do1DB8+nO1YHY5oxmtRy8eIiAhUVFTAzMwMXC4X8+fPB5fLhaGhIdtRW1xycjKUlJRg\nYGDAdhTSAD8/PygoKLRJq0iAipGNsbKywp07d7B9+3asX78eV65cwb///e92+Z7QGA6HAw0NDSpG\nSjgqRhJCCCGEEEIalZycjCVLliAiIgLr16+Hr68vOnXqxHasDqP2jNchISEoKCiAnp4ehg0bhn37\n9mHMmDHo1q0b2zFbXXJyMszNzSV2cp2OLD8/HwcOHMDXX3/dJq0iAeqm/T7y8vLYsmULXF1dMX/+\nfNjY2ODIkSOYMmUK29HajJaWFhUjJRwVIwkhhBBCCCH11NTU4ODBg9i0aRN69uyJO3fuwM7Oju1Y\n7V5KSgoiIiJw69YtXLp0CRkZGVBVVcXgwYPh4+Mj8TNet5aUlBSYmZmxHYM0YM+ePVBQUMCKFSva\nbJ/UMvLDhgwZgri4OHz11VeYOnUq3N3dceTIEWhqarIdrdVpaWmBz+ezHYO8BxUjCSGEEEIIIXXE\nx8dj8eLFePjwIby9vfH1119LxYzL0ignJwfh4eHg8XgIDg5GamoqlJSU4ODggNWrV4PL5WLAgAEd\nvvCSnp4OW1tbtmOQd7x58wa//PJLm7aKBKgY2VRKSkrYt28fxo0bBw8PDwwYMADHjx/HiBEj2I7W\nqqgYKfmoGEkIIYQQQggBAFRXV2PPnj349ttvMXDgQMTExMDS0pLtWO1KSUkJ7ty5U2fGa1lZWVhb\nW2PmzJngcrlwdnamrvDvyMjIgJubG9sxyDvYaBUJvC1GUjftpnN1dUVcXBw8PT0xatQorF69Gj/9\n9FO7fZ+hbtqSj4qRhBBCCCGEEERGRmLJkiVITU3F1q1bsXGN3CLoAAAgAElEQVTjRmp51ALKyspw\n+/Zt8YQz9+7dg0AgwIABA+Do6Ahvb2+MHTsWampqbEeVWAzDICsrC127dmU7CqmloKAAv/zyC776\n6qs2bRUJvB0zkt6fmkdHRwfnz59HQEAAPD09ERoailOnTmHAgAFsR2txWlpaePnyJdsxyHtQMZIQ\nQgghhJAOrLy8HL6+vti9eze4XC4uX74MU1NTtmNJrZqaGsTFxYlbPt68eROVlZXiGa/XrFmD0aNH\nQ0tLi+2oUuPNmzeoqKjoUDMCS4MDBw6Aw+G02QzatVHLyI/n7u6OQYMG4fPPP8fgwYOxadMmbN68\nuV3dn5qamtQyUsJRMZIQQgghhJAOKjw8HEuWLEFeXh5+/fVXLF26tMNNjPKphEIhHj9+jFu3bonH\nfSwsLISBgQGcnJywf/9+uLq6wsTEhO2oUiszMxMAqBgpQcrKyrB//36sXr0a6urqbb5/GjPy05ia\nmiIsLAz79++Ht7c3goODcfLkSfTo0YPtaM1WU1OD2bNnIy8vD2/evAHDMCgoKMDr169hZGQEACgq\nKgIAbNu2DWvWrGEzLvkfKkYSQgghhBDSwRQWFuLLL7+Ev78/3NzcEBYWRl1gmyElJUXc8vHatWvI\nz8+Hjo4ORowYAV9fXzg5OdHM4y0oIyMDABUjJcnRo0dRWlqKL774gpX9UzftT8fhcLBmzRpwuVzM\nnz8ftra22L17Nzw9PdmO1iwcDgc3btxAXl5evetE7x0iHWEmcWlBxUhCCCGEEELaiTdv3iA2Nhaj\nRo1qdJ1Lly5h2bJlqK6uxvHjx7FgwYI2TCidsrOzcfPmTfB4PFy9ehVpaWlQVlbG0KFDsXHjRprx\nupVlZWVBSUmJlRZ4pL7q6mr8/PPP8PT0hI6ODisZqJt2y7GyssLdu3exfft2rFixAoGBgTh27BgM\nDAzYjtYksrKyWLRoEX7++WdUV1e/d70JEya0YTLyPnS0JIQQQgghpB0QCASYNm0aXFxccOfOnXrX\n8/l8eHl5Yfz48Rg6dCgePnxIhchGvH79GhcuXICPjw8GDhwIAwMDzJkzB1FRUZg9ezZCQkLw5s0b\nhISEwNvbG3Z2dlSIbEV5eXnQ1dVlOwb5nxMnTiArKwtr165lLQN1025Z8vLy2LJlC27evInnz5/D\nxsYGgYGBja5//vx5nD17tg0Tvp+Hh8cHC5EjR46klpEShFpGEkIIIYQQ0g6IPkgCwIIFC5CQkIBO\nnToBAAICArBy5UrIy8sjMDAQkyZNYjOqxCktLUVkZKS463VMTAw4HA5sbGzA5XKxc+dOODo6onPn\nzmxH7ZDy8/Ohra3NdgyCt1967Nq1CwsWLGB1HFTqpt06hg4diqioKGzcuBFTpkzB/PnzcfDgwTqz\npT99+hSzZ8+GQCCAubm5RAxJYWFhgQEDBiAuLg5CobDBdWbOnNnGqcj70KuXEEIIIYQQKXfp0iVs\n374dAoEAQqEQKSkp+P7775GVlYWpU6di5syZmDJlCp48eUKFSLyd8CAqKgo//vgjXFxcoKWlBRcX\nFwQEBMDOzg5nzpxBXl4eHjx4gJ07d4LL5VIhkkVUjJQcAQEBSE5OxpdffslqDuqm3XrU1NRw5MgR\nXL58GTweD/3798eNGzcAvH3vnDNnDoRCIRiGwfTp01FSUsJy4reWLFnS6ARsDMPQsU/CcBiGYdgO\nQQghhBBCCPk4aWlp6N+/P4qLi+u0CJGRkYGamhp0dHTw22+/YdiwYSymZJdAIEBsbCx4PB4iIiJw\n48YNFBcXw8zMDI6OjnBycsJnn30mnnmVSJapU6dCUVERp0+fZjtKh2dnZ4eePXvizJkzrOZYuXIl\nHj16hLCwMFZztHe5ubnw9PTEhQsXsGrVKqipqWHHjh0QCAQA3nbvnj17Nk6cOMFy0rcTs+nq6qKq\nqqrOchkZGTg5OYkLqkQibKVu2oQQQgghhEipyspKTJo0CWVlZfW6psnIyEBdXR0PHjyAmpoaSwnZ\nU3vGax6PBz6fD11dXQwfPhy7d++Gi4sLunfvznZM0gT5+fno378/2zE6vMuXLyMmJgbHjh1jOwp1\n024jurq6CAwMhL+/P9auXYvy8vI6x5rq6mqcPHkSY8aMwdy5c1lMCqirq2PixIn4+++/64wfKSMj\nQ120JRC9egkhhBBCCJFSq1evxsOHDxscuL+mpgavXr3CoUOHWEjWPOXl5diwYQOMjIxQXl7+UdvI\nzMxEQEAAvLy8YGJiAnNzc6xfvx58Ph/e3t548OABsrOzcfbsWXh6elIhUork5+dDS0uL7Rgdnp+f\nH8aMGQMbGxu2o1A37TY2d+5c6OjoNFgA5nA4WLp0KZ4/f85CsroamshGIBBg8uTJLCUijaGWkYQQ\nQgghhEih06dPw9/f/73rCAQCbN68GRMmTECfPn3aKFnz3LlzB/PmzUNqaioEAgFu3boFLpf7wf/L\nzc3FjRs3xC0fU1JS0LlzZzg6OsLDwwNOTk4YPnw45OXl2+BWkNZEY0ayLz4+HmFhYQgKCmI7CgBq\nGdnWNm7ciFevXqGmpqbedQzDoLq6GjNmzMDdu3ehoKDAQsK3xo4dC11dXeTm5gJ4WygdNGgQDA0N\nWctEGkavXkIIIYQQQqRMfHw8PDw8mrSuQCDA0qVLWzlR81VXV+O7776Do6MjXr58CYFAAAUFBVy7\ndq3B9UtKSsDj8eDj44OBAwdCX18fs2fPRlRUFNzd3RESEoI3b94gJCQEW7ZsAZfLpUJkO1FYWAgN\nDQ22Y3RoP/30E6ysrJr0RUFboJaRbSckJASHDh1qsBApUlNTg4cPH2LLli1tF6wBMjIyWLRokfi9\nX1ZWFrNmzWI1E2kYtYwkhBBCCCFEihQVFWHSpEniCQQawuFwIC8vj6qqKsjJyUFNTQ0MwzQ602hb\ni4uLw9y5c/HkyRMIhULxGGRVVVW4evUqfvjhB5SXlyMqKgq3bt0Cj8fDjRs3UF1dDTMzM3C5XHh7\ne2PMmDFQV1dn+daQ1lRTU4Py8nKoqqqyHaXDysjIQEBAAI4ePSox7yFCoZBaRraRZcuWNWm9mpoa\n7Ny5E6NGjWK1aO3h4YEff/wRwNsv46ZOncpaFtI4KkYSQgghhBAiJRiGweeff46MjIw6rVRqFx87\ndeoEGxsbjBgxAlwuF05OTlBUVGQx9f+prq7Gnj178PXXX4PD4TRYUI2Li4OzszPu37+PyspKWFhY\nYNSoUfDy8sLIkSOpu24HU1JSAgBQUVFhOUnHtX//fmhqakrUJCDUTbvtHDx4EGfOnMGlS5fw+vVr\nyMvLQyAQ1Js0DXh7LJo9ezYePXoEHR0dFtICvXr1gq2tLaKjo2FtbQ0TExNWcpD3o2IkIYQQQgiR\nKmVlZaisrATw9gNpUVGR+Lri4uJ6XclKSkoanOClIUVFRe9tcVibaLbqppCTk6vXsktWVrbOLNeq\nqqqQk3t7eq6goABlZeV629mzZw8CAwPB4XAgJyeHmpoa8TiJo0ePxrBhw2Bvby+R3ZPj4+Mxd+5c\nPH78+L33McMwUFBQwNGjRzF69Gh07dq1DVMSSSMqRjb0eiCtr7S0FL/99hvWr18vMV9qANRNuy25\nurrC1dUVAJCSkgIej4erV6/i6tWrKC8vh4KCAqqqqgC8fVwKCwsxd+5cBAUFfVJLWtGxu6CgADU1\nNeJjfUVFRYMTndU+1tvZ2SE6OhpWVla4ePFig89d0TFXdCyXl5eHiooKOnfuLFHP9faKwzAMw3YI\nQgghhBAiPSoqKlBaWorCwkKUlJSgrKwMJSUlKC8vF39IqH357rLKykpxQbGsrAxVVVUoLS0VXwIQ\nXyfC5/PZurkSQUNDAxwOBwUFBQCAzp07o3PnztDQ0IC6ujqUlJSgqKgo/hBV+/fOnTujU6dOUFJS\nqncpKnoqKytDSUkJqqqqUFNTg5KSEpSUlFoke01NDfz8/PDNN9+I/34fBQUFLF++HHv37m2R/RPp\n9vTpU1haWiIuLg79+/dnO06Hs2/fPmzatAlpaWkS1Sp51qxZqKmpwX//+1+2o3RY5eXlCA8PR1BQ\nEC5evIjnz59DVlYWDMNAKBTim2++wbhx4/DmzRsUFBSgoKAAhYWF4t/f/amsrKxzLsE2UbFSQ0MD\nnTp1goaGhviYK/pdU1OzzrIuXbpAX18fOjo66NSpE9s3QZJtpWIkIYQQQkgHUFZWJv4Q8O5lQUFB\nnaJiQUEBysrKxP9T+7rCwsIGu2bV9m6h691LUesD0aWo1WDt1oPvtiRUU1MTt4IRbV9EU1NT/Luo\n0FabaD9N8e6236c5H5hExdbaqqurxa2+ANS5b2tvW9TSBHhbCK6urhYX9EQtQWoXc6uqquoUe2tf\nvlso/hBNTU0oKSlBWVm5XqFSdJ2SkhLU1NSgrq4u/kAmuszIyMC//vUvPH36tMktToG33eyePn3a\n5PVJ+xUVFYWBAwciOTkZZmZmbMfpUAQCASwsLODq6ooDBw6wHacOd3d3cDgcnD17lu0oHUpBQQHS\n09Px8uVLpKWlITs7Gzk5OcjOzkZGRgbS0tLw5s2beu/3nTp1qlPEq/2jqakJdXV1KCoqQllZWfxF\nmug8QV1dHbKysuJJrBrqaQBA/OXbuxrqMQH835ecoh4WomOo6PgoOr4WFhaioqKiwYIqn88X//7u\nuZGGhoa4MKmvrw89PT3o6uqia9euMDExgbGxMUxMTBrM3AFspW7ahBBCCCFSorKyEq9fv0Z+fj5e\nv36N3Nxc5Ofng8/n1ykwik6Oay97txAGvO0mLPpwoKqqKi46aWhoQEtLC0ZGRlBXV2+01dy7xajm\nFPLaA1HrxKaoXTCVJKLCZHFxMcrLy8UFZ1ExuqCgAKWlpSgrK0NxcTGKiorE16WkpIh/LyoqQlFR\nkbg7XWNEXfY+1B7i2bNniImJgaWlZUf9oEb+h7pps+f8+fN48eIFVq1axXaUeoRCIRQUFNiO0e4U\nFxfj2bNneP78OZKSkpCeno709HSkpaUhLS0NxcXF4nW1tLRgYGAAPT096Ovrw9nZWfy7trY2lJWV\n0atXL2hra7P6Pt7Y5FctfVwuLi5GXl4esrOzxZc5OTnIy8tDVlYWYmNjkZeXh/T09Do9P3R0dGBs\nbAxjY2OYmprCxMQEPXr0QK9evWBubt5un+dUjCSEEEIIYUlxcTEyMjKQm5uL169fIy8vD69fv65T\ncMzPzxdfX7sVHfB2zMIuXbrU6zpkZmZW5+/GLml2WiLq0t2SH8pKS0vFLUUSEhLw9OlTZGdni5/H\nouK5qABaVVXVYGtbW1tbAG+LUNra2tDR0YGOjg60tbXRpUsX8aVoua6uLgwMDMStZ0j7QBPYsOfn\nn3/GhAkTYGlpyXaUemg27Y8nFAqRnJyMxMREPH/+XFx8fPbsGbKysgC87VEgKowZGxvD3t5eXDAT\nFc3oC4K6VFVVoaqq2qQW3Pn5+eJCb2pqKtLT0/Hq1StERUXh3LlzyMjIAPD2S2NTU1P06tVL/NOz\nZ0/07dsXhoaGrX2TWhUVIwkhhBBCWhifz0dmZiaysrKQmZkJPp8v/l10mZmZKR7/T0RUFNLU1ISh\noSEMDAzQs2dP8bLayzU1NaGrqyue8IQQSSEag7Jr166wsrJq0v9UVFSIC/FpaWnIysrCgAEDUFRU\nJH4N1f5JTEwUL8/Nza3TJbBTp07Q0tKq81oR/V770tjYWCIn+iF1lZWVgcPhdKhW15IgOjoat2/f\nRlhYGNtRGkSzaTdNUVERnj9/jsTERERFRSEqKgpxcXHiIr+mpib69OkDKysrjBs3DmZmZjAzM4OV\nlRVN4tKKtLW1oa2tDRsbmwavr6qqwqtXr5CYmIhHjx4hJSUFjx49wsWLF5GSkgLgbTdwKysrWFlZ\noU+fPrCzs4Otra3UvFfSmJGEEEIIIU3EMAyys7PF3ZVEXZdevnyJ9PR0cSvH2q28lJWVYWhoCD09\nPRgYGIi7NBkaGorHDtLT00OXLl2osEjIRxAIBOJhCzIzM5GTk4OsrCxkZWUhJydH/LrMyMio07qY\nw+GIW1MaGxujW7du4jG8RC1/DAwMqODBslOnTmHp0qUSMaFFR+Lh4YG7d+/i4cOHnzQjcmsZP348\nunTpguPHj7MdRWJUVlYiOjoad+7cQWRkJO7du4eXL18CeNul2traGv369UP//v1hbW2NPn36SE3h\nivyf/Px8JCQkID4+HvHx8YiLi0NiYiLKy8shJycHS0tLDB48GEOHDsWQIUPQu3dvSTyO0ZiRhBBC\nCCEiAoEAaWlpSEpKEhcYU1NTxYXHV69eobKyEsDbLtL6+vriAsbIkSNhZGQEfX39OoVG6lpISOuS\nlZWFnp4e9PT00K9fv/euW1ZWhszMTGRnZyM7OxtZWVnIyMhAeno6oqOjERgYiMzMTHFLS3l5eXTt\n2rVesdLU1BQ9evSAqakpta5sZVVVVe12zDRJxefz8eeff8LPz08iC5EAtYwEgNzcXFy/fh2RkZG4\nc+cOoqOjUVVVBR0dHQwZMgSenp6wsbFB//79YWRkxHZc0kK0tbUxYsQIjBgxQrxMIBDg+fPniI+P\nR3R0NCIjI/Gf//wHZWVlUFdXx+DBgzFkyBA4ODjAyclJIrrYUzGSEEIIIR1KdXU10tPTkZKSUu/n\n8ePH4kHFFRUVYWhoCDMzMxgbG2Pw4MHi7ksGBgbo3r07tSggRMooKSmhR48e6NGjx3vX4/P54vcF\n0fAKKSkpCAoKEv8NvJ3V1cTERPzeUPvH0tJSIj7wSbvKykoqRrYxf39/yMrKYu7cuWxHaVRHHDOy\nrKwMt2/fBo/HA4/HQ0xMDDgcDiwsLGBnZ4dFixbB0dERffr0kdgiMmkdsrKysLS0hKWlJWbMmAHg\nbYHyyZMniIqKwq1bt/Df//4X27Ztg6ysLKytrcHlcsHlcjF8+HBWvlSjbtqEEEIIaZf4fD4ePnyI\nxMREPHz4UDwzZFpamni2Xx0dHZibm6NHjx7o2bOnuEhhbm4ObW1tlm8BIURSFRYWIikpqcGf7Oxs\nAG9bTxsbG4vfX0Rje/Xr1w9dunRh+RZIj71792LXrl3iCR1I6xIKhejRowcmTpyIvXv3sh2nUS4u\nLjAzM8ORI0fYjtKqkpKScO7cOVy5cgWRkZGoqqqClZWVuJA0YsQI6oFBmiwrK0tczObxeMjMzISG\nhgZGjBiBCRMmYNKkSW11/ruVipGEEEIIkWplZWV49OgREhIS8OjRI8THxyMxMVH8wVVdXR19+vSB\nhYWFuNgo+lFXV2c5PSGkvSkpKalXoHz27BkePnwIPp8PANDT00Pfvn3r/FhZWdEM9w346aefcOjQ\nIbx48YLtKB3ChQsXMGnSJDx+/BgWFhZsx2nUqFGjYGFhgUOHDrEdpcU9evQI586dw7lz5xAXFwdt\nbW24ubnBxcUFo0ePhoGBAdsRSTvx6NEj8Hg8hISEgMfjoaamBiNGjMC0adMwefJk6Ovrt9auqRhJ\nCCGEEOlRXFyMBw8e4N69e7h37x7i4uLw4sULCIVCKCoqimeErP3h3tTUlO3YhBACAMjIyEBiYqL4\nyxPRZWlpKQCgW7du6N+/P+zt7TFo0CAMGjQIGhoaLKdm17Zt2/DHH3/g6dOnbEfpEFxdXcEwDIKC\ngtiO8l4jRoxA3759ceDAAbajtIicnBwcP34cJ06cwOPHj6Gvr48pU6Zg2rRpGD58OE1wR1pdcXEx\nLl26hHPnzuHy5cuoqKiAs7MzPDw84O7ujs6dO7fk7qgYSQghhBDJVF1djfj4eHHh8f79+3j8+DGE\nQiEMDQ1hb28PW1tbcbdHc3NzyMrKsh2bEEKaRSgUIjU1VVyYjI6Oxr1795CWlgYOh4NevXrVKU7a\n2NigU6dObMduM99++y0CAwMRHx/PdpR2LykpCRYWFjh//jwmTpzIdpz3GjZsGGxsbLB//362o3w0\noVCI0NBQHD16FH///TdUVFQwd+5czJgxA46Ojh1uTEwiOcrKynD16lWcPn0a//zzD1RUVDB//nws\nXboUffv2bYldUDGSEEIIIZKhqqoKkZGR4PF4uHbtGqKjo1FRUQE1NTXY2dlh8ODBGDRoEOzt7WlW\nSEJIu5ednY379++Lv4y5d+8e+Hw+5OXlMWDAAIwYMQJcLhdOTk4t3WJFonh7eyM0NBQPHjxgO0q7\nt3btWpw/fx7JyckS/+Weo6Mj7O3tJXpcy8ZUVVXh3//+N3bt2oWUlBQ4OjrC09OzNVqfEfLJRK12\n/f39kZycDCcnJ3z99ddwdXX9lM1SMZIQQggh7GAYBg8fPhSPUxMeHo7S0lKYm5tj9OjRcHBwgL29\nPSwtLal1ACGkw2MYBklJSbh37x7u3LkDHo+HJ0+eQFFREU5OTuIJLQYMGNCu3jPXrVuHyMhIREZG\nsh2lXSsrK4ORkRF8fHzw5Zdfsh3ng4YOHQoHBwf4+fmxHaXJqqurcfz4cWzfvh3Z2dnw8PDAqlWr\n0KdPH7ajEfJBDMMgNDQUP//8My5fvoyhQ4fC19cXLi4uH7O5rTTwACGEEELajKjbR2BgIIKDg5GT\nkwNtbW2MGjUKe/bsAZfLhZmZGdsxCSFE4nA4HPTs2RM9e/bE3LlzAQCvXr0Sz4q6d+9e+Pj4QFtb\nG6NHj8aUKVPg5uYm9ZPiCIXCdlVclVRnzpxBWVkZPDw82I7SJNL2vPjrr7+wYcMGZGRkwMPDA5s2\nbYKxsTHbsQhpMg6HI/7S6+7du/D19cWYMWPg5OSEgwcPon///s3anvS8egkhhBAilaqrqxEYGAh3\nd3fo6OhgxowZePnyJdauXYsHDx4gNzcXZ8+ehaenJxUipQCHwxH/tKT79+9j5MiRLbpN0jrYeKxa\n63nXFCNHjsT9+/fbfL9NYWRkhIULF+KPP/5AZmYm4uPj8fXXX4PP52PBggXQ1dXFxIkTcebMGVRU\nVLAd96MwDCNVRSdp9dtvv2Hq1Kno0qUL21GaRCAQSMXzIjc3FzNmzMD06dMxfPhwPHv2DIcOHaJC\nZAuhcxJ2jlGDBw/G5cuXERkZCYZhMHDgQPj6+qK6urrJ25D8Vy8hhBBCpFJSUhLWrVsHIyMjTJs2\nDXw+H3v27EFGRgZu3LgBb29v2NnZScWHCfJ/WmOEn99++w1jxozBmjVrxMucnZ3h7Ozc4vsin6ah\nx6qlNfTYv+9519rPlS+++AIuLi7w9/dvtX20BA6Hg379+mHt2rUIDg5GdnY2Dh06BKFQiPnz58PA\nwAArVqzAw4cP2Y7aLNLWAk4aPXnyBJGRkVi8eDHbUZpMKBRK/LiW586dg5WVFe7du4erV6/i999/\nh6mpKdux2pW2OieRZGweo4YMGYLw8HDs2rULP/30E+zt7Zt8jKF3dUIIIYS0qHv37mHatGmwsLBA\nYGAgVq1ahRcvXoDH48HLywt6enpsR5QIbLXykjRXrlyBp6cnDh8+jMmTJ4uXC4VCCIVCFpM1TUd6\nHBt7rJrrQ/dZcx/7xtZvqcdmypQpOHjwILy8vHDlypVP3l5b0dLSwsKFC3Hx4kWkp6dj06ZNCAsL\nQ//+/TFu3Dhcv36d7YhNQsXI1ufv74/u3btLTUswQPJbRm7btg3u7u6YOnUqEhISMGbMGLYjSa22\nPM621HGuLbF9jJKRkcGaNWsQHx8PFRUVODg44OrVqx/8P5rAhhBCCCEtIjU1FT4+Pjh79iwGDRqE\n9evXY+rUqRLfcoEtohNraTwVa6nsVVVV6NGjB0xMTBAREdES0dqcND+OzdGSj9XH3mfN/b+WfmyG\nDh2KzMxMJCUlQV5evkW22dYYhsHly5fh5+eHsLAwuLm5YdeuXejduzfb0Rq1fPlyPH36FNeuXWM7\nSrtUVVUFIyMjfPHFF/jmm2/YjtNk/fr1w5QpU7B161a2o9Tz7bff4ocffsCBAwewbNkytuNIvQ+9\nl9M5yVuScIyqqqrC0qVLcebMGfz999/vm3F7q+R+lUAIIYQQqXHy5En069cPMTEx+PPPP3Hnzh24\nu7tTIZK817lz55Ceno45c+awHYV8AD1WwJw5c5CWloZz586xHeWjcTgcuLm54dq1awgNDUVmZias\nra2xZcsWiW2JTGNGtq6///4b+fn5WLBgAdtRmkVSW8yeOnUK33//PY4ePUqFSCkj7cc5SThGKSgo\n4Pjx45g9ezamT5+Ox48fN7qu5L16CSGEECI1GIbB8uXLsWjRIqxatQoPHz6Eu7s727FaTGJiIj77\n7DOoqKhATU0NY8eOxaNHjxodMD03NxfLly+HkZERFBQU0LVrV3h6eiI7O7vOerX/T7SdJUuW1FvG\n4XCQmZmJadOmQVVVFdra2vj8889RWFiI1NRUTJw4EWpqatDX18fChQtRUFBQ7zbweDxMnDgRmpqa\nUFRUhK2tLc6cOVNvvcLCQqxduxZmZmZQVFSEtrY2HBwcsGHDBty7d++999PAgQPrZJ41a1aT7t9/\n/vlH/P/v3j8N3b+1l6enp2PSpElQVVWFnp4e5s2bh/z8/EbXf/ToEVxdXaGmpgYVFRW4ubnVO0lu\nyn7fXf7uOrUfx6bep83NCTT9uQYAFRUV2LlzJwYMGABlZWUoKirC0tISy5Ytw507d+qt35BPeaya\nc581dzKCj9lP7f8R/dR+TXTr1q3Bbdrb29e5L6TdqFGj8ODBA2zbtg0//PADZs2ahZqaGrZj1SOp\nRaf24tixYxg3bhxMTEzYjtIsAoFA4r7wzMrKwooVK7B27VrWZyX/mOPPp55vZGdnw8vLS3xcMjIy\nwrJly5CTk/PR637omFFbU84L3qex41xrHctb8r4HJOcYxeFw4O/vj759+2LBggWNt1hlCCGEEEI+\nko+PD6OgoMD8888/bEdpcUlJSYyGhgZjaGjIhIaGMsXFxUxERATj6OjIAGDePY3Kzs5mTE1NGT09\nPSYoKIgpLi5mwsPDGVNTU6Z79+4Mn8+vs35D22jo+pug+2kAACAASURBVHnz5jGPHj1iCgoKmJUr\nVzIAGDc3N2bKlCni5cuXL2cAMEuXLm1wO5MnT2by8vKYly9fMi4uLgwA5urVq3XWmzRpEgOA2bt3\nL1NSUsJUVlYyT548YaZMmVIv57vZs7KymL59+zLe3t5Nvn8ZhmEsLCwYAEx2dnajt7+x5XPnzq13\n+xcuXNjo+g4ODkxERARTXFzM8Hg8Rl9fn9HU1GRevHjRrP02dTnDfNx92pSczXmuFRUVMQMHDmRU\nVVUZf39/Jjs7mykuLmbCwsKY3r17v/c5WNunPFbNuc9acnvv2w+Px2MAMAYGBkxlZWWd6/z9/Znx\n48fX+5/MzEwGAGNpadlodmkVHh7OqKioMIsWLWI7Sj2LFy9mxo4dy3aMdiktLY2RlZVl/vrrL7aj\nNFvPnj2Z77//nu0YdaxZs4YxMTFhKioq2I7yUcefTznfyMrKYoyNjcXnTEVFReJjmKmpaZ1jR3PW\nrZ2vMQ2dF6xatarR84LGNHaca61jeUvd9yKSdoxKSEhgZGRkGnt/8aViJCGEEEI+SkJCAiMnJ8cc\nO3aM7SitYt68eQwA5tSpU3WWX7p0qcETYy8vLwZAvfvjr7/+YgAwmzZtqrO8qSfX169fFy/LyMho\ncHl6ejoDgOnatWuD26l98vv48WMGAOPs7FxnPTU1NQYAExAQUGe5aJ+NZU9NTWV69OjBbN++vdHb\n0hgVFRUGQIMf3D5UYKp9+1+8eMEAYAwNDRtd//Lly3WWHz9+nAHAfP75583ab1OXM8zH3adNydmc\n59q6devEH6LeFR0d3eRi5Kc8Vk1d3tLb+9B+rK2tGQDMiRMn6izv168fExISUm/98vJyBgCjqqra\n6Dal2YULF+q9tiTBokWLGFdXV7ZjtEvfffcdo6enx1RVVbEdpdnMzc2ZH374ge0YYgKBgNHT02N2\n7NjBdhSGYT7u+PMp5xtLly5t8JxJdAzz8vL6qHVr52tMQzlfvXrV6HlBYxo7zrXWsbyx7B9zrscw\nknmMcnV1ZaZNm9bQVVSMJIQQQsjH8fX1ZXr06MEIhUK2o7QKPT09BgCTkZFRZzmfz2/wxNjQ0JAB\nwGRmZtZZ/vr1awYA069fvzrLm3pyXVRUJF4mEAjeu5zD4XzwdtXU1DAAGG1t7TrLFy1aJN62sbEx\ns3jxYubPP/+s12qsdrYnT54wxsbGjIODwwf32xAZGRkGQIPPoQ8VmGrf/srKykZvv2j9goKCOstF\nH1QMDAyatd+mLmeYj7tPm5KzOc81ExMTBgCTmpraYMam+pTHqqnLW3p7H9qP6MOhjY2NeFloaChj\nZWXV4Pqi15msrGyj25R2Dg4OzIoVK9iOUceiRYuYcePGsR2j3REIBIypqSnz/9m777CozvRv4F+K\n9N47iIAKWFEUa2gqxopdo0Y3QY2urmka32SjibrqJrsxJmuLGlFURMXYFYgGUAmKfcCggPTOwNDr\n8/6R35yIFEHKmXJ/rosL5syZOd9zZoYzc89TPv30U76jvBE7Ozu2fft2vmNwUlNTGQB2+/ZtvqMw\nxt7s/NOR9xvm5ubNvmcSn8NeLqC1Z92X87Wko++LxFo6z3XVufx12du7T5J4jtq+fTuzs7Nr7qpN\nNPgGIYQQQt5IZmYmbG1t2zy2m7QpKCgAABgZGTVarqen1+z6eXl5AAALC4tG4wCJb5+UlPRGObS1\ntbm/Xx43rbnl7JVxeYqLi7Fhwwb07dsX2traUFBQgLKyMgA0GUfp4MGDOH36NGbMmIGysjIcOHAA\nc+bMgaOjIx48eNBsNk9PTxQWFuLWrVs4duxYu/dNQ0MDwJ+zL7bXy/uvoqICoOn+v0xXV7fRZfHj\nkp+f3+5tt9WbHNO25GzPcy07OxsAYGZm1qF96chjJanmzZsHc3NzPHjwgJupeefOnVizZk2z64v3\nXXwsZFHPnj2RkZHBdwzSDcLCwpCWlsb72IZvStLGEhWJRACa/g/ny5ucfzryfkN8jnr1PZP4svi8\n1d5126MtOVvT0nmuq87lr8ve0vKW9kkSz1F6enooKSlp9jrJefUSQgghRKr0798fcXFxEAqFfEfp\nEuI3juKipNirl8VMTU0BAEVFRWCMNfkpLy/v2sDNmD17Nv71r39hzpw5SE1N5bK0xN/fH6dOnUJB\nQQEiIyMxfvx4pKWlYcmSJc2uv2vXLvzwww8AgJUrV7a7iGFpaQkALQ7G3pleLb6KH0djY+NGy8XF\n9draWm5ZS2+k26K9x7QtOdvzXBOvKy5KvqnWHqvOPmbdRUVFBatWrQIA/Oc//0FycjJu376Nd955\np9n1xf/rxMdC1lRVVSEqKgoDBgzgOwrpBocPH8aIESPQu3dvvqO8EUkrRpqbmwMAUlNTeU7yl/ae\nfzrCxMQEQMvvmcTXt3fd7tTaea4rzuWdTRLPUSkpKS3mkZxXLyGEEEKkysKFC6Guro6VK1eioaGB\n7zidbty4cQCAiIiIRstv3rzZ7PrTpk0DANy4caPJdVFRUfDw8Gi0TPzNdW1tLSoqKpq0EOgM4qwf\nffQRDAwMAADV1dXNrqugoMAVExUVFTF69GgEBwcDQLOzOQPAjBkzsGTJEkydOhXFxcVYsmRJu1oh\nDBo0CED3fHh79XELDw8H8NfjLCZuQfhy8e7+/fst3m9rj+ObHNO25GzPc23GjBkAgLNnzzZZNyYm\nBsOGDWtx317W2mPVmcesM7VlO8uXL4eGhgYuXbqE1atX47333oO6unqz9yfe94EDB3ZJXr6tW7cO\nQqEQK1as4DsK6WLl5eU4d+5ci4V3aSBpxUhDQ0MMHDgQZ86c4TsKgDc7/3TE5MmTATR9zyQ+h4mv\nb++6QPedM1o6z3XVubyzSdo5qqGhAWfPnoW3t3fzK3RtD3FCCCGEyLJr164xNTU1tnDhQlZeXs53\nnE6VlJTUZDbtqKgo5ufn1+z4Rfn5+czR0ZGZm5uzkJAQVlBQwEQiETt//jyzt7dvMinE8OHDGQAW\nHR3NTpw40WT23ua20d7l48ePZwDYZ599xoRCISssLOQmNHl1XQBs/Pjx7MmTJ6yqqorl5OSwzz77\njAFgU6ZMaXVbubm5zNjYmAHNT5TSkqCgIAaA/fjjjx3az7Ys9/PzY1FRUay0tJRFREQwc3PzZme2\nXLRoEQPAVq1axYqLi1lCQgJbsGBBi/ff2uP4Jse0LTnb81wTCoXM1dWVaWtrs3379nGzaV+5coU5\nOjqy8PDwJvvUnNYeq848Zi8fi1e1d/nrtiMmnqFUWVmZpaent3gMvv/+ewaAHTt2rMV1pFFNTQ1b\nvXo1U1JSYsHBwXzHaYLGjOx8hw8fZj169GD5+fl8R3ljZmZmbOfOnXzHaGTv3r1MVVWVPX/+nO8o\nHTqnv8nynJwcZmtr22iGbPE57NUZstuzLmOdf85oSUvnua46l79J9tb2SdLOUYGBgUxJSYkJBILm\nrqYJbAghhBDSMVevXmUGBgbM2dlZYgZu7yxPnjxhfn5+TFNTk2lra7NJkyaxpKQkBoApKio2Wb+o\nqIh9+OGHrGfPnqxHjx7M1NSUTZ48udnjcufOHTZgwACmoaHBhg8fzv744w/uOvGbzVffdLZ3eW5u\nLlu4cCEzMTFhKioqzNXVlQUHBze7bnR0NFu8eDGzs7NjPXr0YLq6umzAgAFsy5YtjQrNurq6jW4f\nEhLSZPsA2J07d157fKurq5mVlRUbNWpUo+Wdtf8vX5eSksImTZrEtLW1maamJvPz82Px8fFNMuXn\n57P58+czY2NjpqmpySZPnszS0tJavP/WHse2HtM3ydme51ppaSn7/PPPWe/evZmKigozNDRk48aN\nY5GRkc09LM1q6bHq7GPWmY99a9t5WWJiIlNUVGRz585t9RgMHz6cWVlZNTtpgbR69OgRGzp0KNPS\n0mInT57kO06zqBjZ+caNG9ekiCJtTExM2K5du/iO0UhNTQ0bMGAAc3d3bzIjc3dr6/mnM//n5uTk\nsGXLljELCwumrKzMLCwsWEBAQJPiYnvX7cxzRmtaOs911bm8M489Y5J1jkpOTmb6+vqtTYhGxUhC\nCCGEdFxaWhrz9vZmCgoKbM6cOSwxMZHvSF0mMzOTAWAmJiZ8R5EJFy5cYAoKCuzEiRNdcv/tbRnB\nF2nI2dWPFV/q6+uZubl5q1+mHD16lCkoKLALFy50Y7Kuk5qayv72t78xJSUl5u7u3mKhVhJQMbJz\n5ebmMmVlZYlsBdsexsbG7IcffuA7RhNPnz5lenp6bOrUqaympobvOKSdOnqe4+tcLknnqMzMTObg\n4MAGDRrEKioqWlqNZtMmhBBCSMdZW1sjPDwcoaGhePDgAfr06QN/f39ER0fzHa1DFBQU8Pz580bL\nIiMjAfw5kzTpuLfffht79uzB8uXLmx3XkEgOWX2sLl68CGtrawwfPrzZ60NDQ/HBBx9g9+7dePvt\nt7s5XeeKi4vDggUL4ODggPDwcBw+fBgxMTFwcnLiOxrpJkFBQdDQ0GgyLp+0kbQxI8V69+6Nixcv\nIiIiAhMmTJDZSf5klTSe5yTpHPX48WN4eHhARUUFV65caXEMZoAmsCGEEEJIJ5o6dSoEAgGCg4OR\nnZ2N0aNHw9nZGTt27OjwbL58WblyJZKTk1FeXo6IiAisW7cOOjo62LhxI9/RZEZAQACuXr2K7777\nju8o5DVk5bFSUFBATEwMhEIhNm3ahP/3//5fi+vu3LkTYWFhWLZsWTcm7DwFBQX4/vvvMWjQIAwZ\nMgQCgQAHDhxAYmIiFixYwM2GTuRDUFAQZsyY0WqRQBowxiT2uTtixAjcunULz58/h4uLC86dO8d3\nJNIO0naek4RzFGMM+/btg4eHB6ytrXHjxo3XzoquwFg7pjwkhBBCCGmHu3fv4tChQzh+/DhEIhFG\njRqFmTNnYvr06bC0tOQ73mtFRETgf//7H27evInCwkLo6+vD09MTmzZtQp8+ffiOR17j1Q+qkvq2\nV1pyyhLxMTc0NMSqVatk7suF/Px8nD17FqdOncL169ehpqaGWbNmYcmSJRg1ahTf8dpl6dKlyMnJ\nwaVLl/iOIvWePn2Kvn37Ijw8vOUZbqWEvr4+tm/fjoCAAL6jtEgoFGL9+vXYt28fZs2ahT179sDA\nwIDvWKSLyOu5PDk5GUuXLsWtW7fw4Ycf4quvvoKKisrrbvYVFSMJIYQQ0uWqqqpw6dIlnDp1Chcv\nXkRZWRkGDBgAHx8f+Pj4YNSoUdDQ0OA7JiGESKXq6mrcvn0b4eHhiIiIwJ07d6CqqooJEyZg5syZ\nmDJlCjQ1NfmO+UaoGNl5vvjiCxw8eBBpaWlQUlLiO06H6Orq4ttvv8V7773Hd5TXOnPmDD744AMo\nKChg/fr1CAgIkPqWqYTk5ORg+/bt2LNnD1xcXHDo0CH069evrTf/irppE0IIIaTLqampwd/fH8eO\nHUNubi7OnTuH0aNH4+LFixg/fjwMDAzg7e2NrVu3IjY2FvX19XxHJoQQicUYw4MHD/DNN99gwoQJ\nMDAwgKenJ4KDgzFw4ECcPHkSeXl5OH36NObNmye1hUjSeRhjOHbsGObPny/1hUhAsrtpv8rf3x8C\ngQDz58/Hhg0b0KtXL3z//feoqqriOxoh7ZaTk4MPP/wQ9vb2OHnyJHbs2IGYmJj2FCIBUDdtQggh\nhPAsKysL4eHh3E92djb09PQwbNgwuLu7w93dHUOHDoWpqSnfUQkhhBdFRUWIjY1FbGws7ty5g5iY\nGBQUFMDY2Bje3t7w9vaGj48P7Ozs+I7a6ahlZOe4efMmRo0ahfv372PgwIF8x+kwLS0t7Nq1C0uW\nLOE7Srvk5ORgx44d2LNnD/T09PC3v/0N7733HmxtbfmORkirYmNjsW/fPhw/fhy6urpcK181NbU3\nuTvqpk0IIYQQySIQCPDrr79yH7yfPXsGxhhsbW254qS7uzvc3NyotQ8hROZUVlbi/v37uHPnDvd/\n8Pnz5wCAnj17cl/UeHp6YsCAAVLTOuxNUTGyc6xevRoREREQCAR8R+kUmpqa+PHHH/Huu+/yHeWN\nZGdnY9euXTh06BDy8vIwfvx4BAQEYNKkSVBWVuY7HiEAgJKSEgQFBWHfvn14+PAh+vXrh+XLl2PJ\nkiUdHWrgK3qWE0IIIUSiuLi4wMXFhbssFAq51kCxsbH45ptvkJubCyUlJTg5OcHV1RWurq5wcXFB\nv3790KtXL5nogkYIkW0NDQ1ISUnBkydPIBAI8PjxY8THxyMhIQG1tbUwNDSEu7s75s+fz30JY2xs\nzHdsIoUYYzh79qzUtSJsTUNDAxQVpXfUOXNzc2zduhWbNm3CuXPnsG/fPsyYMQMmJibw9/fHjBkz\nMHbsWHo/Q7pdWVkZLl68iNOnT+PixYsAgNmzZ2P37t3w8PDotO1Qy0hCCCGESJ3U1FTcuXMH9+/f\nR3x8PB4/foyUlBQ0NDRATU0Nffv2bVSgdHZ2hq2trcy3ICKESKaMjAzEx8fj0aNH3P+shIQElJeX\nQ0FBAba2tnBxcYGrqysGDBiAoUOHwsHBge/YEoFaRnZcTEwMPDw88PDhQ/Tv35/vOJ1CTU0N+/fv\nx8KFC/mO0mlSUlJw5MgRnD59Go8ePYKRkRGmTZsGf39/eHt7t2WGYkLeiFAoxPnz53HmzBlcvXoV\ntbW1eOuttzBz5kzMnTsXenp6nb1J6qZNCCGEENlQU1ODZ8+eIT4+HgKBAHFxcYiPj0dKSgoYY1BR\nUYGVlRXs7e1hb28PZ2dnuLi4wN7eHra2ttT6gBDSIUKhEMnJyUhOToZAIEB8fDySk5ORmJiI0tJS\nAIC+vj73v8fZ2Rlubm4YMGAAtLW1eU4vuagY2XGffvopTp06heTkZL6jdBoVFRUcOnQICxYs4DtK\nl3jx4gV++eUXhISE4NatW1BXV8eIESPg4+MDHx8fDB48mL5gJW+svr4eDx484MZrj4yMRH19PYYP\nH45Zs2Zhzpw5MDMz68oIVIwkhBBCiGwrLi6GQCBAYmIinj9/jufPnyMpKQnPnz9HSUkJAEBVVRX2\n9vZwdHSEg4MDHBwcYGtrC1tbW9jY2FChgBCCiooKvHjxAunp6UhNTeX+n4h/KisrAfw5sYaDgwN6\n9erF/T9xdHSEq6srDA0Ned4L6UPFyI5zcHDAjBkzsH37dr6jdJoePXrg8OHDmD9/Pt9Rulxqaiqu\nXLmCsLAwXL9+HUVFRTAzM+MKkx4eHnBycuI7JpFgdXV1ePjwIaKiohAeHo7ffvsNZWVlsLOzg6+v\nL3x8fDB+/Hjo6up2VyQqRhJCCCFEfuXn5+P58+d49uxZo6JCUlISioqKuPX09PRgbW0NW1tbWFtb\ncz92dnawtraGhYUFevToweOeEEI6or6+HtnZ2UhNTUVaWhrS09O5oqP478LCQm59XV3dRsXGl4uO\nXdyaRO5QMbJjHjx4gEGDBiEmJgbDhg3jO06nUVJSQlBQEObOnct3lG5VX1+Pe/fucS3abt26haqq\nKhgaGmL48OEYPnw4PDw84O7uTl+kyrHs7GzExMTg9u3biImJQVxcHCoqKmBgYABPT0+ukM3jcCBU\njCSEEEIIaU5paSnS0tIaFSNevpyZmYmamhoAf34oMjMzg42NDUxMTGBpaQlTU1OYm5vDzMwMZmZm\nsLCwgImJCRUtCelGdXV1yMvLQ05ODrKzs5Gbm4vMzEzk5eUhMzMTubm5yMjIQFZWFurq6gAAysrK\nsLCwgI2NTaMvIF6+3AXjZ5EWUDGyY/75z3/i4MGDSE9Pl6luvYqKijh+/DjmzJnDdxRe1dTU4N69\ne4iJicHvv/+OW7duIS0tDUpKSujbty8GDhyI/v37Y8CAAejfvz99WSJjGGNITk7Gw4cP8ejRIzx6\n9AhxcXHcc8DZ2ZkrUA8bNgx9+vSRlImfqBhJCCGEEPImGhoakJOT06hYmZGR0aTYIR4rTszU1BQm\nJiawsLDgCpbm5uYwNDSEkZERjIyMYGxsDCMjI2hqavK0d4RIroqKChQWFqKgoAB5eXnc37m5ucjK\nykJeXh4yMjKQl5eHvLw8NDQ0cLfV1NRs8mWBpaVlo2Kjubk5jSErQagY2TGurq7w9vbGzp07+Y7S\nqRQUFHDy5EnMmjWL7ygSR9wqLjY2litSZWZmAgBMTEy4wqSLiwucnJzg5OQEY2NjnlOT1jQ0NCA9\nPR3Pnj1DYmIiV3h8/PgxysrKoKSkhF69emHAgAEYOHAghg0bJumtY6kYSQghhBDSlSoqKpCdnY2c\nnBzk5ORwxZJXW2cVFhZyLS3F1NTUmi1SipeJfxsYGEBfXx+6urrQ09OjQgqRCg0NDSgpKYFQKERx\ncTGKi4sbFRcLCwubLTqKx2YUU1ZWhpGREdcqWVzsF7dKNjc3h6mpKSwtLanAL4WoGPnmEhMT0bt3\nb9y4cQNjx47lO06naWhogJKSEkJCQjBz5ky+40iFwsLCRq3nHj58iISEBO7/qZ6eHhwdHeHo6Ije\nvXtzY2hbW1tTa8puUldXh6ysLLx48QLPnj3jfsRjnldVVQEADAwM4Orqiv79+3OtXl1dXaGhocHz\nHrTLV8p8JyCEEEIIkWUaGhro1asXevXq9dp1RSIR8vPzuULMy78LCgqQn5+PR48eNSrUiLuWvkxb\nWxt6enpccVL88+rll380NTWhoaEBHR0daGtrQ1mZ3iaSltXX10MkEqGsrAwVFRUoKyvjCorin5KS\nklYvi0SiJverqKjIFdrFxXZra2u4ubk1KcIbGhrC2NiYukwT0oJTp07ByMgII0eO5DtKpxK3dpaQ\n7qZSwdDQEF5eXvDy8uKWMcaQkZGBxMTERoWvoKAgpKSkoLa2FsCfX4y+OlyFjY0NN2a2sbExjI2N\nZWoYgM5WW1uL/Px8ruW+uFdNWloaNwRQdnY26uvrAfzZit/R0RFOTk6YOnVqoyKxrEyERu8yCSGE\nEEIkhI6ODnR0dNpUuBQTCoXcz+uKP+np6U2ub4mysjKUlZVhbGwMbW1tqKurQ19fHxoaGo2Klurq\n6tDS0oKuri4UFRWhr68PAE1+6+npQUFBoclv0jWKi4vBGGvT7/r6epSUlKCiogIVFRUQiUQoLS1F\nZWUlysrKuOsqKyshFApRUVGB6urqFreto6PTbPHb1ta22eK4vr4+t0xWPmQRIgnOnDkDf39/mfty\nSdy5k4qRHaOgoMAVGb29vRtdV1dXx03mJZ7YS3w5NjYWqampKC8v59YXv18wNjaGubk5TExMuL8N\nDAyafAEq/r8vje8Dampqmn2PVVRUhPz8fK7omJ2dzf1dUFDQ6D4MDQ25gq6bmxumTZvGXba1tYWF\nhQVPe9d9ZOu/EiGEEEKInNHX1+cKfm9C3EW2vLwcjx8/xqVLl3Djxg1kZGRAS0sLkydPhomJCSoq\nKrj1KioqkJycDJFIxBWwhEIh1+22PV4tToqLmgCgpaXFTfjTo0cPaGlpcbd7eT01NTWoq6sDAHdf\nzdHR0WlTF3ZNTU2oqKi0uk5dXV2T8UCbIy74NUckEnGtIKqqqrjucq/epry8nOvC/+p2hUJhs7/b\nSkNDA9XV1VwrQw0NDejq6nItZU1MTKCjo8MVoZsrSGtoaEBTU5P7kEkFAkL4l5aWhnv37mHz5s18\nR+l04paR0ljIkhbKysqwt7eHvb19i+sUFhYiJyenUeEtPz8fWVlZyM/PR2JiIrKzsyEUCls8X4q/\nlNLV1YWKigr09PSgrKwMbW1tqKqqcucbVVXVRr02Xj7viykqKkJXV7fRspbel5SWlnI9S8TnX/G5\nVnxuFgqFXC+AyspKruhYUVHR7L7o6+tzBVkTExO4uLg0W6C1traWti7VXYKKkYQQQgghciwrKwsh\nISE4efIkEhISYGVlBX9/f8yaNQsjRox4o8KS+M3/q79f10IPaFxME98WaFqse/HiBbdea8U6sVeX\n19TUoEePHk0+zLZWPHxVR4ubbS22GhoatlhsFa/36m9xttf9fvr0KT799FOcP38ezs7O2Lp1Kzw8\nPNq0/4QQyXX58mVoaGjA09OT7yidjlpGSgbxcBouLi6vXbe+vr5RK0LxF6Evty6sra2FUCjkztcl\nJSXIycnhzvEvv59QUFDgvswTq62tRVlZWZNtN9cCU11dHWpqagAAFRUV7gs4VVVV7vxob2/PFUbV\n1dWbtO58tfU/aR8qRhJCCCGEyBmBQICQkBAEBwfj6dOnXAFy3759b1yAfNnL3bUlsdttWFgYxo0b\nh5s3b2LEiBF8x+FVnz59cO7cOfz+++/YsGEDRowYAR8fH/z73//GwIED+Y5HCHlDly9fhre3N1RV\nVfmO0umoZaT0UVJS4oqXHREeHg5fX18kJibC0dGxk9IRPtBXCYQQQgghckAgEGDjxo3o27cvXF1d\ncfDgQYwbNw5RUVFIS0vDzp07MWrUKLloabJ582b4+vrKfSHyZcOGDUNERATCwsIgFArh5uaG2bNn\n4/nz53xHI4S0U21tLa5fv44JEybwHaVLUMtI+RUcHAw3NzcqRMoAevUSQgghhMgocQGyT58+TQqQ\nqampXAFSnlqX3Lp1C5GRkfj888/5jiKRfHx8cOfOHRw7dgwPHz6Ei4sLVq9ejcLCQr6jEULaKCoq\nCiKRCOPHj+c7SpeglpHyqba2FqGhoZgzZw7fUUgnoGIkIYQQQogMERcge/fuDVdXVxw6dAjjx4+X\n6wLkyzZu3IgRI0ZgzJgxfEeRWAoKCpgzZw4EAgF++OEHnDp1Co6Ojvj+++9RW1vLdzxCyGtcuXIF\nffr0aXXyEWlGLSPl07Vr11BUVIRZs2bxHYV0Anr1EkIIIYRIueYKkBMmTEBUVBRevHgh9wVIsdjY\nWISFheHLL7/kO4pUUFZWxvvvv49nz55h9erVWLduHVxdXXHhwgW+oxFCWnH58mX4+fnxHaPLUMtI\n+RQcHAwPDw/Y2dnxHYV0AipGEkIIIYRIIXEBX+jjLgAAIABJREFU0snJCa6urvj555+pAPkaX3/9\nNdzd3TFu3Di+o0gVTU1NbNy4EYmJiRg2bBimTJkCX19fPHnyhO9ohJBXZGRkQCAQyOx4kQC1jJRH\nVVVVOHfuHHXRliH06iWEEEIIkRLiAqSjoyNXgPTz80NUVBRSUlKoANmKhw8f4uLFizRWZAdYW1sj\nMDAQ169fR0FBAQYPHoxly5ahoKCA72iEkP9z+fJlqKmpYfTo0XxH6TLUMlL+XLp0CaWlpZg5cybf\nUUgnoWIkIYQQQogEe7UAefjwYUycOJEKkO20efNm9O/fH5MmTeI7itQbO3Ys7t69ix9++AFnz55F\n3759sX//fq61EiGEP1euXIGXlxfU1dX5jtJlxMVIahkpP4KDgzF27FhYWFjwHYV0Enr1EkIIIYRI\nEMYYYmJi8OGHH8LGxgaurq44fvw45syZg/v371MB8g0kJCTgzJkz+Pzzz+mYdRIlJSUEBAQgMTER\nixYtwgcffIAxY8YgPj6e72iEyK26ujpERETI9HiRwF/dtOn/uXyoqKjAxYsXqYu2jKFiJCGEEEKI\nBLh79y4++eQT9OzZEx4eHrh48SIWL16Mhw8f4o8//sDmzZsxcOBAvmNKpS1btqB3797w9/fnO4rM\n0dXVxbfffou4uDjU1tZi4MCBWL9+PaqqqviORojcuXnzJkpKSmR6vEiAWkbKm19++QXV1dWYPn06\n31FIJ1LmOwAhhBBCiLwSCAQICQnB8ePHkZiYCFtbW0ydOhWzZs3CqFGj+I4nE5KSkhAcHIxDhw7R\nB9cu1L9/f9y6dQs//fQTPvnkE5w6dQq7d++Gr68v39EIkRthYWFwcHBAr169+I7SpWgCG/kSHBwM\nHx8fmJiY8B2FdCJ69RJCCCGEdCPxGJB9+/aFq6srDh48yM2C/XIXbNI5tm7dCltbW8ydO5fvKDJP\nUVERAQEBSEhIwKBBgzBu3DjMnj0b+fn5fEcjRC5ERkbirbfe4jtGl6MJbOSHSCTC1atXqYu2DKJi\nJCGEEEJIFxMXGd3c3ODq6ooDBw5g3LhxiIqKQmpqKo0B2UXS09Nx9OhRfPbZZ1BWpg5B3cXCwgIh\nISE4ffo0bt26BRcXFxw9epTvWITItOrqaty5c0emZ9EWo5aR8iM0NBQNDQ2YMmUK31FIJ6NXLyGE\nEEJIF3i5yGhvb4/NmzfDxcUFYWFhVIDsJtu2bYOpqSkWLlzIdxS55O/vjz/++ANLly7Fu+++Cz8/\nP2RnZ/MdixCZFBMTg6qqKowZM4bvKF2OWkbKj+DgYPj5+cHAwIDvKKSTUTGSEEIIIaSTpKWlcUXG\nnj174uuvv4a9vT3OnTuH7OxsBAYGwsfHh1pzdIOcnBwcOnQI69evh4qKCt9x5Jampia2bduGqKgo\nPH/+HAMGDMDZs2f5jkWIzImMjISVlRXs7Oz4jtLlqGWkfBAKhQgPD8esWbP4jkK6AL16CSGEEEI6\nICMjgytA2tnZYdOmTbC3t8cvv/zCFSAnT55M3YS72Y4dO6Crq4slS5bwHYUA8PDwQFxcHKZPn47p\n06dj0aJFKC0t5TsWITIjKipKLsaLBKhlpLy4cOECAODtt9/mOQnpClSMJIQQQghpp4KCAuzbtw+j\nRo2CjY0NNm7cyBUgc3NzuQJkjx49+I4qlwoLC7F//3588sknUFdX5zsO+T86OjrYu3cvLl68iPDw\ncPTv3x+RkZF8xyJE6tXV1SEmJkYuxosEqGWkvAgNDYW3tzf09PT4jkK6AL16CSGEEELaoLCwkCsy\nmpubY+3atbCwsKACpAT65ptvoKqqioCAAL6jkGZMnDgRDx48QP/+/eHp6Yk1a9agurqa71iESK24\nuDiUlpbKxXiRALWMlAeVlZW4du0apk+fzncU0kWoGEkIIYQQ0oKioiKuyGhmZobly5cDAA4cOID8\n/HycPHkSkydPpjEJJUhJSQl2796Njz76CFpaWnzHIS0wMTHB2bNn8b///Q8HDhyAh4cH4uPj+Y5F\niFSKjIyEsbExevfuzXeUbkEtI2Xf1atXUVlZicmTJ/MdhXQRevUSQgghhLxEKBS2WIDMy8vD+fPn\nsWjRImhoaPCclDTnv//9LwBgxYoVPCchr6OgoIBly5bh/v37UFVVhbu7O4KCgviORYjUiYqKwtix\nY+WmpSC1jJR9oaGh8PDwgLm5Od9RSBehYiQhhBBC5F5JSQkOHz6MiRMnwtTUFMuXL4eqqiqOHj2K\ngoICrgBJLe0km0gkwq5du/CPf/yDxpiSIo6OjoiKisKqVauwcOFCLFu2DDU1NXzHIkQqNDQ04ObN\nm3IzXiTwVzGSWkbKprq6Oly6dIm6aMs4mtaREEIIIXKpsrISFy5cwPHjx3H58mUwxjBhwgT8/PPP\nmDJlChUepdCPP/6ImpoarFq1iu8opJ2UlZWxbds2eHh4YPHixYiLi8OpU6dgZ2fHdzRCJNrjx49R\nVFQkN+NFAtRNW9b99ttvKCgowLRp0/iOQroQvXoJIYQQIjfq6+sRHh6ORYsWwczMDHPnzkVeXh62\nbduGjIwMnD17FvPnz6dCpBSqqKjAd999h1WrVsHIyIjvOOQNTZ06FbGxsaiursbQoUNx7do1viMR\nItFiYmKgra2Nfv368R2l21A3bdkWGhqK/v37o1evXnxHIV2IipGEEEIIkWkNDQ2Ijo7GmjVrYGFh\nAV9fX8THx+Orr75CZmYmdx0VsKTb3r17UVZWhrVr1/IdhXSQk5MTbt++DR8fH0yYMAHr16/nig+E\nkMbu3r2LwYMHQ0lJie8o3UbcMpKKkbKHMYZz585RF205QN20CSGEECKTBAIBjhw5giNHjiArKwvO\nzs5YsWIFFi5cSN+2y5jq6mp8++23WLZsGUxMTPiOQzqBlpYWjh8/Dk9PT/z973/HkydPEBgYCAMD\nA76jESJR7t27h7Fjx/Ido1tRMVJ23blzB+np6VSMlANUjCSEEEKIzBAIBAgJCcGxY8fw7Nkz2NnZ\nYeHChXj33XfRp08fvuORLnLgwAEUFBTgo48+4jsK6WQBAQHo168fZs+eDXd3d1y4cIFey4T8n5qa\nGggEArltEU7FSNkTGhoKOzs7DBgwgO8opItRN21CCCGESLXU1FTs3LkTbm5ucHV1xYEDB+Dn54eo\nqCikpKRg27ZtVLyQYbW1tfj3v/+NpUuXwtLSku84pAt4eHggLi4OJiYm8PDwQHh4ON+RCJEIjx8/\nRnV1Ndzc3PiO0q2oZaTsOnv2LPz9/fmOQboBFSMJIYQQInUyMzOxc+dOjBo1Cj179sRXX30FFxcX\nhIWFIS0tjbuOyL7AwEBkZmbi008/5TsK6UImJia4fv06Jk2aBD8/P/z44498RyKEd/fu3YOWlhac\nnJz4jtKtxMVIIlsSEhLw9OlT6qItJ6ibNiGEEEKkglAoxPnz5xESEoIrV65AU1MTU6ZMwbp16zBh\nwgT06NGD74ikm9XX12PHjh1YuHAh7Ozs+I5DupiqqioCAwPh4OCAv//970hJScGOHTugqEjtK4h8\nunfvHgYOHChXk9e8jFpGypbQ0FCYmprCw8OD7yikG1AxkhBCCCESq7KyEhcuXEBgYCCuXbsGRUVF\n+Pj44MCBA5g5cyY0NDT4jkh4dOLECSQlJeH8+fN8RyHdREFBAV9++SUcHR2xZMkSZGVl4eeff4aK\nigrf0QjpdnFxcXJZuKGWkbIpNDQUU6dOldviuryhrxEJIYQQIlGqqqpw/vx5LFq0CMbGxpg3bx6q\nqqqwf/9+5OXlcddRIVK+Mcawbds2zJ07V+66KBJg/vz5uHLlCi5dugQ/Pz+IRCK+IxHSrerq6vD4\n8WMMHjyY7yi8oZaRsiMzMxNxcXHURVuOUMtIQgghhPCuvr4et2/fxpEjR3DixAmUlZXBw8MDW7Zs\nwfz582FsbMx3RCJhTp8+DYFAgOPHj/MdhfDE09MT169fx8SJE+Hl5YWLFy/C1NSU71iEdAuBQICq\nqiq5m7wGoAlsZFFoaCi0tbXh6enJdxTSTahlJCGEEEJ40dDQgOjoaKxZswaWlpYYPXo0oqOjsWHD\nBmRkZHDXUSFSvpWXl+P7779HTk5Oo+Xbtm2Dv78/XF1deUpGJMGgQYNw8+ZNiEQijBkzBhkZGXxH\nIqRbxMXFQUNDA3369OE7Srejbtqy58KFCxg/fjxUVVX5jkK6CRUjCSGEENKt4uLi8NFHH8HGxgaj\nR4/GjRs38I9//AMpKSkQCARYt24dzM3N+Y5JJMRvv/2GNWvWwNbWFqtXr0Z6ejrOnz+PuLg4fPbZ\nZ3zHIxLA3t4eUVFRUFVVxahRo5CUlMR3JEK63L179zBgwAAoK8tvZ0dqGSkbysrKcOPGDUyaNInv\nKKQbye9/LkIIIYR0mxcvXiAoKAhBQUFISEiAg4MDli5dirlz58LZ2ZnveESCpaWlQVlZGTU1Ndiz\nZw92794NGxsbeHl5yWX3RNI8U1NT/Pbbb5gwYQJGjx6N8PBw+t9CZNrjx4/Rv39/vmPwglpGypZr\n166htrYWEyZM4DsK6UbUMpIQQgghXaK4uBiBgYHw9fWFvb09/vOf/2D06NGIiopCYmIivvrqKyoW\nkNdKS0vjZtasra1FXV0d0tPTcf36dcycORMJCQk8JySSQl9fH1euXIGNjQ28vb3puUFkWnx8vNyf\nQ6llpGy4ePEihg8fDhMTE76jkG5ExUhCCCGEdJrq6mqcP38es2fPhqmpKZYtWwY1NTUEBwcjJycH\ne/fuxahRo+gDBGmz9PR01NXVNVpWW1sLxhjOnTsHFxcXzJo1i8YKJAD+LEiGhYXB3t4ePj4+eP78\nOd+RCOl0hYWFKCgoQN++ffmOwguawEZ2MMZw5coVvP3223xHId2MipGEEEII6ZBXJ6KZNm0asrKy\nsGvXLuTl5eH8+fOYNWsWevTowXdUIoWSk5NRX1/f7HXiouSpU6dw8+bNbk5GJJW2tjYuX74MS0tL\neHl5ISUlhe9IhHQqgUAAAHLbMpK6acuOu3fvIisri4qRcojGjCSEEELIGxEIBAgJCUFgYCBSUlLg\n7OyMTz75BIsWLaIJaEineV0hSUFBAV9++SXmzJnTTYmINNDR0cG1a9fg7e0NX19fREZGwsLCgu9Y\nhHSKhIQE6OjoyP1zmlpGSr+LFy/C2tpabsc/lWdUjCSEEEJIm2VmZuLUqVMIDAzEvXv3YG1tjenT\np2PJkiUYOHAg3/GIjKmvr0deXl6L1ysoKGDjxo345z//2Y2piLTQ09PD5cuX8dZbb8HX1xfR0dHQ\n19fnOxYhHZaQkIA+ffrIbTGOWkbKjgsXLmDSpEly+1yWZ9RNmxBCCCGtKikpQWBgICZPngxbW1ts\n3LgRLi4uCAsLQ2pqKnbu3EmFSNIlcnJyWuyiDQCbNm2iQiRplYmJCcLCwlBWVoYpU6agqqqK70iE\ndNizZ8/Qu3dvvmPwjgpY0i07Oxv37t2jLtpyioqRhBBCCGlCPBHNokWLYGFhgYCAAADA8ePHkZub\ni8DAQPj4+NAHAdKl0tLSWrzu66+/xhdffNGNaYi0srS0xOXLlxEfH4/Zs2e3WuAmRBokJSWhV69e\nfMfgDU1gIxsuX74MNTU1eHp68h2F8ICKkYQQQgjhxMXFYc2aNbC2tsa0adOQnJyMrVu3IjMzk5uI\nRkVFhe+YRE6kpaU1+2Fz8+bN+Pzzz3lIRKSVs7MzLl26hIiICKxcuZLvOIS8sYaGBrx48QL29vZ8\nR+ENddOWDVeuXMHYsWOhoaHBdxTCAxozkhBCCJFzCQkJCA4OxtGjR5GUlARnZ2d88MEHWLx4MXr2\n7Ml3PCLH0tPT0aNHD9TU1HDLtmzZgg0bNvCYikirYcOG4ciRI5g1axb69OmDf/zjH3xHIqTdMjMz\nUV1dLdctI8WoZaT0qq+vR0REBPVwkGNUjCSEEELkUFZWFkJCQhASEoKbN2/C0tISM2bMwOLFizF4\n8GC+4xEC4M9i5Mu2bt2Kzz77jKc0RBb4+/tjy5Yt+Pjjj9G7d2/4+fnxHYmQdklKSgIAahlJpNrv\nv/+OoqIijB8/nu8ohCdUjCSEEELkRGVlJS5cuIDAwEBcuXIFmpqamDJlCtatW4eJEydCSUmJ74iE\nNJKamsq1ivz222/x4Ycf8pyIyIL169fjyZMnWLBgAX7//Xc4OjryHYmQNktOToaGhgZMTU35jsI7\nahkpva5evQpra2v07duX7yiEJ1SMJIQQQmRYXV0drly5gqCgIPzyyy9oaGiAn58fTpw4gbfffhtq\namp8RyQSqKKiAtXV1QAAkUiE+vp6MMZQXFzcaL3i4uJWW6g0d5vmqKurN/tcfPToEQBgxYoV8PDw\nQFxcXLO30dbWhrLyn29r9fX1X7s9Qvbv34+xY8di6tSpiImJgY6ODt+RCGmTtLQ02NnZyXUhjiaw\nkX5Xr16llulyjoqRhBBCiAx68OABDh8+jOPHjyMvLw+jRo3Cd999h1mzZlGxRopVVFRAJBKhpKSE\n+11WVoaamhoUFxejuroaFRUVKC0tRU1NDUpKSlBVVYXKykqIRCJUV1ejtLSUKzbW19dDJBIBAHdb\nSbR7927s3r27XbdRUlLiCkyqqqrcAPn6+vpQUVGBpqYmtLS0oKqqCl1dXaipqUFdXR06OjpQUVGB\njo4OV/DU1dWFhoYGdHR0oKurCx0dHXodSTl1dXWEhoZi6NChWLx4Mc6cOUOFDSIV0tPTYWVlxXcM\nXlE3belWVFSEu3fv4tNPP+U7CuERFSMJIYQQGVFUVIRTp05h7969uHfvHmxsbPDuu+/i/fffp4Hu\nJUR9fT0KCwub/BQVFaG4uLhJoVEkEkEoFHJ/19bWNnu/ioqK0NXV5Ypu2traUFFRaVRks7S0bLIM\n+KslobKyMrS1tQGg0fVaWlro0aMHAEBPT69RwUZDQwOqqqqt7vPLt29JSUkJGhoaWl1HKBQ2ulxe\nXs514RbfvqGhASUlJQCAmpoalJeXA/irpaf4+pcLtLW1tUhOTm60rKamBiKRCJWVlaiqqmoxk7gw\nKf4t/ltXVxd6enrc34aGhjAyMoKRkREMDQ1haGhIs4dKAEtLS5w+fRpvvfUWduzYgXXr1vEdiZDX\nyszMlPtipBh9gSCdrl27BgUFBXh7e/MdhfCIipGEEEKIFKuursa1a9dw5MgRnD17FhoaGpgyZQq2\nb98Ob29veqPexWpra5GXl4fs7Gzk5OQgJycHubm5zRYcCwoKmhTUgD+LdYaGhlzxSlzQMjc3b1LU\nernwJf79chdlaaWrq/vadfhsiSgSiVBRUdGoUCwUCpstHpeUlCA5ORnFxcUoKSlBcXExCgsLmxRb\n1dXVucKkoaEhjI2NG102MzODhYUFTExMYGlpCS0tLZ72XrZ5eHhg27Zt+PjjjzFo0CCMGzeO70iE\ntCojIwPu7u58x+AVtYyUblevXoWHh0ebzv1Edkn3O1dCCCFETsXFxSEwMBDHjh1DUVERvLy88NNP\nP2HGjBnQ1NTkO57Uq62tRWZmJtLT05GVlcUVGrOzs5Gbm4vMzEzk5eUhLy+v0YcibW1tmJubNyoq\nOTk5NdsyTvzzupaFhH/iVo9mZmZvfB9FRUUoKChotlBdWFiI/Px8CAQC7nJubm6jAqampiYsLCxg\namoKc3NzmJubw9TUlCtY2tjYwNramj7cvYG1a9fi3r17WLhwIeLi4qjVGZFomZmZsLS05DuGRKAv\nXKUPYwzXrl3DBx98wHcUwjMqRhJCCCFSIiMjA0FBQThw4ACePXsGZ2dnfPzxx1i8eHGHiiTyqLKy\nEtnZ2UhOTkZycjKysrIaXU5LS0NdXR23vr6+PszNzWFhYQFzc3M4OTlxf4t/W1lZUSGItMjAwAAG\nBgbtuo1QKOSem1lZWRAKhdzf8fHxCA8PR2ZmJtc1Hfizi72FhQXs7e1hb2/PPUfFl21sbKS+JW1X\n2L17N4YNG4aZM2ciMjISKioqfEcipIny8nIUFxfLfcGcJrCRXo8fP0ZWVhbGjx/PdxTCM3onQggh\nhEiwyspKXLhwAfv27UNERAT09fUxc+ZMHDx4EKNGjeI7nsRijCEzMxPPnj3D8+fPud/Pnz9HSkoK\nysrKuHWNjIy4VmXOzs6YMGECd9nGxgampqZQUlLicW+IvNLX14e+vj5cXFxaXU8kEiE9PR2pqalI\nT09Heno60tLS8PTpU1y7dg2ZmZnceKPKysqwsLCAg4MD9+Po6AhHR0f06tWr2VnN5YGWlhY3oc1H\nH32EXbt28R2JkCZycnIAQO6/gKRu2tIrPDwcBgYGGDx4MN9RCM+oGEkIIYRImIaGBty6dQtHjhzB\nsWPHUFtbC19fXwQHB2PatGmvnQxEngiFQjx58gR//PFHo4Ljs2fPUFlZCeDPrtOOjo5wcHDAlClT\n0LNnT1hbW8Pa2hp2dnbcRC2ESCsdHR24uLi0WLRsaGhAdnY2UlNTkZaWhrS0NO51cunSJWRmZoIx\nBgUFBVhbW3MFSvFvV1dX9OzZE4qKit28Z93LyckJhw8fhr+/P4YMGYLFixfzHYmQRvLz8wEAxsbG\nPCeRDNQyUvpERETAy8tL5s8n5PWoGEkIIYRIiKdPn+LEiRM4fPgwXrx4ATc3N2zevBkLFiyAkZER\n3/F4VVNTg2fPniE+Ph4CgQBxcXGIj49HSkoKGGNQVVWFpaUlnJ2d4efnh5UrV3LdUnv27EkfWIhc\nU1RUhKWlJSwtLTFixIgm19fU1CAjIwPJyckQCASIj49HUlISwsLC8OLFCzQ0NEBFRQUODg5wc3OD\ni4sLnJ2d4eLiInOvr2nTpmHt2rVYsWIF+vfvj0GDBvEdiRBOQUEBAMj9ewJqGSmd6urqEB0dje3b\nt/MdhUgAKkYSQgghPBIKhQgJCUFgYCBu3rwJS0tLvPPOO1i6dCmcnJz4jseLoqIi3LlzB7GxsXjw\n4AEePXqE5ORkNDQ0QFVVFc7OznB1dUVAQAD69esHFxcX2Nra8h2bEKmloqLCFe99fHwaXVdaWor4\n+Hg8fvwYT548wZMnT3Dt2jXk5uYC+HMszH79+qFfv34YOnQo3N3d0bt3b6kuUG7fvh1xcXGYM2cO\n7ty5Q2PBEolRUFAAdXV1aGho8B1FIkjz/xl5FBMTA5FIBG9vb76jEAlAxUhCCCGkm9XX1+P69evY\nt28ffvnlFygpKWHSpEk4d+4cJk6cKFfjE1ZVVeH+/fuIjY3lCpDPnj0DANjZ2WHIkCFYsGABXF1d\n0a9fPzg4OMjV8SGEb9ra2hg2bBiGDRvWaHlBQQEePXoEgUCAJ0+eIDY2Fvv370d1dTV0dXW5wqT4\nx9zcnKc9aD9lZWUcP34cbm5uWLp0KU6dOkVFDyIRCgoKqIs2aAIbaRUREQEbGxs4OjryHYVIACpG\nEkIIId1EIBDgyJEjOHToEAoKCuDh4YFdu3Zh3rx50NbW5jtetygtLcVvv/2GX3/9FVFRUXj48CFq\na2thaGiIoUOHYt68eVwRw8TEhO+4hJAWGBkZwcvLC15eXtyympoaPHz4ELGxsYiNjUVoaCi2bduG\nhoYGWFlZYcSIEdxtJP3DqLm5OU6cOAFvb2989913WLt2Ld+RCEFhYaHcd9EGqJu2tIqIiGjS+p7I\nLypGEkIIIV0oOzsbR48exc8//4z4+Hj07t0ba9aswcKFC2Ftbc13vC5XWVmJ27dv49dff8Wvv/6K\nO3fuoL6+Hq6urvD09MTatWvh7u4OBwcHvqMSQjpIRUUFQ4cOxdChQ7Fy5UoAQElJCe7evYvY2FhE\nR0fj448/RllZGaytrbnCpJeXF6ysrHhO39SYMWPw1VdfYd26dXB3d8fIkSP5jkTkXHFxMfT09PiO\nITGoZaT0KC8vR2xsLJYvX853FCIhqBhJCCGEdLKamhqcP38eP//8M65cuQItLS3MmzcPBw4cwPDh\nw/mO1+VycnIQGhqKM2fOIDo6GlVVVXB0dISXlxfWrFkDT09PavVIiJzQ1dWFt7c3N0ZYbW0tYmNj\nuS8oAgICUF1dDScnJ0yePBkzZ87EsGHDJKbIsH79evz++++YN28e7t27R63SCK9KS0vlpidFa6hl\npPSJjIxETU0NPD09+Y5CJAQVIwkhhJBO8mo3bC8vLxw4cAAzZ86U+cHmMzMzcfr0aZw+fRrR0dHQ\n0NDAxIkTsWfPHnh5eclFK1BCyOv16NEDI0eOxMiRI/HFF1+gsrISN2/eRHh4OM6cOYNvv/0WVlZW\nmDFjBmbMmIGRI0dCUVGRt7wKCgo4dOgQBg8ejMWLF+P8+fO85iHyraysDFpaWnzHkBiS8qUFeb2I\niAi4uLhI1fjBpGvRmZQQQgjpAKFQiH379sHNzQ2urq4IDQ3FihUrkJSUhLCwMCxatEhmC5EikQh7\n9+7FyJEjYWNjgy+++AJWVlY4deoU8vLyEBwcjMWLF1MhkhDSInV1dfj4+GDbtm1ITEzEw4cPsXTp\nUoSFhWHMmDGwsrLCmjVr8OTJE94y6uvrIzg4GOHh4dixYwdvOQihYuSfaAIb6fPrr7/SLNqkESpG\nEkIIIe1UX1+P8PBwzJ49G2ZmZvjkk0/g4uKCsLAwPH36FBs3boSdnR3fMbtMfHw83n//fVhaWmLt\n2rWwt7fH2bNnkZeXh6CgIEyfPh3q6up8xyQvUVBQ4H460507dxp1uaqqqsLnn3+OXr16QVlZuUu2\nSZoe947y9PTEnTt3Ou3+OqJ///7YtGkTBAIB4uPjsWLFCly+fBn9+vXDiBEjcPz4cdTV1XV7Lnd3\nd/zrX//C559/joiIiG7fPiHAn920qRhJ3bSlTVFRER4+fNhowjNCqBhJCCGEtFFCQgLWr18PS0tL\njB8/HllZWdi1axcyMzMRGBgIHx8fmS68xMXFYdq0aejXrx+io6OxdetWZGZm4siRI5g8eTJUVVX5\njkha0BUf3H766SeMGzcOa9as4ZZ9+eVE0UqqAAAgAElEQVSX2LJlC5YuXQqRSISrV692+nblXXPH\nffTo0Rg9evQb3+fq1avh6+uL/fv3d0bETtO3b1988cUX+OOPPxAREQErKyssXLgQTk5O2L17N2pr\na7s1z9q1azF16lQsWLAAOTk53bptQgBqGfkqWX7PJUuioqIAgCYBI41QMZIQQghpRUlJCfbt24dR\no0bB2dkZQUFBePfdd5GYmIjo6GgEBATI/AeDjIwMvPPOO3B3d0dOTg7OnDkDgUCAv//979DX1+c7\nXreiln5/unz5MgICArBnzx5MmzaNWx4cHAwAWLFiBTQ0NDBu3DhqwdKJWjruDQ0NaGhoeOP7nT59\nOn788UcsW7YMly9f7oyonUpBQQFeXl44efIkEhMTMXHiRKxduxaurq44d+5ct+Y4cOAANDU1MX/+\nfNTX13fbtgkB/mx9rqamxncM3tF5RbpERkaiX79+MDQ05DsKkSBUjCSEEEJe0dDQgPDwcCxatAgW\nFhZYs2YNLCwsEBYWhrS0NGzbtg29evXiO2a3OHr0KPr164eYmBgEBwfj9u3bmDp1Kk3gIMdqamqw\nbNkyjBgxAnPmzGl0XXp6OgDAwMCAj2gyrbXjfvPmTdy8ebND979gwQIMGzYMy5cv7/YWh+1hb2+P\nH374AU+fPoWbmxumTZuG+fPno6ioqFu2r6enh+DgYNy6dQubN2/ulm0SIlZXVwdlZZqDVoy+HJQO\nkZGRGDNmDN8xiIShTxKEEELI/0lMTMTGjRvRq1cv+Pr6Ij4+Hv/973+Rl5eHkydPynw37JfV19dj\n9erVWLRoEWbPno2HDx9i5syZcrP/pGWnT59Geno65s+f3+S6jrTOI61r7bh3lvnz5yMtLQ2nT5/u\nsm10Fjs7Oxw7dgxXr15FVFQUhgwZgj/++KNbtj1kyBB88803+Prrr7nuh4R0BypG/okmsJEepaWl\nePDgARUjSRNUjCSEECLXRCIRAgMD4evriz59+uCnn37CnDlzkJiYiLt37yIgIADa2tp8x+x277//\nPn766SeEhIRg79690NTU5DtSmwkEAkycOBFaWlrQ0dHB+PHjER8f3+IkLnl5eVixYgWsrKygoqIC\nS0tLBAQENBkT7uXbie/nvffea7JMQUEBWVlZmDFjBrS1tWFoaIjFixejpKQEL168wJQpU6CjowMz\nMzO8++67KC4ubrIP4eHhmDJlCvT19aGmpobBgwfjxIkTTdYrKSnhJhFSU1ODoaEhRowYgY8//hix\nsbGtHqchQ4Y0yjx37tw2HV9xt9ghQ4a89visX7++XTnbsz85OTlYtmwZ97hZWVlh+fLlyM3NbZKr\nuce9LcuTkpLg7+8PfX39JutWVVVh27ZtGDRoEDQ1NaGmpoY+ffpg+fLliImJaXSfbX2Otaa1497S\n8AFtPUZiQ4cObbQtaeDr64t79+7BxMQEY8aMwYsXL7plu6tWrcKkSZMwf/58FBYWdss2CaFi5J+o\nm7b0iI6ORn19fYfGNSYyihFCCCFypr6+nkVFRbGAgACmpaXFVFVV2axZs9i5c+dYbW0t3/F499NP\nPzElJSV26dIlvqO02/Pnz5menh6zsLBgERERrLS0lEVHR7ORI0cyAOzVtz45OTnM1taWmZqasqtX\nr7LS0lIWGRnJbG1tWc+ePZlQKGy0fnP30dz177zzDouPj2fFxcVs5cqVDAB7++232fTp07nlK1as\nYADY+++/3+z9TJs2jeXn57PU1FTm6+vLALArV640Wm/q1KkMAPvuu+9YWVkZq66uZk+fPmXTp09v\nkvPV7NnZ2czV1ZWtW7euzceXMcZ69+7NALCcnJwW9/9Vbc3Z1vWys7OZtbU19ziLRCIWHh7OzMzM\nmK2tbZNsLeV63XJfX1928+ZNVlFRwS5dusStKxKJ2JAhQ5i2tjbbv38/y8nJYaWlpez69eusb9++\nje6zvc+xlrT3uLf3GDHGWFZWFgPA+vTp06ZMkqSsrIwNHDiQDR48mNXV1XXLNouKipiNjQ3z9/fv\nlu3JqyVLljA/Pz++Y0gEAwMDtnv3br5j8O7y5csMABOJRHxHIa+xfv16qTynkC63iYqRhBBC5EZa\nWhrbtm0bs7e3ZwCYm5sb++6771hBQQHf0SRGTU0Ns7a2ZmvWrOE7yht55513GAB25MiRRssvXrzY\nbMFm2bJlDAA7cOBAo+VnzpxhANiGDRsaLW9rMfLGjRvcsszMzGaXp6enMwDM0tKy2ftJSUnhLick\nJDAAbPTo0Y3W09HRYQBYSEhIo+XibbaU/cWLF8zBwYFt2bKlxX1piZaWFgPAqqqqms3d3PFpa862\nrvf+++83+zj//PPPDABbtmxZm3K9bvn169ebXMcYYx9++CFXNH3VvXv3Gt1ne59jLWnvcW/vMWKM\nscrKSgaAaWtrtymTpHn69ClTUlJiJ0+e7LZt3rhxgykpKbF9+/Z12zblDRUj/6Kjo8P279/Pdwze\nib8comKk5BsxYkSz5xsi96gYSQghRLaVl5ezwMBA9tZbbzEFBQVmbm7OPvnkExYfH893NIkkLqQ8\nffqU7yhvxNTUlAFgmZmZjZYLhcJmCzYWFhYMAMvKymq0vKCggAFg/fr1a7S8rcXIlz8g1dfXt7pc\nQUHhtftVV1fHADBDQ8NGy5csWcLdt7W1Nfvb3/7GgoODWXV1dYvZnj59yqytrdmIESNeu93mKCoq\nMgCsoaGhxW28qq0527qeubl5s49zRkZGswXeNy1GlpeXN3sMbGxsGAD24sWLZq9/WXufYy1p73Fv\n7zFi7K/npJKSUpsySaJx48axJUuWdOs2169fz9TU1NijR4+6dbvygoqRf9HS0mryxYY8omKkdCgv\nL2cqKiosKCiI7yhE8myiMSMJIYTIpN9//x3Lly+HhYUF3nvvPRgYGOD8+fNIS0vDjh070LdvX74j\nSiTxWHLm5uY8J3kzBQUFAAAjI6NGy/X09JpdPy8vDwBgYWHRaOw98e2TkpLeKMfL44y+PPN4c8vZ\nK2NfFRcXY8OGDejbty+0tbWhoKDAjRH26th0Bw8exOnTpzFjxgyUlZXhwIEDmDNnDhwdHfHgwYNm\ns3l6eqKwsBC3bt3CsWPH2r1vGhoaAP6c3bmt2pqzrevl5+cDaPo4iy+LH9eOEu/rq7KzswEAZmZm\nr72PznqOtfe4v8kxEt93S/stDSwsLNo1Fmdn+PrrrzFo0CDMnz8flZWV3bptQgiRVLdv30bN/2fv\nvuOjqPP/gb82vVfSE1JMCCXUUCJIEQiR3gSUohQBEQV/oiJ+bXeep1zxQFEk6t2JVCGSAwS5BA4p\nx0GI1BASEtJ7L6Qnn98fPHbMJpuQhc1Oyuv5eOwjyezszHs+s9nPzns+paaG40WSWkxGEhFRl1FU\nVITQ0FAMHjwYQUFB+OWXX7Bp0yakpaUhLCwMU6dO5cDvD+Dv7w8AiIqKkjmSh6NMtCiTkkpN/1Zy\ncnICABQWFkII0exx79699g1Yjfnz5+Pjjz/GggULkJKSIsXSkjlz5uDgwYPIz8/HmTNnEBISgtTU\nVCxbtkzt+p9//jm2bdsGAFi7di3S09M1is/NzQ0A1E6805q2xtmW9RwdHQG0fJ6VzyspJ3epra2V\nlpWUlGgUf2PK940yKdmWdR/1PaZpuWtaRsD9z9DG++pshBCIiopC7969dbpfAwMD7Nq1C6mpqdi0\naZNO901E1FGdOXMGPj4+8PDwkDsU6oCYjCQiok6toaEBkZGRmD9/PpydnfHGG2+gf//+iIiIQGxs\nLDZu3Kj2opvU8/b2xpNPPokPPvgAdXV1coejsUmTJgEATp48qbL8/PnzatefNWsWAOD06dPNnjt7\n9iwef/xxlWXKFmO1tbWoqKho1upMG5SxbtiwAXZ2dgCA6upqtesqFAopmainp4fRo0dj//79AIDY\n2Fi1r5k7dy6WLVuGmTNnori4GMuWLdNoZtLBgwcDAFJSUtr8mrbG2db1pk+fDqD5eY6MjFR5XknZ\ngrFx8vDKlSttjr+puXPnAgDCw8ObPfe///0PI0aMkP7W9D3WEk3LXdMyarztQYMGtWkfHc3evXtx\n69YtLF++XOf79vHxwddff43PPvsMR44c0fn+iYg6mvPnz+OJJ56QOwzqqGToG05ERPTI4uPjxfvv\nvy88PT2lyWh27NghysvL5Q6t07t69aowMzMTa9asUTs+XUeWmJjYbDbts2fPismTJ6sdVy8vL0/4\n+fkJFxcXceDAAZGfny9KS0vFkSNHhI+Pj8qEM0IIERQUJACIc+fOiX379olp06apPK9uH5ouDwkJ\nEQDEpk2bRFFRkSgoKJAmTGm6LgAREhIibt68KaqqqkR2drbYtGmTACBmzJjR6r5ycnKEg4NDixOx\ntGT37t0CgPjiiy80Os62xNnW9ZQzVDeeKfrkyZPCxcVF7UzRzz33nAAgXn75ZVFcXCxiY2PFokWL\nND5fSkVFRSIgIEBYWlqK0NBQaTbtn3/+Wfj5+YnIyEhpXU3fYy3RtNw1LSMhhPjss88EALFnz542\nxdSRXLhwQZibm4t169bJGseSJUuEg4ODyMrKkjWOroRjRv6GY0bexzEjO766ujphaWkpduzYIXco\n1DFxAhsiIuo8KisrxQ8//CAmTpwoFAqFcHV1FRs3bhR37tyRO7Qu58cffxTGxsZiwYIFoqysTO5w\nNHLz5k0xefJkYW5uLiwtLcW0adNEYmKiACD09PSarV9YWChee+014e3tLQwNDYWTk5OYPn26uHDh\nQrN1o6KixMCBA4WZmZkICgoScXFx0nPKhFDTxJCmy3NycsSSJUuEo6OjMDIyEgEBAWL//v1q1z13\n7px4/vnnhZeXlzA0NBTW1tZi4MCB4qOPPlKZfMXa2lrl9QcOHGi2fwAiKirqgeVbXV0t3N3dxRNP\nPKGyXN32NI2zresJcT/Ztnr1auHq6ioMDAyEq6urWLVqldokW15enli4cKFwcHAQ5ubmYvr06SI1\nNbVN56WlpGRZWZl45513hL+/vzAyMhL29vZi0qRJ4syZM83W1eQ91pK2lvvDlpEQ95Pt7u7uaidA\n6sjCwsKEmZmZmDFjhqitrZU1ltLSUuHj49PsRgU9PCYjf8Nk5H1MRnZ8ygkRObEXteB3CiE06JdD\nREQkg+joaOzcuRO7du1CeXk5Jk2ahOeeew6zZ8/mGJDt6PTp05g3bx6srKzw7bffYty4cXKH9NAy\nMzPh5uYGR0dHaZIeeng//fQTpk+fjr1792LBggVyh9NttGe57969G0uWLMGRI0cwdepUrW67vRQW\nFuK1117Dd999h5deeglbt27tEHXCf//7X4wZMwbffPMNli5dKnc4nd7y5cuRnZ2NY8eOyR2K7Cwt\nLbF161ZZhiLoSI4fP44pU6agtLRUZWI46ji++OILvP322ygsLIS+vr7c4VDH83uOGUlERB1SYWEh\nQkNDMWjQIAwdOhQRERF48803kZaWhiNHjmDevHkd4qKzKxs3bhxu3LiBfv364cknn8TcuXMRHx8v\nd1gPpFAokJCQoLLszJkzAO7PJE2PburUqfjqq6/w4osvqh03kdpHe5X7oUOH8NJLL2H79u2dIhFZ\nXV2Nv/71r/D19cWJEydw+PBhfPHFFx2mThg5ciTWrVuHV199FampqXKHQ0SkcxcuXEBQUBATkdQi\nJiOJiKjDaDoZzZtvvokRI0bg7NmzuHXrFiejkYGzszMOHz6Mn376CXFxcejbty8WLFiA6OhouUNr\n1dq1a3H37l3cu3cPJ0+exMaNG2FlZYUPPvhA7tC6jFWrVuHEiRPYsmWL3KF0K+1R7lu3bkVERARW\nr16ttW22h5KSEnzyySfw8vLCe++9hzVr1iAuLk7tZDxy+/jjj+Hu7o7ly5drNEEUEVFXcOHChTZP\n0EbdE5ORREQku/j4eHzwwQfw9vZGSEgIMjMzsW3bNmRkZGDHjh2cia8DmDJlCq5du4bdu3cjISEB\nQ4cOxciRI/HPf/4TlZWVcoenIjIyEhYWFhg5ciRsbGzw7LPPIigoCBcvXkTv3r3lDq9LGT58uNpZ\noql9abvcT58+jeHDh2tte9p2+fJlrFq1Cu7u7vjkk0/w/PPPIyEhAR999BGsrKzkDk8tY2NjfPfd\ndzhz5gxCQ0PlDoeISGdycnJw9+5djBw5Uu5QqAPrGH0ZiIio26msrMTRo0cRGhqKkydPwtXVFYsX\nL8bKlSvx2GOPyR0eqaGvr48FCxZgwYIFOHXqFHbs2IHVq1dj/fr1mD59OubOnYunnnoKpqamssY5\nYcIETJgwQdYYiOjR3LhxA2FhYTh48CBiYmIQEBCAjz/+GM8991yHTUA2FRgYiA0bNmDDhg2YMGEC\nfH195Q6JiKjdnT9/Hnp6ehgxYoTcoVAHxmQkERHpVHR0NEJDQ7F3717U1NQgODgY+/fv52Q0ncz4\n8eMxfvx45ObmYu/evQgLC8PTTz8NU1NTTJ06FXPnzsXUqVNhbm4ud6hE1ElER0cjLCwMYWFhiI+P\nh7u7O2bPno3Q0NBO28Lmgw8+wE8//YSlS5fizJkz0NNjxzQi6touXLiAfv36wdraWu5QqAPjVR8R\nEbW7nJwcfPfdd/j73/+OuLg4DBo0CB999BEWLVoEOzs7ucOjR+Do6Ij169dj/fr1yM7OxqFDh3Dw\n4EEsXLgQRkZGGDNmjJS4HDx4MAcyJyJJVlYWTp06hVOnTiEyMhKpqanw8vLC3LlzMXfuXAQFBUGh\nUMgd5iMxNjbGzp07MXz4cGzbtg3r1q2TOyQionZ14cKFTnsDiXSHyUgiImoX9fX1+Pnnn/Htt9/i\n6NGjMDc3x6JFi7B3714MHjxY7vCoHTg7O2PNmjVYs2YN8vPz8a9//QuRkZH49NNPsXHjRtja2mLs\n2LEYP348JkyYgL59+8odMhHpUFFREU6fPi0lIG/dugVDQ0OMGDECy5Ytw/Tp0xEYGCh3mFo3aNAg\nvP3229i0aRMmT54MPz8/uUMiImoX1dXViI6OxsqVK+UOhTo4JiOJiEir0tPTsXv3bnz11VdITk5G\nYGAgtm3bhkWLFrHLbjfSo0cPrFixAitWrIAQAjExMTh16hROnjyJd999F+vWrYOTkxNGjBiBYcOG\nYfjw4Rg2bBhsbW3lDp2ItKCurg4xMTG4dOmS9IiJiYEQAoMHD8bUqVPx17/+FaNHj+4WdcP//d//\nITw8HGvWrEFkZKTc4RARtYvr16+jqqoKQUFBcodCHRyTkURE9Miqq6tx+PBh7Ny5E8ePH4eDgwOe\nf/55vPDCCxywn6BQKBAQEICAgACsW7cO9fX1iI6OxtmzZ3Hx4kV88803ePfdd6FQKODn56eSnBw0\naJDsE+IQ0YMlJiYiKioKly5dQlRUFH799VdUVFTAwsICQ4YMwaRJk/DBBx9g7Nix3XJ4DkNDQ3z9\n9dcICgrCnj17sHDhQrlDIiLSukuXLsHa2potwOmBmIwkIqKHFhsbK40FWVBQgPHjx2Pv3r2YNWsW\nDA0N5Q6POih9fX0MHz4cw4cPl5YVFxfj8uXLOHfuHKKjo/GHP/wBeXl5AAAXFxcEBgaiX79+6Nu3\nLwIDA9G7d2+OP0kkg+LiYty8eRO3bt1CTEwMbt26hatXryI/Px/6+vrw9/dHYGAgnn76aQQGBmL4\n8OEwMjKSO+wOYdiwYVi5ciVee+01TJ48mS3BiajLiY6ORmBgICfrogdiMpKIiDRSVlaGQ4cO4fvv\nv0dkZCQ8PDywfPlyrFmzBp6ennKHR52UjY0NJk6ciIkTJ0rL7ty5g6tXr+LGjRuIiYlBWFgY/vzn\nP6OhoQEmJibo27cvAgICpCSln58fvL29mfgg0oLs7GzcuXMH8fHxiImJwY0bN3Dz5k1kZ2cDAOzs\n7NC/f3/069cPc+fOxYABAzB48GC2ZH6AzZs34/Dhw3jnnXfwxRdfyB0OEZFWXb58GZMnT5Y7DOoE\nmIwkIqI2iY6ORmhoKPbs2YPa2lrMmDEDERERmDBhQqef7ZQ6Jj8/P/j5+WHevHnSsoqKCty6dUtK\nUN64cQORkZHIzMwEcL/VpaenJ3x9feHr6yttw8/PD15eXkxUEjWSk5ODO3fu4M6dO0hISJB+JiQk\noKysDABgZmaGPn36oH///ggJCcGAAQMQEBAAV1dXmaPvnKytrbF582YsXboUS5Ys4bhqRNRlVFRU\nIDY2Fu+++67coVAnwGQkERG1qKioCAcOHMCXX36Ja9euoW/fvnjnnXewYsUK9OjRQ+7wqBsyMzPD\n0KFDMXToUJXlZWVlKomUhIQEXL9+HWFhYcjJyQHwW6LSy8sLPXv2hKenJ3r27ImePXvCw8MDnp6e\nMDExkeOwiLROCIGsrCykpKQgLS0NaWlpSE1NRXJyMlJTU5GYmCglHE1NTaUE/sSJE7FmzRrpb3d3\nd95w0rIlS5bgu+++w+rVqxEdHQ0DA16SEVHnd+XKFdTV1TX7jkakDms+IiJS0dDQgFOnTmHnzp04\nePAgDA0N8cwzz2Dbtm144okn5A6PSC1LS0sMGTIEQ4YMafZc00RlcnIy0tLScOnSJSQnJ6OiokJa\n19HRUUpO9uzZE15eXnB0dISbmxucnJzg6uoKKysrXR4aUTM1NTXIzc1FRkYGcnJykJWVhYyMDKSk\npCA1NRWpqalIT09HTU0NgPuJeBcXFykBHxISgscee4wJRxlt374d/fv3x5dffol169bJHQ4R0SOL\nioqCnZ0dvLy85A6FOgEmI4mICACQkZGBXbt2YceOHUhKSkJgYCC2bNmChQsXwsLCQu7wiB5aa4lK\nACgoKEBqairS0tKkVmNpaWm4ePEiDhw4gJycHNTX10vrm5qawtnZGS4uLnBycoKbmxscHR3h6uoK\nJycnODk5oUePHujRowcsLS11dZjUydXU1KCgoAAFBQXIz89HRkYGcnNzkZmZKSUcs7KykJOTg/z8\nfJXXWltbw93dHZ6envD390dwcDA8PDykVsBubm5sfdfB+Pn54Y033sA777yDuXPnws3NTe6QiIge\nSXR0NIYNG8abW9Qm/FZCRNSN1dTU4MSJE/j+++9x6NAhWFpaYt68eXj55ZfRv39/ucMj0gl7e3vY\n29tj8ODBap9vaGhAbm6u1BJNmSDKzs5GTk4Orl27Jj1XXl6u8lojIyNp+z169IC9vT0cHBykZY2X\nW1tbw8rKCtbW1jA3N9fFoVM7qKurQ0lJCUpKSlBcXIySkhLk5eUhPz9fSjY2fiifU3aZVjI0NISj\noyNcXFzg7OwMLy8vjBw5Umqp2/g5ThrTOb399tvYu3cvNmzYgH379skdDhHRI7l8+TLmzp0rdxjU\nSTAZSUTUDcXFxeEf//gH/vGPfyA/Px/jx4/Hnj17MHPmTE7wQdSEnp4enJ2d4ezsjAEDBrS6bkVF\nhdRyraXkU3x8vMpzVVVVzbajr68PKysr2NraSklKZaJS+buNjQ2sra1hamoKMzMzWFpawsjICNbW\n1jAxMYGpqSmsrKxgZGTEruWtqK6uRkVFBcrKylBTU4OSkhJUVVWhsrISpaWlqKmpQWlpKcrLy1Fa\nWio9GicblX+XlpaqdPtXUigUzZLPzs7O6Nevn9SKtvFz9vb2cHR0lKE0SJdMTU2xZcsWzJgxA6+8\n8gpGjRold0hERA+lrKwM8fHxCAwMlDsU6iSYjCQi6iYqKirwww8/4JtvvsH58+fh5eWFtWvXYtmy\nZfDw8JA7PKIuwczMDN7e3vD29m7za+7du4eCgoJmSa3S0lIUFRU1W5aRkaGSCKuqqsK9e/ceuJ+W\nEpRmZmYwNjYGAFhZWUFfXx8KhQI2NjYAAAMDA6m7uXIbjRkbG8PMzKzF/erp6cHa2rrF55WJv5bU\n19ejtLRUZVlDQwNKSkoA3G/hrTz+yspKKblbVlaGuro6APcn42q8bnl5OWpqalBcXNzifpWUx29h\nYdEsIezj4wNra2uVZcp1rK2tpYSxvb09u62RWtOmTUNwcDDWrVuHqKgo6OnpyR0SEZHGoqOj0dDQ\ngGHDhskdCnUSTEYSEXVxV69exddff43du3ejsrISs2bNwr///W9MmDCBFz1EHYC5ublWumWXl5ej\nurq6xZZ9FRUVqK6uRnFxMWpqaqQu5eXl5aitrQUAFBcXQwiBuro63L17F8BvLQeB+4lT5aQoSo2T\nfsD9RGFDQ4M0RuGDko0PSlYCvyVJG7OxsYFCoZBakQKqiVFnZ2eppbfy9YaGhrCwsIC5uTmMjIxg\na2srvUZdy1Jra2t+TlK7+/Of/4whQ4Zg7969WLRokdzhEBFpLDo6Gk5OTnB3d5c7FOokmIwkIuqC\nKisrcfToUYSGhiIyMhK9evXCpk2bsGzZMnb9I+qiLCwsYGFhAXt7e1nj+OMf/4itW7ciMzOzWQKR\niJobMGAAli5dik2bNmHOnDkcA5SIOp1r1661OPY2kTq81UtE1IVER0dj9erVcHJywpIlS2Bra4uI\niAjcvn0bGzduZCKSiNpdeHg4ZsyYwUQkkQY+/PBDFBYWYtu2bXKHQkSksWvXrj1wXG2ixpiMJCLq\n5EpLSxEaGorAwEAMHToUZ86cwf/93/8hPT0dP/zwAyZOnMixyohIJzIyMnD58mXMmjVL7lCIOhUX\nFxesW7cOH3/8sTTGKRFRZ1BbW4vbt28zGUkaYTKSiKiTUraCdHV1xfr16/HYY48hIiICt27dwsaN\nG9GjRw+5QySibiY8PBzm5uaYMGGC3KEQdTpvvvkmFAoFtmzZIncoRERtFhsbi5qaGiYjSSNMRhIR\ndSIlJSUIDQ3FoEGDMHToUJw7dw7vvvsuMjIy2AqSiGQXHh6OKVOmwMTERO5QiDodGxsbbNiwAZ9+\n+ilyc3PlDoeIqE2uX78OIyMj+Pv7yx0KdSJMRhIRdQKNW0G+/vrrGDBgACIiIhATE4ONGzfCzs5O\n7hCJqJsrLi7GmTNn2EWb6BGsX6X8hREAACAASURBVL8eFhYW+POf/yx3KEREbXLjxg306dMHRkZG\ncodCnQiTkUREHVRRURFCQ0PRv39/DB06FNHR0fjb3/6GzMxM7Ny5ExMnTpQ7RCIiyZEjRyCEwOTJ\nk+UOhajTMjc3x4YNG7B9+3bk5+fLHQ4R0QNdv36dXbRJY0xGEhF1IA0NDTh37hxWr14NNzc3vPHG\nGxg5ciR+/fVXXL58GatWrYKFhYXcYRIRNRMeHo7x48fDxsZG7lCIOrU1a9bA1NQUn3/+udyhEBE9\nEGfSpofBZCQRUQeQnZ2NzZs3o1evXhg9ejSio6OxZcsWZGZmYseOHRg8eLDcIRIRtaiyshInTpxg\nF20iLTA3N8crr7yCrVu3oqSkRO5wiIhalJ+fj6ysLCYjSWNMRhIRyaShoQGRkZGYP38+evbsiU8+\n+QQTJkzA1atXpVaQ5ubmcodJRPRAERERqKysxIwZM+QOhahLeOWVVyCEwI4dO+QOhYioRdeuXQMA\nDBw4UOZIqLNhMpKISMcyMzOxefNm+Pr6Ijg4GHfv3sW2bduQkZGBHTt2sDInok4nPDwcI0aMgKur\nq9yhEHUJtra2WLlyJbZt24a6ujq5wyEiUuv69etwcHCAk5OT3KFQJ8NkJBGRDjRuBenp6YnNmzcj\nODgYN27ckFpBmpmZyR0mEZHG6uvrcfToUXbRJtKyV155BVlZWQgLC5M7FCIitWJiYthFmx4Kk5FE\nRO0oIyMDmzdvho+PD0JCQlBUVIRvv/1WagUZEBAgd4hERI/k7NmzyMvLw8yZM+UOhahL8fT0xIwZ\nM7B161a5QyEiUuv27dvo3bu33GFQJ8RkJBGRltXX16u0gtyyZQueeeYZxMfHIyIiAs899xxMTU3l\nDpOISCvCw8PRt29f+Pv7yx0KUZezfv16XLhwAZcuXZI7FCKiZuLi4lj/00MxkDsAIqKuIiEhAbt2\n7cLf//53ZGRkYPz48di7dy9mzZoFQ0NDucMjImoXhw8fxrPPPit3GERd0pgxYzBw4EDs2LEDw4cP\nlzscIiJJYWEh8vPz2TKSHgpbRhIRPYKamhocOHAAwcHB6NWrF77++mssXLgQiYmJiIiIwLx585iI\nJKIu68qVK0hKSuJ4kUTtaMWKFdi/fz/KysrkDoWISHL79m0AYMtIeihMRhIRPYT4+Hi89dZbcHd3\nxzPPPAMA2L9/P1JSUvDJJ5/Ay8tL3gCJiHQgPDwcbm5uGDp0qNyhEHVZixYtQn19PX744Qe5QyEi\nkty+fRtmZmZwd3eXOxTqhJiMJCJqo+rqaqkVZO/evbF7924sX74cSUlJUitIAwOOfkFE3Ud4eDhm\nz54NhUIhdyhEXZadnR1mzpyJb7/9Vu5QiIgkcXFx6NWrF/T0mFYizfFdQ0T0ALGxsVIryMWLF8PE\nxAT79+9HcnIyPvnkE/Ts2VPuEImIdC45ORnXr19nF20iHVixYgUuXLiAuLg4uUMhIgJwPxnJ8SLp\nYTEZSUSkRlVVldQKsm/fvvjxxx/x+uuvIy0tDUeOHMG8efOgr68vd5hERLIJCwuDjY0NxowZI3co\nRF3ehAkT4OLiwq7aRNRh3L59m+NF0kNjMpKIqJGYmBi89dZbcHNzw5IlS2Bra4uIiAjExcVh48aN\ncHR0lDtEIqIOITw8HNOnT+ckXUQ6oKenh9mzZ+PAgQNyh0JEhNraWty9e5fJSHpoTEYSUbdXVlaG\nHTt2YOjQoQgICMCRI0fw7rvvIiMjAz/88AMmTpzI8dCIiBrJzc3FhQsX2EWbSIfmzZuHGzduIDY2\nVu5QiKibu3v3Lmpra9lNmx4ak5FE1G3dunUL69evh6urK1599VX4+PggIiICN2/exKuvvgp7e3u5\nQyQi6pAOHz4MIyMjhISEyB0KUbcxZswYuLi44ODBg3KHQkTd3O3bt6FQKODn5yd3KNRJMRlJRN1K\n47Eg+/XrhxMnTuCdd95Beno6W0ESEbVReHg4Jk2aBHNzc7lDIeo29PT0MG3aNBw/flzuUIiom0tM\nTISLiwssLCzkDoU6KSYjiahbUM6I3XQsyNjYWGzcuJGtIImI2qi8vBwnT55kF20iGYSEhODSpUso\nLCyUOxQi6saSkpLg7e0tdxjUiTEZSURdVnV1dbMZsd988022giQiegTHjh1DbW0tpk2bJncoRN1O\ncHAw9PT0EBkZKXcoRNSNJScnMxlJj4TJSCLqcuLi4qRWkIsXL242I3aPHj3kDpGIqNMKDw/H6NGj\n+VlKJAMrKysEBQXh559/ljsUIurGkpKS4OXlJXcY1IkxGUlEXULjVpB9+vRBWFgY3njjDaSlpbEV\nJBGRltTW1uL48ePsok0kowkTJuCXX36ROwwi6sZSUlKYjKRHwmQkEXVqd+7cwVtvvQV3d3c8++yz\nAIB//etfiI+Px8aNG+Ho6ChzhEREXcepU6dQXFyMGTNmyB0KUbc1cuRI3L17F1lZWXKHQkTdUF5e\nHsrLy5mMpEfCZCQRdTo1NTVSK0h/f3/s2rULK1asQFJSEiIiIjB9+nS2giQiagfh4eEYPHgwx4ki\nklFQUBD09fVx4cIFuUMhom4oKSkJAPhdgB4Jk5FE1GkkJCTgrbfegoeHB5555hkAwP79+5GSkoJP\nPvkEHh4eMkdIRNR1CSFw9OhRdtEmkpmlpSX69euH//73v3KHQkTdUHJyMvT19XntRY/EQO4AiIha\nU19fj//85z/YunUrfvrpJ7i4uGDZsmVYs2YNPD095Q6PiKjbuHjxItLT0zF79my5QyHq9oKCgnDp\n0iW5wyCibigpKQlubm4wNDSUOxTqxNgykog6pIyMDGzevBne3t4ICQlBVVWVSitIJiKJiNrP+fPn\n8eGHH+LatWvSsvDwcHh5eaF///4yRkZEABAQEIBbt27JHQYRdUPJycnsok2PjC0jiajDaGhowKlT\npxAaGooff/wRjo6OeO655/Diiy9ygGQiIh06ePAgtmzZgvfeew/u7u6YP38+Dh48iKefflru0IgI\nQL9+/VBQUICcnBw4OTnJHQ4RdSPJycm8NqNHxmQkEckuMzMT33//PbZv3460tDSMHz8ee/fuxaxZ\ns9j8n4hIBiYmJjA2NkZ1dTXS09Px+eefo7a2FqGhocjNzcWMGTMwZcoUmJubyx0qUbfUt29fAEBM\nTAyTkUSkU8nJyRgxYoTcYVAnx27aRCSLhoYGREZGYv78+fD09MTf/vY3PPPMM7hz5w4iIiIwb948\nJiKJiGRiYmKi8ndtbS0AoLy8HPv378f8+fPh4OCA7du3yxEeUbfn7OwMe3t7xMbGyh0KEXUz6enp\ncHd3lzsM6uTYMpKIdCorKws7d+7EV199heTkZIwaNQp79uxhK0giog7E1NS0xeeUicnKykrY2Njo\nKiQiasLLywspKSlyh0FE3ci9e/dQXl4OFxcXuUOhTo7JSCLSmBACCoWizes3HgsyPDwc5ubmmD9/\nPtatW4d+/fq1Y6RERPQwjI2NIYRo8XkDAwMsWrQIzz77rA6jIqLG3NzckJGRIXcYRNSNZGVlAbjf\nOpvoUbCbNhFpZN++fbCyssLly5cfuG5OTg42b94MPz8/BAcH4+7du9i2bRsyMzOxY8cOJiKJiDoo\nExMTNDQ0qH3OwMAA3t7e+PLLL3UcFRE15u7uzmQkEelUdnY2ACYj6dExGUlEbfaXv/wFCxcuxL17\n97B169YW1zt37hzmz58PDw8PfPzxx5g4cSKuX7+Oy5cvY9WqVa12/yMiIvmZmpq2mIzU09PDgQMH\nYGZmpuOoiKgxNzc3pKenyx0GEXUj2dnZUCgUcHR0lDsU6uSYjCSiBxJC4M0338Qbb7wBIQSEEPjh\nhx9QWFgorVNcXIzQ0FAEBARg9OjRzVpB9u/fX8YjICIiTbTWMnLHjh0YOHCgjiMioqYcHBxQUFAg\ndxhE1I1kZWWhR48eHOufHhnHjCSiVlVXV2Px4sX48ccfVZY3NDTgu+++w5gxYxAaGorvv/8ehoaG\neOaZZ7B7925eqBIRdWJNZ9MG7nfPnjNnDpYuXar7gIioGXNzc9y7d0/uMIioG8nJyeHkNaQVTEYS\nUYsKCwsxbdo0REVFNWshU1dXh/feew/l5eUICgrCl19+ifnz57PbHhFRF9B0OA0DAwO4u7vjm2++\nkSkiImrK3NwctbW1qK2tZSslItKJ7OxsjhdJWsFkJBGplZSUhODgYKSmpqKurk7tOuXl5QgNDcXK\nlSt1HB0REbWnpi0jFQoFDh06BEtLS5kiIqKmlDeA7927BxsbG5mjIaLugMlI0haOGUlEzVy+fBnD\nhg1DamoqamtrW1zP0NAQJ06c0GFkRESkC42TkQqFAl9++SUGDRokY0RE1JSyBXNFRYXMkRBRd5GV\nlcVu2qQVTEYSkYqIiAiMGTMGJSUlrSYiAaC2thbh4eHIzMzUUXRERKQLyiSHQqHAggUL8MILL8gc\nERE1VV9fD+D+MApERLqQnZ0NJycnucOgLoA1F3VaNTU1KoN2l5eXqyTPioqKmr2moqIC1dXVbd5H\ncXExhBBtXt/Q0BAWFhZtXt/c3BxGRkYqywwMDFS6wZmZmcHY2Fj629raGnp67XMf4ZtvvsHq1asB\noMVZVJtqaGjAP//5T7z99tvtEhMRUVdWWloqJRQA1bqrvr4epaWlzV5TVVWFysrKNu+jrq4OZWVl\nGsWVnZ0NAHBycsKzzz6LyMjIB77G0tKyWVJET08P1tbW0t9N6zhjY2OONUz0kJTfezleJBHpghAC\neXl5TEaSVjAZSRqrqKhAZWUlSkpKUFFRgaqqKhQXF0sXO0IIFBcXAwBKSkrQ0NAgJQorKytRVVUl\nJRIbX2gpL8AaX5jdu3cPNTU10r7VJRi7s9YSl8oLPOU6CoVCGk9ImdC0sLCAoaEhTE1NER0djSNH\njkjb1dfXR0NDA4QQrSYmjYyM2DKSiDqNsrIyVFdXo7S0VLpBVVRUpFJ3lZWVoa6uTqqzGifzlDep\nlPWTsj5raGhASUkJANV6rGnisGm91tFlZ2dj5syZOttf0xtwjROcynqtcYJTWZ8pX9f4pqCtra3K\nNkxMTGBqagp9fX1YWVlJ9aO5uTmMjY1hY2MjrUPUGSjH9GYykoh0oaysDLW1tbC3t5c7FOoCmIzs\n4pQXV8XFxSgtLW32KC4uxr1791BZWYnS0lLcu3cPVVVVKCkpUfm9cQKyLWxsbKBQKKQLAOVFQtME\nmYGBAXx8fAA0T5ABaHZRYGVlBX19fQCQLiaUTE1NVca4UteCsGkLjQfR9KJEeQHbFo0vXBurrq5W\nGfuncYvPxhfL6tZtvP/WEr/JyckAfrtgvnfvHoqKimBmZoaGhgbU19c/sIs2AOkC8F//+hdOnDgB\na2trmJmZwdTUVO3vZmZmsLKygq2tLaysrKSHtbW19DsREfBba76ioiKUlZWhrKwMpaWlKCsrQ0lJ\nCUpKSlBZWYmKigqUlpaiuroaZWVluHfvHqqrq1FcXCwlAktKSlBVVaXSmr41ylbrRkZGMDc3V6k7\nlPWQss4xMzOTWggok1+N67GmLeab1itNW8g3rucab7Oplpa3RF2rxdYo65C2aqn1ZdPlTeutpj0W\nmtajjXsoKGOqra1FeXk5gN9uUubm5qK2tlbafuM6T3ljVJPeETY2NjA2Noa5uTksLS1hbGwMKysr\n6fuMra2tdC6tra1hYmICS0tLWFtbw8bGBpaWltLDysqKk4tQu1D+r7CbNhHpgvI6VJPraaKWsObq\nBAoKClBYWNjsZ0lJiUpSUXlx1jjZ2FK3LENDQykJZGFhARMTE1hZWcHc3BwmJibw8fFplkgyMTGB\njY2NdAHW+Iu4ra2txom+rkjTWUY7+l0l5cWc8sKvrKwMVVVVKCsrQ3l5OaqqqqQktrqEdn5+vtRy\nVpk0KCkpabWFa+NEZeMkZeMkprW1Nezt7WFnZ4cePXpIv3OWV6KOo7i4GIWFhdKjqKgIhYWFKC0t\nbTXBqFze0oQMyrrG2toapqam0k0OY2NjWFpawtHRsVkrN2traxgbG8PCwgIWFhYwNjaWEkjK5/X0\n9KQbaXT/Bp+mLQQdHBzaKRrtUtZpypt1jVvLKhOexcXFqK6ubva8MqF59+5dKfGpfJ3yfdwSKysr\nlSRlS4lLOzs72NnZwdbWVvrdzs4O5ubmOiwl6gyKiopgbGyscjOeiKi9KOs43mAjbWAyUofq6uqQ\nl5eHvLw85OTktJhkVP5U/t50zEJjY2PY29urJGpsbGzg6empkrhRJm2UX3YbL+f4TNQW+vr6Uusb\nR0dHrW67aStdZSK9qKhI7fK7d+9KzymTHI3HWQPuJ9mViUl1Pxs/HBwcpAcRtaysrAzZ2dnIy8tr\nllhU97fy96bDO+jp6cHOzk66saBMvFhaWsLFxUWqr5ombJQ3IZR/MyFDj8rQ0FDjlqWaUCbVlYn2\nxi18Gy9TJuCzs7Nx584daVlRUZHapKaRkZHaRKW63+3t7eHk5AQHBwd2O+/CcnNztf79jIioJWwZ\nSdrEZOQjqq6uRkFBAYqKipCVlYXMzMwWf8/NzW2WPFG2MLS1tYWrqytcXFzw2GOPScvUPVxcXNhy\ngzo9bXTLrqysRFFRUbNH4/+/3NxcxMXFSc+p+z9U/l81/j9U97uHhwfHZaJOr6qqSkoaNv5fUfd3\nenp6swlUGtdbykePHj3g5+fXat3l5OSk0v2YqKtSJtYfVUt1XOP/1YKCAiQkJEjLCwoKmo1Jqu67\nZtPflX+7u7s3m1iPOq68vDzeVCUinWHLSNImJiNbkZubi4yMDKSnpyM9PR0ZGRlIS0tDeno6MjMz\nkZWV1ezOtbm5OZydnaW70W5ubhgyZAgcHBzg4uICR0dH6dGed+WJugNlN0JXV9c2v6a+vh4FBQXI\nzc1Fbm4usrKypNbKytZf//3vf6XfG48vplAo4ODgACcnJ/Ts2VO6cPPw8JCSle7u7hz7kmRRWVmJ\njIwMZGVlIS0tDdnZ2UhLS0NWVpa0PCcnRxprT8nU1BQODg5wdnaWWgv37dtXqsd69OgBZ2dnODo6\nws7Ojq2siHTkYeo44H7Pg4KCAuTk5CAvLw/5+fnIzs5Gbm4u8vPzkZOTg+vXr0u9dZqOEW1nZwcn\nJye4uLjAzc0Nbm5uUn3n7OwMDw8PODk58eZcB5Cbm8tkJBHpTHFxsTT5KdGj6rbJyJKSEty9excp\nKSlITU1FRkYGMjIykJqaiszMTKSnp6skIezs7ODq6gpPT0889thjGDNmDFxcXODk5ARHR0c4OTnB\n2dmZ3Z+JOjh9fX3phkBbFBUVIScnB7m5uVLCMicnB2lpaUhMTMTZs2eRmpqqMr6dpaUlPDw8pIu4\nnj17ws3NDe7u7vD29oa3tzfHdyKNlJSUIDk5GSkpKUhPT0dWVpbKT2VrRiUDAwM4OTnBw8MDzs7O\nGDx4MCZPnqyScFTWX+z2TNS1KHseeHt7t2l9ZT2Xn5+PvLw8KXGZkZGBzMxMXL9+Xar7lBQKBZyc\nnODq6irVdS4uLnB3d4ebmxs8PT3h5eXFuq6dZWZmwtnZWe4wiKibKCkpYatI0poum4ysra1FWloa\n7t69Kz2UrRmVfyspu2i6urqiT58+GD9+vNR1xdXVFb6+vhwXgaibUnZf6927d6vrVVZWSp8vys8a\n5c+ffvoJmZmZyM7OlsaAtbW1hY+Pj9qHp6cnu7N2M1VVVcjMzFSps5rWXUomJiYqddS0adOk35U/\ne/bsydlViahNlPXcg9TU1CA/P1+lflP+TE9PR1RUFBITE6UxxZTbbly/KT+jfHx84O/vrzLTPGku\nPj4eo0ePljsMIuomiouLmRchrenUVyr19fVISkrCrVu3cPv2bcTFxSExMRFJSUnIyMiQxoWzsbGB\nt7c3fHx8MGjQIMyZM0f629PTE8bGxjIfCRF1dqamptLFVkvKysqQlJSEu3fvqvw8fPgwkpKSUFVV\nBeD+JFWenp7S9vr06YM+ffqgd+/ecHNz09UhkZbl5uZKdVV8fDwSExORnJyM5ORklVaNTk5O8PLy\ngqenJyZMmCD97uXlBW9vb3aNISJZGBkZwdXVFa6urggMDGxxvaKiIumzLSUlBUlJSUhOTsbx48eR\nkpKiMsSRi4sLvLy84OXlBV9fX/Tu3Ru9evWCv78/LC0tdXFYnVZ1dTVSU1PRq1cvuUMhom6CLSNJ\nmzpFMrK6uhq3b9/G7du3ERsbi9jYWOmCTtmVumfPnvD390efPn0wZcoU+Pj4SN0h7ezsZD4CIqL7\n3bcHDBiAAQMGqH0+MzOzWbLy2rVr2LdvHwoLCwHcnxihd+/e6Nu3L3r37i0lKr29vdmasgOorq7G\nnTt3pISjsq6Ki4uTWgtZWlqiV69e8PX1RXBwsHQh7unpyWQjEXV6ypaWgwcPVvt8S8nKgwcPIjEx\nUZqAx9XVFf7+/tJDmahk74H7EhISUF9fD39/f7lDIaJuoqSkhC0jSWs6XDIyMzMTv/76q/S4efMm\nkpOTUV9fDwMDA/j4+KBv376YMmUKNmzYgL59+/LuKRF1CcoWJ6NGjWr2XF5eHmJiYlRuykRGRiIt\nLQ3A/daU/v7+6N+/P4YMGYIhQ4Zg8ODB/MLQThoaGnD37l1cuXIF165dw9WrVxEbG4uUlBTU19dD\nT08Pnp6e8Pf3R1BQEJ5//nnpgpqtW4moO2stWVlXV4fk5GTExcXh9u3biI+PR2xsLA4dOiSNWWls\nbAw/Pz/069cPgwYNwqBBgzBw4EC4uLjo+lBkFR8fDz09Pfj6+sodChF1E+ymTdokazIyJSVFJfH4\n66+/Ijs7GwDg4+ODwMBALF26VGr94+fnByMjIzlDJiKShYODA8aNG4dx48apLC8rK1NJUF69ehWb\nN29Gbm4uFAoFfH19peSk8sHW4pqpqqrCzZs3ceXKFVy9ehXXrl3D9evXUVZWBn19ffj7+2PgwIFY\nsWKF1L2wV69eHAKEiEhDBgYG8PX1ha+vL6ZOnaryXHFxMeLj46VE5c2bN7F9+3akpqYCuD/EhTI5\nqUxQ9urVq8u2ooyKikLv3r05eSYR6Ux5eTkcHBzkDoO6CJ0lI+vq6nD58mX88ssv+OWXX3Dp0iUU\nFBRAT08Pfn5+GDJkCDZs2CBdLHMsAiKiB7O0tMSwYcMwbNgwleXp6enSTZ7o6Ghs3boVmZmZAAAv\nLy8EBQVh3LhxGDt27AMn5+luEhIScP78eZw5cwYXL15EXFwc6urqYGFhgQEDBmDgwIF47rnnMGjQ\nIPTv35/dqomIdMDGxgbDhw/H8OHDVZYXFhbi6tWr0s2i48eP49NPP0VtbS3MzMwwYMAAPP744xgz\nZgxGjRrVZS6k//e//2HEiBFyh0FE3Uh1dTVvtpPWtFsysq6uDlFRUfjll19w+vRpnD9/HuXl5XB2\ndsbYsWPxzjvvIDAwEIMGDWIXayIiLXN3d4e7uztmzJghLcvOzpaSk+fPn8frr7+u8rk8duxYjBs3\nDn369JExct2qr6/HjRs3cPbsWZw7dw5nz55FVlYWTExMMHz4cEyfPh3vv/8+Bg4cCF9fX+jp6ckd\nMhERNWJnZ4fx48dj/Pjx0rKamhrcvHkTV69exa+//oqTJ09i69ataGhoQJ8+fTBq1CiMHj0aTzzx\nRKsTz3VU9fX1iIqKwoIFC+QOhYi6kdraWhgaGsodBnURWk1GJiYm4siRI/j555+l5KOLiwvGjRuH\nv/zlL2yBQ0QkI2dnZ0yZMgVTpkwB0LzF+saNG1FWVgYnJyeMGzcOU6dOxZQpU2Bvby9z5NoVFxeH\nY8eOISIiAufPn0dpaSlsbGwwatQorFu3DqNHj8bQoUN555eIqJMyMjKSelstX74cwP2JF86fPy/d\nePr+++9RXV0NV1dXjB07Fk899RSeeuopODo6yhz9g928eRPl5eUICgqSOxQi6kZqa2s5bB5pzSM3\n8bhx4wbefvtt9OvXD76+vvj9738PW1tbfPrpp4iLi0NmZib27NmD1atXMxHZSSgUCumhTVFRUXjy\nySe1uk1S1bSMq6qq8M477+Cxxx6DgYFBu5zXzkZXZfLkk08iKipK69vVJgMDAwQFBWHjxo04duwY\nCgsLcfHiRWzYsAFFRUVYuXIlnJycMHbsWGzZsgVZWVlyh/xQGhoacObMGaxbtw6PPfYYevfujQ8/\n/BCWlpb44x//iGvXrqGgoABHjx7FW2+9hVGjRjER2Yl0hDqrvWLQtvaMU9NtP2osrO8ejPWdKmtr\na0yZMgV//OMfcfbsWRQXF+Ps2bN4+eWXkZ+fj1WrVsHFxQXDhw/Hhx9+iNu3b8sdcovOnDkDa2tr\nBAQEyB0KEXUjNTU1bBlJWvNQycjc3Fz86U9/woABAzBgwADs2bMHISEhOHXqFHJzc7F3716sXLkS\nvXr10na8pANCCK1v85tvvsGkSZOwfv16rW/7YY0ePRqjR4+WOwytUVfG77//Pj766CMsX74cpaWl\nOHHihIwRdgy6KpN169YhODgYX3/9dbtsvz0YGBhg+PDheOONN3DixAnk5eVh37598PLywgcffAAP\nDw8EBwdj586dqKqqkjvcB7py5QrWr18PDw8PjB07Fv/5z3+wYMECnD17Fnl5edi/fz/Wrl2LAQMG\nsPt1J9YR6qz2iKE9tGecmm77UWJhfdc2rO9aZ2JigieeeAKbNm3Cv//9bxQUFODHH3/EkCFDsH37\ndvTp0wcDBw7ERx99hIyMDLnDVXH8+HFMmDChy07OQ0QdE7tpk1YJDVy+fFksXrxYGBsbCzs7O7Fm\nzRpx9uxZ0dDQoMlmug0AQsMi7jC0GfuxY8eEQqEQ+/bt08r2tGXkyJFi5MiRD/36jnR+WypjT09P\nAUAUFBTIFFnHo8sy2bVrl1AoFOLYsWPtvq/2VllZKcLCwsScOXOEkZGR6NGjh9i4caNIT0+XOzQV\nVVVV4ptvvhHDhg0TAETvJUHcOwAAIABJREFU3r3F+++/L2JiYuQOrcPrSJ9pmtJFnfWgfXSW8mvP\nODXd9sPEwvqu7VjfPbz6+npx+vRp8dJLLwkHBwehr68vZsyYIY4fPy53aKKyslKYmZmJr7/+Wu5Q\ndGbZsmVi8uTJcofRIVhYWIhvv/1W7jBkd+zYMQFAlJaWyh1Kt9KnTx/xwQcfyB0GdQ2/Uwjx4FvT\nt27dwjvvvIPw8HAMGjQIa9euxcKFCzmD6AMou8K0oYg7HG3FXlNTA19fX/Ts2RPnzp3TRmgdRkc5\nv62Vsb6+PhoaGmSPsSPRdZk8/vjjyMzMREJCQpe5k5idnY3Q0FDs2LEDRUVFWLNmDTZt2oQePXrI\nFlN1dTW+/vprbN68GXl5eXj66aexatUqjBkzRraYOpuO8pn2MHRRZz1oH52l/NozTk23ren6rO80\nw/pOO2pqanDo0CHs2LEDp0+fRmBgIN577z1Mnz5dlnhOnDiBp556CikpKejZs6csMeja8uXLkZ2d\njWPHjskdiuwsLS2xdetWaSzU7ur48eOYMmUKSktLORmuDvn6+mLFihXYtGmT3KFQ5/f7Vvul1dbW\nYvPmzRg8eDDi4+Oxf/9+REdHY8WKFUxEUpuEhYUhLS0NCxculDuULqu1Mm5oaJAhoo5N12WycOFC\npKamIiwsTKf7bU/Ozs547733kJSUhC1btmDfvn3w8/NDaGioLPGcO3cOgwcPxoYNGzBlyhQkJiZi\n165dTESSxlhndWys7zTD+k47jIyMsGDBApw6dQpXr16Ft7c3Zs6ciXHjxiE+Pl7n8Rw7dgwBAQHd\nJhFJRB0Hu2mTNrWYjCwoKMATTzyBP/zhD/j0009x/fp1zJs3r8sNBh4TE4MpU6bAwsICVlZWCAkJ\nwa1bt1ocWD03Nxdr1qyBu7s7jIyM4ObmhlWrViE7O1tlvcavU27nhRdeaLZMoVAgMzMTc+fOhaWl\nJezt7fH888+jpKQEycnJmDFjBqysrODs7IylS5eiuLi42TFERkZixowZsLW1hYmJCYYMGYJ9+/Y1\nW6+kpAT/7//9P/j4+MDExAT29vYYOXIkXn/9dVy6dKnVcho6dKhKzM8880ybyvfw4cPS65uWj/KR\nmJiIOXPmwNbWtlmZt7W8Ac3OZUvnt61l9KDzq0nsbS2Lhynjpvt46623NNqnJuXf1nU1KWN1ZdCW\n5S0dU2tloskxaHLOhg0bpnKeuhIjIyOsWrUKcXFxWLRoEV588UWsWrUK9fX1Oovhd7/7HcaMGQNf\nX18kJCRgx44dcHNz09n+dY11lnx1Vmvl01haWhpmzpwJS0tLODk5YfHixSgoKGi2PW1+Bj9MWbUl\nTuB+S+jVq1dLMbi7u+PFF19ETk5OKyWpqvH71traGrNnz0ZqamqbX6/E+q75ctZ3ujVgwAD88MMP\nOHfuHPLz8zFkyBAcPXpUZ/tvaGhAWFgY5syZo7N9EhEpMRlJWqWu83ZFRYXo37+/8PLyEnFxce3d\nV1w2CQkJwsbGRri6uoqTJ0+KsrIyce7cOTFq1Ci14xhlZ2cLT09P4eTkJE6cOCHKysrEmTNnhKen\np/D29hZFRUUq66vbhrrnFy9eLG7duiWKi4vF2rVrBQAxdepUMXv2bGn5mjVrBACxcuVKtduZNWuW\nyMvLEykpKSI4OFgAED///LPKejNnzhQAxJYtW0R5ebmorq4Wt2/fFrNnz24WZ9PYs7KyREBAgNi4\ncWOby1cIIfz9/QUAkZ2d3eLxBwcHi/Pnz4uKigpp/A8hNCtvTc+lumN81DJq7GHfKy2VxaOWsTra\nLH9N1tVGGT9oeWvl2NJr2+ucZWZmSmMXdnVHjhwRpqamYvny5TrZ35tvvikMDAxEaGioTvYnN9ZZ\nHaPOelD5LFq0SCqHl19+WQAQS5cubXF9bXwGP0xZtSXOrKws4eHhIb3nSktLRWRkpHB2dhaenp7N\nykldGal73/7yyy8iJCRE4zEjWd+1/Zhaey3rO+2orq4WK1euFAYGBiI8PFwn+4yMjBQAut04yBwz\n8jccM/I+jhkpD3t7e/Hll1/KHQZ1Db9T+63t7bffFra2tiIlJUXXAenU4sWLBQDx/fffqyz/6aef\n1H6BW716tQDQrAL48ccfBQDx9ttvqyxv64XL6dOnpWUZGRlql6elpQkAws3NTe12kpKSpL9jY2MF\nADF69GiV9aysrAQAceDAAZXlyn22FHtycrLw9fUVH330UYvH0hILCwsBQFRVVamNG4D4z3/+o/a1\nmpS3puey8f4be9gyepTYG2+rpbJoTVvKWB1tlr8m62qjjB+0vLVybOm17XXOKisrBQBhaWnZ6npd\nxdGjR4VCoWj3Qf7PnDkj9PT0xM6dO9t1Px0J6yzVfbYUe3vXWS1RVw7p6ekCgHB1dW1xfW18Bj9M\nWbUlzpUrV6p9z/3zn/8UAMTq1avVbruxlt63hw4d0jgZyfqu7cfU2mtZ32nXypUrhYODg8jPz2/3\nfS1fvlwEBga2+346GiYjf8Nk5H1MRsrDysqqW02eRe1KfTLS09NT/OEPf9B1MDrn5OQkAIiMjAyV\n5UVFRWq/wLm6ugoAIjMzU2V5fn6+ACD69++vsrytFy6NP0Tr6+tbXa5QKB54XHV1dQKAsLe3V1m+\nbNkyadseHh5ixYoVYv/+/aK6urrF2G7fvi08PDweetZpPT09AUDtjOvKfdy7d0/tazUpb03PZeP9\nN/YwZfSosTfeVktl0Zq2lLE62ix/TdbVRhk/aHlr5djSa9vrnCn/d/X19VtdryuZNGmSWLx4cbvu\nY9WqVeKJJ55o1310NKyzOkad1RJNy0Gbn8EPU1ZtidPFxUXte06ZvGyabFZXRi29b/Py8jRORrK+\na/sxtfZa1nfaVVZWJszMzJol3LWtqqpK2NjYiE8//bRd99MRMRn5GyYj72MyUh58/5EWNU9G1tXV\nCUNDQ7F37145AtIpfX19AaDNXwoNDAyk5eoeZmZmD9xGW57XZHlRUZHYtGmT6N27t9RioPGjqbCw\nMDF37lxha2srrdOzZ09x5coVtftycXERZmZmAoDYvXt3i8fSkkdpZaJJeWt6LltbrmkZPWrsbSmL\n1jxqS5GWaHIMmh7vo5axpsvbsk57nbPu2FJk7dq1YsyYMe26j5CQEJ11B+8oWGd17DpL259XHeFz\nVRlD0/dcVVWVACAMDQ0fuI2HqZ9bwvqu7cfU2jqs77SvV69e4sMPP2zXfezbt08YGBg0S+x3B0xG\n/obJoPuYjJQH33+kRb9rNoGNvr4+BgwYgGPHjjV9qsvp0aMHACA/P19ledO/lZycnAAAhYWFEEI0\ne9y7d699A1Zj/vz5+Pjjj7FgwQKkpKRIsbRkzpw5OHjwIPLz83HmzBmEhIQgNTUVy5YtU7v+559/\njm3btgEA1q5di/T0dI3iU04koW4SgwfRpLw1PZet0bSMHjX2R/UoZdwaTY5B0+NtaxkrB8evra2V\nlpWUlGj1OB/2GNqqqKgIALr0pCqN1dTUICIiAoGBge26n8DAQERGRsryuSsX1lkdu87Stvb6XNWE\no6MjgJbfc8rnW9PS+/ZhPstZ3+n+eDXR3eo7pZs3byIhIUGawKe9bNu2DTNmzICrq2u77oeIiEgX\n1M6m/e6772LXrl1qZ7fsSiZNmgQAOHnypMry8+fPq11/1qxZAIDTp083e+7s2bN4/PHHVZaZmZkB\nuP/FsqKiQvpCrk3KWDds2AA7OzsAQHV1tdp1FQqFdGGmp6eH0aNHY//+/QCA2NhYta+ZO3culi1b\nhpkzZ6K4uBjLli1r9cKxqcGDBwMAUlJS2vwaJU3KW9Nz2RJNyqi186vpe+VRPEoZt0aTY9BkXU3K\n2NnZGQCQlZUlLbty5cpDHM2Dtdc5U56XQYMGPXRsnYUQAq+99hoyMzPx6quvtuu+1q9fj4qKCrzw\nwgsqF+9dGesseessXZRPY+31uaqJ6dOnA2j+nouMjFR5vjUtvW8vXLigcTys77SD9Z325OTk4Nln\nn8WoUaMQHBzcbvu5du0azp07h7Vr17bbPoiIiHSqpTaTr7/+utDX1xd//etfRX19vWYNLjuJxMTE\nZjM8nj17VkyePFltl5S8vDzh5+cnXFxcxIEDB0R+fr4oLS0VR44cET4+PiqDwQshRFBQkAAgzp07\nJ/bt2yemTZum8ry6fWi6XDkb5aZNm0RRUZEoKCgQr732mtp1AYiQkBBx8+ZNUVVVJbKzs8WmTZsE\nADFjxoxW95WTkyMcHBwEcH9WyLbavXu3ACC++OKLNh+nkiblrem5bGn/mpRRa+dX0/fKg8qiNQ9b\nxtosf03W1aSMn3vuOQFAvPzyy6K4uFjExsaKRYsWtUu3tfY6Z5999pkAIPbs2fPAdTuz0tJSsXjx\nYmFkZCQOHjyok31GRkYKS0tLERwc3C26rbHOkrfO0kX5NNZen6uaxKOcdbnxbNonT54ULi4ubZ5N\nW9379vz582LMmDEa132s79p+TK2tw/pOOy5evCh8fHxEr1692n3Sz5UrV4o+ffqoHS+1O2A37d+w\nm+x97KYtD77/SIvUT2Cj9Kc//UkYGhqKMWPGiBs3bugqKJ26efOmmDx5sjA3NxeWlpZi2rRpIjEx\nUQAQenp6zdYvLCwUr732mvD29haGhobCyclJTJ8+XVy4cKHZulFRUWLgwIHCzMxMBAUFibi4OOk5\n5Re7pl/wNF2ek5MjlixZIhwdHYWRkZEICAgQ+/fvV7vuuXPnxPPPPy+8vLyEoaGhsLa2FgMHDhQf\nffSRyqDk1tbWKq8/cOBAs/0DEFFRUQ8s3+rqauHu7t5sogl121NHk/LW5Fy2tO+2lpEQrZ9fTWJv\na1m05GHKuD3Kv63ralLGeXl5YuHChcLBwUGYm5uL6dOni9TU1Ic+pget0x7nLCgoSLi7u6sdL62r\nOHz4sPD09BQODg7ixIkTOt13dHS08PX1FdbW1uKzzz5TO5ZcV8I6S546q73L51E/g9taVprGKcT9\nhOTq1auFq6urMDAwEK6urmLVqlUtJiLVbaPx+9bCwkJMmjRJxMTEaFzvsb5r+zGxvms/eXl5Yv36\n9UJfX19MnDhR5Obmtuv+CgsLhbm5ufj888/bdT8dGZORv2Ey6D4mI+XB9x9pUevJSCGEuHr1qggM\nDBR6enpi4cKFIiYmRheBySojI0MAEI6OjnKH0iUcPXpUKBQKsW/fPp3vu7ucSznLmFq2a9cuoVAo\nxNGjR+UOResaGhrEzz//LB5//HGhUCjE/PnzRU5OjiyxVFRUiLfeeksYGxsLDw8P8fnnn4uysjJZ\nYpFDd/mc0xV+nnZsPD8dU1eu75TS09PF66+/LszNzYWjo6P4xz/+oZOWir///e+Fra1tt066MBn5\nGyaD7mMyUh58/5EWNZ/ApqmBAwciKioK+/btw5UrVxAQEICJEyfi0KFDXWKcLoVCgYSEBJVlZ86c\nAQA8+eSTcoTU5UydOhVfffUVXnzxRYSHh7fbfrrzudRVGVPbHTp0CC+99BK2b9+OqVOnyh2O1pSU\nlGDbtm3o27cvnnrqKVhZWeHixYvYv39/myazaA+mpqb4+OOPkZiYiNmzZ+PNN9+E2/9n787joir3\nP4B/BoadmWGHGSAWFQXccWXJMNRcANOrZZqmlZpmi/eWpd1buNxuVvdm165a2b3ZppGpeV0qvJlI\naYqKqSwaiOyLLMO+nt8f/ubEsAkKHJbP+/WaF8OZMzPf55xhDvOZ5zyPszOeeuopxMbGSlJTZ+nL\n73Ndhe+n3Rv3T/fTW493AFBbW4tDhw4hPDwcbm5u+PTTT7F+/XokJyfjscceEyce6iylpaV49913\n8eyzz0KhUHTqcxEREXWp9kSXdXV1wuHDh4Xp06cLBgYGgp2dnbBixQohOjq6x45hAkCYPHmy8Ntv\nvwmlpaVCVFSUcM899whKpVKIj4+Xurxe5fTp08KECRM67fG5Lzt/G1PbTZgwQTh9+rTUZXSIiooK\nYe/evcKsWbMEU1NTwcLCQli6dKkQFxcndWnNunnzpvCPf/xD8Pb2FgAIXl5ewiuvvNJt620Pvs91\nHb6fdm/cP91HbzreCYIg1NbWClFRUcLSpUsFOzs7QSaTCRMnThR2797d5aegb9q0SVAqlUJBQUGX\nPm93w56Rv2PPtFvYM1IafP1RB4qQCUI7pplsIDU1FV988QU+//xz/Prrr1Cr1QgNDUVYWBgmTpwI\nMzOzDoxMO8+xY8fwr3/9CzExMbh58yasra0RHByMiIgIDBo0SOryqB24L4k6Tn5+Pg4fPoxvvvkG\n3377LSoqKnDfffdh/vz5mDVrFlQqldQltsmpU6cQGRmJyMhIpKWlwcPDA1OnTsX06dMRHBzcY45V\nOnyfIyLqePn5+Th69CgOHTqEb7/9FoWFhRgxYgTmzp2LuXPnwtPTs8trKisrg4eHB5YtW4YNGzZ0\n+fN3J0uWLEF2djYOHz4sdSmSUygU2LJlC5YsWSJ1KZI6cuQIpk2bBq1Wy17DXYivP+pA6+84jGzo\n0qVL2L9/P7755hucPXsWZmZmGD9+PO69917cd999GDt2LExMTDqiYCIi6gSFhYU4efIkjh8/jh9/\n/BEXLlyAXC5HcHAwwsPDER4eDrVaLXWZd0wQBJw+fRr//e9/cfjwYVy4cAEmJiYYPXo0goKCEBgY\nCH9//x4TshIR0Z3LyMhAdHQ0YmJicOLECVy6dAlyuRz33nsvpk2bhtDQUPTv31/SGt944w1s3LgR\n169fh62traS1SI1h5O8YBt3CMFIafP1RB1ov74hHGTx4MAYPHoxXXnkFmZmZ+Pbbb3H8+HHs3LkT\nr776KkxNTTFu3DhMmDBBDCd7Wm8UIqLe5ObNm4iOjhbDx4sXLwK49X4+YcIErFu3DpMmTYKlpaXE\nlXYMmUyGcePGYdy4cdi4cSMyMzPx/fffIzo6Gnv37sVf//pXGBoaYvDgwWI4GRQUBI1GI3XpRER0\nFwRBQHx8PE6ePCleUlJSIJfLMXLkSNx///1Yv349Jk6c2G1Cjfz8fPztb3/D888/3+eDSCIi6p06\nJIxsSKPRYPHixVi8eDEAICUlBT/++COOHz+Ojz/+GBERETAxMcHw4cMxcuRI8TJkyBAYGRl1dDlE\nRH1eSUkJzp8/j3PnziE2Nhbnzp1DfHw8ZDIZhg4digkTJuDVV19FUFBQn/nQo9FosGjRIixatAgA\nkJubi5iYGERHR+PkyZPYvn07amtr4e7ujhEjRmD48OEYNmwYhg8fDjc3N4mrJyKi5tTW1iIpKQkX\nLlwQL+fOncPNmzdhaWmJcePGYdGiRQgMDMS4ceNgYWEhdcnN0n1eeuGFF6QuhYiIqFN0eBjZmIeH\nBzw8PPDYY48BuDXW5I8//ogzZ87g3Llz2LVrF8rKymBsbIwhQ4Zg5MiR8PPzEwNKU1PTzi6RiKjX\nKCoqwrlz58RLbGwsrl27hvr6etjZ2WHkyJEIDw/H66+/jqCgIFhbW0tdcrfg4OCABx98EA8++CCA\nWzOYnjp1CqdPn8aFCxewa9cuJCcnQxAEWFtbY8SIEWI4OXz4cHh7e/MLNSKiLlRaWoqLFy8iLi4O\nFy5cwPnz53Hp0iVUVFTAyMgIvr6+GD58OKZPnw5/f3+MGDECcnmnf/S5a4mJidixYwf+9a9/dZue\nmkRERB2ty4/Ibm5uWLhwIRYuXAgAqKurQ0JCgt6H5927d6OkpARGRkbw8vKCt7c3Bg4cCF9fXwwc\nOBCDBg2Cubl5V5dORNRtFBQUID4+HvHx8UhISMCVK1eQkJCAlJQUAICTkxP8/Pzw0EMPiT3Q77nn\nHomr7jksLS0REhKCkJAQcZlWq8XFixdx4cIFxMXF4cSJE9i2bRsqKythbGyMgQMHYuDAgfDy8hKP\nVV5eXrCyspKwJUREPVtmZiYSExORlJSEpKQkxMfHIykpCSkpKaivr4eVlRWGDRsGf39/rFixAsOH\nD4ePjw+MjY2lLv2OvPjiixgwYIDYkYOIiKg3kvzrQUNDQ/j6+sLX1xePPvooAKC+vh7Xrl3DuXPn\n8OuvvyIxMRFff/01Nm/ejJqaGshkMri5uWHQoEHw8fHBoEGD4O3tDW9v7z5ziiER9X6CICAtLQ0J\nCQli8JiYmIjLly8jLy8PwK3QbODAgfD29saTTz4p9jDnWIcdT6lUIjAwEIGBgeKy2tpaJCQkIC4u\nDleuXEFiYiIOHjyIt99+G1VVVQBu9bocNGhQk6DS3d2dvSmJiACUl5eLYWPDwDEpKQlarRYAoFKp\n4OXlhUGDBiEgIAA+Pj4YPnw4PDw8JK6+40RFReGbb77B0aNHe0QvTiIiojvVLY9yBgYG8PLygpeX\nFx5++GFxeW1tLW7cuIHk5GRcvnwZV65cwenTp/HBBx+gpKQEAGBqagqNRgNPT88ml0GDBnXbsWGI\nqG+qrKxEZmYmkpOTm1wSExNRWloKALC2toanpyd8fHzwwAMPwMfHB76+vnB3d4eBgYHErei75HK5\nOIlbY5mZmbhy5Yq4Py9fvoxjx47h+vXrqK+vB/D7fm18UavV8PT05GRvRNQrVFVVISMjQ+8Yl5mZ\niaysLCQnJ4vvi3K5HPfccw88PT0xcuRILFiwAL6+vvD09ISHhwdkMpnUTek0VVVVePrppzFr1ixM\nmTJF6nKIiIg6VbcMI1sil8vFD2oNT50Dbo1FmZSUJP6Dk5KSgtjYWHz11VcoKCgAcCvkdHZ2Fv+h\n8fT0hLu7O+655x5oNBq4uLjwgx8Rdaji4mKkp6cjPT0daWlpSElJEd+jkpOTxR6OAMQvUjw8PDBj\nxgysWrUK/fr1Y6/vHkqj0TTbQ7WkpEQ8Xl2/fl28HDx4ECkpKaioqABw68wBFxcXuLu7w83NDR4e\nHnB3d4ezszM0Gg2cnZ15CjgRSU4QBOTk5CArKwsZGRlIT0/Xe2+7fv06cnJyxPWtra3h7u4Od3d3\nDBkyBKGhofDw8ED//v3Rr1+/Hnt69d3asGEDMjMzERUVJXUpREREna5HhZGtcXNza3GG06KioiYB\nQEpKCn766SekpqaKp9IBgK2tLZydneHq6gpnZ2fxui6sdHFxgUql6qpmEVE3lpOTg8zMTDFszMzM\nxI0bN5CRkSFeLysrE9dXKBTiFyH+/v5YsGCB+LuHhwcn7OojFAoF/Pz84Ofn1+ztOTk5TT7IX79+\nHb/88guuX7+OyspKcV1zc3M4OztDrVbD1dUVTk5OcHFxgVqtFo9harWary0iuiMlJSVIT08Xg8bM\nzEzxuJednY20tDRkZ2ejpqZGvI9KpRLDxnHjxmHevHni7+7u7vw/uhmJiYl46623sHnzZri4uEhd\nDhERUafrNWFka6ysrDBixAiMGDGi2dtzcnKQkZGBjIwMpKWlITMzE2lpabh27RpOnDiBGzduoLy8\nXFzf0tISrq6ucHBwgFqthoODA+zt7aHRaGBvb6+3nB8AiXqW0tJSZGZmIjc3F3l5ecjMzEReXh5y\nc3ORlZUlLsvMzNT7IsPGxgYajUY8vSwoKEj8IsPV1ZVfZFCbOTo6wtHREWPHjm329ps3byIrK6tJ\nGJCeno7ExERkZmYiJycHdXV14n3s7OzE45KjoyPs7e1hb28PJycn8bruNktLy65qKhFJ4ObNm+Ix\nLi8vD9nZ2cjPzxev6455aWlpel+omZiYiF90aDQajB49GjNnzoRarYaLiwucnJzg6urKIZHaSRAE\nPPXUUxgyZAhWrlwpdTlERERdok+Ekbej++A3cuTIFtcpLCxsElbqwonY2Fjxum58Nx2lUgm1Wt0k\npLS3t4eNjQ3s7OxgY2MDW1tb2NjY8EMgUQcrLCzEzZs3UVBQIP4sKChAbm4usrOzkZOTg7y8PGRl\nZSE3N1c8RVbH1tZWDG/UajX8/Pwwffp0sae0rvc0h3igrmJrawtbW9tmx6nUqa2tFb9oy8rKQlpa\nGnJycsSg4fr162LwoBtzWcfMzAx2dnZwcnKCg4MD7OzsxKDSxsYGNjY2sLa21vvJ1z+RNEpKSlBQ\nUIDCwkLx+FZYWCgGjbpgUXesy8vLQ21trd5j2Nvbw87OTvxfdciQIbC3txd7WeuCRgcHB4la2bu9\n9957iI6OxunTp2FoaCh1OURERF2CYWQbWVtbw9rautUPf8Ct2QAb9qBq+OEvJycHv/76q/iPYUFB\nAQRB0Lu/sbGxGEzqfja8rgsvbWxsoFKpoFKpYGVlBZVKxX9gqNeqrKyEVqtFYWEhSktLmwSLrV3X\nTRSiY2RkBFtbW7FXmKOjI/r37y9e14WODg4OcHBw4GzH1CPJ5XLxNO3bqays1AssGveQysvLw+XL\nl5GTkyP+DTZmZmbWJKBs6bq1tTWUSiUUCgWUSiW/hKM+r7CwECUlJdBqtU3CxcYhY+NljYNF4NYZ\nQbovEezs7ODm5oYxY8aIvaAdHR3FL8bt7Ow4a7OEEhISsGbNGqxbt67VThFERES9Df/76GDm5ubi\nmDht0ZZAJSMjA7/++itu3ryJmzdvori4uNnHsrCwgEqlglKphFKp1Asqdcsb325tbQ0zMzOYmprC\n2toapqam7OFCHaakpASVlZUoKSlBaWkpKioqUFxcjOLiYhQVFaG4uBharVb8qbuuu023vOHp0Doy\nmQxKpVL8cKUL7Pv3798kyNddbGxsoFAoJNgSRN2XqakpXF1d4erq2qb1q6ur2xSWZGdnIz4+Xu+2\nhqeO68hkMvFYpQsodT+trKz0ftf9tLa2hkKhgJmZGSwtLWFhYQETExNO6ENdoq6uDlqtFuXl5aiq\nqkJhYaF4rNNqtSgqKhKPaQ1DxsLCwibLtFpts89hYmLSJMS3s7PDgAEDWuyhrLtuYGDQxVuE7kRt\nbS0ee+wxDBo0COvWrZO6HCIioi7FMFJiupCkPerq6lBQUNBsqNMw2NHdduPGjSbLm+vZ0pCVlRVM\nTU1hbm4OlUoFU1PNKLADAAAgAElEQVRTWFhYQKlUwsTEBAqFApaWljA1NYVSqYSFhQWMjY3Fn7pQ\nU7fM0NAQSqUSwK1epsCtU9jZm7PrVVVVoby8HLW1tSgpKYEgCCgqKgJwa7InQRBQUlKC2tpa8YNW\neXk5KisrUVRUhIqKClRWVoofvioqKlBUVITKykqUl5dDq9WisrLytq8xXe+ohiG5SqVC//79WwzR\nc3NzERsbi/j4eJw/fx5paWkoKSmBXC7HgAEDMGbMGIwZMwbDhg3rs7NxEnU2Y2NjODk5wcnJqd33\nLS4u1gtkbhfeJCcntzm80TExMYG5ubne8crc3BwmJiawtrYWb1coFDAxMYFSqRRv1x27Gh6zrKys\nIJPJxOOb7v4GBgYcB7abqK+vF7+o1Wq1qKurE49fNTU1KC0t1TvW6Y5xpaWlqK6uFo9hFRUV4hdg\nJSUlKCsrQ3V1NQoLC8Vjoe7xW9JSuK5QKODp6dlquK5bZm1tzXEX+4CNGzciLi4OZ8+e5VkYRETU\n5zCM7IEMDQ3F3mB3SvePuy5cqqioaDFcKi4uRmVlJcrKysSeAHl5eXqhk+4fe93P9rC0tISRkZHY\nQ1MXYOroPggCt049bNizTfcBsrl1jYyMWjz9r/H9WqP7AHo7ug8+baH7gNMcXSAIQPwQ1dL9CgsL\nxevV1dV6A80XFxejvr4epaWlqKmpaVd9OroP5rqfVlZWMDMzE6+rVCqo1eomgbWpqSksLS31ei7p\nruvCxTs1Z84c8XpWVhbOnj2L2NhYxMbG4rXXXkN+fj7kcjm8vLzg5+eHwMBABAQEwNvbm71FiCSm\n+5LhbunCS11vtJZCo4ahUlVVlfjlXXZ2NoqLi1FVVYXS0lLx/nfyPqlrl4GBgXhsaXwc0x3nGq8P\n/B5e6TQ+zunCz+a0dltrdd5O4+PJ7eiON225reFxS9fDsKXn1X351fixdPurvXXq6I7rrYXU9vb2\nzd7eMOTWPY7uzBIOO0BtdfbsWfz1r3/FW2+9BV9fX6nLISIi6nIMI/soAwMDcRzMzqD7QKcLN3Wh\nWsPeC7rQTdfLQPfhQncfAHo9GYDfe/Xp5OTkiOFnw8cGoPc4DTV+zNY0fszWtKeXjKGhIQRBgLGx\ncZPT4hv2GG38mI1Po3dzcxPXbdiTBwAUCgXkcnmTHj+6kLbhY+tCXN1ztzWAlZparUZoaChCQ0PF\nZZmZmYiJicHJkycRGxuLyMhIVFZWQqFQYOjQoWJAGRQUdEc9u4hIelZWVp16SnZrvel0AZnuCzjg\n94BN9+VP4+NPw0Cu8TGopqYGycnJ4u+Nj3ONA7mGbtdLr6H2BndtDS6B1kPR1oJYAHr/h5iZmcHR\n0VH8vXGoqzuu6b4kaxjc6h5H93yt9XIlklJxcTHmzZuHCRMmYNWqVVKXQ0REJAmGkdQpzM3N29Vb\noy9auHAhDh06hJ9++qnNY4zS7Wk0GsyZM0fsQVlbW4vExETExsYiJiYGUVFR2Lp1K+rr68XZsXWX\nwMDATgvoiajnMDIyEt8LbGxsJK6m89nZ2WHjxo1Yvny51KUQ9WqCIODxxx9HSUkJdu3axXCciIj6\nLIaRRBLZtm0bxo4di4ceeggnTpxo82nj1D5yuRy+vr7w9fXFwoULAdzq4RQXFyee3v3xxx8jIiIC\nhoaGGDhwoF5AOXr0aO4bIurVlEplm88CIKI79/bbb+PAgQM4duwY1Gq11OUQERFJhmEkkUQsLCyw\nb98+jB49Gs899xy2bdsmdUl9hkKhQGBgIAIDA8VlmZmZYjgZGxuLiIgIFBYWwsjICEOHDkVAQIAY\nUPr4+LA3AxH1GiqV6rYTAxHR3Tl16hTWrVuHTZs24d5775W6HCIiIkkxjCSS0IABA7Br1y7MnDkT\no0ePxpIlS6Quqc/SaDTQaDTi+JN1dXVISEjQCyh37NiBqqoqqFQqDB48WJwcZ+zYsXBwcJC4BURE\nd4ZhJFHnysjIwOzZszFlyhS88MILUpdDREQkOYaRRBILCwvDmjVrsHLlSgwbNgx+fn5Sl0S4NSFQ\n49O7a2pqcPHiRXFynIMHD2Lz5s0QBEFv/MnAwED4+/tz3FQi6hF4mjZR56moqMCsWbOgVCo5TiQR\nEdH/YxhJ1A1s2rQJ58+fx+zZs3H27FnY2dlJXRI1w8jISAwcdYqLi/Hrr7+KM3hv27YNERERkMvl\n8PLy0gsohw8fLs5+TkTUXahUKoaRRJ1AEAQsWbIE165dw+nTp2FlZSV1SURERN0Cw0iibsDAwACf\nf/45/Pz8MG/ePBw9epShVQ+hUqnE8SfXrFkDQH/8yZiYGKxduxbl5eWwtLQUe7/qLr6+vhK3gIj6\nOpVKhfT0dKnLIOp1XnvtNezduxdHjx5F//79pS6HiIio22AYSdRN2NjYYM+ePbj33nuxfv16RERE\nSF0S3aG2jD+5bds21NTU6J3e7efnh/Hjx7NnLBF1KZ6mTdTxPv74Y2zYsAHvv/8+Jk6cKHU5RERE\n3QrDSKJuZMyYMdiyZQtWrFgBPz8/hIWFSV0SdYDmxp8sLS3FhQsXxHAyMjJSDKDVarU4OY6fnx9G\njRoFU1NTKZtARL0Yw0iijvXf//4XTzzxBNatW4cnnnhC6nKIiIi6HYaRRN3MsmXLEBsbiwULFuDn\nn3/maby9lKWlpXh6t052djbOnDkjBpQbN25Efn6+3viTupDS29sbBgYGEraAiHoLzqZN1HFOnTqF\nhx9+GIsXL8aGDRukLoeIiKhbYhhJ1A299957iI+Px6xZszjgeR/i5OSE0NBQ8fRu4Nb4k7rJcWJj\nY/HVV1+hoqICCoUCQ4cOFU/vvvfee+Hu7i5d8UTUY3ECG6KO8euvv2LatGmYNGkStm3bJnU5RERE\n3RbDSKJuyMjICJGRkRg1ahQWLlyI/fv3sxdcH6XRaDBnzhzMmTMHAFBbW4vExERxcpyoqChs3boV\n9fX1TcafDAwMhLW1tcQtIKLuTqlUoqamBhUVFTAzM5O6HKIeKT4+HpMmTcLQoUPxxRdfcCJCIiKi\nVjCMJOqmnJycEBkZieDgYERERHBCGwIAyOXyJuNPlpSUIC4uTjy9e9euXYiIiIChoSEGDhyoF1CO\nHj0aJiYmEreCiLoTlUoFANBqtQwjie5AUlISQkJC4OnpiYMHD3KcZyIiottgGEnUjY0fPx7vvPMO\nVqxYgSFDhuAPf/iD1CVRN6RQKJqMP5mZmak3e/f69etRUFAAIyMjDB06VJwcx8/PDz4+PpDJZBK2\ngIikpAsji4uL4ejoKHE1RD3L1atXERwcjHvuuQdHjx6FQqGQuiQiIqJuj2EkUTe3fPlynD9/HosX\nL4a3tzcntKE20Wg00Gg0euNPJicni2NPxsbGYseOHaiqqoJKpcLgwYPFyXHGjh0LBwcHCasnoq6k\nVCoBgONGErVTUlISJk6cCBcXFxw9elT8WyIiIqLWMYwk6gG2bt3KCW3ornl6esLT01M8vbumpgYX\nL14UA8qDBw9i8+bNEARBb/zJwMBA+Pv7w9zcXOIWEFFnaHiaNhG1zfnz5/HAAw/Aw8MDR48eFf+O\niIiI6PYYRhL1AEZGRvjyyy8xatQoPPzwwzh06BAHRqe7ZmRkJAaOOlqtFhcvXhRn8N62bVuL40+O\nHTsWRkZGEraAiDqCUqmETCZjz0iiNoqOjkZoaChGjhyJAwcO8NRsIiKidmIYSdRDODk54csvv0Rw\ncDBee+01bNiwQeqSqBdSKpXi+JNr1qwBoD/+ZExMDNauXYvy8nJYWlpi2LBhegElhxEg6nkMDQ1h\nbm7OMJKoDQ4dOoQ5c+Zg8uTJ2L17NyerISIiugMMI4l6EH9/f/zzn//E8uXLMXToUMyZM0fqkqgP\naDz+ZF1dHRISEvQmyNm+fTuqq6vh5OSEUaNGieHk+PHjYWdnJ3ELiOh2VCoVT9Mmuo2dO3fiqaee\nwsKFC7Fjxw6epUJERHSHGEYS9TBLly5FXFwcFi1aBA8PD4waNUrqkqiPMTQ0hK+vL3x9fcXxJ8vK\nynD+/HkxnIyMjMT69evF8Sd1k+PoQkozMzOJW0FEDalUKvaMJGqBIAhYu3Yt3njjDbzyyiuIiIiA\nTCaTuiwiIqIei2EkUQ+0ZcsWJCQkYPbs2fjll1/g6OgodUnUx1lYWIind+sUFRXh7Nmz4gQ5Gzdu\nRH5+PuRyOby8vMTJcQICAuDt7Q0DAwMJW0DUtymVSvaMJGpGVVUVlixZgi+//BLbtm3DsmXLpC6J\niIiox2MYSdQDyeVyREZGYuzYsZg1axb+97//wcTEROqyiPRYWVkhJCQEISEh4rLMzExxcpzY2Fh8\n9dVXqKiogEKhwNChQ8Wek0FBQfDw8JCweqK+hT0jiZrKysrC7NmzkZCQgO+++w7BwcFSl0RERNQr\nMIwk6qFsbGxw8OBBjBs3DsuWLcN//vMfqUsiui2NRoM5c+aI453W1tYiMTFRnBwnKioKW7duRX19\nPdRqtd7kOAEBAbCxsZG4BUS9E8eMJNL3888/4w9/+AMsLCwQExMDb29vqUsiIiLqNRhGEvVggwYN\nwu7duzFjxgyMGDECzz77rNQlEbWLXC5vMv5kSUkJ4uLixPEnd+3ahYiICACAp6en3tiTo0ePZq9g\nog6gVCqRnp4udRlE3cL777+PVatWISQkBJ9++imsra2lLomIiKhXYRhJ1MM98MAD2LBhA/74xz/C\ny8sLU6dOlbokoruiUCiajD+ZmZmpN3v3+vXrUVBQACMjIwwdOlQvoPTx8eHEAkTtpFKpcPnyZanL\nIJJUZWUlVq1ahZ07d+LPf/4zXn31VY5nTERE1AkYRhL1Ai+99BIuX76M+fPn4/Tp0xgwYIDUJRF1\nKI1GA41Gg9DQUHFZcnKyOPZkbGwsduzYgaqqKqhUKgwePFicHGfs2LFwcHCQsHqi7o8T2FBfl5iY\niIcffhgpKSnYv38/wsLCpC6JiIio12IYSdQLyGQyfPjhh5gwYQJCQ0Nx6tQpWFlZSV0WUafy9PSE\np6eneHp3TU0NkpKSxAlyDh48iM2bN0MQBL3xJwMDA+Hv7w9zc3OJW0DUfXACG+rLPvnkE6xYsQKD\nBg1CbGws+vXrJ3VJREREvRrPOyDqJUxNTbF//36UlZXh4YcfRl1dndQlEXUpIyMj+Pr6YunSpdi1\naxcuX76MoqIiREdHi+Opbt++HZMmTYJSqRTHqdyyZQtOnjyJ6upqiVtAJB32jKS+qLS0FIsXL8ai\nRYuwdOlSxMTEMIgkIiLqAuwZSdSLqNVq7N27FxMmTMBLL72EN998U+qSiCSlVCrF8SfXrFkDQH/8\nyZiYGKxduxbl5eWwsLDA8OHD9Wbw9vX1lbgFRF1DpVKhtLQUdXV1MDQ0lLocok538uRJPPbYYygu\nLsY333yDGTNmSF0SERFRn8EwkqiXGTNmDD788EM8+uij8Pb2xpIlS6QuiahbaTz+ZF1dHRISEvQm\nyNm+fTuqq6thZWWFUaNGiRPkjB8/HnZ2dhK3gKjjqVQqCIKAkpISDvNBvVpNTQ02bdqEjRs3IiQk\nBDt37oSzs7PUZREREfUpDCOJeqH58+cjISEBy5cvh5ubG+6//36pSyLqtgwNDeHr6yuetg0AZWVl\nOH/+vBhORkZGYv369eL4k7rJcXQ9KM3MzCRuBdHdUSqVAIDi4mKGkdRrnTt3DosWLcKNGzewY8cO\nPP7441KXRERE1CcxjCTqpdavX4/k5GTMnTsXP//8M7y8vKQuiajHsLCwEE/v1ikqKsLZs2fFGbw3\nbtyI/Px8yOVyeHl5iZPjBAQEwNvbGwYGHJaZeg6VSgUAHDeSeqXy8nK89tpr+Mc//oHAwEAcPHgQ\n7u7uUpdFRETUZzGMJOqlZDIZdu7cieDgYEydOhWnT5/m6aVEd8HKygohISEICQkRl+nGn9TN4P3V\nV1+hoqICCoUCQ4cOFXtOBgUFwcPDQ8LqiVrXsGdkQzU1NTAyMpKiJKIOceLECSxduhTZ2dl46623\nsGrVKn5ZREREJDGGkUS9mKmpKfbt24exY8di1qxZiIqKgrGxsdRlEfUajcefrK2tRWJiohhQRkVF\nYevWraivr4dardabHCcgIAA2NjYSt4D6qhMnTuDgwYPQarUoLCxEfn4+TExMMG/ePNTU1KC0tBRl\nZWXQaDTIyMiQulyidsvLy8OLL76Ijz/+GA8++CB++OEHqNVqqcsiIiIiMIwk6vWcnJxw+PBhBAQE\nYPny5fjoo4+kLomo15LL5U3GnywpKUFcXJw4/uQnn3yCiIgIAICnp6fe2JOjR4+GiYmJlE2gPmLf\nvn145513IJfLUVtbKy5PT08Xr8tkMvbopR6ntrYW27dvx1/+8hdYWFjg66+/xsyZM6Uui4iIiBpg\nGEnUB/j6+uKLL75AaGgovL298cILL0hdElGfoVAomow/qTu9W3dZv349CgoKYGRkhAEDBuhNkOPj\n4wOZTCZhC6g3Wrp0KbZs2aIXRDYml8sRFhbWhVUR3Z0zZ85g5cqVuHDhAp566ils3LgRCoVC6rKI\niIioEYaRRH3E1KlT8eabb+JPf/oTBgwYwF4CRBJqfHo3ACQnJ4uT48TGxmLXrl2orKyEUqnEkCFD\nxIByzJgxcHR0lLB66g28vb3h7++PU6dOoa6urtl1ampqMHXq1C6ujKj9rl+/jpdffhl79uzBlClT\ncOnSJU7cR0RE1I0xjCTqQ55//nlcvXoVjzzyCI4fP44xY8ZIXRIR/T9PT094enqKp3fX1NQgKSlJ\nnBzn4MGD2Lx5MwRB0Bt/MjAwEP7+/jA3N5e4BdTTPPPMM/jpp59avN3R0RGDBw/uwoqI2qeoqAiv\nv/463n33Xdxzzz3Yt28fwsPDpS6LiIiIboNhJFEf8+677+LatWuYOXMmfvnlF7i4uEhdEhE1w8jI\nSBx/cunSpQAArVaLixcvihPkbN++HRERETA0NMTAgQP1JsgZM2YMJ6yiVs2aNQv29vbIzc1tcpuR\nkRHCw8M5RAB1S9XV1dixYwfWr18PANi8eTOWL1/Omd+JiIh6CIaRRH2MXC7HV199hYCAAISFhSE6\nOhoWFhZSl0VEbaBUKsXxJ5999lkA+uNPxsTEYN26dSgrK4OFhQWGDx+uF1By/ElqSC6XY/ny5Xj9\n9ddRU1Ojd1ttbS1P0aZup7q6Gjt37sTrr7+OvLw8PPPMM3j55ZdhZWUldWlERETUDgwjifogpVKJ\n/fv3Y9y4cViwYAH27t0LAwMDqcsiojvQePzJuro6JCQk6E2Qs337dlRXV8PKygqjRo0SJ8cZP348\n7OzsJG4BSWn58uXYtGlTk+UGBgYIDg6WoCKipqqrq7F7925EREQgPT0djz32GP785z/z7A4iIqIe\niukDUR/Vr18/7Nu3D0ePHsXq1aulLoeIOoihoSF8fX2xcOFCbNmyBSdPnkRBQQGio6Px2muvQa1W\nIzIyEuHh4bC3txeDzDfeeAMnT55ERUVFh9dUWVmJ/Pz8Dn9cuntqtRphYWF6p7fKZDL4+/tDpVJJ\nWBnRrRBy165d8Pb2xpNPPomQkBD89ttv2LFjB4NIIiKiHoxhJFEfFhgYiF27duGf//wntmzZInU5\nRNRJLCwsxFO7d+3ahcuXL6OgoADff/+9OB7l22+/jaCgICiVSjHMfP/993H58mXU19ff1fO/8sor\ncHV1xRtvvNHkdGCS3tNPP623X+RyOcLCwiSsiPo6hpBERES9G0/TJurj5syZg+TkZKxevRqurq6Y\nNWuW1CURURewsrJCSEgIQkJCxGW68Sd1M3h/9dVXqKiogEKhwNChQ8WxJ4OCguDh4dHm5/rxxx9R\nWVmJdevW4cMPP8T777/PU4C7kYkTJ8LLywtXr16FIAioqanBtGnTpC6LeomioiI888wzWLhwod77\nTXO0Wi0++ugj/P3vf0dubi6efPJJvPTSS3B2du6iaomIiKgrMIwkIqxZswZpaWlYsGABjh07hvHj\nx0tdEhFJoPH4k7W1tUhMTNSbIGfr1q2or6+HWq3WmxwnICAANjY2TR6zpqYGFy9eBHBrPMuUlBRM\nnDgR06ZNw/bt2+Hq6tqlbaTmrVy5EqtXr0ZdXR2cnJzg4+MjdUnUC1y9ehXTpk3DtWvXcOPGjRbD\nyN9++w1bt27FRx99hLq6OixZsgRr1qxhCElERNRL8TRtIgIAbNmyBZMnT0ZYWBiuXr0qdTlE1A3I\n5XK98SfPnj2L4uJiREdHY82aNbC2tkZkZCTCwsJga2uLfv366Y1VWVlZibi4OFRXV4uPWVdXBwD4\n/vvv4eXlhTfeeAO1tbVSNZH+36JFi2BsbAwACA8Pl7ga6g2io6MxZswYXL9+HQBw4sQJ3LhxQ2+d\nkydPYu7cuRg0aBD27NmD559/Hjdu3MC7777LIJKIiKgXY89IIgJwa9KLzz//HMHBwZg6dSp+/vln\n2NvbS10WEXUzlpaWCAwMRGBgoLgsIyMDv/zyC86cOYPTp0/jwIED0Gq1MDU1xYABAyCXy5sEjjU1\nNaipqcHatWvx8ccf44MPPkBAQEBXN6dbKi4u1huns7CwULxeX1+P4uLiJveprq5GWVlZu56nqKgI\ngiCIvwcEBCAqKgoqlQqRkZHN3sfc3BwmJiZtfg65XA6FQtFkuampKczMzFp8XEtLS71Jdahn+eCD\nD/DUU08B+P0LCLlcjk8++QQvvPACDhw4gLfffhunT5+Gn58fdu7ciUceeQRyOT+aEBER9QU84hOR\nyNzcHPv378f48eMxe/ZsfPfddzA1NZW6LCLq5pydnfHggw/iwQcfBHArMEtISMCZM2ewbdu2Vu9b\nX1+PpKQkBAYGYv78+fj73/8OBweHrigbwK1T0UtKSlBWVoaqqioUFRWhqqoK5eXlqKysREVFBerq\n6qDVagH8HhRWVFSgsrJSvD/we7hXVlaG6upq1NTUoLS0FIB+oKi7XaekpKRb9Q7dvHmz1CU0oVQq\nYWhoKP5uZWUFmUwG4Pcg08jICJaWlnq3W1hYwNjYGMbGxrCwsIBMJoOVlRWA3wNPExMTmJubw8DA\nACqVCoaGhlAqlTAzM4OpqSmsrKxgYmICCwuLrm94D1NXV4d169bhjTfeaHJbTU0N/vGPf+Ddd99F\nUVER5s6di61bt2LUqFESVEpERERSYhhJRHrUajUOHz6MwMBALFq0CF988QUMDDiiAxG1nYGBAXx8\nfODj44MNGzbcNmjT9Zz68ssvceDAAWzcuBFPP/20XvgE3Ar7SkpK9C6FhYXi9crKShQWFopholar\nRVVVVYtho1arFZ+7NW0JsIDfAzNbW1uYmZmJoRYAqFQq8b20vb0CWwviGmr4HG3RuI7baalXZmtK\nS0ubnUH9doFse3qH6p5Dt18FQUBRUREAIDs7G7W1tW0KlttCoVDAxMSkxbCy8e1mZmawsrKCUqmE\nQqEQLyqVCiqVCgqFQjw9vqcrKSnBnDlz8P3337e4zs2bN7Fo0SK8/vrrUKvVXVgdERERdScMI4mo\nCR8fH+zbtw9TpkzBunXr8Prrr0tdEhH1QFqtFsnJyW1eX3fq9nPPPYeIiAg4OjqKQaMuQGqOLujR\nBUO6kE2pVMLU1BT29vZiDzlra2sxSGwYHOkCwYbBkq43Hd1iYGAAa2vrdt2nvetLSdfLtWFv2erq\n6iYBd3V1NbRaLcrLy/UC7rKyMmRlZaGqqgrFxcViyKkLzFsK5U1MTKBQKKBUKmFlZQVLS0solUrx\np5WVlXi7jY0NrK2tm/yU+pT2a9euYerUqUhNTdULkRszMjKCkZERg0giIqI+jmEkETVrwoQJ+Pe/\n/4358+fDxcUFK1eulLokIuoGCgsLkZubi7y8PBQWFqKgoKDFnxkZGXpjErbGwMAAZmZmUKlUsLGx\ngZeXF0aMGKHXm8za2lrvd4VCIfZYJLpbcrlcDE87Y8zkiooKMVwvKiqCVqvV6+VbXFyM4uJivWXJ\nyclij2CtVouCggJUVVU1eWzd30dLYaWNjY143d7eHnZ2drC3t++QEDM6OhphYWEoLS29bS/ompoa\nfP7559iyZQvMzc3v+rmJiIioZ2IYSUQtmjdvHpKSkvDss8/C1dUVYWFhUpdERB2soqIChYWFyMrK\nQmZmJgoLC1v8PT09Xe/UWuDWqb7W1tZ6Fzs7OwwYMADXrl1Deno6gFuTZNnZ2cHd3R0DBgyAj48P\n+vXrBw8PD3h4eMDOzk6K5hN1Gd1p23c7Jqrub/Z2l+zsbMTHx4u/5+XlNQkLdX+/Go0GarVa/Btu\n7ndXV9cm4eW2bduwatUqAGjTkAcAUFlZif379+ORRx65q+1AREREPRfDSCJq1V/+8hekpqZi/vz5\n+PHHHzFy5EipSyKiNsjPz0d2djbS0tKQk5ODtLQ0ZGdnIz09HVlZWcjKykJeXl6TXlYKhQJOTk5i\n7ylHR0cMGzZM7Ellb28PR0dH2Nvbw8bGptVJrkpLSxEXFwc3NzdoNBqOP0vUAXShpkajadf9BEFA\nQUEB8vLykJ+fj7y8POTk5CAvL09clp6ejvPnz4u3Nw4Yde8BGo0G+fn5uHDhAoBbp18bGBhAJpOJ\n45k2PF27rq5O/L2+vh4HDhxgGElERNSHMYwkolbJZDLs2LED6enpmD59OmJiYuDp6Sl1WUR9Vl1d\nHTIyMpCamorU1FS9gDEjIwOZmZnIysrSm5DD3NwcLi4ucHJygouLC4KCguDs7CwGjrrw0d7eXm8i\nlbtlaWmJgICADns8IrpzMpkMtra2sLW1bfN9GgaXubm5YniZkZGBwsJC2NraorKyEmVlZXr3s7S0\nFIdcUKlUsLOzg4ODg9jLctKkSR3dPCIiIupBGEYS0W0ZGRlh7969CA4OxuTJkxETEwNHR0epyyLq\nlWpqapCXl4esrCwkJyfrXTIzM5GSkoKKigpxfWtra3h6ekKtVsPX1xchISHiKZa6n2q1utnZl4mI\nWqP7ksLb2xNr9K4AACAASURBVLvV9aqrq5Gfny8O79D4Z1paGk6fPo2srCzxPtbW1uL7lKenp96l\nX79+HA+WiIioF2MYSURtolAocOTIEQQGBmLGjBn44YcfYGlpKXVZRD1SeXk5kpKSxMvVq1eRkpKC\n1NRUZGRkiKdGmpqawt3dHW5ubujXrx8mTpwINzc3uLm5wcPDgyEjEXULxsbG0Gg00Gg08PPza3G9\nkpISpKam4vr167h+/bp4/fz589i/fz9yc3PFda2treHm5gZ3d3f069cPXl5e4qW9p6gTERFR98Iw\nkojazN7eHkeOHEFAQADCw8Nx+PDhDj2lk6g3qa+vR2pqKpKSkpCYmIjExEQxfExLS4MgCJDL5XB3\nd4eXlxeGDBmCGTNmiOGjm5sbnJycpG4GEVGHUSgUGDx4MAYPHtzs7eXl5XohpW44ih9//BEffPAB\ntFqt+Di6YHLQoEF6QSW/KCUiIur+GEYSUbt4enri22+/xb333ovFixfj008/5aQU1OdlZGQgLi4O\ncXFxuHDhAq5cuYKrV6+Kk8PY29uLH5gnTZokfoD29PSEsbGxxNUTEXUP5ubm8PHxgY+PT7O3Z2dn\nIyEhQexRnpiYiM8++wwpKSmoqakBALi4uGDgwIEYNmyYePHx8WkyEzgRERFJh2EkEbXb0KFD8fXX\nX2PatGl46aWXsHnzZqlLIuoSNTU1iI+P1wse4+LikJ+fDwBwd3fHsGHDEB4eDi8vLwwcOBBeXl6w\ntraWuHIiop7PyckJTk5OuO+++/SW19TUICUlReyFnpCQgB9//BH/+te/UFlZCWNjY/j4+OgFlMOH\nD4eNjY00DSEiIurjGEYS0R2ZOHEi/vOf/2D+/PlwcnLC6tWrpS6JqMPduHED0dHRiImJwalTp3D5\n8mVUV1fDxMQEvr6+GD58OMLCwsQPt5xwgYio6xkZGYmnaYeGhorLa2trkZiYKH6BdP78eRw5ckQc\nm9LV1RUjR45EUFAQAgIC4Ofnxx6UREREXYBhJBHdsYcffhg3b97EqlWrYGdnh4ULF0pdEtEdq6+v\nx6VLlxAdHY2ffvoJ0dHRSEtLg5GREfz8/BAcHIzVq1dj2LBh8Pb2hlzOQygRUXcml8vh6+sLX19f\nPPLII+LyrKwsMaA8deoUNm/ejNzcXJibm2P06NFiOOnv7w+lUilhC4iIiHonfpIioruycuVKpKSk\n4IknnoCjoyOmTJkidUlEbZaQkIAjR44gKioKMTExKC4uhlKphL+/P5YuXYqgoCCMGTMGZmZmUpdK\nREQdRK1WQ61W44EHHhCXJSYmIiYmBtHR0fjyyy+xceNGGBoaYvDgwQgODsYDDzyACRMmwNTUVMLK\niYiIegfOOkFEd+3NN9/EI488gjlz5uDcuXNSl0PUorq6Ovzvf//DypUr4enpCW9vb2zcuBGWlpbY\nuHEjLly4gIKCAhw5cgSvvPIKJkyYwCCyB5HJZOKlI505cwbBwcEd+pjdQWVlJV555RX069cPcrm8\nU7adFBrvr97azrvRVdskODgYZ86c6fDH7QwDBw7EkiVL8O9//xuJiYnIzs7Gl19+iYkTJ+LYsWN4\n4IEHYGtrixkzZuCDDz4QxwomIiKi9mMYSUR3TSaT4YMPPoC/vz8eeOABJCUlSV0SkZ6YmBgsX74c\narUa999/P3766SfMnz8fMTExyM3NxZ49e/D0009j2LBhMDQ0lLpcukOCIHT4Y3744YeYPHkynn32\n2Q5/bKm9+uqr2LRpE5YsWQKtVotvv/1W6pLuWnP7qze282511TZ55plnMGnSJHzwwQed8vidydHR\nEbNmzcLf//53XLx4EWlpaXjnnXdgbGyM5557Dmq1GpMmTcLOnTtRWloqdblEREQ9ikzojP/ciahP\nKi8vx/3334/c3Fz89NNPcHR0lLok6sNKSkrw0Ucf4f3338eVK1cwdOhQPPTQQ5gzZw4GDBggdXnd\nmq6HVE/8F6Ejaz9y5AimT5+OL774Ag899FCnPIeU3N3dkZqaips3b/aKWYVb2l+9rZ0doSu3yWef\nfYZHH30Uhw4dwtSpUzv1ubpKWVkZDh06hMjISPz3v/+FkZER5s2bhxUrVmDYsGFSl9frLFmyBNnZ\n2Th8+LDUpUhOoVBgy5YtWLJkidSlSOrIkSOYNm0atFotFAqF1OX0GXz9UQdaz56RRNRhzM3NceDA\nARgYGGDGjBkoKSmRuiTqg4qLi7Fhwwa4u7vjz3/+MwIDA3HmzBnExcVh7dq1DCKpTaqrq7Fs2TL4\n+/vrBVu9SVpaGgD0ioCutf3Vm9rZUbpym8yfPx9jx47F8uXLUVNT0+nP1xUsLCwwd+5cREZGIiMj\nAxs2bEBMTAxGjBiBsLCwHnNqOhERkVQYRhJRh3JwcMDRo0eRnp6O8PBwVFZWSl0S9SEHDx6Er68v\n3nzzTTz55JO4fv06duzYgVGjRkldGvUwe/fuRVpamt4MvL1NfX291CV0mNb2V29qZ0fp6m3yyCOP\n4MaNG9i7d2+XPm9XsLGxwbPPPotLly7hu+++Q15eHsaOHYuFCxdyXEkiIqIWMIwkog7Xr18/fP/9\n94iLi8PcuXNRW1srdUnUy1VXV2P+/PkIDw/H9OnTkZqair/97W+9uifU5cuXMW3aNFhaWkKpVGLK\nlCm4cuVKi5O45Obm4qmnnoKLiwuMjY3h7OyMpUuXIjs7W2+9hvfTPc4TTzzRZJlMJkNmZiZmz54N\nhUIBW1tbLFq0CMXFxbh+/TrCwsKgVCrh5OSExx57DEVFRU3aEBUVhbCwMFhbW8PU1BQjR47E7t27\nm6xXXFyM559/Hp6enjA1NYWtrS38/f3xpz/9Cb/88kur22nUqFF6NT/88MNt2r7ffPONeP873T6/\n/fYbZs2aBWtr6yb7pK1tb/h4aWlpCA8Ph0KhgKOjIxYsWICbN2/e0bZqrh0vvfSSuCw7OxvLli0T\nXy8uLi5Yvnw5cnJyWqyvpfZ25GumJe3ZX7p2tnVftfVvpz3rtmc/Nff33Jblre2PlrZJe9rQ1u0H\nAKNHj9bbT71VSEgIfv75Z+zZswfHjh3DsGHDcP78eanLIiIi6n4EIqJOcurUKcHS0lKYP3++UFdX\nJ3U51EvV1dUJU6dOFVQqlfDdd99JXU6XuHbtmmBlZSVoNBrh2LFjQklJiXDy5EkhICBAACA0Prxn\nZ2cLbm5ugqOjo/Dtt98KJSUlwokTJwQ3NzfBw8NDKCws1Fu/ucdo7vYFCxYIV65cEYqKioSVK1cK\nAITp06cLDz74oLj8qaeeEgAITz75ZLOPM3PmTCEvL09ITU0VJk2aJAAQjh49qrdeeHi4AEB45513\nhNLSUqGqqkpISEgQHnzwwSZ1Nq49KytLGDx4sLBmzZo2b19BEISBAwcKAITs7OwW23+77TNp0iQh\nJiZGKC8vFw4fPqx3n7a2veHjzZ8/v8l2feyxx/TWvZttpZOVlSW4urqKry+tVitERUUJTk5Ogpub\nW5Nt0tb2dsRrpiV3ur9uV3t7/nbas25H7KfbLW/L/mjsTt8rWnsuQRCEzMxMAYAwaNCgZvdDb1RU\nVCRMnjxZUCgUQmxsrNTl9GiLFy8Wpk6dKnUZ3YKlpaWwc+dOqcuQnO59RqvVSl1Kn8LXH3WgCIaR\nRNSpoqKiBBMTE2HFihVSl0K91LvvvisYGxsLZ86ckbqULrNgwQIBgPDJJ5/oLT906FCzIcOyZcsE\nAE3+gfz6668FAMLatWv1lrc1bDt+/Li4LCMjo9nlaWlpAgDB2dm52cdJSUkRf4+PjxcACEFBQXrr\nKZVKAYAQGRmpt1z3nC3Vfv36daF///7Cpk2bWmxLSywtLQUAQmVlZbN1t2X7/PDDD62u05a2N3y8\nhts1JSVFACBoNBq9de90WzX05JNPNvv6+s9//iMAEJYtW3ZH7e2I10xL7nR/3a729vzttGfdjthP\nt1velv1xN+1t63MJgiBUVFQIAASFQtHqer1NdXW1EBISIvj6+grV1dVSl9NjMYz8HcOgWxhGSoOv\nP+pADCOJqPPt27dPkMvlwl/+8hepS6FeyM/PT3jmmWekLqNLOTo6CgCEjIwMveWFhYXNhgwajUYA\nIGRmZuotz8/PFwAIQ4YM0Vve1rCt4YeAurq6VpfLZLLbtqu2tlYAINja2uotX7x4sfjYrq6uwuOP\nPy7s2bNHqKqqarG2hIQEwdXVVfD397/t8zbHwMBAACDU19e3+Bwt0d1eVlbW5udrqe0NH6/hdq2q\nqmp2u97JtmpMrVY3+/pKT09vNiRsS3s76zWjc6f763a1t+dvpz3rdsR+ut3ytuyPu2lvW59LEH7f\np4aGhq2u1xtdvXpVACDExMRIXUqPxTDydwyDbmEYKQ2+/qgDRXDMSCLqdDNnzsTOnTuxYcMGvPXW\nW1KXQ73MjRs34OXlJXUZXUo3KYKdnZ3ecisrq2bXz83NBQBoNBq9cd509//tt9/uqA6FQiFeNzAw\naHW5IAh69y0qKsLatWvh7e0NhUIBmUwGuVwOAE3GQfzoo4+wd+9ezJ49G6Wlpdi5cyceeughDBgw\nABcuXGi2tuDgYNy8eRM//fQTPv/883a3zdzcHMCt8UjvlO4xGmtP2xtquF2NjY0BNN2ud7KtGsvL\nywPQ9PWl+133emqspfa21Ib2vmZac7f7q6Xa2/O30551O2I/3WmbWnOn7xW3ey7dfrmTmno6Dw8P\nmJiY4Pr161KXQkRE1G0wjCSiLrFw4UJs2bIFL774Inbu3Cl1OdSL+Pn54cCBA+0KLno6XTDQeKbW\nlmZudXR0BAAUFBRAEIQml7Kyss4tuBlz587F66+/joceegipqaliLS2ZNWsWvvrqK+Tn5+PEiROY\nMmUKbty4gcWLFze7/j//+U9s3boVALBy5Uqkp6e3qz5nZ2cAaNckKm3V3ra3V3u3VWMODg4AWn59\n6W7vTjprf7Xnb6e9f2dt3U+6yWBqamrEZcXFxR3azjttQ1sVFhYC+H0/9SWHDh1CVVWVOIkPERER\nMYwkoi60atUqrF27FsuWLUNkZKTU5VAv8dprr+GHH37Axo0bpS6ly0yePBkAcOzYMb3lMTExza4/\nc+ZMAMDx48eb3BYdHY3x48frLdP1XqqpqUF5eXmTHnIdQVfrH//4R3HW86qqqmbXlclkYphoYGCA\noKAg7NmzBwAQHx/f7H1mz56NxYsXIzw8HEVFRVi8eHG7Ar8RI0YAAFJTU5vcdrfbpz1tb6872VaN\nhYaGAmj6+oqKitK7vTtpbX/djfb87bRn3fbsJycnJwBAVlaWuKyzZmhu73tFW+n2y/Dhw++4tp4o\nPj4ey5cvx6JFizBgwACpyyEiIuo+uuRscCKiBp577jnB2NhYOHLkiNSlUC+xfft2wdDQUHj88ceF\n4uJiqcvpdL/99luT2bSjo6OFqVOnNjsWXF5enjBgwABBrVYLkZGRQn5+vqDVaoWDBw8Knp6eepOH\nCIIgjBs3TgAgnDx5Uti9e7cwY8YMvdube472Lp8yZYoAQHj55ZeFwsJC4ebNm8Lq1aubXReAMGXK\nFOHSpUtCZWWlkJ2dLbz88ssCACEsLKzV58rJyRHs7e0F4NbMxW312WefCQCE9957r8ltd7p97qTt\nrT1eR28rHd2Myg1n0z527JigVqtbnU27NR3Rtta0tr9ae6zbPU97/nbas2579tPChQsFAMLTTz8t\nFBUVCfHx8cL8+fPvatu1tE573yvaup/effddAYDw+eef33bd3mL//v2CtbW1EBQU1CeOS52JY0b+\njmP23cIxI6XB1x91IE5gQ0Rdr76+Xli8eLFgbm4unDx5UupyqJf45ptvBHt7e8HZ2Vn4/PPPhbq6\nOqlL6lSXLl0Spk6dKlhYWAgKhUKYMWOG8NtvvwkABAMDgybrFxQUCKtXrxY8PDwEIyMjwdHRUQgN\nDRV+/vnnJuueOXNGGDZsmGBubi6MGzdOSExMFG/ThQ+NQ4j2Ls/JyREeffRRwcHBQTA2NhYGDx4s\n7Nmzp9l1T548KSxatEhwd3cXjIyMBJVKJQwbNkzYtGmT3sQZKpVK7/6RkZFNnh9Am2Zer6qqElxc\nXITAwMC72j7NBTXtaXt7t2tbt9Xt6szOzhaWLVsmaDQaQS6XCxqNRli6dGmLQWRr7e2o10xrWtpf\nrdXXltoFoX1/O21dt637SRBuBYSPPPKIYG9vL1hYWAihoaHCjRs37rhNt1unrW1o6/YThFsBvouL\nS7MT9PQ2SUlJwqxZswSZTCYsXrxYqKiokLqkHo9h5O8YBt3CMFIafP1RB4qQCUIfGmSLiLqNuro6\nzJ07F//73//www8/9LlTt6hz5Ofn48UXX8THH3+MgQMH4uWXX8bcuXNhYmIidWldIjMzE87OznBw\ncEBOTo7U5fR4hw4dQmhoKL744gs89NBDUpdDt8H91T199tlnePTRR3Hw4EFMnz5d6nI6TVxcHN58\n803s3r0b/fv3x9atWxESEiJ1Wb3CkiVLkJ2djcOHD0tdiuQUCgW2bNmCJUuWSF2KpI4cOYJp06ZB\nq9XqTYBGnYuvP+pA6zlmJBFJwtDQEJ9++imGDRuGKVOmICkpSeqSqBews7PDRx99hCtXrmD06NFY\nsmQJXFxcsHr1aly+fFnq8jqUTCbDtWvX9JadOHECwK2ZpOnuTZ8+Hdu3b8fy5cuxf/9+qcuh2+D+\n6n727duHFStWYNu2bb0yiNRqtfjwww8xduxYDB8+HHFxcfjkk09w+fJlBpFEREStYBhJRJIxMzPD\nN998A1dXV0ybNg2ZmZlSl0S9xMCBA/Hxxx8jNTUVzz33HPbv34/Bgwdj8ODBiIiIwJUrV6QusUOs\nXLkSycnJKCsrw7Fjx7BmzRoolUq89tprUpfWayxduhTffvst3nnnHalLoTbg/upetmzZgu+//x7L\nli2TupQOo9Vq8dlnn2HmzJlwdHTEqlWr0L9/fxw/fhwXL17EvHnzYGhoKHWZRERE3RrDSCKSlFKp\nxJEjR2BsbIyQkBDk5uZKXRL1IhqNBuvWrcO1a9dw/PhxBAcHY8eOHfD19UX//v2xatUqHDlyBBUV\nFVKX2m5RUVGwtLSEv78/rKysMG/ePIwbNw6nT5/GoEGDpC6vVxkzZkyzswtT98T91X0cP34cY8aM\nkbqMu3blyhW89dZbuP/++2Fvb4/FixejqqoK7733HjIyMvDZZ59hwoQJkMlkUpdKRETUI8ilLoCI\nyN7eHj/88APuu+8+hISE4IcffoCtra3UZVEvYmBggAkTJmDChAnYsmULfv75Zxw6dAhHjhzBe++9\nBxMTE4waNQqBgYEIDAyEv78/rK2tpS67Vffffz/uv/9+qcsgIupV6urqEBcXh5MnTyImJgYnT55E\nZmYm7OzsMHnyZHz00UeYNm1atz9GEBERdWcMI4moW3B0dMT333+P/2PvvuOjqBP3gT+7STZtd1NI\n3fSQgqEsVUgCaGihVwWkKagggoeH3GG7n4iHZ+ME9U4R23EWPKScBUSkSgiIKEEikJCQXtiYbDZ9\ns8n8/sh357KkkECSSXner9e+ws7O7j4zswzsk8/MjB49GuPGjcPhw4fh6uoqdSzqhuRyOaKjoxEd\nHY0XX3wROTk5OHToEE6ePIn//ve/ePnllyGTyRAREYGRI0ciOjoaI0eORGBgoNTRiYiojZWWluLM\nmTNi+Xj69GmUlJTAxcUFUVFRWL16NWJiYjBs2DAefk1ERNRGWEYSUafh6+uLY8eOYfTo0Zg8eTIO\nHTrEK+RRu9NoNLj//vtx//33A6i7IvepU6fEL6YffPABjEYjNBoNBg0aBK1Wi4EDB0Kr1SIkJARy\nOc94QkTUFRQWFuL8+fNISEhAQkICzp8/j8TERJhMJgQGBmLkyJF45ZVXMHLkSERERHD/TkRE1E5Y\nRhJRp+Lv749Dhw7h7rvvxsSJE3Hw4EEolUqpY1EP4ubmhunTp2P69OkAgMrKSpw9exbx8fE4f/48\n9u3bh1deeQUmkwmOjo7o378/tFqtWFT2798fjo6OEi8FEVHPVVtbi9TUVLF4NP/MzMwEAHh4eECr\n1SI2NhZPP/00oqOj4ePjI3FqIiKinoNlJBF1OqGhoThy5AjuvvtuzJw5E1999RXs7e2ljkU9lJ2d\nHUaNGoVRo0aJ0yorK3Hx4kWLETY7d+5EcXEx5HI5goKCEBYWhj59+iAsLEy8+fr6SrgkRETdS2lp\nKZKSksTb5cuXkZSUhCtXrqC0tBRWVlYICwuDVqvFqlWroNVqodVq4e3tLXV0IiKiHo1lJBF1SuHh\n4Th48CDGjBmDmTNn4ssvv4Stra3UsYgA1BWUQ4cOxdChQ8VpgiDg2rVrSEhIwG+//YYrV64gLi4O\nH374IfR6PQDA0dFRLCbDw8MRHh6OsLAwhIaGwsnJSarFISLqtKqrq5Geni6WjcnJyWLhmJ2dDQCw\nsbFBUFAQwsPDERMTgxUrVmDgwIHo168ff5lJRETUCbGMJKJOa8CAAfj+++8xZswYzJ8/H//5z39g\nY2MjdSyiRslkMgQHByM4OBizZs2yeKyoqAipqalITU1FYmIifvvtN3zzzTd49dVXUVFRAaCu4NRo\nNOJr1L95e3tDo9FIsVhERO2quroaOp0Oubm54n6y/i0jIwMmkwkA4OLiguDgYERERGDChAniPrJv\n376ws7OTeEmIiIiopVhGElGnNnDgQOzfvx8TJkzAfffdh507d8Lamrsu6lpcXFwwZMgQDBkyBPfe\ne6843WQyIS0tDcnJyUhLS0N6ejrS0tKQkJCAL7/8Enl5eeK8Tk5OCAwMREBAAAIDAxEYGAh/f394\ne3vDx8cH3t7eUCgUUiweEVGTdDod8vLykJmZiZycHHE/Z77l5OSgtrYWAODg4CDu38LCwjB+/HgE\nBgYiODgYYWFhUKvVEi8NERERtQV+oyeiTm/EiBE4cOAAJk6ciGXLluGjjz7iFS6pW7C2tkZISAhC\nQkIafbyyslL8wm7+Ap+eno6zZ89i165dyM3NtZjfw8MDXl5e8PX1FX+ay0qNRgONRgNPT0/+/SGi\n22YwGJCdnY3c3FxkZ2cjJydHvOXm5iIrKwt5eXmoqqoSn+Po6CiWjVqtFtOnTxfvBwQEwMPDQ8Il\nIiIioo7CMpKIuoTo6Gjs3bsX06ZNg7W1Nd577z0WKtTt2dnZoU+fPujTp0+jjxuNRuTn54tf+rOy\nssRiIDMzE6dPn0ZOTo54zkqgrgD18PCARqOBh4cH3N3d4ebmBi8vL/HPHh4e8PT0hLu7O8+3RtRD\n1NbWQqfToaCgQBzNeOP9goICXL9+HVlZWSgrKxOfa2trCy8vL3GU9pAhQzBt2jTxlyDe3t7w9fXl\nyEYiIiICwDKSiLqQcePGYd++fZgxYwasrKzw7rvvQiaTSR2LSDIKhQJ+fn7w8/Nrdr6KigpxBJO5\nuMzJyYFOp4NOp8Nvv/2G/Px86HQ68RyWZo6OjhblpJubGzw9PeHh4QEXFxe4urpa/HRxcWGBSSSx\n2tpaFBUVoaioCIWFhRY/zQXj9evXxb/35sJREATxNeRyufh33t3dHZ6entBqtXB3dxdHX/v5+Yn7\nAyIiIqKWYhlJRF1KbGwsdu7ciblz50KpVOL111+XOhJRp2dvb9/s4eD1lZWVNSgp8vPzcf36dRQU\nFCA3Nxfnz5+HTqdDYWEhysvLG32/GwvKxkpL859VKhXUajVUKhWvKk70fyorK1FSUgKDwQC9Xg+D\nwWBRKjZWNJp/1h8NbWZlZQVXV1e4ubmJI6D79u3bYES0uXx0d3fnL/yIiIioXbCMJKIuZ+bMmdix\nYwcWLVoEhUKBl19+WepIRN2Go6MjgoKCEBQU1KL5q6qqGi1Dbpx2/fp1XLlyxWKa+Qq5N3JycrIo\nKFUqlVha3lhc1p/X3t4eTk5OsLW1hVKphKOjIy/qQx1Kr9fDaDSitLQUZWVlqKysRHFxMfR6PUpK\nSixuRUVFMBgMFtPqz1tdXd3oe6jV6gblflBQEIYMGdLsLwB4iDQRERF1FiwjiahLmj9/PmQyGRYt\nWgSTyYTNmzdLHYmoRzKfK87Ly6vVzzUXMuYixmAwoLi4GMXFxRYFjXlEWE5OjsV0vV6P4uJi8Uq8\nTXFxcYGtrS0cHBygUqmgUCjg5OQEe3t72NnZwcnJCQqFAiqVSiwwXVxcANQVo3K5HA4ODrC1tYWN\njQ2USqX4ugCgVCphY2Mjvgd1DjU1NTAYDAAgfk7Ky8tRVVWF6upqlJaWAgCKiooAAKWlpaiurhbn\n0ev1qKqqQllZGUpLS2E0GqHX61FZWYmKigoYDAYYjUYYDAbxOc1RKpUWZbqzszPUajXc3NwQHBws\nPubs7NygeDfP6+LiAisrq/ZdcURERETtjGUkEXVZ8+bNg0wmw8KFCyEIAjZv3sxDyoi6EHPhcrvK\nyspQUlKC8vJyFBcXw2g0oqSkBGVlZTAajSgqKkJVVRXKy8tRUlKCqqoqGAwGVFRUoLKyEunp6Ral\nU1VVFYqLiwH8r6hqDblcLh5urlarYWVlJRafZuaS08xcbN74fKDuokP115NCoYCjo2Oj733jvDfT\nmtGjer3e4pyCzTEajRYXOKnPZDKhpKSkyXnNZZ/ZjUWfuTQEAEEQxEOSS0pKYDKZGjy/pcyFs52d\nnTjK9saSOjg4WCyd1Wo1FAoF1Gq1+FxnZ2fY2trC0dERSqUSdnZ2YsHIf5+IiIiI6rCMJKIube7c\nuWIhWVFRgX/+85/8wkfUwzg6OjZZzrUVcwFmLjVra2vFwtJgMKCmpkYsN+uXbeYCz1yMApYFGmA5\ngg+oO/Q9NTXV4n79c3Oa36e5nC1RfxlawlzStdSNhauZTCaDs7OzeN/KysriEOL6o0+BuqK2/ojT\nG4tdc9FnLgzNZW3991GpVLC2thaXof57NpWTiIiIiNoHy0gi6vLuvfdeyGQyLFiwALW1tXjnnXdY\nSBJR7YfvlQAAIABJREFUm6pfjvUUJ0+exKhRo5CZmQlfX1+p4xARERFRN8Eykoi6hXvuuQd2dna4\n5557IAgC3nnnHY50ISK6Df7+/gDAMpKIiIiI2hS/qRNRtzF16lTs3r0bO3bswIoVK256UQsiImqa\nRqOBlZUVMjIypI5CRERERN0IR0YSUbcyZcoU7NmzB3PmzIEgCHj33Xc5QpKI6BZYW1vD29sbmZmZ\nUkchIiIiom6EZSQRdTuTJ0/Gnj17MHv2bAiCgO3bt7OQJCK6BX5+fiwjiYiIiKhN8ds5EXVLkyZN\nwt69e/Hpp59i0aJFMJlMUkciIupyWEYSERERUVtjGUlE3dbEiROxb98+7Nu3D4sXL2YhSUTUSiwj\niYiIiKitsYwkom4tNjYW+/btw3//+18sXLiQhSQRUSv4+fnxAjZERERE1KZYRhJRtzdhwgQcOHAA\n+/fvx4IFC1hIEhG1kL+/P3Q6HSorK6WOQkRERETdBMtIIuoR7rrrLuzbtw/ffPMNFi5ciOrqaqkj\nERF1en5+fhAEAdnZ2VJHISIiIqJugmUkEfUYY8eOxddff439+/dj9uzZHOlDRHQTfn5+AMBDtYmI\niIiozbCMJKIeJSYmBkeOHEF8fDwmTpwIg8EgdSQiok7Lw8MDdnZ2vIgNEREREbUZlpFE1OMMGzYM\nx48fR3JyMsaOHYvff/9d6khERJ2STCaDj48Py0giIiIiajMsI4moR+rbty+OHDmC/Px8jB49Gjk5\nOVJHIiLqlPz8/FhGEhEREVGbYRlJRD1WeHg4Tp48ierqaowcORKpqalSRyIi6nRYRhIRERFRW2IZ\nSUQ9mr+/P3744Qeo1WrExMQgKSlJ6khERJ2Kv78/L2BDRERERG2GZSQR9Xienp44evQofHx8MHr0\naCQkJEgdiYio0+DISCIiIiJqSywjiYgAuLi44NChQ+jfvz/uvvtuxMfHSx2JiKhT8PPzQ3FxMQwG\ng9RRiIiIiKgbYBlJRPR/HB0d8fXXX+Puu+/G+PHjcejQIakjERFJzs/PDwA4OpKIiIiI2gTLSCKi\nemxtbbFr1y7Mnj0b06ZNw969e6WOREQkKZaRRERERNSWWEYSEd3A2toaH374IRYvXoy5c+dix44d\nUkciIpKMs7Mz1Go1y0giIiIiahPWUgcgIuqMrKys8O6778LJyQnLli1DVVUVHn74YaljERFJwtfX\nl2UkEREREbUJlpFERE2QyWR47bXX4O7ujhUrVqC4uBjr1q2TOhYRUYfjFbWJiIiIqK2wjCQiuon1\n69fDxsYG69atQ2FhITZt2gSZTCZ1LCKiDuPv74+UlBSpYxARERFRN8AykoioBdauXQtXV1c8/PDD\nyMnJwfbt22FjYyN1LCKiDuHn54djx45JHYOIiIiIugGWkURELfTAAw/A19cXs2fPRnZ2Nvbs2QOV\nSiV1LCKidmc+TFsQBI4MJyIiIqLbwqtpExG1wrhx43D48GFcuHABY8aMwfXr16WORETU7vz8/FBZ\nWYmCggKpoxARERFRF8cykoiolYYNG4b4+HgUFxcjMjISycnJUkciImpXfn5+AMCL2BARERHRbWMZ\nSUR0C4KDg/HDDz/AxcUFo0aNwrlz56SORETUbvz9/SGTyVhGEhEREdFtYxlJRHSLPD09cezYMQwe\nPBh33XUXDhw4IHUkIqJ2YWdnh169erGMJCIiIqLbxjKSiOg2KJVKfPnll5g/fz6mT5+O999/X+pI\nRETtwnwRGyIiIiKi28GraRMR3SZra2ts374dvr6+ePjhh5GZmYkNGzZIHYuIqE35+/sjIyND6hhE\nRERE1MWxjCQiagMymQwbNmyAq6sr/vjHP6KwsBBbtmyBXM4B6ETUPfj5+eGXX34BAAiCgLy8PGRn\nZyMsLAxqtVridERERETUVbCMJCJqQ3/4wx/g6+uLhQsXIjs7G5988gns7OykjkVE1GopKSm4dOkS\nMjMzkZWVhR9//BFJSUnw9fVFfn4+TCYTAOC5557jaHAiIiIiajGWkUREbWz27Nk4cOAAZs6ciUmT\nJmHfvn1wcnKSOhYRUYvV1taif//+qKiogLW1NaysrGAymVBTUwO9Xm8xb0REhEQpiYiIiKgr4vGD\nRETt4O6778bJkydx9epVjBw5EllZWVJHIiJqMblcjrlz50KhUMBkMqGqqgo1NTWNzhsVFdXB6YiI\niIioK2MZSUTUTvr164cffvgBJpMJo0aNwm+//SZ1JCKiFnv22WfFQ7Gb4u3tDV9f3w5KRERERETd\nActIIqJ2FBgYiJMnT8LHxwfR0dE4fPiw1JGIiFokJCQE99xzD2xsbBp93MrKCnfddVcHpyIiIiKi\nro5lJBFRO+vVqxcOHz6MqVOnYuLEiXj77beljkRE1CLPPfdck6Mj5XI5D9EmIiIiolZjGUlE1AFs\nbW2xY8cOPPPMM1i1ahXWrFmD2tpaqWMRETUrIiICU6dObXR0ZHV1NctIIiIiImo1lpFERB1EJpNh\nw4YN+Oyzz/Duu+9i7ty5qKiokDoWEVGznn/++UZHR9rZ2UGr1UqQiIiIiIi6MpaRREQdbN68efj+\n++9x/PhxxMTEID8/X+pIRERNGjRoEMaOHQtra2uL6UOHDm0wjYiIiIjoZlhGEhFJIDo6Gj/88AMK\nCgoQFRWFy5cvSx2JiKhJGzdutBgdaWtry4vXEBEREdEtYRlJRCSRPn36ID4+Hl5eXoiMjMR3330n\ndSQiokZFRkYiOjpaHAlZVVWFyMhIiVMRERERUVfEMpKISELu7u44cuQIZsyYgcmTJ+Pll1+WOhIR\nUaPqX1lbJpNh+PDhEiciIiIioq6IZSQRkcRsbW3x0UcfYfPmzXj66aexfPlyVFdXSx2LiMjC+PHj\nMWTIEABAUFAQ3NzcJE5ERERERF0RzzpORNRJrFmzBqGhobjvvvtw6dIl7NmzB+7u7lLHIqJOqqio\nqMn7giBAr9c3eE5NTQ0MBkOr3qeyshIVFRUAgHHjxuHcuXMICAjArl27mn2eSqVq1QVu5HI5nJyc\nGky3traGSqVq8X0iIiIi6txYRhIRdSKTJ0/GyZMnMX36dERGRuLLL79ERESE1LGIejRzgVdeXo6q\nqiro9XoYjUaUlpaiuroapaWlAAC9Xg9BEFBRUYHKykqL4s9gMKCmpkYs9mpra1FcXAwAKCkpgclk\ngtFoRFlZmfi+5tdr6r6Ujh49iqNHj0odo1E2NjZQKpVN3ndycoJcLoe9vT3s7OwsSlBzgWprawsH\nBwfIZDI4OzsDAJRKJWxsbKBQKODo6AgAcHZ2FudRKBRQKpVQKpVQKBTi84iIiIjIEstIIqJOpn//\n/jh79izmzJmDESNG4NNPP8XUqVOljkXU6VVWVqK0tBQGgwF6vR6lpaUoLS1FSUkJiouLYTAYxHnK\nyspgNBpRVFSEqqoqlJeXo6SkBEajEcXFxWJpaC4RW6I1RZZcLkdwcDAAwMHBAba2tg1G+N04svDG\n+2q1GlZWVk3eN5duN3J0dIRCoWjhWq1jLt1aqn5J21LmsvdG5u3T0vv1R3I2dt88gtT8GaifNSsr\nC7W1tS0qlFvC/FlQqVRQKBRwcnKCnZ0d7O3t4eTkBIVCAZVKJX4GnJ2dYWdnB6VSCScnJzg5OUGp\nVEKlUkGpVMLZ2bnBdiYiIiLqalhGEhF1Qm5ubjh48CAefvhhzJo1C6+++ioef/xxqWMRtZuSkhIU\nFRU1uBUWFqKkpEQsFfV6PUpKSiymFRUViaMUG2NlZQW1Wi0WQY6Ojhaj19RqNby8vBotjBqbplar\noVAooFarmzy0uKezsbGBi4tLq57T2vmlZh7daj4k/malttFoFAtx87SqqirodDqx/DQ/x1ygN8X8\n2VQqlXBxcbEoLNVqNZydncU/u7i4NHqzt7fvwLVFRERE9D8sI4mIOik7Ozv8+9//Rr9+/bBu3Tr8\n8ssv2LZtG+zs7KSORtSo2tpaFBQUiLfCwsJGC0ZzyVj/vvkqzfWpVCq4urpCpVJZjAzz8fGxKF9c\nXFzEP5vndXZ2Fqc5ODhIsDaou5PL5WKB6urq2i7vYTAYWlzGm6elpqaiuLgYJSUlMBgMKCoqanQk\np52dHVxcXODq6tpkYWm+ubq6ws3NDZ6enizfiYiI6LaxjCQi6uTWr1+PgQMH4r777sOvv/6KvXv3\nIiAgQOpY1EMUFRUhJydHLA1zc3Mt7tefptPpGpSK5sKj/s3NzQ2hoaHNlh9ubm6tPpSYqLtRq9VQ\nq9Vt8loVFRXN/j02/5IgJSXFYlplZWWD13JxcYG3t7f491Wj0Vjcrz/Nw8OjVRcyIiIiou6P/zMg\nIuoCYmNj8eOPP2LWrFkYOnQo/vOf/yAmJkbqWNRFlZWVISsrC/n5+Q1+ZmZm4vr168jPz29wtWYr\nKyu4ubnBzc0N7u7u8PDwQEBAAIYOHWoxzd3dHW5ubnBxcWGhSNRJ2Nvbw97eHhqNBn379m3x88rL\ny1FUVASdTof8/Hxx5LNOp8P169eh0+mQmJiI48ePQ6fTobCw0OL5crkc7u7ucHd3h4+PD7y8vJr8\naWtr29aLTURERJ0Qy0gioi4iJCQE8fHxeOCBBzBhwgT89a9/xfr166WORZ1ITU0NcnNzkZaWhszM\nTOTl5SE7Oxt5eXkWpWP9C4tYW1vD09NTLAP69u2LsWPHwtPTEx4eHhblo5ubm4RLR0RScHBwgIOD\nA3x8fFo0v8lkgk6nE0vL/Px86HQ66HQ6cT/0888/i7/0qM/NzQ1eXl7w9fWFp6enxU8/Pz/4+/vD\nw8OjPRaTiIiIOhDLSCKiLkSpVGLXrl145ZVX8PTTTyMxMRHbtm3jhQh6CKPRiKysLOTk5CA3Nxep\nqaniLScnB2lpaRZXFTYfSqnRaODv748RI0aI9+tP5yGURNRWrK2t4e3tDW9v75vOazQaUVBQIB42\nfuPPixcvIicnB/n5+aitrQVQd4VyHx8fBAcHi/ux4OBg8cZ9GhERUefHf6mJiLoYmUyG9evXo0+f\nPli8eDFSUlKwa9cuaDQaqaNRG9DpdEhKShJvqampyMjIQHp6OnJzc8X5HB0dERAQgICAAISEhGDM\nmDHw9/dHYGAgAgIC4O3tDSsrKwmXhIioeQqFAhqNBhqNBkOGDGlyvqqqKmRmZiI9PV3cH6alpSEj\nIwNxcXHIysqC0WgEUFeG+vr6ivvDkJAQhIaGIiwsDKGhoVCpVB21eERERNQElpFERF3UjBkzcPr0\nacyePRtDhgzBzp07cdddd0kdi1rAYDAgOTkZycnJFsVjcnIy9Ho9gLpDI0NDQxEcHIwRI0Zg/vz5\n8Pf3R0BAAPz9/XnINBH1GLa2tggJCUFISEijj9fW1iIvLw/Xrl1DRkaGWFimp6cjPj4e165dEy+u\n5e3tjbCwMLGcDA0NRXh4OIKDg3nOSiIiog7CMpKIqAuLiIjA2bNn8eCDD2Ls2LHYtGkT/vznP0Mm\nk0kdjVB3oZiLFy8iISEBFy5cwMWLF3HlyhXk5eUBAGxsbBAUFISwsDCMGjUKy5YtE0fw+Pr6cjsS\nEbWAXC4XR1hGR0c3eLy6uhrXrl1DcnIyrly5Iv4y6Ntvv0VWVhYEQYCVlRUCAgIQHh6OAQMGiLfw\n8HDY2NhIsFRERETdF8tIIqIuTqVS4fPPP8cbb7yBP/3pTzh16hT+9a9/wdnZWepoPYYgCLh27Rou\nXLgg3hISEpCamora2lqoVCr0798fAwYMwIwZMxAeHo7Q0FAEBQXx3GZERO3MxsZGHA05ZcoUi8cq\nKirEkenJycm4dOkSvv32W7z++uswGo1QKBTo27evuA/XarUYMGAAL6RDRER0G/gNiIioG5DJZFiz\nZg0GDRqEefPmYfjw4di9ezf69esndbRu6fr16zh16hTi4uJw+vRpXLhwAQaDAXK5HMHBwdBqtVi0\naJH4xTUoKIijHImIOiF7e3totVpotVqL6dXV1bh06RIuXLiAX3/9FefPn8ehQ4fEc/d6eXlh0KBB\niIqKQnR0NO688044OjpKsQhERERdDstIIqJuZPTo0fjpp58wd+5cREZGYvv27Zg/f77Usbq02tpa\nXLp0CXFxcTh16hROnTqF5ORkyOVy9O3bF1FRUVi8eDEGDBiAfv36QalUSh2ZiIhuk42NjXiodn06\nnU489ca5c+ewfft2/OUvf4G1tTW0Wi2io6MRGRmJ6Oho+Pn5SZSeiIioc2MZSUTUzfj4+ODo0aNY\nt24d7rvvPpw+fRqvvvoqz3nVComJiTh48CAOHz6MU6dOQa/XQ6lU4s4778T8+fMRFRWFyMhIODk5\nSR2ViIg6kLu7O8aNG4dx48aJ07Kzsy1+YfXPf/4TJpMJfn5+GDVqFMaNG4fY2FhoNBoJkxMREXUe\ncqkDEBFR21MoFHjjjTfwySef4L333sOoUaOQnp4udaxOq6qqCt988w0efvhh+Pn5oV+/fnjxxReh\nVCqxceNGnDt3DkVFRTh8+DA2btyIiRMnsojsYmQymXhrS2fPnkVMTIykGdpae+Zs7Ws3Nf+vv/6K\np556CgMHDoRSqYRSqURERAQeeeQRXL169Zbz3bg9Kysr8eyzz6J3796wtrbuEtuvvXXUOomJicHZ\ns2fb/HXbg4+PD+bOnYstW7bgxx9/hF6vx9GjR7FixQoUFBTg0UcfhY+PD7RaLZ588kmcOXMGgiBI\nHZuIiEgyLCOJiLqxBQsW4Ny5c6ioqIBWq8WuXbukjtRpmEwmfPXVV1i4cCE8PDwwbdo0XLx4EcuX\nL8eZM2eQn5+Pzz//HI899hgGDx7MC810ce3xxf+9997DhAkTsGbNGskytIf2zNna125q/gEDBuCr\nr77Ca6+9huzsbGRnZ+Nvf/sbvv76a/Tr1w+HDx9udbbGtudzzz2HTZs2YdmyZTAYDDh48GCrX7e7\n6ah18oc//AHjx4/H9u3b2+X125OjoyPuvvtuPPPMMzh48CAKCwtx4MABjBkzBrt378aIESMQEBCA\nxx9/HD/99JPUcYmIiDocv1kREXVz4eHhOHPmDNavX4958+bh5MmTePXVV6FQKKSOJon09HRs27YN\n//rXv5Cbm4tRo0bhr3/9K2bNmgVfX1+p43V65hFQXaVYay8HDhzA8uXL8dlnn2HmzJnidK6fjrNz\n506Li3TNmDEDdnZ2mDhxIp544gmcP3++xa/V1Pb8/PPPAQArV66Eg4MDJkyY0OO3bUetk1mzZqG8\nvByLFy+Gr68vJk2a1Obv0VHs7e0xceJETJw4Ea+//joSEhKwe/du7Nq1C1u3boVWq8WDDz6IBx54\nACqVSuq4RERE7Y4jI4mIegA7Ozts3boVO3bswAcffIDo6GikpqZKHatDJSUlYenSpQgNDcWOHTuw\nbNkyXL16FcePH8djjz3GIpJazGg0YsWKFYiKisK8efOkjtMjCYJgUUSaRUdHA6j7+95SzW3PzMxM\nAICrq+ttpO1eOnKdLFy4EMOHD8cjjzyC6urqdn+/jqLVarFx40bx4mhDhw7F008/jYCAADz33HMo\nLCyUOiIREVG7YhlJRNSDLFq0CD/99BOqq6sxaNCgHnHYdnl5OTZs2ID+/fvjxIkTeOutt3Dt2jW8\n8MILCA4OljoedUG7d+9GZmYmFixYIHUUuoFOpwNQV/a0VHPbs7a2ts2ydRcdvU4WLFiAjIwM7N69\nu0Pft6NERUXhvffeQ3Z2Np577jm8++67CAkJwdatW/n5IyKibotlJBFRDxMeHo74+HjMnTsX8+bN\nw9q1a2E0GqWO1S4uX76M/v37480338Qbb7yB5ORkLF++vNtfWTwxMRGTJ0+GUqmEWq1GbGwsfvvt\ntyYvBnL9+nWsXLkSvr6+UCgU8PHxwfLly5GXl2cxX/3nmV/noYceajBNJpMhJycHc+bMgUqlQq9e\nvXD//fejuLgYaWlpmD59OtRqNby8vPDAAw9Ar9c3WIbvv/8e06dPh4uLC+zs7DB48GDs3LmzwXzF\nxcX44x//iODgYNjZ2aFXr16IiorCunXr8OOPPza7noYOHWqRef78+S1av19++aX4/Nasn/oyMzMx\nY8YMqFQqeHp6YtGiRfj9998bvJ75lpKSgtmzZ8PFxaXBNmzp9ruVddWSnACQl5eHFStWiBl8fX3x\nyCOPID8/v5k1aan+59bJyQmzZs1CRkZGi58PAP/+978B1J3XsKVasz2ffPJJi/tttW1aM29Lt2NT\nf99bMr2pZWpunbRmGVq6/gBg2LBhFtupu1Kr1VizZo04in/dunWYMmUKDAaD1NGIiIjankBERD3W\nxx9/LKhUKmHw4MHC5cuXpY7TphITEwVXV1chOjpayM/PlzpOh7l69arg7OwsaDQa4fDhw0JJSYlw\n8uRJITo6WgAg3PhPf15enhAQECB4enoKBw8eFEpKSoQTJ04IAQEBQlBQkFBUVGQxf2Ov0djjixYt\nEn777TdBr9cLq1atEgAIU6ZMEWbNmiVOX7lypQBAePjhhxt9nZkzZwo6nU5IT08Xxo8fLwAQvv32\nW4v5ZsyYIQAQtmzZIpSWlgpVVVXC5cuXhVmzZjXIeWP23NxcoV+/fsL69etbvH4FQRDCw8MFAEJe\nXl6Ty3+z9bNw4UJxPaxevVoAIDzwwANNzj9+/HghLi5OKC8vF/bv3y++R2u2362sq5bkzM3NFfz8\n/MTPnMFgEL7//nvBy8tLCAgIaLCeGltHjX1ujx8/LsTGxt50nZqdP39esLe3F55++umbzlvfrW7P\nttw27b0dW7pcN1um5p57q/uS5t5LEAQhJydHACD06dOn0e3QXZ09e1bQaDTCwIEDhbKyMqnjSGrp\n0qXCpEmTpI7RKSiVSuH999+XOobkzPsKg8EgdZQehZ8/akPPs4wkIurhrl27JkRFRQn29vbCli1b\npI7TJkwmkzBkyBAhOjpaqKiokDpOh1q0aJEAQPj3v/9tMf2bb75ptERYsWKFAKDBfy737NkjAGhQ\n7LS0bDt27Jg4LTs7u9HpmZmZAgDBx8en0de5du2aeP/SpUsCAGHUqFEW86nVagGAsGvXLovp5vds\nKntaWpoQEhIibNq0qcllaYpSqRQACJWVlY3mbu36ycrKEgAIGo2myfmPHj3a6Ou1ZvvdyrpqSc6H\nH3640c/cRx99JAAQVqxY0ehr19fU53bv3r0tKiPPnz8veHh4CE888USz8zXmVrdnW26b9t6OLV2u\nmy1Tc8+91X1Jc+8lCIJQUVEhABBUKlWz83VHaWlpgpubm/DYY49JHUVSLCP/h2VQHZaR0uDnj9oQ\ny0giIhKE6upq4bnnnhOsrKyE2bNnC7///rvUkW7Lzz//LAAQLly4IHWUDufp6SkAELKzsy2mFxUV\nNVoiaDQaAYCQk5NjMb2goEAAIPTv399iekvLtvpfEGpqapqdLpPJbrpcJpNJACD06tXLYvrSpUvF\n1/bz8xMefPBB4fPPPxeqqqqazHb58mXBz89PiIqKuun7NkYulwsAhNra2ibfoymtXQ/m+ZsaGdWa\n7Xcr66olOb29vRv9zJnLyxvL5sbWUVOfW51Od9N1mpiYKLi4uAgbN25scp7m3Or2bMtt097bsbXT\nmxuJ19Rzb3VfcrNRf+bPnZWVVbPzdVdvvfWW4OTkJJhMJqmjSIZl5P+wDKrDMlIa/PxRG3qe54wk\nIiJYW1tjw4YNOHToEM6cOYOBAwfixIkTUse6Zenp6ZDL5QgLC5M6SocrKCgAALi5uVlMd3Z2bnT+\n69evAwA0Go3FedzMz09JSbmlHCqVSvyzXC5vdrogCBbP1ev1ePrpp3HHHXdApVJBJpPB2toaABqc\nr/CDDz7A7t27MWfOHJSWluL999/HvHnzEBoaivPnzzeaLSYmBr///jtOnTqFTz/9tNXL5uDgAAC3\nda7VlqyHxt7zRq3ZfreyrlqS03zRmBs/c+b75ozNaepze+P9G2VlZWHixIlYu3Yt/vKXv9z0fRpz\nu9uzLbZNe2/Htlqm5tzqvuRm72XeLreSqTu44447UFxcjKKiIqmjEBERtRmWkUREJIqJicHFixcR\nFRWFMWPG4Mknn0R1dbXUsVpt6NChEAQBe/fulTpKhzN/8TeXO2Y33jfz9PQEABQWFkIQhAa3srKy\n9g3ciLlz5+Jvf/sb5s2bh/T0dDFLU2bPno0vvvgCBQUFOHHiBGJjY5GRkYGlS5c2Ov+bb76Jt956\nCwCwatUqZGVltSqfj48PADR64Z2O1trt19p11RIeHh4Amv7MmR9vTlOf2+Li4iafo9frMWnSJCxf\nvhzPPvusxWM3XgSlOe21PVuzbdprO5rXQ/39eHPrtKOWtzXMJZx5O/U0u3fvRnBw8E2L+e6suf1/\nT9Sa/RsRUWfFMpKIiCw4Oztj586d4hWoY2JicO3aNaljtYqvry9WrlyJ1atX4+eff5Y6ToeaMGEC\nAODw4cMW0+Pi4hqdf+bMmQCAY8eONXjshx9+QGRkpMU08+ik6upqlJeXt8sXZHPWJ554Aq6urgCA\nqqqqRueVyWRimSiXyzFq1Ch8/vnnAIBLly41+pw5c+Zg6dKlmDFjBvR6PZYuXdqqL7uDBg0CUDcC\n90YdsX7qa832u5V11RLTpk0D0PAz9/3331s83pymPrfx8fGNzl9VVYUZM2Zg3rx5DYrI1mpue96O\n1myb9tqOXl5eAIDc3Fxx2i+//HILS3Nzrd2XtJR5uwwcOPCWs3VVO3bswNtvv40XX3xR6iiSMplM\n4uj4nq66uprrgoi6h3Y/EpyIiLqsixcvCgMGDBBUKpWwfft2qeO0SllZmRAbGysolUrhX//6V6Pn\ng+uOUlJSGlyV+IcffhAmTZrU6LnedDqdEBoaKnh7ewu7du0SCgoKBIPBIHz11VdCcHCwxQVMBEEQ\nRowYIQAQTp48KezcuVOYOnWqxeONvUdrp5uvoPzUU08JRUVFwu+//y6sXbu20XkBCLGxscLFixeS\n8Q8kAAAgAElEQVSFyspKIS8vT3jqqacEAML06dObfa/8/HzB3d1dANCqizd98sknAgDhH//4R4PH\nOmL91Nea7Xc766q56earKNe/mvbhw4cFb2/vFl9Nu7HPbVxcnDB69OhG57/nnnvE6U3dWqq57dnc\na7Xltmmv7bhkyRIBgLB69WpBr9cLly5dEhYuXHjLn7fm5mntvqSl2+mNN94QAAiffvrpTeftLsrL\ny4U//elPgkwmE5555hmp40hu/vz5wuzZs6WO0SnI5XJh586dUseQHM8ZKQ2eM5LaEC9gQ0REzTMa\njeLFbWJjYxtcYKIzq66uFh5//HHByspKiImJEX766SepI3WIixcvCpMmTRIcHR0FlUolTJ06VUhJ\nSREACHK5vMH8hYWFwtq1a4WgoCDBxsZG8PT0FKZNmybEx8c3mPfs2bOCVqsVHBwchBEjRghXrlwR\nH2uqDGrt9Pz8fGHx4sWCh4eHoFAohH79+gmff/55o/OePHlSuP/++4XAwEDBxsZGcHJyErRarbBp\n0yaLC2M4OTlZPH/Xrl2NFlhnz5696fqtqqoSfH19hZEjR3bo+mmquGnp9mvpumptTkGoKyRXrFgh\naDQawdraWtBoNMLy5cubLCIbe436n1ulUilMmDBBSExMbPG6udUysqnt2dxrtvW2ac28Ld2OglBX\nEC5YsEBwd3cXHB0dhWnTpgkZGRm3vEw3m6ely9Ca7TVixAjB19e30Qv0dDc1NTXC7t27hd69ewtq\ntVr46KOPpI7UKcyZM0eYO3eu1DEkZzQaBQDCnj17pI4iOZaR0mAZSW3oeZkg8CQcRER0c6dPn8aS\nJUug0+nw1ltvYeHChVJHarGzZ89i9erV+PHHHxEbG4s//elPGDNmTI8671JOTg58fHzg4eGB/Px8\nqeN0ed988w2mTZuGzz77DPPmzZM6Dt0mbs/O6ZNPPsHixYvx1VdfYcqUKVLHaTeVlZX4z3/+g1de\neQWXLl3C3LlzsXnzZmg0GqmjdQozZsyASqXCxx9/LHUUSZWVlUGpVOLrr7/u1n8fWuLAgQOYPHky\nDAaDxYXWqH2pVCps3boVy5YtkzoKdX0bec5IIiJqkREjRuD8+fNYsmQJFi9ejLlz56KwsFDqWC0y\nbNgwnDlzBgcPHkRlZSXGjRuH0NBQbNq0CZmZmVLHa3MymQxXr161mGa+OnpMTIwUkbqdKVOm4J13\n3sEjjzyCffv2SR2HbhO3Z+ezd+9ePProo3j77be7bfHy888/47HHHoNGo8FDDz2EwYMH49dff8Vn\nn33GIrIek8kEGxsbqWNIznwhKq4LIuoOWEYSEVGLOTg4YOvWrThw4ADi4uLQr18/7N+/X+pYLTZh\nwgQcO3YMv/76K6ZOnYrXX38dAQEBiIyMxGuvvYbU1FSpI7aZVatWITU1FWVlZTh8+DDWr18PtVqN\nDRs2SB2t21i+fDkOHjyILVu2SB2F2gC3Z+eydetWHDp0CCtWrJA6SpsRBAE//vgj1q9fj5CQEAwZ\nMgTfffcd1q9fj4yMDOzYsQMRERFSx+x0eNGWOpWVlQAAOzs7iZMQEd0+lpFERNRqsbGxSEhIQFRU\nFKZOnYrVq1ejtLRU6lgt1q9fP2zZsgXZ2dn48ssvcccdd+Cll15C7969ERERgbVr1+LgwYOoqKiQ\nOuot+f7776FUKhEVFQVnZ2fcd999GDFiBM6cOYM+ffpIHa9bufPOOxu9ejB1TdyencexY8dw5513\nSh3jthUUFOCzzz7DAw88AI1Gg+HDh2P37t2YM2cOTp8+jcuXL2P9+vXilc+poerqao4GBKDX6wEA\nzs7OEichIrp9/BUTERHdEjc3N3zxxRf4+OOP8fjjj+Obb77B9u3bMW7cOKmjtZitrS2mTp2KqVOn\nwmQy4cSJE/j2229x8OBBvP7667Czs8PQoUMRFRUl3tzd3aWOfVNjx47F2LFjpY5BRNTjpKSk4NSp\nUzh16hTi4uKQmJgIKysrREVFYc2aNZg0aRK0Wq3UMbsUHqZdh2UkEXUnLCOJiOi2LFq0CBMmTMCq\nVaswfvx43HvvvXjnnXfg6uoqdbRWsba2xpgxYzBmzBi88soryM7OxuHDhxEXF4f9+/fjtddeQ21t\nLcLCwhAZGYno6GhERUXhjjvugFzOAw2IiHqaqqoqnDt3DvHx8YiLi8OpU6eQn58PW1tbDBkyBLGx\nsXjhhRcQExMDtVotddwui4dp1ykqKgIAuLi4SJyEiOj2ca9ORES3zcPDA7t27cJXX32FRx55BP36\n9cM///lPzJw5U+pot8zHxwdLlizBkiVLANSNSIiPjxe/dK5duxalpaVwdnbGoEGD0L9/fwwYMABa\nrRZ9+/aFvb29xEtARERtpaioCAkJCbhw4QIuXLiAhIQE/Prrr6iqqoKnpyciIyOxbt06REVFYciQ\nIbC1tZU6crdhMplYRqLu/yFWVlZQKpVSRyEium3cqxMRUZuZNm0aRo4ciSeffBKzZs3Cvffei7ff\nfhu9evWSOtptc3Z2xqRJkzBp0iQAdV+OLly4gPj4eCQkJOD06dN4//33UVZWBisrK4SGhorl5IAB\nAzBgwAD4+/tLvBRERNScmpoaJCUliYWjuXzMzMwEUHeKEq1Wi1GjRuEPf/gDIiMjERISInHq7q28\nvBwODg5Sx5CcXq+Hs7MzZDKZ1FGIiG4by0giImpTLi4u2LZtGyZPnoyVK1eif//+eOuttzB79myp\no7Upa2trDB48GIMHDxan1dbWIiUlxeIL7HvvvYdr164BqCs0w8PDERoaKv4031QqlVSLQkTU4+h0\nOiQlJSEpKQnJyclITk4W71dWVsLGxgbh4eEYMGAAVq1aJf5iSaPRSB29xykpKeG/kQB+//33bvHL\nXSIigGUkERG1kxkzZmD06NFYu3Yt7rnnHkybNg1vvfUW/Pz8pI7WbuRyuVgu3nPPPeL04uJi/Prr\nr7h48SKuXLmCpKQk7NixA9euXYPJZAIAeHt7IywsDKGhoRY/g4ODYWdnJ9UiERF1WcXFxbh69apY\nOF65ckUsHs0XA7G3txf3uVOmTMETTzyB/v37o2/fvlAoFBIvAQEsI82ysrLg4+MjdQwiojbBMpKI\niNqNi4sLPvzwQyxduhSPPPII+vTpg//3//4fnnjiiR51/icnJyeMHDkSI0eOtJhuMpmQkZGB1NRU\n8ZaYmIgjR44gLS0NtbW1AOrWY3BwMLy9vaHRaBAcHGxx48nsiagnKioqQmpqKnJycpCbm2uxLzVP\nA+pGsvv7+yM4OBiDBg3CnDlzEBERgb59+yIwMJAXIevEBEFAaWkpy0gA2dnZLCOJqNvoOd8EiYhI\nMqNHj0ZCQgL+/ve/47nnnsNnn32Gbdu2Yfjw4VJHk5S1tbVYKN6ooqICSUlJuHbtGtLT05GWlob0\n9HScO3cOe/bsQUFBgTivs7MzAgIC4O/vj8DAQAQEBMDPzw8ajUYsMHlBHSLqSoqLi5GdnY28vDxk\nZ2cjIyMD6enp4s+0tDRUVlYCqBuV7u3tLe7/xo8fj4CAAAQEBCAkJARBQUE96hdg3UlFRQVqampY\nRqKujOzbt6/UMYiI2gT/VSYiog5hY2OD9evXY86cOVi5ciWioqLw0EMP4dVXX4VarZY6Xqdjb28P\nrVYLrVbb6OPl5eVIS0tDWlqaxZf0n3/+GXv27EFubq44shKoKyzrl5NN/WRpSUTt6caSsamfFRUV\n4nMUCgX8/Pzg7++PgIAAREZGimWjv78//Pz8eEh1N1VSUgIA/H8CgJycHI6MJKJug2UkERF1qJCQ\nEHz33Xf48MMP8ec//xn79+/HG2+8gVmzZkkdrUtxcHBAREQEIiIiGn3cZDLh+vXrTX7ZT0xMRG5u\nLvLz8xstLd3d3eHu7g4PDw+4u7vDzc0N7u7u8PT0hJubm3jjaCOinq2yshIFBQXQ6XTIz89HQUFB\ng/s6nU7cH91YMnp5ecHHxwdeXl4YOHAgPD094evra/HTw8NDwiUkKZnLyJ4+MrK6uho6nY4XUCKi\nboPfIIiIqMPJZDIsW7YM06ZNwxNPPIE5c+YgNjYWW7duRVhYmNTxugVra2toNJqbfnGpqalBfn6+\neH41809zeZCYmAidTicWDPWLSwAWxWT98tLd3R0uLi6N3nhBHqLOqbS0FIWFhSgqKmpwu379OnQ6\nnbg/MJeNpaWlFq+hUCga7A8CAwPh7u4ulovm8tHd3V2iJaWugmVkHfN5pIOCgqSOQkTUJlhGEhGR\nZNzd3bFjxw489NBDeOyxx9CvXz+sXLkSL7zwAg/J6iBWVlYtKi2BugsJ1C8mbxwJVVBQgOTkZJw6\ndQoFBQUoKioSz+lWn729fZNFZWM3lUoFpVIp/pmjMYkaV1lZiZKSEpSUlKCoqAilpaWNFotN3aqr\nqxu8pvnvnoeHBzw8PODm5obQ0NAGI6XN97nvprbEMrJOcnIyAKB3794SJyEiahv83zwREUlu9OjR\n+OWXX/Dxxx/jiSeewBdffIG//e1vWLx4MWQymdTx6P/IZDKxkGipioqKFpUghYWFSElJsZjWWJEJ\n1JWZNxaU5vsqlarZaba2tlCr1bC3t4ednR3UajWsrKzaahURtUpVVRXKy8tRWloKo9EIvV7faKFo\nvn+zaY2VicD/CsX6Ny8vL9xxxx03/WWAjY1NB68Vov9hGVknOTkZnp6ecHJykjoKEVGbYBlJRESd\nglwux5IlSzB16lQ8//zzWLZsGd5//328+eabGDBggNTx6BbZ29vD3t7+ls5zZS4yzcVLUVERSkpK\nLIqYG6fpdLpGy5rmWFlZNSgoFQpFi6ZZWVnB0dERCoUCNjY2UCqVAOrOvSmTyeDg4ABbW1tYW1uL\nX6bNj1HnYjQaUVZWBgAoKioCAJSVlcFoNKK6ulo8HFmv10MQBJSXl6OqqkosFEtKSlBdXQ29Xt/s\ntPrF483UL9brF/De3t4ICwtrULab79ef5uzszEKRuqzi4mLY2Nj0+IurJScnIzQ0VOoYRERthmUk\nERF1Kq6urti6dSsWLVqE1atXY8iQIXj00UexYcMGuLi4SB2POpC5yGwL5oKyqqoKxcXFqKysREVF\nBQwGA4xGIwwGAyoqKlBZWYni4mIYjUaUlJSI0zIzM8Vp5hLKXEqVlJTAZDK1OlNjRaWTkxPkcjmA\nuoK+/igYc2na1P36r9PY/Ru15u/TjVmaU1tbi+Li4ha/tslkarYwNheDQN2pAuqXeDe7f2OW5grH\n1rKzs4O9vb1YQptLaRcXFygUCjg6OsLb2xsKhQLOzs6wtbWFg4MDlEplg2kqlQoKhQJOTk4WI3+J\nejqdTsdziwK4evUqQkJCpI5BRNRmWEYSEVGnNGzYMMTHx+PDDz/E008/jU8++QR/+ctfsHLlSigU\nCqnjURdjPuS0PZlHvtUvwMxFpfmx+mWZ+bDaxgoyABaj8QDLIg2oGzlaUFDQ4P2bul+fuYxtKXMB\n21LmorWlmjsX6I2H0tcvbG+8L5PJEBgYaPF4/ZGojRW/5pGu9ctd83s29xgRtT+dTgc3NzepY0gu\nKSkJo0ePljoGEVGbYRlJRESdllwux4MPPoh58+bhtddew1NPPYV//OMf2LRpE+655x4e6kqdiq2t\nrVjA9erVS+I00gkPD8fcuXPxwgsvSB2FiLo4jowEDAYD0tLSeMoaIupW5DefhYiISFpKpRIbNmxA\nUlISYmJiMH/+fERGRiIuLk7qaER0g6ioKJw6dUrqGETUDRQUFPT4MvLChQsQBAFarVbqKEREbYZl\nJBERdRm+vr7Ytm0bTp8+DYVCgVGjRmHhwoVIT0+XOhoR/Z+oqCicOXPmls6jSURUHw/TBhISEuDs\n7AxfX1+poxARtRmWkURE1OUMGzYMJ06cwHfffYeEhASEhYVhxYoVyM3NlToaUY8XHR2NsrIyJCQk\nSB2FiLo4HqZdV0YOHDiQp6Yhom6FZSQREXVZ48aNwy+//IItW7bg66+/RlhYGJ599lmLq+kSUce6\n44474OrqykO1iei2cWRk3WHaPF8kEXU3LCOJiKhLs7GxwcqVK5GamorNmzdj+/btCA4OxoYNG1BS\nUiJ1PKIeRyaTYcSIESwjiei21NTUoKioqEePjKyursaFCxcwcOBAqaMQEbUplpFERNQt2NraYvny\n5UhKSsLq1auxefNmhIWF4R//+AeMRqPU8Yh6lKioKPzwww9SxyCiLqywsBC1tbU9uoxMSEhARUUF\nRowYIXUUIqI2xTKSiIi6FScnJ2zcuBFpaWm4//77sW7dOoSEhGDr1q2oqKiQOh5RjxAdHY3s7Gxk\nZmZKHYWIuiidTgcA6NWrl8RJpHP69Gk4OzsjPDxc6ihERG2KZSQREXVLvXr1wksvvYS0tDQsWLAA\nTz31FIKCgvDyyy+zlCRqZ8OHD4eNjQ0P1SaiW5aTkwMA0Gg0EieRzpkzZzB8+HDI5fzaTkTdC/dq\nRETUrXl6eoql5AMPPIDnn38egYGBLCWJ2pG9vT20Wi3LSCK6ZdnZ2bCzs4Orq6vUUSRz+vRpHqJN\nRN0Sy0giIuoRPDw88NJLLyElJQULFizA888/j969e2PLli0oKyuTOh5RtxMdHY24uDipYxBRF5WV\nlQVfX1/IZDKpo0iioKAAKSkpGD58uNRRiIjaHMtIIiLqUby9vfH6668jNTUV9913H5555hkEBgbi\n+eefx++//y51PKJuIyoqCgkJCSgtLZU6ChF1QdnZ2fDx8ZE6hmSOHz8OuVyOyMhIqaMQEbU5lpFE\nRNQjeXl5YfPmzUhPT8eqVavw5ptvIiAgAGvWrEFGRobU8Yi6vJEjR8JkMuHs2bNSRyGiLig7Oxu+\nvr5Sx5DM0aNHMWjQIDg7O0sdhYiozbGMJCKiHs3NzQ0bNmxAeno6Nm3ahL179yIkJARLlizBb7/9\nJnU8oi5Lo9HA39+fh2oT0S0xH6bdUx05cgQxMTFSxyAiahcsI4mIiAA4OjpizZo1uHr1KrZt24af\nfvoJ/fv3x8yZM3HixAmp4xF1SdHR0byIDRHdkp58mPb169dx+fJllpFE1G2xjCQiIqpHoVBg6dKl\nuHjxIr744gvodDrcddddGDp0KD755BNUV1dLHZGoy4iKikJ8fDxqa2uljkJEXUh1dTV0Ol2PLSOP\nHDkCKysrREdHSx2FiKhdsIwkIiJqhFwux6xZsxAXF4dz584hIiICS5cuhb+/PzZs2MCL3RC1QFRU\nFPR6PS5duiR1FCLqQrKzs1FbW9tjD9M+fPgwhg0bBrVaLXUUIqJ2wTKSiIjoJgYPHowdO3bg6tWr\nWLRoEbZs2YKAgAA8+uijuHLlitTxiDotrVYLlUrF80YSUatkZ2cDQI8cGSkIAg4cOICJEydKHYWI\nqN2wjCQiImohf39/vPrqq8jKysLf//53HD16FH369MHIkSOxa9cumEwmqSMSdSpWVla48847ed5I\nImqVrKwsWFtbw9PTU+ooHe7ChQvIzs7G5MmTpY5CRNRuWEYSERG1klKpxPLly5GYmIj//ve/cHR0\nxLx58xAaGopXXnkFBQUFUkck6jSioqJYRhJRq6SkpCAgIADW1tZSR+lw+/fvh4eHBwYPHix1FCKi\ndsMykoiI6BbJ5XJMnz4dBw8eRFJSEubNm4eXX34Zvr6+mDt3Lg9NJUJdGZmcnIy8vDypoxBRF3Ht\n2jUEBQVJHUMSBw4cwKRJkyCX86s6EXVf3MMRERG1gZCQELz00kvIyMjA1q1bcfnyZYwcORLDhw/H\nBx98gLKyMqkjEkkiKioKVlZWOH36tNRRiKiLSE1NRXBwsNQxOpxer0d8fDwmTZokdRQionbFMpKI\niKgNOTo6YsWKFbhw4QKOHz+O3r1749FHH4VGo8Gjjz6K8+fPSx2RqEOp1WpERETwUG0iarHU1NQe\nOTLy66+/hlwuR2xsrNRRiIjaFctIIiKidjJ69Gh8+umnyMvLw6uvvoqTJ09i0KBBGDp0KN59912U\nlpZKHZGoQ/C8kUTUUtXV1cjMzOyRIyN3796NsWPHwtnZWeooRETtimUkERFRO3N2dsby5cuRkJCA\nY8eOoU+fPlizZg00Gg0eeeQRnDlzRuqIRO0qKioKP/30EyorK6WOQkSdXHp6OmpqanpcGVleXo7v\nvvsOs2fPljoKEVG7YxlJRETUQWQyGe666y58/PHHyM7OxsaNG3Hy5EmMGDECffv2xWuvvcaLfFC3\nFB0djaqqKvz8889SRyGiTi41NRUAelwZ+c0336CqqgrTp0+XOgoRUbtjGUlERCQBV1dXPP7447h4\n8SJ++uknjBs3TrwS9/jx47Fr1y4YjUapYxK1id69e+P/s3fnYVGVjfvAb/Z9E2VHBERZ3EFzwV5N\n0Mg9cyv3BWzT1+q90NSy7U0rF7IV08xSS6pXJU0F01xSEdQKcWMRZEdk34SZ8/uj38wXBBSVmYcZ\n7s91zeVwOHPOPeeAys1zzuPg4MBLtYnovlJTU2FlZYUOHTqIjqJWP/30Ex5//HHY2dmJjkJEpHIs\nI4mIiATz9/dHREQEbt68iW+//RY6OjqYNm0aXFxcsHTpUiQkJIiOSPTIBg0axDKSiO4rLS0Nnp6e\nomOoVWVlJQ4cOMBLtImo3WAZSURE1EYYGxtj+vTpOHz4MG7cuIHFixdj//79CAgIgLe3N9566y1c\nu3ZNdEyihzJ48GCcOnVKdAwiauPa40za+/btQ2VlJSZPniw6ChGRWrCMJCIiaoNcXV2xcuVKXLt2\nDYmJiZgwYQK+/PJLdO/eHX5+fli9ejVu3LghOiZRiw0ZMgT5+flITk4WHYWI2rCrV6+iW7duomOo\n1a5duxAUFAR7e3vRUYiI1IJlJBERURvn5+eHNWvWIDMzEydOnEBQUBA+/fRTeHp6IjAwEBERESgo\nKBAdk+ie+vXrB2NjY16qTUTNksvlSE5ORvfu3UVHUZuioiIcOnQIzz33nOgoRERqwzKSiIhIQ+jq\n6irLx8zMTOzZswceHh5YsWIFXF1dMXbsWGzfvh0VFRWioxI1YmRkBH9/f5aRRNSsGzduoKqqCt7e\n3qKjqM3u3buho6OD8ePHi45CRKQ2LCOJiIg0kJGRkbJ8zMrKQmRkJABgwYIF6NSpE6ZMmYLo6GjU\n1tYKTkr0f4YMGaK8b6QkSUhKSsKWLVtw5MgRwcmIqC24evUqALSry7R37tyJ8ePHw9LSUnQUIiK1\nYRlJRESk4aysrDBr1ixER0cjIyMDa9aswc2bNzFu3Di4uLjghRdeQGxsLOrq6kRHpXasoqICVlZW\nyM/Px6hRo2BlZQU/Pz8sWLAA69atEx2PiNqAK1euwMHBATY2NqKjqEVKSgpOnDiBmTNnio5CRKRW\nLCOJiIi0iIODAxYvXozTp08jOTkZL7/8Mk6fPo3g4GDY29tjzpw52Lt3L6qqqkRHpXbg/PnzWLJk\nCfr27QsrKyusWLECJSUliI2NRVlZGQBAX18fLi4ugpMSUVtw9erVdnWJ9tatW+Hk5IQnn3xSdBQi\nIrViGUlERKSlPD09sXLlSly4cAE3btzAG2+8gaysLDzzzDOwtbVVXuZdUlIiOippqe3bt+Pjjz/G\nxYsXIZPJAAA1NTWQy+XKdfT09ODq6ioqIhG1IVeuXGk3k9fI5XJ8++23mDNnDvT09ETHISJSK5aR\nRERE7YCbmxuWLFmCmJgY5OTk4IsvvgAALFy4ELa2tsqJcXJycgQnJW2yatUqWFtbQ0dHp9l16urq\nWEYSEYB/Rka2lzLy4MGDyMzMxJw5c0RHISJSO5aRRERE7UzHjh2V95jMzc3Frl274OHhgZUrV8LF\nxQWBgYFYu3Ytrl+/LjoqaThbW1usX7/+nuvIZDKWkUSE4uJi5ObmtpvLtLds2YJ//etf6Nq1q+go\nRERqxzKSiIioHbOxscHkyZOxfft25OXlYffu3ejSpQvWrFmDbt26ISAgAP/973/x559/io5KGmrO\nnDl4/PHHYWBg0Ow6LCOJSDGTdnsoI3NzcxEdHY358+eLjkJEJATLSCIiIgIAmJqaYtKkSfjuu++Q\nl5eHgwcPwt/fH5s2bUKfPn3g6uqK0NBQ7NmzB+Xl5aLjkobQ0dHB5s2b77kOJ7AhoqSkJJiamsLN\nzU10FJWLjIyElZUVnnnmGdFRiIiEYBlJREREjRgaGmLUqFH48ssvkZOTg8TERLz00ktIS0vD5MmT\nYWNjo7ycOyEhQXRcauO8vLywcuXKJidpsLS0hKmpqYBURNSW/P333/D19YWurnb/iFpXV4fNmzdj\nwYIFMDY2Fh2HiEgI7f6bnoiIiFqFn58fwsPDERMTg9zcXOzcuRMeHh5Yu3YtAgIC4OnpibCwMERH\nR6O6ulp0XGqDli1bBg8Pj0aFpLOzs6BERNSW/P333+jZs6foGCq3d+9eZGdnIzQ0VHQUIiJhWEYS\nERHRA7G1tVXeZ7KgoADx8fGYOXMmEhISMH78eHTo0AHBwcGIiIhARkaG6LjURhgaGmLLli2Qy+UN\nlnfp0kVMICJqU9pLGfnZZ5/hqaeegru7u+goRETCsIwkIiKih6anpwd/f3+sXr0a8fHxyMjIwMaN\nG2FmZoYVK1bAzc0NvXr1wn/+8x8cOnQIlZWVD7WfTZs2ISAgABcuXGjld0DqNHToUMybN085mY2B\ngQHLSCLCrVu3kJeXhx49eoiOolJJSUk4evQoFi1aJDoKEZFQLCOJiIio1bi4uCgnuSksLMThw4cx\nYsQI/Prrr3jyySfRoUMHDB8+HO+99x7OnDkDmUzWou1+//33OH/+PAICAvD666/zUnANtm7dOlhb\nW0NHRwc6OjqcSZuI8NdffwGA1o+M/Oijj9CtWzeEhISIjkJEJBTLSCIiIlIJIyMjBAcHY8OGDUhM\nTEReXh6+/fZbdOvWDZs3b8agQYNgbW2N4OBg5UQ4kiQ12k5NTQ3OnTsHSZIgl8vxwQcfoN0ENbAA\nACAASURBVHv37jh69KiAd0WPysrKChEREQCA2tpa3jOSiPD333+jY8eOcHBwEB1FZbKzs7Fjxw68\n9tprWj9JDxHR/eiLDkBERETtg52dHSZPnozJkycDAFJTUxEbG4vY2FisXbsWy5Ytg729PR5//HEE\nBQUhJCQErq6uOHPmDGpra5XbkclkyMrKwogRI7BgwQKsW7cOFhYWot6W1qqrq0NZWZny44qKCty5\ncwcAIJfLUVJS0ug1paWlLRrt2qlTJ/Tp0wcXLlxAamoqoqKi7vsaPT09WFpatji/hYUF9PUb/lfX\n2NgYJiYmyo8VIzSBf+5paWZm1uLtE1HraQ/3i4yIiICNjQ1mzJghOgoRkXAsI4mIiEgIDw8PhIaG\nIjQ0FDKZDOfOnUNsbCyOHDmCxYsXo6amBn5+frC0tISBgUGjQhIAvv76a+zduxeRkZEYP368qLfS\n6ioqKlBVVYXS0lKUl5ejqqoKZWVlqKmpQWVlJWpra1FeXg6ZTIbS0lJIkoTi4mIAQHFxMSRJUhaD\n5eXlqK2tRWVlJWpqalBdXY2qqioAwJ07d1BRUaHcb0vLxNb01ltvqXV/LVW/zNTX11cW3rq6urCy\nsgIA2NjYAPhntKeurq7yNWZmZjA0NISJiQmMjY1hZGQEU1NTGBgYwNzcXFmsKgpQKysrmJiYwNTU\ntEFBStRe/P333xg4cKDoGCpTVlaGyMhIhIeHw9jYWHQcIiLhWEYSERGRcHp6ehg4cCAGDhyIlStX\norKyEsePH8eRI0fw9ddfo66ursnX1dXV4datW5gwYQImTZqEL774Ah07dlRzeqCyshIlJSUoLS1F\nSUkJSkpKUFxcrHxeUVGByspKFBcXo6qqClVVVSgqKlI+Ly4uRmVlJaqqqpoccXg3RZmlo6MDa2tr\nAP83ys/S0hJ6enowNzeHgYEB7OzsYGRkpBwVWH8E4N2jDRUlGoAG2wagLNYUmirNHnR0oaLMawlF\nmdoSd4/qVKg/urN+gQsAVVVVDe5Fqih1AShL4Prbrj86tKioCACQmZkJuVyOsrIy1NXVKfen2Hb9\n7dyL4lzZ2NjAxMQEJiYmsLa2hqmpKUxMTGBlZQUzMzOYmJjA0tJS+bCysoKVlVWD5w9yjIlEkMvl\nSEpKwsKFC0VHUZkvvvgCMpmME9cQEf1/LCOJiIiozTE1NcWTTz6JESNG4JNPPmnyXpIKcrkcALBv\n3z4cPXoUGzZswKxZsx5of3K5HIWFhQ0et2/fRmFhIYqLixuUjIrnRUVFyo/rj9qsz9raGpaWljAz\nM1OOelOUSx4eHvcsnYyNjRsVUIqRde2RqakpTE1NW7x+p06dVJjm0ShGtipGqSqK6erq6nuW1Irn\nqampDUbPlpWVoaSkRFm03q1+OXl3WWltba3809bWFh07doStra3yUf+ydiJVSEtLQ3l5udbOpF1b\nW4tNmzYhNDS0wS94iIjaM5aRRERE1GYlJCS0eObs2tpaFBUVYfbs2di1axeWL18OmUyGW7du4dat\nWw0KxqaKx7uZmZnB1tZWWSgqyhsHBwfliLOmyh3Fc/7QSc0xMDBQyYhFRWlZvzwvKipqskwvKSlB\nSkqKslQvLi5GYWFho+Lf1NQUHTp0UJaTnTp1gq2tbYNlihLT0dFRORKXqKUSEhKgp6eHXr16iY6i\nEjt27EBubi4WL14sOgoRUZvBMpKIiIjarOPHjze6X+TddHR0oKOjA0mSlEXKwYMHcfDgQeU6xsbG\nsLGxgY2NDZycnODo6AhPT0/lsrsfLi4uyvsCEmkKxejaR5mRWDFSs6ioCDk5OcjOzlZ+rHhkZGTg\nzz//RE5ODrKyshpdPm9sbKz8Pqv/PVf/uZOTE1xcXJS3BaD268KFC/Dx8Xmgkc+aQpIkbNy4EdOn\nT0fnzp1FxyEiajNYRhIREZFQdXV1yM3NRUZGBjIzM5GZmal8/ttvvzVbROrr6yvvmdehQwfY29vD\n2dkZbm5u8PLyQu/eveHg4ABbW1vo6uqq+V0RaSZFoenk5AQ/P78Wvaa8vBy3bt1CTk4O8vPzkZub\ni9zcXBQUFCA7OxuXLl3Cb7/9hpycnAYTJgGAra0tHBwc4OrqCmdnZ7i6uqJz585wdnaGi4sL3Nzc\nOMu5lrtw4QL69u0rOoZKHDhwAH/++Se2bdsmOgoRUZvCMpKIiIhUqqioCKmpqUhLS1MWjVlZWcjM\nzER6ejpyc3OVMzjr6enBwcFBWUYEBQVBLpejc+fO8PDwgI+PD7y9veHk5MQZh4naCHNzc5ibm6NL\nly73XbeioqJRWZmXl4f09HSkp6fj1KlTyMjIaDDRj7W1NVxcXNC5c2e4uLgof+ng6uoKT09PuLi4\nQE9PT4XvkFTp4sWLCA8PFx1DJT766CM8+eST6NOnj+goRERtCstIIiIiemSKwrG5h4KNjQ08PDzg\n6OiIHj16YNy4ccpLNj08PODq6goDAwOB74SIVMnMzAyenp7w9PS853pVVVXIyclBamoqsrOzGzxP\nSEjA9evXUVpaCuCfe3C6urrCw8Oj0cPLy6vBjPHUtmRmZiIvLw/9+vUTHaXVnThxAseOHcPRo0dF\nRyEianNYRhIREVGL5OXl4dKlS7h8+TKSkpKQkpKClJQUpKenKy+ltrCwUJYAffr0wdNPPw0PDw94\nenrCzc2NRSMRtYhixnkPD49m18nPz1f+wiMlJQWpqam4fPky9u/fj+zsbOU9ZO3s7JR/D3l7e8PH\nxwe+vr7o2rUr/04S7Pz589DR0dHKkYNvvPEGhg4dimHDhomOQkTU5rCMJCIiogaysrKQlJTU6KGY\ncdrGxga+vr7w8vLCkCFD4OnpqSwN7OzsBKcnovbCzs4OdnZ2GDhwYKPPVVdXNxidrfjlybZt25CW\nlga5XA4DAwN069YNvr6+yoePjw+6d+/OiXXU5Pz58/D09NS6CcNiYmJw7Ngx/P7776KjEBG1SSwj\niYiI2qm6ujokJSUhISEB8fHxuHDhApKSklBSUgIA6NixI3r06IEePXpg6tSp8PHxgZ+f3yPN1EtE\npA7GxsbKgvFuVVVVuHLlCi5fvqwc7b1r1y6kpqairq4O+vr68PT0RK9evRAQEAB/f3/4+/vD2tpa\nwDvRbhcuXNDKS7TfeOMNhISE4PHHHxcdhYioTWIZSURE1A7IZDJcuXIF8fHxyvLxzz//RGVlJUxM\nTNCnTx/069cPs2bNUpaOHTt2FB2biKjVmZiYoG/fvo1mcL5z546ypExKSsLFixfx8ccfIysrCzo6\nOvD09FSWkwEBAejXrx/vR/mIzp8/jxdffFF0jFb1yy+/4MyZMzh79qzoKEREbRbLSCIiIi1UXV2N\nP/74A0ePHsXvv/+O8+fPo6KiAsbGxujduzf8/f2xcOFC+Pv7w9fXF/r6/C8BEbVvhoaG6NWrF3r1\n6tVgeU5OjvKXOAkJCVi/fj1ycnKgo6OjvF3F8OHD8cQTT8DZ2VlQes1TUFCAzMzMRqWwJpMkCW+/\n/TYmTpyIAQMGiI5DRNRm8ScPIiIiLXDnzh3ExcXht99+w9GjR3HmzBlUV1eja9euGDZsGGbPng1/\nf3/4+flxwgYiogfg6OiIMWPGYMyYMcplWVlZyoLy999/x86dO1FTU4Nu3bph2LBhGD58OIYPHw57\ne3uBydu2uLg46OjoICAgQHSUVvPzzz8jPj4emzdvFh2FiKhNYxlJRESkoW7cuIG9e/fiwIEDOHny\nJCorK9G5c2cMHz4cc+fOxfDhw+Hq6io6JhGR1nF2doazszPGjRsH4J/7UJ46dQrHjh3D0aNHsXXr\nVtTV1cHX1xcjR47EuHHjMHToUI5CrycuLg5du3aFra2t6CitQi6X4+2338bUqVPRu3dv0XGIiNo0\nXdEBiIiIqOVSUlLw9ttvo0+fPnB3d8ebb74JGxsbREREIDk5Genp6di2bRtmzZrFIlJD6OjoKB+t\n6dy5cxg+fHirbpPaDhHnV1Vfqy0xfPhwnDt3Tu37bSkTExMEBQXh3XffxalTp1BUVIQDBw5g9OjR\niImJwRNPPAF7e3vMnj0bv/76K2QymejIwp09e1arLmXetWsXLl26hDfeeEN0FCKiNo9lJBERURtX\nUVGByMhIDBkyBF5eXvj8888RGBiIw4cPIz8/H99//z0WLFgAT09P0VHpIUiS1Orb/OqrrzBy5Egs\nWbKk1bdN4qnj/A4dOhRDhw5tsOxeX6tNrd+aFi9ejODgYI25/NXc3BwhISH44IMPkJiYiOvXr2P5\n8uVITk7G6NGj4eLigqVLl+LKlSuiowohSRLi4+O1poyUyWR45513MGPGDPj4+IiOQ0TU5vE6ASIi\nojYqKysLERER+Oqrr1BVVYVJkyZh5cqVGDlyJPT09ETHa3MUo7VUUe5pkl9//RWhoaHYtWsXJkyY\noJZ9ij72ovevTq11fu93zORy+QNtr7n1W+vcTJw4EZWVlZg5cyZcXFwQEhLySNtTt65du+K1117D\na6+9hpSUFOzYsQPbt29HREQEgoODsXTpUjz55JOiY6pNcnIyCgsL8dhjj4mO0iq2bNmC1NRUHDhw\nQHQUIiKNoCO1h/+1ERERaZCioiKsWbMGmzZtgq2tLV544QUsXLgQHTt2FB2tTdPkQqq1st+5cwdd\nu3ZF586dcfLkydaI1iKij73o/atLa57fhz1mD/q61j43gwYNQnZ2NpKTkzV+Mi65XI4DBw7g448/\nRmxsLAIDA7FmzRoMHjxYdDSV++677zB//nyUlpbCyMhIdJxHUlZWhm7dumHatGnYsGGD6Djtwq+/\n/oqnnnoKpaWlsLCwEB2n3bCwsEBERATmzZsnOgppvrd5mTYREVEbcvDgQfTs2RNbtmzBm2++qby0\nj0UktcRPP/2Emzdv4tlnnxUdhVSA5xd49tlnkZGRgZ9++kl0lEemq6uLMWPG4PDhwzhz5gwMDAwQ\nGBiIsLAwlJeXi46nUnFxcejdu7fGF5EA8M4776CmpgYrV64UHYWISGOwjCQiImojVq1ahZCQEIwY\nMQLJyckIDw+HsbGx6Fit6tKlS3jqqadgbm4OS0tLjBo1CklJSc1OjJGfn4/nn38eLi4uMDQ0hLOz\nM0JDQ5Gbm9tgvfqvU2xnwYIFjZbp6OggOzsbkyZNgoWFBWxtbTF79myUlJTgxo0bGDduHCwtLeHg\n4IA5c+aguLi40XuIjY3FuHHjYGNjA2NjY/Tr1w/ff/99o/VKSkqwdOlSeHh4wNjYGLa2thg8eDBe\ne+01xMXF3fM4BQQENMg8bdq0Fh3fffv2KV9/t9zcXISFhSmPpYuLCxYtWoS8vLwG6zV3Lu61/O51\nmjv2SUlJePLJJ2FpaQlzc3OMHj0aly9fVun+W3oeHjQn0PKvTwCorq7GmjVr0LdvX5iZmcHY2Bje\n3t5YtGgRzpw502j9pjR3flV5zlriYfZT/zWKR/3voy5dujS5zf79+zc4FtpiwIABOHLkCHbu3Ikf\nf/wRAwcORE5OjuhYKhMXF6cV94tMTU3Fxx9/jLfffltrZgUnIlILiYiIiIR75513JD09PWnr1q2i\no6hMcnKyZG1tLTk5OUlHjhyRysrKpJMnT0pDhgyRAEh3/7ckNzdXcnNzk+zt7aVDhw5JZWVl0vHj\nxyU3NzfJ3d1dKioqarB+U9to6vMzZsyQkpKSpOLiYunFF1+UAEijR4+WJk6cqFz+/PPPSwCkhQsX\nNrmdCRMmSAUFBVJ6eroUHBwsAZAOHjzYYL3x48dLAKSNGzdK5eXlUk1NjXTlyhVp4sSJjXLenT0n\nJ0fq0aOHFB4e3uLjK0mS1L17dwmAlJub22B5Tk6O5Orqqjz2paWlUmxsrOTg4CC5ubk1Wr+5Y/mg\ny+/+/ODBg6WTJ09KZWVlyv3b2NhIaWlpKtv/w5yHluR8kK/P0tJSKSAgQLKwsJA2b94s5ebmSmVl\nZdLRo0clHx+fex67+po7v619zFpze/faT2xsrARAcnR0lGpqahp8bvPmzdKYMWMavSY7O1sCIHl7\nezebXdPdvHlT8vHxkbp16yaVlpaKjtPqampqJCMjI+mbb74RHeWRPf3005K3t7d0584d0VHalQMH\nDkgAtPL7oy0zNzeXtmzZIjoGaYe3WEYSEREJlpSUJBkaGkoRERGio6jUjBkzJADSt99+22D5/v37\nmywswsLCJACN/uP7888/SwCk119/vcHylpYrx44dUy7LyspqcvnNmzclAJKzs3OT26lfSl2+fFkC\nIA0dOrTBepaWlhIAKSoqqsFyxT6by37jxg2pa9eu0nvvvdfse2mOubm5BECqrq5usHzhwoVNHvtt\n27ZJAKSwsLBm8zzK8rs/f+DAgSb3P3v2bJXt/2HOQ0tyPsjX5yuvvKIsRO92/vz5FpeRzZ3f+tkf\ndXlrb+9+++ndu7cEoFEx1bNnTykmJqbR+lVVVRIAycLCotltaoPc3FzJzs5OWrp0qegorS4uLk4C\nIF2+fFl0lEdy8uRJSUdHp9HfF6R6LCPFYBlJrYhlJBERkWjvvPOO5O7uLslkMtFRVMre3l4CIGVl\nZTVYXlRU1GRh4eTkJAGQsrOzGyy/deuWBEDq2bNng+UtLVfq//Aik8nuuVxHR+e+76uurk4CINna\n2jZYPnfuXOW2XV1dpfnz50s//PBDoxFg9bNduXJFcnV1lQYPHnzf/TZFV1dXAiDJ5fIGyx0dHZs8\n9pmZmU2WrqoqtoqLi5vcv6Ojo8r2/zDnoSU5H+Trs3PnzhIA6caNG01mbKnmzm/97I+6vLW3d7/9\nKIrePn36KJcdOXJE8vPza3J9xfemnp5es9vUFh999JFkb28vOkar27Bhg2RjY6PR/+bJZDIpICBA\nGjFihOgo7RLLSDFYRlIreov3jCQiIhIsMzMT7u7u0NXV7n+Wb926BQCNJuOxtrZucv38/HwAgJOT\nU4P7yilen5KS8lA56s+8Wf+YN7VcumsG4OLiYrz++uvw8fGBhYUFdHR0oK+vDwAoLCxssO7WrVvx\n008/YdKkSSgvL8eWLVswdepUeHl54eLFi01mGz58OAoLC/HHH39g586dD/zeTE1NAfwz63J9BQUF\nABofe8XHimOtalZWVk3uX5FPFR7mPLQk54N8fSru/efg4PBI76W586vJpk+fDkdHR1y8eBG//fYb\nACAiIgJLlixpcn3Fe1ccC23m6emJgoICVFdXi47Sqv744w8MGTJEo//N27ZtGy5cuICNGzeKjkJE\npJE0918AIiIiLdGnTx/Ex8cryzptpShp7n6fzb1ve3t7AMDt27chSVKjR0VFhWoDN2HKlCl4//33\nMXXqVKSnpyuzNOfpp5/Gjz/+iFu3buH48eMYNWoUMjIyMHfu3CbX37RpEz755BMAwIsvvojMzMwH\nyufs7AwAjSbesbOzA9D8sVd8XkExaUhtba1yWUlJyQNlacrdha1i/506dVLp/h/0PLQk54N8fSrW\nfdQJSZo7v4DqzpmqGRoa4qWXXgIArF+/HqmpqTh9+jRmzJjR5PpFRUUA/u9YaLNff/0VPj4+WjeR\n2enTpzF48GDRMR5aeXk5Vq5ciUWLFqFHjx6i4xCpVUsnNiO6H5aRREREgs2YMQPW1tZYsGBBgyJB\n24wcORIAcOTIkQbLT5061eT6EyZMAAAcO3as0edOnDiBQYMGNVimGClVW1uLysrKRqMAW4Mi66uv\nvooOHToAAGpqappcV0dHR1km6urqYujQofjhhx8AoMmZmQFg0qRJmDt3LsaPH4/i4mLMnTv3nmXn\n3fr27QsASE9Pb7B87NixABof+9jY2AafV1CM4Ktfnl24cKHZ/bb02N99rhX7V3xtqGL/D3MeWpLz\nQb4+J02aBADYs2dPo3XPnDmDxx57rNn3Vl9z5xdQ3Tl7VC3Zz6JFi2BqaooDBw5g8eLFWLBgAUxM\nTJrcnuK99+nTRyV524pffvkFX331FVasWCE6Squ6ceMGMjMzMWTIENFRHtr777+PqqoqrF69WnSU\ndkvx76Imj67VRDU1NTA0NBQdg7SFgGvDiYiI6C4nT56ULCwspKeeekq6deuW6DgqkZKS0mg27RMn\nTkghISFN3leuoKBA8vLykhwdHaWoqCjp1q1bUmlpqRQdHS15eHg0mHBGkiRp4MCBEgDp5MmT0vff\nf99oJt6m9vGgy0eNGiUBkJYvXy4VFRVJhYWFyslJ7l4XgDRq1CgpMTFRqq6ulnJzc6Xly5dLAKRx\n48bdc195eXlSp06dmp30pDk7duyQAEiffvppg+WKmZ/rz6Z95MgRydHRscnZtGfNmiUBkF566SWp\nuLhYunz5svTcc881e6xaeuxDQkKkEydOSGVlZcr9NzWbdmvu/2HOQ0tyPsjXZ1FRkdSjRw/JwsJC\nioyMVM6mffDgQcnLy0uKjY1t+oTepbnz29rHrP6xuNuDLr/ffhQUM9jr6+tLN2/ebPYYfPzxxxIA\naefOnc2uo+m++uorydDQsNHEUtpgx44dkoGBgVRRUSE6ykNJTk6WjI2NpXXr1omO0q5FR0dLADT2\n60gTKe6P/eOPP4qOQtqBE9gQERG1FWfPnpVcXV0lR0dH6ccff2xykgpNl5iYKIWEhEhmZmaShYWF\nNGbMGCklJUUCIOnq6jZa//bt29Irr7wiubu7SwYGBpK9vb00duxY6fTp043WPXfunNS7d2/J1NRU\nGjhwoHT16lXl5xRFyd2FyYMuz8vLk2bOnCnZ2dlJhoaGUo8ePaQffvihyXVPnjwpzZ49W+rSpYtk\nYGAgWVlZSb1795bee++9Bj9AWVlZNXh9VFRUo/0DkM6dO3ff41tTUyO5uLhIgYGBjT6Xm5srhYWF\nSU5OTpK+vr7k5OQkhYaGNioiJemfou3ZZ5+VOnXqJJmZmUljx46VMjIymnyf9zv29Y9nWlqaNGbM\nGMnCwkIyMzOTQkJCpKSkJJXuv6Xn4WFyPsjXZ1lZmbRy5Uqpe/fukqGhoWRrayuNHDlSOn78eKN1\nm3Ov89uax6y1vl/ut5/6rl27Junq6krTpk275zEYOHCg5OLi0uQERJruxo0b0vjx4yVdXV3p9ddf\n18p/A1588UXpscceEx3joY0ePVry8/OT7ty5IzpKu7Zv3z4JgFRVVSU6SrtRXl4uAZB++eUX0VFI\nO7ylI0kPcO0PERERqVRxcTGWLl2Kb775BgMGDMC7776LoKAg0bFUKjs7G87OzrCzs0NeXp7oOBpv\n//79GDt2LHbt2oWpU6eKjgPg/+4x1db/26kJOdvi+W0NcrkcLi4u+PnnnzFw4MAm19mxYwdmzpyJ\n6OhojB49Ws0JVScnJwdr167FF198AVdXV2zZsgWPP/646Fgq0bdvXwwfPhzr168XHeWB/fDDD5g+\nfTp+++03DBs2THScdm3v3r2YMGECqqurYWRkJDpOu3D79m3Y2toiNjYWI0aMEB2HNN/bvMkCERFR\nG2JtbY2vv/4a8fHxsLa2RnBwMHr16oXNmzcLmbClteno6CA5ObnBsuPHjwP4ZyZpenSjR4/GF198\ngUWLFjV5j0LSbNp6fvfv3w9XV9dmi8j//e9/eOGFF/D5559rTRF5+vRpPPvss+jSpQt2796NDRs2\nICkpSWuLyPLyciQmJmrk5DWlpaV49dVXMW/ePBaRbYDEe0aqXXV1NQBo3YRaJA6/e4mIiNqgfv36\n4eDBgzh//jz8/f2xePFiODg4YNasWTh8+DBkMpnoiA/txRdfRGpqKioqKnDkyBGEh4fD0tKSkwG0\notDQUBw6dAgbN24UHYVUQFvOr46ODs6cOYOioiK89dZb95ysJSIiAjExMQgLC1NjwtaXlpaGd999\nF97e3hg8eDCuXr2KyMhIpKWl4fnnn4eBgYHoiCpz5swZ1NXVNZp8TBOsXLkS1dXVeP/990VHIfwz\nkhrgzM7qxDKSWhvLSCIiojasb9+++Prrr5GZmYn3338f169fx6hRo+Dg4IB58+Zh3759qKqqEh2z\nxWJjY2Fubo7BgwfD2toa06dPx8CBA3H27Fl4e3uLjqdVBgwY0ORMz+pW/4fFtvyDo6bkVGgr5/dR\nDRo0CF5eXhgzZgzGjRvX7HrHjh3DgAED1Jis9SQmJuLdd99FQEAAPDw88PHHH2PkyJGIi4tDQkIC\nZs+e3S4uNT116hTc3d3h7OwsOsoDSUhIwGeffYYPP/wQnTp1Eh2HwJGRIlRWVgIATE1NBSchbcF7\nRhIREWmY69ev4+eff8aePXsQFxcHY2NjDB48GMOHD8ewYcMwYMAA6Ovri45JRNQuZWRk4OjRo8pH\nRkYGHB0dMW7cOEyYMAEjRozQ6hGQzRk+fDjc3d2xdetW0VFaTC6XY8iQIdDX18fx48c14hcV7UFU\nVBSmTJkCuVzOc6Imv/32G0aMGIFbt27B1tZWdBzSfG/zJxUiIiIN4+XlhfDwcISHhyMnJwcHDhzA\nsWPH8Omnn2LFihUwNzfH0KFDMWzYMAwfPhz9+vWDnp6e6NhERFopOztbWTweO3YMKSkpMDY2xsCB\nAzF//nyMHDkSAwYMaNejuKqrq3HmzBnMmTNHdJQH8tlnnyE+Ph4JCQksvdoQxXgqnhP1yc3NhYGB\nAWxsbERHIS3BMpKIiEiDOTo6Yv78+Zg/fz4A4Nq1a8ofitevX6+8H2P//v0REBAAf39/BAQEwN3d\nXXByIiLNU1paivPnzyMhIQHx8fGIj49HcnIyDA0NMWDAADz33HMYNmwYBg0axHur1XP69GlUV1dr\n1OQvubm5WLVqFV577TX06tVLdByqhyMi1S8vLw92dnbt+pcq1LpYRhIREWmRbt26oVu3bspJHpKS\nknDs2DHEx8fjwIEDWLduHerq6tChQwdlOakoKN3c3ASnJyJqO8rLy3HhwgXlyLj4+Hhcv34dcrkc\nDg4OCAgIwHPPPYchQ4ZgyJAhvJfaPfz+++9wd3fXqH9nli5dCmtra6xatUp0FLqLxlYqUQAAIABJ\nREFUJEksxdQsLy8P9vb2omOQFmEZSUREpMV8fX3h6+ur/LiyshIXL15U/nC9d+9efPDBB5DJZLC1\ntUWPHj3g4+MDPz8/+Pj4wNfXF46OjgLfARGRalVVVeHy5cu4fPkyLl26hCtXriAxMRGpqamQyWTo\n1KkTAgICMHnyZOUvcVxcXETH1ijHjh3TqFGR+/btw/fff4/9+/ezZG6DJEniyEg1y8vLg4ODg+gY\npEVYRhIREbUjpqamGDx4MAYPHqxcphj9c+HCBVy6dAmXLl1CVFQUCgsLAQA2NjYNCko/Pz94e3vD\n1dWVPwwQkcYoLS3F1atXcenSJVy+fBlJSUlISkrCjRs3IJfLYWhoiG7dusHHxwfPPvssevXqhYCA\nAHTu3Fl0dI1WXV2Ns2fPYt68eaKjtEhxcTFeeOEFzJ49G0899ZToONQEuVzOkZFqlpuby19OU6ti\nGUlERNTOKSa8GTp0aIPlRUVFuHTpEpKSkpCamopLly7hyJEjSE1NBQAYGhrCxcUFHh4ejR7e3t4w\nMzMT8XaIqB0rKipCampqk4+0tDRIkgQDAwN4eXnBz88PkydPhq+vL/z8/ODn58f7PKrAH3/8gerq\navzrX/8SHaVFXn75Zcjlcqxfv150FGoGR0aqX2ZmJvz9/UXHIC3CMpKIiIiaZGNjg8DAQAQGBjZY\nfvv2bSQlJSE5ORmpqalISUnBX3/9hT179iA/Px/APzNcOjs7w9PTEx4eHvD09IS7uzs6d+4MFxcX\nODk5wdDQUMTbIiINVlBQgKysLNy8eRPp6elISUlR/j2UkpKC6upqAICxsbHylyO+vr4YO3YsPD09\n0b17d7i7u0NPT0/wO2k/fv/9d3h4eGjE/SJ/+eUXfPfdd/j555/RoUMH0XGoGRwZqV5yuRzJycno\n3r276CikRVhGEhER0QPp0KFDkyUlAJSVlSmLAcVopJSUFJw4cQLp6emora0F8E9Z6eDgABcXFzg7\nOytLyvrPWVgStS/1i8abN282+VxRNgJAp06dlL/wmDhxYoNffjg5OXHkVBuhKfeLLCkpwfPPP4+Z\nM2di4sSJouPQPXBkpHqlp6ejuroa3bp1Ex2FtAjLSCIiImo1FhYW6N27N3r37t3oc3K5HLm5uU2W\nDAkJCdizZw9ycnIaFZbOzs5wcHBAp06d4OTkBDs7O9jb28PR0RF2dnZwdHSElZWVut8qEbVATU0N\nCgoKkJ2djfz8fOTl5SEnJwf5+fnIzc1VPu4uGm1tbZW/nPD29saIESOUv6hwcXGBq6srTExMBL4z\naonq6mrExcVhwYIFoqPc1+LFiyGTybBx40bRUeg+ODJSva5evQoA8PLyEpyEtAnLSCIiIlILXV1d\nODk5wcnJqdl1FIVlRkYGsrKykJmZiczMTOTl5SE7Oxvx8fEoKChAfn4+5HK58nXGxsaws7ODk5MT\nOnXqBAcHBzg4OMDOzg62trawtbVFx44dlc/Nzc3V8ZaJtE5tbS0KCwtRWFiI27dvK58risb8/Hxl\n8Zibm4uioqIGrzc3N2/wS4XevXsjODgYbm5ucHZ2houLCzp37syiUUtoyv0i9+/fj+3bt/PybA3B\nkZHqdfXqVdjZ2fF7g1oVy0giIiJqM1pSWAKATCZTlpJ3j7gqKChAamoqTp8+jfz8fNy+fRt1dXUN\nXm9oaKgsJm1tbdGhQwfY2tqiU6dODT62tbWFlZUVrKysYGlpyRGYpDVqampQUlKifDRVMNb/uKCg\nALdv30ZpaWmjbVlYWCjLRTs7O/j5+WH48OENfkHg6OgIe3t7mJqaCni3JMqxY8fg6enZpmckLykp\nwaJFizBjxgxenq0hZDIZ7/uqRlevXuX9IqnVsYwkIiIijaOnp6cc/dirV6/7rl9SUqIsU5oqWgoL\nC5Geno6EhATlxxUVFU1uy8bGRllQNvewtraGtbW1ssQ0NTWFhYUFLCwsYGJiwpGZ9NBqa2tRXl6O\n0tJSVFdXo7y8vEGp2NSjuLgYxcXFyo8Vr72bvr5+o4LeyckJPXv2bDCyuH5Zb2trCwMDAwFHgjSB\nJtwvcsmSJaipqeHs2Rqkuroaxsac+V5drl27xvtFUqtjGUlERERaT1ESPoiamhoUFhY2KHBKSkpQ\nVFTUZOFz8+ZN5XqKdepfSn63+sVkc88tLS1hbGysfK6np6f808LCAvr6+jAzM4OhoSFMTExgbGwM\nIyMjmJqawsDAgKWnGilKQplMhtLSUkiShOLiYkiShJKSEkiShNLSUshkMpSVlaGurg5lZWWoqqpC\neXl5s8/rl46K1zfHzMysyXLcw8NDWY7XfyhG+1pZWcHW1haWlpZqPGKk7aqqqhAXF4eFCxeKjtKs\nPXv24JtvvsHPP/+MTp06iY5DLVRTUwMjIyPRMdoFSZJw8eJFTJgwQXQU0jIsI4mIiIiaYGRk1KJL\nxu+lrKwMJSUlqKysRFlZGcrKylBdXa18Xr9wqqqqQkVFBUpLS1FRUYH8/HyUlJSgqqoKlZWVymLr\n7nvw3Y++vj4sLCygq6urLGRtbGyUn1eUmcA/kwZZW1srP6coOBWsra2V9+lSlJ5NsbKyatHkAopy\n9X7u3LnT7EjVu5WXlysnQapPURIqVFRU4M6dOwCgLA4VqqqqGowcVBx7AKisrERNTQ2qq6tRVVX1\nQNkUTE1NYWRkBDMzM5iYmMDS0hLm5uYwMTGBhYUFnJycYGxs3Gg07d3ltImJCczMzJRFIy9bpLbk\njz/+QE1NTZu9X2R+fj4WLVqEefPm8fJsDcORkepz/fp1FBYWon///qKjkJZhGUlERESkIooySRUU\nIy8Vo+wU5ZqiSKupqUFlZaWyLFOMxJPL5SgpKVFup/5oO8U6Crdu3VIWdne/7u7CTkExQrAl6heC\n96MoQu/cuYO6urpmi9DmRoTeXbQaGxs3mCSlfoFqZWXVoIRWjEKt/zpDQ0OYmZk1Knvr78fa2hqX\nL1/G119/jV9++QWWlpZYsGABFi1aBDc3txa9byJNdezYMXTt2rVN3i9SkiTMnTsXZmZmnD1bA9XU\n1LCMVJNz587BwMAAvXv3Fh2FtAzLSCIiIiIN1NQox/Zgz549ePrpp/HXX39pxD2sPD09MWbMGOTl\n5WHbtm347LPP8MEHH+CJJ57A4sWLMWbMGM4KS1qpLd8v8uOPP8bhw4dx/Phxlf3CiFSHl2mrz7lz\n59C7d2+Wv9Tq7n/9DBERERFRGzF27Fh06dIFX3zxhegoD8Te3h7h4eFITU3Fnj17AADjx49H9+7d\nsXbt2ge+/J6oLausrERcXFybvEQ7KSkJy5cvx6pVqzBo0CDRcegh8DJt9YmLi8OAAQNExyAtxDKS\niIiIiDSGnp4ewsLC8PXXX7f4cvC2RE9PD2PHjkVMTAwuX76MkJAQvPPOO3Bzc0NYWBgSExNFRyR6\nZMePH0dtbS2eeOIJ0VEaqKmpwbPPPosePXpg+fLlouPQQ+Jl2upRW1uLixcv8n6RpBIsI4mIiIhI\no4SGhuLOnTv47rvvREd5JN27d0dERASys7Px0Ucf4eTJk+jZsycCAwMRFRWFuro60RGJHsrBgwfR\no0ePR5oATBWWL1+OlJQU7NixAwYGBqLj0EOqrq7mZdpqcOHCBVRVVXFkJKkEy0giIiIi0ig2NjaY\nNm0aNm3apJzlWpNZWloiNDQUf//9N2JiYuDk5ITp06fDzc0Nq1evRkFBgeiIRA/k0KFDePLJJ0XH\naCAmJgYbN27Ep59+Ci8vL9Fx6BHwMm31iImJgYODA3x8fERHIS3EMpKIiIiINM7LL7+MpKQkHDt2\nTHSUVqOrq4ugoCDs3r0bV69excyZM/HJJ5/A1dUVU6ZMwalTp0RHJLqvzMxMXLlyBaNGjRIdRamw\nsBBz5szBM888g1mzZomOQ4+Il2mrR0xMDEaOHMlJ1kglWEYSERERkcbp06cPhgwZgk8++UR0FJXw\n9PTEmjVrkJWVhcjISFy/fh2BgYEICAhAZGQkqqqqREckatKvv/4KU1NTBAYGio4CAJAkCbNnz4ae\nnh6+/PJL0XGoFfAybdWrqKjAmTNnEBwcLDoKaSmWkURERESkkV566SXs3bsXN27cEB1FZYyMjDBr\n1ixcuHAB8fHx8PX1xUsvvYQuXbpg2bJlSE9PFx2RqIFDhw5h2LBhbaYs+vDDD3Ho0CHs3LkTNjY2\nouNQK+DISNU7duwY7ty5gxEjRoiOQlqKZSQRERERaaRJkybBwcEBmzdvFh1FLfz9/bF9+3ZkZGTg\nlVdewc6dO+Hh4YGxY8ciNjZWK+6fSZpNJpPh6NGjbeYS7bNnz2LVqlX473//22ZGatKj4z0jVS8m\nJgY9e/aEo6Oj6CikpVhGEhEREZFGMjAwwMKFC7F582ZUV1eLjqM2Dg4OCA8PR3JyMr7//ntUV1cj\nODgY3t7eiIiIQHl5ueiI1E6dPXsWt2/fbhNlZFFREaZOnYqgoCC89tprouNQK6qpqWkzI2+11eHD\nhxEUFCQ6BmkxlpFEREREpLHCwsJQWlqK7du3i46idoaGhpg8eTJiYmJw/vx5DBs2DCtWrICTkxPC\nwsJw6dIl0RGpnTl06BDc3NzQvXt3oTkkScLcuXMhl8vxzTffcAIOLcN7RqrWtWvXcPnyZYwbN050\nFNJiLCOJiIiISGM5ODhg1qxZWLt2LWQymeg4wvTt2xdffvklsrKy8NFHH+H48ePo0aMHAgMDERUV\nhbq6OtERqR04ePBgmxgV+cEHH2D//v3YtWsXOnbsKDoOtbLKykqYmZmJjqG1du/eDXt7e97agFSK\nZSQRERERabTw8HCkp6fjf//7n+gowllZWSE0NBSXLl1CTEwMnJycMH36dHTp0gWrV6/GrVu3REck\nLVVUVISEhAThZeSZM2ewatUqrFmzBkOGDBGahVTj9u3bsLa2Fh1Da/3000+YOHEi9PT0REchLcYy\nkoiIiIg0mqenJyZMmIC1a9eKjtJm6OrqIigoCLt378aVK1cwY8YMbNq0CS4uLpgyZQpOnz4tOiJp\nmcOHD0NHR0fo7Lu3b9/GtGnTMHLkSLzyyivCcpDq1NXVoaKigjOjq0haWhouXryISZMmiY5CWo5l\nJBERERFpvPDwcMTHx+PIkSOio7Q5Xbt2xZo1a5CVlYXIyEhcvXoVgwcPRkBAACIjI9vV5D+kOocO\nHcLAgQNhZWUlZP9yuRzPPvssAGD79u28T6SWKi4uhiRJHBmpIlFRUbC1tcWwYcNERyEtxzKSiIiI\niDRe//798cQTT3B05D0YGxtj1qxZ+PPPPxEfHw9fX1+89NJL6NKlC5YtW4aMjAzREUmDxcbGCr1E\ne9WqVfj9998RFRWFDh06CMtBqlVUVAQAHBmpIj///DPGjRsHfX190VFIy7GMJCIiIiKtEB4ejpiY\nGCQkJIiO0ub5+/tj+/btSE9Px9KlS7Fjxw54eHhg7NixiI2NhSRJoiOSBklMTMTNmzeFlZF79+7F\n+++/j08++QT9+/cXkoHUo7i4GAA4MlIFrl69iri4OEydOlV0FGoHWEYSERERkVYYOXIk+vXrhw8/\n/FB0FI3h6OiI8PBwpKSkYNeuXaiurkZwcDB8fX0RERGBiooK0RFJAxw6dAi2trbw9/dX+76vXbuG\n2bNnIywsDPPnz1f7/km9FCMjWUa2vq1bt8LZ2RlBQUGio1A7wDKSiIiIiLTGf/7zH/z444+4fv26\n6CgaxdDQEJMnT1aOLH388cfx+uuvw8nJCWFhYUhKShIdkdqwQ4cOITg4GLq66v3xsry8HBMnToSP\njw82btyo1n2TGEVFRdDT04OlpaXoKFqlrq4O3377LebNm8dZtEktWEYSERERkdaYPHky3N3dsX79\netFRNFa/fv3w5ZdfIisrC2+//TYOHz6Mnj17Ijg4GFFRUZDJZKIjUhtSXl6O48ePIyQkRK37lSQJ\nc+fORWFhIaKiomBkZKTW/ZMYOTk5sLOzU3vxre0OHDiA3NxczJo1S3QUaif4HUxEREREWkNPTw+v\nvPIKvv76a+Tk5IiOo9Gsra2xZMkSpKSk4NChQzA2NsbUqVPRvXt3rF27FoWFhaIjUhtw6NAh1NXV\n4amnnlLrft9//33s2bMHP/zwA1xcXNS6bxInLy8PDg4OomNonS1btuCJJ56Ap6en6CjUTrCMJCIi\nIiKtMmfOHFhbW2PTpk2io2gFXV1dBAUFITo6GlevXsUzzzyDtWvXwsXFRTk7N7Vf0dHRGDhwIDp2\n7Ki2fcbGxuKNN97AunXr8K9//Utt+yXxcnNzWUa2sry8PPz666+YN2+e6CjUjrCMJCIiIiKtYmJi\ngiVLluDTTz/F7du3RcfRKl5eXlizZg3S09MRERGBixcvok+fPggICMD27dtRW1srOiKpkVwux8GD\nBzF27Fi17TM5ORlTp07FtGnTsHjxYrXtl9oGlpGtLzIyEhYWFpg4caLoKNSOsIwkIiIiIq3z8ssv\nw8jICBs2bBAdRStZWFggNDQUf/31F06cOAEPDw/Mnz8fnTt3xrJly3Dz5k3REUkNzp49i7y8PLWV\nkSUlJRg3bhzc3d0RGRmpln1S28IysnXduXMHn332GcLCwmBiYiI6DrUjLCOJiIiISOuYm5tj6dKl\n2LhxIwoKCkTH0WqBgYHYvXs30tPTERYWhq1bt6Jr166YMmUKYmNjRccjFYqOjoaHhwd8fX1Vvi+5\nXI4ZM2agqKgIe/bsgampqcr3SW1Pbm4u7O3tRcfQGrt27UJhYSFeeOEF0VGonWEZSURERERaafHi\nxTAxMUFERIToKO2Ck5MTVq9ejZs3b+K7775DdnY2goOD0a9fP0RGRqKiokJ0RGpl0dHRahsV+Z//\n/AexsbHYs2cPJ6xpp+7cuYOCggI4OTmJjqI1Nm7ciClTpvB7itSOZSQRERERaSUzMzO88soriIiI\n4OhINTIyMsLkyZNx8uRJxMfHo3///vj3v/8NZ2dnLFmyBGlpaaIjUitIT09HYmKiWsrIb775Bhs2\nbMBXX32Fxx57TOX7o7YpPT0dMpkMHh4eoqNohaNHj+LixYu89yoJwTKSiIiIiLTWyy+/DFNTU947\nUhB/f398+eWXuHHjBpYvX469e/eia9euCA4ORlRUFGQymeiI9JD27dsHS0tLDB06VKX7+eOPPxAW\nFoYVK1bgueeeU+m+qG1LTU0FALi7uwtOoh02bNiAoUOHYsCAAaKjUDvEMpKIiIiItJaZmRleffVV\nbNq0CXl5eaLjtFt2dnYIDw9HamoqDh06BGNjY0ydOhXe3t5Yu3YtZz3XQNHR0Rg1ahQMDQ1Vto/0\n9HRMnDgRISEheOutt1S2H9IMqampsLKyQocOHURH0XhJSUnYv38/li5dKjoKtVMsI4mIiIhIq738\n8suwtrbGe++9JzpKu6erq4ugoCBER0fjypUrmDRpEtasWQNnZ2fMmjULf/31l+iI1ALl5eU4fvy4\nSi/RLisrw7hx4+Do6Ihvv/0Wurr80bW9S0tLg6enp+gYWuHtt9+Gj48Pxo8fLzoKtVP8G52IiIiI\ntJqJiQlWrFiBL774AikpKaLj0P/XrVs3rFmzBhkZGYiIiMD58+fRu3dvBAQEYPv27aitrRUdkZpx\n8OBB1NXVISQkRCXbr6urw9SpU5Gfn4+9e/fC3NxcJfshzZKWlsb7RbaCpKQkREVFYfXq1Sz5SRh+\n5RERERGR1luwYAE8PT15qWcbZGFhgdDQUCQmJuLEiRPw8PDA/Pnz4ebmhmXLliErK0t0RLpLdHQ0\nBg0ahI4dO6pk+//+979x7Ngx/O9//4Obm5tK9kGaJyUlhfeLbAWKUZFPP/206CjUjrGMJCIiIiKt\np6+vjzfffBM7duzAxYsXRcehZgQGBmL37t24ceMGQkNDsWXLFnh4eGDKlCmIjY0VHa9deumll/Dy\nyy/j6NGjkMlkkMvlOHjwoMou0f7www/x+eefY8eOHRg4cKBK9kGaRy6X49q1a/Dx8REdRaMpRkW+\n+eabHBVJQulIkiSJDkFEREREpGqSJCEgIADOzs7Yt2+f6DjUAjU1Ndi3bx82bNiA06dPo1+/fggL\nC8OMGTNgamoqOl674OzsjNzcXMjlclhZWSEwMBD79+/HxYsX0bt374faZkxMDPr06YNOnTo1WP7j\njz9i6tSpWL9+PZYsWdIa8UlLXL9+Hd26dUNcXBz69+8vOo7GmjZtGhITE/HXX3+xjCSR3uZXHxER\nERG1Czo6Ovjvf/+L6OhonDx5UnQcagEjIyNMnjwZf/zxB+Lj4xEQEIAlS5bA2dkZS5YswY0bN0RH\n1HqGhoaQy+UAgJKSEhw6dAgA8Nhjj2H06NHYvn07ysrKWry9jIwMhISEoH///khNTVUuP3fuHGbP\nno0FCxawiKRGEhMToaurC19fX9FRNNaFCxd4r0hqMzgykoiIiIjalaCgIJSVleHMmTPQ0dERHYce\nUF5eHrZt24bPPvsMmZmZeOKJJ7B48WKMGTOG51MFvL29cfXq1SY/Z2BggLq6OhgZGeHUqVPo16/f\nfbe3fPlyrFu3DgBgZWWF2NhYWFpaYtCgQfD398fevXuhr6/fqu+BNN8777yDb775BsnJyaKjaKzg\n4GCUlpby3z5qCzgykoiIiIjal3Xr1iEhIQE7d+4UHYUegr29PcLDw5GWloY9e/YAAMaPH4/u3btj\n7dq1KCoqEpxQuxgaGjb7udraWujq6qJjx47w9PS877aqqqrw+eefo7a2FrW1tSgqKsKgQYMwceJE\nuLi4YPfu3SwiqUmJiYno2bOn6Bga65dffkFsbCzWrVvHIpLaBJaRRERERNSu9O7dG3PmzMGyZctQ\nWVkpOg49JF1dXYwdOxYxMTG4fPkyQkJC8M4778DNzQ1hYWFITEwUHVErGBkZ3Xed3bt3w8rK6r7r\n7dq1q8El3TKZDDU1Nbh06RLCwsJgZmb2SFlJeyUmJqJHjx6iY2gkmUyGZcuWYdKkSQgMDBQdhwgA\ny0giIiIiaofee+89lJaWYsOGDaKjUCvo3r07IiIikJ2djY8++ggnT55Ez549ERgYiKioKNTV1bV4\nW1euXAHvZPV/jI2Nm/2cjo4OIiIiMGjQoBZtKyIiotEyuVwOmUyGRYsWITIy8qFzkvaqqKjAtWvX\nHnrCpPZu8+bNuHbtGt5//33RUYiUWEYSERERUbtjb2+P//znP1izZg1ycnJEx6FWYmlpidDQUPz9\n99+IiYmBk5MTpk+fDjc3N6xevRoFBQX3fP2ZM2fg6+uLhQsXQiaTqSl129ZcGWlgYICJEyfixRdf\nbNF2Tp06hb/++ks5GU59kiRBLpcjLCwM77333iPlJe0TFxeHuro6DBw4UHQUjVNWVobVq1fj+eef\nh5eXl+g4REosI4mIiIioXXr11Vdha2uLN998U3QUamW6uroICgrC7t27ce3aNcycOROffPIJXF1d\nMWXKFJw6darJ10VEREBXVxfbtm3DhAkTUFVVpebkbU9TZaS+vj6cnJywdevWFm8nIiICBgYG91xH\nR0cHK1euxLlz5x44J2mv06dPw9XVFS4uLqKjaJy33noLd+7cwapVq0RHIWqAZSQRERERtUsmJiZ4\n7733sHXrVpw/f150HFIRDw8PrFmzBllZWYiMjMT169cRGBiIgIAAREZGKgvH3Nxc/Pjjj5DJZJDJ\nZDh48CAef/xxFBYW/j/27jsqinNxH/izLL13pFjgxgJYaGqMYBcVFUtijS25CcbEkmuKJt7kmirp\nMdHEFgsajSaKgqIoqBFsqMSGSKL0DrKw9LI7vz/yY7+iqECAWeD5nLNnl9nZmWd213vPPnlnXpGP\nQFx6enoPLZNIJAgODm7QdSIBIDMzEwcOHEB1dfUj19HQ0ICtrS127doFLy+vJuel9uf8+fMNvhQA\n/Z+4uDh89913WLNmDSwtLcWOQ1QHy0giIiIi6rBmz54Nb29vvPLKK/WePkrth46ODubNm4c//vgD\nly9fhouLCxYvXoxu3bph5cqV+Pzzz+vMMltTU4Nr165h0KBBSEtLEzG5uLS1taGh8X8/GyUSCX74\n4Qe4u7s3eBs//vjjI2fw1dLSgrGxMT799FPcvXsXzz//PGf7JRVBEHDx4kWeot1IgiBg8eLF6Nev\nH15++WWx4xA9hGUkEREREXVYEokE69atw9WrV7F9+3ax41Ar8fT0RFBQEFJTU7F8+XLs3r0bmzZt\nemjkXnV1NZKTk+Hp6YkbN26IlFZcOjo6qjJSU1MT06ZNw0svvdTg11dVVeGHH354aBIhLS0t6Ojo\nYPny5UhJScGKFSseO1kOdUx3795FXl4eR0Y20rZt23DmzBmsX7++zn9MIFIX/FYSERERUYfWu3dv\nLFq0CG+//XaHPyW3o+nUqRNWrFiBwMBAlJWV1btOdXU1ZDIZBg8e/MhrTbZnOjo6kEgk0NTUROfO\nnbFly5ZGvX7v3r2QyWSqv7W0tCCRSDBjxgwkJiYiMDAQpqamzR2b2omzZ89CV1cXbm5uYkdpMwoK\nCrBy5Uq89tprGDBggNhxiOrFMpKIiIiIOryPPvoI2traeP/998WOQiJ40uihmpoalJWVYeTIkThy\n5EgrJhOfjo4OqquroampidDQUBgZGTXq9d9++y2Av0dVSiQS+Pn5IT4+Hjt37oSdnV1LRKZ25MSJ\nExg8eDBHzTbCypUrIZVK8dFHH4kdheiRNMUOQEREREQkNmNjYwQGBuKFF17A/PnzOZqkA4mLi8P5\n8+chCMJj11MoFFAqlfD398fGjRsbdapycyouLkZNTQ2qq6tRUlICAJDL5VAoFKqccrn8ka+vqalB\ncXHxY/dhaGiomvk6KysLALB06VJkZWUhKysLRkZG0NT8+6ekhoaGaiIbfX191WndJiYmiImJUU0O\n1b9/f3z99de89h81mCAIOHnyJJYuXSp2lDYjMjISW7ZswZ49exo8wRSRGCTaC8PaAAAgAElEQVTC\nk/5fl4iIiIioAxAEAUOHDkVVVRXOnTvH62x1EK+88go2bdr0xDLyQZ9//jneeuutep+TyWQoLCxU\n3RcXF6O8vBxyuRwlJSUoLy9HcXGxanlJSQnkcjnKy8tRWlqKoqIiKJXKeovHtkZDQwP6+vrQ1dWF\nsbExAMDMzAx6enrQ09ODqakpDAwMoKenB2NjYxgaGkJPTw9GRkYwMjKCnp4eDA0NYWZmBjMzM5ia\nmsLMzIyT3HQAN27cQN++fXHp0iXOsN4ApaWl6NevH1xdXXHo0CGx4xA9zoccGUlEREREhL8ns1m/\nfj08PT3xww8/YPHixWJHolbg5uaGESNGoKCgADKZTFUYVlVVPbSuRCKBhoYGFAoF3n77bezcuRNW\nVlZ1isf7r494P6lU+lDZdv9je3t7VfFmbGwMqVT60EhDADAwMIC2trZqe0DdkYwAVK9/FBMTk8eW\n7Y86BgBQKpUoKipS/X3/SMva8rS+ZbWFau3rS0tLVQVtbm7uI8vaBye+uf8Y7i8nH7w3NzeHjY0N\nrKysYGVlBUtLS1hZWT3yuEj9nDhxAhYWFvDw8BA7Spvw1ltvobCwEJs2bRI7CtETcWQkEREREdF9\n/vvf/+K7775DXFwcOnfuLHYcamZyuRzp6elIT09HZmYmMjIykJeXh/z8fOTm5iInJ0f194Ozaxsa\nGqoKQk1NTXTt2hU9e/Z8aNTeg48NDQ2hra0t0hG3bbXFpkwme2jE6f33Dy4rKChAXl5enW1JpVJV\nOWllZaUqKy0tLWFnZwc7Ozt07twZ9vb2MDMzE+mIqZafnx8MDQ2xb98+saOovdOnT2PEiBH4+eef\nMWvWLLHjED3JhywjiYiIiIjuU1lZCXd3d3Tr1g1hYWFix6FGkMvlSExMRFpamqpsTEtLQ0ZGBjIy\nMpCWllbndGc9PT3Y29vD2toalpaWsLa2rlNQPfj3/aMPSf0pFArk5eWpbvcXzTk5OcjNzVX9nZ6e\njtLSUtVr9fX10blzZ9jZ2cHBwQEODg6ws7NDly5d4ODgAEdHRxaWLaiyshIWFhb4+uuvERAQIHYc\ntVZWVoZ+/frB2dkZISEhYschagiWkUREREREDzpz5gyGDRuGPXv2YMaMGWLHof+vuroaaWlpyMzM\nRFZWFhITE+vckpKSVNd+1NXVhZ2dHZycnGBraws7OzvVfe0yW1tbXnuQVMrLy5GVlVXn+1X7uPY+\nOTkZSqUSQN3v2IM3Z2dn6Ovri3xEbdeRI0cwceJEpKSkcIT6EyxatAj79u1DXFwcOnXqJHYcooZg\nGUlEREREVJ+FCxfiwIEDiI+Ph6WlpdhxOpSCggLEx8fj1q1buH37Nm7duoWEhASkpaWpriFobGwM\nR0dHVflz/+MuXbpAT09P5KOg9qiyshKpqalISkqqU4LX3tdeb1NDQwMODg7o2bMnnJ2d4ezsjF69\nesHV1ZXXrmyAl156CTdu3MDFixfFjqLWwsLCMGHCBOzevRszZ84UOw5RQ7GMJCIiIiKqj1wuh4uL\nC3x9fbF161ax47RLMpkMsbGxuHXrlqpwjIuLQ25uLoC/r9HYq1cvVZlzf/HIgpjUkUwmUxWTd+/e\nRUJCgqpUr534x8LCQvWddnZ2hqurK9zc3GBtbS1yevWgUChga2uL5cuXY+XKlWLHUVsZGRlwc3PD\n5MmTsXnzZrHjEDUGy0giIiIiokcJDg7Gs88+i7CwMIwdO1bsOG2aTCZDXFwcrly5orrFx8dDEASY\nmZnByckJLi4ucHV1Vd1369btsbM+E7Ultf8Gbt26pbq///ICtra2qu+/p6cnPD094eLi0uEuJfD7\n779j2LBhiI+PR69evcSOo5aUSiV8fX2RkpKC2NhYGBkZiR2JqDFYRhIRERERPc7zzz+P06dP48aN\nGzA3Nxc7TptQUlKC8+fPIzo6GpcuXUJsbCxycnIAAI6OjnB3d4eHhwfc3d3h7u4OW1tbkRMTiSc/\nPx9//PEHYmNjVfd37tyBIAiwsLCAu7s7BgwYgMGDB2Pw4MEwMTERO3KLev3113H8+HHcunVL7Chq\na82aNfjf//6H6OhoDBgwQOw4RI3FMpKIiIiI6HEKCwvRt29f9O/fH/v37xc7jlrKycnB2bNnERUV\nhejoaFy9ehU1NTVwcnLCoEGDVKWju7s7ZyAmagC5XI5r166pCsqLFy/i9u3b0NDQQO/evTFkyBAM\nHjwYPj4+sLe3Fztus3JycsKsWbPwySefiB1FLcXExMDb2xtr1qzBG2+8IXYcoqZgGUlERERE9CQR\nERHw9fXlJAH/X1lZGU6dOoUjR47g5MmTSEhIgFQqRZ8+feDj4wNvb294e3vDzs5O7KhE7UZubq6q\n9D979ixiY2NRU1MDR0dHjBgxAn5+fhg9enSbPmU3JiYGAwcOxKVLl+Dl5SV2HLVz7949eHp6olev\nXggLC+NlLKitYhlJRERERNQQr732Gnbv3o3r16+jc+fOYsdpdXfv3sXRo0dx5MgRnD59GpWVlfDw\n8MCYMWPg7e2NwYMHw9jYWOyYRB1GaWkpLly4gOjoaISHhyMmJgZSqRTe3t7w8/ODn58fnJ2dxY7Z\nKEuXLsWxY8fw559/ih1F7SiVSkyYMAE3b95EbGwsJ/GitoxlJBERERFRQ5SVlcHd3R1du3ZFeHh4\nh5hU4s6dO9i5cyf27t2LhIQEmJiYYPTo0fDz88O4cePQqVMnsSMS0f+Xn5+P48eP48iRIwgPD8e9\ne/fg6OiIadOmYd68eXB1dRU74mPV1NTAwcEBixcvxn//+1+x46id1atX49NPP8Xp06fxzDPPiB2H\n6J9gGUlERERE1FDnz5+Hj48Pvv/+eyxatEjsOC1CJpNh37592LlzJ86dOwdbW1vMnDkTEydOhLe3\nNzQ1NcWOSERPoFAoEBMTg9DQUOzevRspKSnw8PDA3LlzMWvWLNjY2Igd8SFHjhzBxIkTcefOHTg5\nOYkdR61ERkZizJgx+O677/Dqq6+KHYfon2IZSURERETUGO+99x6++uorXLx4EX369BE7TrOJjo7G\n999/j0OHDkEqlWLKlCmYO3cuRo0aBalUKnY8ImoiQRBw5swZBAUF4bfffkNZWRnGjh2LJUuWYPTo\n0Wozynv27NlIT0/HmTNnxI6iVtLS0uDh4YHRo0dj9+7dYschag4f8mqnRERERESNsHr1agwaNAjP\nPvssiouLxY7zjwiCgIMHD2LAgAHw8fFBamoqNmzYgOzsbOzatQtjxozpsEWkRCJR3TqqS5cuYfjw\n4WLHaBJ1+fyGDx+OS5cuiZpBIpFg6NCh+Omnn5CdnY2goCCUl5djzJgx6Nu3L3bt2gWlUilqxpKS\nEoSEhOD5558XNYe6KS8vx9SpU2FjY4PNmzeLHYeo2bCMJCIiIiJqBKlUih07dkAmk2HZsmVix2my\n06dPY+DAgZg6dSo6d+6Mc+fO4fz581iwYEGbno23uXT0E8i2bNkCX19ftfqO+/j4wMfHp0Hrqsvn\nt3TpUowePVptiiQ9PT3MmjULERERuHr1Ktzd3bFgwQL07dsXoaGhouXav38/ampqMG3aNNEyqBtB\nEPDvf/8biYmJCA4OhoGBgdiRiJoNy0giIiIiokZycHBAUFAQtm/fjqCgILHjNMq9e/cwb948jBgx\nAhYWFrhy5Qr279+PQYMGiR2txYg5Qk6sff+T/R49ehQBAQHYsGEDJk+e3MzJmk6pVIo+gq8+j3uv\np0yZgvXr12PhwoU4evRoKyd7vH79+iEoKAg3b96Ei4sL/P39MWXKFGRkZLR6lp9++gkTJ06Eubl5\nq+9bXX388cf49ddfsW/fPnTv3l3sOETNiteMJCIiIiJqojfeeAMbN27E5cuX0atXL7HjPNHFixcx\nffp0KJVKfP/992pVNLWk2qKosT99mvq65t5Ga+63qqoKTz31FLp06YLo6OiWiNZqWuu9b8h+Bg0a\nhMzMTNy5cwdaWlotmqepIiIisGjRIhQVFWH37t0YNWpUq+w3Pj4erq6uOH78eKvtU90FBwfjueee\nw/fff88Ja6g94jUjiYiIiIiaas2aNXB1dcXMmTNRUVEhdpzHOnbsGIYPH47evXvj2rVrHaaIpMbZ\nv38/0tLSMHv2bLGjtCuzZ89Gamoq9u/fL3aURxo1ahT++OMPjBo1CmPHjm21Ud8bNmyAo6MjRowY\n0Sr7U3fXrl3D3LlzsWDBAhaR1G6xjCQiIiIiaiJtbW388ssvSElJwaJFi8SO80gxMTGYPHkyZs2a\nhdDQULU/FTIiIgL+/v4wMzODrq4uPDw88Msvvzy03v2TlNy9exdTp06FmZlZndNm7z99tnb5Sy+9\nVGc7cXFx8PPzg6GhIUxMTDBlyhSkpqY+Ml9ubi4WLVoEBwcHaGtrw97eHgEBAcjOzn4o35P23dBt\nAUBFRQUCAwPh7u4OAwMD6OrqolevXnjllVdw4cKFRu33UUJCQgAAXl5eDx3Lk95roGmf3a1btzB2\n7FgYGxvD0NAQ48ePR3x8/CPXf1BjP7/W/n4BQP/+/eu8v+rK0NAQu3fvxptvvokXX3wRx44da9H9\nlZeXY9euXVi4cCE0NFhPZGVlwd/fHwMGDMCGDRvEjkPUcgQiIiIiIvpHwsPDBalUKqxdu1bsKA+p\nrKwUnnrqKWHs2LGCQqEQO06DABAmT54s5OXlCSkpKcLo0aMFAMKxY8fqXReAMHr0aOHs2bNCWVmZ\nEBYWJtz/U6d2nfrcuXNHMDU1Fezs7ITIyEihuLhY+P3334UxY8bU+7rs7Gyha9eugo2NjRAeHi4U\nFxcLZ86cEbp27So4OjoKMpms3nz1acy25HK54OXlJRgZGQmbN28WsrOzheLiYuHUqVOCs7PzQ/t4\n3H4fp2fPngIAITs7+6HnGvpeN/aze+aZZ4To6GihuLhYiIiIEDp16iSYmZkJSUlJTzymxn5+Tc3Y\n1O9XrczMTAGA0KtXr8eup07mzp0r2NjYCIWFhS22j+3btwva2tpCTk5Oi+2jrSguLhY8PDyEnj17\nCvn5+WLHIWpJH7CMJCIiIiJqBp988omgqakpnDx5UuwodezevVvQ0tISUlNTxY7SYADqFFHx8fEC\nAMHHx6fedQEIp06deuz2HlUWzZkzRwAg7Ny5s87y4ODgel+3cOFCAYDw008/1Vl+4MABAYDw7rvv\nNnjfjdnW8uXLBQDCt99++9B2YmNjm62MNDQ0FAAIFRUVDz3X0Pe6sZ9dWFhYneXbt28XAAjz58+v\nd/37Nfbza2rGpn6/apWXlwsABCMjo8eup04KCwsFY2Nj4ZtvvmmxfQwaNEiYMWNGi22/raipqRH8\n/f0FS0tL4c8//xQ7DlFL+4AT2BARERERNQNBEDBr1ixEREQgJiYGTk5OYkcCALz00ktISUnBiRMn\nxI7SZAqFApqamrCwsEB+fn6d52pPky0tLYW+vn69r3/cBCOdOnVCTk4OMjIyYGdnp1qen58PKyur\nh15nb2+PzMxMZGZmwtbWVrX83r17sLS0RJ8+fXD9+vUG7bsx2+ratStSU1ORnJyMrl271nucDT3m\nx5FKpapZqx88Jboh7/WDGvLZFRYWwsTERLU8IyMDDg4OsLW1RWZm5mOPqbGfX1MzNvX7VUupVEIq\nlUIqlaKmpuaxedTJnDlzUFRUhNDQ0Gbf9o0bN9C3b19ERkZ2+OtFvvbaa9i2bRsiIyMxaNAgseMQ\ntTROYENERERE1BwkEgm2bduGrl27YurUqSgtLRU7EoC/iy1ra2uxYzRYYWEh3n33XTg7O8PIyAgS\niQSampoA/j6WR2loOfag2vLJ0tKyzvIH/66Vm5sLALCzs6tzTcHa9e/evdvgfTdmW1lZWQD+Lt9a\nUu37WFVV9cR1HtTUz+7+IhL4v/c+Ly/viXkb+/m19verVu37+U+309psbGwa9Dk0xbp169CzZ08M\nHz68RbbfVnzyySfYuHEjfv75ZxaR1GGwjCQiIiIiaiZ6enrYv38/MjIyMH/+/EaPSmsJTk5OdUbq\nqbvp06djzZo1mDFjBlJSUiAIQou+j7Wl1YMj4oqKiupd38bGBgBQUFCgynb/rTEldGO2VbtubSnZ\nUuzt7QH8Xdo1VlM/uwdLwNrPonZk4+M09vNr7e9XLZlMBuD/3t+24tq1a3jqqaeafbsFBQXYtWsX\nli1bVu+kRB3Fzp078d577+G7777DlClTxI5D1GpYRhIRERERNaNu3bph9+7dOHjwID7++GOx42D2\n7Nm4efNmi8+K21zOnj0LAHjjjTdUs35XVlb+o23Wjkarrq5GWVlZnVFzvr6+AIDIyMg6rzl//ny9\n25o8eTIA4PTp0w89FxUV9dDIpsftuzHbevbZZwEABw8efGjdCxcuYODAgQ3e7+O4u7sDAFJSUhq0\n/v2a+tnVvq5WREQEgP/7bB6nsZ9fa3+/atW+n25ubv9oX63pypUrOHnyJGbPnt3s296wYQO0tbUx\nd+7cZt92WxESEoIXX3wRK1aswKuvvip2HKLW1UoXpyQiIiIi6lA2bdokSCQSYdu2bWJHEWbOnCnY\n2dkJ6enpYkd5otpZkN955x1BJpMJ9+7dU03eUt/Pl0ctv9/TTz8tABCio6OFX375RZgwYYLqubt3\n7z40G/PZs2eFIUOG1LvtvLw8oXv37oKtra3w66+/Cvn5+YJcLhdCQ0MFJycn4fTp0w3ed2O2JZPJ\nhN69ewtGRkbCpk2bVLNpHzt2TOjevbsQERHR4P0+zs8//ywAENavX//Qc096r5v62Y0bN06IiooS\niouLhcjISMHW1rbBs2k39vNr7e9Xre+++04AIOzevfux21IX9+7dE3r27CmMHDlSUCgUzbrtqqoq\nwcHBQXjrrbeadbttycmTJwVdXV1hwYIFglKpFDsOUWvjbNpERERERC1l5cqVgpaWlhAeHi5qjtoi\n66mnnhISExNFzfIkOTk5wty5cwVra2tBW1tb6N27t7B3715VKXR/MXT/sseVRpcuXRL69esn6Ovr\nC08//bSQkJBQ5/mbN28K48aNEwwMDARDQ0PB19dXiIuLe+R2CwoKhOXLlwuOjo6ClpaWYGNjI0yc\nOFE4f/58o/fdmG0VFxcL//3vf4WePXsK2tragoWFheDr6yucOXOm0ft9lMrKSsHBwUHw9vaus7wh\n73VjPrv7t5mUlCRMmDBBMDIyEgwMDIRx48YJt27deuz+79eYz0+M75cg/F1YOjg4CJWVlY9459VH\nVlaW4ObmJnTr1k3IyMho9u3v3r1bkEqlav+/RS0lJiZGMDIyEqZOnSrU1NSIHYdIDJxNm4iIiIio\npQiCgAULFiA4OBhnzpwR9RTNvLw8jB07FklJSdi2bRsmTZokWhZSb0eOHMHEiROxZ88ezJgxo8X2\n09QZv9uan3/+GXPnzkVoaCjGjx8vdpzHOnXqFJ5//nkYGRnh+PHjDZq5vbGefvppdO7cGb/++muz\nb1vd/fnnn/Dx8UG/fv0QGhoKHR0dsSMRiYGzaRMRERERtRSJRIItW7Zg4MCBGD9+PFJTU0XLYmVl\nhejoaDz77LOYPHkypk+fjoyMDNHykPoaP348NmzYgFdeeaXea1RSwwUHB+PVV1/Fjz/+qNZFZH5+\nPv79739j5MiRGDx4MC5dutQiReT58+dx8eJFLFu2rNm3re4SExMxYsQI9OjRAwcPHmQRSR0aR0YS\nEREREbUwuVwOHx8fKBQKREdHw9TUVNQ8p06dwqJFi5CWloaXXnoJ7777rmq2ZqJaMTExePvtt+ud\nYKc5dISRkcOGDcPnn3+OAQMGiB2lXqWlpVi3bh0CAwOhq6uLzz77DPPmzWux/c2YMQN37tzBlStX\nWmwf6ig5ORnDhg2DpaUlIiMjYWJiInYkIjF9yDKSiIiIiKgVpKam4plnnoGTkxOOHj0KAwMDUfNU\nVFTgxx9/xJo1a1BeXo4XXngBr7/+OpycnETNRR1DbRFZiz9LW1dmZia+//57bNy4EYIgYPny5Xj9\n9ddhZGTUYvtMTExEz549sXPnTsycObPF9qNu0tLSMGzYMBgZGSEyMhIWFhZiRyISG8tIIiIiIqLW\nkpCQgGHDhuGpp57CsWPHRC8kAaCkpASbN2/G2rVrkZ6ejlGjRmHu3LmYMmUK9PX1xY5HRM2ksrIS\nR44cQVBQEI4ePQpzc3MsWbIEixYtgpmZWYvvf9GiRQgPD8eff/4JTU3NFt+fOsjIyMDQoUOhr6+P\nkydPwtLSUuxIROqAZSQRERERUWu6fv06RowYAQ8PD4SEhEBXV1fsSACAmpoaHDp0CDt27MCxY8eg\nq6uLqVOnYt68eRg2bBg0NHi5eaK2RhAEnD9/Hjt37sTevXshl8sxYsQIzJ07F9OnT2+16xbm5uai\nW7du+Oqrr7Bo0aJW2afYcnJyMHz4cCiVSpw+fRqdOnUSOxKRumAZSURERETU2q5evYqRI0diwIAB\najmRQV5eHn755Rfs3LkTly5dgr29PSZMmAA/Pz+MHDlSLUZ0ElH9KioqcPr0aYSFheHw4cNISkpC\nnz59MHfuXMyePRv29vatnmnVqlXYsmULkpOToaen1+r7b22ZmZkYOXIkJBIJTp06xWvyEtXFMpKI\niIiISAwXL17E6NGjMWrUKOzbt09tT1uMj4/Hvn37EBYWhsuXL0NLSwtDhw6Fn58f/Pz80L17d7Ej\nEnV4KSkpOHr0KI4cOYKTJ0+irKwMbm5u8PPzw7Rp0+Dm5iZatuLiYnTt2hVvvPEGVq1aJVqO1pKa\nmoqRI0dCS0sLkZGRsLW1FTsSkbphGUlEREREJJaoqCiMGzcO/v7+CAoKUttCslZubi6OHj2KsLAw\nnDhxAjKZDE5OTvDx8YGPjw8GDx6MXr16iR2TqN27e/cuzp49i6ioKERHR+P27dswNDTE6NGjMW7c\nOPj5+YkyArI+X375JVavXo2UlJR2P3lLcnIyRo4cCV1dXURERLCIJKofy0giIiIiIjGdPHkS/v7+\nGDlyJPbu3as215B8kpqaGpw7dw6RkZGIjo7GxYsXUVpaCisrKwwePFhVTnp4eEBLS0vsuERtlkKh\nwPXr1xEdHa26ZWZmQldXF15eXvDx8cGIESMwZMgQaGtrix23jurqavzrX//C9OnT8eWXX4odp0Ul\nJCRg1KhRsLa2Rnh4OCerIXo0lpFERERERGK7dOkS/Pz84OLigpCQEJiYmIgdqdEUCgVu376Ns2fP\nIiIiAqdPn0ZeXh60tLTQvXt3eHp6qm4eHh6cqZuoHjU1NUhISMCVK1dUt6tXr6K0tBRGRkYYOHAg\nBg8eDG9vb3h7e6v9f7zYunUrFi1ahLt378LBwUHsOC0mPj4eo0aNgp2dHcLDw2Fubi52JCJ1xjKS\niIiIiEgd3Lp1C2PGjIG1tTWOHj0Ka2trsSP9Y/Hx8bh06RL++OMPxMbG4urVq5DL5dDU1ESvXr3g\n4eEBd3d39OnTB87OzrCzsxM7MlGryc3Nxa1btxAXF6f6N3Lz5k1UV1fDwMAA/fr1g7u7Ozw8PNC/\nf3+4urq2qVntFQoFXFxcMGTIEGzevFnsOC2m9j8mubq64vDhwzA0NBQ7EpG6YxlJRERERKQukpOT\n4evrC4VCgRMnTsDJyUnsSM1KEATcuXNHVbzU3ufn5wMATExM0KtXL7i4uKBXr15wdnaGs7MzHB0d\nIZVKRU5P1HhKpRIpKSm4ffs2bt26hdu3byM+Ph7x8fEoKCgAAJiamqpKx9r7Hj16tPnv/K5du7Bg\nwQLEx8e324muIiMjMWXKFPj4+ODXX3/liG+ihmEZSURERESkTrKysjB27FjIZDKEh4fD2dlZ7Egt\nLi8vD3FxcXWKmtu3byMtLQ0AoKOjgx49esDJyanOzdHREY6Ojmp/qiq1b1VVVUhOTkZiYiKSkpKQ\nmJiouiUkJKC8vBwAYGtrC2dn54cK9/Y4IlipVKJfv37w8PDAjh07xI7TIg4dOoSZM2diypQp2LFj\nB6+NS9RwLCOJiIiIiNSNTCbDhAkTEB8fj19++QW+vr5iRxJFcXGxqqC8fft2nbKndjSlRCKBnZ0d\nHB0dVSVlt27dYGtrCwcHBzg4OMDY2FjkI6G2rKSkBGlpacjMzERGRgZSU1PrFI4ZGRlQKpUAAHNz\nc9V30dHRET179lQVj6ampiIfSevZt28fZs2ahevXr8PV1VXsOM0uKCgI//73vxEQEIDvv/++TZ0+\nT6QGWEYSEREREamjyspKLFy4ELt27cInn3yCFStWiB1JrRQXFz80Eq32cWpqKsrKylTrGhgYoEuX\nLnUKSltbW3Tp0gU2Njbo1KkTrKyseIplB1NRUYG8vDxkZ2cjOzsb6enpyMzMrFM8pqenQy6Xq16j\nq6uLLl261Ckc77/vSIXjowiCADc3Nzg7O+OXX34RO06z++yzz/DOO+/g/fffx+rVq8WOQ9QWsYwk\nIiIiIlJna9euxRtvvIEZM2Zgy5Yt0NPTEztSmyCTyeoUS/cXTLWPa0dX1jIwMIC1tTVsbGxgZWUF\nKysr2NjYwNraGpaWlqp7MzMzmJqawszMTKSjo/oUFRVBJpOhsLAQ9+7dQ05ODvLy8pCXl4ecnBzk\n5uYiPz8fubm5yM7ORklJSZ3Xm5ubw87ODp07d4adnR0cHBxgb28POzs7VZltaWkp0tG1HQcPHsTU\nqVNx9epV9O3bV+w4zUahUGDJkiXYuHEj1q5di8WLF4sdiaitYhlJRERERKTujh07hlmzZsHZ2RkH\nDhxAp06dxI7ULlRUVKhGxeXn59cprWpLrOzsbOTl5SE/Px9VVVUPbaO2mKwtJ++/r31sYGAAAwMD\nmJiYQE9PD/r6+jA1NYWenh709PQ6fKlZWFiI8vJylJeXQyaTqR4XFhairKwMpaWlKCwsVBWN9z+W\nyWSqxw/+tNXU1HyoVLaysoKlpaWqWLSysoK1tTXs7OxY9DeTAQMGwN5P5YIAACAASURBVMHBAQcO\nHBA7SrMpKSnBrFmzEBERge3bt2PGjBliRyJqy1hGEhERERG1BfHx8Zg0aRIqKipw8OBBeHh4iB2p\nw5HJZLh3716dQuxRBdn9y8rKyh4ahfeg2mLS1NQU+vr60NHRgaamJoyMjAAARkZG0NTUhJaWFgwN\nDR+5rFbtc/XR1taGgYFBvc+Vl5ejoqKi3ueUSiWKiorqLCsrK0NlZWWd50pLS1WTttSe4lxSUoLq\n6mpUVVWhtLQURUVFKC8vr3M6fX309fVhYGBQb8n7pHuOYmx9YWFhGD9+PC5dugQvLy+x4zSLzMxM\nTJw4EampqTh48CAGDx4sdiSito5lJBERERFRWyGTyTBjxgycOXMGX375JV577TVIJBKxY1ED3V/A\n1Y4GrH1cVlaG8vJyFBUVobS0FFVVVarirva1SqUSlZWVqgKvdjTg/cuA+kvD+9Vuvz73F6D1MTY2\nhlQqVf2tq6urGlFYO8KzqqoKMTEx8Pb2hpOTE4C/y1ZdXV3V9o2MjFRF44MjRvX19VXFLLUdgiBg\n4MCBsLGxQWhoqNhxmsWNGzcwYcIEGBoa4siRI+jWrZvYkYjaA5aRRERERERtiSAI+O677/DWW2/B\nz88PW7duhbm5udixiFSqq6sxZcoUXLhwAWfOnIGLi4vYkagV/Prrr5g5cyYuX74Md3d3seP8Y8eP\nH8e0adPg5eWF/fv3sxwnaj4sI4mIiIiI2qKLFy9i5syZUCgU2L17N7y9vcWORKRSXl6OsWPH4u7d\nu4iKioKjo6PYkagFKRQK9OnTBx4eHti1a5fYcf6xLVu2YNGiRZgzZw42btwIbW1tsSMRtScfaoid\ngIiIiIiIGm/gwIG4fPky+vXrh+HDh2P16tVQKpVixyIC8Pdp2aGhobCxscHo0aORnZ0tdiRqQVu3\nbsWdO3fwwQcfiB3lHxEEAatXr0ZAQABWrVqFbdu2sYgkagEcGUlERERE1IYJgoBvv/0WK1euxNCh\nQ7F9+3bY2dmJHYsIAJCXl4chQ4ZAS0sLv//+e4efObw9qqioQI8ePeDv749169aJHafJKioq8MIL\nLyA4OBhbtmzBnDlzxI5E1F5xZCQRERERUVsmkUjwn//8B2fPnkVycjL69OmDPXv2iB2LCABgZWWF\n48ePo6ioCH5+fqoJeaj9+Oabb1BQUIBVq1aJHaXJsrOzMXToUJw4cQIREREsIolaGMtIIiIiIqJ2\nwMvLC9euXcPLL7+MOXPmYNq0acjLyxM7FhE6d+6MEydOIDExEVOmTEFlZaXYkaiZpKen49NPP8W7\n774LW1tbseM0yYULF+Dl5YXCwkKcP3+e198lagUsI4mIiIiI2gk9PT0EBgYiPDwcMTEx6N27N4KD\ng8WORYQePXrg8OHDuHDhAmbPng2FQiF2JGoGb775JmxsbLB8+XKxozRJUFAQhg8fjn79+uHChQvo\n3r272JGIOgSWkURERERE7cyoUaNw48YNTJ48GVOnTsX06dNRUFAgdizq4Pr3749Dhw4hLCwMS5Ys\nETsO/UPR0dHYt28fvv32W+jq6oodp1EqKysREBCABQsWYNmyZQgNDeX1TIlaESewISIiIiJqx0JC\nQhAQEAAtLS2sX78e/v7+YkeiDi4kJATPPvssVq5ciY8++kjsONQECoUCnp6esLGxQXh4uNhxGiUj\nIwPPPfcc4uLisH37dkydOlXsSEQdDSewISIiIiJqz/z9/XHz5k0MHToUkyZNwnPPPYfMzEyxY1EH\n5u/vj61bt+LTTz/Fl19+KXYcaoK1a9ciPj6+zc2eHR0dDS8vLxQUFODChQssIolEwjKSiIiIiKid\ns7S0xK5du3D69GncvHkTLi4uWLt2La/bR6KZO3cu1q5di7fffhs//fST2HGoEZKTk/G///0Pq1at\nalPXWNy0aRNGjhwJLy8vxMTEwMXFRexIRB0WT9MmIiIiIupAysvL8dlnn2HNmjXo3bs3Nm/eDA8P\nD7FjUQf13nvvYc2aNdizZw+mTZsmdhx6AkEQMGbMGGRnZ+Py5cvQ1tYWO9ITVVRU4LXXXsO2bdvw\n9ttv49NPP4WGBsdlEYmIp2kTEREREXUkenp6WL16NWJiYqCpqYmnn34aq1atQmlpqdjRqAP66KOP\nsGTJEsyZM6fNXXuwI9qyZQsiIyOxcePGNlFEpqenY+jQofjtt98QHByMwMBAFpFEaoD/ComIiIiI\nOqB+/frh3Llz+PLLL7Fu3To4Oztj7969YseiDujrr7/G7NmzMXXqVJw7d07sOPQIWVlZWLFiBf7z\nn/9g0KBBYsd5osOHD8Pd3R1lZWW4cuUKJk2aJHYkIvr/WEYSEREREXVQUqkUS5cuRWJiIqZMmYLZ\ns2dj2LBhuH79utjRqAORSCTYtGkThg8fDn9/f9y6dUvsSFSPgIAAmJub48MPPxQ7ymNVVVVh+fLl\n8Pf3x/jx43H+/Hk89dRTYsciovuwjCQiIiIi6uAsLCywdu1axMTEoLq6Gu7u7pg3bx7y8vLEjkYd\nhJaWFn799Ve4urrC19cXSUlJYkei+2zcuBFhYWH46aefoK+vL3acR0pJScGwYcOwefNm7NixA9u3\nb4ehoaHYsYjoASwjiYiIiIgIAODp6YmoqChs3rwZx48fh4uLCzZu3Iiamhqxo1EHoKenh9DQUNjY\n2GD06NHIzs4WOxIBSExMxFtvvYUVK1Zg6NChYsd5pP3798PNzQ1yuRwXLlzA3LlzxY5ERI/A2bSJ\niIiIiOghRUVF+OCDD7Bu3To89dRTCAwMhL+/v9ixqAPIy8vDkCFDoKWlhd9//x1mZmZiR+qwampq\n4OPjg8rKSly4cEEtJ62pqKjAihUr8N1332Hu3LnYsGGDWo/eJCLOpk1ERERERPUwMTHB119/jb/+\n+gteXl6YPHkyBg0ahKioKLGjUTtnZWWF48ePQy6Xw8/PjzO9i+iTTz7BH3/8gR07dqhlERkfH4+B\nAwdix44d2Lt3L4KCglhEErUBLCOJiIiIiOiRunbtiqCgIFy8eBG6uroYMmQIJk6ciL/++kvsaNSO\nde7cGSdOnFBNrlRZWSl2pA7n7Nmz+OSTT/DZZ5+hT58+Ysd5SFBQEPr37w9dXV3ExsZi+vTpYkci\nogZiGUlERERERE/Uv39/nDp1CocOHUJiYiJcXV2xZMkS5OTkiB2N2qnu3bvj8OHDuHDhAmbPng2F\nQiF2pA5DJpPh+eefh6+vL5YuXSp2nDrkcjlmzpyJF154AUuXLsXZs2fh5OQkdiwiagSWkURERERE\n1GD+/v64du0a1q9fjwMHDsDJyQlvvfUWZ96mFtG/f38cOnQIYWFhWLx4sdhxOgRBEPDCCy9AqVRi\nx44dkEgkYkdSOXfuHDw9PXHy5EkcOXIEn376KTQ1NcWORUSNxDKSiIiIiIgaRVNTEy+//DKSkpLw\nzTff4Oeff4ajoyOWLVvGkZLU7IYPH469e/diy5YteO+998SO0+59/vnnOHLkCPbs2QMLCwux4wD4\ne5KalStXYsiQIejevTuuXr2KsWPHih2LiJqIs2kTEREREdE/UlZWhs2bNyMwMBAlJSV47bXXsGLF\nCs6CTM1q165dmD9/Pj777DO8+eabYsdpl86ePYthw4YhMDAQb7zxhthxAAA3btzAvHnzkJiYiC++\n+AIBAQFiRyKif+ZD6erVq1eLnYKIiIiIiNouLS0tPP3003jllVego6ODdevW4dtvv0VFRQX69OnD\n2W2pWfTt2xcWFhZYvnw57O3t4eHhIXakdiUrKwujR4/G0KFDsXbtWtFPz1YoFPjiiy8wa9YsdO3a\nFUePHsXo0aNFzUREzeJ3jowkIiIiIqJmJZfLsXbtWqxduxaVlZUICAhQFUhE/9R7772HNWvWYM+e\nPZg2bZrYcdqF6upqjBo1CllZWYiJiYGpqamoeZKSkjB//nxcunQJq1evxptvvgmpVCpqJiJqNh/y\nmpFERERERNSsjI2N8d577yElJQUff/wx9u3bBycnJ8ybNw8JCQlix6M27qOPPsKSJUswZ84chIeH\nix2nXVi2bBliY2MRHBwsehEZFBSEvn37QiaT4fz581ixYgWLSKJ2hmUkERERERG1CAMDAyxbtgx3\n7tzBunXrcP78ebi6umLWrFm4du2a2PGoDfv6668xe/ZsTJ06FefOnRM7Tpu2c+dObNiwAVu3boWr\nq6toOXJycuDv748XX3wRr732Gq5cuQI3NzfR8hBRy2EZSURERERELUpHRwcvv/wyEhISEBwcjLt3\n78LNzQ3e3t4IDQ0FrxxFjSWRSLBp0yYMHz4c/v7+uHXrltiR2qSLFy8iICAAK1asEPWU96CgILi4\nuCA+Ph5RUVEIDAyEtra2aHmIqGWxjCQiIiIiolahoaGBiRMn4uLFizh69Cj09fUxadIk9O7dG5s3\nb0Z5ebnYEakN0dLSwq+//gpXV1f4+voiKSlJ7EhtSnJyMiZNmoSRI0fi448/FiVDSkoKxo0bhxde\neAHPP/88rl69ikGDBomShYhaDyewISIiIiIi0fz5559Yv349Nm/eDENDQ7z44otYsmQJJ7uhBpPL\n5Rg+fDiKiooQHR2NTp06iR1J7cnlcnh7e0MQBERHR8PExKRV9y8IAjZv3ow333wTNjY2qlGuRNQh\nfMgykoiIiIiIRJeTk4MffvgBP/74I+RyOWbOnIlXX30VAwYMEDsatQF5eXkYMmQItLS08Pvvv8PM\nzEzsSGqruroa48ePx82bN3Hx4kV07ty5Vfd/584dBAQEICoqCm+88QZWr14NXV3dVs1ARKLibNpE\nRERERCQ+GxsbfPDBB0hNTcW6detw9epVDBw4EP3798fWrVt5Cjc9lpWVFY4fPw65XA4/Pz+UlpaK\nHUltLV26FGfPnsXBgwdbtYisqanBZ599hj59+qCgoAAXLlxAYGAgi0iiDohlJBERERERqQ1dXV28\n9NJLuHr1Ki5fvgwPDw8sXrwYtra2WLhwIeLi4sSOSGqqc+fOOHHiBJKSkjBlyhRUVlaKHUk0eXl5\n9S4PDAzEpk2bsHv37lYddXzt2jUMGjQIH3zwAVasWIFLly7B09Oz1fZPROqFZSQREREREaklT09P\nbNy4EcnJyVixYgXCw8PRp08fjBkzBgcOHEB1dbXYEUnNdO/eHaGhobhw4QJmz54NhUJR5/n3338f\nPXr0QFVVlUgJW97BgwfRqVMnbN68uc7y3377DatWrcK3336LSZMmtUqWiooKrF69Gv3794euri5i\nY2OxevVqaGlptcr+iUg9sYwkIiIiIiK1Zm1tjXfeeQd3797FoUOHIJVKMW3aNDg4OODNN99EfHy8\n2BFJjfTv3x+HDh1CWFgYFi9eDABQKpVYtGgRPvnkE9y9exd79+4VOWXLWbNmDQRBQEBAAL766isA\nwOXLlzF//nwsXrwYS5YsaZUcJ0+ehLu7O7755ht88cUX+P3339GrV69W2TcRqTdOYENERERERG1O\nZmYmdu7ciU2bNiExMRGenp4ICAjA7NmzYWhoKHY8UgMhISF49tln8dZbbyE9PR0///wzlEolNDQ0\n4OLighs3bogdsdldunSpzunXEokECxcuRHBwMDw8PBASEgJNTc0WzZCRkYHXX38dv/32G6ZNm4Zv\nvvkG9vb2LbpPImpTOJs2ERERERG1XUqlEpGRkfjpp59w8OBBaGtrY8aMGZg/fz4GDx4MiUQidkQS\n0aZNm/Dll18iMTHxoVO2z5w5Ax8fH5GStYznnnsOISEhdS5hIJFIYGVlhb/++gvGxsZN3vYff/yB\nuXPn4sCBA+jRo8dDz9fU1GD9+vV4//33YWVlhe+//x7jxo1r8v6IqN1iGUlERERERO3DvXv3sGvX\nLmzduhXXr1+Ho6Mj5syZgzlz5tRbnlD7VlhYiHHjxuHy5cuoqamp85yWlhbGjx+P4OBgkdI1v+Tk\nZPzrX/+CUql86DkNDQ3MnDkTO3bsaNLIyLS0NHh5eSE3NxdjxozBsWPH6jx/+fJlLFq0CNeuXcPy\n5cuxevVqzpJNRI/yIa8ZSURERERE7YKFhQWWLVuGa9eu4ebNm5g3bx527tyJnj17wtXVFZ999hly\nc3PFjkmtICcnB97e3rhy5cpDRSQAVFdXIyQkBImJiSKkaxlr166FVCqt9zmlUom9e/di6tSpjZ5l\nvLi4GGPHjoVMJgMAhIeH4+jRowAAmUyGZcuWYeDAgTA0NMS1a9cQGBjIIpKIHosjI4mIiIiIqN1S\nKBSIjIzErl27VDNwjx07FjNmzIC/vz+vL9kOFRQUwNPTE+np6fUWkbW0tLSwdOlSfPnll62YrmUU\nFRXBzs4OZWVlT1x35syZ2LNnT4O2q1Ao4O/vjxMnTqhO/ZZKpejWrRtWrVqFFStWQFNTE4GBgZg3\nb94/OgYi6jA4MpKIiIiIiNovqVQKX19fBAUFITs7G1u2bEFVVRUWLFgAGxsbTJ8+HQcOHEB5ebnY\nUamZCIIAExMTKBQKaGg8+idvdXU1Nm7ciJKSklZM1zJqv9ePo6mpCQMDg0ZdJ3Pp0qUIDw+vcw1K\nhUKBpKQkvPzyy5g1axZu377NIpKIGoUjI4mIiIiIqMO5d+8e9u/fj19++QVnzpyBvr4+Jk2ahBkz\nZsDX1xfa2tpiR6R/QBAEHD58GG+//Tb+/PNPCIKA+n76SqVSfPvtt1i8eLEIKZtHTU0NunTpgqys\nrHqf19TUhFQqxcKFC7Fq1SpYW1s3aLtffPEFVqxYUe/7BgAGBgZISkqClZVVk7MTUYfECWyIiIiI\niKhju3fvHo4cOYKdO3fi5MmT0NXVxYgRIzBt2jT4+/vD1NRU7IjUREqlEvv378fy5cuRlZX10Iza\nANC1a1ckJiY+dhSlOtuzZw+ef/75h0pDbW1tKJVKvPDCC/jggw9ga2vb4G3u378f06ZNe2QRCfx9\nmvuLL76IDRs2NDk7EXVILCOJiIiIiIhqpaWlITg4GCEhIfj999+hoaGBYcOGYdKkSfD394eDg4PY\nEakJqqqqsH37drzzzjsoKiqqU0pKJBKEhIRgwoQJIiZsOg8PD1y/fl11TFpaWlAqlZg1axY+/PBD\nODo6Nmp7ly9fho+PDyorKx9bRgJ/z9IdGxuLfv36NTk/EXU4LCOJiIiIiIjqI5PJEBERgdDQUBw6\ndAhyuRwuLi6YNm0aJk6cCA8PD0gkErFjUiOUlJRg/fr1+Oijj1BZWYmamhpIpVL4+Pjg1KlTYsdr\ntKioKAwZMgTA3yWkQqFQlZBOTk6N3l5SUhK8vLweKmwfRSKRYNy4cThy5Eij90VEHRbLSCIiIiIi\noieprKxEVFQUQkNDsX//fmRkZKBbt27w9fXFhAkTMHbsWGhpaYkdkxooLy8Pa9aswfr161WTs5w7\ndw49e/ZERUWFakIjmUymek1VVRVKS0sfuc3y8nJUVFQ88nmJRPLYU/41NTVhZGSk+ltfXx86OjrQ\n0NCAiYkJAMDQ0LDO98zf3x+hoaGQSCSYMmUKPv74Yzg7Oz/h6OtXWFiIAQMGIDk5uc6ENffnEwRB\nNTGQo6MjBgwYgKlTp+K5555r0j6JqENiGUlERERERNQYSqUSMTExOHToEA4dOoT4+HhYWlpi/Pjx\nmDRpEkaNGlWnVGqMc+fO4erVq1i4cCGkUmkzJ2/75HI5ZDKZ6lZSUoLy8nIUFhaitLQU5eXlkMvl\nKCkpQVlZGUpKSiCXy1FeXo7S0lIUFhZCEATI5XIoFApUVlairKxM7MNqtNrisrCwELq6urCwsICZ\nmRn09PRgbGwMIyMj6OnpwdDQEMbGxtDX14e+vj5MTU2hp6enemxkZAQzMzMYGBhg1qxZiIqKUm1f\noVBAEATo6urC2dkZAwcOhLu7O9zc3NCnTx/o6emJ/C4QURvFMpKIiIiIiOifSEpKQkhICA4fPozT\np09DEAS4ublh1KhRGDVqFIYOHdrgUZO1I93c3NywY8cO9O3bt4XTi6O0tBR5eXnIzs5Gfn4+8vLy\nkJeXh4KCAhQWFqrKxvsfy2QyKJXKh7ZVO3LQwMBAVcYZGhpCT08PRkZGDxVzUqkUBgYG0NbWVpV6\nOTk5sLa2hrm5ObS0tGBoaAgAMDExqTOxjZmZ2SOPSSqVwtjY+JHPN3ZkZUlJCaqrq1FdXY2SkhIA\nUJWotdtSKpWQy+UQBAHFxcUoLy9/qIAtKipCeXk5ysrKUFhYiPLyctXIzwdJJBLo6OjAyMgIlpaW\nsLOzg4ODA8zNzWFqagpzc3NYW1vDxsYGVlZWsLS0hJWVFS9XQESNwTKSiIiIiIioueTl5SEiIgLH\njx/HiRMnkJGRAXNzc4wcORK+vr7w9fVFly5d6n2tIAgwMzNDUVGR6pTYd999F6tWrYKOjk4rH0nj\nVVdXIysrC2lpaUhPT0dmZiZycnKQk5OjKhyzs7ORl5f30GhEAwMDWFlZwdzcHGZmZjAzM4Opqanq\n8aOWGRkZtYn3Rh3JZDIUFxdDJpOhoKAAGRkZqK6urlP+PlgGFxQUID8/v04pLJVK6xSTnTp1gpWV\nFaysrGBnZwd7e3s4ODjAwcFBdbo5EXVoLCOJiIiIiIhaSmJiIiIiIhAREYHw8HDI5XI4OTmpRk36\n+vqqCpqbN2+iT58+dV6vqakJBwcHbNu2DcOGDRPhCP6mUCiQnp6O5OTkOmVjamoqMjIykJGRgezs\nbNXsy1KpFJ06dYK1tTU6deqkKqpsbGxgbW2tKqtqiyue8tt2KJVK1UjW/Px8ZGVlqR7n5OQgNzdX\n9Xx6enqd4tnQ0BCdO3eGvb097O3t0aVLF9Xoy65du8LJyQkGBgYiHh0RtQKWkURERERERK2hsrIS\n0dHROHHiBI4fP46rV69CS0sLzzzzDEaPHg25XI6vvvoKNTU1dV4nlUqhVCrx0ksv4auvvmry9Sif\npKKiApmZmUhMTHzoFh8fryqVtLW1YWFhATs7Ozg5OcHW1hZ2dnaqeycnJ3Tp0gWampotkpPalvLy\ncmRlZSExMRGZmZnIyspS3dcuu7/INjMzg5OTU723rl278lqqRG0fy0giIiIiIiIx5Ofn49SpU4iI\niMDRo0eRk5MDpVL5UBlZS0tLC9bW1vjpp58wZsyYJu1TEAQkJycjPj4et27dQnx8POLi4nDnzh3c\nu3cPwN/XYLS3t6+3DOrWrRs6derU5GMmqk9ZWRmSk5PrLcITExNV17jU0dFBt27d4OLigl69esHF\nxQXOzs5wdnaGvr6+yEdBRA3EMpKIiIiIiEgdWFhYoKCg4LHraGhoQKlU4tlnn8WGDRtgaWn5yHWT\nk5Nx9epVVeEYHx+P27dvq0Y42tnZqcqcnj171ikceR1GUie1oygTExPx119/4fbt24iPj8eff/6J\nqqoqSCQSdOvWDc7Ozqqisl+/fujTpw+/y0Tqh2UkERERERGR2P766y/06NGjwetraWnByMgI33zz\nDebNm4fMzExcuXJFdYuJiUFubi4AwNbWFq6urnBxcYGrqyucnJzQt29fWFtbt9ThELWKmpoapKam\nIjExEXFxcbh16xbi4uJw7do1lJSUQFNTEz169ICnp6fq5u7uzutSEomLZSQREREREZHYtm7dioCA\nACgUika/VkdHB5WVldDU1ISLiwvc3d3h4eEBDw8PuLm5wdDQsAUSE6kvpVKJv/76C7Gxsfjjjz8Q\nGxuL2NhYyGQySKVSVUE5aNAgDBkyBC4uLtDQ0BA7NlFHwTKSiIiIiIhIbPPnz8fOnTshCAI0NTUh\nkUigUCigVCpV62hoaEBDQwM1NTWQSCSwsLBAt27d4Ofnh/Hjx6Nv377Q1dUV8SiI1FtSUpKqmLxy\n5QrOnTuH4uJimJubY/DgwfDx8YG3tze8vLygpaUldlyi9oplJBERERERkdj+97//4dixY+jatSss\nLS0hl8uRmpqKhIQE5ObmQltbG15eXqqyxNvbG6ampmLHJmrTFAoFrl27hqioKERFRSE6Oho5OTnQ\n19fHoEGDMG7cOIwfPx69evUSOypRe8IykoiIiIiISGwJCQk4fPgwwsLCEBUVBaVSiaeffhq+vr4Y\nMmQIBg4cCD09PbFjErV7CQkJiI6OxsmTJxEeHo579+7hX//6l2oE8rBhwzgpDtE/wzKSiIiIiIhI\nDAkJCQgKCsLevXtx9+5dWFhYYMyY/9fe/QdFcd5/AH8jghzHgYTfeBwKSTyMiWJsCxSYMf4KAWI1\n7RixSuhYwcRqzdhp02YczaSd/I5OpqkTYkyxSWr80VaFlARJIpeAQSkmImCrFxHh+OVxHNxxnNzz\n/aPfu3ICBoFjAd+vmR2X3Wf3+exzOMy9Z3ef5UhNTcXy5csREBAgdYlEd7Te3l6UlZUhPz8fBQUF\nOHfuHORyOVJSUrBu3TqkpKTwcW6i28cwkoiIiIiIaKzo9XocPHgQeXl5KC0thVKpREZGBh599FHE\nxcXB3d1d6hKJaBD19fXIz8/Hhx9+iM8++wyBgYFYs2YNMjMzERsbK3V5RBMFw0giIiIiIiJXKy0t\nxZ49e/CPf/wDU6ZMwapVq5CZmYmHHnqIs/gSTUB1dXXIy8vDgQMHcPHiRdx///3IycnBE088AW9v\nb6nLIxrPnuNfPSIiIiIiIhfJz89HQkICEhISoNVq8eabb0Kn0+HAgQNYsmQJg0gasfLycixatGhM\n+3Rzc3MsY23RokUoLy8f835vplKp8Oyzz6K2thZffvkl4uLisH37dqhUKuzcuRMGg0HqEonGLf7l\nIyIiIiIiGmWnT59GYmIi0tPTERgYiJKSEpw+fRpZWVlQKBRSl0eTxNtvv41ly5Zh69atLusjKSkJ\nSUlJTttu9YDlQO1H05YtW7B06VLk5ua6rI/bFR8fj7feegtXrlzBli1b8MYbbyA6OhqvvPIKrFar\n1OURjTsMI4mIiIiIiEaJ0WjEU089hYSEBHh4eKC0tBTHjh1DCtT4iQAAEYZJREFUYmKi1KWNCanu\nlhsv/Y+ljz76CBs3bsTevXvxox/9aNjn+a4xs9lssNlsQz7fYO1H67NZuXIl/vjHPyI7OxsfffTR\niM83moKCgrBjxw5cunQJOTk52LFjBxYsWICysjKpSyMaV/jOSCIiIiIiolFQXV2NVatWoa2tDa+9\n9hp++tOfSl3SmLOHTVJ9zZS6/7HS09ODu+++GyqVChqNZkTnGu6Y3e5xo/3ZxMfHo6GhAf/5z3/G\n7YzWly5dwqZNm/Dpp5/ipZdewi9/+cs7JiwnugW+M5KIiIiIiGikKioqkJiYCB8fH5w5c+aODCJp\n7Bw5cgRXr15FRkaG1KVIJiMjA3V1dThy5IjUpQwqOjoahYWFeOWVV/DrX/8amzZtmvRBOdFQMIwk\nIiIiIiIaAa1Wi8WLFyMhIQEajQYqlUrqkm5Jp9MhOzsbSqUSnp6eUCqVyMnJQVNTk1O7wSYpudX2\nm9ts2LBhwOMuXLiAhx9+GL6+vvDx8UFqaiqqq6td2r/BYMC2bdsQFRUFLy8vBAQEICEhAdu3b8dX\nX3017DoBoLm5GZs2bXKM6YwZM7Bx40bodLp+bbu7u/HCCy8gNjYWcrkcXl5eUKvVyMnJGfLjvMeO\nHQMALFy40KVjdrsT1Qynn77H2Je//vWvjvYzZ84c8Jzf+973nMZivHJzc8PWrVvx/vvv45133sHz\nzz8vdUlE0hNEREREREQ0bMnJyWL+/Pmiu7tb6lK+U2Njo4iIiBDh4eHi5MmToqOjQxQVFYnQ0FAR\nGRkpdDqdU3sAYqCvjbe7/eb9CQkJQqPRCKPR6Ojf399faLVal/W/YsUKAUDs3r1bdHZ2CovFImpq\nasTKlSv7HXM7dep0OhEZGSlCQkJEYWGhMBqN4tSpUyIyMlLMmjVL6PV6R9uOjg6xcOFCoVAoRG5u\nrtDpdMJoNIpPP/1UxMTE3HLs+po9e7YA0O/zGu0xG83z3aqfoqIiAUCEhYUJi8XitC83N1ekpaX1\nO6ahoUEAEGq1etDax5s33nhDTJ06VZw9e1bqUoiktIthJBERERER0TB9+eWXAoAoLS2VupQh+fnP\nfy4AiAMHDjhtf/fddwUAkZ2d7bTdVcFWQUHBgP1nZma6rH9fX18BQBw6dMhp+7Vr1wYNI4dSZ3Z2\ntgAg9u3b59T26NGjAoD47W9/69j29NNPOwLRm1VUVAw5jPTx8REABgzAJ2IYKYQQ8+bNEwDEn//8\nZ6ft999/v/jkk0/6tTebzQKAUCgUg55zvLHZbGLhwoUiIyND6lKIpLSLj2kTERERERENU3FxMaKj\noxEXFyd1KUNy4sQJAMBDDz3ktH3JkiVO+10tISFhwP4//vhjl/X52GOPAQB+8pOfQKVSYcOGDfjw\nww8RGBg46Hv8hlLn8ePHAQApKSlObZOTk532A8Dhw4cBYMDZr2NjY4f8PkGTyQQA8PT0HFL7iWDb\ntm0AgNdff92xrbi4GDabzTHufdmv3T4WE4GbmxvWrl2L4uJiqUshkhTDSCIiIiIiomFqa2tDcHCw\n1GUMWUtLCwAgMDDQabv95+bm5jGpw8/Pb8D+7fW5wjvvvIMjR47gscceQ2dnJ/bt24fVq1fjnnvu\nQWVl5bDrtI9ZeHi403sP7W0vXbrkaNvY2AgACA0NHdG1eHt7A/jvrNqTxZo1axAWFobKykpHWLdn\nzx5s3bp1wPb2a7ePxUQREhKCtrY2TmRDdzSGkURERERERMMUFRWF2traCRMK2YPT1tZWp+32n28O\nVu2ThlitVsc2g8Ew4jra2toG7D8oKMil/a9atQqHDx9Ga2srTp06heXLl6Ourg5ZWVnDrjMkJAQA\ncP36dQgh+i1dXV392tpDyeGaMWMGAKC9vb3fPld9Zq7m6emJzZs3AwBee+01XL58GaWlpYPOTK/X\n6wH8bywminPnziEqKmrIkwIRTUYMI4mIiIiIiIbJfpfd/v37pS5lSNLT0wEAJ0+edNpeVFTktN/O\nfgdf3/DsX//616Dnt9+lZrVaYTKZ+t2BaffFF18M2P+yZctc1r+bmxvq6+sBAFOmTEFSUhIOHjwI\nAAPOkD3UOu2PXH/22Wf9ji8pKUF8fLzjZ/uj4n//+9/7tS0rK8MPfvCDQa+tr9jYWADAlStX+u1z\n1Wc2UkPpJycnB97e3igoKMCWLVuwYcMGyGSyAc9nv/b58+e7pF5X0Ov12L9/P9asWSN1KUSSYhhJ\nREREREQ0TGFhYdi6dSt+9atfoaqqSupyvtOuXbsQGRmJ3/zmNyguLobRaERxcTGeeeYZREZGYufO\nnU7tly5dCgB4+eWXYTAYUFNTg7fffnvQ8z/wwAMAgK+++grHjx93CuL62rt3LzQaDTo7Ox39+/v7\nu7z/DRs2oKqqChaLBU1NTXjxxRcBAMuXLx92nTt37sQ999yDp556CocPH0ZbWxuMRiNOnDiBJ554\nAi+88IJT27lz52LHjh3Izc1FU1MTOjs7UVhYiPXr1+MPf/jDoNfWlz00PnPmTL99rvrMRmoo/dx1\n113IzMyEEAKFhYV48sknBz1feXk5AODRRx91Sb2jrbe3F1lZWfD09MQvfvELqcshkpZkc+cQERER\nERFNAhaLRSQnJ4vg4GBRWVkpdTnfSafTiezsbBEeHi6mTp0qwsPDxcaNG4VOp+vXtqWlRWRkZIig\noCAhl8tFenq6qKurc8yMfPNXyvLycjFv3jzh7e0t4uLiRG1trdN++zFarVakpaUJhUIh5HK5SElJ\nERcuXHBp/xqNRmRmZoqZM2cKDw8P4efnJ+bNmyd+//vfi66urhHVef36dfH000+LWbNmCQ8PDxES\nEiLS09MHnGXdaDSKZ599VsyePVt4enqKgIAAsWzZMnHq1KkBPq2BWSwWoVQqRWJiokvHrO8xfY+7\n3e3f1U9fFy9eFFOmTBGPP/74LccgLi5OKJVKYbFYbtluPOju7hYZGRnC29tblJSUSF0OkdR2uQnB\nt6YSERERERGNRGdnJ1asWIGysjK8+eabyMzMlLqkccn+nrzx/jV0ItSZn5+P9PR0fPDBB1i9erXU\n5Ywam80GpVKJo0ePDjpL/XvvvYd169bh+PHjSE1NHeMKb8+3336L1atXo6amBkePHsXixYulLolI\nas/xMW0iIiIiIqIR8vHxcTxWmpWVhdTUVGi1WqnLokksNTUVe/fuRU5OzoDvoJyo8vPzERERMWgQ\n+be//Q1PPvkk/vSnP43rIPLGjRt49dVXMXfuXJjNZpSXlzOIJPp/DCOJiIiIiIhGwdSpU/Hyyy+j\npKQEV65cgVqtRnZ2NnQ6ndSl0SS1ceNGFBYWYvfu3VKXMiJubm4oKyuDXq/Hrl278Lvf/W7Qtnv2\n7MEnn3yC7OzsMaxw6IQQOHToEO677z4888wz2Lx5M8rLy3HvvfdKXRrRuMHHtImIiIiIiEaZ1WpF\nbm4unn/+eRgMBmRlZWHbtm2Ijo6WujTJ2B99thuvX0UnSp2TiX3MAwICsHnz5n4TGU0EFosFf/nL\nX/Dqq6+itrYWa9euxa5duzBr1iypSyMab55jGElEREREROQiJpMJ+/btw+7du3HlyhUsWbIE69ev\nx8qVKyGTyaQuj4hGqKKiAnl5eXj//ffR0dGBtWvXYvv27YiJiZG6NKLximEkERERERGRq/X29uLY\nsWPYv38//vnPf0Imk+HHP/4xMjMzkZSU1O9uPCIavxoaGvDee+8hLy8P58+fx7333ov169fjZz/7\nGcLCwqQuj2i8YxhJREREREQ0lpqbm/HBBx8gLy8PFRUViIyMRFpaGlJTU7Fo0SJ4eXlJXSIR3aS6\nuhonTpxAQUEBSkpK4Ovri8cffxzr1q1DfHy81OURTSQMI4mIiIiIiKRy/vx5HDx4EPn5+aisrIRM\nJsPixYuRmpqKRx55BBEREVKXSHRH6u7uxueff44TJ04gPz8fWq0WgYGBSElJwYoVK5CWloZp06ZJ\nXSbRRMQwkoiIiIiIaDy4du0aCgoKkJ+fj6KiInR1dWHOnDlISkpCYmIikpOToVKppC6TaFIymUw4\nffo0SkpKUFJSgtLSUnR1dWH+/Pl45JFHkJaWhu9///twd3eXulSiiY5hJBERERER0XhjsVjw+eef\n4+TJk9BoNDhz5gx6enqgUqmQnJyMxMREJCUlISYmhu+bJBqGtrY2fPHFFygpKYFGo8HZs2dhtVox\nc+ZMJCUlITk5GQ8//DCUSqXUpRJNNgwjiYiIiIiIxjur1Yqvv/4aRUVF0Gg00Gg0aG9vh0KhwAMP\nPIAHH3zQsajVat69RdRHe3s7zp8/j7NnzzqW6upqCCEQFRWFH/7wh0hMTMTSpUsxa9YsqcslmuwY\nRhIREREREU00N27cQGVlJc6cOYOKigpUVFTgm2++QU9PD+RyOebNm4cFCxYgNjYWc+fOhVqthq+v\nr9RlE7lUb28vtFotqqqqcO7cOcf/jatXrwIAVCoVFixY4Fji4+Nx1113SVw10R2HYSQREREREdFk\nYLVa8c033zgCmIqKCnz99dcwm80AgIiICKjVasyZMwcxMTGIiYnBnDlzEBgYKHHlRLenp6cHtbW1\nqK6uRnV1NS5cuICamhrU1tbCYrEAAKKiopyCxwcffJC/60TjA8NIIiIiIiKiycpms0Gr1ToFNlVV\nVaipqUFHRwcAIDAwELNnz0ZUVBSioqIQHR3tWA8LC5P4CuhO1dXVhcuXL/db/v3vf0Or1eLGjRtw\nd3dHVFRUv4BdrVbDx8dH6ksgooExjCQiIiIiIroT1dfXO+4su3jxoiPs+fbbbx13l8lkMkcwaV+U\nSiXCw8MRERGB0NBQvp+ShsVgMKC+vh719fVoaGiAVqt1Ch2bmpocbcPCwhy/f3fffTfUajXUajVm\nz56NadOmSXgVRDQMDCOJiIiIiIjof2w2G65du9YvHLp8+TK0Wi2amppg/xrp7u6O0NBQREREIDw8\nHEql0hFWqlQqBAUFITg4mO/lu4OYzWa0traisbEROp0OV69eRUNDg1PwWFdXB5PJ5DhGLpcjMjKy\nX/BtX2QymYRXRESjjGEkERERERERDV1PTw8aGxv7hUsNDQ24du0arl69isbGRlitVscxHh4eCAoK\nQlBQEMLCwhAUFITAwECEhoYiODjYsc/f39+x8I7L8cFoNEKv16O9vR3Xr19HY2MjWlpa0NraCp1O\nh+bmZrS0tKC5uRk6nQ6dnZ1OxwcEBDjC6fDwcMyYMcOxbg+v/fz8JLo6IpIAw0giIiIiIiIaXTab\nDU1NTWhpaUFTU1O/wKq1tRUtLS2OMKvvXXJ2CoUC/v7+mD59uiOgtK/b/5XL5VAoFPD19YVMJoNc\nLoefnx9kMhm8vb0xffp0uLm5STAC0jOZTDCZTOjo6EBnZyfMZjOMRiOMRiNMJhO6urocIaNer3da\n77utt7fX6bzu7u6O8Dg4OBghISGOn0NDQx3rISEhCAsL412NRHQzhpFEREREREQkra6uLrS0tAwY\niN0qLOvq6oLRaLzluWUyGWQyGaZPnw5vb29MmzYNHh4ejglOfH194e7uDk9PT8jlcgBwhJheXl79\nwjR/f/9B+5LL5fD09Bxwn8FggM1mG3CfyWRyvKcT+G+YazAYHGPT09OD3t5ex6RDRqMRN27cgNVq\nddyJqNfrYTabYTab0d7efssxsV/rYCHvzf/2XQ8KCrpjA14iGhUMI4mIiIiIiGhi63u3n8FggMlk\ngtlshl6vd6wbDAZ0dnbCarXCYrE47sZsb2+HEAJmsxnd3d0QQjjCvJtDwr7h30Ds5xqIPQgdSN9w\n1M4eespkMnh5ecHNzQ3Tp093Ope7uzt8fX0BwOmOUH9/f8e6n58f5HI5vL29HXeR8hF4IpLQc1Ol\nroCIiIiIiIhoJBQKBRQKhdRlEBHREEyRugAiIiIiIiIiIiK6MzCMJCIiIiIiIiIiojHBMJKIiIiI\niIiIiIjGxFQAh6QugoiIiIiIiIiIiCa9qv8DnbfnRzZ/ZoAAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type flat\n",
"spmflow.write_graph(graph2use='flat', dotfilename='./graph_flat.dot')\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_flat.dot.png\")"
+ "Image(filename=\"graph_flat.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``hierarchical`` graph\n",
"\n",
@@ -211,47 +132,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:47,648 workflow INFO:\n",
- "\t Converting dotfile: ./graph_hierarchical.dot to png format\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAQ3CAYAAABmXvaSAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdd1gU1/4G8HdpIh1UmgJGwQoWsAAaFWNX7Ii9xF65sdwYkxvxJrEkUWNJYokNYyJg7FER\nFVQUBKJYAI3GggoICEiTuvP7w9/uFSlSFmaB9/M8+4SdOXPmO7NG9vXMnJEIgiCAiIiIiIiIlImv\nitgVEBERERERUVEMa0REREREREqIYY2IiIiIiEgJqYldABHVPZcvX0Z8fLzYZRCVWUFBARwdHdG0\naVOxSyEiojqEYY2IqtWGDRuwZMkSscsgKrcBAwbg9OnTYpdBRER1CMMaEVWbjRs3YsmSJViyZAlm\nzZoldjlE73X37l1MnToVEokE9evXF7scIiKqYxjWiKhabNy4EYsXL2ZQoxpDFtSsra1hYGAANTX+\nyiQiourFCUaIqMoxqFFNIwtqzZs3x44dO6Cqqip2SUREVAcxrBFRlWJQo5rm7aC2c+dOaGlpiV0S\nERHVURJBEASxiyCi2unixYvo1auX2GUQlYu5uTlMTU2xe/du+X1qHh4e0NXVhY+Pj8jVERFRHeLL\nC/CJqMq8ePECALBp0yaRKyEqOw8PDyxZsoQTihARkegY1oioyg0YMEDsEojKhfeoERGRMuA9a0RE\nREREREqIYY2IiIiIiEgJMawREREREREpIYY1IiIiIiIiJcSwRkREREREpIQY1oiIiIiIiJQQwxoR\nEREREZESYlgjIlISLVu2lL+q2u3btzFp0qQq38/bqvP43jVp0iTcvn272vdLRERUGQxrRKR0xo8f\nj/Hjx4tdRrW7d+9etezH19cXH3/8MaZMmVJl+yjuMyzt+Kr6M588eTKmTZsGHx+fKtsHERGRoqmJ\nXQAR0bukUmmxy2UjMtUVamqjS5cu4T//+Q82bNiAPn36VLif930WJX2GJanqz7xv377Izs7GsmXL\nYGpqih49elSqPyIiourAsEZESufgwYNil1Ar5eXl4csvv0THjh0xaNCgKt1XeT/D6vjMXV1d8euv\nv2LlypXw9/eHmhp/BRIRkXLjZZBERHWEn58f4uLi4OrqKnYpohkyZAhiY2Ph5+cndilERETvxX9W\nJCKl8vbkE29f+vb2ctnPo0ePxjfffCNf/vLlS2zZsgUXLlzAy5cvYWRkhF69esHDwwMNGzYsti9/\nf398++23uHbtGtLS0uT7fbtNYGAg/vvf/yIkJAT169eHs7MzvvjiCxgYGBSqPSkpCZs3b0ZgYCBe\nvnyJBg0awMXFBQsXLiy0fwC4f/8+vv32W4SFhUFVVRWOjo74/PPPSzwvZT220ly4cAEAYGtrW2h5\nWc55eT6LkrYrSUX2U9wkJRs2bMDgwYMBAC4uLoiNjS3Sp52dHYA350LWloiISFkxrBGRUnk3KBW3\nvLgAkJSUBDc3N+Tm5mLdunWwt7dHVFQUli1bhqtXr+LIkSPQ09Mr0penpycWLlyI77//HqGhoZg5\nc2aRNuvXr8fSpUthbGyM9evX4/fff4e6ujrWrFlTaP+jR49GQUEBvvvuO9jZ2eHWrVtYunQpLl26\nBF9fX3moiomJwfjx46GpqYlt27ahXbt2iIyMxH/+859iz0l5jq00UVFRAABzc/Nyn/OSlhf3WZS0\nXUkqsp979+4hODgYU6dORaNGjRAQEAB1dXX5+nnz5uH8+fPYtm1boe0aN24M4H/ngoiISJnxMkgi\nqhW2bNmC2NhYLF68GN27d4eWlhY6deqEFStW4NmzZ9i1a1ex282ZMwcdO3aEpqYmevToUWz4GDNm\nDJo3bw5dXV15mAsKCirUZtOmTYiLi8OyZcvg6OgIbW1tODk5YenSpYiNjcWWLVsK1ZqWliZvq6Wl\nhc6dO2PcuHEKPbZ3vXjxAgDKFOxqAicnJ7Rq1QqJiYn4888/C63z8vLC5MmTi2wjO3bZuSAiIlJm\nDGtEVCvILvF7d5a/zp07F1r/LtllcaVp27at/GdjY2MAQGJiYqE2AQEBAABHR8dCy52dnQutB4Cr\nV68W29bBwaHY/Vf02N6VnZ0NAIVGoGq6qVOnAgD27t0rXxYSEgJBEOTn/m2yY5edCyIiImXGyyCJ\nqFZ4+fIlAKB79+7Frn/69Gmxy+vXr//evrW1teU/y77sC4JQqE1ycjIAwNDQsNBy2XtZfQCQkpJS\natt3VfTY3qWpqYmsrCzk5eVBQ0OjTNsouyFDhmD9+vWIjo5GSEgIHB0dsW/fvmJH1YA3M2ICb84F\nERGRsmNYI6JaoWHDhnjx4gXCwsJEucyvQYMGSEhIQEpKinz0DfhfMGvQoIF8maGhIZKSkoq0TU9P\nL7ZvRR2biYkJHj16hLS0tCKTkkgkEgiCgPz8fPmU9iXVo0zU1dUxceJEbNy4EXv27EHjxo0RERGB\njRs3FtteNomMiYlJdZZJRERUIbwMkohqDNkoWH5+Pl6/fo2uXbvK18ke8Hzt2rUi24WHh8Pd3b1K\na+vduzcAIDg4uNBy2SWPsvUA0K1bt2LbRkREFNu3oo6tTZs2ACCfJfFtsvCWkJAgXxYdHV1iX6V9\nFopUlv2MGzcO9evXx8WLF/H111/Dzc2txJGz58+fAwBat25dJfUSEREpEsMaEdUYspkBb926hYCA\nAHTs2FG+buHChbCyssKqVavg5+eH1NRUZGZmIiAgAMuXL8eSJUuqtLaFCxfC3Nwc33//PUJCQpCZ\nmYmQkBCsX78e5ubmWLBgQaG2enp68rZZWVm4ceMGtm/fXmLfijg2FxcXAMCdO3eKrJMFyF27diE9\nPR0PHz6Ej49PiX2V9lkoUln2o6+vj+HDh0MQBFy+fBnjx48vsb/bt28DKByeiYiIlJVEePfGCyIi\nBfHx8YG7u3uZnrUl8+4U7m9ve+fOHXz++ed48uQJWrZsiXXr1qFp06by9Wlpafjpp5/g7++P+Ph4\nGBgYoF27dpg9ezY6dOhQ4j7e3U9pdZRWX1JSUqFnocmes7Zo0aJSn7MmkUhgb2+Pzz77rNCzv97u\nu6zHVpq8vDz06dMHjRs3xm+//VZoXUpKCr755htcuXIFr1+/hpOTE7788kv06tWr2HpK+yzKe+4q\n85nLPHnyBAMGDMDAgQOxYcOGEs+Bu7s74uPjce7cuRInWmnZsiV++OEHDBw4UL7Mw8MDurq6pQZY\nIiIiBfNlWCOiKlORsEZVKzAwEHPmzMGGDRswaNAgsctRGKlUih49emDr1q0lhtcTJ05g2bJl2LZt\nW6EQ+i6GNSIiUhK+vAySiKgO6dWrF1atWoWVK1fi3LlzYpejMIGBgTAzMysxqPn7+8PT0xOenp6l\nBjUiIiJlwrBGRFTHuLu7Y9euXdi3b5/YpVRKy5YtERERgbS0NGzduhVz584tsa2Xlxf27NmDsWPH\nVmOFRERElcOp+4mI6qB27dph//79YpdRae7u7jAwMMDEiRNLnTSkNhwrERHVPQxrRERUI/FeSCIi\nqu14GSQREREREZESYlgjIiIiIiJSQgxrRERERERESohhjYiIiIiISAkxrBERERERESkhhjUiIiIi\nIiIlxLBGRERERESkhBjWiIiIiIiIlBDDGhER0XtkZ2eLXQIREdVBDGtERESl2LNnDy5evIj+/fuL\nXQoREdUxamIXQEREpKz27t2LtWvXYs2aNZg+fbrY5RARUR3DkTUiIqJi7N27F2vWrMGaNWuwfPly\nscshIqI6iCNrRERE7wgMDMTRo0cZ1IiISFQMa0RU5c6cOSN2CUTlcuzYMaxfvx6LFy8WuxQiIqrD\nGNaIqMqYmZlBTU0NHh4eYpdCVGaqqqr4/PPPGdSIiEh0EkEQBLGLICKiipNIJPD29saYMWPELoWI\niIgUx5cTjBARERERESkhhjUiIiIiIiIlxLBGRERERESkhBjWiIiIiIiIlBDDGhERERERkRJiWCMi\nIiIiIlJCDGtERERERERKiGGNiIiIiIhICalVZmNfX1/4+voqqhYiIqqgjRs34tChQ2KXQURERP9P\nVVUVa9asQdOmTSvcR6VG1nx9fREcHFyZLoiIiIiIiGqdgwcPIjQ0tFJ9VGpkDQCcnJzg4+NT2W6I\niKiCJBIJPvnkE4wZM0bsUoiIiOj/SSSSSvfBe9aIiIiIiIiUEMMaERERERGREmJYIyIiIiIiUkIM\na0REREREREqIYY2IiIiIiEgJMawREREREREpIYY1IiIiIiIiJcSwRkREREREpIQY1oiIiIiIiJQQ\nwxoREVWIRCKRv6KiojBgwADo6elBR0cHgwcPRnR0dInt//nnH4wcORKGhobyZTIJCQmYO3cumjRp\nAg0NDTRu3BizZs1CfHx8tew/Pj4es2fPlu+/SZMmmDNnDl68eFHkHGRnZ2Pt2rXo2LEjtLW1oamp\niVatWmHOnDkICQlRxGkmIqI6jGGNiIgqRBAE+c8zZ87Ef/7zH8TGxuLYsWO4fv06unXrhsePHxfb\nfu7cuVi6dCliY2Nx6tQp+fIXL16gS5cuOHLkCHbv3o3k5GQcPHgQZ8+ehbOzM1JTU6t0//Hx8ejS\npQtOnjwJLy8vvHz5Evv27cOxY8fQtWvXQoEtPT0dH374IVavXo358+fj4cOHSEpKwrZt23Dp0iU4\nOTlV/OQSEREBgFAJbm5ugpubW2W6ICKiSgIgeHt7i7ZvAMKpU6cKLd+7d68AQJgyZUqx7QMCAort\nb/bs2QIAYdeuXYWWHz58WAAgrFixokr3P3PmTAGAsH///mL7mz17tnzZ4sWLBQDCDz/8UKSf69ev\nC5X8FUtERDWcAn4/+3BkjYiIKs3Z2bnQ+z59+gAAzp49W2z7Ll26FLv8xIkTAICBAwcWWt6jR49C\n66tq/ydPngQA9O7du9j+ZOsB4NChQwCA4cOHF+mnY8eOhUbyiIiIKkJN7AKIiKjm09fXL/S+YcOG\nAIDExMRi22tpaRW7PCEhAQBgbm5e7Pp//vmnSvcvay/b/t3+ZPUBQFxcHADA1NS02L6IiIgqiyNr\nRERUaS9fviz0PikpCQDQqFGjcvVjYmICAEhOToYgCEVemZmZVbp/Y2PjQtu/259s/du1ykIbERGR\nojGsERFRpV25cqXQ+3PnzgEA+vXrV65+ZJcUBgYGFll3+fLlEiftUNT+XV1dAQDnz58vtj/ZegAY\nNWoUAODo0aNF+gkJCUHXrl3LtW8iIqJ38TJIIiKqtG3btsHIyAgdOnRAaGgoPvvsMxgaGsLT07Nc\n/Xh6euLs2bOYP38+CgoK4OLiAg0NDVy8eBEeHh7YvXt3le5/1apVOHPmDJYvX47GjRujc+fOCAsL\nw2effQYrK6tC/Xl6euL8+fP48ssvoa2tjaFDh0JbWxtXrlzBwoUL8fPPP5dr30RERO/iyBoREVXa\nTz/9hHXr1sHc3BxDhw5Fhw4dcOXKFTRt2lTe5u1nmb37bDOZhg0b4tq1axg3bhz+/e9/w8zMDDY2\nNtixYwcOHDiAnj17Vun+TUxMcO3aNbi6umLSpEkwMjLCpEmT4OrqimvXrskvfQQAAwMDBAcHw8PD\nA+vXr4elpSWaNm2KDRs2YNeuXfjoo4/KcwqJiIiKkAiVmK5qzJgxAAAfHx+FFUREROUjkUjg7e0t\n/zu5uvcNQLSZD8XePxERUUkU8PvZlyNrRERERERESohhjYiIiIiISAkxrBERUYW8ew9YXds/ERFR\nVeNskEREVCFi3ycm9v6JiIiqGkfWiIiIiIiIlBDDGhERERERkRJiWCMiqkG+/vpr6OnpQVdXV/7S\n0NDAtGnTCi3r2LGj2KUSERFRJfGeNSKiGqR+/fpIT08vsjw3N1f+s0QigaqqanWWRURERFWAI2tE\nRDXIuHHjoKJS+l/dqqqqmDJlSjVVRERERFWFYY2IqAYxNzeHs7NzqYFNKpVizJgx1VgVERERVQWG\nNSKiGmbSpEklrlNVVUWvXr1gYmJSjRURERFRVWBYIyKqYdzc3Eq9J620MEdEREQ1B8MaEVENY2ho\niL59+xYb2FRUVDB8+HARqiIiIiJFY1gjIqqBJk6cCKlUWmiZmpoaBg0aBAMDA5GqIiIiIkViWCMi\nqoGGDRuGevXqFVomlUoxceJEkSoiIiIiRWNYIyKqgbS0tDBixAioq6vLl9WrVw+DBw8WsSoiIiJS\nJIY1IqIaavz48cjLywMAqKurw83NDfXr1xe5KiIiIlIUhjUiohqqf//+0NPTAwDk5eVh/PjxIldE\nREREisSwRkRUQ6mrq2PcuHEAAAMDA3z00UciV0RERESKpCZ2AUREdVFmZiZyc3ORm5uLzMxMAEBK\nSkqR9cXJy8tDRkYGAMDMzAwA0LVrVxw5cgQAoKGhAW1t7WK3lUgkhWaL1NbWhoaGhnybd9cTERGR\neBjWiIhKIZVKkZycjJSUFCQnJyMtLQ2pqanIyMhAZmYmMjMzkZKSIv85IyMDqampyMzMRFZWFtLS\n0pCfn4/09HQAQGpqKgRBUHidfn5+8PPzU2ifurq6UFNTg6amJurXrw9NTU1oa2tDX18furq60NbW\nhra2NgwMDKCjoyN/b2hoCC0tLejp6cHIyEj+enf2SiIiIiodwxoR1SmJiYlISEjAixcvEBcXh8TE\nRLx8+RLJycnylyyYvXz5EqmpqcX283Y4MTAwkP+sq6sLS0tL+Xt9ff1Co1XvBiBVVVX5fWf6+vpQ\nUXlzdbq6ujp0dHRKPA5DQ8MS15U2Kvf2SB4ApKenIz8/H9nZ2Xj9+jUKCgqQlpYGAHj16hWkUimy\nsrKQk5ODrKwseQBNS0vDq1evEBcXVyS8lhRItbW1YWRkBENDw0IhzsjICA0aNICxsTEaNWoEU1NT\nmJqawtjYuNBsl0RERHUNwxoR1Qrx8fF4+vSp/BUXF4f4+HgkJiYiLi4OL168QGJionz2ROBNIGrU\nqBEaNGggDw0WFhZo3759kTAhe+np6Sn9ZYKyoCimrKwsvHr1Sh58i3ulpKQgJiYGERERSEpKQkJC\nArKysgr107BhQxgbG8PY2Bjm5ubyMNe4cWNYWVnBwsICTZo0YagjIqJaiWGNiJReXl4eHj9+jIcP\nH8rD2JMnTxATEyN/n5OTA+DNPVmmpqYwMTGBmZkZjI2NYWdnB1NTUzRq1AhmZmYwMTGRj+JQ1dDS\n0oKWlpb8nrqyyszMlIfrhIQExMbGIjExEfHx8YiPj8ejR48QFxeH2NhY+eihiooKTE1N5eHNwsIC\nlpaWsLKygpWVFaytrUsdpSQiIlJWDGtEpBTy8vLw9OlTPHz4sMgrMjIS2dnZAABNTU2Ym5ujWbNm\naNKkCbp06YJmzZqhWbNmMDMzQ9OmTUUfVaKK09bWhrW1Naytrd/bNiUlBQ8fPkRsbCzi4uLkf15C\nQkJw5MgRPH78GFKpFMCby0Zlf06aNWuGNm3aoG3btrC2toa+vn5VHxYREVGFMKwRUbXKy8vDvXv3\ncOfOHdy6dQuRkZG4c+cOYmJikJ+fDwAwNjaGtbU1bGxsMHz4cCxbtgzW1tZo1qxZqfdqUd1iaGgI\nBwcHODg4FLs+OzsbT548wf3793H//n08ePAADx48gK+vL548eYKCggIAb/68tWnTBra2trC1tYWd\nnR3atm3LEEdERKJjWCOiKhMXF4fw8PBCwezu3bvIy8uDmpoaWrRoAVtbW0ybNg02NjawsbGBtbW1\nfMINosrQ1NREy5Yt0bJlyyLrcnNz8ejRIzx48AB///03oqOjER4ejn379sln7rSyskLbtm1hZ2cH\nW1tb2Nvbo1WrVvJJYIiIiKoawxoRKUR6ejpu3ryJv/76S/6KiooC8OZZYG3btoWLiwsWLFiANm3a\nwMHBAfXr1xe5aqqrNDQ05EFu8ODBhdbFxsYiKioKkZGR+Ouvv3Du3Dls3rwZr1+/ho6ODtq3by8f\n0XNwcECbNm0gkUhEOhIiIqrNGNaIqEIePXqEgIAAXLx4EWFhYbh37x6kUikaN26Mzp07Y8KECejS\npQs6deqk9LMnEr3N3Nwc5ubm6NOnj3xZXl4ebt26hbCwMISGhuLChQv48ccfUVBQAFNTU3Tu3Bnd\nunWDi4sLHBwcoKqqKuIREBFRbSERKvF01jFjxgAAfHx8FFYQESmnZ8+eISAgQP56/PgxtLS04OTk\nBEdHR3Tu3BmdO3eGubm52KUSVYuMjAxcv35dHuAuXbqE+Ph46OnpoUePHnBxcYGLiwvat2/PSyeJ\niOogiUQCb29veWaqAF+OrBFRsfLz83Hp0iUcO3YMp0+fxv3791GvXj04Ojpi6tSp6N27N7p27QoN\nDQ2xSyUShY6ODnr06IEePXrIl0VHR8v/QWPNmjVYsmQJjIyM8NFHH2HYsGEYPHgwR5qJiKjMGNaI\nSC4rKwt+fn44evQoTp48ieTkZNjZ2cHNzQ29e/eGs7Mz7zMjKkXr1q3RunVrzJs3D4Ig4Pbt2wgI\nCMCpU6fw8ccfQxAE9OrVC8OHD8ewYcPQuHFjsUsmIiIlxusyiOo4qVSKM2fOwM3NDQ0bNsTo0aPx\n8OFDrFixAg8ePMCtW7fwzTff4KOPPmJQIyoHiUSCdu3awcPDA35+fkhISMC+fftgYGCA5cuXw8LC\nAo6Ojti2bRvS0tLELpeIiJQQwxpRHfX8+XN89dVXaNasGQYNGoTExERs3rwZcXFxuHz5MpYsWYLm\nzZuLXSZRraGvr49x48bBx8cHiYmJOHnyJFq2bInFixfD3Nwc06dPR0hIiNhlEhGREmFYI6pjrly5\nguHDh8PKygpbtmzB6NGjER0djcDAQMyYMQPGxsZil0hU69WrVw+DBg3Cvn37EBsbi3Xr1iE8PBxO\nTk5o164ddu3ahdzcXLHLJCIikTGsEdURV69ehYuLC7p3746kpCQcOHAAT58+xffff1/sQ4Op7goL\nC4OLi0u17lMikchf1c3FxQVhYWHVvl8ZAwMDzJ8/Hzdv3sS1a9fg4OCAefPmwcbGBtu3b0d+fr5o\ntRERkbgY1ohquWfPnmHMmDHo3r07JBIJAgMDERQUBHd3d9SrV0+0uj788EN8+OGHou2fivfLL7+g\nX79+8PDwqLJ9FPfZl/YUmar+s7Jo0SL07dsXO3furLJ9lFWXLl2wZ88ePHjwAEOHDsWiRYvQoUMH\nnD9/XuzSiIhIBAxrRLXYvn37YGtri4iICBw7dgwXLlxAz549xS4LwJuJTaRSqdhlvJdYoz1iOH36\nNGbNmoVt27Zh+PDhFe7nfeesvJ99Se0V9dmMGDECP/74I2bPno3Tp09Xuj9FsLCwwJYtW3Dnzh00\nb94cffv2xdy5c5GZmSl2aUREVI34UGyiWigvLw8eHh7Yvn07/vWvf+Hrr7/mTI4VJAsDlfirskbI\nzc2FtbU1LC0tERQUVKm+KnrOyrudoj8bJycnxMbG4sGDB1BXV1dIn4ri7e2N+fPnw8LCAseOHYOl\npaXYJRER0Xso4qHYHFkjqmUKCgowadIkeHl54dChQ1i/fj2DGr3XH3/8gadPn2L8+PFilyKa8ePH\nIyYmBn/88YfYpRTh7u6OiIgIqKiooFu3bnj8+LHYJRERUTVgWCOqZZYvX44TJ07g1KlTGDFihNjl\nFKukySTeXv706VMMGzYMurq6MDExwcSJE/Hy5csS20dFRWHAgAHQ09ODjo4OBg8ejOjo6HLv993l\n77aZMWOGfNmrV6/wySefoFmzZtDU1ESDBg3g7OyMpUuXIjQ0tMJ1AkBCQgLmzp2LJk2aQENDA40b\nN8asWbMQHx9fpG12djbWrl2Ljh07QltbG5qammjVqhXmzJlT5qngjx8/DgDo1KlTlZ6z8k4kUpH9\nvL2N7HXw4EF5+6ZNmxbbZ+fOnQudC2XTpEkTnDt3DkZGRhg8eDCys7PFLomIiKqaUAlubm6Cm5tb\nZbogIgUKCwsTVFRUhD179ohdynsBEIr7K0i2fMKECUJUVJSQmpoqzJ07VwAgTJ06tcT2zs7OQlBQ\nkJCeni6cO3dOMDU1FQwNDYVHjx6Va79lXS4IgjBs2DABgPDDDz8IGRkZQk5OjnD37l1hxIgRRbYp\nT53x8fGClZWVYGJiIvj5+Qnp6enCpUuXBCsrK+GDDz4QUlJS5G3T0tKETp06Cbq6usLOnTuF+Ph4\nIT09XQgICBBat25dYu3vatmypQBAiI+Pr/S5Ke2cKbK/0vZz7tw5AYBgZmYm5OTkFFq3c+dOYciQ\nIUW2iY2NFQAIrVq1KrF2ZRATEyPo6+sLn3/+udilEBFRKQAI3t7elenCh2GNqBaZPHmy4ODgIHYZ\nZfK+L+CBgYHyZY8ePRIACObm5iW2P3XqVKHle/fuFQAIU6ZMKdd+y7pcEARBT09PACD4+voWWv78\n+fMSw1pZ6pw9e7YAQNi1a1ehtocPHxYACCtWrJAvW7x4sTwwvuv69etlDms6OjoCACE7O7vIupoY\n1gRBENq3by8AEPbt21douZ2dneDv71+k/evXrwUAgq6ubol9KovVq1cLDRo0KPbzIiIi5aCIsMbL\nIIlqkcuXL2P06NFil6EQ9vb28p/Nzc0BAHFxcSW2d3Z2LvS+T58+AICzZ89WQXVvjBo1CgDg5uYG\nS0tLzJgxAz4+PmjYsGGJk16Upc4TJ04AAAYOHFiobY8ePQqtB4BDhw4BQLGzN3bs2LHMk29kZWUB\nADQ0NMrUvib45JNPAAAbN26UL7tw4QKkUqn8vL9Nduyyc6HMRo8ejZcvX+LOnTtil0JERFWIYY2o\nFnn58iUaNmwodhkKoaurK/9Z9iW6tOChr69f6L3sPCQmJlZBdW/s3r0bf/zxB0aNGoWMjAzs2rUL\n7u7usLGxQURERIXrTEhIAPAmpL5935Ws7T///CNvKwuwpqamlToWLS0tAG9mhawtxo0bBzMzM0RE\nRODChQsAgE2bNpX4DDnZscvOhTJr1KgRABS5j5OIiGoXhjWiWuSDDz5AVFSU2GWI4t0vrUlJSQD+\n96VWRjapRF5ennzZq1evKrzfkSNH4tChQ0hKSsKlS5fQv39/xMTEYNq0ac59ZdIAACAASURBVBWu\n08TEBACQnJwMQRCKvN5+1pasbWmjjmXRuHFjAEBqamqRdYo+Z9VFQ0MDCxYsAABs2LABDx8+RHBw\nMCZOnFhs+5SUFAD/OxfKLDIyEsCb/+eJiKj2YlgjqkVGjhyJAwcOIC0tTexSqt2VK1cKvT937hwA\noF+/foWWy0ag3g43N27cKLFf2ShLXl4esrKyCo1cSiQSPHv2DACgoqKCDz/8EN7e3gBQ7AyPZa1T\ndkljYGBgke0vX74MJycn+XvZpZhHjx4t0jYkJARdu3Yt8dje1rFjRwDAkydPiqxT5DlTpLLsZ86c\nOdDS0sKpU6ewaNEizJgxo8RHWciOvUOHDlVSryL99NNPaN++PWxsbMQuhYiIqhDDGlEtMn/+fEgk\nEixcuFDsUqrdtm3bEBQUhIyMDFy4cAGfffYZDA0N4enpWahd3759AQDfffcdXr16hbt37+KXX34p\nsd927doBAEJDQ3HixIlCQQkAZsyYgcjISOTk5ODFixdYt24dAKB///4VrtPT0xM2NjaYP38+Dh06\nhJcvXyI9PR0nT57E1KlTsXbt2kJtbW1t8eWXX2Lnzp148eIFMjIy4Ofnh8mTJ2P16tVlOn+urq4A\ngPDw8CLrFH3OFKUs+zEyMsKUKVMgCAL8/Pwwb968EvsLCwsDAAwdOrRK6lWUI0eO4LfffsOqVavE\nLoWIiKpaZaYn4WyQRMrnzz//FNTU1IRly5YJUqlU7HKKhf+fxQ/vzOZX3uVvr3v06JEwZMgQQVdX\nV9DW1hYGDhwoREVFFdl3YmKiMH78eKFRo0aCtra24OrqKsTExJTYf1hYmNC+fXtBS0tLcHR0FO7d\nuydfFxQUJEyZMkVo2rSpoK6uLujr6wvt27cXvvnmGyEzM7NSdSYnJwuLFy8WPvjgA0FdXV0wMTER\nXF1dheDg4CJt09PThS+++EJo2bKloKGhITRo0EDo16+fcOnSpfd8Ev+Tk5MjNGnSROjevXuVnjNF\nfval7edtf//9t6CioiKMHTu21HPg6OgoNGnSpMhU/8rk/PnzQv369YU5c+aIXQoREb0HFDAbpOT/\nO6qQMWPGAAB8fHwq2gURVYEDBw5g2rRpGDVqFH755Rdoa2uLXVKVkd1PVYm/yqpFTajzzz//hKur\nK37//Xe4u7uLXY7CSKVSNGnSBIcPH4ajo2OxbQ4cOIBJkybhxIkTGDx4cDVXWDbbt2/HokWLMGrU\nKOzfvx+qqqpil0RERKWQSCTw9vaWZ6YK8OVlkES10IQJE3DmzBn4+/ujffv2uHjxotglUQ0wePBg\nbNu2DXPmzCn2Hria6s8//4SFhUWJQe3IkSOYN28efv75Z6UManFxcRg2bBjmzZuH5cuX48CBAwxq\nRER1BMMaUS3Vu3dvREZGol27dujVqxdcXV3x8OFDscsiJTdr1iz4+fnhhx9+ELuUSpFIJAgJCUFK\nSgpWrVqFzz//vMS2mzZtgr+/P2bPnl2NFb5fbm4uNm3ahNatW+PWrVs4d+4cVq1aJR+lJSKi2o9h\njagWMzExweHDh+Hv749Hjx6hdevWmDx5Mu7fvy92aQrx9pdWZf4CW1PqlOnSpUuxM1HWNE5OTrCx\nscGQIUNKnTQkMDAQXbp0qcbKSpeTk4MdO3agefPmWLFiBebMmYNbt27BxcVF7NKIiKiaqYldABFV\nvT59+uDGjRvYs2cP1q5dizZt2qBz58749NNP4erqChWVmvnvNsp8/9fbakqdtUlNPOfR0dHYuXMn\nvLy88Pr1a8yePRvLli2DmZmZ2KUREZFIGNaIajmpVIrIyEhcvXoVwcHBUFNTQ35+PoKDgzFixAhY\nWFjg448/xvTp09GkSROxyyWqU16/fg1fX1/s3LkTQUFB+OCDD/Cvf/0Ls2bNgrGxsdjlERGRyBjW\niGqZ3NxchIaGIiAgAEFBQQgJCUFaWhp0dHTQpUsXuLu7w8nJCY6OjkhKSsIvv/yCn376CV999RV6\n9eqF4cOHY9iwYbCwsBD7UIhqpczMTJw5cwZHjx7FiRMn8Pr1awwbNgxnz57FRx99VGNHuomISPE4\ndT9RDZeXl4fQ0FAEBgYiMDAQV69eRVZWFiwsLNCzZ084OjqiW7dusLOzK3EGudzcXJw8eRI+Pj44\nffo00tPT4eDggOHDh2P48OFo27ZtNR8VUe2SlJSE48eP4+jRozh37hxyc3PRrVs3jBgxAhMmTECj\nRo3ELpGIiBRMEVP3c2SNqIYRBAE3b96En58fLly4gCtXriAzMxONGzeGi4sLNm/ejF69eqF58+Zl\n7lNDQwMjR47EyJEjkZOTg4CAABw9ehRbt27FF198gWbNmqF3795wcXGBi4sL76Eheo+srCxcuXIF\nAQEBCAgIQFhYGNTV1dG3b19s3boVrq6uDGhERPReHFkjqgGSkpJw7tw5nDlzBn5+foiPj4exsTE+\n+ugj9OrVC7169UKLFi0Uvl+pVIpr167h9OnTCAgIQGhoKHJzc9GqVSt5cOvZsyfvraE6Lzs7GyEh\nIQgICMCFCxfk/6+0bNkSLi4u6NOnDwYMGFCrH1BPRESFcWSNqJaSSqUIDQ3FqVOn4Ofnh/DwcKio\nqMDZ2RkLFy5E//790bFjxyq/t0VFRQVOTk5wcnIC8Ga04OrVqwgKCsKVK1ewa9cu5ObmwszMDA4O\nDnBwcED37t3h5OTEL6VUqz18+BBBQUH466+/5K/s7GyYmZmhe/fu2LJlCwYMGABLS0uxSyUiohqM\nI2tESiInJweXL1/GiRMncOjQIcTGxsLU1BR9+/aFq6sr+vbtCwMDA7HLLCQ9PR1XrlxBaGgoQkND\nERYWhoSEBKipqaFNmzbo0qULOnfujPbt26NNmzbQ1dUVu2SicsnPz8f9+/dx+/ZthIeHIywsDH/9\n9RfS09NRv359dOzYUf7nvHv37gxnREQkx5E1ohouMzMTFy5cgK+vL44dO4a0tDS0adMGM2fOhKur\nKxwcHMQusVS6uroYMGAABgwYIF/2+PFjeXALDQ3FwYMHkZGRAYlEgqZNm8LW1hZt27aFnZ0dbG1t\n0apVK2hoaIh4FERv7gV98uQJ7ty5gzt37uD27duIjIxEdHQ0cnNzoaqqKn8+4dixY9GlSxfY2dlB\nTY2/RomIqOpwZI2omqWkpODw4cPw9vZGYGAgAMinzB86dGite9aZVCrFo0eP5F9+Zf+9d+8e8vLy\noK6uDmtra7Rs2RLW1tawsbGBtbU1rK2tYWFhAYlEIvYhUC2SnJyMBw8e4P79+7h//7785+joaKSn\npwMALC0tC/2DQtu2bdGmTRtoamqKXD0REdUkHFkjqiEyMjJw7NgxHDx4EGfPnoWqqioGDRqEffv2\nYeDAgUp3eaMiqaiooHnz5mjevDmGDx8uX56Xl4e7d+8iMjISd+7cwf3793HhwgXs2LEDaWlpAABN\nTU00b95cHuCaN28OCwsLWFlZoUmTJrX6vFHF5OTk4OnTp/LXw4cP5YHswYMHSE5OBvBmBtSmTZvC\nxsYGzs7OmD59Otq2bQtbW1vo6+uLfBRERERvMKwRVZHs7Gz4+/vD19cXR44cwevXr+Ho6IgtW7Zg\n7Nix0NPTE7tEUamrq8POzg52dnZF1iUkJBQa9Xjw4AECAgKwa9cupKSkyNvp6urC0tISlpaWsLCw\ngIWFhfy9iYkJTE1NYWhoWJ2HRVXo9evXiI+PR3x8PJ49e4anT58iJiYGMTExePr0KZ49e4b4+Hh5\ne01NTVhZWcHGxgbdunXDlClT5KO2VlZWJT53kIiISFkwrBEpWEhICPbs2QNvb29kZGSgZ8+e2Lhx\nI0aOHAkjIyOxy6sRjI2NYWxsjG7duhVZl5GRUeQL+pMnT3D//n0EBATg6dOnyM7OlrevV68ejI2N\nYW5uDmNjY5iYmMDMzAzGxsYwMzODiYkJGjRoAENDQxgZGfH+uWqWnJwsfyUkJCAhIQGxsbFISEiQ\nBzPZMtllisCbEVtTU1NYWVnJHwD/bnDnIyWIiKimY1gjUoAXL15g//792LNnD6KiomBnZwdPT0+M\nHTsWpqamYpdXq+jo6KBNmzZo06ZNiW1evHhR6Ev/ixcvEBcXh4SEBDx+/BghISHyYFBc/0ZGRvLw\nJnsZGhqiQYMGMDAwgJ6eHrS0tKCtrQ0DAwPo6OhAW1sb2tradWokLyMjA5mZmcjMzERKSgqysrKQ\nmZmJ9PR0vHr1Cunp6UhOTkZKSoo8kL39s+ySxLfp6OgUCtbt27cvFKxlwdvU1BTq6uoiHDUREVH1\nYVgjqqCCggIEBARgx44dOHr0KLS0tODu7o7t27eje/fuYpdXp5mYmMDExKTYSyzflp+fj4SEhELh\nobhg8fjxY1y/fh3JyclITU1Feno68vPzS+xXFuR0dXWhr68PFRUV6OjoQF1dHfXq1YOWlhZUVFTk\n90bp6elBVVUV9evXLzSJhYaGRonPq9PU1ET9+vWLLC8oKJDf8/euvLw8ZGRkyNsBkLdNS0tDQUEB\nXr9+jezsbOTn58tHslJTUyGVSpGeni4PZKmpqaWeW319fejq6hYKvU2aNIGdnV2hAPx2IDY2NoaW\nllap/RIREdUlDGtE5fT8+XNs374dO3fuREJCAnr37o29e/di5MiRnC2uhlFTU4O5uTnMzc3LvW1O\nTo48tKSnp2Pnzp3Ytm0bHB0dMX369EIjTgDw6tUrSKVSZGVlIScnB7m5uXj48CGAN2FIEARkZmYi\nNzdXvo9338u8fv0aeXl58sD1LllALI5s5O/p06fQ0NBAq1atAKBImNTQ0ECzZs0AvAmTJ06cgIaG\nBmbPni0PYbLRRB0dHRgYGMjf83l6REREisGwRlRGly5dwtatW3H06FEYGRlh5syZmDFjBqysrMQu\njURQr1491KtXD2pqavj0009x9OhRfPHFF/jyyy9LDEqKoqKigt9//x3u7u4V7sPe3h4RERFYu3Yt\n+vTp8972I0eORN++fXH79m3s2bOHj1QgIiKqBlX7jYKohsvOzoaXlxc6dOiAnj174uHDh9i6dSse\nPXqEr776ikGtjrt+/Trs7e0RHByMgIAAeHp6VnlQA96MCJZ2GWZZTJ8+HWpqapg4cSLi4uLe297J\nyQkHDx7EgQMH8MUXX1Rq30RERFQ2DGtExXj+/DmWLVsGMzMzzJ49Gx07dkRYWBjCw8Mxa9asYu8V\norrFy8sL3bt3h6WlJcLDw6v1PkVFhDUXFxfk5eVBU1MTEyZMKPGSyrcNGTIEe/bswdq1a7F+/fpK\n7Z+IiIjej2GN6C337t3D9OnT0axZM/z+++/49NNP8fTpU+zZswedOnUSuzxSAhkZGRg/fjymTp2K\nRYsWwd/fv9pn/FRVVS1TuCpN69atYWJigpEjRyIkJATffPNNmbabOHEiNm3ahGXLlmH37t2VqoGI\niIhKx3vWiADcuHEDGzduxG+//YamTZvi22+/xezZszlhCBVy9+5duLm5IT4+HqdOncKAAQNEqUMR\nI2sSiQQ9e/bE33//jW+//RYeHh5wdnYu0/1rCxYsQGxsLGbNmgUDAwOMHDmyUrUQERFR8TiyRnVa\nUFAQXF1dYW9vj9u3b2P37t24d+8ePDw8GNSokF9//RWdOnVC/fr1ER4eLlpQAxQT1gDA0dERoaGh\nWLBgAdzd3ct8/xoAfPPNN/j4448xceJEXLp0qdK1EBERUVEMa1QnnT17Fl27dsWHH36I3NxcnD9/\nHjdu3MDkyZOhqqoqdnmkRLKzs+Hh4YHJkydj+vTpuHLliugTyyjiMkgA6Ny5MxITE/H48WNs374d\n+vr6Zb5/TSKR4Oeff8aQIUPg6uqKGzduVLoeIiIiKoxhjeqUS5cuoUePHujfvz8aNWqE8PBw+Pn5\noXfv3mKXRkro/v37cHJywt69e+Hj44NNmzZBXV1d7LIUNrJmb28PNTU1hIWFQVdXFz4+PggODsbq\n1avLtL2qqip+/fVXODk5oX///rh3716layIiIqL/YVijOiE0NBSurq7o2bMnpFIpAgMDcfLkSTg4\nOIhdGimpY8eOoUuXLlBRUcH169cxevRosUuSU1RY09LSQuvWrREWFgYAaN++Pb799lt4enri3Llz\nZepDQ0MDhw8fhrW1NQYNGlTmyyiJiIjo/RjWqFaLjIzEmDFj4OjoiKSkJPj7+yMoKAg9e/YUuzRS\nUvn5+Vi+fDlGjBgBV1dXBAUFoXnz5mKXVYiiLoME3lwKKQtrALBw4UL5/Wvx8fFl6kNLSwvHjx9H\nvXr10K9fPyQnJyukNiIiorqOYY1qpbi4OMyePRvt27fH3bt34e3tjatXr5Zppjuqu549e4aePXvi\nxx9/xIEDB+Dl5aWUz9RTVVWFVCpVSF/29va4detWoWU///wztLW1MX78+DKHwoYNG+Ls2bNIT0/H\n4MGDkZmZqZD6iIiI6jKGNapVsrOzsXbtWrRs2RJnzpzBr7/+ips3b8LNzQ0SiUTs8kiJnT9/Hp06\ndUJycjKCg4Mxbtw4sUsqkVQqVdif59atWyM5ObnQKJq+vr78HzjWrFlT5r6aNGkCf39/PHz4ECNG\njEBubq5CaiQiIqqrGNao1jhx4gTatm2Lr776CvPmzUNkZCTGjh3LkEalKigogKenJ/r164e+ffsi\nPDwctra2YpdVbdq0aQMAiI6OLrS8U6dO+Pbbb7Fy5UqcP3++zP3Z2Njg+PHjCA4OxowZMyAIgkLr\nJSIiqksY1qjGi46OxoABAzBs2DA4ODggKioKa9euhY6OjtilkZJLTEzEwIEDsW7dOmzYsAH79++H\ntra22GW9lyAICvtHCFNTUxgZGSEqKqrIukWLFmHEiBGYNGlSuSYO6dq1K/744w94e3tj+fLlCqmT\niIioLmJYoxorLS0NCxYsgJ2dHVJTUxEcHAwfHx/Rn4FFNcOlS5fQvn17PH78GMHBwfDw8BC7JNG0\nbt26yMiazJ49e2BgYIBRo0aV67LGfv36Yd++ffj+++/xww8/KKpUIiKiOoVhjWqkY8eOoW3btvDx\n8cHu3bsRHByMrl27il0W1QCCIGDTpk3o06cPunTpgtDQUHTo0EHssspFkSNrwJtLIYsbWQMAXV1d\nHDlyBHfu3MGnn35arn7Hjh2L1atXY8mSJTh06JAiSiUiIqpTGNaoRomPj8fkyZMxfPhwODk5ITIy\nEpMnT+Z9aVQmL1++xJAhQ7B06VJ89dVXOHLkCAwMDMQuq9wUHdasra3x8OHDEte3bNkSO3bswA8/\n/ID9+/eXq+9PP/0UCxcuxIQJE8p17xsREREBamIXQFQWgiBg//79WLx4MfT09HDmzBn0799f7LKo\nBgkPD8eYMWOQl5eHixcvwtnZWeySlIaVlRWePXuG/Px8qKkV/2th7NixCA4Oxty5c2Fvb4+2bduW\nuf8NGzbg+fPnGDVqFC5duoR27dopqnQiIqJajSNrpPTu3buHnj17Yvr06Zg2bRru3LnDoEblsmPH\nDnTr1g3NmjVDeHh4jQ9qih5Zs7KyQkFBAZ4/f15qu++//x729vYYMWIEXr16Veb+VVRUsH//ftjZ\n2WHQoEF4+vRpZUsmIiKqExjWSKlt27YN9vb2yMzMRGhoKL777jtoaWmJXRbVEOnp6Rg7dizmzZuH\nzz77DGfPnoWJiYnYZSkd2aQ8jx8/LrWduro6fHx8kJmZicmTJ5drWn5NTU2cPHkSRkZGGDRoEFJT\nUytTMhERUZ3AsEZKKTExEcOGDcP8+fMxY8YMBAcHo2PHjmKXRTVIREQE7O3tceHCBZw+fRqenp5Q\nUakdf+UpemTN1NQUmpqaePLkSZna+vr64vTp0/juu+/KtR99fX2cOnUKr169wogRI5CTk1PRkomI\niOqE2vHNhWqVc+fOoUOHDoiIiMCFCxewadMmaGhoiF0W1SBeXl7o1q0bzM3NcfPmTfTt21fskpSa\nRCKBpaXle0fWZJydnbFmzRqsWLECZ8+eLde+mjRpglOnTiEiIgJTpkyBVCqtQMVERER1A8MaKY3s\n7GwsX74c/fv3R7du3RAREYGePXuKXRbVINnZ2Zg5cyamTp2KGTNm4Ny5czAzMxO7LIXLy8uDurq6\nQvs0MzPDixcvytx+yZIlGDVqFCZNmoRnz56Va1+2trY4cuQIjh49yodmExERlYKzQZJSiIyMxNix\nY/H06VN4eXlhwoQJYpdENcy9e/fg5uaG2NhYnDx5EoMGDRK7pCqTnZ0NTU1NhfbZsGFDJCUllWub\nXbt2oWvXrhg9ejQuXryIevXqlXnbXr16Ye/evZgwYQLMzc3xr3/9q7wlExER1XocWSPReXt7o2vX\nrtDX10dERASDGpXb4cOH0bVrV9SrVw9hYWG1OqgBb8JaeYJRWVQkrOno6ODIkSOIjo7GkiVLyr3P\nsWPHYs2aNViyZAl8fX3LvT0REVFtx7BGoikoKMDy5csxbtw4TJgwARcuXEDTpk3FLotqkJycHHh4\neGDUqFFwd3fHlStX8MEHH4hdVpXLycmpkpG1ly9flnu7Fi1awMvLCz/99BP27t1b7u3//e9/Y+HC\nhZg4cSIfmk1ERPQOXgZJokhKSsK4ceMQFBSEXbt2Ydq0aWKXRDVMTEwMxowZg6ioKBw8eBDu7u5i\nl1QtcnNzIZVKFR7WGjRoUO6RNZlhw4Zh8eLFmDt3Ltq1awd7e/tybc+HZhMRERWPI2tU7W7cuIHO\nnTvj3r17uHTpEoMalduJEyfQoUMH5OTk4Pr163UmqAFvLoEEoBSXQb5t7dq16Nq1K0aNGlXuETrZ\nQ7PbtWvHh2YTERG9hWGNqtXu3bvh7OyMFi1ayEMbUVnl5+fD09MTw4cPx5AhQ3DlyhVYW1uLXVa1\nev36NQAo/OHwhoaGyMnJkYfB8lJTU4O3tzfy8vIwderUck/Jr6mpiaNHj0JfXx9DhgzBq1evKlQH\nERFRbcKwRtVCEAR8+umnmDFjBj755BOcOnUKDRo0ELssqkGeP38OFxcXrFu3Dtu3b4eXl5fCA0tN\nkJaWBgDQ09NTaL+yyyorGtYAwMTEBN7e3vDz88Pq1avLvb2RkRFOnz6NpKQkjB49Gnl5eRWuhYiI\nqDZgWKMql5ubi0mTJmHDhg3YsWMHVq9eDVVVVbHLohokICAAnTp1QkJCAkJDQzFjxgyxSxJNVYc1\n2chdRXXr1g0bNmzAypUr8eeff5Z7e0tLS/j5+SEsLAyzZ8+uVC1EREQ1HcMaVamMjAwMGzYMx44d\nw/Hjx+v0l2wqP0EQsG7dOvTt2xfOzs4IDQ2FnZ2d2GWJqqrCWv369QFUPqwBwIIFCzBt2jSMGzcO\nUVFR5d7e1tYWv//+O/bv34+vvvqq0vUQERHVVAxrVGXi4uLQo0cP3Lx5ExcvXsTAgQPFLolqkKSk\nJAwcOBArV67E+vXr8ccff0BfX1/sskSXnp4OQDkvg3zb1q1b0bp1a4wcObJC958NHDgQP//8M1au\nXAkvLy+F1ERERFTTMKxRlYiKioKjoyOys7MRHBxc7qm8qW4LDQ1Fp06dEB0djcDAQHh4eIhdktJI\nS0uDhoaGwmeDVOTIGvC/CUPS09MxefLkck84AgAzZszA0qVLMWPGDD6DjYiI6iSGNVK4q1evonv3\n7rC0tERQUBCsrKzELolqCEEQsGnTJnTv3h3t2rVDREQEHB0dxS5LqaSlpSl8VA1Q/MgaAJiZmcHX\n1xdnzpyp8OWM69atg5ubG0aNGoU7d+4orDYiIqKagGGNFOrKlSsYMGAAevToAX9/fxgZGYldEimR\n0oJAWloaxowZg6VLl2LFihU4evQoDA0Nq7G6miEhIQHGxsYK77egoADAm2eeKZKzszM2btyIVatW\n4Y8//ij39hKJBLt27ULbtm3h6uqKFy9eKLQ+IiIiZcawRgpz9epVDBw4ED169IC3t7f8X+qJAOCL\nL76AlZUV4uLiiqy7fv067O3tERwcjICAAHh6eio8NNQWiYmJVRLW8vPzAbx5XpqizZs3DzNmzMC0\nadMQGRlZ7u01NTVx/PhxaGhoYPDgwcjMzFR4jURERMqI34ZIIa5evYoBAwagb9++OHLkiMLvp6Ga\n7a+//sKaNWuQlJQENzc3eTAAAC8vL/lls+Hh4ejevbuIlSq/hIQENGrUSOH9ykbWqiKsAcCPP/6I\n9u3bY+TIkUhNTS339g0aNMCpU6cQExMDd3d3eb1ERES1GcMaVdrbQe3gwYNQV1cXuyRSIrm5uZg4\ncSJUVFQglUoREhKClStXIiMjA+PHj8fUqVOxaNEi+Pv7w9TUVOxylV5VXQYpC9BV9QxEdXV1+Pr6\nIjMzE2PHjq1Q2GrevDkOHz6M8+fPY+nSpVVQJRERkXJhWKNKkd2jxqBGJfn6669x//59eRgoKCjA\nmjVrMGTIEJw/fx5nz57F2rVr+aD0MqqqkbWqvAxSxtTUFL6+vggMDMR///vfCvXRvXt3eHl5YfPm\nzdi8ebOCKyQiIlIuVfdbmWq94OBgDBgwAP369WNQo2LdvHkTq1evLjKKIpFI8Ndff+Hs2bNwcnIS\nqbqaKTExscaGNQBwcnLCpk2bMHfuXNja2sLNza3cfbi5ueGff/7BJ598AgsLC4wYMaIKKiUiIhIf\nR9aoQv7++2+4urqid+/eDGpUrPz8fEyePBkSiaTIOqlUipycHCxYsAC5ubkiVFczZWdnIzk5GWZm\nZgrvOysrCwCgpaWl8L7fNXv2bMycORMff/xxhSYcAYDly5djzpw5mDBhAkJCQhRcIRERkXJgWKNy\nS0xMxJAhQ9CsWTP89ttvDGpUrDVr1iAyMrLQZCJvy8vLw61bt7Bs2bJqrqzmiomJgSAIaNq0qcL7\nTklJAQAYGBgovO/ibN26FR07dsSIESMqNOEIAGzevBl9+vTB0KFD8eDBAwVXSEREJD6GNSqXrKws\nDB06FFKpFCdPnoS2trbYJZESunPnDv773/++dxKJ/Px8bN68GSdPngk42wAAIABJREFUnqymymq2\nJ0+eAAAsLS0V3ndqairU1dWr7f9pdXV1+Pj4ICsrq8KzO6qqquLAgQNo3Lgxhg4dKg+cREREtQXD\nGpVZQUEBxo8fjwcPHuDUqVNVMiMd1XylXf74Ntm9US1atICOjk51lFbjxcTEQFtbGw0aNFB436mp\nqTAwMHjv56ZIpqamOHToEC5evIiVK1dWqA9dXV38+eefyMjIwPDhw5GTk6PgKomIiMTDsEZl5uHh\ngbNnz+L48eNo0aKF2OWQkvruu+9w8+ZN5OXlFVoukUjkl8y2aNECn3/+OaKionDv3j306tVLhEpr\nnpiYGFhZWVVJ3ykpKdV2CeTbHB0dsX37dqxevRo+Pj4V6sPc3BynT5/GzZs3MXXqVAiCoOAqiYiI\nxMHZIKlMvv76a2zbtg1Hjhzh7H3VLD09HXl5eUhNTUVeXh4yMjIAABkZGUUCkSAIJd7/U9yoiYaG\nhvyyNx0dHairq8PQ0BBqamrQ1dUtd613797FypUrIZVKAbwJaCoqKigoKICNjQ3GjRuHCRMmwMbG\nptx905vLIKsqrL169QqGhoZV0vf7TJkyBSEhIZg+fTratPk/9u48rsa0/wP457Qp2qNdCyoqEqUV\ng5ZJm0plyTokGowZM4wHjwcxGPNYxzCyjWVSlsrYKkOLlCUpbWjTnrSitFy/P/zOeaQydTp3p+V6\nv17npe7O/b2+95GZ8z3XfX0vXejr63c4hp6eHgICAuDg4AAdHR1s2rSJ94lSFEVRVBejxRr1j0JD\nQ7Fx40YcPHgQjo6O/E6nR3n//j1KS0tRWFiIV69eoaKigvMoLy9v9if7UVtbi5qaGrx79w61tbV8\nzV9UVBRiYmIQFxeHqKgopKWlOQ8ZGRnIyMhwvpeUlMSmTZtQX18PAYEPk/ZmZmaYOXMmXFxcoKys\nzNdr6Q2ys7MxYsQIRmK/fv2aLzNrbHv37kVSUhJcXFwQFxcHWVnZDsewtbXFwYMH4ePjAy0tLcye\nPZuBTCmKoiiq69Bijfqs3NxcLFiwAAsXLsTSpUv5nU630dDQgPz8fOTm5iI7Oxv5+fkoKipCaWkp\n8vPzUVpaiuLiYpSVlTU7T1BQsFmxw/5TQ0ODc1xMTAwDBgyAmJgYREVFISEhASEhIcjIyEBQUBCS\nkpIAgH79+rXaZl1SUrLFBtONjY2oqqpq8dy3b99y1vhUVVWhsbER5eXlaGhoQHV1NWpra/Hu3TvU\n1NSgtra2WVGZmZnZotBkN4lgz6ylpaXh119/RVBQEJSVlTFo0CAoKipCVVUVGhoaGDx4MFRUVBjf\n26u3SE1NxbRp0xiJzeQtlu0hIiKCoKAgGBsbw9PTE9euXePq98Lb2xsZGRlYuHAhVFRU6C22FEVR\nVI9G3yFRbaqvr8eMGTOgrKyMffv28TudLldYWIj09HRkZGQgKysLL1++RE5ODnJyclBQUMApTERE\nRKCsrMwpRkaMGIEvvvgC8vLyUFZWhry8PBQUFCAvL8/VrYW8ICgo2Ootbry+7a26uholJSWcwrWg\noAAlJSUoLi5GYWEhsrKyUFhYiIKCAs7+aoKCglBWVoa6ujrU1dWhpqYGDQ0NaGtrY/jw4VBUVORp\njj1VWVkZSkpKoKury0j8nJwcTJgwgZHY7aWoqIiQkBBYWlriu+++w969e7mKs3PnTrx48QLTp0/H\nvXv3MGzYMB5nSlEURVFdgxZrVJtWrVqFpKQk3L9/v0s2yuWH+vp6pKamIjU1FRkZGUhLS0NGRgYy\nMjI4M1GSkpLQ1NSEmpoaDA0N4ezsjMGDB0NNTQ3q6upQUlLq0g563ZmEhAQkJCQwdOjQzz6vqakJ\nRUVFyMnJQW5uLueRk5ODq1evIisrq9nrr6Ojwyne2H+OGDGiT+3xx948molijRCCvLw8vs6ssRka\nGuLUqVNwd3eHnp4evL29OxxDQEAAZ8+exRdffAFHR0fcvXuXb+vxKIqiKKozaLFGterChQv49ddf\nERAQgOHDh/M7HZ6orKxEUlISUlJS8PTpUzx8+BCPHj3Cu3fvICQkBDU1NQwZMgRjxoyBl5cX9PT0\nMGTIEGhqatJijMcEBAQ4s5FtNawpLy9HZmYmnj59ipSUFGRmZuLy5ct4+vQpamtrISwsDC0tLYwd\nOxZ6enrQ1dWFiYlJr91SIiUlBZKSklBRUeF57OLiYrx7946R/du44ebmhh9//BFff/01dHR0MHHi\nxA7HEBMTw+XLl2FiYgIXFxfcvHkTIiIiDGRLURRFUcyhxRrVwuvXr+Hr64vFixfD3d2d3+lw5f37\n93j06BFiY2Nx9+5dxMfHIzc3FwAgLy8PAwMDmJubY+nSpTAwMICOjk6fmqXpCWRkZDB27FiMHTu2\n2fH6+nqkpaUhMTGR87h+/TpKS0sBfNgw2sTEBObm5jAzM8OYMWN6xd9tSkoKdHV1GfnggP1vozvM\nrLFt2bIFycnJmD59OuLj46GpqdnhGEpKSggODsaECROwdOlS+Pv7M5ApRVEURTGHFmtUC6tXrwaL\nxcJPP/3E71TarbKyEnfu3EFMTAzu3r2LBw8eoLa2FgMHDoSZmRl8fHxgaGgIAwMDKCkp8TtdqhOE\nhYUxcuRIjBw5El5eXpzjBQUFSExMREJCAmJjY7F161aUlZVBTEwMRkZGMDMzg4WFBSZOnAgpKSk+\nXgF3UlNTGV2vJigoCFVVVUbic0NAQABnzpyBubk5XF1dER0dzdlmoiMMDQ0REBAAJycn6Orq4rvv\nvmMgW4qiKIpiBi3WqGbu3LmDEydOICgoqFuv8WhsbMTjx48RHh6O8PBwREZG4v379xgyZAgsLCww\nZ84cWFhYMDYTQXU/7Nsq7ezsOMcKCgoQExOD6OhoRERE4OeffwaLxcLo0aNhZWUFKysrTJw4sdvP\nvBFCkJCQAAcHB0bip6enQ11dvdu9DuLi4ggJCcG4ceMwd+5cBAUFcfXveerUqfjpp5/www8/YOjQ\noYx11KQoiqIoXqPFGsVRV1cHHx8fTJ06Fa6urvxOp4Xy8nIEBwcjODgYf//9NyorK6GmpgZra2v8\n8ccfmDJlCuTk5PidJtWNKCsrw93dnXM776tXrxAREYGwsDCcO3cOO3bsgLS0NCZPngxnZ2c4OTnx\nda+xtjx//hxlZWUwNTVlJH5iYiIMDAwYid1ZGhoauHDhAqysrLB161Zs2LCBqzirV69GZmYmZs2a\nhdu3b2PcuHE8zpSiKIqieI8WaxSHn58fCgoKEB4ezu9UONgFWmBgIMLDw8FisTBlyhRs2bIF1tbW\nvab5CdU1Bg4cCE9PT3h6egL4sA9cWFgYbty4AW9vbyxevBjW1tZwd3eHs7Nztync4uLiICIigtGj\nRzMSPzExEbNmzWIkNi+MHz8ev/zyC5YvXw4dHR14eHhwFWfv3r14/vw5pk2bhri4OAwePJjHmVIU\nRVEUbwnwOwGqeygsLMQvv/yCDRs2MNJtriMaGxsREhICR0dHKCoqwsfHB0JCQjh69CiKi4vx119/\nYfny5bRQozpt+PDhWL58Oa5cuYLi4mIcPXoUAgICWLJkCRQUFODk5IQrV65w9tTjl/j4eBgYGKBf\nv348j/3mzRu8ePECo0aN4nlsXvL19cWSJUvw1Vdf4cmTJ1zFEBYWRlBQEOTk5ODs7IyamhoeZ0lR\nFEVRvEWLNQoAsHnzZkhLS8PX15dvORQWFmLLli3Q1NSEi4sL3r9/D39/f5SUlCA4OBhz5szpkY0h\nqJ5BSkoKc+bMQUhICIqLi+Hv74/a2lo4OTlh6NCh8PPzQ1FREV9yi4uLg4mJCSOxk5OT0dTU1G1v\ng/zYvn37YGxsDCcnJ073z46SlJRESEgI8vPz4enpyfdCnKIoiqI+hxZrFLKysnDs2DFs3rwZYmJi\nXT5+WloaZs6cCXV1dezbtw8zZsxAeno6bty4AS8vL0hKSnZ5TlTfJiUlBS8vL9y8eRPp6elwd3fH\nf//7X6ipqcHLywvp6eldlktdXR0SExMZK9YSExMxYMAArlrjdzVhYWEEBgZCSEgIrq6ueP/+PVdx\nNDU1cfHiRURERGDt2rU8zpKiKIqieIcWaxR+/PFHaGpqYu7cuV06bmZmJubNmwd9fX0kJyfj+PHj\nyMvLw86dOzFs2LAuzYWi2qKlpYVdu3YhLy8P/v7+SEhIgL6+PhYsWICsrCzGx3/06BHq6uoYa4jx\n+PFjjBo1CgICPeN/B3JycggJCcGTJ0+wdOlSruNYWFjg1KlT2L17Nw4dOsTDDCmKoiiKd3rG/50p\nxiQmJiIwMBDbtm2DkFDX9Juprq7mrDm7d+8eTp06hcTERMyePZuRNTkUxQuioqKYM2cOkpKScPz4\nccTExGD48OFYsWIFo2ufbt68CVVVVWhrazMS/86dOxg/fjwjsZmiq6uLkydP4sSJE50qtDw8PLBh\nwwasXLkSYWFhPMyQoiiKoniDFmt93M8//4yRI0fCxcWlS8b7+++/MWrUKAQEBOC3337D06dPMWvW\nrB7zqX5HsVgszqMnuX//PiZNmsTvNNpl0qRJuH//fpeNJyAgAC8vL6SkpODXX3/FuXPnMGrUKNy5\nc4eR8cLCwmBra8tI7JKSEqSmpmLixImMxGfStGnTsHHjRqxcuRJ///0313E2bdoEDw8PTJ8+HcnJ\nyTzMkKIoiqI6r3e+Q6bapaCgAOfPn8eqVasYLybev3+PlStXYsqUKRgzZgySk5OxcOHCLpvN4xdC\nSJs/Gz9+fLec0Th69ChsbGywcuVKfqfSLitWrIC1tTV+//33Lh1XSEgIX331FZKTk2FgYIDJkydj\n1apVXK+jak1VVRXi4+NhY2PDs5gfu3PnDgQEBGBhYcFIfKZt3LgRrq6umD59Ol68eMFVDBaLhaNH\nj0JfXx9OTk4oKSnhcZYURVEUxT1arPVh+/fvh4yMDGfPKaZUVFTgyy+/xMmTJ3H69GlcuHAB8vLy\njI7ZEzQ1NaGpqYnfaTRz7do1eHt747fffsO0adP4nU67uLi44ODBg1iyZAmuXbvW5eMrKCjg0qVL\nOHHiBPz9/TF16lRUVlbyJHZERAQaGxsxefJknsT71J07dzB27Nge22WVxWLh+PHjGDJkCBwdHVFV\nVcVVHFFRUQQHB0NQUBCurq6oq6vjcaYURVEUxR1arPVRb9++xe+//47ly5dDVFSU0XHs7e3x7Nkz\nREVFdeuNd7taTEwMYmJi+J0Gx/v377FkyRKYm5szXsDz2uzZs2FiYgIfHx/U19fzJYc5c+YgKioK\nqampcHBwwNu3bzsd8+bNmzAyMsLAgQN5kGFLt2/fxhdffMFI7K4iJiaGCxcu4PXr15g7dy7XH4AM\nHDgQwcHBSE5OxqJFi3icJUVRFEVxhxZrfdTx48fx7t07+Pj4MDrOokWL8OzZM4SFhWHkyJGMjkV1\nzoULF/Dy5cseW1DPmjULubm5uHDhAt9yMDAwQHh4ONLS0rBkyZJOx7t58yasra15kFlLxcXFSElJ\nwYQJExiJ35XU1NQQFBSEa9euYePGjVzH0dXVxfnz5/Hnn3/ip59+4mGGFEVRFMUdWqz1Ub///jtm\nzZoFOTk5xsYICgpCQEAAzpw5g+HDhzM2zj/5uMnHixcv4OrqChkZmRaNP0pKSrB06VKoqqpCREQE\nKioq8Pb2bnUj5PDwcDg5OUFGRgaioqIYM2YM/vzzT65y+tTTp08xdepUiIuLQ1JSEra2tkhJSWn1\nnI+PvXz5Es7OzpCQkICCggK8vLxQVlbW7pxCQkIAAEZGRs2OV1ZWYtWqVRgyZAhERUUhJycHc3Nz\nrF69GvHx8a3mkpKSgi+//BKSkpIQFxeHvb09UlNT23wNCgoK4ObmBgkJCcjJyWHevHmorKxEdnY2\nnJycICkpCUVFRcyfPx8VFRWt5m9sbNzsOvhlxIgR+OOPP3DmzBlcvnyZ6ziPHj1CZmYmnJyceJjd\n/4SGhkJUVLTHz6yxWVpa4siRI9i2bRtOnz7NdRwbGxv8/PPPWLduHc6fP8/DDCmKoiiKC6QT3N3d\nibu7e2dCUHyQkJBAAJCYmBhGx9HT0yOzZ89mdIz2AkAAEGtraxITE0Pevn1Lrl69Stj/BIqKioi6\nujpRUFAgN27cINXV1SQyMpKoq6sTTU1NUl5e3iLetGnTSGlpKcnJySHW1tYEALl+/XqbY7fn+PPn\nz4m0tDRRVlYmERERpLq6mkRHRxMLC4t/jDN79mySkpJCKioqyNKlSwkAMn/+/Ha/Rjo6OgQAKSoq\nanbc2dmZACB79uwhNTU1pK6ujqSlpREXF5cW+bBzMTc3J9HR0aS6upqEh4cTRUVFIiMjQ7Kyslp9\nvpeXFyd3X19fAoDY29sTFxeXFte0ePHiVvMvKCggAMjw4cPbfc1MmjFjBhk1ahTX53///fdkyJAh\npKmpiYdZ/Y+trS1xdXVlJDY/rV69moiKipK7d+92Ko6Pjw/p378/uX//Po8yoyiKovoaACQgIKAz\nIc7TYq0P+uabb8iwYcMYexNICCFPnjwhAEhcXBxjY3QEuyj4+++/W/35kiVLCADi7+/f7PjFixcJ\nALJu3boW8T4uPFJTUwkAMn78+DbHbs9xLy8vAoD88ccfzY7/9ddf/xjn9u3bnGNZWVkEAFFWVm71\nelsjLi5OAJDa2tpmxyUlJQkAEhgY2Ox4fn5+m8Xa1atXmx0/ceIEAUDmzZv3j7mz4356/OXLlwQA\nUVFRaTX/d+/eEQBEQkKi3dfMpNjYWAKAJCcnd/jcpqYmoqGhQf71r38xkBkh5eXlREREhJw5c4aR\n+PzU2NhInJycyMCBA8mLFy+4jvP+/XsyefJkoqysTPLz83mYIUVRFNVX8KJYo7dB9jENDQ04d+4c\n5s2bx2i7/oSEBPTv359za1p3MW7cuFaPh4aGAgDs7OyaHWev52H/nI0QAg0NDc73WlpaAICUlJRO\n5cfemPfT7n/m5ub/eO6YMWM4XysrKwMACgsL2z02uyGGiIhIs+Nubm4AAHd3d6ipqWHRokU4f/48\nBg4c2ObWBJ/ma2VlBeDDGqx/yl1RUbHV4+xrKigoaDUGO29eNPbghXHjxkFMTAyPHj3q8Ll3795F\ndnY2Y41eLl++DBaLBQcHB0bi85OAgADOnDkDZWXlTnWIFBYWRmBgIAYMGIDp06fTDpEURVEUX9Bi\nrY+5evUqSkpKMHv2bEbHqaqqgoSERLfbDLp///6tHmfvraSsrNxsLRW7C9/HezhVVFRg3bp1GDFi\nBOca2fvFdWSNWGtevXoFAC26/0lLS//juRISEpyv2YVLW8VUa9ivzaf7hB07dgwXLlyAm5sbampq\n4O/vD09PT2hpaeHx48etxvq0FTz7ekpLS/8x9483SG/teFvXxM67rb/jriYgIABJSUmu2vgHBARg\n+PDhjDXluXDhAmxsbCApKclIfH4TFxdHSEgIysrKMGPGDDQ2NnIVR1ZWFiEhIUhNTcXixYt5nCVF\nURRF/TNarPUxZ8+excSJE6GpqcnoOEpKSigrK8ObN28YHYdXFBQUAACvX78GIaTF4+Pr8PDwwPbt\n2+Hp6YmcnBzOc3iBXdSwiza2T79ngoqKCgC02sDD1dUVQUFBePXqFSIjI2Fra4vc3FwsWLCg1Vif\nFq3s/AcNGsTjrP+nvLwcwP+ug99qamrw6tUrzoxgezU2NiIoKAgzZ85kJK+qqiqEhYXB1dWVkfjd\nhbq6Oi5evIhbt25h3bp1XMcZPnw4AgICcO7cOdohkqIoiupytFjrQ+rr63H9+nXObW1MmjBhAggh\nuHLlCuNj8QJ7A+jbt2+3+FlUVBTMzMw437P3Rvvuu+8gKysLADy7RcrGxgbAh82QP9YV+7EZGhoC\nAHJycpodZ7FYyMvLA/Bhtmj8+PEICAgAgBYdHtk+zTc8PBzA/66PCey8R48ezdgYHcG+dXbixIkd\nPq+4uJix2e/Tp09DUFAQzs7OjMTvTszNzXHq1Cns2rULv//+O9dxbGxssGvXLvzrX/9CcHAwDzOk\nKIqiqH/QmRVvtMFIz3L9+vUWjTGYNH36dDJq1ChSX1/fJeN9DtpozsFWWlpKtLS0iJKSEgkMDCSv\nXr0iVVVVJDQ0lAwZMqRZowtbW1sCgPz444+kvLyclJWVkW+//bZDjUTaOv7ixYsW3SCjoqKInZ0d\nT+J/zpkzZwgAcvDgwRZxbG1tSXJyMqmtrSVFRUXkxx9/JACIk5NTq2Pa2dmRqKgoUl1dTSIiIoiS\nktJnu0Hy4pr27dtHAJCzZ8+2+5qZ8v79e6Knp0c8PT07fO6kSZOIo6MjA1l9oK+vTxYtWsRY/O5o\n3bp1RFhYuM0GQ+3l4+NDxMXFyePHj3mTGEVRFNWrgXaDpDrC19eXjB49usvGS0tLI/3792/RSbGr\nsd/gf/xozevXr8m3335LNDU1ibCwMFFQUCCOjo4kNja22fOKi4vJnDlziLy8PBERESH6+vokICCg\n1fhtjfu5fJKTk4mdnR0ZMGAAkZCQIA4ODuTFixcEABEQEPjstbUnflvq6uqIqqoqsbS0bHY8Ojqa\nzJs3j2hoaBBhYWEiJSVFDAwMiJ+fH3nz5k2r+WRlZREHBwciISFBBgwYQOzs7EhKSkqncv+nazI1\nNSWqqqqkrq6uXdfLpDVr1pABAwaQZ8+edei85ORkwmKxyM2bNxnJKyIiggAgDx48YCR+d9XU1EQ8\nPT2JnJxch/9OPsbuEKmurt5iiwuKoiiK+hQt1qgO0dDQIBs2bOjSMf39/QmLxSKHDx/u0nF7G3Y7\ne3l5eUbHuXLlCmGxWOTPP//k6vyOzubxyunTpwmLxSJXrlzp8rE/dfDgQcJiscjx48c7fO7ixYuJ\ntrY2Y9tquLq6EgsLC0Zid3dv374lxsbGZMSIES32TeyIsrIyMmzYMGJmZtZimwuKoiiK+hgvijW6\nZq2PePz4MbKzs+Ho6Nil4y5cuBCbN2+Gj48Ptm/f3qVj91QsFgvPnz9vdiwyMhIAMGnSJEbHtre3\nx2+//QYfHx9cvnyZ0bF45dKlS1i2bBkOHToEe3t7vuVBCMHWrVvx9ddfw8/PD/Pnz+/Q+eXl5Th7\n9ixWrlzJSBfVgoIChIaGwtfXl+exewIxMTFcvnwZ1dXVmDFjBhoaGriKIysri9DQUNohkqIoiuoS\ntFjrI8LDwzFo0CAYGRl1+djr16/HkSNHsHHjRnz55ZfIz8/v8hx6Gl9fX2RmZuLNmzeIiIjAmjVr\nICkpiU2bNjE+tre3N27cuIE9e/YwPhYv7N27F2FhYViyZAnfciguLsa0adOwadMm7N+/Hz/++GOH\nY/z+++8QEhLC3LlzGcgQOHToEGRlZbukwVB3paysjODgYERFReGHH37gOs7HHSJ37NjBwwwpiqIo\nqjlarPURt2/fxsSJE/m279miRYsQGRmJrKws6Ovr48iRI3zJoycIDw+HuLg4zM3NIS0tjZkzZ8LU\n1BRxcXEYPnx4l+Qwbty4Vjtjfs7Hv1td+Xt2+/btNjc77wqBgYHQ09NDcnIybt26xdXMVU1NDXbv\n3o0lS5ZAXFyc5zmWl5fjwIEDWLZsWYtNz/uaMWPG4OTJk9izZw9+++03ruOwO0SuW7eOdoikKIqi\nGEOLtT6gsbERMTExHW4hzmtmZmZ49OgRZs+eDR8fH9ja2iI+Pp6vOXVHU6ZMwYULF1BUVIT6+nqU\nlJRwNknuzsgne9P1dnFxcbCxsYGnpydmzpyJpKQkTJgwgatYv/zyC+rq6jo12/M5O3fuhJCQEL75\n5htG4vc006dPx8aNG7FixYoW22R0xDfffIPFixfDy8sLiYmJPMyQoiiKoj6gxVofkJiYiIqKCr4X\nawAwYMAAHDhwALdv38abN29gYmICZ2dn+kaH6jESEhLg6OgIU1NTvHv3DpGRkdi/fz/69+/PVbxX\nr15h9+7d+P777yEnJ8fjbIHS0lIcOHAAa9euhaSkJM/j91T//ve/4e7uDg8PDzx79ozrOPv378e4\ncePg7OyM4uJiHmZIURRFUbRY6xNu374NWVlZ6Onp8TsVjgkTJiA6OhpXr15FQUEBDA0N4eDggL/+\n+gtNTU38To+immlsbERoaCimTp2KsWPHoqSkBNevX0dUVBQsLS07FXv79u3o168fVqxYwaNsm9uy\nZQskJSWxdOlSRuL3VCwWC/7+/tDS0oKjoyPKy8u5iiMsLIzAwEAICwvD1dUVdXV1PM6UoiiK6sto\nsdYHREVFYeLEiRAQ6H5/3XZ2doiPj8fly5dRV1cHR0dHDBkyBNu2bUNRURG/06P6uKKiIvj5+WHI\nkCFwdnZGQ0MDQkJCEBcXB1tb207Hz8/Px6FDh7Bx40ZISEjwIOPmcnJyOM19uJ35681ERUVx+fJl\nvH37Fp6enp3qEBkcHIynT5/SDpEURVEUT3W/d+8Uzz148AAmJib8TqNNLBYLTk5OCAsLQ1paGtzc\n3PDLL79AXV0djo6OOHXqFCoqKvidJtVHlJeX4+TJk3BwcICamhr++9//wsPDAxkZGbh58yYcHBx4\nNtb69euhoKAAb29vnsX82MaNG6GqqoqFCxcyEr83UFRURHBwMO7evdup2UddXV2cO3cOZ8+exa5d\nu3iYIUVRFNWX0WKtl3v16hXy8vJgaGjI71TaRVtbG7t370ZeXh78/f3BYrHg7e0NBQUFODg44MSJ\nE1zfrkRRbSkvL8fx48dhb28PBQUFLFy4EM+ePcOKFSvw+PFj7Nq1C8OGDePpmFFRUTh58iR27NjB\nSIfGyMhI/PHHH9i5cyeEhYV5Hr83MTQ0xKlTp3Ds2DEcOHCA6zh2dnbYsWMH1q5diytXrvAwQ4qi\nKKqvYpFOtG3z8PAAAJw/f55nCVG8dePGDXz55ZcoKSnBoEGD+J0OV96+fYuIiAgEBgbi4sWLqK2t\nxejRo2FlZQUrKytMmDChz7cjpzqmsbERjx8/Rnh4OMLDwxELk2dxAAAgAElEQVQZGQkWiwVra2tM\nmjQJDx8+xKNHj5Ceng5CCLS0tGBqagpTU1OYmZlh5MiREBIS4nr8hoYGjB07FkpKSrh+/ToPr+yD\n9+/fw9DQEGpqarh27RrP4/dW27dvx4YNGxASEoKpU6dyHWfRokU4f/48YmNju9VaYYqiKKprsVgs\nBAQEcGomLgRy/26D6hESEhIwePDgHluoAUD//v3h6OgIR0dHHDhwADdu3MDNmzc5G9JKS0tj8uTJ\nsLa2hqWlJXR1dbvl+jyKf5qampCSkoKoqCiEhYXh1q1bqKyshLq6OmxsbODt7Y0vv/yyxbqxqqoq\nPHnyBDExMYiOjsbGjRtRVlaGAQMGYPTo0Rg7diwsLS0xYcIEKCgotDufbdu24fnz57h06RKvLxXA\nh6IjOzubzu500I8//oicnBzMmDEDUVFRMDAw4CrOgQMHkJycDFdXV8TFxUFaWprHmVIURVF9BZ1Z\n6+U8PT1RW1vbazdtTUtLQ1hYGG7cuIE7d+6gpqYGUlJSMDMz4zxMTExoy/I+pqqqCvfu3UNsbCxi\nY2Nx7949VFZWQlxcHF988QVsbGxgY2MDHR2dDsfOzMxEdHQ0Hj58iJiYGCQkJKCpqQlKSkqc4s3C\nwgLGxsbo169fi/MTEhJgYmKCXbt2YeXKlby43GYePXoEU1NT/Pzzz4x1mOzN6uvrYWdnh9TUVMTF\nxUFVVZWrOEVFRTA2Noauri6uXr0KQUFBHmdKURRFdXe8mFmjxVovN2LECLi7u2Pz5s38ToVxDQ0N\nePLkCe7evYvY2FjcvXsX2dnZEBQUhK6uLgwNDTF69GgYGBhg9OjRkJWV5XfKFA+UlZXh8ePHSExM\nRGJiIhISEvD06VM0NTVBU1MT5ubmMDMzg7m5eadvX2xNZWUl7t271+xRUVEBMTExGBkZYcKECZgw\nYQIsLCwgKCiIsWPHQkFBAeHh4TyfAX737h2MjIygqKiI8PBwsFgsnsbvK6qqqmBubo5+/fohMjIS\nAwYM4CrOo0ePMH78ePj6+mLnzp08zpKiKIrq7mixRn1WQ0MDBgwYgOPHj2PWrFn8TocvCgsLERsb\ni7i4OM4bevbGtYMHD4aBgQEMDAygp6cHbW1taGtrM9JCneq86upqZGRkICMjA8nJyZziLC8vD8CH\nrn7sQtzExARmZmZQVFTs8jwJIUhLS8O9e/dw9+5dREZGIiMjA8LCwpCVlUVlZSUOHz4MFxcXnv+u\nLV68GEFBQUhMTISamhpPY/c1WVlZMDU1hbGxMYKDg7meGTt9+jTmzJkDf39/2pWToiiqj6HFGvVZ\nz549g7a2Nh48eICxY8fyO51uo6ioCImJic1mY549e4b6+noAgLKyMnR0dKCtrQ0tLS3o6OhgyJAh\nUFdX5/oTdqp93rx5g5ycHGRmZiI9PZ1TnKWnp6OwsBDAh02ItbS0OIUZe7a0I2vGulpxcTG2bduG\nffv2YejQocjMzISAgABGjx4NCwsLWFpawsrKCjIyMlyPcfbsWXh5eeHChQtwcXHhYfZ9V0xMDKys\nrLB8+fJOzYytXr0aBw8exJ07dzBu3DgeZkhRFEV1Z7TBCPVZGRkZAAAtLS0+Z9K9KCoqQlFRsdmm\nxg0NDcjKykJ6ejqnSEhPT0doaCgKCgo4zxs4cCDU1NSgpqYGdXV1qKurQ01NDaqqqlBWVoa8vHyr\n65QooLa2FqWlpSgoKEBeXh5yc3ORk5OD7Oxs5ObmIjc3F2VlZZzns4tmHR0dODo6cgpoTU1Nnt/K\nyLTCwkIcPXoUq1evxq5du1BSUoK4uDjExMQgPDwc+/fvh4CAAHR0dDiF25QpU9p9q+7jx4+xePFi\nrF69mhZqPGRhYYGTJ09ixowZ0NTU5Hoftp07dyItLQ3Tpk3D/fv3oaKiwuNMKYqiqN6Kzqz1Yr/8\n8gt+/vnnZsUG1XHV1dXIzs5GTk4OcnJyOEUG+8/CwkJ8/M9IWloaioqKkJeXh6KiIhQUFCAvL49B\ngwZBVlYW0tLSkJGRgbS0NOfrntZ8oKGhARUVFaioqEB5eTnn69evX6OkpASlpaUoKipCUVERSktL\nUVhYiMrKSs75LBYLSkpKzQpedgGsoaEBDQ0NiIuL8/EKeaewsBDjxo2DtrY2bty40WqhWVpainv3\n7nGKt4SEBADA8OHDOcXb5MmTIScn1+LcgoICmJiYQEdHB9evX+9xhWxP8J///Adbt27F1atXYW1t\nzVWMqqoqmJmZQUxMDFFRURATE+NxlhRFUVR3Q2+DpD5r6dKlSE1Nxe3bt/mdSq9WV1eHgoICFBUV\noaSkBEVFRSguLkZJSQkKCwtRUlKCkpIS5Obmora2ttUYEhISnMJNREQE0tLSEBYWhri4OERFRSEm\nJgZxcXEICwtDWlqa0ziCfexj/fr1Q//+/Zsde/v2Lerq6podq6+vR01NDYAP66wqKio4x969e4fa\n2lpUV1dzCrO6ujpOUVZdXd3qdcjIyHAKUwUFBSgpKXG+/riAVVFR6RN74719+xYTJ05ETU0N7t69\n2+7bHF+9eoWoqCjcuXMHt2/fRlJSEgBg9OjRsLa25mxT0djYyFV8qmMIIZg3bx6Cg4MRHR2NkSNH\nchUnPT0dpqamcHR0xKlTp3icJUVRFNXd0Nsgqc/KzMzE0KFD+Z1Gr9evXz9oampCU1Oz1Z8XFxfD\n3d0d+fn5CA8Px5gxYzhFz6czUxUVFXj//j3Ky8vR0NCA6upqlJeXo7CwkFM4lZeXc2JXVFSgoaEB\n9fX1EBUVBfDhE/zGxsZmOYiIiLRYb8disZrt/yQjIwMhISFISEhATEwMoqKiUFZWRnR0NGRlZWFn\nZ9dsNpD99cffU//z7t07ODs7Izs7G7GxsR0qpAYOHAgXFxfOLY2vX79GVFQUwsPDcfnyZezYsQP9\n+/eHmJgYamtrERAQQF9/BrFYLBw9ehR5eXlwcnLCvXv3uFojqaOjgz///BP29vYYM2YMvvnmGway\npSiKonoTWqz1Ynl5eTAzM+N3Gn3ao0eP4OrqCmFhYcTGxnI+keflDMiff/6JOXPmoLy8HP369YOh\noSGmTp0KPz8/nsRftmwZEhIS+sT2D7xSUVEBNzc3PH78GBERERg2bFin4snKysLZ2RnOzs4AgOTk\nZLi7uyMzMxP9+/eHg4MDFBUVYW1tDRsbG9ja2mLQoEG8uBTq/4mIiCAwMBBmZmZwcHDAnTt3Wsxg\nt4etrS38/PywevVq6OjowM7OjoFsKYqiqN6Ct5v8UN1KXl4eXcjOR6dOnYKlpSV0dXURHx/P9a1T\n/2TkyJFoaGhAeno6AKCkpISnb9QtLCzw8OFDvH37lmcxe7OkpCSYmZkhIyMDt27dwujRo3ke393d\nHTU1NYiPj0dZWRkePHiAlStXIj8/H4sWLYKioiJMTEywefNmPHjwAE1NTTzNoa+Sk5PDtWvXkJ2d\njXnz5nH9uq5Zswaenp6YPXs2nj17xuMsKYqiqN6EFmu9VHV1NaqqqqCqqsrvVPqcuro6LFmyBPPn\nz8eKFStw5coVRtcS6ejooF+/fkhKSgIhBKWlpTwv1urr6/Hw4UOexWQKe1uGyMhIhIaGIjw8HPHx\n8UhLS0NVVRWj8YuLi7F161YYGxtj4MCBiIuLg4GBAQ+u6oN37961Gl9AQABjx47F2rVrERERgdev\nX+PGjRswNTWFv78/jI2NoaCgAA8PD5w6darZbbRUxw0dOhQXL15EaGgoNm7cyHUcf39/aGlpwcnJ\nqVnzHYqiKIr6GL0NspdibxRMZ9a6Vn5+PqZPn46nT58iMDAQbm5ujI8pJCQEHR0dJCUlcZqEyMvL\n8yy+hoYGVFVVERMTg/Hjx/MsLi/k5ubi/PnziImJQXx8/D92PpWTk4Ompia0tLSgr68PXV1d6Onp\ntbkdQEfjs1gsqKioQFVVFSdOnPjH+O3x6tUrHD9+HPv27UNFRQW2bNmCb7/9ts0Oov3794eVlRWs\nrKywd+9ePHnyBFevXsW1a9fw1VdfAfhQgNvb22PatGl0aw8ujB8/HocPH8b8+fOhpqYGb2/vDscQ\nFRXF5cuXYWxsjBkzZuDKlSs9rissRVEUxTxarPVS+fn5AGix1pWio6Ph7u4OSUlJ3Lt3D7q6ul02\ntr6+PpKSklBSUgIAPC3WAMDMzAyxsbE8jdkZDx48wJYtWzizll988QW++eYbGBkZQVVVFZKSkpCU\nlERtbS0qKytRVVWFvLw8ZGVlISsrC2lpaTh69Ciys7NBCIGwsDCGDBmC4cOHQ1tbGyIiIrh9+zZi\nY2MhJSUFS0tLLF68GNra2pCUlEReXh4yMjIQHx+Pe/fuQUxMDFZWVjA2Nsbr16//MT57w3X2Vg7i\n4uJobGxEVVUVampq8PTpUyQkJCA+Ph4xMTEYMGAAFi5ciO+//x5KSkodeq1GjRqFUaNGYe3atSgv\nL0dYWBj++usv7Ny5Ez/88AN0dXU56+HGjRvH6TRKfd68efOQkZGBr7/+GkOHDsWUKVM6HENJSQmB\ngYGYNGkSNm7cyLN1phRFUVTvQYu1XqqkpARCQkLt3lSX6pwjR47g66+/hq2tLU6fPg0pKakuHX/k\nyJH49ddfGSvWDA0NcfjwYZ7G5EZlZSVWr16NY8eOwdjYGEFBQXBwcGixfQGbmJgY5xbUUaNGtfh5\nTU0NZxP0tLQ0PH36FMeOHWu2OXd5eTlCQ0MRGhrKOSYsLAw9PT0YGhpixYoVsLe3b9Fts7X4GRkZ\nCA8Px6+//oo3b960eZ0fx1+2bFmb8TtKRkYGHh4e8PDwQGNjI2JjY3HlyhVcvHgR27dvx6BBg/Dl\nl1/C3d0dNjY2dIP3f7B161ZkZ2fDw8MDd+/ehY6OTodjmJmZ4ciRI5g/fz709fUxc+ZMBjKlKIqi\neiparPVSr1+/hqysLP2UnGG1tbVYtmwZTpw4gR9++AHbtm2DgEDXLwUdOXIkXr58iaysLLBYLAwc\nOJDn8XNzc1FRUcG3FvEJCQlwd3fHmzdvcObMGcyYMaPTMcXFxTF27FiMHTsWCQkJOHPmDISFhXHu\n3DlMnDiRs53CmzdvICAgACkpKYiJiWHYsGHt2ifu4/ifKiws7HT8zhAUFISlpSUsLS3x008/ISkp\nCcHBwbh8+TKcnZ0hISEBOzs7uLu7Y+rUqXQT51awWCz4+/tj8uTJsLOzQ1xcHFfrRefOnYtHjx5h\n0aJFGD58OAwNDRnIlqIoiuqJaLHWS7GLNYo5L1++hJubG9LT03Hp0iVOW3V+YHeafPLkCWRkZNqc\naepMfEIIkpOTYWlpydPY7REREQEXFxcYGRnh3LlzXO1xxU38jt5y2BFKSkqMxu+okSNHYuTIkVi/\nfj1evnyJkJAQXLx4EZ6enhATE4ODgwPc3d1hZ2dHC7ePsNeemZqaws3NDWFhYVzNSP78889ISkqC\nq6sr7t+/z/MPXCiKoqieiXaD7KXKy8shJyfH7zR6rTt37sDIyAh1dXV49OgRXws1ABg8eDCkpaWR\nnp7O81sgAUBNTQ3S0tJISkrieex/cufOHTg4OMDBwQHXr1/neaHGdPyeaPDgwfD19UVERASKi4tx\n8OBB1NTUwNPTE3JycnB0dMSpU6c+eytnXyIvL48rV67gyZMnWLBgAQghHY4hJCSEwMBACAgIwNPT\nEw0NDQxkSlEURfU0dGatl6Iza8wghGDfvn1YvXo1pk+fjqNHj/JkLVFnsVgs6OvrIzs7m5HNkNnx\nu7pYS0lJwbRp0+Dg4IDTp09zfYvpt99+y+mQ+rGqqircunULCgoKqK+vh5eXV2dT7rXExMRgZ2eH\nvLw8xMXF4a+//sJXX30FZWVlqKurQ0FBoc/fdm1oaIiAgAAkJCRwva/i0KFDcevWLejp6fF06weK\noiiKd9zd3eHu7t4lY9GZtV6qvLycb2uLeiv2zMJ3332HrVu34uzZs92iUGPT1dVFSUkJIzNr7Pip\nqamMxG5NRUUFpk2bBn19/U4VagDw3//+Fy9fvmx2rL6+HjExMZCSkoKJiUmfLzTaQ1RUFMOGDcMX\nX3wBBwcHjBw5Em/fvkVUVBSuXLmCxMREVFRU8DtNvhk0aBCMjY2RlpaG58+fcxVDWloaRkZGyMjI\nQHZ2Nm8TpCiKojotNjYWgYGBXTYenVnrpd68eUM3xOah58+fw8XFBUVFRbh+/TqsrKz4nVILw4YN\nQ2VlJWPF2rBhw/DXX38xEvtTTU1NmDNnDqqrq3H79m2edCVctWoVPDw8OPGdnZ0hLi6Ohw8fQllZ\nudPx+7Lc3FycO3cO/v7+CAsLw4gRI+Dh4YF58+ZBU1OT3+l1uc2bN2Pz5s3YtGkTnJycuIqxatUq\nHD58GIcOHWq1QQ1FURTFH+z3El2Fzqz1Um/fvqVNAHjk6tWrGDduHISFhXH//v1uWagBgLa2Nurq\n6hibUdXW1kZBQQFqamoYif+xTZs24caNGwgMDGSkkGI6fl+jpqaGNWvWICMjAw8ePIC1tTV+/fVX\nDBs2DJaWljhy5Aiqqqr4nWaX2bhxIxYvXozZs2cjISGBqxi7du3iNC159eoVjzOkKIqiegparPVS\n7969o8VaJxFCsGPHDjg6OsLe3h7R0dHQ0NDgd1pt0tbWBgCumhu0Nz4hhOvbu9orJCQEfn5+OHjw\nICOdJ5mO39eNHTsWe/fuxcuXLxEUFIRBgwZh+fLlUFJSwrx58xAVFcXvFLvEvn37YG5uDnt7e+Tk\n5HT4/I8bjsyYMYM2HKEoiuqjaLHWS9GZtc6prq6Gm5sb1q9fj23btuGPP/5A//79+Z3WZ7ELybq6\nOkbiDx06FIKCgnj27Bkj8QEgIyMDc+fOxZw5c7B48eIeF5/6n379+sHFxQWXLl1CYWEhdu3aheTk\nZEyYMAEjRozAL7/80qtnjISFhREUFAR5eXlMnToV5eXlHY4hJyeHixcvIjY2Fv/6178YyJKiKIrq\n7mix1kvRmTXupaenw9TUFNHR0bh58ybWrFnD75Tapbq6GgAYu91MREQEampqyMjIYCR+TU0NXFxc\nMHz4cBw+fJjn8WtraxmNT7VNVlYWy5Ytw8OHD5GcnAxnZ2f4+flBRUUFHh4eCA0NRWNjI7/T5DkJ\nCQlcvXoV1dXVcHFx4eqDlNGjR+Pw4cPYtWsX/vzzTwaypCiKorozWqz1UnV1dTxpytDXhIaGwsTE\nBNLS0nj8+DEmTZrE75TaraSkBAAYna3Q1tZmZGaNEIIFCxagrKwMQUFBjPzuHjp0iNH4VPvo6enh\np59+Qn5+Pk6fPo3y8nI4OztDQ0MDa9euRW5uLr9T5CllZWVcvXoViYmJmD9/Ple3KXt5eWH58uVY\nuHAhHj16xECWFL+xWCzOg6Io6mO0WOulGhsbISgoyO80egz2+rRp06bB09MTf//9d49rPMEu1vLz\n8xkbQ1tbm5GZte3btyM4OBiBgYGMdTG9f/8+o/GpjhEVFYW7uzvCwsKQlJQENzc3/P777xg6dChc\nXV0RHh7O2PrLrqavr4+LFy/i4sWL2LRpE1cxdu/eDRMTE9pwpJfqLb/rFEXxHi3WeilCCP2Erp1e\nv34NOzs7/Pvf/8bhw4dx+PBhiIiI8DutDistLYWAgACjezNpaWnxfGbt7t27+Pe//41du3Zh/Pjx\nPI3Njg98mJ1gIj7VeXp6etizZw/y8/Nx8uRJlJWVwdraGrq6uti/f3+v6CQ5adIkHDp0CJs3b8Zv\nv/3W4fOFhIQQFBQEAJg5c2avvG2UF+jsFEVRvQ0t1nqppqamTm0i3FckJibC2NgYycnJuHPnDhYt\nWsTvlLhWUlICKSkpvHr1Cq9fv2ZkDC0tLZ7Gr6yshJeXF6ysrLBixQqexGwtPgDY2dnxPD7FW6Ki\nopg1axbu3LmDtLQ02NjYYN26dVBRUcGSJUvw5MkTfqfYKQsXLsT69euxYsUK3Lx5s8PnsxuOxMTE\nYP369QxkSFEURXU39N18L0Vn1v7ZuXPnYGFhARUVFTx48AAmJib8TqlTSktLMWjQIABgrGMje3sA\nXsX39fXFmzdvcPz4cUZ+X9nxAdB/Dz2Mjo4O9u7di/z8fOzevRvR0dEwMDCAkZERTp06hfr6en6n\nyJXNmzdj5syZmD59Oh4/ftzh8w0NDXH48GHs2LED58+fZyBDiqIoqjuhxVovRQihM2ttaGhowNq1\nazFr1izMnj0bERERUFRU5HdanVZSUgIVFRX069ePsY6NGhoaPIt/+vRpnD17FseOHWPk9f84PtVz\nSUpKwtvbG8nJybh+/TqUlJSwYMECaGpqYuvWrZy1mj0Fi8XC0aNHYWJiAnt7e7x8+bLDMebMmYNl\ny5bhq6++QlJSEgNZMuvp06eYOnUqxMXFISkpCVtbW6SkpLTZZKOkpARLly6FqqoqREREoKKiAm9v\nbxQVFTV73sfnseN8fLfEx/ELCgrg5uYGCQkJyMnJYd68eaisrER2djacnJwgKSkJRUVFzJ8/HxUV\nFS2uITw8HE5OTpCRkYGoqCjGjBnTarfOyspKrFq1CkOGDIGoqCjk5ORgbm6O1atXIz4+/rOvk5GR\nUbOcZ8yY0a7Xl6KoXoZ0gru7O3F3d+9MCIohUlJS5MiRI/xOo9spLS0lU6ZMIaKiouT48eP8Toen\nXFxcyIwZM8iIESPIhg0bGBuHF/EzMzOJpKQk+eabb3iU1efjAyABAQGMjEV1vczMTPL9998TOTk5\nIioqSr766iuSlJTE77Q6pLKykowaNYro6emR8vLyDp///v17MnHiRKKhoUFevXrFQIbMeP78OZGW\nlibKysokIiKCVFdXk+joaGJhYUEAkE/flhQVFRF1dXWioKBAbty4Qaqrq0lkZCRRV1cnmpqaLV67\n1mK09nMvLy+SkpJCKioqiK+vLwFA7O3tiYuLC+f40qVLCQCyePHiVuNMmzaNlJaWkpycHGJtbU0A\nkOvXrzd7nrOzMwFA9uzZQ2pqakhdXR1JS0sjLi4uLfL8NPfCwkKir69P1qxZ0+7Xl6Io5nWk/uHB\n+4/ztFjrpQYOHEgOHDjA7zS6lYcPHxINDQ2ipqZG7t+/z+90eM7S0pKsWLGCODk5kRkzZjA2Tmfj\n19fXE3Nzc6Knp0fevn3Lw8zajk+Ltd6ptraWnDx5kujp6REAxMLCgoSEhJCmpiZ+p9YueXl5RFVV\nlUyaNInU1dV1+PzCwkKioqJC7OzsSGNjIwMZ8p6XlxcBQP74449mx//6669WC60lS5YQAMTf37/Z\n8YsXLxIAZN26dc2Ot7dYu337NudYfn5+q8dfvnxJABAVFZVW42RlZXG+T01NJQDI+PHjmz1PUlKS\nACCBgYHNjrPHbCv37OxsMmzYMOLn59fmtVAUxR9dXazR++R6KRERkR67poMJp0+fhqWlJTQ1NfHg\nwQMYGRnxOyWeKykpwaBBgxhrr8/W2fhbtmzBo0ePcPbsWUY2bmc6PtV99OvXD3PnzkVSUhLCwsIg\nIyMDZ2dnznq3t2/f8jvFz1JRUUFwcDDu37+PpUuXdvh8RUVFXLhwAbdu3cJ//vMfBjLkvbCwMADA\n5MmTmx03Nzdv9fmhoaEAWjYImjBhQrOfd9SYMWM4X398G/bHx9nbtxQUFLQ4nxACDQ0NzvdaWloA\ngJSUlGbPc3NzAwC4u7tDTU0NixYtwvnz5zFw4MA22/Wnp6dj/PjxkJeXx7p16zp4ZRRF9Ta0WOul\nRERE8P79e36nwXfs9Wlz587FihUrEBYWxmnC0duwizV2e/223gh0Vmfix8TEwM/PD7t378aoUaN4\nnhvT8anuicViwcrKCqGhoZzN7H/88UfORttM7j3YWey1TqdOncLmzZs7fL6JiQn27NmDrVu34urV\nqwxkyFvsPeIGDhzY7Li0tHSrz2evSVRWVm62fot9/osXL7jKQ0JCgvP1x+u7Wzv+6X/rKioqsG7d\nOowYMQISEhJgsVgQEhICAJSVlTV77rFjx3DhwgW4ubmhpqYG/v7+8PT0hJaWVpsNZiZNmoSysjLc\nvXsXZ8+e5er6KIrqPWix1ksJCwv3+WKtoKAAEyZMwMGDB3H+/Hn89NNPvXaj8Pr6elRWVkJeXh7a\n2tqorq5usfieV7iNX1dXh0WLFsHGxoarWQR+x6d6hlGjRuHw4cPIzMyEj48Pjh07hmHDhmHx4sVI\nT0/nd3qtsre3x4EDB7Bp0yYcPXq0w+f7+Phg7ty58PLyQmZmJgMZ8g67yPp0Y++2NvpWUFAA8GE/\nTEJIiwe722tX8vDwwPbt2+Hp6YmcnBxOLm1xdXVFUFAQXr16hcjISNja2iI3NxcLFixo9fn79+/H\ngQMHAHzoaJuXl8fIdVAU1TPQYq2XEhUVRW1tLb/T4JuYmBgYGRnh1atXuHfvHqZPn87vlBhVUlIC\nQgjk5eU5t+Mw1b6f2/h+fn54+fIlDh48yEgbfabjUz2LoqIiNm/ejJycHOzduxdRUVHQ1dWFq6sr\n7t27x+/0WliyZAk2bNgAHx8fXLp0qcPnHzp0CJqamnB1dcW7d+8YyJA3bGxsAAARERHNjsfExLT6\n/GnTpgEAbt++3eJnUVFRMDMza3asf//+AD58gPX27dsWM3i8wM71u+++g6ysLIAPHxa1hsVicYot\nAQEBjB8/HgEBAQCA1NTUVs9xc3PDggUL4OzsjIqKCixYsICxOyUoiur+aLHWS0lJSaGqqorfafDF\nkSNHMHnyZIwZMwbx8fHQ09Pjd0qMY98qJC8vD2VlZYiLizO2bo2b+Glpadi5cye2bdsGTU1NnufE\ndHyq5xITE4O3tzdSUlJw+fJlFBcXw8zMDJaWlggNDe1Wb4L/85//wMfHB7Nnz26zeGmLqKgoAgIC\nkJOTg5UrVzKUYedt2rQJ0tLSWLt2LW7duoWamhpER0fj8OHDbT5fS0sLvr6+CAoKQllZGaqrq3Hl\nyhXMnz8fP/30U7Pns29/jo+PR2hoaItijhfGjx8PAE9XzZQAACAASURBVNi+fTsqKirw+vXrz64t\nW7RoEZ4+fYq6ujoUFxdjx44dAABbW9vPjnPkyBEMGjQI4eHh2LdvH+8ugKKonqUz7UloN8juy97e\nnsyZM4ffaXSp2tpa8tVXXxEWi0XWrFnTY7qj8cL169cJAE4b69GjR5MffviBsfE6Er+xsZFYWFgQ\nY2Nj0tDQwPNc2hMftBsk9ZGoqCji4OBAWCwW0dfXJydPniTv37/nd1qEEEIaGhqIi4sLkZOTI6mp\nqR0+PyQkhLBYrBbdE7uT5ORkYmdnRwYMGEAkJCSIg4MDefHiBQFABAQEWjz/9evX5NtvvyWamppE\nWFiYKCgoEEdHRxIbG9viuffv3ycGBgakf//+xNTUlKSnp3N+hv/vtohPOkZ29HhxcTGZM2cOkZeX\nJyIiIkRfX58EBAS0+tzo6Ggyb948oqGhQYSFhYmUlBQxMDAgfn5+5M2bN5znSUlJNTs/MDCwxfgA\nemUnY4rqabq6G6RQF9WEVBeTlpZGZWUlv9PoMnl5eXBzc0NaWhouXrzIuXWmrygtLYWIiAikpKQA\nfFhXxtRtkB2Nf+jQIcTFxSE+Pp6RNYNMx6d6H0tLS1haWiIpKQm7du3CokWLsGbNGixZsgSrVq3i\n/DviB0FBQZw5cwbW1tawtrbG3bt3MXjw4Haf7+joiB9++AG+vr4wMDDA2LFjGcyWO3p6ei2aobA7\nLrZ226KMjAx2796N3bt3/2NsIyOjNht3kDZmUTt6XF5eHqdOnWpx3MPDo8UxCwsLWFhYtJUuR2sb\nb7c1PkVRfQu9DbKXkpKS6jPFWmRkJIyMjFBVVYV79+71uUIN+HAbpLy8PGetlpaWFqPt+9sbv6Cg\nAOvXr8f3338PQ0NDnufBdHyqdxs5ciROnTqFZ8+ewdPTEz///DOGDh2KzZs3o7y8nG95iYmJITg4\nGBISEpg6dWqrb+Q/Z9u2bRg/fjzc3NxadCfsDlgsFp4/f97sWGRkJIAPnRApiqKo/6HFWi8lLS3d\n4f/B90RHjhyBlZUVTExMEBcXhxEjRvA7Jb4oLS1ttiWBlpYWnj9/jsbGRkbGa298X19fDBo0CBs2\nbGAkD6bjU32Duro69uzZg5ycHHz99dfYs2cPNDQ0sG7dOs560K4mJyeHmzdvorKyEi4uLm02sGiN\ngIAATp8+jYaGBsyfPx9NTU0MZsodX19fZGZm4s2bN4iIiMCaNWsgKSmJTZs28Ts1iqKoboUWa71U\nb59Zq62txfz587Fs2TJs2bIFly9fhqSkJL/T4hv2zBqbtrY26urq8PLlS0bGa0/8S5cuITg4GIcP\nH2Zkc2qm41N9j5ycHDZt2oTc3Fxs3rwZJ0+ehJqaGpYsWcKX9umqqqq4evUqEhMTMXfu3A4VXfLy\n8ggKCsLNmzdbNOHgt/DwcIiLi8Pc3BzS0tKYOXMmTE1NERcXh+HDh/M7PYqiqG6FFmu9VG8u1l68\neIFx48bhypUruHbtGtasWdPnW7W3VqwBzLXv/6f479+/xw8//IBZs2YxclsT0/Gpvk1cXBwrV65E\nZmYm9u3bh2vXrmHo0KGYO3cuo2tBW6Ovr49Lly4hJCQEy5cv79C5pqam2LlzJzZs2IAbN24wlGHH\nTZkyBRcuXEBRURHq6+tRUlKCgIAAWqhRFEW1ghZrvRS7wUhvW6B8/fp1GBsbQ1BQEPfv34e1tTW/\nU+oWSktLmxVrcnJykJWVZWzd2j/FP3jwIPLy8uDn58fI+EzHpygA6NevH7y9vfH8+XPs378fMTEx\n0NXVxfz587t0g+2JEyfizz//xOHDh7Fz584Onbty5UrMnj0bs2bNQnZ2NjMJUhRFUYyhxVovJSUl\nhaamJtTU1AAAGhsbUVBQ0GNn2wgh2LFjBxwcHGBnZ4eYmBi6n9ZHSkpKmq1ZAz6sK2NyFqCt+OXl\n5fDz88OqVaugrq7O83GZjk9RnxIREYG3tzeePXuGs2fPIj4+Hrq6uvDw8Oiyos3Z2Rn79+/H2rVr\nceLEiQ6de+jQISgpKWHGjBmtrn3rjk1IKIqiqA9osdZLVFVVIT4+HhcvXsTevXtx5swZyMjIYOLE\niVBUVES/fv2goqLSamvh7q66uhru7u5Yv349/Pz8cObMGfT/P/buO66p6/8f+CsJILKHgIwAAgFZ\noggyxIGi1oGj1tHWotYKrkr91NVWW6xtP9phxdFWW/ut9mPr3taFAk4UFQdDhiB7hL1nzu8PfrkF\nSTCBhACe5+ORh+Hm3nPPDXjPfd9z7vuoqSm6Wt2KqGDN1tZWrhkhxZW/efNmsNlsrFu3Ti77lXf5\nFCUOm83GrFmzEBsbi4MHDyI2NhaOjo5YsGABnj9/Lvf9L126FGvXrkVgYCAuXrwo8Xbq6uo4ceIE\nEhISsHr1amY5IQRbtmyBkZERTp06JY8qUxRFUZ1Eg7VeYvr06fDw8MDMmTOxdu1aHDlyBGVlZYiJ\niUF+fj6ampqgpKTEPGvUUyQlJcHLywvXr1/HpUuX6AW6CNXV1aiqqmo1DBJQTM9aamoqfvrpJ3z5\n5ZdymatK3uVTlCTYbDbmzp2L2NhY/P3334iKioKtrS1mz57dJiW9rP33v//Fu+++i5kzZyIqKqrV\nZ5GRkdDX128zhxnQfHNl//792L17Nw4cOAA+n48JEybgs88+AyEEhw4dkmu9KYqiqI6hwVovMWPG\nDLDZzb/O+vp61NfXt8kcJhAI4O3trYjqidTY2IiNGzcyk6G+7Ny5c/Dw8ICqqiqio6MxZsyYLq5h\nzyBMLf5ysGZra4u0tDTU19fLZb+iyl+7di0GDBiADz74QC77lHf5FCUNYU9bfHw8Dh06hMePH8PB\nwQEBAQFy62ljsVjYu3cvRo4cCX9/f6Z3++zZsxg/fjwzTFiU6dOnIzg4GEuWLIGjoyMiIiIgEAgg\nEAhw7tw5uZ0rKIqiqI6jwVovsXjxYujp6bW7jkAggI+PTxfV6NW2bduGr776CtOmTWv1HIXw+bRp\n06bB398fN27coM8mtUNcsMbj8dDU1IS0tDS57Pfl8qOionDixAl8//33UFJSkvn+5F0+RXWUMGhL\nSEjAwYMHcefOHdjb2yMgIEAu//+UlZVx/Phx2NjYYOLEifjpp58wY8YMNDQ0gBCC27dv4/79+222\nI4SAy+Wirq4OxcXFaGhoYD6rqqpCeHi4zOtKURRFdQ4N1noJVVVVfPzxx+1exBoYGIDL5XZhrcRL\nTU3F559/DgCIiYlhUlKXl5djxowZ+OKLL/Dzzz/jwIEDdA6tVxAGa6KeWWOxWHJ7bu3l8tetWwdf\nX19MnjxZLvuTd/kU1Vkte9p+++033L59GwMHDkRQUBCys7Pb3baxsRGff/652JEGL1NTU8Pp06dR\nUVGBFStWQCAQMNl/lZWVsXPnzlbr8/l8jB8/HqtXr4ZAIGgzob2ysjJ9bo2iKKobosFaL7J8+XKx\ngQ2Hw8Ho0aO7tkLtWLx4MTNMs6mpCb/++is2b94MV1dX3L9/H5GRkQgMDFRwLXsGPp8PNTU1qKur\nt1quoaGB/v37y+25tZbl37lzB9evX0dISIhc9iXv8ilKlpSVlREQEICEhAT8+uuvuHLlCqysrBAU\nFCQ2GNu3bx82b96MMWPGoLi4WKL9/N///R8KCwtBCGk1TUtDQwP+/vtv5OXlAWi+Iebo6Ijr16+L\nnc6loaEBx44dk2ribYqiKEr+aLDWi2hqamLVqlUie9fYbHa3GQL5v//9D+Hh4a2G4ADApk2bYGVl\nhQcPHsDDw0NBtet5CgoKYGRkJPIzW1tbuSYZEZa/adMmjBw5EiNGjJDLfuRdPkXJgzBoe/bsGXbu\n3Inz58+Dx+MhODiYCaQAoKamBhs3bgSLxcLz588xYcIEVFVViS2XEIKPPvoIn3zyidjgixCCvXv3\nAgDy8/NRVlb2ykCssLAQd+/e7cCRUhRFUfJCg7VeJjg4GMrKym2WNzQ0YPjw4QqoUWvFxcVYuXKl\n2M8fPXrUZngO1T4+n99mCKQQj8eTa/p+Ho+HBw8e4PLly/jss8/kso+YmBi5lk9R8iacpy01NRU/\n/vgjjh07BhsbGwQHByM/Px+hoaEoLi4GIQSNjY14/PgxpkyZInJONKB5ZEJoaKjYQA1oHla5Y8cO\n1NfX44033kB8fDzc3d2ZRFTi6kmHQlIURXUvNFjrZfT09LB8+fI2AZuqqipcXFwUVKt/rVq1CpWV\nlSIvMpqamlBaWooZM2bQrGRSKCgoaJNcRKgrgrXY2FgMHjwY48aNk8s+Nm/eLNfyKaqrtJxcOyQk\nBH///TdsbGywefPmVjepGhoacPPmTcyePVvkzSsLCwsoKSmJvDHXUnFxMQ4fPgwAsLa2xo0bN/DN\nN99AWVlZ5AiM+vp6msKfoiiqm6HBWi+0evVqsFisVsvc3d0VnkHv2rVr+PPPP9sMf2ypoaEBDx48\nwJo1a7qwZj1be8Gara0tsrOz2x1S1RlqamqoqanB2rVr2/zNyUJCQgJOnz6Nzz//XC7lU5QiqKmp\nYfXq1UhNTYW7u7vIm1ONjY04d+4cli5d2uazjRs3IjU1FfPnzwebzRZ7bmexWPjuu++YnzkcDtat\nW4eYmBg4OTmBw+G02SYjIwPx8fGdODqKoihKlmiw1gsZGRlh8eLFzF1XFRUVjBo1SqF1qq2txaJF\ni9odggM0X0wQQrB//340NjZ2Ue16Nj6f326wRgiR25xPFy9eBAAMHDhQLuV/9dVXsLOzw9SpU+VS\nPkUpUkVFBW7fvi32XCcQCPDbb79hw4YNbT7jcrn49ddfERsbi2nTpoHFYrXpaRMIBHj69Clu3brV\narmjoyOio6Px9ddfQ0lJqVWwp6ysjJMnT8rg6CiKoihZoMFaL7Vu3TpmqGF9fb3Cn1f76quvkJWV\nJXJID4vFAofDAYvFwtChQ7Ft2zYkJycrvCewpygoKBD7zJq1tTU4HI5chkKmpqbi0qVLYLPZSElJ\nkUv5R44cwYYNG14Z5FNUT7Rp06ZXJv0ghOCbb77BDz/8IPJze3t7HDt2DHfu3IG3tzcAtAm+tm3b\n1mY7JSUlrFu3Dg8fPoS9vT3Ty9bQ0IAjR4509JAoiqIoGaNXQL0Ul8vFe++9BxaLBRaLpdDsirGx\nsdi6dWubu8fCu8DOzs744YcfkJ2djbt37yI4OFhs8EG11V6CkT59+sDU1FQuPWu//PILTExMYGZm\nJtfy58yZI/OyKUrRUlJS8Ntvv7U7LFyIEII1a9bgwIEDYtfx8PBAREQErly5AkdHRwDNWYAbGhpw\n6tQpsZNzOzs74/79+1i/fj1z0+zp06fIzMzs2IFRFEVRMkW7LnqoiooKNDY2oqSkBE1NTSgvLwfQ\nnAK6trYWADB69Gj88ccfMDU1RUREhMihNmpqaujTp0+b5VpaWuBwOOBwONDS0oKKigrU1dXFri+O\nQCDAokWLmLvHSkpKaGxshL29PQICAjB37lxYWlp24BugAKCsrAx1dXVih0ECzb1rqampMt1vfX09\n9u/fjxUrViA8PFyu5Yt6roaierqYmBjmvMhisaCiooLGxkax2XAJIVi4cCF0dHTaHRbs5+eHmJgY\nHD16FJ988gnS0tIgEAjwyy+/YOvWra3WbWhoQGVlJQDg/fffh5ubG4KDg5GRkYFdu3ZhxowZzOei\nlJaWis1IyWKxoKOjI3ZbDQ0N5oadsrIyNDQ0AAC6urptPqcoinqd0WBNASorK5Gbm4uCggIUFxej\ntLQUZWVlKC0tZV7Cn0tKSlBaWoq6ujpUVVW1CsYklZWVhTfffFOmx6CpqQklJSXo6uqiT58+0NHR\ngY6ODrS1tZn3Ojo6iIuLw7179wAAxsbGmDNnDhYsWNAtMlP2BgUFBQDQbrBmZWUl82Dq2LFjKC4u\nxvvvv4/09HS5lk9RvdGsWbPg7++PpKQkJCUlITExEYmJiYiLi0NiYiKTFEhJSQkcDgf19fUQCAR4\n6623sHXrVgwYMABVVVWoqqpCSUkJ876yshKlpaWoqqoCl8tFU1MTsrKysG3bNuzbtw8CgQDV1dVi\npwUQ+vbbb/Htt992xVfRrj59+kBNTQ1sNhva2trMv5qamlBXV4e6ujp0dHSgoaHB/Kyrq8u819LS\ngp6eHnR1daGnpwdNTU1FHxJFUZRUaLAmQ8XFxcjMzERGRgbS09NRUFDABGUFBQXIy8tDfn4+ampq\nWm3XMthp+bKysoKuri50dHSgqqoKNTU1pmdLGCzp6OiAw+FAW1sbQOs7lC317dsXqqqqbZaXl5e3\nuZNLCEFpaSmA5oxkFRUVqKurQ3V1NdPIC3v2SktLUVtb2yrATEpKYoLOgoICsFgsEEKQm5uL7du3\nY/v27dDT04ORkREMDAzQv39/5j2Xy2Ve5ubmIutM/UuSYM3a2hrXrl2T6X737NkDf39/mJqayr18\niuptqqqqkJubi/z8fBQUFCA/Px8CgQD6+vpwcnKCiYkJ8vPzkZ+fj9LS0lbTnTQ0NOA///kPADAj\nHoTBiZqaGjQ1NaGtrQ19fX1wuVx4enpCVVUVVVVVGDBgAJSUlKCqqoq+ffsyIycAMIHQy6MnhD1d\noqirq0NFRUXkZ/X19e1moS0pKWHeC9sXgUCAsrIyAP+2TcIblMJeQGGbVFZWhqqqKlRXVyM1NRUV\nFRXMz8LgVVSWTWVlZejp6TEvYRAnfOnr68PExAQGBgYwMjKCsbEx1NXVxR4HRVGUvNFgTQplZWVI\nTk5GUlISnj9/joyMDGRmZiIzMxPp6emtGqZ+/foxQUj//v1hbW3NvG8ZoOjr6ys0IBE21C/T09OT\n6X7Ky8uZixI+n88EsXw+Hzk5OYiJiUFBQQEyMzNbBbNGRkatgjcLCwvY2NjA1tYWVlZWr/0wGWGw\n1q9fP7HrWFlZISMjA/X19WIvrKTx7Nkz3LhxAxcuXOiS8imqp6ioqEBGRgbTNuTk5KCgoAA5OTng\n8/nIy8tDXl4eqqurW23Xr18/9OvXr1UAYW1t3SqIEL40NTWho6MDAwODbp2ESUVFpd3zQXtBoKw0\nNDSgvLwcxcXFKC4uRklJCfO+5auoqAjJyckoKSkBn89HUVFRq3LU1NRgbGwMIyMjGBoawtjYGIaG\nhjAxMWnVNom6UUpRFNVZ3fdMryBNTU1ISUlBfHw8kpKSmOAsMTGRuTBWUVGBpaUlzM3NYWZmBk9P\nT5ibm4PL5cLMzAyWlpbo27evgo+ke9HS0oKWlhZsbGxeuS6fz28VBAvfR0dH4+jRo8jJyQHQPDzI\n0tISPB4PdnZ2sLW1BY/Hg5OTE/r37y/vQ+oW+Hw+dHR02n2O0NraGk1NTcjIyJDo+3+VPXv2wNLS\nkpmkWt7lU1R3kZeXh5SUlFbnJeFIiszMTGZEAtDcU2VqagoDAwOYmJjA3d2d6akR3rDr378/DA0N\nX/ubTvKirKwMfX196OvrS7VdfX19q+D65VEy8fHxiIiIQHZ2NvO8ONAcgAqDN+E1AZfLZW4yvi7t\nEkVRsvVaB2tlZWV4+vQp4uPjERcXhwcPHuDRo0dMD5muri4cHBzg6OiIyZMnw8rKCg4ODrCzs+vW\ndzR7OgMDAxgYGMDV1VXk53V1dcjOzkZcXBzi4+ORmpqK2NhYHD58GLm5uQD+/d0NHToUjo6OzPve\nFkS3NyG2kDCASk1N7XQwVVNTgwMHDmDNmjVMOn15l09RXamkpASpqanMS3ieSU5OZi7MlZWV0a9f\nP5iYmMDKygqTJk2CsbEx87NwCDvVM6moqMDU1FSiYdg1NTXIzc1FamoqcnJymPdJSUmIiIjAixcv\nmJ5UYXZe4XWF8G/FysoKlpaW9JxHUZRIr03EUVNTgwcPHuDu3bu4ffs2oqOjmdTE/fr1g4uLC4YN\nG4ZFixbBxcUFDg4O9HmpbqpPnz5MA+fv79/qs8LCQjx+/BhPnz7FkydPcPPmTezZswd1dXVQVlaG\nvb09PD094eXlBU9PT9jZ2YHFYinoSDqvvbT9Qjo6OtDV1ZVJev0zZ86gvLwcCxcu7LLyKUoeMjIy\nEBcXh6dPnyI2NhaxsbFITExkLqzV1NTA4/FgY2MDPz8/LFmyBDY2NrCxsYGJiQm9sKYAND8PLmyP\nRBEIBMjJyUFKSgpSUlKQnJyMlJQUXLhwASkpKczfm7q6OmxtbeHk5AQnJyc4OzvD0dER5ubmXXk4\nFEV1Q702WMvNzUVERASioqIQFRWFmJgYNDQ0oH///vDw8MCyZcswePBgDBo0CCYmJoquLiUj/fr1\nw9ixYzF27FhmWWNjI5KSkvDkyRM8ePAAUVFR+PPPP1FTUwNdXV14enrC09MT3t7eGD58eI/qfZOk\nZw2QXUbIo0ePwtfXF0ZGRl1aPkV1VHV1NR4+fMjcxBEGZsJEFmZmZnB0dISfnx+WL1/OBGQ0uQ0l\nC2w2G2ZmZjAzM8Po0aPbfJ6dnc0EcImJiXjy5AmuXbuG7OxsAM03w5ycnODo6IhBgwZh0KBBcHV1\nhZqaWhcfCUVRitJrgrXq6mrcvn0bYWFhCAsLw8OHD8HhcGBrawsfHx8sX74cQ4cOhYODQ4/uSaGk\np6SkBAcHBzg4OGDu3LkAmgO4xMRE3Lp1Czdv3sThw4cREhICDocDFxcX+Pn5wc/PD6NGjerWz5Pw\n+XxYW1u/cj1ra+tO93xVV1fj4sWL2LZtW5eXT1GSaGpqwrNnz/DgwQPmFR0djfr6emhra8PGxgYO\nDg6YNWsWHB0d4ezsTG8MUAolHG75ciBXVlaGlJQU5hGN+Ph4nDx5EgUFBeBwOLCzs8PQoUOZl7u7\nu1RzoFIU1XP06GDt2bNnOHHiBC5cuIC7d++isbERzs7O8PPzw+bNmzFy5EiacpcSSUlJCY6OjnB0\ndERgYCCA5vnohMH+/v37sXXrVujp6WHMmDHw9/fH1KlT253kVRH4fD68vLxeuZ6VlVWnsyueP38e\ntbW1mD59epeXT1GilJeXIzIyEhEREbh79y4ePnyImpoaaGhowNXVFV5eXli5ciXc3d0xYMAARVeX\noiSmra3NBGIBAQHM8rS0NNy7dw/R0dGIjo7GyZMnUVlZCTU1NQwZMgQeHh7w9fXFyJEjxWZ7piiq\nZ+lxwdqTJ09w/PhxHD9+HHFxcTA0NMSUKVOwbNkyjB07VqIhYRQlipmZGRYsWIAFCxaAEILY2FiE\nhYXh8uXLWLx4MRYvXowxY8Zg5syZmD59ervp8rsKn8+XqB6y6Pk6duwYRo8eLfL/mLzLpyigeX6y\nmzdvIjw8HOHh4Xjw4AEEAgGcnZ0xfPhwLFq0CO7u7rC3tweHw1F0dSlK5gYMGIABAwZgzpw5AJp7\nkxMSEpjgLSwsDD/++CPYbDaGDh0KX19f+Pr6wsfHh968pqgeqkcEazk5Ofj9999x4MABJCcnw9TU\nFG+++SZ2794NHx8f2ihTMsdiseDs7AxnZ2esWrUKZWVlOHv2LI4fP46VK1diyZIlGD16NBYtWoQ3\n33xTYcNPioqKJArWrKysUFlZKfEzbi+rrq7GP//8g2+//VYh5VOvr6SkJJw6dQpnz57F3bt30dDQ\nAHt7e/j6+mLNmjUYPXp0t7hxQlGKwOFwmKQkwsRMfD4fkZGRCA8Px5kzZ7B161YoKyvD09MTU6ZM\nwYwZM8Dj8RRcc4qiJNVtgzWBQICLFy9i7969OH/+PHR0dDBv3jzMnj0bHh4eNBMX1aW0tbUxb948\nzJs3D5WVlfjnn3/w119/ISAgACtXrkRAQAAWL16MgQMHdlmdysrKUF9f/8pskACY59pSU1M7FExd\nuHAB1dXVYocoyrt86vVBCEF0dDROnTqFU6dOISEhAQYGBswICl9fXzpfFUW1w8DAAG+99Rbeeust\nAM0J18LDwxEWFobvvvsO69atg4ODA6ZPn47p06fDzc2NPstPUd1Yt4t4amtrsWPHDgwYMABTpkxB\nWVkZDhw4gKysLPz444/w8vKigRqlUBoaGpg9ezZOnTqF9PR0BAcH4/jx43BwcMCYMWNw7dq1LqkH\nn88HAIl6FbhcLvr06dPhoYqnTp2Cj48PjI2NFVI+1fslJiZizZo14HK58PDwwKFDh/DGG28gMjIS\nubm5+P333/H222/TQI2ipGRsbIx33nkHv//+O/Ly8hAREYHx48fj77//xrBhw2Bubo61a9ciKSlJ\n0VWlKEqEbhP11NXVYffu3bCxscH69esxY8YMPHv2DOHh4Xj77bdpliOqWzIxMcGGDRuQmpqK8+fP\ng8PhYOzYsRg9ejQiIyPluu/CwkIAkKhnjc1mw8LCokPBFCEEYWFhmDhxosLKp3qn2tpaHDx4EKNH\nj4a9vT2OHj2KDz74AI8ePUJqaiq2bduGkSNH0qHuFCUjHA4Ho0aNwo8//ojU1FTExMTg/fffx+HD\nhzFw4ED4+vrir7/+Qm1traKrSlHU/9ctgrW//voLPB4Pq1evxsyZM/H8+XNs374dtra2iq4aRUmE\nzWZj4sSJuHLlCm7cuAEOh4PRo0dj7NixSEhIkMs+pelZA5qHKnZkLrSEhATk5eVhzJgxCi2f6j1y\nc3OxZs0amJqaYuHChdDT08P58+eRmpqKkJAQuLi4KLqKFPVaGDx4MDZt2oS0tDTmkZP58+fD1NQU\na9asQW5urqKrSFGvPYUGazk5OZg6dSrmzZuHSZMmISUlBaGhoXQolIywWCzmJUvR0dHw9fWVaZny\n4uvri+jo6C7dp4+PD65evYrIyEhUVFTA1dUVW7duRWNjo0z3U1hYCHV1dYkn8ba0tMSLFy+k3s+1\na9eYNNKKLJ/q+fLz87FixQpYWVnh4MGDWL16NdLT03HixAlMnDiRDnGnGIpoZ+TVZkpCEW1VS8Ib\njidPnkRGRgY+/vhjHDx4EFZWVvjwww9RUFCgsLpR1OtOYS3jwYMH4eTkhISEBEREROCXX36Bqamp\noqrTKxFCZF7mb7/9hvHjxyM4OFjmZcvDypUr/9l8jQAAIABJREFUMW7cOPz6669dvu+RI0fi9u3b\nCAkJQUhICLy9vWX6TACfz5doCKRQR4Op8PBwiYaiybt8qudqaGjAli1bwOPxcPr0aWzbtg1paWn4\n5JNPFHpzbsSIERgxYoTC9k+J1hXtjKjffXttprz/VhTZVr3M2NgYn376KTMU+dSpU+DxeHK56UhR\n1Kt1ebBGCMEnn3yC9957D++99x4eP36MkSNHdnU1eo2uvAt44cIFBAYG4pdffukxWftmzJiB3bt3\nIygoqNOTNneEkpIS1q1bh4cPHwIAPD09ERERIZOyCwsLpUpZbmlpiaysLDQ0NEi8jUAgwPXr1yW6\nwy3v8qmeKTY2Fp6envjyyy+xZs0aJCYmYunSpd3iOWSBQACBQKDoarySonp7FEFW7cyrvjNpf/fi\n1pfV70bRbZUoqqqqWLp0KRITE/Hxxx9j06ZN8PT0RFxcnKKrRlGvlS4P1j7++GP88MMP+OOPPxAa\nGgo1NbWurgLVAfX19QgKCoK3tzczGWdP8e6778LDwwNLliyRKpCQJXt7e0RGRmLs2LGYNGmSTJKP\ndCRYa2pqQlZWlsTbPHr0CIWFhRI9Tybv8qme5+TJk/D09ETfvn3x+PFjbNy4sVud82/duoVbt24p\nuhrU/9eV7Yy0v/uu+FvpDm2VKGpqavj8888RExMDFRUVeHp64tSpU4quFkW9Nro0WPvll18QGhqK\nP//8EwEBAV25a6qTjh8/jszMTLzzzjuKrkqHvPPOO8jIyMDx48cVVoe+ffvi0KFDmDJlCqZPn460\ntLROldeRYZAApBqqGB4ejn79+sHZ2Vnh5VM9y8GDB/HWW2/hnXfeQXh4OJ2El3qlnt7OyEJ3aKvE\nsbOzw/Xr17Fw4ULMnDkTf//9t6KrRFGvhS4L1tLS0rBq1Sps2LBB4T0zZWVlWLVqFaysrKCqqgp9\nfX14e3tj9erVuHfvHrNey4eNc3JyMHPmTGhqakJfXx/z589HWVkZXrx4galTp0JLSwv9+/fHggUL\nUFpa2mafeXl5CAoKgpmZGVRUVGBmZoYlS5YgPz+/w+u2HHohrOcHH3wg8pgzMzMxbdo0aGpqwsjI\nCPPmzUNRUZHE39mZM2cAAG5ubp3+LuPj4/HGG29AS0sLGhoamDx5cpuMibL87gHA3d291XEoCofD\nwYEDB2Bubo6FCxd2qixpe9YMDQ2hrq4uVTAVHR0NT09PiRI/yLt8que4desWFixYgNWrV2Pv3r1Q\nVlZWdJXaEJdMouVySc6bnTm3Sbr85XVanufldQ4GgIKCAixdupRpi0xNTREYGIi8vLw269bW1mLL\nli0YMmQI1NXVoaqqioEDB2LJkiWIiooS92toRVw7I+vvTNpEIh3ZT8tthK9Dhw4x61taWooss7u0\nVeIoKSlhx44dWLVqFebPny/x75aiqE4gnTBr1iwya9YsidZdtGgRsbW1JQ0NDZ3ZpUxMmzaNACDb\nt28nlZWVpK6ujjx79ozMmDGDvPyVACAAyLx580h8fDwpLS0ly5cvJwDI5MmTyYwZM5jlS5cuJQDI\n4sWLW5WRm5tLuFwuMTExIVevXiXl5eUkLCyM9O/fn1hYWJC8vLwOrduyfuIIP3/33XeZeq5YsYIA\nIAsWLJD4O7OzsyMA2uy/I9+lt7c3uXnzJqmoqGCOTVdXl6Slpcn8uxfKyckhAMjAgQMlPmZ5unv3\nLmGxWOTSpUsdLsPa2pp8/fXXUm3j4OBAPv/8c4nX5/F4Uq0v7/I7CgA5fPiw3PdDEdLY2Ejs7OzI\n5MmTiUAgUHR12iXu/CnqvCk8x4g6b3b03CZtfUSR1zk4Ly+PWFhYECMjI3Lp0iVSUVFBrl+/Tiws\nLMiAAQNISUkJs255eTlxc3Mjmpqa5NdffyV5eXmkoqKChIeHE3t7+3bbqJbEtTOy/s5kWV57+wkL\nCyMAiLGxMamrq2v12a+//kqmTJnSZpvu1laJIxAIyBtvvEEGDhxIGhsbFV0diupS0sQ/Mrj+ONIl\nwVpdXR3R1tYmO3fu7MzuZEZLS4sAIEePHm21PDs7W2zjFhER0Wa9l5dnZmYSAMTU1LRVGYsXLyYA\nyJ9//tlq+R9//EEAkKCgoA6t27J+4oiqZ1ZWFgFATExMxG73Mg0NDQKA1NbWtlreke/yn3/+EXls\n8+fPf2Xdpf3uhWpqaggAoqmpKfExy5uPj0+bY5aGtrY22bt3r1TbTJo0iQQEBEi0bkVFBWGz2eTk\nyZPdpvyOosFa1zl79ixhs9kkJSVF0VV5pVddgLc8x6SlpYk9b3b03CZtfUSR1zk4KCiIACD79u1r\nte6JEycIAPLpp58yy/7zn/8wAePLHj58KHGwJq6daVn3zi6XdXmv2o+LiwsBQPbv399qubOzM7ly\n5Uqb9btjWyVOUlISYbFY5Pz584quCkV1qV4ZrMXFxREA5OnTp53ZncwsXLiQOcFyuVyyaNEicvjw\n4TZ3vgj590RcXl7OLGtqamp3OYvFalWGsbExAUCys7NbLRcGTS0DDGnWbVk/caSpZ3vYbDYB0OZO\neUe+y9LSUpHHZmxsLHHdpT0m4eccDkfiY5a3jRs3Eicnpw5tW19fT1gsFjlx4oRU2y1btoyMHDlS\nonVv3LhBALTpFVBk+R1Fg7Wus2bNGuLq6qroakjkVRfgLc8xdXV1Ys8xHT23SVsfUeR1DjYxMSEA\nSE5OTqt1CwsLCQDi7OzMLDM3NycAyIsXL0TWUVLi2pmWde/sclmX96r9CAPhwYMHM8uuXr1KHB0d\nRa7fHduq9gwZMoSsXbtW0dWgqC7V1cFalzwoUl5eDgDQ1tbuit290u+//47jx49j5syZqKysxL59\n+zBnzhzweDw8evRI5DaamprM+5bP14haTl6aq4XP5wNAm+eLhD+3nGxSmnWlIUk92yPM4FZfX99q\neUe+y5f/DoTHJjx2Seoubrm4YxLWuztlotPR0UFZWVmHti0sLAQhRKoEI4B0c6E9evQIOjo6sLCw\n6DblU91fcXGx1H+X3VXLc4yKigqA9s+b0p7bZEFe52BhW2NiYtLquSvhus+fP2fWzc3NBQD079+/\nU8cirp3pyd5++20YGxvj0aNHuHbtGgAgNDRU7Bxy3bGtao+BgYFUz79TFCW9LgnWhJOepqend8Xu\nJPLmm2/i2LFjKCwsxPXr1zFhwgRkZGR0OumDKIaGhgCaL7BbEv4s/FzadbuScMJyUQk8pP0uXz6x\nC49Nnhd4JSUlANCtJl5PS0vrcH3EBfWvYmlpiezsbInSQsfExGDIkCFSzSEk7/Kp7s/S0hIJCQlS\n3QzqLSQ9twn/5lv+P+nojRtAPudgIyMjAM3BNyGkzauqqqrNusKgraPaa2dk/Z11FRUVFaxYsQIA\nsG3bNqSmpuLOnTuYN2+eyPW7Y1sljkAgQHx8PKysrBRdFYrq1bokWLOwsACPx8OJEye6YnevxGKx\nmLmg2Gw2RowYgcOHDwOAyIxYneXv7w8AuHr1aqvlYWFhrT6Xdl3g37tvDQ0NqK6ulvriXVJDhgwB\n0Dbg7sh3+fJcNcJjGz9+vEzr3JKw3oMHD5bbPqTR2NiIs2fPYuzYsR3avqMBrnAutMzMzFeu++jR\nI6m/L3mXT3V/M2fOREZGBs6dO6foqnQ5Sc9twh6olsFNTEyM2HLbO8/L6xwsnJA6IiKizfY3btyA\nl5cX8/PMmTMBQOTcW1FRUfDw8BB7bC2Ja2cA2X5nsiTJfpYsWQI1NTX8888/WLlyJT744AP07dtX\nZHndra1qz5kzZ5CdnY0333xT0VWhqN6tM4MopRmz+cMPPxB1dXWSmZnZmV3KBAAyYcIEEhsbS2pr\na0leXh755JNPCAAyderUNuuK+pqkWS7MqtUyw+PVq1eJsbFxmwyP0qxLCCGenp4EALl58yY5dOhQ\nm+xS0tZfnIMHDxIAZPfu3W3Kkfa7nDhxIrlx4wapqKhgjk3eGdN27NhBAJC//vpL4mOWp59++omo\nqKiQ1NTUDm1/6NAhwuFwSFNTk1TbFRQUEADk6tWrr1xXXV2d/Pbbb92q/I4CfWatS82dO5dwuVxS\nUFCg6Kq0S1bnGGnPbQEBAQQAWbFiBSktLSUJCQnk3XffFVt+e+d5eZ2D+Xw+4fF4xNjYmBw9epQU\nFhaS8vJycvbsWWJlZdUq+UpJSQlxcnIimpqaZO/evUw2yIsXLxIej0fCwsLE/g5aEtfOyPo7a/ld\nvEza5a/aj5Awm6iSklK710Hdra0SJz8/n5iampJ3331X0VWhqC7XKxOMEEJIdXU1sbOzI6NGjSL1\n9fWd2W2n3bx5k8yfP59YWloSZWVloq2tTVxcXMjXX39NqqqqmPWEJ+eXT9LSLiekOQgLCgoiJiYm\nRElJiZiYmJDAwECRKYqlWTc6Opq4uLgQNTU14unpSRITEztVT3Hq6uqImZkZ8fHx6dB32XK/aWlp\nZMqUKURTU5Ooq6uTiRMnkvj4eJHryuK7J6S5QTUzMxP50H1Xi4+PJxoaGp16KHvXrl3EwMCgQ9tq\naGi0yfD2MmHQJelFVleW3xE0WOtafD6fWFtbE1dXV1JYWKjo6ogky3OMNOc2Qpq/n3feeYcYGBgQ\ndXV14u/vTzIyMsSW3955Xl7nYEIIKS4uJv/5z3/IgAEDiLKyMjEyMiL+/v7kzp07bdatqKggGzZs\nIHZ2dkRFRYXo6+uT8ePHk+vXr7/iN/Evce2MrL8zWf7u29tPS0lJSYTNZpO5c+e2+x10p7ZKnMLC\nQjJ48GDC4/FIUVGRoqtDUV2u1wZrhBDy6NEjoqGhQd5++206L0cPdO7cOcJiscihQ4c6tL20vXmy\n8r///Y+wWCxy7ty5Lt/3y9LS0giXyyXe3t6daoy/+OIL4uDg0KFtHR0dXzm32b179wiADqVfl3f5\nHUGDta6XmppKLCwsiLW1NYmNjVV0deRKUec2afWEena2nemumpqaiLGxschAV6g7tVXiPHnyhFhZ\nWRFLS8tOZ/+kqJ6qV2aDFHJxccHp06dx6tQpTJs2DRUVFV25e6qTJk+ejF9++QVLliwR+WxCd3Ty\n5EksW7YMP//8MyZPnqzQuty/fx/e3t7o168fzp07x2SX64jCwsIOP4NhaWmJtLS0dtd58eIF2Gw2\nuFxutyuf6hkGDBiAe/fuwcTEBG5ubvj222/R2Nio6GpR3VxPbGckcf78eXC5XHh6eor8vDu1VaI0\nNjZi69atcHd3h5mZGe7du0cz+VJUF+nSYA0AxowZg/DwcNy/fx+DBg1qk0iD6t4CAwNx6dIlbN++\nXdFVkUhoaCiuXLmCoKAghdVB2Mj5+PjAyckJ4eHh0NXV7VSZhYWFHc6eaW5u/soEIC9evICpqWmH\nAkp5l0/1HIaGhggPD0dISAg+//xzODs7v5aJRyjp9LR2RhwWi4WoqCiUlJRg06ZN+Oyzz8Su2x3a\nKnHCwsIwdOhQbNy4EevXr8e1a9d6zfQcFNUTdHmwBgAeHh54/Pgxhg4dinHjxiEoKIj2svUgw4YN\nE5khrD0t07N3Zar2iIgIDBs2rMv297K4uDh4e3sjJCQEmzZtwoULF2Qy3yCfz+9wz5qZmdkrg6n0\n9HRYWlp2y/KpnoXD4WDdunV4+vQpnJ2d4e/vDx8fH5w9e7ZXpPdX1LlNWj2lnkIdaWe6Iy8vL/B4\nPEyZMgVTp04Vu56i2ypRbt68CT8/P4wbNw6GhoaIiYlBSEgIOByOoqtGUa8VhQRrQPO8LMeOHcP/\n/vc/HD9+HA4ODvjpp59QV1enqCpRckRemqOnt8vKysLy5cvh6uoKJSUlPHr0COvWrZNZI9eZYZBc\nLhdZWVnt/h5evHjR4WBK3uVTPROPx8ORI0dw48YNaGhoYOrUqRgyZAh2794tcl6tnqKnnNt6Sj17\nE+F3XVhYiJCQEEVXRyKlpaXYtWsXXFxcMGLECCgpKeHmzZu4cuUKHB0dFV09inotKSxYE3rnnXcQ\nFxeHGTNm4OOPPwaPx8PPP/+M+vp6RVeNoqSWlZWFFStWwMbGBufOncPOnTtx48YN2NnZyXQ/nelZ\n43K5qKurYybWFiUnJ6fDk7LKu3yqZ/Px8cHFixcRHR0NV1dXrFu3DiYmJpg/fz5u3ryp6OpR1Gvp\nxo0bmD9/PkxMTLB+/Xq4ubkhOjoaFy9exPDhwxVdPYp6rSk8WAOae9l27NiB5ORkTJ06FatWrYK1\ntTW+/PJLZGdnK7p6FPVKt27dwvz582FjY4MzZ85g+/btSE5ORmBgoFyGjBQVFXX4mQFhUo/2hioW\nFxdDT0+vW5ZP9Q5ubm74/fffkZOTg23btiE2NhYjRoyAnZ0dPvnkE9y9e5f2AFGUnAgEAkRFRWH9\n+vWwtbXFyJEjERcXhx9//BE5OTnYt28f3NzcFF1NiqLQTYI1ITMzM+zatQvJycmYO3cudu3aBQsL\nC0ybNg3nzp1DU1OToqtIUYySkhKEhobCyckJPj4+ePr0KXbu3Ink5GQsWbJEbskzysrKUF9f36ln\n1lgsVrvBVElJCXR0dLpl+VTvoqWlhSVLluDBgwd48OAB/P39ceTIEXh6esLMzAzLli3D5cuX6WgL\niuqk+vp6XL58GUuXLgWXy4WXlxeOHTuGadOm4eHDh7h//z6CgoKgpaWl6KpSFNWCkqIrIAqXy8V3\n332Hr776CqdOncLevXsxdepUmJiYYObMmZg5cyaGDx9OH3KlulxZWRnOnTuH48eP48KFC1BSUsLb\nb7+NP/74o8vuQhYWFgJAh3vW+vTpAwMDA7HBVFNTEyoqKjqcsVLe5VO9l6urK1xdXfH999/jyZMn\nzFQvP//8M7S1tTFq1CiMGTMGo0ePhrOzM9jsbnW/kaK6FYFAgKdPnyI8PBzXrl1DZGQkysvL4erq\niiVLlmD69OlwdnZWdDUpinqFbhmsCfXp0wdz5szBnDlzkJycjD///BPHjx/Hjh07YGRkhOnTp2Pm\nzJnw9fWFklK3PhSqBysqKsLp06dx4sQJhIWFQSAQwNfXFzt37sScOXOgqanZpfURPgvW0Z41oPmG\niLhgqqysDISQTvV8ybt8qvcbNGgQBg0ahI0bNyI9PR3nzp3DtWvXsHnzZnz00Ufo168fRo0aBV9f\nX/j6+sLe3r5HZDmkKHkhhCA+Ph7h4eEIDw9HZGQkioqKoK+vj1GjRuGbb76Bv78/zM3NFV1ViqKk\n0GMiHB6Phy+//BJffvklUlNTcfbsWRw9ehR79+6FmpoavLy84OfnBz8/P7i6utJGm+qwxsZGPH78\nGGFhYQgLC0NkZCTYbDZGjBiBrVu34u2334ahoaHC6ifsWZNXsFZSUgIAner5knf51OvFwsICy5cv\nx/LlywEAqampzP/Pzz//HMXFxdDS0oKzszOGDh2KoUOHYsSIERgwYICCa05R8pObm4v79+8zQ4ij\noqJQWFgIDQ0NeHp6Ys2aNfDz88OQIUNoLzRF9WA9JlhrycrKCsHBwQgODkZqaiouXLiAsLAwbNmy\nBevXr4epqSn8/PwwduxYeHt7w9raWtFVprqxhoYGxMTE4MaNGwgLC8P169dRXV0NGxsb+Pn5YcmS\nJRg/fnyX96CJw+fzoa6uDjU1tQ6XweVy8fDhQ5GfCYOpzvasybN86vVmZWWFwMBABAYGoqmpCTEx\nMYiKisK9e/dw+fJl7Ny5E4QQmJmZYdiwYXB3d4erqyucnJxgYmKi6OpTlNSys7MRFxeHhw8f4t69\ne4iOjkZWVhbYbDZsbW0xbNgwfPHFF/D09MSQIUPoYyIU1Yv0yGCtJSsrK+aOa1NTE6Kjo5k7rh98\n8AHq6+thaGgIT09PeHp6wsvLC25ubtDQ0FB01SkFycrKQlRUFO7cuYOoqCg8fPgQtbW16NevH8aM\nGYPt27fDz8+v296V78wca0JmZmY4ffq0yM8qKysBoFP/R+RdPkUJcTgcuLm5tXpmtKysDPfv38e9\ne/dw79497Nq1i8ksrKenBycnJzg6OmLQoEFwdHSEk5MT7emluoWSkhI8ffoUcXFxrf4V3uQyNTWF\nu7s7li1bhmHDhsHNzQ3a2toKrjVFUfLU44O1ljgcDhOUbdiwAbW1tXj48CFzYf7TTz/h008/BYfD\ngZOTE1xcXDBo0CC4uLjAxcWlwwkbqO5JIBDg+fPnePz4MR4/fownT57g4cOHyMrKYv4GvLy8EBgY\nCE9PT9ja2vaI4bOFhYWd/lvlcrnIyclBU1NTmzuwwqyrnXkOVN7lU1R7tLW1MXbsWIwdO5ZZVlRU\nhCdPnjAXv48fP8Zff/2FsrIyAM03GOzs7MDj8WBjYwMbGxvweDxYW1ujT58+ijoUqheqq6vD8+fP\nkZycjJSUFObfZ8+eMTcVtLW14eTkBCcnJ8yaNYu5uaCvr6/g2lMU1dV69dWSqqoqvL294e3tzSwT\n9qpER0fj0aNHuHLlCnJzcwEAxsbGcHZ2xuDBg+Hg4ABbW1vweLxO92JQ8iUQCJCeno7k5GQkJSXh\nyZMnePLkCWJjY1FVVQUOhwNbW1sMGjQIK1asgIeHR4/uXe3MhNhCXC4XjY2NyMvLazM5tUAgAIBO\nPeMg7/IpSlr6+vpMMpKW0tPTERcXh9jYWCQlJSEhIQFnzpxBTk4OgOa/Uy6XywRvNjY2sLCwgJmZ\nGczNzWFsbNwjbvJQXUcgECAvLw8ZGRnIzMxERkYGE5ClpKQgMzOTOQ+ampoyNwfGjx8PZ2dnODo6\n0iQgFEUxenWwJoqZmRneeustvPXWW8wyPp/fqvflypUr2LFjB2prawE0D5vh8XiwtbVlAjhra2uY\nm5srNNHE66ShoQHZ2dlIT09HUlISkpOTmeDs+fPnqKurA9CcdMPZ2RkeHh5YvHgxXFxc4OjoiL59\n+yr4CGRHVj1rQPPE1fIK1uRZPkXJioWFBSwsLDBp0qRWy6uqqpiLa+ErISEB586dQ05ODvN3rKKi\nAlNTU3C5XFhYWIDL5TIvMzMzGBoawtDQkD5D1Es0NjaCz+cjPz8fWVlZyMzMZF7p6enIyspCdnY2\nMy8gm82GiYkJE5CNGzeuVeDfmWePKYp6Pbx2wZooBgYGTCZJIYFAgMzMzFZBQVJSEvbv348XL16g\nsbERQHPvXcsG2sLCAubm5swdVwMDAzq88hXq6+uZxk8YkLW8I5meno7c3Fzm4khTUxM8Hg88Hg9v\nvvkmM3SJx+NBT09PwUcjf3w+HzY2Np0qw8TEBGw2G1lZWW0+k0UwJe/yKUre1NXVmSHyLxPePBJe\noGdmZiIrKwsZGRl49OgRsrKymGeMgOa/dQMDAxgaGsLY2BhGRkYwNDSEiYkJDA0N0b9/fxgYGEBP\nTw96enpQV1fvykN97VVWVqKkpATFxcXg8/nIy8tDQUEBcnJyUFBQgPz8fOTm5qKgoAAFBQUghDDb\n6urqgsvlwtzcHM7Ozpg0aVKrwN3ExATKysoKPDqKono6GqyJwWazmTuuLYM4oLmhFjbQmZmZePHi\nBRNcREVF4cWLF6ipqWHWV1ZWZoI2Y2NjGBoaMu/19PSgo6PT5tVTH3avr69HaWlpm5ewERQGZXl5\neeDz+SgoKEBRUVGrMgwMDJjGz83NDTNnzmR+trCwQP/+/RV0dN2DLBKMKCsro1+/fsxQr5aEwVRn\negLkXT5FKZKysjIsLS1haWmJESNGiFynsrISWVlZ4PP5yM3NRX5+fqsAICEhgQkKhL0wQioqKkzg\npqury7xv+bOmpibU1dWhra0NTU1NqKmpQV1dHbq6ulBXV4eKikpXfBUKV19fj6qqKpSUlKCqqgpV\nVVWorKxEaWkpqqurUVFRgeLiYhQXFzMBWcuf+Xw+8xytkIqKSqvAWphV1NDQELq6uvj7779x+fJl\nGBsbY82aNfjggw961egNiqK6FxqsdYCysjIzpEEcYVDycmAibJyFDXVJSQmTHe9l2traTPCmoqIC\nbW1tKCsrQ0NDA6qqqujbty/TKGtpaTEXv3379oWqqmqrsjgcDrS0tFota2pqQnl5eZv9lpeXM41X\nTU0NamtrUVlZiYaGBpSVlaGpqQmlpaVobGxERUUFqqurUVpairKyMlRXV7cpj8ViQVdXlwlYDQ0N\n4ezsLDKA5XK5tNF7BVk8swY0934Jn9dsSVY9X/Iun6K6Mw0NDQwcOBADBw585bpFRUUoLCxsFUy8\n/L6wsBBJSUnM8rKyMmb4tyjCtkJHRwdqampQVVVFnz59oKamBjabDTU1NSgrKzNth7DdUFJSajVN\nCYvFEjvNhqh2RahlO/Kylr2OAFBRUYHGxkaUlZUxgWtFRQUAoLS0FIQQVFVVob6+HrW1taiqqkJZ\nWRnTLomjpqYGDQ2NNoGulZUVdHV1oaOjgz179uDZs2cYPXo01q1bBzc3t1cm8Zg3bx4yMjLwww8/\nYP369di8eTOWLVuGjz76iE5JQlGUzNFgTU6EgYiTk9Mr121sbBTZG9Xy1dDQwPwrvGuYm5vLNFbC\nBg34t+FrSXj38WU6OjrMw/GEEDQ2NkJLS4sJ9oSNuzAo1NbWBofDgZWVFXMxoKam1qpXsGWQKfyZ\nko2GhgaUl5fLJFgzNjYWGUwJtRzq0x3Lp6jeQl9fX6osf/v378fy5csxbNgwHD9+HDU1NUyvUmlp\nKSorK5mfhT1O9fX1qKmpQU1NDaKiopCamooJEyYgIyOjVTAkbCuKioqgqqoKFRUVsTcUa2trW40i\naUlNTQ0cDgd1dXVthnVqaGi0GhoobF8yMzNRWVkJJycnWFhYAGh+/lVJSYm5QamiotKqB1FdXR0a\nGhrYt28fDh8+DC8vL3z//ffw9PSUKPFLcHAwwsLCsHr1akyaNAnvvvsutmzZ8sr5+MzNzREaGooN\nGzZg9+7dCA0NxbZt27Bw4UJ88sknr/0IEIqiZIh0wqxZs8isWbM6UwTVjaSmphIAJCIiQtFVocTI\nzc0lAEhkZGSny1q0aBEZN25cm+VXrlxHX8ejAAAgAElEQVQhAEhRUVG3Ll8aAMjhw4e7bH8UJQ81\nNTVk5cqVhMVikZUrV5L6+nqpt3/77beJiooK2b9/v9j1BAIB0dHRIbt37+5UfY8fP04AkMbGRonW\nz8nJIf7+/oTNZpPAwEBSWVkp1f7u379PPD09iZKSElm5ciUpLS2VeNumpiZy5MgRMmDAAKKmpkbW\nrVtHSkpKJN6+vLycbN++nRgbGxN1dXWycuVKkpmZKVX9KYrqGaSJf2Rw/XGEjkOiGAMGDICNjQ0u\nXbqk6KpQYgif75Nnz5rwLrioIa3dqXyKep0kJibCw8MD+/fvx9GjRxEaGipV4orCwkKMGzcOly5d\nwqVLlxAQECB23aSkJJSWlsLd3b1TdRbOT9fecM2WjI2NcebMGRw6dAhHjx6Fi4sLrl+/LvH+hg4d\nitu3b2Pfvn04dOgQrK2tERoaygy9bg+bzcasWbPw7Nkz/Pjjj/i///s/WFtbY+vWrUxm6PZoamoi\nODgYycnJ+Prrr3Hy5ElYW1sjICAAqampEh8DRVHUy2iwRrUyYcIEXL58WdHVoMQQBmuymBhVXDAl\nTCUtathsdyqfol4XBw8ehJubG1RUVBATE4OZM2dKtX1cXBzc3d2Rk5ODW7duYfTo0e2uHx0dDRUV\nFQwaNKgTtf43WJMk2Glp1qxZiIuLg4ODA3x9fREUFCTx+YLFYiEgIACJiYl49913sXr1agwbNgxR\nUVESba+iooLAwEA8f/4cH374ITZt2gRbW1vs3btX7DN4LamrqyM4OBgpKSnYsWMHrl+/DgcHByxb\ntgyZmZkS1YGiKKolGqxRrYwfPx4xMTEoKChQdFUoEYqKipiELZ1lYmKC4uLiNhdSsur5knf5FNXb\n1dbWIjg4GO+99x7ef/993Lp1CwMGDJCqjKtXr8LHxwfGxsa4c+eORAlPoqOj4eLiwgRbHSVtz1pL\nxsbGOH36NPbs2YNDhw7Bzc1N4oALaH4eOzQ0FE+fPoWenh68vb0REBAgcdumoaGBkJAQJCcnY+LE\niVi+fDkGDRqEo0ePSrS9iooKgoKCkJycjL179+LKlStMT9vz588lPg6KoigarFGt+Pr6QklJCWFh\nYYquCiVCYWEhtLS0ZJKW29jYGIQQ5OXltVouy2GQ8iyfonqz5ORkeHl54Y8//sDhw4cRGhoq9f/7\n33//HRMnTsS4ceNw9epVGBoaSrRdTEwMXF1dO1LtVjoTrAHNvWQffPABnj17Bh6Ph+HDhyMoKEhk\nFmNxBg4ciMuXL+P06dOIjIyEnZ0dQkND2yThEsfU1BR79uxBbGwsHB0dMWfOHHh7e+PGjRsSba+s\nrIyAgADEx8fjt99+w507d2Bvb0+DNoqiJEaDNaoVTU1NeHl50aGQ3VRRUZFMhkACzcEUgDZDFWU5\nDFKe5VNUb3Xy5EkMGzYMHA4HDx8+xKxZs6TanhCCkJAQLFq0CEuXLsWhQ4ekmhIlPj5eokzGr9LZ\nYE2o5bNsJ0+ehL29PY4fPy5VGf7+/khISEBwcDCTol/SgAsA7OzscOTIEdy5cwd9+vTByJEjMW7c\nODx9+lSi7V8O2qKiopigLSUlRapjoSjq9UKDNaqN8ePH49KlSzS1ejdUVFQkk+QiQPMFEJvNbjNx\ntbq6Olgslth03d2lfIrqberq6hAcHIw333wTs2fPxu3bt2FtbS11GfPmzcN///tf/PHHHwgNDZVq\nTsO8vDwUFRXBwcFB2uq3IZwCprPBmtCsWbOQmJiIKVOmYNasWfD390dWVpbE26upqSEkJASxsbEw\nMzPDyJEj4e/vj4yMDInL8PDwQHh4OK5cuQI+n4/BgwcjICCgzXlOHGHQFhcXh59//hk3b96Eg4MD\nlixZItWxUBT1+qDBGtXGhAkTkJeXJ/EdQ6rryLJnTVlZGfr6+m16vpSUlKCjowM+n9+ty6eo3uT5\n8+fw9vbG/v37cezYMezZs0fqYY9FRUXw8/PDhQsXcPHiRcyfP1/qesTHxwMAHB0dpd72ZbLqWWtJ\nV1cXe/bsQXh4OJKSkuDk5CRxxkchGxsbnDt3DmfOnEF8fDzs7e0REhIiVT39/Pzw4MED7Nu3DxER\nEeDxePjss88kHqKprKyMRYsWITExET///DMuXrwIHo+HVatW0WfGKYpqhQZrVBtDhgyBoaEhTeHf\nDRUWFsosWAPEZ2w0MjJCfn5+ty+fonqDc+fOwc3NDQDw4MEDqbM9As1Blru7O3Jzc3H79m34+vp2\nqC5xcXHQ1dWFkZFRh7ZvSR7BmtCoUaPw6NEjfPTRR1i7di1GjhyJuLg4qcrw9/dHXFwc1q9fj+++\n+w4uLi64cOGCxNtzOBwsWLAASUlJ2LRpE37++WfweDz89NNPEj8TJwzakpOTERoaiiNHjsDKygrB\nwcE0aKMoCgAN1igR2Gw2xo4dS59b64Zk2bMGNGdsFBVMGRoayuRCQd7lU1RPRgjB1q1bMW3aNPj7\n++PGjRtSD3sEgH/++QdeXl4wMTGROOOjOAkJCTLpVQM6nrpfUn379kVISAju3r2Luro6uLq6YuPG\njaipqZG4DFVVVWzcuBHx8fFwdnbGpEmTMHnyZDx79kyqMlavXo3nz59j4cKF+Pjjj+Ho6Chx5kig\nOWgLDAxEWloatm3bhiNHjsDa2hrr169HWVmZxOVQFNX70GCNEmnChAm4ceMGTQLRzcg6WBPX8yWr\nYEre5VNUT1VUVISJEyfiiy++wLZt23DgwAEm+Y409u7di2nTpmHy5Mm4cuUKDAwMOlWv1NRU2NjY\ndKoMIWFSE2mCp44YPHgwoqKi8O2332LHjh1wdHTE2bNnpSrDwsICR48eRUREBHJycuDs7IygoCAU\nFhZKXIauri62bNnCTGA+Z84ceHl54datWxKXIZznLSUlBRs2bMDevXthbW2NkJAQVFRUSHVMFEX1\nDjRYo0SaMGEC6uvrcf36dUVXhWqhsLBQZglGAPFBk6yGKcq7fIrqiWJiYuDu7o64uDhERkYiODhY\n6jLq6urw/vvvY8mSJfjss8/w119/SZXxUZwXL17AwsKi0+UAzT1OLBZL7sEa0DwkMTg4GM+ePYOP\njw/TW5mWliZVOaNGjWKeRTt9+rTUqf4BwNzcHAcOHMDdu3ehoqKCESNGYPbs2UhNTZW4DHV1daxb\ntw7Pnz9HUFAQfvjhB9jZ2WHXrl2or6+X6pgoiurZaLBGidS/f384OTnRoZDdiEAgQGlpqUx71gwM\nDEQGU+KWd7fyKaqnOXDgAIYPHw4LCwvcv38fHh4eUpdRWFiICRMm4NixYzh16hRCQkJkUjdCCNLT\n06WeeFscFouFvn37dumcisbGxjhw4ADCw8ORlpYGR0dHhISESDUUk81mMyn1P/zwQ6xbtw7Ozs5S\nPc8GAO7u7oiMjMTly5eZRCZBQUFSJVfS1dXF119/jefPn2Pu3LlYs2YN7O3t8ddff0mVVIWiqJ6L\nBmuUWBMmTKBJRrqRkpISNDU1yTxYE3XhIKueL3mXT1E9RV1dHYKCgrBgwQKsXLkSYWFhHUri8eTJ\nE7i7uyMrKwt37tzB1KlTZVbHvLw81NbWwtLSUmZlqqmpdWmwJjRq1CjExMTgv//9L7Zt2wZnZ2dc\nvHhRqjI0NDSYVP/C59n8/f2lnszaz88PMTEx2LlzJ06fPo2BAwdi69atUiVeMTQ0xLZt25CcnAw/\nPz8EBARg0KBBUj0XR1FUz0SDNUqsCRMmICEhAZmZmYquCoXmZ1wAyHwYZF1dXZt001wuFyUlJZ1+\nRkLe5VNUT5CZmYlRo0bh0KFDOHr0KLZs2QIOhyN1OefPn8eIESNgZmaGO3fuyCwRiNCLFy8AQObB\nWlcMgxRFWVkZwcHBTLA1ceJEzJ49W+r5zGxsbHDkyBFcvXoV6enpsLe3R3BwsMRp+oV1ET6L9uGH\nH2LTpk2wtbXFgQMHpJrT1MzMDHv27MHTp0/h4OCAOXPmYPjw4VJN8E1RVM9CgzVKLB8fH6iqqiI8\nPFzRVaHwb7Amy541Q0NDAGgzJFF4sSa8eOuu5VNUdxceHg43NzeUlZUhKiqqQ2n5hVkjp06dirlz\n5+LatWudTiQiSmZmJthsNkxNTWVWZlcPgxTF3NwcJ06cwNWrV/H06VPY2dlJPTQSAMaMGYOHDx9i\n165d+Pvvv2FtbY3Q0FA0NTVJXIawty4pKQlvvPEG3n//fXh4eEj9fLi9vT2OHDmC27dvQ1lZGSNH\njsS4cePo/KgU1QvRYI0SS1VVFR4eHjRY6yaEWclkPQwSQJuhipaWlmCxWFI/nN/V5VNUdyUMsMaN\nG4exY8fi/v37sLe3l7qc2tpazJ8/Hxs2bMA333yDPXv2QFlZWQ41BvLz89GvXz8oKSnJrExF9qy9\nbMyYMYiJicGnn36K77//Hk5OTjh9+rRUZSgpKSEwMBCJiYlYtGgR1q5di2HDhkndsyXsIXv8+DEM\nDAwwatQo+Pv7Izk5WapyPD09ERERgStXroDP52Pw4MGYPXs2vRFGUb0IDdaodvn6/j/2zjssiqv7\n49+lS5MiZUGkKVWkSQcTFAtGE0tQo8YYG2qKiVExUd+YYtQkb4waEzWa4qtRTDTGGlQsCIoKiIA0\n6UqTqnQW9v7+4LcbCcWdZWYX8H6eZx9ld+Z7z8zO3L1n7jnnBiIyMlLeZlDQNrOmrq7OSsU3EV3N\nfGloaMDAwICzmTW29CmU3kh1dTVeeeUVbNiwAdu2bcNvv/0GDQ0NxjpFRUUYNWoUzpw5g7///hth\nYWEcWPsPjx49YmUx7KfpTc4a0PYQct26dcjMzISvry+mTp2KMWPGICUlhZGOqEx/UlIS+Hw+Ro0a\nJVX1SUdHR5w5cwYXLlxAQUEBHB0dERoayrgAU1BQkLiK5c2bN+Ho6Ij169fTUHMKpR9AnTVKt4we\nPRoPHjxgnFBNYR+211gD2hat1dbW7rQIiIWFBfLz83u1PoXS20hNTYWnpyfi4+Nx5coVvPPOO1Lp\n3LlzB97e3qiurkZMTAzGjBnDsqUdefTokfgBC1vIq8DIszAxMcGBAwcQGxuL+vp6uLq6Ml5XDQBs\nbW1x+vRpXLhwQVx9cu3atYydJJGz9d133+HkyZOwtbXFV199xagIiaKiIubPn4+MjAx88skn2LVr\nF4YNG4bdu3czWnqAQqH0LqizRukWLy8vaGho4NKlS/I25bmnoqKC1eIiIrpaC83CwoKVMEWu9SmU\n3sKZM2fg6+sLAwMDxMXFwdfXVyqd//3vf/D19cXw4cNx+/Zt2NnZsWxp53Axs9Ybcta6w9PTEzEx\nMR3WVWOShwa0OVsJCQn49NNPsXv3bjg4OODgwYOMioeIQizv37+Pd955Bxs3boSDgwOOHTvGyBY1\nNTWsWrUK2dnZmD9/Pt577z0MHz6cVo6kUPoo1FmjdIuKigr8/Pxo3lovoLy8nPWZNaDr8vqWlpas\nOFNc61Mo8ubpAiAzZ87E5cuXwefzGeu0tLTgvffewxtvvIF33nkHp06dwsCBAzmwuHNKS0s5mVnr\nTWGQnSFaVy09PR2vv/46Vq1aBU9PT0RHRzPSUVFRwapVq5CZmYmJEydi/vz58PLyYpzPpqmpiU8/\n/RSZmZkICgrCjBkz4O3tjRs3bjDS0dPTw5YtW5CRkQFPT0/MnDkTvr6+jHUoFIp8oc4a5ZmI8taY\nPCGksA8XYZBA28xXZ87U0KFDcf/+/R5/71zrUyjypKamBtOnT29XAERFRYWxTkVFBSZMmIA9e/bg\nl19+wZdffilVef+eUFVVBT09PVY1tbS0+kzelI6ODr799lvcvXsX+vr6CAgIQEhICHJychjpGBoa\nisvrGxoaivPZsrKyGOmYmppiz549uHXrlvjB6YwZMxiHj5ubm4tDPpWUlMQ69GEZhdI3oM4a5ZkE\nBgbi0aNHSEtLk7cpzzVchUEaGBh0GqZob2+Purq6Hq+zx7U+hSIvsrKy4OPjg+joaFy4cEHqAiCJ\niYkYOXIkMjMzce3aNcybN49lSyWjpqYGWlparGrq6uqisrKSVU2ucXBwwPnz53HhwgVkZGTAzs4O\nK1asQHV1NSMde3t7cT5bQUEBHBwcpMqLc3d3R1RUFP766y/Ex8fDwcFBqrw4T09PXL16FUeOHEF8\nfDwcHR3x0Ucf9RlnmkJ5XqHOGuWZjBw5Ejo6OjRvTc5wFQbZVU6ZaMHdnjrpXOtTKPLg3Llz8PDw\ngKqqKm7fvo0XX3xRKp3Dhw/Dz88P5ubmiIuLw8iRI9k1lAE1NTXQ1NRkVVNXVxdVVVWsasoKUR7a\nd999h/DwcFhbW2Pr1q1obm5mrHPnzh3s27dPnBe3detWRsVDAGDy5MlIS0vDF198gd27d8POzg57\n9+6FUCiUWIPH42HGjBlIS0vD559/jt27d8PGxgY//fQTIx0KhSI7qLNGeSaKiorw9/eneWtyhqsw\nyEGDBokX3H4aHR0dGBkZ9diZ4lqfQpElovy0SZMm4aWXXkJ0dDTMzc0Z67S0tGDt2rWYPXs25s6d\ni4sXL7KeL8YEQgjq6uo4mVnrq84a8E/Rj6ysLHHRDycnJ8bFOkR5cU/rjBgxgrGOiooKVqxYgezs\nbLz66qt466234OnpyXhRbRUVFaxcuRLZ2dl44403sGzZMnh4eDDWoVAo3EOdNYpEBAYG4sqVK/TJ\nmxyprKzkxFnrLkzJ3t6+x84U1/oUiqyora3FjBkzxPlpBw8elGrdQ1F+2vbt2/Hrr79iz549rC5E\nLQ319fVobW3lZGbt8ePHff63Q1NTExs3bkRmZia8vLwwc+ZMjBkzBomJiT3WES3WzQR9fX1s374d\nycnJMDIyEi+qzXSZnafXizM2Nhbr0Hw2CqX3QJ01ikSMHj0alZWVuHv3rrxNeS558uQJmpubOclZ\n09PTQ319PRobGzt8xoYzxbU+hSILsrOz4evri8uXL/dogerekp/2b0R5S1zMrLW2tvabvCgzMzMc\nOHAA0dHRqKurg7u7OxYtWoTCwkKpdG7evAmBQAB3d3epiofY2dmJF9XOy8uDvb09VqxYgcePHzPS\nsbW1Fev0ZL04CoXCPtRZo0iEs7MzBg0aREMh5YQojJCLmTVR9bfOQpXs7e2Rmpraq/UpFK65evUq\nfHx8oKioiLi4OKkXqO5N+Wn/RlReX5qZwu7Q1dUF0Pn935cRlcA/ePAgIiMjYWNjg48++ohxERIP\nDw9cu3atx8VDRHlx3333HY4cOQJra2ts376d8WLYIp3NmzdLnRdHoVDYhTprFIng8Xh44YUXqLMm\nJ0TVw7gKgwTQaaji8OHDUVFRgeLi4l6rT6FwybZt2zBmzBiMHTsW169fh4WFBWON3paf1hmiRaDZ\nXi6gvzprQNvv4muvvYbMzExs27YN+/fvFxch6SySoDu6Kh7CZHFuUX5deno6Fi1ahLCwMDg5OeHM\nmTOMbFFWVsaKFSuQmZmJSZMmYfny5fDz80NcXBwjHQqFwg7UWaNITGBgIK5evQqBQCBvU547RDNr\nXIVBAp0PppydnQGgR+GvXOtTKFzQ3NyMRYsWYdWqVdi8eTMOHTok1axTWVkZxo4di507d+Lw4cO9\nIj+tM7h21vpa+X4mKCsrY8mSJcjOzsaaNWuwadMm2NjYMHa2uioecuXKFUb2PJ2HZmtrKy6Gk5GR\nwUhHtF5cfHw8VFRU4OXlhdDQ0E4LRlEoFO6gzhpFYkaPHo2amhokJCTI25TnjoqKCigrK7Oe/A/8\n40x1NpjS09ODmZkZ4yR6WepTKGwjKgASHh6O48ePY/Xq1VLpxMfHw9PTE9nZ2bh69SpmzZrFsqXs\nIQpzY9tZGzhwIBQUFPrlzNq/0dTURFhYGNLS0hAcHIy33npLqoqPouIhiYmJMDQ0RGBgIKZMmcLY\n2bKxscGJEycQGRmJwsJCODk54YMPPmCcz+bs7IyrV6/ixIkTOHfuHIYNG4bt27czckQpFIr0UGeN\nIjF2dnbg8/l0vTU5IFoQm8fjsa6tqqoKdXX1Lp98u7i49Gjmi2t9CoVNMjMz4evri/v37yMqKgqv\nvPKKVDp79+6Fr68vrKysel1+WmdwNbOmqKgILS2t58JZE2Fqaoo9e/YgOTkZjo6OmDlzJvz9/XH9\n+nVGOo6Ojjh37hwiIiKQnZ0NJycnvPXWW52uW9kdo0ePRkJCAvbt24eDBw+K89mYOluiUM13330X\nYWFh8PDwQExMDCMNCoXCHOqsUSRGlLdG12GRPVytsSZCT0+vy8GUi4tLj2e+uNanUNggIiICnp6e\nGDRoEOLi4uDq6spYo7GxEQsXLsTSpUvx/vvv48KFC70uP60zRAN3BQX2hwV9fa01abGzs8PRo0dx\n9epVCIVC+Pv7Y9asWYxnyMaNG4e7d+/i0KFDOHPmDKysrBgXIRGt85aRkYFFixZhzZo14uImTNDQ\n0MDGjRuRlJQEQ0NDBAQEYN68eSgtLWWkQ6FQJIc6axRG+Pn54fr16zT8QcaUl5dz6qx1N5hydnbG\n/fv3UV9f32v1KZSesnfvXnFuT2RkJIyMjBhr3L9/H15eXvjrr79w9uxZbNmyhRPnh0u4mL3X09N7\nrvOcAgICEBMTgz/++APJyckYPnw4Fi5ciIKCAok1FBQUEBISgtTUVGzYsKFdERImFR91dHSwZcsW\nJCcng8/nY9SoUZg8eTLy8vIYHZONjQ3+/vtvhIeH48qVK7Czs8OOHTsYV5+kUCjPpm/9ilDkjr+/\nP548eYKUlBR5m/JcIQqD5Ao9Pb1uwxRbW1uRnJzca/UplO6orKxEXV1dp581Nzdj4cKFWL58OT7/\n/HMcOnQIampqjNs4deoUPD09oaSkhNu3b2PChAk9NVumqKioAACamppY1+bz+SgpKWFdty/B4/Ew\nbdo0JCcn47fffkNUVBSGDRuG0NBQRtVw1dXVERYWhuzsbLz++ut499134eTkxDgvzsbGRryuWnZ2\ntnhdtdraWkY6ISEhSE9Px4oVK7BmzRqMHDkSsbGxjDQoFEr3UGeNwogRI0Zg4MCBNE5dxsgzDNLK\nygra2tq4c+dOr9WnULqipaUFvr6+8PPz6+CwVVRUYPz48Th69CiOHz8u1ULXra2t2LhxI6ZMmYLJ\nkycjOjoalpaWbJkvM0QOKlfOWlFREeu6fZGnZ8h27tyJ06dPY9iwYVi7di2jUFF9fX1xxUcnJyfM\nnDlTHPnChKCgINy9exdffPEFfvjhB9jb2+PAgQMghEisoa6ujo0bNyIlJQWGhobw9fXFvHnzuq0A\nmpubi0OHDjGylUJ5XqHOGoURCgoK8Pb2ps6ajJFFGGRXP6w8Hg/u7u64fft2r9WnULpi9+7duH//\nPu7du4dZs2aJQ7hTUlLg4eGBgoICxMbG4uWXX+50//DwcOTk5HT6WVlZGSZMmICtW7diz549OHDg\nAOuLSssKkbPGdH0wSTAxMaHO2r8QlfvPycnBN998g59//hnm5uZYu3Ytnjx5IrGOjY0Njh49itjY\nWCgpKcHf3x8zZszo8prtypYVK1YgPT0dEydOxJtvvonAwMBnFn46depUu7VXhw4divPnzyM8PBwR\nERFwdHTEgQMHOuzX2tqKmTNnYu7cuTh69KjEdlIozyvUWaMwxs/PjxYZkTFcz6w9qwCAp6dnj501\nLvUplM6oqqrC+vXrIRQK0dLSgnPnzuGDDz7A33//DX9/f5iYmODGjRtwdHTsdP9Lly7htddew0sv\nvdQhp/L27dvw8PBAZmYmoqKisGjRIlkcEmdwPbNGF77vHFVVVSxZsgSZmZl4//338f3338PGxgY7\nduxg9F14enri6tWrOH/+PFJTU2Fvb4/Q0FCUlZV1uQ8hBO+++67495zP52PPnj24desWWlpa4Obm\nhnnz5nVaffLhw4eYOXMmJk6c2CEqIiQkBBkZGZgxYwbefPNNjB49ul1Rle3btyM+Ph48Hg/z589H\nZmamxMdJoTyPUGeNwhg/Pz88fPgQDx48kLcpzw1c56xpa2t3+zTXw8MD9+7dY1R9TJb6FEpnbNiw\noZ2T1draih07duCll17Cq6++ikuXLnVZqbGmpgbz5s0Dj8dDVlYW3n77bfFne/fuhb+/P5ycnJCY\nmAgPDw/Oj4VrVFVVAXAzs8bn81FVVYWGhgbWtfsLAwcOxCeffILs7GzMmTMHYWFhGDp0KL7//nuJ\nnDZCCB4/foygoCDcuXMHO3fuxMmTJ2Fra4utW7d2+r0eP34cO3fuRHBwcDuHy93dHdeuXcORI0dw\n9epVsUZzc7N4m5UrV6KlpQUCgQDBwcEdnHEdHR1s374dV69eRVlZGVxdXbFx40akp6dj3bp1EAqF\nIISgpaUFL7/8Mi0wRaF0A3XWKIzx9vaGiooKoqOj5W3Kc0FDQwPq6+s5nVnT0tLq1lHy8PCAUCiU\nOq+Ma30K5d+kpaVh9+7dEAgE7d4nhIAQgsmTJ4uLanTGqlWr8OjRI/Gs3M8//4y9e/di1qxZWL58\nOT788EP89ddf0NXV5fpQZIKamhp4PB5nYZAA6OyaBBgYGOC///0v8vPzMWfOHKxatUq8CHV33813\n330HExMTXLt2TRximZWVhbCwMGzatAk2NjbYu3evePHzlpYWrFmzBgoKCmhqakJQUBCysrLEejwe\nDyEhIUhLS8OKFSuwceNGODk54ezZs7h27Rr++OMPCAQCtLa2orKyEsHBwZ06XP7+/khISMCGDRvw\n5ZdfYuLEie2qSQsEAmRnZ/f5mWkKhUuos0ZhjLq6OpydnWnemowQlbzm0ll71szXkCFDwOfzcevW\nrV6pT6H8m3feeafbsvkzZ87s8nqLjIzEjz/+2MHRW758OS5cuICIiAhs3Lixz5Xl7w4FBQVoaWmh\nurqadW0zMzMAYFSq/nnH0NAQW7ZsQV5eHmbPno21a9fCxsYG27dv7zDT1tTUhM8++wwNDQ0YN26c\neO00DQ0NhIWFIS0tDcHBwVi+fPxutV4AACAASURBVDk8PT1x6dIl7N+/H3l5eRAKhWhtbUVNTQ0C\nAgI6RMw8XTzEwcEBL730EmbPnt3u2hcIBEhNTcXrr7/eaWESZWVlfPjhh1i9ejXy8vI63FctLS04\ncuQIfvrpJ7ZOH4XSr+g/vzQUmeLv70+dNRlRXl4OAJyHQdbW1oqfunZGT4qAcK1PoTzNqVOnEBkZ\n2WFQKIIQgtbWVkyaNKnD4PTJkyd4/fXXO11vjMfjQVdXFz4+PpzYLW/09fU5WQ/NyMgI6urqyM3N\nZV27vyNy2jIzMzF16tROnbaff/4ZFRUVIISgubkZY8eObVf4w9TUFHv27MGdO3dgaGiIMWPGYNWq\nVe0cK4FAgPLycowdO7bTYlDW1tb4888/8dZbb6GoqKjDWqsCgQAnTpzAJ5980ulx5OXl4auvvuqy\nyiQhBEuXLqXRFRRKJ1BnjSIVfn5+SEpKwuPHj+VtSr9HFjNrWlpaEAqFXa5FBbQlsEs788W1PoUi\norm5Ge++++4zZ71aWlpQVlaGTz/9tN377733HsrKyjp9sNDS0oL8/Hy88847rNrcW+Bq8Woejwdz\nc3PqrPUAMzMzbN++HZmZmZgyZQrWrl0LW1tbbNu2DZs3bxY7QUKhUJxH9rTDBkAcxrhgwQI0NDR0\ncJxaWlqQk5OD8ePHd9pXl5aW4pdffunyoZtQKMSnn36K3377rd37hBAsWLDgmQtmE0IwdepUOq6g\nUP4FddYoUuHv7w+hUEgXv5QBFRUVUFRUhI6ODmdtaGtrA0C3oYre3t7Iy8uTKu+Ea30KRcTOnTvx\n4MGDLgeUSkpKANpCbzdv3ozNmzeLP7tw4QJ++eWXbgeVLS0t+OmnnzotSd7X4WpmDQAsLS2Rl5fH\nifbzhMhpS0tLw9ixY7F69Wo8ePCgnePVncNWVVWF33//vcPMmAiBQIC7d+8iJCSkw32wevXqdkVG\numL+/PntxgYHDhzA5cuXu5zpFtHS0oKioiIsWLDgmW1QKM8T1FmjSIWRkRGGDh1KQyFlQHl5OXR1\ndTnNjxE5U90VAfH29oaioiLjRVdloU+hAMCjR4/w8ccfdxiI8ng8KCsrQ1lZGa+88gouXLiAvLw8\nrF27VhxeXF1d3WX4479RUFDA22+/3W1Yb1+Ea2eNzqyxh4WFBfbs2YMhQ4Z0es125bBt2rTpmUVk\nBAIBzp8/j3nz5omv8Rs3buDgwYPPdLgIIRAKhZg8ebI4xNjS0hIvvPCCuOKoqqpql79nAoEAf/75\nJ3bs2NFtOxTK8wR11ihS4+fnRytCyoCqqiro6elx2oaWlhaA7me+tLS0MHz4cKmcKa71KRQA+Oij\nj9o9+VdWVgYAWFlZ4bPPPkNhYSH++OMPBAUFdRjgrlixApWVlV06YCKtgQMHYv78+Th58mS/KjAC\nUGetr3Hs2DFxkZDO+LfD9vDhQ+zYseOZDhfQtsxFeHg4Vq9eDQB4/PixuKonAKioqHR5/be2tuLx\n48cIDg5GXV0dRo0ahStXrqC2thZxcXH45JNP2jlvysrK7e5HQghWrlxJHwZTKP+PkrwNoPRd/Pz8\n8Pvvv6O5ubnbEtiUnsH1gtiAZGGKQNt3Ls0PKNf6FPlSXV2N5uZm1NbWoq6uDs3NzWhtbe30+378\n+HGHwaWCggIGDhzYYVttbW0oKipCRUUFGhoa0NTUhIqKSqchwYmJifj5558hFAqhoKAAZWVlzJo1\nC6Ghoc8sCHLmzJlOwxqVlZUhEAjA5/MREhKCyZMn48UXXxSHUvY3DA0NUVpayom2tbU1iouLUVdX\nBw0NDU7aeN74/PPPoaCg0GVII9DeYduxYwcMDQ1RVFQEQoj4PhEIBJ06fEKhENu2bYOhoSHCwsLw\n8OFDVFRUIC4uTvyKjY1FSUkJgLblH5qbm8VtpqWl4bXXXsOJEyegoKAAJSUluLu7w93dHWFhYWhq\nakJsbCyuXLmCixcv4ubNmxAIBGKbpk2bhiNHjoh/P7rqU0QQQp5ZzVRZWRmamppdfq6oqChuD2ib\nBVRXVwfwT3/0LA0KhW365y8ORSb4+/ujvr4eiYmJ8PT0lLc5/ZbKykqZOWvPWpTa19cXP/74I+rr\n68U/YL1Bn9Iz6uvrUVxcjOLiYlRUVKCqqkr8qqysbPe3aHHjmpoa1NfXS7RgLxeIBlFaWloYMGCA\nuCiIrq4unJ2d4enpCWNjY2RkZODRo0cYNGgQjI2Nwefz211bVVVVePPNN8VP9hUVFdHS0gIbGxvM\nmjULU6ZMgaurq1yOUdaYmZmhoKAAhBCJwkGZYGdnB6FQiMzMzOfmfHJJREQEkpKSJNpWtFbge++9\nh4iICLi7uyMjIwMZGRlIS0tDeno6UlJSkJWVJZ6ZFj2AbW5uxocffggDAwNMnz4dtbW1MDY2hr+/\nP1xcXDB79mw8fPgQmZmZyM7ORm5uLgoLC9HQ0AChUIhTp07B1tYWurq6aGxsRF1dXTunq7M+RDTz\n9+jRI4wePZqtU8YJWlpaUFJSaufk6erqQk1NDQMGDOjy/zo6OhgwYID4/5qamtDR0RG/BgwYIOcj\no/QmqLNGkRo7OzsYGBggJiaGOmscUllZyXkYpKKiItTV1SWa+RIIBIiPj0dAQECv0ad0zaNHj5CX\nl4e8vDwUFBSgsLAQpaWlKCwsxKNHj1BYWNjBidbQ0ICurq74paenB2NjY9jb20NXVxfq6urQ1NSE\nuro6VFVVoaOjA2VlZWhpaYnfAwAdHZ0Og34NDY0OM/HNzc0dqs89/ZS8sbFR7CAKBAJUV1ejqakJ\n9fX1qK2tRX19PTIyMsTHUVVVhXPnzomdzX8v1qutrQ0TExMYGhqiuLgYZWVl4PF4sLKywsSJEzF3\n7tznsk8bMmQIGhsbUVZWBkNDQ1a1ra2toaKigrS0NOqssYCZmRnmzJmD7OxsPHjwAKWlpe0Kgqio\nqEBRUVE8y93a2orGxkaMGzcOR44cwdChQ8Hn86GoqAhDQ0M4OTmhqqoKDx8+FPcNVVVVqKmpQXNz\nMxYuXIiFCxd2asvAgQMxYMAAqKurY+DAgXBxcYGSkhJaWlpQW1sLU1NTODo6Qk1NTRwSL1pMXuS8\nAP/0F6KZdEIIBg4cCEVFRXFbotmtrtDU1BSHLHfGsx4wifoaEQ0NDeIcv+rqahBCxH0P8E+kgKgP\nEwqFePz4Merr69HY2Ijq6mpUVVWhuLgYVVVVYv3q6mo0NDS0a+tpRP2qjo4OdHV12zlyovcGDRok\nfhkYGMDIyKjdrCCl/0CdNYrU8Hg8+Pj4ICYmBu+//768zem3VFRUwNramvN2tLW1nznzZWFhAVNT\nU8TExDB2prjWf15pbW1Fbm4u0tLSkJGRgdzcXOTn5yM3Nxe5ubniwYCioiL4fD4GDx4MIyMjODo6\nYsyYMeDz+eDz+TA2NoaJiQn09fXFzpasUFFR6TSUmq2HFE1NTaioqEBRURGKi4tRUlIi/rexsRGW\nlpZobGxEXl4edu7ciZ07d0JdXR0WFhawtLSEhYUFLCwsYGdnB3t7e1hYWHQ7YOyrDBkyBEDb4tVs\nO2vKysqwtrZGWloaq7rPKw4ODjh48CCAtpmokpIS3L17F/fu3UNmZiYKCwtRUlKC8vJyPHnyBA0N\nDWhpaUFjYyOmTJki1uHxeBg0aBD09PTEjsDgwYMxfPhwsVPQmbMgmg3qaxEQ6urqvc7m6upq1NbW\norq6utNXVVWV+P+ZmZni98rKylBbW9tOS0VFRey8GRoawsDAQPy3qK83MzMDn8/ndO1WCrtQZ43S\nI/z8/PDNN9/I24x+TWVlpfgpJJdoa2s/c+YLAHx8fKSuCMmlfn+ntbUV6enpuHfvHtLS0pCamoqM\njAykp6eLnxQPHjxY7Fy4ubmJnQwLCwuYmZl1+8S5P6OqqgoTE5N2BRI6QyAQ4MGDB+KZSNHr7t27\nOHHiBAoLCwG0zQbY2tqKnTd7e3sMHz4ctra2fdqJMzMzA4/HQ0FBAUaOHMm6vr29PXXWGCJ6iJCf\nn4/i4mI8ePAAxcXFePjwIYqKilBUVITS0tJ2OWdGRkYwMDCAgYEB7O3txbMv+vr6UFFRgb6+vjgy\nZtCgQf2uUE5f42knmSmNjY0oLy9HWVkZSktLUV5e3uHv/Px8lJWVobCwsF0Eg5qamrhfHDx4sNiR\nMzY2hpmZGSwsLGBiYkKvj14AddYoPcLPzw9hYWHIysrC0KFD5W1Ov0QWYZBAW3had4tWi/Dz88Pn\nn3/OOK+Fa/3+REtLCzIyMhAfHy9+JSYmoq6uDkpKShgyZAisrKzwwgsvYPny5XBwcMCIESNoCEwP\nUVZWhpWVFaysrDr9vKmpCVlZWUhNTcW9e/eQmpqKU6dOYfPmzWhqaoKKigqGDh0qLqLg7u4ODw8P\nmc9USouqqiqMjIxQUFDAib69vT3+/PNPTrT7MlVVVcjJyen09XS1R1VVVejp6cHExARWVlbw8/OD\niYkJ+Hy++F8LCwtawOU5Qk1NDYMHD5bY0WtoaEBxcbE4ykD0b05ODm7duoW//voLBQUF4pBaZWVl\nmJmZwcrKSnydifpIKysrWFpaPre/07KEOmuUHjFy5EioqqoiNjaWOmscIYvS/UBbeMi/c3s6w9fX\nFxUVFcjIyICdnV2v0e/LVFZWIiYmBlFRUYiOjsadO3fQ1NQEdXV1jBgxAm5ubnjzzTfh5uYGR0dH\nWn1VTqiqqsLR0RGOjo4ICQkRv9/c3IyUlBQkJCSIX3/88QcaGhqgpqYGV1dX+Pv7IyAgAP7+/jKZ\nKZeWIUOGID8/nxNtBwcHfPXVV89lBeHS0lJxqHJ6ejrS0tKQmZmJBw8eiAfG6urqsLS0hKWlJezt\n7REcHCyeKTc3N5fJ7wClfzNgwIBuH0gBbVEcJSUl4lD63Nxc5OXlITc3F1FRUSgsLBRfsxoaGrC2\ntm4XaWBrawtbW1v60IBFqLNG6RGqqqpwcnLCrVu3MHfuXHmb0+948uQJBAKBzJw1SWa+XF1doa6u\njuvXrzN21rjU70uUl5cjMjIS165dQ1RUFO7duwdCCBwdHREQEIBly5bBzc0NdnZ2/bZMfH9CRUUF\nbm5ucHNzE7/X0tKCtLQ0JCQkIDY2FmfPnsXXX38NHo8HR0dHjBo1CgEBAQgKCuK82isTbG1tkZ6e\nzom2i4sLmpubce/evX5bZCQ/Px93794VO2aif6uqqgC0FeMQDWxfeOEFsXNmYWEBIyMjOVtPobTl\nN5uamsLU1BT+/v4dPn86XDw3NxdZWVnIyMjA77//juzsbAgEAvB4PAwZMqRDuLiLi0uny7RQuoeO\nAig9xsvLC7du3ZK3Gf2SyspKAJDJYE5DQ0OimS9lZWV4eHggJiYGCxYs6DX6vZ179+7h9OnTuHjx\nIq5cuQJCCFxcXBAYGIgNGzYgMDCQJnz3I5SUlODk5AQnJye88cYbANoevty6dQsXL15EdHQ09u3b\nB4FAAFdXVwQFBWHSpEnw9fWVa46Io6Mjdu3axYm2nZ0dNDU1ERcX1+edNVGosigkNj4+Hrdu3cKj\nR48AtFU7FIUnT5kyBQ4ODnB0dKRhY5Q+T3fh4i0tLSgoKEBOTo44VDw1NRXh4eHiNRz5fL44TNzR\n0REODg5wcHCg90U3UGeN0mO8vLywb98+NDU19ZncjL6CyFnrTWGQQFte2fHjx3uVfm+jpaUFFy5c\nwNGjR3Hu3DmUlpbC1NQUwcHBCA8Px9ixY8VlrCnPB9ra2ggKCkJQUBCANuft4sWLOHv2LP73v/9h\n69atMDY2RnBwMGbMmIGgoCCZz6w6Ojri4cOHePz4MetPwBUUFODi4oL4+HgsXryYVW0uIYQgPT0d\n169fx40bN3Dnzh2kpKSgubkZqqqqGD58OFxdXfGf//wHzs7OcHZ2pvc25blESUlJ7MiJ+jkRDx8+\nRGJiovh18OBB5OTkgBACPT09uLq6wt3dHX5+fvDx8YGBgYGcjqL3QZ01So/x9PREU1MT7t69+1yu\nTcQlsnbWKioqJNrW19cXmzdvRllZmcQdKtf6vQFCCK5fv47Dhw/j6NGjKC8vh5eXF1asWIGJEyfC\n2dlZ3iZSehHa2tqYNm0apk2bBkII7t69i7Nnz+LkyZMIDg6GoaEhZsyYgdmzZ8Pb21smT54dHR1B\nCEFaWhq8vb1Z13d3d0dMTAzrumzS2NiIuLg4xMTEICYmBtevX0dFRQXU1dXh4eGBF198Ee+99x5c\nXFxgb29PQ5UpFAkQFUKZNGmS+L0nT54gMTERd+/eRWJiojhcXCgUwtbWFr6+vvD394ePjw/s7Oye\n29k32sNQeoyNjQ10dXVx8+ZN6qyxTGVlJRQUFGQS4y1pThnQVl4fAGJjYzF58uReoS9PysrKsHfv\nXuzbtw95eXlwdHTEihUrMHv2bFhaWsrbPEofgMfjwcXFBS4uLvjoo4+QnZ2Nw4cP47fffsN3330H\nS0tLLF68GIsXL+Y0XNbc3BwaGhq4d+8eZ87aDz/80KsiMVpbW3H79m2cO3cOFy9eRFxcHJqbm2Fi\nYgI/Pz9s2LABvr6+cHV1pY4ZhcIi2traGDVqFEaNGiV+r7q6WjyLHR0djfDwcNTX12PQoEHw9/fH\nhAkTMH78eFhYWMjPcBlDF0+g9BgejwcPDw+at8YBFRUV0NXVlUkOC5MwRT09Pdjb2zN6Qs61vjxI\nTEzEwoULMWTIEHzzzTeYPn06EhMTkZKSgnXr1lFHjSI11tbWWL9+PVJTU3Hnzh1MnToVX331FczM\nzLBo0SIkJSVx0q6CggLs7Oxw7949TvTd3d3FRUbkSUlJCX755RfMmjULhoaG8PHxwa+//orhw4dj\n//79yM3NRWFhIY4ePYoVK1bAw8ODOmoUigzQ0dHBxIkT8dlnn+Hy5ct4/Pgxbt26hfXr10MoFGLV\nqlXiiqkrV65EREQEGhsb5W02p1BnjcIKXl5euHnzprzN6HfIao01oK2kr6TOFAD4+/vj2rVrvUZf\nlsTGxmL06NFwdXXFzZs38e233+LBgwf4+uuvaagjhXVcXFzw3//+Fw8ePMC2bdtw48YNODs7Iygo\niJN+V5RXxgW2trbQ1tbGjRs3ONHvjoKCAmzZsgVubm4wMTHBsmXLUFVVJXaK8/LysGfPHsydO/e5\nempPofRmlJSU4OHhgRUrVuCvv/5CRUUFIiMjMXnyZFy8eBETJkyAnp4eXn75ZRw+fJjROKOvQJ01\nCit4enoiKytL4pwkimTIao01QPJFq0UEBAQgLi5O4o6Ra31ZcP/+fYSEhMDX1xdCoRAXLlxAcnIy\nQkNDoa6uLm/zKP0cDQ0NLF26FCkpKTh//jyam5vh4+ODmTNnIisri7V2vL29cfv2bQgEAtY0RSgq\nKsLPzw9RUVGsa3dGVVUVfvzxR3GZ/K+//hpeXl44ffo0KioqEBERgffffx/29vYysYdCofQMFRUV\njB49Gl9++SWSkpLw4MED7NixA62trZg3bx6MjY3xxhtv4Pz582htbZW3uaxAnTUKK3h5eYEQgri4\nOHmb0q+Q5cwakzBFoM2Zam5uxu3bt3uFPpc0NjZi5cqVcHR0RGpqKv766y9cuXIFQUFBz23CM0V+\n8Hg8jB07FlFRUThx4gSSk5Ph6OiIVatWsRIO5OPjg4aGBiQnJ7NgbUdGjRrFubMWGRmJ6dOng8/n\nY8WKFeDz+Thx4gSKi4vxww8/YOLEifQBC4XSDxg8eDAWLVqEM2fOoLCwEJs2bUJmZibGjx+PwYMH\nY82aNcjLy5O3mT2COmsUVjAwMIClpSXNW2OZ3uysmZubY8iQIYiOju4V+lyRnJwMDw8P/Pzzz9i1\naxeSkpJkUvSksbER69evh7W1NZSUlMDj8ahjyAG3b99GYGAga3qBgYEyfcDw8ssvIykpCTt27MC+\nffvg6enZ43wwBwcH6Orqchaq+MILL6CkpASZmZms6ra2tuLXX3+Fk5MTgoKCUFZWhj179qCkpARH\njhzB5MmToayszGqbFPnx73uX9pkdkdU5kXW/1xWGhoZ45513cOPGDdy/fx9Lly7F4cOHMXToULz6\n6qtISEiQt4lSQZ01Cmu4u7tzlufwvFJZWSmTBbGBNmeqsbGRUdgAk7wyrvW54Pvvv4enpyd0dHSQ\nmJiIxYsXQ1FRUSZtf/zxx9i0aRMWLFiAJ0+eICIiQibtPk/s27cP48aNw4oVK8TvBQQEICAgQGrN\nd999F2PHjsWPP/7IhokSoaSkhNDQUCQmJkJLSwseHh7Ys2eP1HqiolGxsbEsWvkPI0eOhIaGBq5e\nvcqaZnh4OBwcHLBo0SK4ubkhISEBUVFReOONN6Ctrc1aO32Vnl7XvY3O7l3aZ3ZEVudEHv3esxg6\ndCg+/vhj5OTk4NChQ8jPz8fIkSMxdepUpKWlyds8RlBnjcIa1Fljn8rKSujq6sqkLQ0NDRBC0NDQ\nIPE+/v7+iImJQUtLi9z12Wbt2rV4++23sXbtWly5cgXm5uYybT88PBwAsGzZMqirq2PcuHEghMjU\nhv7MuXPnsGTJEuzevRtTpkwRvy8UCiEUCqXWnTp1Knbt2oXQ0FCcO3eODVMlxsLCAlevXsXq1aux\nbNkyrFu3TmotHx8fzmbWlJWV4e3tzUooZHp6OkaPHi1eiy49PR2//vorXF1dWbC0/9DT67o3zVJ1\nde/SPrMjsjon8uz3noWysjJmzpyJ27dv4+TJk8jPz4ezszPCwsIYjUfkCukBISEhJCQkpCcSlH7E\n+fPnCQBSXFwsb1P6DcbGxmT79u0yaevChQsEAKmoqJB4n+TkZAKAxMfHy12/OwCQ8PBwibf/7LPP\niJKSEvnf//7Xo3Z7goKCAulhF03pgqamJmJmZkb8/Pw4a8Pb25sMGTKENDc3c9ZGd/z8889EUVGR\nfPHFF1LtHxERQQCQoqIili1r47PPPiOmpqZEKBRKrfHLL78QDQ0N4ubmRm7evMmidZR/A6BX9Efd\n3bu0z+yIrM+JvPs9SWhpaSG7du0iOjo6ZPjw4SQ1NZWxBhP/h+n4oxOO0pk1Cmu4u7uDx+Phzp07\n8jal3yDLapCiXI7m5maJ93F0dIS+vr5EoYpc67PF33//jf/85z/YsWMH5s6dK7N2/01PnoJTuufY\nsWN48OABZs+ezVkbs2fPRkFBAY4dO8ZZG90xf/58fPvtt1i3bh0uXLjAeP+AgAAMGDAA58+f58A6\nYMKECSgsLERiYqJU+2/duhVvvvkmFi5ciBs3bsDT05NlCym9ke7uXdpndkTW50Te/Z4kKCoqYvny\n5UhKSoK2tjZ8fHx6/Zqu1FmjsIaenh7Mzc1pKCRL1NbWoqmpSWbOmoqKCgAwKtfN4/Hg6+srkTPF\ntT4bNDY2YvHixZg1axaWLVsmkzY74+lwI1H40dq1awEAjx8/xvvvvw8rKyuoqalBX18fvr6+WLVq\nVbsCP5JuB7QtEBwaGorBgwdDRUUFgwcPxtKlS1FaWtrBrs7CoSR5Pzs7G9OmTYOurm6HbRsbG7Fl\nyxa4urpCQ0MDampqsLOzw9KlSzvkTT169AjLli0T22pqaoolS5agpKRE4vN78uRJAG25U5IcB5Nz\nJMLDw6NdW/Lg7bffRkhICBYvXoympiZG+w4YMAD+/v74+++/ObHN3d0dpqamOH36NON9v/zyS6xb\ntw779+/H9u3bxX1Lb0XS+4DJtX3v3j1MnDgRmpqa0NbWxvjx45GamtrpNdzVdS1pH9GZ1qJFi9pp\nSWq7pOeiK7q7d//dhqjP5OL8S7otk3PMdt/a3TlhcgxMvrPe0O9JipmZGS5duoTAwEBMmDChx4WZ\nOKUn83I0DJLyb6ZPn06mTJkibzP6Bfn5+QQAuXHjhkzai4uLIwBIVlYWo/2+/PJLYmRkJHf97oCE\nYQh79+4lampqnIV+MQFdhB298sorBAD59ttvSW1tLWlqaiLp6elk6tSp7baXdLvi4mJiZmZGTExM\nSGRkJHny5Am5ePEiMTY2Jubm5qSkpEQiu571/tixY0lMTAypr68nZ8+eFW/75MkTMnLkSKKlpUV+\n/PFHUlJSQmpqasjly5eJvb19O82SkhJibm5OjIyMSEREBKmpqSFRUVHE3NycWFpakqqqKonOra2t\nLQHQ4di6Og6m54gQQoqKiggAYmdnJ5FNXPHw4UOiqqpK9u3bx3jf//73v0RXV5e0tLRwYBkhixcv\nJl5eXoz2SUhIIEpKSuSbb77hxCaueNZ9wOTazsrKIjo6OuLrsaamhkRHRxM/Pz9G96ekfURX+4tg\nel8+61x0B9N7V9I2mRwDk23ZOMfS9q3d7cvVd9Zb+j0mNDc3Ez8/P+Lk5CRxXyfrMEjqrFFY5Ysv\nviBmZmbyNqNfcOfOHQKAZGRkyKS9pKQkAoBx/PaNGzcIAJKZmSlX/e6QtLMcN24cmTlzptTtsElX\nP7La2toEAPn999/bvV9YWNhue0m3W7x4MQHQIT/vl19+IQBIaGioRHY96/3Lly93epwrV64UD2b+\nTUJCQjvN0NBQAoDs37+/3XbHjx8nAMhHH33UaRv/RlNTkwAgjY2NEh0H03NECCENDQ0EANHS0pLI\nJi4JCQkhEyZMYLzfvXv3OH1g9NdffxEFBQVGec4zZ84kHh4ePcp1kwfPug+YXNtz587t9Ho8c+YM\no/tT0j6iq/2lsf1pra7ORXcwvXclbZPJMTDZlo1zLG3f2t2+XH1nvanfY0JmZiZRUFAgx48fl2h7\n6qxR+jSipPTOnnpRmBEZGUkAkPLycpm0l56eTgCQxMRERvs1NzcTdXX1Dp2+rPW7Q9LO0sjISGYF\nXZ5FVz+yb775pvgzMzMzsnDhQhIeHk6ampqk2o7P5xMApLCwsN37Dx8+JACIqampRHY96/26urpO\nj3PIkCEEAMnLy+v8RDyFiYkJAToWvSgvLycAiJOT0zM1CPkn6b6zAX9nx8H0HBFCSGtrKwFAFBUV\nJbKJS7Zt20b4fL5U+5qbrw9czwAAIABJREFUm5OPP/6YXYP+n/r6eqKurk5++uknifcZNGgQ2blz\nJyf2cMmz7gMm17aRkVGn12NVVRWj+1PSPqKr/aWx/Wmtrs5FdzC9dyVtk8kxMNmWjXMsbd/a3b5c\nfWe9qd9jSkBAAFm+fLlE29ICI5Q+jbu7OwDQIiMsUFlZCR6PBx0dHZm0J00BENF+Xl5ez8wr41qf\nDWpqanr9mkw//fQTjh07hunTp6O2thb79+/HzJkzMWzYsHbFGiTdrqysDAAwaNCgdu2I/n706BEr\ndqurq3f6fnFxMQDA2Nj4mRoiW0xMTNrlUYhszc7OZmSLpNeiNOdIpN3VccuSgQMH4smTJ1LtO2HC\nBJw9e5Zli9oYMGAAXnzxRZw6dUqi7VtbW1FVVQUjIyNO7JEFXV0PTK7t8vJyAB2vR6a/FZL2Ec9C\n2vtSmnuD6b0raZtMjoHJtmydY2mOqTu4+s56U7/HFGNjY9Z+79iGOmsUVtHX16dFRliisrISOjo6\nMluEWZoCICIkWbyaa302MDY2xoMHDzhvp6dMmzYNf/zxB8rLyxEVFYXx48ejoKAAb775JuPtDA0N\nAfwzABQh+lv0uQhRQvnT3+Pjx4+lPhbRwFvktEmybWVlJQghHV51dXUStWlqagoAqK6ulmh7pucI\naKvk+nRb8qSgoAB8Pl+qfV955RXExcUhNzeXZavamD59Os6dOyfRNaSoqAgLCwvWBrm9CSbXtmhA\n3dX1yARJ+xK2bO8pTO9dSWFyDEyPV9JzzHbfytbxMqE39XtMIIQgMTERw4YNk7cpnUKdNQrruLm5\nISEhQd5m9HkqKytlVgkS+MeZkuaJZUBAALKzs1FUVCQ3fTYYNWoUZ7MIbMHj8fDw4UMAgIKCAgIC\nAsQLn6alpTHebvLkyQCAyMjIdu1cvHix3eciRDNgTztXPZlJnz59OgDgxIkTHT6LjY2Fl5eX+G/R\nArhXrlzpsO21a9fg4+MjUZuiBZPz8/Ml2p7pOXpa28XFRaI2uOTs2bMYNWqUVPuOHTsWBgYGOHz4\nMMtWtfHqq6+Cx+Phjz/+kGj7OXPm4Mcff0RFRQUn9sgLJtf2uHHjAHS8HpmWH5e0jwD+mSkRCASo\nr69vN6vH1n0pCUzvXUlhcgxMtmVyjtnuW7uDq++sN/V7TDh27BiysrIwZ84ceZvSOT0JoqQ5a5TO\n2LhxI7G2tpa3GX2e1atXEw8PD5m1J8p3iIiIYLxvTU0NUVJS6pBELUv97oCEMeNXr14lAMiVK1ek\naodN0E2ewvjx40lKSgppbGwkJSUl5MMPPyQAyMsvv8x4O1FVsKcrHUZGRhI+n99ppcN58+YRAOTt\nt98m1dXVJC0tjcyZM4dxvoWIqqoqMnz4cKKlpUX27t0rrgb5999/k2HDhpGLFy+Kty0rKyPDhg0j\nfD6f/P7776S8vJw8efKEnDp1ilhZWUn8vR06dIgAILt27ZLIXqbniBBCduzYQQCQ3377TSKbuEKU\n+xodHS21xvLly4m9vT2LVrXn1VdfJYGBgRJtW1lZSYYMGUKCg4N79cK7/+ZZ9wGTazs7O7tDNchr\n166R4OBgRvehpH0EIW2LHYuuoyNHjpBJkyZJZbsk56I7mN67krbJ5BiYbMvkHLPdt3a3DVffWW/p\n95iQkZFB9PT0yKJFiyTehxYYofR5/vzzT8Lj8cjjx4/lbUqfZuHChWT8+PEya6+uro4AIKdOnZJq\nfxcXF7Jy5Uq56XcHk84yODiY2NjYkNraWqnaYgPRD+PTLxHR0dHkjTfeIBYWFkRZWZkMHDiQODs7\nk02bNrVL/pZ0O0LanJHQ0FBiYmJClJSUiImJCVmyZEmnTkhZWRmZPXs2MTAwIBoaGmTy5MmkoKCg\nU1u7O46nqampIevXrye2trZERUWF6Ovrk3HjxpGoqKgO21ZWVpKVK1cSS0tLoqysTIyMjMjkyZMZ\nVSxsamoigwcPJv7+/u3e785WJueIkLbB7eDBgzstJCArampqyLBhw9oNrKXh2rVrBABJSkpiybL2\n/Pnnn0RBQYEUFBRItH1sbCzR0tIikyZNIjU1NZzYxCaS3gdMru2UlBQSHBxMNDQ0xOciOzubACAK\nCgrdti+CSR9x+/Zt4uzsTNTV1Ym3t3eHKsWS2i7puegKSe9dafohJudf0m2ZnGO2+9ZnbcPFd9Yb\n+j0mJCYmEmNjY+Lt7c2o4A111ih9npycHAKAXL9+Xd6m9GmmTp1KXnvtNZm1JxAICABy7NgxqfZf\nvnw58fb2lpt+dzDpLB8+fEgMDAzIpEmTiEAgkKo9Su/n9OnThMfjkSNHjrCuffDgQcLj8cjp06dZ\n15aU5uZmMnHiRGJoaNihaiBThEIhsbCwIB9++CFL1rWnqamJ6Ovrky1btki8T2xsLDEwMCC2trbk\nzp07nNjV1xCVgzc0NJS3KZzC5b1LkZ7e0O9JilAoJD/88AMZMGAAGT16NHny5Amj/Wk1SEqfx8LC\nAtra2rh79668TenTyDpnTUlJCQoKClIVAAEAHx8fxMfHo6GhQS76bGFqaoqTJ0/i8uXLmD59Ohob\nGzltjyIfXnrpJezevRtLly7tNF9OWv78808sX74cP/zwA1566SXWdJnQ0NCAadOmISoqCqdPn4aJ\niUmP9Hg8HmbMmIEjR46gbezBLioqKggJCcHBgwcl3sfLywt37tyBkZERPDw8sHLlSqkrXvZFeDwe\nsrKy2r0XFRUFAAgMDJSHSTKDq3uXIj29od+TlKSkJIwaNQpvv/02PvjgA0REREBLS0veZnULddYo\nrMPj8eDk5ISkpCR5m9KnkbWzBrSVyZe2JLKvry8EAkG3lUC51mcLb29vXLp0CTExMRg5ciS9lvsp\nS5YsQUREBL799lvWNLdv344LFy4gNDSUNU0mpKWlwdfXFzExMYiIiICHhwcruvPmzUNubi7Onz/P\nit6/mT9/PlJSUhAdHS3xPqamprhy5Qr279+PgwcPwtLSEhs3buSsgl5v46233kJOTg7q6uoQGRmJ\nsLAwaGtrY+PGjfI2jXO4uHcp0iPvfk8ScnJyEBoaCjc3NzQ0NCAmJgafffYZlJSU5G3aM6HOGoUT\nnJ2d6cxaD5GHs6aioiK1M2VlZQU+n4/r16/LTZ9NPD09ER8fD11dXXh5eWH79u0yaZciWzw9PTut\niCYtV65cgaenJ2t6TDhw4AA8PDygoqKC27dvw9fXlzVtR0dHBAYGYufOnaxpPo2Xlxe8vLywY8cO\nRvvxeDzMmzcPGRkZeOutt7Bt2zZYWloiLCwMBQUFnNjaG7h48SI0NTXh6+sLHR0dvPbaa/D29sbN\nmzdhZ2cnb/NkAtv3LkV65NnvPYsrV65gypQpGDZsGGJiYnD48GHcunWrXaXh3g511iic4OzsjOTk\nZAiFQnmb0mfpa84a0BaqeOPGDbnps425uTkuX76MDz74AB988AGCgoLoshSUXkd8fDzGjBmDBQsW\nYOXKlYiJiYG1tTXr7bzzzjs4e/YsMjMzWdcGgHfffRfHjx9HXl4e4311dXXx6aefIjc3F6tWrcLB\ngwdhbW2NiRMn4uDBg6itrWXfYDkyZswYHDt2DCUlJRAIBHj06BHCw8OfG0eNQumO3NxcbNq0SfyQ\nqaKiAkePHkVSUhJCQkKgoNC33J++ZS2lz+Ds7IyamhrOFlLt7zQ0NKChoUEuYZDS5pQBbc5UdzNf\nXOtzgZKSEj7//HNcu3YNdXV18PDwwJw5c+i1TZE7OTk5mD17Njw8PNDQ0IDo6Gh8+umnnIX1vPzy\ny7CwsMAPP/zAiX5ISAj4fD52794ttYaenh4++ugj5OXl4dChQ1BSUsKCBQtgbGyMOXPm4OzZs2hp\naWHRagqF0hsoLy/H999/D39/f1hbW2P79u0YPXo04uLicO3aNUyfPr3POWki+qbVlF7P8OHDoaCg\nQHN9pES04GtfnFl79OgRsrOz5aLPJSJH8ejRo4iLi4O9vT0WLVpEw30pMicxMRELFiyAvb09EhIS\n8Mcff+D69evw9vbmtF1FRUUsXboU+/fv56SYh7KyMkJDQ7F3717U1dX1WGvGjBk4efIkiouL8dVX\nXyE/Px+TJk0Cn8/H66+/jt9++w1lZWUsWU+hUGRNSkoKvv76awQFBcHExARr1qyBhYUFTp8+jaKi\nIuzcuRPu7u7yNrPHUGeNwgkaGhqwtramA1kpqaysBND3nLWRI0dCVVW1y9kvrvW5hsfjYfr06UhJ\nScHOnTtx48YNuLi4YPTo0fjzzz/R2toqF7so/Z/W1lYcP34cL774IlxdXXHr1i3s2rULKSkpmDZt\nmszsWLhwIVpaWhhVbmTCkiVL0NDQgEOHDrGmqa+vj2XLliE6Oho5OTlYvXo1CgsLMX/+fBgbG8PL\nywsff/wxYmNj6T1MofRinjx5guPHj2PJkiUYMmQInJycsHXrVhgaGuKXX35BaWkpDh48iIkTJ/aJ\nwiGSQp01Cmc4OzvTmTUp6avOmqqqKtzc3LrMK+NaX1YoKytj8eLFSElJwfnz56Guro5XX30VVlZW\n+PDDD5GcnCxX+yj9h6SkJKxduxaWlpYICQmBtrY2Lly4gOTkZCxatEjmAxJ9fX3Mnz8fW7duRVNT\nE+v6hoaGmDdvHrZs2dKjvqIrLCwssGbNGly6dAkVFRU4duwYXF1d8euvv8LHxwcGBgaYPHkyNm/e\njKioKM6XCqFQKF1TUlKC48eP44MPPoCPjw/09fUxY8YMcf938+ZNlJaW4rfffsPs2bOhoaEhb5M5\ngTprFM5wdHREamqqvM3ok1RWVoLH40FXV1em7aqoqPQopwxoK7Hf3cwal/qyhsfjYezYsTh9+jTS\n09Px2muv4fDhwxgxYgScnJzwxRdfSFUsgfJ8k5OTg02bNmH48OFwdnZGeHg45s6di4yMDJw8eRJB\nQUHg8Xhys2/9+vUoKyvDjz/+yIn+unXrUFRUhJ9++okTfRFaWlqYMmUKdu/ejby8PKSlpWHjxo1Q\nV1fHrl278MILL2DgwIHw8fHBypUrcfz4cRQXF3NqE4XyvCIUCpGSkoI9e/Zg3rx5GDp0KPh8PmbM\nmIHIyEi4u7vj4MGDKC0txY0bN/Cf//wHnp6efTYPjQn9Z46Q0utwcHBAdnY2mpqaoKqqKm9z+hSV\nlZXQ0tKCsrKyTNvtyTpoInx8fLBt2zY8fvwYAwcOlKm+PBk2bBi2bNmCLVu2ID4+HgcOHMCOHTuw\nbt06WFlZYdKkSZg8eTJGjRoFFRUVeZtL6UW0trYiMTERp06dwunTp5GQkABdXV289NJL+PbbbzFm\nzBi5Omf/xsTEBKGhofjiiy+wYMECqKurs6o/ZMgQhIaG4tNPP8W8efNY1+8KOzs72NnZ4d133wUA\nFBUVISYmBtHR0bh16xa+++47CAQC6OrqwsHBAe7u7uKXvb39czFopFDYQCAQIDMzE/Hx8eLX3bt3\nUVtbCw0NDbi4uODVV1+Fn58f/P39Zf7gurdBnTUKZzg4OKClpQUZGRkYMWKEvM3pU1RWVkJfX1/m\n7bIx8+Xv7w+hUIhbt25h7NixMtXvLYgGcF9//TUuXbqEs2fP4uzZs9ixYwd0dXUxduxYBAcH48UX\nX4SFhYW8zaXIgdzcXFy9ehXnzp3D+fPnUV1djWHDhmHixInYvHkzAgMDe3XOxUcffYT9+/fj+++/\nx6pVq1jXX79+PX766Sfs3r0bK1euZF1fEkxMTBASEoKQkBAAQE1NDW7duoWEhAQkJibi4sWL2LVr\nF1pbW6GlpQVnZ2e4uLjAxcUFjo6OsLW1fe4HmZTnG0IICgoKkJGRgeTkZCQmJiIxMRHp6eloaWmB\npqam+L6ZP38+Ro4cCScnJygqKsrb9F5F7/0loPR5bG1toaysjNTUVOqsMaSqqkrm+WpAz3PKAMDI\nyAiWlpa4fv16p84al/q9DWVlZYwfPx7jx4/H9u3bkZmZibNnz+LcuXNYtmwZGhsbMXjwYIwaNQr+\n/v4ICAiAg4MDfULfzxAKhbh37x6uXbuG6OhoREVFobCwEGpqahg1ahQ2btyIiRMnYtiwYfI2VWIM\nDAzw1ltvYevWrQgNDYWWlhYn+ps3b8bixYtZ15cGLS0tjBkzBmPGjBG/19DQgOTkZNy5cweJiYmI\ni4vDzz//LK5maWhoCHt7e9ja2sLW1lb8fwsLC3qfU/oNDQ0NyMjIQEZGBtLT05Geni7+u76+HgBg\nbGwMFxcXTJo0CRs2bICLiwuGDh1K7wMJoM4ahTOUlZUxdOhQmrcmBRUVFX3WWQO6Xryaa/3ejo2N\nDWxsbPDee++hsbERt2/fRlRUFKKjoxEWFoaamhro6enBy8sLbm5u4hedfetb5ObmIiEhQfy6efMm\nqqqqoK2tDT8/PyxfvhwBAQHw8PCAmpqavM2VmtWrV+OHH37AN998g48//ph1/TVr1mD37t2c6bPB\ngAED4OnpCU9PT/F7hBDk5+d3GLiePHkSJSUlAAA1NTUMGzYMVlZWsLCwgKWlZbuXpqamvA6JQumU\nkpIS5ObmIjc3F3l5eeL/Z2dnIz8/H4QQKCkpwcrKCnZ2dhg7dizefvtt8QMKeYxp+gvUWaNwioOD\nA+7duydvM/oclZWVfd5Z27BhAwgh7XJtuNbvS6ipqSEgIAABAQEA2vKW7t69i2vXruH27ds4fvw4\nNm/eDKFQCD09Pbi5ucHd3R0jRoyAnZ0dbG1t+23lq75CXV2deDCelJSEhIQExMfHo6qqCoqKirC1\ntYWbmxs2btyIgIAAjBgxol+F9+jp6WH9+vXYsGED5syZg6FDh/Ypfa7g8XiwsLCAhYUFxo8f3+6z\n6upqsROXkZGB3Nxc3Lx5E0eOHEFpaal4u0GDBokdNwsLC5ibm2Pw4MEwMTGBqakpjIyM6IwEhTUa\nGxtRWFiIoqIiFBYWorCwsINTJqqMqqysDDMzM/H1OWbMGPGssbW1Nc3J5gDqrFE4xcHBAb///ru8\nzehzVFZWws7OTubtslEABAA8PDxQXV2NrKysdqFdXOv3ZRQVFcUzaSJqa2uRmJgonqE5e/Ysvvnm\nGwgEAvB4PJibm8PW1hYODg7i4ghWVlYwMTGhAzmWEAqFKCwsRE5ODjIyMpCWloa0tDSkp6ejoKAA\nhBCoqKjAzs4Obm5uePnll+Hm5gYXF5fnwpl+7733cOjQISxevBiXLl1i/eEJ1/qyRkdHB15eXvDy\n8urwWX19vXhg/PTr/PnzyM/PR1VVlXhbJSUlGBkZYfDgweDz+TAzMwOfz4epqanYmRs0aBAGDRr0\nf+zdeVhUZfsH8O/AsK8jwzaAgGwKAm6ouKXhWqlhimuvaaa22VuZuZRpZVlZqWW59pZaaWrLG5or\nZq6IGyIuoMgi+zYz7MvM+f3Bb84LisgM58yZgftzXXMJs9znnhmE+Z7nOc8x6GMfCb8qKytRVFSE\n/Px85OXlITs7G7m5ucjKykJeXh6ysrKQm5uL4uJi9jGmpqbs4Qa+vr7o1atXkx0HXl5e7WqnkzGg\n/8GEV8HBwbh9+zatCKklYx9ZCw8Ph7m5OS5cuNAkTPFdv72xtbXFoEGDMGjQIPa6+vp63LlzB9ev\nX2fDw6lTp7B161aUlZUBaHidvb292b37mmlW3t7e7Ac5Y55+x6Xq6mrk5+cjOzsb6enp7EWzVzkz\nM5P9mbW3t2fD8dChQ9G1a1cEBwejS5cuHfYDsVgsxqZNmxAZGYmff/4Z06ZNM6r6hsTa2hohISEI\nCQlp9vaqqqqHfti+fPkyYmNjkZubi+rq6iaPk0qlcHZ2ZsObm5vbA99LJBI4OjqyF2J46urqIJfL\nIZfLUVpaiqKiIhQWFrJhrLCw8IHvNcdOajg6OrKB3t3dHb169WLDvpubGzw9PeHq6kphzMB0zL8u\nRG9CQkJQX1+PlJQUhIaGCt2O0SgpKRFkFTFzc3P2A39bWFpaonv37rhw4QKmTp2qt/odgVgsZhcr\nuN/9U1fS09Nx+/ZtHD16FFlZWaivr2fvK5FI4O7uDldXV3h4eMDFxQUeHh5wcnKCRCJBp06dIJFI\n2K+NJdxVVVWhtLQUpaWlKCkpYb8uLi5GdnY28vPzkZOTg/z8fOTm5jYZrTAzM4Onpye7B/mxxx5r\ncjyRTCYT8JkZrr59+2Lu3Ll44403MGbMGM5/d/Fd31hYWVnB39//kdNBi4qKUFBQwH6Yz8/PZ78u\nLCzEjRs3cPLkSfaDvUqleqDG/eHN0dERDg4OTb63sbGBg4MDrK2tYWlpCUdHxyZfW1lZGc3vDT4p\nlUpUV1ejvLwcZWVlqK6uRllZWZOvFQoFFAoFG8aau9wfvICGnwmpVApXV1c4OzvD2dkZQUFBcHFx\ngYuLCxvKXVxc4O7uDisrKwFeAdJWFNYIr4KCgiAWi3H9+nUKa1oQaul+U1NTqNVqTmr16dMHCQkJ\neq3f0Wn2mDYeidOor69Hbm4u7t27h4KCgiaBJTc3FykpKcjJyUFJSQm7eldjVlZWbHCzsLCARCKB\nubk5bGxsYGNjA3Nzc0gkEpiZmbGLI4jF4gdW8Wt8u0Z5efkDp3QoKytjw6Xm9tLSUtTW1qK8vByV\nlZWora1FaWkpqqur2VCmOa6iMWtra3Tq1IkNpYGBgRgyZAhcXV0hk8nYwOru7t5hR8ja6uOPP8bv\nv/+OxYsXY9OmTUZXvz3RjJi1VmFh4QPBoLS0tMn3CoUCBQUFSElJYa+rrKyEXC5vsbZIJGoS3DRB\n29raGhYWFuztAJqEO839LCwsHjjPnp2d3UP/n5qamsLe3r7Z21QqFZRK5UN7raqqemBUUqFQQK1W\no7a2lg1LSqUSKpUKdXV1KC8vB/C/31Ga+zUOaC3R/D5sHIQdHBwglUrh7+//QGBufHF2du4QU60J\nhTXCM3Nzc/j7+9MiI1rQ/LIXYu+xiYkJp2Fq586dUKlU7JQKvuuThxOLxfDy8oKXl9cj79s4/Nw/\nQtU4HGl+VvPz81FbWwu5XI6amho27FVXVz8Qnpq7rrk98I2vaxwG6+rqcPHiRQwfPhyenp6QSCTs\nh8DGI4GNv6e9+/xzdHTE2rVrMXXqVDz99NMYM2aMUdXvyDQjMrqqrKxEdXU1G+CqqqqgUCge+jXw\nv50xjQNUUVERamtroVar2ftVVlaipqaG3Vbj25rTXOBqzMHB4aHH84rFYojFYpSWlrKj6Jpg2HjH\nk62tLczMzGBhYQEXFxcA/wufmvvZ2trCysoKdnZ2sLOzg6WlZbNf084h0hr0U0J417VrV9y6dUvo\nNoxGSUkJAAhyzBqXYSoiIgKVlZW4efMmewwG3/UJNywtLeHu7g53d3ehW3mAWq3GwIEDUVRUhF9/\n/dXoF5xoTyZPnoz9+/dj5syZuHLlCufTRvmuT3RjbW3Njl4Lbc2aNfjyyy+RnZ0NAPjmm2+wbNmy\nJtOdW3L16lWEh4dj+/btGDhwIJ+tEtJqtFwY4V1AQABSU1OFbsNoaKaVCHGQN5dhqnv37rCysmoy\nVZHv+qT9MzExwaZNmxAfH49t27YJ3Q65zzfffINOnTph2rRpzR4LZej1iXFLTExEjx492O9DQkIg\nl8uRk5PTqseHhYUhNDQUP/30E18tEqI1CmuEd5qwxjCM0K0YBc0eQCGmQYpEIs7ClFgsRo8ePXDh\nwgW91ScdQ1hYGBYsWICFCxe2+kMY0Q9bW1v8+OOPOHv2LFauXGl09Ylxu3LlCsLDw9nvu3fvDgBa\nHYoxdepU7Nq1i5OViwnhAoU1wrvAwECUl5cjLy9P6FaMgmZkzdiPWQOAXr164cqVK3qrTzqO999/\nH05OTli4cKHQrZD79O7dGxs2bMCHH36IHTt2GF19Ypxqampw69atJmHNyckJrq6uWoW16dOno7S0\nFEeOHOGjTUK0RmGN8E5zHqyUlBSBOzEOpaWlMDMzE2SVJxMTE05HQMPDw5GYmMgGNL7rk47D2toa\nGzZswM8//4zY2Fih2yH3mTNnDhYuXIjnn38ex48fN7r6xPgkJSWhrq6uyTRIoGEqpDZhrXPnzhg4\ncCB+/PFHrlskRCcU1gjvZDIZ7Ozs6Li1ViotLRXspKRcj3z16NED5eXluHPnjl7qk45l9OjRiImJ\nwSuvvNLsOYiIsFavXo2nnnoKEydORGJiotHVJ8YlMTERNjY27A5iDW3DGtAwuvbHH388cul9QvSB\nwhrRC39/fwprrSSXywU76SvXYap79+4Qi8XsVEW+65OOZ926dVAqlXj//feFboXcx8TEBDt37kSP\nHj0wfPhwJCUlGVV9YlwSExMRFhb2wNL8mrCmzayOmJgY1NfX448//uC6TUK0RmGN6EVAQABNg2yl\n9jSyZmVlhaCgIHavN9/1Scfj5uaGjz76CF988QUuX74sdDvkPtbW1vjzzz/RvXt3REVFcR6o+K5P\njMf9i4tohISEQKlUssv5t0anTp0wcuRImgpJDAKFNaIXgYGBNLLWSu1pZA1oOK6Mr5G1++uTjmnu\n3Lno168f5s2bR8u5GyBra2vExsYiJCQEQ4YMQVxcnFHVJ4aPYRj2HGn305yHU5epkEeOHEF+fj4n\nPRKiKwprRC8CAgJw+/Zt+iDVCqWlpRTWdKxPOibNudcSExPx7bffCt0OaYaNjQ0OHjyIp556CqNG\njcKmTZuMqj4xbHfv3oVCoWg2rEkkEri7u2sd1saNGwdLS0vs2bOHqzYJ0QmFNaIXgYGBqKmpQVZW\nltCtGDy5XN5upkECDYuAZGdno6CggPf6pOMKCQnBwoULsXTpUty7d0/odkgzLCwssH37drz99tt4\n8cUXsWDBAtTU1BhNfWK4EhISIBaLmw1rgG6LjFhbW+Ppp5/Grl27uGiREJ1RWCN6oVmdiaZCPlp7\nG1nTLKN89epV3uuTjm358uWQyWRYsGCB0K2QhxCJRPjwww/x888/44cffkBkZCSnxzPzXZ8YpjNn\nziA8PBzW1tbN3q6nPpkGAAAgAElEQVRLWAOACRMm4OzZs3SeWCIoCmtEL5ycnODg4IC7d+8K3YrB\na08LjACAi4sLnJ2dkZyczHt90rFZWFhg48aN+P3332kVNwM3efJkXLp0CWKxGL169cIXX3yB+vp6\no6lPDMvZs2cxYMCAh96uy4qQADBq1ChYWlpi//79bW2REJ1RWCN64+3tjfT0dKHbMHhCLjAiEol4\nOcF0cHAwrl+/znt9QoYOHYoZM2bgpZdegkKhELod0gI/Pz+cOnUKb731FpYuXYq+ffsiISHBaOoT\nw1BVVYXExERERkY+9D4hISEoLy/X+lAMa2trREVF0c4fIigKa0RvfH19Kaw9glqthlKpFHRkTds9\nj60REhKC69ev816fEAD48ssvUVdXh/fee0/oVsgjmJub47333sO1a9fg5OSEfv36ISYmhrOpi3zX\nJ8K7cOECamtrHxnWRCKRTjMwxo8fj8OHD6OsrKwtbRKiMwprRG98fHxoGuQjKBQKqNXqdjey1q1b\nNyQnJ/NenxCgYdr1p59+iq+++grnzp0Tuh3SCv7+/jh8+DD27duH69evIyQkBLNnz8a1a9eMoj4R\nztmzZ+Hq6gofH5+H3sfBwQEymUynvxNjx45FfX09jhw50oYuCdEdhTWiNz4+PjSy9gilpaUA0K4W\nGAEa9mqWlpaioqKC1/q5ubmc1ybGaebMmRg2bBjmzZuHuro6odshrSASiRAdHY3ExERs27YN586d\nQ1hYGEaPHo39+/e3+dQvfNcnwnjU8Woaui4y4uLigsjISJoKSQRDYY3ojY+PD/Lz81FZWSl0KwZL\nLpcDQLtaYARoOKYMAIqKinitT1MhiYZIJMK3336LlJQUrF+/Xuh2iBZMTU3xr3/9C8nJyYiNjUV9\nfT3Gjh0LLy8vvPXWW20+ryLf9Yl+nTt3rsUpkBq6hjWgYSqk5meFEH2jsEb0xtfXFwzDICMjQ+hW\nDFZ7HVlzdXWFVCrlLaxp6lNYI40FBARg6dKlWL58OdLS0oRuh2hJJBLhiSeewNGjR3H79m3MnTsX\n+/btQ8+ePdGlSxe88cYbOHLkCCoqKgyyPuFfWloa8vLytBpZ0+Vv0NNPP42SkhKcOnVKlzYJaRMK\na0RvfH19AYCmQrZALpdDJBLBwcFBkO3zFdaAhuPKCgoKeK1PYY3c7+2334aPjw9efvlloVshbdCl\nSxesWLECd+7cQUJCAqZOnYpDhw5h5MiRcHR0RGRkJN5++23s379fp1VA+a5P+HH27FmYmZmhV69e\nj7xvSEgIKisrddph7O/vj+DgYJoKSQRBYY3ojb29PSQSCS0y0oLS0lLY29vD1NRUkO3zGdZCQkJQ\nWFjIa30Ka+R+5ubm2LhxIw4dOoRffvlF6HZIG4lEIvTp0werVq1CcnIysrOzsWPHDvTs2RP79+/H\n2LFj4eTkhNDQUEyfPh2ffPIJ/vrrL9y7d88g6hNunT17Fj179oSVldUj79uWFSGBhqmQv//+u06P\nJaQtxEI3QDoWHx8fmgbZAiFPiA3wG9b8/f3x008/8TZq6O/vj//+97+81CbGbfDgwXj++efx2muv\nYcSIEYJNMybck8lkmDJlCqZMmQKg4bjYkydP4vz587h69So2bNjAnlurU6dOCA0NRWBgIHsJCgpC\nly5dYGZmJkh90jZnzpzBkCFDWnVfOzs7eHp6Ijk5GU899ZTW2xo/fjw+/vhjXL16FWFhYVo/nhBd\nUVgjeuXr60sjay0Q8oTYAP9hraysDLa2trzVz83NRUVFBWxsbHjZBjFea9aswYEDB7BkyRJs3LhR\n6HYIT6RSKaKjoxEdHc1eV1paisTERCQlJSE5ORkpKSnYv38/cnJyAABisRi+vr4ICgpiL4GBgeja\ntStcXV31Wp+0nlwux9WrV/Huu++2+jFtWWSkb9++8PT0xO+//05hjegVhTWiV97e3jh9+rTQbRis\n9j6yxjAMamtrea1/584d+kNKHuDg4IA1a9ZgxowZmDFjBgYNGiR0S0RPJBIJhg4diqFDhza5vry8\nHCkpKezl5s2b+Pvvv7F582b2BMiOjo4IDQ1Fz5490aNHD/To0QMhISEwNzfXW33SvOPHj4NhmFaP\nrAFA9+7dERcXp9P2RCIRnnzyScTGxmL58uU61SBEFxTWiF55eHggOztb6DYMltAjayKRCAzD8FLb\nz88PIpGIt6WP/fz8YGJigtu3b1NYI82aOnUqfvrpJ8yZMweJiYmwsLAQuiUiIFtbW/Tq1avZxSly\ncnJw69Yt3Lp1C1euXEF8fDy2bt2KyspKmJmZISQkBAMHDkRUVBSGDh3a7O9tvut3dMePH0ePHj3g\n5OTU6scEBwfjm2++gVqthomJ9ss2jBo1Clu2bEFRURGkUqnWjydEFxTWiF7JZDLk5+dDpVIJtoiG\nISstLYVMJhNs+3yOrFlaWsLR0ZG3ExRbWlrCw8MDt2/f5qU+aR++/vprhISEYM2aNVi2bJnQ7RAD\nJZPJIJPJMGzYMPY6lUqFW7du4fLly7h06RJOnDiBb7/9FiKRCL169UJUVBSioqIwZMiQR46M8V2/\nI4iLi8OYMWO0eky3bt1QWVmJzMxM+Pj4aL3NYcOGwcTEBMePH8ekSZO0fjwhuqDVIIleyWQy1NfX\no6CgQOhWDJJcLm+30yABwNnZmdeTivr7++POnTu81SfGz9vbG8uXL8cHH3yAW7duCd0OMSKmpqYI\nDg7G9OnT8fnnn+PChQsoLCzE7t27ERERgd9++w0jRoyAm5sbnn/+eRw6dAgqlcpg6rcnBQUFuH79\nepOw2xrBwcEAgBs3bui0XUdHR0RERODIkSM6PZ4QXVBYI3rl4eEBAOyB16Sp0tLSdrvACAC4uLjw\n+uHC39+fRtbII73xxhsIDg7G/PnzeZv2SzqGTp064ZlnnsGGDRtw8+ZNpKenY9myZUhKSsLo0aPR\npUsXrFq1Cnl5eQZZ31jFxcXB1NQUgwcP1upx9vb2cHd3b9NpXkaMGIHDhw/r/HhCtEVhjeiVZoof\nhbXmtecFRgD+w5qfnx+NrJFHEovF2LRpE06ePImdO3cK3Q5pR7y9vfHmm2/i/PnzSElJwaRJk/Dl\nl1/C29sbc+bMafPvJ77rG4tDhw4hMjISdnZ2Wj82ODhY55E1oCGsZWRkIDU1VecahGiDwhrRK2tr\nazg6OlJYewiFQtGuR9ZcXV2hVqtRXV3NS/2AgABkZWXxVp+0HxEREXjxxRfx+uuvo7CwUOh2SDsU\nEBCANWvW4N69e/jmm29w4sQJdO3aFf/617/Yc7MZcn1DxTAMDh8+jFGjRun0+G7durUprPXv3x/2\n9vY0FZLoDYU1oncymYzCWjMqKytRU1Mj6Miaqakp7yNrAHDv3j1e6vv4+ECtVvNWn7QvH330Eays\nrLBo0SKhWyHtmKWlJZ5//nncvHkT33//Pc6ePYuuXbvigw8+QFVVlcHXNzRXr15FTk5Om8JaW6ZB\nisViPPbYYxTWiN5QWCN65+HhQWGtGaWlpQAg+BLNfB7D06lTJwDgba+vl5cXr/VJ+2JnZ4f169fj\nhx9+wLFjx4Ruh7RzpqammD59Oq5du4bly5fjs88+Q1hYGM6cOWMU9Q3FwYMHIZVKmz0lQmt069YN\ncrm8Tcf5jRgxAnFxcbytbkxIYxTWiN7RyFrzDCWs8cnW1hYAf2FKKpXCysqKwhpptejoaIwbNw4v\nvvjiA9NnT548idOnTwvUGWmvLCws8Pbbb+PmzZsIDAzEkCFDsGTJEtTW1hpFfaEdOnQIo0aN0uk8\naUBDWAN0XxESAEaOHAmlUokLFy7oXIOQ1qKwRvROJpPRibGbIZfLAUDQaZB8E4lEMDEx4S1MiUQi\neHh4UFgjWvnmm29QUFCAjz76CABQVFSEmTNn4rHHHsNLL70kcHekvZLJZNi/fz++++47bNiwAUOH\nDkVubq7R1BdCeXk5Tp8+rfMUSABwc3ODRCJpU1gLCgqCj48PTYUkekFhjegdjaw1zxBG1kQiEa/T\nIEUiEUQiEa9hysvLi8Ia0YpMJsPKlSvxySef4OOPP0ZAQAB+/vlnMAyD5ORkVFRUCN0iacf+9a9/\n4eLFi5DL5ejTpw/i4+ONqr4+HT58GCqVqk1hDWj7IiMA8Pjjj1NYI3pBYY3onZubG4qLi3k9ObIx\nksvlsLS0hKWlpdCt8EokEvG6AIinpyctMEK0NmbMGLi7u2Pp0qVQKBTssSgqlQoJCQkCd0fau4CA\nAJw5cwbh4eEYOnQo9u/fb1T19eWPP/5AZGQku1iVrtq6yAjQcNzauXPnoFQq21SHkEehsEb0TiqV\nQq1Wo6SkROhWDIrQJ8TWFxpZI4akrq4O69atQ3h4ODvi33h02dzcnI5bI3rh6OiIP//8E9OnT8eE\nCROwd+9eo6rPN5VKhQMHDmD8+PFtrsXFyNqIESOgVqvx999/t7kfQlpCYY3onVQqBdBwXAj5H6FP\niA3oZxokwO9qjZ6enhTWSKskJycjNDQUb775Jqqrq5td2a2urg4nT54UoDvSEZmammLLli2YP38+\npkyZgp9++smo6vPp1KlTKCoqwrhx49pcq1u3bsjNzWUPP9CFk5MTevToQVMhCe/EQjdAOh4Ka82T\ny+UdZmSttLQU5eXl7OqQXPLy8uK1Pmk/kpOTkZKS0uJ9GIbBmTNnwDAMu7OBED6JRCKsW7cOFhYW\neO655yCVSjFy5Eijqc+XP/74A926dUNgYGCba2lWhLx58yYiIyN1rjN8+HDExsa2uR9CWkIja0Tv\nnJycIBKJKKzdxxBG1vRB84GXrxVBPT09ea1P2o+YmBjExsbCxsYGZmZmD71fWVlZm6dMEaKtTz75\nBNOnT0d0dDTOnTtndPW5Fhsby8kUSADw9vaGpaXlI3fWPMqQIUNw48YNFBQUcNIXIc2hsEb0zszM\nDA4ODhTW7tORRtYAoLCwkJf6mgPP+apP2pcnnngCly5dgq+vL8Ti5iebmJqatrsTCxPDJxKJsHnz\nZgwaNAjR0dGcr6LMd30uJSUlITU1lbOwZmJiAj8/P6SmprapzqBBg2BiYkLHtRJeUVgjgnByckJx\ncbHQbRgUQ1hgRF/HrIlEIt72RDo7O/Nan7Q/AQEBuHjxIp566qlmT7QrEonowxgRhJmZGfbu3QtH\nR0dMnjyZ81WU+a7Pld27d8PLywv9+vXjrGZgYGCbR9YcHBwQGhpKx7USXlFYI4KQSqUU1u4jl8s7\nxDRIoOEPHF8jX5qRWxpZI9qwtbXFr7/+io8++ggmJiZNQlt9fT2t+EYEY2dnhz179uDSpUtYunSp\n0dXnwi+//ILJkydzetxoQEBAm0fWgIapkP/88w8HHRHSPAprRBBSqZSmQd7HEEbW9MXFxYXXMMV3\nfdI+iUQivP3229i/f/8Dx7FlZGTQzxQRTPfu3fHNN99gzZo1OHDggNHVb4vLly8jNTUVkyZN4rSu\nJqy1dTbJ4MGDceXKFSgUCo46I6QpCmtEEBTWHtRRFhgBGqYq8vnBl+/6pH0bPXo0Ll26BD8/vybH\nsZ09e1bArkhHN3PmTEybNg1z587lJRjwXV9Xv/zyCzp37oyIiAhO6wYGBqKioqLNx+o99thjUKvV\ndFwr4Q2FNSIICmtN1dfXo6KiQvCRNX0cs8YwDIU1YvD8/f2RkJCAcePGsVMi6bg1IrR169ahvr4e\nixYtMsr6uti7dy+mTJnC+akzNKcAaOtxa87OzggKCqKpkIQ3dJ41IggKa03J5XIwDNNhRtZcXFyQ\nlpZmtPVJ+6NWq9nRhJqaGlRWVgIAli9fDplMhg0bNuDgwYN48sknUVtb22Kt1pxo18bGBubm5i3e\n5/6dN5rvzczM2HMIWltbw8LC4pHbI+2Dk5MT1q9fjylTpmDixIkYMWKEUdXX1oULF3D79m1MnDiR\n89pubm5wcHBAamoqhg0b1qZagwcPpp05hDcU1ogg7O3tDWqahdA0H+6EHlnTF2dnZ17P68N3faJf\n1dXVUCgUTS7l5eWoqamBQqFAdXU1qqqqoFAoUFNTg/LycpSXl6O2thZyubzJ7Wq1GlVVVaiurgYA\nKJVKqFSqVvVx9epVPPbYY3w+1TZxcHBgF0dxcHAA0PC71tzcHPb29mywk0gksLCwgLW1Nezs7GBh\nYfHA7dbW1nBwcGAvdnZ2Aj87ohETE4OffvoJCxYswNWrV1s8R6Ah1tfG9u3bERAQgD59+vBS39/f\nn5NFRiIjI7Fjxw7U1tY+cicMIdqisEYEYWdnh/LycqHbMBiGEtZoGiThS3l5OYqLi1FYWIiioiIU\nFxejqKjogRAml8shl8ubXFdTU9NsTU0osbS0hJWVFRwcHGBubg47Ozt25KpLly5NgolYLGa/B5qO\ncDk6OkIkEkEsFrPhxMrKCpaWluw2G49qPUxrRs0eNfpWW1uLiooK9vuHjfyVl5ejrq6uSc26ujr2\n92vjAFtRUYGamhqkpaWxNZRKJWpra6FUKlFZWfnI11oikcDe3r5JkNNcHB0d4eTkBKlUCicnpyZf\nE2599dVX6Nq1K77++mu8/vrrRle/NWpra/Hzzz/j9ddf53wKpAYXy/cDDWGturoaiYmJnB9bRwiF\nNSIIOzs7VFdXo66uTtC9doZCLpcDQIeZBsn3qRvo1BD8q6qqQm5uLnJzc5GXl4ecnBwUFRWxQayg\noADFxcXsRTOSpWFubg4nJyc4Ojo2+cDfpUuXB65r7qIJXsZK6B0zLZHL5aioqHggSGvC9P3fZ2Rk\nsF8XFRU1CZlAQ9BrHOA0IU4qlcLZ2Rmurq6QyWRwc3ODTCbrML8H28LLywv//ve/sWLFCkydOhVu\nbm5GVb819u/fj5KSEjz77LO8bSMgIAC//PJLm+sEBQVBKpXizJkzFNYI54z3Lx0xapo90+Xl5Qb9\noUVfSktLYWpq2mGmGtnZ2aG2tpa3KSN812/P6urqcO/ePWRlZSE7Oxv5+fnIzs5mA5nmX80OBqBh\nxNTFxYX9AO7k5ITAwED268Yf1J2dnSGVSmFvby/gsyQtcXR0hKOjIzw8PHR6fHV1NTtyWlRUhMLC\nQvZ7TXi/d+8eLl26hKKiIuTn5zc5DtDS0hLu7u5NApybmxs8PDzg6uoKLy8v+Pj4wMbGhqunbJSW\nLFmC77//Hh988AE2bNhgdPUf5YcffkBUVBS8vLx420ZAQADS0tJQX1/fpp0/IpEIffv2xdmzZ/Ha\na69x2CEhFNaIQDShpKysjMIaGvZka4436Qgav/98TJHiu74xq6mpQXZ2NtLS0pCTk4Pc3FykpaWx\nl8zMTNTX17P3l0gk7AdnDw8PREREsN9r/vXy8qIRcsKytLSEh4eHVmFPM1Kr+Zls/O+NGzdw7Ngx\nZGdnNznWufHPZpcuXdiL5jofH592/TvV1tYW7733Hl555RW8+eab6NKli1HVb0lhYSEOHDiA//zn\nP7xuJzAwELW1tcjIyICfn1+bakVGRmLLli0cdUbI/1BYI4JoPLJGGsKaIUz90dcxa5r3n68wxXd9\nQ6dUKpGamoqUlBSkpqbi1q1bSE1Nxd27d5uswuro6IjOnTvD29sb3bp1w6hRo9C5c2f2OldX13b9\nYZcYDisrKzZstUQulyMrKwsZGRnIyMhAZmYmMjIykJSUhNjYWOTm5rK/w6ysrODr64uAgAAEBgYi\nICCA/Vomk+njafFu1qxZ+PTTT/Hhhx/iu+++M7r6D/Pjjz/CysoK0dHRvG4nKCgIAJCamspJWHv3\n3Xdx7949eHp6ctEeIQAorBGBNB75IP8bWeso+H7/O8LPl1qtRlpaGpKSkthQpglm+fn5ABoWw/D1\n9UVgYCAGDx6MmTNnwtvbm73QVERibDRTNENDQ5u9vaamBllZWcjMzERmZibS0tKQmpqKY8eOYePG\njezvBFtb2ybhLTAwEN26dUNISAisrKz0+ZTaxMzMDO+99x5mzZqFJUuWICAgwKjqP8y2bdsQExPD\nLgTEFwcHBzg7OyMlJQWjR49uU63+/ftDLBbj3LlzvJxqgHRcFNaIIBqPfJCGkRAKa8ZTX99KS0uR\nnJyM69evIzk5GRcvXsSVK1fYhRwkEgmCg4MREhKCJ554gh2hCAkJabKSISHtnYWFBfz9/eHv79/s\n7aWlpeyUX83/qb/++gtffvkl+//J3d0dvXv3RkhICIKDg9G7d29069bNYEeZp02bhvfffx9ffPEF\nvv32W6Orf7+TJ0/i2rVrvE+B1OBqRUgbGxuEhIRQWCOco7BGBNHePky3lUKhMIiwpq9pkBTWHi4r\nKwvx8fGIj4/HlStXkJSUxI6UOTs7IywsDBEREZg9ezbCwsIQHBzM+95nQtoLiUSC3r17o3fv3pg0\naRJ7vVqtxp07d3D16lUkJSXh2rVr2LdvHz777DOo1Wr2g3h4eDgiIiLQr18/hISEwNTUVMBn08DU\n1BT//ve/sXDhQqxYsQKurq5GVf9+GzduREREBG/nVrufn58f7t69y0mtiIgIXLhwgZNahGhQWCOC\nMDMzg4WFBR2z9v8UCgU6deokdBt6Y2trC5FIxFuY4rs+V8rLy3Hx4kWcO3eODWg5OTkwNTVl9+iP\nGTMGoaGhCAsL4/1DEiEdlYmJCTst8plnnmGvr6ysRHJyMhviEhMT8fPPP6O8vBy2trbo3bs3+vfv\nj379+qFfv36CHQv33HPP4b333sPmzZvx7rvvGl19jaKiIvz66696XX3Sx8cHCQkJnNTq3bs3du3a\nBbVabbAjscT4UFgjgrG1tTX4D9P6olAo4OvrK3QbemNiYgJra2ve3n++6+tKqVTixIkTOHr0KE6c\nOIFr165BpVLB3d0d/fr1w6uvvor+/fujT58+jzzxMiGEf9bW1oiIiGhy7iyVSoXk5GTEx8fj3Llz\niI2NZUfgvLy8MGjQIERFRSEqKgo+Pj566dPGxgazZs3Ctm3bsGzZMs6DAt/1NbZt2wZLS0tMnjyZ\nl/rN8fHxQXp6OhiGafPJtyMiIlBeXo5bt26hW7duHHVIOjoKa0QwdnZ2NLL2/wxlGqQ+2dnZ8Rqm\n+K7fGrW1tTh37hyOHj2KY8eO4fz581CpVAgPD0dUVBSWLVuG/v3783oeIUIIt0xNTREWFoawsDC8\n8MILABp2xCQkJCA+Ph4nTpzAggULUFlZCX9/fwwfPhxRUVF4/PHHeZ1BMWfOHKxZswbHjx9HVFSU\n0dVnGAZbt27FzJkz9XoOPV9fX1RVVaGgoKDNsxdCQ0NhYWGBCxcuUFgjnKExWiIYMzMz1NXVCd2G\nQTCUsKavY9aA9hvWFAoFtm/fjnHjxqFTp0547LHHsHPnTgQHB2Pnzp3Iz8/H5cuX8fnnn2PSpEkU\n1AhpB+zt7REVFYWlS5fi0KFDKCkpQVxcHGJiYnDp0iVMmTIFzs7OiIiIwMcff4zbt29z3kNQUBD6\n9euH77//nvPa+qj/119/4c6dO5g3bx4v9R9GM/rJxXFr5ubmCAsLw8WLF9tcixANCmtEMGKxuMnJ\ndzsyQwlr+sR3WNfnzgClUokff/wR48ePh6urK1544QWo1Wp8/vnnuH37NtLS0rBlyxZMnjwZzs7O\neumJECIcCwsLDBs2DKtWrUJ8fDwKCwuxd+9e9OrVC1988QUCAgLQu3dvrF69GmlpaZxtd8qUKYiN\njeXtbyuf9desWYNRo0bpfUTKy8sLZmZmnC0y0qdPH1pkhHCKwhoRjJmZGYU1NEz9KCsr63DnvOI7\nrPNdX61W48CBA5gwYQJcXV0xe/Zs1NfXY+PGjcjLy0NsbCzmzZvX5hOtEkKMn0QiQXR0NDZt2oTc\n3FwcPnwYvXv3xueffw4/Pz9ERETg66+/hkKhaNN2xo0bB7lcjlOnTnHUuX7qJyYm4u+//8abb77J\nad3WMDU1haenJ9LT0zmp16dPH1y+fJk+3xDOUFgjghGLxTQNEg0rAqpUKoMYWdPnNEi+wzpf9ZVK\nJT799FP4+fnhqaeegkKhwDfffIO8vDzs378fzz33HCQSCefb5YJIJGIvhozPPrWt3dZeEhISMGzY\nMPb76upqvPPOO/Dz84NYLDaK94Nv+npNhg0bxtmqf20hFosxYsQIbN68Gbm5uTh06BBCQ0OxePFi\neHh4YO7cubh165ZOtbt06YKuXbvir7/+4rhrfut/+umnCA0N5eVYuNbQLDLChT59+qCyshI3btzg\npB4hFNaIYGhkrYFmT6ohhDV94jusc11fqVRi+fLl8PHxwapVqxAdHY0bN27g2LFjmDVrlsEGtMb4\nDOJc4rNPbWu3pZetW7di5MiReO2119jr3nvvPaxatQqzZ8+GUqnEoUOHdK7fXujrNVmwYAFGjBiB\nLVu28FJfF2KxGCNHjsR3332H7OxsrF69Gv/88w+Cg4MRExOD69eva11z2LBhOH36NA/d8lP/3r17\n2LNnD9566y3Bdlz4+vpyNg0yODgYlpaWuHz5Mif1CKGwRgRDI2sNlEolgI4X1oxlZI1hGGzevBkB\nAQHYsGED3njjDWRkZOCLL75AUFAQB51yi0ZqDMNff/2FuXPnYuPGjXj66afZ63fv3g0AePHFF2Ft\nbY2RI0caTYjmi75ek+joaGzYsAHz5s3jbeSpLRwcHPDKK6/g+vXr2L17N1JSUhAeHo6XX34ZpaWl\nra4TERGBixcv8vb3lev6X375JVxcXBATE8NJPV34+PhwFtbEYjG6d++OxMRETuoRQmGNCIZG1hrQ\nyJrh1s/OzsaoUaPwyiuvYOrUqUhNTcU777wDR0dHjrok7VFtbS3mzZuHAQMGPHC+qKysLADgdQl3\nY6PP12T69Ono168f5s+fb7A7C01MTDBx4kRcunQJmzdvxm+//YbQ0FAcPXq0VY+PiIhAdXU1b9Pw\nuKyvUCiwdetWvPbaazA3N+egO934+voiMzMTarWak3rh4eG4cuUKJ7UIobBGBEMjaw0MKazRMWv/\nc+3aNfTr14wJXnIAACAASURBVA+3b9/G8ePHsXbtWvqATVpl3759yMrKwrRp0x64jasPg+2Jvl+T\nadOmITMzE/v27dPrdrVlYmKCWbNm4caNGxg6dChGjhyJNWvWPPJx/v7+EIlEnI0U8Vl//fr1MDEx\nwdy5cznoTHc+Pj6ora1FTk4OJ/UorBEuUVgjgqGRtQYKhQKmpqZ6PQmoITDkkbUbN25g0KBB6Nat\nG65cuYKBAwdy3B0/Gk9/1EyHnDNnTrP3zcrKwvjx42FnZwdXV1fMmDEDxcXFD9TTXO7cuYMJEyZA\nIpE8MNWyoKAAL774Ijw9PWFubs4ukpCXl9eknkKhwOuvv44uXbrA0tISTk5OGDBgABYuXIjz58/r\n3CcA5OXlYd68eWwPnp6emD9/PvLz81v9+iUnJ+OJJ56Ara0tHBwcEB0djczMzFY/XuO///0vgIaF\nBhpr7v1ZvHhxk++5eq21uW9r35eHLbbSmusf9pxaek20eQ6tff2AhpGhxu+ToXNwcMDOnTvx8ccf\nY9GiRfjqq69avL+lpSVcXFw4WzCDr/oKhQJr167Fv//9b8F3Vvr6+gLg5lxrANCjRw+UlJSwo8aE\ntAnTBpMmTWImTZrUlhKkAxs7diwzY8YModsQ3KZNmxiJRCJ0GwzDMMyuXbsYkUikl/rjxo3j9f1v\nXB8As3v37lY9rra2lgkODmYGDhzI1NTU8NYfXwAwLf1q19w+ffp05vr164xcLmdeeeUVBgDz3HPP\nPfT+I0aMYE6fPs1UVlYyBw4cYLeRl5fHeHt7M66ursyhQ4eYsrIy5p9//mG8vb0ZX19fprS0lK01\nfvx4BgCzdu1apry8nKmpqWFu3rzJREdHP9CzNn3m5uYyXl5ejEwmY44dO8YolUrm6NGjjJubG+Pt\n7c3k5eU98jW6ffs24+joyNYoKytjTpw4wYwaNeqRr+n9goKCGAAPbPdh2+bjteb7fWnt83rUc2rp\nsdo8h9Zui2EYJicnhwHAdO3atdn3wZB99NFHjJmZGXPhwoUW79enTx9m0aJFvPXBRf0VK1YwDg4O\nTElJCUdd6U6lUjEWFhbM9u3bOamnUCgYkUjE/Pnnn5zUI4ZFm/yjzeePh/iFwhoRzIQJE5jJkycL\n3YbgPv30U8bHx0foNhiGYZjdu3dr9aG0LfX5fv8b19fml+X27dsZMzMzJj09nbfe+NTasPb333+z\n1927d48BwMhksofe//jx483WmzdvHgOA2bZtW5Prf/31VwYAs3TpUvY6e3t7BgCzZ8+eJvfNzs5+\naChoTZ8vvPACA4DZsWNHk+u///57BgAzb968Zms3NmPGjGZr/Pbbb1qHNVtbWwYAU11d/cBtrQlr\nXLzWfL8vrX1ej3pOLT1Wm+fQ2m0xDMNUVVUxABg7O7sW72eI1Go1M2DAAGbcuHEt3m/IkCHMK6+8\nwlsfba0vl8sZiUTCrFy5ksOu2iYgIIDTfnx9fZkPPviAs3rEcOg7rNE0SCIYU1NTOn4DDVNBhJ4C\nIgS+339d6x86dAijRo2Ct7c3D10Zjl69erFfu7u7AwByc3Mfev++ffs2e/2ff/4JABgzZkyT64cM\nGdLkdgB45plnAACTJk1C586dMWfOHPzyyy+QSqUPPVayNX3GxsYCAB5//PEm1w8fPrzJ7S05cuRI\nszUGDRr0yMfer7KyEgB0XjCBi9ea7/dFWw97Ti3R5jlosy3N+6J5n4yJSCTC3LlzceTIkRZ/v1lZ\nWaGqqoq3Ptpa/8svv4RarcaCBQs47KptfH19OZ062qNHD1oRknCCwhohAlMoFLC3txe6DfL/CgoK\n2FDQntnZ2bFfm5g0/Clo6YO5tbV1s9cXFBQAAGQyWZPjhqRSKQDgzp077H2/++477Nu3D8888wzK\ny8uxbds2TJ48GQEBAQ89GL81fRYWFgIAu00NzfeaHltSVFTUYg1taF6r2tparR/b+PH30+a15vt9\n4eo5tUSb56DNtjTviy49GQKZTIaqqip2caqH4Spoc11foVBg/fr1eOONNwxqZV0ul+8HGhYZobBG\nuEBhjRCBKZXKDjmyZqgCAgJw4cIFodswGq6urgCAkpISMAzzwKWioqLJ/SdMmIC9e/eiqKgI//zz\nD0aNGoXMzEzMmjVL5x5cXFwA/C9waWi+19zeEk0AuL/Goz4QN8fDwwMAIJfLtX5sS7R5rfl6XzSL\ndTRevEeX14jr56sNzTnLNO+TsUlISICLiwskEslD7yOXy3kNQm2pv3r1aohEoiYnizcE3t7eOi0o\n9DDdu3fHnTt3eB3hJB0DhTVCBNZRp0EaqlmzZuHy5cv4448/hG5FJ5rRgrq6OlRWVuo0MqQNzQmf\n//777wduO3nyJCIjI9nvRSIR7t27B6BhlGzw4MHsCZHbcs6msWPHAgCOHTvW5HrNeak0t7dk5MiR\nzdY4e/as1v307NkTAJCRkaH1Y1uizWvN1/vi5uYGoOlU1MuXL+vwbB5Nm+egDc370qNHD517E0pR\nURG++uorzJ49u8X7lZWVNRmV5pqu9bOysrB+/XosX77c4P7ueXh4ICcnh7MRyeDgYKjVaty6dYuT\neqTjorBGiMAorBmWPn36YPbs2Zg1axauXbsmdDtaCwsLAwCcP38ef/75p84faFtrxYoVCAgIwMsv\nv4y9e/eiuLgYZWVliI2NxXPPPYfVq1c3uf+cOXOQnJyMmpoa5Ofn45NPPgEAjBo1SuceVq5cCW9v\nbyxevBhxcXEoKytDXFwclixZAm9vb6xYsaJVz8PR0ZGtUV5ejjNnzuDjjz/Wuh9NOOR6hFab15qv\n92XEiBEAgM8++wwKhQI3b97E1q1bOX2euj6H1kpISAAAjBs3jst2eVdZWYmYmBhYWVnhrbfeavG+\nWVlZvI4c6lp/0aJFcHNzw/z583noqm1kMhmqq6tRUlLCSb2AgABYWFggOTmZk3qkA2vL8iS0GiRp\nC/r5adCzZ09myZIlQrfBMIx+V4Pk+/1vXB9arsZUVVXFDB06lJFIJMyxY8f4apEXCQkJTHh4OGNt\nbc3079+fuXXrFnsb/n+1PNy3+l5rr3/Yz0ZJSQnzxhtvML6+voyZmRnj6urKjB07ljl79myT+506\ndYqZOXMm4+Pjw5iZmTEODg5MeHg4s2rVKqaiokLnPhmmYZn3efPmMTKZjBGLxYxMJmPmzp370GX7\nm6tx7do1ZsyYMYyNjQ1ja2vLjBw5kklOTn7k879fTU0N4+npyQwaNKjFbfP5Wmtz39a+LwzDMIWF\nhcy0adMYZ2dnxsbGhhk7diyTmZmp83N61H1a+xxa+/oxDMP079+f8fT0NKpTc+Tm5jIDBgxgpFIp\nc+XKlUfeF61YFbMtvehSPz4+nhGJRMyvv/7KS19tpfm/fvXqVc5qdu/e/YFVS4nxo6X7SYdBPz8N\nunTpwqxevVroNhiGobDWWFVVFRMTE8OYmJgwb731FlNZWclHm6Sdio2NZUQiEbNr1y6hWyGN7Ny5\nkxGJRExsbKzQrbTavn37GGdnZ8bPz4+5cePGI+9/4sQJBgCTlZXFSz+61h80aBAzYMAARq1W89JX\nW5WWljIAmIMHD3JWMyYmhhk/fjxn9YhhoKX7CelgaBqkYbK0tMTu3buxefNmbNy4EV27dsXPP/9M\np5sgrfLkk09i48aNmD9/Pn7//Xeh2yEAfvvtN7z00kv49ttv8eSTTwrdziNdvXoVI0aMwMSJEzFu\n3DhcvnwZXbt2feTj4uPj4erqCk9PT1760qX+nj17cPr0aaxdu5ZdpMbQODo6wsbGBtnZ2ZzVDA4O\nxvXr1zmrRzomCmuECIxWgzRszz//PG7duoXhw4djxowZCAsLw86dO1FfXy90a8TAzZ07F4cOHcLa\ntWuFboUAWLduHY4cOYJ58+YJ3UqLEhISMGHCBPTs2RMKhQL//PMPtm7d2uoFPU6fPo2BAwfy1p+2\n9SsqKrBo0SJMnz4dERERvPXFBXd3d+Tk5HBWLzg4GGlpabQiJGkTCmuECKiyshJ1dXV0njUD5+7u\njm3btuHq1avo2bMnZs2aBV9fX7z//vstnkiakL59+za7miHRv7///lunk3PrQ01NDXbu3IkBAwag\nb9++uHfvHvbt24f4+HitTsyuVqtx5swZDBgwgJc+dam/cuVKlJSUsIvWGDLNipBcCQkJgUqlohUh\nSZtQWCNEQJrzE9HImnEICQnBjh07kJqaiunTp+Prr79G586dMXr0aGzbtg3FxcVCt0gIMRJ1dXU4\nePAgnn/+echkMsyePRseHh6Ii4vD+fPn8fTTT2s9ZTA+Ph6FhYUYM2YMLz1rWz8pKQlr167FJ598\nAplMxktPXJLJZJyGtYCAAJibm9OKkKRNKKwRIiClUgmAwpqx8fHxwerVq5GVlYWdO3fC2toar776\nKtzd3TF69Gh89913nC3/TAhpPxoHNDc3N4wZMwZJSUlYvHgx0tPTsWfPHgwbNkzn+n/++Sd8fX0R\nHBzMYde61Ver1Zg/fz569uyJuXPn8tIP1zw8PDg9Zs3MzAy+vr5ITU3lrCbpeMRCN0BIR0Yja8bN\nwsICkydPxuTJk1FWVoY///wTe/bswcsvv4z58+dj4MCBiIqKwvDhwxEREQFTU1OhWyaE6FlaWhqO\nHj2Ko0eP4tixYygpKUGfPn2wePFiTJw4Eb6+vpxt6/fff2/VSeD1UX/jxo04f/48EhISYGJiHGMD\nXB+zBgCBgYFISUnhtCbpWCisESIgCmvth52dHaZNm4Zp06ZBqVRi//79OHjwIL799lu8++67cHBw\nwLBhw9jw1ppV3QghxqeoqAhxcXFsOEtLS4ONjQ0GDx6MZcuWITo6mtOAphEfH48bN27g+++/57y2\ntvVzc3OxbNkyvPnmm+jRowcv/fDBw8MD+fn5UKlUnO1cCwwMxIkTJzipRTomCmuECEihUEAkErV6\nlS9iHOzt7TF16lRMnToVAHD9+nUcO3YMR48exbJly/Dqq69CJpOhf//+6N+/P/r164fevXvDxsZG\n4M4JIdpQqVS4ceMG4uPjce7cOcTHxyM5ORkmJibo06cPpk2bhuHDhyMyMhLm5ua89vLDDz8gODiY\nt0VUWlufYRjMnTsXnTp1wvLly3nphS8ymQwqlQr5+fmcHWMXEBCALVu2cFKLdEwU1ggRkEKhgJ2d\nndFMESG6CQ4ORnBwMF599VXU19cjISEBJ06cwLlz5/Dll18iNzcXYrEYISEhbHjr168funbtSj8b\nhBiQ3NxcnD9/ng1nFy5cQFlZGWxsbNC7d2+MGjUKH3zwAYYOHarXGRMVFRXYtWsXlixZInj9jRs3\n4sCBA4iLi4O1tTUv/fDFw8MDAJCdnc1pWFMqlcjPz4erqysnNUnHQmGNEAHRCbE7HrFYjMjISERG\nRrLX5eTk4OLFi7h48SJOnz6NHTt2oLKyEubm5vD390fv3r0REhKC4OBgREREwM3NTcBnQEj7V1dX\nh5SUFFy/fh3Jycm4ePEirl+/jrS0NABAly5dMHDgQIwfPx69e/dG3759eR85a8n27dtRXV2NWbNm\nCVr/9u3bWLRoEZYtW4bHHnuMl174JJPJIBKJOD1uLTAwEACQmppKYY3ohMIaIQKisEaAhg8IMpmM\nPXC/vr4eV69exZUrV5CUlISkpCQcPHgQhYWFABoOgg8NDUVYWBi6d++OoKAgBAYGolOnTkI+DUKM\nTnV1NW7fvs0Gs6tXryIpKQmpqalQqVSwsrJCSEgIwsLCEBUVhbCwMPTp08egzo3JMAy++uorTJ8+\nHVKpVLD69fX1mDFjBoKCgvDuu+9y3oc+WFpaQiKRcBrWPDw8YGNjg5SUFK3OmUeIBoU1QgREYY00\nRywWo1evXujVq1eT6/Py8pCUlMR+oIyLi8PXX3+N6upqAICTkxMCAgIQEBCAwMBA9uuAgAA6LpJ0\nWHV1dUhPT0dqaipu3bqF1NRU9pKVlQW1Wg0TExP4+voiLCwMMTEx7M4QPz8/g1/F9eDBg7hx4wZ2\n7dolaP0VK1YgKSkJly5dgpmZGS+96APX51oTiUTw8/Oj5fuJziisESIgpVJpUHtoiWFzc3ODm5sb\nRowYwV6nVquRmZnJfvhMSUlBSkoKzp49i/T0dNTX1wNoGI3z8/ODt7c3vL290blzZ3Tu3Bne3t7w\n8fExumNLCNGor69HdnY2MjIykJGRgfT0dGRmZiIzMxN3797F3bt32f8Hbm5u7I6M4cOHszs2/P39\nYWlpKfAz0c3KlSvx1FNPISwsTLD6//zzD1avXo2vv/4aQUFBvPShLx4eHrws309hjeiKwhohAqKR\nNdJWJiYm8PHxgY+PT5MQBzSMKNy9e5cdUUhPT0d6ejpiY2ORkZHBnjoCAKRSaZMQ5+PjAzc3N3h4\neMDV1ZWdykOIPtXV1SE/Px/Z2dnsv/fu3UNmZibS09ORkZGBnJwcqFQqAA3nPtTshOjcuTMGDx7c\nrkeYY2NjER8fj/PnzwtWPzs7G5MnT8a4ceMwb948XvrQJ65H1gDA398ff/31F6c1ScdBYY0QASkU\nCvj7+wvdBmmnzMzMEBgYiMDAQDz55JMP3K5QKJp86M3IyEBmZibOnTuHX375Bfn5+VCr1ez9bWxs\n4OnpyYY3V1dXyGQyuLm5QSaTwcXFBU5OTpBKpYIutkAMG8MwKCoqQnFxMYqKipCXl4ecnBz238bh\nrKCgoMljJRIJPDw84OPjg/DwcIwbN44NZ97e3nBzc4NIJBLomenf+++/j6effhoRERGC1K+rq8OU\nKVPg4OCA//znP+3itXdxcUFiYiKnNb29vZGens5pTdJxUFgjREA0skaE5ODggNDQUISGhjZ7u0ql\nQkFBAXJzcx/4EJ2dnY34+Hjcu3cPBQUFqKmpafJYOzs7ODs7w9nZmQ1wmn+dnZ0hlUohlUrh4ODA\nXhwdHfXxtAmHKioqoFQqoVAoIJfL2QCm+begoOCB64qLi5vsBBCJRHB1dYWLiws8PT3h5uaG3r17\nP7BTwN3d3WinKvLh999/x4ULF7B582bB6r/88stITEzEuXPn2s3fMqlUyi7mxBVfX1/2/wj9niPa\norBGiIAorBFDZmpqCnd3d7i7uz+w2Mn9ioqKUFhYiOLiYvZDeWFhIYqKitgP6CkpKSguLkZBQUGT\nKZiNOTo6wt7evkmIc3BwYK+TSCRwcHCAlZUVrK2tYWdnBwsLC9jb28Pa2hoWFhZwdHSEhYUFTdts\nRm1tLSoqKlBeXo6amhooFApUVVWhuroaCoUCNTU1KC8vZwOY5l/NRalUorS0lP1ecyxYY1ZWVmw4\nd3FxgVQqRc+ePZsE9sajsC4uLhCL6eOINhiGwcqVKzFhwgT06NFDkPqbN2/G1q1b8csvvyA4OJjz\nHoTi7OzMeVjz8fEBANy9exc9e/bktDZp/+i3IyECorBG2gvNSFlr1dXVobi4uEkQkMvlkMvlzQaE\nvLw8KBQKNihUV1ejoqLikduxs7ODubk5G/A0IzOOjo4QiUQQi8XscUyNb7e3t4epqSlMTEwe+D9q\namra4sJAIpGoxb3nlZWVD4xENlZdXY3KysomU8o0gQpoWJhIpVJBrVazobempgaVlZUAgPLyctTV\n1UGlUkGpVLKPlcvlYBjmodsFGqbO2trasuG4cXB2d3eHvb09G5jvD9IODg6QSqW0WI0e7Nu3D4mJ\nifj+++8FqX/u3DksWLAAy5Ytw8SJE3npQSjOzs7s7xeudvh4e3tDJBIhPT2dwhrRGoU1QgREYY10\nVGZmZuzqlm1RVlaGmpoaKJVKNgSVlpay4UWpVKKmpgZlZWWoqKhAbW3tQ0NOYWEh6urqAIANNvX1\n9SgrK2uyzcbBqTmNaz7sudva2j709vr6etTV1UEmk7HXWVhYsCHI1taWXRpdIpGw12leS80IoyY0\nWlpawsrKCg4ODrCwsICtrS1sbW1hYWHRJMRqAiwxbLW1tXjnnXcQExOD8PBwvddPS0vD008/jaio\nKKxcuZLz7QvN2dkZQMPvA67CmqWlJdzc3Oi4NaITCmuECKSmpgY1NTUU1ghpAzs7O9jZ2fFyMmCh\n3Lp1C927d8eKFSvw7LPPCt0OMTDr169HRkYGDh48yEv9devWITMzs9n6xcXFeOKJJ+Di4oKffvoJ\nJiYmvPQgpMZhTTN9kQs+Pj4U1ohO2t//MkKMhGbPPp1njRDSWFBQEJ577jm8++67LY7gkY6noKAA\nH374Id566y1Og4RGfn4+Vq1a1Wz9qqoqjB8/HjU1NTh8+HC73dGo2fHDx3FrFNaILiisESIQTVhr\nr3/wCCG6W7lyJYqKirBhwwahWyEGZNGiRbCzs8Pbb7/NW317e/sH6tfX12PKlCm4ceMG/vrrrzZP\nXzZktra2sLKy4iWs3b17l9OapGOgsEaIQJRKJQAKa4SQB8lkMrz22mtYtWoVSkpKhG6HGIDjx49j\n+/btWL9+PS8rnR45cgQ7duzAunXrmiwSo1arMXPmTBw7dgyxsbHo2rUr59s2NFKpFEVFRZzWpJE1\noisKa4QIhEbWCCEtWbx4MczMzPDpp58K3QoRWFVVFV544QVER0cjOjqa8/qVlZV48cUXMWHChCb1\nGYbByy+/jL1792Lv3r2IjIzkfNuGSCqVori4mNOaXl5eKCsrY3fUEtJaFNYIEQgds0YIaYmdnR2W\nLFnCLvhAOq4lS5agqKgIX331FS/133nnHZSUlDxQf+HChdi2bRv27NmD0aNH87JtQySRSFBaWspp\nTQ8PDwBAdnY2p3VJ+0dhjRCBKBQK2NjY0MlgCSEP9dJLL8HDwwMrVqwQuhUikAMHDmD9+vX46quv\nmpzOgStxcXFYt24dvvjiC7i7uwNoGFF75ZVXsH79emzfvh3jxo3jfLuGjMIaMSQU1ggRCJ1jjRDy\nKObm5nj//ffxww8/4MqVK0K3Q/QsPz8fzz//PJ599lleTuMgl8sxa9YsjB8/Hs899xwAQKVSYc6c\nOdiyZQt27dqFKVOmcL5dQ+fo6Mh5WOvUqRMsLS0prBGtUVgjRCAU1gghrTF16lT07NkT77zzjtCt\nED1Sq9V49tlnYWNjw9v0xxdeeAFqtRpbt24F0BDUZs2ahR9//BF79uzBM888w8t2DR0fI2sikQgy\nmYzCGtEazb8iRCAU1gghrSESibBmzRoMGzYMcXFxePzxx4VuiejBJ598gr///hsnT57k5djmDRs2\n4Ndff8WRI0fQqVMn1NbWYsqUKTh8+DBiY2MxfPhwzrdpLPgIa0DDVEgKa0RbNLJGiEAorBFCWmvo\n0KEYOXIkFi9eDIZhhG6H8CwhIQErVqzAxx9/jH79+nFe//z583jzzTexcuVKPP7446isrMTYsWNx\n/PhxHDlypEMHNYDfsJaTk8N5XdK+UVgjRCBlZWW0EiQhpNU+++wzXLx4EXv37hW6FcKjgoICxMTE\n4PHHH8cbb7zBef2ioiJMnDgRUVFRWLp0KZRKJUaPHo1Lly4hLi6uwyzP3xKJRAK5XM75jhEaWSO6\noLBGiEAUCgWFNUJIq4WFhWHatGlYvHgxamtrhW6H8KC6uhrR0dEwMTHBjh07IBKJOK1fW1uLiRMn\nwtTUFDt27EBWVhYGDRqE27dv48SJE+jZsyen2zNWEokEKpUKZWVlnNalsEZ0QWGNEIGUl5fDzs5O\n6DYIIUbkww8/RHZ2NrZs2SJ0K4RjDMPghRdewLVr1/DHH39AKpVyvo1XX30Vly5dwh9//IHU1FT0\n798fDMPg7NmzCA4O5nx7xkoikQAA51MhZTIZ8vPzoVarOa1L2jcKa4QIpKysDLa2tkK3QQgxIt7e\n3nj55ZexcuVKKJVKodshHFqxYgV2796Nffv2oXv37pzX/+STT7Bt2zbs2rULKSkpePzxxxEeHo5T\np07B29ub8+0ZM82OVK5H1lxcXKBSqVBSUsJpXdK+UVgjRCBlZWU0skYI0do777wDlUqFzz//XOhW\nCEd2796NDz74AOvXr+dlcY+ffvoJS5cuxeeff47U1FRMnjwZM2bMQGxsLC101QzNjtTy8nJO6zo7\nOwNoOC6RkNaisEaIQCisEUJ0IZFIsGjRInz++efIzc0Vuh3SRqdOncLMmTOxcOFCzJ8/n/P6x44d\nw+zZszFv3jxcvnwZb775JtauXYtNmzZBLKYzODWHr5E1TVgrLCzktC5p3yisESKQ8vJymgZJCNHJ\na6+9Bicnp/9j777jmrr3/4G/wl4BAsgIU0ApS1RWS13gqiLirK1Wa1sVrba33mK1ve1PO7y197bf\nW++9HWq11VatratiXVVErQMQt6iAA5AtkMEICeT8/vCb8zUyDJCTkPB+Ph55QE5O3vmcHMZ55fM5\nn4OPPvpI300h3XDhwgUkJSUhMTERa9as0Xr9rKwsTJo0CZMmTcK1a9ewd+9e/P7773jjjTe0/lrG\nhKueNRcXF5iYmFBYI51CYY0QPWhuboZMJqOeNUJIl1hZWWHVqlXYsGEDbty4oe/mkC64evUqxowZ\ng+joaGzduhUmJto9JMvOzsZzzz2HiIgInD59Gvfv38fp06cxduxYrb6OMTIzM4OVlZXWe9ZMTU0h\nEAgorJFOobBGiB6o/gFQWCOEdNXLL7+M8PBwvP/++/puCumkvLw8jBkzBsHBwdizZw+srKy0Wj8n\nJwfPPfcchEIhsrOzERERgfPnzyM0NFSrr2PM7OzstN6zBjwcCknnrJHOoLBGiB5QWCOEdJeJiQk+\n+eQT7N69G6dPn9Z3c4iGCgoKEB8fD39/fxw8eBC2trZarX/+/HmMGjUKlpaWuHnzJt59913s27cP\nTk5OWn0dY8dVWHN1daWeNdIpdGYpIXpAYY0Qog2JiYlISEhAamoqzpw5o/WLKBPtKioqwujRo+Ht\n7Y2DBw9q/bzlM2fOsMMcFQoFDh48iNGjR2v1NXoLPp/PWc8ahTXSGdSzRogeqP4B0AQjhJDuWrNm\nDTIzWzedlAAAIABJREFUM5GWlqbvppAO3Lp1C8OGDYOzszMOHToEe3t7rdb/888/MXLkSDQ2NmLg\nwIG4fPkyBbVusLOz0/o5awCFNdJ5FNYI0QPqWSOEaEt0dDSmTZuGd955B83NzfpuDmlDdnY2hg4d\nCg8PDxw5cgSOjo5arb93717Ex8dDJpMhNTUVGRkZEAqFWn2N3oarsObi4oLq6mqt1yXGi8IaIXqg\n+gdAPWuEEG1Ys2YN7t69ix9++EHfTSGPSU9Px6hRoxAREYEjR45o/dyxd955B5MnT4aZmRn27t2L\nNWvWwNTUVKuv0RtZW1tDJpNpva6DgwNEIpHW6xLjRWGNED2QSqWwtramC5ISQrTC398f8+fPx8qV\nK1FfX6/v5pD/tXv3biQmJmLixIk4cOCAVkdTNDY2YsiQIfjnP/8JX19f3L59G8nJyVqr39tZWVmh\nqalJ63UdHR0hFou1XpcYLwprhOhBXV0dDYEkhGjVypUrUVdXh7Vr1+q7KQTAf//7X0yfPh0LFizA\n5s2bYW5urrXaOTk58PT0xOnTp/HSSy/h3r17NOxRy6ysrDjpWXN0dIREIkFLS4vWaxPjRGGNED2Q\nSqU0BJIQolV9+vTB22+/jTVr1tB1nPSopaUFqampePPNN/HZZ59h7dq1WrvgdXNzM1auXIno6GhI\npVL89NNP+PHHH7VSm6iztLTkbBgkwzCcnA9HjBOFNUL0QCqVUs8aIUTr3n77bdjZ2eHvf/+7vpvS\nK4lEIkyYMAFff/01tm7ditTUVK3VvnnzJiIjI/Hxxx9DIBDg4sWLmDVrltbqE3Vc9qwBoPPWiMYo\nrBGiBzQMkhDCBVtbW/y///f/8M033+D27dv6bk6vkp+fj7i4OFy5cgUZGRl48cUXtVK3qakJq1at\nwoABA3D9+nVEREQgNzcXYWFhWqlP2sZVWHNwcAAAOm+NaIzCGiF6QD1rhBCuzJ8/HwEBAfjggw/0\n3ZRe49ChQ4iJiYGDgwPOnz+PmJgYrdQ9deoUBg0ahL///e9QKBR45ZVXkJmZCTc3N63UJ+3jcoIR\ngHrWiOYorBGiB3TOGiGEK6ampvjkk0/w888/IycnR9/NMXr/+Mc/MGHCBEyaNAkZGRnw8PDodk2R\nSIS//OUvGDFiBMrLy2FhYYHt27djw4YNsLCw0EKryZNwdc6aKqxRzxrRFIU1QvSAetYIIVyaMmUK\n4uLiWp0zlZubi7feeosuyqsFYrEYM2bMwHvvvYfVq1fj+++/h6WlZbfr/vrrrwgKCsJPP/0EPp8P\nNzc3ZGZm4oUXXtBCq4mmuBoGaWFhAWtra+pZIxqjsEaIHlBYI4Rwbc2aNcjIyMDhw4dRUlKC1157\nDeHh4Vi7di1OnDih7+YZtOzsbAwePBgnTpzAwYMHsXz58m7XzMvLw9ixY/HCCy/A29sbIpEISUlJ\nOH/+PEJDQ7XQatIZXIU1ALC3t6fZIInGKKwRogc0wQghhGtDhgzBuHHjsGjRIgQEBOCnn36CUqmE\npaUlbty4oe/mGSSGYbB27VoMGTIE/v7+uHTpEkaPHt2tmmKxGKmpqQgPD8e9e/fQr18/3LhxA998\n8w1+/PFH2Nraaqn1pDNMTU05uxaalZUVGhsbOalNjA+FNUL0gM5ZI4RwSaFQYP369Th79iyKi4vR\n1NQEuVwO4OG1unJzc/XcQsNTVVWFCRMmIDU1Fe+++y4OHz4Md3f3LtdTKpXYsmULgoKC8P3332PS\npEm4f/8+HB0dceHCBSxYsECLrSedZWJiAqVSyUlta2trNDQ0cFKbGB8Ka4ToAQ2DJIRwZdu2bfD3\n98frr78OkUiE5uZmtcdbWlpw+fJlPbWu52EYBtu3b++wp+PQoUOIiIjAjRs38Oeff2LVqlXdutB1\nZmYm4uLi8NprryEhIQHBwcHYs2cP3njjDZw6dQpBQUFdrk20g8ueNRsbG+pZIxqjsEaIHlBYI4Rw\nITMzE7NmzUJJSUmHB5oFBQWc9RoYmlWrVmHmzJn46KOPWj0mlUqxYMECjB8/HiNGjMCFCxcQGxvb\n5de6f/8+5syZg2eeeQZ2dnb48MMPsX//fohEIpw7dw5r1qyBubl5dzaHaAnXPWsU1oimKKwRomPN\nzc2QyWQ0DJIQonWxsbFYtWrVE9drampCYWEh9w3q4X755Rd8/PHHAIDPP/8ct27dYh87ffo0Bg8e\njL179+LXX3/Ftm3b2GnXH7V+/Xr897//Ze+3tLRg4cKF2L17N7uspqYGy5cvR//+/ZGZmYl169bB\n1NQUH3zwAV555RXk5ORg8ODBHG4p6SwKa6SnoLBGiI7V1dUBAPWsEUI4sXLlSmzatAkmJiYdDtXr\n7ZOMXLx4ES+//DJ7n8fjYeHChWhsbMSKFSswbNgw9O/fH5cuXcLUqVPbrLF27VosXLgQf/3rX1Fe\nXg6GYbBgwQKsW7cOCxcuxIMHD7BmzRoEBARg06ZN+Oijj/D888/jjTfeQGVlJc6cOYO1a9dqZcp/\nol1cDoOksEY6w0zfDSCkt1FN10thjRDClblz50IgEOD5559HS0tLq4NOCwsL5ObmYvz48XpqoX6V\nl5dj/PjxaG5uBsMwAB5OypKRkYG4uDgUFhZi8+bNeOmll9qt8e9//xtLly5ln//FF1/A3Nwc33//\nPQCguroaAQEBaGlpwZIlSzBs2DCkpqaisLAQK1aswN/+9jca8tiD0QQjpKegsEaIjlFYI4ToQnJy\nMo4cOYLExEQ0NTWpTTSiVCp7bc+aTCbDhAkTUF1d3WryFRMTExQVFeHcuXPo379/uzXWrVuHt956\nSy3orV27FgqFgl1HqVSioaEBR48excaNGzFhwgQkJibi0KFD8PHx4WbjiNZwHdaqqqo4qU2MDw2D\nJETHVGGNzlkjhHBt+PDhOHfuHJydndV6cZqbm3vljJAMw+DVV1/F5cuX1YKVilKphEQiwaZNm9qt\nsX79eixatIgNaipt1ePxeFiyZAlOnjyJ3377DWlpaRTUDISpqSmUSmWr/awNNAySdAaFNUJ0jM5Z\nI4ToUlhYGM6dOwdvb2+1wPboZBq9xd///nf8/PPPrXrUHtXc3IwvvviizZ7H9evXY+HChRofwCsU\nCty8eRP79+9HUlJSl9tNdM/U1BQAOOlds7a2hkwm03pdYpworBGiY9SzRgjRNT8/P2RnZ2PgwIFs\nYKurq0NZWZmeW6Y7e/fuxQcffKBR0GIYBosWLVJbtmHDhk4FNRUej4dPP/20U88h+qcKad25nl57\nTExMOJu8hBgfCmuE6JhUKoWVlRWdWE4I0SknJyekp6dj6NCh4PF4AIDc3Fw9t0o3Ll++jJkzZ3a4\nDo/Hg4WFBYCH0++XlpayPXAbNmxASkpKl4bEKRQKbN++HRcuXOh8w4netLS0gMfjsb8r2sTlTJPE\n+NAEI4ToGF0QmxDCJZFIBIZh0NLSAolEAuDhddVUs8+tXr0aH3zwAY4ePYq9e/e2G0AefU5HHBwc\nOux94PF4ra5P5ujoCB6PB1NTU9jb2wMALC0tYWNjo9E2dsaDBw+QlJQEhUKhtq0WFhZobm6GUqmE\njY0NwsPDERsbiyFDhmDo0KFwd3cHAHz99ddYsmRJt89dWrFiBY4cOdKtGkR3mpub2aGQ2kZhjXQG\nhTVCdKyuro7CGiG9kEQigVgsZr82NDRAJBKhqakJ9fX1qKurg1wuZ5c1NDRAKpVCLpdDLBajsbER\nMpkMYrEYSqUSMpmMnaSgrq6uzQkunuS///2v2gWdewpbW1u2l0sVBq2srGBtbQ17e3tYWlqCz+fD\nxsYGlpaWcHR0hIWFBezs7NjnCgQCWFhYYMWKFSguLmZrW1lZYdCgQYiLi0N0dDRiYmLQt2/fNtvx\nzTffdCmoqcKraiids7MzXF1du/JWED1paWmBmRk3h8kU1khnUFgjRMekUimdr0aIAWpqakJNTQ2q\nq6vZW1VVFUQiEWpra1uFsUe/r62tbbeuhYUFbG1tYWdnBwsLCzg6OrK9TKpl/v7+7DI+nw8zMzOY\nm5uzf0usra1hZWUFAOzjACAQCAAAZmZmrT4kUvVutaetHrHHNTc3s+fhdvS+PdpDp1QqIRaLAQBy\nuRz19fUAgIaGBjQ1NQF4+HdSNQRR9d6pHheJRJDL5airq8ODBw9aLauvr4dcLm/3PZfJZMjJyUFB\nQQH27t0LR0dHODo6wt7eHg4ODuzXoqIibN68mX0v2gpsj07vzuPx4OrqirCwMERGRiIoKAihoaEI\nCgp64vtIep6WlhbqWSM9AoU1QnSMhkES0jPIZDJUVFSgtLQUFRUVKCkpwYMHD9TCmCqQVVdXszO5\nPkogELA31YG+s7Mz+vbtq3bgLxAI2O9Vy21sbNgwZajMzMx69DaowqBIJGozREskEohEIvbxyspK\nFBQUQCwWo6KiAmZmZmoXzlYxNTWFjY0NHB0d4erqCk9PT/j7+8PNzQ3u7u7sMjc3N3aYJzEsFNZI\nT0FhjRAdo2GQhHBLJpOhqKgIJSUlakGssrISpaWlKC8vR1lZWaueFxcXF/Tp0wfOzs5wdnaGp6cn\nBgwYoLbs8RtXB3NEOywsLNghkV3V2NjYZnh//HbmzBlUVVWhoqJCrSfR1NSUDXEeHh5wc3ODp6en\nWqDz8/ODu7s7JzMPkq6hsEZ6CgprhOgY9awR0j21tbUoLS1FWVkZ7ty5gzt37qjdv3fvntq1kQQC\nATw8PCAUCuHp6Yno6Gj2voeHBwQCAXx9fWl4MmmTtbU1vLy84OXlpfFzGhsbUVZWhtLSUtTW1rLf\nq75evnyZ/SBB9bNqbm4OFxcXCIVC+Pv7w9/fn/059ff3R2BgIBwcHLjaTPIYCmukp6CwRoiOSaVS\ndpYxQkhrSqUSRUVFyM/PR0FBAfLz89nvCwsL2Uk1AMDDwwM+Pj7w9vbGgAEDMGHCBPj6+sLb2xte\nXl5wc3PT45aQ3sra2poNXB2Ry+UoKytDcXEx7t27h+LiYhQVFaG4uBj79+9HUVGR2jmBLi4u8PPz\nQ79+/RAYGIh+/fqxN2dnZ643q1ehsEZ6CgprhOiYVCpFv3799N0MQvTuwYMHuHLlCvLy8tRC2Z07\nd9iJJgQCAXtgOmPGDPTt2xfe3t5sQLO0tNTzVhDSdRYWFvD19YWvry+GDBnS5joikQhFRUUoKipC\nYWEh7t69i/z8fOzcubPd3xVVgAsODkZISAg7+QzRnFKp5DSsPdr7T0hHKKwRomN0zhrpbeRyOfLz\n85GTk4Pc3Fxcv34dubm5uHPnDoCHU6n7+/sjNDQUEydOZHskNOmZIMTYqWarHDBgQJuP19bWqv1O\n3blzB/v370dubi7bC+3h4YHIyEiEhoYiJCQEoaGhCAsLow87OiCTydjLR2gbl9dwI8aHwhohOkZT\n9xNjVlVVhaysLGRlZeHSpUu4evUq7t27B4ZhYGNjg5CQEISHh+P1119HeHg4wsLCIBQK9d1sQgyW\nQCDAkCFDWvXMNTc3Iz8/H9euXcPVq1dx/fp17N69G59//jlaWlpgaWmJkJAQhIWFISoqCtHR0Rg0\naBD1wv2vxsZGTi7SDjzcN1xdw40YH/pJIUTHaIIRYiwaGhpw4cIFNpxlZWXh7t27AIDAwEAMHjwY\nr732GkJDQxEeHo6+ffvSbHeE6IiZmRmCg4MRHByM6dOns8sbGxuRm5uLa9eu4dq1a7hy5Qo+/PBD\n1NTUwNzcHBEREYiJiWFvQUFBvfL3trGxEdbW1pzUprBGOoN+UgjRMQprxFCJRCKcOHEC6enpOHny\nJK5du4bm5ma4uroiJiYGc+fOZQ/wnJyc9N1cQkgbrK2tERkZicjISLXl+fn5yMrKQnZ2NrKysrBp\n0ybIZDLY29sjJiYG8fHxSEhIQFRUVK8IGlyGNS4nLyHGx/h/2wjpQVpaWtDY2EhhjRiEhoYGnD59\nGunp6Th27BguXLgAhmEQERGB+Ph4rFixArGxsfDz89N3Uwkh3aSalGTWrFkAAIVCgStXriArKwtn\nz57FV199hb/97W+wt7fHsGHDMHLkSCQkJCA8PBw8Hk/Prdc+rsNabwi8RDvoJ4UQHaqrqwMAOmeN\n9FilpaXYvXs3du/ejTNnzqCpqQlBQUEYOXIkli9fjhEjRtAU4YT0Aubm5mwP3KJFiwAAN2/exLFj\nx5Ceno6PP/4YS5cuRZ8+ffDcc89h6tSpGDt2rNGc80bDIElPQT8phOiQ6no51LNGepLi4mLs2rUL\nO3fuxNmzZ2Fra4vExERs2LABCQkJ8PT01HcTCSE9wFNPPYWnnnoKixcvhlKpxKVLl3Ds2DH89ttv\nmDJlCmxtbTFhwgRMnToV48aN42yCDl2gCUZIT0E/KYToEIU10lOIxWJs27YNW7ZsQWZmJuzt7ZGU\nlIRly5YZ1afjhBBumJiYYPDgwRg8eDCWLVvG9srv2rULM2bMgJWVFSZMmIBXX30Vo0aNMrhJShob\nG+Hg4MBJbQprpDMM6zeHEANHYY3oW25uLubNmwdPT0+kpqaif//+SEtLQ0VFBX788UckJydTUNMC\nmUyG999/HwEBATAzMwOPxzOK83qys7MRHx/P3jfW7ewOXb0n8fHxyM7O1nrdrhIKhViyZAmOHz+O\nkpISfPHFFygtLcXYsWMRGBiIf/zjHxCLxfpupsa4HgZJE4wQTVFYI0SH6Jw1oi85OTlITk5GWFgY\nzpw5gzVr1qCkpASbN29GYmIiXRxXy1auXInVq1fj1VdfhUQiweHDh/XdpG777rvvMGbMGPzlL39h\nlxnjdnaXrt6TN998E6NHj8aGDRs4qd8dbm5uSElJwcmTJ5Gbm4vk5GSsXr0avr6+ePfdd1FTU6Pv\nJj4RTTBCegoKa4TokKpnjcIa0ZWSkhLMnj0bMTExqKiowJ49e3Dt2jUsWbIEjo6O+m5eK8bSM7Nj\nxw4AwKJFi2BjY4MxY8aAYRg9t6rrDh48iAULFuDbb7/FpEmT2OXGtp3aoKv3ZPLkyfjqq6+QkpKC\ngwcPar2+tgQHB+Nf//oXioqKsGLFCmzatAn9+vXDv/71LzQ3N+u7ee1qaGiAra0tZ7W5CoLE+FBY\nI0SHpFIpLC0tYWFhoe+mkF5g69atCAsLw9mzZ7Fjxw6cPXsWycnJBnfuiCEqLi4GAKO43pxcLkdK\nSgri4uIwY8YMtceMaTu1RZfvyaxZsxAbG4uFCxdCoVBw/nrd4eDggBUrVqCgoAALFy7E3/72N8TF\nxeHmzZv6blqbamtrOftAq6GhwaAnXyG6Rf+xCdEhuiA20QWGYbB8+XLMnj0bzz//PC5fvoxp06YZ\nRY+VoVAqlfpugtbs2rULxcXFmDlzZqvHjGk7tUXX78nMmTNRVFSEXbt26fR1u4rP52P16tW4evUq\nLCwsEBUVhQMHDui7Wa2IxWLOJhipr6/nrNeOGB8Ka4ToUH19PQ2BJJxLSUnBv//9b/z8889Yt26d\nwRwUPBomVcMh582b12oZj8fD7du3MWXKFAgEglZDJ48ePYqJEydCIBDAysoKgwcPxs8//9zm66lu\nxcXFSE5OBp/Ph5ubG1566SVUV1errS8Wi7F06VL4+/vDysoKzs7OiIuLQ2pqKrKysjrcjhUrVrDL\nysvLkZKSAi8vL1hYWMDLywsLFy5ERUVFu+1rb3sfXae0tBRTp04Fn8+Hs7MzXn75ZYjFYty7dw8T\nJ06Evb093N3dMXfuXIhEIo33y759+wAAUVFRrdrX3nZquq8qKyuxaNEi9r3w9PTEggULUF5e3qod\nmq7bmf3U1rBbTZZ3tD/ae086sw2avn8AEB0drbafDEVAQACOHz+OadOmYdKkSThy5Ii+m8RqaWlB\nXV0dhTXSMzDdMH36dGb69OndKUF6sd7487Ny5UomNDRU381o144dO5hu/lnQuD7X+//R+gCYHTt2\ncPZaPckPP/zAmJiYMGlpafpuSpcA6PBnUPX46NGjmdOnTzMNDQ3MgQMH1J4DgJk0aRJTVVXFFBYW\nMqNHj2YAMIcOHWq33qxZs5jc3FxGJBIxixYtYgAwc+fOVVs3OTmZAcB8+eWXTF1dHdPU1MTcvHmT\nmTx5cqs2t7cdZWVljLe3NyMUCpljx44xEomEOXr0KOPu7s74+voy5eXlXdpeAMxLL73EbsPixYsZ\nAExiYiIzefLkVts2f/78jnfEI4KCghgArdrW0XZq0vby8nLG19eXcXNzYw4fPsxIpVLm5MmTjK+v\nL9O3b1+mtraWrdWZdbWxn560XJP98bjObIOmr8UwDFNaWsoAYJ566qk290NPp1QqmTlz5jACgYAp\nKSnRd3MYhmGYmpoaBgBz9OhRTupHRUUxy5Yt46Q24V5njl+0cPzxC4U1oje98ecnNTWViYmJ0Xcz\n2kVhzbApFArGz8+PWbx4sb6b0mWahrXjx493uM7du3fZ+zdu3GAAMEOHDm23XkZGBrvs7t27DABG\nKBSqrWtvb88AYH799Ve15SUlJRqHgPnz5zMAmB9//FFt+Q8//MAAYFJSUrq0vY9vg6pNjy8vLi5m\nADCenp7t1nucnZ0dA4CRyWTtvnZH7Wqv7SkpKQwAZuPGjWrLd+/ezQBg3nvvvS6tq4399KTlmuyP\n7myvpq/FMAzT2NjIAGD4fH6H6/VkjY2NjLe3N/PXv/5V301hGOb//gZkZ2dzUj84OJhZtWoVJ7UJ\n93Qd1mgYJCE6REMfCJdu3LiBe/fuYdGiRfpuCudiYmLafYxhGPj5+bH3+/XrB+DhNebaM3jwYPZ7\noVAIACgrK1NbZ+rUqQCA6dOnw8fHB/PmzcMvv/wCFxcXjWf7279/PwAgISFBbfmoUaPUHn9cR9vb\n1ja4u7u3uVy1baWlpRq1F3g4GQKALk+M1F7b09LSAADjxo1TWz5s2DC1xzu7rjb205Nosj8e15lt\n6MxrqfaLaj8ZIisrK8ydO7fHzGqpGibM1TBILmeaJMaHwhohOkRhjXBJdc6Th4eHnlvCvfZmUhOJ\nRHjvvfcQHBwMPp8PHo/HXs/o8XPQHvXoxD+qg9/HD+w3bdqEXbt2YerUqairq8PGjRsxY8YM9OvX\nD5cuXdKo3VVVVQAAFxcXteWq+5WVlW0+T5OZ4x7dhkdn/GxreWdCi+q15XK5xs9p6/mPU22rUChU\nO0dL9V7cvn27S+tqYz91dZs60plt6MxrqfaLoc8u6Onp2eq8TX1RXbybzlkjPQGFNUJ0iP5AEy71\n798fAJCdna3nlujP888/j08//RQzZsxAYWEhGIbR6jWupkyZgp07d+LBgwc4efIkxo4di6KiIrzy\nyisaPd/V1RUA8ODBA7Xlqvuqx3sST09PAOjUpCSacHNzAwDU1NSw++nRW319fZfWBTTfT6rJOh6d\n9l51oK5tnd0GTdXW1gL4v/1kqLKyshAUFKTvZgCgsEZ6FgprhOgQ/YEmXPLx8cHo0aPx4Ycf9uiL\nzXZE1TugUCjQ0NDQqgfqSU6fPg0AePvtt9nrXDU1NWmlbTweD/fv3wfwsIdq6NCh7AWQb9y4oVGN\npKQkAMCxY8fUlh89elTt8Z5k0KBBAIDCwkKt1lVdXDsjI6PVY6dOncIzzzzTpXU7s59Uw0UfHfJ6\n8eLFLmzNk3VmGzpDtV8GDhzY5bbp240bN7B161a89tpr+m4KgIcfTFhZWcHS0lLrtZVKJWQyGR0L\nEI1RWCNEhyisEa79z//8D65cuYLFixcb5DWwBgwYAODhp+xpaWmdPoAdOnQoAODTTz+FSCRCTU0N\n3nvvPa21b968ebh+/TqamppQUVGBzz77DAAwduxYjZ7/4YcfwtfXFytWrEB6ejqkUinS09Px7rvv\nwtfXF6tWrdJaW7VFFSDPnz+v1bqrVq1Cv379sHjxYuzcuRPV1dWQSqXYv38/5s6dizVr1nRpXUDz\n/TR69GgAwD//+U+IxWLcvHkT3333nVa3s6vboClVT/rEiRO12VydKSsrQ3JyMqKiojBnzhx9NwfA\nw541ri6ILZVKwTAMXXOVaIzCGiE6VF9fb/DnFZCeLSwsDNu2bcPmzZvxwgsvQCqV6rtJnfKf//wH\nERERGDNmDL788kt88cUX7GNtXcPqcVu2bMHs2bOxceNGuLm5Yfjw4YiNjW23Rme+//PPP+Hu7o4J\nEyaAz+cjKCgIBw4cwOrVq7F9+3aN2unm5obMzEwkJSVh9uzZcHJywuzZs5GUlITMzEx2qJym29ud\n7dH0IunTpk2Dl5eX2jY+qX2atN3FxQWZmZl48cUX8c4778DDwwP9+vXD+vXrsXXrVgwfPrxL62q6\nnwDgiy++wMyZM7Fjxw54enrinXfewaeffqrRe6fJ/nj0fme2QZPXUtm2bRu8vLzYiVUMyeXLl/HM\nM8/AzMwMu3btgrm5ub6bBODh+b9cDUlWDXnu7KgB0nuZ6bsBhPQm1LNGdGHixIk4cuQIpk2bhoiI\nCGzatAkjRozQd7M0EhUV1e4kEJqce+bq6ootW7a0Wv78889rXK+95c8++yyeffbZJ7bhSe10c3PD\nt99+i2+//bZbdTpap7PLO2JhYYFvv/0WSUlJ2LFjB2bMmPHEWpq+jkAgwBdffKEWyru7rqb7CXh4\nwLx169ZWy9tqf3f2h4qm26Dp+7d161ZkZmYiLS2ty7N16oNCocDnn3+ODz/8EM888wx27drFDlvu\nCSoqKtQ+ONGmmpoaAOhR20t6NupZI0SHaLpeoivDhg3D1atXMWDAAMTHx2PKlCnIy8vTd7OIgUpM\nTMS3336LhQsXYu/evfpuDgGwZ88evP766/jmm2+QmJio7+ZohGEY7NmzB6Ghofjoo4/w8ccf49ix\nYz0uuFRWVnLWs6aaldbZ2ZmT+sT4UFgjRIeoZ43okpubG/bu3YsDBw4gPz8fISEhmDFjBi5cuKDv\nphEDtGDBAhw+fBhffvmlvptCAKxduxZ//PEHUlJS9N2UJ2pubsa2bdswcOBATJ06FVFRUbhx4wah\nOxBXAAAgAElEQVSWLVumdpmJnoLLnrXq6mqYm5vDzs6Ok/rE+PS83xBCjBiFNaIP48aNw6VLl7B1\n61bk5+cjMjISzz77LLZs2YLGxkZ9N48YkJiYmDZnMyS6l5GR0aWLc+tScXExVq5cCT8/P7z88ssI\nCwvDxYsXsW3bNrUL1/c0lZWV6NOnDye1a2pq4OTkpPE5o4RQWCNER5qbm9HU1ERhjeiFqakp26t2\n9OhReHp6Yt68efDw8MCcOXPw22+/QSaT6buZhBADV1paiq+++goJCQno27cv1q1bhzlz5iA/Px9b\nt25FRESEvpv4RJWVlZz2rNEQSNIZNMEIITrS0NAAABTWiN6NHDkSI0eOREVFBbZv346dO3diypQp\nsLW1RWJiIqZNm4Zx48bRzKWEEI0UFRVh9+7d2LlzJ86ePcv+Lfnll18wYcIEg5r8pK6uDvX19Zyd\ns1ZTU0NhjXQKhTVCdKS+vh4A6ACY9Bhubm5466238NZbb6G0tBS7d+/Grl27MGPGDFhaWmL48OEY\nOXIkEhISEBER0SPPLSGE6F59fT1OnjyJ9PR0HDt2DJcuXYKDgwOSkpKwbNkyjB07FlZWVvpuZpdU\nVlYCAKc9az1tQhXSs1FYI0RHVGGNetZITyQUCrFkyRIsWbIElZWV+O233/DHH3/gs88+Q2pqKpyd\nnREfH4+EhAQkJCQgKChI300mhOiIXC7HuXPn2HCWmZkJhUKBkJAQjBw5Ep988glGjRplUD1o7amo\nqAAATmeD9PT05KQ2MU4U1gjREQprxFC4urpi/vz5mD9/PhiGwZUrV9iDtOXLl0MqlUIoFCI2NhYx\nMTGIiYlBVFQU7O3t9d10QogWFBYWIisri73l5OSgvr4efn5+SEhIwKJFi5CQkAB3d3d9N1Xrqqqq\nAICzCUaqq6sRHh7OSW1inCisEaIjFNaIIeLxeIiIiEBERASWLl2K5uZmZGVl4dSpU8jMzMRXX32F\nd999FyYmJggKCkJMTAyio6MRExODiIgIo/iknRBjVlNTg6ysLGRnZ7NfKyoqYGZmhpCQEMTExODl\nl1/GiBEj4O/vr+/mcq6oqAguLi6wtrbmpH5JSQn1rJFOobBGiI5QWCPGwMzMDHFxcYiLi2OXlZWV\n4fz588jJyUFOTg5WrlyJ6upqmJmZwcfHByEhIYiMjERoaChCQkIQHBxM578RomMKhQJ5eXnIzc3F\n9evXkZOTg9zcXNy9excMw8DDwwORkZFYuHAhIiMjMXToUDg6Ouq72TpXXFwMHx8fTmq3tLSgsrKS\nwhrpFAprhOgIhTVirDw8PJCUlISkpCQAgFKpxK1bt3D58mVcuXIF165dw5YtW3Dv3j0wDANbW1uE\nhIRgwIABCA0NRXBwMAIDA+Hn5wczM/q3REh31NXVoaCgAPn5+bh+/TquXbuGq1ev4vbt22hpaYGl\npSVCQkIQGhqKlJQUhIeHIzIykrNztAxNUVERZ2GtrKwMLS0tEAqFnNQnxon+KxKiI/X19TA3N4e5\nubm+m0IIp0xMTBAcHIzg4GC88MIL7HKpVIrc3Fw2wF27dg379u1jzxExNzeHn58f+vXrx94CAwPR\nr18/+Pr6wtTUVF+bREiPUl9fzwayx7+WlZUBePh76O/vjwEDBmDGjBkIDw9HWFgY+vXrRx+KdKCo\nqAhRUVGc1C4tLQUA6lkjnUK/rYToSH19PfWqkV6Nz+cjNjYWsbGxastra2tbHXCeO3cOP/30E6qr\nqwEAFhYW6Nu3L/z8/ODj4wNvb2/4+vrC19cX3t7e8PLyovPjiNGQSCQoKipCYWEhioqKUFxczN6/\nc+cOe9BvYmICHx8fBAYGIiQkBMnJyewHHP7+/rC0tNTzlhie4uJiTJ48mZPaJSUl4PF48PDw4KQ+\nMU4U1gjREQprhLRNIBAgOjoa0dHRrR6rra1lQ1xBQQHu3buHO3fuICMjA8XFxZDJZAAeHrS6u7vD\n19eXDXM+Pj7w8PCAu7s73N3dIRQK6TqHRO+qqqpQUVGBsrIylJeXo7S0FMXFxSgsLERhYSGKi4sh\nEonY9QUCAXx8fODj44NBgwZh0qRJbM8zBTLtam5uRllZGWfDIEtLS+Hi4kL7jHQKhTVCdKS+vp4O\nFAnpJIFAwF4eoC3l5eUoKipiex9UB7zHjx/H/fv3UVlZCYZh2PXt7Ozg6ekJV1dXCIVCNsh5eHjA\nzc0N7u7ucHZ2hrOzM/2+Eo3V1tbiwYMHqK6uRmVlJUpLS1FeXo7y8nKUlZWhoqICJSUlqKyshFwu\nZ59naWkJd3d3eHt7w8/PDwMGDGA/aFD1HNvZ2elxy3qXkpISNDc3cxrW6Hw10lkU1gjREepZI0T7\nVGGrvTDX3Nys1ouh6smorKxESUkJsrOz2QNrVS+dirW1NVxcXODs7AwXFxf2pgpzqpuLiwscHBxg\nb28PBwcH+tTcgEmlUojFYkgkEojFYjaAqW6VlZVq91W35uZmtToCgYD9AEAoFCIgIACenp5wc3NT\n6+11dnbW05aSthQVFQEAvL29OalP0/aTrqCwRoiOUFgjRPfMzMzg6emp0QGSWCxGRUVFqwPxBw8e\nsLcrV66oLX/8IB142FuiCm4ODg5wdHRkw5xquep7W1tbWFhYQCAQwMLCAra2trCzs4OFhQUcHR1h\nZWXF2fWejIFYLEZTUxPq6upQX18PuVyO2tpayOVy1NfXo66uDjKZDBKJBLW1tWwQU4Ux1VexWAyR\nSKTWC6tiY2PDhvI+ffrA2dkZERER7DJVaFc95urqCisrKz28G6S7iouLYW5uztnFvktKStC3b19O\nahPjRWGNEB1paGigsEZID6YKV50hFotRXV2tduD/aBhQhQCJRIKqqioUFBSoPa4KGE/C5/PZEGht\nbc2GAQcHB5iYmMDExIRtuyr0AQ+Dhqqnz97evtWMmnw+v8OZAZ8UFiUSCVpaWtp9vKGhAU1NTWrL\nGhsb2V5MqVTKBt7a2loAD3tDpVIpAEAmk6GxsZF9LblcDolEolajI3Z2drC2toa9vb1aaHZ2dkbf\nvn1bhepHw7SDgwOcnZ0pLPcixcXF8PT05Gzm2dLSUrVrVBKiCQprhOhIQ0MDnQNDiJHpSsBry6O9\nQVKpFHK5HGKxmA0rYrEYcrkcUqmUDUAMw7ATUSgUCtTV1QF4GGoqKioAPLzmlkKhAIBWPUdKpRJi\nsbjDdj0pjD0aHNtiZmYGPp+vtszS0pL9W6jqWQT+L0yam5vD398fwMPLOajO2eLz+bCwsICDgwMb\nIh0cHGBhYQE+n88G00d7KQnpjNu3b3PW88UwDO7du0c9a6TTKKwRoiPUs0YIaY9AINB3Ezo0ceJE\nODo6YsuWLfpuCiGcycvLQ3BwMCe1S0tL0dDQgMDAQE7qE+Nlou8GENJbNDY20nAaQohBkkgksLe3\n13czCOFUXl4e+vXrx0nt27dvAwACAgI4qU+MF4U1QnSEhkESQgyVWCzWynBPQnoqqVSK8vJy9O/f\nn5P6BQUFsLGx4WzyEmK8KKwRoiPUs0YIMVTUs0aMXV5eHhiG4Sys3b59GwEBAeDxeJzUJ8aLwhoh\nOkJhjRBiqKhnjRi7vLw8mJmZcTYBiCqsEdJZFNYI0ZGGhgYKa4QQgySRSCisEaOWl5cHf39/mJub\nc1KfwhrpKgprhOhIY2MjnbNGCDE4DQ0NUCgUNAySGLX8/HwEBQVxVp/CGukqCmuE6Aj1rBFCDJFE\nIgEA6lkjRi0vL4+z89Wqq6tRW1tLYY10CYU1QnSEetYIIYZIdeFs6lkjxiw/P5+m7Sc9EoU1QnRA\noVCgubmZetYIIQZHFdaoZ40Yq9LSUohEIjz11FOc1L9x4wasrKzg6+vLSX1i3CisEaIDjY2NAEBh\njRBicGgYJDF2ly9fBgAMGDCAk/rXrl1DcHAwzMzMOKlPjBuFNUJ0oKGhAQBoGCQhxOCIxWLweDzw\n+Xx9N4UQTly+fBk+Pj4QCASc1L969SrCwsI4qU2MH4U1QnSAetYIIYZKIpHA1tYWpqam+m4KIZy4\ncuUKZ71qwMOeNQprpKsorBGiA9SzRggxVHRBbGLsLl++jIiICE5q19bWoqSkhMIa6TIKa4ToAPWs\nEUIMFYU1YsyampqQl5fHWc/a1atXAQDh4eGc1CfGj8IaITqgCmvUs0YIMTQSiYSm7SdG6/r162hu\nbuZ0chEHBwd4eXlxUp8YPwprhOiAahgk9awRQgwN9awRY3b58mVYW1tzdo011flqPB6Pk/rE+FFY\nI0QHaBgkIcRQUc8aMWZXrlxBWFgYZxPoXL16lYZAkm6hsEaIDjQ0NMDU1BQWFhb6bgohhHQK9awR\nY8b1TJC5ubk0uQjpFgprhOhAY2Mjna9GCDFIEomEwhoxSgzD4NKlS5zNBHnv3j3U1NRwGgaJ8aOw\nRogONDQ00BBIQohBEovFNAySGKVbt26hpqYGTz/9NCf1z507BzMzMwwePJiT+qR3oLBGiA5Qzxoh\nxFDRMEhirM6dOwcrKyvOetaysrIQHh4OW1tbTuqT3oHCGiE60NjYSD1rhBCDRBOMEGN17tw5REVF\ncXY+eWZmJmJiYjipTXoPCmuE6ACFNUKIIWppaUF9fT31rBGjdPbsWc6GQCoUCly8eBGxsbGc1Ce9\nB4U1QnSgoaGBhkESQgyORCIBwzDUs0aMjlQqxfXr1zkLa1evXkVjYyOFNdJtFNYI0QHqWSOEGCKx\nWAwA1LNGjE52djZaWlo4C2uZmZng8/l46qmnOKlPeg8Ka4ToAIU1QoghkkgkACisEeNz9uxZ+Pj4\nwNPTk5P6WVlZiI6OhokJHWqT7qGfIEJ0QCaTwcrKSt/NIISQTlH1rNEwSGJszp07x1mvGvCwZ42G\nQBJtoLBGiA5QWCOEGCLqWSPGiGEYZGZmchbWpFIpbt26RWGNaAWFNUJ0oKmpicIaIcTgiMVimJub\n0zBuYlTy8vJQVVXFWVg7c+YMlEolhTWiFRTWCNEBmUwGS0tLfTeDEEI6hS6ITYxReno6+Hw+oqKi\nOKl//PhxBAcHw93dnZP6pHehsEaIDtAwSEKIIaILYhNjdOzYMQwbNgzm5uac1D9+/Dji4+M5qU16\nHwprhOgAhTVCiCFQKBRq96lnjRgbpVKJEydOYOTIkZzUF4vFyMnJobBGtMZM3w0gpDdoamqiYZCE\nkB7t2rVriIiIAADY2NjAwcEBCoUCLS0tGD9+PAQCAezt7eHk5ITXX3+dsynPCeHS5cuX8eDBAyQk\nJHBS/9SpU1AqlRg+fDgn9UnvQ2GNEB2gnjVCSE/n4+MDHo+HlpYW1NXVoa6ujn3s4MGDMDExgYmJ\nCZqbmzFs2DAKa8QgHTt2DM7OzggPD+ek/vHjxxEeHo4+ffpwUp/0PjQMkhAdoLBGCOnp7O3t8cwz\nz4DH47X5uFKpRHNzM4RCIUaNGqXj1hGiHenp6Rg5ciRnF6tOT0+nIZBEqyisEaIDNBskIcQQJCUl\nwcys/UE3ZmZmePPNN2FqaqrDVhGiHc3Nzfjzzz85O1+tpqYGV65cobBGtIrCGiE6QNdZI4QYgvHj\nx7eaZORRPB4Pr7zyig5bRIj2nDt3DlKplLPz1TIyMsDj8TBs2DBO6pPeicIaIRxTKpWQy+UU1ggh\nPV5YWBg8PDzafMzc3BzPP/88XF1dddwqQrQjPT0dPj4+CAwM5KT+8ePHMXDgQAgEAk7qk96Jwhoh\nHJPJZABAYY0QYhCSkpJgYWHRarlCocCSJUv00CJCtOPIkSOcnm955MgRzoZYkt6LwhohHGtqagIA\nOmeNEGIQxo0b12ooJI/HQ2hoKJ5++mk9tYqQ7qmqqsK5c+cwYcIETurfunULeXl5SEpK4qQ+6b0o\nrBHCMepZI4QYktGjR7eaZMTExARLly7VU4sI6b79+/fDzMyMs561tLQ0ODk50QcaROsorBHCMQpr\nhBBDYmtri7i4OLWpza2trfHCCy/osVWEdM++ffswatQo8Pl8TuqnpaUhMTGxw9lUCekKCmuEcIzC\nGiHE0CQlJbFhzdzcHPPnz4etra2eW0VI1zQ1NeHo0aOcDVGsqanBmTNnaAgk4QSFNUI4RuesEUIM\nzbhx49Dc3Azg4bWpUlJS9NwiQrrujz/+QH19PRITEzmpf/DgQfB4PIwePZqT+qR3o7BGCMeoZ40Q\nYmhCQkIgFAoBAMOHD0dQUJCeW0RI16WlpSEqKgpeXl6c1R8+fDgcHR05qU96NxpYSwjHKKwRQrSN\nYRiIRCIAQEtLCyQSCYCH0+vX1dW1uV5HRCIRGIZRWxYWFobS0lJERUXh119/BY/H0+hg1NHRETwe\nj71vZ2cHc3NzAIC9vT1MTU0BgK5FRXSCYRj8/vvvnPUOKxQKHD58GB9++CEn9QmhsEYIxyisEdJ7\nSCQSSKVSSCQS9nupVAqFQgGRSISmpiY0NDSgrq4OCoUCtbW1bMCqr6+HXC6HSCSCQqGAVCoFAEil\nUnZIolgshlKp1Ok2ff7555zWNzExgYODAwDAzMyMnQCCz+fD3Nwcjo6OsLS0hI2NDRv8BAIBzM3N\nYWdnB1tbW1hYWMDR0RHm5ubg8/ng8/mwt7dnb1xNKkF6vuzsbJSUlCA5OZmT+qdOnYJIJML48eM5\nqU8IhTVCOKYKa3TOGiE9n1gsRnV1NXurqalBdXU1xGIxJBIJxGIx+/3jt9ra2nbrqgJJR6HDxcUF\nVlZWsLe3h7m5ORtgbGxs2L8ffD6fnW3OwcEBJiYmaj1epqamsLe3V3vtR3u22vPoa7RHFTQ78njP\nHvAwwLa0tAAA+x4plUqIxWIAD8+JUwXTR19DLBZDoVBAIpFAJpOhsbERZWVlbPBVvVZDQwOampo6\nDLKq9+jRAKe6OTg4qD3m7OwMJycnODs7szfVviCGJy0tDb6+vhgwYAAn9ffv34/Q0FAEBgZyUp8Q\nCmuEcKypqQk8Hg8WFhb6bgohvYpcLkdlZSXKyspQUVHB3lQBrK2vqh4sFXNzczg5ObEH86oDe3d3\nd/Tv31/toF8gELQKAnZ2dmpD/wyZpaWlRh86ubq66qA1bVMNCVX1bj7ay1lbW9tmyL5z5w5EIhGk\nUilEIhFqampaXRTczMyMDXBtfXV3d4erqyvc3d3h4eEBV1fXJwZkohu7du3irFdNqVRi586dmDNn\nDif1CQEorBHCOZlMBisrK7VzOAghXSeVSlFUVISSkhKUl5ejoqICZWVlrYLZgwcP1J5nZ2cHd3d3\ntQNtPz+/Ng/AXVxc4OTk1KqXivRspqamEAgE3T4fTiKRoKamBg8ePGg32FdUVCA3NxfV1dWoqKho\n1aPYp08fuLq6ws3NDUKhEH369IFQKISbmxvc3Nzg5eUFHx8f2NnZdautpH0XLlzAjRs38P3333NS\n/9SpUyguLsaLL77ISX1CAAprhHBOFdYIIU8ml8vx4MEDlJWV4c6dO7hz5w5KS0vZ+6rvVSwtLeHk\n5ASBQAChUAhPT09ER0fDw8ODXebh4QFPT0+aqY1oTNUz6ufnp/FzZDIZampqUFZWhtLSUtTW1rLf\nl5WVISsrC7W1tSguLmaHfQIPz2cWCoXw9/eHh4cH+73qvq+vLwW6Ltq2bRsCAgIQExPDSf3t27cj\nIiICoaGhnNQnBKCwRgjnZDIZna9GyCMqKytRUFCA27dvo6CggP2+sLAQ5eXl7HpWVlbw8vJieyDG\njRvH3vf19YVQKISTk5Met4SQ/6MKXUKhEJGRkR2uW1NTg9LSUhQWFqK4uBj3799HUVERiouLcfbs\nWRQXF7PX6AQAd3d3+Pn5ISAgAIGBgQgMDERAQAACAgL0Ouy0J1MqldixYwdeeeUVTka2KBQK7Nq1\nC6mpqVqvTcijKKwRwjG5XE5hjfQ61dXVuH79OvLy8thQpvqq6lWwtLSEv78/AgMDERcXh5kzZ8LX\n15cNZG5ubnreCkK44eTkBCcnJ4SFhbW7Tnl5Oe7fv88Gubt376KgoAA7duzA3bt32TBnb2/PhjhV\ngOvfvz/CwsJ69YcZJ06cwP379zFjxgxO6h8+fBjV1dWc1SdEhcIaIRyTy+U0uQgxWiKRCLdv38b1\n69eRm5vLfr1z5w6Ah4HM09MT/v7+iI6Oxssvv4zQ0FD4+/vD19fXKCbeIIQL7u7ucHd3R1RUVJuP\n19bW4s6dO2q/c3/88Qe+/vpr9rp7AoEAISEhCA0NZb+Gh4f3ig9Ctm3bhsGDB3M2RHH79u149tln\nOzVUlpCuoLBGCMcUCgWFNWLwGIZBfn4+zp8/j/Pnz+Pq1au4fv06e/6Yvb09goODERYWhhEjRiAs\nLAwhISHw9vbWc8sJMU4CgQCRkZFtDrksKirCjRs3cO3aNdy4cQOXLl3C9u3b2V5toVDIBreoqChE\nRUUhMDDQaCbCksvl2L17N959911O6jc0NGDfvn347LPPOKlPyKMorBHCMepZI4aosLAQ58+fR3Z2\nNhvQxGIxzM3NER4ejoEDB2Ls2LEICwtDcHAwfH199d1kQsj/8vHxgY+PD8aOHau2vLCwELm5uWyI\nO378OP7zn/9AoVDA0dERkZGRiI6OZgOcof5e//777xCJRHjhhRc4qb9v3z7IZDJMnTqVk/qEPIrC\nGiEck8vldL0d0qO1tLTg4sWLyMjIwIkTJ5CZmYmqqiqYmpoiODgYUVFRmDx5MqKjoxEREUHnYBJi\noHx9feHr64tx48axy2QyGS5fvsx+KLN//37885//REtLC1xdXRETE4MRI0ZgxIgRGDhwoEEMXd62\nbRuGDx8OLy8vTupv374do0aN6hXDSYn+UVgjhGPUs0Z6mpaWFly6dAkZGRnIyMjAqVOnIBaL4erq\nihEjRuC9995DVFQUBg0aBFtbW303lxDCISsrK8TGxiI2NpZdVldXh4sXL+L8+fM4e/Ys/vGPfyA1\nNRUODg4YNmyYWngzMTHRY+tbE4vF+P3337F27VpO6ldXV+PQoUNYv349J/UJeRyFNUI4RueskZ6g\ntrYW+/fvx969e5Geng6RSIQ+ffpg+PDhWL16NUaMGIGQkBCjOWeFENJ1dnZ2GDp0KIYOHYqlS5eC\nYRjk5ubi+PHjyMjIwJo1a/D2229DIBAgISEBkyZNwoQJE3rEtQx//PFH8Hg8TJ8+nZP6P/zwAywt\nLTFlyhRO6hPyOAprhHCMetaIvpSVleG3337D7t27kZGRARMTEyQkJODjjz/GiBEjEBoaSuGMEPJE\nPB4PoaGhCA0NxZIlS8AwDK5fv47jx4/jwIEDeO2118AwDOLj4zF58mQkJyfDw8NDL21dt24dXnzx\nRU6CI8MwWL9+PWbPng0+n6/1+oS0hcIaIRyjsEZ0qba2Ftu2bcO2bdtw7tw52NjYYNy4cdi8eTMS\nExNhb2+v7yYSQgwcj8dDWFgYwsLC8MYbb7BDD/fs2YPU1FQsXrwYTz/9NGbNmoWZM2fqrMft1KlT\nuHbtGr7//ntO6qenpyMvLw8///wzJ/UJaUvPGmhMiBGiCUaILmRmZmLWrFkQCoVYvnw5AgMDsXfv\nXlRVVeGXX37Biy++2KODGo/HY289GZft7Gzt9ta/evUq3n33XQwcOBB2dnaws7NDSEgIFi5ciIKC\ngi63Lzs7G/Hx8ex9mUyG999/HwEBATAzMzOI/cc1Xb0n8fHxyM7O1nrdrnJwcMDMmTPx66+/oqqq\nCrt370ZAQACWLVsGoVCI2bNn4/z585y3Y926dRg4cGC716bTRv24uDgMGjSIk/qEtIXCGiEco541\nwqUDBw5g6NChePrpp3Hr1i38+9//RmlpKTZv3oykpCRYWVnpu4kaYRhG303QCJft7Gzt9tYfMGAA\n0tLS8Pnnn6OkpAQlJSX49NNPsX//foSFheHYsWOdbtt3332HMWPG4C9/+Qu7bOXKlVi9ejVeffVV\nSCQSHD58uNN1jY2u3pM333wTo0ePxoYNGzip3x3W1tZITk7Gli1bUFZWhi+//BK5ubmIjo7G8OHD\ncejQIU5et7q6Grt27cLixYs5qV9RUYG9e/ciJSWFk/qEtIfCGiEcowlGCBeysrIwfPhw9qT+jIwM\nnD9/HvPnz++xPWjU86I7P//8M0aNGgUHBwc4ODggOTkZGzduRFNTE95+++1O1Tp48CAWLFiAb7/9\nFpMmTWKX79ixAwCwaNEi2NjYYMyYMQYTurmiq/dk8uTJ+Oqrr5CSkoKDBw9qvb622NvbY8GCBcjJ\nyUF6ejr4fD7GjRuH+Ph45OTkaPW1Nm3aBEtLS7z44otarauyceNG2NraYtq0aZzUJ6Q9FNYI4Rj1\nrBFtkslkWLZsGeLi4gAAZ86cQVpaGoYPH67nlpGegmEYhIWFtVr+7LPPAgDy8vI0riWXy5GSkoK4\nuDjMmDFD7bHi4mIAgJOTUzdaa1x0+Z7MmjULsbGxWLhwIRQKBeev113x8fHYv38/Tp8+DYVCgdjY\nWCxfvhwymazbtRmGwXfffYc5c+ZwcrkRpVKJ7777Dq+88gpsbGy0Xp+QjlBYI4RjFNaItpSXl2PY\nsGFYv349vv76a2RkZODpp5/Wd7OIgaiqqgIAREREaPycXbt2obi4GDNnzmz1mFKp1FrbjIWu35OZ\nM2eiqKgIu3bt0unrdkdcXBz+/PNPbN++HRs2bMDw4cNRXl7erZpHjx5FXl4eFixYoKVWqjt06BDu\n3r2LefPmcVKfkI5QWCOEYxTWiDZUVVXh2WefhUQiQU5ODhYsWGBQQwofbatqOGR7Bz7FxcVITk4G\nn8+Hm5sbXnrpJVRXV7eqp7rdvn0bU6ZMgUAgaDXUsrKyEosWLYKXlxcsLCzg6emJBQsWtDo4FIvF\nWLp0Kfz9/WFlZQVnZ2fExcUhNTUVWVlZXW4n8DBkp6SksG3w8vLCwoULUVFRofH7d/36dYwfPx52\ndnZwcHDA5MmTUVRUpPHzgYfXnwIenlelqX379gFAqwkb2tqfK1asULuvrX3TmXU13Y/tTfkFoCwA\nACAASURBVM6iyfL2tqmj96Qz26Dp+wcA0dHRavvJkEyfPh2ZmZmora3FkCFD8ODBgy7XWrduHYYO\nHdpmj7I2rFu3DvHx8QgJCeGkPiEdYrph+vTpzPTp07tTgvRiveXnJzIyknnnnXf03QyN7Nixg+nm\nnwWN63O9/x+tD4DZsWMHZ6+lCwkJCUxAQABTVVWl76Z0GYAOf75Uj8+aNYvJzc1lRCIRs2TJEgYA\nM3fu3HbXHz16NHP69GmmoaGBOXDgAPsa5eXljK+vL+Pm5sYcPnyYkUqlzMmTJxlfX1+mb9++TG1t\nLVsrOTmZAcB8+eWXTF1dHdPU1MTcvHmTmTx5cqs2d6adZWVljLe3NyMUCpljx44xEomEOXr0KOPu\n7s74+voy5eXlT3yPCgoKGEdHR7aGVCplTpw4wYwdO/aJ76nKpUuXGGtra+a999574rqPCgoKYgC0\namd7bX38MW3sG673o6bb9aRt6ui5ndkGTV+LYRimtLSUAcA89dRTbe4HQ1BZWcn07duXGTlyZJee\nf/fuXcbMzIzZtm2bllv2UH5+PmNqamrw/0OI9nTm+EULxx+/UFgjetNbfn4GDBjAvP/++/puhkYo\nrPVMBw8eZHg8HpOdna3vpnSLpmEtIyODXXb//n0GACMUCttd//jx423WS0lJYQAwGzduVFu+e/du\nBoBacLG3t2cAML/++qvauiUlJe0e5GvSzvnz5zMAmB9//FFt+Q8//MAAYFJSUtqs/aiXXnqpzRp7\n9uzRKKxdunSJcXV1Zd5+++0O12uLnZ0dA4CRyWStHtMkrGlj33C9HzXdridtU0fP7cw2aPpaDMMw\njY2NDACGz+d3uF5Pd+7cOYbH4zGHDx/u9HOXLFnCeHt7M3K5nIOWPdx3ffv2ZRQKBSf1ieHRdVij\nYZCEcIyus0a668CBA3j66ac5u3ZQTzN48GD2ew8PDwBAWVlZu+vHxMS0uTwtLQ0AMG7cOLXlw4YN\nU3scAKZOnQrg4dAsHx8fzJs3D7/88gtcXFzanc1Pk3bu378fAJCQkKC2fNSoUWqPd+SPP/5os8aQ\nIUOe+Nzc3FzEx8djyZIl+Pzzz5+4/uMaGhoAoMtDubWxb7jej53V3jZ1pDPb0JnXUu0X1X4yVLGx\nsYiNjcXvv//eqedVV1fj+++/xzvvvMPJ/9nKykps2bIFy5Ytg5mZmdbrE6IJCmuEcIzOWSPdVVFR\nAaFQqO9m6Ayfz2e/NzF5+G+qowPt9mZnq6ysBAAIhUK184BcXFwAALdv32bX3bRpE3bt2oWpU6ei\nrq4OGzduxIwZM9CvXz9cunSpy+1UTeqhek0V1X1VGzuiOpenvRrtuX//Pp577jn89a9/xQcffPDE\n12mL6r2Vy+Xdev7jOrNvuN6P2tqmjnRmGzrzWqr98v/Zu++wpu79D+BvAmElLNkBREUUXKioKKIV\nqjgordbVakWvtYDj1tbb1g7bq7ZWqx16fx3YYWtrW1vtElsXIlextg60WhAc2DIDCQQICQkJOb8/\nfJJLBJSRw+HA5/U8PGJy8jnfJBDO+3zH6Q4rFPr5+bVpHicA7NixA/b29vjHP/7BSpu2b98OJycn\nLFmyhJX6hLQGhTVCWEZhrXmWOsvNVf3OFBISggsXLqChoYHrpvCKt7c3AKCyshIMwzT5UqlUZts/\n/PDD2L9/P+RyOU6ePImpU6eioKCgQweCXl5eANBk8QTj/433343xgP7OGtXV1S0+pqqqCtOnT0di\nYiLWrVtndl9bFqbx8/Mz1bOktrw3bL2Pxteh8bL3d3tNO+v5toVCoQDwv/eJr/R6Pc6fP4+QkJBW\nP0alUuGDDz7Ak08+ycpy/Uql0lTfwcHB4vUJaS0Ka4SwjE9hzWAwmHoI2K6v1+tZHVbCdv3OtGTJ\nEhQXF+P999/nuikdYjz7r9PpoFar79kz1FHGCzhnZGQ0ue/UqVMYN26c6f9WVlYoKioCcLuXbMKE\nCaYLHF+9erXdbYiPjwcAHD9+3Oz2tLQ0s/vvJjY2ttkaZ86caXZ7rVaLhx56CPPnz28S1NpqxIgR\nAIC///67Q3Xu1Jb3hq330cfHB4D50NWLFy+249ncW1ueQ1sY35fhw4e3u21dwXvvvYeSkpI29WB9\n+OGHUKvVWLFiBStt2rlzJ3Q6HZKTk1mpT0irdWTGW09ZIIKwo6f8/Li6ujIpKSlcN6NV9uzZwwiF\nwk6pHxcXxyQkJLC2r8b1wfMFRhiGYTZs2MAIhULm4MGDXDel3caOHcsAYDIzM5m9e/cyDzzwgNn9\naOeCDy2RyWRMcHAw4+vry+zbt4+Ry+VMTU0Nk5qayvTr189sgRAAzNSpU5k///yT0Wg0jFQqZV54\n4QUGAPPggw+2uz3GVQAbrwZ5/PhxxtfXt9WrQd68ebPJapCnT59mJk6c2Oz2c+bMMd3e0ldrffnl\nlwwA5r333mvV823NfQzTtveGrfcxISGBAcCsWrWKqaqqYq5evcosXLiw3T9vd9umLc+htftiGIb5\nz3/+wwBgbSXEzpCamsoIhULmtddea/Vj6uvrmd69ezOrV69mpU319fVMQEAAs2bNGlbqE36j1SBJ\nj9FTfn5EIhGza9curpvRKrt372bs7e07pf7UqVOZpUuXsravxvW7Q1gzGAzM448/ztjY2DA7duxg\nDAYD101qs3PnzjFhYWGMo6MjM3bsWCYvL890X0thorW3t3RgW1lZyaxZs4bp27cvIxQKGW9vbyY+\nPp45c+aM2XaZmZnM4sWLmT59+jBCoZBxcXFhwsLCmE2bNjEqlard7WSY24EtKSmJkUgkjI2NDSOR\nSJjExMQWg1pzNf78809m+vTpjEgkYsRiMRMbG8tkZ2e3+rVpb1jTarWMv78/ExUVdde2svnetGXb\n1r6PDHM7QC1YsIDx9PRkRCIREx8fzxQUFLT7Od1rm9Y+h7a8X2PHjmX8/f0ZrVbb4jZdlcFgYLZv\n385YW1sziYmJbfpM++yzzxihUMj89ddfrLRt165djFAoZP7++29W6hN+o7BGeoye8vMjFAqZPXv2\ncN2MVtm1axcjEok6pX5MTEyTZcstqXH97hDWjDZt2sRYW1szkydPZm7evMl1c0gPcPDgQcbKyorZ\nu3cv100hjezZs4exsrLiZW/79evXmejoaMbGxobZvHlzmx5rMBiYIUOGsDYyw2AwMIMHD2722o6E\nMAwt3U9It8IwDHQ6HW/mrDU0NMDa2rpT6ut0OlYvacB2fa68+OKL+PXXX1FaWorQ0FCsXr26VSsK\nEtJecXFxSElJQXJyMn788Ueum0MA/PDDD1ixYgU++OADxMXFcd2cVisrK8OqVaswaNAgyOVynDlz\nBs8//3ybavz444/Izs7GM888w0obv//+e1y9epW1+oS0FYU1QlhkXFaZwlrT+nq9ntUwxXZ9Lo0Z\nMwYXL17Ef/7zH+zbtw99+vRBcnIy8vLyuG4a6aYSExNx5MgRbN++neumENxesv7YsWNISkriuimt\ncvXqVSQmJqJPnz748ccf8d577yErK6vN145saGjAunXrMG/ePAwdOtTi7WxoaMDLL7+M+fPnY/Dg\nwRavT0h7UFgjhEV6vR4AeLMqYWf3rLH5urBdn2tCoRBJSUm4efMm3nrrLaSnpyM0NBQxMTH48ssv\nodFouG4i6WbGjBnT7GqGpPNlZGS06+Lcnamurg579uxBdHQ0Bg8ejJMnT2L79u24fv06nnjiiXZ9\nPu/evRt5eXlYv3695RsM4NNPP8WNGzewceNGVuoT0h4U1ghhkTGs8aWHh4ZB8o+DgwOWL1+O3Nxc\npKamwsXFBUuWLIGPjw8WLlyI/fv3t/saToQQ0ha1tbXYt28fFixYAF9fXyxduhRubm44ePAgcnJy\nkJSU1O5rlmk0GmzYsAHLli1r0/XY2lJ/48aNWLZsGfr372/x+oS0V/c97UxIF2AMa2wGIEuisMZf\nAoEAcXFxiIuLg1QqxTfffIMffvgBjzzyCIRCIWJjYzFz5kw8+OCDcHd357q5hJBuQi6X48CBA/jx\nxx9x7Ngx6HQ6TJgwARs2bMD8+fNN17PrqPfeew8ymazD1w5sybvvvgu5XI4XX3yRlfqEtBeFNUJY\nRMMgW65PF8Vmj4+PD1avXo3Vq1dDJpMhNTXVtCDBE088gbFjx2LSpEmYNGkSIiMjTRerJoSQe1Gp\nVPj111+RkZGBjIwM/P777xAKhZgyZQref/99xMfHW/yC90qlElu3bsXq1avh7+9v0drG+tu2bcNT\nTz3FSn1COqJnHskQ0kn4FtY6c9EPjUYDe3t71vbFdn2+8PT0xNKlS7F06VLU1tbi0KFDSEtLw759\n+7Bp0ybY2tpizJgxiI6OxqRJkzBu3Lh2D1MihHQ/arUaZ86cQUZGBk6cOIGzZ89Cp9Nh4MCBmDRp\nEp5++mlMmzYNYrGYtTZs27YN9fX1ePbZZ1mpv3XrVtTX19MKkKRL4scRJCE81dDQAIA/Ya2uro7V\ngNO4fk1NDZydnVnbF9v1+UgsFmPu3LmYO3cuAKCkpAQnTpxARkYGvv76a7z66quws7PD8OHDMWrU\nKNNXaGgob4byEkLar6GhAVevXsX58+dx/vx5nDt3DpcuXUJ9fT2Cg4MxadIkrFixApMmTYJEIumU\nNslkMmzfvh0vvvgievXqxUr9HTt24KWXXmKlPiEdxY8jSEJ4im9z1rRaLathrXH92tpaODk5sbYv\ntut3BxKJBAsXLsTChQsBAEVFRcjIyMDZs2dx/vx57Nq1C3V1dRCJRBgxYoRZgAsODoZAQGtUEcJX\nBoMB169fNwWz8+fP4+LFi1CpVHBwcMDw4cMRERGBf/7zn4iOjoafnx8n7Xz11VchFovx5JNPslJ/\n48aNEIvF+Oc//8lKfUI6isIaISzi2zDIzhqaqFarodfrWev5Yrt+d+Xv74/HHnsMjz32GIDbP795\neXm4cOECLly4gHPnziElJQUajQa2trbo378/Bg8ejEGDBpn+DQ0NpRBHSBdTUlKCnJwcZGdnm/69\ndOkSVCoVbGxsMGDAAISHh2POnDkIDw/H6NGjYWdnx3Wzce3aNezcuRM7duxgZW7ttWvX8OGHH7JW\nnxBL4McRJCE8RWGt+fpKpRIAWOv5Yrt+T2FjY4PBgwdj8ODBSEhIAHC7d/Ty5cu4fPkycnJy8Oef\nf+KTTz5BUVERgNtDLUNDQzFkyBAMGjQIISEh6N+/P/r27dslDv4I6a60Wi1u3bqFGzduIDc31/T7\nefXqVdTW1gIAAgICMGjQIIwdOxb/+Mc/EBYWhmHDhsHW1pbj1jfvqaeewoABA/D444/zsj4hlsCP\nI0hCeIpvc9Y6K6zV1NQAYC9MsV2/J7Ozs8Po0aMxevRos9urqqpMZ+yNX4cPH0ZpaSmA25cWCAgI\nQFBQEIKCgtC/f3+zf9lcnICQ7kKpVOLmzZu4efMmbty4YfZ9UVERDAYDAMDX1xeDBw9GZGQknnji\nCdPJExcXF46fQevt378fhw8fxokTJ1hZ+Grfvn2s1ifEUvhxBEkIT/Ftzlpn96yxNUyR7fqkKVdX\nV0RGRiIyMtLsduPB5Z0HlkeOHDE7uPT29kZQUBD8/f0REBCAgIAA9O7d2/R/S12riZCuTCqVorCw\nEEVFRSgoKEBBQQGKiopQWFiI/Px8lJWVAWh68iM2NtZ04iMoKIj3J6rUajWeeeYZJCQk4L777mOl\n/rPPPovFixezUp8QS6KwRgiL+DgMks1x+8b6NAyy53BycsLw4cMxfPjwJvc1HrZ148YN/PXXXygs\nLMTJkydRWFgIqVRq2tbOzg7+/v7w9/dH79690bt3b0gkEkgkEnh5ecHHxwc+Pj4074R0SWq1GlKp\nFFKpFOXl5SguLkZJSQkKCwtNgayoqAharRYAYGVlBR8fHwQEBMDf3x9jxozB/PnzTYGsuw8r3rhx\nIxQKBTZv3sxK/Q0bNkChUOD1119npT4hlsSPI0hCeIqPYY3NpYuN9alnjQC3A1hISAhCQkKavV+r\n1ZoOYu/sZbh48SJKSkpQWVlp9hixWGwW4Hx9feHp6QmJRAJvb294eXmhV69e8PT05NWQMNL1VFVV\nQS6Xo6KiAuXl5SgvL0dJSQnKy8tRWlqKsrIy023GOWNG7u7ukEgkCAwMRGhoKGJjY029ycaA1lXn\nkbHt2rVr2L59O9566y34+vqyUn/Hjh2s1SfE0vhxBEkIT/FxzhqbZ2uN9WtqaiAUClkbcsl2fdI5\n7OzsTMO6WqLVaiGTyVBSUmJ2cCyTyVBaWoqLFy+2eMBsbW0Nd3d3uLu7o1evXk2+9/DwMN3m4uIC\nZ2dnuLq6wtnZmTe/0+Tu9Ho9ampqUFVVherqatTU1KCiogIVFRWmIFZRUYHKysom3xs/343EYjH8\n/PxMJwpGjBgBLy8v08kDb29v+Pr6wsvLq8cGsdZYvnw5BgwYgKSkJNbqDxo0CMnJyazUJ8TS6K8N\nISzi25w1lUoFkUjEen25XA53d3fW9sN2fdJ1NB4eeS9qtRoymazFA/HKykpIpVJkZ2ebtqmurm62\nlqOjI5ycnODs7AxnZ2e4ubnB2dnZ7DYnJye4ubnB3t4eDg4OcHJyglAohKurK2xtbSESiSASiWBr\nawtXV1dYWVlZ+uXpVhiGQVVVFerr66FSqaBSqVBfX4+qqirodDoolUrU1dVBo9FAoVCgpqYGSqUS\nNTU1pu+Ntxv/r1arm92Xi4sLPD09zUJ8nz59Wgz0Xl5ecHBw6ORXpPvZu3cvTpw4gdOnT7NyQqRx\nfb78XSaEwhohLOLbMMja2lpWV+Uz1pfJZPD09GRtP2zXJ/zk6OiIwMBABAYGtvoxDQ0NqKioMPW6\nVFVVNQkBNTU1UCgUUCqVkMvlyM/PN92vUCig1WpbDAWNCYVCiMViODo6ws7ODi4uLhAIBLC2tjYN\n6TVuA8AUAo3PzdgrLhaLm6xu5+DgcM+e5rsFRmNQuhtjUGpMp9OZejQbvw5qtdo0P6u2thY6nQ7A\n7V7xhoYGGAwGVFdXQ6PRoK6uDkql0vR5ejfG18EYnhsHaC8vL1PP6J33ubq6mnpP3d3d6UCeA0ql\nEs888wyWLl2KcePG8a4+IWzhxxEkITzFt7CmVCpZDWvG+jdu3ICHhwdr+5HL5azWJz2HtbU1vLy8\n4OXl1eFatbW1pp4gY++QMagoFIomPUYKhQKAeeAxhhcAqKysbDbwVFdXm1bZNGrutsYa76MlYrEY\n1tbWMBgMzX6mNQ6Vzd3WOGja2dmZFoPx9PQ0BUlj0LSysjLrgTTe7ubmZqrTuFfS1taWLv/Ac2vX\nroVGo2FtURG26xPCFn4cQRLCU8Y5DXw5S1tbW8vqCorG+tSzRnoiY5hgcxEftq1Zswbp6em4dOkS\n100h3UhaWhpSUlLw9ddfs/LZbay/d+9e+ttAeEfAdQMI6c741rOmUqlYPTttrE9hjRB+io6OxuXL\nlyGXy7luCukmqqur8fjjj2PmzJmYP38+K/WXLl2KRx55BPPmzbN4fULYRmGNEBbxKaxpNBrodDrW\nwlrj+hTWCOGniRMnQiAQICMjg+umkG7in//8J+rr6/Hhhx+yUn/lypXQ6/V49913WalPCNsorBHC\nIj6tBmmcr8LWMMjG9WUyGatzytiuT0hP5eLigvDwcJw4cYLrppBu4PPPP8eePXvw8ccfs/KZvWfP\nHnz11Vf4+OOPeT38mPRsFNYIYVFDQwMvetWA/11Imq2eNWN9R0dHKBQK1nq+GhoaWK1PSE8XExOD\n9PR0rptBeO7atWtYtWoV/vWvfyEuLs7i9fPy8rBixQqsWbMGM2bMsHh9QjoLhTVCWKTX63kT1ow9\nX2yFNWN9vV6PhoYG1nq+KisrWa1PSE8XHR2N3NxcFBcXc90UwlMajQbz5s1DaGgoNm3aZPH6KpUK\nDz/8MAYNGoTXX3/d4vUJ6UwU1ghhER/DGtvDIFUqFQBAIpGwsp+SkhJW6xPS00VFRcHOzo7mrZF2\nS0xMRGFhIb799lvY2tpavH5SUhLKy8uxf/9+VuoT0pkorBHCIr1ez4v5akDn9azV1NQAoLBGCF85\nOjpizJgxNG+NtMu2bdvw1Vdf4csvv2zTBepb680338TevXuxZ88e+Pv7W7w+IZ2NwhohLDIYDBTW\n7qhfWVkJsVjc5OK5llJcXMxqfULI7XlraWlpXDeD8MyRI0fwwgsvYNu2bZg2bZrF6x86dAjPP/88\ntm7diqlTp1q8PiFcoLBGCIsMBgMEAn78mimVStjb27M2bNNYXyqVstrrVVJSQr1qhLAsOjoaf//9\nN27dusV1UwhP5OTkYN68eVi0aBGefvppi9fPzs7GI488goSEBKxZs8bi9QnhCj+OIgnhKYZhYGVl\nxXUzWqW2tpa1+WqN65eWlrIaptiuTwgBxo0bB5FIRKtCklYpLi7G9OnTMWzYMKSkpFi8fklJCaZP\nn47w8HDs3LnT4vUJ4RKFNUJYxLewxtYQyMb1i4uL4efnx9p+2K5PCAFsbW0RGRlJ89bIPdXU1CAu\nLg5isRg//fQT7OzsLFpfoVBg2rRpEIlE2L9/P4RCoUXrE8I1CmuEsIjCWtP6bA9TpGGQhHSO6Oho\n6lkjd1VfX4/Zs2dDJpPhl19+sfiFqdVqNR588EEoFAocPnyYLnxNuiUKa4SwiE9z1jorrJWWlsLX\n15e1/bBdnxByW3R0NEpLS5Gbm8t1U0gXpNPpMHfuXJw7dw6HDh2y+MqPOp0Oc+bMQW5uLo4ePcrK\nypKEdAX8OIokhKf41LOmUqlYDWsqlQoikQhlZWWsDVPU6XSs1ieE/M+oUaPg7OxMvWukiYaGBiQk\nJOD48eM4cOAAhg0bZtH6Op0Ojz76KDIzM3Ho0CGEhoZatD4hXQmFNUJYxKewVltbC5FIxGp9gUCA\nhoYG1s6AFhcXs1qfEPI/NjY2mDhxIs1bI2YaGhqwePFiHDhwAAcPHsTEiRMtWr++vh7z58/HkSNH\ncPDgQYwaNcqi9QnpaiisEcIiPoU1tVrNalhTq9VgGAYAEBAQwMo+CgoKWK1PCDEXHR2NEydOwGAw\ncN0U0gXo9XokJCTg+++/R2pqKiZNmmTR+sagdvToUaSmplo8CBLSFVFYI4RFfAprKpUKjo6OrNbX\n6/UQCoXw9vZmZR+FhYWs1ieEmIuJiUFFRQWuXLnCdVMIx7RaLebOnYuffvoJBw8eRExMjEXrazQa\nzJ49G+np6Th27JjFgyAhXRWFNUJYxKewplarWQ1rarUaWq0Wfn5+sLa2ZmUfBQUFrNYnhJgLCwuD\nh4cHzVvr4dRqNR566CGcOHECR48etXhQq66uxrRp03D69GkcPXoU48aNs2h9QroyCmuEsIhPYc24\nAAib9TUaDXr37s3aPgoLC1mtTwgxZ2Vlhfvuu4/mrfVglZWVmDp1Ki5cuID09HRERkZatL5UKsWk\nSZNw7do1nDhxAhERERatT0hXR2GNEBbxKax1Rs+aSqVidT5ZYWEhzVcjpJNFR0cjIyMDer2e66aQ\nTvbXX39h/PjxKCgowH//+1+MHDnSovWvX7+OyMhI1NXV4cyZMwgLC7NofUL4gMIaISziU1jrjDlr\nSqWSwhoh3UxMTAyUSiUuXLjAdVNIJ7p8+TKioqIgFApx+vRpDBo0yKL1T548icjISHh6eiIzM5NW\n+SU9FoU1QljEp7DWGT1rVVVVrIapgoICCmuEdLLQ0FD4+fnRvLUe5MCBAxg/fjwGDRqE06dPw9/f\n36L1v/76a0ydOhUTJ05Eeno6PDw8LFqfED6hsEYIiwwGAwQCfvyadcacNbVazdqcstraWigUCpqz\nRggHaN5az8AwDDZv3oxZs2bhkUcewc8//wwnJyeL1l+/fj0WLFiAxMRE7Nu3j9W/S4TwgQ3XDSCk\nO+NLz5per0d9fT1rPWvG+gB710ArLCxktT4hpGXR0dFYvXo1tFot7OzsuG4OYYFWq0ViYiK+/PJL\nvP7661i7dq1F61dWVmLRokU4fvw4vvjiCzz22GMWrU8IX1FYI4RFfAlrarUaAFg7g2msD4C1ni/j\nBbGpZ42QzhcTEwO1Wo3ff/+dLlTcDd24cQPz58/HrVu3cOjQIUyZMsWi9bOysjBnzhzo9Xr897//\npRUfCWmEH+OzCOEpvoQ1lUoFAKz1rBnrOzg4wM3NjZV9FBYWQiwWs1afENKyfv36oU+fPjRvrRva\nu3cvwsPDAQBnz561eFD7/PPPMWHCBAQGBuLcuXMU1Ai5A4U1QljEl7Bm7PliK6wZ6/v4+LBSH6CV\nIAnhWkxMDM1b60Y0Gg1Wr16NRx99FA899BAyMzPRv39/i9VXKpVYvHgxlixZgqeeegppaWnw9va2\nWH1CugsaBkkIi/gS1ow9X2wNgzTWl0gkrNQHKKwRwrXo6Gjs2bOH9cWKCPvy8vJMwx737t2L+fPn\nW7T+77//joULF0KpVCI1NRVxcXEWrU9Id0I9a4SwiC9hrbN61vz8/FipDwBFRUUWXz6aENJ6MTEx\nqK+vx6+//sp1U0gHfP755xg1ahSEQiGysrIsGtQYhsGOHTswceJE9O3bFxcvXqSgRsg9UFgjhEV8\nCWtarRYAWFvFzVifzZ6v4uJiCmuEcEgikWDgwIE0FJKnqqqqkJCQgCVLliApKQm//vorgoKCLFb/\n+vXrmDBhAtauXYs33ngDR48eZXW0BSHdBQ2DJIRFfAlrBoMBAGBtbc1qfTbnrJWUlMDX15e1+oSQ\ne4uJiaFFRngoNTUVycnJMBgMFh+WaDAY8J///AcvvfQSBg4ciLNnz2LYsGEWq09Id0c9a4SwiG9h\nja221tXVAQBrYaqurg5VVVV0lpYQjkVHR+P8+fOoqqoCAJSWluLLL7/Ee++9x3HLSHMUCgWSkpLw\n4IMPYvz48bhy5YpFg9qNGzcwadIkPPfcc1i7di1+//13CmqEtBH1rBFCTGFNIGDnNUpVJgAAIABJ\nREFU/I1MJgPAXlgrKSkBwO4CJoSQewsLC4PBYMDChQuRl5eHmzdvAgBsbW2xcuVKjltHGjP2pjEM\ngx9++AEzZ860WO36+nps3boVmzZtMvWmDR8+3GL1CelJKKwRwiKBQACGYbhuxj0Z28hWWKuoqADA\nXpgqLS0FwF4YJIQ0T6/X4/Dhw0hPT8fRo0eRk5MDAEhLS0N9fb1pO7r+YddRVlaGVatWYf/+/Zg7\ndy5SUlLQq1cvi9U/deoUli9fjvz8fKxduxYvvvgibG1tLVafkJ6GwhohLLKysjL1WnVlbA+DlMvl\nAAAvLy9W6peUlEAgENA1egjpZMeOHUN8fDyEQiF0Op3p9sZBDQA8PT07u2nkDgaDAZ9++inWrl0L\nJycnHDt2DJMnT7ZY/bKyMjz//PPYvXs3ZsyYgYMHD6JPnz4Wq09IT0Vz1ghhkUAg4FVYY6tnrbKy\nEgBYO7sqlUrh5eUFGxs6/0RIZ4qNjUV4ePg9t6Neb26dOXMGERERSE5OxmOPPYYrV65YLKjpdDq8\n9dZbGDhwII4fP459+/ZRUCPEgiisEcIivoQ1ttXU1LBaXy6X05l7QjhgbW2NPXv23LVX3tramuaT\ncqS0tBRJSUmIioqCk5MTsrKysH37dojFYovUP3z4MIYOHYp169bhySefRG5uLmbPnm2R2oSQ2yis\nEcIiKysrXsxZM15f7c6hS5aiUqlYrV9RUWHROReEkNYLCQnBxo0bW+yZt7GxYW0INGmeTqfDjh07\nEBISgl9++QWffvop0tPTMXToUIvUP3fuHOLj4zF9+nQEBwcjOzsbGzduhKOjo0XqE0L+h8IaISzi\nS8+ag4MDgP8tsW9parWa1fqVlZVwd3dnpTYh5N6effZZjBo1qsWhyNTz3XG1tbWt2u7AgQMIDQ3F\nSy+9hGeffRbXr19HQkKCRdqQk5OD2bNnIyIiAhUVFcjIyEBqair69etnkfqEkKYorBHCIgprtxl7\n1tgMa9SzRgh3BAIBdu/e3Wzvml6vp561DtDr9Vi4cCH69Olj+ixtzpkzZxATE4OHHnoIoaGhyM7O\nxrp162Bvb9/hNhQWFiIpKQlhYWHIzc3FN998g9OnT+O+++7rcG1CyN1RWCOERRTWblMqlazWp541\nQrgXEhKCV199tUlga2hooLDWTvX19Zg3bx6++eYbVFVV4ZNPPmmyTVZWFmbMmIHIyEgAt0Nbamoq\nAgMDO7x/uVyO559/HgMGDMCRI0fw3nvv4fLly5g7dy5rqwcTQsxRWCOERXyZs8Z2WKuurma1fkVF\nBV3HiZAu4Jlnnml2OCSFtbbTarWYM2cODhw4gIaGBjQ0NGDr1q3Q6/UAgNzcXCQkJGD06NGoqKjA\ngQMHkJ6ejrFjxzZbT6/X49133zVdSuVu5HI51q1bh759++KLL77A22+/jevXryMxMRHW1tYWfZ6E\nkLujda4JYRH1rN1mXA2SrfoKhYKGQRLSBRiHQ4aFhZndTnPW2katViM+Ph4nT55EQ0OD6fbS0lLs\n3LkTly9fxq5duxAcHIy9e/dizpw5d+3pqq2txezZs3H06FEUFxdj8+bNzW73999/4+2338Ynn3wC\ne3t7vPzyy1i1ahUtHEIIh6hnjRAW8SWsGf8Q83WBEZVKBZFIxEptQkjbNDccksJa69XW1mLatGk4\ndeqUqRetsQ0bNpiGJF65cuWeQxJLS0sRGRmJEydOAAA+/PBDswuYA8Cff/6JhIQEBAcH49tvv8Uz\nzzyDmzdv4rnnnqOgRgjHKKwRwiK+hDWxWAw7O7tWDY9pK4PBAJ1OB6FQyGp94+UHCCHc+9e//oUR\nI0YAuN1zb+y9J3dXVVWFSZMm4cyZM00CFXD7804mk+HDDz9s1ZDEnJwcjBo1Crm5uaZ6CoUCP/30\nEwAgMzMT8fHxGDZsGC5evIh3330Xf/31F9avXw8XFxfLP0FCSJvRMEhCWMSXOWvA7TPf5eXlFq+r\n1WoBAC4uLqzWt8SKZ4SQ5qnVami1WjQ0NJiGNdfW1poCAMMwqKqqMnvMihUrkJSUBJFIhMOHD5sW\nGmqJk5NTi0v/A4Crq6upB0koFJou7Ozi4gKBQAA7Ozte9wKVl5cjJiYG165da7ZHzcjGxgbbtm1D\nbGzsXeudPn0acXFxUKlUZvUEAgFeffVVvPPOO/j1118RFRWFAwcOIC4ujhYNIaQLorBGCIv40rMG\n3A5rMpnM4nU1Gg2A2wdabNannjXS06nValRVVUGhUEChUKC2thZKpRI1NTWoq6uDSqVCdXU11Go1\n6urqoFAoUFdXB7VajerqaqhUKtTX16Ourg4ajabZANYecrkc06dPt8AzbD1jsLO3t4eDgwNsbW0h\nEong6upq6ulzc3ODo6MjHBwc4OLiApFIBEdHRzg5OcHJyQlisRhubm6mLzZ7B6VSKSZNmoT8/Pxm\ne9Qa0+v1SEtLw6VLlzB8+PBmt9m3bx8WLlwIg8FgNucNuL065+XLlxEdHY3MzEyMHz/eYs+DEGJ5\nFNYIYRGfwpqXlxerPV+9evVitT6FNdJd1NfXQyaTQS6Xo7S0FHK5HDKZDJWVlWZhTKFQmP3f+Ltw\nJ2dnZzg4OEAkEsHFxQUODg5wdHSEq6sr3NzcIJFITGHE3t7erIfqztADwLTyqqOjo9nvXVt6xu5k\nMBhMq8Y2R6fTmV0UWqvVmubCKhQKAGg2ZBoDqEajMQuodXV1yM/PNwVXY1itq6sz9Rzeyc7Oziy8\nGV8/4/e9evWCp6cnPD094ePjA09PT3h4eMDW1rbF5wXcXtRj4sSJKC0tvWdQM7KyssI777yD3bt3\nN7lvx44dePrppwGgxZEdtra2GDNmDAU1QniAwhohLKKw9r+eLw8PD1br0zBI0pUxDIOysjIUFxej\nuLgYBQUFkMlkKC8vR1lZGWQyGWQyGcrKypr0ZtnZ2cHDwwO9evUyhQMvLy8MGDDALDzcGSCMvUN8\nIBAI7nn5jc5c/t/YK9lSMG78/8LCQigUClRWVkIulzcJzcb3684g5+XlBRsbG6xbt85sPq9AIIC1\ntTUYhmkyHNLBwQGenp7w9vbGoEGDzO5raGjAqlWrsHPnznsOv6+vr8fOnTuxYcMGOtFFSBdHYY0Q\nFvFpzpqXlxfy8vIsXtd44OLh4YHc3FzW6t/r7DUhbCovL8etW7dQWFiI4uJi079FRUUoKipCSUkJ\n6uvrTdt7eHjA29vbdPA+YsQI0wG88XYPDw/4+PjQQg8cEIvFEIvF8PX1bfNjq6urIZVKTT2iUqnU\nFMZlMhmuXr2KkydPQiqVoqKiwvQ4Kysr05BM489HYGAggoKCEBoaivDwcAQEBDS7T5VKhblz5+Lo\n0aOt/ptTU1ODn376CfPmzWvzcySEdB4Ka4SwiG89a2VlZRava1ytzNXVldX6d87LIMSS6uvrUVRU\nhPz8/CZfN27cMBvC5+bmBl9fX0gkEgwaNAj3338/JBIJ+vXrB19fX/Tu3RtOTk4cPhvCJhcXF7i4\nuGDgwIH33Far1aKiogKlpaXIz89HSUmJ2fcnTpzAZ599Zvp8s7e3N/0sGb/c3Nywbds23Lhx4577\ns7a2hkAggEAggE6nw65duyisEdLFUVgjhEV8CmuBgYEoKiqCVqu16LAY4/BEDw8PVuu3NF+HkLaQ\ny+XIzs7G1atXkZOTg6tXryIvLw9FRUWmHgt3d3fTgXJsbCySk5NN//fz84NQKOT4WRC+sLOzg0Qi\ngUQiQXh4eLPb6HQ6FBcXNzlJcPHiRXz33XdmvXPA7UAmFAphb29vNjzW3d0dIpEIDg4OcHZ2hlgs\nxpgxYzrjaRJCOoDCGiEs4lNYGzBgABoaGpCfn4/Q0FCL1TUGMx8fH1brU1gjbaFQKJCVlYXs7GxT\nKMvJyTHNHXJxcUFISAgGDx6MKVOmICgoyBTIaFgi6UxCoRB9+vRBnz59EBMT0+T+iooKXLlyBSUl\nJSgqKkJeXh6ys7ORm5uLW7du4datW/Dw8MDgwYMREhJi+rkeOXLkPecJEkK4R2GNEBbxac7agAED\nYGVlhWvXrlk0TBl7vry8vFitT2GNtEShUCA7OxsXLlwwfV29ehUMw8DNzQ39+vXDoEGDMGPGDAwa\nNAiDBw9G37596ZpThBfc3d0xadKkZu8z/uzn5OSY/j1w4ABKS0sBAL6+vggPDzd9jR49Gj4+Pp3Y\nekLIvVBYI4RFfOpZE4lE8PPzw7Vr1yxat/GQRzbrG1eFJD1bXV0dzp07h5MnT+L333/HxYsXUVxc\nDOD2UN+RI0fi0UcfxciRIzFy5Eg6MCXdmpubG6KiohAVFWV2u1QqRVZWlunrs88+w4YNGwDc/pwe\nOXIkIiIiMGHCBIwZM4ZW2yWEQxTWCGGRjY0Nrxa+GDBggMXDlK2tLQQCAbRaLev1Sc9TXV2NzMxM\nZGZm4tSpUzh37hzq6+vh7++P8ePH48knnzQFs169enHdXEK6BB8fH8yYMQMzZsww3VZRUWEW4FJS\nUrBu3TrY2dlh9OjRmDBhAqKiojB+/HgaCkxIJ6KwRgiLbGxsoNfrYTAYIBAIuG7OPQ0YMAA5OTkW\nr2tvbw+NRsN6fdL96fV6nD59Gr/88guOHj2Ky5cvw2AwIDQ0FFFRUUhKSsKECRPQp08frptKCK+4\nu7tjypQpmDJlium2W7du4dSpU8jMzMQPP/yAzZs3w9raGsOGDUNsbCxmzJiByMjIu14MnRDSMfTb\nRQiLjNf+0uv1vLgO2MCBA/HDDz9YvG6vXr0gl8tZr0+6J5lMhsOHD+Pnn3/G0aNHoVAoEBwcjBkz\nZuCVV15BVFQUPD09uW4mId1O37590bdvXyQkJAC4fT3B06dPIyMjA99//z3eeOMNuLm5YerUqYiL\ni8O0adPg4eHBcasJ6V66/ql+QnjMuIR344vhdmXDhw9HWVkZCgsLLVrX19cXpaWlrNcn3UdlZSXe\nf/99jB8/Hj4+PnjiiSdQWVmJV155BdeuXcO1a9ewfft2zJo1i4IaIZ3Ey8sLs2bNwo4dO0y/h6+8\n8grkcjkef/xx+Pj4ICoqCh988AEUCgXXzSWkW6CwRgiLjGFNp9Nx3JLWGT16NGxsbPDbb79ZtK6P\njw+kUinr9Qm/6XQ6pKamYs6cOZBIJHjuuefQv39/7N+/H3K5HEePHsVTTz2F4OBgrptKCAEQHByM\np556CseOHYNcLse3336Lfv364dlnn4Wvry/mzp2L1NRU6PV6rptKCG9RWCOERcahj3wJayKRCEOG\nDLF4mDL2fLFdn/BTYWEhnnvuOfj7+2PmzJmorKzEzp07IZVKsXv3bsyaNQtisZjrZhJC7sLJyQkP\nP/wwPv/8c5SWliIlJQVyuRwzZ86Ev78/nnvuOYuPqiCkJ6CwRgiL+DYMEgDGjRvHaphiuz7hj9zc\nXCxcuBBBQUH46quvsGrVKuTn5yM9PR2LFy+mgEY67Ny5c4iOju7UfVpZWZm+Olt0dDTOnTvX6fu9\nk5OTE5YsWYITJ04gPz8fK1euxFdffYWgoCAsWrTI4qsCE9KdUVgjhEV861kDgLFjx+LChQsWXQq/\n8TBFtuuTrk8qleLxxx/HkCFD8Mcff+CTTz7BrVu38PLLLyMwMJDr5pFu4uOPP0ZsbCxWr17N2j4m\nTJiACRMmmN3GMEybtrekJ598ElOmTMFHH33E2j7aKjAwEC+//DLy8/Px8ccf4+LFixg8eDCWLVuG\nsrIyrptHSJdHYY0QFvFtzhpwO0xptVpcunTJYjV9fHygUCig1WpZr0+6LoZhsHPnToSGhiI9PR2f\nfvopLl++jEWLFpl+V7ozrnpbusr+O9OhQ4eQmJiIlJQUzJw5s9117vWaGQwGGAyGVtdraXtLvTez\nZs3Ce++9h6SkJBw6dKjD9SzJ1tYWCQkJphM0x44dQ2hoaJcKloR0RRTWCGERH4dBBgcHw93d3aJD\nFfv16weGYXDjxg3W65OuSalUYt68eVi1ahUSExORnZ2NRYsW8eL6g4Rf6uvrkZSUhMjISMyfP5/V\nfZ0+fRqnT59mbfv2WLhwISIiIpCcnNwlTxRaW1sjISEBOTk5WLp0KZYvX4758+dDqVRy3TRCuiT6\nK0kIi/g4DNLKygr33Xcfjh49arGaISEhEAqFuHLlCuv1SddTVVWFyZMn47///S8OHTqEN954A46O\njlw3i3RT3333HQoLC7FgwQKum8KZBQsWoKCgAN999x3XTWmRSCTCm2++iePHj+PkyZO47777UFlZ\nyXWzCOlyKKwRwiI+9qwBwAMPPIDjx4+jtrbWIvVsbW0RHByM7OzsTqlPug69Xo8HHngAUqkUv/32\nGyZPnsx1k+5KKpUiKSkJ/v7+sLW1hb+/P5KTk5vMrWlpEYm73X7nNsuWLWv2cTk5OZg2bRqcnZ0h\nFosRFxeHq1evsrr/6upqPP300+jXrx/s7e3h7u6OyMhIPPPMMzh79my72wncvpDy8uXLTa+pn58f\nEhMTm51nqtFosGXLFowYMQIikQj29vYICQlBcnJyq3vjDxw4AAAYNWoUq69ZWxcSac9+Gj/G+LV3\n717T9n369Gm25ujRo81ei67svvvuQ2ZmpmnlyIaGBq6bREjXwnTA3Llzmblz53akBOnBesLPT0lJ\nCQOAOXXqFNdNaZOysjJGIBAwP/74o8Vqzps3j5k5c2an1L8TAOabb76x2L5I673++uuMo6Mjk52d\nzXVT7qm0tJQJCAhgJBIJc/z4caampoZJS0tjfHx8mMDAQEYqlZptD4Bp7s9oW2+/8/7IyEgmMzOT\nUSqVpv27ubkxt27dYm3/Dz30EAOA2b59O1NbW8totVomNzeXmTVrVpPHtKWdUqmUCQwMZLy9vZkj\nR44wSqWSOXnyJBMYGMj07duXUSgUpm1ramqYUaNGMU5OTsxHH33ESKVSRqlUMidOnGBCQ0Pv+to1\nNnDgQAZAk/fL0q+ZJevdbT9paWkMAMbX15fRarVm93300UfMAw880OQxxr89ISEhLba9q7ly5Qrj\n4ODAbNmyheumEHJXbTl+tcDxx7cU1ghnesLPj0wmYwAw6enpXDelzSIiIphly5ZZrN6GDRuY/v37\nd1r9xiiscUOj0TBeXl7MK6+8wnVTWuWJJ55gADBffPGF2e2fffYZA4BJSkoyu52tA/9ffvml2f0v\nXryYtf07OzszAJh9+/aZ3V5cXNxiWGtNO5OSkhgAzCeffGK27ffff88AYF588UXTbWvWrDEFxjtl\nZWW1OqyJxWIGAKPRaJrcx8ewxjAMExYWxgBgdu/ebXb70KFDmWPHjjXZvq6ujgHAODk5tVizK1q3\nbh3j4+PTJJQS0pV0dlijYZCEsIivwyCB20MVf/7557suQ90WQ4cORX5+PlQqVafUJ9zLzs5GeXk5\nFi5cyHVTWuXgwYMAgJiYGLPbjUM3jfezLTIystn9W3Ke551mz54NAJg7dy569+6NZcuW4dtvv4WH\nh0eLv6OtaWdqaioAYPr06WbbTpw40ex+ANi/fz8ANLt644gRI1r9WaFWqwH8b85wd/D0008DAN55\n5x3Tbenp6TAYDM0OLTY+d+NrwRePPfYYpFIpDWknpBEKa4SwiI8LjBjFx8ejtLQU58+ft0i9IUOG\nwGAwICcnp1PqE+7J5XIAgJeXF8ctaR2ZTAYA8PDwMLvd+P/y8vJOaYeLi0uz+ze2jw27du3Cd999\nh9mzZ6O2thaffPIJ5s+fj+Dg4BYvs9GadhpfM4lEYjbvyrjtzZs3TdsaL2zv4+PToediXLyGjyfJ\nWvLoo4/C19cXly5dQnp6OgBgx44dLV5Dzvjc+baQj7e3N4D/fXYQQiisEY5Zqlelq+Jzz1pYWBgC\nAwMt1psQFBQEsViMixcvdkp9wr2goCAA4M0qncZQeeeBYkuh07ioQ+OTMdXV1R1uR0VFRbP79/T0\nZHX/Dz/8MPbv3w+5XI6TJ09i6tSpKCgowD/+8Y92t9N48F1ZWQmGYZp8Ne4JN25rDG3t5efnB+D2\nKqR3Yus9Y5utrS1WrVoFAHj77beRn5+PM2fO4LHHHmt2e4VCAeB/rwVf/PHHHwD+99lBCKGwRjgk\nEAjadDFRPrKxsYFAIOBlzxpwu/dr3759FqklEAgQERFhdo0htusTbgUFBWH06NF46623uG5Kq8TH\nxwMAjh8/bnZ7Wlqa2f1Gxh6gxuHibicLjL0cOp0OarW6SQ+e0Z0/w8b9x8bGsrZ/KysrFBUVAbj9\nuzRhwgR88803ANDsCo+tbadxSGNGRkaTx586dQrjxo0z/d84FPPHH39ssu1vv/2GiIiIFp9bYyNG\njAAA/P33303uY+s966jW7Cc5ORmOjo745Zdf8OSTT2LZsmVwcHBotp7xuQ8fPpyV9rLlrbfeQkRE\nBPr168d1UwjpMiisEc5YW1v3iCV6bWxseBvWFi1ahKtXr+L333+3SL3x48ebHeCxXZ9wb/PmzUhN\nTUVKSgrXTbmnDRs2IDAwEM8//zzS09OhVCqRnp6OF154AYGBgVi/fr3Z9lOmTAEAbNu2DdXV1cjN\nzcXHH3/cYv1hw4YBAM6ePYvU1FSzoNJYSkoKMjMzUVtba9q/m5sb6/tftmwZsrOzodVqUVZWhjfe\neAMAMHXq1Ha3c/369QgODsbKlSuxf/9+VFRUQKlU4uDBg1iyZAm2bNlitu2QIUPwyiuv4KOPPkJZ\nWRlqa2tx5MgRJCQk4PXXX2/xuTVmDNXNDbFm6z3rqNbsp1evXli8eDEYhsGRI0ewYsWKFuudO3cO\nAPDggw+y0l42vP/++/j555+xefNmrptCSNfSkeVJesJqfoQ9ixYtanbJ4e5GLBY3WQmNT4YOHcok\nJydbpNaRI0eaLKnNdn2GodUgubZhwwZGIBAwH330EddNuSepVMokJSUxEomEsbGxYSQSCZOYmNjs\nMvAymYxZsGAB4+npyYhEIiY+Pp4pKCgwrex355/Yc+fOMWFhYYyjoyMzduxYJi8vz+x+42Nu3brF\nPPDAA4yTkxMjEomY6dOnMzk5OazuPzMzk1m8eDHTp08fRigUMi4uLkxYWBizadMmRqVSdaidlZWV\nzJo1a5i+ffsyQqGQ8fb2ZuLj45kzZ8402VapVDLr1q1jBg4cyNja2jLu7u5MbGwsc/LkyWbereZp\ntVrG39+fiYqKYvU1a/yYxo9r6+332k9j165dYwQCAfPII4/c9TUYO3Ys4+/vz5tVFT/88ENGIBAw\nr732GtdNIeSeaOl+0mMsWbKEmT59OtfNYJ2bmxuTkpLCdTPabevWrYyLi0uTA7b2qKmpYYRCIfP1\n1193Wn2GobDWFfz73/9mrKysmBUrVjB1dXVcN6dLau4gviviQzsPHjzIWFlZMXv37uW6KRbV0NDA\n+Pr6Nht0jfbs2cNYWVkxBw8e7MSWtY9arWaSk5MZKysrZv369Vw3h5BWoaX7SY/RU4ZBCoVCXi4w\nYpSQkAC1Wo2ffvqpw7WcnJwQERFhmtvSGfVJ17B+/Xrs27cPe/bswbBhw+g9IqyKi4tDSkoKkpOT\nm50Dx1c///wzAgICMHbs2Gbv/+GHH7BixQp88MEHiIuL6+TWtc3Ro0cxdOhQfP311/juu+/w73//\nm+smEdIlUVgjnOkpYc3Ozo7XYc3b2xtTp07FZ599ZpF6U6ZMwZEjRzqtPuk6Zs+ejdzcXIwdOxZT\npkzBlClTcOHCBa6bRbqpxMREHDlyBNu3b+e6KR1iZWWF3377DQqFAhs2bMBLL73U4rY7duzAsWPH\nkJSU1IktbJs///wT8+bNw9SpUxEaGoorV65g1qxZXDeLkC6LwhrhTE8Jaw4ODqirq+O6GR2yZMkS\npKWloaCgoMO1YmNjUVRUZLbCHNv1Sdfh6+uLzz//HGlpaaipqcHo0aMRFxeHEydOcN00ThmXlL/z\n+66GL+00GjNmTLMrUfLNuHHjEBwcjAceeOCui4ZkZGRgzJgxndiy1ktPT8eMGTMwbNgwFBYW4vjx\n40hNTUVAQADXTSOkS6OwRjjTU8Kao6Mj78NafHw8evXqhd27d3e41ujRo+Hu7m52fTW265Ou5/77\n78dvv/2G1NRUqNVqxMTEYOjQodi2bRtKSkq4bl6nY+64/lhXxZd2difG11oulzdZEbSrKykpwbZt\n2zBkyBDcf//90Gg0OHjwIM6cOYOYmBium0cIL1BYI5zpKWHNwcEBarWa62Z0iK2tLZYuXYr3338f\nWq22Q7Wsra0RHx9vNo+E7fqka7KysjL1qp0/fx4TJkzA5s2b0bt3b0yfPh1ff/017090ENLT1NXV\n4auvvsK0adPQu3dvbNmyBRMnTsT58+dNvWuEkNajsEY401PCWnfoWQOA1atXo7KyEl988UWHaz30\n0EP47bffIJVKO60+6drCw8Px/vvvo7S0FHv37oVQKMTixYvh4+OD+fPn4/PPP4dMJuO6mYSQZpSX\nl2P37t2YN28evL29sWTJEtja2uKbb75BSUkJ3n//fYSHh3PdTEJ4icIa4YytrS2vF95ore7QswYA\nEokECxYswJtvvgmDwdChWrGxsbC3t0dqamqn1Sf8YGdnhzlz5uDAgQMoKirCpk2bUFVVhcTERPj4\n+GDs2LF49dVXkZWVRcPwCOEIwzDIysrCq6++ioiICPj6+iI5ORk1NTXYvHkziouLceDAAcyePRt2\ndnZcN5cQXqOwRjjj6OgIlUrFdTNY11161gBg7dq1uH79On7++ecO1XF0dMS0adPwzTffdGp9wi9e\nXl5YtWoVjhw5goqKCnz33XcYNmwYUlJSEB4eDolEgvnz5+P//u//8Mcff3Q45BNCmtfQ0IBLly7h\n//7v/zBv3jxIJBKEh4dj586dCAsLw/fffw+5XI7Dhw9j5cqV8PT05LrJhHQbNlw3gPRcIpGoW/Q4\n3YujoyPKy8u5boZFhISEYPr06di2bRvi4+M7VGvBggWYN28eiouL4efnx2rFqy2gAAAgAElEQVR9\nwn8ikQgzZ87EzJkzwTAMLl26hKNHj+LUqVN45ZVXUFVVBRcXF4wfPx5RUVGYMGECRo8eTWf1CWkH\njUaD8+fP49SpU8jMzMTp06dRXV0NV1dXREVF4amnnkJsbCyGDx/Oi1VBCeEzCmuEMyKRqEf0rHWH\npfsbe/bZZzFp0iScOXMG48aNa3eduLg4ODs7Y9++fXjqqadYrU+6FysrK4wYMQIjRozA2rVrAQD5\n+flIS0tDZmYmdu7ciRdffBE2NjYYMGAAwsPDTV8jRoyASCTi+BkQ0nXodDpcu3YNFy5cMPvSaDTw\n8fHBqFGj8MILL2Dy5MkYMWIEBAIalEVIZ6KwRjjTU8Kao6Njt+pBvO+++zB27Fi89dZb2L9/f7vr\n2Nvb4+GHH8ZXX31lFtbYqE+6v379+iExMRGJiYkAgJs3b+L3339HVlYWsrKycODAAVRXV8PGxgYh\nISEYOXIkRo4ciaFDhyI0NBS+vr4cPwNC2FdaWoqcnBz8+eefyMrKwoULF5Cbm4uGhga4urpixIgR\nGDduHFauXImIiAj069eP6yYT0uNRWCOcEYlEqK+vh16vh41N9/1R7G5hDQDWrFmDRx99FHl5eRg4\ncGC76yxcuBD3338//vzzTwwZMoS1+qTnCQoKQlBQEBYsWADg9oII+fn5pvCWlZWF1157DXK5HADg\n6uqK0NBQDBo0CCEhIRg8eDBCQkLQp08fGuZFeMVgMODvv/9Gbm4usrOzkZubi5ycHFy9ehVVVVUA\nAA8PD4wcORLx8fH497//jZEjRyIoKIjjlhNCmtN9j5BJl2cciqRWq+Hs7Mxxa9jT3YZBAsDs2bMx\nZMgQvPzyy/j222/bXSc6Ohr9+/fHrl278Pbbb7NW/8aNG+2uQboHKysrU4CbO3eu6faysjLk5OSY\nHdj+8ssvKC0tBXD7ZMvAgQMRFBSEfv36mX317t0bQqGQq6dEejCdToeCggLk5+cjPz8fN2/eNH2f\nl5dnOkEokUgQGhqK8PBwLFq0yHQiwsvLi+NnQAhpLQprhDPGsKZSqbp9WOtuPWsCgQAbNmzArFmz\n8Ntvv2Hs2LHtqmNlZYUlS5bgnXfewebNm02LQVi6/rp166DT6dpVg3Rv3t7e8Pb2RnR0tNntVVVV\nuHr1KnJycpCXl4f8/HwcO3YM+fn5qK6uBgDY2NggICDALMAFBASgd+/ekEgk8PPzg729PRdPi/Cc\nRqNBUVERSkpKUFBQgKKiIlMYy8/PR2FhIfR6PYDbvcL9+vVD3759MWXKFKxcudLUM+zq6srxMyGE\ndBSFNcIZR0dHAOj289a609L9jT300EOIjIzE888/j4yMjHbXefzxx7F+/Xr8+OOPmD9/Piv1161b\nh3PnzmHhwoXtrkN6FldXV4wbN67ZRW4qKirMDpyNPRtpaWkoLi42u36kp6cnJBIJAgIC4OfnZ/pe\nIpFAIpHA09MTnp6esLa27synRzii1+shk8kgk8lQWlqKkpISFBYWori4GMXFxSgsLERJSYlpeC5w\n+5qkfn5+phMCkydPNjtB0KtXLw6fESGEbRTWCGfEYjGAnhHWulvPmtGWLVswYcIEpKWlYfLkye2q\n4ePjg+nTpyMlJcUsrFmyPgAcO3asXY8n5E7u7u5wd3fH6NGjm9zHMAzKyspMB98FBQUoKSlBUVER\nrl27hoyMDBQWFjb5TDCGNk9PT/j4+MDLywuenp7w8vKCt7c3PD090atXL7i6usLNzY167LoIjUYD\nhUJh+pLJZJBKpSgvL4dMJkN5eTnKyspMAU0mk5k93tHR0dQT6+/vj7CwMLNw7+fnB29vb5o3SUgP\nRmGNcMY4PEOhUHDcEnY5ODhAq9WioaGh2509j4qKwowZM/DCCy/g/vvvb/cBxapVqzB16lT88ccf\nCAsLs3h9AMjJyWlSnxBLs7Kygo+PD3x8fBAeHt7idgqFAlKptNkDeqlUiosXL0Iul6OsrKzZz0h7\ne3u4ubnBzc3NFOCM/xq/F4vFcHNzg4ODAxwcHODq6gpHR0c4ODjAxcUFYrG4x865q6+vh0qlQnV1\nNerq6qBWq1FVVWX2fW1tLRQKBaqqqsz+bfy9RqNpUtvNzc0UsD09PTF48GDT98Zhtx4eHvD19aVh\nioSQe6KwRjjTq1cvCASCJmcauxvjcE+NRtMtr++0ZcsWDB8+HPv37zdbuKEtYmNjMWTIELz77rv4\n6KOPLF4fAAICApqtTwgXjKEqNDT0ntvW19dDJpO1GBga/1tYWGj6vqqqCkql8q61bWxs4OTkBCcn\nJzg4OJhGPLi5uQG4fbLJ3t4eAoEALi4uAG7PN7a1tYW1tXWT+cZ3C4B2dnamz8M7qVQqs+Gjjel0\nOtTW1prdVlNTg4aGBlPoAm7PM2QYBhqNxjT03Bh0a2trUVdXB6VSCaVSaZrv1RwrKyuzsGsMwR4e\nHggODm4Sihv/6+npCVtb2xZrE0JIW1FYI5yxtraGm5ub2dj87sjBwQHA7VUvu2NYGzp0KB599FGs\nW7cOs2bNavdlGJYvX45nnnkGW7Zsgbu7u8Xrx8bG4ssvv2xSn5Cuzjhnyc/Pr1Xb//XXX3j22Wex\nf/9+TJ8+HW+++SZ8fHxQVVUFlUqFuro61NTUQKlUoq6uDrW1tWY9TAaDwbSISm1tLXQ6Herr65Gf\nnw8AUCqV+OuvvyAQCEyfb0Z3Gylxt0Bma2t7189HY3g0MoZCGxsbGAwG5OXlITo6Gra2tnB2djZd\nN8/FxQUCgQCOjo5wdHSEs7MzxGIxHB0dIRaL4ezsbLrP2PNIQ0wJIV0JhTXCKU9Pzx7Ts9YdFxkx\n2rhxI0JDQ/Hpp5/iiSeeaFeNhIQEvPTSS/jwww/xwgsvWLz+xIkT8d133zVbn5DuQK1WY+vWrdi6\ndSv8/f2RmpqKBx54wHS/JReiCA0NxezZs/Haa691qI5QKMTu3btN18Nrj/z8fAQFBWHNmjWYOHFi\nh9pDCCFdjYDrBpCezcPDo9v3rBnDWnddZAQA+vXrh+XLl2PdunXtnoMoFouRnJyMt99+u8mQJ0vU\nt7e3b7E+IXzGMAz27duHQYMG4a233sJzzz2HK1eumAU1S1Kr1bh+/TpGjBjR4VpCobDDl9UwLlt/\n/PjxDreHEEK6GgprhFM9Iaw1HgbZnW3cuBHW1tZ4+eWX213jX//6FzQaDT7++ONOr08IH124cAET\nJ07EI488gokTJ+LGjRtYv3696ZqFbPjjjz/Q0NBgkbBmY2NjkWsg3n///UhLS+twHUII6WoorBFO\n9YRhkE5OTgDQ7XtznJ2dsWXLFnzwwQc4e/Zsu2p4eHhg2bJl2Lp1a5NV1tiuTwiflJaWIikpCRER\nEdDpdPj111/x+eefw9vbm/V9Z2VlwdXVFX379u1wLaFQeNfFPlpr8uTJOHv27D0XVCGEEL6hsEY4\n1RN61oyrpdXU1HDcEvYtWrQIEydOxMqVK2EwGNpV47nnnkNVVRU+++yzTq9PSFen0+mwY8cOhISE\n4Oeff8auXbtw5swZREREdFobLl68iOHDh1vk2l+WGAYJ3J6Tqtfr230ihxBCuioKa4RTHh4e3b5n\nzd7eHnZ2dqbV1bozKysrvPvuu/jjjz+wa9eudtXw9fXFkiVLsHnz5iYrx7Fdn5CuLC0tDWFhYXjx\nxRexfPly5ObmIiEhodMvmHzx4kWMHDnSIrUsFdZ8fX3h7++Pc+fOWaBVhBDSdVBYI5ySSCQoKyuz\nyDCYrszZ2blHhDUAGDx4MFatWoW1a9e2u9f0+eefh1QqxVdffdXp9QnpavLy8hAXF4cpU6YgKCgI\n2dnZ2LJli+maaJ1Jp9MhJyfHIvPVAMuFNQAYPXo0zp8/b5FahBDSVVBYI5zq27cv9Ho9ioqKuG4K\nq1xcXHpMWAOADRs2wN7eHi+99FK7Ht+7d28sXLgQmzZtQkNDQ6fXJ//P3n2HNXW+fQD/JuwlQ/YU\nRIYMRZwIKiLuvUe1bty4WmcrWieOVqu2rjqqtqCIA0cdoCCK4gKUoQLKEgUFWUEgOe8fvuQnCkog\nhwS4P9flVZqc8z13EsRz8zznOUQa5OTkYOnSpXB0dERmZiZCQ0Nx7tw5NGvWTGI1xcbGori4WCqb\ntbZt29LIGiGkwaFmjUhU+UlHcnKyZAthWWNr1tTU1LB582bs378fERERNcpYsWIFXrx4gRMnTtR5\nPiGSJBAIcOTIEVhbW2P//v3w9fXF3bt34ebmJunS8ODBAygpKcHa2losebKysmKbWdG2bVukpKTg\n9evXYskjhBBpwGEYhqnpziNHjgQA+Pv7i60g0vioqqpix44dmDx5sqRLYY2HhwesrKzwxx9/SLqU\nOsMwDDw8PJCXl4eIiAjIysqKnDF27Fg8fvwYjx49Apdb8XdLouRzOBx07NgRJiYmFR6/c+cO3r9/\nD09Pzzq/7oeQyrx58waPHj1Cfn4+mjdvDjs7O8jJyUm6LKGoqChkZWWhR48eYsm7cuUKDAwMYG9v\nX+usDx8+4OzZs+jSpUudrIpJCGmcbt++jU6dOlWr/+FwOPDz8xP2TDVwgkbWiMSZmZnhxYsXki6D\nVY1tZA34+ANq165dePLkCTZt2lSjjJ9++glxcXE4cuRIrfIXLFjwRaMGALa2tsjLy8PLly9rVB8h\n4lJUVIS7d+/ixo0bUFRUhKenJ1q3bi1VjRoA5OfnC1e4FYda/L74CwoKCpCXl6fl+wkhrOrUqRNG\njBhRZ8cT/VfdhIhZs2bNGsU0yDdv3ki6jDpna2uLdevWYcmSJejVqxfatm0r8v7Tpk3DihUrMGLE\nCKioqHzx/Nq1a7F06VL07t0bzs7OleZs27atymPMnDkT586dQ0hIyBf5hLCtqKgIvr6+2LRpE0xN\nTREUFIR+/fpJuqwqWVpaYtKkSTW+XvRzdnZ2GDFiBHx8fMSS5+rqCicnJ/z+++9iySOEEEmjkTUi\ncebm5jSy1oDNnz8frq6u+P7772t0I+rVq1ejsLAQmzdvrvT5BQsWoHPnzpgwYUKN8tesWYOCgoKv\nNnSEiBvDMDhx4gRsbW2xfft2+Pj4ICYmRqobtQ8fPuDFixdiu14NAPh8PmRkZMSWZ2Njg/j4eLHl\nEUKIpFGzRiSusYysNdZmjcvl4uDBg0hLS8OqVatE3l9HRwfLli2Dr68vUlJSqsxPTU3F6tWra5S/\nZMkS+Pr6IiMjQ+T9CRHVvXv34OrqitGjR6Nr165ISEjAkiVLIC8vL+nSvurZs2fg8/mwsbERW2ZZ\nWVmNrmetirW1NRISEsSWRwghkkbNGpG45s2b49WrVygsLJR0KaxpzM0a8LEh37ZtG7Zu3Yrg4GCR\n9/f29oaBgQEWLlxY6fPm5ubYsmULNm/ejKtXr4qcP3/+fOjq6mLevHki70tIdb169QpeXl7o0KED\n5OTk8ODBAxw5cgS6urqSLq1a4uPjweVyYWlpKbZMcY+sWVtbIy0trUH/e0IIaVyoWSMS5+joCIFA\ngMePH0u6FNY09mYNAKZMmYLhw4dj9OjRlY6QfY2ioiL27duHU6dOISAgoNJtpk+fjnHjxmHUqFEi\nT6tVUlLC/v37cerUKQQGBoq0LyHfUlJSgu3bt8PGxgYXLlzAwYMHERISglatWkm6NJHEx8ejWbNm\nUFRUFFumuJs1MzMzMAyD1NRUsWUSQogkUbNGJM7CwgJNmjRBVFSUpEthjbq6OvLz8yEQCCRdikQd\nOHAAenp6GDRoEHg8nkj7du/eHZMmTcLMmTORnZ1d6Ta7d++GgYEBRo0ahQ8fPoiU7+7uju+//x6z\nZ89GTk6OSPsSUpVz587B1tYWy5cvx4IFC/D06VNMmDChXt4qIiEhQaxTIAHxT4M0NjYGAKSlpYkt\nkxBCJImaNSJxHA4H9vb2Db5ZYxim0S8praKiglOnTuHFixfw8vISef9t27ZBXl4eixcvrjI/MDAQ\nCQkJWLRokcj5W7duhUAgwJIlS0Tel5BPxcfHo0+fPhg0aBCcnZ0RGxsLHx8fKCkpSbq0GktISBDr\n4iKA+EfWmjZtCmVlZWrWCCENBjVrRCq0atWqwTdrABr9VEgAaNGiBY4cOYKjR49iz549Iu2rrq6O\nnTt34vDhwzhz5kyV+fv378fu3btx4MABkfK1tLSwa9cu7Nu3D6dPnxZpX0IAICcnB97e3nBwcMCb\nN28QGhoKf39/mJmZSbq0WqsPzRoAGBkZUbNGCGkwqFkjUqFVq1aIjo4W6w1SpQk1axUNGDAAP//8\nM+bOnYtLly6JtO/gwYMxefJkTJo0qcpr04YPH46VK1di5syZuHz5skj5w4YNw5QpUzB58mSRr60j\njVdZWRn27t0La2trHD9+HFu2bMHdu3fh6uoq6dLEIiMjA3l5eVI/DRL4OBWSmjVCSENBzRqRCq1a\ntUJ+fn6DXcKfmrUvrVq1Ct999x2GDRuGiIgIkfbdtWsXTExMMHr0aJSWlla6zerVqzFmzBgMHz5c\n5FHb7du3Q1dXFxMmTACfzxdpX9L4BAcHo02bNpgzZw7GjBmDxMREeHt7i33ESJLKl8OvDyNrhoaG\nePXqlVgzCSFEUqhZI1LBwcEBXC63wU6FpGbtSxwOB3v27EGXLl0wcOBAPHv2rNr7Kioq4vjx44iJ\niany3m0cDgf79+9H+/bt0bdvX5FWh1NRUcGxY8dw+/ZtbNy4sdr7kcbl+fPnGDlyJDw8PKCnp4eo\nqChs374dTZo0kXRpYvfs2TOoqalBX19fbJkMw4DH40FZWVlsmcDH6cy0SBAhpKGgZo1IBRUVFVhZ\nWSEyMlLSpbBCSUkJioqKePv2raRLkSpycnIICAhA8+bN0adPH7x+/bra+9rZ2WH79u3YtGkTgoKC\nqsw/ceIE1NXV0b9/f7x7967a+c7Ozti8eTNWrVqF//77r9r7kYavsLAQPj4+cHBwQHR0NM6fP48r\nV67A1tZW0qWx5tmzZ2jRooVYM4uKisDn86GmpibWXE1NTWrWCCENBjVrRGp06dIF169fl3QZrNHR\n0UFWVpaky5A6ysrKCAwMBMMw6Nu3r0gnWVOnTsXEiRMxduzYKu/Tp6mpiUuXLiE3Nxe9e/dGXl5e\ntfPnzZuHCRMmCKe2kcaNYRgcOXIElpaW2LFjB3x8fBAdHY2+fftKujTWsdGsla+OK+6RSA0NDWrW\nCCENBjVrRGp069YNkZGRDXZ5e11dXWrWqqCvr4/g4GDk5OSge/fuIo1A/vnnn3B2dsaAAQPw5s2b\nSrcxNTXFtWvXkJ6ejt69e6OgoKDa+bt370bz5s0xdOhQFBYWVns/0rBERkaic+fOmDRpEjw9PREf\nH48lS5ZAXl5e0qXVCTabNTZG1nJzc8WaSQghkkLNGpEa3bp1Q1lZGW7duiXpUlihq6tbZTNBADMz\nM4SEhCA3Nxc9evSodsMmJyeHkydPQkZGBsOGDavyZtiWlpYICQlBUlISBg8ejOLi4mrlKyoq4sSJ\nE8jIyMCECRMa/Y3NG5uMjAx4eXmhY8eOUFRUxMOHD3HkyBHo6upKurQ6IxAIkJSUVK+atcLCwip/\nFhBCSH1CzRqRGgYGBrC2tsaNGzckXQorqFn7NjMzM1y/fh25ubnw9PSs9jVmTZs2RWBgIKKiojBt\n2rQqbwFhZWWFS5cu4cGDBxg8eDCKioqqld+sWTMEBgbiwoUL+OGHH6r9ekj9VVJSgu3bt8PGxgYX\nL17EwYMHERwcDEdHR0mXVudSU1NRXFxcb5q18mmVooygE0KItKJmjUgVd3d3hISESLoMVujo6FCz\nVg1mZma4evUqsrKy0KNHj2ovOuLg4ICTJ0/Cz88PixYtqnK71q1b49q1a3jw4IFI17C5urriyJEj\n+O233/D7779Xax9SP507dw62trZYvnw5Fi5ciKdPn2LChAmSLktiyldqrS/NWvnUVBpZI4Q0BNSs\nEanStWtX3Lt3r0Fet0bNWvU1b94cN27cQH5+Pjp37lztxT169uyJf//9Fzt27MCGDRuq3M7JyQk3\nbtxAUlISunfvjuzs7GrljxgxAmvXrsWCBQtw+vTpau1D6o+4uDj07t0bgwYNgrOzM+Li4uDj4wNF\nRUVJlyZRz549g4aGBrS1tcWam5+fD1lZWSgpKYk1V0FBAcDH0VFCCKnvqFkjUsXd3R18Ph9hYWGS\nLkXsaBqkaCwsLBAREQEdHR107twZDx48qNZ+Q4YMwfbt27FixQrs37+/yu1sbW1x/fp1ZGdnw8PD\no9ojeMuWLcO0adMwZswYBAcHV2sfIt3evXsHb29vODg4IDs7G2FhYfD394epqamkS5MKbCwuAnxs\n1sQ9qgbQyBohpGGhZo1IFT09PTg7OzfIUQtdXV3weDy6jkIETZs2xZUrV9C6dWt07doVly9frtZ+\ns2fPxqpVqzBjxgwcPny4yu0sLS0RGhqK4uJiuLi4ICEhoVr5u3btwpAhQzBgwADcvHmzWvsQ6VNW\nVoa9e/fC2toaJ06cwO7du3H37l107txZ0qVJlfrWrJWPrFGzRghpCKhZI1Jn2LBhCAwMRFlZmaRL\nESsdHR0AoNE1EamqquLs2bPo168fBg4ciEOHDlVrv1WrVmH58uWYNGkS/vzzzyq3MzU1xe3bt2Fo\naIhOnTohNDT0m9lcLheHDx9G9+7dMWjQIMTExFT35RApce3aNTg5OWHu3LkYO3Ys4uPjMX36dHC5\n9M/i5+pbs1Y+skbTIAkhDQH9q0SkzsiRI5Gdnd3gVoUsX+qb7rUmOnl5eRw/fhwLFizA5MmTsXjx\nYvD5/G/ut2bNGvz000+YNWsW/vjjjyq309LSwtWrV+Hp6Sm87u1b5OTk4O/vj1atWqFHjx5V3pSb\nSJfnz59j5MiR6NGjB5o1a4a4uDhs375d7DdmbijKysqQnJxcr5o1OTk5ANSsEUIaBmrWiNSxsLBA\n69atERAQIOlSxKq8WaORtZrhcrnYsGED/vnnH+zevRv9+vWr1o1vV69ejZUrV2LOnDnYs2dPldsp\nKCjg+PHjmD59OsaNG4fNmzd/M1tJSQlBQUGwt7dH9+7daYRNihUWFsLHxwf29vaIiYnBhQsXcO7c\nOVhYWEi6NKmWlJSEkpIS2NjYiD07KytL7IuWABDOypCVlRV7NiGE1DVq1ohUGjZsGE6dOlWt0ZP6\nQklJCaqqqtSs1dKoUaMQEhKC6OhouLi44Pnz59/cZ82aNVi1ahVmzpyJ9evXV7mdjIwMduzYga1b\nt2L58uX47rvvwOPxvpqtrKyMc+fOwcHBAR4eHoiOjq50O4ZhUFpa+s1aiXgxDIMjR47A0tISO3bs\nwKZNmxATE4M+ffpIurR6IT4+HhwOh5WRtaysLOH0cHEq/3eDmjVCSENAzRqRSiNHjsTr168b3OIN\ntCKkeHTo0AGRkZFQUVFB27ZtqzUK+/PPP2Pnzp346aefMHfuXAgEgiq3nT9/Pq5du4bLly/DxcUF\nL1++/Gp2ecNmb28PDw8P3Lt3r8LzAoEAQ4YMQZs2bRrctZjSLDIyEi4uLpgyZQoGDhyIhIQEeHt7\n00m8CBISEmBkZMTKNNGsrCzhjANxKv87JiMjI/ZsQgipa9SsEalkZWUFe3t7nDhxQtKliJWuri5d\nsyYmRkZGuHnzJr7//nsMHz4cXl5e37xGZdasWQgICMD+/fsxfvz4Ske6GIbB3r174eDggFu3bqGk\npAQdO3ZEeHh4pZm+vr4YNWoUFBUVERQUhHbt2qF79+64fv26cJsVK1bg3LlziI2Nxa5du2r1uhu7\n9+/ff3Ob9PR0TJgwAR06dICysjIePHiAPXv2sDKK09AlJCSwMgUS+DglnI3PhKZBEkIaEmrWiNSa\nMGECjh07hsLCQkmXIjY6OjrUrImRgoICtm/fjoCAAPj5+aFz585ITk6ucvvExEQ4OjriwoULCAoK\nQvfu3b/4PLZt2wYvLy94eXnB0tISt2/fRvv27eHu7o5t27aBYRjhtnfv3sWyZcvg7++PLVu2QFlZ\nGadPn0bfvn3Ru3dvnDp1CkeOHMHGjRshEAggEAiwfPlyvHr1irX3pCH766+/0LRpU9y9e7fS53k8\nHjZt2gRbW1vcunULfn5+uHbtGhwcHOq40oYjPj4e1tbWrGRnZ2fTNEhCCPkGataI1Jo8eTKKi4tx\n/PhxSZciNjQNkh1Dhw5FREQEPnz4UOW0SB6PB3d3d3Tq1Ak2Nja4efMmUlNT4eLigvj4eAAfp80t\nXboUAHDixAn4+fmhSZMmOH36NDZv3oylS5di8ODByMnJQXFxMcaPHy9c6n358uW4ffs25OXlcezY\nMUyYMAFLlizB1KlTK9RRWloqPAapvmvXrmH69OkQCASYNWtWhaYZAM6dOwc7Ozv88ssvWLhwIR4/\nfowRI0ZIqNqGg61mLT8/Hzwej9UFRmgaJCGkIaBmjUitpk2bYuTIkQ1q2piuri5ev34t6TIaJBsb\nG0RERGD48OEYPnw4Jk6ciLy8POHz69atw6tXr/Du3TsMGDAAVlZWiIiIgJaWFlxcXBAUFIRRo0YJ\nt+dwOJg6dSrS0tLA4XDg7e2Nq1evIjIyEu3bt8eUKVOQlJRU4Rq0YcOG4d27d5CRkcGyZcuQnZ39\nxbVxpaWl+PvvvxEWFsb+m9JAxMXFYciQIWAYBgzD4OHDhzh69CgA4OHDh+jatSsGDRqEtm3bIi4u\nDj4+PlBUVJRw1fXf27dv8fbtW1amQZaPLhsaGoo9u6CgAMDHezQSQkh9R80akWqzZs1CVFQUbt26\nJelSxMLIyAjp6emSLqPBUlZWxp49e3Dp0iVcvnwZjo6OuHHjBp4+fQpfX1+UlZWhrKwMUVFRmDJl\nCvT19XH9+nV4enpi7NixSE1NFTZfDMPgw4cPmDhxonAUp0uXLnj48CH09fXxzz//VGjU+Hw+srOz\nMXXqVOTn56Nv374oLCysdEVTGRkZzJo1q0GtdsqW7Oxs9OnTB8XFxWBXplYAACAASURBVMLGl2EY\nzJ8/H5MnT0a7du1QWlqKO3fuwN/fHyYmJhKuuOGIi4sDAFaatbS0NAAffyaKW/kvaejeeYSQhoCa\nNSLVOnTogLZt2371hsb1ibGxMbKzs7+5HDypnV69euHRo0do1aoVunfvjn79+lV4vqysDMePH8f2\n7duhpKQEd3d3FBQUfLFSY2lpKYKDg/HXX38JH1NSUkJSUpJw+uPn258+fRouLi5ITEyscqn+srIy\nxMbGYt++fWJ4tQ0Xj8dD3759kZGRUeG9ZBgGeXl5iIuLw6FDhxAeHo527dpJsNKGKSEhASoqKjA2\nNhZ7dnp6OhQUFFiZBpmfnw8ZGRkoKSmJPZsQQuoaNWtE6s2YMQP+/v4N4lqv8pMeGl1jn66uLs6c\nOYOJEydW2jgxDIOFCxfizz//xPz587+4BurT7ebOnYvExEQAwLx58/DmzZsqR8UYhsHjx4+/eU81\ngUCAJUuWIDs7uwavruFjGAYTJ07Ew4cPK30vy8rKcO/ePXTo0AEcDkcCFTZ8CQkJsLa2ZuX9TU9P\nh6GhISvZ+fn5UFNTo+8LQkiDQM0akXpjxoyBiooK9uzZI+lSaq28WSufAkTY9f79e5w9e/ar28ye\nPfub0xHLysrw3Xff4ezZszh8+PA375XG4XDA5XLB5XK/uiJdUVERli1b9tWsxmrp0qU4efLkV99r\nDoeDH374oQ6ralzi4+NZW7Y/PT2dlRE74GOzRlMgCSENBTVrROopKytj3rx52LZtG3JyciRdTq3o\n6upCQUGBmrU6smTJErx//77KUbPy5fS/1XyVlpbi7t27WLRoEQBATk7uq9szDAMul4uuXbvC09MT\nMjIylTZtZWVlOHDgQJVL0TdW+/btg6+v71dvXA58/FzOnDmD4ODgOqqscSkfWWNDeno6K9erAf8b\nWSOEkIaAmjVSLyxYsABcLhfbt2+XdCm1wuFwYGhoSM1aHbh79y727t37zemIAITTpWRlZSu9Fg34\n2NilpKRg69at+O6776Cnpyfcp7IlwsvKyhASEoIJEyYgJSUFa9euhbm5OYCKzZ6MjAy8vLy+2Zg0\nFpcvX8aMGTOqtW15A+zr68tmSY0Sj8dDYmIiWrZsyUp+amoqayNr2dnZaNq0KSvZhBBS1+iOkaRe\nUFdXx8KFC+Hr64t58+ZBS0tL0iXVmImJCV2zVgfu3bsHDocDhmEgLy+PsrKyKhui8pGw3r17g8/n\n48qVK+Dz+ZCRkakw6iYQCHDkyBFERkZCTk4OcXFxuHr1Ki5duoSQkBDweDzIy8ujpKQEwMcmcMqU\nKYiOjsaSJUvw448/Ijw8HAcPHoSfnx94PB4EAgEePXqEQ4cOYfLkyV/UxufzhavbFRQUoLS0tMJj\nwMcT6+Li4irfi6KiInz48KHK5zkcDjQ0NKp8nsvlQl1dXfj/ioqKwsUbNDU1AXxceKW2y+U/fvwY\nQ4cOrfQ5OTk58Pl8CAQCyMrKwsrKCi4uLnBycoKnp2etjku+FBMTAz6fDycnJ1byExMTK/1+F4fM\nzEzo6+uzkk0IIXWNw1Q1P6gaRo4cCQDw9/cXW0GEVKWgoADNmzfH1KlTsW7dOkmXU2Pjxo1DYWEh\nTp8+LelSGryCggI8evQI9+/fR1hYGEJCQvDu3TtwOBzIy8t/0cBwOBz8+++/6NmzJy5evIjTp0/j\n/PnzKCwshIKCgnD79evXV7jWrKSkBG/evMGNGzcQHByMmzdv4tmzZ8Lpl4aGhpgyZQqKi4vx/v17\nFBYWIj8/H4mJiUhJSRGuXmdiYoL3798DAAoLC4VNX33zeQOnoKAAZWVlaGhoQElJCUpKStDU1BR+\nraGhAT6fj82bNyM3NxeysrLg8/lgGAbKyspo1aoVOnbsiNatW8PJyQm2trZfvRaQ1N7evXuxaNEi\nvH//vsrR5prKzc2FpqYm/vvvP/Ts2VOs2QDg6uoKZ2fnej8TgxBS/3E4HPj5+Ql7pho4Qc0aqVd8\nfX2xZs0aJCUlQVdXV9Ll1MiKFSsQFBSEqKgoSZfSKCUnJyMiIgJ37txBWFgYoqOjUVZWJhwRU1RU\nxLFjx6CmpoY3b97g9evXePDgAaKjo/Hs2TMUFxeDw+GgRYsWKCwsRE5ODoqKiio9lry8PDgcDjgc\nDiwsLKCiogJ1dXWoqKhAUVFR+HVJSQl4PB6srKy+aHQ+HfWq7DHg41TKry2oICcn99UbBJeUlKCw\nsLDK54uLiyvcbqJ8pE4gEHzRXFY2Eli+f05ODng8Hng8HnJzc1FUVITi4mLk5uYK/1Q1+iknJwcN\nDQ1oamp+8d/yPzo6OtDW1oaOjg709PSgo6MDFRWVKl8Xqdrs2bPx6NEjhIeHiz373r17aNeuHZ4/\nf47mzZuLPd/S0hKTJ0/G8uXLxZ5NCCGiEEezRr+aJPXK7NmzsW3bNmzevBmbN2+WdDk1Ym5ujuTk\nZEmX0WgIBAK8fv0aaWlpyMjIQEpKCrKysvDhwweYmZlBUVER6enpyMrKQklJCYqLizFs2DAAHxsE\nHR0daGlpQUNDA56enuDz+SgoKICrqyt0dHQqbR7U1NS+Oq1Q2sjLy0NeXl7SZQiVjzzm5uYiJyfn\ni/9++vXTp0+Rk5ODd+/eITs7+4umU1lZGTo6OtDX1xc2cuX/r6+vDxMTExgZGcHIyAgKCgoSesXS\nJyoqCq1bt2YlOzExETIyMjA1NWUln6ZBEkIaEmrWSL2ioqKCFStW4IcffsC0adNgZWUl6ZJEZm5u\njvz8fGRnZ7NyQ9jGhGEYZGRkIDk5WdiMpaamIj09Henp6UhNTUVmZmaFRUbKR120tbWhr68PZ2dn\n9O7du8JojLa2NvT09ISjXKRuqaioQEVFpUYn3EVFRcjKykJmZiays7ORlZVV4f9fv36NmJgYvH79\nGpmZmRWuSdTV1YWhoSGMjY1hbGwMQ0NDmJqawtDQEGZmZmjWrJlUNbVsYRgGMTExmDBhAiv5iYmJ\nMDMz++aqqjVRUFCAwsJC4QJAhBBS31GzRuqdWbNm4a+//sKcOXNw+fJlSZcjsvIVAZOSkqhZq4bi\n4mJkZGQgKSnpiz8JCQkoKCgQbqupqQkLCwsYGBjA3t4enp6eMDQ0FD5mampKS3o3cMrKyjAzM4OZ\nmVm1ts/JyUFGRgZevXqFpKQk4ddpaWmIjIzE8+fPhVM9gf99j1X2p1mzZmK/vksSkpKSkJeXh1at\nWrGSn5iYCAsLC1ayMzIyAIBG1gghDQY1a6TekZGRwZ49e9CpUyf4+/vXZh6wRJiamkJWVhbJyclo\n3769pMuRCgKBAC9evEBcXBxiY2ORkJCAJ0+e4Pnz58jOzgbwv9semJubw8LCAv3798e8efNgYWEB\nc3NzGBgYNIgTZVK3yq93s7Ozq3KbnJwcvHjxQvhLguTkZCQlJeHUqVN4+fKlcCEYJSUlWFpawsbG\nBjY2NmjZsqXw69qulFmXoqKiwOVyv/qe1EZcXBzatm3LSnb5FHO2mkFCCKlr1KyReql9+/aYNGkS\nvL290atXrwrLiks7WVlZGBsbN8rr1hiGQWJiIh49eoT4+Hg8efIECQkJiI+PFy5gYWRkBFtbW7Rt\n2xbjxo0TNmPm5ub16oSXNBzlDV1ly9gLBAKkpaUJG7hnz54hPj4e/v7+SExMRFlZGbhcLszNzWFr\nawtbW1vY2NjA0dERDg4OUnmdXFRUFFq0aPHVRWlqIz4+HuPHj2clOykpCerq6jSFmRDSYFCzRuot\nX19fnDlzBr/88gu2bNki6XJEYmFhgaSkJEmXwSo+n4/4+HjExsbiyZMnuH//PiIiIoQjZQYGBrCz\ns4ObmxtmzJgBCwsLODo61ttVPknjxOVyYWpqClNTU3Tt2rXCc6WlpUhNTcWTJ08QGxuLpKQk3Lp1\nC3/88QcKCgqE94tzdnaGnZ0dWrZsCRcXF4nf0DkqKoq1KZDp6enIyclh7WbbycnJrKwwSQghkkLN\nGqm3tLS0sG7dOsyePRvjx49n7eSCDZaWlnj69KmkyxCrly9fIiwsDLdu3cL9+/cRHR2N4uJiKCgo\nwMHBAU5OTvjll1/g5OQER0dH4U2VCWmo5OTkhNezDRgwQPi4QCDAs2fP8PDhQzx48AAPHz7E+fPn\n8e7dO3C5XFhaWqJNmzbo2LEjXF1d0bp1a8jIyNRZ3Y8ePcL06dNZyY6NjQUA1pq1pKQkmgJJCGlQ\nqFkj9drUqVNx8OBBTJs2DeHh4aysLsYGKysrBAUFSbqMGhMIBHjy5AnCwsIQHh6O0NBQpKWlQV5e\nHs7OzujYsSNmzpwJJycntGzZst58LoTUBS6XC2tra1hbW2P06NHCx1++fCls4B48eIA1a9bg3bt3\nUFNTQ6dOneDq6go3Nze0b98eysrKrNSWm5uLlJQU1n75FRsbK7yFAhuSk5Ph4eHBSjYhhEgCNWuk\nXuNyufj777/h5OSENWvW4JdffpF0SdVibW2NjIwM5OXlffVmxtIkJSUFFy5cwMWLFxEWFoacnBw0\nadIELi4u8PLyEp5E0ogZITVTvorl4MGDAXy8xvPJkye4efMmbt68if379+Pnn3+GnJwc2rZti169\neqFv375wdnYW2+I60dHRYBgGjo6OYsn7XFxcHGsLlwAfR9amTp3KWj4hhNQ1atZIvWdpaYktW7Zg\n1qxZ8PDwQLdu3SRd0jfZ2NgAAJ4+fcraqmi1VVZWhvDwcFy4cAEXLlzA48ePoaqqih49emD16tVw\ndXWFo6NjnU7PIqQx4XA4sLe3h729PWbMmAEASE1NRWhoKEJDQ3HgwAH4+PhAV1cXffr0Qd++feHp\n6VmrxTXu3LkDXV1dmJiYiOtlVBAdHY02bdqwkp2RkYHc3Fzhz1dCCGkIqFkjDYKXlxcuXryI8ePH\nIzo6WupXAjM3N4eCggISEhKkqlnj8/m4evUq/v77b5w/fx65ubmwsrJCv379sG3bNnTp0kUqV68j\npLEwMTHBuHHjMG7cOABATEyM8Bcq5Y+5urpi7NixGDFiBDQ0NETKv3PnDlxcXMReN/Dx50tUVBSm\nTZvGSv7jx48BAPb29qzkE0KIJNBNiUiDsX//fvD5fNYujBcnGRkZNG/eHAkJCZIuBcDHE74ffvgB\npqam6NOnD5KTk7F69Wo8f/4cCQkJ2LZtGzw9PalRI0TKODg4YMmSJbhx4waysrJw7Ngx6Ovrw9vb\nGwYGBhg1ahSCgoJQVlZWrbyIiAh06NCBlVpjY2NRVFQEZ2dnVvJjYmKgr6/P2vVwhBAiCdSskQZD\nW1sbhw8fRkBAAI4ePSrpcr7JxsYG8fHxEjs+j8fDnj17hKszBgQEYOrUqXj69CnCw8Mxb948WgKb\nkHpEQ0MDI0eOxD///INXr15h586dyMzMxMCBA2FkZITFixfj5cuXVe6fmpqK9PR0dOzYkZX67t+/\nD0VFRdja2rKS//jxYzg4OLCSTQghkkLNGmlQPD094e3tjdmzZ0v90vi2trZ48uRJnR83NzcXq1at\ngqmpKebPn482bdogNDQUiYmJWL16NSwtLeu8JmnB4XCEfxqryMhIuLu7S7qMGpGWz8/d3R2RkZES\nrUFdXR1TpkzBjRs3kJSUhDlz5sDPzw+WlpYYPXq0cMrgpyIiIiAjI8Pa1OwHDx7A0dGRtdVhY2Ji\nqFkjhDQ41KyRBmfDhg2wsbHB4MGDkZeXJ+lyqtSqVSskJCSAx+PVyfE+fPiAjRs3wsLCAjt37sSc\nOXPw8uVLHDhwAG5ubhI/wZUGDMNIugSJ2r9/P3r27Alvb29JlyLk5uYGNze3am0rLZ/fvHnz4Onp\niX379km6FABAs2bN8NNPPyEpKQmHDx9GXFwcWrVqhe+++w4pKSnC7e7cuQMHBweoqqqyUsf9+/dZ\nmwIpEAgQHx9PzRohpMGhZo00OIqKijhz5gzy8vIwcuRI8Pl8SZdUKUdHR/D5fOFNYtkUGhqKVq1a\nYe3atZgzZw6SkpKwatUq6Orqsn5sSZHkCIukjl2b4168eBHTp0/Hn3/+KVw6XhoIBAIIBAJJl/GF\nr73XQ4YMwa5du4QLH0kLOTk5jB07Fg8fPsTx48dx9+5d2NnZYevWrRAIBLh16xZrUyDLysoQFRXF\n2kqQCQkJKCwsZO2WA4QQIinUrJEGSV9fHydPnsT169exatUqSZdTqRYtWkBFRQXR0dGsHYNhGKxd\nuxbdu3eHlZUVnjx5gjVr1kBdXZ21Y5L6p6SkBF5eXnBxccGoUaMkXU4F4eHhCA8Pl3QZIhs3bhw6\ndOiAGTNmoLS0VNLlVMDlcjFq1CjExMRg0aJFWLFiBXr27In79++jS5curBzz4cOHKCwsZG2lyYiI\nCCgpKdHIGiGkwaFmjTRYHTt2xN69e7F+/Xr4+flJupwvcLlc2NnZsdas8fl8TJ48GatXr8a6detw\n9uxZmJmZsXIsUr8FBAQgNTUVY8eOlXQpDcrYsWORkpKCgIAASZdSKQUFBfj4+ODWrVuIjY1FSUkJ\nrKysWDlWeHg4tLS0WLsH2p07d+Ds7Mza9XCEECIp1KyRBm3ChAmYO3cuJk2ahPv370u6nC84Ojoi\nKiqKleyFCxfCz88P58+fx5IlS1g5hjhdvXoVAwcOhKamJhQVFdGmTRv8+++/X2z36SISiYmJGDp0\nKDQ1NStMS/t0elr541OnTq2Q8+TJE/Tt2xeqqqpQV1fHkCFDKly/87k3b95g5syZMDY2hry8PIyM\njDB9+nRkZmZ+Ud+3jl3dLAAoLi7Gxo0b4eTkBBUVFSgqKsLGxgYzZsxARESESMetytmzZwHgi4Ul\nqvNeAzX77GJjY9G7d280adIEqqqq6NevH+Li4qrc/nOifn51/f0FAO3atavw/kqrNm3aYNSoUZCX\nl8d3332HgoICsR8jPDwcrq6u4HLZOe2IiIhgbQonIYRIFFMLI0aMYEaMGFGbCEJYV1paynTv3p1p\n1qwZ8/r1a0mXU8Hvv//OaGlpMQKBQKy5V65cYTgcDvPvv/+KNZdNAJjBgwczWVlZzMuXLxlPT08G\nAHPp0qVKtwXAeHp6MuHh4UxRURFz4cIF5tMfaeXbVOb58+eMhoYGY2hoyFy7do3Jz89nbty4wfTq\n1avS/TIzMxkzMzNGT0+P+e+//5j8/HwmNDSUMTMzY8zNzZmcnJxK66uMKFl5eXlM27ZtGTU1NWbf\nvn1MZmYmk5+fz4SEhDC2trZfHONrx/0aa2trBgCTmZn5xXPVfa9F/excXFyYmzdvMvn5+czVq1cZ\nfX19RlNTk0lOTv7maxL186tpjTX9/iqXkZHBAGBsbGy+up006Ny5MzNu3DhGR0eHmTlzptjzDQwM\nmE2bNok9l2EYpqCggJGVlWVOnDjBSj4hhNQUAMbPz682Ef7UrJFGITs7m2nRogXj7OzM5OXlSboc\noYiICAYA8/TpU7Hm9ujRg+nTp49YM9kGoMKJelxcHAOAcXNzq3RbAExISMhX86o6mf7uu+8YAMzf\nf/9d4fHAwMBK9/Py8mIAMAcOHKjw+KlTpxgAzPLly6t9bFGyFi5cyABgfvvtty9yHjx4ILZmTVVV\nlQHAFBcXf/Fcdd9rUT+7CxcuVHj80KFDDADm+++/r3T7T4n6+dW0xpp+f5Xj8XgMAEZNTe2r20la\nYWEho6CgwBw9epQ5cOAAo6CgUGnjXlPPnj1jADDh4eFiy/xUcHAwA4BJTU1lJZ8QQmqKmjVCRJCU\nlMQYGBgw7u7ulZ6USsKHDx8YBQUF5siRI2LLLC0tZeTk5Jhjx46JLVMSysrKGABM06ZNv3iu/ES5\nsLCwyv2/djKtp6fHAGDS09MrPJ6VlVXpfoaGhgwAJiMjo8Lj2dnZDADGwcGh2scWJcvU1JQBwLx4\n8aLK11nd434Nl8tlAFQ6wlud9/pz1fnscnNzKzyelpbGAGAMDAwq3f5Ton5+Na2xpt9f5fh8PgOA\nkZGR+WY9knT16lUGAJOSksIUFRUxMjIyzMmTJ8WWf+jQIUZRUZG1n7sbNmxgDA0NWckmhJDaEEez\nRteskUbD3Nwc//33Hx49eoTRo0dLxZL+8vLyaN26Ne7cuSO2zLy8PJSWlkJPT09smWzLzc3F8uXL\nYWtrCzU1NXA4HMjKygIA3r59W+V+ysrKNTpednY2AEBbW7vC45//f7k3b94AAAwNDStc01S+fWJi\nYrWPLUrWq1evAHxc3ZRN5e9jSUnJN7f5XE0/u89XJC1//VlZWd+sV9TPr66/v8qVv5+1zWHbpUuX\nYGNjAxMTEygpKUFdXV34HovDtWvX0KlTJygoKIgt81PBwcHo1q0bK9mEECJp1KyRRsXBwQGBgYG4\ndOkS5s6dK+lyAHxctVKczZqWlhY0NTVZvSWAuI0cORIbNmzAqFGj8PLlSzAMw+oNjstP6j8/IX3/\n/n2l25c3vu/evRPW9umfwsLCah9blKzybcubNrYYGRkB+NjUiKqmn93nTVL5Z6Gjo/PNfUX9/Or6\n+6tcTk4OgP+9v9Lq4sWL6NOnDwAgJSUF7969Q/PmzcWSzTAMrl69ip49e4ol73PFxcW4efMmPDw8\nWMknhBBJo2aNNDpdu3aFn58f9u3bh7Vr10q6HHTo0AFRUVHg8XhiyxwzZgx27dol1kw2ld9Ha9Gi\nRdDS0gIAfPjwoVaZ5aMZpaWlKCoqqjDqUn7ieO3atQr73L59u9Ks8ptEX79+/YvnwsLC0KlTp2of\nW5SsYcOGAQBOnz79xbYRERHo0KFDtY/7NU5OTgCAly9fVmv7T9X0s/v83mlXr14FgGqd1Iv6+dX1\n91e58vezdevWtToWm9LS0vDkyRNhs7ZlyxYYGRmha9euYsmPiorCq1ev0KtXL7HkfS48PBw8Hg/d\nu3dnJZ8QQiSuNpMo6Zo1Up/98ccfDIfDYfbu3SvROpKSkhgATGhoqNgyU1NTGS0tLWbSpEliX2mS\nDeWr+C1btozJyclh3r59K1xco7IfU1U9/qmOHTsyAJibN28y//77L9O/f3/hc4mJiV+sJhgeHs50\n6dKl0uysrCymRYsWjIGBAXPixAkmOzubycvLY86dO8dYWFgw169fr/axRcnKyclh7O3tGTU1NWbv\n3r3C1SAvXbrEtGjRgrl69Wq1j/s1x44dYwAwu3bt+uK5b73XNf3s+vTpw4SFhTH5+fnMtWvXGAMD\ng2qvBinq51fX31/lduzYwQBgjh8//tUsSdq7dy+joqLC8Hg85uzZswyXyxXrNbQbN25ktLW1GT6f\nL7bMTy1btoyxsrJiJZsQQmoLtMAIIbWzevVqRkZGRqwnJzXRrFkzxsfHR6yZQUFBjLy8PDNjxgym\ntLRUrNni9vr1a2b8+PGMrq4uIy8vz9jb2zN+fn7Ck+ZPT5w/fexrJ9WRkZFMq1atGGVlZaZjx45M\nQkJChecfP37M9OnTh1FRUWFUVVWZnj17Mk+ePKky9927d8zChQsZc3NzRk5OjtHT02MGDBjA3L59\nW+Rji5KVn5/PrFy5krG2tmbk5eWZpk2bMj179qy0uf/Wcavy4cMHxtjYmHF1da3weHXea1E+u08z\nk5OTmf79+zNqamqMiooK06dPHyY2Nvarx/+UKJ+fJL6/GOZjQ2dsbMx8+PChinde8oYMGcL079+f\nOX36NKOgoMB4eXmJNb979+7MuHHjxJr5qbZt2zKzZs1iLZ8QQmqDmjVCxGDlypUMl8tlDh8+LLEa\nJk2axHTp0kXsuWfOnGGUlZWZrl27MmlpaWLPJw1HUFBQndybrzqjVg3B0aNHGQ6HwwQFBUm6lCqV\nlJQwTZo0YXr27MlwOBxm5syZYh0BKygoYBQUFFj72fr27VtGRkaGCQgIYCWfEEJqSxzNGl2zRhq9\nX375BcuWLcPkyZNx5MgRidTQvXt3REREiLRQRXUMHDgQERERyMzMRMuWLbFjxw6UlZWJ9RikYejX\nrx/+/PNPzJgxo9Jr5Ej1BQYGYtasWfjjjz/Qr18/SZdTpd9//x15eXkIDQ3F/v37sXv3bnC54jst\nuHLlCkpLS1lbXOTixYvgcrl0vRohpEGjZo0QAGvXrsXSpUsxefJk/P3333V+fA8PD5SWluLmzZti\nz3ZwcMDDhw+xYMEC/Pjjj7CyssLevXul4tYFRLpMnz4d//33H3777TdJl1Kvbd++HVeuXIGXl5ek\nS6lUbGwsRo4ciUWLFkFNTQ2PHj3C5MmTxX6cgIAAuLi4sHbricDAQLi7u0NDQ4OVfEIIkQbUrBHy\n/9auXYslS5Zg0qRJdd6wGRgYwNbWVrginrgpKSnBx8cHjx8/houLC2bOnAl7e3vs3bu33qwYSepG\n+/btK12pUhw4HE6lXzc0169fR/v27SVdxheuX7+OAQMGwMHBAc+fP4eGhgaWL18Oa2trsR+rtLQU\n58+fx9ChQ8WeDXxcsv/y5csYMmQIK/mEECItqFkj5BPr1q3Djz/+iEmTJuHo0aN1euw+ffrg3Llz\nrB7D0tISR48eRUxMDFxcXDBv3jwYGxtjzpw5iIiIYPXYhDCf3VOOsC89PR2+vr6wt7eHu7s73r9/\nj8DAQGzZsgW5ubmsNTvXrl1DTk6O8FYV4nb58mUUFhZi4MCBrOQTQoi0oGaNkM+sX78e8+fPx8SJ\nE+v0GrbBgwcjISEBcXFxrB+rZcuWOHDgAF68eIHFixcjODgYnTp1grW1NdauXVuj+20RQqRDQUEB\njhw5Ak9PT5iammLTpk3o0qUL7t69i9DQUAwcOBCnTp2Co6MjK6NqwMcpis7OzjA3N2cl//Tp0+jQ\noQMMDQ1ZySeEEGlBzRohldiyZQsWL16MiRMnYseOHXVyzPJrO+pycQd9fX0sW7YMsbGxiIyMRO/e\nvfH777/D3NwcnTp1wtq1a/HgwQMaBSFEyqWnp2Pfvn0YOnQo9PX1MW3aNKiqquLkyZPIyMjA7t27\n0a5dOwCAQCBAYGCg8Kbr4iYQCHD27FnWpkDy+XwEBQXRFEhC5YQirAAAIABJREFUSKNAzRohVdi4\ncSN+/fVXzJ8/H0uXLmX9eFwuF/3795fYSnxt27bF9u3bkZaWhrNnz8Le3h5//PEHnJ2dYWRkhKlT\npyIgIAB5eXkSqY8Q8j98Ph/h4eFYsWIFnJycYGJigvnz56O0tBRbt27Fq1evEBgYiCFDhkBBQaHC\nvmFhYcjIyGCtWbtx4wYyMzNZa9aCg4ORlZVFzRohpFGQlXQBhEgzb29vaGhoYOrUqSgoKMCOHTvE\nurT15wYPHowDBw4gJSUFpqamrB3na+Tk5NC/f3/0798fDMPg0aNHuHjxIs6fP49Dhw6By+WiXbt2\ncHV1haurKzp37gwtLS2J1EpIY1FSUoJ79+4hPDwcYWFhuHnzJnJycmBhYYG+fftiw4YN6NatGxQV\nFb+ZdejQIbRt2xZ2dnas1Hro0CG0b98eNjY2rOQfPnwYLi4usLS0ZCWfEEKkCTVrhHzD999/D3V1\ndYwePRq5ubk4dOgQZGXZ+avTq1cv6Onp4dChQ/j5559ZOYYoOBwOnJyc4OTkhOXLl+Pt27e4fPky\nbty4gfPnz2Pz5s0APl4D5+bmhs6dO8PNzQ1mZmYSrpyQ+u39+/e4deuWsDmLjIwEj8eDvr4+XF1d\nsWrVKvTu3Vvka84KCwsREBCA9evXs1J3QUEBTp06hU2bNrGSn5eXh8DAQPz666+s5BNCiLShZo2Q\nahg8eDAuXLiAQYMGYejQofDz84OSkpLYjyMrK4tx48bh4MGDWLlyJaujeDXRtGlTjBkzBmPGjAEA\n5Ofn486dO7h58ybCw8Nx6NAhFBcXQ0NDA3Z2dnB2dhb+sbW1lbrXQ4g0eP/+PWJiYnD//n3hn/j4\neAgEAhgYGMDV1RW//fYbOnfujJYtW9bqtgcnTpzAhw8fMHr0aDG+gv/x9/dHSUkJRo0axVq+QCDA\nyJEjWcknhBBpw2FqsXJA+Q9Lf39/sRVEiDQLDw9H//794ezsjNOnT0NVVVXsx0hISICtrS0uX76M\nHj16iD2fTTweD5GRkbh//z4ePnyIBw8eID4+Hnw+H+rq6mjdujXatGmD1q1bw87ODtbW1qy8h4RI\no7KyMiQnJ+PJkyeIjo4W/h1JSUkBABgZGaFNmzZwcnJCmzZt0LFjR+jp6Ym1hm7dukFXV5e1f7e7\ndu0KfX19+Pn5sZLv5uYGY2Nj/PPPP6zkE0KIOHE4HPj5+dXmF0wnaGSNEBF07twZISEh6N27N7p2\n7YqgoCAYGBiI9RjW1tbo2LEj9u7dW++aNSUlJXTp0gVdunQRPlZUVFThxDQ0NBS7du1CSUkJOBwO\nTE1NYWNjA1tbW9ja2sLGxgYtW7aEtra2BF8JITXH4/EQHx+P+Ph4xMbGCr9++vSp8Pve3Nwcbdq0\nwYwZM4TNma6uLqt1vXjxAqGhoazdzzE5ORlhYWEICgpiLT88PBwXLlxgJZ8QQqQRNWuEiKh169a4\nffs2+vbti3bt2uHChQtwdHQU6zHmzp2L8ePH49mzZ2jRooVYs+uasrIyOnbsiI4dOwofKx9hKD+R\njYuLQ3h4OP766y/hapPa2tqwsrKChYWF8I+5uTksLCxgZGRUq6lghNRWTk4OkpKSkJSUhOTkZOHX\nz58/x8uXLyEQCCAnJ4fmzZujZcuWGDhwYIVfSKioqNR5zXv37oW+vj569erFSv6+fftgYGCAnj17\nspK/d+9eGBgYwNPTk5V8QgiRRjQNkpAaevfuHQYPHozHjx8jMDAQXbt2FVs2n8+HnZ0dOnfujAMH\nDogttz5ITU0VNnDPnj0TnggnJyejuLgYAKCgoABzc3Nh82ZhYQFjY2MYGRnB2NgYBgYGkJeXl/Ar\nIfUVwzB4/fo1MjIykJ6ejrS0NLx48aJCc5aTkwMAkJGRgZGRkfCXCZaWlsKRYktLS8jJyUn41XzE\n4/FgYmICb29v/PTTT/U2f/78+Vi5cqXY8wkhhA00DZIQCdLS0sKVK1cwceJE9OzZEwcPHsTYsWPF\nki0jI4OlS5di+vTpWLlyJczNzcWSWx+YmJjAxMSk0t+eZ2RkfDGSER0djTNnzuDVq1fg8/nCbfX1\n9WFoaFihgTM1NYWhoSH09fWho6MDHR0dyMjI1OXLIxKWk5ODN2/eICsrC2lpacjIyEBqamqFxuzV\nq1coKSkR7tO0aVOYmZnBwsICHh4eFUZ6zczM6sUvBo4ePYqCggJMnz69Xub//fffKCgowLRp01jJ\nJ4QQaUUja4TUEsMwWL16NdasWYOff/4ZPj4+YsktLS2Fra0t2rVrRxfTVwOfz0dmZmalJ+DlX6el\npYHH41XYr7xp09HRga6uLvT09KCtrQ0dHR0YGBhAW1sbWlpa0NDQgKamJpSVlSX0CsnnSktLkZub\ni5ycHOTk5CArKwtZWVl48+YNXr9+jezsbGRlZeHVq1fIyspCdnZ2hSZMVlYWenp6MDExgaGhIYyN\njb9o7I2MjFhZ+bWutWrVCs7Ozvjrr78onxBC6giNrBEiBTgcDnx8fKCpqYmFCxciPT0df/zxR63v\nxSYnJ4edO3eiT58+GDt2LAYMGCCmihum8uloRkZGX93u3bt3eP36dYWT+vIT+czMTERFRSE7Oxtv\n3rzB27dvv9hfXl5e2Lh9+t/Pv1ZVVYWSkhLU1NSgpqYGJSUlqKqqokmTJlBSUpLINUvSorS0FAUF\nBcjLywOPx0NhYSHev38PHo+HoqIi5ObmorCwEDk5OcjNzRU2ZJ//t7Cw8ItsFRUVYdNd3nA7OTlB\nV1cX2traFZ7T09NrFCOrV69eRXR0NA4fPkz5hBBSz9DIGiFiFBAQgPHjx8PT0xPHjx8Xywn5uHHj\nEB4ejsePH9My93WsrKwMWVlZlTYKnzcRn39dUFCA0tLSr+arq6tDSUkJysrK0NDQAIfDgbKyMhQU\nFMDlcqGurg7gYwMiLy8PGRkZNGnSBACgqqpa4XqoT5+rjJqaWpW/QMjNzUVV/xTweDzhtYLlyq/X\nKn+Oz+cLF4Ypf4xhGOTm5gL4eKNkHo+H/Px85Ofno6ys7KvvS/kIZmWNcFXNsaamJnR0dGjksxID\nBgxAfn4+rl+/TvmEEFKHaGSNECkzbNgwGBgYYNCgQXBzc8Pp06dhampaq8xff/0VdnZ2mDFjBo4e\nPSqmSkl1yMrKwsDAoMa3ZygrKxM2KEVFRZWOIBUVFYHH4wkbm/Jmpnz0CQAyMzO/eCwvL6/CNXrF\nxcVfTPEs92njVBklJSXIyspW2sxV1gSqq6uDy+VCXl4efD4fUVFR6NKli7BxKm+YyhtQFRUVKCkp\noUmTJhVGHDkcDsaPHw9NTU0EBgbC2NiYmi0xe/z4MS5cuICAgADKJ4SQeohG1ghhQWpqKgYPHoyU\nlBScOHEC3bp1q1XetWvX0KtXL/z666+YO3eueIok5P9NnToVQUFBePz4scj3tyspKUHv3r3x9OlT\n3Llz55vTUD+XkpKC7t27Q15eHteuXRP7fQsbu+HDhyMhIQFRUVHgcrlizx82bBiePXuGR48esZI/\ndOhQPH/+nLV8QghhkzhG1ugnHyEsMDExwY0bN9ClSxd4enpi586dtcrz8PDA6tWrsWjRIoSFhYmp\nSkI+2rp1KxQUFGq00p68vDxOnjwJFRUVDBo0qNLryL7G1NQUISEhKCsrg7u7O9LT00WugVQuJiYG\ngYGBWLt2LSuNzsOHD1nNf/DgAU6fPo1169ZRo0YIabTopx8hLFFVVcXJkyexdu1aeHt7w8vL65vX\nMH3N8uXLMXDgQIwcORIZGRlirJQ0durq6vjrr79w5swZ+Pn5iby/lpYWLl68iJSUFIwePbrC9Mzq\nMDExQVhYGGRlZeHm5obk5GSRayBfWrlyJVq3bo2BAweykv/zzz+jTZs2rC1+9NNPP8HZ2Rn9+/dn\nJZ8QQuoDatYIYRGHw8GSJUvg5+eHY8eOwcPDA2/evKlx1sGDB6GpqYkRI0ZUWIKckNry8PCAl5cX\nZs+ejczMTJH3t7CwwKlTp3DlyhUsW7ZM5P319PQQHBwMVVVVuLu7IzExUeQM8j/379/HuXPnsGbN\nGnA4HLHn37t3D+fPn8fatWtZyY+MjMTFixexfv16VvIJIaS+oGaNkDowfPhwhIeHIyUlBR06dMDd\nu3drlKOmpgZ/f39ERUVh0aJFYq6SNHabN2+Guro6Jk6cWOXqkF/j6uqKw4cPY8uWLdi9e7fI++vq\n6uLGjRvQ1dWFu7s7nj9/LnIG+Wjp0qVo3749+vXrx1p+p06d0Lt3b9byXV1d4enpyUo+IYTUF9Ss\nEVJHWrVqhXv37sHGxgZubm747bffanRCbG9vj0OHDmH37t3Ytm0bC5WSxkpVVRX//vsvgoOD8euv\nv9YoY9SoUfj5558xb948BAUFiby/pqYmLl++DENDQ7i5ueHJkyc1qqMxCwwMxLVr17B582bW8oOD\ng7Fp0yZW8k+fPo2QkBCsX7+elXxCCKlPqFkjpA5pa2vjwoUL8PX1xY8//ojBgwfj3bt3IucMHz4c\nmzdvxuLFi3Hs2DEWKiWNVbt27eDj44OlS5fWeAR41apVGDt2LMaOHYvo6GiR99fQ0MB///0Hc3Nz\neHh4ICYmpkZ1NEYlJSVYsmQJxowZAzc3N7HnFxcXY9GiRRg3bhxcXV3Fns/j8bBw4ULW8gkhpL6h\nZo2QOsbhcODt7Y2bN28iOjoaTk5OuHXrlsg5CxcuhLe3NyZPnozg4GAWKiWN1dKlS9GlSxeMGzcO\n+fn5Iu/P4XCwf/9+tG3bFn379q3RCo/q6uq4cuUKWrZsCQ8PD8THx4uc0Rht27YNaWlp2LBhAyv5\nvr6+yMrKwsaNG1nJ37BhA7Kzs1kbtSOEkPqGmjVCJKR9+/aIjIyEvb09unbtCh8fHwgEApEytm7d\nigEDBmDo0KE0+kDEhsvl4vDhw8jJycG8efNqlFHbJf0BQEVFBUFBQbCysoKnpydevHhRo1oai9ev\nX2PDhg1YtmwZTE1NxZ6flpYGX19frFixQuT76VVHYmIiNm/eDB8fHxgaGoo9nxBC6iNq1giRIG1t\nbQQFBWHNmjVYt24dBgwYgFevXlV7fy6Xi7///ht2dnYYNGgQLelPxMbIyAiHDh3CkSNHsGfPnhpl\n1HZJfwBQVlZGUFAQdHR04OnpKdLfj8Zm0aJF0NTUxOLFi1nJX7hwIQwNDbFgwQJW8ufPnw8LCwvM\nnTuXlXxCCKmPqFkjRMI4HA6WLVuGGzdu4OnTp3BwcIC/v3+191dSUsKZM2egqKgIDw+PGi27Tkhl\n+vfvj5UrV2Lu3LkIDw+vUUZtl/QHPl7DdunSJcjKyqJXr141us6zobt48SKOHTuGHTt2QElJSez5\nZ86cwYkTJ7Bjxw4oKCiIPf/UqVMICgrCzp07IScnJ/Z8Qgipr6hZI0RKuLi4IDo6GuPGjcPo0aMx\ncuRIvH37tlr7amtrIyQkBFwuF926daOGjYjNqlWr4OnpiTFjxtT4HoG1XdIf+Lis/+XLl5GXl4e+\nffvW6Fq6hqqwsBCzZ8/G2LFjWbkBdm5uLmbPno2JEyeyslT/mzdvMHPmTEyePBnu7u5izyeEkPqM\nmjVCpIiSkhK2b9+O//77D7dv34a9vT3OnTtXrX3LbyrM4XDQs2dPZGdns1wtaQy4XC6OHj0KeXl5\njB49GmVlZTXKqe2S/gBgYmKCK1eu4OXLlxg0aBCKi4trlNPQLF26FHl5eTW+3cK3zJs3DwKBgLVb\nhcyePRtKSkr/196dx9Wc9//jf5zTqbQL0apkS7YhO9nGlsIIIcTMoFzMDJkxM8wMMxczXHNdvpix\nM8Y6kXUsWVKk7LuhiJCWk6K0azmv3x8+nZ+jRXJyjnrcb7dzU+/l+X6+T810Huf1Pq93pfVPRPQ+\nY1gj0kJ9+/bF9evX0atXLwwZMgRTpkxBZmbma/erV68ejh07hqysLPTp06fcI3NEZTE3N8fu3btx\n7tw5zJkzp8J13nZKfwBo3Lgxjhw5gmvXrsHLywv5+fkV7qcqOHfuHFauXImlS5eibt26aq9/6NAh\nbN68GcuXL4e5ubna62/atAm7d+/Ghg0bYGpqqvb6RETvO4Y1Ii1lbm6Obdu2ISAgAIGBgWjRogUO\nHjz42v1sbW0REhKCtLQ09O/fn4GN1KJVq1ZYs2YNfv31VwQGBlaohjqm9C/q5dChQwgNDcXo0aMr\nNHFJVZCdnY3x48ejX79+GDNmjNrrP3v2DL6+vvD29sbQoUPVXj8+Ph7Tp0/HZ599xssfiYhKwbBG\npOW8vLxw584d9O/fHx4eHhg0aBDi4uLK3Mfe3h4hISF48uQJXF1d8ejRo3fULVVlY8aMgZ+fHz75\n5BPcunWrQjXUMaU/AHTs2BH79u3DwYMHMXHiRAghKlTnfTZz5kwkJSVVeLbO1/H19UVhYSGWLVum\n9tpCCHzyySeoW7dupd0TjoioKmBYI3oP1KpVC6tXr0ZoaCju3LmDFi1aYOnSpWXel83R0RFnzpyB\nnp4eOnXqxPuwkVosXboUH3zwATw9PZGenl6hGuqY0h8AevfujYCAAGzZsgWzZ8+uUI331eHDh7F6\n9WqsWrUKdnZ2aq+/bt06BAYGYuPGjahdu7ba6y9atAihoaHYtGlTpcxeSURUVTCsEb1HevbsiatX\nr2L69On46quv0L17d9y8ebPU7S0tLXHixAk4OjqiR48eOH369DvslqoiXV1dBAYGIj09HT4+PhUe\n0VLHlP4AMGTIEKxbtw6LFi2qtBEmbZOcnIyPP/4YPj4+GDlypNrrR0dHw9/fH7NmzULfvn3VXv/k\nyZP4/vvv8euvv6JDhw5qr09EVJUwrBG9ZwwMDDBv3jycO3cOubm5cHFxwZw5c0q9nKxmzZoIDg5G\nr1690K9fPxw+fPgdd0xVjaWlJbZt24aDBw9iwYIFFa6jjin9AWD8+PH44YcfMHXqVPz9998VrvM+\nEELg008/RY0aNSrl8sTnz5/Dy8sLTk5O+PHHH9VePykpCd7e3hg4cCA+//xztdcnIqpqGNaI3lNt\n2rTBuXPnsHDhQixfvhxOTk7Ytm1biSMd+vr6CAgIgKenJ4YMGYI//vhDAx1TVdKzZ0+sXLkSP/zw\nA7Zs2VLhOuqY0h94MdPkuHHjMGbMGFy5cqXCdbTdsmXLcOjQIWzatKlSZk/88ssvERMTg4CAAOjp\n6am1tkKhwNixY2FoaIhNmzZBIpGotT4RUVXEsEb0HtPR0cH06dNx7949eHp6wsfHBx07dsTZs2eL\nbaurq4uNGzfiyy+/xMSJE+Hv719tZ9Ej9Zg4cSKmT5+OTz/9FCdOnKhwHXVM6S+RSLBmzRp07twZ\n7u7uiI2NrXA/2ur8+fOYNWsWfvzxR7i6uqq9/tatW7F8+XKsXr0ajo6Oaq//3XffITw8HNu3b4eZ\nmZna6xMRVUUMa0RVQO3atbF06VJcuHABNWrUQNeuXeHj44OkpCSV7SQSCRYsWICAgACsXr0aAwcO\nRFpamoa6pqrgv//9L9zd3TF8+HBER0dXqIZEIsH69evfekp/XV1d7Ny5ExYWFnBzc6tSv9upqakY\nNWoUXF1d8c0336i9/rVr1zB58mT4+/tj1KhRaq8fGBiIhQsX4rfffkPbtm3VXp+IqKpiWCOqQtq0\naYOTJ09i06ZNCAkJgZOTExYvXoznz5+rbOfl5YWIiAhERUWhQ4cOiIqK0lDH9L6TSqXYunUrGjVq\nBDc3N6SkpFSoTlHQetsp/U1NTXHo0CGkp6dj6NChyMvLq1AdbVI0zX1+fj7++usv6OjoqLX+06dP\n4enpiU6dOmHhwoVqrQ0Aly5dwoQJE/DZZ59h4sSJaq9PRFSVMawRVTESiQRjxozB7du38a9//Qvf\nffcdmjZtik2bNqlM9f/BBx/gzJkzqFmzJrp06YIjR45osGt6nxkYGGDv3r3Iz8+Hp6dnsTcHyktd\nU/rb2Nhg3759uHjxIvz8/CpUQ5v85z//wcGDBxEQEAALCwu11i4sLMSYMWNQUFCAgIAAyGQytdaP\nj4/HkCFD0L17d/zvf/9Ta20iouqAYY2oijIyMsKCBQsQHR2N/v3749NPP0XLli0RGBio3Mba2hon\nT56Eu7s7Bg4ciDlz5qCgoECDXdP7ytLSEkFBQbhx4wYmTJig8Sn927Ztix07dmDz5s2YP39+heto\n2tGjRzFnzhwsXLgQXbt2VXv9r7/+GidPnsSePXvUHgQzMjLg7u4OMzOzSgmCRETVAcMaURVnY2OD\n1atX459//kHz5s0xcuRIdOnSBWFhYQBejIps3rwZGzZswJIlS/Dhhx9W+DNDVL05OzsjICAAO3fu\nfKuApK4p/d3c3PDbb7+99YyVmvLgwQOMGTMGI0eOhL+/v9rrr127FosXL8batWvV/jmyopkfk5KS\nEBQUxAlFiIgqiGGNqJpo2rQpduzYgYiICMhkMvTs2ROenp74559/AAA+Pj64cOECnjx5gg8++ABB\nQUEa7pjeR/3798eqVaswd+5cbN68ucJ11DWlv5+fH7766itMnDgR586dq3Cddy0rKwuDBw+GjY0N\n1q5dq/b6J06cwLRp0zB37lyMGTNGrbWFEJgyZQqOHTuGffv2oX79+mqtT0RUnTCsEVUznTt3RlhY\nGP7++2/cu3cPrVu3xogRI3Djxg04Ozvj7Nmz6NevHzw8PDBnzhzk5+drumV6z3z66afw9/fHxIkT\nERoaWuE66pjSHwB++eUX9O3bFx999BESEhIqXOddKbrxdXx8PHbv3g1DQ0O11r916xaGDh0KT09P\n/PDDD2qtDQDffPMNNmzYgB07dqBDhw5qr09EVJ0wrBFVUx4eHrh69Sr27t2L+/fvo3Xr1hg0aBBu\n376NrVu3YtWqVViyZAk6d+6Mmzdvarpdes/85z//UU7pXzR6+6bUNaW/VCrFtm3bYG5ujuHDh2v9\nDJE//fQTdu3ahcDAQLXf7yw5ORmDBw9Gy5Yt8eeff6r9xtS//PILfv31V6xZswYeHh5qrU1EVB0x\nrBFVYxKJBIMGDcKFCxewb98+yOVytG/fHoMGDUKbNm1w48YNGBkZoV27dli0aBFvok3lVjSlf6tW\nrfDhhx/i9u3bFaqjrin9TUxMsGfPHty8eRMzZsyoUI13Yfv27fjxxx+xdOlS9O7dW621MzIyMHDg\nQOjo6GDv3r3Q19dXa/1Vq1Zh9uzZWLx4MSZMmKDW2kRE1RXDGhEpQ9v58+exZ88eJCQkoEOHDpgx\nYwbmz5+PhQsXYu7cuXB1dcWdO3c03S69JwwMDJSfWerXrx9iY2MrVEddU/oX3cJi5cqVWLduXYVq\nVKbw8HCMHz8eM2fOxL/+9S+11n7+/DmGDh2K+Ph4BAUFoVatWmqtHxAQgKlTp2L+/PmYPn26WmsT\nEVVnDGtEpCSRSDBkyBBcvHgR+/btQ3JyMrp3747AwEAsWrQI2dnZaNu2LZYvX65yzzai0piamiIo\nKAjGxsYYOHAgnjx5UqE66prSf8iQIfj2228xbdo0nD9/vsJ11C0mJgaenp7o27ev2m9MXVhYiHHj\nxuHixYs4ePCg2i+tDAwMhI+PD6ZPn445c+aotTYRUXXHsEZExRSNtJ0+fRoXL16Eo6MjZs6ciYyM\nDHTp0gUzZsxAly5dcPXqVU23Su+BOnXq4OjRo8jOzoabmxsyMjIqVEddU/r/+9//Rp8+fUqccCQ3\nNxerVq2qcI8V8fTpU7i5uaF+/foICAiAjo6O2moXzcx44MAB7N+/H23atFFbbeDFZZve3t6YOHEi\n/vvf/6q1NhERMawR0Wu4uLhg06ZNuHHjBnr27ImwsDCYmZkhJSUF7du3xxdffPFOX9jS+8nGxgbH\njh1DXFwchgwZgtzc3ArVKWtKf7lcjgEDBmDfvn1l1pBKpdi8eTOMjIwwYsQI5YQjN27cQJs2bTBl\nypS3uu1ASTIyMuDv74/ExESV5fn5+Rg+fDiysrKwb98+GBkZqfW4c+bMwYYNG7B9+3a4urqqtfZf\nf/2FsWPHYvr06VixYoXaJyshIiIA4i2MGDFCjBgx4m1KENF7JikpScydO1fUqlVL6OrqCn19fWFh\nYSE2btyo6dboPXD9+nVRq1YtMXjwYJGfn19s/a5du0R0dHSZNRQKhRg3bpwwMTER165dE0IIcePG\nDWFjYyMAiHbt2pWrl8jISGFqaiqmTp0qlixZInR1dYVMJhNSqVT079//zU+uDEuWLBEAhK2trbhz\n506p5/GmEhMTxeLFi0VBQUGxdf/+97+FVCqtlP82161bJ6RSqZg1a5baaxMRVRUAxPbt29+mxA6G\nNSKqkPT0dPHbb7+Jxo0bCwACgHBxcRE3b97UdGuk5c6ePSuMjY3F2LFjRWFhoXL5smXLhEQiET17\n9nxtjby8PNGrVy9hY2Mj/vrrL2FsbCxkMpnyd/Gff/4pVy/r1q1TBrSifQEIPT09kZ2dXeFzfFlh\nYaFwcHAQEolEyGQyYW5uLi5evCjmzp0rdHR0xP79+ytce/z48QKA+OSTT4RCoVAuX7x4sZBIJGLF\nihXqOAUVy5cvFxKJRMydO1fttYmIqhKGNSLSCqdOnRI9evQQEolEABAdO3YUt2/f1nRbpMWCg4OF\nvr6+mDp1qhBCiJUrVyp/fwCIiIiI19ZISUkRzZs3Fzo6OiphS1dXV/j7+792/8OHD4s6deqohLyX\nH0FBQW99nkIIcejQIZW6Ojo6okaNGsLAwECsXr26wnUjIyOV5y2VSsXMmTOFEEIsXbpUABC//vpr\nhepu3rxZfP/99yWumzt3rpBIJOLnn3+ucN9ERNUFwxoRaZXo6Gjh5uYmpFKpkEgkok2bNuLYsWMq\n7/gTFQkMDBQ6OjrCx8dHJajJZDLx4YcflrmvQqEQP/zwQ4khC4AwMzMTubm5Je6bnZ0tPvvsMyGR\nSIqNqL0c+D7//HO1nGe/fv2KBUKpVCpkMpkICAiocN1dp916AAAgAElEQVRhw4YJXV1dZU2JRCI+\n+ugjIZFIxMKFCytU8+HDh8LAwEAAEKtWrVIuLygoEH5+fkJHR0dlORERlY5hjYi0UmJiohgwYIDy\nhbC1tbVYtGiRSEpK0nRrpGU+//xzlaD28iM8PLzEfXJycoSXl1epQasouOzYsaPE/b/44otS93v5\nUb9+/bc+v+jo6FLPr6jPxYsXv3Hda9eulVrX3d29wv26ubkpA6BMJhOnT58Wubm5YsSIEUJfX18E\nBgZWuDYRUXWjjrDG2SCJSO0sLS0RFBSEe/fuwc3NDQkJCZgzZw6srKzQt29fBAYGoqCgQNNtkoYF\nBgbi999/x4u/Z6pkMhl++umnEvfr06cPAgMDy7zXn1QqxapVq0pc9/XXX6N3796QSsv+ExgbG/vW\nN4Ffvnw5ZDJZqeuFEPD398fcuXPfqO6sWbNKrXvo0CGsX7/+jeoBwI4dOxAUFIT8/Hxlbx4eHujR\noweCg4Nx7NgxDB8+/I3rEhFRxTGsEVGlcXBwwKFDh3Djxg0MHjwYQgicO3cOXl5eaNSoEebOnYvo\n6GhNt0kasGvXLowaNarEoAYABQUFOHr0KC5cuFBsXf/+/SGTyaCrq1tq/cLCQoSGhuLBgwfF1llZ\nWSE4OBgrV66Evr5+qaFHV1cXQUFB5TuhEmRmZmLt2rXK8FMaqVSK5cuXl/sNjIiICBw5cqTUukII\nTJ48GYGBgeXuNT09HZ999plKgC0sLER6ejpu3LiBkJAQtU/9T0REr8ewRkSVrkWLFti1axciIiLQ\noUMH5fIVK1agSZMm6NKlC1auXImnT59qsEt6Vy5duoSRI0dCoVCUGtaAF2Fp3rx5xZZ///33iIyM\nxKBBgwCg1JtIy2Qy/PnnnyWuk0gkmDx5Mi5fvoymTZuWGNgKCwuxf//+159QKTZt2lTm/eR0dXUh\nk8kwceJEREZGljkC97Kvv/76tdsKITBmzBhcu3atXDW/+uorpKamFhutLCgoQF5eHtauXVuuOkRE\npF4Ma0T0znTu3BnBwcEIDw+Ho6MjUlJS0LJlS5iammLWrFmwsrLCoEGDEBgYqLxRMVU9tra2GDJk\nCCQSCfT09ErdLj8/H0FBQbh8+XKxdQ0bNsSuXbtw/PhxNG7cuMRLGvPz87Fq1SoUFhaWegxnZ2dc\nvHgRM2fOhEQiUamjUCgQFhaGzMzMNzzDF5YtW1bipZoymQwSiQSDBw/GnTt3sHr1alhYWJSr5tGj\nRxEREVHmKJxMJoMQAh07dkTNmjVfW/PcuXNljgAWFBRgxYoVFbq0koiI3g7DGhG9c127dkVISAiC\ng4NRr149HDlyBI0bN8akSZOQlZWFUaNGwdraGr6+vjh+/HiZL7bp/VOvXj3s2rULd+/eha+vL/T0\n9Eq9pFEmk5U4ulakd+/euHHjBlauXImaNWsWq5OUlISjR4+W2U+NGjWwcOFCHD16FHXq1FGpUVBQ\ngNDQ0PKf3P85fvw4bt++rTJyWDQa5urqiitXrmDnzp1o0KDBG9X99ttvy7xsUyaTYciQITh79ixO\nnToFe3v7Muvl5eVh3Lhxr/38HgBMmTIFV65ceaN+iYjo7TCsEZHGfPjhhzh27BjOnz+PBg0aYOXK\nlUhISMCiRYvg7++PCxcuoE+fPrCxscHUqVMRFhZW5qQS9H5xdHTEsmXLEBsbi9mzZ8PY2LhYEMnP\nz8eBAwdw6dKlUuvIZDJMnjwZ9+7dg5+fH6RSqTJwyWQyrFmzplz99OnTBzdv3sSAAQOUy3R0dCr0\nubUlS5Yoe5BKpZBIJGjZsiVCQ0MREhKC1q1bv3HNPXv24PLlyyqjahKJBDo6OjAyMsKUKVNw//59\n7Ny5Ex07dixXzUWLFiEmJqbMN0SkUil0dHSgUChw/fr1N+6biIgqTiLK+sDAa3h5eQF4MYMUEdHb\nunfvHpYtW4Y1a9bA1NQUH3/8Mdzd3XHy5Ens2LEDN27cgLW1NYYPH46RI0eiU6dO5RoRoPdDeno6\nNmzYgPnz5ys/PyWEgK6uLtzd3bFnz55y1bl27RqmTp2KiIgI5aWNCQkJqFu3brl7WbNmDb744gvk\n5ubCysoKCQkJ5d734cOHcHR0hEKhgFQqhYODA/7zn//A09MTEomk3HVeplAo0KJFC9y+fRsKhQIy\nmQwFBQWwt7fHjBkzMGnSJBgaGr5RzejoaDRv3rzEyx8lEonyGO3bt4e3tzdGjRqFevXqVah/IqLq\nSCKRYPv27crMVAGBDGtEpHXi4+OxYsUKrF27Fs+ePcOIESPw+eefw8LCAjt27MDGjRsRGRmJOnXq\nwM3NDSNGjEC/fv2gr6+v6dZJDbKzs/HHH39g0aJFSEhIUF5KeO3aNbRs2bLcdQIDAzF9+nQkJCRg\n/vz5+OSTT5CTkwMhBNLS0pTbPX/+HNnZ2cX2j4uLw/z583Hv3j389ttvpQYVqVQKMzMz5ffr169H\nQEAAzMzMMGHCBAwePFhlvZGREfT09KCjowNTU1MAgLGxcZmzW27ZskV5uaIQAj169MDXX3+N/v37\nVygACiHQq1cvnD59WiWsFQW0xo0bw9vbGz4+PnB0dHzj+kRExLBGRFVcbm4u/vrrLyxbtgxXr15F\nx44d8dlnn2HYsGG4e/cu9u7di7179+Ly5cswNTWFm5sbhg4dCjc3N5iYmGi6fXoDz549Q2pqKlJT\nU5GWloaMjAxkZmbi+PHjOHDgAB4/fowWLVqge/fuyM7ORlZWFp49e4acnBxkZ2cjNTVVWUehUJQa\nwLSdrq4ujI2NAQCmpqbQ0dGBsbEx7t27h+zsbNSvXx8tWrSAjY0NzMzMYGhoCAMDA5ibm8PAwACG\nhoYwMzODqakpzM3NYW5ujpo1axa7vHTDhg345JNPlMfMz8+Ho6MjfHx8MHr0aDRp0uSdnzsRUVXD\nsEZE1UZYWBh+++037N27F6amphg7diwmTZqEFi1aIDY2Fvv27cPevXsRFhYGHR0d9O7dGx4eHhg4\ncCAcHBw03X61kZmZicePHyMpKQkpKSlITk5GcnKyMoi9HMhe/rqkzyIWjTwZGxtDoVDA0NAQNjY2\nMDAwgLGxMUxNTWFgYAAjIyOYmZlBKpUqR6hKCj16enowMjICAOX2wIs/pmXNmiiTycoM/68LhtnZ\n2Xj+/Lny+4yMDBQUFCA/P18502RJITMtLQ1CCKSnpyMuLg5CCOTl5SkDalpaGnJycpCTk4PU1FTk\n5OSUeqsAExMTZXAzMzPD2bNnkZ+fDyMjI7Rp0wbdunWDi4sL6tatCwsLC9SpU6fcM1QSEVHJGNaI\nqNqRy+XYuHEj1q1bh7t378LFxQWTJ0+Gt7c3jI2N8fTpUxw4cAB///03jh49ioyMDDg7O8Pd3R0D\nBw5E165dy7zcjIrLy8tDQkIC4uLi8OjRIyQmJkIulyuDWHJysvL7nJwclX2NjY1hYWGBWrVqqYz0\nFH1d0vfm5uYwNjbmZa0VUHSJZ3p6eonBuOhx9uxZ5W0T0tLS8PTpUyQnJxebvbIotNWtWxf16tWD\nhYUFLCwsYGNjo3zY2dlxJJuIqAQMa0RUbQkhEBoairVr12LPnj3Q09PD8OHDMXbsWPTs2RNSqRR5\neXk4deoUgoKCcPDgQURFRcHMzAx9+/bFwIED0a9fP9jY2FTo+Dk5Ofjkk08wYcIE9O/fX81n9+4U\nFBTg0aNHePDgAeLi4hAXF4f4+Hg8evQI8fHxiI+Ph1wuV24vk8lQr149WFpaKkdhLCwsYGlpqfz6\n5Rf2NWrU0ODZ0ZsoLCxEcnIyUlJS8PjxY8jlcuXoaFJSEh4/fozk5GQ8fvwY8fHxKsHcxMQEdnZ2\nsLW1hbW1NerXr68Mcw4ODmjQoMEbT4BCRPS+Y1gjIgLw5MkTbNmyBZs3b8alS5dga2uL0aNHY9y4\ncSoTUty/fx/Hjh1DcHAwgoKCkJmZCUdHR/Tp0wd9+vRBv379VCaCKEtoaCh69+4NABg5ciSWLFkC\nS0vLSjm/t5Wbm4uEhATExMQUe9y6dUv5oltPTw+1a9eGtbU1HB0dYWVlBWtra+W/jo6OqF+/fqn3\n+aLqJScnB4mJiYiJiUFCQkKxrxMSEiCXy5Wjdebm5nB0dCzxYW9vDx0dHQ2fERGRejGsERG9Iioq\nClu2bMHWrVvx4MEDtGrVCmPGjMGIESNUbkCck5ODU6dOKcPbtWvXIJPJ0LlzZ/Tp0wd9+/aFqakp\nVqxYge+++65YEJs/fz7+/e9/Iy8vD7q6utDT08OCBQswbdo0jbzoVCgUuH//PiIjI3Hr1i3lv9HR\n0crJN3R0dGBra6t8gdygQQOVr99kanui8sjKysL9+/dLfKPg/v37ys/Y6evro2HDhmjWrBmcnJzQ\nvHlzODk5wcnJCQYGBho+CyKiimFYIyIqhRACERER2Lp1KwIDA/HkyRO4uLhg2LBhGD58OBo3bqyy\nfXJyMk6cOIHg4GAcOXIEDx8+VM6Sp6+vD39/f8ybN0/5OZ8BAwbg2LFjKhNjSKVStGjRAuvXr0e7\ndu0q7dxiYmJw5coVREVF4ebNm4iKikJUVJRyhMzOzg5OTk5wdnZG06ZNVUYvivon0jQhhMqIb3R0\nNKKionDr1i3cvXsX+fn5kEqlaNCgAZo1awZnZ2c0a9YMrVq1QosWLfi7TERaj2GNiKgcCgoKEBoa\nip07d2Lv3r14/PgxWrVqheHDh2Po0KFo0aJFsX2ioqIwYMAAPHz4ULlMJpOhe/fu6NOnD37++Wfl\nTH4vk8lkUCgUmDZtGhYsWKCckbCiEhIScOnSJeXj3LlzSE5OBgBYWVmhefPmcHZ2RvPmzeHo6IjW\nrVtzFj967xUUFCA2NhY3b97ErVu3EBMTg5s3b+Lq1avIysqCTCZDkyZN4OLiony0bduWn4sjIq3C\nsEZE9IYUCgVOnz6NwMBA7Ny5EwkJCbC3t0f//v3h4eGhvLl2RkYGzM3NUVhYqNxXR0cHUqkUhoaG\nePbsWZnH0dXVRa1atbBixQp4enqWq7ekpCSEh4cjPDwcFy9exNWrV5GZmQldXV00b94cbdu2Rdu2\nbdGmTRu0bt1aOQ09UXVRWFiIO3fu4PLly8rHlStX8OzZM8hkMjg5OaFt27bo2rUrunXrhmbNmlXo\npuFEROrAsEZE9BYUCgXOnz+P/fv348CBA7h+/TpMTEzQr18/2NvbY/HixcX2efmF3+v+9ymVSqFQ\nKDBw4ECsWrUKdnZ2Kuvv37+PU6dOISwsDOHh4bh9+zZ0dHTQqlUrdOjQQRnOWrZsyWnsiUohhMC9\ne/eU4e3ixYs4d+4cMjMzUadOHXTr1g3du3dHt27d0KZNG06QQ0TvDMMaEZEaxcbG4vDhwwgODsal\nS5cQFxeHvLy8t64rk8mgr6+PuXPnws7ODkFBQTh+/Dji4+Ohr6+P9u3bK19Mdu3aFaampmo4G6Lq\nq6CgAFeuXEF4eLjyzZCUlBQYGxuja9eucHNzg7u7Oxo1aqTpVomoCmNYIyKqJM7OzoiMjKzw/lKp\nFLq6uigsLERBQYFyuY6ODrp164a+ffuie/fuaN++Pe9FRlTJhBCIjIxEeHg4QkJCcOTIEaSlpaFJ\nkybw8PDAwIED4erqyklLiEit1BHWeC0AEdErnjx5gqioqDfeTyKRKG8KXVBQgMTERDx79gxmZmZw\ndXXF0KFD4enpiZo1a1ZC10RUGolEAmdnZzg7O2Py5MkoKChAREQEDh06hIMHD2Lx4sUwMTGBu7s7\nxo0bh/79+/O+b0SkFRjWiIheERISUqH9hBCQyWT4559/4ODggKlTp2Lw4MFo3749pFKpmrskooqS\nyWTo0aMHevTogUWLFuHBgwc4ePAgtm/fDg8PD1haWsLb2xsTJkwocbZYIqJ3ha8eiIheERoaCgDQ\n09ODvr5+ie+wy2QyWFhYoH79+rCwsIBUKoWenh5atmyJ0NBQxMTEYMGCBejYsSODGpGWK3pzJSws\nDNHR0Zg8eTL27NmDli1bwsXFBevWrVPewJuI6F3iKwgiold07doVY8eOxdSpUzF37lysWbMG+/bt\nQ0REBO7cuYO0tDTs2LED9vb2iI2NRdOmTfHnn3/i6dOnOHz4MHr27MnpwumtXbhwAb169Xqnx5RI\nJMrHu9arVy9cuHDhnR/3VQ0bNsS8efNw9+5dnDx5Eq1atcK0adPg4OBQ6v0ViYgqCycYISJ6A2Fh\nYfjqq69w4cIFeHp64quvvkLHjh013RZVMevWrcNXX32FDRs24KOPPqqUY7i6ugIATp06pbK8KKi9\n+vKgtO3VZc+ePfj444/x66+/YtKkSZVyjIqSy+X4/fff8dtvv6FGjRr4/vvvMWXKFH6ujYjKpI4J\nRjiyRkRUDmlpafj000/Rs2dPmJub49KlS9i5c2e1CWqaGm3RluO/S0FBQZg8eTJWrVr1VkHtdc+Z\nQqGAQqEod73StlfXz2bo0KFYvnw5fH19ERQU9Nb11MnS0hLz589HTEwMfHx88OWXX6JDhw64cuWK\nplsjoiqOI2tERK9x9epVDBs2DDk5OVi2bBmGDx+u6ZbeudJGW6rL8d+VvLw8NGrUCPXr10d4ePhb\n1aroc/am+6n7Z9O5c2ckJCTg7t270NXVVUtNdYuKioKvry/OnTuHJUuWwM/PT9MtEZEW4sgaEVEl\nCw8PR/fu3WFra4vLly9Xy6BG786uXbvw6NEjeHt7a7oVjfH29kZsbCx27dql6VZK5eTkhBMnTuDH\nH3/E1KlTMWvWLE23RERVFMMaEVEpIiMj4ebmhgEDBiA4OBiWlpaabqlMcrkcvr6+sLW1hZ6eHmxt\nbeHn54ekpCSV7UqbRKKs5a9uM3HixBL3u3XrFgYMGABTU1MYGxvD3d292M3F1X38Z8+eYcaMGXB0\ndESNGjVQu3ZtdOnSBV9++SXOnz9f4T4B4PHjx5gyZYryObWxscHkyZMhl8uLbZubm4uFCxeiTZs2\nMDIyQo0aNeDk5AQ/Pz+cPXu22PYl+fvvvwEA7dq1q9Tn7E0nEqnIcV7ep+gREBCg3N7BwaHEmu3b\nt1d5LrSVRCLB119/jT/++AP/+9//sGTJEk23RERVkXgLI0aMECNGjHibEkREWkmhUAgXFxfRuXNn\nkZ+fr+l2XisxMVHY2dkJa2trcfz4cZGeni6Cg4OFpaWlsLe3F3K5XGV7AKKkPwFvuvzV9V26dBHh\n4eEiIyNDeXxzc3Nx//79Sjv+kCFDBACxZMkSkZmZKZ4/fy6ioqLE0KFDi+3zJn3K5XJhb28v6tWr\nJ44cOSIyMjJEWFiYsLe3Fw0aNBCpqanKbdPT00W7du2EiYmJWLt2rZDL5SIjI0OEhoaKZs2alfnc\nvaxp06YCQLGfl7qfM3XWK+s4wcHBAoCwsrISz58/V1m3du1a4eHhUWyfhIQEAUA4OTmV2ru2+fnn\nn4W+vr6IjIzUdCtEpEUAiO3bt79NiR0Ma0REJTh69KiQSCTi+vXrmm6lXCZNmiQAiM2bN6ss//PP\nPwUA4evrq7K8sl74Hzp0qMTjjx8/vtKOb2pqKgCIwMBAleXx8fGlhrXy9Onr6ysAiPXr16tsu3v3\nbgFAzJ49W7nM399fGRhfdfny5XKHNWNjYwFA5ObmFlv3PoY1IYRo3bq1ACA2btyosrxly5bi2LFj\nxbbPyckRAISJiUmpNbVNYWGhaNasWbH/zoioelNHWONlkEREJQgJCUGrVq3QsmVLTbdSLgcOHAAA\n9O7dW2V5nz59VNZXti5dupR4/KNHj1baMYcNGwYAGDFiBOrXr4+JEydix44dqFOnTqmTXpSnz/37\n9wMA3NzcVLbt3r27ynoA2LlzJwCUOHtjmzZtyj35RnZ2NoAXN2SvKmbMmAEA+H//7/8pl4WEhECh\nUCif95cVnXvRc/E+kEqlGD16NEJCQjTdChFVMQxrREQlePLkCerWravpNsotOTkZAFCnTh2V5UXf\nP378+J30YWZmVuLxi/qrDH/88Qd27dqFYcOGITMzE+vXr8fIkSPRuHFjXL16tcJ9Fj1n1tbWKp+7\nKtr23r17ym0TExMB4K0/12hoaAjgxayQVcXo0aNhZWWFq1evKsPM0qVL8cUXX5S4fdG5Fz0X74t6\n9epV6u85EVVPDGtERCVwdHTErVu3UFhYqOlWyqUoWKakpKgsL/r+1eBZNKlDfn6+ctmzZ8/euo8n\nT56UeHwLC4tKPb6npyd27tyJlJQUhIWFoX///oiNjcXHH39c4T7r1asHAHj69CmEEMUeWVlZxbYt\nCm0VZWNjA+DFff1eVVk/s8qmp6eHadOmAQAWL16MmJgYnDlzBmPHji1x+9TUVAD//3Pxvrh27Roa\nNWqk6TaIqIphWCMiKoGXlxcSExNVZq/TZoMGDQIAHD9+XGV5cHCwyvoiRSNAL4eLsm7wWzTKkZ+f\nj+zs7GIjeEUiIiJKPH6/fv0q7fgSiQRxcXEAXlyO5urqiu3btwNAiTM8lrfPoksaT5w4UWz/U6dO\noXPnzsrviy7F3Lt3b7Ftz549W+6bp7dp0wYA8PDhw2LrKutn9rbKcxw/Pz8YGhri0KFD+PzzzzFx\n4kQYGBiUWK/o3D/44INK6bcyyOVybN26FaNHj9Z0K0RU1bzNJ944wQgRVWVTpkwR5ubmIjo6WtOt\nvFbRzIUvzwZ5/PhxYWVlVeJskD4+PgKAmDZtmkhLSxORkZFizJgxpU4W0alTJwFAhIeHi4CAgGKz\n+BXt5+bmJk6dOiUyMjKUxy9pNkh1Hh+A6N+/v/jnn39Ebm6ukMvl4ttvvxUAxODBgyvcZ3Jysmjc\nuLGwsrISgYGBIiUlRaSnp4v9+/cLR0dHceLECeW2qampokWLFsLExESsWbNGORvk4cOHRePGjUVw\ncPBrf4ZCCLF161YBQCxfvrzYusr6mb3qTZe/7jhFpkyZIgAImUwmHj16VOpzsGzZMgFAbNu2rdRt\ntMnz589F3759RaNGjURGRoam2yEiLQLOBklEVHmysrJEhw4dhK2trbh165am23ktuVwufH19hbW1\ntZDJZMLa2lpMnjy5xGngk5OThbe3t7CwsBBGRkZi0KBBIjY2VvmC/NUX5RcuXBCtW7cWhoaGolOn\nTuL27dsq64v2uX//vvDw8BAmJibCyMhIuLm5lfjcqfP44eHhYvz48cLBwUHo6uoKMzMz0bp1a7Fg\nwQKRlZX1Vn0+ffpU+Pv7iwYNGghdXV1Rr149MWjQIHHmzJli22ZkZIjvvvtONG3aVOjp6YnatWuL\nfv36ibCwsBJ+WiV7/vy5sLW1Fd26davU5+zlfV7e702Xv+44L7tz546QSqVi1KhRZT4HnTp1Era2\ntsWm+tdG2dnZYsiQIcLU1FRcvHhR0+0QkZZRR1iT/F+hCvHy8gIA7Nixo6IliIi0WlpaGtzd3XHj\nxg2sW7dO+f89UlX0eaq3+JPyTrwPfR48eBCDBg3CX3/9hZEjR2q6HbVRKBSwtbXF7t270alTpxK3\n2bp1K8aNG4f9+/fD3d39HXf4Zu7cuQMvLy88evQI+/fvLzbDKBGRRCLB9u3b3+a1QyA/s0ZEVIaa\nNWsiNDQUPj4+GDlyJDw9PZWfjyKqDO7u7li1ahX8/PxK/Azc++rgwYOws7MrNajt2bMH//rXv7By\n5UqtDmp5eXlYsGABPvjgA+jq6uLSpUsMakRUaRjWiIheQ09PD7///jtOnjyJyMhINGzYEL6+vu9s\nOnyqfiZPnowjR45gyZIlmm7lrUgkEpw9exapqan48ccfMWfOnFK3Xbp0KY4dOwZfX9932GH5KRQK\nBAYGwtnZGQsWLMCsWbMQEREBBwcHTbdGRFUYwxoRUTl1794dV69exaJFi7Bnzx40atQIM2bMKHHm\nvuqk6NLCV7/WNu9Ln0U6dOhQ4kyU75vOnTujcePG8PDwwODBg0vd7sSJE+jQocM77Kx8cnJysHLl\nSjRt2hTe3t7o1asXbt++jXnz5lWpm5cTkXZiWCMiegP6+vqYPn06YmJiMG/ePOzevRuNGjWCh4cH\nduzYgdzcXE23+M6JV+4/pq3elz6rkqLnOiUlBfPmzdN0O2/k3LlzmDZtGmxtbTFz5kx8+OGHiIyM\nxNq1a2FnZ6fp9oiommBYIyKqAGNjY/j7++Pu3bvYunUrhBDw9vaGlZUV/Pz8cPr0aU23SERv6NGj\nR/j555/RrFkzdOrUCaGhofj666/x4MEDrFq1ije9JqJ3TqbpBoiI3me6urrw8vJS3kR727Zt2Lhx\nI1avXg1HR0cMGjQI7u7u6N69O/T19TXdLhG94vr16zh06BAOHDiAM2fOoFatWhg9ejQ2b96Mdu3a\nabo9IqrmOLJGRKQmVlZWmDlzJq5fv47Lly/Dy8sLoaGh6NevH+rUqQNPT0+sW7cOCQkJmm6VqNrK\nzs7GgQMHMGXKFNjb26N169ZYsmQJmjRpgj179iAhIQHLli1jUCMircD7rBERVbLY2FgcOnQIBw8e\nREhICHJyctCiRQu4urqiW7du6N69O2xsbDTdJlGVlJmZiTNnziA8PBynTp3C2bNnkZubCxcXF7i7\nu8Pd3R0uLi6QSvn+NRGplzrus8bLIImIKln9+vXh5+cHPz8/5OTkIDQ0FCEhIQgPD8eaNWtQUFCA\nBg0awNXVVRngmjZt+l7MWEikbZKTkxEREYGwsDCEh4fjypUrKCgoQMOGDdGtWzf4+PhgwIABsLS0\n1HSrRESvxbBGRPQOGRgYYODAgRg4cCCAF5dkXb58GREREQgPD8eXX36JZ8+ewdTUFC1btoSLi4vy\n0axZM777T/SStLQ0/PPPP7h06ZLyERkZCSEEHB0d0adPH0ybNg09evSAvb29ptslInpjDGtERBpk\naGiIbt26oVu3bvj666+Rn5+Py5cv4+LFi7h8+TLCwsKwcuVK5Ofnw8TEBK1bt0bbtm3Rtm1bNG/e\nHE5OTjA2Ntb0aRBVqoKCAsTExODmzZu4du0aLknDST4AAAx4SURBVF++jMuXLyM+Ph4A4ODggLZt\n28Lb2xsuLi7o1KkTatasqeGuiYjeHsMaEZEW0dXVRceOHdGxY0flsufPn+PGjRvKF6hnzpzBmjVr\nlPd0s7e3h5OTE5ydndGsWTM0a9YMzs7OqFWrlqZOg6hCcnNzcfv2bURFReHWrVuIjIxEZGQk7ty5\ng7y8PEgkEjRq1Aht27bF559/rnzjgr/rRFRVMawREWk5fX19tGvXTmV2usLCQty/fx83b95UvrAN\nDw/HunXrkJGRAQCoW7cumjZtCkdHx2IPfl6HNCUjIwMxMTHFHtHR0Xjw4AEKCwshk8nQsGFDNG/e\nHIMHD4azszOcnJzg5OQEIyMjTZ8CEdE7w7BGRPQe0tHRQaNGjdCoUSMMGTJEZV1sbCyioqJw8+ZN\n3L17FzExMThz5gwePHiAvLw8AC8uv2zYsKEyvDVo0AB2dnawtraGra0tLC0t+fk4qpDU1FTEx8fj\n0aNHSEhIwIMHD5SB7N69e0hOTgbwYpY0a2tr5e9g165d4eTkhGbNmqFx48bQ09PT8JkQEWkewxoR\nURVTv3591K9fH/369VNZrlAoEBcXV2xE4/Tp0/jrr78gl8uV28pkMlhaWqJ+/fqwtraGjY2NMszZ\n2dmhTp06sLS05OeCqpGcnBw8fvwYcrkccrkcsbGxSExMRFxcHOLi4pCQkIBHjx4hOztbuY+JiQns\n7e3h6OiITp06wdvbW+UNgho1amjwjIiItB/DGhFRNSGVSpVBrmfPnsXWP3/+HAkJCSqjIo8ePUJ8\nfDwuXLiAXbt2QS6Xo6CgQLmPnp4eLCwsYGFhASsrK9SpUwcWFhawtLRE3bp1levMzc1hbm6OmjVr\nQkdH5x2eNZUmPT0dqampSEtLw9OnT5GYmIiUlBQkJydDLpfj8ePHSE5OVga0rKwslf0tLCyU4b1J\nkybo2bOnMtzb2trCzs4OJiYmGjo7IqKqgWGNiIgAvPhsXIMGDdCgQYNSt1EoFJDL5UhJSUFiYiKS\nk5OVL+iTkpKQnJyMO3fuKNfl5OQUq2FqaqoMbi//+/LXRkZGMDY2hqmpKQwNDWFoaIiaNWvCwMAA\nBgYGMDc3r8ynQqtlZWUhJycH6enpyMjIQE5ODjIzM5Genq78Oi0tDampqcow9urXaWlpKCwsVKkr\nk8lgYWGhHDWtW7cuHB0dleG7KHhbWlrC0tKSo2JERO8AwxoREZWbVCqFtbU1rK2t0apVq9dun5mZ\niZSUFDx9+lQlKLz6r1wuR2RkpHJZVlYWMjMzy6xtaGgIAwMDmJmZwcjICHp6etDT01NOQGFmZgap\nVAp9fX0YGhoCgDLkGRgYqIQNiURS5iWdxsbG0NXVLXFdWloahBAlrsvKylJ+ThB4MTFMenq68rnJ\nz89HQUGBclKYjIwMFBQUIC8vTzmSlZqaiuzsbOTk5ODZs2dlPif6+vowMjIqFoAdHBzQpk2bYgH5\n5e0sLCzKrE1ERO8ewxoREVUaY2NjGBsbw8HBoUL7p6enIzs7G9nZ2UhLS1OGlrS0tGIjTAUFBcjN\nzVWO5qWmpgKAMgwqFApl2Hk1RL0cjkpSVKskRUGxJLq6usXug1cUGA0NDaGvrw+pVAozMzMAgKWl\nJfT09KCjowNTU1MAUI4oFo0uFo00mpqawtjYGIaGhspRSF5iSkRUtTCsERGR1jI1NVWGFiIiouqG\n8zITERERERFpIYY1IiIiIiIiLcSwRkREREREpIUY1oiIiIiIiLQQwxoREREREZEWYlgjIiIiIiLS\nQgxrREREREREWohhjYiIiIiISAu99U2xz5w5Ay8vL3X0QkRERERERP/nrcLaiBEj1NUHERERERFR\nlTFq1Ch06NDhrWpIhBBCTf0QERERERGRegTyM2tERERERERaiGGNiIiIiIhICzGsERERERERaSGG\nNSIiIiIiIi3EsEZERERERKSFGNaIiIiIiIi0EMMaERERERGRFmJYIyIiIiIi0kIMa0RERERERFqI\nYY2IiIiIiEgLMawRERERERFpIYY1IiIiIiIiLcSwRkREREREpIUY1oiIiIiIiLQQwxoREREREZEW\nYlgjIqJq4cqVKxg7diwcHBxQo0YNSCQS5YOIiEgbMawREVGVd/LkSXTq1AlXrlzBhg0bkJSUBCGE\nptsiIiIqk0TwrxUREWmhohEvdfyZcnV1RXh4OEJDQ9GzZ89KOQYREZGaBTKsERGRVlJnkDIyMkJ2\ndjaePXsGU1PTSjkGERGRmgXyMkgiIqrysrOzAUAlqBEREWk7hjUiIirTyxNxJCQkYNiwYTAxMUHt\n2rUxfvx4PHv2DA8ePMDgwYNhamoKS0tLTJgwAWlpacVqPX78GFOmTIGtrS309PRgY2ODyZMnQy6X\nFzvmq8efOHGiyjbBwcEYPHgwzM3NUaNGDbRt2xYBAQEl9l/SuZRFLpfD19dX2aetrS38/PyQlJRU\nYi2JRIIDBw4o1/3++++QSCS4deuWctmWLVs4qQkREb0ZQURE9BoABAAxduxYcevWLZGWliamTp0q\nAAh3d3cxdOhQ5fIpU6YIAGLSpEkqNeRyubC3txf16tUTR44cERkZGSIsLEzY29uLBg0aiNTU1BKP\nWVZPH330kUhOThYPHz4Uffv2FQDE4cOHS+2/PMsTExOFnZ2dsLa2FsePHxfp6ekiODhYWFpaCnt7\neyGXy5XbDh48WAAQS5YsUanRvn17AUB88803Kss3bdokPDw8Sj0nIiKil+xgWCMiotcqCjUnTpxQ\nLouPjy9x+aNHjwQAYWNjo1LD19dXABDr169XWb57924BQMyePbvEY5bV0/3795XfR0ZGCgDC1dW1\n1P7Ls3zSpEkCgNi8ebPK8j///FMAEL6+vsV6b926tXJZVFSUqFGjhgAg7OzshEKhUK7r3bu32Llz\nZ6nnRERE9JIdnGCEiIheq+iyvfT0dJiYmAAAFAoFdHR0Sl0ukUigUCiUNWxsbJCQkICEhARYWVkp\nlz958gR16tRBy5Ytcf369WLHLO+fqcLCQshkMtSuXRspKSkl9v9qrZKWW1tbIzExEfHx8bC2tlYu\nj4+Ph62tLWxsbBAXFwcAyM/Ph7W1NVJSUnDlyhV88MEHmD17NgoKCrBjxw48fPgQISEh6NWrFx4+\nfIh27dohPj4eenp65TonIiKq1jjBCBERlV9RIAMAqVRa5vJXg9Hjx48BvAhDL392q06dOgCAe/fu\nlbuPtLQ0zJ49G82aNYOJiQkkEglkMhmAF+HvbSQnJwOAsq8iRd8XnQcA6OrqYvTo0QCAP//8EwqF\nAlu2bMH48eMxduxYAMDmzZsBABs3bsSoUaMY1IiIqNwY1oiI6J2oV68eAODp06cQQhR7ZGVllbuW\nl5cXfvnlF4wcORIPHz5U1lCHunXrAkCx0bmi74vWFxk/fjwAYNu2bTh69CgsLCzQvHlz+Pj4AAB2\n7tyJ7OxsbNy4ERMmTFBLj0REVD0wrBER0Tvx0UcfAQBOnDhRbN2pU6fQuXNnlWWGhoYAXlxqmJ2d\nrTLSFRERAQCYOXMmatWqBQB4/vy5WvocNGgQAOD48eMqy4ODg1XWF3FxcUGLFi2QnJwMPz8/ZUhr\n0qQJOnbsiIyMDPj7+8PQ0BAuLi5q6ZGIiKoHhjUiInon5s2bh8aNG2Pq1KnYuXMnnjx5goyMDBw4\ncAATJkzAwoULVbZv1aoVAOD8+fPYv3+/SphzdXUFAPzyyy9IS0vD06dPMXv2bLX0+eOPP8Le3h7f\nfPMNQkJCkJGRgZCQEHz77bewt7fHvHnziu1TNLoWHx8Pb29v5fKi4LZ69WqOqhER0RvjBCNERFSm\nV+8JVvRn402XA0Bqairmz5+PPXv2IC4uDrVq1UKHDh0we/ZsdOrUSWW/ixcvYuLEiYiOjkarVq2w\nceNGNGnSBMCLz419+eWXOHLkCNLS0tCkSRN8//33GDlypFr6TEpKwty5c7F//348fvwYdevWhYeH\nB3766Sfl5Zwvk8vlsLOzw4ABA7B//37l8qdPn8LKygoKhQJxcXEl7ktERFSKQIY1IiIiIiIi7cPZ\nIImIiIiIiLQRwxoREREREZEWYlgjIiIiIiLSQgxrREREREREWohhjYiIiIiISAsxrBEREREREWkh\nhjUiIiIiIiItxLBGRERERESkhRjWiIiIiIiItBDDGhERERERkRZiWCMiIiIiItJCDGtERERERERa\niGGNiIiIiIhICzGsERERERERaSEZgEBNN0FEREREREQqzv5/vZfyj5D2IvMAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type hierarchical\n",
"metaflow.write_graph(graph2use='hierarchical', dotfilename='./graph_hierarchical.dot')\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_hierarchical.dot.png\")"
+ "Image(filename=\"graph_hierarchical.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``colored`` graph\n",
"\n",
@@ -261,47 +155,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:48,700 workflow INFO:\n",
- "\t Converting dotfile: ./graph_colored.dot to png format\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAQ3CAYAAABmXvaSAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdd3RU1RbH8W967yEhCSHB0HtvAoIVBewPFBs+ewUpioqKimKjWB6iiKJPFMH6LKgooCIi\nCNK7YCAE0nsv8/44JhJIMAmTzCT5fdbKSubOvefueyeE2XPO2cfBYrFYEBEREREREXuyzNHWEYiI\niIiIiMjJlKyJiIiIiIjYISVrIiIiIiIidsjZ1gGISNPz008/cezYMVuHIVJtJSUl9O/fn+joaFuH\nIiIiTYiSNRGpV7Nnz2bSpEm2DkOkxoYPH87y5cttHYaIiDQhStZEpN7MmTOHSZMmMWnSJG699VZb\nhyPyj3bv3s24ceNwcHDAw8PD1uGIiEgTo2RNROrFnDlzmDhxohI1aTDKErXWrVvj7++Ps7P+yxQR\nkfqlAiMiUueUqElDU5aoxcTE8Prrr+Pk5GTrkEREpAlSsiYidUqJmjQ0xydqCxYswNPT09YhiYhI\nE+VgsVgstg5CRBqnH374gaFDh9o6DJEaCQ8Pp3nz5rz55pvl89TGjx+Pj48PS5cutXF0IiLShCzT\nAHwRqTMJCQkAvPjiizaORKT6xo8fz6RJk1RQREREbE7JmojUueHDh9s6BJEa0Rw1ERGxB5qzJiIi\nIiIiYoeUrImIiIiIiNghJWsiIiIiIiJ2SMmaiIiIiIiIHVKyJiIiIiIiYoeUrImIiIiIiNghJWsi\nIiIiIiJ2SMmaiIidaNeuXflXXdu2bRvXXXddnZ/nePV5fSe67rrr2LZtW72fV0RE5HQoWRMRuzN2\n7FjGjh1r6zDq3Z49e+rlPMuWLePf//43N9xwQ52do7LX8FTXV9ev+fXXX8+NN97I0qVL6+wcIiIi\n1uZs6wBERE5UWlpa6fayHpn6Smoaox9//JFHHnmE2bNnc+6559a6nX96Lap6DatS16/5eeedR35+\nPlOmTKF58+YMGTLktNoTERGpD0rWRMTuLFmyxNYhNEpFRUU8+uij9OjRg4suuqhOz1XT17A+XvNR\no0bx7rvv8thjj7FixQqcnfVfoIiI2DcNgxQRaSK++eYbjh49yqhRo2wdis2MHDmS+Ph4vvnmG1uH\nIiIi8o/0saKI2JXji08cP/Tt+O1lP1955ZU89dRT5dtTUlJ4+eWXWblyJSkpKQQGBjJ06FDGjx9P\ncHBwpW2tWLGC5557jl9//ZXMzMzy8x6/z+rVq3niiSdYt24dHh4eDBw4kGnTpuHv718h9uTkZF56\n6SVWr15NSkoKQUFBDBs2jHvuuafC+QH27dvHc889x4YNG3BycqJ///48/PDDVd6X6l7bqaxcuRKA\nzp07V9henXtek9eiquOqUpvzVFakZPbs2YwYMQKAYcOGER8ff1KbXbp0Acy9KNtXRETEXilZExG7\ncmKiVNn2yhKA5ORk/vWvf1FYWMizzz5Lz5492blzJ1OmTGHt2rV88skn+Pr6ntTW9OnTueeee3jh\nhRdYv349t9xyy0n7zJo1i8mTJxMSEsKsWbN4//33cXFxYebMmRXOf+WVV1JSUsLzzz9Ply5d2Lp1\nK5MnT+bHH39k2bJl5UnVoUOHGDt2LO7u7syfP5+uXbuyY8cOHnnkkUrvSU2u7VR27twJQHh4eI3v\neVXbK3stqjquKrU5z549e/jll18YN24czZo1Y9WqVbi4uJQ/f+edd/L9998zf/78CsdFREQAf98L\nERERe6ZhkCLSKLz88svEx8czceJEBg0ahKenJ7179+ahhx4iLi6OhQsXVnrc7bffTo8ePXB3d2fI\nkCGVJh+jR48mJiYGHx+f8mRuzZo1FfZ58cUXOXr0KFOmTKF///54eXkxYMAAJk+eTHx8PC+//HKF\nWDMzM8v39fT0pE+fPlx99dVWvbYTJSQkAFQrsWsIBgwYQPv27UlKSuLLL7+s8Nw777zD9ddff9Ix\nZddedi9ERETsmZI1EWkUyob4nVjlr0+fPhWeP1HZsLhT6dSpU/nPISEhACQlJVXYZ9WqVQD079+/\nwvaBAwdWeB5g7dq1le7bq1evSs9f22s7UX5+PkCFHqiGbty4cQAsWrSofNu6deuwWCzl9/54Zdde\ndi9ERETsmYZBikijkJKSAsCgQYMqff7w4cOVbvfw8PjHtr28vMp/Lnuzb7FYKuyTmpoKQEBAQIXt\nZY/L4gNIS0s75b4nqu21ncjd3Z3c3FyKiopwdXWt1jH2buTIkcyaNYtdu3axbt06+vfvz9tvv11p\nrxqYiphg7oWIiIi9U7ImIo1CcHAwCQkJbNiwwSbD/IKCgkhMTCQtLa289w3+TsyCgoLKtwUEBJCc\nnHzSvllZWZW2ba1rCw0N5eDBg2RmZp5UlMTBwQGLxUJxcXF5Sfuq4rEnLi4uXHvttcyZM4e33nqL\niIgINm/ezJw5cyrdv6yITGhoaH2GKSIiUisaBikiDUZZL1hxcTF5eXn069ev/LmyBZ5//fXXk477\n7bffGDNmTJ3GdvbZZwPwyy+/VNheNuSx7HmAM888s9J9N2/eXGnb1rq2jh07ApRXSTxeWfKWmJhY\nvm3Xrl1VtnWq18KaqnOeq6++Gg8PD3744QdmzJjBv/71ryp7zo4cOQJAhw4d6iReERERa1KyJiIN\nRlllwK1bt7Jq1Sp69OhR/tw999xDVFQUjz/+ON988w3p6enk5OSwatUqpk6dyqRJk+o0tnvuuYfw\n8HBeeOEF1q1bR05ODuvWrWPWrFmEh4dz9913V9jX19e3fN/c3Fx+//13XnvttSrbtsa1DRs2DIDt\n27ef9FxZArlw4UKysrI4cOAAS5curbKtU70W1lSd8/j5+XHppZdisVj46aefGDt2bJXtbdu2DaiY\nPIuIiNgrB8uJEy9ERKxk6dKljBkzplprbZU5sYT78cdu376dhx9+mNjYWNq1a8ezzz5LdHR0+fOZ\nmZnMmzePFStWcOzYMfz9/enatSu33XYb3bt3r/IcJ57nVHGcKr7k5OQKa6GVrbN27733nnKdNQcH\nB3r27MmDDz5YYe2v49uu7rWdSlFREeeeey4RERG89957FZ5LS0vjqaee4ueffyYvL48BAwbw6KOP\nMnTo0ErjOdVrUdN7dzqveZnY2FiGDx/OhRdeyOzZs6u8B2PGjOHYsWN89913VRZaadeuHXPnzuXC\nCy8s3zZ+/Hh8fHxOmcCKiIhY2TIlayJSZ2qTrEndWr16NbfffjuzZ8/moosusnU4VlNaWsqQIUN4\n5ZVXqkxeP//8c6ZMmcL8+fMrJKEnUrImIiJ2YpmGQYqINCFDhw7l8ccf57HHHuO7776zdThWs3r1\nasLCwqpM1FasWMH06dOZPn36KRM1ERERe6JkTUSkiRkzZgwLFy7k7bfftnUop6Vdu3Zs3ryZzMxM\nXnnlFe64444q933nnXd46623uOqqq+oxQhERkdOj0v0iIk1Q165d+e9//2vrME7bmDFj8Pf359pr\nrz1l0ZDGcK0iItL0KFkTEZEGSXMhRUSksdMwSBERERERETukZE1ERERERMQOKVkTERERERGxQ0rW\nRERERERE7JCSNRERERERETukZE1ERERERMQOKVkTERERERGxQ0rWRERERERE7JCSNRERkX+Qn59v\n6xBERKQJUrImIiJyCm+99RY//PADF1xwga1DERGRJsbZ1gGIiIjYq0WLFvHMM88wc+ZMbrrpJluH\nIyIiTYx61kRERCqxaNEiZs6cycyZM5k6daqtwxERkSZIPWsiIiInWL16NZ9++qkSNRERsSklayJS\n577++mtbhyBSI5999hmzZs1i4sSJtg5FRESaMCVrIlJnwsLCcHZ2Zvz48bYORaTanJycePjhh5Wo\niYiIzTlYLBaLrYMQEZHac3Bw4IMPPmD06NG2DkVERESsZ5kKjIiIiIiIiNghJWsiIiIiIiJ2SMma\niIiIiIiIHVKyJiIiIiIiYoeUrImIiIiIiNghJWsiIiIiIiJ2SMmaiIiIiIiIHVKyJiIiIiIiYoec\nT+fgZcuWsWzZMmvFIiIitTRnzhw+/PBDW4chIiIif3FycmLmzJlER0fXuo3TTtZWrfqF9u0HnE4z\nIiJymtLTwfm0/qKLiIiINa1Zs4TLLrvMdskaQPv2A5g6denpNiMiIrU0cqQDl1xyH4MHj7Z1KCIi\nIvKXkSMdTrsNzVkTERERERGxQ0rWRERERERE7JCSNRERERERETukZE1ERERERMQOKVkTERERERGx\nQ0rWRERERERE7JCSNRERERERETukZE1ERERERMQOKVkTERERERGxQ862DkBERBqmkSMdyn+eN28H\nb7wxkV271mKxlNK581ncdNMLREZ2qHT/BQv28+abU9i6dRU5OekAfPGFBYD09EQWL36M9es/JyMj\nEV/fZvTpM4Jrr32CgIDmdX7+tLRjLF78GBs2fElGRiJ+fiH07TuSa655HH//0Ar3oLAwn88+m8tP\nP33AkSN7KS0tITQ0mi5dhnLOOeNo375/re+viIiIetZERKRWypIbgJdfvoWrrnqE//43nkce+Yw/\n/tjElClnkpDwZ6X7z5t3B5dfPpn//jee6dO/Kt+enp7AxIl9+eWXT5gw4U2WLEnlgQeW8Pvv3zJ5\n8sDyxKquzp+Wdoz77uvL+vVfMHHiO7z/fgoTJ77NunWfMXFiP9LTE8r3zcvL4oEHBrN06dOMGHEX\nCxce4P33k7nrrvls3/4jkycPqP3NFRERQcmaiIhYwZgx0+jY8Uzc3b3p1u0cxo17huzsNN57b3ql\n+48e/RAdOgzE1dWD3r0vLE+kFi9+jMTEWG644Wl69Dgfd3dvOnUazC23zCEh4SAfffR8nZ7/3Xcf\nJTn5MDfe+Czdup2Nh4dPeXuJibEsXvxYeRuLF09n377fuO66J7nggpvx9w/F3d2bLl2GMnny4trf\nTBERkb8oWRMRkdPWocPACo+7dz8XgN9//7bS/du27Vvp9l9//RyAXr0urLC9c+chAKxf/3mdnn/D\nhi8A6Nbt7ErbW7/+i/JtP//8IQD9+196UjsxMT0q9OSJiIjUhuasiYjIafPy8qvw2Nc3GICMjKRK\n93dz86x0e0ZGIgDXXx9e6fNHj/5Rx+dPqnD8ye0llm9LSzsKUGEenYiIiDUpWRMRkdOWlZWCj09Q\n+ePMzGQA/Pya1agdf/9QUlKOsGRJKt7eAfV+fj+/EFJT48nMTCYw8O+E8e/2QirEmpwcR2rqUUJD\no2t0HhERkerQMEgRETltO3f+XOHx5s3fAdCjx/k1amfAADOkcNu21Sc9t2PHT1UW7bDW+fv1G/XX\n8d9X2l7fvqPKtw0ceAUA69Z9elI7u3evY+LEfjU6t4iIyInUsyYiIqdt+fL5+PgEcsYZ3dmzZz1v\nv/0g3t4BjB07vUbtjB07nU2bvuXVV++itLSErl2H4ezsyrZtP/D66+OZMOHNOj3/Ndc8zsaNX7No\n0VSCgiJo27YPe/du4O23HyQkJIprrpl+3L7T2bLle95991Hc3b3o1+9i3N292LnzZ+bPv4e77nq1\nRucWERE5kZI1ERE5bXfcMY/XXruHbdt++GudsyHcdNOsCsMDj1/nrOznE4tw+PoGM3v2ryxZMoM3\n37yflJQ4vL0Dadu2L5MnL65y3TJrnd/fP5TZs39l8eLHmDXruuPWWRvFtdc+UWGdNS8vf2bN+oUP\nP3yWTz6Zxauv3o2Hhw+tW/di/PiFdOo0uGY3UURE5AQOFoul1uWqRo8ezdGjMHXqUmvGJCIiNTBy\npAMPPPABgwePtsm54eSkp6mcX0REpCojRzrwwQcfMHp0rf9/XqY5ayIiIiIiInZIyZqIiIiIiIgd\nUrImIiK1UtkcsKZ0fhERkbqmAiMiIlIrtp4nZuvzi4iI1DX1rImIiIiIiNghJWsiIiIiIiJ2SMMg\nRUQakCVLZvDRR88Bfw8BdHZ2Ze7cG3nppZvKt4WFteall363QYQiIiJiLUrWREQaEDc3D/Lysk7a\nXlxceNwjBxwdneovKBEREakTGgYpItKAnHXW1Tg4nPpPt5OTE+ecc0M9RSQiIiJ1RcmaiEgDEhgY\nTocOA3F0rPrPd2lpKYMHj67HqERERKQuKFkTEWlgzj77uiqfc3R0okuXofj7h9ZjRCIiIlIXlKyJ\niDQwgwb9CweHqueknSqZExERkYZDyZqISAPj7R1Ajx7nVVpExNHRkQEDLrVBVCIiImJtStZERBqg\nYcOuxWIprbDNycmZ3r0vwsvL30ZRiYiIiDUpWRMRaYD6978EFxe3CttKS0sZNuxaG0UkIiIi1qZk\nTUSkAXJz86R//8twdnYp3+bq6kafPiNsGJWIiIhYk5I1EZEGaujQsRQXFwHg5OTCmWf+C1dXDxtH\nJSIiItaiZE1EpIHq2fMCPD19ASgpKWLo0LE2jkhERESsScmaiEgD5ezswpAhVwPg7e1Pt27n2Dgi\nERERsSZnWwcgItIU5efnUFxcSHFxIfn5OQBkZ6ed9HxliouLyM/PBiAwMAyAtm378csvnwDg7OyK\nu7tXpcc6ODhUqBbp7u6Fs7Nr+TEnPi8iIiK2o2RNROQULJZSsrJSyc5OIysrldzcTHJy0snPzyY/\nP4f8/Byys9PKf87PzyY3N538/BwKCnLJzc2kpKSYvLwsALKz07FYLFaPc9Omb9i06Rurtunp6YOT\nkzOuru64unrg6uqOu7sXnp5+uLv74O7uhbu7F15e/ri7e5c/9vYOwM3NE09PX3x8AvH2DsTHJ/Ck\n6pUiIiJyakrWRKRJychIIiMjkbS0BNLSjpKRkURWVgpZWal/JWWp5OSYxCwzM4Xs7PRK2/H09MbT\n0wsPDy/8/Pzx9PTC09OLgAAfIiNblj/29fXDwcEBX1/TW+XtbRIgd3d33N09cHR0wsfHzDsz+5rR\n6S4uLnh5eVd5HX5+AVU+l5ubQ1FR5b1yhYWF5ObmlD/OycmiuLiYgoJ88vPzKCkpISsrE4CsrAxK\nS0vJy8ulsLCAvLxc8vJyycrKJCsrk9zcDLKyjhIXl05OTja5uTnk5uaQlVV5Quru7oWvbyDe3gF4\ne/+dxHl7B+LrG4SfXwh+fs0ICGhOQEBz/PxCKlS7FBERaWqUrIlIo5CWdozk5MMkJR0mOfkwqalH\nSUs7RmZmEmlpR0lLSyAjI6m8eiKYOV+Bgc0ICAgiICCQgIBAIiIiCQjohr9/YIWvgADz3cfHtzzx\nsleenl5A5cMg60teXi6ZmRlkZKSRnp5KenoqaWmp5T+brzTS0g4RH7+ZtLRkkpMTyc/PrdCOn18w\n/v4h+PmFEBgYjq+vSeaCgiIICYmiWbNIgoJaKKkTEZFGScmaiNi94uIiEhP/5NixA+XJWGJiLMnJ\nh/76+TBFRQWAmZMVHNycZs1CCQ0No1WrEPr27UJISHOCgpoREhJGs2ahBAeHEBTUzMZX1nh5eHji\n4eFJaGhYjY7Lzc0hMfEoSUkJJCcncuxYPKmpSSQmHiMx8RhxcQfZtOkoCQnx5b2Hjo6OBAQ0JyQk\niuDgSIKDI2nWrCUhIVGEhEQRHt4ad/eqeylFRETslZI1EbELxcVFJCcf5tixA+VfCQnm688/d1BY\nmA+Am5s7oaHhREWdQZs2LRg0qC9RUWcQFXUGISFhREZG/9WzJA2Rp6cX0dGtiY5u/Y/7ZmSkERt7\ngISEeBISjhIbe4DY2AMcPryO3377hCNH/qS0tBQAH58Amjc/g9DQM2je/AxatuxIy5adCAtrjZeX\nX11floiISK0oWRORelVcXMSRI3uIjd3OwYNbOXRoB4cObScx8RAlJcUABAWFEB3dmpiYNgwYcCln\nnDGF6OjWREWdccq5WtK0+PkF0LVrL6BXpc8XFOQTFxfLgQP7OHhwH3/+uZ8DB/bz66/L+OSTWEpK\nSgAICAghMrIjLVt2JiqqM9HRXWjZspOSOBERsTklayJSZ1JTj7J//2/lidnhwzs4fHg3xcVFODk5\n06pVWzp06MxZZ93IGWe0oVWrNkRHty4vuCFyOtzc3ImJaUdMTLuTnisqKuTQoYMcPLifAwf2sm/f\nLnbt+o1Vq94mJ8dU7gwNjaJly05ERXUhKqozMTE9iYxsX14ERkREpK4pWRMRq8jLy+LgwS3s37+R\n/fs38scfG4mN3QlASEgY7dp14uyzh9Gu3d20bduRrl174e7uYeOopalycXE9LpEbUeG5hIR49u7d\nyZ49O9i6dSN79nzHF1+8RH5+Hh4e3rRq1Y3WrXuVf0VGdsTBwcE2FyIiIo2akjURqZWEhINs3bqK\nbdt+YP/+DcTF7aG0tJTQ0Ah69OjD1VdfQ48efenWrbfdV08UOV5oaDihoeEMHnxu+baioiJ27drK\n5s0b+P339WzevJIvv/wPJSUlBAY2p02bPnTocCZduw6jdeteODo62fAKRESksVCyJiLVkpwc91dy\nZr6OHfsTd3dPevcewGWXXU737n3o3r0PoaHhtg5VxOpcXFzo2rUXXbv24vrrbwcgJyebbds2lSdw\nX345l0WLpuLl5UunTkPo2nUYXboM44wzumnopIiI1IqSNRGpVElJMdu3/8ivv37Gxo3LOXJkH66u\nbvTs2Z9rrhnHoEFn07NnP1xcXG0dqohNeHl507//EPr3H1K+bd++Xfz88yp+/nkVH300kzfemISv\nbyBdu55D//6X0KfPCLy81NMsIiLVo2RNRMoVFOSyadM3rFv3KRs2fEFmZirt2nXhiiv+xaBBZ9O7\n90DNMxM5hTZtOtCmTQfGjbsTi8XC7t3b+PnnVXz//Ve8+OK/sVgsdO06lH79LqV//0sICoqwdcgi\nImLHlKyJNHEWSymbNn3LihUL2bDhS4qKCujVayATJjzE8OGXEh0dY+sQRRokBwcHOnToSocOXbn5\n5vFkZmawcuVXfPXVJ7zzzlTmz7+bdu36cs454zjrrLF4eqoKqoiIVKRkTaSJSkk5wooVb7JixUIS\nEw/Rr98QnnrqJc4//2KCg0NsHZ5Io+Pr68ell17NpZdeTWFhAT/99D2fffYBCxdOZOHCyQwZMobz\nz7+F9u372zpUERGxE0rWRJqYnTt/5uOPn2f9+i/w9w9k9OjrueaaWypdi0pE6oarqxvnnHMR55xz\nETNmvMhHHy3m3XdfZ/LkN2nVqgujRo3n7LOvw9lZc0JFRJoylacSaSJ27VrLQw8N4/77B1FcnMy8\neYvZtOkwjz76ghI1qWDz5g1ceeWwej1neLhD+Vd9u/LKYWzevKHez1vG19efG2+8i++/38KXX/5K\nnz69ePXVO7n11jYsX/4aJSXFNotNRERsS8maSCOXnBzHM8+M5v77B+Ht7cBHH63mf/9bw8UXj8HV\n1c1mcV166WAuvXSwzc4vlXvvvTe46qrzufnm8XV2jspe+/h4S432t6abbrqXq646j8WLF9TZOaqr\nR4++zJ37Fr/8sp8RIy7m9dfv5d57u7Nly/e2Dk1ERGxAyZpII/b9929z112diYvbzKJFn/HhhysZ\nMOAsW4cFQGlpKaWlpbYO4x/ZqrfHFlauXM6UKbfy3HPzGT780lq380/3rKavfVX7W+u1ufDCy3j6\n6f9w//23sXLl8tNuzxrCwyN56qmXWb16O+3axTBt2nnMm3cH+fk5tg5NRETqkYPFYqn648x/MHr0\naI4ehalTl1ozJhE5TcXFRSxYMJ7ly1/jllsm8MADM1Ryv5bKkoFT9fw0BkVFhQwY0JqIiJZ89tma\n02qrtvespsdZ+7UZNWoAx47Fs3btflxcXKzSprX8738fMHXqXQQFRTJt2mc0a9bS1iGJiMg/GDnS\ngQ8++IDRo0fXtoll6lkTaWRKS0uYPfs6Vq58hwULPuSxx2YpUZN/9OWXHxEff5jLLhtr61Bs5rLL\nxnLkyCG++uojW4dykosvHsP332/Gw8OR++8/k4SEP20dkoiI1AMlayKNzKJFU1m//nMWL/6KCy+8\nzNbhVKqqYhLHb4+PP8y4cZfQpo0PXbuGcvfd15KWllLl/nv37mTs2OG0betL69beXHfdCPbt21Xj\n8564/cR9Jk26uXxbZmYGjz12H/37n0F0tDsdOwYxatRAnnhiMr//vr7WcQIkJycydeod9OzZgqgo\nV3r0iGDKlFtJTDx20r4FBfm88soznHdeD2JivIiOdmfw4PY88MDtbNy4rqqXoYJvvvkfAN269a7T\ne1bTQiK1Oc/xx5R9ffbZkvL9+/aNrrTNbt36VLgX9iYsrAXLln1HcHAgTzwxgsLCfFuHJCIidUzJ\nmkgjsm/fb3z66WxmzvwP/fsPsXU4Vapq2Nrx259++kEefvgZNm6MY8SIK/j448U88cTkKvefPPkW\n7rvvEX7/PZ5Fiz5j27ZNXHzxmRw+/GeNzlvV9vh4C/HxFmbNeqN82/jxN7BgwVxuvnk8O3emsGXL\nUebOfYvY2AOMGNGv1nEmJSVw0UV9Wb78E+bMeZOdO1OZP38JP/zwLRdfPJDMzPTyfbOzs7j00sG8\n9NLT3HjjXaxbd4AdO5J59tn5rFv3I6NGDaj02k60ffvvALRoEVXje1PV9sruWU2HLNbmPPHxFpYu\n/Q6A0NAwYmMLuOSSq8r3nzBhGuedN/Kktsuuvexe2CM/vwD++98vSE09wgcfzLB1OCIiUseUrIk0\nIl988TKdOvVgzJhxtg7ltF1zzS20adMBX18/7rzzfgBWr/62yv0nTJhGnz5n4uXlzaBB5/DQQ8+Q\nkZHGrFnT6yzGtWtXAdC8eQSenl64uLgSE9OOp59+5bTifOGFx4iLi+XBB5/mrLPOx8vLm379BvP4\n43M4dOgg8+Y9X77vrFnT2bLlN+6//0nGjr2ZZs1C8fLyZuDAofznP4urfS3Hjh0BwM/Pv4Z3wT4N\nGnQOHTt2IyHhKJ9+uqTCcwsXvlRptUt//wDg73thr8LDI7n77gdYvnw+RUUFtg5HRETqkJI1kUZk\n586fGDXqSluHYRVduvQs/7l583AAEhOPVrl/794DKzweMuRcAH74oeoE7w1SI04AACAASURBVHRd\ndNEVANx667/o3bslkybdzP/+t5TAwOAqe4SqE+e3334OwLBhF1bYt6y3dMWKz8u3ffHFhwCVVm/s\n3LlHtXuy8vJyAXBxaTyLMN96630AvP76nPJta9aspLS0lMGDzz1p/7JrL7sX9mzkyCvJzEwhNna7\nrUMREZE6pGRNpBHJzEwhMDDY1mFYhbe3T/nPZW+iT1W81tfXr8LjsvuQkpJUB9EZc+a8yRtvfMSI\nEVeQk5PN++8v5PbbxzBwYBt27Nhc6zhTUhIB6NEjvMK8q06dzL5//vlH+b5lCWxISPPTuhYPD0/A\nVIVsLC677GpCQ8PYsWMza9asBOCNN16scg25smsvuxf2LCioGQBZWSn/sKeIiDRkStZEGpHQ0Fbs\n3bvT1mHYxInFR1JTk4G/39SWcXAwRSWKiorKt2VmZtT6vBdddDkLFnzIjh3JfPLJjwwdegFHjhxi\nwoQbax1ncHAoALt2pZbPxzr+648/ck7aNyGh6l7H6mjePAKAjIz0k56z9j2rLy4urtx4490AvP76\nbGJjD7Bx4y9cccW1le6fnp4G/H0v7NmePTsA829eREQaLyVrIo3IgAGX89FHi8nKyrR1KPVuw4af\nKzz+8UdTYOKss86vsL2sB+r4IZWnKijxd49TEXl5ueW9W2CqDh49GgeAo6Mj/foNZv78DwAqrfBY\n3TgvvNAMaVy7dvVJx//6608VioaMGGGGYn799acn7btx47oKhU5OpXPnHgDExcWe9Jw175k1Vec8\n119/Ox4ennz//Vc88si9jB17c5VLWZRde6dO3eskXmtatGgeZ5zRjfDwNrYORURE6pCSNZFGZOTI\nuygtdeDhh++xdSj17p135rN+/RpycrJZs2YlM2c+iJ9fAJMmTa+w35Ah5wEwb97zZGZmsH//bt57\n741KWjQ6duwKwObN61mx4nN6965YXXHSpJvZs2cHhYUFJCUl8J//PAvA0KEX1DrOSZOm06pVGx56\n6C6++OJD0tJSyM7OYsWKL5gwYRwPPfRM+b6TJ0+nffvOPP/8oyxevICkpARycrJZvfob7r33eh58\n8Olq3b/zzx8FwJYtv530nLXvmbVU5zz+/oGMHn0DFouF1au/Ydy4O6tsb8uWDQBccMHFdRKvtSxf\n/gmffPIeY8c+butQRESkjjlYTjUJ5B+MHj2ao0dh6tSl1oxJRE7Db799xZNPXsJtt93Hww8/Wz6E\nzZ6cuL5VWRGMmm4//rlffz3ItGn38MsvP1BaWkr//kN47LFZtGnTocKxqanJPPLIeH78cQV5ebmc\neebZzJz5H3r3bllp+1u2/MakSTdz8OA+Onbsyosvvs0ZZ7QFTC/Z4sUL+OWXHzh27AgeHp60aBHN\nxReP5pZbJlSY+1TTODMy0pg7dwbLl3/C0aNx+PsH0r17X+699yF69epfYd+cnGz+859n+fzzZRw6\ndBBvbx+6du3FhAnT6NdvcKWvwYmKigrp3z+GyMhoPv30pzq7Z9Z87U91nuMdPLiPwYPbM2rUaF59\n9f0q78GoUQOIj49j3bo/7LbQypo1K7n++pGcffYN3Hnnq7YOR0RETmHkSAc++OADRo8eXdsmlilZ\nE2mEVq9ezNy5NzJixBXMmvUGnp5etg6pzpS9ma/p+l31rSHE+d13X3LDDaN49dX3ufjiMbYOx2pK\nS0vp1asFb7zx8UmJbpmPP17MPfdcx9tvf865546o5wir57//fY1p0+5l4MArmDTpvzg6Otk6JBER\nOQVrJGsaBinSCA0deg2PP/41q1at4JxzuvHLLz/YOiRpAM49dwTPPjuf+++/vdI5cA3V999/SXh4\nZJWJ2vLln/Dgg3fyzDOv2mWilpBwlHHjLuHBB+/kyiunMnnyYiVqIiJNhJI1kUaqW7ezmTdvBxER\nXbniiqFcf/0oYmMP2DossXPXXnsr77//DQsWzLV1KKclPNyBjRvX/bXg+OOMH/9wlfu+8caLLFmy\nguuuu60eI/xnRUWFvPHGiwwZ0oEtW7YyY8Z3XHPN43Y5tFlEROqGkjWRRszfP5SHHvqYGTNWsH//\nQYYM6cC9917PwYP7bB2aVRw/n+nEuU32pKHEWaZHj7589NFqW4dx2kaNGsDAgW0477yRnH9+1UVD\nPvpoNT169K3HyE6tsLCAd999nX79Ynj66Ye44ILbeeWVrXTtOszWoYmISD1ztnUAIlL3unc/l7lz\nf+e7797iww+f4ZNPzqJ793u4665enH/+uTg6NszPbex5/tfxGkqcjUlDvOf79u1i8eIFLF36Dvn5\neQwffhuXXz6FwMAwW4cmIiI2omRNpJGzWCA2FnbtcmH37ltxdLyFkhIHNm60cNNNAwgLu4Wrr/43\nY8feRFhYC1uHK9Kk5Ofn8fnny3j33QVs2LCG5s1bMXLkBIYPvxV//xBbhyciIjamZE2kkSkuhr17\nYetW2LED9uyB3Fxwd4d27WDIEAfat4d27RzIzHyHb799g4UL5zFnzpMMHDiUCy+8lAsuuITw8Ehb\nX4pIo5Sbm8OqVV/z9def8u23n5Ofn0e/fpfw5JPf0r37OTg4NMyebhERsT6V7hdp4MqSs23bzNeu\nXVBQAMHB0KWLSdA6doToaKhqtGNxcSHr13/BmjVL2bhxObm5WXTp0osLL7yU4cMvpV27TvV6TSKN\nTWpqMt9++z+WL/+Un376jsLCQjp1OpP+/S9j6NBr8PNrZusQRUTEyqxRul89ayINjMUCBw/Cpk2w\nZYtJzvLzISgIunaF224zSVpYDaa5ODu7MnDg5QwceDlFRQVs3bqKdes+ZcGCV3j22WlERp7B4MFn\nc+aZwxg4cBihoZpDI3IqeXm5bNjwMz//vIo1a1axZcsGnJ1d6NHjPG677RX69h2lBE1ERP6RkjWR\nBiAzEzZvho0bTZKWlgb+/tCtG9x8s0nOIiKscy4XFzd69RpOr17DufPOeezZ8yu//bacLVtWsWzZ\nOxQVFRIT055Bg0ziNmDAWQQHa26NNG0FBfls3LiOtWtX8dNPK9m8eT1FRYVERrajc+dhDB8+mV69\nhuPu3ngXqBcREetTsiZihywWM9fst99McrZvnxnC2KEDjBoFPXtCTAzU9XJLDg6OtG8/gPbtBwBQ\nUJDLrl1r2blzDVu3/sx77y2kqKiQkJAwunbtRbduvejbdxC9eg3A01NvSqXxio09wPr1a9i6dSNb\ntmxk27aNFBTkExQURocOg7jttpfp1Ws4zZq1tHWoIiLSgClZE7ETRUWmIMj69bBmDaSmQkAA9OgB\nl19uvnvZOP9xc/Oke/dz6d79XADy8rLYufNn9u5dz96961m48FVmzXocJydn2rTpSM+efenevQ8d\nO3ajbduOeHv72PYCRGqouLiYgwf3sWvXNrZu/Y3ff9/A1q0bycnJws3Ng5iYHrRp05ehQ++kU6dB\nSs5ERMSqlKyJ2FB+vqnauGYNrFtnqja2bAnDh0PfvtC6ta0jPDUPD5/yIZNlEhL+ZO/e9ezbt4Ft\n29bzySdLyMvLxsHBgYiIaDp06Ey7dp3o0KEL7dt3pnXr9ri4uNrwKkTAYrEQFxfL7t3b2bNnO7t2\nbWP37h3s37+LoqJCHB2diIrqSOvWfRg37iratu1LdHQXnJz036iIiNQd/S8jUs+ys2HtWvjpJ1O9\nEcycsxtugH79TBXHhiw0NJrQ0GgGDzaVjyyWUo4dO0hs7DZiY3cQG7uNL774gvnzZ1FcXISzswvR\n0a1p3bodrVq1plWrNkRHt6ZVq9aEh0fiUNdjPaVJSU9P5eDB/Rw8uO+vr/388cc+9u/fRU5OFgAh\nIS1p2bITHTtewIUXTiIqqhORkR1xdXW3cfQiItLUKFkTqQf5+abn7McfzRw0R0fo0wfuuw9697b9\n8Ma65ODgSFhYDGFhMfTvf2n59uLiIuLidnPo0A5iY7cTH7+PFStWcvTo6+TkZALg5uZOy5YxxMS0\noVWr1kRFxRAeHkmLFlGEh7fA19ffVpcldqqwsID4+MMcOXKY+PjDHDp0gIMH93PgwD7+/HM/6emp\nALi4uBIaGk14eBuiowcyePBNtGzZiaioznh5+dn4KkRERAwlayJ1pLDQVHBcs8b0pBUWQvv2cPvt\nMGQIeHraOkLbMj1qXYiO7nLSc+npicTH7+Po0f3l37/7bhXHji0kKyutfD8vLx/Cw1vSokVLIiIi\nCQ+PJCKiJRERLWnWLJSQkOb4+QXU52VJHcrPzyMx8RhJSceIj4/7Kyk79NfXYY4ejSMp6Vj5/q6u\n7oSGRhEW1obo6DMZMOAGwsNbExbWmpCQKBwdnWx4NSIiIv9MyZqIle3eDd99Z4Y55uWZIY633AID\nB4KP6mtUi79/CP7+IXTseOZJz+XnZ5OYeIikpEMkJx8mOTmOxMRYtm3bx6pVq0hKOkxhYX75/q6u\nbgQFhRAaGk6zZiE0axZKaGgYwcEhhISE0axZKAEBQfj5BRAQEKj5c/UsPT2V9PRU0tJSSU5OJCUl\nkWPH4klOTiQx8RiJicdITk4kISG+fJgigKOjIwEBzQkJiSI4OJKYmLPo378lISEtCQ6OJDg4En9/\nLSkhIiINm5I1EStIT4eVK02SdugQREfD2LGmBy1AHTtW5e7uTcuWHWnZsmOV+6SnJ5Cenkhqajzp\n6YmkpyeQmnqUjIxEdu36k7Vr15GRkUhaWuJJx3p6euPvH1ievAUEBJY/DgwMwtfXHx8fXzw8PPH0\n9MLX1x8vL288Pb3w9PRqUj15OTnZ5ObmkJubQ0ZGGnl5ueTm5pCdnUVWVgbZ2Vmkp6eSkZFGWppJ\nyNLT08oTtIyM1JPa9PDwJigoHH//EPz8QgkJ6UbbtiEEBIQREBCKn1/IX883x9nZxQZXLSIiUn+U\nrInUUmmpqeT49ddmPpqbGwweDHffDR2rziOkHvj7h+LvH1rpEMvjlZQUk5GRSFZWKllZqWRnp5Kd\nnXbc4zQyM1M5evRPsrI2/fV8Orm5WZSUFFfS4iAgAnf3z/H09MLLywdfXz8cHR3x8vLGxcUFV1c3\nPD09cXBwxNfXzI3y8fHF0dEJd3cP3N3/LmLh4uJa5Xp1bm7uuLt7nLS9tLSErKzMSo8pKioiNzf7\nr/0csVhKyMpKByA7O5OSkhLy8/MoKMinuLiY7GzTk5WRkU5pqQvZ2Vnk5aWRl5dDZmb6Ke+tl5cf\nnp4+eHsH4O0diLd3ID4+LYiJ6YKPT+Bf2wLw8Qksf+zvH4KbWxMfHywiInIcJWsiNZSSAsuXwzff\nmB61bt1gwgQzzNFVI+gaFCcnZwIDwwkMDK/xsUVFBeTn55CTk05eXjbffOPLV19F0a5dHBdccAH5\n+Tnk5+eQnW3m2OXkZGCxlFJQkEtaWgElJYUcPnzgr+fSsVgsFBTkUFRUWH6O/PwciosLTzizAwUF\n0ykuXkhp6fpKY/PyMgliZby9AwBHEhO/x8VlB5GRjwCmx9LZ2QUXFzdcXT1xcHDFy+sMAJo182X9\n+utxdHRm5Mhv8PDwxNs7AHd3r7++vPHy8i9/7OGh8b4iIiLWoGRNpJq2b4cvvjC9aN7eZi2088+H\nEE2LaZJcXNxwcXHDySmQt94yvxdXXQVXXx2Jg8ONdXruUaPg/vvvYfDg2rdx771w4EBLbrjhQrp3\n/+f9Bw6EadPgzz87MGECaEUFERGRuqdkTeQUCgtNNcdPPoGDB80i1bffDmefrV40gT/+gGeeMb8n\nM2fW3/BXJycoKTm9Ns4/HxYsgBdegJdegsDAU+/fvj3cfz889RQEBcH115/e+UVEROSfKVkTqURK\nCnz2mRnqWFRkCoXcey+0aWPryMRerFwJr7xikpgpU+q3kIyj4+kna127mjZcXU3CNmOGafdU+vY1\nQ35nzzaVTS+77PRiEBERkVNTsiZynLg4+OgjWLUK/PzgyivhggvA19fWkYm9yM+Hl182C5xfcYXp\nYfqnJMfaHB1NgZvTERkJ/v4wYICZg/nBB3D11f983LBhkJMDr71mhgOfd97pxSEiIiJVU7ImghnO\n9tlnsHo1hIbCv/9t5qRpqKMcLy7ODHdMS4Pp06FXL9vEYY1hkA4OZg3A+Hjz+/7aa9ChA9WavzZy\npOl9fvll8PIy89lERETE+ur582AR+7JzJzzxBIwfD3/+aYZ4vfYaXHyxEjWpaNUq8/vh6gpz59ou\nUQPrJGsA7drB3r0m+RoyxAyHTD156bNKXX+96VV74QVTfEdERESsT8maNEm//w4TJ5qCCUVFpmjC\nSy+ZwiH1PaRN7FthIbz+upmndf758Pzztq8Aao1hkABt20JGBiQkmPUBvbxM8lWdth0c4K67zDy2\nJ54wvdMiIiJiXXpbKk3K9u3wwAPwyCNmTtrcufDkk2atNJETxcfD5Mnw3XcwdSrceis428HgcWv1\nrMXEmLb27QMPD3ONu3fD0qXVO97R0dyf9u3h0UfNMFERERGxHiVr0iTs3Ws+/Z86FSwWU279scdM\nKX6RyqxbB/fdZ3qQXnwRzjzT1hH9zVrJmpubKTSyb5953KoV3HgjLF4MmzdXrw1nZ3j4YQgLM/P4\nqjuMUkRERP6ZkjVp1A4dMonZpEmQmWnKkz/3HHTubOvIxF6VlMCiRWZobL9+ZthjWJito6rIWsMg\nwSxHsXfv349Hjfp7/lpaWvXacHMzPWsuLqbXOivLOrGJiIg0dUrWpFFKTTVrYN19txma9cAD5k13\ndSrdSdOVnGx6X7/4wgzvmzjRPgvNODqaHmJriIkxxXWOd+ed4O5u/s1UNyn09TVDivPy4PHHzRIH\nIiIicnqUrEmjUlgIy5bBbbfBxo3mDffLL8OgQWY4m0hVtmwx1R6zsmDWLDjrLFtHVDWLxXq/z5GR\n5pqP70Xz8jIfcOzaVf35awDBwab3+tgx0zNZXGydGEVERJoqJWvSaKxfb3oEliyBESPg1VfNcC4l\naXIqpaXw3nswbRr06GGKzkRF2Tqq+tOypfl++HDF7W3a/D1/bcuW6rcXHm6GQu7aZSqsWqsHUERE\npCmyg7pmIqfn8GFYsMCU4z/zTLPAr61Lq0vDkJFh5mbt2AG33GLW12sIrJkABQSAj4+Z39m1a8Xn\nLr7Y3JtZs0wSGxhYvTbbtTNFRx5/3LR/443Wi1dERKQpUc+aNFi5uTB/vlnrKSfHvOmeOlWJmlTP\n9u1wzz1mjbEXXmg4iVpdiIysuuz+hAlmWOTTT9dsWGOPHmbO38cfw2efWSdOERGRpkY9a9IgrVtn\nErWiIvNmctgwDXeU6rFY4PPP4c03oXdvU57fy8vWUdWMNeesgUnWDh2q/DkPD9NLdt998NZbpgey\nuoYMgcREeOMNM5/NnpY/EBERaQiUrEmDkpZm3jCuXGmKhtxxh1ncWqQ6yoqH/P47XHcdXHFFw03y\nrRl3eLi5J1Vp0cL0Qj73nKkeefbZ1W/7yitNddbnnwdvby1ALyIiUhNK1qRBsFhg1SozN83T0yxw\n3bOnraOShmTfPrPmXkmJ+d6hg60jsh8hIWbZgpISs+B2ZYYMgd27Yd48s5h8WWGS6rjlFkhJMUMp\nn30WoqOtEraIiEijpzlrYvfi4sxctBdfhPPOM28WlahJTXz9NUyZAs2bm0IZDT1Rs3aFxWbNTFXM\nlJRT7/fvf5uetRkzzDzR6nJwMAvTR0XBY4+ZxFBERET+mZI1sWvLl8P48WaB3dmzzZtFNzdbRyUN\nRV6e6cmZNw9GjzZJhr+/raOyP2VFeRITT72fs7P54KTs32NNkkZXV5Oo+fiY7zVJ9kRERJoqJWti\nlzIy4MknzZvsCy4w84xiYmwdlTQkBw7AvffC1q2mhPzYsQ13ftqJrF1gJCDAJFP/lKyV7fvgg2bR\n+Y8/rtl5vLxg+nSTqM2YYQoEiYiISNWUrInd2bzZFDM4cABmzoRbbzWf6ItU18qVZthjUBC8/LIp\nIy9Vc3AwQyETEqq3f4cOcMMN8Pbbpy5MUpngYJM8HzhQ8945ERGRpkbJmtiNwkJYtAgeeQQ6djRv\nsjt3tnVU0pAUFprfmzlzTI/sjBnVX8i5ISkpsf4HGAEBkJ5e/f0vu8yU4p81q+Zz0KKiYNo0swTH\nokU1O1ZERKQpUbImduHQIbOO0/LlphDB1KmmzLdIdcXFmUWY1641c6Iac49sYSG4uFi3TT8/yMys\n2THjx4Ovr+kBr+mQxi5dzL95LZotIiJSNSVrYnM//WTeZHt5wUsvwdChto5IGpq1a02S7+Jiqj32\n7m3riOpWXSRrvr41T9bc3c2C2YcPw8KFNT/nkCEwbpxZNHvNmpofLyIi0tg10s+dpSEoLYV33oGP\nPjJD1m6/vfH2hEjdKCoyi6T/738wfHjT+R0qKjIFQazJ19eso1ZTERHmw5annjLrr517bs2Ov+IK\ns2TACy+YSpFaNFtERORvTeBtjdijzEx47jnYudMMparpGzyRpCSzuPWhQ/DAAzB4sK0jqh/FxaYo\nh7WTNR+fmveslenfHy691FRvbdWq5pVbtWi2iIhI5TQMUurdH3+YuSpxceaNmRI1qan1603F0KIi\nM3S2qSRqYIZAgvV7EGszDPJ448ZB27Ym4crKqtmxZYtmR0dr0WwREZHjKVmTerVihSmpHh5uqva1\naWPriKQhKSmB994za/D17QvPPw9hYbaOqn6VJWvu7tZt19vbJL9l7deUk5MpDFRcbKpx1rQkv6ur\nqRB5/FpsIiIiTZ2SNakXFouZW/TSS3DJJWadJR8fW0clDUlKilmM+cMP4e67zTwpNzdbR1X/cnPN\ndw8P67ZbNqzydBaq9vc3Q1I3bYIPPqj58T4+5m9DZqapMFlcXPtYREREGgMla1LniovNWkyffmre\nZN9wAzjqN09qYOtWmDABMjLMQsoXXGDriGynLFnz9LRuu2XJWkHB6bXTsSPcfDMsXgwbNtT8+GbN\nTM/pvn3wyiunF4uIiEhDp7fMUqfy880br3XrzGLXTflNttScxWJ60qZNgw4dTKLW1ItP1HWyVtth\nkMcbORLOO88UETp0qObHR0WZ4dKrVsGSJacfj4iISEOlZE3qTGqqGRJ18KApJNLY174S68rMNMUm\nFi82PTUPPWTmMzV1eXnmuz0na2CWUYiMNAVHajP/rHdvuPNO8/qvXGmdmERERBoaJWtSJw4dMtXd\nCgvN+kk1LeUtTdvevWbY4+HDZu7SxRfbOiL7kZtrKkFae1FsaydrZQVDcnNNj2hNC46A6Ym//HIz\n13XLFuvEJSIi0pAoWROr27UL7r/fzD157jkICbF1RNJQWCxmgev77zfDHV9+Gdq3t3VU9iU31/q9\namD9ZA0gMNAUhdm4Ed5/v3ZtjBsHgwaZHrrYWOvFJiIi0hAoWROr2rkTHn0UOneGGTNU8VEqOlUi\nkJtrFrleuBBGjzZzHL296y+2hiIjw1RdtLbSUvPd2sV/OnQwi16//z78/HPNj3dwgHvvhZYt4Ykn\nID3duvGJiIjYMyVrYjW7dpk5Rp07m7lqZZ/UiwC88w7ceKOZy3iiP/6A8eNh924z7HHsWPMmXU6W\nkQF+ftZvt6TEfHdysn7bI0bA+efD3Lm1Kzji6mo+BHJ2Nmuw5edbPUQRERG7pGRNrGLXLvNmqkcP\nePhh68+nkYZt/35T1bFs/ayyxABM8YgpU8yw2blzTel3qVp6et0ka3XVs1bmjjugVSt46qnaFRzx\n8TGJWlKSKVhUFq+IiEhjpmRNTtvxidr995tPv0XKlK2z5+Bg5qTt2WMq/OXnw/PPw5w5poDIjBkQ\nEGDraO1fXQ2DrMueNTB/Fx580LzutU22wsLMh0FbtpjhsiIiIo2dkjU5LWVz1JSoSVWWLIEjR/5O\nBkpLYelSePxx86b7ySdNEQktlF496eng62v9dsten7p8HQICTMK2bVvtC4507AgTJ5pCNP/7n3Xj\nExERsTd6ay21tnu3SdR69lSiJpU7eNAkZif2ojg4wL59pjdN1R5rpiHOWTte+/Zw660wb55Z/HrQ\noJq3MWgQHD0KCxaY4bMDBlg/ThEREXugz7KlVo4cMT0j3bopUZPKlZT8PfzxRBaLGR756qvmu1RP\nYSFkZ5uS+NZWUGC+u7lZv+0TXXihWUOttgVHAP71L7joIjOUdvdu68YnIiJiL5SsSY1lZJhErXlz\nUxhCiZpUZtky80b8+GIixysuhj//1NyjmkhKMoluXaxdmJ1tvtfXcgm33w4xMaZ3tTYFRwBuuw26\ndzdDaY8etW58IiIi9kDJmtRIQYF5Y2SxmDL97u62jkjsUWysmZP0T0UkSkrg889h/fr6iauhS0w0\n3+siWcvJMR+81EfPGphzTZ1q/qY880ztCo44OpoPjIKCzBpsZQmniIhIY6FkTaqttNQMOYqPNyW0\n66IinTR8pxr+eLyyuVEREeDhUfdxNQZJSeYDkrpYbD47G7y86nd9u7KCI9u3mwqhteHhYf4e5eWZ\nXrqiIquGKCIiYlNK1qTaXn8dNm0yRUUiImwdjdirjz82wxsrm4tWNmQ2IgLGjDFz1l57Dbp0qdcQ\nG6ykpLrpVYO/k7X61r493H23KUTz00+1ayMw0PSsHTxoloKwWKwbo4iIiK1otpFUy5Il8NVXMG2a\nqvfVt7y8LIqLi8jJSae4uIj8fDPWKz8/m+Liit0IFouFnJz0Stvx8vLH4YRuE2dnV9zdzTt0d3dv\nnJ1d8PYOwMnJGQ+PmnffxMWZHpKyIW0ODuartNQkaGedBUOHQnh4jZsWzDDIukrWcnPrb77aic45\nxxQJefFFaNnSVImsqZYt4YEHzHzaFi1g7FjrxykiIlLflKzJP1q/3rwBv+MO6NvX1tE0LMXFhWRk\nJJGaepTMzGRyctLJyUknOzud7Oy0v35OIzf37+1FRfnk5WVTUJBHYWG+TeN3dXXHzc0DDw9vXFzc\n8fb2x8vLH09Pf7y9A/D2DsDLyx9vb388PQNYvPhCiot9y4fSdegATjlomgAAIABJREFUQ4bAwIF1\nU8GwqUlIgMjIumk7K8s2PWtlbrvNzHWcMQNmz67dUM+ePc3fqf/8x3wgMHSo1cMUERGpV0rW5JSS\nksywovPOM2WyxSgpKSYl5QhJSYdISPiTlJQjpKUdIzMziZSUI2RmJpGWlkBmZkqF45ycnPDx8cfX\n1x8/vwD8/f0JCAggKioaPz+z3d3dA09PL9zdPXBzc8fb2wdnZ2f8/AJwcnLC29usiOzm5oaHh+dJ\nsXl7++J0wmJZJSUlZGdnnrRvXl4uBX/VbM/OzqSkpISMjDSKi4vJzs6ioCCf/Pw8cnKyKSjIJzMz\nnYyMdDIz00lPP8CRI2nlj7OyAikpuRj4DotlKfApcXGlLF8eytq1IQQGhuPr24yAgOYEB7cgNDSa\n4OBIgoIicHLSn6LqiIuruzXF6nKIZXU4O5v5a/fdB88+a3rIarPm2/DhZmmRuXNN4RENsRURkYZM\n75CkSsXF5k1TUJD51LupSU09ypEjezhyZC8JCQdJSjpMcnIsiYmxJCfHU1pqatK7uLgSGhpOaGg4\nwcHN6NGjA82aDSUoKITmzcMJDg4hODiU4OAQvL3roDJENTg5OeHnF3DS9sq2nY7s7CySk1uRlHQD\nKSkXcexYPCkpiSQlJZCQcJS4uINs2nSUhIR4iooKAXB0dCI4OJyQkCiCg6No1qwloaHRRES0pUWL\n9gQENLdqjA1VVhakp5vhfnUhMRE6d66btqsrIAAeecSs3bhwoVk8uzb+/W9Tyv/pp00vXViYdeMU\nERGpL0rWpEpvvGEKRcydW3/lvOtbcXERcXG7OHx4F0eO7CUubjfx8Xs5cmQvOTmmJ8rb25fIyFa0\naNGSvn17EBFxCRERkUREtKRFiyhCQsJOmgvWVHl7++Dt7UN0dMwp9ystLSUp6RhxcbEcOXKIuLhD\nf32PZfv2r1i+/GB5T6CXly8tWrQjLMwkbxERbYmMbE+LFh1wdnapj8uyC7Gx5ntdDIO0WCA52bY9\na2ViYmDiRFPOv2VL01NWUw4OJuGbOtX00L3wgu3m44mIiJwOJWtSqZ9/hi+/NBP2W7SwdTTWkZOT\nQWzsNg4d2smhQzv444+N7N+/iYKCPJycnAkPb8n/2bvvuKqrN4Djn8uWDaIoKOLAAS7c2zTNcuYs\nzVWao5+ZqbnScq9ym6ssbTkrV5Yrd24RBZyoKMhQ4LI39/fHCRUBlev9cuFy3q/XfQFf7n2+514R\nvs895zyPu3slGjWqR9Wq/alWzQs3t0q4uVWUyZiOGRkZPZ6NrF8/93V9MTHRBAXd5vp1f27cCCAo\n6DaXLu1g2zZ/UlKSMTExxdXVg8qV6+Pm5oWbmydVqzbG3r4QZBwKuH8fLC3FTLeuqdWQmgqlSuk+\ntjaaN4fevWHNGvH7R5sZPzMzURBp7FixD2727CfVSCVJkiSpqJB/uqQc4uJESfUOHaBFC32PRjvp\n6ancunWRa9dOce3av9y4cZaIiHsAlCxZGk/POrRu3YyRI0fi6VmHypWrYWpafGZpigI7Owdq165P\n7dr1sx1PS0vj1q1rBAT4EhDgi5+fL7t2/U1U1EMASpd2o2rVxtSo0Yzq1ZtSuXI9g5iBu3dPzDQp\n8b7BQ/HSFYqZtSwDBojZxLlzxb5ZZ+f8x3B0FMsqJ04URUc++UT345QkSZIkJclkTcph/XpxQTh4\nsL5H8vISEmLw8ztKQMBJrl37l5s3z5OamoyDgxMNGjRlyJAR1KzpjadnHZyd5QaWoszU1JQaNWpR\no0Ytevbs//h4ePgD/P198fPz4fz5U2zbNhu1OhJz8xJ4eDSgWrWmeHo2p2bN1lhZ2enxGWjn/n3l\nKkFGRICRkTKzdtpSqeCzz2D8eJgzBxYuFA3B86tyZbEccuZMkex27677sUqSJEmSUmSyJmXj5weH\nDomqbIV5j0dmZga3b1/i0qWD+PoexM/vGGlpqbi5VaJRo+YMGjSAhg2bU7Wqp1zCWExkLats2/at\nx8fCwx9w9uxJzp49wdmzh/jjj68BFZUr16VOnXbUrduOmjVbF/qZN40GAgOVa50RHCxm1QrbMkEL\nCzEzNnasKBQyebJ2M4sNGog3n77/XhQbadJE50OVJEmSJEUUsj/Nkj6lpcHKleLCplkzfY8mp/j4\naE6f3smZMzu5fPkwCQkxuLi40bp1e4YP/4mWLV/HwaEQTQ1Ieufs7EKXLr3p0qU3AFFRjzhx4hBH\njx7g6NFNbN++AGtre2rXbkuTJt1o3LgrVlb2eh51TqGhYnlytWrKxL9zBypWVCb2q3J2hilT4PPP\nYcsWePdd7eL06AFhYWKGbv58qFpVt+OUJEmSJCXIZE16bMsWiIoSS44Ki6wE7eTJbVy6dBCVSkWL\nFq8zefIsWrVqT5Uq1fU9RKkIcXR0omvXd+ja9R0Abt26xrFjBzh8eB8rVw5jxYoP8fZuT/PmvWnS\npFuhSdyuXxezXpUqKRP/zp3C3UDaywuGDoW1a8HVFVq21C7OsGEi8c1qvO3kpNtxSpIkSZKuyWRN\nAkSStmMH9Oun/30rmZkZnDv3J/v2fYuPz35UKhWvvdaBRYu+4403umJrW/T2G0mFU5Uq1alSpTof\nfPAxsbEx7N+/i927t/HNN8NZuXIY9ep1oEOHYTRo8BZGRlp0aNaRGzfEzJcSNXCSk0UC4+6u+9i6\n1LmzKDiybJnYu6fNeLMab3/2GcyaJfpIarMPTpIkSZIKipG+ByAVDps2gZWVuCDSl6ioUDZvnsWQ\nIRWZM6c7FhapLF68nitXItiwYSe9eg2QiZqkGFtbO3r1GsDGjbu4fDmcxYvXY2aWzKxZXfnww8ps\n2TKH6OgwvYzt+nXllkAGBYk9cYV1GeTThg8XyxdnzoSYGO1iWFrCF19AZKRYDpmZqdsxSpIkSZIu\nyWRNIjwcDhyA/v1Fb6KCFhx8jYUL+/LBBxX488/l9O79LidOXGfz5n307NkfGxvbgh+UVKzZ2trR\ns2d/tmzZz4kT1+nRoze7dy/h/ffdWLSoP8HB1wtsLGlpYpmikvvVLCygTBll4utS1syYsbFYrp2e\nrl2crH1wvr6wYYNOhyhJkiRJOiWTNYkNG8SFWtu2BXvesLDbLFkyiI8+qklYmB9Ll/6Aj08wU6cu\nxN29SsEORpLyULGiB9OmfYWPTzCLF68nONiH//2vJkuXvk94+B3Fzx8YKBI2pQpi3L4tlhQWlaKp\nNjaiQuTdu6J3mrY8PUWVyT/+gL17dTY8SZIkSdIpmawVc3fuwIkTMHCgeLe6ICQlxbF27ceMGFGd\n27dPs2LFj/zzjy89eryHmZl5wQxCkvLJ3NyCXr0GcPjwFZYu/YFbt04yYkR11q4dTXJyvGLnvXhR\nFMJwdVUmvp+fKOBRlLi5iUTr4MFXS7RathTVJdetAx8f3Y1PkiRJknRFJmvF3O+/i3fVmzYtmPNd\nvnyYUaNqc/LkFhYuXMPRo/50794PIyPD/FF0cVE9vhUlly6do1evNvoexkvp1asNly6dK7DzGRkZ\n0bNnf44dC2D+/FWcOLGJUaNq4+d3VJHzXboE9eopEhq1WjTbrlVLmfhKatIE+vYVidbly9rH6dcP\nWrSAefPE/j1JkiRJKkwM8wpZeilRUXD8OLz9tvJLoNLTU1m37hM+//x16tWrx5Ejfrz77geYFLYu\nvDr24IEmz++9/XZL3n5byxrkCvr11+949903GDr0E30P5aUMGTKad99tzy+/fFug5zUxMaFv3yEc\nOeJH3bp1mDKlLd9++ynp6ak6O0dioqgE6e2ts5DZ+PmJ//s1aigTX2l9+4o3mubNExUttaFSwejR\nUKGCKFyiVut2jJIkSZL0KmSyVozt3g3W1tr3LHpZCQlqvvzyTQ4f3sjKlT+zfv1vODmVVvakRUBm\nZiaZhawU3T///MVnnw1j4cI1vPnm2/oezkt5663uzJ37DRMmDOeff/4q8POXKuXM99//wdKlGzh4\ncD3Tp3ckIUHLUoXP8PWFjAyoU0cn4XLw84MqVUQl2KJIpYJPPxV7bmfOFMmtNszMxD44IyOYO1fs\nEZQkSZKkwkAma8VUSgr8/Td06aJsBciUlERmzOhEePhNduw4Tvfu/ZQ7WRGza9dJdu06qe9hPJaW\nlsqECcNp0KDZ46bRRUWPHu9Rr15jJk4cQZqerrR79RrAzp3HCQ29ysyZnUlJ0TJzeMrFi+DhAbYK\nFUS9fLloLoF8mpmZqOwYFycaXWvynsx+LltbkbAFBcHy5bodoyRJkiRpSyZrxdSBA5CaCh07Knue\n5cuHEhZ2k61bD1CjRhG/KjRwf/75Gw8e3C+yCXX37v0ICbnH3r2/6W0Mnp512Lr1IA8eXGPlyuGv\nHM/HR7klkFn71WrWVCZ+QSpVSiRs58/Dzz9rH8fNDSZNgmPHYNs23Y1PkiRJkrQlk7Viat8+eO01\nUQZbKSdPbuf48S2sWvULVapUV+5EL/B0kY+7dwMZMqQH1as75Cj88ehRBJMmjaRevXJUqGCGt7cr\nn302jIiInI2Qjx8/yKBBXale3QF3dwveeKMeO3du1mpMz7p+3Z/+/TtSpYo1Vava0rdvB27cCMj1\nMU8fe/DgPoMHd8PDw4batZ0ZNao/0dGRLz2mfft2AVCnToNsx2NjY/jyy09p0qQS7u4WeHqWpEuX\nZsycOR4fn7O5juXGjQD69XuTqlVtqVLFmgEDOnHz5tU8X4Pw8AcMHdoTDw8bPD1L8skng4iNjeH+\n/bsMGtSVqlVtqVOnDGPGDCY2NvdNRXXqNMz2PPTFw6MGK1f+xJEjv3D69A6t4wQGQlgYNG6sw8E9\n5cwZMDUt+jNrWTw94eOPYetWOHxY+zje3jBkCPz4o9jTK0mSJEn6JJO1Yuj2bVGyv107Zc/z66/T\nefvtvrRq1V7ZE73A00U+Jk0ayciR47l06QE///yk5vfDh+F07NiIv/76gyVLvicgIIo1azZz9Oh+\nunZtliNBeOed9hgbG/Pvvzc5efIGjo5OjBzZlyNH9uV7TE+7ezeQbt1a4O/vy4YNu/DxecDYsV/w\n2WfDcn3s05/PnTuZzz+fz4ULwXTq1JPff/+FmTPHv9R4APz8RO3ycuUqZDv+ySeD+PbbpQwd+gkB\nAZH4+oaydOkPBAXdplOnJ5nE02MZP/5DPv10Gj4+D9iwYSdXrlyka9fm3L9/N9f7z549kYkTZ3Ph\nQjDdu/dl27YfGTXqPaZPH8vUqQs4f/4+HTv2YOvWjcyaNSHX8WeNO+t56FObNm/Stes7/Prrl1rH\nOHZM7MXy8NDhwJ5y8iQ0aCAaYhuK11+H7t1hxQq4dk37OF27wptvwtKlcPOm7sYnSZIkSfklk7Vi\n6NAhKFsWqis42XX37hWCgvwZMmS0cifRwujRU2jQoBkWFiVo2/atxwnD119/SXBwEJMnz6V16zew\nsrKmceOWzJixhHv37rBq1Vc5Ys2YsQRHRydcXd2YPVtsclm2bM4rjW/RounExqqZOnUBLVq0xcrK\nmoYNmzN69JQXPva99z7Ew6MGtrZ2fPSRSGiOHNn/0ucOCwsBwM7OPtvxf/8V0xRlyrhiaWmFqakZ\nlStXY+7clXnGGjNmKg0bNsfKypoWLV5nypT5xMREs2jR9Fzv36/f0Mdjz3quBw/+ydChn+Q4fuhQ\n7o217O0dsj0PfRs69BNu377MvXv++X6sRiP6H7ZurUyl1oQEsV+tWTPdx9a3998Xs2MzZ4qZSW0N\nHy5+R86aJSrnSpIkSZI+yGStmMnIgKNHxTvQSpbrv33bBwsLS+rWbajcSbTg7d0o1+P79+8GoE2b\nt7Idb9KkFQAHDuzOdvzBAw3ly7s//rpiRTH9ceNGwCuN79ixAwC0aNE22/GGDV98VV2r1pNmXGXK\nuAAQEfHy9cyTkkRBDFPT7BVnOnbsCcCwYb1p0MCNceOGsmvXVhwdnfKcIWzQIPt4W7US07hHj+ae\nPD499lKlyuR63NlZPKfw8Ae5xsgad9bz0Ddv70ZYWJTg1q2L+X7s1asQHq5cpdZTp8T//0a5/3co\n0lQq+OwzcHR8tQqRJiZi/5qFhawQKUmSJOmPTNaKmfPnISYG2ijc7zgxMRZraxtUSjdwy6cSJSxz\nPR4ZGQGAt7dLtr1UXl5OgFiemCU2Vs28eVNo1aoGHh42uLioKF9e9IvLzx6x3ERFPQLA0dEp23Fb\nW/vc7p6NtfWTDYhZiYsmH6Xxsl6btLTsfcKWLPme7777jU6depKQEM+mTesZMeIdmjXzwN//Uq6x\nbG3tsn2d9XwiIx++cOxPN0jP7Xhezylr3Hn9Gxc0IyMjrK1tSUzMfxn/48ehXDnRsF4J//4rZp8s\nC8dLpXMWFvDFFxAbCwsXgrYdMmxsRJz798XSSkmSJEkqaDJZK2aOHBHV35ydlT2Pg0NZoqMjSUxM\nUPZEOuLkJF6Qq1ejePBAk+MWGPjkeQwb1ocVK+bRrds7nDsX9Pg+upCV1GQlbVme/VoJZcq4AhAT\nk7OAR8eOPfj22+34+z/ijz+O8dprHQgJuceYMe/nGuvZpDVr/CVLltLxqJ9Qq6OBJ89D3xIS4omK\neoSjo0u+HpeZKfaTtW6tzLgSE0WVSUNcAvm00qXh889Fr7qNG7WPU66cmGE7elRWiJQkSZIKnkzW\nipH0dNG3qXlz5c9Vs2YrNBoNBw/uUf5kOvDWW6IB9L//HsnxvTNnjtOlS9PHX587J3qjDR8+Dnt7\nRwBSU1N0Mo7Wrd8A4PjxQ9mOZ51TSTVrihrxwcFB2Y67uKgIDQ0GxGxR48YtWbNmC0COCo9Znh3v\nsWMHgSfPTwlZ4/byqqvYOfIja+lsrVr5y7rOnoXoaFGtVQmHD4vmz02aKBO/MKlRA8aOhd9/FxVw\nteXtDR98ICpEnj6tu/FJkiRJ0ovIZK0YuXxZFBZoWADbyOzsStGsWXeWLZtLenq68id8RePGTadi\nRQ+mTPkfe/ZsJzo6kvj4OA4c2MOYMYOZMmX+4/s2biw2Eq1YMY/YWDVqdRTz5r24AMjLjsPW1p45\ncyZx4sQ/JCTEc/bsCX76aa1O4j/PG290AcDX93wu4xrK9ev+pKam8PBhON98swCA117rkGusH39c\nw9mzJ0hIiOfEiX+YN28ydnYOjBs3XbHx+/qeA6BDh66KneNlpaWlsXTpHFq06IWNTcl8PXbXLvF/\ntGxZZca2d69IBK2tlYlf2LRsCb17w+rVcOWK9nG6dRMVIr/+WlTTlSRJkqSCIJO1YuTsWahUSfkl\nkFn695/NnTu3+Ppr7cuX60Jufcme5ejoxN69Z3j77b7Mnj2BunXL0ry5Bz//vI6VK3+hadMnsyPL\nl/9Ir14D2LRpPbVqOdOjR2u8vRtnO4e2n1eoUImdO0/g5VWHwYO74u3twjffLGDOHFF58en9XNrE\nf57OnXtRtmw5duzYlO34zp0nKF26DAMHdsbDw4aWLatx6NBeJk2aw+rVm3KNNW/eKr75ZgHe3i4M\nHtwVL6+67Np1MltRlld5nXJ7Tn/88Stly5ajU6eeL/V8lbRw4TTu3bvLgAGz8/W4e/dEQtGlizLj\n8vWFoCB4660X39eQDBgATZuKQiGhL19zJ4fhw6FaNVEhUp17uz9JkiRJ0imVJj8VCJ7Rp08fQkNh\n0qStuhyTpJAhQ0Rhkf79C+6cBw58z/LlQ1mwYA39+w978QOkXIWHP8Db2xUnp9Jcvhyu2HkOHvyT\nQYO6sHr1Jrp2fSffj89KonS1h+9l/f77L3z88QA2btxNu3adCvTcz9qwYRWffz6KTz75nnbtBufr\nsStWgJ8frFmjTLXWuXNFkrFwoe5jF3apqTBxIiQni9kxKyvt4sTFiaWVdnYwb55oLC5JkiRJuenc\nWcWWLVvo06ePtiG2yZm1YuL2bVEKvHHjF99Xl9q3/4D33pvJxIkjWLFiXsGevIhycVFx9+6tbMdO\nnz4GQLNmypbxbNeuEwsWrGHChBH8/fcORc+lK3/99QeTJ3/E/Pmr9ZqoaTQali6dzeefj2LgwDn5\nTtTi40URi65dlUnUoqLE7Hon/eayemNmBtOmQVISLFgg2phow8YGvvxSVoiUJEmSCoZM1oqJS5fE\nO8FVqhT8ud99dyqjRq1j4cIv6Nv3zULTtLgwmzz5fwQF3SYxMYETJw4xe/ZEbGxsGT9+uuLn7t9/\nGJs27ePbb5cqfi5d+O67ZWzefIABA4brbQwPH4YzePDbfP31dIYPX0Hv3pPzHWPfPjA2Fj0QlbB3\nr9inVhAFhgorR0eRsPn7ww8/aB/n6QqR27frbnySJEmS9CyZrBUTV66Ikv36anvWocNQFiw4RmDg\nHV57rSY//7xOPwMpArZuPYiVlTVduzajenV7Ro7sS/36TfjzzzNUqVK9QMbg7d2I3347kq/HaLNP\nThd+++1Ins3OC8Lu3dto3doLPz8/5s79h86d/5fvGMnJ8McfooCFhYXuxxgfD7t3i1k1ExPdxy9K\nKlcWyxh37oS//tI+TlaFyI0bZYVISZIkSTnF/M928ZCZCQEBYpO9PlWv3pSlSy+yYcNEJk4cwZ49\nvzFx4iy9XmgXRi1avE6LFgpNryiooPep6dvFi2dYsGAaJ04cpHPn/zF48ALMzbXrMv3HH5CWBr16\n6XiQ//ntNzFr162bMvGLmubNoW9fWLsWXFygTh3t4nTrBsHBYg/cV19BxYq6HackSZIkyZm1YuDO\nHVGyv2ZNfY8ELCysGDFiJfPmHSEyMoFOnRozaFA3AgJ89T00SXopfn4+DBzYhc6dmxAdncSCBccY\nPnyF1olabKxI1nr0EPuhdC0mRsyq9e4NltoN0SD17QstWsD8+fDggfZxZIVISZIkSUkyWSsGrlwR\nF4EVKuh7JE/UrNmKBQtOMH36XoKCHtC+vTcDBnTm4ME/yczM1PfwJCmbjIwMDhzYzXvvdaRDh/rc\nvx/BzJl/M3/+cTw9W7xS7K1bRUXBrgq1h9u8WSRpHTsqE7+oUqlg9GgxszZzplgqqg0TE7F/zdgY\n5swRM6SSJEmSpCsyWSsG/Pz0u1/teRo0eItFi84ydeoOoqJSGDSoC40bV2L58rlERITpe3hSMRcR\nEcayZXNo3LgSgwd3IyYmnWnTdrFo0Rnq1cu9IXh+REaKwh99+0KJEjoY8DMiIuDvv0V8c3Pdxy/q\nzMxg6lSxZ/BVK0ROmyb65MkKkZIkSZIuyWStGLh1SyzTKaxUKhWNG3dl1qwDrFlzjYYNe7Jq1WIa\nNqzAwIFd2LbtR2Jj5foiqWDExESzdetGBgzoTIMGbqxevYQmTfqwbt0NZs7cT6NGnXV2rp9+AgcH\nUVhECT//DE5O0L69MvENgYODSLSuXoVVq7SP4+YGn30GR46IPYKSJEmSpAsyWTNwsbHw6JGogFYU\nuLpWZejQRWzYEMzo0euJi1MxfvwwatVyZsCAzmzZsoGYmGh9D1MyMDEx0WzZ8gP9+3eiVq16fPqp\nO9euDaJLl/0sXx7CBx98Rdmyuu174e8Phw7B4MHKVGj084PDh+H992UFyBfJqhC5fz/s2aN9nAYN\nxOu9YYPoaSdJkiRJr0r+CTdwt/7rrVypkn7HkV9mZha0adOfNm36k5KSiK/vIU6c2MbkyaMYN24o\nXl51adWqHa1ataNJk1aYmprpe8hSEZKRkYG//yWOHz/I0aMHOXPmGKDC27s9gwcv4tatpty6ZcaO\nHaL4h4sLVK8uZqirVwd3d7FHSfvzw+rVovx7y5a6elZPpKeLWaJ69aBZM93HN0TNmsHAgbBuHZQp\nIxIvbXTvLhpmf/UVLFokZtwkSZIkSVsyWTNwgYFiGZSdnb5Hoj1zc0saNepCo0ZdGDFiJRcv7sPH\nZz/btm3im28WYGtrT4sWbWnVqj2NGrWgalVPjIzkpLH0RGZmJjduBHDmzHGOHTvAiRP/EBcXg7Nz\nBby932DcuGHUr/8mJUpkL8eYmAh374rWFwEBYllhXJzohVapkmgy7+kp9oTa27/8eLZuhdBQsV9K\nCVu3Qng4fPmlMvENVe/eYp/fggWwcKH2pfhHjICgIFFwZPFisLLS7TglSZKk4kMmawbu9u2iswTy\nZVha2tKiRW9atOgNQHDwNXx8DuDjs48ZMz4jKSkeGxs76tdvSoMG4ubt3RgbG1s9j1wqSHFxsVy8\neJrz509x/vwpLl48TVxcDCVKWFOr1mv06zcLb+83KFfu+Zs5LS1FMubp+eRYWJhI3G7dEh937waN\nBhwdnyRvnp7g4SGqPD4rMBC2bBENlcuU0fET/y/+1q0ivrOz7uMbuuHDRSn/L78UiZaTU/5jZBUu\n+fRT0RpgxgyQ7x9JkiRJ2lBpNBqtO9n26dOH0FCYNGmrLsck6dCIEaKXUP/++h6J8jIy0rl79zJX\nr/7LtWunuHbtX8LC7mJkZIyHhye1a3vj5VUXT8861KxZF3t7R30PWdKB6OhI/P0v4e/vS0CAL5cv\n+3Dzpj+ZmZmUKVORGjWaUa1aU2rUaIa7ey2MjXX7HlVCAly/DteuPfmYkCAu2D08xKxbzZpQo4a4\nYB8zRszCzZmj+wqtqakivoMDzJ5dOCvAFgWJiTB+vEi2FywQM6naCAyECROgc2exl02SJEkqXjp3\nVrFlyxb69OmjbYhtcmbNgGVkiFmAcuX0PZKCYWxsQuXK9ahcuR6dO48CICoqlGvXTnH9+hkCAy9x\n8OACoqPDAShbtjxeXnXw8qpDtWpeVKpUlUqVqmJtrUBnYumVxcfHcfv2DW7fvsG1a374+/vi7+9L\nWFgwAI6OZahYsQ61anWkV68ZVK/eFAcHBaaunmFlJfaG1asnvtZoIDhYJG5Xr8KJE2ImzcQErK1F\nItezpygXr+ty/WvXinYAM2bIRO1VWFqKmbVx40SyNm2adjNjlSvDqFFi71q5crIqpyRJkpR/Mlkz\nYOHhotBAcUnWcuPoWJZmzXrQrFmPx8eio8O4c8eX27cvcedY5eqqAAAgAElEQVSOLzt2/EFIyELS\n00U329KlXahSpRqVK1elYkUPKleuRoUKlShXrgKWlnLziZISExMIDg4iKOg2gYHXuX37BoGBN7h1\n6zoPH4YCYGJiiqurB+7udXjrrY+pVKkuFSvWwd6+cKz5U6mgfHlxa9dOHFOrRcK2e7dY+rh0KSxb\nJva9ZS2brFtXJHPaOnJEVDOcMgVKldLJUynWnJ3Fazl1KmzcqP3MWJs2Yjn66tVQoQJUrarbcUqS\nJEmGTSZrBiwkRHx0cdHvOAobB4cyODiUydbUOCMjnfDwOwQHXyck5DohITfw9b3O3r27iYx88NRj\nnXB1daNcOTfKlatAuXIVcHV1o2zZcpQp44KTU2nMzGT34dykpCQTGfmQsLAHhIYGExJyj+DgIO7f\nv0tw8D1CQu6hVkc+vn/Jki6UK1cNF5dqdOvWBVfXari6VsXZuaLOlzIqLSpKJFI9eoi9ZGo13Lgh\n9rxduiSSOJVKvLGSlbjVqSOaLb+M27dFM+YePaBpU2WfS3Hi6Sn2nS1cKJK3jh21i/PBB2K2dfZs\nWLIESpbU7TglSZIkw1W0rnikfAkJEUUPLC31PZLCz9jYBBcXD1xcPIDsTY+TkuIID79LREQQERFB\nPHx4j4cPgzh58iwREduIigrl6a2ftrb2lCpVBien0jg7l8HJyRknp9KULFkKe3tH7OzssbNzwM7O\nHltb8bnxq9SB14P09HRiY9XExqpRq6OJjVUTE6NGrY7i0aMIIiMfEhERRkRE2H+fhxIXF/P48SqV\nCkfHspQuXYFSpSpQvXp7WrZ0o3TpCjg7u+Ps7I6FxStMMxUiUVEwc6Yo+T9okDhmbw+NGokbQEyM\nWDaZlbzt2yeOly//4uTt6fgDBxbMcypOWrYUpfjXroWyZUW7hfxSqUTD7PHjYdYskfyZyW4jkiRJ\n0kuQyZoBCwmRs2q6UKKEDe7utXB3r5Xr99PSUoiKekB0dBhqdcR/H8OJiYng0aNQbt/2Qa2OJiJi\nIKmp04CHOWJYWdk8TtxMTc2wt7fHxMQUa2trzM0tsLAogZWVNSYmptjZ2aP6b0OSpaU1ps+UHDQz\nM6dEiewZelJSIqmpKc+MO43ExHgANBoNMTFq0tPTSEiIJzk5iZSUZOLi4sjISEetVpOamvI4QUtI\niMv1tbCxccDevjR2dqWws3OmdOk6eHiUwt7eGQeHMtjbl8bBoQwlS7piYmL4V6spKeLi3MICJk/O\nuzebnV325C02VjTNvnJF3LKSt0qVRLLg7S2SuMzMl4svvZq+fcX+33nzRKLl7p7/GJaWYlnluHGw\ncqVowi1JkiRJLyKTNQMWFibeCZaUZWpqjrNzRZydc2/KpFaLi7xHj2DOnAlUrhxNQoKa+Hj1fx/F\n11nH0tNTiY+PJiMjnejoOFJTo0lLCyUpSSRO8fHRj2MnJKhJT69FRkZrzMxWAJCYOJKMjEBgy1Nj\nNMPCIvt+O5VKhZXVk+Zg1tYOGBubUKKEDWZmJTA1taBECRdu3hyCjU0q3t7/YG1tj5WVPdbWDlhZ\nZX3+5GvpidRUkUiFh4sCE/nZj2ZrK5YzZi1pjIsTydulS3D6NGzfDubm4paaCpMmyV5eSlKpYPRo\n8X941izx75mfvnpZypWDiRNh+nRRfKRbN50PVZIkSTIwMlkzYJGRoly4pD+BgaJEu7ExfP111jvy\nDlhbO+isB9axY+LicfPmGZiaiovKBg1g4MDNOom/apXYE9W//2s6iVccJCTA3LnidZsz59XfNLGx\ngSZNxA1Ew+X580VjbXNzcfHv4PBk1q1ePTFbJ+mOiYmYvRw3TlTbnD9fvPb5Va+eWK66fj24uor/\nq5IkSZKUF9mm04A9eiQ3suvTP/+IfSpubqKogDZLp16Gu7to05BVUEat1u2FuqenaACdkvLi+0pw\n9664oA8JEQlbpUq6jz9vHiQliZ+rzZtFdcmuXcUbNMuXi76KY8fCpk1w86ZoJyC9OhsbkaiFh4uG\n2dq+rr16QatW4g2cBw9efH9JkiSp+JIzawYqKUk0dpXJWsFLSxPFCPbtE/20Bg1StueVq6to3nv3\nrigNHhur22StRg3RAuLWLfDy0l1cJURHi2Q1IUH8/JuZib1Clpa6KbbzvPjW1vD336JEv4eHSNQc\nddh3PTUVfv899/hVqohb794iqb56Fc6eFRUof/lFLKusXfvJvrhXaRFQ3JUtC59/Lkr6//wzDBig\nXZzRo8Xy1Zkzxcy4XMYqSZIk5UYmawbq0SPx0clJv+MobiIjxaxHUJC4EGveXPlzGhuLhO3uXbGk\nKj1dt8mas7P4OQoIKHzJ2sOHcPy4GNuNG6Iy4vPY2Ig+Zy4uIrF1cxM3Z+fci3PkN75KJd4gcXKC\ngwdfHP9lxMbCgQOivH98vJg169497ybN5uaiemTdujBsmPi5OHcOLlwQvd1AJOANG4o9cbIIUf55\neYlm10uWiJ52b76Z/xhmZiLhy2oN8OWX2jXeliRJkgybTNYMVOR/7arkzFrBCQgQiZqlpXin3M2t\n4M7t7i4uytVq8bU2xQ+ep3p1uHZNtzFfxc2bYvnf2bNilqh2bVGswcNDJEpZs12pqWIWLClJvIER\nFiaWsAUHi5nPiAixlM3ERCRx5cqJxNfERFRhvHpVzHh4eYkLchcX8fXDh2L52vXrIokzMxPJkYeH\nKAbyovguLuKjtbW4WViIyo6JiZCcLJL927dF/KtXxffbtxd91PI7W+fuLm69e4tkz8dHJG+//QY/\n/CB+Ths3FvvhqlZVdhbYkLz+uljqumaNmG2rUyf/MRwdxT64yZPFLJ1svSBJkiQ9SyZrBkqtFu/k\ny+VOBePvv8VFW716Yr9SQS9pqlAB/vxT9OsC3ReXqFwZ/vpLtzG1kZAA338vlvdVrSpKoTdsKJKh\n3JiZPfk/kNueweRkkViFhIiPQUFiFis29sl94uPhzBlxy2JiIpKcSpXEXrGGDUVC9aL4ISGiouOf\nf4rv5eXp+J065R0/v6ytRd+wli1Fcnjtmkh4T52CbdvEz039+tCihShU8kxXCOkZAwaIhHz+fPjq\nK5GM51f16vDxx2KWrkIFaN1a9+OUJEmSii6ZrBmo+Hix5Eu+S66s1FRRLfHQoYLZn5YXd3cxcxQe\nLs5va6vb+BUqiNmkhAT97a0JDBQXxcnJonBLq1avHtPC4sl+r8BAOHJEvMkxYQLUrCmeb0KCOKdK\nJZ67mZmYGcsrQcwr/rOiol49/qswMhLFYzw9YfBgMTN7+rS4zZoFJUo8SdwaNpRNnHOTVdJ/yhSx\njHHxYu3eKGnbVuwJXb5cJHyVK+t+rJIkSVLRJJM1AxUXJ2fVlCb6ponZks8/f1JWXR+yZo3u3hX/\n7rq+0Hd3F8v5goLExX1B8/WF2bPFMsMJE3S/zDOv+LosEPIsR0dl4+dX1nLJd98VP9unT4sZtwUL\nRKLWqJFI3Bo0kInb07L2no0bJ4q+zJ6t3YzkkCHi/9fcuWKWTddvuEiSJElFk9zObKDi4+UfeyX5\n+cGYMaLy47Jl+k3UQOzTsrISS+2U6K9VqpSIf/eu7mO/iJ+fKJfeqJGonKfrRE3p+EWRkxN07ize\njPjlF/joIzH7t2CBSOZmzhStKZ63lLM4sbcXM2t374o2CtqU9Dc2FkWJVCrxOmdk6HyYkiRJUhEk\nZ9YMlJxZU4ZGI6ryrV8vKj2OHq2bvUSvSqUSSxXDw5VJ1rLiF3Sydu+eWJLXsCGMH6/9EtPvvhvL\no0fBOY4nJpbj8uVZ2NtfISNjCV9/LRuS5cXMDOrXtycysjHXrzfl7NkaLFuWjKPjeUqXPoG9vS8q\nVaa+h6lXlSp5cvz45wQG7sHdfZNWMcqWrYCv72w++mg/FSv+pOMRSpIkSbrQokVvWrToXSDnksma\ngYqPl8mariUni3fN//1XVG3r2bNw7Ql0cxPL1rQpcvCy8e/fVyZ2bhISxJKyChVeLVED2LFjCU2q\nV6f8U70s0tKtOXh1LPaWgbSuOgUj0nQwagNnFkqFsleh7AaSU0sSHPka9x++jr//JCzMonErdZAK\npf7G3vqmvkeqF2XtQrH0UHHm+heUMr9LlbK/5z+IVShmHgs4c/0LXKyu4F66EFT2kSRJkh479V95\nbJmsSa8kJUX2WNOl0FCROERHiyVgdevqe0Q5lS0rSr8rMbOWFf/cOWViP0ujEe0PkpJEURFdVCX8\ntFs3+rRsCUCmRkW3WQ2wtrDjwrLruDiOe/UTFFv3uPfwIZuOurB+fycOXOpDjfLx9GkZyqDXg6no\nnKjvARa4mZtuMnPTGKb3a0nXxuFaxfj02zus/Wsiqz9qRf0qMToeoSRJkqStPvPnE1qA55N71gxU\nSoosAqAr58+LxrUmJmLjf2FM1ED07UpLU25G1dVVVDAsiH1Kv/wCFy+K/lNKFOGY/osH+y6WYtvk\ni7g4yo1Xr8qtVBITewVyY90Rzi89QXvvR6z6swJVhr5GiwnNWPe3G7GJxee9wS/63uTDDvd476u6\n+ARqt3n4qw+u0qS6mp5z6/MoVv4ylyRJKq5ksmagUlLA3FzfoyjaNBrYvl0Un2jYEBYuBGdnfY8q\nb66u4qM2xQ1eNr5GI5pBK+nMGdiyBUaOVKby5K4zzszZUoVvRvrRwjNK9yco5upXiWHZMH/ubzjE\n9ikXKWWbwsdrvCg7oB2DFtfhuH8hKoGpoOXD/WlWI5pOMxoRFFEi3483MdawbfJFjFQa3l3gTXpG\nIVpzLUmSJBUYmawZKDmz9mqSkkQJ7Z9+Er3Txo0r/MlvViKZptDWq7JlRW8uJZO1kBDRq6ptW+jQ\nQffxb4RYMXBxXQa0DeHDDvd0fwLpMXPTTLo3DeOPqRcI/ekgX31wFb8gG1pNbEqNEa1ZvKOSQc8Y\nmZpo2D7lIqXtUug4vRHR8flfy1vSJpXfP7/AqWsOfP5jNQVGKUmSJBV2MlkzUKmphT+5KKyCg0Vy\nFhAgKhH26qXvEb2cxMTsH3XNxESU8A8JUSZ+crIoFV+uHIwapUD8VDO6z2lA9XLxrB11RfcnkPLk\naJPGR52CuLDsBH6rjtGtSThztlTBdeDr9Jlfj91nncnINLyZI5sS6eydcY64RGO6z65PSlr+/+TW\nrRTL2lFX+Or3ymw+5qLAKCVJkqTCTCZrBiotTfeNkYuDs2dFomZlBStWQO3a+h7Ry4v5rwZBbKxy\n53B1VWZmTaMR+wFjY8U+NV0UFMlOxeq9vYmMNWX75AuYmxbvEvP65OUWx/zB1wjZeJCfx18iOt6U\nbrMa4P5BWyZtqM69h/lfMliYuTgms3fGOXzv2DJ4SR2tlin3bxPCx13u8sHS2lwMVKiCkKRXqs6d\nH98kSZKeJpM1A5WZKZqsSi8na3/arFnQsiXMm6dMYQslqdXiY2SkcudwdVVmZm3bNrFXbfJkpaqY\nTubcTU+2Tb5IOSdZUKQwsDDLpHeLUA7MPsOVb47Rs1ko3+5zo/LQNvSYU5+Dl5wU239Z0GpWiOP3\nzy/w+79lmP5rVa1iLBoSQONqsuCIodLs2aPvIUiSVEjJZM1AGcpFTkGIi4MvvxQVCEeNEreiOCsZ\nGyt6kYVrVyn8pbi46H5m7epV8dp/8AF4eek2dlZ8mEH/Nntp6SULihRGXm5xLB0WQMjGg2z89BKR\ncWa0n9oYz5GtWbHb3SAqSbapHcnq//kxc5MHa/6qkO/HmxiLPXAAfRd6G+SyUV2Qs1OSJBkamawZ\nKI1GFIOQnu/OHVGWPyhI9PNSoqhFQVGrxfLN2FiRgCrBxUW38RMS4OuvRTuELl10EzO3+HCQtxr8\nq/sTSDplYZZJv9cecHT+Ka6tOcIb9R4xZWM1XAe+zvCVtbh8V7sy+IXFB+3vM/XdW4xe68V+n1L5\nfnxJm1R+n3KekwEOTP1JFhyRJEkqDuTlvIGSM2svdvQofPYZlCwJS5dCtSJ+7RMT86QhtlIVG7Pa\nA+gq/urVonLpmDFiVlDXsuLD+6iQ/ymKkmrlElg2zJ+QHw+xaOhVTgQ4UmdUSxqMacGP/5QjLb1o\nzizNfO86fVuF0GtuPS7dzn/y6V1ZFBxZsL0yW4+XVWCEkiRJUmFS9NeWSLmSM2t5y8gQJfm3b4c3\n34QRI4rmssdnxcSIxDMiQuwrUyL5dHYWxT90Ef/wYZEwf/EFODjoZnx5xZ8xI0z3J5AKhK1lOsPe\nvMeHHe6x36cUK/e48/6S2kzZWI0RbwUx7M17lLZP1fcwX5pKBd+NvsyDKAs6TW/I6cX/Ut4pKV8x\nBrQN4cwNB4Ysq02N8vHUcldoKl0h/vfu8dn333PMzw8jlYqm1auz5MMP8froo8f3eXoPV4RazZe/\n/MLus2eJiImhlK0tnRo2ZGb//pR56pfH08sfsz4f8sYbfDd6dI7vh/z4Ix+vWcP+ixcxMzWlc8OG\nLB8+nOj4eEavXcuRK1ewNDfnzfr1WTpsGPZWVtmew8FLl1i+axfH/f1JSk3F082NCT178m6rVtnu\nF5OQwPRff2Xn6dM8iIrCysKCaq6uNKtRgz4tW9Koat57GBuMGcOFW7cef/1Oy5ZsnjjxpV5jSZIM\nhwFcokq5MTISRUak7GJjYcECsY9pzBho107fI9IdtRrs7aFMGeVm1lQq3cQPDxezXl27iobjuqZ0\nfKngqVTQod5DOtR7yJ1wS1bvrcDSnRWZs9WD914LYUy3O9SsUDSSFlMTDb9NuUDLCU1564uGnPjq\nFPZW+WuQuGSoP353rek6qyHnl56gpE3RSFgDQ0Np8dlnWJqbs2vaNBpVq4bv7dsMW7ny8X2eTtTC\n1Woajx1LcmoqP44bR7MaNfAJDGTAokUcvHSJi8uXP06kNHv2PE7IcivY8fT3J/7wA7MHDOD7Tz7h\n859+4ps9e4iMi8PMxIQF77+Pi6MjkzduZPXevZiZmLDu44+zxWo/dSpvN2nCzW+/JTElhaHLl9N3\n4UIcrK3pUK/e4/sNWrKEnadPs3TYMIa+8QamJibcCQtj8saNNB479rmFRfZ8+SXtp06lU8OGzB88\nOP8vtiRJBkHOvRgoY2PlmiMXVYGBYn/agwciYTOkRA3EzJq9vTJFQJ72qvEzMsQ+Micn0XBc15SO\nL+lfRedEFr5/lZAfD7F21BVOX7On1v9a0WJCM3afdS4Sy8BtLUUPtphEU3rMqU9qev7+HJuaaNg8\n0Ye0dBUDFtUlU1M0loVO//VX1AkJLHj/fdrWqYO1hQXNPT2Z0qdPrvf/8pdfCIqIYO6gQbzh7Y21\nhQUtvbxY8uGH3AkP56vfftNqHEM7dKBG+fLYWVk9Pvef587xSbduOY7vPX8+1xhLPvwQJ1tb3EqV\nYvnw4QDM2bIl230OX74MgGvJklhZWGBmYkK1cuVYOXLkc8cXFBFBywkT6Nu6tUzUJKmYk8magTIx\nERetknD4sNif5uws9qd5eOh7RLoXEwO2tsqV18/yqvE3bxaJ84QJYKZABXKl40uFh7lpJgPbBnPl\nm2McmH0GB+s0us1qQLXhr7FsV0USUwp3/xLXksnsnHaeczfsGPlNzXw/voxDCr9NucA/viWZ8WvR\n+KV2wMcHgLZ16mQ73qxGjVzvv/vMGQDeql8/2/FWNcXrtfvsWa3GUa9y5cefP72U8unjLiVLAvAg\nKmcVWc2ePbg7Oz/+2sNFNCwPuHcv2/16NmsGQO9583AbPJihy5ez9fhxnGxt85xVux4cTMsJEyht\nb59nEitJUvEhl0EaKFNTSE/X9yj0L2t/2m+/Qc+eMHCg4e7lU6tFgRF7e/jrL7FvUYmiHS4u2scP\nCIAtW2D4cHB31/3YlI4vFU4qFbSr+4h2dR9x+a4t3+ypwOQN1ZizpQoftL/Px13u4lqycPbXq1c5\nhs0TfXh7dgMqlE7ii7438/X4xtXULB0WwP9WedG4mpqODSIUGqluPIqNBcDJNntxlWf3hGWJiIkB\nwGXgwFy/HxgaqtU4bEo8ab5u9NQvstyOa56ZqlUnJLBw+3b+OHWK4EePiE9+8rMV+Uyp3O/HjKFz\no0b8evQo//j6sn7/ftbv349bqVLsnDaNupUq5RhbmylTiElI4P6jR/x65Aj9XntNq+coSZJhkMma\ngZLLICEqCubOhbt3YdIkaN5c3yNSTno6JCaKRM3aGpKSIDpamcberq7axU9Lg+XLoV496NhR9+NS\nOr5UNNR2F9USZ7x3g1V/VmDNXxVYtqsi/duEML57INXKJeh7iDl0ahjByhF+jFxVCxfHZIZ2uJ+v\nx494K4gz1+3p/3Vdzi89QaUyiQqN9NU52doSrlbzKDYWl6d+gWQlcc9ytrcnJDKSqM2bcbC2Lqhh\nPlef+fM54OPDl/36MbpLFxxtbADy7O/Wo1kzejRrRqZGw8mAAOZs2cK+ixd5f+lSfJYvz3H/FcOH\nE5uUxAdLl/K/1atpVbMm5ZycFH1OkiQVXgY6xyCZmRXvZC0gQBQQiY2FxYsNO1EDsQRSoxEza/+t\nxlFs35q28bdsgUePYORIZWb8lI4vFS1lHFKY2f8GQT/8w7Jh/hz3d8RzZGt6zKnP6Wv2+h5eDsPf\nuse0d28y4pta/HGqTL4fv/qjK1R0TqTHnPokpRbe5Z9v/Fd849ClS9mOnwwIyPX+bzdtCsCRK1dy\nfO+4vz9Nx4/PdszS3ByAtPR0ElNScOrb95XH/KyssY7r3v1xopaSxx9cVefOBD96BIiZupZeXmz5\nr6Lj1fu5J+U9mzfn/Xbt6NakCeqEBN5fujTH7J4kScWHTNYMlKWlmGkpjv7+G6ZMgcqVYckScHPT\n94iUp1aLj/b2YrbLwkK5fWvaxA8OFktRBw4U+wZ1Ten4UtFVwiyDYW/eI2D1UXZMu0C42pym45sX\nymIkM967wYiO93jvq7qcDMhfPwsLs0y2TPIhKKIEn6z1VGiEr256v37YW1kxacMG/vH1JT45mRMB\nAaz9++887+/h4sL/Vq9m+8mTRMbFEZeUxJ6zZxm8ZEmO4hu1K1YE4OyNG+w+e5ameeyFexUtvbwA\nmLd1K+qEBKLi4piycWOe9x+6fDn+9+6RkpZGuFrNgu3bAbJVjczNulGjKGVnJ9oE7N6tuycgSVKR\nIpM1A2VlBQmFb7WPorKWwX3zDbz9tuivlcc2CIPz37YO7OzErJKSFSHzG1+jEf8u7u6QxyqhV6J0\nfMkwGKk0dGkUzsmv/uX4wlOPi5HUHtWqUDXZXjbMnzfrP6TbrAZcC87fsr8qZRP4cZwv3+134/sD\n5RUa4aupVKYMJ776ijqVKtF11ixcBgxgwfbtrBwxAsi+fwzEsskzixfTt1UrJnz/PWUHDMDjww9Z\n9/ff/DJ+PK1rZi/MsmL4cOpUrMgb06axdOdOFg0Z8vh7ufVh0+bzH8eOZUDbtqw/cADn996j9aRJ\nNH6q8eTT9z2xcCFlHBzoPGMGNr17U234cPaeP8+cgQPZNGHC4/vZv/NOtsdvP3kS5/79efjfL/cx\n69ah6tyZ8zfzt6dRkqSiT+5ZM1DFLVl79EjsTwsOhs8/hyZN9D2ighUTIyqAWlqKr11dlS3fn5/4\nf/4J16+L5ahKFHdROr5keFp4RtHiiyiu3LXhq98rM3R5bSb+UJ3hb93j0263sbPSX3UmYyMNv3x2\nifZTG9N+amP+/Tp/TbO7NApnQs9A/re6JnUqxlK/SoyCo9WOl5sbe6dPz3Ysq+Kik51djvs7WFuz\naOhQFg0d+sLYDTw8uLRiRa7fy6v6Yn6Pl7a358exY3Mc79OyZY5jzT09ae754plO9TMl/593fkmS\nihd5aWOgilOy5ucn9qclJsKiRcUvUYMnPday3pR2cVG2fP/Lxo+KEtU4e/QQy1J1Ten4kmGr5R7H\nj2MvcXPdYd5p+YCvf69E5aFtmLnJg+h4U72Nq4RZBjunncemRDodv2yIOiF/Y5k76DotvaLoObc+\nkXGFr3+FqnNnbj1TxfGYnx8AbWrV0seQJEmSCi2ZrBmo4pKs/f03TJ0K1aqJmZXyhXPlj+JiYsQS\nyCwuLhAaCpmZypzvZeOvWiXGpcAe/wKJLxUPFUonsXRYAEE//MOoLkEs3VkR9w/aMmVjNSLU+kl2\nStqksn/WGWISTOg+uz4paS//59pIpeHncT6kZ6gYvKROoWyY/b9Vq7gdFkZCcjKHfH2Z+MMP2Fpa\nMv299/Q9NEmSpEJFJmsGysrKsAuMpKaK4iGrVkH//iJhy1oCWBxl9VjL4uoq9vA9fKjM+V4m/qlT\ncOYMjBqlTHNqpeNLxU9Jm1Sm97vBvQ3/MLP/DTYeKofb+68zfGUtgh9ZFPh4yjkls3fGOXzv2DJw\ncd18JV2l7VPZPvkC+y86MX9b4Zp2PjhnDtYlStBs/Hjs33mHvgsX0qR6dc4sXkz1cuX0PTxJkqRC\nRe5ZM1CWloY7sxYaCnPmQGQkzJgB3t76HpH+ZS2DzOLqKj4+eKBMdcQXxU9Ph++/h9atoXZt3Z9f\n6fhS8WZtkc4nXe8w4q0gNh4qx+zNVdhwsBzvtApl2rs38XApuF+uNSvE8cfUC7z5RSM+XuPFNyP9\nXvqxTaqrWfjBNcZ+W4P6VWLoUE+hd2/y6fU6dXi9Th19D0OSJKlIkDNrBsraWiRrhakstS5cuACf\nfioKSSxdKhO1LM8ug7SxETel9q29KP6ePSKZHjhQmfMrHV+SAMxNMxn25j1ufXeEFSP8ORnggOfI\n1gxeUofrwQVXarZ1zUg2T7jI2r/cWPhb/mbJPul6h/faPKDfV97cDS+h0AglSZIkpchkzUBZWopE\nLTlZfJ2ZKYoxFNXZNo0Gtm8XM2kNGsBXX8l+Wk97dhkkKFu+/3nx4+NFg+pu3aB0ad2fV+n4kvQs\nMxORtN389gi/fubD2Rv2eI5sTZ/59QosaevWJJwVI/yZtKE6Gw7mb6ng6o+uUNYhmXcX1st171th\nLEIiSZIkCTJZMxCJiXDjBvz7L+zaBUeOiNm1SZPEnlGNlqEAACAASURBVK633xazEPPn63uk+ZeU\nJMb900/iOYwfD+bm+h5V4fLszBror3z/5s1i5rNXL2XOq3R8ScqLkUpD7xah+K06xi+fXcIvyAav\nj8RMW2Co8ptmR3YMYkLPQIatrM3fF0q99OOsLDL4/fMLXL1vzfj1T5pEazQwf1tlnN9rx47TZZQY\nsiRJkvSK5J41AzF7Nly+LD43MREl3NPTITDwyX2MjZ/sNSoqQkLE/rSYGJg5E+Q2h5xSUsQMam4z\na1evKnfe3OKHhYm+Z8OGKdOQXOn4kvQyjFQa3m31gD4tQ/ntZBmm/VyNqsNeo2fzMOYOuk6Vssot\nYZg36BrhanN6zq3PoTmnaVJd/fh7R/1K0mNOfX4ad4mODSKyPa6qawIbx/rSY059GlaN4a36Ebz3\ntTeHLpUEYPNRF95uEqbYuCVJkiTtyJk1A9G06ZMeW+npolLfs/vVMjOhRo2cj9WXjAz4+WexPDM3\nZ8/C2LGi0t+SJTJRy4v6v2u1pwuMgEjMw8PFz4MScov/ww9ieeobbyhzTqXjS1J+ZM20Baw+yuaJ\nPvjescVzZGsGLq6r2EybSgXrRl2mVc0ousxsyI0Q8a7F7rPOvDG1EdHxpszZUiXXx77dJEwUTllZ\nE6+PWnPkSkkyNSoyNSr2nCtNarq8JJAkSSps5G9mA9Ghgyj48DwaDXh5Fcx4XsaOHWJJ26xZIrnM\nkrU/bdYsaNwYFi6Ue5OeJyZGfMxtZi0zU8xGKeHZ+NeuiWW4Q4aIWVxdUzq+JGkrK2m7uuYov4z3\n4dRVe2qMfI2Bi+tyJ1z3SZupiYbfplygiksib33ZiFV/VqD77PqkZRih0cC/Vx04f9Mux+M0Gijv\nlERKuhFRcaakpT9pBZCQbMzhyyV1PlZJkiTp1chkzUCYmUH37mIvT17s7MDJqeDG9DxhYWJWDcRS\nzTVrxOeJiWLZ4y+/wP/+92RmTcpb1sxabnvWVCrl9q09G3/DBlFGv2FDZc6ndHxJelVPz7R9N/oy\n/151oPrw1gxfWYuQyOf3aUvPUPHFz1V5EPVy/dwszTPYOfUccUkmjFpTk8xM1ePVFKYmmazY457t\n/g9jzHhjWmPGf+9JZqaKjMzsPdtMTTLZcUpWbZIkSSpsZLJmQDp3zrvwhpER1KpVsON5nhUrxKwM\niI/79olZtk8+gZs3RUGRN9/U7xiLithY8e9u8cw1noUFODgol6w9Hf/aNfDzg379lDmX0vElSZdM\nTTQMbBvM1dVH+Hb0FQ74OFFpSBuGr6yVZzK2fn95Zm32oO2UxkTFmb7UeX44WJ5HMWZoNPD0qve0\ndCM2HXElLFr8QfAJtMXro9Yc83PMs51LWroR20+WzVfjbUmSJEl5MlkzICVKiKqPuS0RU6nA07Pg\nx5Sbw4dFMZSMjOzHf/0VypSBZcugWjX9jK0oUqtz7lfL4uKiXK+1p+P/+ivUrKncMlul40uSErKS\ntmtrj7JihD9/niuNx4ev8ck6r8eJFEBSqjHTfq6GCggMtaLDF41JSM57ra9GA2PWeTJ5Y3XyaqWp\nAdb97QZAuNqcmASTFyZij2LNOHM9j18mkiRJkl7IZM3AdO0qqkE+KyOjcCRrcXGwdm3e3799+8mM\nm/Rycivbn6UgyvcHBoKPD7zzjjLnUDq+JCktq0/b7fWHWfJhANtPlKHKh234ZJ0X4Wpzlu10JyrO\nFA1iOaTvbVs6z2iYa080gA9X1GbZrop5zpLxX5zlu9xJTTfizfoPCVh9lIYeaoxUeT/ITC6FlCRJ\nKnRksmZgbGygU6ecs2tmZlCxon7G9LTvvhN903K7yMjMFA2PZ89WroKhIYqJ0e/M2t27UKkS1K2r\nzDk2b1Y2viQVlKeba0/vd4NNR12oMvQ1Zm32yLaHLC1DxYkAR/rMr5djbxlAhdKJmBhrMDV5/jtb\nUfFmbDlWFoDKZRM5vvAUcwddx9RYg4lxzl/CqelGbD7m8orPUpIkSdIlmawZoB49npTxz+Lhof8K\ner6+cOhQzuWPT8vIgFu3YP36ghtXUadWP39mLTJS9GFTgrk5pKaKBtXP/szpwv37cPo09O2rTHxJ\n0gdL8wzG97jN7fWHaVg1JteS+ekZopz+yG9q5vjetHdvcXv9YQa1DcZIlXviBaBCw1e/V378tbGR\nhom9AvFZcZyabnEYG+V83L2HJQi4Z/0Kz06SJEnSJZmsGSB7e1HKP2s5pImJ/ouLpKaKvWjPq1YJ\nT77/zz/PT+qkJ140s6bRKFe+/8IF8bFcOWXib9kiYjdurEx8SdKnuERj/r3qQHpG7u9EZGaq+G6/\nG1N/zLmJt7xTEt+OvoLfqmN0axKOCrFHLtvjNSqu3LXhZIBDtuNebnGcW3qCOQOvY/LMLJupSSZ/\nnCrz6k9OkiRJ0gmZrBmo3r2fLDVMT9d/M+wtW+DRo9z3o6lUIklTqaBKFRg6FNat0/9MYFHxvD1r\nZcuK11aJpZBhYXDxonLtAcLC4PhxsVdNzqpJhmjGpqpk5rLM8WkaDczdVoVFf1TK9fs1ysezffIF\nTi06SbMa0QDZky9jDYt35HysibGYZbu47Dg1ysc/nmVLSzdi64my2j4lSZIkScdksmagnJygTRtx\nkatS6be6YlCQaHL9bKKWlYy5u4sEbeNGWLxYFEnJK/mQcoqJAVvb3L9nagolS0JoqO7P+9df4Ogo\nftaUjN+qle5jS5K+3Qq14rt95UnLY1btaRoNfLa+Bj/+k/cUduNqao7MO8WB2WfwcosDwMhIQ1qG\nih2nnPNszl3LPY7zS08wqXcgxkYaVCq4cseW+49KaPfEJEmSJJ3KpW6gVBQkJcWRkZFOfHw0mZkZ\nJCbGApCamkRqqtigVLt2CQ4dao6jYyJXruwjIyNn1Q5zc0tMTXM2Z7O0tMXIyBgjI2MsLW0xMTHD\nwsIqz/vnRaMRyx+zEjVjY7G8sXx5aNtWXIg7y+JjWktIgLS0vJdBgphd0/UyyPR0sf+wc2fRhkHJ\n+C9aOitJRZFPoO3jUvoqwMw0k/SMnM2qs2iA95fWxt4qja6Nw/OM267uI3yWH2fbibJM3lidO+GW\nZGpUrNnrxoL3r2W7b1p6OvH/bWj9oP1RGngE8Mm61tyLsGPlHiO6N7n2+Pu5USckoMmjJKVKpcLe\nyirPx1pbWGD631p9UxMTrP9rFOlgbZ3j+5IkScWZ/E2oB8nJ8URFhaJWRxAfH0V8vJrExBji49Uk\nJGTdYkhMVBMfH01Cgpq0tBSSkxNISXmSjL2c1URGhjNnznSdPgdLSxuMjU2wtnbA1NQcKyt7rKzs\nsbS0w8rKHmtr8fW9e025cUNMjTg6ptKyZQrt2llQseLLNX2Vni8mRnx83kxkmTK6T6ZOnBBtGNq3\nh4gIZeNLkiHq3SKULo3+4sYDa26EWHE92IrrIdb437PmerD14z5rJsYajI00pKYbkZmpotdcbxa8\nv4mKZa6TkJxMQnIy0fHxjz+PT05GnZBAQkoK5UulkZHZkeBHY1i8w4L1B/qRqdGQmJxMSlpaHiOz\nAD5j4fZjLNx+tMBej7yYm5piaWGBkUqFnZUVRkZG2FlaYlOiBFYWFliZm2NvZYW1hYX42sICB2vr\nx5/bliiBo40NDtbWONrYYFNCzhhKklS0yGRNh+Lionj06D4PH94jIiIItTqC6GiRlMXGRhAdHUZ0\ndDgpKUnZHmdmZo6trf3jm52dPSVL2lOxYiXs7Byws7PH3NyCEiUsKVHCEjMzc6ytbTAxMcHW1h5j\nY2NsbMTVuqmpKVZWOSt5WVhMxNzcIpcxx5KZmb2Sh0ajISZGDfDf7F0cqakpJCUlkpSUSEpKCgkJ\ncaSnpxMbqyY5OZnYWDWxsTHExqpRq29w/76amBg1kZE+qFTn0Gg2ExV1np07YedOsLV1xN7eGTu7\nUtjbl3n8uZNTeUqVKv/fRzfMzHKOWXpCLf6ZXjiz5uv7f/bOO7yp8v3Ddyfp3ntDB5TSspeAgOwl\nCAoiCn4FREBAmU5QhiACspSlPxe4QBBFEBDZG9l7du89aUv7++MlbYEWkjZpUnjv68qV5OTkOc85\naZPzOc/S7Ha3bYPmzUWKpbbtSySPG9l5ecSmphKfmkpCejrxqckUFWfhYJVJiHcm7vZZxKcpiE9z\nJS3Lnaw8b4qL6wH1KbjjzttrPICXMTUxwcLMDDsbGyzMzTE3M8PKygoba2sczM3xMjOjpVUaCsVi\nsnPs8fOahrGxMYpatTBTKDAyMsLaygoAGysrDA0NMTczo5apKdADALuHfLlYmJtjalL+hbf8ggKy\nc3IqfG+q8ssLuJ2fT05uLkVFRaRnihTOjMxM7ty5Q25eHnm3b1NQUEBWTg6FhYVkZmWRnplJdk4O\nObm53MjIIDMuruR5ano62bm55JcjSE2MjbG3siq52VlYYH9XyNlbWeFgZYW7gwNO1ta42NnhZmeH\nhUL+DkkkEt0hxZoaZGenExNzlejoK8TFXScxMYKkpEiSkiKJjw8nLy+7ZF07O0ecnFxxdnbBw8OV\nsLA6ODm54OTkioODE87Orjg5uWBn51CuiKourKzKL3aytbXX6HYyM0eQnJxAYmI8ycmJxMfHkpSU\nQEpKInFxMcTFneTcuQRiYyPJyysVs3Z2Ljg5eeHgIMSbs7MP7u7+uLsH4upaG2PjJztCp4ysVVSz\nBiKylpgoUgs1kVUUFQXnz8NHH1WPfYmkppCZm0tEYiIRCQlEJiURk5JCQloaMSkpJGZkEJeaSlxq\nKjn3pRY62tnhaG+Pva0t9nZ22Hl7UyfUtuS5vW0t7G1TsLc9i5VlNLbWrjg5RGCsx2mCpiYmmD4k\n5G9XDYXJBQUFZGRlkZKWRkpqKqnp6eLx3efKx8mpqVyNjCQ1PZ3E5GSSywhJAHOFAjd7e1xsbXG2\nscHNzg5nW1vc7e3xcnTE29kZH2fnklROiUQi0ST6+02vI4qK7hATc43IyAtER18hJuYqMTFXiI6+\nTGpqAgAmJqZ4evri6emNv78n7du3xMPDG3d3L9zcPPHy8kWhkKkWZbGyssbKyhpfX/9HrpucnEhM\nTCQxMZFERYUTExNJdHQk0dHHOHz4VxISROtBIyNjXF19cXMLwMMjCA+PQNzdA/DxCcHO7sloPZ2e\nDhYWopFIRbi6iprBxEQRBasqW7eCszM0alQ99iUSfSEuNZVrsbGEJyQQmZhIZFISEYmJhCcmEpmY\nSFpWVsm6NlZWeLi44OToiLurK81CQnBxcsLN2RknBwdcnZ1xdXbG2cEBk4f9A0sqjYmJCQ52djjY\n2YGfn8rvyy8oIDE5mbiEBOISEkhITiY2Pp6EpCQSkpK4EBfH7itXiI6LI6PMZ25nZYWXkxPejo54\nOznh5eiIl5MTPs7O+Lu54Wpn95CtSiQSSfk80WItOzud8PCzRERcICLiPNevn+D69VMlETIbGzsC\nA4Np2LA+zz7bE2/v2gQGBlOnTpBeX9Gs6Tg4OOHg4ESDBo3LfT0//zaxsdFcuXKeK1cuEB5+g1u3\nznHw4M8kJoq2hFZWdnh5BePv3wRv7/p4e4vHpqaPl4hOS3t4CiSIWWsg6sqqKqby88UMvLKD17Vt\nXyKpTlKzsrgRF1dyOx8RwYXISK7GxJCRLX4bTIyNcbS3x93Fhdq+vvRo1gw3Fxfx3MeH2j4+1RI5\nkmgHUxMTPFxd8XB99EW/3Lw8YuPjuRERQUxcHLEJCdwID+fKrVvsvnyZW1FRJZHUWiYmeDg6Euzl\nRX1vb2q7upbcfF1cMJRfehKJpByeGMWRn5/LtWsnuHz5CBcvHuTatWMkJEQCImWxfv0wnnqqOcOH\nv0ZwcBiBgcE6TU+UVIypaS18fGrj41Obzp173/NaSkoSFy6c5uLFs1y4cIbz5/ezbdtK8vNvY2xs\ngrd3PQIDW1K3bivq1m2Jh0cQBjX4BzIj49FjDiwswNJStNevarTqyBHIybm38Ye27Usk2iAiMZHz\n4eGcDQ/nXHg45yIiuFzmxNpcoSDAzw//2rXp1KULo/z88Pf1xd/PD3cXFwxlm1IJYKZQlAj08igq\nKiImPp5rN29y7dYtrt64wbVbt9h67hzX/vyz5O/NQqEg0NOTEG9vQnx8aODjQ30fH7ydnKpzdyQS\niR7y2Iq1lJRYzp7dzeXLh7l8+TDXr5+ksLAAR0dXmjRpwfDho6lfvyHBwaG4uLjr2l2JhrC3d6RN\nm2do0+aZkmWFhYXcuHGFixfPcObMCY4fP8yKFd+Tl5eLlZUdQUEtCQpqSb16rQkOfqpGRd/S0lSb\nSaepjpD790No6IPRPG3bl0gqS87t2/x3/Tqnb9woFWbh4aTfjZJ5urpSPyiITl26MKZOnRJBpkpU\nRSJ5FIaGhni6ueHp5kb71q0feD06Lq5EwF2+fp0zFy6wa+tWou9+odpaWhLi60t9Ly9CfX0J9fOj\ncZ06mNdSfYSORCKp2Tw2Yu327RwuXjzIqVM7OX16J9eu/YehoRG1awfSokUbRo8eQ2hoEwIDg2t0\nJEWiPsbGxgQGBhMYGMyzzw4ChIC7fv0yx44d4OjR/Rw58jPr1s24+zcTRlhYJxo27ERIyNN63cQk\nPV211EM3t6oPrr59G06cEAPMq9u+RKIKd4qKuBQVxYlr18Tt+nWOXblCfkEBNlZW+Pv6EhwczPOD\nBlE/KIgGdeviIiMXEh2iTLe8X8ilZ2Rw7dYtzl++zIkzZ7hw+TIbf/mFhORkjAwNCfLyokmdOjTx\n96eJvz/NAgKoJWsfJZLHkhot1qKiLnHw4G+cOLGVy5ePcOdOIUFBDejYsRPTp8+kZct2mJtXPJRT\n8uRibGxMUFB9goLqM2TISABiY6PYu3cn+/btZM+eb1m/fh7W1vaEhnakefPetGjRBwsL/Qr5pKdD\nvXqPXs/VFY4fr9q2jh0TNWUtW1a/fYmkPDJycthz7hy7z5zhyJUr/Hf9Orm3b2Npbk7jBg1o1a4d\n4958k2YNG+Ln7a1rdyUSlbGxtqZJaChNQkN55fnnS5bfjIjg6KlTHDt1imMnT7Lxhx/IysnBXKGg\nUZ06tAgIoENoKO1CQrA2N9fhHkgkEk1R48TarVtnOHBgA4cObeDWrfM4ODjTuXMvxowZTZs2z+Do\n6KxrFyU1FDc3TwYOHMbAgcMoLi7m0qVz7Nu3k927t7N06QiWLh1BWFhHWrXqT6tWfbG2dtS1y2Rk\nPLxtvxJX16pHvg4cgAYNyk9R1LZ9iQTEfLL9Fy7w75kz/Hv2LCeuXqWouJgGQUE81aIFr40YQbOw\nMOoFBGBkZKRrdyUSjePn7Y2ftzcD+/QB4M6dO1y8epVjp09z7NQpdh45wqLff8fQwIAmAQF0aNCA\nDqGhtAkOlvPiJJIaSo0QaykpMWzf/jX//vsd0dFXcXHxoGfP5+jZcznNm7eRP8oSjWNgYEC9eg2o\nV68BI0e+RUZGOjt2/MGWLRtYvXocy5ePIjS0PZ07v0br1s9hYqKb+gF1xFpenmrdI8vj9m0R+frf\n/3RjX/LkciU6mk2HD/PH0aMcuXyZgsJC6vn706FNGyZPnEj71q1xtNfsXEiJpKZgZGRESN26hNSt\ny6sDBwKQmJzMnkOH+PfgQTbv38+89esxMTamZd269GrWjH6tWhHgLmv1JZKagt6KteLiIk6c2Ma2\nbas4dmwL1ta2DBgwhD59XqBRoxayE5ekWrG2tqF//yH07z+E7Ows/vnnLzZuXMfCha+watU4OnR4\nhW7dRuDpWbfafMrOFoOoVWkwoqxri4urnJg6flwIqopSFLVtX/LkUFxczLGrV9l06BCbjhzhYkQE\nTvb29OrcmdFjxtChdWtcnWUGhURSEU4ODgzo1YsBvXoBEBsfz78HD7Jz717mb9rE1P/7P4J9fOjb\nogV9W7Wiqb+/rOWXSPQYvRNr+fl5bNu2ik2bFpCYGEnLlk+zdOl39OjxHKamsvuRRPdYWFjSp88L\n9OnzAvHxMfz449esXbuG339fRGhoe1544X3Cwjpq3Y+MDHGvSmTNyUkMzo6Lg7qV0JOHD0P9+lBR\nAEPb9iWPP5ejolizfTs/7t1LdFISfl5e9O3enRXduvFUs2Yyg0IiqSRuLi4M7tePwf36cefOHfYf\nPcqmbdv4cds25vzyC55OTrzYrh3Du3Qh0MND1+5KJJL70BuxVlBwm7//XsP69Z+QlZXCkCEjGTZs\nNLVrB+raNYmkQlxc3Jkw4X3GjXuX3bv/ZuXKhbz33jM0aPA0L730ESEhT2tt2+np4l6VyJqBATg7\nV66urLgYTp2CuyUSOrEveTzJy89nw8GDrP77b/aeO4e3uzvDhw6lX/fuhAUH69o9ieSxw8jIiKdb\nteLpVq1Y9NFHnDp/no1bt/LNTz/x2W+/8XSDBozo0oXnWrdGYWqqa3clEgl6ItZ2717Ht99OIyMj\nkSFDRjJ27DRcXFToRy6R6AmGhoZ07Nidjh27c/TofubPn860ae0JC+vIqFHL8PJSoWWjmqgTWQOR\nqliZWWiRkZCaCmFhurUveXyITUlh4aZNfL1jB5m5ufTq1IktU6fStX17meIukVQjDevXp2H9+kx/\n+23+3r2bVT/8wNBFi3hz1Sr+16kTb/fti5tMeZBIdIpOfxVTUmKYObMPCxYMoWvXHhw6dI2ZMxdL\noaYh3N0NSm6a5NSpYwwY0EGjNrXFgAEdOHXqWLVus3nzNvz66z/89tseIJPx4xuzfv087twp1Oh2\nMjJAoQBVL346O0N8vPrbOXMGLCzA31+39iU1n/i0NMauWEHt4cNZu28fk8aOJfzYMX77+mu6d+wo\nhZqkhGOnTtFhwIBq3aaBu3vJrbrpMGAAx06dqvbtKjE0NKR7x45s/PprIo4fZ+Lo0azdv5/aw4fz\n5sqVJKSl6cw3ieRJR2e/jLt3r2XMmBDi4i6yYcNuPv10Ba6uMldak8TEFGvc5rp1axg0qAvDh4/X\nuG1t8Npr4xg0qDNr166u9m23bNmOP/44yOTJM/jxxxlMntya6OgrGrOfnq5aCqQSFxdISFB/O2fO\niHqyR51Ha9u+pOZSUFjI3F9/JWDkSH4/fpyFH33EzWPHeOfNN3FzcdGZX2379qVt3746276kfNas\nW0eXQYMYP3y41rZR3mdfHBOj1vqaZNxrr9F50CBWr12rtW2oipuLC++OG8eNI0dY+NFHbDp2jIDX\nX2fe+vUU3rmja/ckkieOaj89Ki4u5ttv32HBgpd54YWX2bXrNC1btqtuNx4btBE5q4hdu7YyefJI\nPv10Bd261YwTnO7d+zFnznKmTHmdXbu2Vvv2jY2NGTNmKtu3/4eZGUya1JKzZ3drxLaqbfuVODtD\nUpLoIKkqxcVw7hyEhurevqRmci48nJaTJvHxzz8zecwYLh84wBtDh1JLD+phioqKKCoq0rUbj0RX\n0R5dsHXXLkZOnsyKTz+lb7dulbbzqGOm7mdf0fqa+mz6de/O8jlzeH3KFLbu2lVle5pAUasWbwwd\nyuUDB5j4xht89NNPtJw0ifMREbp2TSJ5oqh2sfbVVxPZuHEBn3/+DTNnLsbMzLy6XZBUgoKCfKZM\neZ2mTVvTp89AXbujFs899xKNG7dg6tRRFBQU6MSHgIB6bNy4h3btnmHGjB6cO7enyjbT09UTay4u\nUFQEycmqv+fGDSEKVakn07Z9Sc1j46FDtJw4ETM7O07/8w8fvPUW5mZmunarhAObN3Ng82ZduyG5\nS35BAa9PmULrpk1Lhj5rC3U/++r4W3npuedo0bgxo6ZO1dlvVXmYm5nx4dtvc3LHDkytrWk5cSKb\nDh/WtVsSyRNDtYq1rVtXsHnzYpYt+57nn3+lOjctqSJbtmwgJiaSfv0G69qVStGv32CioyP4668N\nOvNBoTBjxYqf6Ny5F7Nm9SU+/maV7GVkqJcGqRxNpU5d2ZkzQhD6+urevqRmsXb3bgZ88gmD+/fn\n3/XrCfDz07VLEj1nw5YtRMbEMLhfP127ojMG9+tHRHQ0G/76S9euPEBQnTrs3biRV198kf5z5vDj\nnqpfdJRIJI+m2sRafPxNVq9+iwkT3td5ZCYjI53p09+iZcva+PoqCA52oHfv1nz88SROnjxasl7Z\nBh3x8TEMH96fgAArgoMdGD9+KBkZ6URG3mLo0D4EBloTFubKhAnDyMh4sBA3ISGOKVNep3FjT3x8\nTGnc2JOpU0eRmPjgma2q65ZNf1T6OXFi+Tn+MTGRDBv2LAEBVoSGujB27BBSU1UPgfz9t7iiGBbW\ntMrH8sqVCwwe3I3AQGv8/S15+eWeXL168YF909SxF343u2c/dIWRkRFLl36Hl5c3n3/+apVsqZsG\naWsrGpKoU1d25YqYm6bKvFRt25fUHA5cuMCwRYuYNGoUq+bPx8TERNcuPUBFzSTKLo+MieHZYcOw\nCgjAJTSUIWPHkpyaWuH6F65codvgwVgHBmLp70/Pl1/m4tWram/3/uX3rzN84sSSZekZGbw1fTq1\nW7ZE4euLQ3AwrXv3ZtLHH3P05MlK+wmQkJTEG9Om4dm4MaY+Png0asTIyZOJK+efPO/2beYuW0aj\nzp2xqFMHha8vddu2ZdTUqRw+caKij+EeNv/9NwBN7wu1a/qYqdtIpDLbKfse5e2n338vWd+3efNy\nbTa7u+/KY6FvGBsbs2TWLN4aOZKhixZx+NIlXbskkTz2VJtY+/nn2Xh4eDNhwgfVtckKGT9+KKtX\nf87w4eO5cCGZ06dj+fzz/yM8/AY9e7YoWa9sg45Zs6YydeosTpyIol+/F/n11+8YO/YlZsx4m/ff\nn8fx45H06PEcv/zyLTNnTrlnewkJcfTo0ZwdO/5kyZLvOH8+mSVLvuXvv3+nZ88W94gwddYt619M\nTDExMcUsWLCm3H2eM+cd3ntvLidORNG79wv89ttaPv54ksrH7Nw58aPv6elT5WM5adII3nrrA06e\njOGbb37n7Nn/6NPnKSIjb5W7flWOvRKl38r9BtSNIAAAIABJREFU0CW1ain47LPVnDu3l5Mnt1fa\njrppkKB+x8br16FOHf2xL9F/7hQV8drSpXRt3565772na3cqpKJmEmWXvzNnDnPfe4+oEyfo37Mn\na3/7jUkff1zh+iMmTeKDt94i5uRJfv/mG/47e5an+vThVmSkWtutaHlxTAzFMTGsWbCgZNnQ8eP5\nfPVqxg8fTvKFC8SePs3/ff45N8LDadGzZ6X9jE9MpHmPHmzcupWvFy0i5cIFflqxgu179tC6Tx/S\nlLNDgMysLNr27cucJUsY8+qr3Dh8mKTz51kxbx57Dx+mVe/e5e7b/Zw8dw4AH09PtY9NRcvLO2YP\naySiqe0Ux8Sw85dfANGw43Z4OIOefbZk/fcnTKBX584P2Fbuu/JY6CvzP/iAZ9q04dXFi7lTA+o+\nJZKaTLWItcLCfA4cWM/w4W9ibKz70W4HD/4LgKurB+bmFpiYmFKnThBz5iyr8D2DBw8nIKAe1tY2\njBv3LgA7d25h+PDxDyz/55970xfmz/+QmJhI3n9/Hm3adMTS0oo2bZ7h3XfnEhUVzmefTa/Uuurw\n0ksjSvx8881pAOzerbpQiIuLBsDGxvae5ZU5lhMmvE+zZk9hYWFZsm/p6aksWDCj3PWrcuyV2Nra\n3bMfuqZRo+Y0bfoUu3evq7QNddMgQT0xlZcnhlxrS6xVxr5E/9l6/DhXo6NZPHMmBjU8ZDripZeo\nFxCAjbU1U0aPBmD77t0Vrv/+hAk81awZlhYWPNOmDXPffZfU9HRmlBEKmubfgwcB8HB1xcLcHFMT\nE4Lq1GHZnDlV8nP6Z58RHhXFnHfeocvTT2NpYUHbFi1Y9NFH3IyIYP4XX5SsO2PBAo6fPs3MKVMY\nPngwLk5OWFpY0L51a9YuX67yvkTfHdRoq+4Xm57yTJs2hAUHExsfz0+bNt3z2pKvviq326WdrfiN\nja7M0MpqxMDAgCWzZ3M5Koq///tP1+5IJI811SLWYmKukZ2dTqtW7atjc4+kR4/+AIwc+TxNm3oz\nceJwNm/+BXt7xwrb3Tdo0LjksZOTa7nLXVxEOkN8/L1Xynbu/BOANm063rO8XbtOAOzY8Wel1lWH\nsn46O4s5dgkJsSq/Pzc3BwATk3s7uFXmWDZt2vqe58p927OnfPFYlWOvROm3cj/0gTZtOnD9umrp\nQfdTWAg5OepH1tRpr3/jhujWqE6pkbbtS/SfvefP0zA4mDqPQSFi4wYNSh67u4rvntiH/IG3bnpv\nmnindqLT8XYt1vb079EDgOdHjsS7aVOGT5zIL5s342hvX2FESBU//9guvo+7d7h3pma7li3F6zt2\nlCxb/6f4XSqve2OjkBCVI1k5ubkAmOph2mxleWvkSAAWrVpVsmzX/v0UFRXRqW3bB9ZX7rvyWOgz\nAX5+NAwOZs/Zs7p2RSJ5rKkWsZaTI9IlrK3142rZokVfs2bNBnr27E92dhY//vgVo0YNpHXrAM6f\nL38opaWlVcnjsoNby1teXHyvSElOTgTA3t7xnuXK58nJCZVaVx1U8fNhKLt2FhTk37O8Msfy/r+D\n0n1LVNn3ipZXtE9Kv/Wp+6i1tS05OemVem9GhhA62oys3bghhlUrG4fog32J/pOSmYmTg4Ou3dAI\nVpaWJY+VJ9EP+960ue/qiaO9PQCJ6rRIVZOvFy1iw5o19O/Zk6zsbL768UcGjhpFQOvWnDp/vtJ+\nJtx97N6o0T11V4716wNw/datknWVAta1iv/Myk6h+XrUCbGqvNivH24uLpw6f55d+/cDsHjNmgpn\nyCn3XZ+6pj4MJwcHkjMzde2GRPJYUy1izd5eRHKiosKrY3Mq0aPHc6xevZ7z55PYuHEv7dt3JTo6\nggkTqtb0oTwcHMQPWEpK0j3Llc+Vr6u7bnWiHFienv5gAw91j+X9jU1K981Jw16XkpYmmgLo0+D1\niIibODhUzh9luUhlImvJyarNQlPWk6mTyaZt+xL9x9fZmYtXr6p1Mehx4f7mI0kpKQAPiFdlemjZ\n9uzpZWrA1OW5Hj1Yv3o1SefPs3fjRrq2b09EdDSvTphQaT9dHMVFtJSLF0vqscresq9ff2DdWHUK\nVsvB4270Mi39wYtYmj5m1YWpiQljXxW/hQtXreJGeDiHTpxgSP/+5a6fmiZ+Y5XHQp8pKiriwpUr\n1K4BvkokNZlqEWvOzj54eATw11+/VcfmHom7uwGxsVGAiMi0aNGWFSt+BnigK6Em6NJFFFfv2/fP\nPcv37t15z+vqrgtlI14F5ObmUL/+vRE5TRES0gh4UHBX5lgeO3bgnufKfXv66S4a9bksSr/r12+o\ntW2oQ2FhIdu3/0Fo6DOVer/yXEbdyJpyFlpS0qPXvXEDatfWL/sS/af/U08RERPDnzt36tqVaufA\nsWP3PN+5dy8AXZ5++p7lyghU2ZTKhzWUUEZZCgoKyMnNLYlugeg6GBUrUtoNDQ1p26IFP69YAVBu\nh0dV/ezbvTsAu+/WxJVl35Ej9zQN6X+3kcmmbdseWPfwiRP3NDp5GI1CQgAIj4p64DVNHjNNosp2\nRr3yCuZmZvz1zz+M++ADhg8ejJlCUa495b431JK/mmTz9u1Ex8fzXOvWj15ZIpFUmmrrBtm9+yi+\n/35VyYm9rpk4cTiXL58nP/82iYnxLF8+D4D27btqfFuTJn2Ep6cPs2dPY//+XWRlZbJ//y4++eQd\nPD19mDhxRqXWBQgODgXg1Kmj7NjxB02bttK4/1AqEk+fPv7Aa+oey+++W8HRo/vJzs4q2TcbG7sH\n9k2TnD4tTk66dtXuoFVVWbt2NQkJsXTp8lql3p+RAYaGUCZLSyXUmYUWHQ3e3vplX6L/1PPyYlC7\ndoyZNk2r6X/6yIrvvmP/0aNkZWeza/9+3vnkE+xsbJhRpm08QOe7NWLzv/iC9IwMLl27xpp1FTcb\nCg0OBuDoqVP8sWMHre6rORs+cSLnL1/mdn4+8YmJzLvb1KNr+/aV9nPGxIkE+Pkx5t13Wf/nnySn\nppKZlcWfO3YwbMIE5r77bum6kyYRUrcuH86fz+q1a4lPTCQrO5u/d+/mlXHjmPPOOyodv95dxAW7\n46dPP/Capo+ZplBlO/a2tgx94QWKi4v5e/duRg8bVqG9Y3f3vU9XzZ+LaJKEpCTGvvsug9u3p+59\n3TslEolmqTax1qPHGzg4eDJmzJB70hh0we+/78fZ2ZVXXulFQIAVbdsG8c8/fzFt2my+/PLHkvXu\nn2NW2cdOTi5s2XKELl168+abLxMcbM+bb75M58692bLlCE5OLpVaF2DWrKUEB4cxaFAXVq/+nOnT\nF5TrgyqPH0avXgNwc/Nk06Yf71mu6rEsyyeffMHy5fNo1MidYcP6UL9+QzZvPoCXl2+lfX/UPm3c\nuA43N0969iw/9aQ6uXr1IjNnTqFPnwm4uFSuu0Z6OlhZqZ9CaGOj2iy09HTRrdHF5eHrVbd9Sc1g\n6ahRmBoY0O3FFx9IudMX7p+RVdnHZfnik0+Yt3w57o0a0WfYMBrWr8+BzZvx9fK6Z70F06czuF8/\nft68GY/GjZkycyaflBE/99tfOmsWYcHBdBk0iM9Xr2bB9NKuwPt//x1XZ2d6vfIKVgEBBLVty1//\n/MPsadP48csvK+2no709R/76ixf79mXKrFm4NWxIwFNPseqHH1i7bBlPtyq9MGhrbc2hP/5g/PDh\nLFixAu+mTfFt3pyFK1fy1cKFPNOmTbl+3M+AXr3wdHPjx/s6J2r6mGnys3/Ydsry1siRGBoaMqBn\nTzzd3Co8Bus2bsTTza0kWqmPJKem0vXFFzE3MmLJ3QYqEolEexgUV6Gw4IUXXiA2FqZN+0Wl9W/e\nPM2UKW3o2rU3S5d+j5GRUWU3LdEBO3duYejQ3nz55Y+VGmyuFFEVdYnUFr/9tpY333yZb7/9g06d\ndPsDGBl5i75922Fn58WcOf9ibGz66DeVw7p1sH8/lOmerTKjR8NTT8FLL1W8ztWr8NZbsHo1POS8\nQif2K0OvXgb8PHUqL5TTfU2iHW7Gx9Ph3XcxVij4/ZtvqB8UpGuXtIbyBF7d+V3VTU3wc8vOnfQe\nOpQfv/ySgX30IxNCExQVFeHZpAm/rVlDyyZNyl1n7W+/8fKbb/LHt9/Ss1OnavZQNc5evEjfV1+l\n6PZtdn/yCT6yQ5TkCeSFuXOJxU0l/dOrlwE///wzL7zwQmU392u1RdYA/PzCeP/939m6dRPDhj1L\nVpbsIFST6NSpJ/PmrWDKlFFs2/bglU99ZOvWjbzzzmjmzv1S50Lt9Onj9O7dGgsLRz788M9KCzUQ\naZDqNhdR4uLy6DTF+HgRtXOqRM8XbduX1Az8XFw4umAB7lZWNO3WjU+/+IJCVTrPSJ5oenbqxIp5\n8xg1ZUq5NXA1lS3//IOXu3uFQm3j1q2Mfucdvpw7Vy+FWmFhIfOWL6dZ9+54WltzdOFCKdQkkmqi\nWsUaQFhYR+bM+Zf//jtOx46h7N//z6PfJNEbhgwZyY8//s3q1Z/r2hWVWLNmMT/9tIOXX35dZz4U\nFhayfPk8nn22DZ6eIcye/S+WlnZVspmern5zESVOTpBY/pSEEuLjwcEBKjPDXtv2JTUHZ1tb/p0z\nhxkvvsiH8+bRoEMH/iwzn0siKY+RQ4bw948/8vnq1bp2pUoYuLtz+MQJUtPT+WjBAt4bP77CdRev\nWcOOn37i9ZdfrkYPVWPnvn006dKFD+bNY9qAAeyaMwenx2RwuURSE6h2sQYQFNSCpUtP4+PThIED\nOzNlyusyylaDaNSoORs27FbrPZWpk9MEGzbsplGj5tW2vfu5fPk8vXu3Zv78GQwe/BEzZmzFwqLq\nP3JViaw5Oj66W2NiYuXrybRtX1KzMDI0ZOqAAZxdvpwG7u70HjqUNs8+yx87djwW7f1VqWXTB2qK\nn0qaN2rE7g0bdO1GlWnVuzcBrVvTq3Nn+nSpuOPx7g0baN6oUTV69mj2Hz1KpxdeoPPAgTibmXFy\nyRJmDB6MkaFOTh0lkicWnV3XtrV14Z131rN79zpWrRrHzp1/MW7cOwwe/BqmprV05ZZES1R3nZqu\niY2NYsmST1i3bg3+/k1YsuQUnp6aq9lJT4e6dSv3XqWYKi6uuEFJfHzVxZq27EtqJgHu7vwydSr7\ne/dm1s8/02foUMLq1WPEkCG81L8/tpW9+qBj9Ln+qyw1xc/HiZp4zNMyMvhhwwZW//ADZy5epGuT\nJuz/9FOeutv1UiKRVD86vzzSvv1gvvjiPM2a9WPGjIm0ahXAt99+SUFBvq5dk0jUJjY2ivfeG0ur\nVv5s3fonr7++lHnz9mlUqEHVImtOTlBQUDqrrTxSUkSaoj7al9Rs2gQHs+2jjzi2aBGNPT2ZOnMm\n7g0bMnTcOPYfPapr9ySSJ5J9R44wdNw43Bs2ZNrMmTT18uLYokVs++gjKdQkEh2jFxUjtrYuvP76\nEvr3n8L69XP58MO3WLx4DkOGjGDw4NdwdfXQtYsSyUM5duwA33+/is2bf8bGxpkRIz6nc+f/VamJ\nyMPIyKh8zZrj3bnpSUlga1v+OpmZ6s9wqy77kseDpgEBfD1+PJ+PGMG6PXtY/ffftF2/nkA/P57r\n2ZO+3brRvFEjDNSdTyGRSB5JUVERR0+eZNO2bfy2ZQtXb92iSUAAi157jReffhprc3NduyiRSO6i\nF2JNiaOjJ6NGLWPAgKls3ryENWuWsXDhx3Tq1JOXXhpBx47dZbt/id6Qnp7Kr79+xw8/rObKlfP4\n+zfi9deX0rHjK5iYaC+VNzsbCgurVrNmYCDElL9/+etkZVVNrGnTvuTxwtrcnFHduzOqe3f+u36d\ndbt388uGDcxdtgx3Z2ee7d6dvt260b51a0xNTHTtrkRSY8kvKGD3wYNs3LqVzX//TUx8PHXc3enX\nsiWD33qLRnXq6NpFiURSDnol1pQ4Onrxv//N5+WXZ3H48Ca2bVvFsGF9cHZ2p1ev/vTs2Z9mzZ6S\nwk1S7WRkpLNz559s2bKBXbu2YmhozNNPv8gbb3xDQEDTavJB3Fc2smZiIt5bUcfGoiLIza28mNK2\nfcnjS+M6dWhcpw6fvfYaZ27d4vfDh9l04ABffvstNlZWPN2qFR3btKF969Y0qFsXQ9noQCKpkKKi\nIs5eusS/Bw6wa/9+9hw6REZWFo39/RnVuTN9W7akga+vrt2USCSPQC/FmhITk1q0bTuQtm0HEhNz\nlV27vmfnzg189dUSHB1d6N69Lz179qd16w4Yyx7gEi2RmprM33//zpYtv7Fv306KiooIDe3AyJFL\nadduIGZmVtXqj7IWrCr9GB7WsTE7WzQHsbDQX/uSx59QX19CfX35YNAgwhMS+PPoUXadOcPMzz5j\nQkYGjnZ2PN26NR1at6bDU09RLyBApkxKnmiKi4u5cOUK/x48yL8HDrDn4EGS09JwsLbm6ZAQ5gwZ\nQu8WLfCWAy4lkhpFjVE47u4BDBnyMUOGfExc3A2OHv2DAwd+5YcfVqFQmNO0aSvatetE27adaNCg\nsfzRllSawsJCLlw4zb59O9mzZyeHD+/BwMCQkJC2DBs2j3btXsTWVnfDQJWRtaqKtYoiX1lZ4r4q\nkS9t25c8Wfg4OzOmVy/G9OoFwI24OHaeOsXO06f5cN48UjIysLa0pEG9ejQJDaVJaChtW7TAz9tb\nx55LJNojNj6e42fOcOLMGU6cPs3hEydISk3F0syMlnXrMrlvXzo1bEijOnUwlOdEEkmNpcaItbK4\nutamT5/x9Okznri4Gxw/vpXTp3eyePFcZs+ehouLx13h9gxNm7bG11fmYUsqpqCggHPnTnLkyD72\n7t3JkSN7yc3NwcPDn9DQTkyePIrGjbtUewStIjIyQKGAWlUoi3NyguvXy39NKaaqEvnStn3Jk01t\nV1dGduvGyG7duFNUxMnr1zl8+TJHr1xh+/btLP36a4qLi/F0daV548Y0a9iQxg0aEFK3Lu5yZoSk\nBhIdF8f5y5f57+xZjp48ybGTJ4mKi8PQ0JBAT0+aBwQwfeBAWgYF0ahOHTkLTSJ5jKiRYq0srq61\n6dVrDL16jaGo6A5Xrhzj1KmdnD69k02bhlNQkI+DgzNNmrS8e2tFWFhTLCzkZf0nldjYKE6cOMyJ\nE4c4fvww5879x+3bedjYOBIa2pHhwz+nYcNOuLj46drVcklPr1pUDUTk6/Dh8l/LyxP3Zmb6a18i\nUWJkaEjTgACaBgSULEvPzub4tWscvXKFo1eusGzVKqLv5uXa29gQUrcu9evWJbRePeoHBRFSty52\nlS0ClUg0SGp6OmcvXuT85cucvXSJ85cucfbiRVLvplR4ODrSLCCA0V270jwwkKb+/tjIK18SyWNN\njRdrZTE0NKJu3ZbUrduSQYPeJz8/j+vX/+Py5cNcunSINWu+4JNP3sXIyIjAwBBCQsKoVy+U+vXD\nCA4Ow8FB5nE/ThQVFREefp3z509z4cJpLlw4w5kz/xEXF4WhoRG+viEEBbVi9OiRBAW1xMMjsEak\nz1albb8SR0cx66yoCO6/AFtUJO6r0r9H2/YlkodhY2HBM2FhPBMWVrIsOTOTMzdvcj4igrO3bnH6\n2DHWrV9PenY2AJ6urgT5+xNQuzb+vr74+/kR4OdHHV9faplqZwSH5Mnkdn4+12/d4urNm1y7ebPk\n/tLVq0THxwPibzjE15cQb2+eHzyY+t7ehPr54WClHxkeEomk+nisxNr9mJoqqFevNfXqtS5ZlpQU\nxeXLh7ly5RjXr59i164dJCfHAuDk5Ea9eg0ICWlIYGAwdeoE4ucXgL29o652QaICRUVFREWFc/Pm\nVW7cuMKFC2e4cOEMly6dIzc3G0NDI7y8AvHxCaVbt7EEBbUgIKApCkXNjK5qIrLm5AR37kBq6oPD\nqZViqiq6Vdv2JRJ1cbCyokNoKB1CQ+9ZHp6QwPmICM6Fh3MlOpqLJ0+yecsWYpKTATA0NMTL1VWI\ntzp18Pf1xcfTE083N7w9PXFzdq4RF3kk1UdRURFxiYlEREURGRNDRHR0iSC7dvMmkbGxFN39IvRw\ndMTf3R1/V1e69OhBAx8f6vv4yCYgEomkhMdarJWHo6Mnjo4DeOqpASXL0tMTuXnz9N3bGbZv38Ga\nNUvIzxf5WjY29vj5BeDvH0jt2oHUrh2Aj08dPDy8cXTUXaOJJ4mCggLi4qKJigrnxo0rd4XZVa5f\nv0J4+HXy828DYGPjiK9vA3x8WtC27Qj8/MLw8amPqenjk3OnqcgaiCYg94up4mJxX5XzT23bl0g0\nhY+zMz7OzvRoeu/ojey8PK7FxnItJkbcx8Zy8eRJ/ty6lZjk5JKTbVMTEzxcXPDy8MDHywsvd/eS\nm6e7O84ODjg7OspRM48JhYWFJCYnE5+URFRMDJFlbuGRkUTFxBAdH09+QQEgxL67gwP+bm74u7nR\nuXNn/N3cCPDwwN/NDfOqFB9LJJIngidOrJWHjY0TDRt2omHDTiXLiouLSEyMJCbmKjExV4mOvkJ4\n+BUOHfqWuLhb3LlTCECtWgo8PHzw8PDC3d0LT08fPD298fDwxtnZDQcHJ5le+QgKCvJJTk4kMTG+\nRJBFR0cQHR1JVFQEUVHhJCaWXok0N7fCwyMAN7cAmjR5jj59gnB3D8DdPQArK3sd7432ycgAd/eq\n2bC3F2LpbvDgHpSRr6rUp2vbvkSibSwUCsL8/Ajze7B2taCwkOjkZCKTkghPSCAyKYmopCQiIiI4\ndeIEUUlJpGZmlqxvaGiIk709zg4OuLm44OLsjLOjI+4uLjg7OuLq7IyTgwP2trbY29piYW5enbv6\nxJOVnU1qejopaWkkJicTl5BAQlISMfHxJCQlEZ+QQGx8PAnJySQmJ/NzcTF/AT8AllZWeDk54e3o\nSAMnJ3rUq4eXkxM+zs54OTribm+PiRwtJJFIqoD8BqkAAwNDnJ19cHb2uUfEARQWFpCYGE5iYiRJ\nSZHEx98iMTGCq1cjOXToMPHxt7h9O7dkfWNjE+zthWhzcXHDyckZBwcnnJ3dsLOzx9raFmtrW2xs\nSu9tbOyqe5c1QkFBPunpaWRkpN1zn5aWQnJyIsnJiSQlxRMfH3f3cQJpafee0dvaOuHk5IWjozce\nHk1p1Kg/jo5eODl54+zsg52dq472Tj/QRBqksbGIzpUnppSRr6qIKW3bl0h0iYmxMb4uLvi6uNC2\nfv1y18nKyyMqKYnE9HRiU1KIT0sjIT2dmORkEiIiuHjmDHGpqSSkpZVEYZSYmpgI4WZjg52tLfZ2\nduJma4udjQ32trZYWVpiYW6OjbU1VhYWmJuZYWFujt1dsWdqYlIdh0Ln5BcUkJ2TQ2paGtk5OWTn\n5JCVk0Naejo5ublkZmWRkpZGSlqaEGSpqeJ29/nLKSnsvXOHI2VsmpqY4Gxri5u9PS42Nnja2NC8\nUSOcbWzwtLSk9Z499D95kq/s7DDo3x+6dgVZ1yiRSLSEFGuVwNjYBDc3f9zc/CtcJz09kbS0eNLS\n4klNjbv7PIHU1DjCwxM4c+YiqalxZGamkpubVa4NKyubEiFnamqKtbUNxsYmWFpaUquWAoXCDHNz\nC0xMTLGysi5Js1EozKhVS3GPLSMjIywt7z3DLyq6Q2ZmxgPbzczMoKjoDgB5ebnk5eWRk5NFQUEB\nGRnpFBXdIT09jcLCQrKyMsnNzSE9PY3MzHTy8nIesGdgYICVlR02Nk7Y2Dhhbe2Mk1MD6tQRz+3t\n3bCxccbGRoi0xyllURtkZFRdrIGIfqWmPrhcU2mK2rYvkegzlgoFdT09qevp+ch1kzMzSUpPJzUr\ni5SsLFIyM8XjzExSsrJIzcoi6dYtrmRmkpqdTUpmJp7Z2bTIz+fLCmyaGBtjaW6OrbU15mZmKBQK\napmaYm5ujqGBAa4WFuQaG2NtaYmRkRFmCgWKWrUwNjbGqswQRAMDA2wr+MIxMjLCuoKBiRlZWdy5\nc6fc11LT0+95npmVRWFhIcWZmWQXFJBbXEzm3cYvaWlpFAPZ2dnkFxSQl5dHdm4u6RkZZOXkUFAo\nslyGAjnAr2XsmisUWJqZYW9lhb2lJXaWlthbWlLb3R27wEAcLSx4fts2Po2MJCU0lIwBA7AKCHh0\nE48OHUSO98aN8M038NNP0LMnPPusnEkikUg0jhRrWkIpTHx8Qh657p07hWRnp5GdnUZWVlq5jwsL\nC0ruU1OzKChIIz8/lry8rJLXiu+eBefmZpakaSopKMgnLy/7gW1bWtqWKY5XUFjYEQuLA5iYiLCH\niUktatUyR6GwwNjYFHNzGwwNjbCwqI2xsQkeHpbUqmWOhYUtlpa2WFjYYmFhc/e+9LlEMxQWQk6O\n5sRaSkrV7ejKvkTyuOBgZaVel79//oEvv4T69Zn97rtk5ueTnZdHdl4eadnZZN19nJ2XR2pWFtl5\neeQXFpKbn8/t27d59vJlmsTFMbFxYyKioykuLi5ZJ7+wkOy8PN7NyOC0qSmbTEzIys0t1428/Hxy\nb98u9zVzhYK2hoaMys/nf/fN6bA0M8OkTA2fhUKBqbExHyUmEpqbywJfXzLvNtjwMjPD2MgIhZ0d\nZqammBobY6FQYGdpiYVCgYVCgaVCQYPt23HZt4+8unXJf+01rIKCVGv88uyzcOoU9l99hf306UKI\nDRsmvsAehpMTjBwJAwfCli3w++9CvHXuDM8/D3Y1MztGIpHoH1Ks6QFGRsZYWztiba3brpPx8fDa\nazB9OoQ8WmNKdEBmpohMaUqsJSY+uFyZzXP7dtUye7RtXyJ54sjPF5GcP/6A3r3hf//DztgYlWVB\nfj4sXgxRUTBuHN937Fj+esXFMGgQDBrEkp49K+/vwYMwZw59165VLe85JQWWLePzY8fAzw+GDweF\n4tHvA2jYEJ57DsWKFSimThWRrpdeUi3S1bAhLFkCBw7A//0fjBghju/zzz/6/TY2MHgw9OsHO3bA\n+vWwfTt06QLPPVfabUkikUgqiawakZRiFMhTAAAgAElEQVTg4gJubnDihK49kVSEsmeBNiNrynOj\nCi6Y6419ieSJIioK3n5bRNWmTRNRHXUaV2RkwPvvw3//wcyZUJFQA4iOhuxsCAysms/Kurn7avIq\nxN4ePvwQpk6F/fvhzTfh3DnVt+fvD/Pnw/jxsHevEHubN5fmXj8MAwNo0wZWrhRibedO8f7164XI\nfRRmZtCnD6xaBa+8IoTq8OGwcCHExam+DxKJRHIfUqxJ7qFJEzh5UtdeSCoi426JoSbEmp1d+WJK\n2Uk6L0+/7UskTwy7d8OECUL8LFkCTz2l3vsjIuCtt8Q/5Pz50KDBw9e/elUIQV/fynosUIo1VcRO\nWdq0gS++AC8veOcdWLZM9S8MAwMhRFeuFCmNX30l9v3SJdXeb2wM3brBmjUiurZunRDG27aVtrJ9\nGAqFEG1r1sDrrwux+cYbYn+SklTzQSKRSMogxZrkHho1guvXIS1N155IyiMzU5yLVFDTrxYODpCV\n9eB5lKYiX9q2L5E89uTni0jNggUirW7+fJECoQ6nT8PkyeLqyWefgQoNT7h6VaQhVrWjpLqRtbLY\n28MHH8DYsSJKNmGC6oILRPriyJGwfDlYWYljsHCh6j9uCoVIb1y9Gpo2FTWCY8eKiJ8qGBtD9+7i\n83vzTXEVVBlpi41VfT8kEskTjxRrknsIDQUjIzh1SteeSMojIwPMzdXLfqoIOzuRHXR/x0Zl5Kuq\nYkrb9iWSx5qYGJg0SaTjTZ2qftojiBqq6dPFVbg5c8DWVrX3Xb8uUgqrSlXEGogrU127wooVYrjk\n5MkiypbzYNfhCvH0FGmfH3wAZ8+KaNfmzVBBp8oHcHAQIm35cvD2hnnzxOdy/rxq7zc2FpG+L7+E\ncePg4kURaZOiTSKRqIgUa5J7MDODunVlKqS+kpEhLhJrAmWzM22JKW3bl0geWw4dEql7hoaiIUib\nNuq9v7hYpO8tXgw9egixp043n4gI8PFRb5vlUVWxpqRsLduhQzBqlGgGog7NmwvR9+yzoonIhAmq\nCy4Qom/aNBGdNDERvrz/Pty6pdr77xdtly5J0SaRSFRCijXJAzRuLGrQVanJllQvmZmaqVcDEfky\nMHhwcLVCIZZX0K1bb+xLJI8dBQUibW72bGjbVggDNzf1bSxYAL/8IgTfyJHqDTVMTRVfNF5e6m23\nPJRirbDw4eupirIBSPPmMHcufPyxenVgtWqJ1MYvvhBdGqdOFTbKa1tbEUFB8MknMGsWpKeLFMeF\nC1WfU6IUbV98AaNHC8H4xhsicidr2iQSSTlIsSZ5gMaNxe91eLiuPZHcj6YGYoM4Z7C2fjDyZWQk\nyj3um1urd/YlkseK2FiRXvfPP6Kpxtix6qc9ZmbCe+/B8eNChDzzjPp+RESIe32KrJXF0lIcm08+\nEV0rx4xRveOjEjc3kR764Ydif0eNEpFIdfxs2FBELsePhzNnRAfJ775TPUXT2FjUIa5cKUTbiRNC\nWK9eLYvGJRLJPUixJnmAOnVEaYNs4a9/aDINEiru2Ghrq5nzBW3bl0geC44eFWl5AJ9/rn63RxCi\nY8IEcXXks89EAXJliIgQgkjV+raHoQ2xpiQkBJYuFWmNX38tomRKoakqzZuLCNfzz8OGDSJKdvy4\n6u83NIROnUQ09KWX4K+/hODaskX1mjilaFu1Srx33z7RiGTVKvklKZFIACnWJOVgYABhYbJuTR/J\nzNSsWHNwqFhMaSLypW37EkmNprhYzPGaORNatIBPP1U/7RGEwJg0SfzDqdrxsSIiI0UjDU1Q2db9\nqmJqKtIaFy4UgnDcOPjhB/W2Z2oqBoB/+aWIJs6YIW5RUerZeO450a6/UycxLmD0aNU7R0LpyICv\nvxZiTSnavvlGzLyTSCRPLFKsScqlcWORSi9nYekXmqxZAxH5uj9NEcDGRnORNW3al0hqLJmZIhVv\n7VqRQvf226Xdd9Rh2zYh9po1E3VUNjZV8ysuTnRe1ATK/dGWWFNSu7ao0/vf/0RK5BtviGilOjg7\ni/TTuXPFFaYxY0TnSeVwS1WwtIRhw0RqY1BQaefICxdUt6EUbatXCxG5bZsQbevWyUJfieQJRYo1\nSbk0bixqws+d07UnkrKkp2tWrFWUjmhnpxkxpW37EkmN5Pp1kbIYESHEQZ8+6tsoKBApk8uXw8CB\noq29Oh0fKyIhQQgXTWBiIlI1qqP1q6GhOI4rVkD9+kLAfvwxxMerZyckpLQW7fBh9Vv9Azg5CfG9\ncKEQX1Onis85Lk51GwoFDBggonXdu8Nvvwlf/vxTcw1bJBJJjUCKNUm52NmJjBCZCqk/FBeLbBhN\npkHa2JSfjmhtrRkxpW37EkmNY9cuIaycnYXYCgpS30ZGhpgbduCAaB8/eLBmfCsuFmJN3cHbFWFg\nIARkdc7psLcXQumTT4Q4euMNEZVSJ7pnYCA6Nq5ZA717i1b/Y8aoV88GEBAgRNrMmaWNTJYtUy8H\n3NISXnlF+NKunUiTHDUKdu+WLZslkicEKdYkFaJs4S/RD7KyoKhIs5G1isSUpiJf2rYvkdQYCgrE\nifqiRSICNHt25Zp43LolWvInJ4vUvxYtNOdjaqoQNZoSayBSIXUxVDEkBJYsEWmJGzcKsaVu1yyF\norTVv6+vqGX7+GP156I1bCh8GTVKROtGjRK1iuo0XrG1LW080rChiNqNGaNeXZxEIqmRSLEmqZDG\njUWtuRz9oh8oSyc0LdYKCh7sNu3oKMRhVUsktG1fIqkRJCWJgcp794r7YcNE2p66HDsGU6aUNhLR\nVCMQJQkJ4l5TaZAgxJq2a9YqwthYCGOl2Jo+XUS61P1Rc3MTn9vs2eIYvfGGEE2qtulX+tKtW2m0\nbt060f1x1y71ImSOjmJ0wfLl4vOfN09EatUZ8C2RSGoUUqxJKiQ4WGSwnDmja08kIPoRgGbTIJUX\n9u+PfikvrKtb7lHd9iUSvefMGVGflp0tImGVacuv7Br58cciFW7OnKo3EimPxESRAujgoDmbuoqs\nlcXJScyfmz1bRCZff1391EgQbZIXLxaRsT17RKRr82aR8qAqymjdqlXQpIlIhX37bfULxL28hICc\nP18Mr5w6VaTE3rqlnh2JRKL3SLEmqRBTUwgMlGJNX9BWZA0eFFPOzuKcrapiStv2JRK9RSmw3n9f\nnOR//rk4wVaX/HyROvn99zB0aOWGZatKWpr4pzUy0pxNfRBrSsLCRDriCy+Ihh1jxoi0RHUwMhIR\nspUrxXy0r78WaanqRraUEbJly8QxnzZNiPGYGPXs1K0rooWzZokv2jffFM/ll6tE8tggxZrkoYSG\nwqlTuvZCAkKs1aqlmYZvSpRi6v76MYVCvKYpsaYt+xKJXpKdLZpK/PCDaMs/ebL4o1eXlBQRMTl2\nTJzIDxigeV/Lkp6umWHYZdFlGmR5mJqK7pmrVkG9eiLa9t57EB6unh1lm/5ly0RTk6lTK9d90ttb\n1MLNmiVSLEePFjbVLept2LC0i+Xly8LO99/LXHOJ5DFAijXJQwkLE+n96tZTSzSPpgdig+isbW5e\nfhMQZ+fSEhZ9tS+R6B0RESLScu2a6EjYu3fl7Fy/LtLjsrNFqltYmGb9LA9lZE2T6FNkrSzKrpEL\nFgj/xo1Tf64aiAHk06cLsaXsPvnNN+qLJKXYGjUKjhwRqZobNqjXhMTQUAzlXrkSXnpJtPkfMQK2\nblVv9IBEItErpFiTPJSgIHFBWKZC6p6MDO2UqVTUsdHFRTORL23bl0j0hmPHRBTNxkakPdarVzk7\nyvb+vr4iBdLTU6NuVkhammjVqkmqu3W/ugQGCjF8/1w1derQoLTj45AhQhy98Qb8+696zUOUKZar\nV5c2IXnjDTGiQR1MTeG550Qzk06dRBRRdo6USGosUqxJHoqxsTjfkGJN92RkaD6yBlKsSSRVpmwD\nkLZtRUTN3l59O3fuiBPrRYvEyfqHH4KFheb9rQhtRdb0KQ2yPJRz1VauhA4d4KuvRHT0wgX17Bgb\nC5G0ciU0bSo+x7ffVr+eTaEQok/Zpn/uXJg4ES5dUs+OlZVI1Vy5UojSefNg0iT17UgkEp0ixZrk\nkYSGwunTcv6mrtFGGiSIEpXyxJSbm6h1r+rnrm37EolOyc0V3Rmr2gAkM1OIs23bhFB49dXKtfev\nCllZmv+SMTNTr8W9LrGwEO30ly4VnZymTCkdrq0Otral7fVtbUvr2dStJ3BwEHYWLRJ/U5MnC+Gm\nbv64s3NpyqeRUakdebVMIqkRSLEmeSShoeKCa2Skrj15sqnuNEgvL8jLq/qcPW3bl0h0RmysiHhc\nuCBqlirbAOTGDdHePzpaRD86dtSsn6qSmyvElSaxtBQisCbh7S0axMyaJT6TUaNElCs7Wz07Xl6l\n9WzK+WyVqYvz9xd/Fx98IGohK1sXFxgoRNqUKaV2vv1WNiGRSPQcKdYkjyQgQFxwlKmQukWbaZDl\nNR7z8RH3VRXp2rYvkeiE48eFwDIxEZGPBg0qZ2fPHhHpcHISdW4BAZr1Ux1ycyvXtfJh1ESxpqRs\n04+9e8VctfXrobBQfTtLl4omJsq6uPXr1WseAtC8OaxYISK4W7cKO9u2qZeeYGAgUnVXrIBXXhF2\nRo6EHTtkmoNEoqdIsSZ5JIaGUL++FGu6RltpkNbWpQO3y2JhITJ4qiqmtG1fIqlWlPVpH30EzZqJ\n5hTOzurbuXNHREfmzxd1UrNna75tvjoUF4tQt7m5Zu3WZLEGpU0/1qwpbfpRmWYdyrq4snbGjlXf\njrEx9Okj7LRpA19+KdJm1R2qbWwMffsKO888I1I2J0xQ345EItE6UqxJVCI0FM6elRfedElmpmYH\nYiuxtCxfTIHI4qmqmNK2fYmk2sjLE2lkyvq0SZMqN/hQWZ+2ebOoJRo7VrODqCvD7duiA6I2ImvZ\n2TX/x0OhgMGDRTpkUJBIS3zvPZHCWlU7774rRjWog5WViIgp6+KUQ7XVrYsrOy/Ozq7Ujqxnk0j0\nBinWJCoRGirOL9T9XZJohpwckXmjDbFmZSXO08pr2KYJMaVt+xJJtRAbK8TZmTNVG1CtL/Vp96Os\nW9JGzVpRUc1pMvIoHB2FwP70UyHex48XLfuTkytnZ+FC8eU+YULlmod4epYO1Y6PF3VolamvK2un\nKvPiJBKJxpFiTaISfn5CKJw9q2tPnkyUkSltpEEqbZaXqeTlJWb86rN9iUTrnDsnhJqhoagrq+yA\nan2qT7sf5dWUWrU0a9fSUtzX5FTI8qhXDz77TPxdnD4tolzffqu+SAoIEMKvqs1DlHPeytbXbd6s\n/jBspZ1hwypfFyeRSDSKFGsSlTAwEPXzsm5NNyibh2krDRLKP5fy8RFCMSVFf+1LJFpl0yaRptao\nkTg5d3FR34a+1aeVh3IItKbHBTyuYg3ED+PTT4s5ZiNGiCYdyiYk6s6Wq6h5iDrDuZX1dStWQNeu\n8H//J+rrjh1TzxdlXdzKlcKvL74QFxmuXlXPjkQi0QhSrElUpkEDEVlTtxGWpOroSqz5+Yn7mzf1\n175EohUKC0WE4auvqlaflp4O778Pf/whWqbrQ31aeSgjMFKsqY+xcWkTkv794eefRaRNXbFVUfMQ\ndVNaytaheXqKZjgzZkBUlHp2lPPiFi8Wvr39trBZURGyRCLRClKsSVQmLExkZqhbBy2pOpmZ4rdS\n07X/UJqmWN7vr5WVKK2oSq2itu1LJBpH2QBk717RRKJ//8rZuXZNnODGxop6pHbtNOunJlGmuWla\nrFlYiAjU4yzWlCgUopZxxQpo2lSIrcp0fFQ2D1m6VAimd94RtWTqii0PD3GhYPZsUVM3dqwQguqm\navr5ib/fDz4QIytGjBApluoIUYlEUmmkWJOojKcn2NvLVEhdkJEhomoGBpq3bWIiylQqulhau3bV\nIl/ati+RaJToaBFFi4kRDUBatqycnW3bhB1XV/2rTysPbaVBGhqKcQBPglhT4uAghNHy5WLA9rx5\nIqp68aJ6dry9RVRs5kwh+MeOFQKwvMGVDyMsTESJx42D3btL69nUFVvKVM0+fUSK5VtviYHwEolE\nq0ixJlEZAwMICZFjWHSBtmasKbGyqvhcqnbtqke+tG1fItEI//0nImHW1kJg1amjvo38fJE2tny5\nmGM1a5b+1aeVh/LEXRtXhGr6rLXK4ukpWuHPnSuO75QpQripGyFr1EikH06aJOrPhg9XvwmJcs7b\nypWinu3rr4XYOn9ePV+UoweWLQMbG5g6VXS0VFdASiQSlZFiTaIWwcHi4qDMfqheMjK0K9Yedi7l\n5yeCDLdv6699iaTKbNtWOui6sg1AYmKE2Dt8WNQIDRumHfGjTbQl1pSFt08i9euL5jLvvAPh4aLp\nx+LFkJioug0Dg9I6tkGD7m1Cok7HRwsL8Xe5fLmYqzZ1auXmqnl4iPdNnSrSbV5/vXLdJyUSySOR\nYk2iFsHBYlxOeLiuPXmyyMgQFzG1xcPEVO3aQpzfuqW/9iWSh5KZKWZilUdhoThx/uILePnlyjcS\nOXpURCqMjERUrkmTqvlc3Rgbi/uCAs3btreH1FTN261JGBhA69ZCJE2eLFJURowQESp12uHWqiXq\n4tasKY2UjRmjfl2ch0fpXLXYWBg9WkTrKvo/qYg2bYQPzz4rUiMnTIBLl9SzIZFIHooUaxK18PMT\nF+Zkmnr1oss0SFdXUXJS1SYj2rQvkVTInTvi5Hjy5AdPRDMzRdOEfftEI5HKDLouKoJ160RdUYsW\nIoJSmfb+ukYpULUl1uR8DkHZCNmoUULkjxwphJI6qaJWVqUdH319RXrl5Mnq18U1bCgamQwdCn/9\nJXzatUu9uWq1aonUyC++EBHpyZNFauTDukbGx4v6OYlE8kikWJOohYEBBAWp/3sgqRrVkQZZ0e+q\ngQH4+8OVK/prXyKpkK1bRXpiRIQ4oVXmcIeHiyhAYqI4sWzRovz379sHcXHlv5aeLrpGrl8vmj+8\n/XblonL6gImJuJdirXpQtvv/6itRg7ZzJ7z6qhBtOTmq2/HwEHVxCxaIqO6UKaJGrqK/2Yp86dOn\ntIvlokUiZfNRnZ+OHr2345ibm7hoMXWqqP8cPVoIv/spKhI+fvaZ+P+SSCQPRYo1idoEB8smI9WN\nshuktnhU/X9gYNXmoWrbvkRSLllZ8N134uTwzh04cUKkj504IU5qHRzECaO3d/nvP31aCLwZMx4s\nqrx6VaQ9RkeLdbp2/X/2zjs8imr9459N72XTewLpAYTQISAdREUsF3vXa73KtaFY4NoVC/Kzce0V\nUUSvIihNadKkCoTQQnrvm95+f5xsCCEJu5ud3U1yPs8zzya7M++cnZ05M9/zlqP411EU6VkzD7a2\nQrQtXSoK0vzyi/C0/fSTfr9FdLQQQM89JwYm7r5beN3KyjrfprlZ7Fd7Q1erxaDDm2+Ka+aBBzov\nHlJYKPa3cOG58/loQyPHjRO25s8/u6jKTz+d2WbxYnENSSSSTpFiTaI3cXGiny4sNHdL+g4VFcqK\nNSenrgdzo6KEI0Kf4mOmtC+RdMiXX54tspqaxOTUCxfC2LHw4oudFxKprhYPqlZWIqfnvffOfPbr\nryLUKzxchJBZell+XdB61urqjG/b01MIZyVs9xacneH668VgwoQJwsN2551CvOki2pqbxfxpgweL\nMv133w07d4rCHytWdHzs//xTXA8LFpwtuCIjxQDEvHliQm6tjYaGM+t8+KG4nhoaxPbtxbizsxCd\nr7wiBOMDD4hw4cxM+OyzMx7uhgYhMGWFKYmkU6RYk+hNbKyImtC34q/EMOrqxH1MyTBIR8euhVJ0\ntHgWMHRCdKXtSyTnkJEhcnDaV6fT5uKMGHGmqEZHfPSR8ChovXLr18Nvv4mHz3ffhTlzRL6bi4ty\n38GU2NmJmGQlBJWXl3iV3rXz4+4uwiI//liIto8+OjMJdVe/zapVcNNN4sasDbH84AORh7l8uRBO\nv/565vxvbBQFQayshBh86ikxKKFFm1v3/vuieMjXX4tCJn/9JfaxdasQWk1NYjRxwYKOBVd8vCjg\nc+21QvAtWHB2OenGRrHfJUuMcvgkkt6IFGsSvbG3F4VGZN6aadBWvDanZ83HR0TIGJpXprR9ieQc\nli7tugz9K690fsIdONBxSfR33oH9+4Un4Lrrel5Z/q5QqcSoSmWl8W17e4tXfUrV93U8PEQBEa1o\n+/TTzsMj6+vhm2+EWHr66TMjqQ4OQqxpc9HefVeE7h44AGvXiiIfTU1iqaoSocHtQ2a0xUPeeQdC\nQoRXetGisydPb2wUoZevv95xYRIbG/jHP+DKKyE//9zrqrERNm+Gdeu6d8wkkl6KFGsSg0hIkBUh\nTYWpxFp1ddcFwCIjDc8rU9q+RHIWu3YJUdXZnE/NzeKz//zn3IfTqirx0GnVwe1RpRLhXbGxxm+z\nJeDq2nUFP0Px8BAP/frO5SU5I9r++19R+r8j0bZ+/ZnfTesla1v4w8tL5KItWSLsPfmk8Ni17ZAb\nG8XN5sknOz4HAgKE3YsvFh7S9pOtNjaK+QWXLev4e+Tlwfffd34TaG4WglCGV0gk5yDFmsQg4uJE\noSglBmElZ6O9byodBtnc3PUUO9HRhnu+lLYvkbTS0CA8CR2JrbY0NYlcmvYPlx98IN5v/zAK4oG0\noEDY7424uiozebVKBb6++lUolJyNt7cQaf/9L4weLUTbXXfB//4H33575nxtbj6TR9ZWsIHIsVy4\nEKZO7TiksrFRiKpnnum4sy4thQ0bOr424Mw0Fu1L8jc3i1DI802Y3dwsJqSXDxYSyVlIsSYxiIQE\n0a+mpJi7Jb2f8nLx3KlkaoyTk3jtKlQxJkbcxw1JO1HavkTSys8/C29ZZw+U1tbi1cdHzC11881n\nPtu3T4RidfVQ2dgo1umoJHlPRynPGoi55/LzlbHdl9CKtvfegyFDRJhke+9wV4JNoxH5Zp1dHw0N\nYtLLl1469zr46KOzi4x0xuLFZ0+MvXGjaMf5xFpjIxQVCWEnkUhakWJNYhAeHiIqQoZCKk95uRBq\nSqbHaMVUV0VAYmOFaDQkV1Fp+xIJIEb+v/qq4wdRa2uxjBoFzz8vHnL/8Y8z8cWVlZ2HP7ZHpRIP\ny/pMHNwTcHNTxrMG4O8vPWvGxM9PhDZq8wHb05lgW778/EVkGhvFwMUbb5w5x48ehd9/102sNTXB\ns8+eEZF+fjBw4JmKo7a2nd/QGhth+3YR5imRSAAp1iTdID5eijVToNEoGwIJIkwRuvZ8OTpCWJhh\nYkpp+xIJIOZUa1t8QetFCwiAG28Unz/xhChv3v5h8b//FV6lzjwO2sqRzs4wZYoIFetNBUZAec+a\nzFkzLtu2CW9lV3lgbQVbYaHwPJ/PwwXiOtiyRQxqgBjM0Fb1BHE9dHb+NzWJ9bXhlAMGCE/dihXC\n63b99WeLt/ZVWZubxdQA8gFDIgGgi7rFEknXxMeL55uGhq4rYEu6R0WF8mJNlzBFEL95dzxrStmX\nmJfSykrq6uvR1NRQWVNDXUMDjU1NlHfwg5dVVtLU7uHSSqXC3dn5nHXdnJywtrLCzsYGZwcHXBwc\nsLO1xaODdTl1SoQnNjcL75i1NYwfDxdddP6CILt3i1yc9lhbiwdbtVqUMR8xQjxkakVgb8PDo+MJ\nkI1BQICIca6pEVUKJd1n+XIhmLry8LYVbHfdJaYGKCoSn6lU4ubd0NCxjaYm+PFHsc1VV4n50Soq\nRCUo7ZKSAiUlYn07uzPl/BsbxfQZr74qKlSqVOK6iYwUy1VXiYGVlBQhJPfvF0nLDQ0029igamig\n8YUXODxvHvUtN5DO+pQzX7WZ0vPku9na2ODSxflnbWWFm/aGBdjb2uJkbw+c6Y/OZ0MiMTbyEVti\nMPHxolLwqVOiOIREGZSeEBt0C1MEUVjmt9/E795y/7II+5LuUVVbS05xMTklJRSVl1Oi0bQuxW3+\nLqmspESjobq2lorqaqpqaqjVZcJeBbC3tcXJwQFXR0cc7e15v7SUCc3NpLu48GdEBCejo3Hy9MQz\nMxPP0lK83dzw9/QkQK1uffgChOt68eIzD71agRYUJMTeqFHQv79ZvqPJ8fYWBVSam43vNQwOFnaz\nsvrO8VSSvXtFlS9d0FY//e9/xbQTkZFicuqsLCGoMjMhLQ2ys8+EOdranhF6n34K7u6UjRlDaXU1\npZ6elCYkoOnXj6oJE6grLMQtOxvPnBy8c3MJKSrCua5ObL9rFx/ddRdLXV2pqaujsqbmLNHVtg9x\nAEYBExoamAoMKytj0fz5fGnsY2dEXJ2csLG2Pkvkebq44GBnh6OdHZ7Ozmf+bvO+h7Mzjvb2rX+7\nODri4ewsFhcXHO3szPzNJJaEFGsSgwkOFgNuR45IsaYkFRXKz7trZSXE0fk8X3Fx4t594oQoMmMp\n9iWdk19ayun8fE7n5ZFeUEBWURF5paVkFReTX1ZGVmEhFe1+GGdHRzzd3cXi4YHa0xN/Pz/iPDzw\ndHfHydERF2dnnBwdsbezw8PdHVsbG1xdXFrfA/Bwd0fV7qHf2ckJO234Uwt19fVUtmtDc3MzpWVl\nANTU1lJdU0OFRkN9QwOlZWXU1tVRVV2NprKSqupq9p08yR8aDfuBktJSSg4doqSsjOLSUqraVbZz\nc3Ym0MsLX3d3nikqYnJZGc1ASUAAlcOG4TRhAl4xMUY4+j0MHx+Rz1RWJrxsxsTfX3hxMjKkWDMG\n3t5i/rXcXCGwS0vPDm/U5oVpPV1NTeK3ffppiufNIycggEK1mnwrK/Ld3SkJC6NMo8GmqAiXoiK8\nS0vxrawkvKqK/g0NpL31FoM6Kfzh7uqKo4MDTg4OuKvVOAQEEGJry+DGRmI0GqoCAhgfE4ODvT2u\nLTczT3d3ABzs7XFs8VJp+ws7W1vsnZz4u7mZZ9zc+E+bPFI3V1esu/Bsuzg5Yduuf2lLVXU1tV3k\n7NXU1FDdpr+orqmhpmWy79LyclifwfIAACAASURBVJqbm6mtraWqZeSxrKKCpqam1j6sqamJsvJy\nqqqrqamtpbS8nJLqanIqKynJymq1X1peTnVLv9YR9ra2eLi44OHigqeLixBxTk6tYs7TxQVvN7fW\nxcfdHT8Pj7O8gpLegxRrEoNRqUR0UXIyzJ5t7tb0XioqRASR0mjnQusKPz+RtnDkiP5iSmn7fZXG\npiZS8/JIzsggJTOT1Lw80goKSM3LIzU3l+qWBw1ra2sCfHwIDgjAz9eXhMREJvv4EODnR4CvL/6+\nvgT6++Pl6dkqtkyFna0tdi0Pb21RG0kw1NbVUVRSQnZuLjn5+eTm55OTl0duQQG7Dh7kL2trltfW\ncjA/n8aff4aff8bJwYFwPz8i/PwI9/Ul3NeX2OBg4kJCCPfzw1qXQiQ9DV9f8VpQYHyxZmMjOrLM\nTOPa7auEhsIjjwBQ39BAXkkJeamplKenU5WVhVVREbYlJTiWl+NVVYVPXR2ejY1Y1dVR/NxzDGgx\no1Kp8Pb0RO3hgYebGx7u7nhERopXNzeOtQzQeLi58VvLq/Yz7YBNT8LJ0bHrNnfQDylNaXk5mspK\nSsvKKC0vP/Pa8ndJWVnre8dKSynNyKCktJSC4mI07Qa57GxtW8Wbr4cHPlox5+ZGgFpNgFpNiLc3\nAWo13kqH7EiMhhRrkm4RHw8//GDuVvRuTOFZAyGmzuf5gjMC3dLs93Yam5o4mpnJ4bQ0kjMyOJKR\nQUpWFkczMlrDiIL9/YkIDSU8NJTEsWMJDwkhPDiY8JAQQgIDuxxx7s3Y29kR6OdHoJ9fp+vMA+rr\n68nIzuZ0RganMzPFa0YGB9LS+HH3brJaCmQ42NkRExwsxFuLgBsQFkZMcHDPFnHe3mIUrqAAoqKM\nbz8kRHjWJDpTU1fH6fx80vLzySkuJqOwkJziYjKLisguLia7uJi8khKa2hTG8fP2xketxicgAL9B\ng/BWq/FWq/H19CTUzg61pyeHIiPx8fLCW63Gqiefs70ADzc3PNzcCDZgVLamtpbC4mIKiorIKyig\nsLj4nP/TsrMp+PtvsnJzqWwzYupgZ0eglxeBXl4EtxFy/p6ehPj4EO7rS6CXF1a9rZBSD0SKNUm3\niIuDTz6BnBzTeH/6IqaoBgki57+rSau1xMfDN9/on9aitP3eRENjIylZWew5cUIsJ0+y/+RJKmtq\nsLG2JjQwkH7h4Vw4cSL3xsQQHx3NoLg43ExxovRibG1t6RcWRr+wsA4/r62r40RqKkeOHePwsWMc\nSUnh54MHeWnFCmrr6rCztSUyIIChkZGty/CoKOx7iki2tRUetYICZeyHhIiy7JKzKNFoOJWbe/aS\nl8ep3FxO5+W1CjF7OzvUHh4E+vnRLzycsQMGEOjvT0CLVzzA15fwkBCcZShcn8HB3p7ggACdhV51\nTQ05eXlk5+Wd9XoqLY1dmZn8b88e0rOzaWgJqbW1sSHEx4d+/v4EeHoSqFbTz9+/dYnw8zsn1F1i\nfKRYk3SLqChxfz96VIo1pdBoTONZs7cXhT3OR1yc8PZlZYm8RUux35MprqhgW3Iymw8dYmtyMvtO\nnKC2vh4nBwcGxcWROHw4t952G4kDB5IQE3NOzpfENNjb2ZEQE0NCTAz/aPN+XX09h44eZe/ff4vl\n4EFWfP451TU1ONjZMaR/f5Li4xmXkEBSfDyeprigDcXHR7nJq0NC4Pvv+2QJ4bzS0tZQ5aOZmSRn\nZnIsO5uM/PzWB2MnBwciQkKICAsjbsgQLgoJEZ7ykBDCgoONFhYs6bs4Ojh0OSAF0NjYSG5BAanp\n6a3L6YwMUtPT2bx9O1m5ua3nrLODA/0DA4kJDGwNE48JDiYmKAhnWTHTaPSt3lJidGxtITxcVNyd\nONHcrel9VFWJ5xpTOEzs7XXzfPXrJ9ZNTtZfrClpvydRWF7OhgMH2HL4MJsPH+ZwWhrNzc0kREUx\nbvRo7rn7bhIHDiQ2MhKbPvZQ2xOxs7UlceBAEgcObH2voaGB5OPH2fv33+zYu5fVO3bw2sqVqFQq\nEsLCGJ+QwLiEBKYMHoyXJXlEg4OVyyvr1090aGlpvbbISFp+PgdSU1uFWXJmJilZWZS0zF/n7upK\nTL9+xEZFceG0aUSEhhIREkJ4SAh+Pj5mbr1EIvKbg/z9CfL3J2nEiHM+bxsunpqRwYnUVFJOnuS7\n3bs5uWIF9Q0NqFQqQn19iQkKahVxcSEhDI6I6HCaFknXyKcASbeJiRFiTWJ8tPPTmiIPWFfPl42N\n8KgeOQJTp1qOfUvncHo6q3btYv2BA/xx8CDNwOD4eCZOmsTTI0YwcexYvNVqczdTYiRsbGwYGBfH\nwLg4bp4zB4Dyigp27d/P+s2b2bpzJx+uXUt9QwND+vdnygUXcMmIEYyJizNvjkhoKKxapYztkBAR\nD33iRI8Xa9pQ5SPp6RxOT2fPyZPsOnaM/JY5xzzd3UV48rBhzL7ySuKjo0mIjiYiNFSGjUl6NF2F\nizc0NJCelcWp9HQOp6Rw5Ngxjpw+zfI//ySvsBCAAC8vhvbvz9DISBJCQ4kPDSU+JEReF10gxZqk\n20RHi7mx6uuFp01iPDQa8WqKqCkHB93EFIi8sj//tCz7lkZDYyPr9u3j261bWbNnD3klJQT5+XHR\n5Mksv+8+po4f31rGWtI3cHN1Zcq4cUwZNw4Q4m39li2s3rCBLzZu5JUVK/BXq7lo6FDmJCUxZfBg\nbEw9AXdoqJg0ubISjD0CrlIJ79qJEzB9unFtK0hzczNHMzP5MzmZ7UePsu/UKQ6lpVFXX4+9nR0D\noqMZMmgQz8yaxQUJCVwQHy+vbUmfxMbGplXIafs5LZk5Oew/dIj9hw+z//Bhvty6lVMZGTQ3N6N2\nc2NIv34M7d+fsfHxjI6NxccMlTktFSnWJN0mOloItdRUOd+asdF61kwVBllertu6cXHw3XdiOiZd\n+1Ol7VsCzc3N/JmczLLNm/l261YKy8oYOWQID959NzMnT+aC+HhzN1FiQbi5unLFzJlcMXMmzc3N\nHDhyhNUbNvDTb79x0YIF+Hp4MCcpiesmTGBUTIxpRp7DwkR1n4wMUZrV2ERGWny515q6Ov46cYJt\nR46wLTmZP5OTKSovx8nBgeGDBzNh8mTmJiQwOCGBuKgoGaoskeiAthDKJW1CZsorKth/+DAHjhxh\n/6FDrN67l9d++IGmpiZiQkIYExNDUkICo2NjiQ0O7rPeN9nDSLpNUJDw/KSkSLFmbCoqxGC0KUK8\ndc0pgzPPcCkp0EFIu1nsm5OCsjL+++uvfLhuHadzc0mIjubBu+7iussvJyI01NzNk/QAVCoVg1sE\nwPwHHuDk6dMs+/FHvl65krdXrSLC3587p0/nzunTlZ0fyddXuMHT05UTa6tXW1QoRmNTE7uPHWPN\nnj2sP3CAv44fp66+nkBfX8aOGMHTF1/MmGHDGDJggBRmEokRcXN1ZfyoUYwfNar1vdLycv7cvZvt\ne/awdedOli9dSlVNDd7u7iTFxzMjMZHpiYmEdzEVS29D9jqSbqNSiRwjmbdmfLRzrJliMEnXnDIQ\nnr6QEJFXpo9YU9K+Odh/6hT/t2oVX//xB06Ojtx67bXceNVV0oMm6Tb9w8N5au5cnpo7l/2HD/PF\nihUs+uYbnl22jOsnTOCBWbMYFB5u/B2rVKLISHq68W2DEGsNDcK+GfPWcktK+HXPHn7du5d1+/ZR\nXFFBWFAQ0ydO5J577iFpxAjCQ0LM1j6JpK/i4ebGzMmTmTl5MiDy4PYdOsSff/3Fxq1beeSTT7j7\nnXeIDQ3lohbhduGAATjY2Zm55cohxZrEKMTEwObN5m5F76OiwjQhkAB2drqLKRB5ZYcPW459U7Lj\n6FHmf/EFvx84QEJ0NIufe44br7oKJ0dHczdN0gvRetyeffRRvlixgv/76CM+uv9+Jg8ezAs33sjI\nmBjj7lCbV6YEwcHg5CRCIU0s1tILCvj6jz/4dts29p88ib2dHeNHjuSphx9mxsSJxCkxEbhEIukW\nNjY2DB88mOGDB/PgHXdQV1/P1p07+fWPP/h1wwbe/PFHHO3tmTJ4MNeOH89lo0bhZG9v7mYbFSnW\nJEYhOhqWLzetuOgLmGpCbNB90motCQmwfr0QYLr0i0rbNwXHs7OZ//nnfL9tG+NHjmTd8uVMTkrq\ns3H0EtPi7OTE3TfdxF033sj6LVt47o03GP3II/wjKYkXbrqJSGNNdhkTA3/8ocx8aFZWZ0ZiLrnE\nuLY7oESjYcW2bXz5++9sPXIETzc3/jFrFs8vWMCEMWPkAItE0sOws7VlUlISk5KSePWpp8jMyeHX\n33/nh9WruemNN3C0t+fy0aO5fsIEJl9wAdZWVuZucreRYk1iFGJiRE768eOQmGju1vQeTCl+9QlT\nBCGmGhrEbz5ggPntK0lNXR3zP/+ct1etIioigv99+imX9qZ5BSQ9CpVKxdTx45k6fjw/rV3L488/\nT8K99/KvSy/l+Rtu6H44UFwc1NUpNx9aQgL89JPx7bZhw4EDvPvLL/yyezdW1tbMmjaNHx99lBkT\nJmBrIblyEomk+wQHBHDHdddxx3XXkV9YyPKffuLrlSuZ/vTT+KvV3DhxIvfOnNmjc9x6vtyUWATu\n7uDnJ/PWjI1GY5qy/aC/mPL1BR8f3UMVlbavFH+fPs3whx7ik40beeellzi4caNJhFpNbS1PvfIK\n/UePxiYkBFVgIKrAQMX329fYvX8/E6+6ymj2Jl51Fbv37zeavfMxa9o0Dm7cyJLnn+fDdesY8fDD\nHO5uvllIiOh4lKraOHAglJRAVpZRzTY2NfHZhg0MvP9+pjz5JAUNDSxdtIjcAwf45v33uXTqVCnU\nehHtr13ZZ56LqY6Jqfu9zvD19uZft93G9lWrOP7nn9x9660s27aNyDvv5KqXXmLvyZPmbqJBSLEm\nMRqRkcqlOfRVKipMMyE2CDFVXw9NTbpvk5Cgn1hT0r4SvPvLL4x46CE8fHzYv349d15/PdYmmvdq\nwaJFvPDWW9x2zTWUHzvGb8uWmWS/fYkPv/6aaddcw4N33NH63rjZsxk3e7bBNh+4/XamXnMNH3z1\nlTGaqBM2NjbcdeON7F+/HlcvL4b/+98sXbPGcIPaqlEpKcZrZFsiI0Vc9KFDRjO5fMsW4u+9lzuW\nLCFx2DD2rl3L5h9/5OY5c3CTsfndPq8tjY6uXdlnnoupjok5+r3zERkezoKHH+bUzp189e67pFVU\nMGzuXC5/4QWSMzLM3Ty9kGJNYjSkWDM+2mqQpsDBQYSy1tXpvk18vKjY2NhofvvG5vFPP+X+99/n\n8X/9iz9WriQsONik+1/eEiZ2z8034+ToyLQLL6Q5O9ukbejNrNm4kX8++ijvv/oqs2fMaH2/qamJ\nJn1GFNpx+UUX8c6LL3LXY4+xZuNGYzRVZ8JDQti0ciWP3ncf97z7Lk9+/rnhxuLi4OhR4zWuLTY2\nInbeCGLtaGYmk558kusWLWLUqFEc3bKFz5YsYYi5Y6ctjO6e15bkpers2pV95rmY6piYs987H7a2\ntlw9axa7f/2Vnz79lLTyci7417+Y98knVOvzQGJGpFiTGI3ISCgsFNEtEuNgSrGmrSNQX6/7NgkJ\nomjI6dPmt29Mnv/mG17/4Qc+X7KEBQ8/bDJvWlsyWm6oag8Pk++7t1NXX89djz3GmGHDuHrWrLM+\n2/bTT2zrZj7V9VdcwcjERO6eN496fU54I2BjY8N/HnmEj994g1dWrOCl774zzFBcHOTkQHGxcRuo\nZeBAOHhQjOAYyGcbNjBs7lzKGhvZ/vPPfLZkCf2VmM6gF2CM89oS6OralX3muZjymJiz39OVS6ZO\nZfevv7L42Wf577p1jHjooR7hZZNiTWI0IiNF9EwPDQm2SExZDVIrphoadN8mNFS0T5dQRaXtG4tf\n9+zhma++Ysnzz3PDlVeabsft6M4ouKRrvv/lFzKys7nu8ssV28d1l19OelYW369erdg+uuKWq69m\n8XPP8eTnn7Nu3z79DSQkiPk2DNlWF4YOhaIiOHXKoM1fWbGCWxcv5vbrr2f7L78wYsgQIzdQYol0\nde3KPvNcTH1MzN3v6YK1tTX33nILBzduxM3Li9GPPMK2I0fM3awukWJNYjRcXUVRCBkKaRxqaoQX\nytRiTZ+QQ5VKDMDrI9aUsm8MaurquPPtt7nmssu45+abTbPTDmgbbqQNP3r8hRcAKCsv598LFtBv\n1CgcwsPxio9nzKWX8sizz7KrzYO1rusB5Obnc9djjxGcmIhdWBjBLaOjeQUF57Sro3AoXd4/efo0\nV9x+O56xseesW1Nby8tvv82QqVNx7t8fh/BwYseN4+5589ixZ89ZNvMLC7nn8cdb2xo0ZAj/fPRR\ncvPzdT6+P/32GwDDLrhAp++hzzHSMrzFtnZf5uD+W2/lH5dcwp1vv02tviPddnZCsLU7/kYjMhK8\nvGD3br03ffX773ny88/56I03eOu557Cz8KIhul4H+pzbh1NSmHnDDbhERuIWHc30a6/lyLFjHZ7D\nnZ3XuvYRHdm64+GHz7Kla9t1PRad0dW1234f2j5TieOv67r6HGNj961dHRN9voM+v5kl9Hu6EhIY\nyMbvv2fiuHHMWLCg+4WZFESKNYlRkXlrxqOiQrxachgk6F4ERGn7xuCL33+nsLyc1xcsMM0OO6Ft\nTkFzdjbN2dm8/OSTANz84IMs/uADHrzjDoqOHCHnwAE+WbyYU2lpjLz44tbtdF0vNz+fETNnsmrd\nOj5fsoSiw4f5bMkS/vfbb4y8+OKzxEhnuQ66vH/P44/zyD33kL1/P6u//LL1/QqNhnGzZ/PikiXc\nd+utnNqxg8LDh3n/lVfYvGMHoy+9tHXdvIICRsycyQ9r1vDxm29SfOQI37z/Pms3bWLMrFmUlpfr\ndHz3teRKtc9D7Ox76HOMtGht7zNiEQ1DeOM//yG3pIQvf/9d/42HDoW9e/WrCqQrKhUMG6a3WNt3\n8iRPfv45i555hluvvtr47VIAXa4Dfc7tk6dPk3TZZRw4fJifPv2U7H37eOahh/jno492uM/Ozmtd\n+4iO+qMPX3/doLbrciy6Qpdrt32faezjr8+6hhzjzr5XZ+939p26OiZK/WaW0u/pir2dHd8uXcoF\nCQlcu2gRjRbqnZViTWJUpFgzHlqxZslhkCDEVGkpnC9nWWn7xmDFtm1cNn06ARY8H8vvf/4JQJC/\nP85OTtjZ2hLTvz9vv/iiQes9s2gRGdnZvPLUU0xKSsLVxYXJSUm8PH8+aZmZLHjtNaO0e/4DDzBm\n2DAcHRy4aNKk1geAha+/zl8HDvDcY49xx3XX4efjg4uzMxPGjOGrd945y8aC114jLTOTF594gmkX\nXoiLszPjRo7kzf/8h9T0dBa9+65ObcnKzQXAw91dp/UNOUaeLTki2n2ZiyB/f2ZNm8aKlvNBLxIT\nRSy2UnOyjBghbOuR6PzK998zZMAA5t55pzJtUpjOrgN9zu2Fr79OaXl56/no4uzM2OHDmf/AA3q1\nRdc+4nwYel12diy6Qt9rV9d96vMd9FnXWMfYkO/UFUr9ZpbS7+mDra0tn7z1FofT0vhp505zN6dD\npFiTGBVtkZHSUnO3pOejFWumKt1vqJiKjBRl+c/n/VLavjE4kJrKmOHDld9RN7hy5kwA/vHPfxI6\nbBh3PPww3/70E95q9Vk3Tl3XW7V+PQCTkpLO2s+U8ePF5+vWGaXdneUUrVi1CuCsqm5ahgwYcFZb\nf167FoCLJk48a73xo0aJz3Vsa1V1NYDO4XOGHCOtbe2+zMmY4cM5kJqq/4ahoSK2fe9e4zcKYMgQ\nEW6pR6jlhgMHuGnOHFQqlTJtUpjOrgN9zu11mzcD556P+vZduvYR58PQ69KQPEN9r11d96nPd9Bn\nXWMd464w5Dgq9ZtZUr+nD1EREYwdNoz1FjBXXEdIsSYxKpGR4lUWGek+Go2IFHJ2Ns3+DBVT2irc\nSok1Xe0bg4rqatxMFXdqIB+/+Sbff/ghV158MZrKSj5atoyr776bqDFj2N/mIOm6XkFREQDeavVZ\n+9H+n9/yeXdxcnTs8P2clvwIf1/f89rQtiVwyJCz8ii8ExIAER6mT1vqdIzJNeQYaW139r1Nibub\nG+WVlYZtPHSoQXllOmFnJ6pC6jia3djURElFBX7e3sq0xwR0dj7oc24XtlTobH8+eug5sqdrH3E+\nDL0uDbk29L12dd2nPt9Bn3WNdYwN+U5dodRvZkn9nr74+/qSX1Zm7mZ0iBRrEqMii4wYj4oKIdSs\nTHSVGiqmQMyHppRY09W+MfD39GwtdWzJXDFzJis++IDCw4fZ/MMPTJ8wgfSsLG6dO1fv9Xy9vIAz\nD4BatP9rP9ei9Wi0Lc1cpmOuWEdoH7xz8vJ0Xrc4Obk1B6PtUqnjKFGQvz8ApTremPU9RgAlLeEF\n2n2Zk/TMTAI6aKNOjBwpOnQdfh+DGDtWeNZ0EJPWVlaE+/sb7SHXktDn3NaKtM7OR33QtS8xVtu7\ni77Xrq7o8x30/b66HmNj963G+r76YEn9nj40Nzez/9AhogICzN2UDpFiTWJ0+veXnjVjUFFhunw1\n6J6YSkg4/5RMSts3BuMTEli9YYOyO+kmqsBAMnNyALCysmLcyJEsf/99AJKPH9d7vUunTQNgw5Yt\nZ+1nfUuolfZzLVoPWE6bimHdSSa/siXJ/sdffz3nsx179pyVhD/7oosA+KOD/KstO3eeVYykK7QT\nJqdlZuq0vr7HqK3twS0j1eZk9YYNjDe0HUOGgLs7bNpk3EZpGTtWvG7bptPq1194IR98+SVFvWxC\nT33O7WkXXgicez5u09MDqmsfAWc8JfX19VRVV7d6YPRte3fR99rVFX2+gz7r6nOMjd23doVSv5kl\n9Xv68P0vv3AiLY3r24WFWgpSrEmMTkQEGJIeITkbjcZ0lSABtCkAhoipuDiwtobkZPPZNwa3TpnC\njr172bR9u7I76iZ3PPwwh1NSqK2rI6+ggFdaCnFMnzBB7/X+88gjhAUH8/gLL7Bx61YqNBo2bt3K\nEy+9RFhwMAvbleie2pKntejddykrL+foiRN8+PXXBn+XhY88woDYWJ5ZtIgPvvqKvIICNJWV/PbH\nH9z0wAO8+MQTZ9Z9+GGiIiK4b/58VqxaRVFJCRUaDavWreOWuXN5ef58nfapFVd/HTig0/r6HiOA\n3S22Z02frtM+lGLj1q3s2r+f26ZMMcyAtbUQVIZUk9QFJycYPhz++EOn1ededhmONjbceP/9Fjvx\nriHoc24vfPhhPNzcWs9HTWUlW3ftYukXX+i9X137kkHx8QDs2r+fn9etY/SwYQa1vbvoe+3qir7H\nX5/vq+sxNnbfaqzvqw+W0u/pw7FTp7jr0Ue5fdo0EkJDzd2cDlE1Nzc3G7rxnDlzyMmBxx//1pht\nkvRwduyAF16A5cvFfVhiGEuWiGItzz5rmv3V1sKVV8Izz4gibfrywAMwaBDccYd57HfFJZeoWD5v\nHnPGjTvvujMXLuRkURF7163D2UwncEfzDWmT0bft3s0HX33Fpu3bycrNxcnRkfDgYObMmsXcO+9s\nHQHXdT0QZZwXvPYaP69dS35REb5eXlwydSrPPvoofj4+Z7WjsLiYB59+mnWbN1NVXc2ksWN556WX\nCG3z8KZta1ffoy2aykpeeecdvvv5Z1LT03F1cWHooEE8NXcu40aOPGvdkrIynl+8mB/WrCEzJwe1\nhwcjBg9m/gMPMGroUJ2Ob119Pf1HjSI8JIQtP/7Y+n779rZtqz7HCGD0pZeSmZ3NyR07zDYPmKay\nksSpU4nx8+Pnp5823NCRI/DYY/D22xAebrT2taK9aXzyCeiQj7YzJYWpTz/NhWPGsOy993AxVWKv\ngeh6Hehzbh9OSeHR555j844dWFlZceHo0bz17LP0Hz0aKysrGtt4njo7r/XpI/46cIA7Hn6Y46mp\nDIqP57O33iK6Xz+9267rsegMXa/dtnaVOP66rqvPMTZ233q+dZT4zSyh39OHA0eOMOPaawn38mLD\nCy/gZG+v03ZzXn6ZHAJ00j+XXKJi+fLlzJkzx9BmfifFmsTo5OXB7bfDa69BbKy5W9NzeeEFkX/f\nZuocRWlshMsug/nzYcwY/bd/7z0R/tpZpXel7XeFPmItq6iIIQ8+yMhhw/jh44+x0cZvSnoVv6xf\nz6U338yy997j6lmzjGr7q5UrufFf/+Lnzz7jYkM9Wt2kvr6e2bfeyl9797JvyRIC2xWj0IvmZjFK\nMn48KDFZfEMD3HijGM256iqdNtmZksKlzz2HWq3mm6VLe1zYlRJk5+URNGQIvt7e5B08aO7mKIaS\n167EcCyh39OV5uZmln7xBQ8tXMjomBh+fOopXPUoimJqsSbDICVGx9dXeNRkKGT3MHXOmrW1qD7Z\n2GjY9rGxog5BXZ157BuLIC8vfnrqKX7fupUr77iDmtpaZXcoMQsXT5nC+6+8wt2PPdZhvpyh/LBm\nDfc+8QTvvfyy2R5YqmtquOL229m8fTurFizonlADceEmJcHmzUK4GRsbG2Ffj1DLkTEx7HvrLfyc\nnBg+YwYPLVxIuXa+kz6AKjCQE+0q9m3esQOAiYaMhvUglLp2JYZjCf2erhxMTmb87NncP38+D8+e\nzW/PPquXUDMHUqxJjI5KJSJlpFjrHqbOWQPxzGRoGkhcnBgg76oSqNL2jcWo2Fg2vvgi23bsYNj0\n6RxUOllOYhb+ecMN/LZsGYs/+MBoNt/68EPWffMNd914o9Fs6kPy8eOMueQStu3cyW/PPsvwqCjj\nGJ48WYRN7NtnHHvtmTIF0tJEyKWOBHl58cdLL/HRgw/y5bffEjFiBAtff12xCnqWxn1PPMGptDQq\nq6rYsHUr855/HjdXVxY+8oi5m6Y4Sly7EsMxd7+nC6fS0rjrscdInDqV6tJSti1axHM33ICNtbW5\nm3ZepFiTKIIsMtJ9TO1ZzV2FTgAAIABJREFUAyGmDCkAAuDvD2p110VAlLZvTEZER7Nn8WI8bW0Z\nOXMmb334oWl2LDEpI4YM4Y/vvzeavT++/96gSWqNwefffcfwGTOwa2xk9xtvMCYuznjGQ0NF0ujP\nPxvPZltiYsTy0096baZSqbhp0iRS3n+f+y66iDfff5+IESOY9/zzpGdlKdNWC2D9t9/i4uzMmFmz\n8IiN5dp77mHU0KHs/OUXYrUTnvZyjH3tSgzHnP3e+fjjzz+ZfeutRI0dy7YtW1j22GPseuMNRsbE\nmLtpOiOTMSSKEBEBGzeKiJmWqUMketLTxBqIUEWlxJou9o1NmK8vv7/4Igu//pqHFy7k57VrefXp\np0kcONB0jZBIzsOegwd57Lnn2LR9O/PnzOGZa69VZrT40kvhxRchKwuCgpSx/8YbwoPn56fXpp4u\nLjx7ww3Mvewy3l+zhneWL+eNpUuZOn48111xBbNnzLD4QiT6MDkpiclJSeZuhkRikaSmp/P1Dz/w\n9cqVHDl+nKSEBL6dN4/Lx4zBqgc+lErPmkQRIiKguhpyc83dkp5JXZ1YzBEG2V0xdfSo+ewrgY21\nNc/feCNbXn2VysJChl90Edffdx+p6emmbYhE0o5TaWlcd++9DL/oIqqLi9n66qs8q2RYz8iRIil5\n9Wpl7CclCff5mjUGm1C7ujJ/zhxOf/QRXz3yCDZVVdz273/jP2gQ1993H6s3bKChO52QRCKxSAqL\ni3n3009Juuwy+o8ezVtLlzIpJoa/Fi9myyuvcOXYsT1SqIH0rEkUIixMeNROnwYLnRDeotGmXPRE\nz1ppqZjAuqPfXWn7SjI6NpY/Fy1i5Z9/Mv+LL4gbP54brrySf91+Oxe0zEEkkZiC/YcPs+TDD/lq\n5Uoi/P1Z8cQTXGGKohJWVjBzJnzzDVx/vfHnZrGxgRkz4Mcf4ZprwMHBYFO2NjbMGTeOOePGUVRR\nwbdbtvDVpk1cctNNeHl4MGPSJC6aNImp48fj4+VlxC8hkUhMxaGjR/n199/59fff2bxjB3Y2Nswe\nPZr5CxYwbciQHpGPpgtSrEkUwcFBPEynpsLo0eZuTc9DoxGvPU2sRUWJya+Tk5URa+ezrzQqlYor\nx45l1siRfLphA4v/9z8+WraMiWPG8K/bb2fWtGlY95Kbg8SyaGxs5H+//caSDz9k044dJISF8c7d\nd3PLlCmmfSCZNg2++kpUbrz4YuPbnzEDvv1WTJI9Y4ZRTHq5unLPzJncM3Mmp/Py+HbrVn7du5db\n/vc/GpuaGDZwIDMmT+aiiRMZPniwvIYlEgulvKKC9Vu2CIG2cSMZOTl4u7szdfBgPp07l8tGjcK5\nG4M8looUaxLFkEVGDEdbgdrUYZC2tt0TU7a20L+/CFWcNMn09k2FrY0Nd06fzh3TprF+/37e+vln\nrrrzToL9/bnuiiu47vLLGWjM4g6SPsvB5GS+XrmSr1euJCsvj4uHD2fd888z+YILUJkjpMfVVVRu\nXLFCCDdjT3zr4SEu7u++E/sx8jyH4X5+PHbllTx25ZVUVFez4cABft2zh8+++opn33gDTzc3xo4Y\nwZjhwxk7fDjDBw/GsRc+/EkkPYHc/Hz+/Osvtu3ezZ+7dvHXwYM0NzczPCaGOyZNYsbQoQyLiuqx\n4Y26IsWaRDHCwsS0PBL9qagQYaQ9LWcNRIn9/fvNY9/UqFQqpg4ZwtQhQzienc1Ha9ey7LvvePnt\ntxkQHc21LcItPCTE3E2V9CBOpaWx7McfWfbDDxw+doxwf39uGDeO26ZNI9IS4sqvuQbWr4fffoNL\nLjG+/auvhg0bYN06uOgi49tvwdXRkdmjRjF71CgAjmZmsnbvXrYlJ/POBx8w/6WXsLWxYejAgYwe\nPpykESMYPXQoAXoWP5FIJOenqamJI8eOsW33biHOdu/mZFoa1lZWDIiIICkujrnTpjFl8GC8TB12\nZGakWJMoRkiIyC2qrzf+4Gtvp6ICHB2NPqh8Xqytuy+mYmNFykllJbQvvqa0fXMSFRjIy7fcwsu3\n3MKeEyf4fONGlixdypMvv0y/0FAumTqVS6dNY/yoUdjJC0LShsbGRvYfPszP69axau1a9h46hKeL\nCxcPH87im24ynxetM9RqIaK+/RamTgV7e+Pa9/ER9pctE142Y9vvhNjgYGKDg3lg1iwAsouL2Xbk\nCFuPHGHXtm28/fHH1Dc04OnuTnx0NEMHDWpd4qKisLKSNdskEl2or6/n2KlT7Dl4UCwHDnDgyBE0\nVVU4OzgwuF8/rho+nLE330xSfDyeph65tjCkWJMoRmgoNDaKKs/h4eZuTc9CozF9vhp0P0wRICFB\nTNlw7Bi0n3ZFafuWwtDISIZGRvLabbex8eBBVv/1F6vXrGHJRx/h6ebG1Asv5KJJk5gwZoz0uvVR\nUtPT2bR9O2s2bmTtpk2UlpcTFRzMzMREXpozh4mDBll2cvycObB2LfzyC1xxhfHtX321sL9mDcye\nbXz7OhCoVvOPpCT+0VIiv6K6ml3HjrH3xAn2p6ayft063vnkExqbmnB1duaC+HgGDxjA4AEDSIiO\nJiYyEk93d7O0XSKxBJqbm0nPyiLl5En+Tk5m/+HD7D90iKMnTtDQ2IiLoyMX9OvH4IgIbhk9mmFR\nUQwMD8daDnychRRrEsUIChKeofR0Kdb0xVxizRhhih4eYoqk5ORzxZTS9i0NWxsbpicmMj0xkbf+\n+U+OZWWx+q+/WLNnD/fMm0dNXR3B/v6MHz2apBEjGDdyJPHR0XKEvpfR1NTE4ZQUtuzcydZdu9i8\nfTtZeXk42NkxfsAAFl5zDTOHDSMqMNDcTdUdd3cRArlihfCCOToqY//bb2H6dOPbNwBXR0cmX3AB\nky+4oPW96ro6/j59mn0nT7L/1Cn+2rGDT5Yto7KmBgBfLy/ioqKIiYwkpn9/8Xf//oSHhMjrXNJr\nqK6pIeXkSVJOnuTo8eMcPXGClBMnSDl5kqqWa8FfrWZwv35cMmgQT8+ezeB+/YgMDOz1+WbGQIo1\niWLY2IiKfXI6Kv0pL++5Yg1EXllH86Epbd/SiQ4KIjooiLmXXUZNXR27jx9n86FDbE1OZt5vv1FR\nVYXa3Z2RiYkkDhpE4sCBJA4cKL1vPYzU9HT2/v23WA4eZOfevZSUl+Pm7MzYuDjunT6dcQkJDI+K\nwsHOztzNNZwrrhBzrv3wA1x3nfHtX3ml8KwpZd8IONrZMSI6mhHR0a3vNTc3k5afT0pWFkczMzma\nkUHK33/z0+rV5BYXA+Bgb09UeDj9wsMJDwkhIjRULC1/96YJvCW9g9z8fFIzMkhNT+d0y2tqejon\nT58mLSuL5uZmbKyt6RcQQGxQEFNjY7l/yhTiQkKICQpC3cfyzIyJFGsSRQkNlWLNEDQa0xcXAeOJ\nqdhY+OILEa7YdtBMafs9CQc7O8YlJDAuIQGAxqYmDqSmsuXwYXYfO8bKH37gpf/7P5qamlC7u5M4\ncCBDL7iAQfHxxLaM0jsbe54riV5UVlVx9MQJjp44wcEjR9j799/sOXiQkrIyrK2siAkJIbFfPxZe\ncw3jEhIYFBHRu8J7XF1FuOKXX8LEicafT0Np+wqhUqkI9/Mj3M+P6YmJZ31WWllJSmYmRzMzScnM\nJDUvj51bt/JNXh55JSWt63l7egrhFhZGeEgIYcHBBAcGEujnR5C/P34+PtIzJzEaNbW1ZOXkkJ2X\nR1ZuLlk5OaRmZHC6RZClZmRQ3eIhs7WxIcTHhwh/fyJ8fZk8eTIxQUHEhYTQPyAAO1Mn2/cB5BGV\nKEpICGzdau5W9DwqKiA42PT7tbERBWG6S1SUKACSkwNtI7uUtt+TsbayIrF/fxL79299T1NTw/5T\np9h74gR7T55k9erVvLF0KfUNDahUKsKCgojp35/4mBhiIyOJjYykX1gYgX5+8kHOSDQ1NZGVm8up\ntDRSTp4k+fhxko8d4+iJE6RnZ9Pc3IydrS2xLcJs1jXXkNi/P4P79euV8/2cw2WXiTnRliyBF180\n/uiJ0vZNjIezMyNjYhgZE3POZ1W1taTm5ZGamyteW5a1R46Qlp9PiXZOF8DG2ho/b2+CAwMJ8PMj\npOU1yN+foIAA/Ly98Var8VarsZEPz32WqupqCouLySsoILeggKycHHLy88nIyiK35TUnP5+i0tLW\nbaytrPDz9GwVY4lDhxJx8cVE+PkR7utLiI9P7xp06gHIK1iiKKGhsiKkIVRU9OwwyIgIYev48XPF\nmpL2exsuDg4kxceTFB/f+l5DYyMnc3I4kpFBSmYmyRkZbN20iQ+//JKKqioA7GxtCQsKIjwkhPDQ\n0NYwq7Dg4NZReQcTVdizdGpqa8krKCArN5fTGRmtS2p6OqfT00nPzqauZYTBzdmZmOBg4oODmTBl\nCrEhIcSHhNDP39+yi4EoibU13H8/PPwwbNoEEyb0LPsWhJO9PQmhoSSEhnb4eXVdHVlFReQUF5NR\nUEBuaSkZBQXkFBezb9cuVhUVkVNURE1d3VnbeXt64uPlJcSblxf+vr5n/ler8ffxwdPDAw83Nzzc\n3fFwczPF15XoSX19PaXl5ZSWl1NSWkphcTEFRUVCjBUWUlBUREFhIYVFRa3/V1ZXn2XDw8WFIG9v\ngtRqAjw9SRwyhABPT0J8fPD39CTY2xs/Dw8pxiwMKdYkiiIrQhpGRYX5wiDb9e0GYWcn5tk7fhwu\nvNB09vsCNtbWxAQHE9OB6zWrqIjUvDxOt4zIn87L48ShQ6zfuJGM/HwaGhtb1/V0cyPAzw8/Hx+C\nAgLw9fYmyN8fL09PPD08UHt44Onu3vp3TxF31TU1lJSVUVJaSnFpaevfRSUlZOXmkldQQHZuLnn5\n+eTk51NSXt66ra2NDcE+PkT4+hLu68uF48YR7udHhJ8fEf7+BKrVZvxmFkx0NMyYAR9+CMOGGb/z\nUtp+D8HRzo7IgIDzzrVXWF5OfmkpheXlFJSVkdfm74KyMpKzstjS8n9hWRmNTU3n2PB0czsj3loW\nd+17Le87Oznh7uqKk6MjDg4OeLi5ib/t7fFwd8fRwaHH9BtKUl5RQU1tLZrKSioqK6mpqaGispIK\njYaa2loqNBrKysspq6gQYqys7OylRaC1F14Ajvb2eLu74+fhgY+bGz5ubsSEh+M7eDC+Le95u7nh\n6+FBgFqNY0/Oke3DSLEmUZTgYDEwmpEhxZo+mKsapJWVyAMzBlFRQkyZ0n5fJ8jLiyAvr7M8cVoa\nGhvJKSkhs7CQ/NJSsouLySstJae4mJzMTI4dOkR2cTHFFRWt1bva4ujggKebG2oPD+zt7fH08MDO\n1hZnZ2ecnZyws7XF090dW1vb1uIINtbWuLZ7sLa1tcWlXa6dpqqK+nbxsRUaTau41FRWUl9fT0lZ\nGXX19VRVVqKpqqKuvp6S0lJqtAKtvLw1r6ItTg4OqF1dCfLywtfdnWi1mvHh4fh5eBCoVuPn4UGQ\ntzcBnp5910PWXW65BXbsgE8/FZ6wnma/F+Hd8oCuKwVlZZRWVopFo6G0spKSllft/2VVVeQXFnKs\nzXpVtbWUajRd2lapVHi4urYKN08PDwCcHB2xt7dHBXi0vNdW3GmnPLC3t8epXSVQV2fnTkM7ra2t\ncetEzDc2NVHeJpS0PdU1NdTU1p71Xll5OU1NTdTV11PZErlQXlFBY1MT9fX1aCorAdBoNNQ3NFBX\nV0dlVRXlLUJM07JNZ9ja2ODi6Ii7szMeLYu7kxPezs5EBgbiER3d+r6Hi8uZv52d8XF37xuh1hIp\n1iTKoq0ImZYG48aZuzU9g4YGqKkxz+CxlRV0MMhqEFFR8Pvvwp42okJp+5LOsbG2JsTbmxBv7/Ou\nW1NXR4lG07oUt/m7RKNp/byuoYHKkhLycnKoa2igtLKS2vp6qloeeGrq6qhuF5JVU1dHdbsHIkd7\n+3OqIjra2bW+5+zggJ2NDZ4uLoQ0NLD4xAneHjyYQnd3PP38cLCzw9PFpXVRt/nb08WlZ1dc7Ck4\nO8M//wmvvgqjRgkPWE+y34fxcXfHpxvzwVXV1lJTV0dpZSVVtbVU19VR1sXfIOasa2hsFAKqpbBK\nYW0tdQ0NNDU1UdYicqpqa6ltM5DT1NzcaqMjAmpria2r4wegGYgC4oH/tXzu7uzcaT6vjbU1F1tZ\ncZ9GwzVeXjQjpmuwsbYWA08totHFwQFba2vsVSp8WwamnNRq7G1tW9dzcXDA0d4eV0dHXB0dcbCz\n6/BvOTgk0QUp1iSKExwswiAluqEd+DOHZ02lMq7nq7YWMjNFOKwp7EuMg4OdHQFqNQGWGPbX3AyP\nPsoLZWUwf36PLzjRqxg3DnbvhjffhP/7PzD2+aO0fYlBONnb42Rvbxml2VeuhB9/hM8/F///8ov4\ne/ly3bY/fRruv58T//43dBChIJGYAzkeLVGcoCDIzjZ3K3oO2kFDc0yzY0zPV1iYyC07dsx09iV9\nAJVKhMEdOwZr15q7NZL23HuvGGl69VXjXeymtC/p2aSmQr9+Z/4PCxM31Zb57c5LeLhYNm1SonUS\niUFIsSZRnMBA4Vkzlkelt6NNATBXDr2xfidra3HPPHHCtPYlfYDwcLj0Uvj4Y90fwiSmwcEBHnlE\nzFr/9dc9z76kZ3PqlCgXrCUsTLympelu48ILYfNm45QulkiMgBRrEsUJChI5WG3m+5R0gTnFmjE9\nXwCRkeLeaSr7kj7EDTcID8tHH5m7JZL2REbCPfeI0LONG3uefUnPpL5ejAy39ay5uoKHB6Sn625n\nwgRxI963z+hNlEgMQYo1ieJo58GSoZC6odGIwizmKPJk7PSfiAghprTeNKXtS/oQ9vbigX3TJti1\ny9ytkbRn+nS44goxmfXBgz3PvqTncfq08Ia19ayB8K7pI9Z8fCAuTkzGLpFYAFKsSRRHrQZHR1lk\nRFc0GvPkq4HxPV/9+gmvak6OaexL+hhDh4qiE++/L04EiWVxyy0wfDi89JLIJepp9iU9i9RUMcoZ\nFHT2+6Gh+oVBAkycKKaKkP2KxAKQYk1iEgIDpWdNVyorzZevZsxqjSAGNK2tz4QqKm1f0gf55z+h\nqgqWLTN3SyTtUalEflm/fvDkk8Lz0ZPsS3oWqakin7V9CEdoqPCs6XPzSUqCxkYh2CQSMyPFmsQk\naIuMSM6POT1rxhZTdnZikFM76K20fUkfxNMTbr5ZlOs+edLcrZG0x94ennlGjKwoIaiUti/pObQv\nLqIlLEwM6BQV6W7L1RUSE2UopMQikGJNYhJk+X7dMadnzdhhiiAGvbWeL6XtS/ooM2ZATAy8/bYs\n526J2NvDggXCwzFvHhw40LPsSyyf5mYh1NsWF9GinYhTn7w1EIVG9u2D0tLutk4i6RZSrElMQmCg\nyCuSz1HnR6PpPWGQcKYIiCnsS/oo2rnXUlNh9Wpzt0bSEQ4O8OyzMGKE8IStWdOz7Essm7w8MdLZ\nkWfNxUUkz+sr1kaOBFtb2LrVOG2USAxEijWJSQgMFFV1CwrM3RLLp7Ky9xQYATHQWVQkBieVti/p\nw4SGiuqAn30GhYXmbo2kI2xt4aGH4Kqr4N13YelScWPoKfYllsvx4yKBuSOxBoYVGbG3h9GjxZxr\nEokZkWJNYhK0xZlkKOT56Y2eNRARKkrbl/Rxrr0WvLzEQ7rEMlGp4MYb4bHHYMMGUSDEmAnNStuX\nWCbJyeJmYG/f8efaIiP6MmaMsC0nipWYESnWJCbB1VV4i/LyzN0Sy8ecYk0Jz5eHB7i7i/uk0vYl\nfRxbW7jvPlHBTVZxs2zGjYO33hKdwoMPigIxjY09x77EskhOFnOjdUZYmPCs6TtamJgoKlnt3t29\n9kkk3UCKNYnJ8PGRYk0XzCnWQJkJpkNCzogppe1L+jgDB4o5kt59V8QUSyyXgABYtOhM+OpDD4lw\ntp5iX2IZ1NWJfNXY2M7XCQ0Vc6bpGyJtbw8XXCAHfyRmRYo1icnw94f8fHO3wrJpbhYVhs2Zs6aE\nmAoLO+NZU9K+RALAnXcKL8pXX5m7JZLzYWMD110nxLWrqxBUL79svNBFpe1LzM/x49DQcH6xplLp\nn7cGMGqUqApZXW14GyWSbiDFmsRk+PpKz9r5qKwUYkZ61gy3L5Hg6gq33go//wxHj5q7NRJdCAiA\n556D+fPFxXzvvbB4sWEP1+awLzEfR4+KeHg/v87XcXY2rCIkiAqjjY1CsEkkZkCKNYnJ8POTYu18\naDTi1Zw5a0qIqdBQ8d1qa5W1X1xsfNuSHsrkyTBokJh7raHB3K2R6IJKJarvvf22yDNLSRFTMjzz\njMgZ6m7Cq9L2JebhfPlqWgwtMuLhIbx2MhRSYiakWJOYDD8/UV69ttbcLbFctCk25gqDVKmUeV7R\nzklaXq6s/YwM49uW9FBUKlFsJDtbeNgkPQcrK5g0SYQuLlggvBrPPgu33AIff9z9iRWVti8xLSkp\nXYdAatEWGTGEUaOEoJdFaiRmwMbcDZD0Hfz8hFclP1+ErUnOpbd61jw8wM0NysqUtZ+eLnLBJRJA\nTPA4Zw58+aXwqPj7m7tFEn1QqWDYMLHk5sLGjaIc/8qV4oYyejQMHSq8Kg4Olmdfojy5uaKsvq6e\ntTVrxE1IpdJvP6NHCyF/5IgoYiSRmBAp1iQmQxtOnpcnxVpnaDTiHtLbPGsgfvOyMmXty7w1yTlc\ndZWY1Pa99+A//zF3aySG4u8vCoVcey2cOAHbt4uwtB9/FJMhR0VBQgIMGADx8fp3okrblyjD0aOi\niExk5PnXDQ0VoT35+V3nt3VEQIDYfscOKdYkJkeKNYnJcHISHiOZt9Y5Go04TlZmClBWYtJqLaGh\nIj9bSfsyDFJyDjY2Ihzy8cdhyxYx/5ak56JSCeEUFQU33SQSVQ8dEsvu3cIrplKJ0ZuICAgPP7N4\ne5vfvsS4HD0K/fqJudDOR1jYmYqQ+oo1gJEjxcDPnXfqv61E0g2kWJOYFD8/Wb6/KzQa8w7YKjFp\ntZbAQNi0SYhRpezv3KmMbUkPJyEBpk2D//4Xhgwxb7lViXFRq2H8eLGASIw9fBiOHRNzb61adWZu\nLVdX8cAeFHT24u8vRL057Eu6R3KyuL51wdERvLxECMaIEfrva9Qo+O47OH1aiHOJxETI3kNiUmRF\nyK6prDTvc6SSnrWAADFNjVKpHwEBInWhpkaml0g64LbbhGfks8+Ep03SO3FzE/lFo0efeU+jEcLq\n9GnxoJ6VJc4FbflYa2txcwoOFuKq7auHh2ntS3SnslIc92uu0X2b7kzKGR0tvKfbt0uxJjEpUqxJ\nTIqvr8jPlXSMJXjWlBJrgYHCtlLFtLT2c3PlfVTSAc7OcPvt8NprMHGiyDuS9A1cXESeUftco5oa\nIay0S2Ym/P03/PrrmQmQnZ1Fh9K/vwi3i4gQD/xtPWVK25d0zMGDotMfMED3bcLC4MABw/anUsHw\n4bBrl8htlEhMhOwNJCbFywuKiszdCsvF3J41UE6s+fuLe51SU15p7WdnS7Em6YQLLxSxuEuWwP/9\nH9jamrtFEnPi4CBEUv/+535WXCzEVVaWKOWfkgK//SYKVNjYiCTZ+HhRfnbgwI47bqXt93UOHhQC\n19VV921CQ+GXXwyrCAmQmCjEdnm58LJKJCZAijWJSVGrxVxrTU3mK6JhyWg04hiZCyU9a3Z2YhBZ\nKbFmZycGA3JylLEv6SXcfTfce68oFHH11eZujcRSUavFMmjQmfeamoTAOnVKVIw8dEg8+KtUQpAN\nHizE1YAB5/eMKW2/L3DggJh2QR+Cgw2vCAni97KyEkIxKUn/7SUSA5BXu8SkeHmJMLjSUvOKEkul\nstK80xooWbofwN0dCgqUsx8YKMWa5Dz4+ooQpi+/hLFjxcObRKILVlbCMxMaChMmiPcqKsSD+8GD\nIpfpu++EF2z0aFF5dPBg3UcmlbbfmygtFeV/b7tNv+1CQ8VrRoZhYs3ZWVQK3bdPijWJyZBiTWJS\nvLzEa3GxFGsdodGYN9pFSc8aCLGWm6uc/YAAKdYkOjB7tijB/c478OKLhoVDSSQgQvDGjhULCI/N\ntm3i/Fq3Dnx8YMYMUY3U09Py7PdUDh4UNyxdK0FqcXISDx8ZGfp75bQMGSImT5dITEQfHI6RmBOt\nQNMWyZKcjbnFmtKeNQ8PZe1LsSbRCWtruP9+UYL999/N3RpJb8LXFy6/HN58U0wVkZQkJta+9VaR\nK9ndDkpp+z2FvXshNlaU49eXkJDuTco5ZIgQzdnZhtuQSPRAijWJSbG3F1EEsshIx5i7wIiSpftB\niLXmZqirU8Z+YKAIs1TKvqQXERUFM2fCBx9AWZm5WyPpjQQGigqkn30m8iT//lvkTL7xxpm52SzZ\nvqXS3CzEWmKiYdt3V6zFxAgP3b59htuQSPRAijWJyfHykp61jqithfp685but7ZW3rMGyol1Pz9x\nH5eDARKduPlmMYL0ySfmbomkN2NnJ8IUly6Ff/9bTOR8113wzTfGGVlS2r6lcfq0eIjojlgzdK41\nEDfKAQOkWJOYDCnWJCZHirWO0WjEa2+u0Kz9bkoVGfH2Vta+pJfh6CgeajdsMHzuJYlEV6ysROGQ\nd98VRW6+/15M0J6c3DPsWwp79oiy+ZGRhm0fEiLCWEpKDG/DkCEib06p8sYSSRukWJOYHLVaej46\noi+INW16gVIROm5uYpC5N0cASYzM6NEwcqQoNtLeC3H4MBw5Yp52SXovtrZw1VXCExYUBPPmiVBG\nYz34K23f3GhDIA0tDKQtudzdvLWqKjHFgkSiMFKsSUyOFGsdU1kpXs0ZBqk0KpVYlPJ8qVTCcys9\naxK9uPdekbf27bfi//JyUcBh3jx47z3ztk3Se1GrYeFCmDsXVq2Cxx83btiJ0vbNQU2NGEAxNAQS\nRNVMF5fuibXgYBF3L0MhJSZAijWJyZFhkB1jKZ41JQuMgBBUSnq+fHykZ02iJ2o1XH89rFgh5rG6\n807YtEl8lpYmHhDGQvHuAAAgAElEQVQlEqWYNAneekuM2M2dCykpPcu+Kdm7VyRWd0esQfeLjICY\nIFuKNYkJkGJNYnI8PcXAdWOjuVtiWWg0IoTPzs7cLVEWpcWat7cUaxIDGDZMiLbPPhPhTdqQsaYm\nOH7cvG2T9H4CA+G116BfP3jiCdi9u2fZNxU7doiS/dpqVYZiDLE2ZIgQvlVV3bMjkZwHKdYkJsfN\nTXhvKirM3RLLwtxzrJkSJcMUvb1lGKREDxoa4KefRCEGrcu/rXvZxkbmrUlMg7MzPPOMKBLywgti\n8uueZF9pmprgr79g1Kju2zKWWGv6f/buO77pav/j+Kt7Jx3QTQfQMmUPZSgi4ETFrejFwXXiVsT1\nQ5ygct3KvW5FcYGKqKCACogD2bOMUkpbWuhMm3SkbX5/nKaUVTq+33w7Ps/Ho4/Qb9KT801KmnfO\nOZ9TrbZMEEJHEtaEy5lM6tJiMbYfLU1JifHr1fTeZ825Zk1G1kSLkJ6uQto776h9M45XgKGqShUa\nEcIV3N3hzjvVHoCzZsGvv7au9vW0bZt64zB0aPPb6tRJfTjjXH/QFEFBaqRSpkIKnXka3QHR/khY\nOz6jN8R2pZIStQzI11f7tjt00Ld90Ybs2wdZWfXfxuFQpc8djqZXnxOiMdzc4OabVVXHl18Gs1mN\n4rSW9vXy558qZMXENL8tZ0XIjAw1rbKp+vVrvVNKRashI2vC5YKC1N8KCWtHagkja67gfL+r1+iX\nc681GV0TJzVyJEyfrlK9h8eJb1da2vwpU0I01vXXqymLTz8NO3a0vva19vff2kyBBAgPVwvEMzOb\n107v3uq1obBQm34JcRwS1oTLeXqCv7+EtaO1l5E1Z1jT6/l3rjuX3y/RIIMGqUp5kZEnDmzu7m1v\nY2HR8rm5wZQp0LOnWmOmdRllvdvXUlqaGgXXYgokqHOPjDz5yPrJ9Oyp2pLXB6EjCWvCECaTFBg5\nWksoMKL3LC9n+25u+n0QaTLp275og6KjVWAbMuT4/wnkzZgwiqcnPPKImnYxc6b2ZZT1bl8rK1eq\naRPdumnXZkxM80fWAgIgIUHWtQpdSVgThjCZZOTjaC0hrLmKv7/ag1gPzpFbvdoXbZSvr3rTOmnS\n4Uo4TlVVsGmTcX0T7Zufnyq3v2cPfPRR62tfCytXwumna/uJYnR080fWQE2F3LKl+e0IcQIS1oQh\nJKwdqz2FteBgfcOU3u2LNsrNDS67DJ544th1bAcPyi+VME58PNx+OyxYoMrXt7b2m2PPHhWqRozQ\ntl1nWGtuCeRevSA1Va1lEEIHEtaEISSsHau9FBgBVXxMz+df7/ZFGzdwILz6KkRFHQ5sbm6towiD\naLvOOgvOOANee02fYKB3+021ahV07AhJSdq2GxOjygY3d61e796Hq8YKoQMJa8IQEtaOVFUF5eUt\nY2RNz33WnO2bTPoOUujdvmgHoqJUWfOhQw9vQCibYwuj3XKL+oPx/vuts/2mWLVK+ymQcHgLgOau\nWzObVVuybk3oRPZZE4aQsHYkq1W9F2wvI2vBwZCd3XrbF21PtcNBUc1oQrndjq28HICSq68mLDSU\nmO+/p2TdOtYNHkzF8TbPrqOgARvtBvj64u1Z/5/gkKM+vXF+7+XpSWDNJoL+Pj74eHmd9P5EGxEU\npALV88/D8OHa74+md/uNtWsXHDig/RRIgJAQ9Uc3Kwv69GleW716yYc5QjcS1oQh/P1b1iwLoznf\n27WEkTVXMJv1nVGmd/vCtcoqKiiy2SiyWmsvS8rKKLfbKbJaKauooLSigiKrlXK7nZKyMkrKyqiw\n2ym02Siz2yktL6fIZqO6uprSigrKKioAsFitVFVXn7QPY4DkvXt5c9o0nc+26cwBAbi7u+Pu5oa5\n5pMfk78/3p6emPz98ff2xsfLi5DAQHy8vPD38SHIzw8fLy91fU3wCwkMxN/HB3NAAGZ/f8wBAQT5\n+Rl8dqLWyJHw22/w3//C66+rqkqtqf3GWL5crS3r2lWf9qOitCky0qMH/PILVFYa+3iJNkl+o4Qh\n/PzUVHGhtJSw5pztpXf7smat/SkpKyPPYuFQURG5Fgt5xcXkWiwqgNUJYYU2G4V1j5WUUG63H7dN\nd3d3zIGB+Pr44Ofri9lkwtvLi6CgIAL8/fEOCqJzYiI+3t74+/kRFBiIp6dn7feAul3NyFSw2Yyb\nmxueHh4E1fxn9PP1xdfHp/Y+p3l5EXiSIfC6bZ5IwUnm6VZUVGC12Wq/r3Y4KKr5pS6vqMBWWgpA\nidWKvebxcbZpt9spqfnZIouF8ooKSqxWrDYb5RUVpBYVUV5ejq20FEtxMRV2O5biYmxlZZTXhNij\nubu7Yw4IICQwEJO/vwpxNUHOeRkcEECYyUQHk4mwoCDCgoLoYDYTFhRU77mKJrj1VjUCtmgRXHxx\n62u/ISorVWi8+GL99pXRonw/QPfuUFEBe/dqv7ZOtHsS1oQh/P3V65p8CKU4RxnbyzRIvafByjRb\n/ZVWVHAgP58D+flkFxSQlZ9PrsWigpjFwsGaQJZX833ZUSHA28uLsOBggs1mzEFBmE0mzGFhdE5M\nJNhkUt87j9f9d81lUEAAnq34xSPEbDa6CydUaLFgtdkoslgoKi4+4rLQYjnm+32HDlG0Zw+FFgu5\n+flYa4Kkk7u7e21oCzOZCAsMpENNqOtoNhMRHEx0aCiRISFEh4UR3F5eCJujQwe46CL49FNVFCQk\npHW13xBr1qgNWUeP1u8+oqPVtgDNFROj/vBs3y5hTWiu9f6lE61azXILysqMH01qCUpKwN1dhdj2\nwM9PBXW9wrre7bdl9spKMvLy2H/oEJl5eeQUFpKZl1cbyLILC8nKy6OwzrosNzc3wsPC6BASQoew\nMMJCQ0lOSKBDaChhISG1l2EhIXQMC6NDaCgmGW1psYJNJoJNJmIiI5v082Xl5eQVFJCbn09ufj6H\n8vLIq/l3XkEBeQUFZOTns277dnLz88nJzaWizuipr7c3UWFhKsDVCXIxYWFEBAfTqWNHEsLDCXD+\nIWmvrrgCli6Fzz6D225rfe2fzLJl0K+fCo56iY5WC5yrqo7cqqOx3NwgOVmFtQsv1K5/QiBhTRjE\nufyhtFTCGhwu26/XTI+Wpu7zr8d7dr3bb83K7XYy8/JIzc4mq2ZkLDU7m9ScHFKzs0k/eJDKqqra\n24eYzUSFhxMdGUlMUhKDIyKIioggus5lp+hovKTIhajh6+NDTGRko8JeaVkZB3JyyMrJOeZye3Y2\ny7ZvJzMnh6Li4tqfCQkKIio0lOiQEDpHRtZ+RYWGEh0aSkJEBO5t+UXV1xeuuQbmzIEJE6CJ4dqw\n9utTVKT2e7vnHn3vJyZGfap38KBav9Yc3bvDkiXa9EuIOiSsCUPUfTMt1DTIljDzR+/3Nc72nc+/\nzaZvWNOr/ZbOYrOxKyuLnZmZ7MrKIiUzk10HDrA3O5vcOmulgk0m4qKjie/UiR79+3N2TAxxNV/x\nsbFEdOyIu7vs8CL05+frS+f4eDrHx9d7u0KLhf2ZmezLyGBfRgbpNf/enJHBonXrOHDoEI6ahbd+\nPj4kRkaSFBVFckwMSdHRJEVHkxwTQ3RoqCtOS39jxsD8+Wr0S49go3f7J/Lrr+DtDaedpu/9OMv3\nZ2U1P6z16AFz50Jurr6jgaLdkbAmDCFh7UgtJay5it7Pf3v4/ap2OEjNzmZzWlptKHMGs5yCAkCV\neE/s1InkLl0YOWoUk+LiiI+Nrf2SqYiitXFO0TylR4/jXl9eUcH+rCzSa4Jcano6u1JTWZaSwpzF\niymuWSAc6OdHUkxMbZBLjo6mR6dO9IqPx8/b25Wn1DyennD11WpPwCuuUNP6WlP7J/LTT6oqZZ3i\nProICFAVqTIzYeDA5rXVrZuaSpmSImFNaErCmjCEc6lBW34z3Rg2W/tZrwYS1hqroKSErenpbEtP\nZ2t6Omv37GHDnj1Ya0qqhpjN9ExOple/fpx30UV0joujc3w8vbp1O6KSoRBtnY+3N10TEuiakHDc\n6wuKikjdt4/UffvYunMn21JS+HHLFl769tvawihRYWEM7NKFXnFx9IyLY2DXrvTo1KnlTqkcNQrm\nzYOvv4Y77mh97R9t61bYt891I3kxMdqU7/f1hbg4tW/M8OHNb0+IGhLWhCHa2pvp5mpJI2t6lu53\nti9h7cT25+byV0oKf6WksGHvXjanpdWOlHUMDaVPjx4MHjaMG2+6iT49etAzObm2DL0Qon4hZjMD\n+/RhYJ8+XF7neHV1NXv27WPTtm1s3rGDLTt2MH/NGl5YsIDq6moCfH3plZBA3/h4BicnM7RbN3rF\nxeHREqYJu7uryo3vvQcTJ0JwcOtq/2g//qgqKrqqqmJkpCoyooXkZLWRtxAakrAmDOHpCV5erfPN\ntB5stvZVaMXPT61f0zOs6dm+VkrKyli7ezd/7tihAtrOnWTl5eHh4UHPrl0Z2K8f5154Iaf06EGf\nHj2I6NjR6C4L0Sa5u7uTlJhIUmIil55/fu1xW2kpW1NS2LR9O5u3b2fj1q3Me/ddSmw2Av38GNi1\nK6d268bQmi/D1sKNGQOffAKLF8NVV7W+9p0sFli92rXVJyMitAtYXbuqveEcjvZTMUzoTsKaMIyv\nb8t/M+0qVqv6e9FeuLmppQh6Pf96t99UFpuN37ZsYemGDfy2ZQtb0tKoqq4mqmNHhg4cyJ233MKp\nAwYwqG/fk268LITQn7+fH4P79WNwv361x6qqqti6cyd/rVvHn2vXsmjdutoRuE7h4Yzo0YOz+vbl\nrL59SXDVC7uvL4wdq9Z6XXml9kFB7/adfvpJfZI7cqQ+7R9PRATk5GgTsJKS1J5EGRnQqZM2/RPt\nnoQ1YRh/f/WaJlrWNEhX8fNTI4qttf2GqKis5M8dO1i6YQPLNm3i75QUqqqr6dujB2eNHcujAwZw\n6sCBdHLVon0hRLN5eHjQp2a0+98TJwJgKS5mzcaN/LVuHb/98Qd3vf02ttJSusbEMKZPH87q14/R\nffoQqmdRn3HjYMEC2LQJ+vZtfe07HKr0/VlnHV7Y7goREVBRobYLaO4Uz4QEFTZ37ZKwJjQjYU0Y\nxsNDbW8iWk6BETc3fdes1W3fz0/fkS+92z+RIquVb//6i69+/53lGzdiLSsjsVMnzho5krvuuovR\nw4fTMSzM9R0TQujGFBTEWSNGcNaIETxy112UV1Swes0alq5cydIVK3h7yRIcwICuXbnktNO4fMQI\nuja3VPzRYmNVRcKlS/UJU3q3v3atWjt27rnat12f8HB1mZ3d/LDm6akC2+7dMHp0s7smBEhYEwby\n8IA6e++2a+1xZM3TU9/nX+/267LYbHz39998sXIlS9atwwGMPf10Zs+YwZiRI+lygsp0Qoi2ycfb\nmzOHD+fM4cN5Zto0CoqK+HX1ahb/8gv/WbiQRz78kAFJSVw+bBhXjBxJZ602nD79dPj0U/Xi5+Gh\nTZuuan/BAhgwwPUjUh07qj8YOTlqY+vmSkpSYU0IjbSAMkaivfLwgOpqo3thPIdDjQC1hJE1V3J3\n1zdM6d1+tcPBD//8wyXPPEPEtddy4yuvUBkQwJznnyd70yYWffwxt1x3nQQ1IQQhZjMTzj2X/z7/\nPAc2buSnzz5j4JAhzF64kC6TJzP4vvt4fdEiimr2gWuyoUPVp3/btmnTcVe1v3cvbN4MEyZo225D\nuLtDWBgcPKhNe0lJsGePfBotNCNhTRhGpkEqZWUqtLaEsObKaZCtdWTNYrPx/Pz5dJk8mQtmzKDI\nzY03Z80ie9Mmvp87l+uvvJIQs1n7O9aAW3R07VdLpmc/G9t2c/uyZsMGzrzsstrvy8rLeWzWLLqc\ndhqenTq1iudDb656TM687DLWbNigebuN5enpydjTT+d/L7zAgY0bWTJvHqf078+0Dz8kZtIkbn79\ndVIyMprWeGSkmq74zz/adlrv9ufPh/h4faZXNoSzyIgWkpKgvBz279emPdHuSVgThnHlNLWWzPlB\nanubBql3WNe6fYvNxv/NnUvCTTfxzJdfMuGii9i+YgXLvvqKG1pwQKvLocXGry6gZz8b23Zz+vLO\np58y7qqruHvy5Npj0194gWdeeYUbr7oKy86dLJk3r8nttxWuekzuuukmxl51FW9/8oku7TeFp6cn\n4844g/deeonM9euZ+fjjrNi5k563384VM2eyLT298Y326QPbt2vfWb3az82FVavg0kuNK3evZVjr\n1Am8vSE1VZv2RLsnYU0YRtasKc6KhS1hZM2V9J4Gq1X7DoeD/y1eTNLNN/PGjz9y3223se+ff/jP\nE0/QrUuX5t+BxmSkpmX4cflybn7wQeY8/zwXn3NO7fHPFy4E4LZJk/D382PcGWe0mhCtF1c9JhPO\nPZc3nn2WW6ZO5cflyzVvv7nMJhNTbriBbStW8PmcOezMy6PvnXdyx1tvUVBS0vCGkpPVmim9Pg3T\nuv1vvgGz2bXl+o8WEaHdxtgeHmqUUMKa0IiENWEYCWuKM6zJyFrLaz8zL4+zp09nypw5XH3ZZez6\n4w8eu+cegk0mbTop2qQKu51bpk5l2KBBXHnhhUdct78mhIQ2t+pcG+LKx2TiJZcwdMAAbn3oIex2\nu+731xTu7u5cdsEFrPv5Z/734ot8vWYNp0yZwtKGTuFMSlKl6Js6ldKV7Vutam+1Cy9U022MEhEB\nhw5ptw4gMVGtwxNCAxLWhGFkzZrSkqZB6j0DpW77LX3N2pZ9+xh6//3sPnSIX+bP5+Unn5Q32KJB\n5n//PfuzsrjmOMUSqqWq0jFc/ZhcM2EC6ZmZzP/hB5feb2O5u7tzw5VXsn3FCkadfjrjHn+cFxcs\nOPkPRkWpF1utRor0bP+771RbdUafDRERod6Q5OVp015iooysCc1IWBOGkTVris2milH5+BjdE9fS\ne2S1Oe1v37+fEVOn0qNHDzYsXcrwwYO17ZxO6k5/dE6HnHz//ce97f6sLC66/nqCkpKI6NOHa6dM\nIa+g4Jj2nF970tK45KabCOne/Ziplgdzc7lt2jRiBwzAOz6emP79ufnBB8k+qrpakcXCvdOn0/nU\nU/FNSCCsZ0+GjR/PA08+yd/r1ze5nwDZBw9yy9SptX2IrRk9yTl0qMGP39aUFM679loCu3bF3K0b\nE268kfTMzAb/vNPCJUsAGHRUsYTjPT/TnnnmiO+1eqwbc9uGPi8nKrbSkOMnOqf6HpPGnENDHz+A\nwTXPi/N5aunMJhNzX3+d5x55hKnvv89r331X/w94e6tphVpVN9SrfasVvv0WLrrI+E8rIyLUpVbr\n1jp3huJitR5PiGaSsCYMo3dp9dbCalXr1YxaV22UlhrW7JWVXDZzJr179OD7uXMxBQVp3zmd1F3n\n48jKwpGVxTuzZx/3tg8/+ywzH32UjLVruWL8eD5ZsIAHnnzyhO3dNm0aD9x2G1kbNvDD3Lm1x3MO\nHWLIeefx9Y8/8t5LL5G/bRufzZnDT7/9xrALL6TQYqm97aS77+blt9/m7smTydu2jQMbN/L+yy+T\num8fQ88/v8n9zD54kCHnncein3/mo1dfJW/rVj589VW+XbKEoeef36DAtictjREXXcTGrVtZ+MEH\nZK5bx70338zNDz540p892votWwCIj4094vjxnp+Zjz56zHVaPNZ6PC8nWkfWkOMnOqf6HpPGnEND\n7svJ+bw4n6fW4qE77uCZadO4/913WXuyfbw6dtRulEiv9r/9Vi0sPmqqsCFCQ8HLS7uwlpio/qjL\n6JrQgIQ1YRhPT5kGCS1vQ2w9S/fXbb+lrln7bMUKdmVm8smbb+Lt5aV9x1qIf0+cSI+kJMwmE9Pu\nvBOAn3799YS3f+Suuxg2aBB+vr6cO3p07Zvj6S++yL6MDJ59+GHGnXEGgQEBjBw6lJdmzGBvejov\nvPlmbRu/rF4NQExkJAH+/nh7edGtSxdef/bZZvXz/154gf1ZWcx67DFGjxhBUGAgZ40YwcxHHmFf\nRgbTX3zxpI/HE7NnU2ix1LYRGBDA6aeeyq3/+tdJf/ZomTXTw4KbWCFUi8da7+dFq3OqT2POoTH3\nFVIznTlTr2mCOpo2ZQqD+/blyc8+q/+GPj6qfLxemtu+1QoLF8LFF0NgoHb9aio3NxVAtQpr/v4Q\nHi5hTWhCwpowjLu7/sGgNbDZ2l8lSND/+W9q+0vWr+fsUaOOGRVpawacckrtv6PCwwE4UM+0piH9\n+x/3+Hc//QTAuWeeecTx0089VV3/88+1xy497zwALr/5ZuIGDWLy/ffzxcKFdAgNPeGb94b0c9HS\npQCMHjHiiONjTj9dXV+nDyfy84oVx21jxJAhJ/3Zo9lKSwGaHPa1eKz1fl4a60TnVJ/GnENj7sv5\nvDifp9bEzc2Nm6+7jp/Xr6e6vhc4b29VBEQvzW3/22/VC3RLGFVz0rJ8P6ipkFJkRGjAwNI7Qgg4\nPA1StAwHi4pI6NHD6G7oLqjOp9nu7upzO0c9b/78/fyOe/xgzVSo6BO8Qd6Tllb77/deeokLxo7l\n06+/ZvmqVbw7bx7vzptHXEwM337wAf169WpSPw/V9KFDaOgRx53fH2zAdK3c/Px622gMfz8/SqxW\nKux2fLy9m/Tzx9OYx1rv56WxTnRO9WnMOTTmvipqqkA2pU8tQXRkJKXl5RRZrYTUNyrlqmkSjVV3\nVK0lTSuJiIAmrFE9ocREqGe2ghANJSNrQhjMZmtZf6/au6SoKP5paIlsQUSHDgDkb99eu+ao7pd1\nz54jbn/Jeefx1dtvk7t1Kyu+/pqzR40iPTOTG+65p8l9CA8LAw4HLifn987r6+MMZUe3UVRnXVRD\nxURGAlBYVNTon61PYx5rvZ4Xt5rFtXXL3jflMdL6fBujoLAQOPw8tTZrNmwgPDi4/qCm9/z65rT/\n1Vdq2mFLGlUDNW2xEQWJTio+Hg4c0HeEU7QLEtaEMFh7nQbZUt0wZgzrt27l21ZSKe5oztECu92O\nrbSUDhqMitTn4nPPBeDXmnVPda386y9OGz++9nu36GgyDhwA1CjZyKFD+XzOHAC279rV5D6MHzcO\ngGUrVx5xfGnN1Ebn9fUZd8YZx23jj7VrG92f/r17A7BP432uGvNY6/W8RB5nKqpehToacw6N4Xxe\ntBgxdLXc/Hxee/ddbhw7tv4blpbq+4elqe3n5qpRtauvbnmfUoaFQX6+diOScXGqLb32uxPthoQ1\nIQzW0gqMtHeDkpK4cdw4brj7brbs2GF0dxqtT8+eAPy9YQPf/fwzpw0apOv9PXH//SQlJnLHI4/w\n1aJF5BUUUFxSwqKff+b6e+5h5iOPHHH7yfffz9aUFMorKsg5dIhZb7wBwNmjRjW5DzMeeID42Fim\nPfMMy1etorikhOWrVvHwc88RHxvLEyfYvuDo8wg2mWrbKLFaWf3PPzz32muN7o8zHP6zcWOjf/Zk\nfWzoY63X8zK2Zh3gC2++SZHFwo7du3nn0081Pc+mnkNDral5Xi48+2wtu6s7W2kpV9x8M34eHjx4\nySX13/jQIRU+9NLU9t97D0JCoCaItyihoWoUrKREm/aio1WFyfR0bdoT7ZaENSEMJiNrLc8bt95K\n34QETp8wgeWrVhndnUZ57emn6duzJ+OuuoqX336b2dOn11539J5Wjf330ftVgZo++NcPP3D1xRcz\n9emnierXj6Thw/nf3Ll88vrrnHHaabW3XfXtt0SGh3PBv/5FUFIS3UaO5Idly3hm2jTmvfVWk/sW\n0bEjf33/PePHjeO6O+8ktGdPrrvzTsaPHctf339PRMeOJ22jc3w8q779lr69enHh9dcT1a8fM2bP\n5q2ZM497+/pcdsEFxEZFMe+bb444Xt/jqfVjrcfzAjB7+nSumTCBzxcuJGbAAKY+9RTP1QlNjT2n\n+m7TmHNoyH05ffr118RGRXHpCbaLaImyDx5k7JVXsnnrVr5+9FFC69tSpKBAjXw18Pe10Zra/s6d\nsHIl3HSTCjEtjTN8arXlgYeHeowkrIlmkgIjQhhMRtZaHl9vb3584gkmvfQSY6+6ivtvvZUZDzyA\nn6+v0V07qUF9+7Khpjri0ZqzT1Z9QsxmZk+ffkQwPJ7hgwc3aIPxpvQnomNH5syaxZxZs5rUNkCv\nbt2Ouy9XYysient5MWfWLMZPmsTnCxdyZc3anPra0fqxbsxtG/q8gApQn9SMutV1vP435JxOdpuG\nnkNDH79PFizgr3Xr+O7DD1vN1hwLfviBW6dOxeTry8pZs+h+skq1ziIZUVH6dKip7b/zDnTvDjXV\nPFscZ1jLz4eEBG3ajIuTsCaaTUbWhDCYhLWWydfbm88feoj/TZnCnA8+oPuIEcz75huqq6uN7ppo\nBc4fM4Y5s2Zx69SpfLN4sdHdEcDXP/7I7Q8/zFszZ3L+mDFGd+ekNm3fztgrr+Syf/+bCwcNYv0r\nr5w8qAGkpEBwMNQUaNFcU9pftQq2b4ebb1bFRVqigADw9dV2M/FOnSSsiWaTsCaEwfReBy6a56Zx\n40iZM4cxvXtz7ZQp9Bk9mrnz51MpO7qLk7j52mtZMm8eL7/9ttFdEcAr77zDz599xi3XXWd0V+q1\nZsMGLrnxRvqPHUtRTg4rZs3inbvuIqihWw1s3w41a1d10dj2y8rg/fdh1ChIStKtW5oICdE2rMXF\nQXa2VIQUzSJhTQgDlZdDZaWEtZYuKjSUd++6i02vv07/mBhuuOceEocM4cn//IcDWm6iKtqcIf37\n8+v8+UZ3QwC/zp/fpM25XaG8ooK58+czbPx4hpx3Hhmpqcx/5BH+mj2bEY0JRg6HClN67RXZlPbn\nzYPiYrjhBn36pCVnRUitxMVBdbVUhBTNImFNCANZrepSpkG2Dr3i4vj4/vvZ9b//MXHECF5/5x3i\nBg3inKuv5t1588grKDC6i0KIVsJut7P4l1+46b77iO7blxvvvZcYPz+WP/ssf//nP1x86qm1+9o1\nWEoKFBXBwJgump8AACAASURBVIH6dLqx7aelwbffqqDWhA3mXU7rsBYdDZ6eMhVSNIsUGBHCQDab\nupSRtdYlISKCmddfz4yJE/nmzz/5fMUK7nzkEW576CFGDx/OFRddxMXnnENocLDRXRVCtCB2u51l\nq1bx5Xff8c2PP5JfVMTg5GSmXXIJE888k+jmBpq//oKICDWio4fGtO9wwBtvQOfOcM45+vRHa2Fh\nsHmzdu15ekJkJDSySJEQdUlYE8JAzrAmI2utk4+XF1eOHMmVI0dSXFrKd3/9xZe//84d06Zx69Sp\nDB88mLNGjmTMyJEM7tcPDw8Po7sshHCx1H37WLpyJUtXrGDZypXkFxUxqCagXTZiBIkREdrd2Z9/\nwtCh2rXXnPZ/+EGV63/ppZZbVORooaHarlkDNbrmrKApRBNIWBPCQM5pkDKy1voF+flxzahRXDNq\nFBabje/XrGHxunW89e67PP7885iDgjhz+PDa8Na9a1ejuyyE0EFufj7LV61i6cqVLFu5ktT0dAJ8\nfRnZuzePXn45E047TduA5pSSAvv3w733at92Y9vPz4ePPoIJE9TIWmsRFgaFhWqdmbtGK4ViYmDL\nFm3aEu2ShDUhDGSzqQ8cJay1LSZ/f64+4wyuPuMMALalp7Ns40aWbtzIo88+y51WK9Hh4Zw6aBCn\nDhjA0AEDGNinDwHyiyBEq1JVVcX2Xbv4a/16/ly7lr/WrmXrrl24u7kxKDmZa4YNY8ztt3Na9+54\ne+r8lmvZMjU9MTnZ2PYdDnj9dQgKgquv1qcvegkNVUGtsFC7NXbR0bBkiTZtiXZJwpoQBrJawc+v\n9cwQEU3TMy6OnnFx3Dl+PJVVVazZtYvfNm/mz5QUXnrrLQ7k5eHp4UGv5GROHTSIoQMGMLR/f7p3\n7Yq7Vp/uCiGa7UBODn9v2MBf69bx59q1/LNxI8VWKwG+vgxMSuLsXr146vLLGXXKKZhdOb+9rAxW\nrIDLLze+/R9/hDVr4LnnwMdHn/7oxbkxdl6etmHNZlMBUNYxiyaQsCaEgWw2GVVrbzw9PDite3dO\n69699lhWfj5rd+9m7e7d/L5lCx9/+SW2sjK8vbzompDAwL596dWtGz2Tkxncty+R4eEGnoEQbZ/d\nbmdnairbdu5k686drN24kW0pKaTu3w9A56gohvfowUUTJzKwa1eGJCfrP3JWn+XL1V5eY8ca2/6B\nA/Dee3DlldC7tz590VNoqPr0NC9Puz3hYmLUZVaWhDXRJBLWhDCQ1SrFRQREh4YSPWQI44cMAaCy\nqopNaWlsSE1lc1oam3fvZvHSpRwqLAQgqmNHTunRgz69etG7Wze6delCcpcuUn1SiEYqKy9n9969\ntcFs07ZtbN6+nV1paVRVVeHn40OvhAT6xMVx1jnn0CchgUFJSZha0qdsDgd89x2ceSaYTMa1X1UF\nL74IsbFw1VXa98MVvL0hMFDb8v1hYeDrq4qM6LlZuWizJKwJYSAJa+J4PD08GNClCwO6dDnieHZB\nAZvT0tiUlsbmtDSWL13K6+++S1lFBQBhwcEkJSaS1KULyZ07k9S5s/o+MZGgwEAjTkUIw9ntdtIy\nMtiVmkrKnj3s2ruXXamp7EpNZf+BA1RXV+Pu7k5iZCR94uO5YsgQTrniCvokJNAlKgqPlj4Vee1a\nVfjjoYeMbf/TT9W+aq+8okrWt1ahodqGNTc3Kd8vmqUV/28SovWTaZCiMSJDQogMCWFs//61x6od\nDtIPHmRXVha7srLYmZnJzrQ0/vjjD9Kys6msqgLUaFyXhATiO3UiPjaWuJgY4mJiiI+NJaFTJ/z9\n/Iw6LSGapbKykszsbPZlZLAvI4O0/ftJz8wkPSODvenp7N2/v/b/QWRoKMkxMSRFRTFm7FiSoqNJ\njomha1QUvt7eBp9JE82bB0OGQEKCce1v2QJffgm33aZG1lqzsDDty/fHxEhYE00mYU0IA0lYE83l\n7uZGQkQECRERR4Q4AHtlJXtzctiVlUVKZiZpOTmkZWayaMMG9uXkUOTcOwLoEBJCfEwMcbGxxNUE\nuMjwcGIiI4no2JGYyEipVilczm63k5ObS+aBA7WXGQcOkJ6ZSVp6OvsyMsg6eJCqmjDm4+VFXEQE\n8R07EtehAyNHjCApJoak6GiSoqMJamsfSvz9tyqp/9JLxrWflwezZqn911rL5tf10XpkDVSRkX/+\n0bZN0W5IWBPCQFareg0XQg9enp4kx8SQHBPD+YMHH3N9kdVK+qFDpB08yL6ar/RDh/hz1Sq+OHSI\nnIICqqura28f4OdHbFSUCm81l9EREUSGhxMdGUl4WBhhoaF0CA3F28vLlacqWhGHw0Fufj55BQXk\n5ueTffAgWTk5tZc5Bw/WhrODR41whAQFERMWRkJ4OH0jIriwd2/iwsOJ79iR+PBwIkNCcGtP5XXn\nzYNTT9WuGEZj26+sVEEtIADuuadtlDYODoa9e7VtMzwcDh7Utk3RbkhYE8JAMrImjGQOCOCUgABO\nOcH0pqrqag4WFnKgoICsvDxyCgvJdF5mZ/NXSgoZeXkcLCig3G4/4meDAgLoGBpKR2eACwsjLCSE\nDjXHOtSEOrPJhDkoCLPJRLAexRGErqw2G5biYoqKiyksKqoNYM7Lg7m56t95eYevKyw84kMANzc3\nIkJCCA8OJjYsjEizmYH9+hERHExMWBgRwcFEh4URFRLSeqcq6uHPP2H3brjzTuPaf+stFWxmz247\nC7BNJigq0rbNiAj16awsVBdNIGFNCAPJ67ZoyTzc3YkKDSUqNPSYYidHy7VYOFRURF5xMXkWS+33\nuTX/ztu3j51btpBnsXCwsPCIKZh1BZtMmAIDawOc88sUFIQ5KIiQ4GDMQUH4+fri7+dHUGAgPt7e\nmIKC8Pfzw8fbm2CzGR9vb5m2eRwVdjtWm40Sq5XyigqKLBZKy8ooKy+nyGKhvKKCEqu1NoA5L4ss\nFoosFizFxRQUFqpjxcW1a8Hq8vPxoYPZTFhQEOFmMx1MJvpHRtIhOZmwoCA6mM2Em82EmUx0MJkI\nN5vx9PAw4NFoxRwOVdBj2DDo3NmY9hcvhp9+gmnT1GbZbYXZDBaLtm06t1vJzoaTvJYKcTQJa0IY\nSEbWRFvRoeaNd0PZKyvJKy6myGqlyGajyGqlsObLUvO987glO5vsvXspslopKCmhyGqlrKICa1nZ\nSe8nKCAAby+v2oDn6+sLQLDZjJubG54eHgQFBQGo62s28TUFBeHh7o67uzvmo87Lw90dU83PHI+b\nm1u9o4S20lLKayp4Hk9ZeTmlR51baVkZZTXHLCUlVFVVUV1dTVFxMQDl5eXYSksBKCkpwV5ZSVVV\nFZbi4towVlhcjMPhOOH9gpo6G+jnh8nfH3NAgLqs+YoKDsYUHU1IYCDmgAB1vO5tAgLoYDLh39o2\nQm6NVq9WI1r33mtM+zt2wH//q/ZTGz5cnz4YxWxWe8qVlamS+1oID1dTRA8elLAmGk3CmhAGkpE1\n0V55eXrWVrdsjuLSUsrtdiw2G7bycsrtdgpKSii327GVl2Ox2Si32ykuLcVaVkZFZSXVDkftyF65\n3Y6toACAQ2Vl2GtGigqtVhwOB5VVVRTXhCCn0oqK2u0SjqfcbsdWT5B0BqITubSqilsqK7k6LAzn\nZEEfL6/aEBTo64tXTWn0kJoXkEBPTyJr/u0fGoqPl5cKjQEB+Hp74+ftjTkgAB8vLwJ9fQn09cXH\nywtzQAB+3t74ensTHBDQvtZ7tVaVlfDxxzBiBCQmur797Gx4+mno2xcmTtT+/o1mNqvLoiLtwpq3\nN4SEQE6ONu2JdkXCmhAGsdvVl4Q1IZouyM+PID+/Ro3qtXgZGXDHHey6+moYPdro3oiWZuFCNUIz\nY4Y+7X/77YnbLy6GJ55QRTgefLBtFBQ5mvO1xGJRa820IkVGRBO18J0ehWi7nEt2ZBqkEOIIsbEw\nZgzMnaumYwnhVFgIn38Ol1yibZCo2/4XX8Cllx7bfkUFPPWU+pTxqafa7ieNdUfWtBQRISNrokkk\nrAlhEJtNXUpYE0IcY+JE9cn+998b3RPRkrz/Pvj5wWWX6dP+e+8dv/2qKlWif/9+NeLWzOnLLZqv\nr5q2qHVYCw+XsCaaRMKaEAZxhrW2+uGkEKIZQkPhwgvVKEpNERHRzm3aBMuXwy23aLeWqq716+GX\nX1T7dYvEOBxqU+yNG2H6dDXy29aZTNpXhJSRNdFEEtaEMIhMgxRC1Ovyy8HTE+bPN7onwmgVFfDa\na3DaaepLa+Xl8OabqlR/3fYdDnV81Sp4+GHo3l37+26J9Cjf36EDlJYe/qRWiAaSsCaEQWQapBCi\nXn5+KrAtXAiHDhndG2GkDz5Q4eHWW/Vp/+OP1QjuLbccefzdd+Hnn1VQGzhQn/tuiQIDoaRE2zY7\ndFCXeXnativaPAlrQhjEalUzWWQvWCHECZ1/PoSFwSefGN0TYZR//oHvvlNBKjRU+/Y3blQVICdP\nPty+wwFz5qj7ve8+GDpU+/ttyfQIa2Fh6lLCmmgkCWtCGEQ2xBZCnJSnpyo2smwZpKYa3RvhaoWF\n8MorcOaZ+mzjYLXCyy/DqaeqCqQA1dXw6quweDFMnQqnn679/bZ0AQHah7XAQFW4RMKaaCQJa0IY\nRDbEFkI0yBlnQJcuaqqaaD8cDpg9W03B0Gv646uvqvu56y71fXW1Cm+//qqmPg4frs/9tnR6jKy5\nuamRSwlropEkrAlhEAlrQogGcXODm26CNWvUlDXRPnz1FWzeDA88oM80jEWLYPVquPdeCAqCykp4\n7jl1bPr09jf1sS49whqoqZAS1kQjSVgTwiAyDVII0WCnnAL9+6tCEw6H0b0Retu1S61TnDQJunXT\nvv2dO1XxkIkToW9fVQ1yxgy1PcDTT0O/ftrfZ2siYU20IBLWhDBIaamENSFEI9x0E+zeDb//bnRP\nhJ4KC2HmTBWiLr5Y+/YtFnj2WdX+lVeqTw7/7/9gzx51vL2U569PYKCa/qL1ByMS1kQTSFgTwiBW\nq4Q1IUQjJCTAqFFqdK2y0uDOCF1UVMAzz6ipr/ffry61VFmpApmHh2r/0CFVROTAARUQu3TR9v5a\nq8BAtX6vtFTbdiWsiSaQsCaEQcrK1DZKQgjRYNddp97sLV5sdE+E1hwOtfH1vn3w+ONgMml/H3Pm\nqBG0xx+HrCwV2BwOePFFiIvT/v5aq8BAdalH+f7CQpnKLBpFwpoQBrHZJKwJIRopPFztvTZvnnoR\nEW3Hp5/CypXwyCMQH699+199BT/9BA89BJmZ6n4SE+H559XvlTjM+cdZ65E1s1mN2BUXa9uuaNMk\nrAlhkNJSCWtCiCa46ir1hu/rr43uidDKypXw2Wdq42s9inv8+it8+KHa+DorS015PPNMVfVRyhIf\nS8+wBmp0TYgGkrAmhEEkrAkhmiQwEC69VIW1/HyjeyOaa9s2+M9/4JJL4NxztW9/40a1sfa556op\nkO+8AzffDFOmqLVr4lh6hzWLRdt2RZsmYU0Ig5SVqb1OhRCi0S68UO2NNW+e0T0RzbFnjyqZP3gw\nXH+99u3v3AlPPQWnnqrWwv35JzzxBIwfr/19tSXOP85lZdq2azKpojFFRdq2K9o0CWtCGKCqShX9\nkmqQQogm8fZWe2QtWQL79xvdG9EUaWnw2GOQnKw2vta68uOuXaokf2IibN8OubnwwgswYIC299MW\neXio/2Naj6y5u6uRcQlrohEkrAlhAOfrv0yDFEI02VlnqXL+H39sdE9EY2VmqoqMnTrBo4+qYKCl\n3btVUAsLU6EtMRFeflkqPjaGr6/2YQ3UVEhZsyYaQcKaEAaQsCaEaDY3N1XKf/Vqte5JtA4HDsDD\nD0NkJDz5pPbz4XftUgHQy0uNul5xhQpuQUHa3k9b5+en/TRIgOBgWbMmGkXCmhAGkLAmhNDE4MHQ\nty+8957s3dQaHDqkpj527KjWqmkd1LZvV0GwulptgD1jBlxzjfZTLNsDPz/9RtZkGqRoBAlrQhhA\nwpoQQjPXXw8pKfD330b3RNQnI0PtcRYUpEbUtF60vG2bGlGrqIDOneH116F/f23voz3RaxqkySRh\nTTSKhDUhDCBhTQihmaQkGD4c3n9fVS8SLc+uXSqohYaq6oxa7232559qRK2iQm0B8Nxz6r5E0+k5\nsibTIEUjSFgTwgDO138p3S+E0MT110N2NixdanRPxNE2blQjXomJKqhpvXbsvffg6adVBcPHHlO/\nC+7y9q7ZvL1V+NWavz9Yrdq3K9osT6M7IER7VFqq/g7IfqRCCE1ERsI558Ann8AZZ8gnQS3F6tXw\n4otq5PPuu8FTw7dd5eWqouS2bRAersryh4Vp13575+0Ndrv27QYEgM2mfbuizZKPXoQwQGmp7LEm\nhNDY1Ver6nULFxrdEwGwaJGajnjOOXDffdoGtd27YdIkFdTOPFONrklQ05aXlz5hLTBQhbXqau3b\nFm2SjKwJYYDSUvngWwihMbMZJkyAL7+EceNUiXDhetXVav3gN9/ADTeoNWRaqaqCzz5TX+7uajPt\nUaO0a18c5uWl3zRIh0O9EdB67aJok2RkTQgDlJZKcREhhA4mTFAvLl98YXRP2ierVZXL//57FaS0\nDGoZGXDPPSqoBQbCq69KUNOTXmvWAgPVZUmJ9m2LNknCmhAGkLAmhNCFr6+aDvnDD2rzZeE6WVkq\noO3dCzNnqrWDWrDb4dNP4Y47YN8+SEiAt96C+Hht2hfHp9eaNecaCFm3JhpIwpoQBpA1a0II3Zx9\nNkRFwdy5Rvek/Vi7Fu69V01re/llSE7Wpt2tW+Guu+Dzz9UUyLFj4aWXZIqrK+i1Zs059VEqQooG\nkjVrQhhA1qwJIXTj7g7XXaeKW0yYAF27Gt2jtm3+fPjwQxg9Wo1+eXk1v02rVVX2/O479ebe0xPu\nvx9OP735bYuG0WvNmnMapIQ10UAysiaEAWQapBBCV8OGQY8e8O67Rx5PT4f//Q+Ki43pV1titcKs\nWSqo/etfaj2ZFkFt1Sq45Rb45Rf1hyI4WI2mSVBzLb3WrHl6qrYlrIkGkpE1IQwgYU0Iobvrr4ep\nU2HdOrW+ae5ctWm2wwG9e6tAJ5pm1y4V1MrKVEGR/v2b32ZmJsyZAxs2QJcusGePKiByxx0yFcMI\nek2DBLUOQtasiQaSsCaEAWTNmhBCdz17wqBB8MYbkJ+vQprDod6E7t9vdO9aJ4dDTU187z0VeO+/\nH0JCmtem1aoqPH73HUREQHS0en7uuEPt0SaM4eGh315oeo3aiTZJwpoQBpA1a0IIXVVWqlG07dvV\n6E9V1eHrqqokrDVFUZGajrh+PVx5paq66ebW9PYcDjXV8b331HNy2mnw99+q2uPjj0NsrGZdF03g\n5qZvWCsv16dt0eZIWBPCADINUgihm19/hQ8+UKNpx3uzWV0Nqamu7lXL5XDAihUqLHl7H/82a9fC\nK6+oUcnnn4du3Zp3nykpau3g7t0wYgQcPAh//AEXXwzXXqvWNQljubvrF9Z8fGRkTTSYvBoIYQAJ\na0IIXaSkwIsvqlEBh+PEtztwQF3fnJGhtuLTT2HePLjsMrXOr67SUnjnHfjpJ1Xg4/bbD5deb4rc\nXPjoIzWi1qcPTJwIX34JHTvC7NlqrZpoGdzd6/8/1Bw+PjKyJhpMqkEK4WJVVeoDNQlrQgjNdesG\n11xz8jeZdrsazWnvVq5UQQ3g668hI+Pwddu2qT3O/vwTpk2DBx88flBbvBgWLTr8fXW1Wie4evXh\nY8XF8P77cPPNKlBPmaLCwMcfq73TXnlFglpLo/c0SBlZEw0kI2tCuFhZmbqUsCaE0MU110B4OLz6\n6uGiIsezf78qaNFe7dmj1qDVHYV84w1V3fHTT9X+aQMHqsAWGnr8NhYuVNMZPT1h+HBVZv+11+Dn\nn1VY690bliyBr75SBSuuvVZVAZwzBzp1UqOgzZ1SKfSh5zRICWuiESSsCeFipaXqUsKaEEI3Y8ao\nzXdnzlRvOI9+0+npqfZcGzTImP4ZraAAnnhCTXVwBrWqKti8GR54QI063ncfnHnmidtwBjVQbSxY\noB7XpUvVseJimDxZPfYXXKCC27vvqrYvvxyuuELWprVkJ5tK3BwyDVI0gkyDFMLFnFurSFgTQujq\n1FPh6afVp/geHkde53C034qQFRVq9Ky4+MgqmaDeoB86pNaP1RfUfvzxcFAD1c7ChWr9mfMNfnW1\nekP+xBOq2MuMGRAVpUbVrrlGglpLp/fImoQ10UAS1oRwMRlZE0K4TO/eKngEBR0Z2KqqYO9e4/pl\nFIdDrQ/bu1dtb3C86202NY3xRBYvVtMlj3Z08HN66y3YskWV4/+//1PFRETL5ywwosfomkyDFI0g\nYU0IF5M1a0IIl4qPV4GtY8cjA1vdYhrtxRdfqDL9JwpWoK77+uvjjzwuXgyvv97w+6uqUo/z9Okw\nZEjj+yuM417zFlmPsCal+0UjSFgTwsWcI2uyKbYQwmUiIlQxjc6dD0+/KytT0/Paiz//hLlzG/bm\n2+E4dvRsyZLGBTUnNzcVEkXr4vw90WN7Cz0rTYo2R8KaEC5ms6kZELJcQQjhUkFB8Nxz0KvX4Teg\n7WXd2t69ajPr+ri5HX5hrq5WQdY5Ardkiary2BSVlWo0b8+epv28MEZ1tfqd0COs6bkeTrQ58nZR\nCBeTDbGFEHoqtFpxOBxUVVdjqaloVG63Y6spaOD2r38R//HHhG3YQMoff7D/BCNNdX+mPuaAANzr\neUPr5uZG8FH7kwUHBODm5oaHuzsmf38AfLy88PfxadA5NorFoop7VFYeOarm6Xm4GqSPDyQkqDL6\nPXuqQBsSom73/fdq3VlzffABPPVU89sRrlFVdXgqpNYkrIlGkLAmhIuVlUlYE6I9sthsFNls6tJq\nxVZeTqHVSrndjrWsjJKyMirs9tpjtvJyiktLqaispMhmo7SigrKKCopsNqqrqymrqKC0Zt1LSWkp\n9uMVzDgBd+A+4JdFi1hbd0PnFiLA1xdvLy/gcBj09fbGz9sbk78/Pl5eBPn64u/jg4+XF8EBAXh7\neRHo66t+1tOTkMBAfLy8OOP99zHn5h5u3NtbTQft0QOSk9XXifab++GHpgU155t85xvyoCAwmxvf\njjBOdfWxVVS14uEhYU00mIQ1IVystFTWqwnRGpXb7eQXF5Pn/LJYOFRURKHVSkFJyZFh7KhgVlBc\nfMJ2vb28CPDzI7AmcASbzfh4e+Pv76+OeXvTOTFRHfPzIygwEE9PT7w8PQmsGbHy8/XFt2ZUynk9\nQEhNQPD09CTo6NEts5lHTjYiZjLV+5hUVlZSbLXW/7iVl2NzLtYFqh0OiiwWACrsdqw1o3+20lLK\na0byiq1WKmvCZ0FR0RHXF1osVFRUUGKzkWuzUW61UpiZSYXdTonVirW0lIqKCgosFnyAz4EsYE3N\n1/aKCjz27MGcnY3pr78IDgggOCAAk58f5oAATP7+mP39GXLoEBcsW+Z8MI6/1q3ucTc3Fcji46Fr\nV4iNhbg4dXnUYy9agepqGVkTLYKENSFczGaDmlk/QggDlVVUkFNYSFZ+PjmFhWTm5pJrsRwOYzVf\nh4qKyLNYKKkTOJxCTCZCzGZCgoMxBwVhMpkICw8nMTAQs8mEqeYyxGzGFBSEOShIHQ8Kwt/PrzZM\ntVaenp4t+hycYbCwqIhhJSUUWSwUFRdjKS6myGLBUlJCYVERhRYLluJiDlos7D5wgCKLhZTcXDI8\nPEirqiLD4WAfEAp8CmS5u7Pb15esgADyzGZKwsKoiIwkODiYyJAQwoODiQkLIyI4mHB/fykQ0BrJ\nNEjRQkhYE8LFZBqkEPoqq6gg/dAhMvPyjghiB4uKyMrPJ7uwkAP5+ceMdnUICaFjWBhhISGEhYYS\nExlJn9BQOoaGEhYaqo4f9eWh1zQpoQlvLy+8zeZmBcrSsjLyCgrUV34+i/LzycvPP3ys5nheWhqH\n8vLIyc3F5tyjBfBwdyciJITI0FCiQkKIMJuJCQs7ItAlREQQGRJS79o/4WJ6j6zVt32EEHVIWBPC\nxaTAiBDNU1BSQlZ+Pgfy80nNziY1O1t9X1hIanY2adnZVNf51DrEbCYqPJzoyEhikpIYHBFBVEQE\n0TWXIWYz8bGxtVMKhajLz9eX2KgoYqOiGvwzpWVlHMjJISsnh4Kiotp/H8jJISs7m41btpCVk0NO\nXl7t76qXpycdzGaiQ0PpHBFB58hIokJD1feRkXSNisIsv6OuI9MgRQshYU0IFystheBgo3shRMtV\n7XCQfvAgu7Ky2H3gALuystS/s7PZl5NDaZ0KhVEdOxIXE0OnmBj6JCVxQUwM8bGxdIqOJjYqioiO\nHQ08E9Fe+fn60jk+ns7x8fXersJu50BODvuzskjbv5/9WVmkZ2ayPzOTRRs3kp6VdcSawA5mMwkR\nESRFRdE1Koqk6Gj1FRNDWFCQ3qfVvkhYEy2EhDUhXMxmg+hoo3shhPFyLRY27d3LzqwsdtcEsl0H\nDpB64ADldjug1oQlJSbStXNnrhw5ksROnegUHU1cTSDz8fY2+CyEaDpvLy/iY2OJj41lxJAhx71N\nocVCemYm6RkZ7MvIYO/+/exKTeWrf/4hNT2d8pqKoCFBQSTFxNA1MrI2xPXo1ImenTrhK/9PGs/h\n0DesNWRzdiGQsCaEy8maNdHeVFRWsisri7W7d7MtPZ2t+/ezLT2d1AMHAPD18aFzXBy9unXjwkGD\nakckOsfFnXRkQoi2LthkIthkok+PHse9vqCoiK0pKWzbuZPUfftI3bePRZs2sW3BAkpr1s5FhYUx\nsEsXesXF0TMujl5xcfSOj8enZnsEcRwVFaDX46Nn8RLR5khYE8LFpHS/aMsOFRXx986d/L1zJxtS\nU9m8bx9pOTk4HA78fX3pmZTEKT17cvvZZ3NKjx707t6d6BPtcSWEOKkQs5kRQ4YcMzJXWVnJrr17\n2bJjU4GiwgAAIABJREFUB5t37GBrSgoL/vmHF7/+mqqqKny8vOgZH0/vuDgGde3K4ORk+nfuLKNw\nThUVarN0Pei5h5tocySsCeFiUmBEtBW28nLW7dlTG87+3rmTvdnZAHSNj2dAnz7cNGoUvbp145Tu\n3UmMi8NdPk0WwiU8PT3pkZREj6QkLh8/vvZ4aVkZ23buZMuOHWxJSWHT1q3M+Pxz8ouK8PL0pG/n\nzgxJSmJIcjJDkpPpFhvbPqtUlperDdT1UFUlYU00mIQ1IVxM9lkTrVWh1cpvmzezfNMmVmzdypa0\nNCqrqggPC2NI//5cf+21DOnfnyH9+xMqVXSEaJH8fH0Z2KcPA/v0OeL4rr17+Xv9etZs2MDf69bx\n3tKllJWXYwoIYEhyMmeecgqj+/RhUFISnu0haFRU6BfW9CxeItocCWtCuFB1tXr9l5E10RrYysv5\nfds2lm/axLKNG1m3ezcOoG+PHpx51llMGzCAof37k9Cpk9FdFUI0U1JiIkmJiUy85BIA7HY7m7Zv\n5+/16/lj7VreWLyYRz/6CFNAAKf37s1Zffowum9fTomPx60tjrzpPQ1SwppoIAlrQrhQaam6lDVr\noqXKys9nwerVLPjjD1Zv20a53U63zp056/TTeejBBxk1bBhhISFGd1MIoTMvL6/aEbjbJk0CYMfu\n3SxbuZLlv//OU198wb1vv03H4GDOGTCAS4cN4+wBA9rOmjeZBilaCAlrQriQM6zJyJpoSfbn5jL/\n99/56vff+WPHDgL8/Dh/zBjevukmRo8YQUxkpNFdFEK0AN27dqV7167cccMNVFdXs2HrVpatXMm3\nS5ZwybPPEuDrywWDB3PpsGGcO2gQ/nqNTLmCniNrEtZEI0hYE8KFnGFN1qwJoxVZrXz62298tHw5\nf6WkYAoMZPy4cTz44IOcPWoUvq35TZYQQnfu7u4MOOUUBpxyCg/efjtZOTks+OEH5i9axJWzZuHr\n7c0FQ4Zw49ixjOnXr/UVKamo0O+PtYQ10QgyYVYIF5KRNWG0benpTH71VWImTeKB994juXdvvvvw\nQ3I2b+bj117jorPPlqCmgbLych6bNYsup52GZ6dOuEVH4xYdbXS3mm3Nhg2cedlltd+31fNsDlc9\nJmdedhlrNmzQvN2mio6IYMoNN/DL/Plkrl/P7BkzyCor4+zHH6frv//N8/PnU2S1Gt3Nhisv13dk\nTdasiQaS3xQhXEjWrAmjrN29m4uefpred9zB6tRUZj7+OJkbNvDhq69y/pgx+LSVdSYtxPQXXuCZ\nV17hxquuwrJzJ0vmzTO6S832zqefMu6qq7h78uTaY23xPJvLVY/JXTfdxNirruLtTz7Rpf3miOjY\nkVuuu44V33zDtt9+46Lx43nmyy+Jv/FGHv7wQ/KLi43u4snpXQ1SRtZEA8k0SCFcSEbWhKtl5uUx\n7YMP+PS33xjcty9fv/ce48eObbH7nTlHIBxZWQb3pHk+X7gQgNsmTcLfz49xZ5zRqs/px+XLufnB\nB5n31ltcfM45tcfb2nlqwVWPyYRzz8VWWsp1d95JbFQU544erfl9aKFHUhIvzZjBE/ffz1sffcRL\n//0v/1uyhMeuuII7x49vudsAlJfr98mqnsVLRJvTMv9aC9FGlZaClxd4ysckwgU++fVXet9xB3+k\npvL5nDn8sWgRF519dosNam3J/po3521hv7kKu51bpk5l2KBBXHnhhUdc15bOUyuufEwmXnIJQwcM\n4NaHHsJut+t+f81hNpmYNmUKu//4g1uvv55H585l2IMPsiMjw+iuHV9JCQQE6NO2nlMsRZsjf7GF\ncKHSUhlVE/pzOBw89MEHXDd7NldcfDEbly3jsgsuaJt7IbVQ1dXVRndBM/O//579WVlcM2HCMde1\npfPUiqsfk2smTCA9M5P5P/zg0vttqqDAQJ6ZNo3Ny5fjbTIx6J57+OGff4zu1rGsVv3CWlmZrIcQ\nDSZhTQgXKiuTsCb0d8sbb/Dqd9/x2Vtv8d/nnyeglZQfrVuEwVmUYfL99x9zzC06mj1paVxy002E\ndO9+TAGHpStXcuGkSYR0745vQgIDxo3js2+/Pe79Ob/2Z2Vx0fXXE5SURESfPlw7ZQp5BQVH3L7I\nYuHe6dPpfOqp+CYkENazJ8PGj+eBJ5/k7/Xr6z2Pac88U3ss++BBbpk6ldgBA/COjye2ZmQk59Ch\nE/bvROdb9zZZOTlcOnkyQUlJhPXsyaS776bIYiFt/34unDQJU3IykX37cv0991BosTT4eVm4ZAkA\ng/r2PaZ/JzrPhj5XB3NzuW3atNrHIqZ/f25+8EGyDx48ph8NvW1jnqfjFf9oyPH6no8TPSaNOYeG\nPn4Ag2ueF+fz1Fp0SUjgl/nzuWz8eC5++ml+qvPcGK66Wv3B1uu1U8KaaAQJa0K4UFmZzHwQ+vpw\n2TLe/eknvvzf/7jiqClrLV3ddT2OrCwcWVm8M3v2ca+/bdo0HrjtNrI2bOCHuXOPaGfslVfi4eHB\nrtWr2fn773QIDeXq225jya+/nvD+Hn72WWY++igZa9dy6fnn88mCBTzw5JNH3H7S3Xfz8ttvc/fk\nyeRt28aBjRt5/+WXSd23j6Hnn1/vecx89FFABbUh553Hop9/5qNXXyVv61Y+fPVVvl2yhKHnn39E\nYGvI+da9zUNPP83TDz1Extq1XD1hAh99+SUTp0zhvieeYNZjj7H/n3+45Lzz+PCLL5j61FMneBaO\ntX7LFgDiY2NP+PgdfZ4N6XvOoUMMOe88vv7xR9576SXyt23jszlz+Om33xh24YVHBMrG3LYpz9OJ\nzutExxvyfBz9mDTmHBr6uw6Hnxfn89SaeHl58f7LL3P1xRdz1fPPk5Wfb3SXFJsNHA4IDNSnfT3X\nw4k2R8KaEC4kH6YJPVVWVfHEvHnc9q9/ccHYsUZ3R1eP3HUXwwYNws/Xl3NHjz7mDfZLM2bQITSU\nuJgYXn36aQCeeeWVE7b374kT6ZGUhNlkYurttwPw01Hh7pfVqwGIiYwkwN8fby8vunXpwuvPPtvg\nfv/fCy+wPyuLWY89xugRIwgKDOSsESOY+cgj7MvIYPqLLzbpfAEmX3NN7Tk8ctddAHy/dCl3T558\nzPEfli1rcJ8zs7MBCDabG/wzDen79BdfZF9GBs8+/DDjzjiDwIAARg4dykszZrA3PZ0X3nyzto3G\n3FaL56mp51SfxpxDY+4rpGZtnPN5am3c3Nz47wsvEBgYyOwFC4zujuLcYkDPkTX55FY0kIQ1IVxI\nwprQ0/b9+0nLzua2SZOM7oruhvTvf8LrHFlZJHTqVPt9UmIi8P/s3Xd4lGXW+PFvep/03igJnYTe\npEldBBS7q1jXRV11110syO6+WNf+Wlfctazuq7D6U1BEULGgIitNmqHXkF4nU1JmJpnfH89MDBgg\nCXPPZJLzuS6uybQz9+QhyXPm3Pe5Yc+BA6d9zrDBg5u/TklKAqD4lKlpl15wAQCXL1hAxogR3Lxw\nIe+tWkVcTEybu/2t/uILAKaMH3/S7dMmTtTuX7eu1eed6f229h6S4uNbvT0lMRGAotLSNo0XoNbR\nxjYwIKDNz2npdGP/+PPPAZh1/vkn3T5xzBjt/hbfi/Y81hXH6WzacjxO1Z730J7Xch4X53HyRsFB\nQdxw1VWs/fFHTw9F40zWVDYYkZMB0UbSk04IN5JkTahUqtcDkOw4Ie/KQk+z+FNvMPDk3//OyrVr\nKSguxtRiE95T16C1FNFiupPz5Ndut5/0mDeefZY506ezbOVKvtqwgdeXL+f15cvJSE3lozffZMjA\ngWcdd3llJQBxMTEn3e68Xua4/1Sne7+new8tO362dvup7+1MQkNCMJnNWKzWDu3Hd7qxO99rymmS\nkcPHjnXosa44TmfTluNxqva8h/a8lsXRBbIjY+pMUpOSmn+HeVxtrXYpa9ZEJyCVNSHcSLr1CpX6\npKYCsGXHDg+PxHOuWLCAx158kSsvuojjW7Y0rxtylUsuuID3X32Virw8vl25kpmTJ5NfWMiNd93V\npucnxMYCUHHK2hzndef9nUmqo9Kor6lxadzEuDgAqvbubT5OLf+ZDx/u0GOh7cfJ2SG1Zdv7mnY0\nX1H1ftuj2pHgOI+Tt9q8fTt9Hb/DPE51ZU2SNdEOkqwJ4Uby+1molBEfz/Rhw3jwmWew2WyeHk6H\nOKsDVquV2ro64tpZBfl+yxYAFt5yS/M+Vw0Wi0vG5pOSQkFxMaBVqCaMHs27r7wCwN6DB9sUY+6M\nGQB8+d13J93+xbffnnR/ZzJ00CAAjrt4P6x5s2YBsN6xxqyl7zZtYuzcuR16bHuOU1JCAnDylFdV\njTra8x7aw3lcXFEx9JS9Bw/yzooV/KazrLU1m7VNqzs49feM7HawWuWTW9FmkqwJ4UaSrAnV/vc3\nv2FXXh63L17slXtg5QwYAMDmHTv4eN06xo4Y0a7nTxg9GoDHXnwRvcFAlV7P4scec9n4bl64kLz9\n+2mwWCgtL+eJv/8dgJmTJ7fp+Q/efTeZaWksevRRvtqwAaPJxFcbNnD/Y4+RmZbGAy22KugsnAnk\n1p07XRr3gYULye7Zk9sXL+b91auprK7GaDKxet06brjrLh5fvLhDj4W2H6fpjrWCT738MjUGA/sO\nHeK1Zctc+j47+h7aaovjuFw4c6Yrh+s2xaWlXHT99YzIzua6KVM8PRyNyj3WnJ0mvWRLFeF5kqwJ\n4UbSAEqoNigzk2X33MNb777LVbfeitFk8vSQ2uXFRx4hd8AAZlx1Fc+9+irPLFnSfF9re1id6t8v\nvMC1l13G68uXkzh4MJMuuYTRLdYInRqjPV9v+OgjkhISmHPddURkZ9N3wgTWfPkljy5axPKlS9s0\nzsT4eDZ98glzZ8zg2jvvJGbAAK69807mTp/Opk8+IbFFY5C2vN9zeT+txWvNZXPmkJaczPIPPzzj\na5/pdVp7rbiYGDatWcOv583j3kceIXnIELLPO49/vv0277z0EpPGju3QY9t6nACeWbKEqy++mHdX\nrSJ12DDuffhhHmuRNLX3PZ3pMe15D215LadlK1eSlpzMpS22JfAWO/fsYeycOfg3NfHB/fcT4N9J\nWino9dDB7qdn5Zxmq9OpiS+6nE7yUyFE9yANoIQ7XDh6NJ8//DCXPf44uVOn8sazzzJ53DhPD6tN\nRuTmssPRMfFUbVl7lhAXx79feOEXt7e251x799k6b+RIzhs58qxjONs4E+PjeeWJJ3jliSfOKc6Z\nHtPe288kMCCAV554grnXX8+7q1ZxpeN7eaZYbX2d6MhInlmy5KSk/Fwf29bjBFoC9Y6j6tZSa+M/\nl+Ph1Nb30Nbv3zsrVrDpxx/5+K23Otyt0xOsVitPv/IKDz7zDGP79eOD++8nJiLC08P6mV4P0dFq\nYjs/QFO1h5vocqSyJoQbyTRI4S4TBw1i90svkZOayvmXXcYlN93EgSNHPD0s4aVmT5vGK088wa33\n3suHn37q6eEIYOXatfzu/vtZ+vjjzJ42zdPDaRO73c7KtWsZOGkSDz3zDA9fcw1fPvpo50rUQCpr\nolORZE0IN5JukMKdEqOi+PAvf2HNAw9wcN8+BkycyJW33MKPu3d7emjCCy2YP5/Pli/nuVdf9fRQ\nBPD8a6+x7j//4ZZrr/X0UM7KZrOxbOVKhkybxqU338yIzEz2Ll3KPZdeiq+jI2enoteDo0GRyxmN\n4O8vn9yKNpNpkEK4kVTWhCfMGjGCGcOG8f733/PEBx8wfOZMxg0fzi3XXcflc+cSIv8pRRuNGjqU\n9R984OlhCPCK43CiqIjXli3j9XfeobSigismTODfv/sduY6N6jstlZU1o1GbAtkZk1TRKUmyJoSb\nNDZq3XrlvFh4gp+vL1dOmMCVEybw5c6d/GPtWm5euJDf/+UvXDhzJpfOns3MyZMJltKvEOIcFJWW\nsnLNGj745BO+/eEH4iIjuWnaNBb86lf0SEz09PDapqZG3Zo1o1GmQIp2kWRNCDdpaNAuJVkTnjY1\nN5epubmU6vUs/+Yb3v/+ey5ZsYKwkBBmT5vGZXPmMGvKlOY9z4QQ4kzyCwtZsWYN769ezX+3bSMs\nOJjZI0bw3qJFzBk1isDO0uWxLerrtX8qK2udbY2e6NS86KdHCO9WX69dSuFCdBaJUVHcddFF3HXR\nRRRVVbFi40Y+2LiRK2+5haDAQCaNHcvUCROYMn48uQMG4Osry5yFEGCureXbH37gq++/58tvv2XH\nnj1EhoUxd9Qo7lm8mJnDhhEcGOjpYXaMXq9dqlyzJsmaaAdJ1oRwE2dlTZI10RmlxMRwx5w53DFn\nDmV6PR9t2sS67dt54oUXuPuhh4iNiuL8885jyvjxTBk/nr69e3t6yEIIN7FYrfywbVtzcrZp+3as\nNhsDMjOZmpPDI5dfzrQhQ7yrgnY6qpM1gwFiY9XEFl1SF/ipEsI7OCtrMg1SdHYJUVH8duZMfjtz\nJna7nV3HjvHVzp18uWsX9z38MMbaWlISEhg9fDijhg5l1JAhjMjNRSefFgvRJRwvKGDz9u1s3rGD\nzT/+yLZduzDX1dEjKYkpgwdz2113MSU3lyRV67o8qaZGu1Q5DbJHDzWxRZckyZoQbiLJmvBGPj4+\n5PbsSW7Pnvxx3jxsjY1sPnCA7/Ly2LR/P39/9VXuLy/H19eXvr16MWroUEYOGcKooUPJHTjQqzbq\nFaI7qtLr2bx9O1t27Gi+LK2owN/PjwGZmYzKzub6BQuYPHgwvZKSPD1c9crLtQYgqqZxVlZKZU20\niyRrQriJJGuiK/D382Nc//6M69+/+bbiqiq2HjrEtkOH2Hb4MEs++4xKgwF/Pz8yUlMZ0KcPw3Nz\nGdinDwP69KF/drasfxPCzaxWKweOHGHPgQPkHTjAtp072bN/P0cLCrDb7STHxjK8d29unTGD4VlZ\nTBg4kKiwME8P2/3KyyE+Xk3spiZtmqUka6IdJFkTwk1kzZroqpJjYpg7ahRzR40CoMluZ39BATuP\nHmXX0aP8lJ/Pv995h2OlpdjtdsJCQhiQnU3OwIEM7NuX/tnZZPXsSY+0NPy7wpoXITzIZDZz6Ngx\nDh45Qt6BA/y0bx+79+zhcH4+jY2NBAUEMCAzk4Hp6dwybRqDMzMZnpVFgqo1Wt5GZbJWVaUlbDEx\nauKLLkn+KgrhJvX14O+v/ROiK/P18aF/ejr909O5auLE5tuNdXXsyc9n17Fj/HT8OD/t2cOqtWsp\ndyzoD/D3p0daGtm9emn/evYkq2dPsnv2JDMtDT8/P0+9JSE6FXNtbXNC1nx59CgHjxyhuLwcAF9f\nX3olJ5OTmcmVo0cz+MorGZSZSXZKCv7ys3R65eWQna0mdlWVdimVNdEOctoohJvU10tVTXRvESEh\njO7bl9F9+550e7XJxKHiYg4WFmqXRUX8sGEDb7/3HpUGAwCBAQH0TE+nR3o6GWlppKekkJmWRqbj\n67SUFFkfJ7oMg9FIfmEhxwsKyC8s5ERRkXb9xAmOHD9OUVkZoCVkGQkJZCUnMyApiYsGDyYrOZns\nlBR6JSURJD8T7VdeDmPHqoldWQk+PlJZE+0iyZoQblJfL+vVhGhNdHg4I7OzGdnKp9nVJhMHi4o4\nVFTEoeJijpWWciQvj/Xr13OivJx6iwXQTlqT4uLITEvTkrnUVDJSU0lOSCDJ8S8lMVE2+hYeV15Z\nSWl5OcVlZZSUlVFUWsqJoiKOnzjB8RMnOFFcjN7xIQVAdEQEGQkJZMTFMTQpiXk5OWSnpEhCpkJj\nI1RXq5sGWVmpNS+RYybaQZI1IdxEKmtCtF90eDij+vRhVJ8+rd5fUl1Nfnk5+eXlnCgv53hZGcfL\ny/l6714KKioo0+ux2+3Njw8PDSU1KYmEuDhSkpKaE7nkhAQS4+NJSkggNjqa2OhoSexEm1XX1FBR\nVUVlVRVllZUUlZRQUl5OSVkZxaWllJaVUVhSQlllJRartfl5QQEBJMXEkB4fT4/4eHJyc0mfNo2M\n+HgyExLITEggXD7lc5/KSi1hU7lmTapqop0kWRPCTRoapLImhKslRUeTFB192mTO1thIqV5PcVUV\nJdXVlFRXU1RVRVlNDYXl5Ww5dIiiqipKqqqaq3ROIcHBxDkSt7jYWOJiYoiLiSE2JqY5oYuNjiYu\nJoZInQ5deDiROh1Bqlp+C+WMJhM1RiMGo5Eao7E5Aausrqayupqyigrta+ftej2V1dXYGhtPihMd\nEUFyTAyJUVGkREfTu0cPUocPJzEqiuSYmOb/t7GyN2Hn4ljvp7SyJuvVRDtJsiaEm8g0SCHcz9/P\nj9TYWFLbcIJUYzZTqtdTaTRSaTBol0YjFTU1VBgMVJSVsevIkeb7K2pqfnGSDhAUGKglbhERROp0\nREVGaslcRERzQqcLD0cXEUFYaCiBAQFER0URGBBAWGgo4WFhBAYEEBUZSXBQECHyi+O0agwGGiwW\nTGYz5tpaLFYr1TU1WCwWzLW1mGprqa+vx2AyUa3XNydiBqORGoOh+bLGaERvNJ5UhXUKDQ4mVqcj\nTqcjXqcjNiKC3IQEYrOyiHNcj3Xep9OREBlJsCTs3qm8XOsCpmqz78pKSExUE1t0WZKsCeEmDQ0y\nDVKIziwyLIzIdu4rVWM2U2k0UmM2Y6ir0y5razHU1lJTW0uN2YzebMZgNlNeUcEhx30Gx33m+vqT\npsWdTkRYWHMSGBIcTLAjgYvU6fD19cXXx4fIyEiA5qQPIDQkpLnSp4uI+EVHzYiwsDNul3C2ZNFg\nMtHYSsLqVFtXR8MpFcu6+nrqHRtPGs1mbDYboE0lBLDZbBhNJgDq6+upczzWYDRisVoxGI3UNTRQ\n79wP5QzCQ0IICQpCFxpKlOP46kJCiA0NpWdiIrqePYkMDSUyLIyosDB0jq91oaFEhoYSq9MRIolX\n91FRoVW+VO0DWVUFLfaoFKItJFkTwk0kWROi6+lIgteaapMJi82Gub4eY10dFpuNGrOZeouFOouF\nGrMZi82Gsa6O2oYGGqxW7HY7erMZAKvNhqm6GgCD1UqpI0Ey1ddjdSRDerP5pMpRk91OjeP5p2Mw\nm2lsamIw0ATknXJ/SFDQGatI/n5+RJyy9i8oIIBQxy/DsOBgAh3Joi4kBD9fXwJ8fOjl+J4GREY2\nr9mKCAkh0N+fyLAwggMDCQkMJDIsjEB/fyJCQggNCiIoIIDo8HAC/f0Jk4qkaK/iYnWVL7sdSkul\nsibaTZI1IdxE1qwJIU4nOjzc00M4s4cegvBw+NOfPD0SIdQpLIT0dDWxq6q0E4GUFDXxRZelqM4r\nhDhVQwPIbBohhFeqrQXH1EohuqyiIkhNVRO7uFi7TEpSE190WZKsCeEmMg1SCOG1JFkTXV1dnbbH\nmqrKV3GxdhKgqnmJ6LIkWRPCTSwWqawJIbyUJGuiqyss1NaVqaysJSeDj4+a+KLLkmRNCDexWKSy\nJoTwUmYzuKCRihCdVmEh+PmpawBSXCxTIEWHSLImhJvImjUhhNeqq5PKmujaCgu1ZOoMW1mck5IS\nrbImRDtJsiaEm8iaNSGEV2poAJtNkjXRtalsLgI/T4MUop0kWRPCTaSyJoTwSrW12qVMgxRdWWGh\numTNaASTSZI10SGSrAnhJrJmTQjhlZwbZ0tlTXRlRUVqO0GCrFkTHSLJmhBuYLNBY6Mka0IIL+Ss\nrEmyJrqqqirtQwlVG2KfOKFNrUlIUBNfdGmSrAnhBhaLdinTIIUQXkemQYqu7sgR7bJHDzXxjx/X\nEkE/PzXxRZcmyZoQbtDQoF1KZU0I4XXMZm1vqJAQT49ECDWOHoX4eAgPVxP/2DHIzFQTW3R5kqwJ\n4QbOypoka0IIr1NXp/3y8pVTBtFFHTsGPXuqi3/8uCRrosPkN68QbiCVNSGE15INsUVXd/SoumTN\nZILKSknWRIdJsiaEGziTNVmzJoTwOpKsia7MatXa9qtar3bsmHapKr7o8iRZE8INZBqkEMJr1dZK\nJ0jRdeXna+2aVVXWjh/XPuyIjVUTX3R5kqwJ4QZSWRNCeC1J1kRXdvSo9sdZ1R5rzvVqPj5q4osu\nT5I1IdxAKmtCCK8lyZroyo4e1ZIpVQ10pBOkOEeSrAnhBvX12t8Bf39Pj0QIIdpJ1qyJrkx1J8gT\nJyRZE+dEkjUh3MBikaqaEMJL1dVJZU10TXa7tiG2qmSttBSMRrXJoOjyJFkTwg0aGiRZE0J4KbNZ\nkjXRNRUWaslUv35q4u/fD35+0Lu3mviiW5BkTQg3kMqaEMJryTRI0VXt26c1F1FV+TpwQGvZHxys\nJr7oFiRZE8INGhqkE6QQwktJgxHRVe3fD1lZ6haU798PffqoiS26DUnWhHADi0WSNSGEF2pq0j5t\nkmRNdEV796qbAmmzweHD0Levmvii25BkTQg3kDVrQgivVFurNWGQZE10NXV12obYqpKp48e1T2ql\nsibOkSRrQriBrFkTQngls1m7lDVroqs5cECrHKtsLhISAunpauKLbkOSNSHcQNasCSG8Ul2ddimV\nNdHV7NsH8fEQG6sm/oEDWlXNx0dNfNFtSLImhBtYrZKsCSG8kLOyJsma6Gr271dXVXPGlymQwgUk\nWRPCDSwWCAjw9CiEEKKdamu1S5kGKboSu11LplStV6urg4ICaS4iXEKSNSHcQCprQgivZDZrbc3l\nF5joSgoLoaZGXWVt714tIZRkTbiAJGtCuIFU1oQQXkn2WBNd0a5dWvOPrCx18dPTITpaTXzRrUiy\nJoQbSGVNCOGVJFkTXdHOnTBokLrNsHftgpwcNbFFtyPJmhBuIJU1IYRXsNlOvm42y3o10bXY7bB7\nN+TmqolvNsOhQ5KsCZdR9JGCEKIlq1WSNSFEJ3f8ONxxh/Z1cLBWUbPZtJPbBx6A8HBt6lhEBMye\nra7luRAqHTkCBoO6ZC0vT/uZGTRITXzR7UiyJoQbWCwyDVII0cnFx2t7QjU1ad3snHusAWzdqt3W\nmt0qAAAgAElEQVTnvH/QIEnWhHfauVP7wKFHDzXxd+2CzEyIjFQTX3Q7Mg1SCDeQypoQotMLDdW6\n451uE1+7XUvUYmJgyBD3jk0IV9m1S/v/q2qzalmvJlxMkjUh3EDWrAkhvMLo0eB7hlMDPz+48MIz\nP0aIzqqxUZumqGoKpNEIR49KsiZcSn7bCuEG0g1SCOEVRozQTmjPZNo094xFCFfbv1+b3qsqWdu9\nW6vYyXo14UKSrAmhmN2urdGXZE0I0ellZmrTHFvj7w8TJkBUlHvHJISr7Nyprc1MTlYTf9cu6NVL\na8YjhItIsiaEYhaLdinTIIUQXmHUqNb3n7LZYM4c949HCFfZvl3tesvt29VV7US3JcmaEIpZrdql\nJGtCCK/Q2lRIHx/IyNAakAjhjWpqYN8+7cMIFQoKoLBQW/cphAtJsiaEYs7KmkyDFEJ4hSFDftlA\nxMcH5s3zzHiEcIUtW7QGOaoqa5s3a1sC9O2rJr7otiRZE0IxZ2VNkjUhhFcIDoYBA05ubR4YCBMn\nem5MQpyrH37QErWQEDXxN2+GkSO1hFAIF5JkTQjFZM2aEMLrjBr1c3XN3x9mztSSOCG8kdUKO3ao\nmwJpNMLeverii25NkjUhFJM1a0IIrzN8+M/r1mw2mDXLs+MR4lxs3w4NDVrlS4Vt27RK9NChauKL\nbk2SNSEUkzVrQgivk5Hxcwv/wYMhLc2z4xHiXGzeDFlZEBenJv6mTdreamFhauKLbq2V3rxCCFeS\nypoQwtXsdjt6sxmAxqYmDLW1AFhtNkz19a0+7kz0ZjN2u/2k24ZlZtK7qoqN2dkUbtiAj48PUW04\nGY0KC8OnxXq38OBgAhxbAehCQ/FzTK+Mlr2ohDvY7VpzEVXVYZsNfvwRrrlGTXzR7UmyJoRiUlkT\novsw1NZirKvDUFvb/LWxrg6rzYbebKbBaqW2oQFTfT1Wm41qk6k5wTI3NGBxPM5qs2GsqwPAWFeH\nzTElscZspqmpyS3vZQzwEHDBihXYFL6Or68vkY4k0N/PjwhHA4iIkBAC/P2JCgsjKCCA0MDA5sQv\nOjycAH9/woODCQsOJtDxuAB/fyJCQogICUEXGtr8L0JVUwnR+R08CJWVMGaMmvh5eWA2q5tiKbo9\nSdaEUEwqa0J4jxqzmUqjUftnMFDl+LrGbMZQV0eN2dz8taFFUmaoraXaaDxtXF9fXyLDwwkKCiI0\nOJjwsDACAgKIjorSko7oaOKCgwkOCkIXEUGAvz+ROh0AoSEhBDk+7YkID8ff0W0uUqfD19dXq3g5\nHuvn54fulIqV87XOpOVrnMrxK4wGi4VaRwJ5OlarFdMplTyDyUSjI9msrqkBoKmpiRqDAQBbYyNG\nk+kXr1FjMGC12TAYjdQ3NFBXX0+x0Yi1vh59YWHza9XW19PQ0ECNyXTaRNbHx4eo8PCTEjhdSAi6\nkBAiw8KICgtrvj02IoKYiAhidTpiIyKIjYhoTiaFF9q8GRISoEcPNfG3bNGmDScnq4kvuj1J1oRQ\nzGrV1h37y0+bEG5lsdko0+sprq6mtLqaUr2eUr2+OQGrMhqpNJl+vm4wNFewnAL8/YmJiiJKp0MX\nEUGkTkeUTkdSSgp9IiLQRUSgCw9HFxFBdGSkdr3FbeFhYejCw/HrAu28gwIDT5vQtZSgal1QGzQ2\nNmIwmTCaTBiMRoxmMwajEYPRSHVNjfa14z7n10cMBvSFhRjNZvQGA1V6PVbbybVEfz8/YhzJW0xE\nBLHh4dql43pSdDQJkZEkRUeTHBNDQmRk89RP4WHff6+uqma3w4YNMHWqmvhCIMmaEMpZLFpVreWW\nRUKIjjPW1ZFfXk5hZSUljkSsuLr658SspobS6moqHFUcp/DQUJLi44mNjiYmOprYtDR6REX9fD06\nmhjH9biYGGKiotBFRHjoXYqO8PPzIzoykujIyHOKYzAaqdLrqaiqorK6miq9Xrusrm6+XlpVxZ4j\nR6isrqa0ogKTY92gU3xUFAlRUSRGRpISE0O84zIxKorE6GjSYmPJSEggXLZEUOfwYThxAu66S038\nvDyoqIBJk9TEFwJJ1oRQzmKR9WpCtJXFZqPCYKC4qoojJSUcKSmhqKqK4upqjpSWUlRZSXFlZfPj\ngwIDiYmMJDoqipSkJFKzsxmZmEhyYiLRkZGkJCWRnJBAanJy81RBIc7GWSHtkZ7e5ufUNzRQpddT\nXFpKUWkp1Xo9xWVlFJWUUFxayuaCAqp/+okTxcUYW0wVDQ4MJCU2ll5JSSRHR5MSE0OvpCTtekwM\nmZLQddz69dr0xD591MT/5hvo2VObBimEIpKsCaGY1Srr1YRoqUyv51BxMYeLiznk+He4pITjZWWU\nVFU1Py44KIi0pCTSUlLISEtj1vDhpCUnk5acTGZaGilJScRERXnwnQjxs+CgIFISE0lJTGT4WR5b\npddTVFLC8YICThQVUVBcTH5hIScKC/nvli2cKC6mwdmdCkiKiaFHYiK9ExPJSkkhKzmZ3snJ9E5K\nIkF+Blpnt8N338G0aWqmtths2hTLSy5xfWwhWpBkTQjFJFkT3VGl0Uje8eMcKCzkcEkJh4qKOFxa\nyqGiIoyO6WJBgYH0Sk8nq1cvxk2cyNXp6WSmpTUnZInx8R5+F0KoERMVRUxUFIP69TvtY0rKyigo\nLm5O5I7m53Po6FHe3bSJoydONCdzurAweicnk5WU1JzA9UlNZVBmJjHdeRrv7t3aFMWJE9XE//FH\nMBphwgQ18YVwkGRNCMVsNmkuIrouvdnM4eJi8vLz2ZOfT96JE+zJz+dIcTGgJWSpSUn0ysxk5Jgx\nXN+nDwP79qVXRgaZaWldovGGECokJSSQlJDAiNzcVu+vrqnhyPHj5O3fz54DBzhy/Djr9u3j5bVr\nMTi6a0ZHRDAgPZ2BGRkMyMhgYEYGg3v0ILE7VOO++QZ691Y3RfHbb6F/f0hMVBNfCAc5hRRCscZG\nSdaE97Pb7RwsKmLrwYNsPXSI3cePk5ef37x+TBceTv+sLAb178/kmTMZ1K8fA/r0IT0lxcMjF6Jr\nio6MZHhODsNzcn5xX35hIXsPHuSnffvYe/AgO/buZfl33zWvlUuJi9MSt4wMRmRnMyI7m6zk5JM2\nM/dqNhts3AiXX64mfkMD/PAD3HijmvhCtCCnkEIoJtMghTc6XlbG1oMH2eJIzrYePEiN2UyAvz+D\n+/VjyKBBzJwzh0H9+tE/O5vMtDRPD1kI4ZCRmkpGaiozJ08+6fbjBQXsOXCgOYn7+qefeHH1aqw2\nG1Hh4QzPymJkdjYjsrIYkZ1NZkKCZ97AudqyBUwmdVMgN23S/rifd56a+EK0IMmaEIrZbCAzvURn\n1tjUxPbDh1m/ezff/PQTmw4coFyvx8/Pj/69ezNi6FAuvvxyRg4ZQu7AgW3aa0sI0flkpqWRmZbG\nrClTmm+rb2hgZ14eW3fuZOuuXazevp2nVqygsbGRhOhoRmVnM3nwYCYPHsyQXr3w8/X14Dtoo/Xr\nYfBgULXn3zffwJAh0B2mkwqPk2RNCMVkzZrobBqbmthx5Ajrd+9m/e7dfJeXR43ZTEJsLJPHjWPx\n7NmMyM1l6KBBhIWGenq4QgiFgoOCGD1sGKOHDWu+zWQ2s/2nn9i6cyf/3bqVJz/8kLtff53IsDAm\nDhp0UvLm29mmTprNWmXtllvUxDcaYds2uPNONfGFOIWcQgqhmM0m0yCF51WbTKzevJkPf/iBr3bt\nQm8yER8Tw6SxY3l08WImjxvHgD59us6aFSFEh4WHhTFh9GgmjB7NHxcswG63s+fAAb7euJH1Gzfy\n+IoVLHztNaIjIpiSk8O8MWOYM2oUUWFhnh46fP211qp//Hg18b/4QvujPm6cmvhCnEKSNSEUk8qa\n8JTiqio+2rSJFRs3sn73bnx9fZly3nk8fP/9TB47loF9+0pyJoQ4Kx8fHwb27cvAvn2548Ybsdvt\n5O3fz9cbN7Lmiy/4zQsvYLfbOT8nh4vHjuWi0aNJjonxzGDXroVJk0BF4mi3w6efwpQpEBLi+vhC\ntEJOIYVQTJI14U7VJhPL1q9n2bff8sO+fYQGBzNryhTe+u1vmT11KrruvO+SEMIlfHx8GNSvH4P6\n9ePOm26ixmDgky+/ZOWaNdz9xhvcvnQpY/r145pJk7h68mT3Vdzy8uD4cbjrLjXxd+2CwkK49141\n8YVohResEhXCu0myJtxh0/79XPP006Rcdx33vfUWWQMG8OG//kV5Xh7v/fOf/HrevE6dqPmkpDT/\n68xUjrO9sU/3+N1793L/3/7GkGnTCM/KIjwriwGTJnHrffdx6NixDo9vy44dnH/ZZc3X6xsa+MsT\nT9B77Fj809O94vip5q7vyfmXXcaWHTtcHrejInU6rr74Yv7fq69SnpfHitdfp/eAAdzz5pukXHcd\n1z7zDFsPHlQ/kLVroVcvyM5WF79/f23/NiHcRJI1IRSzWiVZE+qs2bqVCffdx5iFC9lfWckLjz5K\n0Y4dvPXCC8ydPp3goCBPD7FN7EVFnh5Cm6gcZ3tjn+7xOVOn8vG6dTy9ZAmFP/5I4Y8/8tjixaxe\nt45Bkyfz5YYN7R7ba8uWMeOqq/jDzTc337bkqad49PnnuemqqzAcOMBny5e3O25X467vye9/8xum\nX3UVr77zjpL45yIkOJiLZs7k3y+8QPGOHTz38MPsKS9n5B//yKRFi/h02zY1L2w0anurzZ6tJr5e\nr+2tNmuWmvhCnIacQgqhmGyKLVTYfOAA97zxBt/l5TF76lTWP/QQk8aO9fSwzshZYfCWxMyb/Wfp\nUgb169d8/aKZMwkOCuJXV1/NwgceYMcXX7Q51tqvvmLBPfewfOlS5v3qV823v7tqFQC3XX89oSEh\nzJg0qdsfW3d9Ty6eNYvaujquvfNO0pKTT2rF35noIiJYMH8+C+bP5+vvv+eZV15h1pIlTM7J4emb\nbmJ4VpbrXuzzz7XGH5MmuS7mqfGDgmRvNeF2UlkTQjGZBilcqd5i4Z433mDc3XdDWBgbV63i43//\nu9MnasJ97EVFJyVqTueNHAnAgSNH2hzLYrVyy733Mm7ECK688MKT7jvhSEJiZK+pZu78nlxzySWM\nHjaMW++7D6vVqvz1ztX5553H6v/7P75ftQprUBCj//Qn7vvXv6i3WM49uN2uJVNTpkBw8LnHay3+\nZ5/B9OlawiaEG0myJoRiVqu07heuUVJdzcRFi/jn55/z8uOPs37FCsYMH+7pYQkvUV5ZCUDuwIFt\nfs4Hn3zCiaIirr744l/c19TU5LKxdRXu/p5cffHF5BcW8sGaNW593XMxbsQINnz0EcuXLuXVdeuY\ndP/9lFRXn1vQHTu0xh8tKr8utW0blJbCjBlq4gtxBpKsCaGYVNaEK5TX1HDevfdisNnY9vnnLJg/\n36va7rdssuBsunDzwoWtPvZEUREX3XADEdnZJObkMP+OO6g85WSuZXONw8eOcclvfkN0v36/aOhQ\nVlHBbYsWkTZsGIGZmaQOHcqCe+6hpKzspHg1BgN/XLKEXmPGENyjB7EDBjBu7lzufughNm/f3uFx\nApSUlXHLvfc2jyHNUQ0pLS9v8/cvb/9+Lpg/n/CsLCL79uXim24iv7Cwzc8H+L/33wdgyZ/+1Obn\nrPrsMwBG5OaedHtrx3PRo4+edN1Vx6Y9j23rcTxdc5a23H6693Sm70l73kNbv38AIx3HxXmcvMnl\nc+eyae1aqhsaGH/ffVQYDB0P9umnMHAgZGa6boAtrV0LOTmQkaEmvhBnIMmaEIrZbODn5+lRCG93\n1ZNP4hMYyIZVq8jq0cPTw2m3lut27EVF2IuKeO2ZZ1p97P1/+xuP//nPFGzbxhVz5/LOihXc/dBD\np41326JF3H3bbRTt2MGat99uvr20vJxRF1zAyrVreePZZ6nas4f/vPIKn3/zDeMuvBB9i5PD6//w\nB5579VX+cPPNVO7ZQ/HOnfzruec4cvw4o0/TsKAt4ywpK2PUBRewet06/v3CC1Tm5fHWCy/w0Wef\nMXr27DYlbIePHWP8RRexMy+PVW++SeGPP/LHBQtYcM89Z32u0849e3j8pZdY/Pvf86vzz2/z87b/\n9BMAmWlpJ93e2vF8/M9//sV9rjg2Ko7j6daRteX2072nM31P2vMe2vJaTs7j4jxO3ia7Z0++//hj\nmvz8uOrJJzsWpLRUa/xxwQWuHZxTcTFs2SKNRYTHSLImhGI2m0yDFOfm023b+HrXLv7zyivEeWqj\nWTf67TXX0D87m0idjkV33gnA5+vXn/bxi3//e8aNGEGIY08558nukqef5nhBAX+7/35mTJpEeFgY\nE0aP5tkHH+Rofj5Pvfxyc4yvN24EIDUpibDQUAIDAujbuzcv/e1v5zTO/3nqKU4UFfHEX/7ClPHj\niQgPZ+r48Ty+eDHHCwpY8vTTZ/1+PPDMM+gNhuYY4WFhTBwzhluvu+6szwUtUZtx1VX87oYbeHTR\nojY9x6mwpASAqMjIdj3PyRXHRvVxdNV7OpP2vIf2vFa0Y22c8zh5o/jYWJYvXcpXO3fy+Wmq2Ge0\nciVER6tr/LFiBcTHw7hxauILcRaSrAmhmFTWxLlas3UrY4YO/cVUtK5q2ODBzV8nJyQAUNzK1Din\nUUOHtnr7x59/DsCsUypJE8eM0e5ft675tksdn8pfvmABGSNGcPPChby3ahVxMTGnPRlvyzhXO7ou\nThk//qTbp02cqN3fYgyns+7bb1uNMX7UqLM+d8+BA5x/6aXcceONPP0//3PWx5+qtq4OgMAOfuLk\nimOj+ji21+ne05m05z2057Wcx8V5nLzV6GHDGD1kCJ9s2dK+JxqN8MUXcNllatYb6PXw5Zdw6aXy\nh1x4jKykEUIxWbMmzlWpXk9KcrKnh+E2EeHhzV/7+mqfKdrt9tM+PjQkpNXbyxwNNVJOc8J7uMUG\n0W88+yxzpk9n2cqVfLVhA68vX87ry5eTkZrKR2++yZBWmnK0ZZzOph6nVkSd151jPJOKqqozxjid\nguJifnX11fzpllv4y113nfV1WhMaEoLJbMZitRIUGNih57emPcdG9XFsr9O9pzNpz3toz2tZHF0g\nOzKmziY1JYVSvb59T/roI23qyrRpagb10UcQGqouvhBtIJU1IRSTaZCtO8O5t1fEd6d+aWls27mT\nxsZGTw/FqyTGxQFQtXdv8xqilv/Mhw+f9PhLLriA9199lYq8PL5duZKZkyeTX1jIjR1MdAASYmOB\nnxMuJ+d15/1n4kzKTo1Rc4aGDHqDgVnXXMOC+fN/kaid2qTiTFKTkrR4NTVtfk5btOfYqDqOzgY9\nLdven+l76q732x7VjuTGeZy8lc1mY+uOHfQ7ZW3kGdXXw5o1cOGFatr119Vp8efOhQ58UCGEq0iy\nJoRi3lRZs9tBZYPBlvEbG9XOKlEd351umDaNwpISXn7rLU8P5Zw4P/23Wq3U1tUR54Iqx5nMczQE\nWO9Yx9TSd5s2MXbu3ObrPikpFBQXA1qVbMLo0bz7yisA7D14sMNjmOto9f3ld9+ddPsXjqmNc9vQ\nCnyGY5PfU2P8d9u2Vh/fYLFw0Q03cOWFF3a4ouY0dNAgAI4XFJxTnFO159ioOo5JrUxdVdWooz3v\noT2cx8UVFUNP+vubb1JUWsoNU6e2/UmffgoNDXCaBkDnbO1a7Q+JqsYlQrSRJGtCKGa1ek/S0NSk\ndqwt40uy1nY9ExP5y5VXsvCBB/jEsQbKG+UMGADA5h07+HjdOsaOGKH09R5YuJDsnj25ffFi3l+9\nmsrqaowmE6vXreOGu+7i8cWLT3r8zQsXkrd/Pw0WC6Xl5Tzx978DMHPy5A6P4cG77yYzLY1Fjz7K\nVxs2YDSZ+GrDBu5/7DEy09J44DTbF5z6PqJ0uuYYJrOZjVu38tiLL7b6+Pl33MG3P/zAX5988qQ2\n8K21fj8bZzK5defOdj3vbNpzbFQdx+mOdYNPvfwyNQYD+w4d4rVly1z6Pjv6Htpqi+O4XDhzpiuH\n61ar163jnoceYsmvf02PxMS2Pclm06YozpwJOp3rB2WzwapV2r5tERGujy9EO0iyJoRijY3eMw2y\nqQl8Ff5WaBlfkrX2+etVV3HdlCnMu/FGXnj99TOu4eqsXnzkEXIHDGDGVVfx3Kuv8sySJc33nbpH\nVXu/bi0JiYuJYdOaNfx63jzufeQRkocMIfu88/jn22/zzksvMWns2ObHbvjoI5ISEphz3XVEZGfT\nd8IE1nz5JY8uWsTypUs7PLbE+Hg2ffIJc2fM4No77yRmwACuvfNO5k6fzqZPPiExPv6sMXplZrLh\no4/IHTiQC2+4geQhQ3jwmWdY+vjjrT7+/dWrf/G96KjL5swhLTmZ5R9+eNLtZ/r+u/rYqDiOAM8s\nWcLVF1/Mu6tWkTpsGPc+/DCPtUia2vuezvSY9ryHtryW07KVK0lLTuZSVdUlhex2O8+/9hrzbryR\nG6dNY/EVV7T9yd98A9XVMG+emsGtX681F7noIjXxhWgHH/s5/MW/4oorKC6GRYvec+WYRDfhPM9o\nZydprzNvHtx1F5zDh/Nu88UX8Mor4Ng7V2n8P/8ZUlLg9tvVvFbL+HPm+PDuffdxxYQJal7Mjf72\n3nv8z9tvc/555/GPJ5+kl6pNYIVw+OSLL5h7/fUsX7qUKy+80NPDEQ7vrFjBtXfeycdvvcVsL2uA\ncejYMRbcfTffbdrEw/Pns+jyy9v+ZLsd7rgDeveGdmzw3q74t98Offpof7yFOMUVjz9OMcltyn/m\nzPHh3Xff5Yr2fBhxsv8nlTUhFLLbvWvNWmOj2spay/iqtzToqlsmLL7iCjY+/TTF+fn0nziRP/z1\nr5RVVHh6WKILmz1tGq888QS33nsvH376qaeHI4CVa9fyu/vvZ+njj3tVolZaXs4dixczYOJEKoqL\n+e/TT7cvUQNtA+z8fLjkEjWD3LgRTpxQF1+IdpJkTQiFbDbt0luSNXdPg1T5fVEd35NG9enD9uef\n54UFC/h/H35Ij1GjuPXee9nfwY5yQpzNgvnz+Wz5cp579VVPD0UAz7/2Guv+8x9uufZaTw+lTfYe\nPMiCe+6hx6hRfLh6NX+/7TZ+fO45RmRnty9QUxP83//B+PHQo4frB9rUBG+/DRMnQkaG6+ML0QFd\n9FRGiM7B2WndWyo8smbNewT4+3PLrFlcN3Uqb37xBc9+9BH/fOcdJo8dy2+uvppLZ88mOCjI08MU\nXciooUNZ/8EHnh6GAK84DnX19XzwySe8vmwZ3/zwA33S0nju5pu5bupUQjraCv/LL6GgADrYkOWs\n1q2D4mLowAbyQqgiyZoQCjmTNW+p8LgzWZNpkK4REhjIbRdcwC2zZrF261Ze+/xzbvjDH7j9/vuZ\nPW0aF8+axawpUwgLDfX0UIUQXZzJbGbtV1+xcu1a1nz5JbV1dcwZOZLVS5bwq+HD8T2XvWEsFli2\nTOsA2Z792NoTf/lymDEDkpNdH1+IDvKSU0ghvFNTk3apMgFyJZkG6b18fXyYPXIks0eOpKS6mne/\n+46V//0vV916KwEBAcyYOJF5F1zAhTNmEBsd7enhCiG6iIqqKlZ9/jkfrl3Lum+/xWq1MmHQIB78\n9a+5csIEklz1++aTT6CmBq680jXxTrV6NRgM0PFGEEIo0Y1OZYRwP5kGefr47mxm0t0kRUfzhwsv\n5A8XXkh5TQ0fb97Myv/+l9/ddx+/XbiQMcOGMfm885g8bhzjRoxo3qxaCCHOxlxby8atW1m/cSPr\nv/+eTdu3E+Dvz/ShQ3n5ttuYO2oUca7e+6yuDj74QGulHxfn2tjO+CtWqIsvxDmQZE0IhZzJmrck\nDe6sdlks0NFlC22hOr63iI+M5Kbp07lp+nRM9fWs3bqVL3bs4P998AGPPv88gQEBjBoyhPPHj2fy\n2LGMHTGCkOBgTw9bCNFJ1NbV8d9t21i/cSNfb9jA5h07sNps9E1PZ/KgQfzxvvv41fDhhKv8vfHB\nB2C1quvQqDq+EOdAkjUhFHJOg/SWypo7E6jaWlC5jEp1fG8UHhzM5ePHc/n48QAUVVXx9a5drN+9\nm+XvvcfDzz5LUGAgQwYOZMSQIYzIyWFEbi79s7Px85b/xEKIDmtsbGTvwYNs3bmTrbt2sWX7dnbk\n5WGxWslOTWXyoEH87q67mJyTQ0pMjHsGVVMDH32kTU+MiFAX/8or1cQX4hxJsiaEQt5WWbNaISDA\nPfHr60Hl7DvV8buClJgYrpk8mWscO7YXVFSwfvduNh84wNYffuCNZcuoa2ggLCSEoYMGaQlcbi4j\ncnPJ7tkTX2/5jy2E+IWmpiYOHj2qJWY7d7J1xw62//QT5ro6QoKCGNKrF6Ozsrhz6lTOz8khNTbW\nMwP9z3+0X+aqNmRfvlyLP3eumvhCnCNJ1oRQyNvWrLmrstbQoH1vVFW+VMfvqtLi4ph//vnMP/98\nAGyNjewvLGTboUNsO3SILRs38spbb1FvsRAYEEBWjx4M7NePAX36MLBPHwb06UP/7GxJ4oToZIpK\nS9lz4AB5+/drl/v2sSMvD3NdHf5+fvRJS2N4795cdu21DM/KYmR2NkEqP7lrq8JCWLsWbrkFVGxF\nUlgIn36qLr4QLiDJmhAKSbLWevy6Ou26qsqX6vjdhb+fHwMzMhiYkcF1U6YA0GC1suvYMXYdPcqe\n/Hx+ys/n9R9+oKC8HIDw0FD6Z2UxqH9/BvTpQ7+sLLJ69qRnRgZBsohQCGUaLBaO5udz6OhR9h06\nxJ4DB/hp3z72HjyIqbYWgPSEBAakpzMmI4Mbx40jt2dPcnr2JLCzts599VVITYXp070zvhAu0El/\nOoXoGrxtzZq7pkE6zhuUJVOq43dnQQEBjMzOZmR29km3681m9uTnk5efT97x4+QdOMCnX3xBcWUl\nAL6+vqQnJ9O7Rw969+hBVs+e9M7MbL4MDwvzxNsRwqsYTSYOHz/O4WPHOHTsGIcd/w4dPax4NtcA\nACAASURBVEpBSQlNjj86ybGxDMzIYFxmJr+dOJFBmZkMSE8n0pt+zr7/HrZtg8ceU9P5asMGtfGF\ncBH53ymEQt62Zs3dlTVV0xRVxxe/FBUWxrj+/RnXv/9Jtxvr6jhcXMyh4mIOO/4d+uknPlu3joKK\niuaTy8S4OHpnZpKWkkJ6airpKSlkpKaSlpxMekoKSQkJnnhbQrhVSVkZJ4qKKCguJr+wkPzCQgqK\nijhRWMiR/HxKKyoAx4cf8fH0Tkqid1ISM2bMICs5md6OfxHe/klVQwO8/jpMmQKDBqmJ/8YbMHWq\nmvhCuJAka0Io5G2VNYsFVHZfdsaXaZDdR0RICEN69WJIr16/uK/BauVoaSmHioo4VFzMsdJSTlRU\n8O3+/ZyoqKCkqqr5sUGBgaQlJZGWnExGejoZqamkJCaSkpREQlwcSfHxJCUkyJ5xolOqraujpKyM\nkvJyyioqKCwupqi0lBNFReQXFFBQVERBSQkNFgsAPj4+JMXEkB4fT1pMDKPS0rhyxIjmhKxnYmLn\nWFOmyvLlYDLB9derib9smRb/uuvUxBfChSRZE0Ihb1uzZrWq7VzsjO+cpqiq8qU6vnCNoIAA+qWl\n0S8trdX7G6xWCioqKKisJL+sjPzycgoqKjiRn8/2rVspqqqiymA46TnhoaGkJCZqCVxCAsmJicTH\nxpKSlERiXBwJcXHEREcTHxNDpKs37hXdit5goKKqisqqKsoqKymrqKCopISyigqKy8ooLSvTbist\nbV4z5hSr05ESG0tmfDz9Y2OZ0acP6XFxZCQkkB4XR1pcXOddR6ZaYaHWSv83vwEV2wMUFsKqVeri\nC+Fi3fQ3gRDu4aysedM0SJUf1jrj19ZqSwRUTblUHV+4R1BAQPO0rtNpsFopr6mhqKqKUr2eMr2e\noqoqymtqKK6uZvvx49ptlZWYnCVXBz8/P2KjooiNjiYmKorYmBjt6+hoYqOjiXNcj42OJlKnQxce\nTlRkJLrwcPy764l0F2Oz2TCYTOhraqgxGjEYjVRWV1NZXa0lYo6vq6qrqXRcr9LrqdTraXR+GucQ\nHhJCalwcCZGRJEVFMTQpiYS+fUmJjSUhMpLE6GiSo6NJiIrqvolYW7z8stb0Y9YsdfEzMuCCC9TE\nF8LF5LeFEAp525q1+nq10yCd8Q0GtRU81fFF5xEUEECaoxJxNrUNDZTX1FBpNFJhMFBpMFBpNFJl\nNDZflhw+TJ7jekVNDTVmc6uxQoODiQgPRxceji4iguioKHQRESfdFhEeTnRkJMFBQYQ4Hh8QEECU\nTkdgQABhoaGEhYYSGBhIlE6Hj4+Pq789XYrdbkdvMGCxWDDX1mKurcVitaI3GLBarRhNJurq66lv\naKC6pgaD0YjRZMJgMjV/Xa3XYzAaMZhMGE0mauvrW32tyLAw4qOiiAkPJzYigtiICHqkpBDbty+x\nERHEREQQq9MRp9MRGxFBQlQUIfLp0Ln79lvYtQueekrNlJSW8b3lD7Po9iRZE0Ihb5sG6c5kLTJS\n3euoji+8U2hQEJkJCWS2o1lJY1MTlQYDNbW1GGpr0ZvNGGprMdbVYXDcZqitpdpkwmg2U1FRwZEW\n91ebTDRYradNCloK8PcnPDSU0JAQggIDidTp8PX1xc/XF51jymaAvz/h4eEAzUkg0PwcgPCwMAJO\nKZGHBAcTfJZ9pM6UMDoTpTNxJkotWa1WTI6Et8FiodZR3aytq2ten2UymbDabAAYDAYam5poamqi\nxmCgvqGBuvp6jGYztlMqWa0JDQ4mKCCA6PBwdKGh6EJDiQgJQRcSQkJ4OFGJic23N98XGkpUWBiR\nYWHoQkKI1enwkxN596ur05qKTJ8O/fp5X3whFJFkTQiFvC1Zq6tT25TDGb+oCFQuF6qpURtfdB9+\nvr4kREWREBV1zrFM9fVaJchsxmKzYa6vx1Rfj9Vmo9pkar7NXF+PxXEbgNVmw+RI9uotFuqqqwGo\nslhosFqbYzsTnpra2uYum041ZjNNdvtpx2a12X4xTfRU4SEhZPv6kmC3s7mVX2p+vr7oTlko2vK2\nAH9/wh3JZVBAAKGO5DI+MJBgR0v58NhYAvz98fHxISosjEB/f8KCgwkPDibA35/o8PDmOGHBwQT6\n+2uPCwhoji281L/+pc2VV9VURHV8IRSRZE0IhbxtzZq7kjWprInuKDw4GIKDifHmObqvvQY7d8KL\nL3p6JKIr2bED1q6Fe+9V88tbdXwhFPKSU0ghvJO3VdYaGtROg3TGr6lR+/dSdXwhuq2cHDh2TPtE\nRAhXMJvh+edhzBiYMEFN/Oeeg4kT1cQXQjFJ1oRQyJuSNYsFbDZ1lbWW8VVPU5RpkEIoMnAg+PjA\n7t2eHonoKv7xD+2Pw513qom/dKk2zeXWW9XEF0IxSdaEUMibpkE6+x+oStZaxpdkTQgvFRYGWVla\nRz0hztVXX8HXX8Pvf6/ml/bXX8M332jxvXn6sejWvOAUUgjv1djoHVU10NaTgbpkzRk/KAhMJnXT\nFJua1MYXotvLzdXWrQlxLgoLtarXxRfDyJGuj19QoO2pNm8ejBjh+vhCuIkka0Io1NTkfcmaqjVr\nzviNjdr3RVXly2hUG1+Ibi8nRzsRrqz09EiEt7JY4PHHIT0drrvO9fHr6+Fvf9M2v5buj8LLSbIm\nhEKNjd4xBRLcNw3SuQ1TbKya16mqUhtfiG5vwAAICJB1a6LjXnoJKipg0SLwV9CY/KWXQK+H++9X\nE18IN/KS00ghvJNMg/xlfMf+uMTEqHkd54f9quIL0e0FBUGfPrJuTXTMBx/A+vVw993Qjg3q22zF\nCvj2Wy1+XJzr4wvhZpKsCaGQ3e59lTVV0yCd8Y1G7TVO2TvXZSor1cYXQqCtW9uxw9OjEN7mxx/h\nrbfgpptg+HDXx9+6Fd58U4s/bJjr4wvhAV5yGimEd2pq0rpce4O6OggMVFcJdMbX69VOUayqkimQ\nQiiXkwNlZVBa6umRCG+Rn6+tU5syRWv6oSL+k0+qiy+Eh0iyJoRCdrt3JWuqpkC2jF9VpXaKour4\nQgigXz+thC1dIUVbVFbCkiXQowfcfrvr41dVwf/8j7atxB13uD6+EB4kyZoQinlLslZfr24KZMv4\nlZVqK1+q4wsh0Jo29O8v69bE2dXWwgMPaJ/W/fWvWnMaVzKZtEQtOFgaioguSZI1IRSy2z09grZz\nZ2VNpkEK0QXk5EiyJs7MZtNa6NfUaAmbqzembmiAhx7SEraHHpKNr0WXJMmaEAp5W4MRd1TWqqog\nOlrd66iOL4RwGDxY+4ErKPD0SERnZLPBY4/BwYNaIuXqzo/O+AUF8PDDajpLCtEJeMlppBDeyZsq\na/X1aitrzmRNZYMRm019AxMhhEN2ttZ2VdatiVM1NcH//q/2f+Ovf9XWqrmSzQZPPQV5efDgg9rm\n2kJ0UZKsCaGQNzUYqa/Xtk9SGd/HR/sbruoD0MpKtfGFEC34+cGgQTIVUpzMmaht2qQ1FRk0yLXx\nbTZ44gnYtk2Ln53t2vhCdDKSrAmhmDcla6qnQTrFx6t5jfJytfGFEKdwrlvzpmkEQp3GRi1R27hR\na/oxeLBr49tsWvv/7dvVJIJCdEKSrAmhkDedvzQ0qK2sNTRof8f9/SEqSs1rVFSojS+EOEVOjrbT\n/bFjnh6J8DSrVVtD9sMPWiKVm+va+BaL1qxk1y545BHXJ4JCdFKSrAmhkDdNg3RHsma1auvJVDVd\nKS9XG18IcYqePUGnk3Vr3V1Dg9bkY/du7dLViZrZrFXq9uzR4vfr59r4QnRickojhELelKy5Yxqk\nxaJ2imJ5uUyBFMKtfHy0CoesW+u+jEaticihQ1rlq39/18avrtb2Tysq0ip3ffu6Nr4QnZwka0Io\n5i3Jmjsqaw0NEBen7jUqKtTGF0K0YvBgraLS2OjpkQh3Ky2Fe+7RPil7/HHo3du18YuK4O67tU/6\nnn5aq+QK0c1IsiaEQt60Zs0d3SBra6WyJkSXk5ur7Xp/6JCnRyLc6dgxuPdebaHwU09BRoZr4//0\nk5aoRUbCk09Km1/RbUmyJoRC3jQN0h2VNbNZbeWrvFwqa0K4XXq6tlhUpkJ2H5s2aYlURoaWqLn6\nF+8332hr1AYN0qZW6nSujS+EF/H39ACE6Mq8KVlzx5o1m01d5au+HkwmqawJ4RHOdWuXX+7pkQiV\n7HZ4/334979hxgy47TatsubK+MuXw7JlcOGF8Nvfes8fUSEUkWRNCIW8JVlrbNQSKVWVNWd8kD3W\nhOiSBg+Gf/5Ta/kaEODp0QgVrFZ48UVYvx6uvx4uu8y18Y1GeOYZrbPowoVw/vmujS+El5JkTQiF\nvCVZa2jQLlVV1pzxQZI1Ibqk3FztB33/ftmouCsqLtYaiJSWwoMPwtChro1/+LA23bGxUXsd6fgo\nRDNZsyaEYt6QrNXXa5eqKmvO+IGBEB6u5jXKy7VkU1V8IcQZJCVBYqKsW+uKvv0W/vAH7etnn3V9\novbVV1qjkoQEeO45SdSEOIVU1oRQyFu6QTorX6qSNWf86Gg18UFr2y9VNSE8KCdHS9auvtrTIxGu\nYLHAm2/CqlUwZQrccYf2iZur1NXB0qXw9dfaWsf588FXaghCnEqSNSEUkmmQJ8ePiVETH6QTpBAe\nl5OjnXir7lYk1CsogCee0KY93ncfTJjg2vj792v7ptXVaV0fR450bXwhuhD5CEMIxbwhWXPXNEiV\nyVRlpSRrQnhUbq7WSWjvXk+PRJyLr76Cu+7Sujw+/7xrEzW7XavU3XefNm32hRckURPiLKSyJoRC\n3jIN0tmpUVUTN2d81clav37q4gshziImBtLStKmQrl7XJNQzm+Ef/9Cqo/PmaR0fXdmWv6hIW5N2\n8CDceKPWmt8bPs0UwsMkWRNCIW+ZBtnUpF2qWi7gjK9yGmRlpdr4Qog2cK5bE95l82Z46SXtj5ar\npyU6q2n//reWzD/7LPTo4br4QnRxkqwJoZg3JGvOCqCqsVos2qWqBiMWi/ahsCRrQnhYTg58+qn2\nAxkWBlVVWvJmMsGcOZ4enTiVyaQ1Efn0Uxg/Hn73O9DpXBe/uFirpu3fD1deqTUScWW1TohuQH5i\nhBDNlS9VyVpNjXapKlmrrNQuJVkTwsN69dI+/XnqKa1JRUmJdru/vyRrnY2zmgbwl7/AmDGui22z\nwfvvw3vvQWoq/O//av83hBDtJsmaEAr5+HjPujVQl6wZjdplbKya+NXV2qUka0K4WWMjbNumVc9+\n/BFOnNBu37Hj58WqIBsgdiZ6vdYy//vvtWra7bdDRITr4uflwd//riXql10GV1wh1TQhzoH89Aih\nkLcka+6qrEVGqolfWamNPSpKTXwhxGls3w4PPQR+flri5tQyUQN1P/yi7ex2WLcO/vUvCA2FRx6B\nIUNcF1+v16ZUfvkljBgBS5ZoHR+FEOdEkjUhFPLx+TkR6sycCaWqBiPOypqqbpPV1Vqi5uenJr4Q\n4jSGDYOsLDh69MyPk7K3Z+3bp3V6PHIEZs+G665z3V54Nht8/DH85z8QEgKLFsF557kmthBCkjUh\nVPKWyppqtbVq4xsM8sG9EB7h6wt33w133HHmx0iy5hlVVbBsGXz2GQwerO2b5spOjNu2wauvQlkZ\nXHKJ1kBE1YadQnRTkqwJoZC3JGvOipfV6roPW1tqaFAb32iUJTFCeExaGsyfr7Vmb20qgZ+fzFF2\nN5sN1qyBt9/Wpjz+8Y8wZYrr4h88CMuXa01KRo2CBx7g/7N33+FRVtkDx7+TOqkz6QmEJCSU0Ald\naUpTQVEUC6DYULH3uiquvYBtLajsruUnrgWxISrFhooUARUILZDey6RO6vz+uJkQIIGUeZmS83me\neSZMOXNnQpL3vOfec4mMtF18IUQTSdaE0JCbm3Mka15e6traYt/WrMmaVvHLymzbbVoI0U4XXAC/\n/goHDhy5ds1KfkA7z2xu29mu33+HZcvU/PDZs1XFy/pLvrPS0lQC+Ntv0LcvPP00DBxom9hCiBZJ\nsiaEhpxlzZrWyZrZrG38sjIID9cmthCiDXQ6uOOOlqdD1tdLZa0z6utV6/s//lDNQVpL2JKTVXXz\nzz9VteuJJ2z3i7GgQK1JW7NGteK/9161Ls0ZNhIVwslJsiaEhpxlGqR1iYG1AmZrVVXaxi8vh4QE\nbWILIdooOhouuwzeeefIs1QNDbKotKPq6uCZZ1S1DOC772DmzCMfc+AAvPcebNmiNiVfvBgSE23z\n+qWl8Omn8MUXKuG+/nqYNk27blRCiGNIsiaEhpwlWdO6slZRoW380lJZsyaEQzj/fLV/19HTIaWy\n1n61tfDUUyoJsya/K1aobo7u7mrT8Y8+gu+/h9694eGHVUWtNfX1sHo1TJhw4mmppaXw+efq4usL\nCxaoJE32SxPipJOfOiE0JGvWFGs3SK3il5fbdk9XIUQHtTYdUipr7VNdrfav+/vvI6uURUXwzTdq\nq4Q1a6Bbt7ZNSTSb1bTIbdvUxpSXX97y4/Ly4LPPVAXP0xPmzIGzz5YOj0LYkSRrQmjIWdasWZdA\naDVN0ZqkaRW/ulqOJYRwGC1Nh5Rkre3MZrWhdHLysc1adDrVit/bu+1TEouKVNUtPV39+5tvYN68\nI6tkqamqavfTT+rM1/nnw7nngp+fbd+bEKLdJFkTQkPOMg1Sr1cnUUtLbR/bYlHLLtzdtY2v1Ybb\nQogOmDULfv4Z9u9XiYWtuhG6uooK+Mc/VOWspa6aDQ1gMqmq27BhJ46XlgYPPqieY41XXq7WwI0d\nC7t2wSefwObNEBMDCxfC5MnyC1UIByLJmhAacpZkDdSJb5PJ9nFra9W1n5+28eVYUAjtVFZXU11b\nS31DA6WN85rLzWZq6+oAsFgslFgXpzbymzGDMa+8Qo23N99v3UqZtdNQKwJ8fPBwd2/1fqOfH7rG\nqX6eHh74N04JMPj54abT4e3pia8zl9hLSuCBByArq+VEzcrdXTX9OFGytmuX2v+suvrIeDqd2iPt\ns89g927o3x8eeghGjpTujkI4IEnWhNCQJGuHp0BqlaxZ48uJYNHVVVZXU1JRQXF5OcXl5ZRXVVFW\nVUVpZSVVNTVUmM2YKiqorK6mqqaG4vJyqmpqqKyuxlRZSUV1NTW1tVTV1GCuqVEJWHl5p8Z0PTC4\ntJTrFy2yzZtsI6O/PzqdDr2XFz5eXnh5euLn7Y3Rzw+fxtuC/P3x9fbGx8sLg58ffno9vt7eBPj4\nEODjg7+PD0H+/k0XHy3PCBUXw333QU7O8RM1UPdv3w4pKRAf3/JjNmxQXSEbGo6di9/QAIcOqc6R\nzz6rkjUhhMOSZE0IDbm5OceaNVDJWkmJ7eNaK18BAdrGl2RNuIqaujryTSYKSkvJLiqioLSUfJOJ\novJyShoTseLGpKwpOSsro9r6w3CUQH9/fPR6/Hx8MAQG4qPX4+vri9FoJEivp5teT5DBgI9ej16v\nx9vLC18fHwCMgYEq6dHr8WmsZAU1rj/z9fHBu1kCE+Dvj0cr3QIvbharJQ0NDZjKylr9TGpraylv\nVrmrrqmhsrFSV9x4FqjKbMZsNqsks3HOdUVlJTW1tZjNZqrMZopNJqoav04xmajMz6fKbMZUWkpF\nVRVVZjOlrSSo3p6eBAUENCVvRj8/gvz81Nf+/gT7+xNmMBBmMBAZFESYwUBoYCBeJ+qgmJenErWi\nohMnas199plq5nK0L76At946/plCDw/o00cSNSGcgCRrQmjImSprRqO2la/AQG3jyzRI4cgsFgu5\nJSVkFhaSWVhIWn4++SYTeSUl5JaUkF9WRr7JRG5x8THVLG8vL0KDggg2GglqvIRHRNAnMJAgg0Hd\nZjAQZDBgbLwOMhgI8PfH30kaRLi5uTUlga0JDw09SaOB8ooKysrLKTaZ1KWkhJLS0qavi00m9e+S\nEtLz8ynet4+ikhIKioupPqrtbVBAAOFGo0rkAgKaErlwg4FEd3cmvPcens0X9Op0aqqjxXJs8ubl\npc6sGY1qjVlzDQ3w+uuqgciJ/vDU1ak2/vPmyZkuIRycJGtCaMiZkjWDQW3bY2vWk/2BgdrGl+1/\nhD3llZRwMDeX9IICMgsLSc/PJ7OwkIyiIjIKCsgqLKSmWeUrNCiIiNBQwkJDiQwPJ6lfP8JCQggP\nDSUiLIywkBBCg4OJDAvDcKI9sYTN+fv54e/nR1RERLufayotJSc/n4KiIvILC8nJyyO/sLDpsjsv\nj5/27SMnP5+rS0oYC+QBOTodRd7elPv60hAYCEYjXuHhBERGYuzRg+hevQgNC2v5Rc1mtSfbtm1t\n/6NTWQkbN8L48e1+j0KIk0cOb4TQkDMla0ajNtMUrf0C/P21je8s002Fc6qpqyOjoICUnJwjL7m5\n7M/KwtRsil6QwUBUeDjdIiPpP3QokyMi6BYRQXxsLFHh4cR0706A7OLusgyBgRgCA+mbkHDCx1bX\n1FBYXExObi4pqalk5eaSbf06J4fs3btJXbeO+sYKm97Li24hIcRHRBAfGUl8ZCT9/f2ZsmIFPtnZ\nJx6cm5v6w+Tmpqpra9ZIsiaEg5NkTQgNOdOatfBwKChQlSpbzoqxxgoM1DZ+K8t1hGiXgtJSdqal\nsTs9nV1paezOyGBPZiYZ+flYGs+8hBiNxMfGEh8by7SkJBbGxhIfE0N8bCzdIyPxlGlloo28vbzo\n1pjMDx88uMXH1NbWkpmTQ0pqKilpaeo6NZVtqams2LiRe0tKOKfZ46vc3Gjw8FC/HAMC8Pbzw8PP\nT/0S1uvVVEpfX/V1374n540KITpMkjUhNORMlbVu3VRimZMDPXrYLq71uDUoSNv4kqyJ9iguL+eP\nAwfYmZrKrvR0lZylp1PQuLDSEBBAYkICAxITmTpjBgmNyVl8TIxMSxQnlaenJ3E9ehDXoweTWrjf\nVFzMn8nJpOTksDc7mz3797Nzzx6S9+/HlJMDQKjBwIDYWBIDAugfHc2A2FiGJSQQJBVeIRyeJGtC\naMiZkrXu3dV4MzNtm0xZG38YDNrGl2RNtKa4vJydaWls3b9fXQ4cYHdaGhaLhaDAQOJjY+mfmMj0\nc8+lf58+DOjTh54xMa12LhTCkRiCghh8yim0VJcrNpnYuWcPu/buVdd79vDFypVk5+cDEBUSwvCE\nBIb36sXwXr0Y2bs3kUFBJ/cNCCGOS5I1ITTkTMmaXg8hISqZsqXmM8K0jH9UAzbRRVXV1LB5715+\n+vtvft+7l20pKWQWFAAQ2707wwYNYs7FFzNs0CCGDRpEZHi4nUcshHaCDAbGjRrFuFGjjrg9Jy+P\nP/76q+ny9o8/8s/lywHoHhrKsIQERvfpw/gBAxjVpw96abcrhN1IsiaEhtzdnWfNGqjqWlaWbWN6\neKiktbZW+/ii6zFVVLBh1y427NrFz7t2sXnvXmpqa4mOjGTsqFHcMm1aU2IWbDTae7hCOITI8HCm\nT57M9MmTm24rLC4+nMD9+SdL16zhwffew9vTk5F9+jC+f3/GDRjA2H79MDjJlhBCuAJJ1oTQkLu7\n2ibHYlEJhaPr1g3S020f18tLJVNaxxeur66+nl927+brzZv5bvt2/jx4kIaGBvr16sW40aO57rrr\nGD96NHG2nGsrRBcQEhTE1AkTmDphQtNtB9PS+Pn339mwaRMrN27kqY8/xt3NjcHx8UwbOpTpI0Zw\nar9+eFjb8gohbE6SNSE0ZN37q77eOfYBi46G336zfdyAACgt1T6+cE35JhPfbN3Kqi1b+G7bNorL\nyugdF8f0KVN4+IEHGDdqFGEhIfYephAup2dMDD1jYph/4YUA5BUU8Mvmzfzw6698um4dz3zyCUEB\nAZyRlMSMkSM5c/hwQqUBjxA25QSHj0I4L2uCVlfnHMlafLzaC62gAEJDbRc3KAiKimDkSG3jC9dR\nVFbG/376ifd//JGNycl4engwYfRoHr7rLmZMmULvnj3tPUQhupzw0FBmnXUWs846i5cee4x9Bw+y\nau1aVq1dy9Uvv0x9fT1j+vVj3sSJXDJhgnSbFMIGnODwUQjnZZ0ZUldn33G0Ve/easzJyTBunO3i\nBgVBcbH28YVzq62r45s//uCddev4atMmPDw8uGDGDO66806mTpiAv6yTEcKh9O7Zk9uuuYbbrrmG\nsvJy1vz0E5998w13//e/3P7WW5wzejTzJ03irOHDZaqkEB0kyZoQGrJ2KnSWZE2vh9hY2ydTwcGQ\nna19fOGc0gsK+NeXX/LOunUUlJYyccwY3njuOS6YMUMSNCGcRIC/P+dPn87506fz6pNPsmLVKt75\n6CPOe/xxwgwG5k+axM3nnEMPW06rEKILcLP3AIRwZc5WWQNITIQ9e2wbMzj4cOVL6/jCeSRnZDBv\n8WISFixg+YYN3HTNNaRs3Mj6Tz7h8osukkRNdNrm7ds5ffbsk/qaum7dmi4n2+mzZ7N5+/aT/rpH\nC/D354qLL+b7FStI2biRGxt/xhMWLOCyJUvYa+s9XIRwYZKsCaGh5g1GnEViIuzfb9vuis2nKWod\nXzi+nOJirn75ZQbecAM7srL49/PPc3DTJh66/XZio6PtPTzhIpYtX860Sy7h1gULNHuN8eedx/jz\nzjviNstx9idp6fG2dMvVVzP1kkt46/33NXuN9oqNjuah228nZdMmli1ZwrbMTAbccAMLXn6Z3JIS\new9PCIcnyZoQGmreYMRZ9O2rEqmUFNvFDAqC8nIVV+v4wnFZLBbeWL2aftdfz/pdu/jviy/y5/r1\nXDZ7Np7Nd093UfaqtjjK659Mq9ev59q772bps89y3plndjjOiT6zhoYGGtqxmWZrj7fV92bWWWfx\n6pNPct0997B6/fpOx7MlL09P5l94ITvWrePfzz/Pmr//pt/11/PWt9/ae2hCODRJ1oTQkDNOg+zW\nTbXCt+VUxchItddcdrb28YVjKquq4qJnnuGmpUu5dv58dv74I5fNno2bm/wZErZVqG4z7QAAIABJ\nREFUU1vLdffcw6kjRnDxzJmavtYvX3zBL198odnjO2Le+eczetgwFt57L7UOeAbL3d2d+RdeyK6f\nfuKqefO4/tVXufiZZyirqrL30IRwSPJXUggNOVuDEVCbdw8aBH/8YbuY0dGqynjokPbxheMpqahg\nyoMP8uOuXaxevpxnHnwQXx8few9LuKgVq1aRnpXF3Fmz7D0Uu5k7axZpmZms+Pprew+lVX6+vix+\n+GHWffwxPyUnM/G++ygqK7P3sIRwOJKsCaEhZ6ysAYwaBTt2gNlsm3geHqqilpZ2cuILx1FXX8/Z\njz5KTlkZG1etYsr48fYe0nHl5OVx3T33ED1sGF6xsUQ3Vihy8/OPeFxrTSSOd/vRj1lw550tPm/X\n3r2cOXcugX364N+rFzMuu4zd+/Zp+vqm0lJuX7SI+DFj0MfFEdK/P6eecw53Pfoom7Zt6/A4QW2k\nfP199zV9pt2Tkrj27rvJycs75rHm6mqefuUVkqZOxS8hAX1cHInjx7Pw3nvZuHXrMY9vyReN0+pG\nDBmi6WfW3kYiHXmd5s+xXv73+edNj48bNarFmCMb3/sXTjDFcOIpp7Dh888pqKzkvCeeoL4d00qF\n6AokWRNCQ87YYARgxAiVYNqyqVhs7OHKl9bxheN47tNP2XbgAKuXLyc+NtbewzmunLw8Rk2fzldr\n1vDuyy9TuHMn77z8Mp9/+y2jZ8w4ImFrrYlEW263ZGVhycpi2ZIlLd5/zV138dDtt5O1bRufv/02\nf/z1F2NnzuRQerpmr3/5rbfy4ltvceuCBRTu2kX2jh3898UXSUlNZfSMGR0eZ25+PqOmT2fl6tX8\n54UXKNq1i/8tXcp3P/7IqTNnUlJa2vTYsvJyxp93Hk++/DI3XnklKRs3UrBzJ0ufeYafNm7klHPO\nafG9HW3b338DHNOsRsvvWVt05HUsWVms/egjAKIiIqhOTeWSc89tevyDt93G2VOnHhPb+t6tn4Wj\nS4iL4+v332fL/v0s/vRTew9HCIciyZoQGnLGBiMARiP06QObN9suZkwMpKaenPjCMVTX1vLi559z\n1w030L9PH3sP54Qefu450rOyeObBB5k0bhwB/v5MHjeOpx94gNSMDBYtXnxSxvHgbbcxduRI/P38\nml6/2GTikWaJgq19/+uvAHSPjMTP1xcvT0/6JiTwypNPdmqcixYvJjUjgyfvv59pEyfi7+fH+NGj\neeGf/+RgWhrPvfZa02MfWbKELTt28Ng997Bg7lwiwsLw9/PjtFNP5f1XX23ze8nMyQHAaDC092Nw\nSJPHjWNI//5k5+byv88+O+K+l//97xa7XQYZjcDhz8IZDExM5M6FC3nxiy+ocbY/mkJoSJI1ITTk\nrNMgAUaOVMmUxWKbeHFxkJNzeOqj1vGF/e1MSyOvpIR5559v76G0yVdr1wIw6agd26dMmKDuX7Pm\npIzj1BEjWnz97378UbPXvGD6dAAuvPZaYkaMYMGdd/LRF18QGhzcakWoLeP88rvvADjr9NOPeOyE\nMWPU/c0+00+++gqgxe6NSQMHtrmSVdnYqMLLhTqM3n7ttQC88OabTbet37CBhoaGFqcWW997pZM1\n7bj0ggvIKSpip5x5E6KJJGtCaMgZG4xYjR4NRUVqTzRbiI1ViZl1hpTW8YX9FTROcQsPDbXzSNom\nv7AQgNDg4CNut/47r/F+rRkCA1t8/XwNX/8/L7zAimXLuGDGDMorKvj3Bx9w8cKF9D71VLbv3Nnh\ncVo/s25JSUesuwodMACAA83mLmc3rmGLDA/v1HuxNq+pccBOiB01Z9YsoiIi2L5zJ+s3bADgpWXL\nWt1Dzvrena2RT0RYGHD4d4cQQpI1YWe2qqo4KmeurPXsCeHhsGmTbeJFRYFeDwcOnJz4wv4SIiMB\n+Gv3bjuPpG3CQ0IAKCgqOuJ267+t91vpdDqAI9qjm2xwkFl41A7v1tcP0/j1z58+nU/eeouCnTv5\naeVKzjjtNNIyM7nytts6PM6IxkS9aPfupvVYzS8VzX5grY/Nzs3t8HsANZUToMRkOuY+rb5nWvPy\n9OSmK68E4Pk33yQlNZXftm7l0gsuaPHxxY2bTVs/C2exo/HEQEJUlJ1HIoTjkGRN2I1O1zWSNZ3O\n+RqMWI0aBY0ncTtNp1MbYu/adfLiC/tKiIpiZJ8+LFm61N5DaZNzpk0DYN3PPx9x+9qffjrifitr\nBSi7WVfD4zV0sFY5amtrqayqaqouHe2XoxZzWl9/2sSJmr2+rls3Mho3KnRzc2P86NF82Ph9a6nD\nY1vHed5ZZwHwQ+OauOZ+/v33I5qGXNDYyOSzb7455rEbt249otHJ8SQNHAhAakbGMfdp9T3rrLa8\nzsL58/H18eHrdeu45aGHWDB3Lj56fYvxrO99qEbj1cqSpUsZnZhIvJMlmUJoSZI1YTfu7tAVOvS6\nuztnZQ1g0iQ1rdBWG1j37w/Niyxaxxf299Tll/PlmjUsffddew/lhP55113ERkdz3xNPsH7DBsrK\ny1m/YQP3P/UUsdHRPNKsbTvA1MY1Ws+99hqm0lKS9+9n2fLlrcYf3L8/AJu2b+fLNWs45ag1X1ZL\n332XDZs2UV5R0fT6QQaD5q+/4M472blnD9U1NeTm5/NMY1OPM047rcPjfOTOO+ndsyc3PvAAn3z1\nFYXFxZSVl/PVmjVccdttPP3AA4cfe9ddDExM5OHnnuOt998nNz+f8ooKvv3hB+bfcgtP3n9/q++t\nOWtSvWXHjmPu0+p71llteZ1go5HLL7oIi8XCtz/8wA1XXNFqvM2N733mGWdoMl4tvPb226xat46n\n5s+391CEcCiSrAm7cXPrGsmah4fzJmt9+qjGHY19Fzqtf3/IzobGGTqaxxf2N3nIEBbNmcONDzxw\n3INiRxARFsbvq1ZxzrRpXHbzzQT3789lN9/MOVOn8vuqVU3raayWLFrE3Fmz+PCLL+g+bBj3PPYY\nTzVLPo7e++pfjz/OkP79mXbJJbz41lssWbSoxXG89tRTPPPqq3RLSmLmFVcwdMAAfvniC+J69NDs\n9Td8/jmR4eGcPX8+Ab1703f8eL5et44n7ruPD15/vcPjDA0O5vevv2bOeedxz+OPEzV0KL3HjuXN\n//s/3n/lFSaeckrTY42Bgfz25ZfcumABS5YuJWbECOJGjeL5N97g388/z+SjGr+0ZvbZZxMdFcUH\nR3VOtPVndvT+aB39+kSv09zt116Lm5sbs2fMIPo4UwWXr1xJdFRUU7XS0b31/vvc/OCDPDpvHqcP\nHmzv4QjhUHQWS8cnol100UVkZ8N9931kyzGJLuLFF9VB9SOP2Hsk2rrkErj8cmicDeR0VqyAjz6C\nd98Fb+/Oxaqqgjlz4I47oPEEt+bxAc4+W8eH997LRQ6+IbMre2T5ch794AOunz+fJY88gr6z32wX\nZD2Ab+/+XSebM4xz1dq1nHP55Xzw+utcPHOmvYdjMw0NDUQPH86ny5YxZvjwFh/z/qefctnNN/Pl\nO+8wY8qUkzzC9qkym7lj0SLe+L//Y9GcOSyaO9feQxLihC56+mmyiWpT/nP22To+/PBDLrrooo6+\n3MdSWRN24+bmvGu52sOZK2sAkydDdTVs3Nj5WD4+qprWfDNsreMLx/DI3Ll8fN99/N8nnzD49NNZ\ne9S6MCFsacaUKSx95hkW3nNPi2vgnNWqdevo0a1bq4naytWrueH++3n96acdPlH77scfGXT66Xzw\n6aeseOABSdSEaIUka8JuZBqkczAaYdgw201VTEqCP/44efGF47hg7FiSX3+dMfHxTL34YqZefDFb\n//zT3sMSLuraSy/l2w8+4MW33rL3UDpF160bG7dupdhk4p9LlvCPW29t9bEvLVvGmv/9j+suu+wk\njrB9/k5O5qJrr+WMOXPoFxHBX6++yqxm02GFEEeSZE3YTVdJ1ry9VeXImU2erKpV+fmdj5WUBAUF\nR+6HpnV84TiigoN59447WPvEE5Tm5THyrLOYcemlfP/LL/Yeml0dbz2TI3GWcVqNSkrihxUr7D2M\nTjvlnHPofeqpnD11KjOP6kra3A8rVjAqKekkjqzt1m/YwPR58xg8eTLp+/ez7okn+PLhh+nhJPsw\nCmEvHvYegOi6ulKyVlNj71F0zujREBAA69apNXid0aePirVpE1j7EGgdXzieyUOGsHHxYr7esoXF\nK1cy6cILGdi3L/MvvJB5F1xAt4gIew/xpHLk9V/NOcs4XYkzf+ZZubm8v2IF73z0ETv37uX0IUP4\natEipmvUVVMIVySVNWE3XSVZ8/Jy/sqahwdMnQqrVkGzvWQ7xM1NJWfN16hpHV84Jp1Ox4yRI/n+\nySfZ8uKLjE9I4KmXXiJm+HDOmjuXDz77jCqz2d7DFEK0Q5XZzPKVKzlzzhxiRozg6ZdfZkKvXmx5\n8UXWP/GEJGpCtJMka8Juukqy5gqVNYBzz4WyMli/vvOxxoyB5GQoLj558YVjG96rF6/dcAPZ777L\n/+69F8+qKi6/5RYiBw/m4uuu492PPya/sNDewxRCtCCvoIB3PvqIi669lohBg7ji1lvxMpv58J57\nyHrnHV674QaG9+pl72EK4ZRkGqSwG09P52680VausGYNIDgYTjsNVq6EadNAp+t4rKQkVXHctAms\ne7ZqHV84B29PT2aPHcvssWPJKynhow0b+HLTJq696y5q6+sZOWQIM6ZMYcaUKSQNHIiuM/9RhBAd\nYrFY2Pb336xau5av1qxhy59/4uXhwcRBg3jqssu4aPx4wgwGew9TCJcgyZqwG29v6AoznFwlWQOY\nPRuuvx42b4ZRozoex9sbhg+Hn346MpnSOr5wLuFGIzedfTY3nX02FWYza7Zv5+vNm1n6n//w8HPP\nERkWxoQxYxg3ejQTxoxhUGIibm4yYUQIW6uvr+ev5GR+/v13ft64kZ9//52c/Hy6h4YyffhwHnjg\nAaYMHYqfXm/voQrhciRZE3aj17tOEnM83t5q829XEB0NI0aojaw7k0wBTJwITz8NhYUQEqJtfOH8\n/PR6zhszhvPGjMFisbA9JYXvtm3j5127ePjppykpL8cQEMDYkSMZN3o040ePZuTQoXh7edl76EI4\nHXN1NVt27ODn339nw++/88vmzZjKyjD6+zNuwABumzGDaUlJDI2Pl+q2EBqTZE3YTVeprHl5ucaa\nNasLLoD77lNrwhITOx5n5Ejw9YUNG9R6NS3jC9ei0+lISkggKSGBextvS8nJYe327WzYtYs3/vMf\nHnjqKTzc3ekTH8/wIUMYPngwwwcPJmngQPx8fe06fiEcSW1tLXtTUtj655/qsmMHW//6C3N1NZHB\nwYzo1Yv7L7iAKUOHkpSQgJskZ0KcVJKsCbvR67tGsuZK0yABBg5USdTKlXD//R2P4+UFp54KP/xw\nZLKmRXzh+uIjI7n2zDO59swzATiQnc3ve/bwx4ED/LFvH1+sXo2pogIPd3cSExIYNngwwwYPZlBi\nIv169yaqi20VILqm7Nxcdu3bx9/Jyfzx119s3bGD5AMHqK+vx+jvT1JCAqckJHDj6aczum9f4iMj\n7T1kIbo8SdaE3ej1qsFIfT24u9t7NNpxtWQN4Lzz4NlnISNDTV3sqNNOg3/8A1JTITZWu/gwsONB\nhFNKiIoiISqKuaedBqiGCCk5OSp5a7w8vmYNBSYTAMbAQPr16kX/vn1J7NWLAY3XcT16yDQv4VQa\nGhpIzcggef9+du7ZQ/L+/ezas4fd+/dTUloKQKjBwLCEBM4ZMoRF55/PsIQEEqKi7DxyIURLJFkT\ndmNdh1xdraaruSpXTNbGjlXJ1f/9n5qy2FGDB0NUFKxZAwsWaBc/O/sqILfjgYTT0+l0TQnchePG\nNd2eW1LCrrQ0kjMy2JmWRvLu3Xz93XdkNy529NXr6ZuQQEJcHPGxsYcvMTHEdO+Op6envd6S6MJq\na2tJy8wkJS2NlNRUDqSmkpKaSsqhQ+w5cIDKxmkr3UJC6NejB8Ojo7lszBgSo6MZEBNDuNFo53cg\nhGgrSdaE3Xh7q2uz2bWTNVfYFPtoOh3MmwdPPNG5tWU6HUyZAp99BpdfrrZz0CL+e+/Np7b+hY4F\nES4twmgkwmjk9MGDj7i9pKKC3enp7EpLY09mJik5OazZs4eU7GxMFRUAeLi70yMqivhmiVyPbt2I\n6d6dbhERdI+KQm/9RSdEO5irq8nIziYrJ4e0zEwysrNVMtZ4Sc/Koq6+HgCjvz/xUVH0DA9namIi\nN06ezICYGBJ79MDo52fndyKE6CxJ1oTdWI9hXC2ROZqrbIp9tDFjoF8/ePtt1XWxo6ZNg+XLYeNG\nGD9em/jvvWdg897+zDut43FE12L08+OUxEROaeFMQWFZGSk5OUdcDvz9N2vXryezoICa2tqmx4YF\nB9MtIoIe3bvTPSqq6etuERF0i4ggLCSEsJAQ3F15LrhoUldXR35hIflFRWTn5pKVm0t6ZiaZOTlk\nZmeTnplJVm4uBcXFTc/x8vSke2go8RERxEdEMGXSJOIjI5suwQEBdnxHQgitSbIm7MbHR127epMR\nV5wGaXXFFXDPPbB9Owwd2rEYQUFqT7Svvz4yWbNlfFjNmu1jgN0dCyJEMyEBAYQEBDCyd+9j7rNY\nLOSWlJBZWEhmYSFp+flkFRaSUVjI3j//5IeiItLz85umqVmFBQc3JW6R4eGEh4YSFhJCeGgoEWFh\nhIWEEGw0YgwMJMholIqdgzBXV1NcUkKxyUSxyUR+YSE5eXnkFRSQX1hIXmEhuXl55BcUkF9URH5R\n0RHP99XriQkPp1tQENEhIQwZPJhuwcH0CAuje0gI3UNCiDAaZd2kEF2YJGvCbqyzM8rL7TsOrXl5\nQW0tNDSAq+3X27+/2hftnXdgyBA17bAjzjkHHnoIDh6Enj1tHx9eYVfat+w4mMmQnqUdDSLECel0\nOiKDgogMCmJ4r16tPq64vJyc4mLyTSbyTCZyi4vJLy0l32Qip6CAbSkpFJSWkltcTHFZ2THP13t7\nExQYSJDBgNFgIMhoVNfWrwMD8ffzI8hgwEevx8fHB2NgIL4+Pvjo9RgCA/H39e2ya+5qamupqKzE\nVFpKldlMZVUVJaWlVFVVNX1dXlFBsclESWMiVmIyNSVmJSYTxaWlmFs4ExcUEEBEUBBhgYGEBQYy\nICSEsPh4wgIDiQgKIsJoJDQwkKjgYJmmKIQ4IUnWhN0EBKiD78ZmbC7LegK8puZwUxVXcsUVcPPN\n8Msv0KxvQ7skJamGIl99pWLZOj58R4+wXF75Ko63bv6zo0GEsJkgf3+C/P3p16PHCR9bU1dHvslE\ncXk5JRUVFJeXq6+t1423lWRlkb5vX9NtJeUjKKt8FLgC+LvF2B7u7gT4+RHg74+PXo9/Y/IQ1NiA\nwkevR6/X46bTYQgMBMDP1xcvT0/c3d0JPGoK3vESQG8vL3ytUyqOUlFZecT00eZqa2spr6w84rbS\nsjLq6+ubki6AktJSLBYLZrOZqsbKZXFJCQDlFRVUmc2UlZdTVlHRtN6rJTqdDqO/P/4+PgT5+2P0\n8yPIz49QPz96R0dj7Nu36ftntF77+RHk70+YwYCXhxxaCSFsR36jCLtxcwN/fyh18UJH87V5rpis\nxcXBxInw3ntwyikd34Zh+nT4979Vctb8+M9W8aclbeT978/m6SuSCQlwwUWEwmV5eXg0TYlri0O5\nPtz9n3588ksUZ43IZ/HVS4g0FlFSUUGF2UxVTQ2llZWUVVVRVV1NudmMqaKCqpoaKqurabBYmpqo\nlJvN1FZVUVNfT0p6OgBlVVUcyr0bN10+Pt4vHfHaxceZKlFhNreQkJ0J7MTLMwe/4/yCDPL3P+Lf\n/j4+eLq74+HuTkPDSPZk3Mvpg27Ay7OBQA8PohqTTkN4OG46Hb7e3vh6exPo64u/Xo+vXo+/Xk+g\nr2/TfUY/P3y9vdF7ebXpcxZCiJNBkjVhVwZD16qsuapLL4WFC2HtWjjjjI7FmDwZ3n0XvvkGLrzQ\n9vEnDNjKil+m8+Y3Mdx/4f6OBRHCgVVWu/PsigSe/SSe6FAzXz68mbNH5TXeG2DTRhT9Fk7kgrE5\nPH5Z5/Yw9Dx3Ou/cvp25p2V1OEZKji8JCwZwx6ynmTCw6MRPEEIIJ+JiK2iEswkM7FqVNVcVGakq\nY++91/E1iHq9irFy5bFNZ2wS36uGhdPTeH5lT8rNcp5KuA6LBT7eEEX/6yey5NOe3DM7hb9e/alZ\nomZbldXu7MvyIym+82faPN0bqK3v3KFIfGQlPSMqWbcjtNPjEUIIRyPJmrCrrpCsWWfUuHKyBqr6\n5eamNrLuqFmzVAXy22+1iX/nrBTMNW4s+/bE64SEcAZb9xuYcO8pXPJMEhMGFrF/2Q88Mncv3p4N\nmr3mjoOB1DfoSEro/C9vD3cLtXWd73Q4eWgha7dLsiaEcD2SrAm76grTIK3r6auq7DsOrfn6qvVm\nq1bB3r0dixEYqKY5rlhx7LRRW8QPDaxhwRnpPLsiAXON/PoTziu7yJvrXhnE6DvGUlvvxq+Lf+Xd\nO7YTYdT+rNAf+wMx+tXSM6LyxA8+AU8PC3UNnf9ZnDK0gE17jZRVSdVcCOFa5GhF2FVXqKz5+qrr\nys4f1zi800+HgQPh9dfV1KyOuOACNdVx3Tpt4t9zwQFKyj14e51U14Tzqa3T8dIXPUlceBqrNofz\nn9v+5LfFvzC6b8lJG8O2FAND40s7sZXGYZ7uDTaprE0YUEhdvY5Ne42dH5QQQjgQSdaEXXWFypqX\nF3h6do1kTaeD669X+6V9913HYgQHw5Qp8NFHUFdn+/hRwdVcMSWDpz5KoKZOfgUK57F2eyhDbp7A\nA+/05frpqSS/8SPzJ2XYJGlqj20HAhmWYJtf3J4elk6vWQP1cx0dambzXoMNRiWEEI5DjlSEXQUH\nQ0kJHGfLG5fg6wuNnbBdXkwMnH02vP12x6umF14IxcXwww/axL/vwgPkFHuz/IduHQsgxEm0J8OP\nGY+MZOqDo0mIqmTnaz/y9BXJ+OvrTvxkG6ut07ErPcAm69XAdpU1gJG9S9iyXyprQgjXIsmasKuI\nCJWoFRTYeyTa8vXtGpU1q3nzVDXx3Xc79vywMDjtNPjwQ2hooU9CZ+PHhFUx77RMnviwF/UNJ7ks\nIUQbFZd7ct/biQy+aQI5xd789MxvfPnwZuIi7LcAdld6AOYaN9slax62aTACMKK3SSprQgiXI8ma\nsKuICHWdm2vfcWjNz6/rVNZANVW56irV1TE5uWMxLr4Y8vJgwwZt4v/j4v0cyvPl4w1RHQsghEYa\nLDreXR9N3+tOY9m3PXj2qmQ2vfAL4wfYfw+xPw4Y8PGqp2/3Du6hcRQPd9s0GAGVrKXl+5Bb4m2T\neEII4QikbZKwK6NR7a8lyZrrmThRrStbuhSWLAF39/Y9PyoKxo1Ta9fGj+eYdTntjf/C55/zyS+/\nHHFbt+BFLHw1nhW/3oYO7VqdC9FWeaZhbE+5hbLKWBKiPmNAzDJ+2VXBL7vsPTJlx8Gb0Ht5Mfe5\np2wSL6uwDx/9vJFdaW92OlZ1rQH4ioue/poI4+bOD04IIVrwW3IycYkn70SvJGvC7sLDXT9Z62rT\nIOFwM5Bbb4VPPlGVsva65BK46SbVGXLKlI7HP++82ykoyCD7qNtDe6wifdti/sy7iPDwH9s/QCFs\npLo6hNTUOeTlTcBo/IuhSffg65tBAYFAoL2H1yS/sg+evnlkY5sDlVq8KcfXNvE8wcOjjMyqgTQY\nMzofTwghWhCXGMW4cReetNeTZE3YXVdI1vz8VCOVrqZHD5g/H/77Xxg2DHr3bv/zzzhDrU0bN05V\nYY++/7LLVLOR4cOhV6+W4yxY8Hyrr/Hqq7Bp0408+eSNx8QXQmvV1WpfwU8+UWs1Fy2CkSMHAa3/\nn7Wna65RJ04uvniCTeLdcAOMGxfD3LkX2CTePfdAfPxVLFx4lU3iCSGEvcmaNWF3kZGun6x1xcqa\n1bnnQv/+8MILx2503Rbz5qkD2k8/bfn+886Dfv3g+ec7Fv/SS8Fshs8+a/9zhegoi0Wtx1y4ED7/\nHObOVScORo6098haV1urfldHR9suZkMDuNnwSCQ6GjKkqCaEcCGSrAm76yqVta62Zs1Kp4PbblMd\nP99/v/3PNxhUK/9PPoH8/Jbj3367uu+DDzoWf/ZsFb/I/v0bRBewb5+qAD3zDAwaBG+8of4Pejj4\nXJesLJVc2TJZq69v/3rW4+neXZI1IYRrkWRN2F1UlDpINpvtPRLtdOVkDVTXzwULYOVK2LGj/c+f\nOVPtybdsWevxr75aTSfbvr398c89VzW7eeON9j9XiLYqKoJXXoE77lAJyssvq6+NTrI1WEaGOjkS\nZcN19VpU1goLXfvviRCia5FkTdhdXJyaEpSaau+RaKcrT4O0mjYNxo6FZ59tuUJ2PF5ecPPN8Ouv\ncFRDxyZnnqn2ZnvmmfZXar284JZbVPzffmvfc4U4kbo6+OILNeVxyxZVCX7qKejZ094ja5/0dHVi\nxMvLdjHr622brIWHq78nrr53pxCi65BkTdhdZKRKZg4etPdItOPnB1VV6iCiK7v1VlVFeOyx9q8v\nGzJENTZ47TUobWU/3htugKAglbDV1rYv/uDBMHkyvP46lNtmCykh2LRJJWnvvKPWV775JkyadOxW\nFM4gM9O2UyBBVdZsOQ0yNFRdS7ImhHAVkqwJu9PpIDbWtZM1X1+VqHX16ppeD//4h6p8vfJK+5+/\nYIFa1/Pvf7ce/8EH1UFla485nquvVgeP//1v+58rRHMZGaqz42OPqS6lr7+umojYsip1smVkaJOs\n2bKyFhAA3t6SrAkhXIcka8Ih9Ozp2sman5+67urJGkC3bnDnnfD997B6dfue6+en9lZbtw42bmw9\n/i23wKpVatPs9ggIUPG//bb1+EIcT3m5qp7deKParuOZZ+C++9T0PGeXmakIrhzKAAAgAElEQVQa\neNiSradBAoSESLImhHAdkqwJh2BN1lx1mqCvr7ruyk1Gmhs1CubMUQ09tm5t33PHjIGpU+HFF1tf\nmzZ2rNok+7XXYNu29sUfO1atr3vxxfavrRNdV309fPMNXHcd/PCDqtK+8ILatsIVFBWpk009etg2\nrq2nQYKaCllYaNuYQghhL5KsCYfQs6da0+WqLfylsnasOXNUQ5Ann4Tk5PY99/rr1QHZs8+q5g0t\nmTcPJkxQ8dtbtb32WrW2bskSdTApxPHs2KHWYy5dChMnqq6lM2favmJkT9Z2+M5QWQsOlm04hBCu\nw4X+lAhnFhen1q656lRIa7ImlbXDdDq46SYYOFCt68nKavtzvbzUPlWHDrW+d5tOp6ZD9umj1g61\nZ1qUXg933aWSyI8/bvvzRNeSnQ1PP63WYRqN8K9/qUTfWkl3JVlZ4OOjGvjYisWiGg15e9suJqjp\nzNIkSAjhKiRZEw5Br1dnbPfutfdItOHlpS5lZfYeiWPx8IAHHlD7Ni1apNb4tFVMjDow/uQT1XGv\ntfj336+S5Ucead/n36sXXHWVSgb/+KPtzxOuz2yG5cvVurRDh9T/rccft/0UQUeSlaXWg9pSdbWq\nXPv42Dauv78ka0II1yHJmnAYAwfCX3/ZexTaCQwEk8neo3A83t6qMmGxqIStPQdZZ5yh2vk/91zr\n+/T5+8Ojj6qq5sMPt28q6syZqs36s8+qKoro2iwWWL8errlG7Zs2d67qajpihL1Hpj0tkrWqKnVt\n60qkn58ka0II1yHJmnAYgwbBvn2H/4C7GqNRkrXWBAWptWXl5arS1p4K2I03qirYo4+2XpkLC1Px\nCwtVwmY2tz3+DTeoyt8TT7TvecK17NsHd9+tmoYkJan1abNnq+ptV5CVZfv1atbf9VpU1mTKuRDC\nVUiyJhzGoEFqsfnu3fYeiTaMxvZN8+tqwsPhqafUQdY//tH2hM06ldLNTSVkrW2GHRWl4ufktG9T\nbi8v1Xq9qAief951O5aKlhUVqerZHXeo/wv/+pf62mi098hOHotF/dxoVVnTIlkzm1v/XSCEEM5E\nkjXhMIKD1YarrjoV0mCQytqJNE/YHnyw7QlbQIBK8A4eVAfTrSVU3burCtyBA2qNUXV12+JHRKjx\nbNnSsc22hfOpq1NTHa+7Tn3fb79dnQyIi7P3yE6+/Hx1csNZkjXrtEqphAshXIEka8KhDBrk2sma\nVNZOLDxcJVImk0qQ2vqZxcWpCttPPx0/oYqPV1MaDxxo3xq2/v1VReXzz+HLL9v2HOGcNm2ChQvh\nnXdg1iy1yfWkSfYelf1YO7XaOlmz/uzZes2adWqqVNaEEK5AkjXhUFx53ZpU1touKkq1RK+sVOuE\n2trcIykJ7r1XVUSO13I/IUHFz8lRCV5padvijxsH8+fDW2/Bxo1te45wHunpKoF/7DG1DnLpUtVE\nxMvL3iOzr6ws1bQjMNC2cauq1IbYtv58PT3VtSRrQghXIMmacCiDB6tWzjt32nsktieVtfaJjFRr\nxAwGlbAdONC2551yimrp/+678O23rT+uRw+VsJWWqoStrd+bCy9UXSiffVZthiycX1mZqp7deKP6\n//DMM2qdYliYvUfmGLToBAkqWbP1FEiQZE0I4VokWRMOxWhUZ7R/+83eI7E9o1Gt+5B1FG0XEKCm\nRMbHq4rZtm1te97ZZ8OcOfDqq7BuXeuPi4pSB+a1tWoT7IyMtsW/4QaVFD76KOza1bbnCMdTXw/f\nfKPWpW3YoL6vL7ygpryKw7ToBAnaJWvWaZB1dbaPLYQQJ5ska8LhnHqqStbq6+09EtsyGNS1VNfa\nR69XU9NGjlTJ0dq1bXve3Llw0UXw4ouwenXrjwsLg8WLVYObu+6Cv/8+cWydTjWcGDJETZk7dKht\nYxKOY8cOuOUWNdXxtNPU9Zlnqu+tOJJU1oQQwn4kWRMOZ/x4NRWpLQfNzsSarMm6tfbz8IB77oHz\nzoOXXlINRBoaTvy8Sy+FSy6B116Dr79u/XEBAarpSFISPPSQalLSljHddx/07KkaobS2KbdwLNnZ\navrrP/6hunwuXaqmzdq6yYWrqK/Xpm0/qDWpWnzu7u7qWiprQghXIMmacDiRkWra2y+/2HsktmXd\nl0mStY7R6eDyy1XStmoVPPJI2za+nTcPLr4YXn/9+BU2T0+1Nu7MM+G552DFihPH9vKCRYsgNlat\ne5MKm+Mym2H5cjXV8dAh9f/n4YfV7xvRupwclfRER9s+dmmp7ZuWwOFZGdakTQghnJkka8IhnXoq\n/Ppr26onzsLLS03pk2mQnTN+vNqL7dAhNW2xLZ0iL71UTYt87TX46KPWH+fmptYvLVigGpQsXnzi\nzbO9vdVBf1ycqta0lrBZLHKm3x4sFli/Hq65RnUJvfJKtZZxxAh7j8w5ZGSoEyVaVNZMJm2SNevf\nDUnWhBCuQJI14ZDGj1dJjas1bzAapbJmC337qkYQej3cdlvbqrBz5qi9s957T019a23jbIBzz1XT\nIrdtUwlhXt7xY1sTNmuFbd++I++3WFS8W291vbWYjmzfPlUtfeklGD0a3ngDZs6Ug/j2yMiAkBBt\npiuaTIdnHNiS9WfMTY5whBAuQH6VCYfUvbs68N2wwd4jsS1J1mwnJES1z588WVXaXnnlxJWrGTNU\n9eu772DJkpYfb7GoDoFxcaqyVlcHd97Z+omDFStUR0nrlMg+fVTC1nxz93feURstp6erKZyi49oy\n9bWwUG37cMcdKpF+6SW46abD60ZF22VmajMFEtQJOS2+J1JZE0K4EknWhMOaNAm+/961Wt0HBkqy\nZkuenqo5xAMPwM8/qypKbm7rj8/OVknYI4+o5OmBB479fnz2mUr8XnlFtfZfvPhwAvbZZ0dW5Pbu\nVYnYzz/Dp5+qxODBB9UUu4cfVlN516+HTz5RB5ANDerxRUVafBqub80aVSHdu7fl+2tq1Ge9cCHs\n3q22e3jiCfU9Fx2TkaFdslZaqm2yJpU1IYQrkF9lwmFNm6ZaL//4o71HYjtGo6xZ08Kpp6pKWW1t\n69Mia2rg/vvVtMboaFWVKyg4cn+1ffvg7bfV1xs2qCTM11clYFddpe57/HEoL1fxFi8+3Or9nXcg\nOVl1ibz7bnWy4b//VVWd5urrD7+GaLsdO+Bf/1LJ8muvHTuNddMmuP56+N//YNYstS5t3Dj7jNWV\npKdrt8daTY00GBFCiBORZE04rIAAdbD11Vf2HontGAySrGklOlolbGPHqmmRL7ygWoNbffghFBdD\nWZnar617d/X4gACVsG3apFq6N/fyyyqh0+nUWqfHH1cJ3e23qyQsN/fINWhPPqniu7mpPd7Kyo5N\nKurqVLVt507tPgtXk56uPntQn+eBA6rqDurr++5T+9317q3WI86dq6alis4pK1MXLSpr1upycLDt\nY1dVqWu93vaxhRDiZJNkTTi0GTPg4EE1pckVhISo9TRCG97eam3So4+q5iA33aT268vMVNPj6uvV\n5eBBlWwFBakELSlJVckKCo5MvmpqVNJnTbgGDlQJXHCw2out+WMbGtSUypdfVgeLjzyirlvqaOru\nrqpDrtTtVCulpWotYE3N4c/LYoG33lLfw9tvVwnw88+rpC001L7jdSXp6eq6Rw/bxy4oUNchIbaP\nbT1JI3vnCSFcgSRrwqH17avOlh9vQ2NnEhqqDj5P1A5edM6wYSpp6tlTTX385z8PT1cElWT9+KNq\n5e7lBYMHq8Tq6E6N9fXw559qrZSVl5da+9Y8XvPHb9yopkFmZbXe+bG+HtLS4NtvO/9eXVlNjUrU\nCguP/SwrK1Uycfvtal+83r3tM0ZXlpGhqlNaJFSFhWrNqRbTIKuqVHVbqqtCCFcgyZpweGedpdYO\nucL0QetZf6muac9ohIcegqlTVeJ0dOdHa3Vm9Wp4883WW/lbLGpqnXU/tzfeUBW01qpiFovaa+1E\nLfotFrWmrbS0XW+ry7BYVFUzJaXlz7K+Xk1J7du35cRZdF5mppourMXnW1ioKtRaxK6qAh8f+X8h\nhHANkqwJhzdxojq7+8039h5J51mTNesUIKGtigpV6TreQVtbpiPW16v1bb//DuvWnTgR0+kOX47X\nka66WjUmEcd6+23V5OVEn/V//nNShtMlpadrMwUSVLKm1ZTVqiqZAimEcB2SrAmH5+2tmjusXKm6\n8Dkzg0FN/ZFk7eR4+201Xe54VTOL5cQJQX097NkDy5apf5+oy5zFopK0QYPUlEw3t5afU1+v9nxr\nrRV9V/Xtt2r/uuNtXA6Hp53u2HFyxtXVWCtrWigs1GZ6JRyurAkhhCuQZE04hXPPVQe8X3xh75F0\njk6npv5Isqa9vXtVNfZEG2XD4cqbu3vrlTCLRX3fFiyA009X0yyP9xzrerdJk1TSeNllEBGh7vPw\nOPw4Nze1p9uJEpOuYts21Xa/LawJ8IoV2o2nq6qpUVN/Y2K0iV9QoF1lrbRUm7VwQghhDx4nfogQ\n9ufnB+edpw7KzjlHtVt3VmFhsmbtZNi37/DXHh4qeTpehU2nU1Uwi0UlDA0NKpE6uuPjunVqLZWH\nh5omtn07/PGHqu7U1KjKaW3t4ee89JJKxmbPhgsuUJ1N16xR6zCtHQ5TUmDtWrW+7mgNDfVUVqqF\nbWZzOXV1tUfcBlBTU0VNTeu7x1dXV1JbW93q/TqdDj8/43Hud8PP7/DuxV5eery8VOnC3z+o8TYf\nvLw61ys9NVW16G/p+9T8e+jurio+iYmQkKC6eQrbOnRI/d+Mj9cmfnZ2y//fbaG4WHV6FUIIVyDJ\nmnAa554LX36ppkPOn2/v0XRcaKhU1k6GGTNg8mSVCO3fr/Y1+/NPtW+UTqcO/psnVRYLbN4M996r\nujlu2aKm2G3eDGbz4STs4EH1f/DCC9V6nh494KyzajCZivnrr2p27HBn164AsrICsFh0VFfDvffm\nMW3a69TWVlBRYaK2toIhQ+rJyRlKXt4ZVFUN4V//KuDDD0dRUWECwGyuoLbWOduGBgQcmcB5enrj\n7e2Ln5+x8TYf/P2D8PLywdvbBz8/Iw0NIaxYMZfqal/c3S3U16typ7e3hZ49G0hMdCc+XiUPPXrI\nhsdaS0lRa4UjI20fu6JCTWmPirJ9bFDJWq9e2sQWQoiTTZI14TT0epg1Cz74QK1hM7ZeCHBo4eFq\nA2ahPb0e+vdXl5kz1W25uZCcrNag7dx5uHOjh4d1vy4Ld9+9j8DAVEaPzqNv32IOHAjk4MEEsrIG\nUVMTyLvv1rFu3XTM5l2UlxdjNle28OpGPD3PQKebRkXFQLZs+QY/v3oCAw34+voRGKind+8UfH3f\npaamG2ZzLAkJCzEYghrH7oO3tx6dTofBYDzmtsDAwz8A7u7uBAS0Pu/Lw8MTPz//Vu+vra2hsrKi\n1fvNZjNmc1XTv6uqKqmpqaahoYGyMpVcVlZWUFNTQ0NDPWVlqupXUaEqgdbnm0zFmM1VjV+nkJ9f\nSXW1GZOphNLSEVRVTQP+or5+K7Ad2E519UGSk2H/fk/8/Y34+wfh56eufX3VtfViMIQRGBiKwRCG\n0RiBwRCGXu/X6vsSrTt4UG19oUVHxawsda1FIggqWXPWvw9CCHE0SdaEU5kxQ1U1Pv0UrrrK3qPp\nmIgIlTCIk8NiaaC4OJfCwgwKC7PIz0/DZMqntjaf8PBc9PoSCgrCKSmJp65uMLW1p/Lkky8Cr+Ph\n4UlwcBhGYzBhYUZ69w6moWEoFRVDGTXqNEJCpmMwBGEwGI+49vcPOCKZUn6zx9tvE09PLwyG1jel\nMhhavUsDMVRWnkZ5eRmlpSWYTMWYTEdfH/66pGQvaWnFlJQUUVRUQFXVkUmnXu+LwRBGUFAkgYGh\nBAaGNf3baIwkLKwHISHdCQnpjqen98l8ow7t4EHtpkDm5KgpxmFh2sSXaZBCCFciyZpwKno9XHyx\natd9xhnadSrTUmSk6lYmi+A7z2KxUFSURW7uQQoKMigqyiI/P53CwkyKijIpKEinqCiHurrD8x2D\ng8MIDY0gJCSU8PBI+vUbSEhIGCEhYYSFeRMSkkZw8C2EhT3RVOVq2Szt32AX5evrh6+vH+Hh7S+9\nVFVVUliYT15eDkVFBRQW5lNYmE9+vvp3QUEue/f+RX5+Lvn5OdTXH+5AExQUTnBwN0JCohsv3QgL\niyE4uBvh4bFERMTh4eH6Oy1b9wqcNEmb+NnZaoaBhwZHIGazukhlTQjhKiRZE05nxgzVoGHpUnjs\nMXuPpv2sHQFzciRZa4uaGjNFRVnk5KQ0XXJz1SU9fQ9VVYf3czAYgoiJiSciIophwwYSETGViIhu\nxMbGEx4eRffuMfj7O3F3GnFCPj6+REfHEh0d26bHm0zF5ORkkZeXTWpqCrm5WeTmZpOdncH27ZtJ\nTd3fNNUT1Hq8yMh4IiLiiYw88hIREYdO5/xNlnNy1JYXPXtqEz87W7spkNbmTVJZE0K4CknWhNNx\nc4ObboI771Qd9caPt/eI2icsTDVHyM2FPn3sPRrHYLE0kJt7iPT03aSl7SIzcw/p6TvJytqPyaS6\nseh0OsLDuxET05O4uHhGjTqbmJhbiI2NJyamJ+HhUbgdbwdqIVqgpq8G0bfvgFZ/l5hMxaSnHyI1\nNYXU1BTS0w9y6FAKW7Z8SmZmalMjGG9vH7p160X37olERycSE9Of6Gj1dWc7ZZ5MBw+qtWqxbct3\n2y09HXr31ia2dYq5VsmgEEKcbJKsCafUp49q+/zmm6rdup8T9RBwd1cdIXNy7D2Sk89isZCTc4CU\nlO2kpyeTlraTrKw9pKcnU12tGlhERHSnd+9+jBkzgl695hETo5KxmJieeHs7zwGvcB3WhG7gwGP3\nCGhoaCA7O4O0tIOkpaWQkrKP/fuT2bTpIz7++AD19XW4ubkRGdmT6Oh+9OjRj+joROLiBhMXN8gh\n18kdPKimmOs1+nHLyNBuimVOjvp74N96Px0hhHAqkqwJp3Xllaq1+v/+B1dfbe/RtE9kpOsnaw0N\n9WRkJJOWtou0tJ0cOLCV5OSNTZWy8PAo+vYdwMSJ4+nbdyGxsfH06zeY0NBwO49ciLZzc3Oje/cY\nuneP4ZRTJh5xX21tLVlZ6ezdu5O9e3eRmppCcvKvrF79OpWV5bi7exAd3YeEhOHExAwgJqY//fqd\nSkBAiJ3ejWLtBKmFwkLVtl+rzbZzc6WqJoRwLZKsCacVEKD2W3v9dXWWVquDCy1ERUFmpr1HYVt5\neans3Pkzu3f/yoEDWzl48E9qasx4eXnTt+8gBg9OYtasxxg4MIn+/Qej1/vYe8hCaMrT05PY2Hhi\nY+OZOvWcptsbGho4eHAff/+9jb/++oO//trGypWrMJmKGpO/XvTsOYzExDH07z+O+PihuLmdvI3l\nUlLgzDO1iZ2Wpq579NAmfk6OJGtCCNciyZpwamecAWvXwssvw3PPadNdTAvduzv3XmsWSwOpqTsb\nk7Nf2LnzJ/LzM/D09GLQoOGMGzeGhQuvZ9CgJHr37o+np6e9hyyEw3BzcyMhoS8JCX0599xLmm7P\nyEhtSuD+/PMPPvzwUUymInx9A0hMPIX+/ccxYMB4+vQZhbe3ryZjq6iA/HztTn6lp6vGSlptB5GT\nA0OHahNbCCHswUkObYVomU6nGo3cfLOaDnnppfYeUdt07w5FRarjmq82x1w2l5+fxpYtX7N162p2\n7vyZsrJi/P0DGTHiVK688jpGjx5PUtIoqZgJ0UHWLpZnnnkeoNZ47tmzk02bNrBp0wbWr1/G//3f\nw3h4eNK79wiSks5g5Mjp9Oo13GZdKA8eVK37tUzWtJoCCSpZs3bcFUIIVyDJmnB6UVFqzdprr8GQ\nITBokL1HdGLWKUCZmdp1Reus+vo6du/+hc2bv2br1q85dOhvfH39GT9+Cvfe+09GjRpHv36DcXc/\nedOzhOhKdDodiYkDSUwcyPz5CwHIykpn48af2LjxJ9at+zfLlz9CUFA4w4adxYgR00lKmoq/f8f7\n1u/Zo/YoCw211bs40sGD0KuXNrGLilRlMDpam/hCCGEPkqwJl3DWWbB1KyxZAq+84vidwCIiwNPT\n8ZK1hoZ6tm9fy/ffv8fmzasoLy+hZ88+TJs2g0mTnmfMmAl4eTle9zohuopu3Xpw/vnzOP/8eQDs\n3v0X69d/zdq1X7N4sbptwIBxTJw4l3HjLsTPr327Q+/dC4mJNh82AA0NKlnTaj1caqq61mrLASGE\nsAdJ1oTLuOUWtf/av/4F999v79Ecn5ubqghmZNh7JMqhQ3+xfv27/PjjcoqKshk27BTuvfefTJ48\ng7i4BHsPTwjRin79BtGv3yBuvPFeSktL+OGH71i9eiVvvXUrb7xxC6NHz+T00y9j+PAzcXc/8Z/8\n5GQ4+2xtxpqWBtXV2lXWDh1Sm2FrtR5OCCHsQZI14TICA+H22+Hhh+H77+H00+09ouOLjrZvslZT\nU8W6de/yzTdLOXBgOz169OTyyxcwe/ZlxMVpdDQlhNBMYKCRmTMvYubMiygtNbFq1Sd89NG7PPbY\nTIzGME477TLOOedmwsNbLj0VFKjW+lpV1vbvBy8v7aYppqZCXJw2sYUQwl5ssyJZCAeRlAQzZ6p2\n/o7eGr9Hj8NtrE+miooS3n9/EVdeGcOyZbcxcuQwVq78iY0bD3DXXf/s0olat266pktXtX37ZmbP\ndvAzHa1wlO/f7Nmns337ZruOITDQwJw5V7Ny5Y9s3JjCggU38dtvH3LNNb149tlLSE39+5jnJCer\nqr9WU7MPHFDJlFZdew8dkimQQgjXI8macDmXX67O3D7+uOq26Kh69lSVtZqak/N6tbXVfPzx0yxY\nEM/XX7/CggU3sXlzKs8//29Gjx6PTtd1ExSrrCyLvYdgV8uXL+OSS6axYMGt9h5Kk/9n777ja7rf\nOIB/bm723kuWREgiRCKIFapG7fErSou21Gqp1lZqtPZWq6VoS9FWbWqFEiRIJEZsIYkM2Xvn/v54\nehORfXNubsbzfr3ui9x7znO+99wrznO+3+/zHTSoMwYN6lypbWvL5zd27FR88EEP7Nu3Q9FNAQBY\nW9vhq68WwN//OTZt+gWxsQ8wZYob1q79CLGxRXeMHj2iZEpdXT7tePpUfkMgJRL6fco9a4yx+oaT\nNVbvqKoCCxZQorZiBU1qr43s7KhtNdG7du/eZUyZ4oY//vge48Z9AX//55g+fSGMjU3lf3AFUWQP\ni6KOXZ3j+vicxsyZ47Fq1fbC0vG1QUFBAQpq4T/i8s51796DsWzZFsyaNQE+PqdruGVlU1FRweDB\nI3Hu3G1s3fo7QkNvYPLk5jh8eC0kkgI8eAA0ayafY+fnU3ERBzlNgY2IALKy5LfkAGOMKQona6xe\nMjCgIiN37wL79im6NaVr1IjuYL94Ib9jSCQSHDjwPebN6wZn56b499/7mDlzCXR1eQY+K5Kbm4NZ\nsybA07MDBgwYrujmFHPs2FUcO3ZV0c2osiFDPoSHRzvMnj0Rubm5im5OMUpKShgwYDguXbqLyZOn\n47ffvsGCBYPw9Cng6iqfYz5/TsmUs7N84j96RDfqeBgkY6y+4WSN1VtOTrRY9h9/AFeuKLo1JYlE\ntDhsaKh84hcU5GPjxk+xf/9izJ27FL/8cgxWVnwlw0o6efIQIiPDMXjwSEU3pV4ZPHgkXr0Kw6lT\nhxTdlFKpqqph+vRFOH78GiIjDZCXBzRqFCWXY4WEADo6RWtMCu3RIxpiKa/5cIwxpiicrLF6rVs3\noH9/YP16mi9R2zRuLL9kbefOr+HrexB7957E55/Pls9BBHTlynmMGTMATk4GsLNTR8+eHjh69ECJ\n7d4sIvHixTOMHTsETk4GxYalvTk8Tfr89OnjisV59Og+PvqoD5o00UazZnr49NPBePWq7DGpcXGv\nMWfOJHh4WMHWVhXu7o0wc+Z4vH4dXaJ9FR27srEAIDs7C5s3r0CPHu5wcNCCnZ06Ond2wuzZExEQ\n4Fel45blzJljAAA3N88S76Wicw3I9tk9fhyCkSPfQ9OmumjSRBujRvXFkycPytz+bVX9/Gr6+0Xn\ns02x81tbtWjhgYEDt0JV9SXWru2GrKw0wY8REgK4uNBNKnl4+FB+VSwZY0yROFlj9d7YsTT0Zvly\nIClJ0a0pTpqsSQSuixAUdB7Hj/+ADRt2o0uXnsIGl5Phw3tALBbj2rUnuHr1MQwNjTFp0ghcunSm\n2HZvFpGYM2cSJk2agaCgSOzde6rUbSIjJYiMlGDt2p2Fz7148QwDB3bC/fvB2LPnGAIDX2H8+K8w\nc+b4UtsWGxuDPn3a4vTpw1i/fhdCQhKwffsB/PvvWQwY0AEpKUVfrIqOXZVYaWmpGDSoMzZtWoZP\nPvkcfn7Pcf9+HFau3A4/v8vo3799pY9bnnv3bgNAiZ7XypxrQLbPbsaMz/DVVwtw+3Yk9uw5irt3\nAzFgQEeEh78odfs3VfXzk7WNsn6/pKTnU3p+a7OgIC3062eC9PR47N49S/D4Dx5QsiYPWVk091de\n8+0YY0yROFlj9Z5YDMyZQ38uWgRkZiq6RUUcHYHUVCBK4JFHhw6tRNeu79W6+UcVWbx4PQwNjdGo\nkQ2+/34TAGDjxqVlbj916jx4enaAuroGunXrXelqgGvXLkJKShLmz1+JTp26QUtLG15e3hg9emKp\n269ZsxARES8xd+4ydOnSE1pa2mjXrjMWL16PsLBQbN26utLvsSqx1q5dhODgW5g16zuMHDkOJiZm\n0NLSRocOXbFli3CTMaOjaZ0LPT39Mrep6FxX9bObNm0+2rTpCC0tbXTq9C7mzVuB5ORErF27qML2\nVvXzk7WNsn6/pPT1DQAUnd/aKjMTCA4GunXTxPz5K3D27C4kJcUIFj8qCkhIkF+y9vgxFTDhZI0x\nVh9xssYaBB0d4Lvv6ILhu++A2jLf38EBUFGhITxCyc/Pw927/+L99zSjt+oAACAASURBVD8SLmgN\niIyUwNrarvDnxo1psafHj0PK3Mfdva1Mx7p8+RwAoFOnbsWeb9u2U6nbnz17HADwzju9iz3v5eUN\nADh37nilj12VWCdO/AUApVZndHV1F6xUfWYmrXGhoqJa5jblnWtZPjtPzw7Ffvb27g4A+PffsxW2\nt6qfn6xtlPX7JSU9n9LzW1sFBNASIl5ewKBBI1BQkIf7930Fix8SQsU/5FW2/9EjwNAQMDaWT3zG\nGFMknorLGgwzM2DJEuplW7kSmDePFoBVJGVlwN6e7gx361bx9pWRkZGCvLxcmJiYCROwBqSkJGHL\nllU4ffowoqIikJ5eNGcmMTG+zP00NDRlOl5CQhwAwNCw+NXd2z9Lxce/BgC4u1uW+vqLF88qfeyq\nxHr9mrpcTU3NKx1fFhoamkhPT0Nubg5UVdXK3KY0sn52b1cklZ77+PjYCttb1c+vpr9fUrm5OYLE\nkbeLFymRsrQEAA1oa+shJSVOsPjBwTSfTEVFsJDF3LkDtGwpn9iMMaZo3LPGGhQ7O2D+fCAwENi+\nXdGtIc2a0Z1hoejoGEJHxwAhIXeECypn48cPww8/LMfAgcNx8+bLwnlA8iK9qJde9EulpCSXur2x\nMSW+Dx4kFLbtzcezZ+mVPnZVYkm3jYmRT4U+KXPzRgCA5OSqT+qU9bN7O0mSfhZGRiYV7lvVz6+m\nv19SSUmJAIrOb23l41N0s+jVqzAkJyfAwkKYBdEkEiAoCHB3FyRcCTk5wP37gJubfOIzxpiicbLG\nGhxXV2D2bODMGeBAyWJwNa5ZMyoykpMjXExv7xHYvXsLsrJq0QS9cty8SetoTZgwHfr6hgCAnJzs\nasWU9mbk5uYiMzMDzZsX9bpIi65cuXKh2D4BAddLjdW7Nw1DvHbtUonX/P2vFCv0UdGxqxKrb9//\nAQD++edIiW0DAvzQt2+7Sh+3PK6udCUdEfGyUtu/SdbPTrqf1OXL5wGgUgVxqvr51fT3S0p6Pps3\nb1WtY8lTVBTdLJIma9u2rYGxcSO4unYRJH5oKA0/9/AQJFwJDx7Q707uWWOM1VecrLEGqV07YOJE\nWjD7zJmKt5cnJycgLw948kS4mEOHzkViYiLmzv0cEqFLTcpBu3adAQA//LAcKSlJSEpKwPLl86oV\n08WFrt6Cgm7g3Lnj8PQsSoKmT18EXV19LF06B76+PkhPT8OtW9fwww/LS401ffoiNG7siHnzPseJ\nE38hMTEeaWmpOHfuBKZN+xjz5q2o0rErG2vGjEVwcnLF6tXfYt++HYiNjUF6ehouXTqDqVNHY+7c\nZZU+bnl69uwPAAgOvlWp7d8k62f366/bceOGL9LT0+Dr64Ply+dCT88A06cvqnDfqn5+Nf39kgoO\nvgkA6NVrQLWOJU8+PoCmJv1OPHfuOPbs2YLRo5dDWVmYMYuBgYCuLg33loegIKBRIxrmzhhj9ZFI\nUo0ruWHDhiEqCpgz5w8h28RYjdm/nx7Tpgk3Z0wWY8cC774LjBRwTeKbN09i2bIh+OCDT7F06Q9Q\nrsWrxcbFvcaSJTNw6dIZJCcnwcGhKaZNW4CJE4uqWUqHrZW25lZpQ9qCg29h+vRxCA19AheXlti4\n8RfY2zctfP3Ro/v47ruZ8PO7DJFIBE/PDli8eD26dm1eatzk5ERs2PB94bwnfX1DtGrVFlOnzkPr\n1l5VOnZVYqWnp2HLlpU4fvxPhIWFQltbBy1btsa0afMLk5DKHrcsubk58PJygLW1HY4cKVpBvjLn\nuiqf3Zsx/f1DMX/+FFy//i8KCgrg5eWNhQvXwtHRuczjvxmnKp+fIr5fANC/f3tERkbAz+9ZucVb\nFGnsWLpZNHLkUUyYMBzvvvsxPv9cuDHi33wDGBgAM2YIFrKYr74CmjYFJk2ST3zGGKuOfv1EOHjw\nIIYNGyZriD85WWMN3t69wMGD9J++ohK2DRuA6GhgxYqKt60Kf/9jWL16BFq1aoOtW/fV+rkzTHHO\nnz+JMWP6Y9u2/XJd8kGaDNXEnDFF+vvvfZgyZRR++eU4unfvq+jmlCo3F2jeHGjd+hguXx6EPn0m\nYuLEzRCJhBl0k5UFjBgBTJkin9+tqanAhx9S0agOHSrenjHGapoQyRoPg2QN3kcfAcOGUcLk46OY\nNri5Ufn+rCxh47ZrNwBr1vjh1atoeHu74OefNyEvL0/Yg7B6oXv3vli5cjtmzZpY6hw5VnmnTx/G\n3LmTsWLFtlqbqAHArl33kJYmwfXrszF16k5MmrRVsEQNoCGKeXnyKy4SEEAVfbm4CGOsPuNkjTEA\no0YBQ4cqLmFzc6NFXUPKXvJJZnZ2LbBx420MGPAVliyZhY4dm2Lv3p+Qn58v/MFYnfbRR+Oxf/8Z\n7NixQdFNqdN27tyIAwfOYdSoCYpuSqkePw7B+PHDsHjxNWhqPsamTUfQo8engh/n6lXA2ZmGQcrD\n9etAixaAlpZ84jPGWG3AyRpj/xk1Cnj/fcUkbIaGgLU13YmWB1VVDYwcuQhbt95DkyYdMGfOJHTt\n6oq9e3+qMxUjWc1wd2+LQ4cuySX2m/PBSpsbVl8cOnSp2gtqy8O1a5cwenR/dOvWAg8fhkJL62MM\nHdoMVlbNBD9WXh5w86b8hifm5FDxEh7+yBir7zhZY+wNo0cD//sfJWwXL9bssVu3Bm7ckO8xLCya\nYPr0vdi8+S4cHDrgm2+mwt3dCt988wUCAvzke3DW4L29phyTv+joV9i6dRW6dnXF+++/g+joZHzz\nzWF88skNpKeron3lCoZWWXAwkJYGucW/fZuGjbdrV/G2jDFWl9Xe8nCMKciYMXRXeP16WtC1poqO\ntG8PHD4MhIdTL5s82di4YOrUnzFq1FKcP78bFy78ht27t6Bx46YYOnQU3n9/FKysbOXbCMaYXKSn\np+HUqb/x11+/4epVH2hr66NTp+GYNGk3HB3bAAC2bwfs7AArK/m04fp1oEkT+ZXUv36d1qg0NJRP\nfMYYqy04WWOsFGPHAmIxJWxpacCAGlgmSTq3w89P/smalIGBOYYOnYuhQ+fiyZNbuHjxN/z00w9Y\nvfpbtGrVDj169MW77/aBq6s7RKL6O2yNsbouOvoVLlw4BR+f07h06Szy8nLh6dkHc+f+BU/PPlBR\nUSvcViIBrl0DeveWT1skEsDfH+jfXz7xCwpoiOWQIfKJzxhjtQkna4yV4eOP6a7tjh1AQgL9LE8i\nEdC2Ld0xHjpUvscqjaOjJxwdPfHpp2sQGHgG/v5H8fPP27Bq1QKYmFige/c+6NatN7y9e0BHR7fm\nG8gYK5Sfn4/AQD9cuHAK58+fwoMHwVBT04CbWzd8+uladOo0FDo6pXc73b9Pv9M6dpRP2+7eBRIT\n5TefLDgYSE7m+WqMsYaBkzXGyjFgAFUa27SJ5kdMmEBJlbx4eQFnzwKxsYCJifyOUx5lZRW0bdsP\nbdv2g0QiwfPnQQgIOI1bt07i4ME9UFJSgptbG7Rr1wnt2nVCmzYdoa/PY5EYk6fc3BwEB9/CjRtX\n4e9/Bf7+vkhJSYSFhT1at+6D4cOXo0WLrlBVVa8w1vnzgKMjYGMjn7aeP08LVctriOWFCzQSwcJC\nPvEZY6w24WSNsQq8+y4lbCtX0pDIr76iIZLy4OEB6OvTxc6IEfI5RlWIRCI4OLjDwcEdw4bNQ2pq\nPAIDz+LevX9x8uRJbNu2GgDQpIkL2rfvjDZtOqJdu848342xakpJScatW9dw8+ZV+PldQXDwTWRl\nZcLQ0BwuLp3wwQcL4eHxXpUrOWZlUUn9MWPk0+6sLBpi+ckn8omfkUGjDz77TD7xGWOstuFkjbFK\n8PICFi0CvvsOWLoUmDMHUFUV/jhiMdC1KyVrH3wg3148WejoGKFLlxHo0oUyyczMVDx65I+QEF/c\nvXsVBw7sQU5OFnR19dGsWXO0bNm68OHo6AwlJS5Ay9jbUlKS8fDhXdy5E4A7dwIQFBSA588foqCg\nAIaGFnBx6YRx4zbAxaUjrK1dqjV/1NcXyM0FvL0FfANvuHKFCjTJM75EAnTuLJ/4jDFW23Cyxlgl\nubkBS5YAixfTY8ECQL3iEUdV1qsXcOQIzcto1Ur4+ELS0NBBq1bd0apVdwBATk4mHj++iadPA/D8\n+W2cP38Bu3dvQUFBPnR09NC8eSu0bOmB5s1boVmz5nBwaAYtLW0FvwvGakZeXh7Cw0Px6NF9hITc\nwb17t3HnTiAiI8MAAMbGjeDg4IE2bd7HBx94wMnJC/r6wpZTPH+ebj7pymna6YULVNlWR0d+8b28\neCFsxljDwckaY1Xg4gIsXw58+y0wezawcKHwpaOtrKgk9T//1P5k7W2qqhpwdfWGq2vRbfXs7AyE\nht7B8+e38exZIC5evIzdu7cgNzcHIpEIlpY2aNLECU2bOsPR0fm/v7vA0NBYge+EMdllZWXi6dOH\nePr0IR4/DsGTJw/x5MlDhIY+Lvzem5s3hoODB3r0mAh7e3c4OHhAX99Uru2KiaHiIt9+K9/4CxfK\nL/6DBzTKgTHGGgpO1hirInt7YO1auiD56ivqZbOzE/YY/fvTMSIjAUtLYWPXNDU1TTg5ecHJyavw\nufz8PMTEhCIsLAQREQ8RHv4Aly9fxe+/70J6egoAwMDAGPb2TWFnZw9bW3vY2NjDxqYxbG3tYW7e\niJcSYAqVnJyIly+f4+XL5wgPD8XLl8/x4sVzhIY+RWTkSxQUFEBZWQUWFg6wtnZBq1YD0L+/M6yt\nnWFl5QR19ZrvGvrnH1oexMNDvvHd3etmfMYYq404WWNMBmZmwOrVwPff0/y1+fMBV1fh4nfuDOzf\nD/z5J/Dll8LFrS3EYmVYWjrC0tIRwMBir8XFhSM8nBK4yMgnCAsLxc2bfyI6OhQ5OVkAAFVVNVhb\nN4aNTWPY2VEiZ2FhBQuLRrCwsIKZmQVUVOQwqZA1CBKJBLGxMYiJiUR09CtERkYgPPwFwsIoOQsL\nC0VyciIAQElJDBOTRjA3t4eJSWN069YVVlZOsLZ2hoVFEygrqyj0vUjl5FCyM3CgfAok1WR8nvrK\nGGtIOFljTEY6OpSsrV9Pydq0aVQcRAhKSsD77wObN1OhETNhp63UasbG1jA2toa7e48SryUkRCI6\n+jmio0P/+/M5bt68gxMnjiI+PgoFBfmF25qYmMPMzBIWFo1gaWkFU1MLNGpkA3NzS5iYmMPIyARG\nRiYQy6u0J6uVkpMTERf3GvHxsYiKikB0dCQiI8MRHR2JqKhXiIqKwOvXUcjNzSncR1fXCGZmtjAz\ns0fTpu/C29se5ub2MDNrDFNTWygr1/4bAxcvUqXG996rm/F9fOQbnzHGaitO1hirBhUVYOZM6gWT\nDlscOVKY2F27AgcPAr/8AsyaJUzMus7Q0BKGhpZwcelU4rWCgnwkJkYjLi4CCQmRiI0NR0JCJOLj\nXyEwMAQJCecRFxeB7OzMt2KawNDQBMbGJjAxMYWxsRkMDY1hZGQCMzMLGBoaQ1/fEHp6+tDTM4CG\nhmZNvV1WgdzcXKSkJCE5ORFJSYmIj49FQkIs4uJeIzY2BgkJcYiLi0VMTBTi42ORmBhXLAkTi5Vh\nYGAGExNrGBhYwtKyNVq0GAhDQwuYmNjAyMgSRkaNoKqqocB3KYzjx4EuXWhpkLoY/8QJ+cZnjLHa\nipM1xqpJJKIETVsb2LEDiI8HJk+u/lAgZWVg4kSaG9e1K9C2rSDNrbeUlMQwMmoEI6NG5W6XmpqA\npKQYJCfHIjn5NRITY5CSEouUlDgkJEQjNDQYKSlxSEp6jZSU+BL7q6ioQleXEjddXX3o6xv8l8jR\nc3p6+tDV1YeWljbU1TWgra0DLS0daGhoQFNTGzo6ulBX14CmZsMtZ5ebm4uMjDSkpqYgKysTGRnp\nSElJRlZWJjIzM5CSkoSMjHQkJyciOTkJKSlJSEqivyclJRYmaJmZ6SViq6trwcDAFPr6ZtDVNYGO\njgVcXd2hr28KXV1j6OvTa3p6JtDXN4OSUv3vWQ0KAl68AL7+muMzxlhdw8kaYwIZMAAwMqIetqQk\n6nGrbmn/1q0pUdu+HWjZUj5LBTQ0OjqG0NExhLW1c4Xb5ufnITk5FmlpiUhPTyr2Z1paUuHfY2OT\n8PLl4zdeT0JmZhry8nIraIse1NU1oK6uCT09fYhEImhoaEJNTQ0ikRL09PQAAJqaWlBRUYVYLIa2\nNtVc19LShopK0XwoJSUxdHTKrseura0Dsbj0X/kpKUmQSCSlvpaVlYns7KxizyUlJRZ7LT9fBWlp\nrwEAmZn0nEQiQXJyEgAgPT0NWVmZSEtLRXp6KvLz896INhnAfgCJb5wXA6ipaUJb2wDa2vrQ1NSH\ntrYBzMzs4OBgAC0tfWhr03NaWvr//WwAPT0TqKlxz+fbjh2jObX29hyfMcbqGk7WGBNQx45Uyv+7\n76i0//z5gIlJ9WKOG0c9dZs3AzNmCNNOVjlisTIMDS1gaGgh0/75+XnIzExFZmYqsrMzkJWVjvT0\nZOTkZCI7OwPp6UnIzs5AdnYm0tMpscnMpGQmLy8XiYlpAICoqOjC57Ky6LmMjJRic/RycrKQk5NZ\nshGgghlpaUlltlNNrS3EYnOIxVdKvKakJIamZvEkUEtLDyKREpSVVVFQ4I7nzxfB1XUZtLQioKKi\nDy0tSpjMzCgBVVfXgqqqBjQ1daGurg01NQ1oaOhAJDLEmjUtoKOzDvPnp8PISJ2TLYG9fAncvAl8\n8w3HZ4yxuoiTNcYE5uwMbNpECduXXwJz5wItWsgeT1+fEr8FC2j9tf79hWsrky+xWPm/3iEDRTel\nXJs2ATduAFu3Vn2x5Lw8WrcrLGwd1q2j3uWqWLcOmDcP+O47NSxdCqipVW1/Vr7ffwdsbIB27eQT\nf98+wNZWfvH37pVvfMYYq+24AC5jcmBsDKxcSUN35s+nyfHV4eYGfPgh8PPPtOgsY0IaO5aK5Wza\nVPV9lZXphoS6Ot2gyMqqeJ83mZjQQvP5+ZS0xZecJshk9OIFcO0aMGoUza0V2rNnwPXr8o3v5weM\nHi2f+IwxVhdwssaYnKir00XsqFHAjz/SMMa8vIr3K8uwYXR3ecUKICFBuHYypqVFS0/4+wNXSo6E\nrJCODi0OHxsLrFoFFBRUbX9jY9pPSYkqn8bEVL0NrKTffqN5XvLsVXNwkF/xo99+A5o0Adq0kU98\nxhirCzhZY0yORCJaL23OHODSJZp3kVT21KEKY02bRlUnly+vXuLH2Nvc3GgNq61bgcTEird/m7k5\nfb9v36blJqpKXx9YtgzQ0KCbHFFRVY/Bijx9SkNbP/pIPr1ST57QXDJ59ao9eQIEBHCvGmOMcbLG\nWA3o2BFYvZp6HqZPBx4/li2OhgYlfqGhwM6dwraRsbFjqZdt/XqgjOKQ5XJxofLqf/8NnDxZ9f31\n9annWE+PE7bq2rMHaNpUfr1Se/YATk5UsVZe8V1cAHd3+cRnjLG6gpM1xmpI48bAhg2AlRUN9Tp6\nVLYLYltb4Kuv6GL4yBHh28kaLnV1KmZz5w59P2XRuTMwYgQN/b1xo+r7a2sD339PhUpmzQLCwmRr\nR0N2/ToQHAx8+qn84t+5A3zyiXzi+/lR/DFj5BOfMcbqEk7WGKtBurrAokV0EbV7N12UpqZWPU7H\njtQL8vPPNLySMaE4OtIi73v2yN4DPGIErQ+4ejUVuagqLS1gyRLAzIyKjsgSo6HKy6PfLV26AM2b\nCx8/J4d69bt2pZ4vecTfsUN+8RljrK7hZI2xGiYS0QLaq1bRRejUqcCDB1WPM2gQxdmwge6iMyaU\noUPpQn/1aiCz9KXbyiUS0ffa0RFYuFC2Co9aWnQzw8aG5sJFRFQ9RkN0+DAQFye/XqlDh4DkZODj\nj+UT/48/gJQU+fXaMcZYXcPJGmMK0rQpzQ2ytaV5aL//XvVhkePGUaW3Zcu494EJRySiuWdpaTSc\nURbVLekP0L4LFwKNGtESGFwlsnxJScCff1LlWBMT4ePHxVGyNnx41dfTq4yoKJrv+OGHgKGh8PEZ\nY6wu4mSNMQXS1aWL0Y8+Ag4epPLnVSnLLxJRwRIbG7og5pL+TChGRjQ38sIF4PRp2WJUt6Q/QItk\nL1xIRUfmz+fveHl27qQ5f0OGyC++oSH16svDjh1UVbRfP/nEZ4yxuoiTNcYUTCSiYWcrVgCvXgGf\nf161ta5UVYEFC+jPefNkK7vOWGnatgU++IB610JCZItR3ZL+AA2JXLwYEIuBb7+VbZ5nfXfrFs1f\nnTCBfhcIzc8P8PWl+Coqwse/do0K0kycSL2yjDHGCCdrjNUSzs7Ali3AO+9QL8SKFZW/KNXVpbXX\nlJRo6BknbEwoI0cCrVrRd1LWNQKrW9IfoLL+338PZGRQkR5Z5tLVV1lZwLZtVJRDHgtgp6dT/O7d\n5VOqPymJ1vfr0QNo2VL4+IwxVpdxssZYLaKqCowfT5XwHj4EJk+ufPlz6aLCAPW0paTIr52s4RCJ\ngBkzqDdl1SogP1+2ONUt6Q8AxsaUsL1+TcN+c3Jki1Pf7NlDSey4cfKJ/+OPNJ9WXvG3baPffZ99\nJp/4jDFWl3Gyxlgt5O4ObN5Md5m/+4563CpToEHa+5CVRUPPeLgYE4K2Nn2fHj0Cfv1V9jjVLekP\nAJaW9G8iNJR6n/PyZG9PffDoEXDqFA1P1NcXPv6tW4CPDzBpEn0PhObjQ0Mgp00DNDWFj88YY3Ud\nJ2uM1VLa2sDMmbQwsK8v9bLdvFnxfsbG1MOWnk49bJywMSHY2QFTptBQRl9f2WIIUdJf2pZFi2jh\n5NWrZStcUh9kZ1NFWQ8PSoKFlp5ON426dgXatxc+fnw88NNPQP/+PPyRMcbKwskaY7Vc5850QePh\nQUUWliyhEtrlMTWlhC01lZK9irZnrDK6dgV696a1/cLCZIshREl/AGjWjG5G3LwJbNpU9WUv6oOd\nO2l+6hdfyCf+5s2UCE+YIHxsiYS+R/r68luzjTHG6gNO1hirA3R06IJs+fKiipHHjpV/gWpuDqxZ\nQxfHX3/N67AxYYwfD9jb082AjAzZYghR0h8A3NzoZsTFi9UbnlkXBQQA//xDvxeMjYWPf+YM9aB+\n9RV9XkL76y/g7l363SSP6pWMMVZfcLLGWB3SogXwww/AwIHArl3A7Nnl93AYGNC8HnNzWnj7wYOa\nayurn6Q9YxkZwLp1svdoCVHSHwC8vGho5V9/yb4eXF2TnEy9Ut26Uc+70CIjqdfu/fdp/qzQ7t0D\n9u4FPv0UaNpU+PiMMVafcLLGWB2jqkrl1NeupWp4X35JvQplDSfT0gKWLqU5IQsW0B15xqrDwIDm\nU968SYu5y0qIkv4A8O67VLxk2zbA31/2OHWBRAJs3Ei/B+QxPDE3l27wWFkBH34ofPykJOpN9fSk\nuWqMMcbKx8kaY3WUgwP1bHz8MV3oTpxIi+KW1tOhokLDxTp0oHlC587VdGtZfdOiBRW92bePhiHK\nSoiS/gDF6NaNCo48eyZ7nNru+HGq0Pj11/Kpnvjzz0B0NPXaC704tURCQ7PV1Kj9IpGw8RljrD7i\nZI2xOkxJiYZE7txJidi6dXQR9PBhyW2VlWn+yZAhVJBh586GW0WPCaNXL/r+bdxI849kJURJf5GI\n5m85OxfNh6tvHj+m4c8ffgg0by58/EuX6MbPF1/QMFWh/forEBJCQ7K1tISPzxhj9REna4zVAzo6\nVPhh/XoaHjVzJiVuSUnFtxOJgNGjqZft9Gkqn56erpg2s/ph7FigTRsqOBIZKVsMoUr6S+fT6erW\nv+92WhqwciUlaUOHCh8/NJTmww4aBHh7Cx/f15fmFU6YQKMCGGOMVQ4na4zVIw4ONN9k+nQgOJgu\njI4coXkob+rcmXoxIiKoty0iQjHtZXWfSEQ3BywtKUFKSZEtjlAl/TU1qWctI4MWiK8Pi2ZLy9zn\n59ONFiWB/+dOTaV5rU5O8imj//Qp3Ujq3596YxljjFUeJ2uM1TMiEQ0p+/FHoG9fGno0YQLg41N8\nPpu9PRUp0dICZswAAgMV1mRWx6mqAvPnU2K0dGnJmwOVJVRJfyMjKqbz5AmtFVbXHTpE89RmzQL0\n9ISNXVBA88ikiaBYLGz8+HhKvl1dqReWMcZY1XCyxlg9pa5OQx537KAFtTdupPXZfH2LtjE0pKFV\nbdpQr8ivv9JFG2NVZWBAidaLF9SLouiS/g4ONDfq4kXgwAHZ4yja7dv07/Ljj6l6ptB276b5hvPn\nC58IZmYCixbRDSF5JIKMMdYQcLLGWD1nZEQFA7ZsAWxsKDmbMYPWOgKoV2T6dBoOefQoXSjLOmeI\nNWw2NlRF8OrV2lHS39OTqqRWt2KlosTE0HBlb2+aSya0M2domPTUqcLPI5NWfkxKoiSeC4owxphs\nOFljrIGwsqKehtWr6Q733Lk0ZO3lS3q9WzfqEUlJAaZMoWFXjFWVhwf14O7bR0NvZSVUSf/evYsq\noD56JHucmpaVRcMHjYzo36PQ7t6ldemklTiFJJHQzaHbt2k4qomJsPEZY6wh4WSNsQbGyYl61xYs\nAKKiqNdt+XIavmZjQ1UkPTzobvivv9aPAg2sZvXsST1BmzYBd+7IHkeIkv4ADSF0d6eCIwkJssep\nKdKFr+PjqadbTU3Y+GFhdC46dKBzLLQ9e4Dz5+nmUNOmwsdnjLGGhJM1xhqotm2pVPeCBTTcasoU\nYMkSqgw5YwYlcUeP0t/DwhTdWlbXfPopzYVcvryo97aqhCrpL61Yqa1NSwzU9hsQ+/cD165RsiP0\nemfJydRjZ2dHQ5+FXpj6zz9p+OoXX9DvGMYYY9XDyRpjDZhIRBdU69dT0paYSBdwS5ZQtcgtW6hQ\nybRptEYSL6LNKkuaINnZUe+QrMtDCFXSX0OD2hEWRkV3aqsrVyhZGz8ecHMTNra04IeSEhUUUVER\nNv7p01QUZtw4oHt3YWMzxlhDxckaY6wwaVu3rqjAyNdf00XtwjgwVQAAIABJREFU6NE0jGzfPqro\n9uqVolvL6gpV1aI5SwsWUEl+WQhV0t/Kir7Xp05RcY3aJiSE/g0OHkzLbggpN5eGPsbH07nU0RE2\n/uXLwNatwKhRwMCBwsZmjLGGjJM1xlghkQjw8qIFeBcsoCFTs2ZRuf9PPgGys4EvvwROnJC9NDtr\nWKSLVGto0FDG1FTZ4ghV0t/LCxg6FNi+HXj8WPY4QouOpoI/7u7CL0xdUEBrKj59Sp+B0EMrfX0p\nyRw4EBg+XNjYjDHW0HGyxhgrQdrTtmYNJW7m5sDOnTSMytmZ/j5jBvD8uaJbyuoCXV0awpidDXz7\nLX2PZCFUSf9Ro4BWrUovOJKTQ8P5ZG2jLFJTKYkyMaGbI0oC/s8srcx44wade6FL9F+5QgVgevbk\nRa8ZY0weOFljjJWrSRO6QN6yBWjRgtZn09SkEv9ffQX89FPNXtiyusnIqGgY3nffUVIki/JK+icm\nUkLi51d+DJGI1hZUU6MCKNKCIy9eUEGTLVuqt+xAaTIz6SbH28lhXh61ISuLerPV1YU97q+/FlVm\nbN5c2Nj//ks3dAYOBCZPFr5YCWOMMU7WGGOVZG1NQyB37wb69QPS0uji7PRpKigg9MUtq38sLKh4\nTWgoLR+Rn19ym2vXaEmJ8pRW0v/lSyqEExhYuQW5tbWpN+vlS0qijh2j/aOi6HtdnbXdSnPuHC1A\n/fXXQGQkPSeR0PIGT57QUFEjo6rHTUykuKXN4ztwgAoDffml8JUZz56lRG3QIKr8yRhjTD44WWOM\nVYm+PjByJLBrFyVpJiY0t23dOrrY5TL/rDx2dlSRMDiYhti+Offx+HEqrb9pU/kx3i7pf/ky9ZQl\nJdHrT55U7ntoZQV89hndcNixg3q58vOpTcHBsvf+vU0ioYQKoOTq669p/tj+/cClS0VVM2WxZw8l\nmz/8UPxcHjlCRYEmTaIF74V08iQdb8QImsvKGGNMfjhZY4zJREODeth++okq9LVoQRegkyfThTNX\njWRladaMhvz5+tJwRoASJunf794FHjwoP4a0pL+2NvXwZGcX9dQpK1PPT0UCA6mnGChZMCcvj9oh\nhIAA4PVr+nt+PpCRQQnaX3/RvxdZe70iIop6tM+fpxsoAPUS7txJiVSfPlWPe/EisHdv6a/9/jsV\nZxk9mm7aMMYYky9lRTeAMVb3ubjQvJuoKLqQCwwEJkygYgaffELrRfF8FvYmNzcqUrNyJSUvFy8W\nvSYWU6/Q99+Xvb9EQklJaQtu5+VRsjZmTOlrieXkUJJ2/Dh9L0urbKqsTElW69ZVf29vO3qU3pM0\nmXxzyKKWluxxf/2VipFIewOPHKGqkn5+VFFyyJCqx4yNpV6znBwaltm7d1Gbt22jJQ8mTy56njHG\nmHxxzxpjTDAWFjT35tdf6SL3+XNafHfMGODQoaJhaowBQMeO1Dt78WLxhCk/HwgKonXHSpOTQ0le\neXPTMjMBf//SX9uzhxI1oOwlKPLygOvXK3wLFYqKovfy9vy8ggJ6rFxZNESyKl68oPa9GVcioec8\nPYH335etvVu2FCWT27cDDx/SGm2rVlHv3ezZnKgxxlhN4mSNMSY4AwNK2nbupKQtIYESuNGjKXnz\n9S29uARrWHx9y16zTyymAhmlmT8fuHq1/MWxpcVvSvP++5Xr7Y2Nrf5w3hMn6L2UZ+dO6kmsil27\nyi7xf/Nm5YaBvu3KFeDWraLqmBIJ/TueM4cSzu+/pwSbMcZYzeFkjTEmN2ZmdLG3ZQvQrh1d/D16\nBKxYQYUd9u0rqozHGparV6m3pqyEKz+fhtM+eVLyNQ8PSlSUyxnIX1AA3LkDxMSUfM3QkBKPzz+n\nYZJlJVNiMQ2FlFVWFg0blCY/ZVFSoqIdlb2BERJC56a87X/4gZLhysrIoDmDbyaABQX0/IsXVPhF\n6NL/jDHGKsbJGmNM7mxtgXnzqNR606ZFz588CYwfT3OXTp2ixYFZ/ff0KQ3/K69nDCiau/a2Dz6g\nIXrSwhxl9TCJxcCFC6W/JhIB770HbNxIVSFLS9gKCsoeSlkZFy6UX1FSWZmO27MnzQerqAdOas+e\nym27ejUtk1AZu3bRchxvfyb5+ZRsnjlTuTiMMcaExckaY6zGODkBS5dSj4q5OS2sbWdHi2zv2gWM\nGkXrcPn6VtwbweouY2PAy4sSpvJ6x/LzaVjes2clX7OwoBsAS5cClpalD2nMy6ObAOUlhTY2wPr1\nwODBFOPNxE8ioUXgs7Iq/97edOxY2UM8RSLqbf7pJ+CLLwA9vcrFvH2betbK61UTi+m4Tk6VK2Dy\n6FH5PYD5+XRjRZahlYwxxqqHkzXGWI1zcaFhVUuX0rptgYFAo0ZAr150YbxyJSVumzfTelcV9cCw\nukVfnxKtHTuoWIW0h6k0ZfWuSbm50TDbzz+nxOTt5C8pib5f5VFVpeqJ330H6OoWjyEdTllVwcE0\n3+3NZE2aCDZvTmvJzZ1LQ4Wr4pdfyj5X0vPo5QWsXUv/jkxNy4+Xl0fbVqZa69atpSfOjDHG5IdL\n9zPGFMbNjR5PngB//km9II0aUbn/vDya1/TPP3Rx37Ej0LkzXejyMgD1g7k5LfEwfDh99ocP07DB\nN3uN8vOBGzdo6GSTJqXHEYtpSGPHjrQO2IkTRSXtxWLqNfL0rLg9rVpRQrJhAx0ToDi3blV9LbQ3\ny/UrKVHS1rgxLSTfokXVYkldv07n4W1KSpRw9uxJ5fqNjSsf86+/qNx/RcVaRCLa5sULWpKDMcZY\nzeBkjTGmcI6O1NMSFUUl1ffupaGR3bvTnLa7d2lo5MmTVByiUydK3JycOHGrD/T1aYHlQYOoPPyB\nAzR/SiKhh1hMZfq/+ab8ODo6lPxJ54CFhBTNO0tKouNURFcX+PZbuknw00+UPPr50dpilfX6NVVk\nlEjo+2lqSjcgOnSQ/fsqkRStq1ZQUJQImprSeevVC1BTq1rMyEg612UlamIxveboCHTtCnh7V+4c\nMsYYEw4na4yxWsPCgpKz//2PErMzZ2gNqk6dgKlTaV7PlStUuOHYMbqw9vSk193dS18AmdUdmprA\ngAGUeJw7R72tCQmUMFy/Tr06dnYVx2ncmOZF+vpSwpWQAJw5k4kePZKQk5MJiUSC9PSiRf9yc7OR\nnZ1RLIa5OTB5siYOHmyBqCgdnDhxGvr6aaUeTyRSgpZW0aSzs2ebQCKxg6ZmLnr0eIp27WKhqalV\nOIRQXV0LysqqUFISQ1NT97/ntKGsXPYX+NIlIDy8KNlzcaElCDw8ZEsAJRKqGPn2nDppEmhpSQla\nt250LhhjjCmGSCIpa0nQig0bNgxRUcCcOX8I2SbGGANAvRqXL1Ni9vw50KwZ0L8/9VBERdEFvJ8f\nzaPR1KQ13dq3pwROQ0PRrWdVkZ6ejLS0RKSlJSI9PQmZmanIyspCUJAJbt50Q1KSIWxtA+Hq+jOy\nszOQlZWOjIxk5ORkIjs7A2lpiYVxJJIC5OZmIysrA4AGgCkAAgCUURqyXCoA+gM4BqCyVW9GAbAC\nsAlAepWOpqysAg0NbQCApqYulJTE0NDQRmTkAWRnO8LE5DJsbc/CyCgRWlp6UFPThKqqBrS1DaCq\nqgE1NU1oaelBU1MX2toG0NY2gJaWPsTi4vdmz5+n4Z50TBp2bG5OyVmXLjQcmTHGWPX06yfCwYMH\nMWzYMFlD/Mk9a4yxWktVlYZCdu9OVfmOH6fKfT/+CLzzDvXAfPABLV7s50ePNWtoqJibG9CmDSVu\nVS3iwGSXlZWGpKTXSEqKQUpKHJKTY5GcHFuYiFEyRglZ0XNJKChlLJ5YLIaWli60tHSgpvYelJTE\nSEh4AHV1DRgYaMPa2hrq6hrQ1NSCrq4elJSUoKmpDRUVFaioqEBTk5IeHR1diMU9oKLyLTQ1qTyi\nrq4eRCKq+CESiaCnV/b4PrFYGdraOmW+npOTjczMjFJemQkAyMzMQHZ2duGz6empyMvLQ25uLjIy\nqLcuJSUZBQUFxWKlpCRBIpEgNTUFUVHHIJHEIicnAllZmUhPz8CrV0nIyspEVlYmkpMTkZ2diezs\n0ktXamrq/Je86UNDwwKPHh0CoAV19RQ4ONyDs3M4HB3F0NMzRUGBCZKTjaGnZ1Lme2aMMVYzOFlj\njNUJrq70SEykYZBnzlCPW5MmVFyiRw/qdUtNpflC/v60HtW2bVSeXZq4OTuXXy6elZSXl4P4+EjE\nx0cgNjYciYlRSEyMRnJyLFJSKBmT/pydnVlsX01NbRgamsDAwBD6+gYwMDCArW1j6OkZQF/fAHp6\nBtDT0//vz6LntLS0oapaxUlYCqKqqlZuW/X0DGqsLRKJBCkpSUhNTUFyciKSkhKRkpJU+Pfk5EQk\nJ6dASekIVFSCIJFcRUpKIi5eTMChQ7F4c7CNWKwMPT1K2vT0TKGvbwZdXRPo6ZnAyKhR4cPExBoa\nGmUns4wxxmTHlyyMsTrFwIDm6vzvf1RS/cwZ6mn7+WeqBvjOO/To1o2Gdt2/T9X8/P2BQ4eovHur\nVpS8ubsDRkaytSMnh4aRde9O84bqqvz8PMTFhSMm5gXi4iIQHx+B+PhXiI0NR0LCK8THv0JCQnTh\n9mKxMoyNzWBqag5jY1PY2prAyMgJJibmMDIygZGRCYyNTWFiYgYjIxOoqakr8N01PNRLSAmvlZVt\nBVt/WOyn/Px8xMfHIiEhDnFxrxEbG42EhDjEx8ciNjYGcXGv8erVCwQHv0ZMzCtkZRUl5pqaOjAx\nsYaRkRUMDS1hYmJTmMyZmdnBzKwx1NQ05fCOGWOsfuNkjTFWJ4lERaX/U1OBixcBHx+qGGhsTPNu\n3nmnaJuxY4GYGFpUOCgI2L6d1nQzN6fkrVUrSt4qs4gwADx8SPPpLl+mypTjx1MiWRvl5GQhISES\n0dHPCx8xMfR4+TKksDdMRUUVBgZGMDOzhJ2dPVxdO8Lc3BKmphYwN7eEjY09GjWygTJ3TdZLYrEY\npqbmMDWtXEWRrKxMxMREISzsOaKjI/H6dRRevqS/3717FzExkYiLiy7srdPRMYC5uT3MzOxhbl78\nYWpqCyWlMhaQY4yxBoz/x2WM1Xk6OlRFcMAAICKCErdLl6gnzc6OkrZOnWju2nvv0SMnh3rdpMnb\nmTNUCc/JqSh509Sk9b+GDy+ZiIWEFBVmuHaNhl6OHg3061e0+HFNkkgKEB0divDwBwgPDyn8MzLy\nCVJTqfiGWCyGubkVbG3tYWtrjw4dBsPWdjpsbOxhY9MYxsYVrKDM2BvU1TUKv0tlychIR1hYKMLC\nnuPly6JHUNAxhIeHFs6xU1FRg6WlA6ysnGFl5QQbm+awsnKCtbUTVFW5WhBjrOHiapCMsXpJIgEe\nPKDEzdeXet+aNKGhkh07UmnyNyUn03puQUFAYCCtlSVNxlRUaC2rDz8smu/27beU6L35G1QkAmxt\ngS+/pLWp5CU6+jmePbuNiIiHCAu7j1evHiI8/GFhD5mFhTWaNHFCs2YucHBoVnhBbWVlCxUVVfk1\njLEqkEgkiImJLEzgQkOf4OnTh3j0KAQvXjxFXl4ulJSUYG7eGFZWzrC2doG1tTMaN24JW1tXKCvz\nd5kxVrsJUQ2SkzXGWL2Xn0/z265epYqRSUnU49apE5X6ty1lak9EBCVkr18XPScWA82b03DJP/4A\nMjNL7icWUwLXty8wZgygXs0pWwkJkXj6NABPnwbg2bMAPHrkj6SkWACAqakFmjVrjqZNXdCsWXPY\n2trDxcUNRkZcxY/VbXl5eXj1KgyPH9/H48chePnyOR4+vI/794OQmZkOsVgZVlZN4eDQGk2a0MPB\nwYPnxTHGahVO1hhjrIqkPW6+vvRISABMTalISNu2RYtrZ2bS8Mc3K8qLxdR7pqYGpFewfJZYTMMz\nJ0+mdeEqIykpBvfv+yIkxBdPn97C8+dByMxMg7KyCpo2bY6WLT3QooUHWrRwh4uLW2EZesYaivz8\nfDx//hh37wbi7t1A3LkTiHv3biM1NRlisTJsbJxgb+8BZ+eOcHHpBGtrZ4hkWTWcMcYEwOusMcZY\nFYlEgIsLPT77DHj0CLhxgx7//EOLaXt4UAL39tJf+fnF/yxPfj4NrVy2jJYM+OILKnzyppiYUNy/\nfwX37l3Ggwe+CA9/BCUlMZydW8LDoy3GjBmFFi084Ozcos6UsWdMnsRiMRwdneHo6IwhQ6iapUQi\nwcuXz3DnDiVwwcG3sGvXdGRkpEFPzxguLp3QvLk3mjfvBHt79xILhDPGWG3GPWuMMfaf2FggIIDm\nrT19CsTF0Zy16hKLqbdu5MgMmJgcx61bpxAcfAFxca+gqqoGN7c2aN/eG23bdkKbNh2ho6Nb/YMy\n1oDl5eXh3r3buHHDF35+l+Hv74vExDhoaGjDxaUjWrfujTZt+sLCoomim8oYq8d4GCRjjMnJpElA\neLjs+4tEVIykoECC/HzpMKx8iMXN0KaNFbp06QEvL2+0atWG1yJjTM4kEgmePHmAGzd84evrg0uX\nziAlJQlWVk3h6dkPbdr0QfPmnbloCWNMUDwMkjHG5CA1lQqMVJVIBOjqAvr6mSgoeIyEBH+kp9+D\njk4i2rWzQ58+7ujT5xZ0dfWFbzRjrEwikQhNm7qgaVMXfPTReOTl5eHmzau4cOEUzp8/iSNH1kFT\nUweenn3RrdsoeHj04nXfGGO1AidrjDH2luBg2faTSABl5R/x8uVEWFnZYezYkejZ80O0atUGSopY\nfI0xViplZWW0b98F7dt3wfz5KxEe/gLnz5/E0aMHsXhxPxgamsPbeyS6d/8Ytrauim4uY6wB42SN\nMcbecucO/amsTL1l+fkli42IxYC2NqCqmoGcnGdITb0HsTgJrq5pmDLlItq378JV6BirI6yt7fDJ\nJ5/jk08+x4sXz3Do0G/488/fcPjwWjRp4oHevSfhnXc+gqoqD1lmjNUsTtYYY+wtLi5AVhYNadTT\nA/T16e/Sn/X0JLhz5wj+/HMZHj++hTZtOmHUqPHo02c0l9NnggkKuonvv5+Fv/66WGPHtLQsusEQ\nGSnzlHaZvP/+O5g/fxVatWpTo8d9m52dA6ZPX4Svv14If/8rOHBgN3788Qvs3Tsf/ftPxYABU6Gu\nrq3QNjLGGg5O1hhj7C1du9KjNPfuXcbatTPx+PFN9OkzBOvWbYaHR7uabB5rAH7/fSeWLJmJDRt2\ny+0YgwZ1BgAcOXKl8LnISEmxhK2i7YU0duxUfPBBDyxYsBoffviZXI5RFSKRCF5e3vDy8sa8ecux\ne/dm/PzzShw7thEffLAAffpM4nltjDG540kUjDFWCenpSdi0aSzmzu0Kc3MDnDkTgB07/mowiZql\npajMi/iGcPya5ONzGjNnjseqVdvx3nuDZI5T0TkrKChAwdvje8tR1vZCfTa9ew/GsmVbMGvWBPj4\nnK52PCGZmppj9uzv4e//HCNGjMauXTPw9ddt8ezZbUU3jTFWz3GyxhhjFXj+PAjTprVGUNBp/Pjj\nH9i//x+4urorulmsHsrNzcGsWRPg6dkBAwYMl+uxjh27imPHrspte1kMGfIhPDzaYfbsicjNzZXr\nsWRhYGCEBQtW4/z5IBgZaWPGjPY4fXq7opvFGKvHOFljjLFyhIT4Ys4cb9jYWOHs2UD06/e+opvE\n6rGTJw8hMjIcgwePVHRTFGbw4JF49SoMp04dUnRTytSkiRP+/vsSZs1ajG3bPsfu3bMU3STGWD3F\nyRpjjJUhPPwBFi7sjW7d3sMff5yHqam5optUrtevozFr1gR4eFjB1lYVHh5WmD17ImJjY4ptJx22\n9vbQtfKef3ub6dPHlbrf48chGDnyPTRtqosmTbQxalRfPHnyQK7HT0lJxsKFX8HLyx52dupwcTFC\n//4dsGTJDNy+fUPmdgJAXNxrzJkzqfCcurs3wsyZ4/H6dXSJbbOzs7B58wr06OEOBwct2Nmpo3Nn\nJ8yePREBAX4lti/NmTPHAABubp5yPWdl7VcWWY7z5j7Sx9GjBwq3b9vWrtSYbm5tip2L2kokEuHz\nz2dj3bpdOHx4LY4e3aDoJjHG6iEuMMIYY6WQSCRYt24UXFxaYOvW36GsXLt/Xb5+HY0+fdoiPz8f\nP/zwG1q1aoOgoBv44ouPcPHiPzh50h8mJmYAyi4iUZnnS6sQ+ObrM2Z8hgULVsHFxQ23b/vjiy8+\nwoABHXH2bCCsre3kcvwvvxyDM2eOYsmSDRg5chxUVFQQFhaKZcvmom/fdoX7VLWdsbEx6Nu3HbKz\ns7Bp06/w9OyAe/duY8qUUbhy5TzOng0sXOA8LS0VQ4d2w7Nnj7Bo0Tr06NEfmppaCA6+hblzJ+O3\n336sVHXFe/doDpSVlW2Vz01Vzll5hURKI8txIiMl8PW9gGHDusPMzAI3bryAiopq4evTps3HmTNH\n8csvx4vtJ33v0nNR2w0bNgYxMZFYs2YOWrd+D1ZWTopuEmOsHuGeNcYYK0VQ0Hk8fRqIVat+rPWJ\nGgCsXv0tIiPDMX/+SnTq1A3a2jro1OldzJu3AhERL7FmzcIaace0afPRpk1HaGlpFx4/OTkRa9cu\nktsxr12j0vbm5o2gqakFFRVVODg0w7Jlm6vVzjVrFiIi4iXmzl2GLl16QktLG+3adcbixesRFhaK\nrVtXF267du0iBAffwqxZ32HkyHEwMTGDlpY2OnToii1b9lX6vURHvwIA6OnpV/Es1E6dOr0LFxc3\nxMRE4ciRA8Ve+/nnTRg37ssS++jrGwAoOhd1weefz4atrT33rjHGBMfJGmOMleLOHR84ObWEs3ML\nRTelUs6fPwEA6NSpW7Hnvb27AwDOnTtRI+3w9OxQ6vH//fes3I7Zp8//AADjxw+Fp6cNpk8fh2PH\n/oChoXGZvVmVaefZs9Tj8847vYtt6+XlDQA4d66oR+jEib8AoNTqja6u7pVesywzMwMAivVA1XXj\nx38FAPjpp/WFz/n6+qCgoACdO3cvsb30vUvPRV2gpKSEwYNH4M4dH0U3hTFWz3CyxhhjpUhJiYex\nsamim1Fp8fGxAABDQ+Niz0t/jo9/XSPt0NXVK+P4sXI75vr1u7Bz5yH07fs/pKenYf/+nzFx4nB0\n6OCI+/eDZG6n9Jy5u1sWm3fVvDlt++LFs8JtX7+OAoBqz2vU0NAEQFUh64vBg0fAzMwC9+8HwdeX\nkpmdOzeW2qsGFL136bmoK0xMzJCcLL/vOWOsYeJkjTHGSmFubo/Hj0OQn5+v6KZUipERJZYJCXHF\nnpf+LH1dSiSieUZvlkdPSUmudjsSE+PLOL6JXI/fp88Q7NjxF+7fj8Phw5fRtWsvvHoVhmnTPpG5\nncbGNMfvwYMEREZKSjyePUsvsW1MTJTM7wGgoZwAkJycVOI1eX1m8qaioopPPvkCAPDTT+vw8uVz\nBARcx//+91Gp2yclJQIoOhd1RUhIMCwtmyi6GYyxeoaTNcYYK0XnzsMQGxtVrHpdbdazZ38AwJUr\nF4o9f/ny+WKvS0l7gKQ9QkD5BR2KenxykZmZUdi79LabN4uvwyU9fpcuPeV2fEtLEaKiIgDQcLR2\n7Tpj+/aDAFBqhcfKtrN3bxrSeO3apRL7+/tfQf/+7Qt/7tuXhmL+88+REtsGBPihb9/KLZ4uXb8v\nIuJlidfk9ZlVV2WOM3r0RGhoaOLChVNYsGAqRo4cB3V1jVLjSd978+at5NJeeXj9OhqHDu2Dt/cI\nRTeFMVbPcLLGGGOlMDe3R+/eEzBv3hS8ePFU0c2p0IwZi2FlZYulS+fA19cHaWmp8PX1wfLlc2Fl\nZYvp0xcV297buwcAYOvW1UhJScbTpw/x++87y4zv4tISABAUdAPnzh2Hp2f7Urf79dftuHHDF+np\naYXH19MzkPvxp08fh0eP7iMnJxuxsTHYsmUlAKBr114yt3P69EVo3NgR8+Z9jhMn/kJiYjzS0lJx\n7twJTJv2MebNW1G47YwZi+Dk5IrVq7/Fvn07EBsbg/T0NFy6dAZTp47G3LnLynxvb5Im1cHBt0q8\nJq/PrLoqcxx9fUMMGzYGEokEly6dwccfTy4zXnDwTQBAr14D5NJeoeXm5mDq1NHQ0THBe++NV3Rz\nGGP1jEgikVRu1nMphg0bhqgoYM6cP4RsE2OM1QrZ2RmYN+8dJCdH4uDBs3B0dFZ0k8oVGxuDNWsW\n4uzZ44iPfw0jI1P06NEPM2cuKSzbL5WQEIcFC77E5cvnkJmZgY4du2H58i3w9LQp3ObNohjBwbcw\nffo4hIY+gYtLS2zc+Avs7ZsWvi4t3+7vH4r586fg+vV/UVBQAC8vbyxcuLbEuRPy+DdvXsW+fTtw\n/fq/iI5+BQ0NTVhZ2WHAgGH47LNpxeY+VbWdycmJ2LDhe5w+fRhRURHQ1zdEq1ZtMXXqPLRu7VVs\n2/T0NGzZshLHj/+JsLBQaGvroGXL1pg2bT7atetciU+QLvy9vBxgbW2HI0euyO2cvV2GX7pfVZ+v\n6DhvCg19gs6dndC//zBs27a/zHPQv397REZGwM/vWa0vtJKVlYlJk0bA1/cili71QZMmrRXdJMZY\nLdKvnwgHDx7EsGHDZA3xJydrjDFWjvT0JCxe3BcvX97F2rU7MWCAzL9w67Xy1vSqTepCO8+fP4kx\nY/pj27b9GDBguKKbI5iCggK0bm2FnTv/LpHoSv399z5MmTIKv/xyHN27963hFlbN8+eP8dlnwxAR\nEY5vvz0OZ+cOFe/EGGtQhEjWeBgkY4yVQ0tLH8uWXcQ774zGxInD8emnQwrnRzEmD92798XKldsx\na9bEUufA1VUXLpyEpaV1mYna6dOHMXfuZKxYsa1WJ2q5uTnYuHEpundvhfx8FWzYEMCJGmNMbjhZ\nY4yxCigrq2LixM1YseJf3L//AF5eDpg1awLi4mqmHD5reD76aDz27z+DHTvq9iLLlpYiBAT4/bfg\n+GJ8+eU3ZW67c+dGHDhwDqNGTajBFlZeQUEBjh//E50RWIyuAAAQtUlEQVQ7u2DDhqUYMmQWVq26\nCjMzO0U3jTFWj3GyxhhjleTq6o1Nm4Lw8ccrceLEYbRv3wQLF35VauW+huTN+Uxvz22qTepKO6Xc\n3dvi0KFLim5GtfXv3x4dOjiiR49+6Nmz7KIhhw5dgrt72xpsWeVkZWXil1+2oWPHZpg8eSScnd/B\njz8+wsiRi6CsXLvn1DHG6j5lRTeAMcbqEhUVNQwcOA29eo3DP//8hKNHN2LXrs3o2rUXhg4djV69\nBkBNTV3RzaxRtXn+15vqSjvrk7p8zgMD/XHo0G/4++/9yMrKRLduozF//gxYWPBaaoyxmsPJGmOM\nyUBdXRuDBn2Nfv2m4Pr1w/Dx+QWTJ4+ElpYOBg4cjmHDRsPTk+exMFaXREaG46+/fsOff/6GZ88e\nwtbWBUOGzMa7734MfX3TCvdnjDGhcbLGGGPVoKysgs6dh6Fz52FISIjCv//+Dh+fX7B374+wtrZH\nr1790b17X3h5eUNVVU3RzWWMveXBgzu4cOEUzp49gcDA69DRMYS39wh88cVvcHT0VHTzGGMNHCdr\njDEmEENDCwwePB2DB0/Hs2e34ev7B3x8TmHnzo3Q1NSGt3cPdO/eB+++2wdmZpaKbi5jDVJmZgZ8\nfX1w4cJJnD9/CpGRYTAwMIOnZx98880stG7dG8rKKopuJmOMAeBkjTHG5MLBwR0ODu4YM2Y5YmPD\ncOvWKdy8eRLz53+JmTPHo2lTV7Rv3xlt23aCl5c3zM0bKbrJjNVL6elpCAi4jhs3fOHndwWBgX7I\nzs6Co2NrdO36Cdq06YsmTVpDJOKaa4yx2oeTNcYYkzMTExv07j0RvXtPRE5OJu7cuYjgYB/4+fni\nt99+Qn5+HqysGsPLqzO8vCiBc3BoBpGo9lcsZKy2iY+Pxc2bV+Hndxn+/r64d+828vPzYGnpAGfn\nTpg4cTRat34PBgbmim4qY4xViJM1xhirQaqqGvD07ANPzz4AgOzsDDx7FoiQkKt48MAXp0/PQHp6\nMrS1deHs3AItW7YufDg6OkNJie/+MyaVkpKEhw/v4c6dANy5E4CgoAA8e/YAEokEFhb2cHPrjnf/\n3979xjZZ93sc/3R/u3br/nTdum6lY8D4I6CCIubc3Ec98cQ74g7GKEi4hQcgEE7OAzU5uMSIxgQf\n+sDkxJNjZEI8Rjn6AB6IAUREPfE2kBtvAcHBNtata0vbrWvX/et1Hoz1pm5M1MmuA+9X0qz9/q7r\nd31/zZLmk6vX1X/6Vy1e/I+qqvLNdLsA8IsR1gBgBhUW2rRo0R+0aNEfJP27RkaG1dp6UhcufKvW\n1pM6duy4Wlr+QyMjw7LbS7Ro0Z1aunSZlixZpvnz79DcuQtktxfP9DKA39XIyIg6Oi7qhx++15kz\nf9Xp0yf13XcnFQj4JUlud70aGpbp/vvX689/Xq4FC1bKbi+b4a4B4LcjrAGAieTl5Wv+/Ps0f/59\nmdrw8KDa2r5Ta+tJtbae1IkTX2vv3v/U0FBKklRb69PcuQs0f/4izZu3UPPmLVRj4yKVlVXM1DKA\nX2VwMKXW1h/044/ndP78GZ0/f1bnz5/VpUvnNTw8JIvFIo9nrubMWaY//enfNGfOMs2Zs0wlJfyv\nA7g1EdYAwOTy8ws1b949WbcRT6dH1dNzSe3t36uz85w6Os7o889PaN++/1IyGZckOZ1VmjNnvurr\nGzRrVoN8vrHHrFkNqqrieh3MjP7+uDo6Lqq9fezR0XFRbW0XdfHiBfn9bRodHVVubp48njnyeu/Q\nXXc1qalpkerqFqiuboGsVvtMLwEAbhrCGgD8P5STk6uamrmqqZkr6V+yxkKhDnV2nlN7+/fq7v5R\nra0X9dVXX6unp03Dw0OSJKvVJp9vjurrxwPcbHk8XlVXe+Tx1MnlcnN9HH6V3t6ourv96uq6rJ6e\nLl2+3JYJZm1trYpEQpIki8Uip9OjmpoGVVU16I9//Ad5vQvk9S6UxzNPeXkFM7wSAJh5hDUAuMW4\nXLPkcs3S3Xf/c1bdMNIKhzsVCFzMehw//pWCwf9WJBLIbJubmyeXy63a2llyuz2qqamVx+OV2+2R\nx+NVRUWlqqrccji4Luh2kUoNKBwOKhgMKBQKyO/vUE9Pt7q7O9XV1alAoEtdXZeVSiUz+9hsJaqq\n8qm6ukFe70rde+96ud0NcrsbVF09WwUF1hlcEQCYH2ENAG4TFktOJsgtWfLAhPHh4UFFIl26csWv\nUOiyIpGuq3/9unTpLwqF/keRSECjoyOZffLzC1RR4ZLT6VJ1dY2czko5nS65XG5VVlbJ6RwbKysr\nV2lpuRyOMuXm5t7EVeN64vE+9fZG1dcXUzQaUTDYrUgkrCtXQgoGAwqHgwqHQwqHgwqFAhoYSGTt\nX1bmUkWFR5WVXjmdjZo9+wG5XLPkdHrkdNbJ5fKqqKhkhlYHALcGwhoAQNLYtXHV1bNVXT37utsY\nRlrRaEB9fWFFIt3q7Q1dfQQVjfaooyOkv/3tfGZscHBgwhzFxY5McBsLcWUqLS1XWdnfazabXTZb\nsUpKHCoqsqmoyCaHo0xFRUWyWotUWlr+e74VppZMJpRKDSge71MiEdfAwICSyX7F431KpQaUSPSr\nry+mWCx6TRiLKhYbe97bG1U8HtPo6GjWvLm5eSorc8nhqFR5uVsOR5W83gYtXuxSeblbpaUuORxj\nz8vL3ZwVA4CbgLAGALhhFkuOKio8qqjwqL5+6c9un0r1q7c3rP7+iPr7Y+rvjyqRmPg3HA4okTir\nRCKmeDyqVCqhgYH+Kee2Wm2yWotUUlIqm82ugoIC5ecXyG4fuwGFw1GqnJwcFRQUqqjIJkmZkGe1\nFslq/XvYsFgsU36l024vVl5e/qRjfX0xGYYx6VgymchcJyhJo6Ojisf7ro71a3h4WCMjI0okxm4K\nE4/HNTo6oqGhISWTY2eyYrGoUqnk1YDWO+V7kp9fqKIiu+z2MhUXl6u4uFw2W5mKi+tVVXW3iovH\n6uPj125XWuqacm4AwM1HWAMA/G6s1mJZrcWqrq7/Vfsnk30aHExqcDCpRCJ29fmAEomYUqmEhoYG\nlEz2aWBgPOSkNDQ0djavtzcqSRoaiml4OKB0Oq1kcizsDA5mh6iRkSGlUomJDVwVj0enWKNd+fmT\n3wwjLy9fVmv27+AVF48FxsJCm/LzC2Wx5MhmK706l1tWa4FKSnLl9TokSXZ7mQoLi1RYaLv63KbC\nQptsNsfV99cmq7VYNptDOTl8xRQAbiWENQCAadlsDtlsjpluAwCAGcF9mQEAAADAhAhrAAAAAGBC\nhDUAAAAAMCHCGgAAAACYEGENAAAAAEyIsAYAAAAAJkRYAwAAAAATIqwBAAAAgAn95h/FPnfua73+\n+lPT0QsAAAAA4KrfFNaefPLJ6eoDAAAAAG4Z69at04oVK37THBbDMIxp6gcAAAAAMD0+5Jo1AAAA\nADAhwhoAAAAAmBBhDQAAAABMiLAGAAAAACZEWAMAAAAAEyKsAQAAAIAJEdYAAAAAwIQIawAAAABg\nQoQ1AAAAADAhwhoAAAAAmBBhDQAAAABMiLAGAAAAACZEWAMAAAAAEyKsAQAAAIAJEdYAAAAAwIQI\nawCA28KpU6e0YcMG1dfXy2q1ymKxZB4AAJgRYQ0AcMv7/PPPtXLlSp06dUrvvPOOenp6ZBjGTLcF\nAMCULAafVgAAExo/4zUdH1OrVq3SiRMn9Nlnn+mBBx74XY4BAMA0+5CwBgAwpekMUna7XclkUr29\nvXI4HL/LMQAAmGYf8jVIAMAtL5lMSlJWUAMAwOwIawCAKV17I46uri498cQTKikpkdPp1MaNG9Xb\n26u2tjY1NTXJ4XDI7XZr06ZNisViE+YKBoPavn276urqVFBQoNraWj377LMKBAITjvnT42/evDlr\nm8OHD6upqUnl5eWyWq1atmyZ3n///Un7n2wtUwkEAtq6dWumz7q6Om3btk09PT2TzmWxWHTw4MHM\n2JtvvimLxaIzZ85kavv27eOmJgCAX8YAAOBnSDIkGRs2bDDOnDljxGIxY8eOHYYk49FHHzUef/zx\nTH379u2GJGPLli1ZcwQCAcPn8xnV1dXGoUOHjHg8bhw/ftzw+XzG7NmzjWg0Oukxp+ppzZo1RigU\nMtrb242HH37YkGR88skn1+3/Rurd3d2G1+s1PB6PceTIEaOvr884fPiw4Xa7DZ/PZwQCgcy2TU1N\nhiTjjTfeyJrj3nvvNSQZO3fuzKq/++67xurVq6+7JgAArvEBYQ0A8LPGQ82xY8cyNb/fP2n98uXL\nhiSjtrY2a46tW7cakoy33347q/7RRx8Zkozm5uZJjzlVT5cuXcq8Pnv2rCHJWLVq1XX7v5H6li1b\nDEnG3r17s+p79uwxJBlbt26d0Pudd96ZqZ07d86wWq2GJMPr9RrpdDoz9tBDDxn79++/7poAALjG\nB9xgBADws8a/ttfX16eSkhJJUjqdVm5u7nXrFotF6XQ6M0dtba26urrU1dWlmpqaTP3KlSuqrKzU\nkiVLdPr06QnHvNGPqdHRUeXl5cnpdCocDk/a/0/nmqzu8XjU3d0tv98vj8eTqfv9ftXV1am2tlad\nnZ2SpOHhYXk8HoXDYZ06dUp33XWXmpubNTIyog8++EDt7e06evSoHnzwQbW3t+uee+6R3+9XQUHB\nDa0JAHBb4wYjAIAbNx7IJCknJ2fK+k+DUTAYlDQWhq69dquyslKS1NraesN9xGIxNTc3a+HChSop\nKZHFYlFeXp6ksfD3W4RCIUnK9DVu/PX4OiQpPz9fTz/9tCRpz549SqfT2rdvnzZu3KgNGzZIkvbu\n3StJamlp0bp16whqAIAbRlgDANwU1dXVkqRIJCLDMCY8EonEDc/11FNPaffu3Vq7dq3a29szc0yH\nqqoqSZpwdm789fj4uI0bN0qS3nvvPX366adyuVy644479Mwzz0iS9u/fr2QyqZaWFm3atGlaegQA\n3B4IawCAm2LNmjWSpGPHjk0Y++KLL3T//fdn1Ww2m6Sxrxomk8msM11ffvmlJOn5559XRUWFJGlw\ncHBa+nzsscckSUeOHMmqHz58OGt83PLly7V48WKFQiFt27YtE9IaGxt13333KR6P67nnnpPNZtPy\n5cunpUcAwO2BsAYAuCl27dqlefPmaceOHdq/f7+uXLmieDyugwcPatOmTXr99deztl+6dKkk6Ztv\nvtGBAweywtyqVaskSbt371YsFlMkElFzc/O09PnKK6/I5/Np586dOnr0qOLxuI4ePaoXX3xRPp9P\nu3btmrDP+Nk1v9+v9evXZ+rjwe2tt97irBoA4BfjBiMAgCn99DfBxj82fmldkqLRqF577TV9/PHH\n6uzsVEVFhVasWKHm5matXLkya79vv/1Wmzdv1oULF7R06VK1tLSosbFR0th1Yy+88IIOHTqkWCym\nxsZGvfTSS1q7du209NnT06OXX35ZBw4cUDAYVFVVlVavXq1XX30183XOawUCAXm9Xj3yyCM6cOBA\nph6JRFRTU6N0Oq3Ozs5J9wUA4Do+JKwBAAAAgPlwN0gAAAAAMCPCGgAAAACYEGENAAAAAEyIsAYA\nAAAAJkRYAwAAAAATIqwBAAAAgAkR1gAAAADAhAhrAAAAAGBChDUAAAAAMCHCGgAAAACYEGENAAAA\nAEyIsAYAAAAAJkRYAwAAAAATIqwBAAAAgAnlSfpwppsAAAAAAGT53/8DJFEKjFL36E4AAAAASUVO\nRK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type colored\n",
"metaflow.write_graph(graph2use='colored', dotfilename='./graph_colored.dot')\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_colored.dot.png\")"
+ "Image(filename=\"graph_colored.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``exec`` graph\n",
"\n",
@@ -311,49 +178,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:48,773 workflow INFO:\n",
- "\t Creating detailed dot file: /home/jovyan/work/notebooks/graph_exec_detailed.dot\n",
- "170301-21:50:49,155 workflow INFO:\n",
- "\t Creating dot file: /home/jovyan/work/notebooks/graph_exec.dot\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABfUAAAG7CAYAAABqw3+PAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzde1xVdb4//hf3+2Vzv4OgooJXsLyARoJWSpqO1TRJWZNUTsOp5jx05lsd53QmtTlTOWdq\nkvJMY42llpaY2YBmimMmCF5AIUDud9iwNwIbgc/vD397HTYX3RuBxYbX8/FYD9hrr73We31YwOf9\nXmt9lokQQoCIiIiIiIiIiIiIiEY9U7kDICIiIiIiIiIiIiIi/bCoT0RERERERERERERkJFjUJyIi\nIiIiIiIiIiIyEuZyB0BERDddv34dHR0dAACVSoWuri4AgFKp1FmuubkZ3d3dt1yXPsuYmZnB0dHR\n4GUUCkWf9ywtLWFnZ3fLdREREREREY0GQgg0NTVJrzs7O6FWq6XXGo0Gra2tfT6nVqvR2dmp93Za\nW1uh0WgMis3a2ho2NjZ6L29hYQF7e/s+821tbWFlZSW9dnR0hJmZmfRam9cRkXFiUZ+I6DaUSiVU\nKpU0tba2oqmpCR0dHbh+/TpaWlrQ0dGBpqYmqfM30LwbN27gxo0baGlpAQC0t7ejra1N5j0cWj07\njw4ODjA3N5c6mnZ2drC0tIRCoeh3nvbkQM95NjY2cHJygqOjIxwdHeHs7CzzHhIRERERkaFUKhU0\nGg3UajWuX78OjUaDpqYmdHV1QaVSAfi/i5O0xXBtztWzCK+9AKqtrQ3t7e06+VXPC6K0+ZeWPhc+\njVe9L+bqedGWiYmJlINp8zsbGxtYW1vD3NwcDg4OAABnZ2eYmJjA3t4eFhYWsLKygq2trc66nZyc\nYGpqCmdnZ1hbW8PW1haOjo6wsrKS1kNE+jERQgi5gyAiGk4qlQoNDQ2or69HQ0MDGhsb0dDQgObm\nZjQ3N0OlUvUp3GvnazuX/dF2Uuzt7WFpaQlnZ2ep86PtyPRXvB7oCndtxwiA9Hng/zo+WvpcudFz\nXQPRdoINWaa7uxvNzc0AIHWwey/Xs/Os7Tj3d7JD+3ntHQpKpVLqkPe8a6E/PYv8vQv+2tfOzs5w\ncXGBq6srXF1d4ebmBldXV3YWiYiIiIhuQVtkb2pqglqthkqlglqthlqtRlNTE5qbm9He3o7r168P\nWKjX5gfai5y0ecPtaIvG2pxHn6KxqakpnJycAOjmTr1zop45Vu9lexauAehst6eBroofSM/Y9NXU\n1ARDSnUD3T3Qe37P9fY8kQLo5naAbn7X30kXbb6m/VzPPFF70kV7YqbnSZfbsbOzg7W1NZycnKSf\n30AnAOzs7GBjYyPlfo6OjnBwcICDg4OUJ/bOpYnGEhb1icioCCFQW1uL2tpaVFRUSN/X1dWhoaFB\nmrSF+4aGBp2rM4CbHTFXV1fpn7yjoyMUCkW/ReKe72nn29raGtwxo8FpampCa2urzskWbSLR30mY\nnu81NTWhoaGhTwfX0tISrq6uOgV/FxcXuLm5wc3NDR4eHvDy8oK3tzc8PDzg4eEBExMTmVqAiIiI\niMgwarUajY2NfSZtX7l3oV57gZP29UAFeG2BWltw7a/IamVlJRVhtXfcWltbw87ODg4ODrCyspJy\nKisrK2kIGA4FMz4olUrprgvtXevNzc3QaDRoaWlBS0sLNBoNmpub+z0xpFarodFopDvotbnirU6E\n2NnZ6RT8tfl9zxMA2rzfxcVFZ1IoFLwojEYtFvWJaFTo7OxEZWUlSktLUV1djaqqKp3CfVVVFaqr\nq1FbW6tTpLW2toaHhwfc3d3h5uamU6jtXbjVXql9u3HkaWxRqVSor69HfX29zsme3ieAtMvU1tbq\n3J1gbm4ODw8PeHt7S4V+X19faZ6XlxcCAwPh7e2tM0YlEREREdGdaG1tRX19PaqqqqTCvFKp1CnU\n937d2NjY71XbLi4uOne19ixo9rzKuefX3vP5DC0azVpaWvq9q0T7WvueUqnsc2KrublZOvHVm4WF\nRZ9C/0CvXV1d4enpCXd3d4Oei0A0GCzqE9GIaGtrQ1VVFYqKilBUVITKykqd16WlpX2K9T4+PvD2\n9u7zVaFQSN97e3vzKmoactrjtbKyEkqlUvq+99fa2lrpgcbAzSuMgoODERwcLB2zPV/zeCUiIiIa\n35RKpdTH7NnP7P299nVv1tbWUCgUOjmR9vVAk4eHB8zN+UhFIn20tbVJv4P9Tb1/T5VKJRoaGvoM\nHzvQ72rv31sfHx/4+/vrDA1FpA8W9YloSHR1daGkpAQFBQU6U2FhIYqLi9Ha2iot6+7uDn9/f/j7\n+yMwMFD6Xvva09OTnU4yCjdu3EBNTQ1KSkpQWlqK8vJylJWVoaSkBGVlZSgrK0N9fb20vJ2dHYKC\ngjBx4sQ+k7+/P6/0JyIiIjJCnZ2dqKmpQXl5Oaqrq1FWVoaqqiqUl5ejsrISlZWVqKmpQUNDg87n\nLCws4O7uDnd3d3h5eUnfe3h4SFf7uru7w9PTk8+GIhrl1Go16uvrUVNTg7q6OtTV1aG6ulr6vra2\nVue93nfUaH/ffX194ePjAz8/P3h7e8Pf3x/e3t7w9fWFp6cnc0aSsKhPRAYpLy9Hbm4u8vPzUVBQ\ngJ9++gkFBQUoLi6Wzky7uLjoFCuDgoKkon1AQABvQ6Nxpa2tDcXFxVLB/9q1azonvrS3eFpaWiI4\nOFjnd2fy5MkICwuDj4+PzHtBREREND51dHSgrKxM6s+Vl5ejqqpKKtxXVFSgpqZG5+5Nd3f3PsU4\n7XObehbuXVxcZNwzIpJTQ0OD9HxA7QmA2traPn9jep4MNDMzg6enZ5+Cv5+fH/z8/KTaC6/6Hx9Y\n1CeifimVSuTk5CA3N1f6evHiRdTW1gLQHWakv4mI9KNUKqVhqHpOOTk50i3XTk5OmDhxIqZNm4aw\nsDBMmzYNkZGR8Pb2ljl6IiIiIuN248YN1NXV6QwN2nMqKSmRCvZWVlZwcXHRGR6057CL3t7eCAgI\n4BX1RDRkNBoNGhoadIaC7TmkcWVlJcrKyqBWq6XP3KpeExAQwJERxggW9YnGOSEE8vPzce7cOZw7\ndw6XL1/GpUuXUFdXB+DmVffh4eEICwvT+erq6ipz5ERjX319PS5duoTc3FxcunQJOTk5yMnJgVKp\nBAB4enoiPDwc06dPx9y5czF37lxMnDiR4/YTERER9aDRaJCfn4+8vDzk5+cjPz8f165dQ3FxMSoq\nKqSivY2NDSZMmICgoKB+J3d3d5n3hIiof7W1tSguLh5wamtrAwCYm5tLV/UHBQVh8uTJCA0NRWho\nKCZNmgRLS0uZ94T0xaI+0ThTXl4uFfB//PFHZGRkoLm5GZaWlpg5cyZmzpypU8DnlcBEo09FRQVy\ncnJw+fJl5ObmIisrC5cuXcKNGzegUCikAr924vA9RERENB5UVVXh6tWrUgH/6tWryMvLk662NzMz\nQ2BgICZPntxv8d7Dw0PuXSAiGhbV1dV9Cv3Xrl1Dfn4+SktL0d3dDTMzMwQFBSE0NBRTp06VCv5T\npkyBp6en3LtAvbCoTzSGCSGQk5OD48eP48SJE/jhhx9QVVUFU1NTTJ06VSr4RUZGYtasWTwjS2TE\n2tvbkZ2dLZ20y8jIQF5eHrq7u+Hr64v58+fjnnvuQUxMDKZNmyZ3uERERESDplKpcPHiRWRnZyM7\nOxsXL15EXl4eVCoVgJtDF2qvPJ0yZYpUmJo8eTKsrKxkjp6IaHRpb2+X7mTqeUI0Pz9f+rvq7OyM\nyZMnY+bMmZg1axZmzZqFGTNmwN7eXuboxy8W9YnGmLy8PHz33Xf47rvvcOLECdTW1kKhUGDRokWI\niorC3LlzMWfOHI7zSDQOqFQqZGZm4scff8Tp06dx8uRJNDc3w8vLCzExMdI0ceJEuUMlIiIi6ldF\nRYVUvM/OzkZWVhaKiooghIBCocDs2bMxc+ZMnSK+l5eX3GETEY0JlZWVyMvLk4r9Fy5cQHZ2Npqa\nmmBqaoqJEydKRX7txBEfRgaL+kRGrqOjA2lpaThw4AC++eYbVFZWwsHBAdHR0VLBbtasWTAzM5M7\nVCKSWVdXFzIzM6UTf+np6bh+/Tr8/f1x//33Y82aNYiJiYGFhYXcoRIREdE41N7ejh9//BGnTp1C\neno6MjMzpWd9TZgwQSoYaa8UDQwMlDliIqLx6dq1a8jOzpaK/NnZ2SgpKQFw89lvERERiI6Oli4u\n5V1SQ49FfSIj1NraiqNHj+LAgQM4fPgwVCoV5s6di5UrVyImJgZz587l08yJ6LZu3LiBH3/8EceO\nHcOhQ4eQmZkJhUKB+Ph4rFmzBkuXLoW1tbXcYRIREdEY1dzcjPT0dKSnp+PUqVPIyMiARqOBn58f\nFi1ahLlz50qFfGdnZ7nDJSKiW1AqlcjKykJ2drZ0grayshLW1taYO3euNILEggUL4OjoKHe4Ro9F\nfSIj0dXVhW+//RYfffQRvv76a2g0GixcuBCrV6/G6tWr4e/vL3eIRGTkiouLceDAARw4cABnzpyB\nra0tVqxYgfXr1yM2NhampqZyh0hERERGTKPR4OTJk/jmm29w/PhxXLp0Cd3d3Zg6dSqioqIQHR2N\n6OhoBAUFyR0qERENgcLCQqSnp+PkyZNIT09Hfn4+zMzMMHPmTNx77724//77ER0dzbvFB4HZOdEo\nV1dXh//8z/9EUFAQVqxYgdraWrz11luoqKjA999/j6SkJBb0x5hz584hJiZG7jBgYmIiTcZktLSf\nPmJiYnDu3Dm5w5AEBQXhpZdeQnp6OsrLy/Hmm2+ivLwcy5YtQ0hICLZu3QqlUil3mERERGREmpqa\n8Pe//x2rVq2Cq6srli5din/+85+IiYnB559/jtraWuTm5iI5ORnr1q1jQX+cMKY+u1yGKx/r3fbt\n7e145ZVXEBISAnNzc6PMAY3BUB/zoy2XHEhISAieeOIJ7Nq1C3l5eaiursbevXsRHR2Nw4cPY8mS\nJXBzc8OaNWvwySefQK1Wyx2y0WBRn2iUKi8vx8aNGxEUFIQ///nP+MUvfoG8vDycOHECiYmJ8PT0\nlDtEGgYffvghli5diqSkJLlDwa1u5NJeRTXajKb208evf/1rxMXF4YMPPpA7lD68vb3x3HPP4dSp\nU7hy5QpWr16NN998EwEBAfi3f/s3VFdXyx0iERERjVIdHR3Yu3cvHnzwQXh5eSExMRFdXV347//+\nbxQXF+Py5ct4++238dBDD8Hd3V3ucGmEGVufXS7DMbBGf23/H//xH/jDH/6Ap556CiqVCt9+++2Q\nb3e866/d7zSnHs255K14enpizZo1eOedd3DlyhUUFRXhjTfeQGtrK5566il4eHhg9erV+OKLL3Dj\nxg25wx3VOPwO0SjT0tKCN954A++88w48PDzwm9/8BuvXr4ednZ3codEw++abb7B8+XJ8+umneOSR\nR+QOBwCkKzR6/6tYuHAhAOD06dMjHtNARmP76eMf//gH1q1bh6+//hr333+/3OHcklqtxocffog/\n/elPaG5uxssvv4xNmzbBxsZG7tCIiIhoFCgpKcF7772Hjz76CI2NjVi6dCkefvhhrFq1Ck5OTnKH\nR6OAHH32gXIaYzCUsQ/U9kFBQSgpKUFDQwNcXFzueDuka6B2H4qc2phySX00Njbiyy+/xN69e5GW\nlgYPDw889dRTeP755+Hr6yt3eKMOi/pEo8jJkyexfv16NDU14f/9v/+HjRs38gnh40RHRwcmTpyI\ngIAApKenyx2OxFg6wKO1/fQ1f/58VFZWoqCgwCjGEmxra8OOHTuwbds2eHp64qOPPsL8+fPlDouI\niIhkUlJSgjfeeAMfffQRPD098ctf/hJPP/00izCkQ64+u7HkNP0Zqthv1fZmZmbo7u42yvYZ7Ubi\nmDe2XFJfJSUl+PDDD7Fr1y40NjbimWeewebNm/l/pQcOv0M0SnzwwQdYsmQJQkNDcenSJbz00kss\n6I8jX3zxBcrKyvDYY4/JHYpRMvb2e+yxx1BaWoovvvhC7lD0YmNjg82bN+Pq1asIDQ1FdHQ0/vrX\nv8odFhEREY2wzs5O7NixA2FhYfj222/x5ptv4qeffsJrr73Gwgv1Yex9dmN2q7bv7u6WIaLxYSSO\neWPLJfUVGBiI119/HcXFxUhOTsaRI0cwefJkbN++HV1dXXKHNyqwqE80Cvzxj39EYmIiXn/9dRw5\ncgQ+Pj5yh6S3ng/vyc3NxX333QdHR0fY29tj+fLluHLlyoDLFxYWYvXq1VAoFH0exlNbW4vnnnsO\nfn5+sLS0hK+vLzZs2NBnHO/h2n51dTUSExOl7fv5+eHZZ59FTU1NnzZob2/Htm3bMHv2bNjZ2cHa\n2hpTpkzBs88+ix9++EGvdjx06BAAIDIycljbCwDS0tLw4IMPQqFQwNraGnPmzMFnn32mV5y9Y+ot\nJycHDzzwAOzt7eHo6Ihly5YhNze338/0nFdWVoaVK1fCwcEBnp6eePzxx9HQ0KB3TAO1X3NzM158\n8UUEBwfD2toarq6uWLBgAX7zm9/gxx9/7DcWQ4+jyspKrFmzBg4ODnB1dcUTTzyB5uZmFBcX48EH\nH4SjoyO8vLzw5JNPoqmpqd/4586dq7MfxsLLywtfffUVXnnlFWzcuBHvvvuu3CERERHRCGlsbMQ9\n99yDzZs343e/+x1++uknJCUljckLk5jzDG/OAxiWRxjadr3b5Ze//GW/bXWn/Xp98yx9c5T+REZG\n6sT86KOP3nJ5rVvlm73bYvPmzQbFacj+6HvMDfRz12f+rY55Q45jQ3LsgeiT5/dmyO8lYLy5pL4s\nLS2RkJCA3Nxc/OY3v8Frr72GZcuWQaVSyR2a/AQRyerEiRPCzMxMvPPOO3KHMmgABACxYMECkZ6e\nLtRqtUhLSxNeXl5CoVCIa9eu9bt8XFycOH36tGhtbRVHjhwR2j9J1dXVIjAwUHh6eopvv/1WqNVq\ncfLkSREYGCgmTJgglErlsG6/qqpK+Pv7Cx8fH3Hs2DGhUqmk9QUGBorq6mppXSqVSkRGRgoHBwfx\nwQcfiOrqaqFWq8V3330npk6dKvT9MxsaGioA6Kx7ONtr1apVoq6uTpSUlIi4uDgBQBw9enTAbesz\nv6CgQDg7O0vtplarRXp6uli4cOFt1/OLX/xC5ObmiqamJvHcc88JAOLJJ5/Uq+1u1X4rV64UAMQ7\n77wjWlpahEajEVevXhUPPfRQn3gGexw9/vjjUuwbN24UAMTy5cvFQw891GefnnnmmX7jr6ysFADE\nlClT9N7n0Wbr1q3C3NxcnDlzRu5QiIiIaJi1tLSI8PBwERgYKHJycuQOZ0Qw5xm+nMfQPGKwbTeQ\noerX65tnDSZH0aqqqhLh4eFi06ZNt27sXvTJN3vTN059lzPkmLtVXLebP9Axb8hxbOgxNhBD293Q\nNhJibOSShsjKyhI+Pj4iIiJCtLW1yR2OrFjUJ5JZVFSUeOCBB+QO445o/xkdOXJEZ/5HH30kAIgn\nnnii3+W/++67fteXmJgoAIhdu3bpzD9w4IAAIH73u98N6/afeeYZAUB8/PHH/a4vMTFRmvfSSy9J\nHZjezp8/r3cH197eXgAQ7e3tfd4bjvbq2em/cuWKACCio6MH3LY+8x9//PF+2+3rr7++7XpOnDgh\nzbt27ZoAIHx8fPrd3/4M1H6Ojo4CgNi/f7/O/IqKigE7zIYeRz1j16639/yysjIBQPj6+vYbf1tb\nmwAgHBwc9N7n0aa7u1vExMSIuLg4uUMhIiKiYZaUlCTc3NxEWVmZ3KGMGOY8w5fzGJpHDLbtBjJU\n/Xp986zB5ChCCFFcXCwmTpwo/vCHPwy4LwPRJ9/sTd849V3OkGPuVnHdbv5Ax7whx7Ghx9hADG13\nQ9tIiLGRSxqqqKhIODs7i82bN8sdiqxY1CeSUXNzszAxMRGHDx+WO5Q7ov1n1NTUpDO/vLxcABDe\n3t79Ln/9+vV+1+fj4yMAiMrKSp359fX1AoCYPn36sG7f29tbABAVFRX9rq9nBy4gIEAAEMXFxf2u\nS1+mpqYCgOju7u7z3lC3V2+dnZ0CgHB1dR1w2/rM9/T07LfdlErlbdejUqmkeRqNRgAQJiYmt4y7\np4Hab/369dI2/P39xdNPPy327t0rNBrNgLEYehz1jL2rq+uW8wfaJ+37ZmZmeu/zaLR//35hZmY2\n7q+YICIiGsu6u7uFi4uL2LFjh9yhjCjmPMOX8xiaRwy27QYylP36ngbKswaTo1y9elX4+/uLBQsW\n3Ha7/dEn3+xN3zj1Xc6QY+5Wcd1u/kDHvCHH8Z3m2FqGtruhbSTE2MklDbV161aDLgQci0yE4OOt\nieRSUFCASZMm4fz585g9e7bc4Qyadhy43n9ONBoNrK2tYW5ujhs3btx2eS0LCwt0dnYOuD1bW1tc\nv3592Lev0WhgaWnZZ30WFhbo6OgAcHN8txs3bqC9vf2Oxg91cHBAS0tLv+sZyvZqamrCm2++iYMH\nD6K8vBwtLS06y/bexkDb7m++ubk5urq6+rSboeu51fyB3Kr9Dhw4gD179uD48eNQKpUAgICAAHz1\n1VeYNWvWbbdp6HE0mH1qb2+HjY0NHBwcjHpswDNnzmDBggUoLS2Fv7+/3OEQERHRMFCpVHB2dsaR\nI0dw3333yR3OiGHOM3w5j6F5xFC13e3eN2S+oXmWoTmKt7c3mpub0drain/84x8GP3h1sPmmvnHq\ns5whx9yt4hpsDmnIcWzoMTYQQ9vd0DYCxk4uaaiDBw9i7dq1aGlpgbW1tdzhyIIPyiWSUWBgIKyt\nrW/7MBxj0fvBpvX19QAAd3d3g9bj6ekJ4ObDt8TNO4p0poH+eQ7V9j08PHQ+33t92vd7xlpVVWXQ\nNnrz9fUFgAEfpHorhrTXww8/jK1bt+KRRx5BSUmJtMxQcHNzAzBwuw2nW7Xf6tWr8fnnn6O+vh4n\nT57EsmXLUFpaivXr1/e7rqE6jgyh7fhq98NYnT17Fg4ODka/H0RERDQwR0dHTJo0CV999ZXcociC\nOc/gDdRnNzSPGGzbDSdD8yxDc5T/+Z//wV/+8hcAwMaNG1FeXm5QfIPNN/WNU5/lDDnmgP8revc8\nWdXc3GxQ/D0ZchwP1TFmaLsb2kbA2MklDfXVV18hPDx83Bb0ARb1iWRlYWGBhIQEbN++/Y7+OY0W\np0+f1nmdlpYGAFi6dKlB61m1ahUA4MSJE33eO3XqFObPnz+s24+PjwcAHDt2rN/1ad8HgDVr1gAA\nvvzyyz7r+eGHH3D33XfrtU3tnRolJSUGxQoY1l7aNnr55Zfh4uIC4OZZ/6Ggbefe7db75zIcBmo/\nExMTqcNramqK6Oho7N27FwBw5cqVftc1VMeRIbRx97zaxdg0NjbiT3/6E55++mmYmrJ7QURENJb9\n/ve/R3JystSvGk+Y8+gaipzH0DzC0LaztbUFcLM43NraKp1EGEqG5FmDyVHWrFmD9evXY+XKlWhq\nasL69esNujhrMPmmvnHqu5whxxwAeHl5AdAtwmdlZekdf2+GHMeD/f3szdB2N7SNeq7bmHNJQ/3t\nb3/D7t278frrr8sdiryGYgwfIhq8qqoq4evrK5YtWyZaW1vlDmdQ8P+PBXf//feLU6dOCbVaLY4d\nOya8vb2FQqHQeVhQz+UHUldXJyZNmiS8vb3F/v37RX19vVCpVCIlJUUEBwfrPKhoOLavfdJ9zyfO\na9fX+4nzSqVShIeHCwcHB5GcnCyqq6uFWq0WR48eFZMmTRJpaWl6teE//vEPAUC8++67fd4byvZa\ntmyZACB++9vfCqVSKRoaGqQHBvW3DUPmFxYWCmdnZ6nd1Gq1OHXqlLj//vuHZP23MlD7ARDLli0T\nly9fFu3t7aK6ulr89re/FQDEgw8+2O827/Q4Gsw+/fnPfxYAxJ49e/Te59FErVaLe+65RwQFBYm6\nujq5wyEiIqIR8PLLLwtTU1PxX//1X+LGjRtyhzPsmPMMX85jaB5haNvNmzdPABDp6enis88+EytW\nrNCrrQyZb0ieNZgcRaumpka4u7sLoP8Hvg5kMPmmvnHqu5whx5wQQiQkJAgA4le/+pVoamoSV65c\nEb/4xS8GnUMachwbeowNxNB2N7SNhDD+XNIQGo1GvPLKK8LExES8+uqrcocjOxb1iUaBjIwM4erq\nKubNmyfKy8vlDsdg2n9G165dEytWrBAODg7Czs5O3H///SI3N7ffZXtO/WlsbBQvvfSSmDBhgrCw\nsBCenp4iPj5enDlzZkS2X11dLRITE4WPj48wNzcXPj4+YsOGDf3+E1Wr1eKVV14RoaGhwtLSUri6\nuoqlS5eKkydP6tuEQqPRCD8/PxEVFTWoePVtr5qaGrFu3Trh4eEhLC0tRXh4uNi7d2+/6x9ou7eK\n5/Lly+L+++8XdnZ2wsHBQaxYsUIUFhYKAMLU1PSW+6bP+g1tv/T0dPHEE0+IoKAgYWFhIZycnMTM\nmTPFH/7whz4PULqT4+hO92nevHnCz8+v34djjXbFxcUiIiJCeHp6iosXL8odDhEREY2gHTt2CGtr\nazF79mxx6tQpucMZVsx5hi/nEcKwPEIIw9ru3LlzYubMmcLW1lbMmzdP5OXlDdhWg51vSJ6lb47i\n5OSk8/n9+/f3+7M9d+7coNv+VseKvnEaknMZcszV1dWJxx57TLi7uws7OzsRHx8vSktL9fq5DHTM\nG3IcG3KMDUTfdh9sGwlh3LmkIY4dOybCw8OFnZ2dSE5OljucUYFFfaJRIi8vT4SGhgqFQiE++uij\nfp+OPloZUnwdi9sfKocPHxYmJibis88+kzuUIVVRUSEACA8Pj2Hdzp22n1zH0SeffCJMTEzE4cOH\nR3zbd6Krq0vs3LlTODo6irCwMFFYWCh3SERERCSDvLw8sWTJEgFALFmyRBw/ftyochl9yZ1zyL39\noWJIn32k8ojxYqzmm6PdcLa7seaS+uru7hZHjx4V0dHRArh5p1JRUZHcYY0aHPSWaJSYPHkyzp8/\nj4SEBDz11FO4++67cfz4cbnDohG0fPlyvP/++3j22Wf7HefPGJiYmKCgoCW6p+IAACAASURBVEBn\n3smTJwEAMTExw7ptY2y/gwcP4vnnn8df//pXLF++XO5w9Hb06FHMmTMHGzduxLPPPouMjAwEBwfL\nHRYRERHJYPLkyUhLS8N3332Hrq4u3HvvvZg2bRrefvvtAR90SuPXQH12OfOI8cIY86WxYLja3Vhz\nSX3U1NTgzTffxOTJk3HffffBxsYG6enpOHLkCCZMmCB3eKOH3GcViKiv7OxsaUy++fPniwMHDoiu\nri65wxoQeNXKkDp79qxYvHix3GEMCgCxdOlSUVhYKFpaWkRaWpoICAgQjo6O4sqVKyMSw2DbT47j\naPHixeLs2bMjus3B6uzsFHv37hWRkZECuDk+Zu9bvYmIiIiysrLEc889JxwdHYW5ublYtmyZ2LVr\nl2hoaJA7tDsid84h9/aHWu8++2jII8YLY843jdlQt7sx5ZL6qKurEzt37hRLliwRZmZmwtnZWbzw\nwgvi8uXLcoc2apkIYcDjsoloRJ0+fRp//OMfkZKSgoCAADz99NNYv349fH195Q5NYmJiovN6pP+k\nyL190nXs2DG89957OH36NBoaGqBQKBATE4Pf//73mDJlitzhDYjH0cDKysqwa9cu7Nq1C1VVVXjo\noYfw7//+77jrrrvkDo2IiIhGsevXryMlJQV79+7F0aNH0dnZiQULFuCBBx7A8uXLER4eLneIepO7\nryj39keCseYRRDR4Fy5cwJEjR/D111/jhx9+gKWlJZYvX45HHnkEy5cvh42Njdwhjmos6hMZgfz8\nfCQnJ+Pvf/87lEolFi9ejNWrV2PVqlWjqsBPRGNDWVkZDhw4gIMHDyI9PR1ubm548sknsWHDBg6z\nQ0RERAZTqVT45ptv8PXXX+Po0aOoq6uDj48PoqOjERUVhejoaEyfPh2mphwhmIhoLOrq6sLFixdx\n6tQpnDp1Cunp6aiuroanpyceeOABPPDAA7jvvvtgb28vd6hGg0V9IiOi0Whw+PBhfP755/j666/R\n0tKCefPmYfXq1Vi9ejWLbUQ0aPn5+Th48CC++OILZGRkwNHREStWrMDPfvYzLF++HBYWFnKHSERE\nRGNAd3c3zp07h+PHjyM9PR2nT59Gc3MznJycsHDhQqnIP3fuXFhZWckdLhERDUJbWxvOnTsnFfD/\n9a9/QaVSQaFQYOHChYiOjkZMTAwiIiJ4QneQWNQnMlLt7e1IS0vDgQMHcOjQITQ0NCA8PBz33nsv\nYmJisHjxYigUCrnDJKJRqqGhAd9//z2OHz+O48eP48qVK3B3d8fKlSuxevVqLFmyBJaWlnKHSURE\nRGNcd3c3Ll26JBV+Tp06hcrKSlhbW2PGjBmYPXs2Zs2ahVmzZmHGjBmwtbWVO2QiIuqhpaUFFy9e\nRHZ2NrKzs5GVlYWLFy+io6MDfn5+WLRoERYuXIhFixZh2rRpLOIPERb1icaAzs5OnDhxAkePHsXx\n48dx4cIFmJiYYNasWYiJiUFMTAwWLVrE25iIxjGVSoWTJ0/i+PHj+O6773Dx4kWYmJhg9uzZiImJ\nwQMPPIDo6GiYmZnJHSoRERGNc4WFhTh9+jQyMjKQnZ2NCxcuQKVSwczMDJMmTZKK/NqCv4eHh9wh\nExGNC9XV1TrF++zsbBQUFKC7uxvOzs7S3+eIiAhERUUhKChI7pDHLBb1icagxsZGfP/99/juu+9w\n/Phx5ObmwszMDDNnzsTcuXOladq0aSzgEY1BnZ2dyMnJwblz5/Djjz/i3LlzuHTpErq7uzF9+nTE\nxMTg3nvvxaJFi+Ds7Cx3uERERES3JIRAUVGRVEjSTuXl5QAALy8vTJ06FZMnT0ZoaCimTJmC0NBQ\nBAYGMt8hIjJQV1cXiouLkZeXh6tXryIvLw/5+fm4cuUKampqAAABAQFSAV87TZgwQebIxxcW9YnG\ngZqaGnz//fc4c+YMzp07h6ysLLS2tsLOzg6zZ8/WKfSHhITAxMRE7pCJSE/d3d0oKCjAuXPnpCkr\nKwttbW2wt7fHnDlzMHfuXMyfPx+LFy+Gm5ub3CETERERDYn6+npkZ2fj4sWLyMvLkwpQ2qKTlZUV\nJk2ahNDQUGmaMmUKJk2axKFKiWjca2xsRH5+vk7h/urVqygoKEBHRwcAwNvbG1OmTMHkyZMxZcoU\nTJ8+HbNnz4aLi4vM0ROL+kTjUFdXF65evYrMzExpysjIgEajgaWlJSZOnIiIiAiEhYVh2rRpCAsL\nw4QJE1jsJ5KZUqlETk4OMjMzkZubi5ycHFy4cAEtLS0wNzfH5MmTERERIU133XUXx8UnIiKicae5\nuRkFBQUoKipCUVERcnJykJubi6tXr+L69esAAGtra/j4+CA4OLjPFBISwrsZicjotbe3o7KyUvpb\n2HMqLCxEU1MTAMDS0hJ+fn5S/Sc4OBjTpk3DjBkz4OjoKPNe0EBY1CciADefTH7hwgVcvHgROTk5\nuHz5Mi5fvoza2loAgIuLC8LDwxEWFobp06dj0qRJmDhxIgICAviQE6Ih1NXVhdLSUhQUFCA/Px+X\nLl2Sfie1nS4vLy+Eh4dLv5MzZszAzJkzYWVlJXP0RERERKNXV1cXSkpKkJ+fj+LiYp3p2rVrUu4D\nAK6urggKCtKZAgIC4OPjA19fX3h6ejIPIiLZdHV1oaamBuXl5aiurkZJSYnO37Pi4mIolUppeS8v\nrz5/0yZMmIBJkyYhMDCQf8+MEIv6RHRLdXV1uHTpEnJzc6VCf05OjlRctLKywoQJEzBx4kSp0K+d\nAgICYG5uLvMeEI0+nZ2dKC4uRkFBQZ/p2rVr0q2OCoVC52TatGnTMH36dLi6usq8B0RERERjT2tr\nq05BrHfRv6GhQVrW3Nwcnp6e8PPzg7e3N/z9/eHl5QU/Pz/4+PjAx8cHfn5+vMqViAzW1NSEiooK\nVFZWorKyEuXl5aiqqtL5WlNTg66uLukz7u7ufYr2PYv3NjY2Mu4RDQcW9YloUOrq6votSBYUFKCx\nsREAYGFhIf0T8ff3R0BAAAIDA+Hn5wd/f38EBgbC2tpa5j0hGnptbW0oKSlBWVkZysrKUFpaitLS\nUpSVlaG4uBglJSW4ceMGAMDNzQ0hISHSybBJkyZJrzn+PREREdHo0dbWhoqKClRVVaGsrAzV1dUo\nKytDVVWVTgGuvb1d+oytrS38/f3h4eEBDw8PeHl5wc3NDe7u7vDy8oKHhwfc3Nzg4eHBCzeIxrC6\nujrU1dWhvr4eNTU1qKmpQX19Perq6lBVVYW6ujrU1taivLwcra2t0uesra3h6+srnSj08vKCv78/\nvL29pZOKvr6+rK2MQyzqE9GQa2xsRGFhoVTk71ncLC4uRltbm7Ssh4cH/P39paJ/QEAAvLy84O3t\nDS8vL3h6erJzS6OKthNWXV2NqqoqVFdXo7S0VOc4r6+vl5a3s7NDYGCgdJwHBgbq3NHC8VqJiIiI\nxpb6+vo+V9XW1dX1KeTV1dXpfM7CwmLAgr+7uzsUCgVcXFzg4uIifW9vby/TXhKNX2q1GkqlEo2N\njWhsbJS+1/5e9/f73tnZKX3exMQE7u7ufX7f3d3d+9z1wwfS0kBY1CeiEVdfXy8VP0tKSqQrmLWv\na2trpauYgZtD/Li7u8PX1xceHh46BX8fHx/pqhbtxAf6kiG6u7vR0NAgTbW1taisrJS+9izg19bW\nSkPjADcfKOTh4YHAwEAEBAToFO613/OkFBERERH1p7OzUyr49S4AVldXS8XB2tpa1NfXo7m5uc86\nLC0tdYr8t/ve0dERjo6OcHBw4NBANK41NzdDrVZDpVJBrVb3KdD391r7fc96hZazs7N0Ek77daA7\nc9zd3WFmZibDXtNYwqI+EY1KtbW1qK2tla6Erq2tRUVFhTRPW2jtOa4lcPOMd88Cf+/Jzc1N+t7J\nyQmOjo5S55b/VI1bV1cXVCoVlEolVCoVmpub0dDQgPr6etTX1+sU7rVT71sbtdzd3XVOIHl4ePQ5\nqaS9koKIiIiIaCR0dXXpVXDs7/v+ipDAzWc4aQv82q/aHOlW862treHg4AA7OztYWVnx7lMaEUql\nEhqNBq2trVCr1Whra4NarUZTU5NOkV5bqO89X/tV+4zA3iwtLfU+Qdb7ez5olkYai/pEZNQ6OjpQ\nW1srFWkHKt5qp7q6un6vcAFuDpPi6OgoFfutrKwghEBoaKjUiXV0dIS9vT0cHBxgYWEBZ2dnWFlZ\nwdbWFvb29rC0tNSZRwO7fv06Ojo6pCSjpaVFmtfU1ISOjg60tLTodMy0k7Zz1nPe9evX+92OQqHQ\nOZnj4uIifZ+ZmYlz586hoqICdnZ2WLx4MVatWoUVK1bA29t7hFuEiIiIiGh4aIcL6VnY1ParexZB\ne8/vWQwdKI/Ssra2ho2NjZRL9S76D/S+paUlbGxsYG1tDQsLC9jb28PExEQ6UeDg4ABzc/M+y5D8\n1Go1Ojs70dbWhvb2dnR2dkKtVgO4WYDvbxltUV6lUqGjowMqlQqtra3QaDR9ivYajUbn/VvR5vE9\nT0Y5Ozvfcn7vE1Y8rsiYsKhPRONOZ2cnGhoapA6rtnOrnS5fvoxTp04hPz8ftra2WLhwYZ8z/i0t\nLQNe7dJTz0K/paUl7OzspPkWFhYAbnY+TE1NdTquPTuq2s5vT/p0ZLXr7U93d/dtO+X97WPPzpS2\ncwYATU1NEELorLejo0MqtPcs4Pecfyva9up5QkU7OTk5SZ2z3pP2zgsnJye4urrqdQfGtWvXkJqa\nirS0NHzzzTdoaWnBtGnTEB8fj9jYWCxevFj6eRERERERjVfaYn97ezvUajWuX78OjUaDpqYmtLe3\no62tDc3NzdBoNGhpaUFLSws0Gg2am5ulom5TUxM0Gg2uX78u5RTafMFQCoUCQN/Cv5azs7M0PKup\nqSmcnJyk93rnVL3zLu0Jh/70zOdux5CTED1zrNu5VV6lLYxr9S6K996ONp8D+uaK2p+b9kIs4P8K\n9obQ5nfa9rC3t4eVlRWcnJykn5v2Ajk7Ozs4ODjAysoKjo6OsLW1hZWVFRQKhXQBnaOjI6ytraXc\nj2i8YVGfiAg3Oz2HDh3C22+/jTNnzmDOnDlITEzEunXr+hTUtYQQUoe0tbUVLS0t0lXmPa8u6Ojo\nQHNzs9TJBW6O39fd3S2tA4DOVQ09O2H9XZUwUKe3s7MTnZ2dMDc3l9Y1kFt1UgHonITQ6tnR7fn5\nnsMXaTvWZmZm0jid2k6Y9uSGvb19v/O069SuQw5tbW04ffo00tLS8OWXXyIvLw+urq649957ERsb\niwcffBBeXl6yxUdERERENFZp8yDt0JrA/xWctTlQf8to86ueeVLv4nTPojQAnfwM6JtjqVQqdHV1\n9Ymx53b1oe8FYYBhJwCAgS/kMjc3h4ODg/S6953k2lxMS3tSRKvnyRDtZ3vmd9rtavM37TI9T5z0\nXoaIhhaL+kQ0rlVVVWHnzp1477330NzcjJUrV2LDhg2IjY2VO7RBSUxMRE5ODtLT02+5XEhICBIS\nEvAf//EfIxSZ8SoqKkJKSgoOHz6MkydPorOzE7Nnz0ZsbCxWrFiBhQsX8uHMRERERESkt9WrV8Pa\n2hp79uyROxQiMlJ8igMRjUuZmZlISEhAYGAg3n//fTz11FMoLCzEvn37jLagDwBnz57FvHnzbrvc\n/PnzcebMmRGIyPgFBwcjKSkJqampaGxsxJdffomIiAh88skniI6OhpeXFxISErB///7bDmlERERE\nRERERHSnWNQnonFDo9Fg9+7dmDVrFiIjI5Gbm4u//OUvKC4uxrZt2+Dn5yd3iHektbUVOTk5uPvu\nu2+77Pz583H27Fl0d3ePQGRjh52dHeLj47Fz506Ul5fj8uXLeOmll1BVVYXHHnsMrq6uiIqKwvbt\n25GZmSl3uEREREREREQ0BrGoT0RjXmVlJbZs2QI/Pz8888wzmDx5MtLT05GRkYENGzboPEjJmGVk\nZKCzs1Pvon5TUxOuXr06ApGNXWFhYdi0aRNSU1NRXV2NTz/9FGFhYXjnnXcQGRmJ4OBgJCYmYv/+\n/TrjdxIRERERERERDRaL+kQ0ZqWnp+Phhx9GYGAgdu7ciaeffhpFRUXYt28fFi5cKHd4Q+7s2bPw\n8PBAQEDAbZedMWMG7O3tOQTPEHJ1dcXatWulq/gzMjKQkJCAzMxMPPLII/Dw8EBcXBy2b9+OvLw8\nucMlIiIiIiIiIiPFoj4RjSnt7e3YvXs3Zs6ciejoaBQVFWHXrl0oLS3Ftm3b4OvrK3eIw+bs2bOY\nP3++Xsuam5sjIiKCRf1hYmZmhoiICGzZsgUZGRmorq7G+++/D4VCga1bt2LKlCkICQlBUlIS0tLS\n0NHRIXfIRERERERERGQkWNQnojHh2rVr2Lx5M/z8/LBhwwaEhobiX//6l3S1tIWFhdwhDruzZ8/q\nNfSO1rx581jUHyEeHh5ISEjAvn37UF9fj1OnTmHt2rU4ffo04uLi4OLigvj4eCQnJ6OiokLucImI\niIiIiIhoFGNRn4iMmnaIncmTJ2P37t341a9+hbKyMuzbt0/vq9bHgqqqKpSXlxtU1J8/fz6uXLkC\npVI5jJFRb+bm5oiKisK2bduQkZGBoqIivPXWW7CxscHLL78MPz8/hIWFYfPmzUhLS0NnZ6fcIRMR\nERERERHRKMKiPhEZHe0QOzNmzNAZYqekpARbtmyBu7u73CGOuB9++AGmpqaIjIzU+zPz58+HEAI/\n/vjjMEZGtzNhwgRs2LAB+/btQ21tLVJTUxEbG4vPPvsMcXFx8PLywsMPP4zk5GRUV1fLHS4RERER\nERERyYxFfSIyGoWFhdi8eTN8fX2xYcMGzJo1C9nZ2eNqiJ2BnD17FlOnToWjo6Pen/Hw8EBwcDCH\n4BlFbGxsEBsbix07dqC4uBiFhYV49dVXoVQq8cILL8DPzw+RkZHYsmULMjMzIYSQO2QiIiIiIiIi\nGmEs6hPRqKcdYic0NBQff/wxXnjhBZSXl0sPxCXg3LlzuOuuuwz+3MKFC3Hy5MlhiIiGQnBwMJKS\nkpCamorGxkYcPHgQERER+PDDDxEZGQkvLy8kJCRg//79aG5uljtcIiIiIiIiIhoBLOoT0aikVquR\nnJyM8PBwREdHo7KyEp9++qk0xI6bm5vcIY4aQghkZWUZNPSO1pIlS3D69Glcv359GCKjoWRnZ4f4\n+Hjs3LkT5eXluHz5Ml566SVUVVXhscceg5ubG6KiorB9+3ZkZmbKHS4RERERERERDRMW9YloVCko\nKMDmzZsRGBiIpKQkzJkzBxcuXEB6ejrWrl0Lc3NzuUMcdYqKiqBUKjFnzhyDPxsXF4cbN24gPT19\nGCKj4RQWFoZNmzYhNTUV1dXV2LNnD4KDg7F9+3ZERkYiODgYiYmJ2L9/P1paWuQOl4iIiIiIiIiG\nCIv6RCS77u5upKWl4eGHH8aUKVOwb98+bNq0SRpiZ8aMGXKHOKplZWXBzMwM06dPN/izPj4+mDp1\nKo4dOzYMkdFIcXV1xdq1a7F7927U1dVJz5nIzMzEI488Ag8PD8TFxWHHjh0oKSmRO1wiIiIiIiIi\nugMs6hORbLRD7EyfPh1xcXHSEDv5+fnYtGkTXF1d5Q7RKGRlZWHKlCmws7Mb1OdjY2ORmpo6xFGR\nXMzMzBAREYEtW7YgIyMD1dXVeP/996FQKPDaa68hKCgIISEhSEpKQlpaGjo6OuQOmYiIiIiIiIgM\nwKI+EY24n376CZs3b0ZAQABefvllREVF4dKlSxxiZ5DOnz+P2bNnD/rzS5YswYULF1BbWzuEUdFo\n4eHhgYSEBOzbtw8NDQ04deoU1q5di9OnTyMuLg4uLi6Ij49HcnIyKioq5A6XiIiIiIiIiG6DRX0i\nGhHaIXbi4+MRGhqKzz//HJs3b0ZJSQl27tyJ8PBwuUM0WllZWXdU1I+JiYG5uTmOHz8+hFHRaGRu\nbo6oqChs27YNGRkZKCwsxFtvvQUASEpKgp+fH8LCwrB582akpaWhs7NT5oiJiIiIiIiIqDcW9Ylo\nWKlUKiQnJyMsLAxxcXFQKpXYu3cv8vLysGnTJri4uMgdolGrqKhATU3NoB6Sq+Xg4IC77roLaWlp\nQxgZGYPg4GBs2LABKSkpaGxsRGpqKmJjY/Hpp58iLi4OXl5eePjhh7F7924olUq5wyUiIiIiIiIi\nABzjgoiGRX5+Pt59913s2rULpqam+PnPf47PP/8cYWFhcoc2ppw/fx4mJiaYOXPmHa0nNjYWf/vb\n34YoKjJGNjY2iI2NRWxsLHbs2IGioiKkpKTg8OHDeOaZZ9DV1YVZs2ZhxYoViI+Px5w5c2BiYiJ3\n2ERERERERETjDq/UJ6Ih03OInSlTpuDIkSN49dVXpSF2WNAfeufPn0dwcDAUCsUdrSc2NhalpaX4\n6aefhigyMnbBwcFISkpCamoqGhsbcfDgQURERODDDz9EZGQkvLy8kJCQgP3790OlUskdLhERERER\nEdG4wSv1ieiONTc346OPPsI777yD0tJS3Hvvvdi7dy9Wr14NMzMzucMb0+50PH2tefPmwdHREWlp\naZg0adIQREZjiZ2dHeLj4xEfHw8AyMnJweHDh5GSkoJHH30UpqamuPvuuxEfH4/Y2FhERETIHDER\nERERERHR2MUr9Ylo0PLy8pCUlARfX1+8+uqrWLp0KS5duoTU1FSsXbuWBf0RMFRFfXNzcyxatIjj\n6pNewsLCsGnTJqSnp6OmpgZ79uxBcHAwtm/fjsjISISEhCAxMREpKSlob2+XO1wiIiIiIiKiMYVF\nfSIySHd3N1JSUhAXF4epU6fim2++wauvvorS0lLs3LkT06ZNkzvEcaOhoQGlpaV39JDcnpYuXYq0\ntDR0dHQMyfpofHBzc8PatWuxe/du1NXVISMjA+vWrUNmZiZWrlwJFxcXxMXFYceOHSgtLZU7XCIi\nIiIiIiKjx6I+EemlqakJO3bsQHBwMFatWgUA+Oqrr5CXl4dNmzbB2dlZ5gjHn6ysLAAYkiv1AWDl\nypVQq9U4ceLEkKyPxh8zMzNERERgy5YtyMjIQFVVFd5//30oFAq89tprCAwMREhICJKSkngCiYiI\niIiIiGiQWNQnolvKyspCYmIifH198dprr2HZsmXIyclBamoq4uPjYWJiIneI49alS5fg6ekJT0/P\nIVlfQEAAZsyYgZSUlCFZH5GnpycSEhKwb98+NDQ04NSpU1i7di3S0tIQFxcHFxcXxMfHIzk5GRUV\nFXKHS0RERERERGQUWNQnoj66urqkIXbmzJmDEydO4I033kBlZSV27tyJKVOmyB0i4ebDSsPDw4d0\nnQ8++CAOHToEIcSQrpfI3NwcUVFR2LZtG3JyclBYWIi33noLAPDrX/8afn5+CAsLw+bNm5Geno7u\n7m6ZIyYiIiIiIiIanVjUJyJJbW0ttm/frjPEzqFDh3D16lUkJSXBzs5O5gipp8uXLw9LUb+0tBQX\nLlwY0vUS9RYcHIwNGzYgJSUFjY2NSE1NRWxsLD799FNER0fD09MTDz/8MHbv3g2lUil3uERERERE\nRESjBov6RITz588jMTERQUFB2Lp1K1atWoXCwkIOsTOKCSGQm5uLsLCwIV1vREQE/Pz8cOjQoSFd\nL9Gt2NraIjY2Fjt27EBJSQkKCwvxyiuvQKlU4plnnoG7uzsiIyOxZcsWZGZm8k4SIiIiIiIiGtdY\n1Ccapzo6OrB//37ExcUhIiIC33//PbZu3YqKigrs2LEDQUFBcodIt1BcXAy1Wj3kV+qbmJhgxYoV\n+Oqrr4Z0vUSGCA4ORlJSElJTU9HY2IiDBw8iIiICH3zwASIjI+Ht7Y2EhATs378fKpVK7nCJiIiI\niIiIRhSL+kTjTE1NDbZv346JEyfi0UcfhbW1NVJTU3HlyhUOsWNELl++DBMTE0ybNm3I1/2zn/0M\n58+fx08//TTk6yYylJ2dHeLj47Fz506UlZUhIyMDL774IoqKivDoo4/C1dUVUVFR2L59O3Jzc+UO\nl4iIiIiIiGjYsahPNE5kZmYiMTEREyZMwLZt2/DQQw+hqKgIKSkpiI2N5RA7RubSpUsICAiAk5PT\nkK/7nnvugaenJ/bv3z/k6ya6E6ampoiIiMCmTZuQnp6Ompoa7NmzB8HBwdi+fTvCwsIQEhKCxMRE\npKSkQKPRyB0yERERERER0ZBjUZ9oDNMOsRMVFYXIyEicO3cO77zzjjTETmBgoNwh0iDl5OQM+dA7\nWmZmZli9ejWL+jTqubm5Ye3atdi9ezfq6uqQkZGBdevWITMzEytXroSLiwvi4uKwY8cOlJaWyh0u\nERERERER0ZBgUZ9oDKqursb27dsREhKCn//851AoFEhNTcX58+exYcMG2Nrayh0i3aHLly8P+UNy\ne1q7di2ys7Nx5cqVYdsG0VAyMzNDREQEtmzZgoyMDFRVVeGvf/0rFAoFXnvtNQQGBiIkJARJSUlI\nS0tDR0eH3CETERERERERDYqJEELIHQQRDY3MzEzs2LEDn332GRQKBdavX4/nn38eAQEBcodGQ6iz\nsxP29vZITk5GQkLCsGyju7sbfn5+eO655/Dqq68OyzaIRkp7ezvS09ORlpaGlJQU5Obmws7ODjEx\nMYiPj8eKFSvg4+Mjd5hERERENAZdvHgRTz75JG7cuCHNq6yshImJCby9vaV5lpaW+OSTTzB16lQ5\nwiQiI8OiPpGR6+jowFdffYW3334bZ86cwZw5c5CYmIh169bBxsZG7vBoGOTm5iIsLAyZmZmYM2fO\nsG1n48aNOHnyJC5dujRs2yCSQ1FRkVTgT01NxY0bNzB79mzExsZixYoVWLBgAUxNeTMjEREREd25\nK1euYNq0abddzsTEBAUFBQgODh6BqIjI2LGoT2SkqqqqsHPnTrz33ntobm7GypUrsWHDBsTGxsod\nGg2zffv24bHHHoNarR7WEzfp6emIjo5GVlYWZs2aNWzbIZJTa2srbDX82AAAIABJREFU/vWvfyEl\nJQUHDx5EWVkZ3NzcEBMTgxUrViA+Ph4KhULuMImIiIjIiIWHhyM3NxcDleBMTEwwZ84cZGRkjHBk\nRGSseBkakZHJzMxEQkICAgMD8f777+Opp55CQUEB9u3bx4L+OJGTk4OQkJBhvxNj4cKFCAkJwccf\nfzys2yGSk62tLWJjY6WH6RYWFuKVV16BUqnEL3/5S7i7uyMyMhJbtmxBZmbmgIkYEREREdFAEhIS\nYGZmNuD7ZmZmwza0KhGNTbxSn8gIaDQaHDp0CG+99RZ++OEHREREYMOGDUhISIC1tbXc4dEIW7Nm\nDQDgiy++GPZt/f73v8d7772H8vJyWFhYDPv2iEaTxsZGHDt2TBqqp6qqCp6enli6dCni4+OxbNky\nODo6yh0mEREREY1yZWVlCAwMHPACEVNTU1RUVMDLy2uEIyMiY8WiPtEI27NnDzQaDdavX3/bZSsr\nK5GcnIx3330XKpUKK1euRFJSEhYuXDgCkdJoNW3aNKxZswavv/76sG+ruLgYwcHBSElJwfLly4d9\ne0SjVXd3N7KysqQC/5kzZ2BpaYmoqCjExsYiPj5er7FSiYiIiGh8WrBgAc6ePYvu7m6d+WZmZli0\naBGOHz8uU2REZIw4/A7RCNq6dSsef/xxbNy4ESqVasDleg6xs3PnTjz99NMoLCzEvn37WNAf57q6\nulBUVITQ0NAR2V5QUBCioqKwe/fuEdke0WhlamqKiIgIbNq0Cenp6aiursbu3bvh7e2Nbdu2ISws\nDCEhIUhMTERKSgo0Gs2gtvPPf/6Tv29EREREY9C6detgYmIy4HtERIbglfpEI0AIgRdffBF//vOf\nIYSAmZkZ3n77bbzwwgvSMhqNBnv37sWf/vQnXLx4EREREfj1r3+Nn//85xz2hCSFhYWYOHEifvjh\nB9x9990jss1du3bhV7/6FaqqquDs7Dwi2yQyJl1dXcjOzkZKSgoOHz6M8+fPw8bGBgsWLMCKFSuw\nevVq+Pv767Wu8PBw5OTkID4+Hv/7v/8LNze3YY6eiIiIiEZCfX09vLy80NXVpTPfwsICtbW1zLWI\nyCAs6hMNs87OTjzzzDPYvXu3zm12gYGBKCoqQnV1NZKTk/GXv/wFLS0tePDBB/Hiiy9i/vz5MkZN\no9U333yDBx54AA0NDXBxcRmRbapUKnh7e+OPf/wjnn/++RHZJpExq6mpwbfffovDhw/j6NGjUKvV\nCA4OxooVKxAfH4/Fixf3e7K2srISfn5+EELAwsICzs7O2LNnDx+CTkRERDRGLFu2DMeOHZMK++bm\n5li+fDm+/PJLmSMjImPD4XeIhlFrayuWL1+Ojz/+uM+4eSUlJYiKikJAQAB27dqFl156CWVlZdi3\nbx8L+jSgn376Ce7u7iNW0AcAR0dHPPLII9i5c+eIbZPImHl6eiIhIQH79u1DbW0tUlNTsXbtWqSm\npuL/Y+/O45sq8/2Bf5qme9OmpfsWupeCtpTiAmVTwIsCUpZxY0QHBUeUUZlxQGdGvdeZ64zOHXUY\nUZhRZxgXRgH54SCOIGsBWYvTFuhC93RvmqZbuj2/P7jPuSdp0iZt0pO03/frlVeS05Oc7zlJ83zP\n9zznOQsWLEBgYCCWLFmC7du3Q61WC687cOAAZLIbqVlPTw+ampqwcOFCbNy4cdjD+RBCCCGEEMex\nevVqg4vl9vf3Y/Xq1RJGRAhxVtRTnxA70Wg0WLRoES5cuIDe3t4Bf5fL5YiIiMAbb7yB7OxsyOVy\nCaIkzubpp5/GpUuXcPLkyVFd7tmzZ3HrrbciJycHM2bMGNVlEzKWXLt2Df/85z/x1Vdf4fjx4+jt\n7cX06dNxzz334Ntvv8XJkycHtBlyuRwJCQn4xz/+gZtuukmiyAkhhBBCyEi1t7cjKCgIXV1dAAAv\nLy80NTXBy8tL4sgIIc6GeuoTYgdqtRozZ87ExYsXTRb0gRvD8lRWViItLY0K+sRihYWFSExMHPXl\n3nLLLZg2bRrefffdUV82IWNJcnIynnvuOXzzzTfQaDT4+uuvceutt2L79u0mC/rAjfaipKQEmZmZ\neOutt0D9MQghhBBCnJOPjw8WL14MNzc3uLm5YdWqVVTQJ4QMCxX1CbGxq1evIjMzE8XFxejp6Rl0\nXrlcjm3bto1SZGQskKqoDwDr16/HP/7xDzQ0NEiyfELGGm9vb8yfPx9vvfUWPvjgA7MHgYEbw/F0\nd3fj2WefxcKFC1FbWzuKkRJCCCGEEFt56KGH0Nvbi56eHjzwwANSh0MIcVI0/A4ZUmdnp3BqWFtb\nm1Co1mq1BuPEt7e3o7u7e9D36ujosGhcYIVCMWTvdV9fX4MLDXp5ecHT0xPAjaPf7u7uAG6MB+7q\n6jrkMm3hu+++w1133YWOjo4hC/qcj48Pamtr4evra+foiLPT6/Xw8fHBp59+ipUrV4768js6OhAV\nFYUXXngBP/3pT0d9+YSMZZs2bcLWrVuHbEcBwM3NDQqFAjt37sTdd989CtFZpre3FzqdzmCaOIfg\nWltbhYvDGRvsb0PR6XSDHhgZire3Nzw8PIb1WnEOYsn7+vv7C9dPAACZTAZ/f/9hLZsQQgghA7W0\ntBic3cgYQ0tLi8E8fX19aG1tNfseGo1m2MvX6/Xo6Ogw+bfe3l6sXbsWMpkMf/7zn83WK8R1DWu5\nuLhAqVSa/bupOklAQIDBc8pPCHFsVNR3Uv39/dBqtWhpaUFraytaW1vR2dkJrVaLrq4udHZ2QqfT\nobu7G1qtVmhQdDodenp60NLSgu7ubrS3twuFevHO+GANkDPjjZS4ceINZUBAANzc3ODr6ytMUyqV\ncHd3h6+vr7BTrlQqhYKKQqGAn58f/Pz8cO7cOTzwwAPQ6/Vmh0Zwc3MTduL7+vqE4sPu3buxfPny\nUdgCxJnl5+djypQpuHz5Mm6++WZJYnj66adx8OBBXLt2zaAgRQgZmfj4eFy/ft3i+V1cXMAYw+LF\ni7F69Wr09vaivb0dgPmD8XznlucQwI0zANra2gZ9HWD6wL3xzjKxLQ8PD3h7extMM+7QYKoTg3gn\nXi6XQ6FQAAA8PT2F0/uteR0/AMHvlUolXFxcBuz4E0IIGZt4DsA76Bnfi/MKcU1BnGOI6wvifEPc\n6U+ce4gP8hvnG8Y5ivH8xL7EOQLn7u4OHx8f4bm43iKeXzyfOM8x10FTnPeID0LwXITnNvyev6ep\nHIqQsYiK+hLp7+9Hc3MzmpqaBtxrtVqhUN/a2gqNRmPwvLW1VWgcTeE/aH5+fnBzc4O/v7/wo8Z/\nFMUFbP6jZ+6HV/yDKO5tZrxjyd9vMKYaAGNDHS0HTB9lFxccTCUB5ooYpg508PfSaDTCvDzhMD5D\nwRyZTAa5XA4PDw94eXnB19dXOAAQEBCA4OBghIWFITo6GnfccQfCwsKotz4Z1N69e7FixQrodDqD\npGk0FRQUYMqUKdi3bx+WLFkiSQyESE2n06Grqws6nW7A487OTrS1tQm9xnkbpNFohLaLt0e8vevo\n6MCVK1dGFJOrqyv8/PwAGO4widtt8VlwvCArfp259t74b5xxHiB+X85UbjBYj3hL8gRzxOtiLUty\nD3PE+YUpxmcQmMpheP4hZsmBFPF7896E4nURF1HEhZOhXmcpfiCA55D8M+CfI7/n3wP+3eTfJ29v\nb3h5ecHf39/s45H0UiSEkLGqpaUFXV1d6OjoQGtrK7q6uoT8Q6/Xo7W1VWhH+G8+v+dFcXP3/HWW\nnIlvTHyAWNwui/MBcZ4iPuAszg/Ev/3GZ/GLX8OZyi1Mnf1vfKYcMDB3ETMuVltrJKMGmDoD0hqm\nDn5wlp61IK6bcKY6gBqfmSmOXZzj8A6ogGFeIv6uiXMUce1lOGdN8HyDf47m7vn30/iev97Pzw+e\nnp7w9fWFQqGAh4cH/Pz84OPjA09PTzqbgUiGivo20tXVhbq6OqjVatTX10OtVqOxsdFk0Z7fG/Py\n8sKECRPg7+8vFH95AZg/HuxvvJBP7I83eDqdTjjQUlhYKDRAvb29Aw7EiA/QaLVaNDU1DehN4O7u\njgkTJmDChAkIDAw0uA8ODkZISAhCQkIQEREhPKbe0uPH7373O2zduhUVFRWSxnHPPfegvb0dR48e\nlTQOQizBf49bWloGHDTX6XTQarVoa2sTznCz5PFg+A4s31HgO3OmejnzHd/29nacOHECMpkMCoUC\nPj4+UCqV8PHxQUBAABQKBYKCghAQEICgoCAEBgYiODgYvr6+1Fua2IV4h53vRA92YIrvvPOdf74D\nz9+H78Tze/64ra0NXV1dQx5M4AcNxDvPPj4+Qu5r/JjvgCuVygG5M78RQsho4L+XPAfhnQB0Op2w\nbyguyPOOAu3t7ejq6oJWqxV+R3khnxdFzeG/mbwHs3ERU9yT2dS9uOez+N7UNF5c5/kNIfYmPiBh\nfNaIONcQ35uaJr43dQaKOH+x5OxU/v8TEBAg/G8olUp4eHjAx8fH4MCAr68vvLy8oFAohJqe8UgQ\n9D9FLEFF/SFotVpUVlaisrIS9fX1qKmpQW1tLerr61FdXY2Ghgao1eoBPbT4Dre4KCt+HBQUNOBv\ndMXz8aelpcXswR/x48bGRjQ2NqK+vt7gCLirqytCQkIQGhoqFPrDw8MRGhoqTIuKikJUVBT1chsD\nHn/8cZSWluLQoUOSxvHtt9/izjvvxHfffYdbbrlF0ljI2Nbb2wuNRoPm5mY0NzcPegYbP2AqHpaO\n94I3hRfceRLt6ekJhUJhkGQbP/b09ISfn5/Zx9SjmJDhExf4xY/b29vR2dlp8jEveBk/5j1XjXsh\niok7xohv/v7+UCqVJv8WEBCAwMBABAYG0oEBQsaBtrY2aDQa4SYuyvPOAvw5/5tGozGYZnwWFscP\n7PPOebzo5+HhIeQdHh4ewtlLxsVCf39/oWAvzmMoFyHEPniHhdbWVuj1eqHTD89XTB18a2lpgV6v\nN/k63llosDMQ+JkBfH+F/2aIp/EDAOIDAzxfCQgIkOwMfzI6xnVRv7u7G42NjaipqcH169dx/fp1\nqNVq4XlJSYnBzoCHhwcCAwMRERGB8PBwBAQECI/F02JiYoZ96jghQ+ns7ERNTQ3UajU0Go3w2Hha\nRUWFwen+AQEBiIuLE76vxo9VKtWoXVCYDM+cOXMwefJkvPPOO1KHgmnTpiE5ORkff/yx1KEQJ9DZ\n2WmwU2zprb6+3uT4qJ6enggICEBAQIDQU4w/H2o6/xv1fiFkfOC/P3wH29Rvjbm/8el1dXUmh140\n9xsj3kcwnh4UFEQFN0JG0XBzkObmZmFoEGPG//umco6h8pPQ0FDa9yKEAIDBWQOW5CiDzWvKYPnK\nYLfw8HDaX3JwY76o39DQgJKSEhQXFxvcysvLUVtbK8zn6emJ6Oho4RYTE4Po6GhERUUhJiYGUVFR\nNE4WcSp9fX2or68XzjSpqqpCeXm58LiiogK1tbXCTqq7uzuioqIQHx+P+Ph4JCQkICEhQXjML1xD\npBMeHo7nn38ezz77rNSh4KOPPsIjjzyC4uJiqFQqqcMho6y5uRn19fVobGxEQ0MDamtr0dDQIJxR\nVFdXh4aGBjQ1NUGj0ZjcKfbz8xN6kPCer8bPjR/zYTQIIWQ09fX1QavVorm52eDsoaEem9vBVigU\nCAwMRFBQEEJDQxEUFCRcayk4OHjAczqbl5AbeKc8nm/wXITnI3V1dcJz/j9oakx4Prwdv/E8Y6gb\nHz6DEEIckbj3P/8NtPQgpqmzm/kZQjxn4UNC81wlKCjI4HlwcPCA620R+xoTRf2WlhYUFBTg2rVr\nQtGeF/L5sDgeHh6IjY0VCpWxsbFQqVSIiopCdHQ0QkJCJF4LQkZfd3c31Go1KisrUV5ejoqKCly/\nfl34P6qurgZw4/TQyMjIAYX+SZMmISkpiX64R4FOp4Ofnx++/PJL3HPPPVKHg56eHiQkJGDlypX4\n/e9/L3U4ZIT6+vpQV1eH6upq1NTUCIV6vpPMC/X8ufFFtwIDAw0SuvDwcINh5kwV6I0vXEYIIWNR\nR0eH2aJ/fX09GhoahBv/3TXesfbx8RGGW+S/s6GhocLvLh9yMSIigq6zQZxOXV0d6uvrUVVVJXQQ\n4LmHccHe+PobcrlcKCwFBQUhLCxMeDxhwgSzxXk6W4YQQgzp9XqzRX8+JLSp32bjs6qVSiVCQkIM\nfpvF+UtwcDAiIyOFPIaMjFMV9fV6PYqLi3HhwgUUFBQgPz8fBQUFKC0tBWNM6GkcFxcn3FJTUzF5\n8mQaWoSQYeju7kZVVZUwPBX/n7t+/TrKy8vR19cHuVyOmJgY4X+N30+ZMgUeHh5Sr8KYcenSJWRk\nZODq1atITk6WOhwAwOuvv45XX30VpaWlCAwMlDocYoZGozEYosvUvfFwXeJTNE0NOSf+G12zgxBC\nbEt8Sr14eEXj5zU1NaiqqjLoiWw8XKip+7i4OCr+E7uzJP+orKw06CjAv7+DDWUlfk5D2BBCiLR4\nzjJYvsJvVVVVAw7O8mF+BstbYmJiqEOYGQ5b1K+srMS5c+dw/vx5XL58GQUFBSgrKwNw46rSkyZN\nwuTJkw1uKpWKxnsiZJTo9XoUFBTgypUryMvLQ35+PvLz81FaWor+/n54eHhg0qRJSE1NRUZGBqZP\nn46MjAz4+vpKHbpT+uKLL7B8+XK0t7c7zGn4bW1tiIuLwxNPPIH//M//lDqccampqQnl5eUoKysT\n7isrK1FbW4uqqirU1dUZFHt8fHwQHR2N0NBQREdHIywsDJGRkQgPDxfuIyIiHOY7RgghZGjNzc1C\ngZ///hvf19XVGRRPFQoFoqKihHYgOjoaEydOxMSJE6FSqaBSqWiYEWJST0+PMJSnOPfgBZza2toB\n16FQKBRCz8yoqCiEhIQgKioKoaGhwvTIyEgaYo8QQsY4rVYrtBXV1dXC2eJ1dXWoqqoSztxqa2sT\nXuPq6oqQkBCDYn9MTIyQr6hUKkRGRo7Lwr9DFPUbGhqEAv65c+dw7tw51NXVQSaTISUlBenp6Zgy\nZYpQvI+NjYVMJpM6bEKICR0dHbhy5YpQ5P/3v/+Nixcvoq6uDq6urkhJSUFmZiamT5+O6dOnIy0t\njXr0W+Ctt97Ca6+9hpqaGqlDMfCb3/wGv/3tb6m3vp00NjYOKNqLbzqdDsCNIbLCwsIQGxuLqKgo\ngyJ9ZGQkwsLCEB0dTQfVCCFknGKMoa6uTijy8wIsv/E2hrcrwI1r+fBCPy/2i++p6D82tbe3C3kH\nL9zz+/LycqjVaqFg7+HhAZVKhejoaINelWFhYcJ9ZGQkvL29JV4rQgghzqS9vd2g6F9bW2twMKCi\nogKVlZXCtdtcXV0REREh5CgxMTFC4T8mJgYTJ04ck22RJEX9wsJCHD16FEePHsWpU6dQXl4OAIiP\njxeKfZmZmcjIyIBCoRjt8AghdlBRUSEcuDt//jzOnz+PlpYWuLm5IS0tDVlZWZg3bx5mz54NpVIp\ndbgO57nnnsOpU6dw5swZqUMxQL31R66xsRFXr17FtWvXUFhYKFwfpry8XOih4OLigvDwcMTGxpos\nrKhUKjo4RgghZMSam5tNHkjmz/n1yoAbRX+VSoXExESkpKQgKSlJuFHB37E1NjYKOUdRURGKiopQ\nUlKCiooKNDU1CfMplUqDgoi4QBITE4Pw8HAJ14IQQsh4xhhDbW2tcNC5oqLC4CyyiooKg7wlKCgI\nKpUKcXFxBjlLYmIiJkyYIOGaDN+oFPVLSkpw9OhRHDlyBEeOHIFarYavry+ysrKQlZUlFPKplych\n4wdjDEVFRTh//jzOnj2LY8eO4fvvv4eLiwvS09Mxd+5czJ07F7Nnz6ZTcQGsWLECcrkcu3btkjqU\nAai3/tC6u7tRXFyMq1evorCwEIWFhbhy5QoKCwvR3NwM4MbQOElJSUhOTkZCQoJBwV6lUtG49YQQ\nQiSn0WgMziArLS0VisP8eksymQwqlQpJSUlISUlBcnKy0L5FRUVJvQrjhk6nEwr2PPcoLCxEUVER\nNBoNAMDLywuJiYlITExEfHz8gAI+5eCEEEKcmVarRUVFhcEZaCUlJUJ7yHv6BwYGDij083sfHx+J\n18I8uxT1u7u7ceTIEezZswdfffUVKisr4e3tjZkzZ2Lu3LmYN28epk+fPi7HOyKEmNfc3Ixjx44J\nBwHz8vIgk8mQmZmJpUuXIjs7G5MmTZI6TElMmzYNd955J373u99JHcoA1FvfUGVlJS5duiTc8vLy\nUFZWJhQ6YmJihOKGuGdjTEyM1KETQgghw6bX61FUVGRw5hk/mM2LyL6+vkhOTkZaWhqmTp2KqVOn\nIi0tjYaHG4Hu7m7k5+fj8uXLwu3q1avCkI1yuRyxsbFITExEcnKyUMRPSkpCdHQ0XZOOEELIuNTf\n34+KigqTB8DLy8vR29sLAIiKihJyF35LTU2Fm5ubxGtgw6J+R0cHvv76a+zZswdffvklWlpakJmZ\niSVLluCOO+7ALbfcQr0MCSFWaWhowLFjx/DNN99g3759qKurw6RJk5CdnY3ly5dj2rRpUoc4aoKC\ngvDKK69gw4YNUodi0njsrd/f34+SkhJcvHhRKOBfvHgRjY2NcHFxQXx8PKZOnYqbb75Z6KWYlJRE\nF6ElhBAy7tTX1+PatWtCoT83NxcXL16ERqOBTCZDYmKiUOTPyMjA1KlTnfZUeHtqbm5Gbm4uLl++\nLNwXFBSgp6cHXl5emDJlCtLT04UzJBITExEbG+sQhQdCCCHEWXR3d6O0tFQYpu7KlSvIzc1FXl4e\n9Ho93N3dMXnyZKSlpSE9PV24H+2hpEdU1O/r68NXX32Fv/71rzhw4AD0ej1mzpyJ7OxsZGdnQ6VS\n2TJWQsg41t/fj5ycHOzduxd79uxBeXk5VCoVVq1ahbVr1yIlJUXqEO2mvb0dvr6+2L9/PxYvXix1\nOCbpdDokJCTgoYcewv/8z/9IHY5dNDQ04NSpUzhx4gTOnj2L3Nxc6HQ6yOVyTJo0SShG8Budsk4I\nIYQMrqyszODstosXL0KtVgMAYmJikJGRgRkzZmDmzJnIzMwcV53E2tvbce7cOeTk5Ah5R0VFBQAg\nJCQE6enpwi0tLQ3JyclwdXWVOGpCCCFk7Ort7cXVq1eFg+v81tjYCACYOHEi0tLScNttt2HGjBnI\nzMy06wV6h1XUr62txTvvvIP3338farUa8+bNw3333Ydly5YhJCTEHnESiZ07dw7PP/88jhw5InUo\no0Z8KqotR6lypm05b948/O53v8P06dOlDmWACxcuYM+ePfjoo49QXl6OrKwsbNiwAStXrhxzQ3sV\nFBRg8uTJ+P7773HTTTdJHY5Z27ZtwzPPPIO8vDwkJiZKHc6INTU14dChQzh8+DBOnjyJq1evwsXF\nBampqZgxY4bQk/Cmm26i3vfEgDP9zkuF2ljnZbyNu7q68Oqrr+KTTz4RxlQHbPu5OpvR2iaOnKeN\nRF1dnVDkP3/+PHJyclBXVwcvLy9Mnz4dc+bMwYIFC3D77bePqZxPq9Xi2LFjOHz4MHJycnD58mX0\n9vYiKioKt99+OzIyMoQCPl2glphCbeDQHCH/sFcMtmbPOK1975HGQrnL0Ch3GZnq6mqh0H/x4kWc\nPn0aarUabm5umDp1KmbMmIE777wTc+bMgUKhsN2CmRVKSkrYY489xjw8PFhoaCh78cUXWUlJiTVv\nQZzQjh07mFKpZHv37pU6lFEHgFn5bzIoZ9uWe/bsYf7+/mz79u1Sh2JWX18f+/rrr9nKlSuZXC5n\nKpWKvfnmm6yrq0vq0GzmwIEDDABraWmROpRB9fb2ssmTJ7OVK1dKHcqw9Pf3s7Nnz7IXXniBTZ8+\nnclkMiaXy9nMmTPZli1b2Jdffsk0Go3UYRIH52y/81IaD21sVlYWy8rKkjoMmzG1jZ9//nkGgL36\n6qusvb2dff311zb9XJ3RaG0TZ8jTbKWwsJB98MEH7Ec/+hGLjY1lAJhCoWD33nsv27ZtG6upqZE6\nRKvxvOMXv/gFu/3225lcLmcymYxNnTqVbdy4kX366aesoqJC6jCJk3DENtBROUL+YesY7MWecVr7\n3sONhXIXy1DuYntlZWXso48+Yk899RS7+eabmYuLi1BfePnll9mFCxdGvAyLPqGmpia2ceNG5u7u\nzhITE9l7773HOjs7R7xw4vgOHDjAXFxc2Keffip1KHYxVMNgy0bMWbfl3//+d+bi4sIOHDggdShD\nun79Otu4cSPz9vZmKpWK7dy5k/X390sd1oht27aNKZVKqcOwyP79+xkAduLECalDsdjZs2fZc889\nx1QqFQPAJk6cyJ544gm2Z88ehz+QQhyLFL/zzrJTaMp4aGNnzJjBZsyYMezXO9Lna24b89/OpqYm\niSJzPKO5TZwpT7OlwsJCtnXrVrZ06VLm4+PDZDIZmz17Nnv77bdZfX291OGZ1d/fz44ePco2bNjA\noqKihLxj3bp1bNeuXayhoUHqEIkTovzDOqORf4xmncGenL2oT7mL5Sh3sb+6ujr28ccfs7Vr17Lo\n6GgGgKlUKvaTn/xk2PWTIYff2b9/P9atWwcAeOmll7B27Vq60M440d3djYSEBMTExODkyZNSh2MX\n/DQuc/8GQ/3dUs6+LW+//Xao1WoUFxc7xf9/dXU1Xn75ZXzwwQeYP38+duzYgejoaKnDGrYtW7bg\nq6++Qm5urtShWGThwoXQarU4c+aMwamSjqS9vR0ff/wx3n33XVy8eBFJSUlYsWIFVqxYMa4uwExs\nR6rfeVu1U1KgNnZojvL5DraNXV1d0d/fL3mMjmS0t4mz5Wm21tnZia+++gp79uzB/v37odfrsXz5\ncqxfvx5z5syROjwAN4av/fDDD/GXv/wFxcXFSEtLw7Jly7Bs2TKkp6dLHR5xYpR/WG808o/RqjPY\nmz3jtPa9rZ2fchfrUO4yuhhjuHjxIvbu3YsvvvgC+fn5SEnb1CgsAAAgAElEQVRJwdq1a7FmzRoE\nBwdb9D6ywRbw8ssvY+nSpZg1axby8vLwxBNPjMuNPV7t3r0blZWVePDBB6UOxek5+7Z88MEHUVFR\ngd27d0sdikUiIyOxY8cO5OTkoKKiAunp6Th+/LjUYQ0bvyiws3j99ddx/vx57Nq1S+pQBuju7sb2\n7duRmJiIp59+GvHx8fjmm29w9epV/OY3v6GCPhk2Z/+dd2a07e1vsG3c398vQUSObbS3ibPlabbm\n5eWF5cuX4+9//zvq6+uxc+dONDQ0YO7cubj99ttx+PBhyWKrr6/H5s2bERcXh9/+9re44447cOnS\nJeTm5uLll1+mgj4ZMWoDpUPb3rFR7mIdyl1Gl4uLC6ZNm4ZXX30VeXl5yM/Px7333ovXXnsN0dHR\nWL9+PdRq9dBvZK4L/4YNG5i7uzt7//33h3UKgJTwv6flAGD5+fnsrrvuYgqFgvn4+LC7776bFRQU\nmJ2/uLiYZWdnM6VSOeD0nrq6OvbEE0+wyMhI5ubmxiIiItjjjz8+YAxHey2/pqaGrVu3Tlh+ZGQk\nW79+PautrR2wDTo7O9l///d/s/T0dObt7c08PDxYcnIyW79+PTt9+rRF2/H+++9nANh3331nML2l\npYU988wzLDY2lnl4eLDAwEB2++23s02bNhnMK16v6upqtnz5cubr68sCAwPZww8/zFpaWlhpaSlb\nsmQJUygULDQ0lK1Zs8bkmNXWrLul84rj47e1a9eanKeiooItXbqU+fr6spCQEPbQQw+xxsZGi7aj\nrbeltd+pkW57xhg7ffo0A8AeeOABi9fZUbS3t7Ps7Gzm6enpVEPCiM2YMYM9/fTTUodhlUceeYTF\nxMQwnU4ndSiC06dPs9jYWObt7c2ef/55OsX9f1Gbad82kzHG8vLy2KJFi5iPjw9TKBRs4cKFLD8/\n32BdxIaz7Uy1Y7ZsC7755hu2ZMkSplQqmYeHB5s6dSr75JNPBsxnabsmjo+bNm2aQcz33XffiLa9\nrb+rjFn3WZr7fIfT9pvLU4bzXRlsW4xkG/Pbz3/+c7ttf0vnHc42Nrde1m7HwbaJvT4zZ87T7OnM\nmTNs/vz5wu/JaA6p19/fz9566y3m5eXFoqKi2NatW2n4WiOUf1D+MR7yD3PtN59uSZ3B1t/94Wwr\nS+sh1nz/zeUg4u+tn58fW7ZsGSsvL7c4Z+Eodxk4nXIXx9fe3s7efPNNFh4eznx8fNi777476Pwm\n/yN27tzJZDIZ2717t12CHA38SzNjxgx28uRJptPp2KFDh1hYWBgLCAhgpaWlJudfsGABy8nJYR0d\nHcLFKRljrLa2lqlUKhYaGsq+/vprptPp2PHjx5lKpWKxsbEDGiBbL7+mpoZFR0eziIgIdvjwYdba\n2iq8n0qlMviRbG1tZZmZmUyhULAdO3aw2tpaptPp2JEjR9ikSZMs/iFMTk5mAAb8AN97770MAHvz\nzTdZW1sb0+v17OrVqyw7O9vsD8jq1atZQUEBa2lpYRs2bGAA2D333MOys7OF6T/+8Y8ZAPb4448b\nvIc1627NvOL4zOF/f+ihh4Q4n3rqKQaAPfLIIxZtR1tvS2u/UyPZ9pxarWYAWEpKisXr7Ej6+vrY\nihUrWEhIiEOPs2pOREQEe+ONN6QOwyoNDQ0sKCiIbdq0SepQGGOM/e1vf2Nubm7snnvuYWq1Wupw\nHA61mfZrM4uLi5lSqRRi0el07OTJk2zmzJkm26DhbjtzbNUWAGDLli1jDQ0NrLy8nC1YsIABYAcP\nHjSYbzjtGldTU8OmTJlisBNhCXPbXrwMW3xXrf0sTa3jSLeR2HC/K+a2xUi3sSm23P7WzGuLbTzU\n9MG2o7nX2uszc/Y8zd4OHjzIwsPDWVxc3KhceLanp4dlZ2czuVzOXnnlFdbV1WX3ZToryj8o/xjr\n+cdQ28fSOoMtv/vD2VaWxGmLWoyp7+2xY8fYXXfdNeQ2NUa5i+XrNNhrKXeRRkdHB3vxxReZq6sr\nu//++1lfX5/J+QZ8Yt3d3UylUrEnn3zS7kHaE/8iGV944cMPP2QA2Jo1a0zOf+TIEZPvt379egaA\n/eUvfzGYvmfPHgaAvfDCC3Zd/uOPP84AsJ07d5p8v/Xr1wvTnnvuOeHHwNjFixct/iH09fVlAAYk\non5+fgwA++yzzwymV1dXm/2xOXr06ID5jKdXVlYyACwyMnLY627NvOL4zDEVZ1VVFQPAIiIizL7O\nmC23pbXfqZFse66zs5MBYAqFwuJ1djRtbW0sLCyMbd68WepQrKLX65lMJhvwHXEG7733HnN1dWUX\nL16UNI4zZ84wDw8Ptnnz5jFx4WR7oDbTfm3m6tWrTcbyz3/+02QbNNxtZ46t2gIABsWNK1euMABs\n1qxZBvMNp11jjLGysjKWkJDAfv3rX5tdF3PMbXvxMmzxXbX2sxQvX2y422gksYvfy9y2GIwl29gU\nW25/a+a1xTYeavpg29Hca+31mY2FPM3e6uvr2c0338ymTZvG9Hq9XZf19NNPM19fX5aTk2PX5YwF\nlH9Q/sHY2M4/zDG1HQarM9jyuz/Seo65OG1RizH3vd27d++Q29QY5S6Wr9Ngr6XcRVrffvst8/Ly\nYs8//7zJvw/4xHJzcxmAAaebORv+RTI+zZL/AIWHh5ucv7293eT7RUREMAADeng2NjYyAOymm26y\n6/LDw8MZcOP0NVPvJ24AY2JiGABWVlZm8r0sJZPJGIABRbBHH31UiDc6OpqtXbuW7dq1y2SCzOdr\nbW0VpvX19Q063cXFZdjrbs284vjMsSbOwdhyW1r7nRrJtjf+u6urq8Xr7Ig2b9484H/V0RUXFzMA\n7Ny5c1KHYrX+/n42d+5cNn36dNbb2ytZHMuWLWPz5s2jgv4gqM20X5sZGhpqMhaNRmOyDRrutjPH\nlm2BWG9vLwPAJkyYYDB9OO3a1atXWXR0NJsxY8aQyzXF3LYXL8MW31VrP0vx8sWGs41GGrv4vcxt\ni8FYso1NseX2t2ZeW2zjoaYPth3NvdZen9lYydPsraSkhMnlcrZnzx67LaOmpoa5uroOKEgR0yj/\noPxDPH0s5h/mWLsdbPndt1U9ZyR1G/F7i5n73jY0NAy5TY1R7mL5Og32WspdpLd9+3bm5ubGmpub\nB/xtwCf29ddfm2zYnI25L2RXVxcDwORyuUXzc3K5XJjH1M3b23tUlm/8D83fz83NTZjm5ubGANNH\nJK0x2JHN3bt3sxUrVrCAgAAh9piYGHbp0iWL1sua6dasuzXzDhbHcOM3x57b0trv1HDWaawcRd26\ndSsLCQmROgyrfPvttwwwfdqgM8jLy2Pu7u5s69atksUwbdo09tOf/lSy5TsDajPt12a6urqajMXc\nethq2w31d2umazQatmXLFpaSkiKsp/hmzNp2LTw8nHl7ezMA7KOPPjK7LuaMpKecNdvb2s9ysOkj\nbfutjd2SbTGYkfZ2M8eadbB2fUczV7V0Hnt9ZmMlTxsNYWFhJntG28qFCxcYAFZYWGi3ZYwllH9Q\n/jHY9LGcf9i67XGENtIWtZjh5FrmUO5i+ToNNg/lLtL7/vvvGXDj+i/GBmzpsrIyBoD961//GpXg\n7IV/kYwv3jHUUXdzIiMjGQCTR0ZGY/n86JglRz2joqIYgAFjAFprsDHIuL6+Pnb8+HFhjLP09HSD\nv9vix8aadbdm3sHiGG785thyW470OzWcdRor452tXr2azZ49W+owrPLRRx8xuVxudgw1Z/DCCy8w\nPz8/VlVVJcnyN27cyKKiopzyegqjhdpM+7WZ1vY4Gu62s/bv1kzn49e+9NJLrKmpyeJlW9quff75\n5+z9999nAJhSqWSVlZVm39OUkYxpa832Hk7vMVtto5HGbkksgxnpuLTmWLMO1q4vN9Q2dnFxYQBY\nd3e3MK2lpcUuO8b2+szGSp5mb59++ikD7Hv2Y0dHBwsMDBwwzAQxjfIPyj8Gmz6W8w9b7qszZr82\n0pp4bFGLMfe9HaxdNodyl/9DuYtze/jhh1lYWJjJg10yGFGpVFi4cCF+9atfoaenx/jPTicnJ8fg\n+aFDhwAACxcutOp9li1bBgA4evTogL+dOHECt99+u12Xv2TJEgDA4cOHTb4f/zsArFixAgDwxRdf\nDHifM2fO4NZbb7VomVOnTgUAlJeXG0x3cXFBVVUVAEAmk2HWrFnYtWsXAODKlSsWvbc1rFl3a+YF\nAG9vbwBAT08POjo6EBQUZMPI/48tt6WtvlPW4HGnp6fbbRn2lpubi127dmHdunVSh2KV2tpahIaG\nQiYb8HPtNH7xi18gODgYTz75pCTLf/nll+Hl5YW7774bZWVlksTgLKjNNGSLNpPHbhyL8bpy1m67\n0WjHeKybNm1CYGAgAECv15ucdzjt2ooVK/Doo4/i3nvvRUtLCx599FEwxiyOz9y2t4Q129vaz9Ic\na7bRYJ/vcP/PhmMk23gw1qyDNfNas43DwsIAADU1NcK0S5cuDWNthmavz2ws5Gn29tlnn+FHP/oR\nNm3ahMzMTLstx8vLC3/961/x5z//Gc8++6zZ30piiPIPQ5R/3ODM+cdo1Rk4e7WR1rC2FmOKue/t\n6dOnrY6HchfboNxFOp2dnXjyySfx8ccf429/+xvc3d0HzmTqKEB+fj5TKBRszZo1ko6DPBL436ND\nixYtYidOnGA6nY4dPnyYhYeHD3ole3MaGhpYYmIiCw8PZ5999hlrbGxkra2tbP/+/SwuLs7gwiH2\nWD6/4rT4SuL8/YyvJK7RaNiUKVOYQqFg27dvZ7W1tUyn07GDBw+yxMREdujQIYu24UcffcQAsD/9\n6U8DYr3rrrtYXl4e6+rqYrW1tWzLli0MAFu6dKlF62XNdGvW3Zp5GWPstttuYwDYyZMn2aeffsoW\nL148ovjNseW2HOl3ajjr9PbbbzMA7OOPP7Z4nR3J9evXWUxMDJs/f77T/aY9//zzLCMjQ+owRuzk\nyZPM1dWVbd++XZLlFxUVsZtvvpkplUq2bds2g14NhNpMe7aZJSUlTKlUCrHodDp24sQJtmjRIpPr\nYe22s3U7Zmo67yW0ZcsWptFoWFNTk3CBP+N5R5Ij1NXVseDgYAaYvnCgOea2/WDryVmzva39LM0t\n35ptNNjnO9z/s+EY7ja25fa3Zl5rtvHDDz/MALCnnnqKtbS0sCtXrrCHHnrILr3d7PWZOXueZk+V\nlZVszZo1DADbsGHDqOWBH3/8MfPz82NpaWnsm2++GZVlOiPKPyj/GGy6M+cfo7F9xOzVRtqrbmPu\nPUx9b3Nyctjs2bNtVoMZbL2G+htjlLtQ7jI6Dhw4wFJTU5lSqWSff/652fnMbumvvvqKeXt7s7vv\nvtvgVCdnwb9IpaWlbPHixUyhUDAfHx+2aNGiARcB5vOKb6Y0Nzez5557jsXGxjI3NzcWGhrKlixZ\nwk6fPj0qy6+trWXr169nERERTC6Xs4iICLZu3TqTpxPpdDr2i1/8giUnJzN3d3c2YcIEtnDhQnb8\n+HFLNyHT6/UsKiqKZWVlGUw/efIkW7NmDZs4cSJzc3Nj/v7+LC0tjf361782uBiGuXWydrq1627N\nvOfOnWNpaWnM29ub3XbbbezatWsjitNe21K83OF8p0a6TrfddhuLiooyebqPozt+/DgLDQ1lGRkZ\nVp/25gjWrFnD7r77bqnDsIktW7YwHx8fg/+z0dTZ2cmee+455u7uzuLi4tif//znYV0wciyiNtN+\nbSZjN64tsWjRIubj48MUCgVbvHgxKykpYQCYTCYbML81286W7Zi56XV1deyHP/whCwkJYe7u7mzK\nlCls165dJue1tF3z9/c3eP1nn31m8rO1ZJgMc9veHt9Vaz5Lc8u2pu0f7PO1JnZLt4U5w9nG9tj+\nls5rzTZuaGhgDz74IAsODmY+Pj5syZIlrKKiYtjrNNQ89vjMnDlPs5fi4mL2zDPPME9PTzZx4kT2\nxRdfjHoMJSUl7D/+4z8YAJaVlcX27dvHenp6Rj0OR0b5B+Ufg0131vzD3ttnpN99e9VzGLP8+z/Y\ne4i/t76+vmzhwoUsPz/f6hyGchfL14lyF8fQ3d3Ndu/ezW677Tbm4uLCli5dysrLywd9zaD/DWfP\nnmWRkZEsLCyM7d6926bB2ttwdljG0vJt5csvv2QuLi7s008/lToUpzfSbSnVd+rvf/87c3FxYV9+\n+eWoL3skdDode+aZZ5hMJmPLli1jOp1O6pCG5a677mKPPvqo1GHYRE9PD5s+fTqbNm2apD3ly8rK\n2GOPPcY8PDyYv78/27Bhg13H13UGUrdZUi/fVqz5na+urmYAnO7i3Y5KynxlvHyWlBM6JmfN0+yh\nvb2d7dq1iy1YsIDJZDIWHR3Ntm7dKnnB4NSpU2zRokVMJpOx8PBwtmXLFpaXlydpTI5C6vZf6uXb\nCuUf0qG20bHR5+OYKHcxlJuby372s5+x0NBQJpPJ2JIlS9jZs2cteu2QLZhGo2Fr1qxhLi4ubPbs\n2ezUqVMjDng0SN1AS718W3rvvfeYUqlke/fulToUpzeSbSnFd2rPnj3Mz8+Pvfvuu6O63JHQ6/Vs\n69atLCQkhCmVSvbBBx9IHdKIpKensy1btkgdhs0UFBQwb29v9tJLL0kdCmtoaGCvv/46S0xMZADY\nxIkT2aZNm1hOTo7TDdM0UlK3WVIv35ZM/c4DYEVFRQbzffLJJwwAu++++0Y7xDFrNPKV8f5ZUk7o\nWJwxT7O1lpYW9sknn7CVK1cyb29v5urqyu655x62b98+h2vLr1+/zn7xi18IF0hNTExkzz///LjM\nOzip23+pl29LlH9Ih9pGx0afj2Oh3OVGZ8fjx4+z5557jsXFxTEATKVSsZdffnnInvnGLG7BTp8+\nLYxjNXfuXPbll1+y/v5+q4MfLVI30FIv39a+++47NmfOHKnDGBOGuy2l+E7NmTOHfffdd6O6zOHS\naDTstddeYxEREczDw4M9++yzrLGxUeqwRiwsLMyqsR2dwR//+Ecml8sd6iDxuXPn2ObNm4UCf2Bg\nIFu1ahXbsWOH1Q2rM5K6zZJ6+bZm/DsPgC1cuJCVlJSwtrY2dujQIRYTE8P8/PzYlStXpAt0DLJ3\nvkKfJeWEjsSZ8jRb6e3tZadPn2avvPIKmzFjBpPL5Uwul7P58+ezbdu2mRzixNH09fWxnJwc9rOf\n/YwlJCQwAMzf358tW7aM/fGPfxww7MtYJnX7L/XybY3yD+lQ2+jY6PNxHOMxd+nv72d5eXnszTff\nZEuWLGEKhYIBYMnJyWzz5s3su+++G3Z93YUxxmCFb7/9Fm+88QYOHjyIuLg4rF27Fo888gjCw8Ot\neRu7cnFxMXhu5So6/fLJ2EPfKfNOnTqFHTt24B//+Afc3Nywbt06bNy4EVFRUVKHNmL9/f3w8PDA\nzp07cf/990sdjs0wxnDPPffgypUrOH/+PCZMmCB1SAby8/Pxr3/9C9988w2OHTuGjo4OTJw4EVlZ\nWcjKysKsWbMwadKkAf+Xzkrq3xeplz8aDh8+jHfeeQc5OTloampCQEAA5s2bh1deeQUpKSlSh0es\nQJ8lIaOro6MDZ8+exYkTJ3Dy5EmcPn0aOp0O0dHRWLhwIRYsWID58+c7XC5hjStXruDQoUM4dOgQ\njh49itbWVgQHB2PGjBmYOXMmZsyYgczMTHh4eEgdqk1J3f5LvfzRQG0WIYSMvs7OTpw/fx45OTk4\ndeoUTp06JfwGz507F/Pnz8f8+fORlJQ04mVZXdTnCgoKsGPHDuzcuRNarRZz5sxBdnY2li1bhsjI\nyBEHRgghpjDG8N1332Hv3r3Ys2cPiouLMXXqVDz22GNYvXo1/Pz8pA7RZurr6xEaGoojR45g7ty5\nUodjU83NzZg+fTpiY2Nx8OBByOVyqUMySa/X4/Tp0zh+/LhQTGhra4NSqcTUqVMNbikpKXB1dZU6\nZEIIIcQptba24vLly7h06ZJwKygoQE9PD2JiYjB79mxkZWVhzpw5Y7Yg2dvbi/Pnz+PUqVNC3lFb\nWwt3d3ekpqYiPT0daWlpSEtLQ3p6OgICAqQOmRBCCBm3mpqakJubi8uXL+Py5cvIzc3FlStX0NPT\ng4iICOEA/cyZM5GRkWHzesGwi/qcXq/H/v378fnnn+PAgQNoa2vDLbfcguXLlyM7OxuJiYm2ipUQ\nMk719vbi2LFj2LNnD/bt24fq6mokJCRg+fLl+MEPfoBp06ZJHaJdfP/990hLS0NBQQEmTZokdTg2\nd/nyZcyYMQNPPvkkXn/9danDsUhvby8uXbqEs2fPCgWHvLw8dHd3w8vLCzfffLNQ5M/IyMBNN900\n5nrWEUIIISNVX19vULy/dOkSiouLwRjDhAkTDA6az5w5EzExMVKHLJmSkhKcOXNGKBbk5uaioaEB\nABATEzOg0B8XFzdmziYkhBBCHEF/fz9KSkoGFPCrqqoAAKGhoUI7nJ6ejttuuw2xsbF2j2vERX0x\nvV6PQ4cOYe/evdi3bx8aGxsxadIk3HHHHZg7dy7mzJmD4OBgWy2OEDJGMcZQUFCAI0eO4MiRIzh6\n9Ciam5uRnp6O7OxsZGdn46abbpI6TLv75ptvsHDhQjQ3N4/ZnlgfffQRVq9ejQ8//BBr1qyROpxh\n6enpQV5enkFh4vLly2hra4NcLkdSUhJSUlKQlJSEpKQkTJo0CUlJSQgMDJQ6dEIIIcRu+vv7UV5e\njsLCQly9ehXXrl1DYWEhrly5ArVaDQCIjo4ecObbeC7gW0qtVhsUFS5fvoyioiL09fXBz88PycnJ\nSExMRHJyMpKSkpCYmIjExMQxdUYrIYQQYmtarRaFhYUoKipCYWGhcLt27Rra2trg6uqK5ORkg4Pp\naWlpCAsLkyRemxb1xfr6+nD8+HEcPHgQR44cwcWLF9Hf348pU6Zg3rx5mDdvHmbPnk1FDUIIAODq\n1atCAf/o0aOor6+HUqnErFmzcMcdd2Dp0qWIi4uTOsxRtXPnTjz++OPo7Owc0z2unnnmGWzfvh0n\nTpwYM2dd9Pf3o6ioCLm5ucjLyxMKGdeuXUNXVxcAIDg4GMnJyULBnz+OjY2Fm5ubxGtACCGEWIbv\nAF+7dg1Xr14VHhcWFhq0eSkpKUhOThZ2hqdOnYqgoCCJox87Ojo68O9//xuXL18Wtn9hYSFKS0vR\n09MDAAgLCxM6GfBCf1JSEhISEujMQkIIIeNCV1cXioqKhJu4eF9fXw8AcHd3R1xcnNBmJicnIz09\nHZMnT4aXl5fEa/B/7FbUN9ba2orjx48LRbvc3FwAQGpqKqZPn47MzExkZmYiLS2NEgpCxriGhgac\nP38e58+fx7lz53Du3DnU1tZCoVBg1qxZmDdvHubOnYupU6eO6zHK33jjDbz99tuoqKiQOhS76u3t\nxYIFC1BeXo6zZ8+O6R38/v5+VFRUGPRa5DvelZWVAAA3NzeoVCqoVCpMnDhRuI+NjYVKpUJERMS4\n/r8ghBAyujo7O1FaWory8nKUlZUZ3JeWlqKurg4A4OHhgYSEBKFwLz47bayecegMent7UVpaiqKi\nIly7dk0oYBQVFaGyshKMMchkMkRFRQk5R0xMjMFt4sSJ8Pb2lnpVCCGEkCG1t7ejvLwc5eXlqKio\nMLgvLy9HdXU1+vv7IZPJEBMTY3CQm5/pplKpHPa6f2KjVtQ3ptFocPz4cZw+fRrnzp3DhQsXoNVq\n4ebmhrS0NGRmZgrF/tTUVKfYmISQgbRaLS5cuCAU8M+fP4+ysjIAQFxcnPB/PmvWLEybNo3+10V+\n9rOf4dixYzh79qzUodhdQ0MDbr31VgQHB+Pw4cPw9fWVOqRR19bWJvQQKC4uNiiaVFRUQK/XA7hR\n9I+OjjYo+vOC/8SJExEREUE9/QkhhFisra1NaHOMi/ZlZWVCrzUACAgIGND+8F5sEydOpIPOTqaz\ns1Mo8l+/ft2g6FFeXo7W1lZh3uDg4AGF/piYGKhUKkRHRyMkJETCNSGEEDJe1NbWorKyEhUVFQPa\nrYqKCjQ1NQnzKpVKoa3i7VZcXJxQyPf09JRwTUZOsqK+KWq1GhcuXMCFCxeQk5OD06dPo729XShg\npKamYtq0aZg8eTJSU1ORkpJCiSMhDqK7uxtFRUUoKChAfn4+Lly4gIKCApSWloIxhvDwcEybNk24\n3XrrrZT8D+Hhhx+GRqPB/v37pQ5lVJSUlCArKwupqak4cOAAnbVlRKPR4Pr168JNrVajpqYG169f\nF8b44wICAhAeHo6IiAiz9yqVitpQQggZw7q7u9HY2IiamhqhzTB3z4nbj7i4OINbfHw8lEqlhGtE\nRltnZ6eQa5jKP8rLy9HX1wfgxlAFEyZMQEBAwKD5R0xMDHXiIYQQMoBGoxkyX6mqqkJ3d7fwmoCA\nACFPMZW/jPUzBR2qqG+st7cXBQUF+P7775GXl4f8/Hzk5+ejrKwMjDF4eXlh0qRJmDx5MiZPnoyU\nlBQkJCQgPj7e6Y+2EOKoGhsbUVxcjOLiYuF/Mj8/Xyjee3p6Cv+XU6ZMweTJk5GRkYGIiAipQ3c6\nCxcuhEqlwo4dO6QOZdR8//33mDNnDubNm4fPPvuMis5WqKmpQVlZGaqrq1FdXS0kPtXV1UICpNPp\nhPnd3NwQGhqK6Oho4T4sLAyRkZEIDg5GSEgIQkNDERQU5FDjBhJCyHjX0tKCuro6NDQ0oLGxEWq1\nGrW1taiqqhLua2pq0NjYKLzGxcUFoaGhCA8PR2RkJCIiIgxuvOe1QqGQcM2Is9Hr9aioqEBlZSWq\nq6tRW1srfB+rq6tRV1eH6upqtLe3C6+Ry+UIDQ1FREQEwsLCDAr+ISEhCAoKQlBQEEJCQsZ8MYYQ\nQsa65uZmIV9pbGxEbW0tampqDG5qtRr19fXo7e0VXufj44OoqCiEhoYK95GRkcLz6OhoREdHw93d\nXcK1k55DF/XNaWtrw5UrV/Dvf/9buC8oKBDGI3Zxcc0WMY0AACAASURBVEFUVJRQ4BffJyQkjMth\nHQixhlqtRnFxMUpKSgbct7S0ALjRGyc5ORmpqamYMmUKUlNTcdNNNyEuLo4KsTaSlpaGJUuW4NVX\nX5U6lFF19OhRLFq0CI8++ijeeecdqcMZU9rb2w2KPuLiDy/+V1dXCxc25Hx9fQ2K/MHBwQgNDUVw\ncDCCg4MRFBSE8PBw4W/jPbkihBBr6HQ6oUjPd3xra2uF5w0NDQZFfHEPNQAIDAxEeHg4oqKiEBYW\nJtyLD9qGhITQ0GxEMm1tbaiqqkJ9fT2qqqqEYn9dXZ3Bc/FwP8CNDgi8yB8UFCTkIeLCv/hAQFBQ\nEO2HEEKInfT29grF+cbGRtTX1xsU7Hm+Ip5HXKgHAH9/f4ODubxTmXHR3sfHR6K1dC5OWdQ3p729\n3WQRsri4GJWVlejv7wcAhIaGIj4+HtHR0YiKihLGBeTPQ0NDJV4TQuynu7sb1dXVqKqqQnl5OSor\nK4VbeXk5SkpK0NHRAQDw8vIyeXAsPj4eMTExlDTbWVhYGF588UU8/fTTUocy6nbv3o377rsPv/zl\nL/HSSy9JHc6409bWhrq6OtTX1xskaOICU21trfA34wKTv78/QkNDMWHCBAQGBiIgIACBgYFDPqbT\n8QkhzqyjowPNzc3QaDRobm4e9HFTU5OwI2x8IFWhUAw4cBoWFiY8Dg4ONnhOB1LJWKHX64VCkPhA\nFs83eF4ivhmXM3hxn+cW/Gb83PhGZyUSQsaLzs5OaDQaIS/hj41v4tylsbHRYKx64EaHap6LmDv4\nys8A589piF3bGlNF/cHo9XqUlpYKRf7S0lJUVFSgqqoKlZWVqK2tFeb19PQUTuWIioqCSqVCZGQk\nwsPDERwcjMjISISEhNAQP8ThtLS0oKamBvX19cIpTLxwX1VVhYqKCtTU1AjJr7u7u3DqEj+4FRcX\nJxTuIyMjJV6j8YsxBnd3d+zcuRP333+/1OFIYvv27XjiiSfwyiuv4Je//KXU4ZBBaLVag51vfkCA\nF69MFbb4hX/F/Pz8DIr8fGxePs3Pzw8BAQFQKBTw8/MzuNE4z4SQkerp6UFrayu0Wi1aWlrQ2tpq\ncDNXoOfPjYvzwI0CvamDmBMmTDAo0ovPhqJ9DEIs09/fb1D05zlIY2PjoMWqzs7OAe/l5eVltuDP\n/28VCgUUCgX8/f3h7+8v5CN8OiGEjIbW1lbodDrodDohR2lpaRGmmSrMi2+m8hVvb+9BfwNNFeyD\ngoIgk8kk2AKEGzdF/aHo9foBPZbFhdCqqipotVqD1yiVSoSHhyMkJEQYAzAsLEyYxnspTpgwgYb8\nIcPS398v9OZqamoyKNbzscjE08Q/zq6urggJCREOUEVHR0OlUhmcoRIWFgYXFxcJ15CY09raCn9/\nfxw8eBB33XWX1OFI5r333sOTTz6JJ598Em+//TZ9X8eQ9vb2QXuxmjogwItq5vj7+wtFfr6j7e/v\nD6VSOeAggEKhQEBAAPz8/ODl5QUfHx/4+/vD09OTTvckxMnwIl1XV5fw2LgYL97xFe8Aa7Va4bmp\nnVwA8PDwEA4qGhfohzoDiYa8IcTx8N+KwXqoGhfF+IE+8fUBjIkL//ymVCqFAwD8xjsj8OdeXl5Q\nKpXw9PSEt7c3/P39qVBGyBjS19cn/H7o9Xq0tLSgs7NTyE20Wi20Wq1QlOfTeaFeXMTnwyGb4uvr\nK+zjWHOmUkBAAHUocFJU1LdCV1cX6uvrUV1djYaGBtTU1KC2ttagqMqnGR/99/DwQGBgoFDk57eg\noCCD54GBgQZFCep5ODYY9/zSarVoamoSTmES38RFfOPTmwBgwoQJCA0NFS4wFRISgvDwcINpvMcX\nJYPOq6ysDLGxsTh79iymT58udTiS+vTTT/Hwww/jgQcewF/+8hcaooUMWpwz/ptxj1vx3wfj7+8P\nLy8vYeeaP1YqlfDy8hJ2wPljngzzx15eXsLOuYeHB3x8fODu7g5fX18q8pFxp62tDT09PcK9TqdD\nb28vtFoturq60N7eDq1Wi87OTnR0dBg85ju+nZ2dBo95TzNTPW45V1dXoRhvfFCP59nivJv/zfhg\nIJ0qTgjh+vv7By3AiYtvvABnrlftYKUYFxcX4XfKw8MDCoUCvr6+8PT0hJ+fH3x8fODp6SnkKJ6e\nnga5iPgggYeHh8G9u7s7dWAgRITnJ+3t7eju7kZHRwf0ej3a29vR1dUFrVaLjo4OdHV1oaWlRcg/\n+GOeu/CcRqfToaurCzqdTnhvc2Qymdmzf8wdKBTnLOKchjrAjT9U1LcTfsErU0Va/pyfKsifmzvq\nz3c2xMMNmOp56O3tDT8/P7i7u8PPz09o0BUKBdzc3ISEwNvbe5S3hvPRaDTCzif/Qddqteju7oZO\npzPoDWaqUGRpzy/jAzrGz/kpTfx5SEgIjZs6Tly6dAkZGRkoKipCQkKC1OFI7p///CdWrVqFpUuX\nYufOnVQUJTbBf8O7urrQ1taG1tZWdHZ2DigwDlZUFE/n7YUleHFfoVBALpcL935+fkIh0tXVVeit\nxxN1fh8QEAAABu0632EHILyevwa4ccFBfuYgzxHI2KbVatHf3y8UoQAI+Q0AIZ8BIBTaAQhnxOj1\neuF7zXdm+Wv4d188TTwv3xk2vuaGOby3qq+v74AzaCw5qCae7u3tDYVCQUUrQojDqaurQ35+PgoK\nCpCbm4v8/HxcvXpV6H3r5+eH6OhohIWFYcGCBZDL5QbFwa6uLqHHr6lio/h3fSi8uM/zA3E+olAo\nhHyEFx35vTgf4TmG+ECBOMcQ5ybijg08TwFAxchxiDEmfOd7e3uh0+kA3Lj+H6+LiQ/ci3NscZGc\n5yv8nh8s4/kPv29tbUVfX5+Q6/D7oQruYqYOmInP8uU1ON5b3tPTc9CDcZSrEFugor4D6erqQlNT\nk1U9D8XT+RFB46tLm8Ib1ICAAIMGmPckBEw3tLwhBwyLA5z47+aIG3ZThloH8c4oZ65R4DuWgOmG\ngL+ONx6W7nzydTDu+cUPvgzV88vf3x+BgYHUk56YdfjwYcyfPx9NTU0IDAyUOhyHcOTIEdx7772Y\nPXs2PvvsMypIEofEdyB4m2O888B3Kvi98U4H3xkR76Twtorfiwu01uy8myPeyTbV3puaj+MHFzhT\nuYGpdn+ooQVMvY8leAHCGvzzsJb4czDH1OdjnOeIcxhOvFPLGeco4nxHvONrTSHdHJ4D8s+B3/Oc\nkd8b9/7kO7z8XvzYVI9RcSGfEELGEo1GIxTv+X1eXp5wLT+lUon4+HikpqZi8uTJwn1cXJzNlm/u\nAKzxAVq+z8zbHn4vPsOqra1NaHfEeQxvP22Rj4gPEojbc1NnFpjKScT1C844TzGV3/CDGIMZydkN\n/ECJNUzVPCxlSaGaf35ixmePmMpPTOVMpmIVxyBe1lBnqFiC5xQADA42yWQy4Ttg3GmGf1/EOYy7\nu7uQjxjnK8Z5jPH3iBBHQUX9MYjvZPJGWqfTobu72+w0ceHb1A+uud5d4tdxQ50GLX5fcyw5m8DU\n0XxThQhxA22uN6NSqRSGRODTlUql0IPS1DRC7O3zzz/Hfffdh+7u7gHJ6Xh29uxZLFq0CPHx8di3\nbx/Cw8OlDokQh2Gqp7V450vcbosLv7ztF++8mdpB4wceOFM7dqbyAEuK2MZM7WxawpoeV2LiTg3W\nEO9YmjLcgxymDk4Yn11hrqOFOCZxIYHnSeL3NpcbEUIIsYzUxXtHJM4xxDmAOI/geYq41mBJj23O\nlgVoU3UNY8MtRo+kOD/cIRuH29HS1PJMdcKw5ECJNWdomDuYI85taMQJQkyjoj4hhDig7du34+c/\n//mgFwUdr0pKSrBkyRJotVrs27cPmZmZUodECHFQ8+fPR3x8PN577z2pQyGEEOLEqHhPCCHE0dDV\nBgkhxAFpNBoadseM+Ph45OTkYNWqVZg7dy527tyJ7OxsqcMihDggtVqNrKwsqcMghBDiJKwp3s+f\nP5+K94QQQiRDRX1CCHFAVNQfXEBAAA4ePIinn34aK1euxK9//Wts3rxZ6rAIIQ5GrVbTMF2EEEIG\noOI9IYQQZ0dFfUIIcUAtLS1DjoU43snlcmzbtg1Tp07Fhg0bcObMGfztb3+z+iKZhJCxqaOjA1qt\nFhEREVKHQgghRCJUvCeEEDJWUVGfEEIcUGtrKxWnLbRu3TokJyfjvvvuwy233II9e/YgNTVV6rAI\nIRKrqakBAOqpTwgh4wAV7wkhhIw3VNQnhBAHpNPpaPgdK8yZMwfnz5/HqlWrcNttt+H999/HypUr\npQ6LECIhtVoNANRTnxBCxhAq3hNCCCE3UFGfEEIckE6ng0qlkjoMpxIVFYWjR49i48aN+MEPfoDN\nmzfjv/7rv+Dq6ip1aIQQCajVashkMoSEhEgdCiGEECtR8Z4QQggZHBX1CSHEAel0Ovj6+kodhtPx\n8PDAe++9h1mzZmH9+vU4cuQIPvnkE0ycOFHq0Agho6ympgahoaGQyyndJYQQR0XFe0IIIWR4aC+H\nEEIckE6ng0KhkDoMp7V69WpkZGTgvvvuw9SpU7F9+3asWrVK6rAIIaOopqaGxtMnhBAHQcV7Qggh\nxLaoqE8IIQ6Iivojl5qairNnz2Lz5s34wQ9+gB/+8Id477334OXlJXVohJBRoFaraTx9QggZZVS8\nJ4QQQkYHFfUJIcQBUVHfNry8vPDWW2/h1ltvxY9//GPk5eXhk08+QXJystShEULsrKamBvHx8VKH\nQQghYxIV7wkhhBBpUVGfEEIcTH9/Pzo6Oqiob0MPPvggbrnlFjz44IPIyMjAa6+9hqeeegouLi5S\nh0YIsRO1Wo2srCypwyCEEKdGxXtCCCHEMVFRnxBCHExbWxsYY3ShXBtLSEjAqVOn8Pvf/x4//elP\n8f/+3//D+++/j+joaKlDI4TYAY2pTwghlqPiPSGEEOJcqKhPCCEOpr29HQDg4+MjcSRjj1wux89/\n/nMsWrQIP/zhDzFlyhS8/vrrWLdundShEUJsqLOzEy0tLTSmPiGEGKHiPSGEEDI2UFGfEEIcTGdn\nJwDQBV3t6Oabb8aZM2fwwgsv4Mc//jEOHjyIP/3pT9Srl5AxQq1WAwD9TxNCxi0q3hNCCCFjGxX1\nCSHEwXR1dQEAPD09JY5kbPPy8sIf/vAHLF26FI899hhSU1Px+uuvY+3atTTWPiFOjhf1qac+IWSs\no+I9IYQQMj5RUZ8QQhwML+pTT/3RMW/ePOTl5eGVV17BE088gb/+9a/YsWMHUlJSpA6NEDJMNTU1\nkMlkCAkJkToUQgixCSreE0IIIUSMivqEEOJg+PA71FN/9Hh5eeG1117DqlWr8NhjjyEjIwO/+tWv\nsGnTJri5uUkdHiHESmq1GqGhoZDLKdUlhDgXKt4TQgghxBK0p0MIIQ6Ght+RzrRp03Du3Dn86U9/\nwosvvogPP/wQf/zjH7FgwQKpQyOEWKGmpobG0yeEODQq3hNCCCFkJKioTwghDoYulCstuVyOn/zk\nJ1i8eDF+8pOfYOHChVi8eDG2bduGqKgoqcMjhFhArVbTePqEEIdAxXtCCCGE2AMV9QkhxMFQT33H\nEB8fjy+//BL79+/Hxo0bkZKSgl/+8pfYtGkTDelBiIOrqamhghghZFRR8Z4QQggho4mqEoQQ4mA6\nOzvh7u4OmUwmdSgEwJIlS3DnnXfiN7/5DV566SV8/PHH+MMf/oA77rhD6tAIIWao1WpkZWVJHQYh\nZAyi4j0hhBBCHAEV9QkhxMHo9Xrqpe9gvL298eqrr+Lhhx/Gpk2bcOedd2Lp0qV4/fXXkZSUJHV4\nhBAjNKY+IWSkqHhPCCGEEEf2/9m78/Cm6nx/4O80SZu2SdrQJd0LpSxVoEVQbMEFKpsIIoziAKIo\nCq4z4obj+Jtxhhm5zr3P49XrjAsOs1xXRBREB4fFQVZFsSCbbN2XdEuTbmmbfn9/eM+ZpE1LU9qc\npH2/nuc8aU9Ozvmc70kTeH/P+R6G+kREfqalpQXBwcFKl0EejBw5Elu3bsWuXbuwevVqjBkzBsuX\nL8fatWsRExOjdHlEhB+vdrJarRxTn4h6hOE9ERERBSKG+kREfqatrQ1qtVrpMqgb06ZNwzfffIP1\n69fj//2//4dNmzbh2WefxapVqxASEqJ0eUSDWmlpKQDwTH0icsPwnoiIiAYShvpERH7G6XTyRqwB\nQK1WY+XKlfjpT3+K3//+93j66afx4osv4rnnnsPSpUt5TwQihUihPs/UJxqcGN4TERHRYMDUiIjI\nzzidTp6pH0CMRiPWrVuHhx9+GL/5zW9wzz33YN26dXjuuefwk5/8BCqVSukSiQaVsrIyBAUFITY2\nVulSiKgfMbwnIiKiwYyhPhGRn2GoH5gSExPx2muvYfXq1XjmmWewaNEi5OTk4Le//S2mTp2qdHlE\ng0ZpaSnMZjOveCIaIBjeExEREXXG/+0QEfmZtrY2hlEBbNSoUfjggw/w1Vdf4ZlnnsG0adNw7bXX\n4te//jXDfSIfKCsr43j6RAGI4T0RERFRzzE1IiLyMzxTf2C46qqr8M9//hP79+/H888/j2nTpmHy\n5Ml46qmnMHfuXKXLIxqwSktLOZ4+kR9jeE9ERER06RjqExH5GYb6A0tOTg62bt2KvXv34te//jXm\nzZuH6667Ds888wymT5+udHlEA05ZWRnDPyI/wPCeiIiIqP8w1Cci8jNOp5PD7wxAU6ZMwY4dO7B3\n71789re/xYwZMzBhwgSsWbMGCxYsQFBQkNIlEg0IpaWlmDJlitJlEA0aDO+JiIiIfI+pERGRn+GZ\n+gPblClTsH37duTl5eG//uu/cPvttyM1NRWPPPIIVq5cCZ1Op3SJRAGjtrYWFRUVSExMhMFgAMAx\n9Yn6C8N7IiIiIv+hEkIIpYsgIqJ/W7NmDf75z3/im2++UboU8oHTp0/jhRdewP/+7/8iJiYGDz74\nIO69915ER0crXRqR31uyZAnefvttAIBOp4PZbIbFYsGkSZMwfvx4JCYmIi4uDldccQUyMjIUrpYo\nMHgT3l9++eUM74mIiIgUwFCfiMjP/OIXv8A//vEPfPvtt0qXQj5UXFyMl156CevXr0dTUxOWLFmC\nhx9+GJmZmUqXRuS31q5di+eeew5tbW1u84OCguRhzFpbWzFq1CicPHlSiRKJ/BbDeyIiIqLAxeF3\niIj8jEqlQnt7u9JlkI8lJSXhhRdewG9+8xu8//77+M///E9kZWVhwoQJeOSRR7B48WLea4Gog2uv\nvbZToA8A7e3taGlpAQBoNBrcfffdvi6NyG9w2BwiIiKigYdn6hMR+Zlnn30WW7ZsQV5entKlkML2\n7t2Ll156CR9++CHMZjPuvfdePPzww4iKilK6NCK/4HA4YDAY0Nra2uUy4eHhKCkpQUREhA8rI/I9\nnnlPRERENHjwlD8iIj8TFBTEM/UJwI831Z0yZQrOnz+P119/HS+//DLWrVuH2267DU888QTGjh2r\ndIlEigoJCcEVV1yBQ4cOeXxeq9XiZz/7GQN9GlB45j0RERERMdQnIvIzHH6HOkpLS8O6devwzDPP\n4G9/+xtefvllZGZmYtq0aVixYgXmz58PnU6ndJlEisjNzcWRI0fk4XY6euihh3xcEVHfYHhPRERE\nRF1hqE9E5GdUKhU4Mhp5YjAY8OCDD+KBBx7A9u3b8cc//hF33HEHDAYDFi9ejOXLl2PChAlKl0nk\nU9dccw1+//vfd5qv1Wpxzz33ID4+XoGqiHqO4T0REREReYtj6hMR+Znf/va3eOutt3Dq1CmlS6EA\nUF5ejvfeew9//vOfcfToUVx22WVYtmwZli9fjtjYWKXLI+p39fX1iIyMhNPpdJsfFBSE06dPIz09\nXaHKiNxxzHsiIiIi6isM9YmI/MzatWvx97//HadPn1a6FAow33zzDV5//XW88847cDgcmDFjBpYt\nW4ZbbrkFGg0vzqOBKzMzE0ePHpV/12q1uOWWW/Dee+8pWBUNVgzviYiIiKi/8X/4RER+Rq1Wdzrj\nlKgnJkyYgNdeew3//d//ja1bt+L111/HokWLEBcXh1tvvRUrVqzo1c11q6qqEBERAa1W2w9VE126\nG264AadOnZLH1W9tbcVTTz2lcFWklEOHDuHdd9/FunXrEBIS0m/b4bA5RERERKQUnqlPRORn/vCH\nP+CVV15Bfn6+0qXQAFBUVIS3334br776KvLz83HZZZfh1ltvxR133IHhw4df9PVCCKSkpCAyMhIf\nfPABRo0a5YOqibzz0UcfYcGCBRBCQKPR4LrrrsOOHTuULot87Ny5c1izZg02bdoEIQQOHTqEq666\n6pLXyzPviYiIiMjfMNQnIvIzL730Ep5//nmUlZUpXQoNIE6nEzt27MB7772Hjz76CFarFdnZ2bjt\nttvwk5/8BImJiR5f9+2332LChAlQq9XQarV45ZVXcPfdd/u4eqLu1dTUIDo6Wr7J+K5duzB16lSF\nqyJfqaqqwtq1a/HKK69ApVKhtbUVarUa69evx1133dXj9TC8JyIiIqJAweF3iIj8TEhICJqbm5Uu\ngwYYtVqNmTNnYubMmXjjjTewe/du/O1vf8OvfvUrrF69GtnZ2bj11ltx2223IT4+Xn7dli1boNVq\n0draCqfTiRUrVmDLli3YsGEDTCaTgntE9G9DhgxBeno6zpw5g6ysLAb6g0RLSwv+9Kc/4Ze//CUc\nDgfa2trk59RqNU6cOOHxdRw2h4iIiIgCHc/UJyLyM3/9619x//33o7GxUelSaBBwOBz4/PPPsXHj\nRnz00UdoaGiQA/7bb78dM2bMcLsBKQBoNBrExMTg/fffx5QpUxSqnHyhpaUFDQ0NbvMcDkenz6fm\n5mY0NTV5XIfT6YTNZut1Dd2t29X69evx+eef47HHHsOkSZPcngsNDYVOp+t1DUajEWq12uNzntYd\nHh6O4OBgt3l6vZ73pegj7e3t2LRpE1avXo2ysjKP96FRqVSYOnUqfvGLX7iF98ePH0dNTQ0AICoq\nCmPGjEFGRobbY2xsrK93iYiIiIjIKwz1iYj8zLvvvoslS5bwZrnkc42Njdi2bRvef/99bNu2TT47\n39M/FdRqNYQQePbZZ/Hss892GXjSj6RgWgrEpUfX0Nxms8l/91arVW732tpaAD/e38BqtQL4MdSs\nq6sDALS1tcFutwP48Qax9fX1ANwD+Y5BvKeg3XU95BsGgwEajfuFsxEREQgKCpJ/DwsLk2/26tox\n4Ppa104H19dLV9OoVCpERkYCAIKCghAREQHgx79jo9Hotm6pQ0J6dN2+P9ixYwceffRRHD9+HAA8\nfj5JDAYD7HY7h80hIiIiogGHoT4RkZ/ZvHkzFixYgJaWFp7VSYqpr6/HmjVr8Oqrr3bbwaRWq3H1\n1Vfj3XffRVJSkg8rvHS1tbVy2F5XV4fm5mY0NDTAbrfD4XDAZrOhoaEBLS0tsNvtaGtrQ319PVpb\nW+X50qNrUO9wONDU1ITm5uYen2XeUVeBbWRkJFQqFQDPga1rSKvRaGAwGAAAWq0Wer3ebRuu6+q4\nHolrACxx3YbE0/pdXWow3DHo9kZ/XykgvTdcuXbQSFw7aiRSh43EtePG0/pd11tXV4f29na39XTV\n8ePaBq4dP96QrkiQHl1/Dg0NRUhICMLCwtw6BMLDw+X3hvS80WiETqeDXq+HXq+HTqeD0WhEWFgY\ndDpdp/eg5MSJE/jlL3+JzZs3Q61W96jjW6VS4ezZswzviYiIiGjA4Zj6RER+Rgq+HA4HQ31SjF6v\nR35+/kWXczqd+OqrrzB69Gi8+eabWLRoUZ/X4nA4YLfbYbPZYLVaYbfb3aba2lo5RLdarWhubkZj\nYyNsNpv82vr6ejgcDtTV1cnBe3ekMFsKLaVQWnqU5kdHR7sFnK7LdBdwSoG7a/DO4Vn6h1qt5v0f\nuuDpShGpE6G3HVk2mw0VFRWdrk5x/Ru92DlF0t9TREQEdDodmpqaUFBQID/f0yvZhBA4d+4ckpKS\nOg2HREREREQUyHimPhGRn9m1axdyc3NRVVWFqKgopcuhQaqpqQlDhgzp8U2bVSoVhBBYunQpXnvt\nNYSFhcHpdKK2tha1tbWwWq2oq6vrMpTvOE9a3m63o6WlxeM2tVotDAYDIiMj5SDdZDJ1eUZwSEiI\nW1DfcdmQkBAYDAaG60T9TOocsNvtaG5uht1uR0NDAxwOh9wx19TUBKvVCofDgQsXLuCbb76BxWJB\nTU2N/JkgXWnSk//OSH/fRqMRkZGRMBgM8u/S54j0szRFREQgIiICJpNJnnp7xQgRERERUV9iqE9E\n5Gf27duHKVOmoLi4GImJiUqXQ4PUp59+ijlz5vRoWSnkkoYCCQsLQ0REBCwWi8czal2H7XANyzzN\n62p+aGhop+FjiGhwsFgsOHbsGL7//nt8//33OHLkCE6ePCnfNyIkJARtbW0QQmDRokX46U9/KncU\nSB2NrsNveZpXUVEhf6a58vQZ1ZMpOjqaVwsQERERUZ/h8DtERH7Gdfgdor4khEBVVZXbZLFYUFlZ\n6TavoqKi26F3VCoVNBoNtFqtPDRNWFgYwsPDERkZiaFDh2Ly5MlymBUZGQmTyYSIiAgG8UR0yWJj\nY5Gbm4vc3Fx5nhAC+fn5ctB/9OhR5OXlITMzE3PnzvV6G9I9Cerq6txCf09TRUUFTp06BavVKs/z\n1KFpMBhgMpkQFRWF2NhYxMTEICoqCtHR0YiNjUVsbCyio6PdJiIiIiIiT3imPhGRnzlx4gQuv/xy\nHDt2DGPGjFG6HPJztbW1KCsrQ3l5OcrLyzuF8x1D/I5nnppMpk5BUmxsLIYMGQKdTicHTa5nnEpj\nwBMRkWc2m63LToDq6mpYLJZOHawdb5KsVqs7hfxms9nt97i4OMTFxSE+Pr7LmwwTERER0cDDM/WJ\niPyMFJjW19crXAkpqba2FqWlpSgrK0NpaakcgYaeBQAAIABJREFU3rvOKy4uhs1mc3udyWRCfHy8\nHMCnpqYiOzvbbZ7JZEJCQgJvHklE1E+MRiOMRiNSU1O9ep302e/aCeD6PVBYWIhDhw6htLQUVVVV\naG1tlV8bEhKCIUOGICEhAfHx8Z0epc/+1NRUqNXqvt5lIiIiIvIhnqlPRORnrFYrTCYTPv/8c0yf\nPl3pcqiPtba2ori4GIWFhSgoKEBBQQGKiopQVlYmTxaLBW1tbfJrwsLCkJiYCLPZLIczcXFxSEhI\nkB/NZjNiYmIU3DMiIvI1i8WCiooKlJSUoKKiAqWlpSgvL5e/T8rLy1FaWirfbwAANBoNzGYz4uPj\n5dA/OTkZKSkpGDp0KFJSUpCYmAiNhud/EREREfkrhvpERH6mra0NWq0WmzZtwoIFC5Quh7xks9lQ\nWFiI/Px8FBYWuk35+fkoKyuTh8AJCQmRgxQptHd9jI2NRVJSEvR6vcJ7RUREgcxms6GkpAQWiwXF\nxcWwWCxyR0BxcTGKiopQVFSElpYWAD8O/SOd1Z+amoqUlBR5kubxu4mIiIhIOTz9gojIz2g0GoSG\nhsJutytdCnWhtLQUP/zwA86cOSNP58+fR2FhoduYyEOGDJFDkAkTJuCWW25xC0bi4+MV3AsiIhos\npOGAMjIyulxGCIGysjIUFBTIndFFRUXIz8/Hp59+isLCQtTW1srLm0wmpKSkYPjw4RgxYoQ8jRw5\nEnFxcb7YLSIiIqJBi2fqExH5IbPZjGeffRYPPfSQ0qUMWlVVVThz5kyn8P7MmTPy/Q4MBoMcYgwf\nPrzTmYw8i5GIiAYSu93e6Wq0c+fOyd+PDQ0NANy/H6Wgf+TIkRgxYgSGDBmi8F4QERERBT6G+kRE\nfig9PR333HMPnn76aaVLGfBsNhvy8vJw9OhR5OXlIS8vD2fOnJHPRtTpdG7BBM9EJCIi8qykpKRT\nR/gPP/yAc+fOweFwAACioqIwcuRIjB07FllZWcjMzMTYsWNhMBgUrp6IiIgocDDUJyLyQ+PHj8fs\n2bPx+9//XulSBpQLFy7Iwb00XbhwAUIImEwmZGVlYdy4cRg1apQc3qekpEClUildOhERUcBqb29H\nYWGhHPSfOnVK7ky3Wq1QqVRIS0uTQ/7MzEyMGzcOQ4cOVbp0IiIiIr/EUJ+IyA9de+21yMzMxMsv\nv6x0KQGrpKQEBw4cwP79+/HNN98gLy8PdXV1CAoK6hQcZGZmIiUlRemSiYiIBp38/PxOHe7nz5+H\nEAKRkZHIzMzExIkTkZOTg+zsbN6PhoiIiAgM9YmI/NKcOXMQGxuLDRs2KF1KwPjhhx+wc+dO7Nmz\nB/v27UNRURHUajXGjh2LSZMmuV3iz7HuyZOvv/4aTz75JHbv3q10KX7L9aqVvvwn5EBt++bmZqxd\nuxbvvPMOCgoK4HQ6AfRt2ymh4/EaqPt5KXzVJlOnTsULL7yAK6+8sk/XqzSbzYZjx44hLy8P3333\nHQ4dOoTjx4/D6XRi6NChyMnJwXXXXYfc3FwMHz5c6XKJiIiIfC5I6QKIiKiziIgI1NXVKV2GX7PZ\nbHjvvfewfPlypKSkYNSoUXjyySdhs9lw3333YefOnbBarThy5AheffVVrFq1CtnZ2Qz0yaP169dj\nxowZ+NnPfqZ0KX6tP0Lagdz2v/rVr/C73/0Od999N2w2G7Zv3650SZfM0/EaiPt5qXzVJo888gim\nT5+ON954o1/WrxSj0YjJkyfjgQcewOuvv468vDzU1NTg888/x/Lly1FdXY3Vq1cjPT0dw4YNw4oV\nK/DBBx/IN7InIiIiGuh4pj4RkR96+OGHcfToUfzrX/9SuhS/UlNTg40bN+Kjjz7C7t274XQ6kZOT\ng9zcXOTm5mLSpEnQaDRKl0kB5rPPPsOcOXPwzjvvYNGiRT7ZpnTGeyD+M6wva++q7QO5fVwNHToU\nBQUFqK6uxpAhQ5Qu55J1dbwG2n72BV+2yVtvvYU77rgD27Ztw+zZs/t1W/6kpaUFBw8exK5du7Bj\nxw4cPHgQWq0Wubm5uOWWW7Bw4UJERkYqXSYRERFRv2CoT0Tkh379619j48aNOH78uNKlKE4IgZ07\nd+LNN9/E5s2bodFoMGvWLNx8882YM2cOAyS6JC0tLUhPT0dKSgr27t3rs+0GcmjdV7V31/aB3D6u\n1Go12tvbA34/gO6P10Daz77i6zbJzs5GaWkpzp49C61W65Nt+puqqips3boVH3/8MT7//HMAwMKF\nC3HPPffg+uuvV7Y4IiIioj7G4XeIiPxQdHQ0qqurlS5DUUIIbN26FVdddRWmT5+OM2fO4KWXXkJZ\nWRk++OAD3HHHHQz06ZJt2rQJRUVFWLx4sdKlDDqDoe3b29uVLqHPdHe8BtJ+9hVft8nixYtRWFiI\nTZs2+XS7/iQ6OhrLly/HRx99hPLycrz66qsoLy/H1KlTkZWVhY0bN7LjiYiIiAYMhvpERH4oKioK\n1dXVg/Y/n+fPn8eUKVMwf/58pKam4siRIzh8+DDuu+8+GAwGpcvzCyqVSp5OnDiBWbNmwWg0Qq/X\nY86cOTh58mSXy587dw4LFiyAyWSS50ksFgvuv/9+JCUlITg4GImJibjvvvtQXl7uk+2Xl5dj5cqV\n8vaTkpKwatUqVFRUdGqD5uZmrFu3DuPHj0d4eDh0Oh1Gjx6NVatW4eDBgz1qxy1btgAAJk6c2Om5\n48eP48Ybb4Rer4fRaMTMmTNx4sQJt31x5U3bdWyXFStWeGyr0tJSLFy4EAaDAVFRUbjzzjtRV1eH\n/Px8zJs3D0ajEXFxcbjrrrtgtVo77cOOHTswb948mEwm6HQ6XHHFFXj33Xc7LVdXV4dHH30UaWlp\n0Ol0iIqKQk5ODh5//HF89dVX3bbhxIkT3Wq+/fbbu11e0lXbe9M+3b2XerrvrusrKirCzTffDIPB\nALPZjKVLl3bqYO1pW3najzVr1sjzevpe78n+9uV7piveHC9pP/v6c8ebZb05Tp7+nnsyv7vj0VWb\neLMPPW0/APKNcqXjNNgZjUYsW7YM//znP/H1119j6NChWLRoEaZNm4bCwkKlyyMiIiK6dIKIiPzO\n9u3bBQBRW1urdCk+9/nnnwuDwSCysrLEd999p3Q5fg2AACBycnLE3r17hd1uFzt27BBxcXHCZDKJ\nCxcueFx++vTpYt++faKxsVF8+umnQvrnQHl5uUhNTRVms1ls375d2O12sWfPHpGamiqGDRvW6f3Y\n19svKysTycnJIiEhQezcuVPYbDZ5fampqaK8vFxel81mExMnThQGg0G88cYbory8XNjtdrF7926R\nkZEhevpPnFGjRgkAbusWQoizZ8+KyMhIuRa73S727t0rJk+eLO+Hq962XVek55cuXSpOnDghrFar\nePDBBwUAMWfOHHHLLbfI8++//34BQNx7770e1zN//nxRWVkpCgoKxPTp0wUA8Y9//MNtuZtvvlkA\nEC+++KKor68XDodDnDp1Stxyyy2d6uxYe1lZmRgzZox46qmnum/sDrpqe2/ap6v3kjf77rq+JUuW\ndGrXu+66y23ZS2kriTfvdW/2ty/eM13p7fHqy88db5bti+N0sfk9OR4d9fazorttCSFEaWmpACBG\njx7t8TiQEF9//bUYM2aMiIiIEP/617+ULoeIiIjokjDUJyLyQ998840AIM6ePat0KT516tQpERER\nIZYuXSocDofS5fg9Kez59NNP3eb/5S9/EQDEnXfe6XH53bt3e1zfypUrBQDx5ptvus3/8MMPBQDx\ni1/8ol+3f++99woA4u9//7vH9a1cuVKet3r1ajmw6+jbb7/tcaiv1+sFANHc3Ow2f+nSpR5r2bZt\nm8ewrrdt1xXp+S+++EKeV1JS4nF+UVGRACASExM9rse1c+XkyZMCgLjmmmvcljMajQKA2Lhxo9t8\naZtd1Z6fny/S09PF7373uy73pStdtX3HbXhysfeStExP9t11fa7teuHCBQFAJCQkuC3b27Zy5c17\n3Zv97Yv3TFd6e7z68nPHm2X74jhdbH5Pjsel7G9PtyWEEE1NTQKAMBgM3S432DU1NYlbb71VREVF\niXPnzildDhEREVGvMdQnIvJD+fn5AoA4ePCg0qX41IoVK0RmZqZoaWlRupSAIIU9VqvVbX5xcbEA\nIOLj4z0u39DQ4HF9CQkJAoAoLS11m19VVSUAiLFjx/br9uPj4wUAUVJS4nF9rgFkSkqKACDy8/M9\nrqungoKCBADR3t7uNt9sNnuspba21mNY19u264r0vM1mk+c5nc5u56tUqovub1tbmwAgoqKi3OYv\nX75cXndycrK45557xHvvveexc01a7tSpUyI5OVnk5ORcdLuedNX2rtvoysXeS550te+u63NtV4fD\n4bFde9NWHXnzXu/p/vbXe0bS2+PVl5873izbF8fpYvN7cjwuZX97ui0h/n1M1Wp1t8vRj8F+RkaG\neOihh5QuhYiIiKjXVEIM0gGbiYj8WENDA/R6PbZt24Ybb7xR6XJ8ZubMmUhKSsKbb76pdCkBQRpT\nueNXucPhgE6ng0ajQWtr60WXl2i1WrS1tXW5vbCwMDQ0NPT79h0OB4KDgzutT6vVoqWlBQAQHByM\n1tZWNDc3IyQkpMuaL8ZgMKC+vr7TejQaDZxOZ6dautqPvmq7iz3vzXyr1YoXXngBmzdvRnFxMerr\n691e03EdH374Id5++23s2rULtbW1AICUlBR8/PHHyMrK6rSt+Ph41NXVobGxEW+99ZbXN7ztqu27\n28+ePu/tvnvb3t62VcfXe/Ne78n+9mYferJOV709Xn35uePt39mlHqdLabuLHfue7kNPj1NzczNC\nQ0NhMBhgs9m6XZaAJUuWoL6+Hh9//LHSpRARERH1Cm+US0Tkh6SbflZVVSldik9NmTIFmzdvxtmz\nZ5UuJaB0vJGn9L6JiYnxaj1msxkAUFNTA/Hj1Xxuk2vQ1B/bj42NdXt9x/VJz7vWWlZW5tU2OkpM\nTASATjcMjY6O7raWjnrbdv3ptttuw/PPP49FixahoKBArqUrCxYswAcffICqqirs2bMHM2fORGFh\nIZYvX+5x+Zdffhn/8z//AwB48MEHUVxc7FV9XbV9X/B2373lbVt15M173V/01/Hy5m/H27+znh4n\nKTh37YSsq6vr0/3s7T70lNRpIR0n6trJkyfxySef4JprrlG6FCIiIqJeY6hPROSnoqKiBl2o//jj\nj2PUqFGYOXMmDh8+rHQ5AWPfvn1uv+/YsQMAMGPGDK/WM3/+fADAF1980em5L7/8EtnZ2f26/blz\n5wIAdu7c6XF90vMAsHDhQgDARx991Gk9Bw8exKRJk3q0zfHjxwMACgoK3OZLtXespeO+Srxtu7Cw\nMAA/hoiNjY1yJ0Jfkmp97LHHMGTIEAA/ngnuiUqlkkP5oKAgXHPNNXjvvfcA/BiAebJw4UIsX74c\nN998M6xWK5YvX+5VcN5V2wOX3j7e7Lu3etNWHXnzXvcX3R2vS+HN3443y3pznOLi4gC4dxIeOXKk\nF3tzcb39nL0Y6bi4XoFAnR04cACzZs3C+PHj8cgjjyhdDhEREVHv9dEwPkRE1McmTpwonnjiCaXL\n8DmLxSKmT58utFqtWLNmjaiqqlK6JL+F/xtrefbs2eLLL78Udrtd7Ny5U8THxwuTyeR2k1DX5btS\nWVkpRowYIeLj48XGjRtFVVWVsNlsYuvWrSItLc3tRpv9sf3y8nKRmpoqEhISxM6dO4XNZpPXl5qa\nKsrLy+Vla2trxZgxY4TBYBCvv/66KC8vF3a7XfzjH/8QI0aMEDt27OhRG7711lsCgHjllVfc5p87\nd05ERkbKtdjtdvHll1+K2bNne9wPb9vu6quvFgDE3r17xbvvvituuummHrWVN/NnzpwpAIinn35a\n1NbWiurqavkGwx2XBSBmzpwpvv/+e9Hc3CzKy8vF008/LQCIefPmdbutiooKERMTIwDPNy7uSldt\nL0Tv26c3+97d+vq6rSTevNd7sr/e7kNP1+mqu+PV3br68nPHm2W9OU7Lli0TAMRDDz0krFarOHny\npFiyZMkltV1Xy/T2c/ZiXnrpJQFAvP322xdddjCyWCziscceExqNRtx4442iurpa6ZKIiIiILglD\nfSIiPzVv3jyxZMkSpctQRHt7u3j55ZdFdHS0MBgMYs2aNeL8+fNKl+V3pLDnwoUL4qabbhIGg0GE\nh4eL2bNnixMnTnhc1nXypKamRqxevVoMGzZMaLVaYTabxdy5c8WBAwd8sv3y8nKxcuVKkZCQIDQa\njUhISBD33Xdfp5BTCCHsdrv45S9/KUaNGiWCg4NFVFSUmDFjhtizZ09Pm1A4HA6RlJQkpkyZ0um5\n77//XsyePVuEh4cLg8EgbrrpJnHu3DkBQAQFBXVa3pu2+/rrr0VmZqYICwsTV199tTh9+nSXbdXb\n+RUVFeKOO+4QsbGxIjg4WIwZM0a89957Hpfdu3evuPPOO8XQoUOFVqsVERERIjMzU/zud79zu0Fn\nRESE2+s3btzo8dh+/fXXl9T23rSPp/eSN/vubbv2tK0uVmdP3+s92d++es90p6vj1V19/fG509Nl\ne3qchPgxaF+8eLGIiYkR4eHhYu7cuaKwsLDX+3SxZXq6Dz1tPyF+7AhLSkryeCPgwezMmTPiscce\nE+Hh4cJsNovXXnvN482eiYiIiAINb5RLROSn7r//fpw+fRq7du1SuhTF1NfX45VXXsGLL74Ii8WC\nqVOnYvny5Zg7dy6MRqPS5SnO2xtdDrTt95Vt27Zh7ty5eOedd7Bo0aJuly0tLUViYiJiY2NRUVHh\nowoHLm/anpTH4+Wf3nrrLdxxxx3YunUr5syZo3Q5irNardiyZQv+/Oc/Y8+ePUhISMDq1auxatUq\neWgvIiIiokDHMfWJiPxUfHw8SktLlS5DUXq9Hk899RSKioqwefNmhIeHY/ny5YiNjcXs2bPx2muv\neX1zTqKO5syZg1dffRWrVq1yG6NfpVJ1umnznj17AABTp071aY0DVVdtT/6Jx8v/bN68GQ888AD+\n9Kc/DepAv7CwEH/84x8xY8YMxMbG4t5770VUVBS2bt2KgoICrF69moE+ERERDSg8U5+IyE+tX78e\njz76KOx2u9Kl+JWamhps27YNH330EbZv346GhgaMHj0aubm5mDZtGq6//nr5xpgDndJnyiu9/b72\n1Vdf4cknn5RvYKlSqTBjxgz86U9/gtlsxsGDB3H33XfDarXi0KFDGD16tLIFDyAd2578G4+X/7j+\n+uvxwgsv4KqrrlK6FJ+qqqrC7t27sXPnTuzatQtnzpyBwWDArFmzMH/+fNx4442IjIxUukwiIiKi\nfsNQn4jIT23btg033XQTbDYbDAaD0uX4paamJuzduxc7d+7Ezp07ceTIEQghMHr0aOTk5GDy5MnI\nzs7GqFGjlC61z0mBusTXX+dKb98Xdu7ciT/+8Y/Yt28fqqurYTKZMHXqVDz33HMM9ImIfEQIgVOn\nTmH//v3Yt28fDhw4gNOnTyMoKAgTJ05Ebm4ucnNzMXnyZISEhChdLhEREZFPMNQnIvJTR44cwRVX\nXIFTp04NyFC6P9TU1GDv3r3Yv38/9u/fj8OHD6OpqQkmkwmZmZkYN24cMjMzkZmZiTFjxvA//0RE\nRH6kqakJx48fx3fffYe8vDwcPXoUeXl5qKurQ1hYGK688kq5w/6aa65BRESE0iUTERERKYKhPhGR\nn6qoqEBcXBx27drF8bt7qbW1Fd9++y0OHz6MvLw85OXl4fvvv0djYyM0Gg1GjRolh/xZWVkYN24c\n4uLilC6biIhowCstLcXRo0flAD8vLw8//PADnE4nwsPDMXbsWPk7euLEiRg/fjw0Go3SZRMRERH5\nBYb6RER+qr29HTqdDhs2bMCSJUuULmfAcDqdOHv2LPLy8tzOBJRuuBsbG4vRo0djxIgRnSadTqdw\n9URERIGjqakJZ86ccZt++OEHnDp1ClVVVQCAlJQUtyvpsrKyMHz4cAQFBSlcPREREZH/YqhPROTH\nUlJS8PDDD+OJJ55QupQBr7q6Gt999x2+//57nD59Wg4fioqK0N7ejqCgICQnJ7uF/CNHjsSIESMw\nbNgwaLVapXeBiIjI51paWnDhwgX88MMP+OGHH9wC/OLiYgghEBQUhNTUVPn7c9SoURgzZgyysrJg\nMpmU3gUiIiKigMNQn4jIj02ePBkTJkzASy+9pHQpg1ZzczPOnj3rdoah9FheXg4A0Gg0SElJkafU\n1NROv4eGhiq8J0RERN5rbGxEfn4+CgsLUVRUhMLCQhQUFKCgoACFhYUoLi5GW1sbACAhIUHu8Hbt\nAB8+fDjvY0NERETUhxjqExH5saVLl8JqteKTTz5RuhTywG63y2H/+fPnUVhY6BZ21NfXy8vGxMS4\nBf1Dhw5FSkoKkpOTkZyczLH8iYjI54QQqKiokL+/pO8w19+lYXIAwGg0dvoOS0tLkwN8vV6v4N4Q\nERERDR4M9YmI/Nizzz6LDz/8EMePH1e6FOqFpqYmlJWV4fz58/JUWloqzysoKIDT6ZSXN5lMiI+P\nR0JCQpePycnJHOqHiIguqra2Vv7O6eqxqKgIra2t8mtMJhPS0tKQlpYmf+90/J2IiIiIlKdRugAi\nIurasGHDcOHCBQghoFKplC6HvBQaGiqHIZ44HA4UFRWhuLgYxcXFsFgs8mNhYSEOHz6MkpIS2Gw2\n+TVBQUGIjY2F2WxGYmIizGYzkpKSEBsbi/j4eMTExCAqKgrR0dGIjo6GWq321e4SEVE/cjqdqKqq\nkqfKykqUlZW5fXcUFxejoqICFosFruduRUREICEhAXFxcUhISMCkSZPk746kpCQkJycjKSkJwcHB\nCu4hEREREfUUz9QnIvJjX3zxBaZOnYry8nKYzWalyyGFNDY2orS0FOXl5SgrK5On0tJSVFRUoKSk\nBBUVFaisrOz0Wincl6aYmBjExsa6zYuNjUVMTAyio6M59j8RkY80NjaiqqoKFosFlZWVboG9xWJx\n+12aOurYyesa3MfHx8sTP9uJiIiIBhaG+kREfqygoABDhw7F/v37kZ2drXQ55Ofa2tpQXV3tdhZn\nx2CoY3jU0tLito7w8HA57DeZTF5NRESDjRACtbW1nSar1epxfk1Njfz529jY6LaukJAQj52t0dHR\niIqKgtls7tRRy6uxiIiIiAYnhvpERH7M6XQiNDQUf/nLX7B48WKly6EByGazeTwjtLKystuQypOe\nBP8Gg8FtioyMhNFohF6vh06n8/HeE9Fg19zcDLvdDrvdjtraWvln13ndTVar1eN6u/oMHDJkiNsQ\naa5XUBkMBh/vPREREREFKo6pT0Tkx9RqNVJSUnDhwgWlS6EBymg0wmg0Ij093avXXSzokqbz58+7\nhV92u93tpoyutFqtW9DvGv5HREQgIiLCbZ7RaERkZCQMBgN0Oh2MRiPCwsKg0+kQGRnZF81DRH6o\ntrYWzc3NaGpqQl1dnRzM19XVoa6uzi2Ut9lsHuf19POoYyifnp7uMayPjIzklUtERERE5DMM9YmI\n/Jx0s1wif3IpwdXFzoy1Wq2w2Wxu886fP+8xmOuOTqdDaGgoIiMjERISgvDwcBiNRoSEhMBgMMhX\nB3TsDPD0upCQEISFhSE4OBjh4eHQarXQ6/W92n+igcxut6OtrQ319fVobW1FQ0MDWlpa0NDQgObm\nZtTV1aGpqQnNzc0ew/mGhgbY7Xb5c8LT67rTVeef2WxGenq6PL+rK4ekn3nlEBERERH5M4b6RER+\nbtiwYTh37pzSZRD1GZ1OB51Oh5iYmEtel9VqRX19fbdhodVqhcPhQENDA2w2G5qbm1FfX4+ysjI4\nHA7YbDa34LCxsREOh6NH29doNDAYDFCr1TAajQgKCkJERARUKpV8tYDU+REZGQmVSoWIiAgEBQXB\naDRCrVbDYDBAo9G4vUZaHwC3DgSpU0FqR+nml6GhoQwhBynpfQ7A7b0rherAv4N2AKirq0N7ezuA\nH/9+hBBoa2uD3W6H0+mEzWZDe3s76urqIISQl5GGmZGG35LmS+uz2WxwOp09qtm140yn0yEsLAxG\noxE6nQ56vR4JCQnQ6XQwGAwIDw+HTqdDREREl51v0usiIiL6rmGJiIiIiPwYQ30iIj+Xnp6O7du3\nK10GkV+KjIzst6F2XDsGpM4C6XeHw4HGxkb5DOTW1lbU19d3G45KV9x0DEU7BquXKjw8HMHBwQAg\ndxgAkDsRJK4dBxJPVyC4diRIpCsXXPWkY+FSOh861t8Tl9KmPTkr3NMynjqFXAN2iWvQLukYjEvv\nIwDyewyA/P67VFKb9qQzaujQoW6dUR07pfR6PbRarfz+CwsLQ0hIiHzMpUcOTUNEREREdOkY6hMR\n+blRo0ahqKgI9fX1HO6DyIeUDB+lzgLAPcB1DZG9PSu74w2OPQXDrmd9S6xWKyoqKtzmSUOquPIU\nXLuSOjh641JCbNdODm9JgXZXetrh4XpVhSQ2NrZTB0fHWru6ekO6QqRjDa7bdu1AcV2vFL4TERER\nEVHgYqhPROTnMjIyIITA6dOnMWHCBKXLISIfCA4O7nUQPVjMmDEDqampeOONN5QuhYiIiIiIyKeC\nlC6AiIi6l5aWhpCQEJw8eVLpUoiI/IbFYkFsbKzSZRAREREREfkcQ30iIj+n0WiQnp7OUJ+IyIXF\nYumTmy0TEREREREFGob6REQBICMjg6E+EdH/EUKgqqqKZ+oTEREREdGgxFCfiCgAZGRk4NSpU0qX\nQUTkF2pqatDa2spQn4iIiIiIBiWG+kREASAjIwNnz55Fa2ur0qUQESnOYrEAAEN9IiIiIiIalBjq\nExEFgIyMDLS2tuLcuXNKl0JEpDiG+kRERERENJgx1CciCgCjRo1CUFAQx9UnIgJQWVkJlUqF6Oho\npUshIiIiIiLyOYb6REQBIDQ0FEOHDsXyY0wWAAAgAElEQVTx48eVLoWISHEWiwVRUVHQaDRKl0JE\nRERERORzDPWJiAJEVlYWjhw5onQZRESKs1gsHHqHiIiIiIgGLYb6REQBYvz48Qz1iYjw4/A7DPWJ\niIiIiGiwYqhPRBQgxo8fj/z8fNTU1ChdChGRonimPhERERERDWYM9YmIAsT48eMhhEBeXp7SpRAR\nKYqhPhERERERDWYM9YmIAkRCQgLi4uI4BA8RDXoWiwUxMTFKl0FERERERKQIhvpERAGEN8slImKo\nT0REREREgxtDfSKiADJ+/Hh8++23SpdBRKSYtrY21NbWcvgdIiIiIiIatBjqExEFkPHjx+P06dNo\nbGxUuhQiIkVYLBYIIRjqExERERHRoMVQn4gogFxxxRVwOp04duyY0qUQESnCYrEAAEN9IiIiIiIa\ntBjqExEFkLS0NEREROCbb75RuhQiIkUw1CciIiIiosGOoT4RUQBRqVS46qqrcPDgQaVLISJShMVi\ngVarRWRkpNKlEBERERERKYKhPhFRgMnJycH+/fuVLoOISBGVlZWIjY2FSqVSuhQiIiIiIiJFMNQn\nIgow2dnZOHfuHMrLy5UuhYjI56RQn4iIiIiIaLBiqE9EFGCys7MRFBSEAwcOKF0KEZHPWSwWhvpE\nRERERDSoMdQnIgowRqMRl112GUN9IhqUGOoTEREREdFgx1CfiCgAcVx9IhqsGOoTEREREdFgx1Cf\niCgAZWdn4/Dhw3A4HEqXQkTkUxaLBTExMUqXQUREREREpBiG+kREASgnJwcOhwPffvut0qUQEfkU\nz9QnIiIiIqLBjqE+EVEAGjFiBGJiYjgEDxENKo2NjWhoaOCZ+kRERERENKgx1CciCkAqlQrZ2dm8\nWS4RDSoVFRUAwDP1iYiIiIhoUGOoT0QUoK699lp88cUXaG9vV7oUIiKfsFgsABjqExERERHR4MZQ\nn4goQN1www2orq7Gd999p3QpREQ+wVCfiIiIiIiIoT4RUcAaN24czGYzduzYoXQpREQ+YbFYoNfr\nERYWpnQpREREREREimGoT0QUoFQqFaZOnYqdO3cqXQoRUb8oKipCbW2t/LvFYuFZ+kRERERENOhp\nlC6AiIh6Lzc3Fw8//DCam5uh0+mULoeIqM+cOnUKGRkZAACNRgOTyYSgoCC0t7dj2bJliI6Ohtls\nhtlsxsKFC2EwGBSumIiIiIiIyDdUQgihdBFERNQ7BQUFGDp0KHbt2oWpU6cqXQ4RUZ9pampCREQE\nWltbOz0XFBQEjUYDIQRaW1uxefNmzJ8/X4EqiYiIiIiIfI/D7xARBbDU1FSkp6dzCB4iGnBCQ0Nx\n1VVXQaVSdXquvb0dLS0taG1tRVRUFGbNmqVAhURERERERMpgqE9EFOBuuOEG3iyXiAakGTNmQKvV\ndvm8RqPBY489xuHHiIiIiIhoUGGoT0QU4HJzc3H48GG3m0kSEQ0E06ZNQ0tLS5fPq9Vq3HfffT6s\niIiIiIiISHkM9YmIAty0adMghMAXX3yhdClERH1q0qRJXZ6Fr9VqsWLFCkRFRfm4KiIiIiIiImUx\n1CciCnBDhgzBpEmT8MknnyhdChFRn9JqtZg8eTKCgjr/k7WtrQ0///nPFaiKiIiIiIhIWQz1iYgG\ngLlz5+KTTz6B0+lUuhQioj41ffp0qNVqt3larRbz5s1Denq6QlUREREREREph6E+EdEAMG/ePFgs\nFhw6dEjpUoiI+tS0adPQ2trqNq+1tRVPPvmkQhUREREREREpi6E+EdEAcPnll2PEiBHYunWr0qUQ\nEfWpK664Anq9Xv5drVYjKysLOTk5ClZFRERERESkHIb6REQDxE033YQtW7YoXQYRUZ9Sq9W4/vrr\n5SF42tvb8cwzzyhcFRERERERkXIY6hMRDRDz5s3DiRMncObMGaVLISLqU7m5uVCpVACAhIQEzJ8/\nX+GKiIiIiIiIlMNQn4hogLjmmmsQFRXFIXiIaMCZNm0a2traoFKp8MQTT0Cj0ShdEhERERERkWL4\nPyIiogFCrVZj9uzZ2Lp1K1avXq10OUTk59ra2mC3293mOZ1O2Gy2i85zVV9f3+lGtt5oaGhAS0tL\nt8sIIRAeHg6n0wmTyYSNGze6PR8cHIzw8PBe16DVat3G7e8oIiICQUFBF51nNBrlYYKIiIiIiIj6\ni0oIIZQugoiI+sb777+PxYsXo6KiAlFRUUqXQzTgtba2or6+Xg7I29vbUVdXByEErFYrAKCpqQnN\nzc09/rmxsREOh6NXPwOew3pP88g3PAX9BoPB7WqDkJAQhIWFAQB0Oh1CQ0Mv+efQ0FDodLpOP5tM\nJgD/7pSQ6utYExERERER+S+G+kREA4jNZkNMTAzeeOMNLFu2TOlyiHyuubkZTU1NqKurQ0tLC+x2\nOxoaGuBwOGC1Wt2eb29vh9VqhRBC/t1ut6OtrU0++1w6i1wK3aXXOxwONDY2el2f6xnlrkFuT37u\nSZALACqVCpGRkZ22LYW5vZkXGRkpj2nfUVfb66lLfT0A1NbWXtLrpfeBJ1JHjSvXTpvu5nVVW8d5\n3nbeuF7d0JOfvREeHo7g4GCEhYUhJCREfn9J70XpPazRaGAwGKBWq2E0GhEUFISIiAj5d+n1JpNJ\nfo3BYEBISIjb80RERERE5D2G+kREA8y8efPQ1taGTz/9VOlSiLrU2toKu90Oq9UKu90Ou92O+vp6\n2O121NbWwm63o7m5GXa7XQ4za2tr5TDdZrPB4XB0Cu0vxjVc1Gg08lnKer0eWq32kgNN4N+huBSE\nX+rQMESXSuqkcu2gkDoWLrVjq+PVKtLvPe1UMJlM8t+X0WhESEgIDAaDW6eA6/M6nQ4GgwGRkZEw\nGAzypNfrYTKZeMUBEREREQ0KDPWJiAaYd955B8uWLUNJSQliY2OVLocGGClct1qtcvheV1eHuro6\nOZSvr6+H1WqFzWZzC+ulefX19fJQMx1JZ20bDAaEhoZCr9cjPDwcISEhiIyMlEN21/BPCuI7hn/B\nwcGdzhgmIt+Rrl6QOgI6dsa1tLR06qxraWmBzWbz2Jnn2tnX3dUZUvBvMBhgMpmg1+vdOgBcOwT0\nej2MRqM8LzIyEiaTCZGRkbySgIiIiIj8FkN9IqIBprGxEWazGf/xH/+BBx54QOlyyA81NTWhtra2\nx5MUyNXW1qKsrMzjOqWwXafTwWQyyZO388xmM280SkQ9Il090PEzzdt5lZWVaGtr67R+188pT59b\n3U38LCMiIiKi/sRQn4hoAFqyZAkKCwvx5ZdfKl0K9bPa2lpUVlaiqqoKVVVVqK6uRmVlpds8aX5N\nTQ1qa2vR3t7eaT16vd7tDFUpmOo4r+OjwWCQh50hIgpUdXV1sNls8lVI0qPrz109NjQ0dFqfWq2W\nP0ejo6PlKSoqCmazGVFRUW7zY2JiLvneEkREREQ0eDDUJyIagD755BPMmzcP58+fx9ChQ5Uuh7xQ\nWVkJi8WCsrIyVFRUoLq6Wg7mLRaLW0hfVVXV6exSvV6P6OhoxMbGygGSFBoNGTKky8Beq9UqtMdE\nRIGtpaWly8C/pqbG7TPb9bO8Y2eAVqt1+8yOiYlBTEyM22e52WxGXFwc4uLiEBUVpdAeExEREZHS\nGOoTEQ1Ara2tSEhIwGOPPYY1a9YoXc6g53A4UF1dLQ9fU1pa6vGxuLi4040lTSYT4uPjOw3tkJCQ\n0Gl+UlISz5onIgoQzc3N8hVU0iR9J3iaV11d7fYdERwcjKioKLfvhI6PJpMJKSkpMBgMCu4pERER\nEfU1hvpERAPU/fffj/379yMvL0/pUga0mpoaFBYWoqioCAUFBSgqKkJJSQlKS0tRUVGBsrKyTjd0\nHDJkCOLi4mA2m5GQkACz2YzExETExsYiPj6eZ2ESEZFHVVVV8neLdEVXaWkpLBYLSkpK5OesVqvb\n66KiouTvlvj4eCQmJiI5ORkpKSlITU1FcnIybyZOREREFEAY6hMRDVB79uzBddddh2PHjmHMmDFK\nlxOQHA4HiouLUVRUhMLCQjm0d/3ddfiE6OhoJCcnIykpCfHx8YiPj5eD+9jYWCQmJsJsNiMkJETB\nvSIiooGuublZDvwrKipQUlIiD+1WXl4uf5dVV1fLr9Hr9UhNTUVKSgqSk5ORnJzs9ntSUhKCg4MV\n3CsiIiIikjDUJyIaoIQQGDZsGJYuXYq1a9cqXY7fqqysxNmzZ3HmzBn58cKFCygsLER5eTmkr0md\nTtcp6JB+ls50DA0NVXhviIiIeq6xsRH5+flyyC9ddSZdgVZUVASHwwEAUKlUiI+PR0pKCtLS0pCe\nno4RI0ZgxIgRSE9P59VlRERERD7EUJ+IaAB78skn8f777+P8+fMICgpSuhzFeAruz549i7Nnz8pD\nFISEhGD48OEYMWIE0tLSOp2taDabFd4LIiIi3ysvL3cL+QsKCnDu3DmcOXMG58+fl8f5N5lMctDP\nwJ+IiIiofzHUJyIawE6fPo2MjAxs27YNs2fPVrqcflddXY28vDwcPXoUR48exbFjxzoF92lpaW5B\ngxQ8JCcnD+qODyIiIm85nU4UFhZ26jiXrnpzDfxHjBiBsWPHYty4cfI0ZMgQhfeAiIiIKDAx1Cci\nGuCuv/56DBkyBB9++KHSpfSZtrY2nD59GkePHnUL8UtKSgD8OLZ9ZmYmxo4di5EjR8oBfkpKCoN7\nIiIiH5ACfynsP336NL7//nt89913qKmpAQAkJydj3LhxGDt2LLKysuTvbY1Go3D1RERERP6NoT4R\n0QD31ltv4a677kJBQQESEhKULsdrTqcTJ06cwIEDB3Dw4EHk5eXh+PHjcDgc0Gq1yMjIkM/8y8zM\nxLhx4xAfH6902URERNSFkpISuUM+Ly8Px44dw6lTp9DW1gadTofLL78cWVlZyM7OxtVXX42MjAx2\nyhMRERG5YKhPRDTAORwOJCcn42c/+xmeeeYZpcu5qObmZhw4cAC7d+/Gvn378PXXX8Nut0Ov1+PK\nK6/ExIkT5RA/IyMDwcHBSpdMfurrr7/Gk08+id27dytdit9SqVTyz335T0Jv2r6/auhr/Vmnt+vu\navljx47h7bffxmeffYazZ88CAFJSUnDttdfi8ccfR3p6eq/q63g8m5ubsXbtWrzzzjsoKCiA0+ns\nce0Dla/aZOrUqXjhhRdw5ZVX9ul6/UFLSwuOHz8uD593+PBhHD58GA0NDTAajZg0aRJycnIwbdo0\nXH311fz+JyIiokGNoT4R0SCwevVqbNq0CefPn4darVa6nE7y8vLwySefYNeuXdi/fz+am5sxfPhw\nXHPNNbj66quRnZ2Nyy+/3C9rJ/+0fv16PPHEE9iwYQPmz5+vdDl+TQqI++qfhL1p+76uob/0Z53e\nrtvT8iqVCpdffjlefPFFOfT94osv8OCDD6Kqqgrbtm1Dbm6uV3V5Op5PPfUUXnjhBaxduxaPPvoo\n9u7di5kzZ/r98etPvmqTzZs3Y/ny5fjDH/6Ae++9t0/X7Y/a2tpw7NgxHDhwAIcOHcKePXuQn5+P\nsLAwTJ48GdOmTcNNN92EMWPGKF0qERERkU8x1CciGgSkG+Z+9tlnmDlzptLloL29Hf/617/w4Ycf\nYuvWrfLQQDfccAOmTp2KadOmISUlRekyKUB99tlnmDNnDt555x0sWrTIJ9sMlFDak76svau2v9g2\nAqX9AiHUP3bsWKeAc/v27Zg1axYyMzPx3Xff9bimro7n0KFDUVBQgOrqat7o9P/4sk3eeust3HHH\nHdi2bRtmz57dr9vyRxcuXMCuXbuwe/du7NixAxUVFUhLS8O8efOwYMECTJkyxe1qFiIiIqKBiKE+\nEdEgcd111yE6OhqbNm1SrIaCggJs2LABf/3rX5Gfn49x48Zh7ty5uPnmmzFx4kT+J5wuWUtLi3xT\n5L179/psu4ESSnvSV7V31/YM9ft+3d4sX19fD4PBgNDQUDQ2NvZo/d0dT7Vajfb2dr8/Xr7k6zbJ\nzs5GaWkpzp49C61W65Nt+qP29nZ89dVX+Pjjj7FlyxacOHEC6enpuPPOO3HXXXchKSlJ6RKJiIiI\n+gXvNkRENEjce++92LJlC0pLS32+7XPnzmHlypVIT0/Hyy+/jBkzZuDIkSPIy8vD2rVrceWVVzLQ\npz6xadMmFBUVYfHixUqXMuiw7f1XZWUlACAzM7PHr+nueLa3t/dZbQOFr9tk8eLFKCwsVLSj3h8E\nBQXh6quvxvPPP4/jx4/j+PHjWLhwIV5++WWkpaVh2bJlOH36tNJlEhEREfU5hvpERIPET37yE0RE\nRGDDhg0+22ZTUxN+/vOfY+TIkdi7dy82bNiAiooKvPbaa8jKyvJZHYFApVLJ04kTJzBr1iwYjUbo\n9XrMmTMHJ0+e7HL5c+fOYcGCBTCZTPI8icViwf3334+kpCQEBwcjMTER9913H8rLy32y/fLycqxc\nuVLeflJSElatWoWKiopObdDc3Ix169Zh/PjxCA8Ph06nw+jRo7Fq1SocPHiwR+24ZcsWAMDEiRM7\nPXf8+HHceOON0Ov1MBqNmDlzJk6cOOG2L668abuO7bJixQqPbVVaWoqFCxfCYDAgKioKd955J+rq\n6pCfn4958+bBaDQiLi4Od911F6xWa6d92LFjB+bNmweTyQSdTocrrrgC7777bqfl6urq8OijjyIt\nLQ06nQ5RUVHIycnB448/jq+++qrbNpSumpGm22+/vdvlJV21/cXax1VRURFuvvlmGAwGmM1mLF26\nFNXV1Z3W15fv/d60VU/qBLx7/3fF9X0bERGBW265BYWFhT1+PQD8/e9/BwD86le/6vFrvDmea9as\ncfu9r46NN8v29Dh29ffek/ld7VN3beLNPvS0/QDI90yQjhP96LLLLsO6detQVFSE119/HYcOHcLl\nl1+ONWvWwOFwKF0eERERUd8RREQ0aDzxxBMiISFBOByOft9WWVmZuOyyy0RkZKT4y1/+IpxOZ79v\nM9ABEABETk6O2Lt3r7Db7WLHjh0iLi5OmEwmceHCBY/LT58+Xezbt080NjaKTz/9VEhf7+Xl5SI1\nNVWYzWaxfft2YbfbxZ49e0RqaqoYNmyYqK2t7dftl5WVieTkZJGQkCB27twpbDabvL7U/9/enYc3\nVebtA7+7N23SpvtKK6XslLILIgj4AiIgIA44IjjgKKgIDFwvoOP81HFDZrkcBodRRscNFJyREUZB\nhRZZZB1kwJZFytKWNl1C0qRpmibt8/sDc96kTdqktD1d7s915Wp68uQ53/M8h1Tvc3JOaqrQaDRS\nXwaDQQwbNkyoVCqxefNmodFohNFoFNnZ2aJv377C0/9k6d27twDg1LcQQly6dEmo1WqpFqPRKA4d\nOiRGjx4tbYej5o6dO/bXH374YZGbmyv0er146qmnBAAxdepUMWvWLGn5E088IQCIxx57zGU/M2fO\nFGVlZeLatWti4sSJAoDYs2ePU7sZM2YIAOKNN94QlZWVwmKxiPPnz4tZs2Y1qLN+7cXFxWLAgAFi\nzZo1jQ92Pe7G3pvxmTdvnjQOS5cuFQDEL37xC7ftW2Lfb85YeVKnN/u/uzFytd9+++23YvLkyU2O\nqd3p06eFQqEQzz77bJNtHTV3Pltyblp7Hj3drqa2qbH3NvezpLF1CSFEUVGRACD69Onjch7oJpvN\nJt5++22hUqlEZmamKCsrk7skIiIiohbBUJ+IqAspLCwUgYGB4r333mvV9VRXV4vhw4eLPn36iPz8\n/FZdV2diD3O+/PJLp+XvvfeeACAeeeQRl+2zs7Nd9rd48WIBQLzzzjtOyz/77DMBoEHI19Lrf+yx\nxwQA8eGHH7rsb/HixdKylStXSoFcfadOnfI41FcqlQKAqK6udlr+8MMPu6zliy++cBnGNXfs3LG/\nvn//fmnZ9evXXS4vKCgQAERSUpLLfhwPrpw7d04AEGPGjHFqFxYWJgCITz/91Gm5fZ3uar969apI\nT08Xr7zyitttccfd2NdfhyuuxqGwsFAAEImJiW7bt8S+35yx8qROb/Z/x74dudtvd+zY4VGof/r0\naREbGytWrVrVaDtXmjufLTk3rT2Pnm5XU9vU2Hub+1nS2LqEEMJsNgsAQqVSNdqObrpy5Yro0aOH\nGD16tKipqZG7HCIiIqJbxlCfiKiLefjhh8WAAQNEXV1dq63jk08+EYGBgSIvL6/V1tEZ2cMcvV7v\ntNweGiYkJLhsbzKZXPaXmJgoAIiioiKn5eXl5QKAyMjIaNX1JyQkCADi+vXrLvtzDK1TUlIEAHH1\n6lWXfXnK19dXAGiwf8fFxbmsRafTuQzjmjt27thfNxgM0rLa2tpGl/v4+DS5vTabTQAQUVFRTssX\nLlwo9d2tWzfx6KOPim3btrn8lo693fnz50W3bt3EHXfc0eR6XXE39o7rcMfbcWjJfb85Y+VJnd7s\n/459O3K335aVlTU5pjk5OSIiIkL89re/ddumMc2dz5acm9aeR2+Xu9umxt7b3M+SxtYlxP/td35+\nfo22o/9z7tw54e/vLz7//HO5SyEiIiK6ZT5CCAEiIuoyzpw5g0GDBmH37t2YPHlyq6zjd7/7HTZu\n3Ihr1661Sv+dlf2ayfX/NFssFgQHB8Pf3x9Wq7XJ9nYBAQGw2Wxu1xcSEgKTydTq67dYLAgMDGzQ\nX0BAAGpqagAAgYGBsFqtqK6uRlBQkNuam6JSqVBZWdmgH39/f9TW1jaoxd12tNTYNfW6N8v1ej3W\nr1+PHTt2oLCwEJWVlU7vqd/HZ599hq1btyIrKws6nQ4AkJKSgs8//9zpnhb2dSUkJKCiogJVVVXY\nsmWL1ze8dTf2jW1nU697u9zO2/nzdqw8qceb/d9dH97ut3aFhYW444478Pjjj+O5555zOw6Nae58\ntuTctId59GSbGmvT0p8ldtXV1VAoFFCpVDAYDI22pf8TFxeHX//611i2bJncpRARERHdEt4ol4io\nixk4cCDuvvtu/OEPf2i1dYwZMwb5+fnYunVrq62jM6t/w83y8nIAQExMjFf9xMXFAQBu3LgBcfPb\neU4PxyCpNdYfGxvr9P76/dlfd6y1uLjYq3XUl5SUBAANbjIbHR3daC31NXfsWtOcOXPw2muvYe7c\nubh27ZpUizv3338//vGPf6C8vBwHDhzA5MmTkZ+fj4ULF7ps/+c//xkbN24EADz11FMoLCz0qj53\nYy8Hb+fP27HyhDf7vzvu9tuKigq379Hr9ZgyZYrLQL/+zVYb01rz6c3ctNY82sfB8SBlY2PaVtvr\nDftBC/s8UdPeeecdlJWVYezYsXKXQkRERHTLGOoTEXVBq1atwjfffIPvv/++VfofOXIk1qxZg0WL\nFmHz5s1NnnFIzg4fPuz0+969ewEAkyZN8qqfmTNnAgD279/f4LWDBw9i1KhRrbr+6dOnAwD27dvn\nsj/76wAwe/ZsAMC//vWvBv0cPXoUt99+u0frHDx4MAA0+JaIvfb6tdTfVjtvxy4kJATAzZCwqqpK\nCmNbkr3WVatWITIyEsDNs75d8fHxkUJ5X19fjBkzBtu2bQMAnDt3zuV7Zs+ejYULF2LGjBnQ6/VY\nuHChV/923Y090Dbj48ib+WvOWHnCm/3fHXf77ZEjR1y2t1gsmDFjBubOndvsM/TtGpvPW+HN3LTW\nPMbHxwNwPojYWn8Pm/s53BT7vDh+A4FcE0Jg48aNeOKJJ/D8889zzIiIiKhzaIlr+BARUceTmZkp\n5s+f32r919XViWeffVb4+fmJyZMni//85z+ttq7OAj9dS3nKlCni4MGDwmg0in379omEhAQRERHh\ndINUx/bulJWViZ49e4qEhATx6aefivLycmEwGMSuXbtEWlqa080+W2P9Go1GpKamisTERLFv3z5h\nMBik/lJTU4VGo5Ha6nQ6MWDAAKFSqcTbb78tNBqNMBqNYs+ePaJnz55i7969Ho3hli1bBADx5ptv\nOi3Py8sTarVaqsVoNIqDBw+KKVOmuNwOb8du5MiRAoA4dOiQ+OSTT8S0adM8Gitvlk+ePFkAEM88\n84zQ6XRCq9VKNxiu3xaAmDx5svjhhx9EdXW10Gg04plnnhEAxH333dfoukpKSkRMTIwAXN+42B13\nYy9E24yPI2/m71bGqrHl3uz/7vpwtd8ePnxYjB071mX7Bx54QFru7uGpxuazsb5acm5aax4XLFgg\nAIilS5cKvV4vzp07J+bNm9fs/a2xNs39HG7Khg0bBACxdevWJtt2ZceOHRPjx48X/v7+4sUXX2zV\n+wkRERERtSWG+kREXdTf//53ERAQIK5du9aq6/nuu+/E0KFDhY+Pj5g6dar4+uuvRW1tbauus6Oy\nhzlXrlwR06ZNEyqVSoSGhoopU6aI3Nxcl22bCutu3LghVq5cKbp37y4CAgJEXFycmD59ujhy5Eib\nrF+j0YjFixeLxMRE4e/vLxITE8Xjjz/eINAUQgij0Siee+450bt3bxEYGCiioqLEpEmTxIEDBzwd\nQmGxWERycrK48847G7z2ww8/iClTpojQ0FChUqnEtGnTRF5engAgfH19G7T3ZuxOnDghMjMzRUhI\niBg5cqS4cOGC27Fq7vKSkhIxf/58ERsbKwIDA8WAAQPEtm3bXLY9dOiQeOSRR8Rtt90mAgICRHh4\nuMjMzBSvvPKK0w04w8PDnd7/6aefupzbEydO3NLYt+b43Oq+7+lYeVunEJ7v/4314bjfKpVKMWnS\nJJGTk+Px2DQ31Hc3n4312RqfSy09j0LcDNofeughERMTI0JDQ8X06dNFfn5+s7epqTaeboM38zVy\n5EiRnJzs8kbAXZ3NZhNffvmldCB05MiRHn2GEREREXUkvFEuEVEXZbVakZaWhp///OdYv359q6/v\nyy+/xLp163Dw4EF069YNCxYswIMPPogBAwa0+ro7Ck9vkNhZ199SvvjiC0yfPh0ff/wx5s6d22jb\noqIiJCUlITY2FiUlJW1UYeflze7MxLEAACAASURBVNhT+8f5bJ+2bNmC+fPnY9euXZg6darc5bQb\np0+fxieffIIPP/wQxcXFGDduHJ555hlMnDhR7tKIiIiIWhyvqU9E1EUFBARg6dKleOuttxrcGLU1\n3HvvvThw4ADOnTuHefPm4b333kNGRgZ69OiBX/3qV8jOzkZNTU2r10Gd39SpU/HXv/4VS5YscbpG\nv4+PDy5duuTU9sCBAwCA8ePHt2mNnZW7saeOifPZ/uzYsQNPPvkkNm3a1OUD/erqauzduxfLli3D\nbbfdhsGDB2Pr1q1YtGgRLl68iKysLAb6RERE1GnxTH0ioi7MZDIhLS0NixYtwmuvvdam666rq8Ox\nY8ewc+dO7Ny5E7m5uQgJCcHo0aMxYcIEjB8/HkOHDoW/v3+b1iUnuc+Ul3v9Le348eNYvXq1dINK\nHx8fTJo0CZs2bUJcXByOHj2KRYsWQa/X49ixY+jTp4+8BXci9ceeOjbOZ/sxbtw4rF+/HiNGjJC7\nlDZntVpx4sQJZGdnIysrC0eOHIHZbMbAgQMxffp0zJgxA8OGDZP+lhERERF1Zgz1iYi6uN///vd4\n4YUXkJeXh7i4ONnquHLlCrKyspCVlYXs7GwUFxcjNDQUw4YNw6hRozBq1CiMHDkSsbGxstXYmuqH\nEG3951nu9beFffv24S9/+QsOHz4MrVaLiIgIjB8/Hi+++CIDfSKidkaj0eDo0aP47rvvcPToUZw8\neRJmsxlJSUmYMGGC9EhJSZG7VCIiIqI2x1CfiKiLq66uRnp6OubMmYM//vGPcpcjOXfuHL777jvp\nf+bPnz+Puro6pKSkICMjAwMHDkRmZiYyMjLQq1evLnVGPxERUWdhtVpx4cIFnD17Fv/9739x5swZ\nnD17FoWFhfD19UW/fv2kg/ujR49Gr1695C6ZiIiISHYM9YmICBs2bMCaNWvw448/Ijk5We5yXLJf\nIuX06dP473//i7Nnz+LChQuwWq0ICgpC//79MXDgQKfAPyYmRu6yiYiI6CclJSU4c+aM9Hf87Nmz\nyMnJQU1NDQICAtC3b1/p7/iQIUMwYsQIhIWFyV02ERERUbvDUJ+IiGCxWNCzZ0/cd9992Lhxo9zl\neKympgY5OTnSWX32M/xKS0sBAHFxcejduzfS09PRs2dPp5+hoaEyV09ERNT5VFZW4scff8SlS5ec\nfl64cAFlZWUAgPj4eKdv3A0cOBB9+/ZFYGCgzNUTERERdQwM9YmICADw17/+FcuXL8f58+fRvXt3\nucu5JfYzAc+ePesUKBQUFKCurg4AkJiYiJ49e0ohv2PgHxISIvMWEBERtV8mk6lBcH/p0iVcvHgR\nGo0GAODn54eUlBTp72vPnj0xYMAAfpOOiIiIqAUw1CciIgA3r2nbp08f3H333Xj77bflLqdVWCwW\n5OXlOQUQ9uf1A//U1FR069YN3bp1Q0pKClJSUqTfO+vNeomIiICbB8cLCgpQUFCA/Px8XLt2zen3\n4uJiADeD+27dujU4QN6zZ0+kpaXxzHsiIiKiVsJQn4iIJO+++y6WLFmCc+fOoUePHnKX06YcA/8r\nV67g6tWrUoBRUFAgnXkIAMHBwY2G/ikpKTzbn4iI2iWTyYT8/Hy3oX1BQQGqq6sBAD4+PoiPj3f6\nG5eamoq0tDT07NkT3bt3R1BQkMxbRERERNT1MNQnIiKJzWZDv379MHToUHz88cdyl9Ou1NTUoLCw\nEEVFRSguLsbly5dx+fJl6fdLly6hoqJCah8cHIyIiAgkJiYiISHB7c+4uDj4+fnJuGVERNQZ6HQ6\nFBUVQafTobi4WPr75PjT/ppdcHAwEhMTkZaWJv1tSktLk35PTU2FUqmUcauIiIiIyBWG+kRE5OTz\nzz/HzJkz8e2332Ls2LFyl9OhaLVaFBQUoLCwEBqNBkVFRSgtLcX169dRWlqKoqIiaDQa6QxIAAgI\nCEBsbCwSEhIQHx+PhIQEKeyPj49HdHQ0oqOjERUVhejoaB4AICLqImw2G7RaLcrLy1FeXg6tVovi\n4mLp70pJSQmKi4ulZTabTXqvQqGQ/qbExcUhKSkJsbGxSExMRFxcnHTWfWRkpIxbSERERETNxVCf\niIgauOeee1BaWoqTJ0/C19dX7nI6Hb1e3yDwdwxoNBoNNBoNtFptg/faw33HoD8mJgYxMTFOy6Kj\noxEbG4uwsDAZtpCIiOrT6/UoKytzCunLy8tRWlraYFl5eTlu3LjRoI/o6GjExcU5HQC2B/WOwX14\neLgMW0hEREREbYWhPhERNZCbm4tBgwZh06ZNePTRR+Uup8uy2WwNQh57+OO4rKysDGVlZdBqtaiq\nqnLqIzAwUAr6IyIiEBERAbVa3eC5q2W8LwARkTOTyQSdTge9Xu/0090ynU4nfWZbrVanvkJDQxEV\nFdXogVnHZVFRUfD395dpy4mIiIioPWGoT0RELj399NPYvn07Ll68yDP+OpCqqipotVop6Hc8+9Mx\nZKofPjleEsguMDCwyfA/LCwMarUaSqUSKpUKSqUS4eHhCA8Ph1Kp5A0UiajdsFgsMBqNMBgMqKio\ngNFoRGVlJYxGIyoqKmAwGBoN6PV6PWpqahr0q1Ao3B4sjYyMdArl4+LipN8VCoUMo0BEREREnQFD\nfSIickmn06FXr15YuHAh1q9fL3c51MrMZrNHZ57Wf80ejtXV1bnsNzAwEEqlUjoA4Bj+R0RESM9V\nKhVUKhXUarW0LCQkBGFhYQgKCoJKpUJoaCgCAwPbeGSISC41NTUwmUwwGo2wWCwwGAyoqqqSwnj7\nZ5A9mK+srIROp3MK641GI/R6PYxGY4Mz5e18fX2lg5H1D2B68s2m4ODgNh4ZIiIiIurqGOoTEZFb\nGzduxKpVq3D27Fn06tVL7nKoHTOZTA3OeHUM1uyhmuMynU7nFMYZDAbo9Xo09p8mPj4+UoimUCgQ\nHh6OoKAgKJVK6ZsB4eHhUCgUCA4OhlqtRlBQEEJDQ6FSqRAUFISwsDCEhIQgKChI+mnvz76MiBpn\nMplQU1MDs9mM6upqVFdXw2w2w2KxoKqqCgaDQToz3mQywWKxQK/XS+0qKipgsVhQWVmJyspKWCwW\nVFRUSP019VlgD+LDwsKcDg7aDww6LouIiHA6oFj/G0b8N09EREREHQ1DfSIicqu2thaDBw/Gbbfd\nhp07d8pdDnUR9gMEJpPJo2Cwurra5dm8FotFurSQva27bxTUFxAQAKVSCT8/P4SFhUkBIgBEREQA\nAMLDw+Hr64uwsDD4+flBqVQiICBAOlBgP7AAQHoNAFQqlXRdbPt76z+3913/OXVNdXV1qKioAHDz\nc9lgMAC4ed8No9HY4LnVakVlZWWD5/UDePuZ8Pb32tcjhIBerwcAKVw3GAyora2F0WiEzWbzqG77\nvx/7v4mIiAjpwFlTB+Qc29b/xo5SqURoaGjLDTARERERUQfDUJ+IiBqVlZWFu+++G7t378Y999wj\ndzlEt8QecFZWVkrPrVZrg7OO7Wcb29vUDz2Bm5eoAhqGnvX7BODVAYXGqNVq+Pj4NHhuP9Bg5+/v\nD5VK5dEyHx8fKJVKaZk9iHXkapkr9evwhuP2eMoxfPaWp+91NXeultnnv6ll9UNxxzocnzvua7fC\nce7sIbn9oJV9n3B10Mo+H00dtKrfZ2BgoPTNGN7UlYiIiIiodTDUJyKiJs2aNQu5ubk4ffo0b+xH\ndIscLyvi+Nx+kMDxuSeBr6vw134mdmPLKisrcfr0aZSUlGD06NHSTY3tBzQc2c/oboz92xHNYT+Y\n0hz2Sye11ntd3cvB1TJ72N2cZY7fxvDkwI39uf1yVACcgnnH50RERERE1Pkw1CcioiYVFRWhf//+\neOKJJ/Dqq6/KXQ4R3QK9Xo9169bhT3/6E1JTU/HSSy/hZz/7mdxlERERERERkYcY6hMRkUc2bdqE\nZcuW4dixYxgyZIjc5RCRl2w2G95991385je/gc1mw+rVq/GrX/2qwRnnRERERERE1L4x1CciIo/U\n1dVh3LhxMJlMOHLkCINAog5k7969WLlyJc6fP4+FCxfilVdeQXR0tNxlERERERERUTP4yl0AERF1\nDL6+vnj33Xdx8eJF/L//9//kLoeIPHD+/HlMmzYNEydORGpqKnJzc/HWW28x0CciIiIiIurAGOoT\nEZHH0tPT8cYbb+B3v/sdsrKy5C6HiNzQarVYvnw5MjIyUFxcjP3792PXrl1IT0+XuzQiIiIiIiK6\nRbz8DhEReW327Nk4ceIETp8+jcjISLnLIaKf1NTUYNOmTXj++ecRGhqK559/Ho8++ij8/PzkLo2I\niIiIiIhaCEN9IiLymlarxZAhQ9C/f3/8+9//hq8vv/hFJLddu3ZhxYoV0Gg0ePrpp/HrX/8aKpVK\n7rKIiIiIiIiohTGFISIir0VFReHTTz9FVlYWXn75ZbnLIerSTp48ibFjx2LGjBkYOnQocnNzsW7d\nOgb6REREREREnRRDfSIiapYRI0bgj3/8I1588UV89dVXcpdD1OUUFhZi8eLFuP3221FTU4PDhw9j\n+/btSE1Nlbs0IiIiIiIiakW8/A4REd2S+fPn49///jeOHDmCPn36yF0OUadnMpmwceNGvPzyy4iM\njMRLL72E+fPnw8fHR+7SiIiIiIiIqA0w1CcioltSXV2NCRMmQKPR4NixY4iJiZG7JKJOqa6uDh99\n9BHWrl0Lo9GIVatWYe3atQgODpa7NCIiIiIiImpDvPwOERHdkuDgYOzYsQN1dXWYM2cOampq5C6J\nqNPJzs7G0KFD8eijj2L69OnIy8vDCy+8wECfiIiIiIioC2KoT0REtywuLg47d+7EqVOnMG/ePNTW\n1spdElGn8OOPP2LOnDmYMGECoqOjcerUKbz11luIjY2VuzQiIiIiIiKSCUN9IiJqEQMHDsTu3bux\ne/duLFq0CLy6G1Hz6XQ6rF27FhkZGTh79iz+/e9/45tvvkFGRobcpREREREREZHM/OUugIiIOo87\n7rgDO3bswPTp0xEeHo4NGzbIXRJRh2K1WvH3v/8dzz33HOrq6vD666/jqaeegr8//5ONiIiIiIiI\nbuL/IRIRUYuaOHEitm7dijlz5iAqKgrPP/+83CURdQh79+7FihUr8OOPP2LJkiX47W9/i/DwcLnL\nIiIiIiIionaGl98hIqIWd//99+Odd97Biy++iD/84Q9yl0PUruXm5uLee+/FxIkT0b17d5w7dw5/\n+tOfGOgTERERERGRSzxTn4iIWsUjjzyC8vJy/O///i/UajUeffRRuUsialfKy8vx0ksv4c0338Tg\nwYNx4MABjBkzRu6yiIiIiIiIqJ1jqE9ERK1m1apVqKysxGOPPQaj0YgVK1bIXRKR7MxmMzZs2IBX\nX30VKpUKf/nLX/DLX/4Svr78AiURERERERE1jaE+ERG1queffx6RkZFYsWIFNBoN1q1bJ3dJRLIQ\nQuAf//gHVq9ejbKyMixduhTPPfcclEql3KURERERERFRB8JQn4iIWt3TTz+NiIgILFy4EAaDARs3\nbuRZydSlHD9+HCtXrsSRI0cwb948vP7660hISJC7LCIiIiIiIuqAGOoTEVGbePjhhxEeHo45c+ZA\nr9fj/fffR0BAgNxlEbWqgoIC/PrXv8ZHH32EcePG4T//+Q8GDRokd1lERERERETUgfE0SSIiajPT\np0/H7t278cUXX2DmzJmoqqqSuySiVmEymfDCCy+gV69eOHr0KLZt24asrCwG+kRERERERHTLfIQQ\nQu4iiIioazl+/DjuvfdepKen47PPPkNiYqLcJRG1iLq6Onz00UdYvXo1ampqsGbNGqxYsQJBQUFy\nl0ZERERERESdBM/UJyKiNjdixAgcPnwYer0eI0aMwIkTJ+QuieiW7du3D4MHD8Yvf/lLzJgxAxcu\nXMCaNWsY6BMREREREVGLYqhPRESy6N27N06cOIEhQ4ZgzJgxeP/99+UuiahZLly4gDlz5uB//ud/\nEBsbi++//x5vvfUWYmJi5C6NiIiIiIiIOiGG+kREJBuVSoUdO3ZgxYoV+MUvfoHly5ejtrZW7rKI\nPHLjxg2sXbsWAwcORE5ODr788kt888036N+/v9ylERERERERUSfGa+oTEVG78PHHH+PRRx/FXXfd\nhY8//hhqtVrukohcslqt+Mtf/oIXXngB/v7+eO6557B06VL4+fnJXRoRERERERF1AQz1iYio3Th2\n7Bjuv/9+qFQqbNu2DZmZmXKXRORk165d+NWvfoWioiIsW7YMzz77LMLCwuQui4iIiIiIiLoQXn6H\niIjajdtvvx0nTpxAQkICRo4ciY0bN4LHnqk9OHXqFMaNG4cZM2ZgyJAhyMnJwbp16xjoExERERER\nUZtjqE9ERO1KYmIisrKysG7dOqxcuRIzZ86EVquVuyzqooqKirB48WKMGDECZrMZBw8exPbt29G9\ne3e5SyMiIiIiIqIuipffISKiduvYsWP4+c9/DqvVii1btmDs2LFyl0RdRFVVFf785z/jlVdegVqt\nxssvv4z58+fDx8dH7tKIiIiIiIioi+OZ+kRE1G7dfvvt+P777zF69GhMmDABa9euhdVqlbss6sSE\nEPj000/Rr18/vPTSS1i5ciUuXryIBQsWMNAnIiIiIiKidoFn6hMRUYfwwQcf4IknnkBGRgbeffdd\n9OvXT+6SqJM5evQoVq5ciWPHjmHevHlYv3494uPj5S6LiIiIiIiIyAnP1Cciog5hwYIFOH78OIQQ\nGDJkCF599VXYbDa5y6JOID8/HwsWLMAdd9yBkJAQnDp1Ch988AEDfSIiIiIiImqXGOoTEVGH0b9/\nfxw5cgQbNmzAq6++iqFDh+I///mP3GVRB6XX67F27Vr06tULx48fx7Zt27B3715kZmbKXRoRERER\nERGRWwz1iYioQ/H19cXjjz+OM2fOIDIyEiNHjsTatWthsVjkLo3agaqqKjz99NO4du2a2zY2mw1v\nv/02evfujc2bN+PFF1/EmTNn8LOf/awNKyUiIiIiIiJqHob6RETUIaWlpWHfvn34/e9/j40bN2L4\n8OE4fPhwo+85ffo09u/f3zYFUpurra3FnDlzsHHjRixfvtxlm71792LIkCFYunQpHnzwQeTl5WHN\nmjUIDAxs42qJiIiIiIiImoehPhERdVi+vr5Yvnw5zpw5g/j4eIwZMwaPPPIINBpNg7Y2mw2zZ8/G\nxIkT8fXXX8tQLbW2ZcuWYc+ePQCAzz//HAcOHJBeO3/+PKZNm4aJEyciNTUVubm5+NOf/gS1Wi1X\nuURERERERETNwlCfiIg6vLS0NHz99ddSkJueno4XXngBNTU1Upv3338fV69eRV1dHWbMmIEjR47I\nWDG1tPXr12PTpk2ora0FAPj7++Opp55CWVkZli9fjoyMDBQXF2P//v3YtWsX0tPTZa6YiIiIiIiI\nqHl8hBBC7iKIiIhaitlsxuuvv47XX38dqamp+POf/4wxY8YgLS0NGo0GQgj4+fkhODgYBw8exODB\ng+UumW7R9u3b8eCDD6L+f9L4+voiNTUVNTU1eOWVVzB//nz4+vJ8BiIiIiIiIurYGOoTEVGndOnS\nJSxfvhy7d+/GlClTsGfPHtTV1Umv+/v7IywsDN999x169+4tY6V0Kw4ePIi7774bNputQajv4+OD\nyMhI5ObmIjY2VqYKiYiIiIiIiFoWT1cjIqJOKT09HV988QU++eQTHD582CnQB25eY99oNGLcuHHI\nz8+XqUq6FefOncO0adNQV1fXINAHACEEKioqsGnTJhmqIyIiIiIiImodDPWJiKhTO3/+PEwmk8vX\nrFYrtFotxo0bh5KSkjaujG5FWVkZpkyZgqqqKuk6+q7YbDa8+uqrKCgoaMPqiIiIiIiIiFoPL79D\nRESdlk6nQ0pKCiorKxttFxAQgF69euHQoUNQq9VtVB01V2VlJe68807k5ubCarU22d7HxwcLFizA\ne++91/rFEREREREREbUynqlPRESd1muvvYbq6uom21mtVly4cAH33XefR+1JPjabDQ888ECjgb6f\nnx8CAwOl35VKJYKCgtqqRCIiIiIiIqJWxTP1iYio00pNTUV+fj78/Pzg7++Pmpoal9det/P398c9\n99yDHTt2wN/fvw0rda2iokK6F4DFYkFVVZXL1+xMJhNqamo86rt+f00JCAiAUqn0qK2Pj4/LbzyE\nhYXBz88PABAYGIjQ0FCXrzXm8ccfx+bNm53qqq2tRV1dHfz8/JCWloZhw4YhMzMTAwcOREZGBpKT\nkz2qm4iIiIiIiKgjYKhPRESd1o0bN3D27Fn8+OOPuHjxIi5cuIDc3FxcvXoVNpsNwM1Q2M/Pz+kM\n/YceeghvvvkmqqurUVVVBZ1OB7PZjOrqahiNRthsNilAty+vrq6G2WxGTU0NTCYTrFYrKisrUVtb\nC4PBgLq6OlRUVAC4eVkgO71eLx1o8DZo76zqH0BQqVTw9/eH2WxGcXGx1EalUiEyMhKRkZGIiYlB\nQkICgoODERoaCn9/f6hUKvj5+SEsLMzpQINarYa/vz/CwsKgVCoREhICpVLp8YEFIiIiIiIiIjkx\n1Cciok6hqqoKFRUVDR56vR4VFRUwmUwwm83Q6XQwmUzQarUoKSmBXq+H0WiEyWSCxWJpcPa7OwqF\nAsHBwQgKCkJISIh05nljYXJERAQAIDw8HL6+N6+AZw+sAUjvtWvsNaVSiYCAAKea7Ov0lFqtho+P\nj0dtKysrPbp+PQDpQEd9jgcz7AdB7BwPbrh7rba2FhcuXIBarUZtbS2sVqvXB1eaYp9PtVoNhUIh\nPQ8JCYFCoUB4eDiUSiUUCgVUKhXCw8MRHh6OsLAw6bnjg4iIiIiIiKilMdQnIqJ2Q6/Xo6ysDFqt\n1unhLqy3B/YVFRVuA+eIiAiEh4cjNDQUCoWiQUBrX24/azswMBBmsxm9evVCSEgIQkNDER4eLgW8\nISEhvD57B2b/xoQ97DcYDDCbzTCZTKioqIDZbHb6dobZbIZer0dVVRXMZrPTASKDwQCDweDR/tfY\nIyoqyuWjPVwCioiIiIiIiNofhvpERNQqTCYTNBoNNBqNU0DvKrTXarUoLy9HbW2tUx/BwcGIioqC\nWq1uEISq1WqXy3mmNMnB3TdFdDqdy+WOB6e0Wi2MRmODPtVqNWJiYtyG/vbXYmNjERcXh6ioKBm2\nnIiIiIiIiNoaQ30iIvKYxWKBVquFTqdDcXExioqKpJ+Oy+zPHQUHByMiIqLBIzExEQkJCS5fS0hI\n8PjyMEQdnU6nk/79uHo4/vvS6XQoLS11OhAWGBiIqKioBv+u7M8dl/HfFhERERERUcfFUJ+IiADc\nPNM4Pz8fBQUFKCwsdHpeUFCA4uJip2uiAzev+Z6YmIjY2FgkJCQgLi4OsbGxSEpKQmxsLOLj4xEf\nH4+oqCgEBwfLtGVEnVNtbS20Wi1KS0ulb8WUlpaiqKhIWlZcXIzS0lKUlZXB8T/5QkJCpKA/NTUV\nycnJSE5ORkpKCrp164bk5GRER0fLuHVERERERETkDkN9IqIuori4GHl5ebhy5QoKCwsbBPdarVZq\nq1AoGgR98fHxDQJ8hUIh4xYRkadsNhtKS0tRUlIiBf3Xr19HUVGRV58D3bp1Q7du3dCjRw+kpqY2\nuFkzERERERERtT6G+kREnYTVakVBQQEuX77c4HHx4kXpmt32S3QkJiYiLS1NOls3LS1N+p2X5iDq\nmiwWixT2FxcX4/Lly07PL1++7PSNnYiICPTr1w/9+/eXPkPS0tKQnp7Oe1oQERERERG1Eob6REQd\nzPXr15Gbmys98vLykJeXh4KCAun62lFRUejRowd69OiBtLQ06XmPHj2QmJjIwJ6Imk2n0yEvLw+X\nL1+WPn/sj+vXr6Ourg4AEBsbK33+9O3bF3379sWAAQOQlpYGf39/mbeCiIiIiIio42KoT0TUTtnD\n+5ycHKefer0eABAdHY0BAwYgPT29QYCvVqtlrp6IuiKLxYIrV644Bf2XLl3C+fPncfXqVdTV1SEo\nKAh9+vSRQn6G/URERERERN5hqE9EJLO6ujqcP38eJ0+exMmTJ3Hq1Cnk5ORI4X1MTIxT8GX/yZtY\nElFHUlVVhXPnzjU4UGkP+wMDA9G3b19kZmZi2LBhGDZsGAYNGsR7dxAREREREdXDUJ+IqI1dunRJ\nCvBPnDiB77//HkajEUFBQcjMzMTQoUORkZHB8J6IugR72G8P+k+dOoWTJ09Cp9PB398f/fv3l0L+\n4cOHY+DAgbxBLxERERERdWkM9YmIWlFtbS1OnTqFrKws7N+/H0ePHoVer0dAQAAGDBggBVXDhg1D\nRkYGgyoiop/k5eVJB0Dt32IyGAzSAdC77roL48ePx5gxY6BUKuUul4iIiIiIqM0w1CciakFCCOTk\n5GDfvn3IysrCgQMHoNfrER8fjwkTJuCOO+7AsGHDkJmZieDgYLnLJSLqMOrq6nDx4kWcPHkSx44d\nQ3Z2NnJychAQEIARI0ZgwoQJmDBhAkaNGoWgoCC5yyUiIiIiImo1DPWJiG5RRUUFdu/ejc8//xxZ\nWVkoLS1FREQE7rrrLilk6t+/v9xlEhF1OhqNBtnZ2cjKykJWVhYuX74MhUKB0aNHY+rUqZg5cyZu\nu+02ucskIiIiIiJqUQz1iYiawWAw4J///Ce2bduG7Oxs1NXV4a677sKkSZMwYcIEDB48GH5+fnKX\nSW3kxIkTWL16NbKzs+UuReLj4yM976p/6tvjvHiqvczf+PHjsX79egwfPly2Grxx9epVZGVlYe/e\nvdi9ezf0ej0GDRqE2bNn4+GHH2bAT0REREREnYKv3AUQEXUk+/fvx7x585CQkIAnnngCCoUCf/vb\n31BSUoK9e/di9erVGDZsGAP9LuRvf/sbJk2ahOXLl8tdipOuGuTbtcd5GTNmDMaMGeNR2/Yyf8uW\nLcPEiROxefNmuUvxyG23dMO9XAAAE/VJREFU3YZFixZh69atKC0txVdffYWRI0diw4YNSEtLw113\n3YX3338fFotF7lKJiIiIiIiajWfqExE1wWazYcuWLXjjjTdw+vRpjBw5EgsWLMCDDz6IiIgIucsj\nGe3evRtTp07Fxx9/jLlz57baeuxnbXv7J7u572vpPtp6vW01L94aPXo0AODw4cMetW+rsW9qPVu2\nbMH8+fPxxRdfYMqUKa1aS2uxWq3Ys2cPPvjgA+zcuRNqtRpLlizB008/jejoaLnLIyIiIiIi8gpD\nfSKiRuzYsQPPPvss8vLyMGfOHKxYsQLDhg2TuyxqB2pqapCeno6UlBQcOnSoVdfFUN9zbTkvra29\nhPoAMGrUKBQVFeHSpUsICAho1XpaW3FxMd5880289dZbsFqtWL16NVasWIGQkBC5SyMiIiIiIvII\nL79DRORCWVkZZs2ahdmzZyMjIwO5ubn46KOPGOiT5J///CcKCgrw0EMPyV0KOeC8tI6HHnoI+fn5\n+Oc//yl3KbcsISEBL7/8Mq5evYpnnnkG69evx4ABAzr8QSAiIiIiIuo6GOoTEdWTm5uLzMxMnD59\nGtnZ2di+fTvS09PlLqvF+Pj4SI/c3Fzcc889CAsLg1KpxNSpU3Hu3Dm37fPy8nD//fcjIiJCWmZX\nWlqKJ554AsnJyQgMDERSUhIef/xxaDSaNlm/RqPB4sWLpfUnJydjyZIlKCkpaTAG1dXVWLduHQYP\nHozQ0FAEBwejT58+WLJkCY4ePerROO7cuRMAXB7o2bt3L+677z5EREQgODgYQ4YMwSeffNKgnSfb\n5riN9uW//OUvnfrJycnBvffeC6VSifDwcMyaNQv5+flua/dmrppat6d9AZ6PuyfrdcfdvHi6HzVn\n7rzdj+vzdv7aev8CIN0o1z6+nUFoaCjWrFmD3Nxc9O7dG+PHj8d7770nd1lERERERERNE0REJMnP\nzxexsbFi7NixoqKiQu5yWg0AAUDccccd4tChQ8JoNIq9e/eK+Ph4ERERIa5cueKy/cSJE8Xhw4dF\nVVWV+PLLL4X9z4hGoxGpqakiLi5OfPXVV8JoNIoDBw6I1NRU0b17d6HT6Vp1/cXFxaJbt24iMTFR\n7Nu3TxgMBqm/1NRUodFopL4MBoMYNmyYUKlUYvPmzUKj0Qij0Siys7NF3759had/Gnv37i0AOPXt\nWO/MmTNFWVmZuHbtmpg4caIAIPbs2eN2Ltxtm2MbVy5duiTUarW07UajUXz77bdi8uTJLt/X3Lly\nxZu+vB33xtbbmKbmxZOx9nbuvN2PHXk7f82tsbn7l11RUZEAIPr06dNou46qrq5O/OY3vxG+vr5i\n+/btcpdDRERERETUKIb6REQOHnjgAdGnTx9RWVkpdymtyh7iffnll07L33vvPQFAPPLIIy7bZ2dn\nu+xv8eLFAoB45513nJZ/9tlnAoB49tlnW3X9jz32mAAgPvzwQ5f9LV68WFq2cuVKAUC88cYbDfo5\ndeqUx0GyUqkUAER1dXWD1wA4Bbrnzp0TAMSYMWNctm1s2xzbuPLwww+73PYdO3a4fF9z58oVb/ry\ndtybG+o3NS+ejLW3c+ftfuzI2/lrbo3N3b/szGazACBUKlWj7Tq6J598UsTGxgq9Xi93KURERERE\nRG7xRrlERD+prq5GWFgYPvjgAzz44INyl9Oq7Jfc0Ov1CA8Pl5Zfv34dycnJSEhIQFFRUYP2JpPJ\n5c0kk5KSUFRUhKKiIiQkJEjLtVotoqOjkZGRgTNnzrTa+hMTE1FcXIzr168jMTGxQX9JSUkoLCwE\nAKSmpiI/Px9Xr15FamqqJ8Plkp+fH+rq6lBXV+fykiqOamtr4e/vj6ioKJSXlzu91tS2ObZx9Sc7\nPj4eJSUlDba9vLwcMTExDd7X3LlytW5v+vJ23Jt7k9jG5sWTsa7Pk7nzdj923CZv56+5NTZ3/7Kr\nq6uDn58f/Pz8YLPZGq2nI6uoqEB0dDS2b9+OWbNmyV0OERERERGRSwz1iYh+cvXqVXTv3h3Hjh3D\niBEj5C6nVbkL8SwWC4KDg+Hv7w+r1dpke7uAgIBGg76QkBCYTKZWX7/FYkFgYGCD/gICAlBTUwMA\nCAwMhNVqRXV1NYKCgtzW3BSVSoXKysoG/ej1eqxfvx47duxAYWEhKisrnd5Xfxs8CVQba+Pv74/a\n2toG2+7ufS01V9725e24NzfUdzcvnvTZUnPnzX7s7fy19f5lV11dDYVCAZVKBYPB4LZdZ5CQkIBn\nnnkGy5Ytk7sUIiIiIiIil3ijXCKin6SmpiIiIgJff/213KW0Ga1W6/S7/Sxf+xnCnoqLiwMA3Lhx\nA+Lmpd2cHo4hcWusPzY21un99fuzv+5Ya3FxsVfrqC8pKQnAzZDV0Zw5c/Daa69h7ty5uHbtmjQG\nrSU6OhpAw22vqKhw2b65c3WrfbXUuDfF3bx4orlzdyv7sbfz19b7l51OpwPwf+PbWZ0+fRoajQaD\nBg2SuxQiIiIiIiK3GOoTEf3Ex8cHa9euxWuvvYYTJ07IXU6bOHz4sNPve/fuBQBMmjTJq35mzpwJ\nANi/f3+D1w4ePIhRo0a16vqnT58OANi3b5/L/uyvA8Ds2bMBAP/6178a9HP06FHcfvvtHq1z8ODB\nAIBr1645Lbdv06pVqxAZGQng5pnbt8J+2RSr1YqqqiopCAb+b6zqb/uRI0dc9uXtXDW2bm/68nbc\nG1tvY9zNiyeaO3e3sh97O39tvX/Z2cezM4fder0eixYtwp133okxY8bIXQ4REREREZF7LX2RfiKi\njqympkZMmzZNhIeHi927d8tdTqvBTzfGnDJlijh48KAwGo1i3759IiEhQURERDjdhNOxvTtlZWWi\nZ8+eIiEhQXz66aeivLxcGAwGsWvXLpGWlib279/fquvXaDQiNTVVJCYmin379gmDwSD1l5qaKjQa\njdRWp9OJAQMGCJVKJd5++22h0WiE0WgUe/bsET179hR79+71aAy3bNkiAIg333zTafnkyZMFAPHM\nM88InU4ntFqtdJNYV9vQ1LYJIcTIkSMFAHHo0CHxySefiGnTpkmv5eXlCbVaLW270WgUhw8fFmPH\njnXZt7dz1di6venL23FvbL2NcTcvQjQ91s2du1vZj72dv7bev+w2bNggAIitW7c22ldHdeXKFTF0\n6FCRnJwsLl26JHc5REREREREjWKoT0RUj8ViEfPnzxc+Pj7iySefFDdu3JC7pBZnD/quXLkipk2b\nJlQqlQgNDRVTpkwRubm5Lts6Ply5ceOGWLlypejevbsICAgQcXFxYvr06eLIkSNtsn6NRiMWL14s\nEhMThb+/v0hMTBSPP/64U6BvZzQaxXPPPSd69+4tAgMDRVRUlJg0aZI4cOCAp0MoLBaLSE5OFnfe\neafT8pKSEjF//nwRGxsrAgMDxYABA8S2bdtc1u/ptp04cUJkZmaKkJAQMXLkSHHhwgWn13/44Qcx\nZcoUERoaKpRKpZg0aZLIyclx2683c9XUur3py5txb2q97ribF0/G2pu5c+yzOfuxI2/mT479S4ib\nwX9ycrKwWCxuRr5jstls4u233xZhYWEiIyND5OXlyV0SERERERFRk3ijXCIiN7Zt24ann34aNpsN\na9aswZNPPgmVSiV3WS2iuTch7SzrbylffPEFpk+fjo8//hhz586Vuxz6SVvNS2fZj5uyZcsWzJ8/\nH7t27cLUqVPlLqdF1NXV4fPPP8dvfvMbXLx4EcuWLcPLL7+M4OBguUsjIiIiIiJqEq+pT0Tkxty5\nc5GXl4elS5fi5ZdfRrdu3bBy5Urk5eXJXRq1E1OnTsVf//pXLFmyxOW14kkenJeWs2PHDjz55JPY\ntGlTpwj0DQYDNmzYgN69e2P27Nno168ffvjhB/z+979noE9ERERERB0Gz9QnIvKATqfD5s2b8eab\nb6KgoAB33nknFixYgAceeABqtVru8rwm9xnGcq+/pR0/fhyrV692ecNYkk9rz0tn249dGTduHNav\nX48RI0bIXUqz1dbW4uuvv8aHH36If/3rX/D19cX8+fOxfPly9OnTR+7yiIiIiIiIvMZQn4jICzab\nDV999RU++OAD7Ny5E0IITJgwAbNmzcJ9992HuLg4uUtskj2ItGvrPwNyr5+oJXA/bt+qq6vxzTff\nYMeOHdi1axe0Wi3uuOMOLFiwAHPmzOmQB2OJiIiIiIjsGOoTETWTXq/Hzp07sWPHDnz11VewWCwY\nPHgwxo8fjwkTJmDMmDFQKpVyl0lE1OnV1tbi1KlTyMrKQlZWFg4fPgyz2YwRI0Zg1qxZeOCBB5CW\nliZ3mURERERERC2CoT4RUQuoqqrC119/jX379iE7Oxs5OTkICAjAiBEjMGHCBIwfPx6jRo3iNZuJ\niFqAEAI//PCDFOJ/++23qKioQHx8PMaPH4/x48dj6tSpSExMlLtUIiIiIiKiFsdQn4ioFWg0GmRn\nZyM7OxtZWVnIy8uDQqHAkCFDMGzYMOnRq1cv+PrynuVERI3RaDQ4efIkTpw4gZMnT+L48eMoLy9H\nZGQk7rrrLungaf/+/eUulYiIiIiIqNUx1CciagP5+fnIzs7GsWPHcPLkSfz3v/9FTU0NwsLCMHTo\nUKegn5eIIKKuTKvV4uTJk06PwsJC+Pj4ID09HcOHD8fw4cMxduxYDBo0iAdGiYiIiIioy2GoT0Qk\ng5qaGpw5c8bpzNPc3FzYbDZERkZiwIAB6Nu3r/Szf//+iI+Pl7tsIqIWYzQacf78efzwww84d+6c\n9PPq1asAgNTUVOlg5/DhwzF06FDe4JaIiIiIiAgM9YmI2o2qqiqcPn0ap06dksKtnJwcaLVaAEBk\nZCT69++Pfv36ST/79u3La0YTUbtmMBhchvfXrl0DACgUCvTp00f6bMvMzMTw4cMRExMjc+VERERE\nRETtE0N9IqJ2TqfTIScnB7m5uU4/i4uLAQBBQUFISkpCWlqa06Nfv37o3bs3/P39Zd4CIursdDod\nLl++7PJx5coVCCEQGBiI9PT0Bgcn+/TpAz8/P7k3gYiIiIiIqMNgqE9E1EGVlpYiJycHeXl50uPy\n5cvIy8uDXq8HAAQEBCA1NRU9evSQHt27d0dycjKSk5MRHx8PHx8fmbeEiNq7iooKFBYW4tq1aygo\nKHD63MnLy0NlZSWAmwcZu3fv7vSZ06NHD/Tp0wfdu3fn9e+JiIiIiIhaAEN9IqJOSKvVNgjd7IH/\n9evXpXaBgYFISkpCcnIyUlNTpbA/JSVFes5LYBB1biaTCfn5+SgoKMD169el54WFhSgoKEBBQQGM\nRqPUXq1WNwjt09LS0KNHDyQnJzO4JyIiIiIiamUM9YmIuhiLxYLr16+jsLDQbZBXXl4utQ8ODkZK\nSgri4+ORkJCAuLg4xMXFITExETExMUhISEB8fDxiY2N5qR+idqSsrAylpaXQaDQoLi5GWVkZioqK\nUFJSgpKSEhQVFeH69evQ6XTSe0JCQqQDfElJSU4H+7p164aUlBSoVCoZt4qIiIiIiIgY6hMRUQNm\nsxn5+fkoLCyULrlRWlqKoqIip5CwqqrK6X2xsbGIjY11CvoTExMRFRXl8kFEnqusrIRWq0V5eTnK\ny8uh1Wqh1Wpd/tssLS2F1WqV3hsQEOD0bzMmJgZJSUnSN3Xs386JjIyUcQuJiIiIiIjIEwz1iYio\n2SorK1FcXCyd+WsPEx3PBi4uLoZWq4XZbHZ6r6+vr9uwPyoqCtHR0dJztVqN8PBwhIeHQ61Wy7S1\nRC3DZDKhoqICer0eFRUVUjjv+HAM7e0Pi8Xi1I+/vz+ioqKksL6xb9HwMlpERERERESdB0N9IiJq\nE1VVVdBqtbhx40aDM41dBZrl5eUwGAwu+3IM+e1Bv+Pv9mX2R3h4OEJCQhAaGorw8HAoFAqEhIS0\n8QhQR2e1WlFZWQmDwQCz2QyTySQF8/af9R/25TqdTlpms9ka9K1QKJwOasXExDR50Cs8PFyGUSAi\nIiIiIiK5MdQnIqJ2y2q14saNG07hqF6vbxCgugpU7e0a+zOnVquhUCigUCgQERGB4OBg6bl9uVqt\nRkhICBQKBcLDw+Hn54ewsDD4+vpKoWpERITUn4+PD8LDw+Hr6wuVSsX7DLQR+1wbDAbU1tbCaDTC\nZrOhsrISVqsVVVVVsFgsMJvNqK6uRlVVFcxmMyoqKmAymWA2m2EwGFBZWQmz2Qyj0Qij0Yjq6mrp\nuasw3k6lUrk8sGR/HhER4fb1yMhIHmQiIiIiIiIijzHUJyKiTs1gMKCiogJVVVWorKxERUUFzGYz\nqqqqoNfrYTabYTabodPppOd6vR5VVVWoqqpqEPTaz9b2hlKpREBAAEJDQxEYGAiFQoHg4GAANy+h\n4njjUXtbANIBBDv7+1295mp9TWmsD0fV1dUNLp/kjuNNVx3Zw3QAEEJAr9e7fK1+H47rrq2thcFg\ncHq/u/W5ExQUhJCQEKcDOI4HbUJDQ6FQKBAWFgalUgmFQgGVSgWVSgWFQgGlUomwsDCEhIQgJCRE\nCut9fX29qoOIiIiIiIiouRjqExERNYPNZoPRaGw0aK6oqEBdXV2Ds8dNJhNqamoAABaLxemGw/b3\nAEBNTQ1MJpP0mr0fAG4PLtjr8YT97PWm+Pj4eHwvA8cDFo7sYbqdYxAeGBiI0NBQ6bWwsDD4+fkB\nuHmDV6VS2aCO+t+KsL+n/gGUkJAQBAUFSSE+ERERERERUUfHUJ+IiIiIiIiIiIiIqIPgd8WJiIiI\niIiIiIiIiDoIhvpERERERERERERERB0EQ30iIiIiIiIiIiIiog7CH8CnchdBRERERERERERERERN\n+//juW2zqyJDoQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type exec\n",
"metaflow.write_graph(graph2use='exec', dotfilename='./graph_exec.dot')\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_exec.dot.png\")"
+ "Image(filename=\"graph_exec.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Detailed graphs\n",
"\n",
@@ -367,45 +205,23 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABfgAAAfkCAYAAAABNXsnAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdeVxWdf7//yeIiCwCIrIISi654G7jCo65TiWmEriES4VLWbl8GrevN8MpFTW3lsnG1DSt\nRBttNCeXtFREyaVM1BZXEFxAQVBx4/z+8Mc1XgoKCFwgj/vtdm5e1/u8z/s8z7mQ7HXO9T5WhmEY\nAgAAAAAAAAAApcksa0snAAAAAAAAAAAA+UeBHwAAAAAAAACAUogCPwAAAAAAAAAApRAFfgAAAAAA\nAAAASiGbextOnjypCRMm6Pbt25bIAwAoRj4+PpozZ46lYwAAAAAAAKAA7ruDPzY2Vl999ZUlsjyy\nmJgYxcTEWDoGCgmfJ1C04uPjNXfuXEvHAAAAAAAAQAHddwd/tqioqOLMUShCQ0Mllc7suB+fJ1C0\noqKi1KdPH0vHAAAAAAAAQAExBz8AAAAAAAAAAKUQBX4AAAAAAAAAAEohCvwAAAAAAAAAAJRCFPgB\nAAAAAAAAACiFKPADkCR9++23ev755+Xp6SlbW1t5enoqKChIa9euva+vlZVVjkte++VnAQAAAAAA\nAJAzCvxAGXfz5k2FhYXpxRdfVMeOHfXTTz8pIyNDP/30kzp16qRBgwYpODhY165dM21jGIYMw8j1\nfU7tOb3ObZzcxgMAAAAAAADwPzaWDgDAst544w1FRUVp165deuqpp0ztvr6+GjVqlNq0aaOAgAAN\nHTpUn3/+uQWTAgAAAAAAALgbd/ADZdiePXv0ySefaPDgwWbF/bu1atVKAwcO1PLly7Vjx45H3md+\n7sznLn4AAAAAAAAgdxT4gTJswYIFkqQXXnjhgf1CQkIkSQsXLizyTAAAAAAAAADyhgI/UIZl35Hf\nqFGjB/Zr3LixJCk6OrrIMwEAAAAAAADIGwr8QBmWmJgoSXJzc3tgv+z1SUlJRZ4JAAAAAAAAQN5Q\n4AfwUFZWVmZ/AgAAAAAAALA8CvxAGebl5SVJunjx4gP7JScnS5K8vb3N2q2t7/wKuX37dq7b3r59\n29QPAAAAAAAAQOGh6gaUYYGBgZKkgwcPPrBf9vr27dubtTs5OUmS0tLSct320qVLqlSp0qPEBAAA\nAAAAAJADCvxAGTZ8+HBJ0tdff/3AfqtWrTLrn61u3bqSpEOHDuW67aFDh/Tkk08+SkwAAAAAAAAA\nOaDAD5RhrVu31rBhw7RkyRLt3bs3xz579uzRsmXLNGzYMP3lL38xWxcUFCRJWrJkSa77WLRokZ57\n7rnCCw0AAAAAAABAEgV+oMz74IMPFBISoi5duuj9999XQkKCbt68qYSEBM2fP1/dunVTnz599MEH\nH9y37ciRI9WgQQN99tlnGjFihA4dOqTr16/r+vXr+vXXX/Xqq6/qp59+0qhRoyxwZAAAAAAAAMDj\njQI/UMaVL19eK1as0PLly7Vlyxa1aNFCDg4Oat68uTZv3qzly5dr+fLlKl++/H3bOjk5KSYmRlOm\nTFFsbKzatWsnBwcHubu7a9CgQXJ3d9eePXtynYPfyspKVlZWub4HAAAAAAAAkDsbSwcAUDI899xz\nBZpKp1KlSpo8ebImT56c720Nw8j3NgAAAAAAAADu4A5+AAAAAAAAAABKIQr8AAAAAAAAAACUQhT4\nAQAAAAAAAAAohSjwAwAAAAAAAABQClHgBwAAAAAAAACgFKLADwAAAAAAAABAKUSBX1JgYKACAwMt\nHQMAAAAAAAAAgDyzsXSAkiArK8vSEfLEyspKkmQYhoWTAAAAAAAAAAAsjQK/pOjoaEtHAAAAAAAA\nAAAgXyjwo0RbtWqV6ZsLAAAAAAAAAID/KfMF/ruLx3dPfXN3++nTp/X6669r69atsre3V5cuXTR/\n/ny5ubnl2D8uLk5jxozRrl27lJWVpb/+9a967733VL9+/XztN7f27NevvPKKPv30U0lSWlqaIiIi\n9M033ygxMVEODg6qW7eu2rZtq9DQULVs2bJAOSXp/Pnzevvtt7Vu3TqdP39e7u7ueu655/SPf/xD\nnp6eZn0zMzM1b948rVy5Ur///rtu374tPz8/dejQQYMHD1br1q2VH23atNHo0aPztQ2AvImJidHc\nuXMtHQMAAAAAAAAFVOYL/IZh5HiH+N3tEyZMUGRkpLy9vTVhwgR9/PHHKl++vJYsWZJj/yFDhmjm\nzJlq0qSJ9uzZo7CwMLVr10779++Xn59fnvebW3tOc/APGjRI33zzjebNm6fw8HCVL19eJ06c0IQJ\nE9SqVSvTNvnNee7cObVq1UqZmZlatmyZ2rZtqwMHDmjAgAHasmWL9u/fLxcXF0lSenq6OnbsqN9+\n+01z5sxRUFCQHBwctHfvXr322mv65JNP8v38AB8fH4WEhORrGwB5w/M8AAAAAAAASjdrSwcoDYYM\nGaL69evL2dlZY8eOlSRt2rQp1/6TJk1Su3bt5OjoqE6dOikyMlKXLl1SREREkWXctm2bJKlatWpy\ncHCQra2t6tatqw8//PCRcr799ts6deqUpk2bpq5du8rR0VGBgYGaO3euTpw4oVmzZpn6RkREaO/e\nvXrnnXcUHh4uDw8POTo6qkOHDlqxYkWRHTsAAAAAAAAAlEUU+POgefPmptfe3t6SpKSkpFz7t23b\n1ux9586dJT34osCjCg4OliSFhISoevXqCg8PV1RUlKpUqZLrXbp5yblu3TpJ0jPPPGPWt3379mbr\nJWn16tWSpJ49e963r2bNmnG3MAAAAAAAAAAUIgr8eeDk5GR6bWtrK+nBU1s4Ozubva9SpYok6cKF\nC0WQ7o7Fixfr66+/VnBwsDIyMrRo0SL16dNHderU0c8//1zgnOfPn5d058KGlZWVacnue+zYMVPf\n7Ise987LDwAAAAAAAAAofBT4i0BKSorZ++TkZEmSu7u7WXv2XPg3b940taWlpRV4v71799bq1auV\nnJys7du3q1u3bjp9+rReeumlAuf08PCQJF28eFGGYdy3XLly5b6+D/p2AwAAAAAAAACgcFDgLwLR\n0dFm77ds2SJJ6tq1q1l79p3udxfEDxw4kOu49vb2ku5cELh69arpLnrpzsWChIQESZK1tbUCAwO1\ncuVKSdKRI0cKnDN7up0ffvjhvu137NihNm3amN5nTxO0du3a+/ru3r1brVq1yvXYyrLMzExNmjRJ\ntWrVko2NjelbEig8d3/7BAAAAAAAAHhcUOAvAgsWLNDOnTuVkZGhrVu3asKECXJ1db3vIbtdunSR\nJM2aNUtpaWk6evSoPv3001zHbdy4sSQpNjZW69atMyuuS1J4eLji4uJ0/fp1nTt3TjNmzJAkdevW\nrcA5IyIiVKdOHY0YMUKrV69WSkqK0tPTtX79eg0ePFiRkZFmfRs2bKjJkydr4cKFOnfunDIyMrRx\n40YNHDhQ06ZNy/M5LEvefvttTZ06VS+//LIuX76sjRs3WjpSgQQGBiowMNDSMXLE8x8AAAAAAADw\nOCrzBf677+h9lNd3++c//6kZM2bI29tbPXr0UNOmTRUdHS0/Pz+zfrNnz1b//v21cuVKVatWTWPH\njtX06dNzHf+DDz5QkyZN1LVrV82bN0+zZ882rdu5c6c8PT3VvXt3OTk5qW7dutqwYYOmTp2qL7/8\nssA5q1Spoj179qhfv34aO3asvLy8VKdOHf3rX//SihUr9Ne//tXU18XFRTExMRo5cqRmz56t6tWr\ny8/PT3PmzNGiRYvUqVOnHHOUddnftHj11Vdlb2+vrl27lsiC9MPugM/KylJWVlYxJgIAAAAAAADK\nNivjnkpiVFSU+vTpUyILjA8TGhoq6c4xWEJ28bOkn7vSktPSn2dxKVeunLKyskr851Fafm5yU9rz\nF4XS/PseAAAAAAAAmlXm7+AHLI273gEAAAAAAAAUBAV+wILunfLJyspK48ePN3t/77Q4eWmPj4/X\n888/LycnJ3l4eCgsLEwpKSn37T8zM1ORkZFq1qyZHBwcZGdnp3r16mn48OHavXv3A3OGh4c/NJMk\nnT17VsOGDZOPj49sbW3l4+Oj4cOH69y5c4+cf8uWLerRo4dcXV1lZ2en5s2b66uvvsrxXOckLS1N\no0ePVs2aNWVnZyc3Nze1bdtWb731lmJjY/M8DgAAAAAAAGAJFPgLSV7m5i8JSkvOsuLuqVEMw5Bh\nGKYHF+c2bUpe2idMmKDIyEglJCQoODhYK1as0FtvvWXWPz09XYGBgZo2bZpGjBih48ePKzk5WQsW\nLND27dvNHuKcU867HwidW6azZ8+qZcuWWr9+vZYtW6aUlBQtXbpU33zzjVq1amVW5M9vfunOg6rL\nlSunP/74Q7///ruqVKmifv365flBxYMGDdK8efM0cuRIpaSkKCkpSUuWLNHx48fVqlWrPI0BAAAA\nAAAAWAoF/kKSXfTMXkqq0pITj2bIkCGqX7++nJ2dNXbsWEnSpk2bzPpERERo7969eueddxQeHi4P\nDw85OjqqQ4cOWrFiRaHkmDx5suLj4zVjxgx17NhRTk5O6tSpkyIjI3Xq1Cm9/fbbBc6fbe7cuapS\npYqqV6+u999/X5I0derUPOXbtm2bJKlatWpycHCQra2t6tatqw8//DC/hwoAAAAAAAAUOxtLBwBQ\n+Jo3b2567e3tLUlKSkoy67N69WpJUs+ePe/bvlmzZoVyAWj9+vWSpI4dO5q1d+7c2Wz9vfKSX7r/\nmwN16tSRJB0+fDhP+YKDg7VkyRKFhITI19dXXbt2VdeuXdWzZ88ydwFszpw5io2NlbOzsyTJ2dlZ\nbm5ucnNzk4eHh/z8/OTn5ycnJycLJwUAAAAAAEA2CvzAY+juIqytra2k+4vh2QVzT0/PIstx4cIF\nSVKVKlXM2rPfnz9/Psft8pI/NTVVM2fO1Jo1a5SQkKCMjAzTupzm68/J4sWL1b17d33xxRfaunWr\nFi1apEWLFql69er65ptv1LRp0zyN87i4deuWjh8/LunO8wmSk5OVkpKiy5cvm/q4u7urSZMmatKk\niZo1a6bAwEBVr17dUpEBAAAAAADKNKboAUqw7Ock3Lx509SWlpZWKGN7eHhIyvnO+MJStWpVSVJy\ncrJZe/b77PUFERoaqunTp6tPnz46depUgaed6t27t1avXq3k5GRt375d3bp10+nTp/XSSy8VOFtp\nNGbMGK1evVqbN2/W5s2bFRsbq+PHjystLU1XrlzRoUOHtH79ek2cOFG+vr7atm2bXn75ZdWoUUN+\nfn56+eWXtXbtWl29etXShwIAAAAAAFBmUOAHSrDsu+vvLsIfOHCgUMYODg6WJK1du/a+dbt3777v\nIbP29vaS7lxsuHr16n135eckKChIkvT999+btW/ZssVsfUFER0dLkv7v//5PlStXliRdv349X2NY\nWVkpISFBkmRtba3AwECtXLlSknTkyJECZ3vc2Nvby9/fX88995xGjRqlxYsXa9++fUpNTTUV+o8e\nParg4GBVqVJFffr00Xfffafbt29bOjoAAAAAAMBjjQI/UIJ16dJFkjRr1iylpaXp6NGj+vTTTwtl\n7IiICDVs2FCTJ0/WwoULde7cOWVkZGjjxo0aOHCgpk2bZta/cePGkqTY2FitW7dObdq0eeg+pkyZ\noho1amj8+PHaunWr0tPTtXXrVk2YMEE1atRQREREgfMHBgZKkqZPn67U1FRdvHhREydOzPc44eHh\niouL0/Xr13Xu3DnNmDFDktStW7cCZysrKlasqA4dOmjy5MnatWuXEhMTNW/ePCUmJurZZ5/VE088\noVmzZplN8QMAAAAAAIDCQ4EfsKDsKXiyX9/9XpJmz56t/v37a+XKlapWrZrGjh2r6dOn57p9fl67\nuLgoJiZGI0eO1OzZs1W9enX5+flpzpw5WrRokTp16mSW5YMPPlCTJk3UtWtXzZs3T7Nnz37oPjw8\nPLRnzx4FBQVpwIABqly5sgYMGKCgoCDt2bPHNE1QQfIvW7ZMAwYM0KJFi+Th4aG//vWvZt86yMsY\nO3fulKenp7p37y4nJyfVrVtXGzZs0NSpU/Xll18K+ePh4aGhQ4dqx44d+u233xQaGqp3331X1atX\n1+TJk5Wenm7piAAAAAAAAI8VK+OeSaujoqLUp0+fAs1lbWmhoaGS7hwDSj8+T6BoFcfv+9TUVP3z\nn//UrFmzZGtrq4iICA0bNkzW1lxfBgAAAAAAeESzqLAAAIqMi4uLJk6cqGPHjmnAgAEaOXKkAgIC\n9Ouvv1o6GgAAAAAAQKlHgR8AUOQqV66s9957T/v375dhGGrRooVmzJhRKr8tBgAAAAAAUFJQ4AcA\nFJuGDRsqOjpakydP1qRJk9SrVy/m5gcAAAAAACggCvwAgGJlbW2tSZMmadu2bdqzZ48CAgIUHx9v\n6VgAAAAAAAClDgV+AIBFBAQEaM+ePTIMQ61bt9bRo0ctHQkAAAAAAKBUocAPALCY6tWra8eOHfLz\n89PTTz+tw4cPWzoSAAAAAABAqUGBHwBgUc7Ozvruu+9Up04ddenSRadOnbJ0JAAAAAAAgFKBAj8A\nwOKcnJy0fv16ubu769lnn9WlS5csHQkAAAAAAKDEs7F0AOBBEhIStGrVKkvHAB5Lu3fvtnQEM5Uq\nVdKGDRvUunVrhYWFad26dbK25jo0AAAAAABAbijwo0SLiYlRTEyMpWMAKCbe3t5atWqV2rdvr2nT\npmnSpEmWjgQAAAAAAFBicWskSrSQkBAZhsHCwlIEy8qVKy39VzxHrVq10qxZszRlyhT99NNPlo4D\nAAAAAABQYlHgBwCUOG+88YY6dOigQYMGKTMz09JxAAAAAAAASiQK/ACAEsfKykqLFi1SQkKCZsyY\nYek4AAAAAAAAJRIFfgBAiVS9enVNmjRJM2bM0MmTJy0dBwAAAAAAoMShwA8AKLFGjRolX19fHrYL\nAAAAAACQAwr8AIASy9bWVlOmTNGXX36pX3/91dJxAAAAAAAAShQK/EAZkpmZqUmTJqlWrVqysbGR\nlZWVrKysHnnc7HEKYyzgXqGhofL391dkZKSlowAAAAAAAJQoFPiBMuTtt9/W1KlT9fLLL+vy5cva\nuHFjoYxrGEahjAPkxNraWv/3f/+n1atX69y5c5aOAwAAAAAAUGI8dgX+VatWmd1NzFJ6l1WrVln6\nx+mxs3LlSknSq6++Knt7e3Xt2pXiPEqF0NBQOTo6asmSJZaOAgAAAAAAUGLYWDpAYWvTpo1Gjx5t\n6RgoBHPnzrV0hMdOfHy8JKly5coWTgLkT8WKFTVo0CAtWLBAf//731WuXDlLRwIAAAAAALC4x67A\n7+Pjo5CQEEvHQCHgDv7Cl5WVZekIQIENGzZM8+bN06ZNm/TMM89YOg4AAAAAAIDFPXZT9ADI2d0P\nwM2eBmn8+PH3TY20fv16U78PP/xQVlZWOnz4sKlt+fLlD3yobnx8vJ5//nk5OTnJw8NDYWFhSklJ\nuS9L9pKYmKjg4GA5OTnJzc1NgwYNUlpamk6ePKkePXqoUqVK8vT01ODBg5WamloEZwalRd26ddWh\nQwctXrzY0lEAAAAAAABKBAr8QBlx91z7hmHIMAxFRkbKMAz16NFDkjRv3jx1797d1G/ZsmWSpM8/\n/9zUFhYWpmXLlql79+45zt8/YcIERUZGKiEhQaGhoVqxYoXeeuutXLOMGzdO7777rhISEtSvXz8t\nW7ZML774osaMGaMZM2YoPj5evXv31tKlSzV27NjCORkotYKDg7Vp0ybduHHD0lEAAAAAAAAsjgI/\nAA0ePFiSzB5g+ttvv+nXX3+VJK1YscKsKP/ZZ5+ZtrnXkCFDVL9+fTk7O2v8+PGSpE2bNuW67/Dw\ncFP/iRMnSpK+/fZbjRw58r72DRs2FPgY8XgICgrS5cuXtXPnTktHAQAAAAAAsLjHbg5+APnXvXt3\nValSRb/88ot+/vlnNW3aVEuXLtUbb7yhqKgonTp1Sj/88IOefvppnTp1SgcPHlRQUFCOYzVv3tz0\n2svLS5KUlJSU677v7u/p6Zlju7e3tyQpMTGxYAeIhwoNDTV77oWjo6PKly+fa/9KlSo98EG3Li4u\nOU7hJN2ZosnFxcWszdXVVdKdh+na2dnJ2tpazs7OkiQHBwfZ2trKxsZGTk5O8vLy0pw5c5SSkiJb\nW1s5ODiY7TN7jLv3kz0GAAAAAADA44QCPwCVL19e/fr10wcffKDPPvtMc+bM0fLly/Xf//5Xtra2\nmjp1qj7//HM9/fTTWrp0qfr27ZtrsdTJycn02tr6zpeEcprK50H9CzIOHs3o0aNNDyg3DOOBzzu4\nffu2Ll++nOv6mzdvKiMjI9f1169f19WrV03vs7KylJaWJklKTk7WjRs3dOvWLaWnp0uSLl++rNu3\nb+vGjRu6cuWKrl27pm+//Vbffvttvo5RkukigZ2dnSpWrCgXFxdVqFBBDg4OqlSpkipUqCAnJyc5\nOjqqQoUKcnZ2lr29vSpUqCBXV1c5Ojqa1leqVEkuLi5ycnJ64MUQAAAAAACAokKBH4AkadCgQfrg\ngw/0xRdf6G9/+5vc3d3l7++vgQMHaurUqVq9erU+/PBDLV26VFFRUZaOi0LWpk0bS0fIs+xvkxw7\ndkxeXl7KzMw0uyhx5cqV+y4SpKen69atW6aLBFevXtX169d16dIl0wWHy5cvKzMzUxcuXFBGRoau\nX7+utLQ0Xbt2TZmZmUpNTc31IpOdnd19Rf/sxdnZWS4uLnJ1dZWrq2uOr11cXMwucAEAAAAAAOQF\nBX4AkqQWLVqoYcOGOnTokIYPH67Ro0dLkp588km1atVKe/bs0ZgxY2Rvb68WLVpYOC3KsjZt2qh8\n+fKKjY1V3759VbFiRUlS5cqVi3zfV65cUXp6utLT03X58mWlpqYqIyPjvrb09HRT+++//67U1FRd\nunRJly5dyvXbEXdfCHBxcVHlypXl7u6uKlWqyM3NzfSnm5ub3N3d5e7ubvZNFwAAAAAAUPZQ4Adg\nMmjQIP3973/XmTNn1L9/f1P7wIEDtWfPHn3yySd67733LJgQkCpUqKAGDRpo//796tu3b7Hu28HB\nQQ4ODmbPiyiIu4v9uf158eJF/fHHH4qJiVFKSopSUlKUmZlpNo6tra1Z8b9q1ary8PCQu7u7vLy8\nVLVqVVWtWlWenp7y8PAwXQwBAAAAAACPBwr8QBlx9wNPs1/fO91IWFiYJkyYYJqiJ1vfvn01evRo\nZWVlKSws7KFjZ49b1O0ou5o3b679+/dbOkaBZU/Rk18ZGRlKSUnRhQsXlJycrOTkZFPxPzk5WefO\nndOBAwd04cIFJSYmmqYoyubo6Ggq/GdfBPDw8FC1atXk5eVl+tPDw6OwDhUAAAAAABQhCvxAGZGX\norinp6du3rx5X3vlypV1/fr1fI9d1O0ou5o3b661a9fKMAyzC0CPO0dHRzk6OqpGjRp56p+Zmanz\n588rKSlJ58+fNxX+L1y4oPPnz+vw4cP64YcflJCQYHYxwNbWVh4eHvLx8TEV/r29vU1LtWrV5Ofn\nxzcCAAAAAACwMAr8AIBSp3nz5rp06ZJOnDihmjVrWjpOiWVnZ6fq1aurevXqD+2bmZmpxMREJSYm\nKikpyezPI0eO6Pvvv1d8fLzZhQBXV1d5eXnJ29tbNWvWVM2aNc3e16hRQ+XKlSvKQwQAAAAAoEyj\nwA8AKHUaNWokSTp8+DAF/kJiZ2dnKtI/yIULF3TmzBnFx8fr1KlTio+PV3x8vOLi4rRhwwYlJSXp\n9u3bkqTy5cvLx8dHvr6+euKJJ1SzZk2zP729vYvj0AAAAAAAeGxR4AcAlDpOTk5ydXVVfHy8paOU\nOe7u7nJ3d1fTpk1zXH/r1i0lJibq9OnTOnXqlBISEnT69GkdP35cu3fv1smTJ01TftnZ2ZkV/O9+\nXatWLTk6OhbnoQEAAAAAUOpQ4AcAlEq+vr5KSEiwdAzcw8bGxjQtUEBAQI59Ll26pOPHj5stR48e\n1YYNG3Ty5EllZWVJujMFUPa3Cho0aCB/f3/VrFlTdevWpfgPAAAAAIAo8AMASilfX1/u4C+lXF1d\n1aJFC7Vo0eK+dZmZmTpx4oT+/PNP/fHHH6ZlyZIlio+PNz1Y2dfXV3Xq1DEt9erVU7169eTn5ydr\na2sLHBUAAAAAAMWPAj8AoFTy9fXVb7/9ZukYKGR2dnaqX7++6tevf9+6GzduKCEhQcePH1dcXJwO\nHz6sP//8U5s2bdKJEydkGIZsbW1Vu3Zt093+2Xf++/v7y87OzgJHBAAAAABA0aHADwAolXx8fLRl\nyxZLx0AxsrW1NU3Z07lzZ7N1aWlpOnr0qOLi4nT06FEdPnxYq1atMk35U758edWpU0cNGjRQvXr1\n1LBhQzVs2FB169aVjQ3/HAIAAAAAlE78Hy0AoFRyd3dXSkqKpWOghHB2dlarVq3UqlUrs/Zr167p\n6NGjZsX/r7/+WpGRkbp165ZsbW3l7++vhg0bqlGjRmrSpIkaNmwob29vCx0JAAAAAAB5R4EfJVpM\nTIxCQ0MtHQN4LJX2+esdHBx05coVS8dACVexYkU1a9ZMzZo1M2u/ceOGDh8+rF9//VW//vqrDh48\nqHnz5ikxMVGS5ObmZir2N2rUSM2aNVOjRo1ka2tricMAAAAAACBHFPgBAKWSvb29bty4oZs3b6p8\n+fKWjoNSxtbWVk2bNlXTpk3N2lNTU3Xo0CEdPnxYcXFx2rdvnxYvXqyMjAzZ2NjoySefND0guEWL\nFmrWrJkcHBwsdBQAAAAAgLKOAj9KtDZt2igqKsrSMYDHUlRUlPr06WPpGAWWXVS9evWqnJ2dLZwG\njwsXFxcFBAQoICDA1JaVlaXff/9d+/fvNy3r1q1TamqqypUrp3r16ql58+ampWnTpqpUqZIFjwIA\nAAAAUFZQ4AcAlErZBf4rV65Q4EeRsra2Vr169VSvXj3179/f1J6YmKh9+/aZlhkzZujs2bOSpJo1\na6pdu3amO/3/8pe/qEKFCpY6BAAAAADAY4oCPwCgVLK3t5ck5uGHxXh7exJieIgAACAASURBVMvb\n21tBQUGmtvj4eO3bt0+xsbHas2ePvvnmG12+fFl2dnZq3ry5WrZsaVpq1aplwfQAAAAAgMcBBX4A\nQKmUPe/+rVu3LJwE+B9fX1/5+vqqZ8+eku5M73P06FHFxsYqNjZW27dv10cffaSbN2+qSpUqatmy\npVq3bq2AgAC1bNmS+fwBAAAAAPlCgR8AUCrduHFD0p2HpQIllbW1tRo0aKAGDRpo8ODBkqRr167p\nwIEDprv8Fy5cqMmTJ8vGxkbNmjVT27Zt1a5dO7Vr107e3t6WPQAAAAAAQIlWKAV+KyurHNsNw7hv\nfbVq1XTgwAG5u7vnaZzsMXDH3eeIcwNLKS0/h0WZM79jl5ZzVppQ4EdpVbFiRbVt21Zt27Y1tSUk\nJGjnzp3atWuXtm/frg8//FC3b9/WE088YSr2t2vXTv7+/rK2trZgegAAAABASVIoBf57C/n3Fq/u\nXn/mzBn169dPGzduVLly5XLtRwFMCgwMlCTt2LHD1GYYRq4XVHLqDxSFB/0cliRFmTO/Y5eWc1aa\nUODH48THx0d9+/ZV3759Jd15tsSBAwcUHR2tnTt3auLEibp06ZKcnJzUqlUrde7cWZ07d1azZs0o\n+AMAAABAGVbs/0fo6emp77//XpMnTy7uXZc4VlZWDyz4ZWVlKSsrK8/j5db/YfsBcsLPDUo6Cvx4\nnDk4OCggIEDjxo3TunXrdOHCBe3fv1/vvPOOHBwcNHPmTD311FOqWrWqevXqpfnz5+vgwYP5+ncD\nAAAAAKD0K/YC/8qVK2VjY6Pp06dr/fr1xb37UiU6OlrR0dFF1h8ASrObN29KosCPsqFcuXJq1qyZ\nRo4cqbVr1+rChQs6cOCAJk2aJMMwNGXKFDVp0kRVq1ZV79699f777+vQoUOWjg0AAAAAKGLFXuBv\n3769pk2bJsMwNGDAAJ04caK4IwAAHgOZmZmysrJShQoVLB0FKHbW1tZq2rSpRo0apbVr1+rixYs6\nduyYpk2bJhsbG/3jH/9Qo0aN5OHhodDQUP3rX/9SQkKCpWMDAAAAAAqZRSZt/fvf/65evXopNTVV\nwcHByszMtESMQpU9ncm9U5o8qP3ePuHh4Q/driD7z20/d2+TvXz11Vem/n5+fkzT8v+7+xzFx8fr\n+eefl5OTkzw8PBQWFqaUlJT7tjl79qyGDRsmHx8f2draysfHR8OHD9e5c+dyHfvYsWPq3bu3XF1d\nzc793X0SExMVHBwsJycnubm5adCgQUpLS9PJkyfVo0cPVapUSZ6enho8eLBSU1MLfLz35rv75/Nu\neTkfeTlGSTp//rxeffVV0zmrVq2ahg4dqrNnz5qNl5aWptGjR6tmzZqys7OTm5ub2rZtq7feekux\nsbEFzinl/XN7kLi4OD377LNydHSUs7OzevXqpdOnT+d5e+TNhQsX5OzsLBubQnmcDFDq1axZU0OH\nDlVUVJTOnz+vvXv3asyYMbp06ZLefPNN+fr6qlatWho2bJhWrVqly5cvWzoyAAAAAOBRGfdYuXKl\nkUNznkh64LZ3r0tNTTVq165tSDJeeeWVXPvlR0hIiBESElKgbQtDbsef3/bCHu9B+9myZYshyfDy\n8jKuX79utm7hwoVG9+7dc81X1Cz9ed4r+zy++OKLxuHDh43U1FTj1VdfNSQZgwcPNuublJRk+Pr6\nGt7e3sb3339vXL582diyZYvh6elp1KhRwzh79myOY3fp0sWIjo42rl69amzYsMHsc8vuExYWZtr/\niBEjDEnGc889Z/Tq1eu+XEOGDHnk483P+Xj99ddzPB95OcazZ88aNWrUMDw8PIyNGzca6enpxvbt\n240aNWoYTzzxhHHp0iXTWM8//7whyZg3b56RkZFhXL9+3Th69KjRq1ev+zLnJ2dBP7e7/fnnn4aL\ni4tpjPT0dOPHH380unXr9tBzWtwe5fd9STB16lSjTp06lo4BlAoZGRnGt99+a4waNcrw9/c3JBl2\ndnZGp06djMjISOPnn3+2dEQAAAAAQP7NtFiB3zAM45dffjEqVqxoSDIWL16ca7+8snRBuDQW+A3D\nMJo0aWJIMpYuXWrW3qhRI2Pz5s25blfULP153iv7PP7www+mthMnThiSDG9vb7O+Q4YMMSQZn3/+\nuVn7Z599Zkgyhg0bluPY27Zty9f+z5w5k2N7fHy8IcmoVq1aQQ7VbH/5yZOQkJDj+bi7f27HOGzY\nMEOSsWjRIrP2f//734YkY+LEiaa2SpUqGZKMVatWmfXNPh8FzVnQz+1uYWFhOY6xZs0aCvyFbPTo\n0UabNm0sHQMolc6cOWMsXbrUCAsLMzw8PEz/zRgyZIixZs0aIz093dIRAQAAAAAPN9MiU/Rka9y4\nsT7++GNJ0ogRI/Tzzz9bMk6ZNXr0aEnS3LlzTW1bt25VVlaWOnfubKlYJVbz5s1Nr729vSVJSUlJ\nZn2yHyDdsWNHs/bs85nbA6ZbtmyZr/17eno+MFdiYuJDx3tUd+/Xy8tL0v3n4265HeO6deskSc88\n84xZe/v27c3WS1JwcLAkKSQkRNWrV1d4eLiioqJUpUoVGYZR4JwF/dzutnnz5hzHCAgIeOi2lhQT\nE6NNmzZp586dOnDggE6ePKkbN25YOtYDXbhwQVWqVLF0DKBU8vb21sCBA/X555/r7NmzOnTokN54\n4w2dOHFCISEhcnV1VUBAgGbMmKF9+/ZZOi4AAAAAIBcWLfBL0qBBgzR06FBdu3ZNL7zwQoHnDEfB\n9evXT15eXvr555+1detWSdL8+fM1cuRICycrmZycnEyvbW1tJem+ovKFCxck6b7iY/b78+fP5zi2\nvb19vvZvbW39wPbcit2FKb/7ze0Ys8+Jt7e32Zz92efs2LFjpr6LFy/W119/reDgYGVkZGjRokXq\n06eP6tSpk+uFwrzkLOjndrfk5OQHjlFSzZ07V926dVNgYKCaN2+uJ554Qg4ODnryySfVo0cPjR07\nVhs2bNCVK1csHdUkOTm5xJ9XoLTw9/fXuHHjtHnzZiUmJmrJkiXy9fXVzJkz9dRTT6lOnToaOXKk\nNm3aVOIv/gEAAABAWWLxAr8kvf/++2rRooWOHTumQYMGWTpOgWU/LPTmzZumtrS0NEvFyTNbW1u9\n/vrrkqQ5c+bo+PHjiomJUVhYmIWTlV5Vq1aV9L9ib7bs99nr8T8eHh6SpIsXL8owjPuWewvLvXv3\n1urVq5WcnKzt27erW7duOn36tF566aUCZyiMzy274HzvGCX9d0FUVJQuXbqkM2fO6I8//tDu3bu1\nfPlyhYWFydHRUd999526d+8uNzc3de7cWe+//77FL8gmJyfLzc3NohmAx5G7u7vCwsL05Zdfmh7W\n++KLLyo6Olp/+9vf5OrqqqCgIC1btqzE/24DAAAAgMddiSjwV6hQQatXr5arq6v+85//WDpOgWVP\nl3L3tB8HDhzItX/2ncw3b97U1atXi+xO1LzsZ/jw4bK3t9eGDRv05ptvKjw8XBUrViySPGVBUFCQ\nJOn77783a9+yZYvZ+pKsuH4+s/Xs2VOS9MMPP9y3bseOHWrTpo3pvZWVlRISEiTduRs/MDBQK1eu\nlCQdOXKkwBkK43Pr2rVrjmPExMQUOFdxcXFxkbe3t2rXrq1WrVqpT58+mjx5sr744gsdPHhQiYmJ\nWrhwoTw9PTVp0iT5+Pho+PDhOnTokEXynj59Wj4+PhbZN1BWlCtXTi1atFBERIT27t2rU6dOmab0\nGzJkiNzc3BQQEKD58+frzJkzFk4LAAAAAGVPiSjwS5Kfn5+WL19uugu+NOrSpYskadasWUpLS9PR\no0f16aef5tq/cePGkqTY2FitW7fOrIBZmPKyn8qVK2vQoEEyDEMbN27Ua6+9ViRZyoopU6aoRo0a\nGj9+vLZu3ar09HRt3bpVEyZMUI0aNRQREWHpiA9VXD+f2SIiIlSnTh2NGDFCq1evVkpKitLT07V+\n/XoNHjxYkZGRZv3Dw8MVFxen69ev69y5c5oxY4YkqVu3bgXOUBifW0REhFxcXExjZGRkaNeuXZo+\nfXqBc5UUnp6eGjBggJYvX64zZ85ozpw5io6OVuPGjTVw4MA8TWFUWDIyMnT+/HnVrFmz2PYJQPL1\n9dXQoUO1bt06nT17Vl9++aVq1qypyZMny8fHR/7+/oqIiNDhw4ctHRUAAAAAyoZ7H7u7cuVKI4fm\nB5KU4/Kg9bmZNGlSvvefLSQkxAgJCSnQtoXhwoULRv/+/Q13d3fDwcHBCAoKMk6fPp3rcf/0009G\nkyZNDHt7e6N169bGb7/9ZlqX13P5sPaH7eduv//+u2FtbW307du3ME7HI7P053m3gpz3s2fPGsOG\nDTO8vb0NGxsbw9vb2xg6dKhx9uzZB46d089/Yf485FVR/nzmlunixYvGmDFjjCeeeMIoX7684eHh\nYQQFBRkxMTFm/Xbu3GkMGjTI8PPzM8qXL284OzsbTZo0MaZOnWpcuXLlkc5PQT+3ux06dMh45pln\nDAcHB8PR0dHo2rWrERcX98ifSWEryO/7e2VlZRlffvml4ePjY7i6uhoff/xxIaV7sF9++cWQZMTF\nxRXL/gA82LVr14zNmzcbb775puHl5WVIMho0aGC8/fbb/D0FAAAAgKIz08owzJ8yGRUVpT59+hTL\nwzkLW2hoqKQ7x4D8y8rKko+Pj/7973+rdevWlo7D5wkUscL8fX/lyhW9++67mjVrlvr27auFCxcW\n6TRfa9asMT1kOS8PpwZQfG7fvq3o6Gh9/fXXWr16tRITE+Xv76+QkBCFhISoQYMGlo4IAAAAAI+L\nWSVmih5Y3rfffitfX98SUdwHULo4ODho+vTp2rBhg/773/+qXbt2puckFIXjx4/Ly8uL4j5QApUr\nV07t27fX/PnzFR8frx07dqhTp05auHCh/P39mcYHAAAAAAoRBf4yzsrKSrt379alS5c0ZcoU/b//\n9/8sHQlAKda1a1f99NNPun79ujp37lxk8/KfOHGC+feBUsDa2tr0EN7Tp09r+/btZsX+Ro0a6Z13\n3tGxY8csHRUAAAAASiUK/FCbNm1Up04dde/eXT169LB0HBQRKyurPC3Ao6pZs6a2bdsmSercubMu\nXrxY6Pv4888/KfADpYy1tbUCAwP1/vvvKz4+Xtu3b1eHDh300UcfqU6dOmrbtq0++ugjJScnWzoq\nAAAAAJQaFPjLOMMwZBiGkpOTFRERYek4KELZn/XDFqAwVK1aVRs3blRqaqr69etX6D9bBw8eVKNG\njQp1TADFJ7vY/8EHHygxMVHbt29Xo0aNNGHCBHl6eqpLly5atmyZMjIyLB0VAAAAAEo0CvwAgCJR\no0YN/fvf/9YPP/ygOXPmFNq4ycnJSkpKUuPGjQttTACWkz2NzyeffKLz589rzZo1cnV1VXh4uKpW\nrarQ0FCtW7dON2/etHRUAAAAAChxKPADAIrMU089pYiICE2cOFEHDhwolDF/+eUXSaLADzyG7Ozs\nFBQUpKioKJ05c0YzZ85UfHy8evTooRo1amjcuHE6cuSIpWMCAAAAQIlBgR8AUKTGjRunv/zlLxo1\nalShjHfw4EG5u7vL09OzUMYDUDK5u7vr9ddfV0xMjP744w8NGTJEK1euVIMGDdSmTRv961//Ulpa\nmqVjAgAAAIBFUeAHABQpa2trzZkzRzt27NC6deseebxff/1VTZs2LYRkAEqL2rVra8qUKTp+/Lh2\n7Nihxo0ba8yYMfL09DRN4XP79m1LxwQAAACAYkeBHwBQ5Fq2bKng4GBNmDDhkR+4e/DgQabnAcqo\nu+frT0hI0Lx583T69Gn16NFDtWvXVkREhE6ePGnpmAAAAABQbCjwo0RbtWqVrKysWFhYimDp06dP\nsf59joiIUFxcnDZv3lzgMW7cuKG4uDgK/ADk4uKiYcOGaffu3Tpy5Ij69OmjTz75RLVq1VKXLl20\natUqHswLAAAA4LFnY+kAwIO0adNGo0ePtnQM4LEUExOjuXPnFtv+/P391b59e33yySfq2rVrgcbY\nt2+fMjMz1aZNm0JOB6A0q1evniIjI/Xuu+9q/fr1WrBggfr27SsvLy+98sorCg8Pl6+vr6VjAgAA\nAECho8CPEs3Hx0chISGWjgE8lh51qpyCGD58uAYOHKjExER5e3vne/tdu3apSpUqql27dhGkA1Da\n2djYqGfPnurZs6cSEhK0YsUKffjhh3r33XfVsWNHDR06VL169ZKNDf8EBgAAAPB4YIoeAECx6d27\nt+zt7bV27doCbR8TE6N27drJysqqkJMBeNz4+Pho3LhxOnbsmL744gvdvn1bffr0Ue3atTV16lQl\nJSVZOiIAAAAAPDIK/ACAYlOhQgV17txZGzZsKND2u3fvZnoeAPlia2urPn36aOvWrfrtt9/Ut29f\nzZs3TzVq1FBoaKi2bNli6YgAAAAAUGAU+AEAxerZZ5/V1q1bdfXq1Xxtd/LkSZ05c4YCP4ACq1On\njiIjIxUfH69PPvlEf/75p7p06aJWrVppxYoVunHjhqUjAgAAAEC+UOAHABSrbt266dq1a4qJicnX\ndrt27VL58uX11FNPFVEyAGWFnZ2dXnrpJe3fv1979+5V3bp19dJLL6l69eoaP368EhISLB0RAAAA\nAPKEAj9QBlhZWZkW/A/nxTJ8fHzk7e2tffv25Wu7HTt2qFmzZrK3ty+iZADKohYtWmjZsmU6ffq0\nhg8frsWLF6tWrVoKDQ1VdHS0peMBAAAAwANR4AfKAMMw8r1NYGCgAgMDiyBN0cpP7oKcFxSO5s2b\na//+/fnaZvPmzercuXMRJQJQ1nl6eioiIkKnT5/WggUL9OeffyogIEDt2rXTmjVrlJWVZemIAAAA\nAHAfCvwAcpSVlVWsxYzCupO+uHOjYPJb4D916pSOHTtGgR9Akbt7+p4ff/xR7u7ueuGFF1SvXj0t\nWLBA165ds3REAAAAADChwA8gR9HR0aVyaoLSmrusqVevnk6cOKHbt2/nqf+mTZtkb2+vtm3bFnEy\nAPif9u3ba+3atfr999/1zDPPaMyYMapRo4bGjx+vpKQkS8cDAAAAAAr8AIDi5+Pjo1u3buncuXN5\n6r9lyxa1b99eFSpUKOJkAHC/WrVqaf78+Tp16pRee+01ffrpp3riiSc0cOBAHT161NLxAAAAAJRh\nFPiBEiQtLU2jR49WzZo1ZWdnJzc3N7Vt21ZvvfWWYmNjTf1yezhsXh4ae/r0afXq1UvOzs5ydHTU\nc889pyNHjuR5nPPnz+vVV1+Vj4+PbG1tVa1aNQ0dOlRnz569r29mZqYiIyPVrFkzOTg4yM7OTvXq\n1dPw4cO1e/dus/3du+/w8PCHn7B7PCh3XFycnn32WTk6OsrZ2Vm9evXS6dOn870PFA5fX19JUnx8\n/EP7ZmVladu2bUzPA8Di3N3dFRERoVOnTum9995TdHS0/P399cILL+T7weEAAAAAUBgo8AMlyKBB\ngzRv3jyNHDlSKSkpSkpK0pIlS3T8+HG1atXK1C+3h8Pm5aGxQ4cO1ejRo5WQkKBvvvlG+/fvV7t2\n7XTy5MmHjnPu3Dm1bNlSa9as0eLFi3Xx4kV99dVX2rRpk9q2bavU1FRT3/T0dAUGBmratGkaMWKE\njh8/ruTkZC1YsEDbt29XmzZtctyfYRgyDEOffvrpQ48lr8d/7NgxBQQE6JdfftF//vMfnTlzRqNH\nj9bQoUPzvQ8UDm9vb1lZWSkxMfGhfX/++WdduHCBAj+AEsPBwUGvv/66fv/9d3355Zc6efKknnrq\nKT3zzDPasWOHpeMBAAAAKEMo8AMlyLZt2yRJ1apVk4ODg2xtbVW3bl19+OGHhbaP4cOHq3379nJy\nclKnTp0UGRmpS5cuKSIi4qHbvv322zp16pSmTZumrl27ytHRUYGBgZo7d65OnDihWbNmmfpGRERo\n7969eueddxQeHi4PDw85OjqqQ4cOWrFiRaEdT15EREQoNTVVM2bMUMeOHeXo6Kj27dtr+PDhxZoD\n/2Nrays7Ozulp6c/tO93330nT09PNW7cuBiSAUDelStXTqGhodq7d6927NihW7duqX379goICNC6\ndevydOEdAAAAAB6FjaUDAPif4OBgLVmyRCEhIfL19VXXrl3VtWtX9ezZs9CKBIGBgWbvs++K3rRp\n00O3XbdunSTpmWeeMWtv3769af3UqVMlSatXr5Yk9ezZ875xmjVrVqxFj82bN0uSOnbsaNYeEBBQ\nbBlKujlz5phNm1SpUiWVK1fuvn42NjZycnKSJLm4uMjKysp0McrW1lYODg6ysrKSi4uLHBwc5Ojo\nKAcHB7m6usrR0VHly5c3jWVvb68rV648NNvatWsVFBT0wKmnAMDSAgICtHnzZu3cuVMzZszQ888/\nr8aNG2vMmDF68cUXc/ydCgAAAACPigI/UIIsXrxY3bt31xdffKGtW7dq0aJFWrRokapXr65vvvlG\nTZs2feR9uLm5mb2vUqWKJOnChQsP3fb8+fOS7kyvkpNjx46ZXiclJUmSPD09C5SzMCUnJ0v637Fm\nu/c97sjKytKpU6dyXHfjxg1duXJFhmGYpmRKT0/XrVu3lJmZqWvXrj1w7AoVKsjBwUEuLi5KT0/X\n7NmztXXrVlWpUkVubm73LYZhaO/evXr77bcL/TgBoCgEBASYpoWbPXu2Xn75Zc2cOVNjx45V//79\nZWPDP78BAAAAFB7+DwMoYXr37q3evXsrKytL0dHRmjp1qjZu3KiXXnpJBw4cMPWzsrKSYRi6efOm\n6a7otLS0h46flpYmZ2dn0/vs4re7u/tDt/Xw8NCZM2d08eJFubq6PrRvQkKCkpKS5Ofn99Cxi1KV\nKlV07tw5JScnm12cyMv5KivGjBlTaGPdvn1bly9fVnp6uq5cuaIrV64oNTX1vvezZs2Sm5ubrKys\n9NtvvyklJcW0ZGZmmo354osvqlq1avL09FS1atXk5eUlb29veXl5ycfHRzVr1iwRF5MAIFuTJk20\nbNkyjRs3TjNmzNArr7yiiIgIjR8/Xq+88gp39AMAAAAoFMzBD5QgVlZWSkhIkCRZW1srMDBQK1eu\nlCQdOXLErG92MTP7TnlJZhcAchMTE2P2fsuWLZKkrl27PnTb7Ol2fvjhh/vW7dixw+zBucHBwZLu\nTK9yr927d5s9NFi6M12LJN28eVNXr14t1Lvrs4/t+++/N2u/91ygcJQrV06urq6qXr266tevr6ee\nekqdO3dWr169FBYWpmHDhmncuHFycXFRr169FBUVpa1bt+qXX35RQkKCrl27poyMDJ06dUpt2rRR\n27ZtNXPmTIWEhKhWrVq6dOmSNm/erMjISPXr10/t2rWTl5eX7O3t5e/vr6CgIL355puaO3eu1q5d\nq19++eW+CwYAUFz8/f21bNkyHT58WAEBAXrttdfUuHFjRUVFKSsry9LxAAAAAJRy3MEPlDDh4eGa\nPXu2ateurdTUVM2fP1+S1K1bN7N+Xbp00bJlyzRr1iy9++67SkpK0qeffvrQ8adPn65KlSqpcePG\nio2N1YQJE+Tq6pqnh+xGRERo06ZNGjFihG7fvq2nn35atra2+vHHHzVy5EgtXrzYrO/333+vyZMn\ny8HBQT169JCDg4Oio6P1xhtv6OOPPzYbu3Hjxtq9e7diY2OVkJBgdrHgUUVERGjdunUaP368qlWr\nppYtW+rgwYOaPn16oe0D+Xfjxg3Z2trmuM7BwUGGYWj//v1auHChBgwYkGO/W7du6cyZMzpx4oRp\nOX78uPbt26fVq1ebLoBZW1vLz89PDRo0UP369VWvXj35+/urXr16Zt9oAYCiUqdOHS1btkxTpkxR\nZGSk+vfvr3/84x8aO3aswsLCZG3NfTcAAAAA8s/KuOdJl1FRUerTp0+xPgCzsISGhmrVqlWWjoFC\nFBISoqioKEvHKDbR0dFauHChfvzxR505c0b29vby8/NTaGioRo0aZbrLXboztc7IkSO1efNmXb16\nVR07dtRHH32k6tWrm/pk/z2+++GkcXFxGj16tHbt2iXDMNS+fXvNnj1b9evXN8uSvc29vwsuXbqk\nd999V2vWrFFCQoIqV66sli1bauLEiWrdurVZ34yMDM2YMUOrVq3SiRMn5OTkpBYtWmjSpEn3Pex3\n7969Cg8P1x9//KHGjRtr6dKlevLJJ/N1/u59COvd2ePi4vT3v/9d27dvl5WVldq2bau5c+fK398/\nx/5lgaV/33t6emrSpEl6/fXXc1wfFRWl/v376+zZswX+RkdmZqaOHTumo0eP6ujRo4qLizO9zn5e\nQLVq1dSkSRM1a9ZMzZs3V/PmzS0+rRSAx9+RI0c0ffp0ffHFF6pfv74mT56sF154gQeKAwAAAMiP\nWY9dgT8hIUGjR4+2dBQUgrlz58rHx6dMFfhLitu3b8vGxkbly5fXjRs3LB0HRcTSv+9dXV31/7F3\n31FVXO/XwPcFLlJFpYVuwy5GsSFiF0vEgoJYgtFQJGpQEzXFfMXEgrHEFmPvHbuEKCgWRFBpQREb\ngnQUBUSalHn/yOv9hYgKigxlf9aaFZx7ZmbPGblmPTNzzq+//gpnZ+cyP3dwcMDjx4/h7+9f6cd+\nNZFwdHQ0oqKiEBERgbCwMNy7dw8lJSVo1KiRrNjfqVMn9OjRA0ZGRpWeg4goMjISHh4eOHHiBDp3\n7oyFCxdiyJAhYsciIiIiIqKaYXmtG6LH0NAQdnZ2YsegSsC3MaqWRCJBeno6NDU1kZqaCuCf4QSI\nPoaioiJkZWVBU1OzzM9zcnLg7e2NVatWfZTjy8nJoUmTJmjSpAmGDh0qW//ixQvcvXsXUVFRCA0N\nRWBgINasWYOCggLo6enB3NwcPXv2hKWlJbp16yab4JqI6H2ZmZnh2LFjCA8Px4IFCzB06FD07t0b\nnp6er70ZR0RERERE9F8c7JOIZNasWYPs7GysXr0aADBt2jSRE1FtEhS0tQAAIABJREFUlZ6eDkEQ\n3jj0zokTJ/Dy5UvZZM1VRU1NDebm5nB0dMSaNWtw5coVPHv2DBcuXMBXX32F4uJiLF26FFZWVtDS\n0sLgwYOxePFiXL9+HcXFxVWalYhql44dO+LUqVO4du0a5OTkYGFhgYEDByIyMlLsaEREREREVI2x\nwE9EAID9+/fj2LFj0NbWhre3N9auXQs3NzexY0EikZRroZrlyZMnAABtbe0yPz948CCsra3f+IR/\nVVJRUUGfPn0wf/58+Pj44NmzZ4iMjISnpye0tbXxxx9/oFu3btDR0YG9vT22bNmCR48eiR2biGqo\nrl27wt/fH35+fnj69Ck6duwIe3t7xMbGih2NiIiIiIiqIRb4iQgAMG7cONy6dQv5+fmIjo7GjBkz\nqkXhXBCEci1Us6SnpwNAmQX8jIwM+Pr6wsHBoapjlYucnBzat28PNzc37NmzB4mJibh16xbmz5+P\nFy9eYObMmWjcuDFatmyJGTNm4Ny5cygsLBQ7NhHVMAMGDEBISAgOHjyIsLAwtGrVCq6urnj8+LHY\n0YiIiIiIqBphgZ+IiKpcbGwslJWVy3yC/8iRI5CTk8Pw4cNFSPZ+2rZti1mzZsme8D9//jxGjRqF\ngIAADBw4ELq6uvj8889x9OhR5OTkiB2XiGoIOTk52NnZ4fbt2/j1119x/PhxtGzZEkuXLkVeXp7Y\n8YiIiIiIqBpggZ+IiKrcw4cP0bRp0zLfEjlw4ABsbGxQv359EZJ9uHr16qFfv37w9PREREQEYmJi\nMH/+fDx69Ahjx46FtrY2RowYgR07diAzM1PsuERUAygqKsLd3R0xMTH4+uuvsWTJErRq1Qr79+/n\nW2xERERERHUcC/xERFTlYmJi0KxZs9fWJyQk4PLlyxg3bpwIqT6Opk2bYvbs2bh8+TKSk5Oxdu1a\nFBcX46uvvoKenh7s7e1x6tQpDuNDRO+krq6OhQsXIjY2FiNHjoSjoyO6du2KgIAAsaMREREREZFI\nWOAnIqIq9+oJ/v/asWMHGjZsiKFDh4qQ6uPT0dGBk5MTvL29kZqaik2bNiEvLw+2trbQ1dWFq6sr\nrly5widyieittLS0sGbNGkRGRkJbWxu9evWCjY0NHj58KHY0IiIiIiKqYgpiByB6m8TERHh5eYkd\ng6hWCg4OFuW4giAgOjoaU6ZMeW397t27MWnSJNSrV0+UbFVJQ0MDjo6OcHR0RHx8PPbt24e9e/di\n8+bNaNGiBVxcXPDFF1+UORExEREAtGnTBj4+Pjh37hxmzpyJ1q1bY+rUqfj555+hoaEhdjwiIiIi\nIqoCEuE/jwkePnwYY8eOrZFPD9rb2wP45xyo5rO3t2dxn6gKVPX3fUxMDJo3b46goCB0795dtv78\n+fMYMGAAoqKi0KZNmyrNVJ2EhoZi586d2LNnDwoKCjB27FhMnTq1VF8REf1XYWEh/vjjDyxcuBAK\nCgpYuHAhnJ2dIS8vL3Y0IiIiIiL6eJZziB6q1uzs7CAIAhcuXD7CcujQIVF+ryMjIyEnJ4d27dqV\nWr9t2zZYWFjU6eI+AJibm2PdunVISkrC2rVrERkZCQsLC3Tq1AlbtmxBTk6O2BGJqBqSSqX4+uuv\n8eDBA0yePBkzZ86Eubk5x+cnIiIiIqrlWOAnIqIq9ffff6NZs2ZQU1OTrcvMzMSJEyfw5Zdfipis\nelFVVYWzszPCwsIQEhKCLl26YObMmdDX14e7uzuSk5PFjkhE1VDDhg3h6emJmzdvwsDAQDY+f3x8\nvNjRiIiIiIjoI2CBn4iIqlR4eDg6dOhQat3evXshJycnG2qNSjM3N8emTZsQHx+POXPm4ODBg2je\nvDnc3NwQExMjdjwiqoZMTU3x559/4tSpU7Khzzw8PFBQUCB2NCIiIiIiqkQs8BMRUZURBAFBQUHo\n0aNHqfWbN2/G2LFjoa6uLlKymkFTUxPz589HXFwcVq5cCT8/P7Rs2RL29vYIDQ0VOx4RVUM2NjaI\niorCTz/9hJUrV6J9+/bw8fEROxYREREREVUSFviJiKjK3Lt3D0+ePIGlpaVs3cWLF3Hz5k24ubmJ\nmKxmUVZWhpubG+7du4fjx48jPj4enTt3xsCBA1noJ6LXKCsrY968eYiOjkb37t3x2WefwcbGBrGx\nsWJHIyIiIiKiD8QCPxERVZnAwEAoKyvj008/la1bv349evTogc6dO4uYrGaSk5ODjY0NgoOD8ddf\nfyErKwtdunSBvb09oqOjxY5HRNWMoaEhdu/ejbNnz+LBgwdo27YtFi9ejJcvX4odjYiIiIiI3hML\n/EQ1nEQikS30Zuyn6uHq1avo3LkzFBUVAQBJSUk4deoUpk+fLnKymm/w4MG4fv06fH198eDBA7Rr\n1w729va4f/++2NGIqJqxtrZGZGQkFixYgCVLlqBjx464fPmy2LGIiIiIiOg9sMBPVMMJglDhbays\nrGBlZfUR0lRfb+unutgfYvH390ffvn1lf96wYQO0tLQwevRoEVPVLgMGDEBISAj27NmDiIgItG3b\nFjNmzMCzZ8/EjkZE1YhUKsW8efNw7949tGrVCn369IGjoyOePHkidjQiIiIiIqoAFviJ6qCSkhKU\nlJRU2fGq+5PzVd0fddX9+/cRGxuLgQMHAgAKCgqwbds2uLi4yJ7op8ohJyeH8ePH4/bt2/j999/h\n5eUFU1NTrF+/HkVFRWLHI6JqxMDAAEePHsXJkydx8eJFtGzZEps3b36vBwiIiIiIiKjqscBPVAcF\nBgYiMDBQ7BjVBvujavj5+UFdXR3dunUDABw8eBDPnj2Ds7OzyMlqLwUFBTg7OyMmJgYzZszAnDlz\n0K5dO/j4+IgdjYiqGRsbG0RHR8PFxQVfffUVevfujdu3b4sdi4iIiIiI3oEFfiIiqhJ+fn7o06cP\npFIpAGDt2rUYPXo0DAwMRE5W+6mqqsLDwwORkZFo2bIlPvvsM4wcORIxMTFiRyOiakRVVRWenp4I\nCgpCTk4OOnXqhP/9738oKCgQOxoREREREb0BC/xEVSQrKwuzZs1C06ZNoaSkBE1NTfTo0QPffvst\nrl+/Lmv3pslgyzNJbHx8PEaNGgUNDQ2oqanhs88+Q3R0dLn38/jxY7i5ucHQ0BCKioowMDCAi4sL\nUlNTX2ubn58PT09PdOzYEaqqqlBSUkKrVq0wdepUBAcHlzref4/t5ORU4X6piKioKAwdOhRqamrQ\n0NDAqFGjEB8fX2bb8vR3TEwMbG1t0bBhw2o/3FB1VVBQgPPnz2PQoEEAAF9fX4SFheHbb78VOVnd\nYmpqipMnT8LX1xf3799H+/btsWzZMg7bQ0SldOnSBdevX4enpyd+++03dOzYEVevXhU7FhERERER\nlYEFfqIqMmnSJKxevRru7u54+vQpUlJSsGPHDjx8+FA2ZAnw5slgyzMWrouLC2bNmoXExEScPHkS\nYWFhsLS0RFxc3Dv3k5aWhq5du+L48ePYvn07nj17hoMHD8LX1xc9evRAZmamrG12djasrKywZMkS\nTJs2DQ8fPkR6ejo2btyIy5cvw8LCoszjCYIAQRCwdevWCvdLecXExKBnz574+++/cerUKSQlJWHW\nrFlwcXEps315+tvNzQ3ffvstkpOTObTJezp37hxevHiB4cOHAwB+/fVXDBgwAObm5iInq5sGDhyI\nv//+G0uXLsUvv/wCc3Pz976hRkS1k7y8PGbOnIm7d+/C1NQUPXv2hKurK168eCF2NCIiIiIi+hcW\n+ImqyIULFwD8M5mdqqoqFBUV0bJlS6xfv77SjjF16lT06tUL6urq6N+/Pzw9PZGRkQEPD493brtg\nwQI8evQIS5YsgbW1NdTU1GBlZYXffvsNsbGxWL58uayth4cHQkJC8Msvv8DJyQm6urpQU1NDnz59\nsG/fvgplrux+8fDwQGZmJpYtW4Z+/fpBTU0NvXr1wtSpU99rfwDwww8/oEePHlBWVsaQIUM48eB7\nOHHiBDp37gwjIyNERETA398f8+bNEztWnaagoAB3d3f8/fff0NbWhoWFBYt3RPQafX19nDx5EocO\nHcLRo0fRvn17+Pn5iR2LiIiIiIj+P4nwn0rV4cOHMXbs2BpZwLK3twfwzzlQzVfbrueUKVOwY8cO\nAICRkRGsra1hbW2NkSNHQlFRsVTbV0PA/Pf38F3r09PToampKVuflJQEQ0ND6OnpITk5+a37MTAw\nQHJyMpKTk6Gnpydb//TpU2hpaaF9+/aIjIwEAJiYmCA+Ph5xcXEwMTF557m/KXdF+6U8PvnkE6Sl\npSEpKQn6+vqy9enp6dDW1i4zx7v6NScnByoqKhXOUt39+/ve3t4eXl5e5d62Xr165e4TeXl5ZGRk\nQENDAw0aNEBaWhqKiorQrl27Uu0kEgkaNGjw2vYNGzYEAKipqUEqlcpuBKmoqKBevXpQVlaGkpKS\nLJOioiJUVVUhlUqhpqYGBQUFqKurQ0lJCRoaGlBVVS33edYVr96smTt3Lho2bIgtW7agf//+Ysci\nomomLS0N06dPx5EjR2BnZ4c//vij1P93EBERERFRlVvOAj9VW7Xxeh47dgz79++Hv78/MjIyAADG\nxsY4efIkPv30U1m79y3w/3d9QUEBlJSUoKCggMLCwre2l0qlbx2HW0VFBTk5OQAARUVFFBYWIj8/\nH/Xq1Xvneb+twA+Uv1/KQ0FBAcXFxSgoKKi0Gyc18fuwPP79fR8UFITExMRybVdQUIDc3NxyHyc6\nOhqrV6/GrFmzIJVKsWLFCowZMwZNmjQp1a6wsPC1p8eLioqQnZ0NAHj+/DmKi4vx4sULFBYWIicn\nBy9fvkReXh7y8/PLnUtBQUF2s+HVoqGhIVv3pp8bNGiARo0alXkTorZISUnB9OnTcfz4ccyaNQtL\nliwp1+84EdUtp0+fhpubG4qLi7F+/XqMHj1a7EhERERERHXVcgWxExDVJba2trC1tUVJSQkCAwOx\nePFinD17FpMnT0Z4eLisnUQigSAIKCwshFQqBfDPZLTvkpWVBQ0NDdmf09PTAUD25Prb6OrqIikp\nCc+ePZM9Mf22tomJiUhJSUHjxo3fue93KW+/lIeWlhbS0tKQnp5e6gn+8vRfXfbveRMq21dffYU2\nbdpg1apVmDp1KkxMTLBv3z4oKHycf4JevnyJnJwc2c2BkpISZGVloaCgAFlZWcjMzERWVhaysrKQ\nkZEh+3Nqairu3Lkj+ywzM1N2U+vf6tWrB21tbejq6kJXV7fUzzo6OjAxMYGhoSEMDAze6y0UMenp\n6eHo0aPw8vKCq6srzp49i71791b4RhsR1W42NjawtLTErFmzMGbMGDg4OGD9+vV8mp+IiIiISAQs\n8BNVEYlEgoSEBBgaGkJOTg5WVlY4dOgQGjRogOjo6FJtP/nkE6SkpCAlJQXGxsYAUK5Cd1BQEAYP\nHiz787lz5wAA1tbW79x25MiR+P3333Hx4kWMGjWq1GcBAQGYO3cugoKCAACjR4/GmjVrcOLECcyc\nObNU2+DgYLi7u+PatWuydSoqKsjNzUVhYSEKCwthbGwsu/lQkX4pD2tra+zZswfnz5/H559/Llv/\nKjtVraKiIhw9ehQzZ85EUlISdu3ahVWrVn204j7wzxsmrwrr5bm59TZFRUWyYn9mZibS09Px+PFj\nPHnyBKmpqbKfb968ibS0NDx+/Fj2toxEIoGuri4MDQ1haGgIY2NjGBsbo1mzZmjWrBmaNm1abYcL\nsrOzQ9euXeHo6AgLCwt4eHhgzpw5kJPj1D1E9I9GjRph165dcHBwgIuLC9q1a4ctW7Zg2LBhYkcj\nIiIiIqpTWOAnqkJOTk5YuXIlmjdvjszMTKxZswYAMGjQoFLtBg4ciN27d2P58uVYtGgRUlJSsHXr\n1nfuf+nSpahfvz7MzMxw/fp1fP/992jYsGG5Jtn18PCAr68vpk2bhuLiYvTt2xeKioq4dOkS3N3d\nsX379lJtz58/j//9739QVVXF8OHDoaqqisDAQMyYMQN//PFHqX2bmZkhODgY169fR2Ji4mtPi5e3\nX8rDw8MDp0+fxnfffQcDAwN07doVkZGRWLp0aYX3RR/O19cXT548gYODAzw9PdGoUSN88cUXYscq\nNwUFBWhqapb7qdSSkhKkpaUhISEBSUlJiI+PR2JiIhITExEaGoqjR48iOTlZNuzTJ598Iiv2N2/e\nHK1atUKbNm3QokUL0Z/+NzExgb+/Pzw9PfHTTz/h3Llz2LVrV6k3Y4iIhgwZglu3bmHu3LmwsbGB\nnZ0dNm3a9M63AYmIiIiIqHJwDH6qtmrb9QwMDMSWLVtw6dIlJCUlQUVFBY0bN4a9vT1mzpxZasLS\n9PR0uLu7w8/PD7m5uejXrx9+//132dP8wP+NC/9qnHgAiIqKwqxZs3D16lUIgoBevXph5cqVaN26\ndaksbxpbPiMjA4sWLcLx48eRmJiIRo0aoWvXrvjhhx/QvXv3Um1fvHiBZcuWwcvLC7GxsVBXV4e5\nuTnmz58PKyurUm1DQkLg5OSE+/fvw8zMDLt27UKLFi0q3C/lFRUVhTlz5uDy5cuQSCTo0aMHfvvt\nN7Rt2/at/fe29WX1V01XFd/3jo6OePDgAY4ePYpmzZphxYoV+Oqrrz7a8WqC/Px8PHz4EDExMaWW\nBw8eIDY2FkVFRVBQUICpqSnatm2LNm3aoG3btmjXrh1atmwJeXn5Ks8cEhKCCRMmICsrCwcPHkSf\nPn2qPAMRVX8+Pj5wdnaGgoICtm/fzsm6iYiIiIg+Pk6yS9UXr+fHUVxcDAUFBUilUrx8+VLsOCSi\nj/19//z5c+jr62PZsmWIjo7GqVOncP/+fU7a+haFhYVISEhAVFQUbt++LfvvrVu3ZBNHN2/eHObm\n5rKlS5cuVdKn2dnZcHZ2xpEjRzB//nz873//45A9RPSaJ0+ewM3NDceOHYOzszNWrlwJNTU1sWMR\nEREREdVWnGSXqC6QSCRIT0+HpqYmUlNTAQCmpqYip6Labv/+/SgpKUH//v0xZ84crFq1isX9d5BK\npWjatCmaNm0KGxsb2fqXL18iKioKoaGhCAsLQ2hoKLy8vJCfnw8VFRV06NABPXr0gJWVFXr06PHB\ncw+URV1dHQcPHsTmzZsxY8YMhIaGYvfu3RyGg4hK0dbWxpEjR+Dl5QU3NzecO3cOO3bsQK9evcSO\nRkRERERUK/HRO6I6Ys2aNcjOzsbq1asBANOmTRM5EdV227Ztw5gxY7Bu3TpoaWlh8uTJYkeqsRQV\nFdGxY0c4OTlhw4YNuHbtGp4/f46IiAisW7cOn376KXx9fWFrawsdHR20bt0aTk5O2LVrFx48eFCp\nWVxcXHDlyhXcvHkTn376Ka5fv16p+yei2sHOzg5///03WrRogX79+uHHH3+UTUJORERERESVhwV+\nojpg//79OHbsGLS1teHt7Y21a9fCzc1N7FjlJpFIyrVQ9REZGYmQkBAMHz4c27Ztww8//MCn9yuZ\nVCpFhw4dMGXKFGzYsAGRkZHIzMyEn58fxo4di0ePHsHNzQ2mpqbQ09ODvb09du/ejWfPnn3wsbt0\n6YLr16+jefPm6N27Nw4cOFAJZ0REtY2BgQF8fHzw+++/Y82aNbC0tMT9+/fFjkVEREREVKuwwE9U\nB4wbNw63bt1Cfn4+oqOjMWPGjBpVEBcEoVwLVR8bN25EixYtcObMGejp6WHKlCliR6oT1NXVMWDA\nAHh4eMDPzw+ZmZm4cuUKXF1dkZiYiClTpkBHRwfdunXDTz/9hICAABQXF7/XsXR0dODr6ws3NzdM\nmDABCxYs4O8hEb1GIpHA1dUVN2/ehIKCAjp06IA1a9aIHYuIiIiIqNZggZ+IiCpVZmYm9uzZg9Gj\nR2PXrl1YtGgRFBUVxY5VJykqKsLS0hIeHh64evUqMjMzcebMGXTv3h379u1Dr169oKOjA0dHR3h5\neSEnJ6dC+5eXl8eqVauwZcsWeHp6wt7eHrm5uR/pbIioJmvSpAkuX76MuXPn4ptvvoGtrS2ePn0q\ndiwiIiIiohqPBX4iIqpU27Ztg0QiQVhYGNq2bYtx48aJHYn+PzU1NQwYMABr1qzBw4cPcefOHcyZ\nMwd3797F2LFjoaenh7Fjx+LQoUPIzs4u936//PJLnD9/HpcuXYKlpSUSEhI+4lkQUU2loKAADw8P\nBAQEICIiAm3btsVff/0ldiwiIiIiohqNBX4iIqo0JSUl2LBhA6ytrXH27FksX74ccnL8p6a6atmy\nJb777jtcu3YNaWlpWL9+PXJzc/H5559DW1sbNjY28PLyKtfEmD179kRgYCDy8vLQo0cPREREVMEZ\nEFFNZGFhgfDwcPTv3x+fffYZ3N3dUVBQIHYsIiIiIqIaiVUXIiKqNN7e3oiLi8PDhw/Rt29fDBw4\nUOxIVE7a2tpwdHTE6dOnkZKSgvXr1+P58+cYO3YsDAwM4O7ujhs3brx1H6ampggKCkKrVq3Qu3dv\n+Pv7V1F6IqppNDQ0sG/fPmzbtg3bt2+HhYUF7t69K3YsIiIiIqIaRyL8Z0a8w4cPY+zYsTVyojx7\ne3sA/5wD1Xz29vYICgqChYWF2FGIaqWEhAQEBwdX6ve9lZUV8vLyEBYWhhs3bsDc3LzS9k3iiIuL\nw969e7F3717cvXsXrVu3xhdffIEpU6ZAS0urzG1evnyJL774AkePHsWePXtk/z4TEZXlwYMHGD9+\nPKKjo/HHH39g4sSJYkciIiIiIqoplvMJfiIiqhRBQUG4cuUK0tLSMG7cOBb3a4nGjRtj/vz5uHPn\nDoKDg9G/f38sXboURkZGcHR0RHBw8GvbKCoqYt++fZgxYwbGjx+PjRs3ipCciGqK5s2b4+rVq/jm\nm28wadIkODo6VnjSbyIiIiKiukpB7ABEb2NhYcE3Mog+kldvbFWWX375BU2aNEFqaioWL15caful\n6qNbt27o1q0bli9fjsOHD2P16tWwsLBAp06d4OrqigkTJkBVVRUAIJFIsGLFCmhra+Orr75CXFwc\nPD09RT4DIqquXk3Aa25ujsmTJ6Nz5844dOgQzMzMxI5GRERERFSt8Ql+IiL6YH///TfOnDmDx48f\nY+7cuWjcuLHYkegjUlJSgqOjI8LCwnD16lW0adMGX3/9NYyMjDB//nw8fvxY1nbevHnYtGkTVqxY\ngWnTpqGkpETE5ERU3dnY2CAiIgJaWlro1q0b1qxZI3YkIiIiIqJqjQV+IiL6YIsWLULDhg3RsGFD\nzJkzR+w4VIUsLCywZ88eJCQkYPbs2di8eTMaN26M6dOnIy4uDgDg7OwMLy8vbNu2DV9++SWL/ET0\nVoaGhrhw4QLmzZuH2bNnY8yYMcjKyhI7FhERERFRtcQCPxERfZCbN2/i2LFjyMjIwMqVK2VDtFDd\noq2tjfnz5yMhIQEbN26Er68vmjVrBhsbG4SGhmLUqFE4efIkDh06hAkTJqCoqEjsyERUjb0assfH\nxwcBAQHo2rUrIiIixI5FRERERFTtsMBPREQf5Mcff4SysjIsLS1hZ2cndhwSWb169eDo6IioqCjs\n3LkTcXFx6NKlC2xtbWFkZIS//voL3t7eLPITUbkMGjQI4eHh0NfXh4WFBbZv3y52JCIiIiKiaoUF\nfiKqNiQSiWypzj5mzoruW+w+CwkJgbe3N/Ly8rB+/fpqf+2o6kilUnz++eeIjIzEiRMnEBMTAzMz\nM+zYsQPbt2+Hj48Pxo0bh8LCQrGjElE1p6+vj3PnzmHevHlwdnaGo6MjcnNzxY5FRERERFQtsMBP\ndZaVlRWsrKzEjlElasq5CoIgdoRy+Zg5K7pvsfts7ty5UFBQgKurKzp06CBqFqqeJBIJhg8fjoiI\nCBw4cABXr17FhAkT0K9fP5w5cwa2trYoKCgQOyYRVXPy8vLw8PDAyZMn4e3tDUtLS8TExIgdi4iI\niIhIdCzwU51VUlJSKRM91oQnzt90rmJkrwn9ReXj6+uLCxcuQF1dHYsXLxY7DlVzEokEdnZ2iIqK\nwpo1axASEoLi4mL4+vpi3LhxKC4uFjsiEdUAw4YNQ0REBKRSKTp16oTjx4+LHYmIiIiISFQs8FOd\nFRgYiMDAQLFjVIm6dK5UNYqLi+Hm5gYA+OOPP9CwYUORE1FNIZVK4ebmhvv372PBggVQVFTEiRMn\n0L9//0q56UpEtZ+xsTEuX74Me3t7jB49Gt999x1vEhIRERFRncUCPxERVdiWLVsQGxsLKysr2Nvb\nix2HaiAVFRXMmzcPcXFxGDFiBC5dugRjY2PcvHlT7GhEVAMoKSlhy5Yt2LlzJ9auXYsBAwYgLS1N\n7FhERERERFWOBX6qVf494WhZi7Ky8mvt3rR9QkICRowYAXV1dejq6mLixIl4+vTpa+3/u62Tk1Op\nNo8fP4abmxsMDQ2hqKgIAwMDuLi4IDU19YOOnZWVhVmzZqFp06ZQUlKCpqYmevTogW+//RbXr18v\nc7/lzV5W3x08eFDWvnHjxu811E55+uuV8vb/qyUmJga2trZo2LDha9nKew3K26cVzQkAqampcHV1\nlWUwNDTE1KlTK1SMiIqKwtChQ6GmpgYNDQ2MGjUK8fHx5d6+srx48QJz586FvLw8du3aVeXHp9pF\nU1MTx48fx4oVK5CcnIxPP/0U7u7uyMrKEjsaEdUAjo6OCAgIQFxcHLp06fLGf6+JiIiIiGot4T8O\nHToklLG6RrCzsxPs7OzEjkGV5H2uZ1l/d3/99VcBgCCRSISDBw+WaltW+1frJ0yYINy+fVvIzMwU\n3NzcBADCF1988cb2ZUlNTRVMTEwEXV1d4ezZs0J2drZw+fJlwcTERGjSpImQkZHx3sceMWKEAEBY\nvXq18OLFC6GgoEC4c+eOMGrUqNfyvOtcy3Lu3DkBgKCnpycUFBSU+mzLli3CsGHDytzuXd52zH9/\n/u8+mD59+jv7f+DAgUJgYKCQm5sr+Pj4yI5RkWvwPn1anpxpzcLeAAAgAElEQVQpKSmCkZGRoK+v\nL5w/f154/vy5cO7cOeGTTz4RTExMhNTU1Hf20YMHD4QGDRrI9pGdnS1cunRJGDRo0Dv79E3e9/ve\n2dlZACD8/PPPFd6W6G127dolSCQSQVVVVdDV1RW8vLzEjkRENcTTp0+FwYMHC0pKSsKOHTvEjkNE\nREREVFV+ZYGfqq3KKPD/9ddfgpycnABA+OWXX15r+7ai98WLF2XrYmNjBQCCvr7+G9uXxdXVVQAg\nbNu2rdT6Y8eOCQCEH3744b2PXb9+fQHAawWwpKSkSinwC4IgdOjQQQAg7Nq1q9T69u3bC35+fm/c\n7m3KW+D/dx8kJia+s/8vXLhQ5v4qcg3ep0/Lk/NVQXzPnj2l1u/cuVMAILi6upa573+bOHFimfs4\nfvx4lRb479y5I8jJyQlGRkZCUVFRhY9J9C5r164VJBKJYGlpKUgkEmH06NGv3QQjIipLSUmJsGDB\nAkEikQguLi7Cy5cvxY5ERERERPSx/coheqhWEQRB9vPdu3fh4OCAkpISTJw4EfPnz6/Qvjp16iT7\nWV9fHwCQkpJSoX2cPn0aADBkyJBS63v16lXq8/c59ujRowEAdnZ2MDY2hpOTEw4fPgwtLa1S/fAh\nZs2aBQD47bffZOv8/f1RUlKCAQMGVMox3uTffaCnpwfg7f3ftWvXMtdX5Bq8T5+WJ6e3tzcAoF+/\nfqXWv+rDV5+/jZ+fX5n76Nmz5zu3LY+QkBDcuHHjnZMUjhw5EoIg4MSJE5CXl6+UYxP924wZM/Dz\nzz8jODgYixcvRmRkJFq1aoXNmzeLHY2IqjmJRAIPDw8cPHgQ+/btQ//+/TkuPxERERHVeizwU62U\nlZWFESNGICsrC5aWlti6dWuF96Guri77WVFREQAqXDh//PgxgH+K9P8eL15LSwsAEBMT897H3r59\nO44ePYrRo0fjxYsX2LZtG8aOHQtTU1NERERUKOebjBs3Dnp6eoiIiIC/vz8AYM2aNXB3d6+U/b/N\nv/tATu6fr6q39b+KikqZ6ytyDd6nT8uT88mTJwAgO+Yrr/78KuPbpKenv3UfH+rXX39F165dYWJi\ngj///LPMNmvWrMGdO3fg5ORU6sYGUWWbP38+3Nzc8Msvv2Djxo1wdXWFm5sbhg4dioSEBLHjEVE1\nZ29vj6tXryIxMRGdO3fGjRs3xI5ERERERPTRsMBPtU5JSQkcHBxw9+5dNG3aFCdOnEC9evVEyaKr\nqwsAePbsGQRBeG3Jycn5oP3b2triyJEjSE9Px+XLlzFo0CDEx8dj8uTJlREfioqKmD59OgBg1apV\nePjwIYKCgjBx4sRK2X9VqOg1+Bh9qqOjA+D/ivSvvPrzq8/f5lUh/7/7qKyJSPft24c7d+5gwIAB\nGDVqFEJCQl7LOnfuXGhqauL333+vlGMSvc3q1asxePBg2NvbY/Lkybh48SIePHgAMzOzUpN+ExGV\nxczMDDdu3ECrVq3Qq1cv7N69W+xIREREREQfBQv8VOvMmzcPZ86cgYaGBry9vUs94SyRSCr9eK+e\nHC8sLERubm6p440cORIAcPHixde2CwgIgIWFxXsfVyKRIDExEcA/T45bWVnh0KFDAIDo6OgPzv7K\n1KlToaKiAh8fH3z99ddwcnKCsrLye+cuzzErU0WuQWX0aVlsbGwAAOfPny+1/ty5c6U+fxtra+sy\n9xEUFPTeuf5NKpWiZcuW2LFjB7p06YLly5eX+nzw4MEoLCzEiRMnIJVKK+WYRG8jLy+Pffv2oUWL\nFhgyZAhatGiBv//+GxMnTsT48eMxZcoUvHjxQuyYRFSNaWpq4syZM3B3d8ekSZPg6uqKoqIisWMR\nEREREVUqFvipVtmzZw9WrFgBBQUFHDlyBK1bt/7oxzQzMwMAXL9+HadPny5VMPbw8ICpqSmmTZuG\nI0eO4OnTp8jOzoa3tze++OILeHp6ftCxnZycEBUVhYKCAqSlpWHZsmUAgEGDBn1w9lcaNWqESZMm\nQRAEnD17Fl999dUHZS7PMStTRa/Bh/ZpWRYuXAgTExN899138Pf3R3Z2Nvz9/fH999/DxMQEHh4e\n5TqPBg0ayPbx4sULXL16FUuXLn3vXGWRSCSwtbXF1atXZeu2bt2K0NBQODo6VtqY/0TloaysjFOn\nTkEqlWLYsGEoLi7GunXrcObMGfz1118wNzdHWFiY2DGJqBqTl5eHp6cndu3ahd27d8PGxqbS3n4j\nIiIiIqoW/jvt7qFDh4QyVtcIdnZ2gp2dndgxqJK8z/VUUlISALx1EQShzHXvs14QBOHGjRtChw4d\nBBUVFaF79+7C3bt3S33+7NkzYfbs2UKTJk0EqVQq6OrqCjY2NkJQUFCpdhU99pUrV4RJkyYJjRs3\nFqRSqaChoSF06NBBWLx4sZCTk1Mp2V+5d++eICcnJzg4OLy1/8vjbcf80Ovypu+u8l6DD+3Tt2VJ\nTU0VXF1dBX19fUFBQUHQ19cXXFxchNTU1FLt3raPW7duCUOGDBFUVVUFNTU1wdraWoiKinrn+b/J\nm77vd+7cKaiqqgqCIAhPnz4VFBUVBU1NTaG4uLhC+yeqLPfu3RO0tbWFYcOGCUVFRYIg/PM7NWjQ\nIEEqlQoLFizg308ieqfr168L+vr6Qps2bYSYmBix4xARERERVYZfJYJQejbIw4cPY+zYsRWeTLQ6\nsLe3B/DPOVDNx+tZfZSUlMDQ0BDHjh1D9+7dxY5DleRN3/dr167FkiVLkJqaCjMzM9y6dQtXr17l\ntSdRBQUFoV+/fpg2bRpWrFgB4J/vpqVLl8LDwwMDBw7E7t27P/qwX0RUsyUnJ2PEiBF4+PAhjh49\nij59+ogdiYiIiIjoQyznED1E9E5//vknjIyMWOCtIyIjI9GyZUssWrQIN2/exLRp03jtSXQWFhbY\nvXs3Vq1ahS1btgD4Z66MH3/8EZcvX0ZUVBS6dOmCiIgIkZMSUXWmr6+PgIAADBo0CAMHDsQff/wh\ndiQiIiIiog/CAj8RlUkikSA4OBgZGRlYuHAhfvzxR7EjURXx8/ND+/btsWDBAjRv3hzr1q0TOxIR\nAMDOzg7z5s3DtGnTcOnSJdl6CwsLhIWFoXnz5rCwsMDOnTvFC0lE1Z6SkhL27duHH3/8EdOmTYO7\nuzuKi4vFjkVERERE9F5Y4CeiN7KwsICpqSmGDRuG4cOHl9lGIpGUa6GaITIyEvHx8di3bx/k5ORw\n4cIFsSMRlbJ48WIMHToUY8aMwcOHD2XrNTU1cebMGbi7u2Py5MlwdXVFYWGhiEmJqDqTSCTw8PDA\ngQMHsGXLFgwbNoyT7xIRERFRjcQCPxGVSRAECIKA9PR0eHh4vLPduxaqGTZt2gQVFRVkZmZi48aN\nMDQ0FDsSUSlycnLYu3cv9PX1YWtri5ycHNln8vLy8PT0xIEDB7B3714MGDAAaWlpIqYloupu7Nix\n8Pf3R3h4OKysrBAXFyd2JCIiIiKiCmGBn4iIAAAZGRnYunUrcnNzYWNjgy+//FLsSERlUlNTw4kT\nJ5CcnAxHR8fXbiI6ODjgypUriI+PR/fu3REVFSVSUiKqCbp3745r167Jfr5+/brIiYiIiIiIyo8F\nfiIiAgB8//33ePnyJXR0dHDs2DGx4xC9VZMmTXDkyBGcPn0aS5cufe3zjh074saNGzA2NkbPnj3h\n7+8vQkoiqilMTEwQGBgIc3Nz9O3bFydOnBA7EhERERFRubDAT0REuHv3LjZv3gx5eXkEBwdDQUFB\n7EhE79SrVy+sWLECP/30E86cOfPa51paWvDz88PQoUMxZMgQ7NmzR4SURFRTqKur49SpU5g8eTJs\nbW3fOkQhEREREVF1wQoOERGha9euEAQBu3fvRpMmTcSOQ1RuX3/9NUJDQzFhwgSEhIS89vdXUVER\ne/fuhampKSZNmoSYmBgW7YjojeTl5bF+/XqYmppi9uzZyMjIwKpVqyAvLy92NCIiIiKiMvEJfiKi\nOs7CwgLPnz/HyJEjMX78eLHjEFXYxo0bYWJiAltbW+Tl5b32uUQigYeHB7Zs2YLFixdj8uTJKCws\nFCEpEdUU7u7uOHz4MLZs2YIxY8YgNzdX7EhERERERGWSCP+Zme7YsWMYPXq0WHmIiKgKycnJoaSk\nBEZGRoiPjxc7DtF7u3//Prp06QIHBwds3Ljxje28vb3h4OAAKysrHDlyBKqqqlWYkohqmuDgYAwf\nPhyNGzfG6dOnoaurK3YkIiIiIqJ/W/5agT8/Px8+Pj4oLi4WKxQREVWBgIAArFu3DoqKinj+/Dnq\n1asndiSiD3Lq1CmMHDkSW7duxZQpU97YLiQkBEOHDkXLli3h7e0NDQ2NKkxJRDVNTEwMPvvsM7x8\n+RJ//vknWrduLXYkIiIiIqJXXi/wExFR7RcYGAgrKytIJBJER0ejRYsWYkciqhTfffcd1q5di6Cg\nIHTo0OGN7e7cuYOBAwdCR0cHZ86cgba2dhWmJKKa5smTJxgxYgTu3r2LEydOwMrKSuxIREREREQA\nC/xERHXPvXv30Lp1awiCAH9/f/Tp00fsSESVpri4GP3790dqaipCQkKgpqb2xrZxcXEYMGAAFBUV\n4efnBwMDgypMSkQ1TV5eHiZOnAgfHx8cOHAAI0eOFDsSEREREdFyTrJLRFSHpKSkoF27digpKcHO\nnTtZ3KdaR15eHvv27cPTp08xffr0t7Zt3LgxAgICIC8vDysrKzx8+LCKUhJRTaSsrIzDhw9j8uTJ\nGDNmzFvn+yAiIiIiqios8BMR1REpKSlo0qQJCgsLsXDhQjg6OoodieijMDAwwO7du7F7927s2bPn\nrW319PRw/vx5aGhooG/fvrh3714VpSSimkheXh4bNmzA4sWL4ebmhu+++07sSERERERUx3GIHiKi\nOiA5ORnNmjVDfn4+pk+fjnXr1okdieijmz17NjZv3oyQkBC0atXqrW0zMjIwZMgQxMfH49KlSzA1\nNa2ilERUU+3cuRPOzs74/PPPsXnzZigoKIgdiYiIiIjqHo7BT0RU26WkpKB58+bIzc3F5MmTsX37\ndrEjEVWJwsJC9OrVCzk5Obh27RqUlZXf2v758+ewtrZGUlISLl26hKZNm1ZRUiKqqU6dOgUHBwdY\nW1vjwIED7/yeISIiIiKqZByDn4ioNrt37x6aNm2K3NxcTJgwgcV9qlOkUin27t2LR48eYe7cue9s\nX79+fZw9exaffPIJ+vbti7i4uI8fkohqtOHDh+PChQsIDAxEv3798PTpU7EjEREREVEdwwI/EVEt\nFRQUhLZt2yI/Px8TJ07E3r17xY5EVOWaNWuGTZs24ffff8epU6fe2V5DQwN+fn7Q1NTEwIEDkZyc\nXAUpiagm69atGy5evIjExET06dMHSUlJYkciIiIiojqEBX4iolrIx8cHPXv2RFFRESZPnvzOiUaJ\najMHBwdMmjQJTk5OSEtLe2f7Bg0a4OzZs1BUVETfvn2RmppaBSmJqCZr27Ytrl69ipKSElhaWuL+\n/ftiRyIiIiKiOoIFfiKiWmbFihX47LPPUFJSgm+++YbD8hABWLduHTQ0NDBp0iSUZ/ohbW1t+Pv7\nQ05ODtbW1hx2g4jeycjICFeuXIG+vj6srKwQEREhdiQiIiIiqgNY4CciqiUKCgowfvx4zJkzBxKJ\nBJ6enlixYoXYsYiqBTU1NezcuRPnzp3Dpk2byrWNrq4uzp49i+zsbAwdOhQ5OTkfOSUR1XQNGzaE\nn58fzMzM0LdvXwQGBoodiYiIiIhqORb4iYhqgSdPnqBHjx44cOAAJBIJ9u7di3nz5okdi6hasbS0\nxLx58/DNN9/g7t275drG2NgY586dw6NHjzBixAi8fPnyI6ckoppOVVUVp0+fRv/+/WFtbY0zZ86I\nHYmIiIiIajGJUJ731ImIqNq6fPkyRowYgczMTCgqKuLChQvo0aOH2LGIqqWioiJYWlqiuLgYQUFB\nkEql5douJCQEffv2xYgRI7Bnzx5IJJKPnJSIarri4mK4uLhg79692LNnD+zt7cWORERERES1z3IF\nsRNQ3fHy5UukpKQgMTERycnJSE5ORmpqKp49e4bMzEzZkp2djYKCAhQWFuLFixdl7ksikaBBgwbQ\n0NCAuro66tevj/r160NdXV22vn79+tDU1IShoSGMjIygp6cHRUXFKj5roo+nuLgYv/zyC37++WcI\nggAdHR2EhITAyMhI7GhE1ZaCggJ27doFc3NzLFq0CAsXLizXdp07d8aJEycwdOhQGBsbY8mSJR85\nKRHVdPLy8ti6dSsaNGiA8ePHIysrC87OzmLHIiIiIqJahgV+qnQZGRkIDw/H7du3cffuXdy/fx/3\n79/Ho0ePUFxcDACQk5ODrq4udHV1oaWlhQYNGsDY2BhmZmbQ0NCAVCqFVCqFmppamccoKSlBVlaW\n7IbA8+fPkZ2djdTUVGRlZSErKwvPnz/Hs2fPUFRUBOCfmwKffPIJDA0Noa+vD2NjYxgaGsLQ0BAt\nWrRAy5Ytoa6uXmX9RPQhEhIS4ODggKCgIAiCgJ49e+LChQtQUODXOtG7tGrVCr/++itmzpyJIUOG\noHv37uXarn///tixYwcmTpwIHR0dzJw58yMnJaKaTiKRYOXKldDR0YGrqysyMzMxZ84csWMRERER\nUS3CIXrog+Tl5eHatWsIDAxEWFgYwsPDERsbCwDQ0tKCqakpWrZsCVNTU5iamsLIyAhGRkbQ1dWt\nkkJkcXEx0tLSEB8fj6SkJCQmJiIhIQHJyclISEhAQkICUlJSZGMq6+npwcTEBPr6+tDT00ODBg3Q\noEEDKCoqIicnB0+fPkVubi4KCgpQUFCAly9fym5a5OXloaCgAPLy8lBSUoKmpiZUVFSgoqICZWVl\nKCsrQ0VFBQ0bNkSjRo3QsGHDUouSktJH7w+q+QRBwI4dO+Du7o7c3FyUlJRg9uzZWLlypdjRiGoU\nQRAwePBgxMfHIzw8vELfwZ6envjxxx9x8OBB2NnZfcSURFSbrF69GrNnz8b333+PxYsXix2HiIiI\niGqH5SzwU4Xk5+fj4sWLuHjxIgICAhASEoKXL1/C2NgY5ubm6NSpEzp27IhOnTpBT09P7Livyc/P\nR3R0NO7fv4979+7h3r17ePjwIeLi4vD48WMUFha+cVuJRII3/brIycnJlpKSEhQXF5fZ9tWYzWV9\npqSkBG1tbZiYmMDY2Fh2M8TY2Fj2toGmpuZ7njnVBvHx8XB2doafnx8EQYCysjKOHj2KIUOGiB2N\nqEZKSkpC+/bt8eWXX2L58uUV2tbd3R2bNm2Cr68vevXq9ZESElFts2PHDjg7O2PGjBlYtWoV5/Mg\nIiIiog/FAj+9W0JCAv7880/4+Pjg/PnzyMvLQ+vWrdGzZ09YWVmhV69eMDY2FjvmawoLCxESEoKg\noCBEREQgPDwcd+7cQVFRERQUFNC4cWM0a9YMqqqqyMvLw9OnT2VP9AOAsrIymjdvDh0dHUilUuTn\n5+Pp06eIjY3FixcvICcnh6ZNm8puanTs2BGffvopdHV1AQDZ2dnIyMjAs2fPSv03NTUVsbGxiI2N\nlb1NkJubK8utpKQEZWVlSCQSFBQUICcnR/ZZgwYNZG9FtGzZEi1atJAtKioqVdvBVGWKioqwYcMG\n/PDDDygoKEBRURE6dOiAixcvokGDBmLHI6rRtm7dCldXV1y6dAk9e/Ys93YlJSWwt7fHpUuXEBwc\njGbNmn3ElERUmxw+fBgTJ07EF198gY0bN0JOTk7sSERERERUc7HAT2VLSkrCkSNH4OXlhatXr0JJ\nSQmWlpYYNmwYbG1tq+UknsXFxbh27Rp8fX1x+fJlXLt2Dbm5udDR0SlVgJdIJLh16xYCAgIQHByM\n/Px8GBgYoHPnzjA3N4e5uTnatm0LY2PjNz5VlZycjNDQUISGhuL27duIiopCdHQ0BEGAnp6ebD89\ne/aEpaUllJWV35o9KysLCQkJePToEeLi4nD37l3ZGwaPHj1CSUkJJBIJGjVqBDU1NcjLyyMnJwfp\n6ekoLi6GRCKBkZER2rRpAzMzM7Rv3x7t27dH69atObFwDXfx4kVMnz4dd+7cQXFxMeTk5DB37lws\nWbKET/0RVZKhQ4fi4cOHCA8Pf+f39b/l5eWhd+/eyM7ORlBQEG+4EVG5eXt7w87ODra2tti1axfn\n0CEiIiKi98UCP/2f7OxsHDhwAPv370dAQADU1dUxatQojB07Fn369KmWY8RnZGTg9OnT8PHxgZ+f\nH549e4bGjRujd+/esLKyQs+ePdG4cWOcPXsWp06dgre3N9LS0mBsbIy+ffuib9++6NOnD0xMTD44\ny9OnTxEeHo5r167JlsePH0MqlaJDhw7o3r07unXrhm7dusHU1LTc+y0oKCg1pFB0dDRu3ryJ27dv\ny8b819fXR6NGjSAnJye7WVBYWAipVIpWrVqhXbt2MDMzQ6dOnWBubs6hfmqAhw8f4ocffsChQ4cg\nlUpRVFQEAwMDnDp1Ch07dhQ7HlGt8iFD9SQnJ6Nbt25o27YtvL29WaQjonI7c+YMbG1tYWNjg717\n90IqlYodiYiIiIhqHhb4CQgPD8emTZuwf/9+FBUVwcbGBuPGjcOQIUNQr149seO95vnz5zh58iQO\nHz4MX19fSCQS9O7dG4MHD8aQIUPQqlUrCIKAK1euYO/evfDy8kJWVha6du0KGxsb2NjYoH379lWS\nNTY2FsHBwbKCf3h4OAoKCqClpQVLS0v06tULlpaWMDc3r3BRqKioCPfu3cPNmzcRGRmJmzdv4ubN\nm4iLiwMAaGtrw9DQEKqqqsjPz0dSUpJs+KEmTZrA3Ny81FsLDRs2rOzTp/eQnJyMRYsWYcuWLZCX\nl5dNAO3u7o5ly5bxjQyij2Tbtm1wcXGp8FA9ABAWFgYrKyu4uLjgt99++0gJiag2unTpEmxsbNC7\nd294eXlVywdqiIiIiKhaY4G/rioqKsKhQ4ewbt06XLt2Da1atYKrqysmTZpUbQu9V65cwdatW+Hl\n5YWioiIMHDgQ9vb2GDFiBDQ0NAD880T/9u3bsXHjRjx48ABmZmaYOHEixo8fDwMDA5HP4J+n8cPD\nwxEcHIzLly8jMDAQjx8/hqqqKrp37y5766B79+5QVVV9r2NkZmYiLCxMNoRQaGgoYmJiIAgCdHV1\nYWJiAlVVVeTk5CA+Ph6pqakAgGbNmpUq+nfq1InDTVShlJQUrFq1CuvXr4dEIkF+fj7k5OTQuHFj\nHDx4EJ07dxY7IlGt975D9QDAkSNHYG9vjw0bNmDq1KkfKSER1UaBgYEYOnQoLC0tcfTo0Qp//xAR\nERFRncYCf12Tk5ODbdu2YdWqVUhKSoKtrS3c3NzQu3fvajmed3Z2tqxgf+fOHXTq1AlOTk5wcHAo\ndSPi9u3bWLVqFfbv3w+pVApHR0e4uLhU2ZP6H+LOnTu4cuUKAgICEBAQgNjYWCgoKMjG8LeysoKl\npSW0tLTe+xhZWVkIDQ0tVfh/8OABBEGAjo4OTExMoKKigtzcXDx69AiPHz+GRCJB8+bNZU/4d+7c\nGR07dpTdTKHKER0djRUrVmDPnj2Qk5NDQUEB6tWrB4lEggULFmD27Nl8ap+oiiQkJKB9+/ZwdXXF\nsmXLKrz9ggULsHTpUpw5cwb9+vX7CAmJqLYKDQ3FoEGD0K5dO5w+fRrq6upiRyIiIiKimoEF/roi\nKysLq1evxrp165CXl4cpU6Zg9uzZaNKkidjRypScnIy1a9di06ZNKCwshKOjI5ycnNCpU6dS7cLD\nw7F48WIcP34crVq1wowZMzBx4kSoqamJlPzDJSUlISAgAFeuXMHly5cRFRUFQRDQunVr2RP+VlZW\nHzxvQFZWVqmCf1hYGO7fvy8r+hsbG5cq+j958gQSiQSmpqayov+rJ/3r169fSWdfNxQXF+PPP//E\nhg0b4Ovri3r16iE/Px+NGjXCs2fPMGbMGKxatapaTmZNVNtt3LgRM2bMwLVr1177N+ddBEGAg4MD\nzp8/jxs3blTbf2OJqHoKDw+HtbU1WrduDR8fnxr9/7NEREREVGVY4K/t8vLy8Pvvv8PT0xOCIGD6\n9OmYPn06tLW1xY5Wpvj4eCxatAi7du1Co0aNMGPGDEydOhWNGjUq1e7WrVv4/vvv8eeff6Jjx46Y\nP38+RowYATk5OZGSfzwZGRkIDAyUPeUfEhKCly9fwsjISDaGv5WVFdq0afPB55+VlYXw8PBST/vf\nv38fJSUl0NLSKlX0j4+PR3p6OiQSCVq0aFGq6N+xY0cW/csQGxuLXbt2YePGjbIJmIuLi2FiYoJH\njx6hTZs2WLlyJQYOHCh2VKI6q6SkBH369MHz589x48aNCk96mZubC0tLS/w/9u48rsb0/x/465QS\n7aTNEhGDQUJGqcaaLCEqzSDDqDHGMGSfoY9sMZjFjG2yjSXJPtZCluxblhBJWtCgUqm0nN8fvp2f\nRqVT55z7dHo9H4/z+Jxzd93X9brPJ8d4n+u+LpFIhMjISC61QURSuXPnDnr06AErKyscOnSIM/mJ\niIiI6GNY4FdV+fn52LBhA+bNm4fU1FR8//33mDZtmtKuqZ6UlIRFixZh3bp1MDc3x+zZszFixIgP\nNvlNSkrC3LlzsXHjRrRr1w4BAQFwcXFRyuWF5CU7OxuXLl2SrOF/7tw5ZGRkwNDQEPb29ujatSu6\ndu2Kjh07ymST5NevX+PGjRvFZvrfv38fhYWFqFOnDho1agRtbW1J0f/ly5dQU1MrNtO/Y8eOsLa2\nrpZF/6dPn2Lnzp3YtGkTrl+/DnV1deTn58PY2BhNmzbFtWvXYG5ujnnz5uGLL75QyS+piKqamJgY\nyd8xfn5+Up8fHx+PDh06oE+fPtiyZYscEhKRKrt//z66deuGJk2a4PDhw9Xyv5+IiIiIqNxY4FdF\nJ0+exIQJExATE4OxY8fixx9/hJmZmdCxSpSZmYlFizxF4ZkAACAASURBVBZh+fLlqFevHmbNmoXR\no0d/sOb427dvERgYiMWLF8PY2Bjz58+Hl5cXi6F4t9xLVFQUzp49K3k8ffoUWlpa6Nixo2QNf3t7\ne5l9wZOZmYnr168XW+Ln/v37KCgogIGBARo2bIhatWrhzZs3SEpKQmpqKkQiERo3boy2bduiTZs2\nkv+1srKCurq6THIpA7FYjKioKPzzzz/YuXMnbt++DZFIhIKCAmhra6N3797Iy8tDeHg49PX1MXv2\nbPj6+nKdfSIlM2/ePAQGBuLmzZto2rSp1OcfPHgQrq6u+PPPP+Hr6yuHhESkyu7fv4/u3bujcePG\nLPITERERUVlY4FclSUlJmDJlCnbs2IH+/ftjxYoVaNasmdCxSiQWi7FlyxbMmDEDb968wU8//YTx\n48eXOOM8IiIC48aNQ0JCAubMmYOJEyfKZGa6KouNjS1W8L937x7U1NTQunVrScHfwcFBpmu8Z2Vl\nSWb637p1C1FRUYiOjkZWVhbU1NRgbGwsWWopLS0Nz58/R0FBAbS0tNC6dWu0bt0aLVq0QPPmzSUP\nLS0tmeWTp7t37yIiIgIHDx7E2bNnkZ6eDjU1NcldDm5ubmjRogXOnj2LAwcOwNLSEn5+fvD29q4y\n10hU3eTn56Njx46oU6cOjh8/XqE7xYo23Y2IiICdnZ0cUhKRKisq8ltYWODIkSMs8hMRERFRSVjg\nVwX5+flYvnw5AgICYGJigl9++QX9+/cXOlapbt26BV9fX1y6dAljxozB/PnzS9wTID09HT/88AM2\nbtyIfv36YeXKlZXeWLa6+vfff3Hu3DmcPn0a586dw9WrV5GXl4eGDRsWK/i3bt1apndFFBYWIi4u\nDjdv3sTt27dx69Yt3Lp1C7GxscjLywMAGBoaSjaRe/PmDVJTU1FYWAg1NTU0atQIzZs3R4sWLdC0\naVM0bNgQDRo0QMOGDWFqaqrwpZkKCgrw+PFjREZG4vjx47h69SoePXqE7OxsSRstLS106tQJAwcO\nRIcOHRAVFYV169bhzp076NSpE6ZNmwY3NzfefUJUBVy8eBH29vYICgqCt7e31OcXFhaif//+uH37\nNq5evaq0+98QkfJikZ+IiIiIPoIF/qru9u3bGDVqFKKjozFz5kxMnTpVaWcE5+bmYuHChVi8eDFs\nbGywatUqWFtbl9g2IiICo0aNQk5ODv744w8MGTJEwWlV25s3b3Dp0iWcOXMGZ8+exfnz55GRkQED\nAwPY2trC1tYWnTp1gq2tLUxNTWU+fl5eHuLi4nD//n3ExMQgJiYGDx48wP3795GcnCxpp6WlJdmg\nMjc3F9nZ2Sj6yNLQ0ICJiQkaNGiApk2bol69ejA0NCz1UdJdHxoaGtDR0UFWVhZev36N5ORkPHv2\nDAkJCYiLi0NiYqLk9fPnz5GZmYnCwkLJ+TVq1ICZmRk6deoEFxcXdO7cGVZWVjh58iS2b9+O0NBQ\nqKurw8vLCz4+PujYsaPM30sikq/vv/8eW7duRXR0NExMTKQ+PzU1FR07dkTjxo1x7NgxlVqSjIgU\ng0V+IiIiIioDC/xVVX5+PpYsWYJ58+bBxsYGGzZsQIsWLYSOVaoLFy5gzJgxiI+Px4IFCzBhwoQS\nZzDn5ubixx9/xPLly+Hq6oq1a9dyxqMCFK3jHxkZiUuXLuHy5cuIiYmBWCxGw4YNJUV/W1tbdOjQ\nAbq6unLLkpGRgfj4eMTHxyMxMRFJSUl48uQJEhISkJiYiCdPniAnJ+eD89TV1aGmpgaxWIyCggLI\n4qNNJBKhRo0a0NHRgYmJCRo3boxWrVrB0dER7dq1g4WFBUQiEfLz8xEREYEdO3Zgz549ePXqFTp3\n7oxRo0bhiy++kOv7RUTylZGRgdatW8PJyQl///13hfq4evUqunbtismTJ2PBggUyTkhE1UFMTAy6\ndesGMzMzhIWFwdDQUOhIRERERKQcWOCviu7evQtvb2/cunUL8+bNw+TJk5V2RmBBQQEWLlyIefPm\noXv37lizZg0aN25cYtuEhAQMHToU9+7dwy+//IKvvvpKsWGpmLS0NFy+fBmXL1+WFP2Tk5Ohrq6O\n5s2bo23btmjXrh3atm2Ltm3bynQ9/495/fo1UlNTS328ffsWr169Qk5ODt6+fYvc3FzJzPucnBxo\namqiVq1a0NDQgKamJvT19VGvXj0YGRnB2NhYUsivXbt2qRmePn2KI0eO4PDhwwgLC0NaWhpsbGzg\n6ekJDw+PUn/Piajq2bt3LwYPHozjx4+je/fuFerjr7/+gq+vLw4fPozevXvLOCERVQf37t2TzOQ/\nevQoZ/ITEREREcACf9WzceNGfPfdd2jdujU2btyIli1bCh2pVAkJCRg+fDguXboEf39/TJ06tdR1\nxyMiIjBs2DAYGhpi165daNWqlYLTUnkkJibi8uXLuHbtGm7evImbN2/i8ePHAIA6depIiv1FxX8r\nKyvo6+sLG1pGnjx5grNnz+LcuXM4c+YMbt26hZo1a8LJyQkuLi7o378/mjZtKnRMIpITV1dX3L9/\nHzdv3qzwRu/Dhw9HWFgYbty4ATMzMxknJKLq4P79+/j888/RrFkzHDlyBNra2kJHIiIiIiJhscBf\nVWRmZuLbb7/Fli1b4OfnhwULFkBDQ0PoWKXau3cvRo8eDTMzM2zfvh1t27YttW1gYCBmz54NDw8P\nrFu3jv9QqWLS09Mlxf6oqCjJhrpZWVkAAGNjYzRr1gxWVlawsrJCs2bNJK+VceaZWCzGo0ePEBUV\nJbmeK1euIDExERoaGrCxsYGdnR169uyJzz//vMxZ/kSkOp48eYJWrVph1qxZmDVrVoX6yMzMRIcO\nHdC4cWMcPnyYm20TUYWwyE9ERERE72GBvyqIioqCp6cnXr16hU2bNsHFxUXoSKUqLCzEnDlzsHDh\nQnz99df49ddfJZuk/ldeXh6++eYbbNq0CT///DMmTZqk4LQkL4WFhXj06BEePHiAhw8fIiYmBg8f\nPsTDhw/x+PFj5OfnA3hX/LewsICpqSlMTExgZmYGY2Nj1K9fH8bGxjA1NYWZmZlMi+i5ublISUlB\nUlISnj9/joSEBDx69AiPHj1CbGwsYmNjkZ2dDTU1NTRt2hTW1tawtraGvb09OnXqxII+UTW2aNEi\nBAQE4Pbt27C0tKxQH1euXIG9vT3mz5+PqVOnyjghEVUXN2/eRPfu3WFjY4P9+/dDS0tL6EhERERE\nJAwW+JVdcHAwRo8eDVtbW2zbtg3m5uZCRyrV69evMXLkSBw5cgS///47xo4dW2rbjIwMeHp64syZ\nM9i2bRsGDBigwKQkpLy8PDx+/FhS8H/y5AmeP3+OZ8+e4enTp0hJSUFKSkqxc3R0dKCjowNtbW0Y\nGBhAR0dHsn5+abPW3rx5g9zcXLx+/RqZmZnIyspCWloa0tPTi7WrW7cuLC0tYWlpiaZNm6Jp06Zo\n1aoV2rRpwxlxRFTM27dv0b59ezRq1AiHDx+ucD9LlizB7Nmzcfr0aXTp0kWGCYmoOrlx4wZ69OgB\nW1tb7N27t8LLhxERERFRlcYCv7IqLCzETz/9hEWLFmHSpElYunSp0m6kC7zb+HfAgAHIzc3Frl27\nYGtrW2rbhIQE9OnTB+np6fjnn39gbW2twKRUFeTl5SElJUVS9P/333+RmZmJzMxMpKenIyMjA/n5\n+cjOzkZOTk6JfRQV/3V0dKCrqwsdHR3o6+vD2NgYxsbGMDc3h4mJCWe8EZFUzpw5AycnJ+zatQuD\nBw+uUB9isRiurq6Ijo7GtWvXVGavEiJSvIsXL6JXr17o2bMnQkJCUKNGDaEjEREREZFiscCvjDIz\nMzFy5EgcOnQIf/75J0aPHi10pDKdPn0agwcPxieffILdu3fDxMSk1LaxsbHo2bMntLW1ceTIETRo\n0ECBSYmIiCrP29sbJ0+eRHR0NHR0dCrUR0pKCqytrdG1a1eEhITIOCERVSfnzp2Ds7Mz+vTpg+3b\nt7PIT0RERFS9LOXubkomPj4eXbp0wblz53DixAmlL+7v2rULffr0gZOTE8LDw8ss7t+7dw9OTk6o\nU6cOIiIiWNwnIqIqaenSpcjKysK8efMq3IexsTE2bdqEXbt2Yf369TJMR0TVjZ2dHQ4fPozDhw9j\nzJgxKCwsFDoSERERESkQC/xK5NatW7Czs4O6ujouX74MOzs7oSOVadmyZXB3d4evry9CQ0NL3UwX\neLdRsKOjIywsLHDixAkYGRkpMCkREZHsGBsbIyAgAL/88gvu3btX4X569eqFKVOmYNKkSXj06JEM\nExJRddO1a1fs2rULO3bswDfffAPepE1ERERUfXCJHiVx4cIF9O/fH23atMHevXuVfj3euXPnIiAg\nAMuXL8ekSZPKbHv37l18/vnnaN26NQ4cOMCNS4mIqMorLCxE586dYWBggLCwsAr3k5ubC1tbW+jq\n6uLUqVNKvd8OESm/AwcOYOjQofj222+xYsUKoeMQERERkfxxiR5lsG/fPnTv3h2Ojo44fPiwUhf3\nxWIx/Pz8sGDBAqxbt+6jxf0nT56gT58+sLS0xP79+1ncJyIilaCmpoZff/0Vx48fx+7duyvcT82a\nNbFt2zZcvXoVy5cvl2FCIqqOBgwYgODgYKxcuRL+/v5CxyEiIiIiBVD353/5CWrt2rXw9vaGj48P\nNmzYAA0NDaEjlUosFmPSpEn4/fffsX79enz11Vdltk9KSoKTk5NkdqMyf3FBREQkrYYNG+Lhw4dY\ns2YNfHx8oKmpWaF+jI2NUaNGDcydOxeurq5l7mdDRPQxLVu2hIWFBSZPnozatWvD3t5e6EhERERE\nJD/nuESPgP744w9MmDAB//vf//DTTz8JHadMYrEY48aNw8aNGxEcHIxBgwaV2T41NRX29vZQU1ND\nREQE19wnIiKV9Pz5c7Ro0QKTJk2q1GzZwsJCdOvWDS9fvsSVK1egpaUlu5BEVC39/vvvmDhxIlav\nXg0fHx+h4xARERGRfCzlDH6BrFmzBuPHj8e8efOUvrgPAH5+flizZg127tyJgQMHltn27du3cHV1\nxdOnT3Hq1CmYmpoqKCUREZFi6ejooEaNGpg3bx48PT1Rt27dCvUjEonw+eefIzAwENnZ2ejRo4eM\nkxJRddO5c2eIxWJMmzYNLVq0wKeffip0JCIiIiKSPc7gF8Lq1avx7bffIiAgALNnzxY6zkfNnTsX\n8+fPx5YtW+Dl5VVmW7FYjK+++gq7d+/G6dOnYW1traCUREREwsjPz0f79u3RtGlT7N27t1J9rVmz\nBt9++y1OnjwJR0dHGSUkoups6tSp+PXXX7F79270799f6DhEREREJFtLWeBXsBUrVmDKlClYsmQJ\n/Pz8hI7zUUuXLsX06dPx119/YfTo0R9tP2/ePAQEBODAgQPo06ePAhISEREJ7/jx4+jZsycOHjyI\nvn37VrgfsViMfv364cGDB7hx4wY3pyeiShOLxfjmm2/w999/49ChQ/j888+FjkREREREssMCvyKt\nWbMG48aNw9KlSzFlyhSh43zU5s2bMWrUKPzyyy/4/vvvP9r++PHj6NWrl2QWIxERUVXn7u4Od3f3\ncrUdNGgQUlNTcerUqUqNmZycjDZt2sDb2xvLly+vVF9ERMC7fT6+/PJLHDhwAMeOHYOdnZ3QkYiI\niIhINpaqCZ2gutizZw/Gjx8Pf3//KlHcj4iIgI+PD2bMmFGu4n56ejpGjx4NsVgMTU1NBSSsvs6f\nP4/z588LHUOlJSQkYOfOnULHICKBnT9/XqrPAh8fH5w9exaJiYmVGtfc3ByBgYH47bffcO3atUr1\nRUQEAGpqati0aROcnJzg6uqKO3fuCB2JiIiIiGSEM/gVIDw8HP3798fXX3+NlStXCh3no+7cuYOu\nXbvC2dkZ27Ztg5rax78HGjFiBE6cOIHk5GTs2LEDHh4eCkhaPRW9tyEhIQInUV0hISHw9PQEPx6J\nqjdpP2+zs7Ohq6uL4OBgDB06tFJji8Vi9OjRAxkZGbhw4QLU1dUr1R8REfDuc6pPnz6IjY1FZGQk\nLCwshI5ERERERJXDGfzydvHiRQwePBju7u747bffhI7zUcnJyXBxcUHbtm2xadOmchX3r1y5gq1b\nt+KPP/5QQEIiIiLlVKtWLVhZWeHWrVuV7kskEmHVqlW4desWVq1aJYN0RETvPqcOHDgAY2Nj9OzZ\nE8+fPxc6EhERERFVEgv8cnTr1i307dsX3bp1w4YNG8pVLBfS69ev0bdvX+jq6mLv3r2oWbNmuc77\n6aef0LFjRwwcOFDOCYmIiJTbp59+iujoaJn01aJFC0yePBmzZ89GUlKSTPokItLT08PRo0ehpqYG\nZ2dnpKWlCR2JiIiIiCpBuSvOVVhsbCycnZ3Rtm1bhISEoEaNGkJHKlNeXh6GDh2KlJQUHDp0CIaG\nhuU679y5czhy5AgWLlwIkUgk55RERETKrWHDhjItxv/0008wMjLCjBkzZNYnEVG9evVw+PBhpKSk\nwM3NDTk5OUJHIiIiIqIKYoFfDpKTk9GrVy8YGxtjz5490NLSEjpSmcRiMcaOHYsLFy7g4MGDUq3F\nOW/ePDg5OaFnz55yTEhERFQ1mJmZITk5WWb91apVC4sXL8a2bdtw/fp1mfVLRGRpaYmjR4/ixo0b\nGDZsGAoKCoSOREREREQVwAK/jL1+/Rp9+vRBzZo1ERYWBgMDA6EjfZS/vz+2bduGnTt3on379uU+\nLzY2FmFhYZgyZYoc0xERSe/gwYMYOHAgTE1NoampCVNTUwwYMAB79+79oK1IJCrxUd520jxI9Zmb\nm+Pp06cy3aR76NChsLW1xezZs2XWJxERALRp0wYHDx5EWFgYxo8fL3QcIiIiIqoAFvhlKD8/H56e\nnnjx4gWOHj2KevXqCR3po3bv3o2AgACsXLkSzs7OUp27atUq1K9fH3379pVTOiIi6eTl5WH48OH4\n8ssv0b17d1y+fBmZmZm4fPkyevToAW9vbwwZMgTZ2dmSc8RicbFi7H9fl3S8pOel9VNaf6Sa6tWr\nh7dv3+L169cy61MkEmHx4sU4fPgwTpw4IbN+iYgAoEuXLggODkZQUBDmzJkjdBwiIiIikhIL/DL0\nww8/4NSpU9i9ezcaNWokdJyPunfvHr766iv4+vrCx8dHqnNzc3OxefNm+Pr6Ql1dXU4JiYikM2HC\nBISEhCA8PBwTJ05Ew4YNoampiYYNG2LSpEk4duwY9u/fL/VnHlF5Fd25J+tNK52cnNC7d2/MmDGD\nXxgRkcwNGDAA69evx/z587FixQqh4xARERGRFFjgl5HffvsNf/zxB9avX4/PPvtM6DgflZGRATc3\nN7Ru3Rq//PKL1Ofv3LkTaWlpGDNmjBzSERFJ7+LFi1izZg1GjRqFjh07ltimc+fOGDlyJLZs2YIz\nZ85UekxpCq0sylYP8irwA8CiRYtw5coV7N+/X+Z9ExGNGDECixYtgp+fH4KDg4WOQ0RERETlxAK/\nDBw5cgRTpkzBwoULMWzYMKHjfFRhYSG++OILpKamYufOnahZs6bUfQQHB6NPnz4wNTWVQ0IiIumt\nXr0awLv1ysvi7u4OAFi3bp3cM1H1I88Cv42NDVxdXREYGCjzvomIAGD69OmYOHEiRo0ahZMnTwod\nh4iIiIjKgQX+SoqOjsawYcMwfPhwzJgxQ+g45TJnzhwcPXoUO3fuRP369aU+Py0tDWFhYZIiGVFZ\nuMEoKUrRjPw2bdqU2a5t27YAgMjISLlnoupHT08PwLs75eTBz88P58+f5+8vEcnNsmXL4OHhgUGD\nBuHGjRtCxyEiIiKij2CBvxKePXsGFxcXtG3bVjJzVNnt27cPCxcuxB9//IGuXbtWqI+9e/dCJBLB\n1dVVxulIFZW1LImDgwMcHBwUmIZUWXJyMgCgbt26ZbYr+vnTp0/lnomqn5o1a0IkEiE3N1cu/Xft\n2hVdunTBsmXL5NI/EZFIJMJff/2Fzp07o1+/foiPjxc6EhERERGVgQX+CsrJycHAgQOhpaWFvXv3\nVmiZG0WLjo7GiBEj4OPjg7Fjx1a4n507d8LZ2Rn6+voyTEfVUWFhIQoLC4WOQdVM0d0kvKuE5EEk\nEkFDQ0NuBX4AmDx5Mvbt24e7d+/KbQwiqt40NTURGhoKY2Nj9O3bF69evRI6EhERERGVggX+Cpow\nYQJiYmLwzz//oE6dOkLH+ajs7Gy4u7ujTZs2+O233yrcT0ZGBsLDwz+6xjVReURGRnKZCZIZMzMz\nAPhoEeLFixcAAHNz82LH1dTe/ZVYUFBQ6rkFBQWSdkSlqVmzJnJycuTW/+DBg9GkSZNK/X1ORPQx\nenp6OHjwILKystC3b1+8efNG6EhEREREVAJWKSpg69atCAoKQlBQEKysrISOUy4//PADkpOTsW3b\nNmhqala4n+PHjyM/Px99+vSRYToiosorWu7p5s2bZbYr+rmjo2Ox47q6ugCA9PT0Us9NTU2VrLFO\nVJqaNWvKdQa/uro6JkyYgC1btiAzM1Nu4xARmZub49ChQ4iJiYGXl1eZX4ITERERkTBY4JfSzZs3\n4ePjg+nTp8PNzU3oOOWyZ88erFmzBqtWrYKFhUWl+jp69Cg6duyIevXqySgdKcL7G93GxsbCzc0N\nhoaGH2x+m5KSgnHjxqFBgwbQ1NRE/fr14ePjg2fPnn3QZ3h4OFxdXWFoaAgtLS3Y2NggODi4Qpn+\n686dO+jbty90dHSgp6cHZ2dnREdHl3jO+8cSEhIwcOBA6OrqwsTEBMOHD8fLly+lfLeoqvrmm28A\nALt27Sqz3c6dO4u1L9KiRQsAwO3bt0s99/bt22jevHllYlI1IO8CPwCMGDECeXl5CA0Nles4RESt\nWrXC3r17cezYMXz33XdCxyEiIiKi/2CBXwoZGRnw8PCAra0tAgIChI5TLomJiRg7dix8fHwwbNiw\nSvd37NgxODs7yyAZKdL7G92OGzcOfn5+SE5OxqFDhyTHnz9/DltbW+zZswfr16/Hq1evEBwcjGPH\njsHOzg5paWnF+uzVqxfU1dXx4MEDxMTEwMjICF5eXjh69KjUmd4XGxuLrl27IioqCvv370dycjLm\nzJkDHx+fEs99//nMmTOxePFiJCYmYsiQIdi6dSv8/PzKlYeqvs8++wy+vr7YsGEDrly5UmKbixcv\nYvPmzfD19UWnTp2K/WzAgAEAgA0bNpQ6RlBQEPr16ye70KSSNDU15V7gr1OnDlxdXcv8fSUikhVH\nR0fs2LED69atQ2BgoNBxiIiIiOg9LPCXk1gsxqhRo5CWloatW7eiRo0aQkf6qMLCQnh7e6NOnTpY\ntmxZpfuLiYnBo0ePWOCv4mbNmgU7OzvUqlULLi4ukgL53LlzER8fj4ULF6J3797Q0dGBg4MDVqxY\ngbi4OCxduvSDvlasWAEjIyM0atRIshb0ggULKpXP398faWlpCAwMRPfu3aGjowN7e3vMmjXro+eO\nHTsWLVu2hL6+PqZNmwbg3ZdSVH38/vvvcHd3R69evfDbb78hMTEReXl5SExMxK+//gpnZ2d4enri\n999//+DciRMnolWrVti4cSPGjx+P27dvIzc3F7m5ubh16xbGjRuHy5cvY9KkSQJcGVUlipjBDwBf\nffUVzpw5g4cPH8p9LCIiV1dXLF++HDNnzsS2bduEjkNERERE/4cF/nJasmQJ9u/fj5CQkA82ZlRW\nCxYsQGRkJEJCQqCjo1Pp/o4dOwYDAwN07txZBulIKLa2tiUeP3DgAADAxcWl2PGidcqLfl5ELBaj\ncePGktdF+1FER0dXKl9YWBgAoHv37sWO29nZffRcGxsbyfOiP6dPnz6tVB6qWjQ0NLB161Zs2bIF\n4eHh6NChA7S1tWFjY4OwsDBs2bIFW7ZsgYaGxgfn6urq4vz58/jf//6HS5cuwd7eHtra2qhXrx68\nvb1Rr149XLx4sdQ1+EtbPoqqH0UV+J2dndGgQQNs3LhR7mMREQHA999/j8mTJ2P06NE4deqU0HGI\niIiICIDyT0NXAqdOncKPP/6IRYsWfbApo7K6dOkSAgIC8PPPP8Pa2lomfZ46dQqOjo5V4u4FKl3t\n2rVLPJ6SkgIApX6BFRsbK3melpaGJUuWYM+ePUhMTCy2yWNl17x/8eIFAMDIyKjYcQMDg4+eW7RJ\nKgDJZtKlLQVEqq1fv34VWkpHT08Pc+bMwZw5c6Q+l79rVERRBX41NTUMHz4cf//9NwICAviFEhEp\nxNKlS5GcnAw3NzecO3dOsocNEREREQmDM/g/Ii0tDSNGjED//v0xZcoUoeOUS2ZmJoYNG4bevXtj\nwoQJMus3MjIS9vb2MuuPlIuJiQkA4NWrVxCLxR88srKyJG09PDywaNEieHp6Ij4+XtJGFooK+0WF\n/iL/fU1EpKwUVeAHAHd3dzx58gTXr19XyHhERCKRCEFBQfjkk0/g4uKC58+fCx2JiIiIqFpjgf8j\nxo8fj9zcXKxZs6bKzIz78ccfkZ6ejqCgIJlljo2NxdOnT6tMgb9oaYz/Pkr6eYMGDfDvv/+Wux9V\nNWjQIABARETEBz87c+YMunTpInkdGRkJAJgyZQrq1KkDADIrZvXu3RsAcPz48WLHi8YkIlJ2iizw\nt2/fHo0bN8a+ffsUMh4REQDUqlUL+/btQ40aNdC/f/9iE0GIiIiISLFY4C/Dnj17sH37dqxfvx7G\nxsZCxymXixcvYuXKlVi+fLlkRrYsnD17FjVr1kSHDh1k1qc8/XdGeVmvk5KS4OXlhYKCgjL7keUs\ndWXk7+8PKysrjB8/HqGhoXj58iUyMjLwzz//YNSoUVi8eLGkrYODAwBg0aJFSEtLw6tXr8q1CW55\ncxgYGGDGjBk4ceIEMjMzcfbsWaxZs0Ym/RMRyZuamhoKCwsVNt6AAQOwd+9ehY1HRAS8u+vy8OHD\niI+Px7Bhw0r8b2kiIiIikj8W+EuRnJyMsWPHPlYXQwAAIABJREFUwtfXt0LrOAvh7du3GDNmDJyc\nnDBy5EiZ9h0ZGYlOnTpBS0tLpv0qA1NTUxw/frxCa25XFeXZ+NPIyAgXL16El5cXpk2bBjMzM1hZ\nWWHt2rXYunUrnJycJG03b96MESNGICgoCCYmJnByciq2+fJ/x5PmuaWlJc6ePYt27drB1dUV5ubm\nCAwMxMqVKwG8K5yVdW0fe05EJG+K/swZOHAgbt68ibi4OIWOS0TUtGlT7Nq1C2FhYZg+fbrQcYiI\niIiqJe6WWgKxWIyxY8dCX18fS5YsETpOuS1YsABxcXHYv3+/zIsLFy5cQJ8+fWTap7LYsWMHevTo\ngUWLFqFLly7o37+/0JFkrrx3HhgaGmLZsmVYtmxZme2MjY2xefPmD457eHiUe+yyMrVu3RqHDh0q\ndiw5ORnAh5vvVqR/IiJ5U+RnkKOjIwwNDbF//35MnDhRYeMSEQHv7uzcvHkzhg0bBgsLC5nuAUZE\nREREH8cZ/CVYvXo1jhw5go0bN0JXV1foOOVy7949BAYGYuHChbC0tJRp39nZ2bh79y46duwo036V\nhaOjIxYuXAixWIwRI0ZwBqQSEIlEePjwYbFjp0+fBgB069ZNiEhEROUmEokUWuDX0NBAr169cOzY\nMYWNSUT0Pg8PDwQEBOCHH37gniBERERECsYC/388evQI06dPx8yZMyXrjCu7wsJCjBkzBu3atcN3\n330n8/5v3ryJ/Px82NjYyLxvZTF16lQMHjwYaWlpGDJkCHJycoSOVO2NHz8ejx49QlZWFo4fP47p\n06dDT08P/v7+QkcjIiqTogv8AODk5ISzZ89yDWwiEszs2bMxatQofPnll7h69arQcYiIiIiqDRb4\n3yMWizFmzBg0bdq0Sq3HvnLlSly5cgV//fUX1NXVZd7/tWvXoKenh6ZNm8q8b2WyYcMGNGvWDNev\nX5fLFyVUfuHh4dDR0YGdnR0MDAzg5eWFzz77DBcvXsQnn3widDwiojIJVeB//fo1bty4odBxiYje\nt2rVKtjZ2cHV1RVJSUlCxyEiIiKqFljgf8/ff/+N06dPY9WqVdDU1BQ6Trm8ePEC/v7+mDx5Mtq0\naSOXMa5fv4727dur/Eal+vr62LVrF2rVqoWgoCBs2LBB6EjVVo8ePbBr1y48e/YMeXl5SElJwY4d\nO1jcJ6IqQYi/L1u1agVjY2OcOnVK4WMTERXR0NBAaGgo6tSpgwEDBiArK0voSEREREQqjwX+/5Oa\nmoqpU6di3Lhx+Oyzz4SOU25z5syBpqYmZs6cKbcxigr81UHbtm2xatUqAO+WiOFMyOpNJBLxwQcf\n1fixc+fOCn9+KHoGv0gkgr29vWS/EiIioejp6WH//v1ISkqCp6cnlw4jIiIikrMaQgdQFjNmzIBI\nJML8+fOFjlJu0dHRWLduHdauXQs9PT25jFFQUIDbt29XqyVrvL29ce7cOaxduxZDhw7FlStXhI5E\nAgkJCRE6AhEJaMWKFRU6TyRS/BI9wLtleubNmwexWAyRSLXvuiMi5dakSRPs3r0bPXr0wOzZs7F4\n8WKhIxERERGpLBb4AVy+fBl//fUXtmzZAgMDA6HjlFvRsjze3t5yG+Px48fIyclBy5Yt5TaGMvrt\nt99w9epVXL16Va7vLyk3d3d3oSMQkYAqOoNfqAK/ra0tXr16hcePH6NJkyYKH5+I6H329vbYtGkT\nvLy80KRJE/j6+godiYiIiEglVfsCf35+Pnx9feHg4IBhw4YJHafcDhw4gKNHj+LUqVNQU5PfSkv3\n7t0DALRo0UJuYyijmjVrIjQ0FDY2Nti/f7/QcYiIqAoRavZ827ZtoaamhqioKBb4iUgpeHp64tat\nW5gwYQKsrKzQvXt3oSMRERERqZxqvwb/r7/+iujoaKxevbrK3M6el5eHqVOnwsPDA46OjnId6969\nezA3N4e+vr5cx1FGjRs3xpYtW6rM7wURESkPIWbwa2trw9LSElFRUQofm4ioNAEBARg6dCjc3d0R\nExMjdBwiIiIilVOtC/z//vsv5s2bh+nTp+OTTz4ROk65/fnnn4iPj1fIWpb379+vUu9NkaINEsvz\n+r8/e1/fvn0xe/Zs+YYlIiKVItQSPcC7Wfws8BORMhGJRAgKCkLz5s3Rt29fvHjxQuhIRERERCql\nWhf4AwICoK2tjWnTpgkdpdzevHmDRYsWYcKECQq5/f7evXtVssAvFotLfJT189IEBAQIVqghIqKq\nR8gCf7t27VjgJyKlU6tWLezZswd5eXkYMmQI3r59K3QkIiIiIpVRbQv8cXFxWLt2LebOnQttbW2h\n45Tb6tWrkZmZCT8/P4WMd//+fTRv3lwhYxEREamCgoIC1KghzDZHbdu2RVxcHLKysgQZn4ioNKam\npti/fz+uXbuGCRMmCB2HiIiISGVU2wL/7NmzYWFhgdGjRwsdpdxycnKwbNkyjBs3DsbGxnIf782b\nN0hJSYGlpaXcxyIiUnYODg5wcHAQOgZVAfn5+VBXVxdk7KZNm0IsFuPx48eCjE9EVJZ27dphy5Yt\n+Ouvv7Bq1Sqh4xARERGpBGGmlwksKioKO3bswM6dO6GhoSF0nHJbvXo1Xr16hcmTJytkvKLigIWF\nhULGo/I7f/48PDw8hI6hshISEoSOQEqosLBQ6AhUReTn5ws2g79x48YA3t2p2Lp1a0EyEBGVZeDA\ngfD398fEiRPxySefoFu3bkJHIiIiIqrSqmWBf+rUqejYsSMGDx4sdJRyy8nJwc8//4xvv/0WZmZm\nChkzPj4eAAv8REQAEBkZKXQEqiKEXKJHV1cXRkZGnMFPRErtxx9/xJ07d+Du7o5Lly7xjmEiIiKi\nSqh2Bf5jx44hLCwMJ06cgEgkEjpOua1btw4vX77ElClTFDbm48ePYWBgAH19fYWNSeXTpUsXhISE\nCB1DZYWEhMDT01PoGERURQk5gx8AmjRpgri4OMHGJyL6GJFIhA0bNsDBwQFubm6IjIysUvuiERER\nESmTarcGv7+/P/r161elbgXNzc3FkiVL4OvrC3Nzc4WNGx8fL7nVn4gIePcP8qJHcnIyhgwZAl1d\nXdStWxfe3t5IT0/H48eP4erqCj09PZiammLUqFFIS0v7oK+UlBSMGzcODRo0gKamJurXrw8fHx88\ne/bsg7bh4eFwdXWFoaEhtLS0YGNjg+Dg4DLzJSQkYODAgdDV1YWJiQmGDx+Oly9fVvq65fV+lPca\nAeDOnTvo27cvdHR0oKenB2dnZ0RHR5eaU5r3miqPBX4ioo+rVasWdu3ahadPn2LEiBEQi8VCRyIi\nIiKqkqpVgf/UqVM4f/48Zs2aJXQUqYSEhOD58+eYOnWqQsd98uQJGjVqpNAxiUi5vf+P7+nTp2P+\n/PlITEyEl5cXNm/ejC+//BKTJ09GYGAgEhIS4Obmhk2bNmHatGnF+nn+/DlsbW2xZ88erF+/Hq9e\nvUJwcDCOHTsGOzu7DwrgvXr1grq6Oh48eICYmBgYGRnBy8sLR48eLTXfzJkzsXjxYiQmJmLIkCHY\nunUr/Pz8Kn3d8ng/pLnG2NhYdO3aFVFRUdi/fz+Sk5MxZ84c+Pj4lJhL2veaKk/oAn+jRo24lwgR\nVQkWFhbYtWsXDh48iAULFggdh4iIiKhqElcjLi4uYkdHR6FjSM3W1lY8bNgwhY/r5OQk/vbbb6U6\nB4B4x44dckpEYrFY7O7uLnZ3dxc6hkrbsWOHuJp9PEoFgBiAOCIiQnIsKSmpxOMJCQliAOL69esX\n68PX11cMQBwUFFTs+O7du8UAxLNmzfpgzLi4OMnru3fvigGIHRwcypUvLi5ODEBsbm5eoWt+v9/y\njCft+1HUT3mucfjw4WIA4r///rvY8YMHD5aYUdr3mv6/os/bCxcuiMPCwsSxsbHlOs/GxkY8ffp0\nOacr3eLFi8VNmjQRbHwiImn98ccfYpFIJA4JCRE6ChEREVFVs6TazOC/efMmjhw5gunTpwsdRSoX\nL17EpUuX8N133yl87JSUFNSrV0/h4xJR1WBjYyN5bmpqWuLxomXFkpOTi5174MABAICLi0ux446O\njsV+XkQsFhdbMszKygoAEB0dXa58RTmePn1aavvKqsz7AZT/GsPCwgAA3bt3L3bczs6uxFzSvtf0\noWXLlqFXr15o2rQp6tWrB19fX9y6davU9kJusgsAdevWrfByVEREQvj222/h4+OD0aNH4/bt20LH\nISIiIqpSqk2BPzAwEJ9++ukHBQ5lt3LlSlhbW8Pe3l7hY6ekpMDExETh4xJR1aCrqyt5rqamVuZx\n8X+WuElJSQHwruD9/rrxRkZGAN4tQ1MkLS0Ns2bNQsuWLaGrqwuRSCQpnpZVxHw/h6amZok5ZKky\n74c01/jixQsAkLxXRQwMDErMJc17TSULDg7GixcvcOHCBUybNg3nzp2DtbU1xo4di8zMzA/aC71E\nT926dfH69Wvk5eUJloGISFq///47OnbsiAEDBkj+riMiIiKij6sWBf64uDiEhIRg+vTpH2w8qMz+\n/fdfhIaGYsKECQofOz8/H6mpqTA2Nlb42ESk+oq+PHz16hXEYvEHj6ysLElbDw8PLFq0CJ6enoiP\nj5e0USXSXGNRYf6/xY/SiiHSvNdUMjU1NdStWxedO3fG1KlTcfPmTWzbtg379u1D586dkZSUVKx9\nfn4+1NXVBUr7rsAPAKmpqYJlICKSloaGBkJDQyESiTBs2DDk5+cLHYmIiIioSqgWBf5ly5bBzMwM\nHh4eQkeRypo1a1CrVi0MGzZM4WP/+++/KCwsZIGfiORi0KBBAICIiIgPfnbmzBl06dJF8joyMhIA\nMGXKFNSpUwcAkJubK/+QCiTNNfbu3RsAcPz48RL7+C9p3msqH5FIBE9PT1y/fh0A0K1bt2J3Wgg9\ng7/od4jL9BBRVVO3bl3s3r0bFy5cwNSpU4WOQ0RERFQlqHyB//Xr19i0aROmTJkCDQ0NoeOUW35+\nPtasWYOxY8eidu3aCh//+fPnAMAleohILvz9/WFlZYXx48cjNDQUL1++REZGBv755x+MGjUKixcv\nlrR1cHAAACxatAhpaWl49eoVZs2aJVR0uZDmGv39/WFgYIAZM2bgxIkTyMzMxNmzZ7FmzZpS25f3\nvSbp1K9fHydOnEBubi6++OILyV0XQhf49fT0ALz7byAioqrG2toamzdvxq+//oq//vpL6DhERERE\nSk/lC/zbt29HQUEBRo4cKXQUqYSHhyMpKQm+vr6CjJ+WlgYAMDQ0FGR8IlJO7y9zVpnnRkZGuHjx\nIry8vDBt2jSYmZnBysoKa9euxdatW+Hk5CRpu3nzZowYMQJBQUEwMTGBk5MTOnfuLJMc5SWr6y7t\nuTTXaGlpibNnz6Jdu3ZwdXWFubk5AgMDsXLlSgDF1/8HpHuvSXomJibYuXMnTpw4gXXr1gEQvsBf\ntOfE27dvBctARFQZbm5umDFjBsaPH48zZ84IHYeIiIhIqQn3r08FWbduHdzd3atcoXrbtm347LPP\nYGlpKcj4RbP+imYBEhEBpW9SK+1x4N0XiMuWLcOyZcvKHNPY2BibN2/+4HhJy65VJEd5yOq6Szsu\nzTUCQOvWrXHo0KFix5KTkwF8uPkuUP73mirG1tYW33//PX788UeMGDECBQUFgq7BX7NmTQAs8BNR\n1TZ//nzcvn0bHh4euHz5Mho0aCB0JCIiIiKlpNIz+G/evImrV69i7NixQkeRSk5ODvbt2wcvLy/B\nMmRkZEBDQ0NSJCAiIuUhEonw8OHDYsdOnz4N4N168KR4M2bMQGZmJjZu3Kg0M/hVba8KIqpe1NTU\nsHXrVtStWxcDBw7EmzdvhI5EREREpJRUusC/evVqtGjRAvb29kJHkcq+ffuQlZUl6KbAmZmZ0NXV\nFWx8IiIq2/jx4/Ho0SNkZWXh+PHjmD59OvT09ODv7y90tGqpXr16GDlyJH7++WelKfBzBj8RVXW6\nuro4cOAAnjx5ItjSpURERETKTmUL/NnZ2di+fTt8fHwqtN6ykLZv346ePXsKusFtRkYGdHR0BBuf\niEjeRCJRuR7KKDw8HDo6OrCzs4OBgQG8vLzw2Wef4eLFi/jkk0+EjldtTZ48GY8fP0Zubq6gBX4N\nDQ2oqalxBj8RqYQmTZpg27ZtCA4O5lJzRERERCVQ2TX4d+zYgezs7Cq3uW5qaiqOHDmCNWvWCJoj\nIyODM/iJSKVVdl1+IfXo0QM9evQQOgb9R/PmzdGhQwdcu3ZN0AI/EZGq6dWrFxYvXoxp06ahZcuW\n6Nu3r9CRiIiIiJSGys7g37p1KwYMGFDiZoPKbNeuXVBTU8PgwYMFzfHmzRvUrl1b0AxERERVTb9+\n/QTfZDc/Px+FhYXQ0NAQLAMRkaxNmTIFX375JYYPH44HDx4IHYeIiIhIaahkgf/FixeIiIgQdA37\nitq3bx969+4NPT09QXMUFhYKWpwg4aWnp+OHH36ApaUltLS0ULduXdjZ2cHPzw+XLl2StHt/KZPo\n6Gj06dMHenp60NHRQb9+/XD37t1i/b7fPjk5GUOGDIGuri7q1q0Lb29vpKen4/Hjx3B1dYWenh5M\nTU0xatQopKWlKfotICKSWr9+/QAAycnJgmXIy8sD8P/X4iciUhVr166FlZUVBg8ejKysLKHjEBER\nESkFlSzw79mzB5qamlXu1s3c3FxEREQoRe7CwkKoqankrweVk7e3N3755RdMnDgRL1++xNOnT7Fh\nwwY8evQInTt3lrR7f5mTsWPH4qeffkJycjL27duHa9euwd7eHo8fPy6x/fTp0zF//nwkJibCy8sL\nmzdvxpdffonJkycjMDAQCQkJcHNzw6ZNmzBt2jSFXDcRUWVYW1sDAO7cuSNYhqLNdTmDn4hUjZaW\nFkJDQ5GSkoIxY8YIHYeIiIhIKahkBTc0NBQuLi7Q1tYWOopUTp06hczMTPTp00foKCzwE06ePAkA\nqF+/PrS1taGpqYkWLVpg5cqVpZ7z448/wt7eHjo6OujRowcWL16M1NRU+Pv7l9j+66+/RsuWLaGv\nr49Zs2YBAA4ePIiJEyd+cPzQoUOyvUAiIjkoKCgAADx58kSwDJzBT0SqrGHDhtixYwdCQ0Px66+/\nCh2HiIiISHAqtwNcamoqIiIisHHjRqGjSO3w4cNo06YNGjVqJHSUShX4L1y4AJFIJONEVCQxMREN\nGjSQ+zhDhgzBhg0b4O7ujoYNG6J3797o3bs3Bg0aVOrmpHZ2dsVe9+zZEwBw7NixEtvb2NhInpua\nmpZ43NzcHIAwy13s3LlT4WMSkfKoyOdtfn4+ACAuLk4ekcqFM/iJSNV169YNAQEB8PPzQ/v27eHo\n6Ch0JCIiIiLBqFyBf/fu3VBTU5OsgVuVHDp0SPDNdYtUpsC/YsUKrFixQsaJ6H3u7u5yH2P9+vXo\n378/tm3bhhMnTiAoKAhBQUFo1KgR9u3bJ1mG4n36+vrFXhdtcv3vv/+WOIaurq7k+fu/byUdL+1L\nBXmqivt4EJFsSft5W1TgT0xMxNu3bwWZRZ+ZmQkA0NHRUfjYRESKMmPGDFy9ehUeHh64du2aZFII\nERERUXWjcmuw7N69Wyk2qZVWXFwcYmJi4OLiInQUAO82Qi0sLKzQuTt27IBYLOZDTg9FFPeLuLm5\nITQ0FC9evMDp06fh7OyMJ0+e4Kuvviqx/cuXL4u9fvHiBQCgXr16cs8qD0L/f80HH3wI+6jI523R\nEj35+fm4d++erD+WyiU1NRUAYGhoKMj4RESKIBKJsGHDBtSpUwfu7u6Su5eIiIiIqhuVKvDn5OTg\n5MmTGDhwoNBRpHbo0CHo6+t/sMSJUGrXro3s7GyhY5CARCIREhMTAbybRe/g4IAdO3YAAO7evVvi\nOZGRkcVeh4eHAwB69+4tx6RERMqjaAY/AMTHxwuSIS0tDQBgYGAgyPhERIqiq6uLkJAQREVFYebM\nmULHISIiIhKEShX4IyMjkZ2dje7duwsdRWqnT5+Gg4OD0qyXywI/Ae82wb1z5w5yc3Px/PlzBAYG\nAgCcnZ1LbL969WqcPXsWmZmZOHHiBGbOnAlDQ8NSN9klIlI1RQV+XV1dJCUlCZIhNTUV6urqxZY7\nIyJSVZ9++inWrVuHFStWICQkROg4RERERAqnUgX+48ePo3nz5mjcuLHQUaR2/vx5dOnSRegYErVq\n1cKbN2+EjkECOnv2LExNTdG/f3/o6uqiRYsWOHToEBYsWIDt27eXeM6ff/6JwMBAmJubw9XVFdbW\n1oiMjCz2Z/L9DZgr85yISBkVFfiNjY0FK/CnpaVBX1+/wnvpEBFVNV5eXhg/fjzGjBmDO3fuCB2H\niIiISKFUapPd8PBw9OjRQ+gYUktOTkZCQoJSFfhr167NAn81Z29vD3t7e6nOady4MQ4cOFBmG7G4\n5M1ypT1ORKSMlKHAn56e/sGm50REqm758uWIioqCm5sbLl++XOX2ZCMiIiKqKJWZ2pWWloZr165V\nyQL/uXPnoK6ujk6dOgkdRYIFfiIiIukVFfhNTEyQnJwsSIZnz57BxMREkLGJiISioaGBkJAQZGRk\nYOTIkZwkQkRERNWGyhT4T548CQDo1q2bwEmkd/78ebRp0wY6OjpCR5EwNDRERkYG3r59K3QUIqoG\nRCKR5KEqZHVNwcHB6Ny5MwwNDcvsUxXfw6qooKAAwLs1+DMyMgTJkJSUhPr16wsyNhGRkExNTbFt\n2zYcPHgQy5YtEzoOERERkUKoTIH/xIkTaN++PerUqSN0FKmdO3dOqZbnAQAzMzOIxWI8f/5c6Cik\n5LhGPslCWbPsHBwc4ODgoMA0siGLmYObN2+Gl5cX6tatixs3biAnJwe7du2S23hUeUUz+LW1tZGZ\nmSlIhqSkJDRo0ECQsYmIhPb5559j4cKFmDFjBsLCwoSOQ0RERCR3KlPgP3/+fJUsAL19+xY3btxA\n586dhY5SjJmZGYB3t/kTlUUsFhd7EMlaYWEhCgsLhY4hiOXLlwMAli1bBgsLC9SsWRNubm78s6bE\nlKHAn5iYyBn8RFSt+fn5wc3NDSNGjBBsPxQiIiIiRVGJAn9ubi5u376Njh07Ch1Fag8ePEBOTg6s\nra2FjlKMqakpAODp06cCJyGi6i4yMhKRkZFCxxBETEwMAKBZs2YCJ6HyKirw6+joICsrS+HjFxYW\n4tmzZyzwE1G1JhKJsH79etStWxdDhw7lsqNERESk0lSiwB8VFYXc3NwqWeCPjo6Guro6mjdvLnSU\nYrS0tGBgYMAZ/EREAsrOzgbwbuNAqhqKikh6enqCzOB/8eIF3r59C3Nzc4WPTUSkTHR0dLB7925E\nR0fDz89P6DhEREREcqMSBf4rV65AX1+/Ss5wjI6OhqWlJWrVqiV0lA80bNgQ8fHxQscgIgV5f5PW\n2NhYuLm5FdvYtUhKSgrGjRuHBg0aQFNTE/Xr14ePj0+JXwiGh4fD1dUVhoaG0NLSgo2NDYKDgyuU\n6b/u3LmDvn37QkdHB3p6enB2dkZ0dHSJ57x/LCEhAQMHDoSuri5MTEwwfPhwvHz58oP+pbnO97Po\n6+tj8ODBePLkSbmvs7RrLyl/RTbTLe+1pKen44cffoClpSW0tLRQt25d2NnZwc/PD5cuXarU9VQX\nRQX+WrVqIS8vT+Hjx8XFAQAsLCwUPjYRkbJp0aIF1q5di99//x2bNm0SOg4RERGRXKhMgb9Dhw5Q\nU6t6l3P37l20bNlS6BglatmyJaKjo4WOQUQK8v667uPGjYOfnx+Sk5Nx6NAhyfHnz5/D1tYWe/bs\nwfr16/Hq1SsEBwfj2LFjsLOzQ1paWrE+e/XqBXV1dTx48AAxMTEwMjKCl5cXjh49KnWm98XGxqJr\n166IiorC/v37kZycjDlz5sDHx6fEc99/PnPmTCxevBiJiYkYMmQItm7d+sHMPmmu879ZkpKS8MMP\nPxTLUhH/zV/RvS6kuRZvb2/88ssvmDhxIl6+fImnT59iw4YNePTokdLtFaOsigr86urqgoz/4MED\naGpqolGjRoKMT0SkbDw9PTFp0iSMGzcO169fFzoOERERkcxVvYp4Ca5cuYJOnToJHaNC7t69i1at\nWgkdo0StW7fGnTt3hI5BRAKYNWsW7OzsUKtWLbi4uEiKynPnzkV8fDwWLlyI3r17Q0dHBw4ODlix\nYgXi4uKwdOnSD/pasWIFjIyM0KhRI/z2228AgAULFlQqn7+/P9LS0hAYGIju3btDR0cH9vb2mDVr\n1kfPHTt2LFq2bAl9fX1MmzYNAHDs2LFibaS5zpKyODo64ptvvqnUNcqKNNdy8uRJAED9+vWhra0N\nTU1NtGjRAitXrhQqfpVTVOCvUaOGIOM/fPgQlpaWgn3BQESkjJYuXYpOnTrB09MT6enpQschIiIi\nkqkqX+DPzs7G3bt3YWNjI3QUqRUUFCAmJkZpZ/C3bt0ajx49kqwBTUTVh62tbYnHDxw4AABwcXEp\ndtzR0bHYz4uIxWI0btxY8trKygoAKn13UFhYGACge/fuxY7b2dl99Nz3/74oWqf8vxuKS3OdpWXp\n2rXrR7MogjTXMmTIEACAu7s7GjVqhK+//hohISEwMjKS+s4BVbJ9+3YcOXIEV69eRWxsbJl/LypD\ngb/ozxkREb1To0YNhISEICsrCyNGjKjWf6cRERGR6hHmX58y9ODBA+Tn5+PTTz8VOorUHj9+jJyc\nHKUu8BcUFODevXto37690HGISIFq165d4vGUlBQAKHUDz9jYWMnztLQ0LFmyBHv27EFiYmKxDUdL\nWvNeGi9evAAAGBkZFTtuYGDw0XN1dXUlzzU1NQF8uBSQNNdZWpb/vhaKNNeyfv169O/fH9u2bcOJ\nEycQFBSEoKAgNGrUCPv27YO1tbVCMiubadOmITExsdgxIyMjNGzYEA0bNkTjxo1hYWGBZs2a4fHj\nx1BXVxds2cCHDx+W64suIqLqxsTEBNuGZ7WFAAAgAElEQVS3b0ePHj0QGBiIGTNmCB2JiIiISCaq\n/Az+mJgYqKmpwdLSUugoUivawPb92a3KpFmzZtDV1cWFCxckx1JSUnD69GkBUxGRkExMTAAAr169\n+mBdeLFYjKysLElbDw8PLFq0CJ6enoiPj6/Q+vGlKSqeFxXXi/z3dUVJc52lZVGWJQCkuRYAcHNz\nQ2hoKF68eIHTp0/D2dkZT548wVdffSVEfKUQGhoKkUiEDRs24PLly9i/fz/mzp2LXr16QVtbG1ev\nXsXy5csxcOBA+Pn5oaCgAFOmTEF+fj6+//57rFy5EkePHsWjR49QUFAg16wPHz5Es2bN5DoGEVFV\n5ejoiMDAQPz00084c+aM0HGIiIiIZEIlCvwWFhbQ0tISOorUkpKSULNmTaWZ5flfNWrUgJOTE8LD\nwwG8y9u5c2f07NkTycnJAqcjIiEMGjQIABAREfHBz86cOYMuXbpIXkdGRgL/j707D4uq7P8H/h4Y\nFtlHlFVBWZRFRYVQ2dTcckvTFM1cciszQzNzaVOfTDPXJ03N3ChNoDIfbDPCBVxSUTQWNcFUdkRB\nkJ05vz/8MV9QUBgGDjO8X9fFlR7P3Od9zkwDfOY+nxvAwoUL0bp1awBASUmJSnIMHjwYAPDnn39W\n2155zIaqz3nWluXMmTMqydJQ9TkXiUSimKmupaUFf39/hISEAHi0ZkxL1atXL/Tt2xeRkZHw8vLC\nyJEj8dZbb+Gzzz7DgQMHEB0drbhL5YMPPoCBgQF8fX2hra2NCxcuYPny5XjhhRfg6OgIAwMDuLq6\nYvTo0Vi0aBG++uorHDt27Ik7BJSRlZWFnJwcdO7cWQVnTUSkmRYsWIARI0Zg4sSJyM7OFjsOERER\nUYNpRIueTp06iR1DKSkpKbC1tYVEIhE7Sq0GDRqEjz/+GLdv30bfvn2RmpoKAFi3bh02bNggcrqW\nKyUlBWFhYWLH0FhV71qh6pYvX46jR49i7ty5qKioQP/+/aGrq4sTJ04gKCgIu3fvVuzr7++P33//\nHatXr8Z7770HuVze4MV1q+YIDw/HkiVLYGtrC29vb8TGxmLHjh0qG7+u51lTlitXrmD16tUqydJQ\n9TkXAJg5cybWr18PJycn5ObmYvPmzQCAIUOGiBG/2ejXrx/27t371H0MDQ1haWkJQ0ND9O/fH6dP\nn8bp06cBAPfv30dycnK1rzNnzuCrr77CgwcPAAB6enpwdHSEu7s73NzcFP91dXWtU8ufy5cvAwC6\ndu3asJMlItJgEokEu3fvhqenJ6ZMmYKff/5ZtLZqRERERKqgEQV+dVxgF3g0I75du3Zix3iqQYMG\nISgoCL1798bdu3dRVlYGANi2bRuWLl2Ktm3bipywZTpz5kyzmR1MmqPqh42Vf368pU6bNm3w119/\n4ZNPPlH0JW/dujW8vb2xf/9+9O7dW7FvcHAw3n33XezatQvr169Hp06d8OGHH1Y7RuX4jx/7Wdsd\nHBwQHR2NRYsW4cUXX4SWlhb69u2LLVu2wNHR8Ylf1Os7fn3O8/EsEokEPj4+2LZtG9zd3Z8Yu67q\nm1kV5xIdHY2dO3dixIgRSE1NhYGBATp06IBVq1Zh/vz59cqvaXr37o3ly5fj3r17ijtSalJaWgo9\nPT0UFRWhVatWiu0ymQyenp7w9PR84jEZGRm4du0arl69ioSEBCQkJGDnzp2Ku+UMDQ3h6uoKNzc3\nRcHf3d0dHTt2rPZav3LlCqytrWFhYaHCMyci0jwymQwHDx6Ev78/1q5dy378REREpNYkgqoaIovE\nwsICH374IebNmyd2lHobPXo0DAwMcODAAbGj1ColJQXdunVDfn4+ysvLFdt1dHSwePFi/Oc//6m2\nv0QiQUhICMaPH9/UUVuMymsbGhoqchLNFRoaisDAQJX1i6emk5aWBltbW1hYWCAzM1PsOKTmqr7f\nVt4xGBMT89SJBWvWrMHOnTsxZcoUhIaGIj4+Xunj5+Xl4caNG4iPj0dCQoLiv//++y/kcjl0dXXh\n5OSkmOl//PhxlJSU4Pjx49DT01P6uERELcW6deuwdOlSREZGwt/fX+w4RERERMr4XK1n8Ofl5SE7\nO1ttF5NLTU1F//79xY5Rq5SUFPj5+aGgoKBacR8AysrKsHHjRixcuBBmZmYiJVTewYMHsXHjRly/\nfh25ubmK7Y8XdKvOiGWxl6h5kUgk+Oeff6p9D6hcBLw5v7eSerK3t4eWlhZu3rz51AJ/aWkpdHV1\nn5jBrwxTU9MaZ/3n5+cjMTER8fHxSExMREJCAoKDg3Hz5k0AgImJCVxcXBQz/V1dXdGlSxc4OTlB\nKlXrH/2IiFRq4cKFOHXqFF555RVcunSp2a6NRkRERPQ0av1bXmU/eDs7O5GTKCc9PR3W1tZix6jR\nnTt34O/vj7S0NEVbnseVlJRg+/btDb6ltXK2TFRUVIPGqavg4GBMnToVQ4cORWxsLKysrPDzzz9j\n7NixT+wrCEKzXiOBqKWbO3cutm3bBktLS5w9exaLFy+GiYkJli9fLnY00jC6urqQyWTIysp66n5l\nZWXQ1dVFcXFxgwv8tTE2Noa3tze8vb0V28rLy2FsbIyPPvoITk5Oitn+Bw8exLVr11BRUQEdHR04\nOzsrZvx7enoqWv3wex0RtUSV/fh79uyJKVOm4MiRI+zHT0RERGpHrQv86enpANBsi+TPcv/+fchk\nMrFjPKGiogIBAQG4ffv2U2etl5eXY+3atXj77bdhYGCg9PHkcrnSj1VG5eLA69evh729PQBgzJgx\nnKFPpGYiIiLw5ZdfwsfHBzk5OZDJZOjfvz9WrFgBFxcXsePVqK5FVL4fNU8mJibIy8t76j6VM/jz\n8vJgamraRMmAxMREFBcXY+jQoejevTvGjRun+Lfi4mIkJCQgLi4OcXFxuHLlCr7++musWLECwKNe\n1F27dkWXLl3QtWtXxZ+bMj8RkVhkMhlCQkLg7++Pzz//HIsXLxY7EhEREVG9qH2Bv3JGnbopLy9H\nYWFhs/zlWVtbG5MmTcKGDRtQXl5e6wx+AHjw4AF27tyJoKAgpY936tQppR+rjOvXrwOA2rZ2IqJH\nBgwYgAEDBogdo15YuFdvpqamdS7w5+bmNmkLu3PnzsHAwABdunR54t/09fXRs2fPJ1oLVe3xHxMT\ng4SEBISFhSE7OxvAowkUlbP9q876b6w7E4iIxOLt7Y1PPvkEy5Ytg6+vL/z8/MSORERERFRnal/g\nt7a2VsvbyisLBM2xwA8An3zyCd577z1s27YNn376KQoLC5/oww88mu2/evVqzJkzB7q6uiIkrb+i\noiIAjxYKJiIiqisjIyM8fPjwqftULfDb2to2UTLg/Pnz6NmzZ7167Fft8T9lyhTF9rS0tGqL+sbE\nxGDnzp0oKiqCVCqFnZ1dtRY/bm5ucHV1ZVsLIlJr7777Lk6dOoWJEyeyHz8RERGpFbX+Taw597B/\nluZe4AcetSJYvHgxUlNTsW7dOrRp06bGX96zs7MRHBys1DEkEoniq7btd+7cwahRo2BsbAxLS0u8\n+uqryMnJUfp4NR2jthxPk5WVhTlz5qBdu3bQ1dWFra0tZs+ejYyMjGr75eXlYcGCBXBwcIC+vj7M\nzc3h4+ODd999F+fOnVPqPIiIqOlJpdIaP+yuSswZ/FV78jeEjY0NBg4ciKCgIOzYsQPR0dHIy8tD\nXFwcvv32W0yYMAFaWloIDg5GYGCgop1P7969MWvWLGzevBmRkZFKf68mIhKDRCLBnj17IJVKMWXK\nFN51R0RERGqDBX6RVBb4TUxMRE7ybEZGRggKCkJKSopiMUstLS1FMVwQBKxcufKZRY+a1PaDc9Xt\nS5cuxZo1a5CSkoKxY8di//79ePfdd5U6l6rjCoJQ7as+MjMz4e3tjUOHDmH37t24d+8eDh48iKNH\nj8LHxwe5ubmKfadOnYpNmzYhKCgIOTk5SE9Px549e5CcnIxevXopdR5ERNT0dHR06lXgb6oP8YuL\nixEXF4fnnnuu0Y6ho6MDd3d3BAYGYtWqVTh8+DCSk5MVx966dSv69euHjIwMrFmzBgMGDECbNm3Q\nunVr+Pn5ISgoCMHBwYiJiUFJSUmj5SQiagiZTIaDBw/izz//xLp168SOQ0RERFQnal3gz8rKgqWl\npdgxlKIOM/gfp6enh9mzZ+PWrVvYunUr2rVrp5jRf+fOHYSGhjbKcWfNmgVXV1eYmprivffeAwAc\nPXq0UY5VVx9//DFu3bqFTz/9FIMHD4aRkRH8/f2xceNG3Lx5E59//rli32PHjgEAbG1tYWhoCF1d\nXXTu3BlbtmwRKz4RESlBKpU+dV0aQJwZ/JcuXUJZWZnKZvDXh66uLtzd3TFlyhSsWbMG4eHhSE9P\nR1paGn777TcsWbIEHTp0wLFjxzBz5kx4eXkpWgNNnz4dmzZt4mx/ImpWevXqhf/85z9YtmxZk68V\nRkRERKQMte7Bn5eXp1YF8qoKCgoAPJodr2709PTwxhtvYMaMGThw4ABWrlyJ5ORkfPLJJ41yvKqL\nAtrY2AB4dPeGmMLDwwEAQ4cOrbY9ICBA8e+rVq0CAIwdOxZ79uzBuHHj0L59ewwePBiDBw/G6NGj\neetvMzd+/HixIxCRiM6cOYM+ffoo/l5eXv7MHvelpaXQ0dHBgwcPIJPJGjsiAODs2bNo06YNOnbs\n2CTHqwtra2tYW1tjyJAhim1lZWW4fv26or9/TEwM1q5dq/ieLpPJFL39K/v7d+nSBXp6emKdBhG1\nUIsWLcLp06cxYcIE9uMnIiKiZk+tC/z5+fkwNjYWO4ZSKm/xV+eFXnV0dDB16lRMnjwZYWFhuHDh\nAhITE1V+nKrPceVCvmIXxrOysgD83wcOj0tKSlL8effu3RgxYgQOHDiAyMhI7Nq1C7t27YKdnR0O\nHz6M7t27N0lmIiJqmJKSEujr6z91n9LSUmhpaUEul8PKyqpJcp08eRL+/v71WkdGDJVtftzd3TFu\n3DjF9vv37ysK/jExMTh16hS++uorFBcXQ0dHB87OztUW9PX29lbbOziJSD1U9uPv0aMHpk6diiNH\njjT791giIiJquVjgF0lFRQUAQFtbW+QkDaelpYXAwEAEBga2mF6VlpaWSE1Nxb179+o0Q3PMmDEY\nM2YM5HI5Tp06hVWrVuH333/Ha6+9hkuXLjVBYlJGY7WdIiL18PhdPCUlJc+cTV5aWqqY5d8UBX5B\nEBAdHY3333+/0Y/VWGQyGfz8/ODn56fYVtNs/02bNikWsudsfyJqbJX9+AMCArBhwwYsXLhQ7EhE\nRERENVL7Ar86trgB/q/AX9nDntTL6NGjsXXrVhw/fhwvvfRStX+LiorCe++9hzNnzgB4NAPozp07\nijUL/P39ERISAjMzs0a544GIiBpHXQv8lXfnNUWBPz4+Hnfv3lW0iNMUtc32T09Px5UrV3D58mVc\nvnwZkZGR2LZtG8rKyqCnpwd3d3d4eHigW7du8PDwQPfu3ZusVRIRaZ7evXtj5cqVWLJkCXr37g1f\nX1+xIxERERE9QW0L/HK5HIWFhWo9g18TZu+3VMuXL8fRo0cxd+5cVFRUoH///tDV1cWJEycQFBSE\n3bt3V9t/5syZWL9+PZycnJCbm4vNmzcDQLXexERE1LwVFxfXucBvaGjYJJMQTpw4ARMTE3h4eDT6\nsZqDuvb2/+yzzxSz/a2trau1+PH09ISbmxvbbRBRnSxevBhnzpzBxIkTcenSJZibm4sdiYiIiKga\ntS3wP3z4EHK5nAV+NVf1l2uJRKLorV/f7U19vDZt2uCvv/7CJ598gvfeew8pKSlo3bo1vL29sX//\nfvTu3VvxuOjoaOzcuRMjRoxAamoqDAwM0KFDB6xatQrz58+vV34iIhJPXXvwa2trw9raukkyRUVF\nwc/Pr0X/TFHX3v7h4eH4/PPPIZfLYWJigq5du1Yr+nt5eT3z+SWilqeyH3/Pnj0xdepUhIeH8wNC\nIiIialbUtsBfUFAAADA0NBQ5iXJY4H+ktgJ9fbeLcTyZTIb169dj/fr1Tz2mr68vb+clItIAdW3R\nI5FImqz//okTJ/hhcS1q6u1fUFCAa9euVSv8f/vttygsLIRUKkWnTp2qzfbv3bs32rZtK+JZEFFz\n0Lp1a0U//o0bN+Kdd94ROxIRERGRgtoW+MvLywFAsZAdEVFLVXUWWUM/BCOi2tW1wF9RUQF7e/tG\nzxMXF4eMjAwMGjSo0Y+lKYyMjBQL806ZMgXAo0kXt27dqlb037hxIzIzMwGwxQ8RPdK7d2+sWLFC\n0Y/fx8dH7EhEREREANS4wC+XywGo7yK1urq6KC0tFTsGEWkAQRBqLTT5+/sDeNTGg4iUJwgC8vLy\nYGZm9tT9SktLIZfLm2QG/9GjR2Fubo7u3bs3+rE0mba2NhwcHODg4ICRI0cqtqelpVXr61+1xY+p\nqSm6dOlSrfDPFj9Emm/x4sU4efIkXnnlFcTGxj7zewIRERFRU2CBXyR6enqoqKhgqx4VqOsMOs5s\nppao8r2SnlT53sH3hsalKdc5Ly8P5eXlz1xcsbS0FMXFxbC0tGz0TH/88QcGDhyotj8LNXc2Njaw\nsbHBwIEDFdvy8/Nx/fr1arP9d+7ciaKiIujo6MDZ2bla0b9Pnz5o06aNiGdBRKqkpaWF4OBgeHh4\nYPbs2QgNDRU7EhEREZH6FvgrKioAQG2L45UzvEpKSmBgYCByGvWm7kUjosZ06tQpsSMQaYS7d+8C\nwDOLtSUlJcjPz2/0GfylpaWIjo7G5s2bG/U4VJ2xsfETLX7KysqQmJiI2NhYXL58GbGxsThy5Aju\n378PiUSCjh07okePHujevTt69OiBHj16wMbGRuQzISJltW3bFgcOHMCAAQOwe/duTJ8+XexIRERE\n1MKpbYFfE2bwAyzwExERqYOcnBwAeOYM/pKSEpSUlDR6gT86OhoPHz7EgAEDGvU49Gw6Ojro1q0b\nunXrVm37rVu3FAX/2NhY7N69Gzdv3gQAWFlZKYr9PXr0QM+ePeHg4CBGfCJSQr9+/bBw4UK8/fbb\n8PHxgYuLi9iRiIiIqAVTz+o4NKvAT0TqTyKRKL6SkpIwZswYyGQyxbZKWVlZmDNnDtq1awddXV3Y\n2tpi9uzZyMjIeGLMiIgIvPjii5DJZNDX10fPnj1x8OBBpTI9Lj4+HsOGDYORkRFMTEwwZMgQJCQk\n1PiYqtvu3LmDUaNGwdjYGJaWlnj11VcVhc+a9k9LS8PYsWNhbGwMc3NzTJ06FXl5efj333/x4osv\nwsTEBFZWVpg2bRpyc3OfyFnX66VMxscfO3PmzDpf25qOm5CQgBdeeAEmJiYwMjLC8OHDkZiY+MRj\n6vq81vU1pcx4Tfm8PH78x6+zMs9xbdcjLy8PCxYsgIODA/T19WFubg4fHx+8++67OHfuXE1PYZ3V\ntcBfub5OYxf4jx49ik6dOqFDhw6NehxSnr29PV588UV89NFH+PHHH5GcnIy8vDxERUVhyZIlaNOm\nDX766SdMmDABjo6OMDU1hZ+fH4KCghAcHIyYmBiu10TUjK1atQpdunTBpEmT+P8qERERiUtQUwkJ\nCQIA4cqVK2JHUcq5c+cEAMK///4rdhSVAiCEhISIHUOjjRs3Thg3bpzYMTRaSEiIoMzbIwABgDBo\n0CDh1KlTQmFhofDLL78oxsrIyBDs7e0FS0tL4ffffxfy8/OFkydPCvb29kLHjh2F+/fvPzHe6NGj\nhezsbOHWrVvCoEGDBADCb7/9Vuux67L9xo0bgpmZmWBjYyP8+eefQn5+vhAdHS34+vo+c5xJkyYJ\nCQkJQm5urjBnzhwBgDBt2rRa93/11VcV+8+dO1cAIAwfPlx46aWXnhhn1qxZ1cZQ5nopk7GhKsfx\n8fERoqOjhfz8fCEiIkKwsrISZDKZcPPmzSf2r+/zWttrStnxxHheaqLsWLVdj1GjRgkAhE2bNgkF\nBQVCSUmJcPXqVeGll15S6rmu+n67b98+QV9f/5mP0dLSEgAIt2/frvfx6sPd3V1YsGBBox6DmkZJ\nSYkQFxcn7Nu3T3j77bcFX19foVWrVgIAQUdHR3BzcxMmT54sbNq0SYiKihIKCwvFjkxE/9+NGzcE\nY2NjYeHChWJHISIiopZrrdoW+G/cuCEAEGJiYsSOopS4uDgBgJCQkCB2FJVigb/xscDf+Bpa4D92\n7FiN//76668LAIRdu3ZV2/7jjz8KAIRly5Y9MV7V4nBiYqIAQPD396/12HXZ/uqrrwoAhG+++aba\n9p9//vmZ4xw/flyx7ebNmwIAwcbGpk77p6am1rj9zp07AgDB1ta22hjKXC9lMjZU5Ti//PJLte17\n9+4VAAhTp059Yv/6Pq+1vaaUHU+M56Umyo5V2/UwMTERAAhhYWHVtleeY31Vfb/dsGHDE9ficRUV\nFQIAQUtLSygtLa338erq33//FQAIERERjXYMEldZWdkTRX8jIyMBgCCVSqsV/f/44w8hJydH7MhE\nLdaePXsEiUQiHDlyROwoRERE1DKtlQiCeq5QmpKSgvbt2+P06dPo06eP2HHqLTU1Fe3atVPb/LWR\nSCQICQnB+PHjxY6isSqvbWhoqMhJNFdoaCgCAwPrvYBzZZuQhw8f1ri2hq2tLdLS0pCWlgZra2vF\n9pycHLRp0wZdu3bFlStXah2/oqICUqkU5ubmigU/Hz/245lr2m5lZYXMzEykpqZWW+gxNzcXMpns\nqeM8ePAAxsbGAB61ItHT04NEIlG0TXva/nK5XLEwek3bHx+nvtdL2YwN/TZYOU5ubi5MTU0V2yvf\n562trZGWllbr4+vyvNb2mlJ2PDGel5qus7Jj1XY9pk+fjj179gAA2rdvj8GDB2Pw4MEYPXo0dHV1\nn3ntHlf1/fbDDz/E4cOHn/r/aFFREQwMDNCmTRtkZ2fX+3h19cUXX+CDDz5Adna2UudF6istLQ0x\nMTGKr3PnziErKwsAYG1trVgA2NPTE7169YKFhYXIiYlahkmTJiEiIgKXL19u9BZtRERERI/5XG0L\n/NnZ2bCwsMCxY8fQr18/sePU28OHD2FkZISff/4Zw4YNEzuOyrDA3/hY4G98DS3w1/Y4HR0dlJeX\n1/p4AwMDPHz4EMCjYvHatWtx6NAhpKSkoKCgoNq+dSnk17ZdKpWioqICJSUlTxQH6zNOY2+vz/VS\nZZb6qm2ckpIS6OvrQyqVoqysDIDqntdKjfk6qW27qp4XVY9V6ccff8SBAwcQGRmJ+/fvAwDs7Oxw\n+PBhdO/evdbH1aTy/VZHRwdnz55FmzZt8Ndff9W6f15eHszMzODu7o64uLh6Has+Ktd64PcBAqoX\n/RMSEhAfH4+EhAQA1Yv+7u7ucHNzg7u7u8iJiTRPXl4eevTogc6dO+OXX36pcf0jIiIiokbyuXqu\nUAv1X6TW0NAQurq6NS5eSESaydLSEgBw7949CILwxFfVQub48eOxevVqBAYG4tatW4p9VKFNmzYA\n8MTs7sf/Lrb6XK/m4PGFfCuvZ9u2bRXbVP28NubrpDaqfF4a4zkeM2YMvv/+e9y9excnT57EkCFD\ncPv2bbz22mv1HqtSamoqkpOTce7cOSxfvrzW/Zpigd2HDx/ixIkTGD58eKMdg9SLjY0NRo4cieXL\nlyM0NBTx8fHIyMjAr7/+innz5qFVq1b49ttvERgYiC5dusDS0hIvvPACli5dirCwMCQlJTX6+waR\npjM1NcXBgwfx559/4r///a/YcYiIiKiFYYFfRGZmZorZhUSk+UaPHg0AOH78+BP/FhUVVa1d16lT\npwAACxcuROvWrQGo7v1u8ODBAIA///yz2vbKYzYX9bleyqhs8VJWVobCwkLFBx/Kevz6RUREAPi/\n6111H1U9r435OqlNfZ+Xp11nVT/HEokEKSkpAAAtLS34+/sjJCQEAJCYmFivsao6fvw4jIyMYGxs\njJUrV9Y6O7+ywF+19ZWq/fHHHygtLcXQoUMb7Rik/qoW8UNDQ3Hjxg3k5eUhKioKy5Ytg729PaKi\nojB58mQ4OTnBzMwMfn5+CAoKQnBwMOLj459oa0ZET+ft7Y0PP/wQixcvRmxsrNhxiIiIqAVR2wK/\nrq4uJBIJC/xEpDaWL18OZ2dnzJ07F99//z1ycnKQn5+PI0eOYNq0aVizZo1iX39/fwDA6tWrkZub\ni3v37mHZsmUqy2FmZoYlS5YgMjISBQUFiI6Oxo4dO1QyvqrU53opo1u3bgCAc+fOITw8vMEfGGzf\nvh3R0dEoKChAZGQkli5dCplMVm3Gt6qf18Z8ndSmvs/L065zYzzHM2fORHx8PEpKSpCZmYnPPvsM\nADBkyBClz1kQBJSVlaGgoAAymQxHjx6tcb/KAr+tra3Sx3qWH3/8ET4+PuytTvVmbGysKOLv2LED\n0dHRuH//Ps6ePYvVq1ejc+fOOHnyJGbOnIkuXbqgdevWeP755/Huu+/iu+++w/Xr1znTn+gZ3n//\nffj6+uKVV15BYWGh2HGIiIiopVDFUr1i0dfXF/bt2yd2DKX16tVLWLhwodgxVAqAEBISInYMjTZu\n3Dhh3LhxYsfQaCEhIUJ93x4BPPFVk3v37gnvvPOO0LFjR0FHR0ewtLQURo4cKZw5c6bafpmZmcLk\nyZMFCwsLQVdXV+jSpYsi1+Pj13bcp+WJi4sThg4dKhgaGgrGxsbCiBEjhKSkJAGAoKWl9dRza6rt\n9bleyox9/vx5wcPDQzAwMBB69+4tXLt2TVBG5dg3b94URowYIRgbGwuGhobC0KFDhYSEhGr7NuR5\nrek11ZivE1U8L4Lw7Ous7HNc0/WIjo4Wpk6dKnTo0EHQ0dERTE1NBQ8PD2HVqlXCw4cPn9j/WSrf\nb9PS0gQAgqOjo2Bubi58/PHHNe5/8eJFAYDwxRdf1PtYdVFaWirIZDJh/fr1jTI+kSA8ep3FxcUJ\n+/btE95++23B19dX0NfXFwAIxv8Xz1kAACAASURBVMbGgq+vr/D2228L+/btE+Li4oSKigqxIxM1\nK3fu3BHMzc2F2bNnix2FiIiIWoa1arvILvCor/GKFSvw5ptvih1FKUOHDoW1tTV2794tdhSV4SK7\njY+L7DY+ZRfZVXdpaWmwtbWFhYUFMjMzxY6jNlS1WC81P5Xvt++88w769OmDGTNmYM+ePfj6669r\n7Ol/6NAhjBkzBv/73/8wcuRIlec5evQohgwZgqSkJDg4OKh8fKLalJWV4fr164rFfCu/iouLYWRk\nBA8PD8Vivp6ennBxcYG2trbYsYlE8+OPP2Ls2LE4ePAgAgMDxY5DREREmu1zqdgJGsLU1BR5eXli\nx1CapaUli2hEJAqJRIJ//vkHTk5Oim0nT54EAPTv31+sWETN0q1bt6CtrY1evXph165dMDc3r3G/\n27dvAwDs7OwaJcehQ4fQs2dPFvepyeno6MDd3R3u7u6YMmUKAKC8vBzXrl2rVvDfuXMnioqKWPSn\nFm/MmDGYNWsW3njjDfTu3Rv29vZiRyIiIiINptYFfhMTEzx48EDsGEqzsrLC33//LXYMImqh5s6d\ni23btsHS0hJnz57F4sWLYWJiUq1nPBEBycnJaNeuHe7duweg9rs1UlNTAQAymUzlGeRyOQ4fPqy2\ndy2S5pFKpfUq+hsaGsLFxQVubm6Kor+3tzd0dXVFPhOixrFp0yZER0dj8uTJOHbsGD/gIiIiokaj\n1gV+zuAnIlJOREQEvvzyS/j4+CAnJwcymQz9+/fHihUr4OLiInY8UVW23HkWQRCq7SuRSNimR0Nd\nvnwZHh4e+PXXX9GqVSvcuHGjxv3S0tIAoFEKlqdPn0Z6ejpeeukllY9NpCp1Lfp///33KCoqgq6u\nLpycnKrN9GfRnzSFgYEBQkND8dxzz2H16tX44IMPxI5EREREGooFfhFVFvjlcjm0tLTEjkNELciA\nAQMwYMAAsWM0S/Up0rOg3zLExsbi+eefR3h4OLp164Zr167VuF9jFvhDQkLg5uYGd3d3lY9N1Jhq\nKvqXlZUhPj4eMTExuHjxImJiYhAWFobi4mIYGBhUa+/j5eUFV1dXzn4mtdSlSxesXr0aixYtwvPP\nPw8fHx+xIxEREZEGUvsCf+Xt8urIysoK5eXlyMnJQdu2bcWOQ0RERI8pLy/HP//8Azs7Ozg5OcHH\nxwfx8fE17lt5V56qC/zl5eUICwvDvHnzVDoukVh0dHTQvXt3dO/eHTNmzADw6HUeHx+vKPhfuHAB\nu3btUrT36dGjB7y8vPDcc8/By8sLzs7Odb7jikhMQUFBiIyMxIQJE3D58uVGaeNGRERELZtaF/jN\nzMxw8+ZNsWMozcrKCgCQkZHBAj8REVEzlJeXB7lcjqioKKxfvx4VFRX44Ycfaty3sQr8R48eRVZW\nFiZOnKjScYmaE6lUCg8PD3h4eOC1114DAFRUVODq1auK1j7nz5/H9u3bUVxcDGNjY3Tr1q1aex83\nNzcW/anZkUgk2LVrFzw8PPD6668jNDRU7EhERESkYdS6wN+6dWvcvXtX7BhKq1rg79q1q8hpiIiI\n6HG5ubnQ1dWFubk5XnvtNRw9ehTZ2dkoKSmBnp6eYr/S0lLcv38fwKPZyap04MAB9OnTBw4ODiod\nl6i509bWrlNP/+3bt6O0tBSmpqbo0qWLouDv7++Pjh07inwWREDbtm2xd+9evPDCCwgODla8nomI\niIhUQa0L/BYWFsjKyhI7htJat24NQ0ND3LlzR+woREREVIOMjAyUlZVh+fLlaNWqFaysrCAIAjIz\nM2FnZ6fY79atW5DL5ZBKpSqdQVxYWIjDhw9jzZo1KhuTSJ3V1NO/tLQUf//9N6KjoxETE4OIiAhs\n2bIFcrkc1tbW1Wb59+rVCxYWFiKfBbVEgwcPxoIFC/Dmm2+iV69e6Ny5s9iRiIiISEOodYG/bdu2\nuHfvHsrLyyGVqueptG/fHrdv3xY7BhERET1GEARkZGTAwsIC06ZNA/B/d9+lp6dXK/AnJycDUH17\nnp9++gnFxcV4+eWXVToukSbR1dVVFPAr5efn4/Lly4pZ/mFhYVi5ciUEQXii6O/j4wNzc3MRz4Ba\nijVr1iA6OhqTJk3C6dOnG2VRdiIiImp51LMq/v+1bdsWgiAgJycHlpaWYsdRir29vUYV+KVSKQID\nAxEYGCh2FI3HHrONj9eYiIBHBZnKiQRWVlaQSCTIyMiotk9SUhIMDQ1VXqw5cOAABg8erLY/5xCJ\nxdjYGH5+fvDz81Nsy8vLw99//60o+gcHB2PFihUAoCj6+/n5wdfXFz169IChoaFY8UlD6ejoIDg4\nGJ6envj444+xevVqsSMRERGRBlDrAn/l7bVZWVlq+4uvnZ2dYtafJoiMjHyi6EFERKRuMjIyMH/+\nfFhbWytm7wOAnp4ezMzMnvhed/PmTZibm6OkpERlGe7du4c//vgDu3fvVtmYRC2ZqanpE0X/tLS0\nav38N2zYgCVLlkBbWxudO3euNtPfy8sL+vr6Ip4BaYLOnTtj48aNmDNnDoYNGwZ/f3+xIxEREZGa\nU+sCf9u2bQEA2dnZIidRnp2dHY4fPy52DJXhD6hERKTuiouL0aFDB0gkEkRGRj7x75aWlsjMzKy2\nLSkpCTKZDPfu3VNZjoMHD0IqlWLUqFEqG5OIqrOxsYGNjQ1Gjhyp2Hbz5k2cP38eFy5cwIULF3D4\n8GE8ePAAurq68PDwgJeXF7y8vODt7Q1XV1doa2uLeAakjmbNmoXff/8dkyZNwuXLlyGTycSORERE\nRGpMrQv8rVu3hlQqVeuFdu3s7HD79m0IgsB2IERERM3AmDFjkJmZiQ0bNqBTp05P/LuZmRny8vKq\nbUtOToZMJkN+fr7Kchw4cACjR4+GkZGRysYkomfr2LEjOnbsiPHjxwMA5HI5rl+/rij4nz9/Hvv2\n7UNhYSGMjIwUxf5evXrB29sb7dq1E/kMSB1s27YN3bp1w4IFC7B3716x4xAREZEaU+sCv5aWFtq2\nbYv09HSxoyjN3t4eJSUlyMzMVCzcR0REROL46KOP8Ouvv8LX1xcLFiyocR8TExM8ePCg2rabN2/C\n3t5eZT34b926hdOnT2Pp0qUqGY+IlKelpQUXFxe4uLjg1VdfBQBUVFTg6tWritY+p06dwsaNG1FW\nVsZFfKlO2rZtiz179mDYsGEYNmyY4gMlIiIiovpS6wI/ALRv3x4pKSlix1Cag4MDgEcz/1jgJyIi\nEk94eDg++eQTyGQyHD58uNb9TExMqs3gz87OxoMHD2BiYqKyAv/+/fthbm6OwYMHq2Q8IlItbW1t\nuLu7w93dHVOmTAEAFBQUIDY2VlH0DwsLUyzi6+DgAF9fX/bzp2peeOEFzJw5E2+88Qb69OmD9u3b\nix2JiIiI1JBGFPjv3LkjdgyltWvXDq1atcI///wDHx8fseMQERG1SCdPnsTYsWOhpaWFo0ePPnW2\nrampabWfPZKSkgAAhoaGKinwC4KA4OBgBAYGQkdHp8HjEVHTMDIyemIR3/T0dFy4cEFR9P/Pf/6D\nnJwc6OjowNnZGX5+forCv5ubG1t2tkAbN27EiRMnMGPGDPz+++98DRAREVG9aUSB/+zZs2LHUJpE\nIoGjoyP++ecfsaMQERG1SGfPnsWQIUNQVlaGrVu3wsvL66n7P96iJzk5GTo6OtDX11dJgT8qKgrX\nrl3Dd9991+CxiEhc1tbWGDlyZLVFfJOTkxEdHa0o+gcHB6O4uBgmJibo2rWroujfq1cvWFhYiJie\nmoKhoSH2798PHx8fbN26FW+99ZbYkYiIiEjNaESBPywsTOwYDeLs7Izr16+LHYOIiKjFiY2NxeDB\ng1FaWor58+fjzTfffOZjHm/Rk5ycDHt7e5SVlamkwL9r1y54enqiR48eDR6LiJofBwcHODg4KFr7\nlJWV4fr16zh16hSio6MRHh6OtWvXQhCEav38/fz84OPjAwMDA5HPgFTNy8sLS5cuxaJFi9CvXz90\n6dJF7EhERESkRrTEDtBQ7du3R0ZGBsrKysSOojRnZ2fO4CciImpiV65cQb9+/VBcXIzRo0dj/fr1\ndXqciYkJ8vPzFX9PTk6Go6MjSktLG9xSJy8vD99//z1mzJjRoHGISH3o6OjA3d0ds2fPRnBwMOLj\n45Gbm4uoqCgEBQUBALZt24ZBgwbB1NRU0fd/8+bNiImJgVwuF/kMSBU+/PBDeHh4YOrUqSgtLRU7\nDhEREakRjSjwV1RUID09XewoSnN2dsaNGzcgCILYUYiIiFqE6OhoBAQEoLCwEAEBAdi/fz+0tOr2\nY5Genh5KSkoUf09OToaDgwNKS0sbPIN///79EAQBEydObNA4RKTeTExM4Ofnh8WLFyM8PByZmZlI\nSkpCcHAwBg8ejOTkZCxduhReXl4wMzPD888/jyVLluDQoUNq/XtRSyaVSrF//35cv34dK1euFDsO\nERERqRGNaNEDAHfu3IGdnZ3IaZTj7OyMgoICZGRkwNraWuw4REREGu27777DtGnTIAgCAgICEB4e\nDn19/To/Xl9fH8XFxYq/JycnY8SIEbh48WKDC/xff/01AgMDYWZm1qBxiEjzVLb2qfwAsLy8HNeu\nXVP08o+IiMDnn38OuVyuaO1T2c/fy8urXu9zJA5HR0esXbsWb731FgYNGoS+ffuKHYmIiIjUgNrP\n4LeysoKOjg7u3LkjdhSlOTs7AwDb9BARETWyzZs3Y9KkSZDL5Rg0aBCOHDmCVq1a1WuMqgX+kpIS\npKamqmQGf0xMDC5dusT2PERUJ1KptFq7ngsXLiAvLw9RUVFYvHgxWrVqhfXr18Pf3x8mJibw8vJC\nUFAQgoODcfPmTbHjUy3eeOMNDBs2DK+99lq1Bd2JiIiIaqP2BX5tbW1YW1urdYHf2toaRkZGLPAT\nERE1kpKSEkyfPh3vvPMOAGD27Nk4fPiwUjNa9fT0UFZWhoqKCty8eRNyuVwlBf5du3ahc+fO8PX1\nVXoMImrZjIyM4Ofnh6CgIISGhiIrKwupqanYv38/fH19ERMTg1mzZsHBwQE2NjYYOXIkPvvsM0RH\nR1e7M4nEI5FIsGvXLhQWFmLBggVixyEiIiI1oPYteoBHbXrUucAvkUjg6OjIAj8REVEjSEhIQGBg\nIK5evQqJRIL169dj/vz5So9X+aFASUkJkpOTAaDBBf6ioiJ89913+OCDDyCRSJTORkT0OBsbG4wb\nNw7jxo0DADx8+BCXLl1CTEwMTp06hQ0bNmDJkiWQSqXo1KmToq2Pp6cn3N3dRU7fMllYWGDHjh0Y\nPXo0XnjhBcVzR0RERFQTFvibCScnJxb4iYiIVCw4OBivv/46BEFAmzZtEBYWBj8/vwaNWVngLy4u\nRnJyMtq2bQsTE5MGFfhDQkJQWFiIyZMnNygbEdGzGBoaws/PTzHTHwDS0tJw6tQpREdHIyYmBnv3\n7kVpaamil3/Vfv71bWtGyhk1ahRee+01vPnmm/D394eVlZXYkYiIiKiZUvsWPYBmFPidnZ1Z4Cci\nIlKR7OxsDBs2DNOmTUNxcTGGDh2Kv//+u8HFfeDJAr+DgwMAoLS0FDo6OkqNuWvXLowaNQoWFhYN\nzkdEVF+Vs/w3b96M6Oho3Lt3r1ov/+3bt2PQoEEwMTGBu7s7Xn/9dQQHByM+Pl7s6Brtiy++gEwm\nUywMT0RERFQTzuBvJpydnXHjxg3I5XJoaWnE5y5ERERNrry8HLt27cKiRYtQWFgIMzMzbNq0CVOm\nTFHZMSpn6ZeVlT1R4FdmBv+1a9dw6tQp/PbbbyrLSETUEHWZ5b9v3z6UlJTAysoKXl5eiln+Pj4+\nMDAwEPkMNIOhoSH27t2LgIAA7NixA2+88YbYkYiIiKgZ0ohKcvv27ZGdna3WC0M5OzujqKgIaWlp\nYkchIiJSS5GRkXBwcMCcOXNQWFiIOXPmICkpSaXFfQDQ1tYGAFRUVCApKQmOjo4AHhX8lSnw79ix\nA3Z2dhg4cKBKcxIRqVJNs/xPnjyJBQsWQCqVYseOHRg0aBDMzMzg7e2Nt99+G9999x1SUlLEjq7W\nfHx8sHjxYixcuBDXrl0TOw4RERE1Qxoxg9/e3h6CIOD27dvo1KmT2HGU4uzsDAC4fv062rVrJ3Ia\nIiIi9XH69GnMnTsXsbGxkEgkGDFiBDZs2AAnJ6dGOV7VAv+///6Ljh07AlCuRU9hYSH27duHRYsW\n8Q4+IlIrBgYG8Pf3h7+/v2Lbv//+izNnzuDs2bM4e/Ystm/fjrKyMtjb2yt6+Pv5+cHd3Z3vefWw\nYsUKREREYNKkSThz5ozS7eCIiIhIM2nET1WVt8YnJyeLnER5VlZWkMlkuHr1qthRiIiI1MLXX3+N\nDh06wNfXF5cvX8aQIUNw9epV/O9//2u04j7wfwX+zMxMFBQUNKhFzzfffIOHDx9i+vTpKs9JRNTU\nOnTogIkTJ2Lz5s3466+/kJubi6ioKMyZMwd5eXl4//330a1bN5iZmWHQoEFYvnw5IiIiUFRUJHb0\nZk0qlWLfvn1ISEjAJ598InYcIiIiamY0osBvamoKc3NztS7wA4CLiwsSExPFjkFERNRsxcXF4eWX\nX4aBgQFmzZqFzMxMTJs2DRkZGfjtt9+a5E6+ygL/rVu3AEDRokeZAv+XX36JV155hYvrEpFGMjAw\ngJ+fHxYvXozw8HBkZ2cjLi4O69atg7W1NYKDgxWL93p5eSEoKAhhYWG4e/eu2NGbHRcXF3z22Wf4\n9NNPcebMGbHjEBERUTOiES16gEez+JOSksSO0SBubm5ISEgQOwYREVGzIQgCLl68iK1btyI8PFxR\n9HF0dMSSJUswffr0Jm/zULXAr6enB1tbWwD1L/AfP34cV65cwa5duxolJxFRc6OtrQ13d3e4u7tj\n9uzZAKov3nvq1Cls2bIFcrkcDg4OipY+vr6+cHNzg0QiEfkMxPXWW2/ht99+w6uvvorY2FgYGxuL\nHYmIiIiaAY0p8Ds6Oqr9DH5XV1f8/PPPYscgIiISVUZGBn766SccOHAAFy5cULRusLCwwNy5c/HR\nRx+JOuO9ssB/+/ZtdOjQQfEBQ3178G/duhU+Pj7w8vJqlJxEROqgcvHecePGAQDy8/Px119/KQr+\nQUFBKC4uhpWVFby8vBQFf29vb6UWNldnEokEO3fuRLdu3fDuu+9ix44dYkciIiKiZkBjCvwODg4I\nDw8XO0aDuLm5ISMjA/fu3UPr1q3FjkNERE0kNzcXDx48QH5+PoqLiwEA5eXlyM/PV+wjk8kAAGZm\nZpBIJDAxMYG2tjaMjIzUfrG99PR0/PDDD/j1119x8eJFZGRkAHhUyGjfvj1GjBiBoKCgJmm/UxeV\nBf6UlBRF/30AKCsrq3OxKS0tDYcPH8bevXsbIyIRkdoyNjbGwIEDMXDgQACPvh9evnxZUfBft24d\nlixZAkNDQ3Tv3l1R8Pf394eZmZnI6RufjY0Ntm3bhvHjx+PFF1/E8OHDxY5EREREItOoAn9ycjIE\nQVDbWzfd3NwAAImJifD19RU5DRERNZRcLkdycjLi4+Nx8+ZN3L59G+np6UhJSUFaWhru3r2LBw8e\nqORYBgYGaNWqFczMzGBmZgaZTKb4c9UvU1NTxX+rfjVFUSQ/Px/Jyck4efIkoqKicOXKFdy6dUvx\noYZEIkGbNm0wYsQITJo0CcOGDYOJiUmj56qvyhn7KSkp8Pf3V2yvT4ueL7/8Eubm5nj55ZcbJSMR\nkaaQSqXw9PSEp6cngoKCAADJycmKgn94eDg+++wzaGtro3PnzoqCf9++fWFvby9y+sYxbtw4TJo0\nCbNmzUJcXBwnhxEREbVwGlPgd3R0xMOHD5GVlQVLS0ux4yjFzs4ORkZGSEhIYIGfiEjNVJ1heP78\neSQmJiIxMRFFRUWQSCSwtrZG+/btYW1tjR49emDYsGGwsLCAiYkJzMzMYGxsDGNjY7Rq1UoxZuWs\nfblcjry8PACPZvsLgoAHDx6goqICDx8+RGlpKYqKilBYWIjc3Fzk5ubi/v37yM3Nxe3bt3HlyhXF\n9ry8PJSUlNR4Do8X/Y2MjGBsbAxdXV0YGhpCX1+/Wj7g0Wx2qVSKkpISVFRUKD6wePDgAXJycnD3\n7l3F3WlVjyuRSGBqagp3d3f4+/tj9OjReO6552BgYKDS56UxyOVyAI9m4Xfs2FGxva4z+EtLS/H1\n11/jjTfeaHHtJYiIVMHBwQEODg6YMmUKACA1NVVR8I+OjsauXbtQUVEBZ2dnBAQEoG/fvujbty/s\n7OxETq46W7ZsQdeuXTFv3jzs379f7DhEREQkIo0p8FfeIp+UlKS2BX6JRAIXFxckJiaKHYWIiJ5B\nEAScP38ev/76K6Kjo3H27FkUFBTA3Nwc3t7eGDBgAObNmwd3d3e4urrCyMioQcczNzdXUXKgqKgI\neXl5iq8HDx7g/v37T2wrKChQ/DczMxNFRUWK2faViouLIQgCWrVqBW1tbZiYmCg+cLh//z4yMjJQ\nUFAAAwMD9O7dG/369cPIkSPh7e0NqVQ9fwypLPDfvXtX8fNHWVkZ5HJ5nQr2ISEhuHfvHmbNmtWo\nOYmIWgpbW1sEBgYiMDAQwKM7xk6fPo3o6GgcP34c33zzDUpLS9GxY0cEBASgX79+CAgIqNZmTd2Y\nmZlh9+7dGDJkCEaPHq1Yw4CIiIhaHvX8zboG7dq1g56eHpKSkuDj4yN2HKW5urqywE9E1EyVl5fj\nxIkT+Omnn/DTTz8hJSUFdnZ26Nu3L9atWwd/f3+4uro2+1ZxrVq1QqtWrWBlZaWyMbOzs/Hrr78i\nLCwMx48fBwB4eHhg7NixGDhwIPr27av2awVUqqioAPDoQ54OHToAeDQrH0CdCvxbtmzB2LFjYWtr\n22gZiYhaMmNjYwwZMgRDhgwB8OhD2CtXriAiIgIRERF48803UVRUBGtra0VLHz8/P/Ts2bPZfw+v\natCgQZgxYwbefPNNBAQEqO1ENyIiImoYjSnwa2lpoUOHDkhOThY7SoO4urrixIkTYscgIqIqrl+/\nju3btyM4OBg5OTno2rUrpk+fjpdeegndu3cXO55o7t+/j+DgYISGhuLs2bMwMjLCiBEjEBISghde\neEEt2u0oo3IGPwBFgb+srAwAnvkhxsWLF3Hu3Dls2LCh0fIREVF1Ojo6ij7+ixcvRklJCf766y8c\nP34cJ0+exLJly1BYWAgbGxv07dsXAQEB6N+/Pzp37ix29GfatGkTjh07htmzZ+Pw4cNixyEiIiIR\naEyBH/i/hXbVmZubG+7cuYP8/HwYGxuLHYeIqMUqLy/H4cOHsW3bNkRGRsLOzg4LFixAYGAgnJyc\nxI4nqr///htbtmzBt99+C6lUitGjR2PJkiUYNGgQ9PX1xY7X6Cpn8FeunwDUfQb/pk2b0L17d661\nQ0QkIj09PQQEBCAgIADAo/fw8+fP48SJEzhx4gQWLVqEgoIC2Nra4vnnn1d8Ncce/oaGhvjqq68w\ncOBAfPPNN5g8ebLYkYiIiKiJaVSB39HREZcuXRI7RoO4ublBEARcvXoVzz33nNhxiIhanNLSUuze\nvRurVq1CWloahg4divDwcAwdOhRaWlpixxONXC7HoUOHsGXLFhw/fhwuLi5Yu3YtpkyZ0uI+kK6c\nwV+1xU5dCvxpaWkICQnBjh07GjcgERHVi66uLnx9feHr64tly5ahoqICsbGxipY+c+bMQXFxMRwc\nHBTtfIYNG4Z27dqJHR0A8Pzzz+Ott97CvHnz0K9fP7Rv317sSERERNSENKpSoQkz+B0cHKCvr4+E\nhASxoxARtSjl5eXYu3cvXFxcMH/+fLz00ktITk7GkSNHMHz48BZd3I+IiICnpyfGjx8PqVSK//3v\nf0hISMDcuXNbXHEf+L8Cf9XCTl1a9HzxxReQyWSYMGFC4wYkIqIG0dbWVrTz+eOPP5Cfn48LFy5g\n9uzZSE9Px7x589C+fXs4Ojri9ddfR1hYGO7duydq5jVr1sDS0hIzZsyAIAiiZiEiIqKmpVHVCkdH\nR2RkZODhw4diR1GatrY2OnXqxIV2iYia0I8//oguXbpg9uzZGDhwIK5fv47//ve/sLe3FzuaqM6d\nOwdvb28MGTIEnTt3Rnx8PP744w+MHDlSrRYhVLXKFj31KfAXFhZi586dmDdvXotoY0REpEmkUmm1\ngv/du3dx5MgRjB49GufPn8eECRNgYWGB3r1748MPP0RUVJTi+0JTMTAwwN69exEZGYmdO3c26bGJ\niIhIXBpX4BcEQe1n8bu5uXEGPxFRE7hz5w5GjRqFl19+GV5eXkhMTMRXX33VLHvsNqV79+5h1qxZ\n6NOnD4yMjHDx4kUcPHgQLi4uYkdrFipn8FdtgVBeXg7gURGoJrt370ZRURFef/31xg9IRESNytjY\nGMOHD8f69etx8eJFZGVlISQkBN27d8f+/fsREBAAc3NzjBo1Clu3bsX169ebJFefPn2wcOFCvPPO\nO0hKSmqSYxIREZH4NKrA7+DgAIlEovY/zLi6unIGPxFRI5LL5fjqq6/g7u6O+Ph4HD16FN9++y0c\nHR3Fjia63377DV27dsUvv/yCb7/9FpGRkfDw8BA7VrNSUFAAoOYCf00z+OVyOTZv3oypU6eiTZs2\nTROSiIiajLm5OcaOHYvt27cjOTkZSUlJWLduHfT09PDhhx+ic+fOsLa2xvjx4xEcHNyo7XxWrlwJ\nBwcHTJs2TfGBNBEREWk2jSrwt2rVCjY2Nrhx44bYURrE1dUVycnJKCoqEjsKEZHGuXr1Knr37o15\n8+Zh/vz5iIuLw8CBA8WOJbqSkhLMnTsXw4YNQ79+/RAXF4eJEyeKHatZSktLA4BqLZwqWzHUNIP/\n8OHDSEpKwttvv900AYmISFQODg6YPXs2QkNDkZWVhejoaMyePRspKSmYPn26op3PypUrERMTo9Ke\n+Xp6eti3bx/++usvfPHFNlRLTAAAIABJREFUFyobl4iIiJovjSrwA4CTk5Paz+B3c3ODXC7HtWvX\nxI5CRKRRQkJC4O3tDYlEgkuXLmHlypXshw4gJSUFAQEB2L9/P0JCQrB//37IZDKxYzVbqampAFCt\nldPTWvRs3LgRI0eOZIsjIqIWSCqVwtfXFytWrMDp06dx9+5dhIaGwsPDAzt37oSXlxdsbW0xc+ZM\nHDp0SHGXWEP06NEDy5Ytw5IlS9j6lYiIqAXQyAK/us/g79SpE3R0dNimh4hIRcrLy7FkyRJMmDAB\nEydORFRUFNzc3MSO1SycPn0anp6eKCgowLlz5zBu3DixIzV7lTP4zczMFNtqa9Fz4cIFREVFYcGC\nBU0XkIiImi0zMzOMGTMGO3bswJ07dxAXF4egoCDcunUL48ePh0wmg5+fHz777LMGFec/+OADdO3a\nFTNmzFAsDk9ERESaSeMK/I6Ojmpf4NfR0YGjoyML/EREKlA5O33r1q347rvvsGPHDujq6oodq1kI\nDw/HoEGD0KtXL5w9exadOnUSO5JaqCzwa2n9349RtbXoWb9+PXr27Il+/fo1WT4iIlIf7u7uWLx4\nMf744w+kpaVh9+7daNeuHdasWQN3d3e4uLhgyZIlOH/+fL1a+UilUuzbtw+xsbH4/PPPG/EMiIiI\nSGwaV+B3cnLC7du3UVJSInaUBnFzc+PtlEREDRQTEwNPT0/cv38fZ8+exYQJE8SO1Gzs2bMHY8aM\nwSuvvIJDhw7B2NhY7EhqIyMjA0D1An9NLXpSUlLwww8/4J133mnagEREpJbatm2LyZMn4+DBg8jO\nzsaxY8cwcuRIhIWFwdvbGx06dMCCBQsQFRVVpwV0XV1d8fHHH2P58uX4+++/m+AMiIiISAwaWeCX\ny+X4999/xY7SICzwExE1TGRkJPr3748ePXrgwoULcHd3FztSsxEcHIyZM2fivffew86dO6GtrS12\nJLVSWeCvet1qatGzadMmWFhYsO0RERHVm1QqRb9+/fD5558jKSkJcXFxeO211xAVFYWAgABYWlpi\nypQpCA8PR2lpaa3jvPfee/D29saUKVOeuh8RERGpL40r8Ds7OwOA2rfpcXV1xY0bN/hDGBGREn76\n6ScMHz4cI0eORHh4OAwNDcWO1Gz88MMPmDFjBubPn49Vq1aJHUctZWdnA3h6i54HDx7g66+/xrx5\n89gSioiIGszd3R3Lly/HhQsXkJCQgKCgIMTFxeHFF19Eu3btMH/+fMTGxj7xOC0tLezduxc3btzA\np59+KkJyIiIiamwaV+A3MjKCpaWl2hf43dzcUFZWpvbnQUTU1Pbs2YNx48Zh5syZ+Oabb55Y9LQl\ni4iIwMSJE/HWW29h/fr1YsdRS2VlZcjNzQVQ8wz+ygL/tm3bIJfL8frrrzd9SCIi0miurq744IMP\ncPHiRSQlJSEoKAi//PILevToge7du2PTpk3IyspS7O/g4IBVq1Zh1apVOH/+vIjJiYiIqDFoXIEf\neLTQblJSktgxGsTFxQXa2tps00NEVA+bN2/GjBkzsHz5cnzxxRfVZli3dFevXsX48ePx0ksvYcOG\nDWLHUVvp6emKRQ5r68FfUlKC//73v5gzZw7MzMxEyUlERC2Dg4MD3n//fVy7dg3R0dF47rnn8PHH\nH6Ndu3YYNWoUfv75Z8jlcrz11lvw9/fH1KlTUVxcLHZsIiIiUiGNrHw4OTmp/cx3fX19dOjQAYmJ\niWJHISJSC9988w0WLFiAtWvX4v333xc7TrOSnZ2N4cOHw9XVFfv27YNEIhE7ktpKTU1V/Llq652y\nsjJIpVJIJBLs3bsXOTk5CAoKEiMiERG1QBKJBL6+vti5cyfS09Oxe/duPHz4ECNHjoSLiwu+/PJL\nbN26Fampqfj44//H3n2HRXGufwP/LmXpIIKCgIIFW4zGElEMxmiUGDuIWFA0goDoj2CILR7E2OBw\nwBqjUcCCBcSosR0JlqMSUGyxa1Q0IIICshTpzPuH72xYloVlKbPl/lwX1wUzz8x+d5cd2HuevWcl\n13EJIYQQ0oSUssDfuXNnhS/wAx8+ekkFfkIIqd+JEyfwzTffYOnSpQgICOA6jlypqqqCm5sbqqqq\ncOzYMWhra3MdSaG9evUKPB4PGhoaYi16NDQ0UFlZibCwMLi7u8PCwoLDpIQQQlSVrq4u3NzckJCQ\ngPv372P48OFYsmQJRowYga+//hr/+c9/cPnyZa5jEkIIIaSJKGWBv0uXLkhNTRVe8E5R9ezZk1r0\nEEJIPf744w9MnToVM2bMoIvG1iIkJAQXLlzAgQMH0KZNG67jKLyMjAwYGBhAS0tLZDlb4I+Li8Pz\n58/pRBMhhBC50KNHD2zfvh2pqamYOnUqjh8/Dl1dXUydOhWFhYVcxyOEEEJIE1DaAn9FRQXS0tK4\njtIoPXr0wOPHj1FZWcl1FEIIkUs3b97E6NGjMWbMGERERFDrmRoSExMRGBiI4OBgDB48mOs4SuHV\nq1cwMjISK/CXl5dDU1MToaGhcHZ2hq2tLUcJCSGEEHFt27ZFeHg4Hj58CDs7O2RkZGDChAlcxyKE\nEEJIE9DgOkBzYN9UP336FJ06deI4jex69uyJkpISpKamokuXLlzHIYQQufLq1SuMGzcOdnZ2iI6O\nFmmXQoCCggLMnDkTjo6O8Pf35zqO0nj16hUMDQ2FF9VlVVRUoKqqCjdu3MCOHTvEtnvx4gWWLVtG\nJ+0JIYQ0C3V1daxfvx42NjZ1jrO2tkZCQgKcnJxw9OhR7NmzB+7u7i0TkhBCCCHNQiln8BsbG6N1\n69YK34e/Z8+e4PF41KaHEEJqKC4uhpOTEwwNDREbGytysVPygb+/PwoKCrBr1y76ZEMTysjIgL6+\nvti1DMrLy1FcXAxHR0f0799fbLtr167h0KFDLRWTKLCkpCQkJSVxHYM0EXo+SUs5dOgQrl27JvX4\nI0eOwNDQEN9//30zpiKEEEJIS1DKGfwA0KlTJzx//pzrGI2ir68PKysrPHz4EOPHj+c6DiGEyAWG\nYTB37lw8ffoUycnJaNWqFdeR5E58fDwiIyMRExMDc3NzruMolVevXsHKykqsRU9qairKysqwZMmS\nOrePjY1tznhECUyZMgUA/a4oC3o+SUtp6Ml8Ho8HPz8/rF69GleuXMFnn33WTMkIIYQQ0tyUcgY/\nAHTs2BEvXrzgOkaj2dra4q+//uI6BiGEyI3Vq1fj8OHDiI2NpT7ntcjLy8PcuXMxY8YMuLi4cB1H\n6WRkZEBHR0eswH/u3DloaWnhiy++4CgZIYQQ0jBLliwBj8fDTz/9xHUUQgghhDSCUhf4U1NTuY7R\naF27dqUCPyGE/H9Hjx7FqlWrsHnzZowYMYLrOHLJ29sbVVVV2LRpE9dRlI5AIEBhYSG0tbVFCvyP\nHj3CgwcP0Lp1aw7TEUIIIQ2jp6eHtm3b4uLFi1xHIYQQQkgjKG2B38bGRikK/La2tnjy5AnXMQgh\nhHO3b9/GzJkz4ePjAx8fH67jyKWjR48iNjYWu3btomJzM8jIyAAA8Pl8kQJ/SEgITExMYGhoyFU0\nQgghRCafffYZsrKyUFxczHUUQgghhMhIaQv8HTt2xLt375CXl8d1lEaxtbVFZmYm8vPzuY5CCCGc\nycrKwoQJE9C/f3+Eh4dzHUcuvX79Gp6envDy8sLo0aO5jqOU2AK/urq68CK76enpOHDgAIYMGQJ1\ndXUu4xFCCCENZm9vD4ZhcPfuXa6jEEIIIURGSl3gB6Dwffi7du0KAHj69CnHSQghhBtlZWWYMmUK\n1NXVceTIEfD5fK4jySVPT08YGhri3//+N9dRlFZmZiY0NTXB4/GEM/jDwsLQtm1bfPTRR1BTU9p/\nqwghRGqnTp3ChAkTYG5uDj6fD3Nzc4wbNw7Hjh0TG8vj8Wr9knZcQ75I7diL6/7vf//jOAkhhBBC\nZKW070Stra2hpqam8G16OnXqBE1NTWrTQwhRWZ6enrhz5w5Onz4NU1NTruPIpV27duHMmTOIioqC\ngYEB13GUVnZ2NkxNTVFaWgotLS3k5uZi165dWLRoEXg8Hs3gJ4SotPLycri5uWHGjBkYPnw4UlJS\nUFhYiJSUFIwYMQLu7u5wdnYWaQXDMAwYhpH4c23La/te0n4k7Y/8o1u3bgCAq1evcpyEEEIIIbJS\n2gK/trY2zM3NFX4Gv6amJqytrelCu4QQlbRt2zZER0fj0KFD6N69O9dx5NLLly/x3XffYdGiRfj8\n88+5jqPUahb4N2/eDD6fD09PT1RWVtIMfkKISlu4cCFiY2ORkJAAPz8/tG/fHnw+H+3bt8e3336L\n+Ph4/Pbbb5g3bx7XUUk1RkZG4PP5Cv++mRBCCFFlSv1OtGPHjgo/gx/40IefCvyEEFWTkpKCRYsW\nISgoCI6OjlzHkVve3t6wsLDA6tWruY6i9N6+fYs2bdqgtLQU6urq+Omnn7Bw4ULo6+ujqqqKZvAT\nQlTW1atXsWPHDsyePRsDBgyodYydnR1mzZqF6OhoXL58udG32ZCZ+TSLv276+vrIycnhOgYhhBBC\nZEQFfgXQtWtXatFDCFEp7969g6urKxwcHLB8+XKu48itPXv2ID4+Hjt37hRe9JU0n+zsbLRp0wYl\nJSV4/vw53r9/D19fXwCgGfzV1Nf/uvoyKysrvH37Vur9EELk0/bt2wEAkydPrnOci4sLAGDnzp3N\nnolIz8jICAKBgOsYhBBCCJGRUr8TtbGxUYoCv62tLRX4CSEqo6qqCjNmzEBFRQUOHjxIs6IlyM7O\nxvfff48FCxYIL5BHmtfbt29hamqKkpIS3LlzB56enmjTpg2AD7+3VOD/oL6e2tV/fvXqFaZNm4bK\nyso690N9tAmRb+yM/I8//rjOcb179wYAJCYmNnsmIr3WrVujqKiI6xiEEEIIkZFSvxPt2LGjUvQS\ntLW1xbt37+hjk4QQlbB27VokJCTg0KFDdFHdOsyfPx+6urpYs2YN11FURk5ODkxMTPD69WsUFRXB\n399fuI5a9MjG3Nwc586dQ2BgINdRCCGNkJGRAQAwMTGpcxy7/vXr182eiUjP2NgYFRUVXMcghBBC\niIyUvsBfVFQk8aPfiqJr164AQLP4CSFK78KFC1i1ahU2bNgAe3t7ruPIrZMnT+Lw4cPYsWMHDAwM\nuI6jMgQCAQwNDZGZmYmPP/4Y1tbWwnXUokc2MTEx0NDQwPr163Hy5Emu4xBCmhnbaotabsmXVq1a\noaqqij4pRQghhCgopX4n2rFjRwBQ+DY9HTp0gLa2Nl1olxCi1DIzMzF9+nRMnjxZ2NeciBMIBPDx\n8cHs2bPp4sMtTCAQ4Pnz5ygtLcXnn38uso5m8Mtm6NChWLduHRiGwcyZMxX+fzZCVFW7du0AALm5\nuXWOy87OBgBYWFiILGdPkNbWrotFJ1KbDztZoKysjOMkhBBCCJGFUv+HZGVlBU1NTYV/s6impobO\nnTtTgZ8QorTKy8vh4uICQ0ND/PLLL1zHkWsBAQEoLS1FaGgo11FUSlVVFYqKivD7779DR0cHHTp0\nEFlPhSfZff/995g0aRLy8vLg7OyMkpISriMRQhrIwcEBAHDnzp06x7Hrhw4dKrKcLTDXdaHXd+/e\nwdDQsDExiQTs419cXMxxEkIIIYTIQqnfiWpoaMDKykrhC/wAXWiXEKLcli9fjtu3b+Po0aP05r0O\nFy9eREREBLZt20bXJ2hhBQUFqKqqwl9//QUtLS1oa2uLrKcZ/I0TFRWFLl264NatW1iwYAHXcQgh\nDeTt7Q0AOHLkSJ3jDh8+LDKe1a1bNwDAvXv3JG577949YetS0rTYv2nUOokQQghRTEpd4Ac+tOlR\nhgJ/165daQY/IUQpJSQkIDw8HFu3bkXPnj25jiO33r9/Dw8PD0ycOBGTJ0/mOo7Kyc/PBwD069cP\nZWVl0NPTE1lPM/gbx8jICEeOHIGOjg4iIiIQFRXFdSSF4+DgIJxFTUhLGzRoELy8vBAVFYXr16/X\nOubq1avYu3cvvLy88Omnn4qsGzduHADU+dqPiIjAmDFjmi40EWIL/HShXUIIIUQxKf070Q4dOiAt\nLY3rGI1ma2uLp0+fch2DEEKa1Lt37zB37lxMnDgR7u7uXMeRa2vWrEF2djZ++uknrqOopD/++APA\nh1mnxcXF0NXVFVlPM/gbr3fv3vj5558BAL6+vrh9+zbHiRRLVVUVqqqquI5RLx6PR7OEldSWLVvg\n4uKCkSNHYvPmzUhPT0d5eTnS09OxadMmODo6wtXVFVu2bBHb1s/PDz179sTu3bvh6+uLe/fuobS0\nFKWlpbh79y58fHyQkpKCb7/9loN7pvy0tLQAUIseQgghRFEpfYHf0tISr1694jpGo1lbW6OgoAA5\nOTlcRyGEkCbj7e2NyspK7Ny5k+socu3JkycIDw/HmjVrhBcyJC2LLTzb29uDYRixGfxVVVU0g78J\nuLu7Y968eSguLsbkyZORl5fHdSSFkZiYiMTERK5jEBWmqamJ/fv3Izo6GgkJCejfvz/09PTQr18/\n/P7774iOjkZ0dDQ0NTXFtjUwMEBSUhJWrVqFa9euYciQIdDT00ObNm3g7u6ONm3a4OrVqxLb+NU8\ncUQnkhqGLfC/f/+e4ySEEEIIkYUG1wGam4WFhVIU+Dt27AgAePHiBUxMTDhOQwghjRcREYG4uDj8\n/vvvaN26Nddx5JqPjw969eoFHx8frqOopIcPH+Ly5csAIJwhXXMGP7XoaTqbN2/GjRs3cOPGDfpk\nDyEKaMyYMTK10jE0NERgYCACAwMbvC3DMA3ehvyDffzopAghhBCimJT+nailpSVyc3NRUlLCdZRG\n6dChA9TU1PDixQuuoxBCSKM9f/4c/v7+CAgIwPDhw7mOI9f27duHixcvYuvWrdQChiPr16+HlZUV\ngA+FfAC1zuCn56dpaGlpIS4uDsbGxvjtt9+4jqMQ2NnKNYtz1ZenpaVhwoQJMDAwgJmZGdzc3MQ+\nGVp9/IMHD/DVV1/B0NAQ+vr6GDNmDB4+fNjg2625vOYYDw8P4TKBQAB/f3906tQJ2traMDExgb29\nPQICAnDt2jWZcwLAmzdv4OPjAysrK/D5fFhaWmLevHnIzMwUG1tSUoLg4GD07dsXenp60NbWRvfu\n3eHt7Y3k5GRJTwMhCqusrIzrCIQQQghpBJUo8DMMg9evX3MdpVH4fD4sLCyowE8IUXgVFRWYMWMG\nunTpgtWrV3MdR64JBAIsWbIE3t7eGDRoENdxVFJqaioOHjwIFxcXAP9cgLC2Hvw087Hp2NjYIDo6\nmh5TKUmavVx9+bJlyxAcHIz09HQ4Oztj//79CAgIkDje09MT//rXv5CRkYHjx4/j5s2bGDJkiMj/\notLcrqTlDMOAYRjs2rVLuMzd3R0bN26En58fcnJy8Pr1a0RFReH58+ews7OTOWdWVhYGDhyIo0eP\nIjIyErm5uTh06BDi4+Nhb28v0gqqoKAADg4OWLduHXx9ffH8+XNkZ2dj+/btuHTpEgYPHlzrfSNE\nkbF/26jQTwghhCgmpS/wW1hYAIBStOmxsbHBy5cvuY5BCCGN8uOPP+L27dvYu3cv+Hw+13Hk2tKl\nS1FVVYU1a9ZwHUVlhYaGwsLCQniChS2C1JzBD1BrA1Z9vbCr/1xXn+yvv/4aP/zwQ/OGVSGenp7o\n0aMHjIyMsHjxYgBAfHy8xPErVqzAkCFDoK+vjxEjRiA4OBjv3r1DUFBQs2W8cOECgA8TdPT09MDn\n89GtWzds3bq1UTlXrlyJly9fYt26dRg1ahT09fXh4OCADRs2IDU1FaGhocKxQUFBuH79OlavXg0P\nDw+YmZlBX18fw4YNw/79+5vtvhPCJbawTwV+QgghRDEpfYHfzMwMGhoaSlPgT01N5ToGIYTILDEx\nEevWrUNYWBh69erFdRy5dv36dezcuRNhYWEwNjbmOo5KysrKwu7du7FkyRJhj/3S0lIA4jP4yT/Y\nmdk1v+paL8nq1aupt3YT6devn/B7dgJMXZ9wtbe3F/n5yy+/BFD3SYHGcnZ2BgC4uLigQ4cO8PDw\nQGxsLExNTSX+HkiT88SJEwCA0aNHi4wdOnSoyHoAiIuLAwBMnDhR7Lb69u1Lv49EKZWXlwOgAj8h\nhBCiqJS+wK+urg4zMzNkZGRwHaXRbGxsqEUPIURhFRcX45tvvoGjoyNdLLYelZWV8PLywpAhQzB9\n+nSu46issLAwGBoaYs6cOcKi3vv37wHUPoOfEHlmYGAg/J799FRdxWojIyORn01NTQEAb9++bYZ0\nH0RGRuLIkSNwdnZGYWEhIiIi4OrqCltbW9y+fVvmnG/evAHw4cRG9f797Nhnz54Jx7InPczNzZvu\njhEi59iT12yhnxBCCCGKRekL/MCHf+ZpBj8hhHBr1apVyMzMxPbt26mVST22bduGe/fu0WPFIYFA\ngF9++QWLFi2Cjo4O1NXVUVVVhcLCQgCAjo6O2DY0s5cok5oX4M3OzgYAtGnTRmQ5e4yqXhgUCAQy\n366TkxPi4uKQnZ2NS5cuwdHREX///TfmzJkjc04zMzMAQG5ubq2fICkqKhIbq+jX7yKkIUpKSgDQ\n3zFCCCFEUalEgd/S0lIpZvBbW1ujqKgIubm5XEchhJAG+fPPPxEeHo6QkBC0b9+e6zhyLTs7GytX\nrsSiRYvQo0cPruOorE2bNgEAvLy8AHz4RCAAFBUVQVtbW/gzi07EEGWTmJgo8nNCQgIAYNSoUSLL\n2Znu1Qvit27dkrhftr1VeXk53r9/L5xFD3x4HaWnpwMA1NTU4ODggJiYGADAw4cPZc7Jttu5ePGi\n2PaXL18WuXAu2ybo2LFjYmOTk5NFLvZLiLIoLi7mOgIhhBBCGkFlCvzKMIPfysoKAIRvfAghRBFU\nVFRg7ty5GDx4sLBYSiT717/+BT6fj2XLlnEdRWUVFRVh69at8PPzE7b/YAv6hYWF1J6HqITt27fj\nypUrKCwsxPnz57Fs2TIYGxuLXWR35MiRAD5ckFogEODRo0fYtWuXxP327t0bAHDt2jWcOHFCpLgO\nAB4eHrh//z5KS0uRlZWFkJAQAICjo6PMOYOCgmBrawtfX1/ExcUhJycHBQUFOHnyJGbPno3g4GCR\nsb169UJgYCB27tyJrKwsFBYW4uzZs5g1axbWrVsn9WNIiKJgC/w0g58QQghRTCpR4FeWFj1U4CeE\nKKLQ0FBqNyOl+/fvY9euXfj3v/8NQ0NDruOorB07dqCoqAgLFiwQLqte4Jd0gV0qjBCuVD+2Nub7\n6rZt24aQkBBYWFhg/Pjx+OSTT5CYmAgbGxuRcWFhYZg+fTpiYmJgaWmJxYsXY/369RL3v2XLFvTp\n0wejRo3Cxo0bERYWJlx35coVmJubY+zYsTAwMEC3bt1w+vRprF27FgcPHpQ5p6mpKa5evYpp06Zh\n8eLFaNeuHWxtbfHLL79g//79+Pzzz4VjW7VqhaSkJPj5+SEsLAwdOnSAjY0NwsPDERERgREjRtSa\ngxBFxl5fhv6OEUIIIYpJg+sALcHCwkIpWvTo6+vDyMiICvyEEIXx5MkTrF69GkFBQdRuRgr+/v7o\n3bs33NzcuI6issrLy7Fp0yZ4eXmJ9PDW1NQEIHkGP528IlySVJRr6PLqbGxscOLEiXrHmZqaYv/+\n/VLfxoABAyReMHfIkCEYMmRIvbcpS05jY2OEhYWJnFCQRF9fH6tXr8bq1asblEWSw4cP0zGCyDVp\nrpvRvn17eh9KCCHNyN/fH+Hh4VzHIApKJQr8lpaWKC4uxrt372BsbMx1nEaxsrJSik8jEEKUH8Mw\n8PHxQdeuXfHdd99xHUfuHT16FAkJCbh06RLU1FTiA3ZyKSoqCq9fv8a3334rstzAwAAAkJeXRy16\nCCENMnjwYPj7+3Mdgyi5KVOmyLxtfn4+gLpP/qWnp8Pf31+srRZpOhs2bAAAOl60EHq8iTwJDw+n\nk6ikUVSmwA8Ar169UvgCv6WlJb3oCSEKYfv27bh06RKSk5OFs59J7crKyrBkyRJMnz4dn332Gddx\nVFZlZSX+85//YPbs2ejQoYPIOrYXf15ensQWPYQQUhsrKyu4uLhwHYMQidgCf30GDRpEv8vN6PDh\nwwBAj3ELocebyBP295EQWalEgd/CwgLAhwJ/r169OE7TODSDnxCiCLKysrBs2TIsWrQI/fv35zqO\n3GNnbCQkJHAdRaXFxsbi+fPnOHXqlNg6tsCfn58vcQY/9S4miq5mb355/Z1WlJyEKAppZvATQggh\nRH6pRA+AVq1aQU9PTyn68FtZWdEMfkKI3Fu+fDkMDAwQGBjIdRS5l5WVhfXr12Pp0qVis8ZJy2EY\nBqGhoZgyZQpsbW3F1rdq1QrAhyJIbTP4qb82UQYMw4h8yStFyUmIoigoKOA6AiGEEEIaQSVm8AMf\nZvErw8x3atFDCJF3N27cwO7du3HgwAHqVS6FH374Aa1atUJAQADXUVTayZMncevWLURERNS6Xk9P\nDxoaGigsLKQTMYQQQpTG+/fvUV5eDoBm8BNCCCGKSmUK/Obm5sjKyuI6RqNZWFhAIBCgqKiICmeE\nELnDMAwWLFgAe3v7Rl3sTVU8ePAAu3fvxu7du6mvO8dCQkIwduxY9O3bt9b1PB4P7dq1g0AgaNRz\nRf01SX3S09NhZWXFdQxCiIrIy8vjOgIhhBBCGkllCvympqbIycnhOkajmZmZAQDevHmDjh07cpyG\nEEJE7dmzBykpKbhx4wa1LJHCsmXL8NFHH2H69OlcR1FpFy5cQGJiIq5cuVLnOBsbG/z111+N6sFP\nJ76INOiCf4SQliIQCITfK8IMfkn/X7LZq6+3tLTErVu30KZNG6n2owj3X1VVf77oeSKEEHEqVeB/\n8eIF1zEarW3btgCowE8IkT8FBQVYvnw5vL290adPH67jyL3k5GScOHECZ86cgZqaSlwSR26FhITg\n888/x5AhQ+ocZ2Myl0ptAAAgAElEQVRjgz///LNRPfjpTSmpD50EIoS0JEUr8Ncs5NfMXH39q1ev\nMG3aNJw9exbq6uoSxynC/VZ1DMPQ5CFCCKmDylQUTE1NkZ2dzXWMRmML/MrQbogQolx+/PFHlJaW\nIigoiOsoCiEgIABDhw6Fo6Mj11FU2p07dxAfH48lS5bUO9bGxgYlJSXUTokQojJ4PJ5cFtWaKpe8\n3r+WVL1Fj7IVus3NzXHu3DkEBgZyHYVIgV6PhBAiO5Up8JuYmChFgV9HRwcGBgZ48+YN11EIIUTo\nr7/+wpYtW7BmzRqYmppyHUfuHTt2DH/88QeCg4O5jqLyQkJC0KtXL3z11Vf1ju3cuTPKy8trbdFD\nMwAJIYQoIoFAIJzdXnOWu6KLiYmBhoYG1q9fj5MnT3IdhxBCCGk2KlPgNzU1xdu3b7mO0STMzMyo\nwE8IkSuLFi1Cjx49MG/ePK6jyL3KykqsWLECLi4uGDRoENdxVFpaWhoOHz6M77//XqoZY/369QPD\nMMjPzxdbp6amhsrKyuaISQghhDQbgUAAAwMDAFC6loFDhw7FunXrwDAMZs6cidTUVK4jEUIIIc1C\nuf6C18HU1BQlJSUoKiriOkqjtW3blgr8hBC5kZiYiJMnTyIkJETpZn41h6ioKDx+/BirVq3iOorK\nCwsLg5mZGVxdXaUa361bNwBARkaG2DpNTU1UVFQ0aT5CiOoqKSlBcHAw+vbtCz09PWhra6N79+7w\n9vZGcnKyyNjMzEx4eXnBysoKfD4fVlZW8Pb2Fmvpyba/4PF4SEtLw4QJE2BgYAAzMzO4ubkhJydH\nbHzNbT08PGrd37Nnz+Dk5ARjY2OxNhsJCQkYP348jI2Noa2tjX79+uHQoUNi91kgEMDf3x+dOnWC\ntrY2TExMYG9vj4CAAFy7dk3qXNKqaz/V7xv7VT2zjY2NyP2sPu7Bgwf46quvYGhoCH19fYwZMwYP\nHz4Uu/03b97Ax8dH+LxZWlpi3rx5yMzMbPB9aYy8vDwYGhoCUL4CPwB8//33mDRpEvLy8uDs7IyS\nkhKuIzWphrxu2K+MjAw4OzvDwMAAJiYmcHd3h0AgwIsXLzB+/HgYGhrC3Nwcs2fPFmnhxJL2mNOQ\nsQ15XUtz/CKEEJXDqIjk5GQGAPPixQuuozTapEmTmGnTpnEdgxBCGIZhmGHDhjEODg5cx1AIxcXF\nTPv27RkfHx+uo6i8nJwcRl9fnwkPD5d6m7y8PAYA8/XXX4ut8/LyYoYPHy5x25iYGEaF/u0ijeDi\n4sK4uLhwHYM0EVmez/z8fGbAgAGMgYEBs3PnTiYzM5MpKChgLly4wPTo0UPkWPL69Wumffv2jIWF\nBXPu3DkmPz+fSUhIYMzNzRlra2smMzNTZN8AGADMjBkzmAcPHjB5eXmMj48PA4CZPXu2WBZ2vCTs\n+pEjRzKJiYnM+/fvmdOnT4tsA4CZOHEi8/btW+bly5fMyJEjGQDMf//7X5F9TZgwgQHAbNy4kSks\nLGRKS0uZR48eMZMmTRLLUF8uadW1n4SEBAYA065dO6a0tFRk3c6dO5mxY8fWui97e3vmypUrTEFB\ngfC5MDY2ZlJTU4VjMzMzGWtra8bMzIw5e/YsU1BQwFy6dImxtrZmOnbsyLx7906m+xITE9Pg7ZYv\nX8589NFHDADm8uXLTb7/5iLN7yYrLy+P6dKlCwOAmTt3rsRxXJPleCHL68bNzU34+vf19WUAMGPG\njGEmTZokdlzw9PQU2UdDjjmyHp8kqe34tWDBAonHr/rQ31siT+j3kTTSv+Xnr1kze/r0KQOAuX79\nOtdRGq2+IgIhhLSUM2fOMACYxMRErqMohPDwcEZXV5fJyMjgOorK+/HHHxljY2MmPz9f6m3S0tIY\nAEznzp2FyzIzM5nRo0czbm5udZ7oogI/kRa9wVMusjyfixYtEhbsarp586bIscTT05MBwOzbt09k\n3O7duxkAjJeXl8hytkB28eJF4bLU1FQGAGNhYSF2e9IW3C5cuFDnmOrF7YcPHzIAxI6ZhoaGDADm\n8OHDIstfvXrFSYGfYRimT58+DABmz549Iss//vhj5vfff691X6dPnxZZzj4X7u7uwmVeXl4MACYi\nIkJk7K+//soAYJYvXy7TfZGlAO/r68sMGjSo3v/nFLnAzzAM8+effzI6OjoMACYyMlLiOC7JcryQ\n5XVT/fXPjqu5nP2fx9LSUmQfDTnmyHp8kqS2nOnp6RKPX/Whv7cfnDx5khk/fjxjZmbGaGpqMmZm\nZszYsWOZo0ePio1ln4OaX9KOa8iXqqHfR9JI/1a+z+BJwF70URk+utW2bVuluZ4AIURxMQyDlStX\nYty4cbC3t+c6jtwrKSnBf/7zH/j4+KBdu3Zcx1FpJSUl2LZtG+bPny/sOyyNwsJCAMCzZ8/w6NEj\nVFZWwtXVFWfOnEFCQgK16CGENIm4uDgAwMSJE8XW9e3bV+SC3uyFQ4cPHy4y7ssvvxRZX1O/fv2E\n31tYWAAAXr9+LXPmgQMHSlzHMAxsbGyEP9va2gIAHjx4IDLO2dkZAODi4oIOHTrAw8MDsbGxMDU1\n5ewi5v7+/gCADRs2CJedP38eVVVVwse4ppr/E7Hj4uPjhctOnDgBABg9erTI2KFDh4qsl0VKSgpC\nQ0Olfr8oEAiUukUPq3fv3vj5558BAL6+vrh9+zbHiZqGLK+b6q9/c3PzWpezx4WabQkbcsyR9fhU\nn+o52f+pG3P8UlXl5eVwc3PDjBkzMHz4cKSkpKCwsBApKSkYMWIE3N3d4ezsjOLiYuE2DMOI/F7V\n/Lm25bV9L2k/kvZHCKmf8v4Fr8HQ0BBqamoQCARcR2k0Y2Nj5Obmch2DEKLijhw5gpSUFPz4449c\nR1EI27dvR25uLhYtWsR1FJUXFRWFd+/ewdfXt0HbFRQUAABMTEzw66+/IjAwEFeuXAEAZGVlIT09\nvcmzEkJUD1uoql54k4Qt4rKTmVjsz5Ku21X95CafzweARhVVdHV1a12el5eH5cuXo0ePHjAwMACP\nx4OGhgYA8YlXkZGROHLkCJydnVFYWIiIiAi4urrC1taWs2LstGnT0K5dO9y+fRvnz58HAGzatAl+\nfn4StzEyMhL5mX0uqhfc2efFwsJCpDc6O/bZs2cyZy4tLUV4eDgGDhyIx48f1zs+Ly8P+vr6AJS7\nwA8A7u7umDdvHoqLizF58uRa+8srGlleN9Vf/9Wf89qW1zwuNOSYI+vxqT7S5CT1W7hwIWJjY5GQ\nkAA/Pz+0b98efD4f7du3x7fffov4+Hj89ttvmDdvHtdRCSFSUO6/4NXweDwYGBgoTYH/3bt3XMcg\nhKiwyspKrFy5ElOnTsUnn3zCdRy5x87enz9/vnBGFOFGZWUlNmzYAHd39wZ/koIt8I8fPx4RERFY\nv349KisrAXx4Y5meno6nT582eWZCiGoxMzMDIN2M1LZt2wIAsrOzRZazP7PruTJlyhSsX78erq6u\nePnyZb2zM52cnBAXF4fs7GxcunQJjo6O+PvvvzFnzpwWTP0PPp+PBQsWAADCw8Px/PlzJCUlwc3N\nTeI2NU9csM9FmzZthMvY5zg3N1ds5irDMCgqKpI582effYYHDx6gbdu2mD59OsrLy+scLxAIVKbA\nDwCbN29G//798ezZM7i7u3Mdp0m05OumIccceT8+qbKrV69ix44dmD17NgYMGFDrGDs7O8yaNQvR\n0dG4fPlyo2+zISdh6IQNIQ2n/H/BqzEyMlKaAv/79+9RWlrKdRRCiIrau3cvHj9+jMDAQK6jKIQd\nO3YgJycH3333HddRVN6xY8fw7NkzmT5JwRb4XVxc8ObNG/B4PLExc+bMoTclcujQoUOws7ODsbGx\nyGzZmupaR0hLYVtuHDt2TGxdcnIy7OzshD+PGzcOAHDu3DmRcQkJCSLrZcXOzC8vL8f79+/FZuLW\nJzExEQDw3XffoXXr1gAg8T0Mj8cTfhJKTU0NDg4OiImJAQA8fPiwSXM1ZD/e3t7Q1dXF6dOn8X//\n93/w8PCAjo6OxH2y95nFPhejRo0SLmPbL128eFFs+8uXL2Pw4MENvi/VGRsbY//+/Xj48CF27txZ\n59j8/HyVKvBraWkhLi4OxsbG+O2337iO02gNed00hYYccxp6fGqq1zWp3/bt2wEAkydPrnOci4sL\nANR7HCGEcE/5/4JXo0wFfgBKcV8IIYqnoqICq1evxpw5c9C9e3eu48i9kpIShIaGwsfHh2bvy4Hw\n8HCMHz8e3bp1a/C2BQUF0NLSQlBQEEpLS1FVVSWynmEY/PHHH8I3TUQ+7N27F9OmTYOJiQlu376N\nkpISHDlypNaxdHKGyIOgoCD06tULgYGB2LlzJ7KyslBYWIizZ89i1qxZWLdunXDsqlWrYG1tjaVL\nl+L8+fMoKCjA+fPnsWzZMlhbWyMoKKhRWXr37g0AuHbtGk6cONHgwrODgwMAYP369cjLy0Nubi6W\nL18ucbyHhwfu37+P0tJSZGVlISQkBADg6OjYpLkasp/WrVvD3d0dDMPg7NmzmD9/fp373L59O65c\nuYLCwkLhc2FsbCzyXAQFBcHW1ha+vr6Ii4tDTk4OCgoKcPLkScyePRvBwcEy3Z/qunTpgjlz5iAs\nLEz4abPalJSUQFNTE4BqFPgBwMbGBtHR0UpzMlfa101TaMgxp6HHp6Z6XZP6sTPyP/744zrHsc9J\nzROXhBA51JyX8JU3n332GbNw4UKuYzTan3/+yQBgHj16xHUUQogKio6OZtTV1ZmnT59yHUUhbNq0\nidHW1mZevXrFdRSVd/36dQYAc/HiRZm237ZtG6Otrc2oq6szACR+aWtrM8+ePRPZNiYmhlGxf7vk\nRp8+fRgAzIMHD6Qazz6PXHFxcanz94u+FO/LxcWlwb8HBQUFzIoVK5hu3boxfD6fMTExYUaNGsVc\nunRJbGxmZibj5eXFWFhYMBoaGoyFhQUzb948JjMzU2RczVz1LWcYhklJSWH69OnD6OrqMoMGDWIe\nP34scbua2zIMw2RlZTEzZ85k2rZty/D5fKZXr17C42HNba5cucK4u7szNjY2jKamJmNkZMT06dOH\nWbt2LVNUVCR1roaQdj9Pnjxh1NTUmKlTp0rcF3t/UlNTmbFjxzIGBgaMnp4eM3r06FqPP7m5ucyi\nRYuYjh07MpqamoyZmRkzbtw4JikpSab7AoCJiYkRWfb48WMGABMfHy9xu06dOjEBAQEMAObPP/9s\n0P65IOl1Vtd6SVasWFHn+pbm4uLS4OOFtK+bhr7+63oMpT3mNHRsQ4430uSsjyyPt7LQ0dFhADCl\npaV1jispKWEAMDo6OiLLpX286xsjy/OmrFT595E0iX/zGEZ1piqNGzcOrVu3xp49e7iO0ihpaWno\n0KEDkpKSMGjQIK7jEEJUTL9+/dCjRw/s37+f6yhyr6SkBF26dIGLiws2bNjAdRyVN2PGDNy9exd3\n7tyRaftZs2Zh37599Y7T1NSEg4MDEhIShLMDY2Nj4erqSjPEOaCrq4vi4mKUlZUJZ6nWhX3OuHqu\npkyZgvT0dPj7+3Ny+6RpbdiwAVZWVoiNjeU6CmmEqqoqWFlZ4ddff5X4/ovrYwePx0NMTAymTJki\nsrx///7o378/fvnll1q3a9++PWbMmIGQkBDcvXsXvXr1atD+SdNhH1s6XrQMVX682f+NSktLhRda\nr01ZWRm0tLSgq6srcm0QaY93PB6vzjFcHzfliSr/PpImEarBdYKWpGwtevLy8jhOQghRNWfOnMGt\nW7cQERHBdRSFEBkZiZycHCxevJjrKCovIyMDcXFxEgsc0rh79y6ADxddLCsrkziuvLwcFy5cQGRk\nJObOnSvz7ZGmUVxcDABSFfflhZWVlbDvLVFshw8f5joCaQKnTp1C+/btFXJylbOzM7Zs2QKGYWpt\nSVNWVgZ1dXUAqtOihxBV165dOzx//hy5ubkwNzeXOI69IHLNNqNqamqoqqpCZWWl8PhRU2VlJR1T\nCGlBKvVqU5YCv76+PjQ1NfHu3TuuoxBCVExISAgcHR3Rt29frqPIvcrKSoSHh+Obb75Bu3btuI6j\n8rZt24ZWrVrB1dVV5n0MGzYMn3zyCZYtWwZbW1sAkovGDMPAz88PaWlpMt9eXQQCAfz9/dGpUydo\na2vDxMQE9vb2CAgIwLVr10TGZmZmwsvLC1ZWVuDz+bCysoK3tzeysrJExkm6wKw0y589ewYnJyeR\ni9iySkpKEBwcjL59+0JPTw/a2tro3r07vL29kZycLLLPN2/ewMfHR5jV0tIS8+bNQ2ZmpkyPU/Uc\n1fPKcjHdps5GCJFvPB4PycnJePfuHVatWoUffviB60gy+fLLL5GZmSnxgqvl5eVU4CdExbDXR6nv\nU63s+qFDh4osNzAwAFD3dSHfvXsHQ0PDxsQkhDSASv0FV5YCPwC0atWKCvyEkBaVkpKC//3vf1iy\nZAnXURRCXFwcXrx4QW025EBpaSl27twJHx8faGtry7yfgoICmJmZISgoCE+ePMGzZ88QGhqKAQMG\nCMdULxiXlZXB09OzUdklcXd3x8aNG+Hn54ecnBy8fv0aUVFReP78Oezs7ITjMjMzMXDgQJw8eRJ7\n9+5FTk4O9uzZg+PHj8POzk6kyC/p49HSLPfx8UFAQAAyMjJw+vRp4fKCggI4ODhg3bp18PX1xfPn\nz5GdnY3t27fj0qVLIhfQy8rKwsCBA3H06FFERkYiNzcXhw4dQnx8POzt7WX65GL1jAzDiHw1RHNk\nI4Q0PUkn8mQ9sTd48GDY2tpi7NixGD9+fJ23W9v38qB///5o1aoVzp8/X+v6srIyaGh8+GA/FfgJ\nUQ3e3t4AgCNHjtQ5jv0UGjue1a1bNwDAvXv3JG577949dO3atTExCSENoFJ/wQ0MDFBYWMh1jCZh\nZGSE/Px8rmMQQlTI+vXr8emnn+KLL77gOopC2LBhA5ycnNClSxeuo6i8ffv2QSAQiL05aajCwkLh\njCUA6NSpE/z8/JCSkoLg4GDw+Xz06dMHPB4PmpqaqKiowNmzZ6Xq299QFy5cAABYWlpCT08PfD4f\n3bp1w9atW0XGBQYGIi0tDSEhIRg+fDgMDAwwYsQIBAcH4+XLl1i5cmWT5Fm+fDns7e2ho6OD0aNH\nCwvoQUFBuH79OlavXg0PDw+YmZlBX18fw4YNE7uOx8qVK/Hy5UusW7cOo0aNgr6+PhwcHLBhwwak\npqYiNDS0SbLKQp6zEUL+UfNEnqSvhuwrOzsbQUFBDbpdeaKurg47Oztcv3691vXVW/TI28kJQkjz\nGDRoELy8vBAVFSXx2HD16lXs3bsXXl5e+PTTT0XWjRs3DgAQFRUl8TYiIiIwZsyYpgtNCKmTShX4\ntbW1hX1YFZ2Ojg7ev3/PdQxCiIp4/Pgxjh8/TrP3pXThwgVcvXoVixYt4joKAbBlyxZMmzatzh6j\n0igoKBAp8FdnYWEBHo+HW7duITU1FcHBwRgwYAB4PB6+//77Rt1ubZydnQEALi4u6NChAzw8PBAb\nGwtTU1OR4tLJkycBAMOHDxfZ/ssvvxRZ31gDBw6sdXlcXBwAYOLEiWLr+vbtK5L1xIkTAIDRo0eL\njGM/Fs6u54I8ZyOEkPr07t271lYcDMOgoqJC2G6OCvyEqI4tW7bAxcUFI0eOxObNm5Geno7y8nKk\np6dj06ZNcHR0hKurK7Zs2SK2rZ+fH3r27Indu3fD19cX9+7dQ2lpKUpLS3H37l34+PggJSUF3377\nLQf3jBDVpFIFfvZK4cpAV1eXCvyEkBazceNGdOrUqdYiHREXGhqKYcOGKeTF+JRNQkIC7ty5A19f\n30bvq6CgAPr6+rWu09LSQllZGRiGgbW1NRYtWoRr164hPT293o8/yyIyMhJHjhyBs7MzCgsLERER\nAVdXV9ja2uL27dvCcW/fvgUAmJqaimzP/vzmzZsmyaOrq1vr8tevXwOAVCdX2CzsyRL2i8367Nmz\nJskqC3nORggh9fn444/x4MEDlJeXiyyvrKwEwzASL5JJCFFempqa2L9/P6Kjo5GQkID+/ftDT08P\n/fr1w++//47o6GhER0fXer0pAwMDJCUlYdWqVbh27RqGDBkCPT09tGnTBu7u7mjTpg2uXr0qsQd/\nzXZpDW2fRggRp1IFfmWa9a6np6c094UQIt8KCwtx4MABzJ8/n94ASuHevXv473//2yyztknDbdq0\nCcOGDRPpky+rumbw6+rqgmEYlJSUiCy3sLDAkCFDGn3btXFyckJcXByys7Nx6dIlODo64u+//8ac\nOXOEY9q2bQsAyM7OFtmW/Zldz2LfXFUvAjXm+kVmZmYA/in0SzM2Nze31pYaRUVFMudoLHnORggh\n9enduzdKS0vx5MkTkeXq6urg8XioqKgAQDP4CVFFY8aMwW+//YasrCyUlZXhzZs3OHnyJMaOHVvn\ndoaGhggMDERKSgoEAgEqKiqQn5+Pmzdv4scff4SRkZHEbRvTPo0QUjuVK/CXlJQoxYGDZvATQlrK\n/v37UVZWBnd3d66jKITQ0FB0794dX331FddRVN6LFy9w+vRpLFy4sEn2V1eBX09PDwBarNDL4/GQ\nnp4O4MNFER0cHBATEwMAePjwoXAc2yP13LlzItsnJCSIrGexM+2rF+Rv3bolc062ldCxY8fE1iUn\nJ4tcEJj9hNDFixfFxl6+fFnkgrwtTZ6zEUJIfXr06AE+ny/WpofH40FLSwulpaUcJSOEEEJIU9Dg\nOkBL0tHREc6u09HR4TpOo+jq6tJsMUJIi/jll18wZcoUtG7dmusoci8jIwOHDh3Cjh07oKamUufQ\n5dLOnTthZmYmVsSWVc2L7FZXvcBfsx1Oc/Hw8EBYWBi6dOmCvLw8bNq0CQDg6OgoHLNq1Sr897//\nxdKlS2FpaYlPP/0UKSkpWLZsGaytrcUuHDly5Ejs3bsXoaGhWLNmDV6/fo1du3bJnDEoKAjnzp1D\nYGAg9PT0MH78eOjp6SExMRELFy7Ezz//LDI2Pj4evr6+qKysxBdffAE+n4///e9/8PPzQ2RkpMw5\nGkuesxH5l56ejsOHD3Mdg6gw9kLsd+7cwbRp00TWaWtro6ysDED9M/iTk5Npln8zYk/c0/GiZaSn\np8PKyorrGIQQ0iRUrsAPAMXFxUpR4G+qvrmEECLJtWvXcPPmzVovrkTE7dixA0ZGRmJvnknLq6io\nwO7du+Hp6Vlr71BZ1NWDv6Vn8F+5cgU7d+7E2LFj8erVK+jq6sLGxgZr164VuaCZmZkZrl69ipUr\nV2LmzJl48+YN2rZti3HjxuHHH38Utp5hhYWFoaKiAjExMYiKisLw4cPx008/Yf/+/QA+FH/YT0LW\n7J0KQOxTkq1atUJSUhJCQkIQFhaGBQsWwMDAAP3790dERAQcHByEY01NTXH16lWsWbMGixcvRnp6\nOlq3bo2BAwdi//79Ml3TomZGSdnrW94c2YjqSEpKQlJSEtcxiIrr2bMnHj16JLac/ZQ7UH+Bf8OG\nDdiwYUOz5CP/oONFy3FxceE6AiGENAmVLfArOmrRQwhpCTt27EDPnj1hb2/PdRS5V15ejoiICMyb\nNw9aWlpcx1F5R48eRWZmJr755psm2V9lZSWKi4vlpkXPkCFDpO7tb2Zmhu3bt2P79u31jjU1NRUW\n86urrb2htC0P9fX1sXr1aqxevbrescbGxggLC0NYWJhU+66PpIwNXd4c2YjqcHFxQWxsLNcxiJKr\nrzhvbW0tbM9WnYmJifBaKwzDYNeuXaiqqsK8efPExsbExGDKlClNE5iIYR9bOl60DPpdJoQoE5Us\n8CtDYZwK/ISQ5iYQCBATE4OQkBCuoyiEX3/9FZmZmfDw8OA6CsGHk1NjxoyBtbV1k+yvsLAQDMPI\nTYGfEEIIaYj27dvj77//Flvetm1b5ObmAgDc3NyQlJQEExMTeHp6UjseQgghREGoVINgXV1dAMoz\ng5+KCISQ5rRv3z4wDIPp06dzHUUhbNu2DePGjYONjQ3XUVTes2fPcOHCBXh5eTXZPvPy8gB8aDlT\nGyrwE0IIkWcdOnRAdna22N8pMzMz3L9/HwBw/fp1AEBOTo5wGSGEEELkn0oV+NmWCaWlpRwnaTxt\nbW1hr0RCCGkOkZGRmDp1KoyNjbmOIvcePHiAy5cvY/78+VxHIfgwe9/S0hJfffVVk+2TbV9gZGRU\n63odHR2oqalRgb8F8Hg8qb4IIYT8o0OHDgD+uZArAGRmZuLZs2d4/PgxgA/tBgFAQ0MD58+fb/mQ\nhBBCCJGJShX41dXVAXzoo6vo1NXVleJ+EELk06NHj3Dr1i24ublxHUUhbNmyBZ07d8aIESO4jqLy\nysrKsGfPHnh6egr/7jcFdga/pAI/j8ejT9e1EIZhpPoihBDyD7bAz7bpOXz4MLp3745bt26Jja2q\nqkJ8fHyL5iOEEEKI7KjAr6CowE8IaU4HDhxAu3btMHToUK6jyL2CggIcOHAAvr6+UFNTqT+rcunI\nkSPIzc1tsovrstgZ/JJa9AAf2vRQgZ+Q+tEnLQhpea1bt4a+vj4eP36McePGwdXVFfn5+cJZ+9VV\nVVXh4sWLqKio4CApIYQQQhpKpSoRbIFfGf5R0dDQUIr7QQiRTzExMZg6dWqTzoBWVvv27UNFRQXc\n3d25jkLwoT3PuHHjYGlp2aT7FQgE0NLSErb7qw0V+AkR5+DgAAcHB5FldX3CorbxhDSHQ4cOwc7O\nDsbGxnWedFKmE1Lt27fH/fv3ER8fDzU1tTpfi0VFRcKe/M2lpKQEK1asQOfOnaGhodFkj7MyPWeE\nEEKINFSqwK+hoQFAOWbwU4GfENJcrl+/jidPnmDatGlcR1EIkZGRcHFxoWsVyIEXL17g0qVL8PDw\naPJ95+Xl1Tl7H6ACP1FN9RXRqqqqUFVVJfX+JI2nYh1pSnv37sW0adNgYmKC27dvo6SkBEeOHKl1\nrDK1/DIzM1e/s8YAACAASURBVAOPx0NycjLat28PTU1NiWP5fH6z9+FfuXIl1q5di2+++Qb5+fk4\ne/Zsk+xXmZ4zQgghRBoqVeCnFj2EEFK/gwcPonPnzhgwYADXUeTevXv3cOPGDcyePZvrKAQfWkuZ\nmppi5MiRTb5vgUAgsf8+iwr8hIhLTExEYmJis40nRBbh4eEAgLCwMFhbW0NLSwtOTk5KXxg2NTVF\ndnY2+vbtizt37mDy5MkSx5aXlzdZwV2SmJgYAICPjw90dXUxatQopX8OCCGEkOZABX4FRTP4CSHN\noaqqCjExMZg+fTrNlJRCZGQkbGxs6FoFcuLgwYNwdXWtc0airKQp8BsYGKCgoKDJb5sQQkjTevLk\nCQCgS5cuHCdpWW3atEF2djaAD3+zDhw4gD179oDP54uNZRgGSUlJKC4ubrY8aWlpAD5cH4AQQggh\nslPJAr8yFMZpBj8hpDlcvnwZr169gqurK9dR5F5FRQUOHjyIOXPm0MV15cCtW7dw7949zJgxo1n2\nLxAI6m3R07p1a+Tm5jbL7RPSEiT1ra5rec0x1VtkNbQPtiy3U30b9uvQoUPC8TY2NtTeh4hhi9bN\ncUJYnrEz+KubNWsWfv31VwD/tLRllZeX448//mi2PA1p30UIIYQQyVSqIkE9+AkhpG5Hjx7FRx99\nhI8++ojrKHLv1KlTyMrKgpubG9dRCID9+/ejc+fOsLOza5b95+Xl1TuD38TEBDk5Oc1y+4S0BEmt\nMaRZzjAMGIbBrl276t2uMbdf83YYhkFCQgIAoF27digtLcXUqVOF41esWIGxY8eqRNsPgUAAf39/\ndOrUCdra2jAxMYG9vT0CAgJw7do1kbGZmZnw8vKClZUV+Hw+rKys4O3tjaysLJFxspz0Yb+ePXsG\nJycnkYvYskpKShAcHIy+fftCT08P2tra6N69O7y9vZGcnCyyzzdv3sDHx0eY1dLSEvPmzUNmZqZM\nj1NtJ4xqfkmrqbM1NxMTE7ECPwB0794dAPDll18C+Ocx4vP5OHfuXLNkqe15WLp0qdhzcfLkSeG4\nrVu3gsfj4cGDB8Jl0dHRdT53aWlpmDBhAgwMDGBmZgY3Nzexv9XVt8/IyICzszMMDAxgYmICd3d3\nCAQCvHjxAuPHj4ehoSHMzc0xe/Zs5OXlNcMj0zKkPV5Uf2wePHiAr776CoaGhtDX18eYMWPw8OFD\nkf2q4mNJCCHyQKUK/NSihxBC6nbq1CmMHTuW6xgKISoqCsOHD0enTp24jqLyWqK1lDQtelq3bk0F\nfkI4MGLECPTp0wevX78Wmb0PAJs3b4afnx9HyVqWu7s7Nm7cCD8/P+Tk5OD169eIiorC8+fPRU5+\nZmZmYuDAgTh58iT27t2LnJwc7NmzB8ePH4ednZ1Ikb8xJ318fHwQEBCAjIwMnD59Wri8oKAADg4O\nWLduHXx9ffH8+XNkZ2dj+/btuHTpEgYPHiwcm5WVhYEDB+Lo0aOIjIxEbm4uDh06hPj4eNjb28tU\nFKzthBH71RDNka25sS16at5X9pMMQUFB2LVrF/h8PjQ0NFBWVoYzZ840S5banofg4GAwDIPx48cD\nADZu3Cjyf+nevXsBAPv27RMuc3Nzw969eyWeyFu2bBmCg4ORnp6OKVOmYP/+/QgICJCYZcmSJViz\nZg3S09Mxbdo07N27FzNmzMCiRYsQEhKCtLQ0ODk5Yc+ePVi8eHHTPBgckPZ4Uf2x8fT0xL/+9S9k\nZGTg+PHjuHnzJoYMGYIXL17UOl5VHktCCJEHGvUPUR7KVOCnFj2EkKb2+PFjPH36FGPGjOE6itx7\n8+YNTp8+jcjISK6jEAAXL15Eenq6yKzdpiYQCOr9ZIs0M/inTJnSlLGIEkpKShIpcBLp+Pv7Y/bs\n2diwYQNmzZoFADh//jyqqqqEs5KV3YULFwAAlpaW0NPTAwB069YNW7duxdGjR4XjAgMDkZaWhn37\n9mH48OEAPpwkCQ4OxuzZs7Fy5Ups37690XmWL18Oe3t7AMDo0aOFhb+goCBcv34dGzduFGnpNGzY\nMOzfvx/9+vUTLlu5ciVevnyJiIgIjBo1CgDg4OCADRs2wMnJCaGhoVi7dm2js8pCnrNJYmpqivLy\ncrG2c2yBv7y8HHPnzoW9vT2cnJzw6NEj3LlzB+/evWvRnLNnz8Zvv/2GqKgo4Qm6x48f4+7duwA+\nfGpv3bp1wpP6u3fvxvz582vdl6enJ3r06AEAWLp0KbZu3Yr4+HiJt+3h4SEcv3z5cvz00084deoU\nLl68KLL8559/FjlxpWikPV5Ut2LFCgwZMgSA6DEjKCgIu3fvFhuvCI9lUlIS/W9G5AL9/0caS6Vm\n8LNU4SO6hBDSUKdPn4axsTH9YyGFgwcPQkdHB05OTlxHIfjwRr9///7o2bNns90GteghRL5NmzYN\n7dq1w+3bt3H+/HkAwKZNm1Rm9j4AODs7AwBcXFzQoUMHeHh4IDY2FqampiLvf9iWJ2xxn8WeCKne\nEqUxBg4cWOvyuLg4AMDEiRPF1vXt21ck64kTJwB8OEFQHXtxe3Y9F+Q1W0BAANTV1WFiYgJPT0+8\nf/9euM7U1BQAxNr0VC/wA0CPHj1w/fp1zJw5E1VVVbh582YLpf9g7NixMDU1xZ9//onbt28DAPbs\n2YOFCxfC2toaaWlpuHjxIgDg5cuXuHPnDsaNG1frvqqfMGrXrh0A4PXr1xJvu/p4c3PzWpdbWFgA\nADIyMhp4z+SHtMeL6tgTdiz2mCHphImqPJaEECIPVGoGPyGEEMlOnToFR0dHsQusEXExMTGYNGkS\ndHV1uY6i8kpKSvDrr78iMDCwWW9HmovsmpiYoLS0FAUFBTAwMKh1TGxsbHPEI0qE65mEPB4PDMOg\nvLxcWPQTCAScZpIGn8/HggUL8MMPPyA8PBw2NjZISkoSa9mjzCIjIzF27FgcOHAA58+fR0REBCIi\nItChQwccP34cn3zyCQDg7du3AP4p9rLYn9+8edMkeST9jWSLq9ULfpKwWdgiYE3Pnj2TMV3jyWs2\nFxcXpKamIiUlBbt27cKBAwdw7NgxjBw5Eq1btwYAsRn5NQv8AKCnp4e9e/fCy8sL/fv3b7k78P/z\nTJs2DVu2bMHu3bsRHh6O6OhonDlzBnw+H2vXrsW+ffvwxRdfYM+ePZg6dSr4fH6t+6r+91hN7cP8\nxrom/NU2Xpb9yDtpjxfV1ZzowB4z2GNKTYrwWA4ePJj+NyNygev//4jiU8kZ/IQQQkQVFhbiypUr\n1J5HCmlpaUhOToaLiwvXUQg+zBrLz8+Hq6trs96OND34aRYaUQZs0bX6DNdbt25JHM8WccvLy/H+\n/XuxonFTkeZ2vL29oauri9OnT+P//u//4OHhAR0dnWbJI6+cnJwQFxeH7OxsXLp0CY6Ojvj7778x\nZ84c4Zi2bdsCEJ/Fzf7MrmexbVCqF38bc9LHzMwMQN2zqGuOzc3NFeuXzzAMioqKZM7RWPKazc7O\nDkeOHMHff/+Ns2fPgsfjYfTo0bh48aKwsFpQUCCyDVvgLysrE9vfkCFDoK2t3fzBa3B3dwcAHDhw\nAPHx8WjTpg0++ugjYQuuuLg4vH//Hnv27MHs2bNbPJ8ykOZ4UV3NTymyx4w2bdo0e1ZCCCF1owI/\nIYQQxMfHo7y8XNhDlkgWGxsLIyMjjBw5kusoBMCxY8cwaNAgiTMomwJbUKyvwG9paQmACvxEsbHH\nttDQUAgEAjx69Ai7du2SOL53794AgGvXruHEiRPN1uZNmttp3bo13N3dwTAMzp49K7Ent7Li8XhI\nT08H8GFWrIODA2JiYgAADx8+FI5jW5mcO3dOZPuEhASR9ayGnvSpD9sa5NixY2LrkpOTRS7wybbx\nYduxVHf58mVO2wrKczbWqFGj8PjxY2hpaeHrr78WzpbOz88XGVfbDH6u9e/fH7169cLbt2/h7e0t\nLOx37doVdnZ2KCgowKJFi6Crq9vinzBQBtIeL6pLTEwU+Zk9ZtD7B0II4R4V+AkhhODMmTMYOHCg\n2Kw9Ii42NhaTJk2S+FFw0nIqKytx8uRJTJgwoVlvh52pWl+LHlNTU2hpaeHVq1fCZTdu3MCBAwea\nNR8hTSksLAzTp09HTEwMLC0tsXjxYqxfv164np3NzdqyZQv69OmDUaNGYePGjQgLC6t1bGO+r+92\nqvP394eamhomT54MKysrae+20vDw8MD9+/dRWlqKrKwshISEAAAcHR2FY1atWgVra2ssXboU58+f\nR0FBAc6fP49ly5bB2toaQUFBIvts6Emf+gQFBaFXr14IDAzEzp07kZWVhcLCQpw9exb/j707D4uq\nbh8//h5EEBgEBFnUEDUiRaV8zAVFc8MstcJwy/WJx/ShvkaLZvVNzA3yQS0rU1Of7OuCWmYu5W6K\noqWpuWTuIgooqyBCCOf3B7+ZGECYQZgZnPt1XXNdw5nPnHPPmTMzzD2fc9+jRo1i1qxZOmN9fX0J\nDw9n/fr1pKWlkZ2dzebNmxkzZgxRUVFVjuNBmXNsJTVu3JitW7eSl5fHoEGDsLOzK5Pgt7a2RqVS\nmVWCH/6exX/9+nWGDx+uXa5J9i9atEhm7z8Afd4vSvryyy+Ji4sjJydH+57h4uJS5j1DCCGE8Umh\nZSGEEOzZs0fni5MoX0JCAr/++qt8kTETcXFx3Lp1y2gJ/spm8KtUKry8vDhx4gQXLlzg66+/5sqV\nKwCS5Be1hpubGytXriyz/H71kdu3b69tgqnvfQxdXtl2SmrRogUeHh4W1VxXIy4ujiVLltC/f3+u\nX7+Ovb09Pj4+zJw5kzfeeEM7zsPDg8OHDzN16lRGjhzJzZs3cXd3Z8CAAXz00Ufa0jMaMTEx3Lt3\nj9jYWJYvX07Pnj35/PPPtceJpm+D5rqG5nrp59XZ2Zn4+Hiio6OJiYnhtddew9HRkX/84x8sXbqU\noKAg7Vg3NzcOHz7MjBkzmDRpEomJiTRo0IAOHTqwcuVKOnXqZPB+Kh3j/WKvbHlNxFZTunfvTp8+\nfdixYweurq5lEvwqlQpra2ujJvj1OVZGjBjBlClTeOaZZ3TKwAwdOpSIiAiKiooYMWJEpeuu6nNs\n6PLaRN/3i5K++OILXn/9dX7++WeKioro1q0bMTEx+Pj4aMdY4r4UQghzIAl+IYSwcElJSVy8eJFu\n3bqZOhSzt2bNGpydnenVq5epQxHADz/8wOOPP46fn1+NbiczMxOoOMGfkJBAbGwsOTk5/Oc//8HG\nxqbcWsZCiJq1ZcsWHnnkEbNKrhpLly5d6NKli15jPTw8+PLLL/nyyy8rHWvIjz76JufUajXTp09n\n+vTplY51cXEhJibmvmdtGKo6f3iq7thq0tdff02jRo3Izc0tk+CH4jI9xkzw63OseHp6lhtTgwYN\nyM/PN3jdNb28NjHk/ULDx8eHTZs2VTjGEvelEEKYA0nwCyGEhfv555+xtrbWqXkryrdu3TpCQkKk\nPI+Z2LZtm1EaQ9+vRI+iKCxbtoyvvvqKw4cPY21tzb1794DyGxUKIWqGSqUiPj4ePz8/pk2bxocf\nfmjqkIQwO56engQEBHDixIlymyTb2dlx9+5dE0QmhBBCiAclNfiFEMLC7d+/n3bt2uHo6GjqUMxa\nQkICR48e5aWXXjJ1KILierxnzpwxSrNjTSKkfv36Osvv3LnD66+/zuHDh1EUhYKCApmJJoSJdO7c\nGV9fX/r378/AgQNNHY4QZumdd95BURSOHDlS5jZHR0eys7NNEJUQQgghHpQk+IUQwsLt379fp96t\nKN/mzZtxcHCgR48epg5FADt27MDW1tYox25mZiZqtRpra90TH9VqNf/3f/+n1zpKNwwVQlQfRVFQ\nFIXU1FTpkWKhVCqVXhdLFxoaikql4tSpU2VukwS/KE9Fzc+FEEKYD0nwCyGEBcvIyOD06dOS4NfD\nli1bCA4OxtbW1tShCIoT/F27dsXe3r7Gt5WVlXXf+vshISG89dZb1KlTp8bjMCZJiJVP9osQ5knz\nI09lF0tXt25dHB0dSUtLK3Nb/fr1JcEvypDXkBBC1A6S4BdCCAu2f/9+FEWha9eupg7FrN29e5e9\ne/capd670M++ffvo2bOnUbZVUYIfICoqih49elC3bl2jxGMMVfkSHxQUVCt/LDQkbkluCCFqO09P\nTwoLC7l+/brO8vr165fbfFcIIYQQ5k8S/EIIYcEOHjxIq1atcHV1NXUoZm3Hjh3k5eXx7LPPmjoU\nAVy5coXExESj/TBVWYK/Tp06xMbG4unpWaaMj4YlzPguKiqiqKjIaNurrpn0xo5bCCFMqVmzZgDE\nx8frLJcSPUIIIUTtJQl+IYSwYEePHuWpp54ydRhmb8uWLbRv3x5PT09ThyKAuLg4bGxsaN++vVG2\nl5mZibOzc4VjGjRowKZNm6hTp45FJPPLc+DAAQ4cOGDqMAxWW+MWQoiq0CT4d+zYobPcxcWFjIwM\nU4QkhBBCiAckCX4hhLBgx48f54knnjB1GGZNURS2bt0q5XnMyIEDB/jHP/6BnZ2dUbZX2Qx+jYCA\nAJYuXSplXIQQQpgtDw8PVCoVv/76q85yd3d3kpOTTRSVEMKcmKLnUHVtc82aNXTs2BEXF5cK1yl9\nlcTDpvzzyIUQQjz0EhMTSU1NlQR/JY4fP05iYqIk+M3I0aNH6dKli9G2l5WVxaOPPqrX2JdffpnD\nhw/zxRdfUFhYWMORFccWGRnJxo0buXHjBg4ODvj5+REYGMjgwYPp0KEDoFsiqOQPEPdbXlJCQgIT\nJ05k9+7dFBYW0r17d/7zn//QsmVLvdZz8+ZNpk6dyqZNm7h58yYNGzbkueee46OPPipzVkxeXh7z\n588nNjaWc+fOUVhYiI+PD08//TRjxoyhU6dOZbanuf7KK6/w1Vdf6bfj9Ij79OnTvPPOO+zbt486\nderQs2dPPvnkE4PWLwQUl0IZPHiwqcMQAgB7e3vq1KnDpUuXdJZ7eHiQkpJS4X3nzZvH+vXrazI8\ni6YpmyTvF8YRHx9P586dTR2GWVIUxeiJ7+rY5ooVKxg9ejT9+vXj+PHjeHp6smXLFgYNGlQj2xPC\nnMgMfiGEsFDHjx9HpVLRtm1bU4di1nbs2IG7uzvt2rUzdSgCKCws5NSpUwQEBBhtm/qU6Clp7ty5\nBAYG6jTdrakvEKNHj2b+/PlMnDiRtLQ0kpKSWL58OZcuXaJjx47acfdL3utztsG4ceOIiIggMTGR\njRs38ttvv9GlSxeuXLlS6XpSUlLo0KEDGzZsYNmyZaSnp7NmzRq2b99OYGAgmZmZ2rHZ2dkEBQUx\na9YswsPDuXTpEqmpqXz55Zfs27dP50t4ye0pioKiKAYn9yuK++LFi3Tt2pUTJ07www8/cP36dSIi\nIhg3bpzB2xBCCHNib2+PSqXi9u3bOj9Ee3p6kpaWRkFBAVD8ebtlyxZOnDhhqlCFEDXoYZy9Pnfu\nXABiYmJo2rQptra2hISEyNm1wiLIDH4hhLBQx44do1mzZri4uJg6FLO2e/duevbs+dD9A1xbnTt3\njrt37xr1hyl9S/RoWFtbs27dOp544glSUlK0CeiasGfPHgAaN26Mg4MDAH5+fnz22Wds2LChWrYx\nfvx4unXrBkCvXr2IiopizJgxREZG8t///rfC+06dOpWrV6+ydOlSgoODAQgKCmLevHmEhIQwZ84c\nZs6cCUBkZCRHjhxh/vz5hIWFadfx9NNPs3LlSqP+yBYZGUlmZiYLFiygZ8+eAHTr1o309HS2bdtm\ntDjEw6Fz586sXbvW1GGIh5y+/6fY2dlpP5du3ryJl5cXUDyDX1EUTp06xebNm1m4cCFJSUkMHTqU\n1atXAxARESGzy2uQZt/K+4VxyLH88Dl37hyA3mfeCvEwkRn8QghhoaT+fuUKCgqIi4ujR48epg5F\n/H8nTpzA2tqaVq1aGW2bhib4oThRsnHjRqyti+dS1NQPRJpTjkNDQ/H29iYsLIy1a9fi5uZWbT8q\nBAUF6fzdu3dvALZv317pfTdt2gRAv379dJZrfjDQ3A5oyz688MILZdbz5JNPGnX2lab5pCa5r9G1\na1ejxSCEEDXB3t6eoqIiAG3N/aKiIq5cuYKnpyft27dn+vTpJCUlAUjjXSFErXH37l0AnbNohbAU\nkuAXQggLJQn+yh0+fJg7d+6USfIJ0zl37hzNmjWjXr16RttmVRL8AB06dGDRokU0bdq0BqIqtmzZ\nMr799lsGDRpETk4OS5cuZciQIfj6+nL8+PFq2Yarq6vO325ubgDcunWr0vvevHkTgEaNGuk0M9Os\n4+LFi9qxmmRS6br8ppCamgr8/Vg1Sv8thBC1TckE/8WLF1m8eDF+fn6MHDmS1NRUioqKtGV6oPgz\nUAhRLCsri4iICJo3b069evVwdXUlMDCQt99+m19++UU7ruT/PDdu3GDQoEE4Ojri6urK6NGjycrK\n4sqVKwwcOJD69evj6enJmDFjdEoXaiQnJ/Pqq6/SpEkTbGxsaNKkCePHjy+3Z4a+Y0v3MlKpVDpn\nT5Z07do1nn/+eRwdHfHw8GDEiBGkpaWVGXfz5k0mTJig3Xbjxo0ZN25cuc27T58+zbPPPotarcbJ\nyYkXX3yRhISE++94PZT3mEpf9KXvY9H3eBDCGCTBL4QQFig3N5fLly9L/f1K7N69m0ceeURO8zQj\nly5donnz5kbb3t27d/nrr78MqsFf0tixY3Vq1deEkJAQ1q9fT2pqKvv27aNv374kJCQwduxYnXGa\nLzaGJm5Kj9Ekvxs2bFjpfT08PABIT0/XloQoeblz506ZsZpEvylpEvmax6ohiS4hRG1Xcmbr0KFD\nCQ8P58KFCwDcu3evzPjs7GyjxSaEuatK76PJkyczY8YMEhMTGTZsGCtWrODll1/mzTffJDo6mmvX\nrhESEsLXX3/NpEmTdLaXnJxMhw4d2Lx5MytWrCAtLY2vv/6ajRs30rFjR53EvSFjDellNGXKFKKi\nokhMTGTw4MGsXLmSt99+W2eMIT2XaqrPUXmPqSplMg15LPoeD0IYgyT4hRDCAl24cAFFUXjsscdM\nHYpZ27Nnj8zeNzOXL1+mWbNmRtueJqFblRn8xqBSqUhMTATAysqKoKAgYmNjAfjjjz90xmpmxpdM\noB87dqzSbcTHx+v8vXPnTgBtTf2KaMrt7N27t8xt+/fv12mcqyk39P3335cZe+jQoTJflOzt7YHi\nHyxyc3OrdXa95rHt2rVLZ3npfSGEELWNjY2N9rqzs3Ols1olwS/E30r3PrKxsdH2PrqfsLAwWrZs\niZOTE++99x4AW7ZsYeLEiWWWb926Vee+H374IdeuXSM6OpqePXvi6Oio7Yd09epVpk6dWqWxhvjX\nv/6ljfPdd98FypZp1PRcmjVrFsHBwajVam3PpcuXLzNnzhztWE2fI02carWabt26MX78+CrFV90M\neSxVOR6EqCmS4BdCCAt0/vx5rKysjJoorW3y8vI4dOiQ1N83M1euXDHqcauZpWOuCX4o/uJ4+vRp\n8vPzSUlJITo6GoC+ffvqjOvTpw8Ac+bMISsri7Nnz953tlZJs2fP5uDBg+Tk5LB7926mTJmCi4sL\nkZGRld43MjISX19fwsPDWb9+PWlpaWRnZ7N582bGjBlDVFSUztjWrVvz4YcfsmTJElJSUsjJyWHb\ntm2MGjWKWbNm6axbcwbSL7/8wqZNm3R+LHhQkZGRODs78+6777J7925ycnI4ePAgs2fPrrZtCFEb\nVaXUgSWoTfulZIJ/wIABuLm5afvFlKfkmVa1wZo1a+jYsSMuLi4VPi+16TkT5qMqvY/atWunvV6y\nDGHJ5Y0aNQLgxo0bOvfdvHkzULYnkKYfkuZ2Q8caomScmqbcpc+2NKTnkrn3OTLksdRUL6x169ax\nbt06tm/fzs6dO7WXX3/9laNHj/LHH3+QmJgoZ5YKHff/JBdCCPHQOn/+PN7e3katY17bxMfHk5eX\nJwl+M5OSkqL9cmEMmn+cq1qip6bFxcWxZMkS+vfvz/Xr17G3t8fHx4eZM2fyxhtv6IyNiYnh3r17\nxMbGsnz5cnr27Mnnn3/OypUrgeJkh+bLSMmEx8KFC4mIiODgwYMoikK3bt2IiYnBx8en0vjc3Nw4\nfPgwM2bMYNKkSSQmJtKgQQM6dOjAypUr6dSpk3ass7Mz8fHxREdHExMTw2uvvYajoyP/+Mc/WLp0\naZlmvwsWLCAsLIzg4GDatm3L119/bfD+K12vVfP4mzdvTlxcHO+88w4DBw5EpVIRGBjIwoUL8ff3\nLzNeCEuhKIrBCVHNa3f//v01EVKNMSTuquwXUylZokelUrFjxw46d+7MnTt3tLX5S8rNza3ytoz9\n3K9YsYLRo0fTr18/jh8/jqenJ1u2bNEm4UqqTc+ZMB/Lli2jf//+rFq1it27d7N06VKWLl2Kt7c3\nGzduLLe/maOjo/a6lZVVhctL/1+h6Xd0v55Aml5Hho41hD5xluy5VJ6SPZfMvc+RIY+lKseDPgYP\nHmzQeCcnJxwdHXF0dKRBgwZ4eHjQqFEjGjZsiKenJ56enri7u/PII49o+2KJh48k+IUQwgKdP38e\nX19fU4dh1g4cOIC3tzfe3t6mDkX8f3fv3iU/P9+oyXZzL9HTpUsXunTpotdYNzc3bTK/pPKS1KWX\nbdu2rcJ1FxYWArqJIw0XFxdiYmKIiYmpNEa1Ws306dOZPn16pWPbt2//wI2EK0rQ+/v7lzlVvrL7\nVJfExETWrVtX49sRNS8xMZEmTZqYOgyTKi9pXJM0iYsHfa0aO25jKTmDPzc3F39/fzZt2kSfPn3K\nrVedl5dX5X1h7H04d+5coPgHbU2D+5CQEPkxVlSrkJAQQkJCKCoq4sCBA8ycOZNt27YxduxYvUof\nGsLd3Z0bN26Qmpqqk3DWJMnd3d2rNLa6eXh4cP36ddLT03FxcalwrJubGykpKWXiNJfZ6IY8FqiZ\n40Hz81jUDQAAIABJREFUnpWRkaGzTHNm8Z07d8jOziY7O5vbt2+TmZmp/Ts9PZ3k5GROnDjBrVu3\nuHHjBrdv39aux9bWlmbNmtGiRQuaN29O8+bNadGiBX5+frRo0YI6depUKWZhepLgF0IIC3T+/Hna\ntGlj6jDM2qFDh6q15Id4cJp/cvX5Z7u6ZGZmYmVlhVqtNto2awuVSkVqaiqurq4kJycDyA+H1SQ+\nPl7q/T9EQkNDTR2CSR04cMDUIVRJbY27MiV/iNXMzu/evTsrVqxg+PDhZcYrilLlWfzG3ofnzp0D\n4NFHHzXqdoXlUKlUXLt2jSZNmuj0PnJ2di7T+6g6DBgwgEWLFrFr1y5GjhypXa7phzRgwIAqjYXi\nXka5ubkUFBRQUFCAt7e39scAQ73wwgt8/vnn7N27lxdffFHntv379zNp0iTt/zXBwcF88803ZeI0\nl/97DHksNX08lP7O06BBgyqt5+7du6SkpHDt2jUuXbqkvRw5coS1a9dqGzDb2dnh7+9P27ZtadOm\nDW3atKFt27Y0bNjwgR+LqHmS4BdCCAt0/vx5QkJCTB2G2VIUhcOHD/P++++bOhRRgqbRX8lThWta\nVlYW9evX1zmlWvztk08+4Z133mH+/PkAhIeHmziih0NoaChr1641dRiiGhh6mr0QNa3kDP68vDzt\n9aFDh3Lp0iU++OCDMjPec3JyjBbfg7h79y5Q/tlkQlSXsLAwYmJiePTRR8nMzOSTTz4ByvY+qg7T\npk3jp59+4t1336Vx48Y89dRT/Prrr0yZMoWmTZvq9EMyZCwU9zI6dOgQv/zyC4mJiQ80sSkyMpLt\n27cTHh5OYWEhPXr0wMbGhp9//pmJEyeybNkynbGbNm3SxtmhQwd+//13s+lzZMhjAeMeD1VlZ2eH\nj48PPj4+ZUpeQvF7/NmzZ/n99985deoUv//+O5s3b9aWK2revDmdO3emc+fOBAYG0qZNmwp7twjT\nkG+rQghhYXJyckhJSZHZTRW4cOECqampMoPfTBkz2Z6VlWW25XlMbdWqVXz33Xc0bNiQzZs38+mn\nnzJhwgRTh6XTOLGiixAPs6ysLCIiImjevDn16tXD1dWVwMBA3n77bX755RftuPu9JvR5rSQkJPDi\niy/i5OSEWq3mueeeKzNjsaL13Lx5kwkTJtCkSRNsbGxo3Lgx48aN054RVFJeXh5RUVE8+eSTODg4\nUK9ePR5//HHGjx/PoUOHdLZXetthYWGV77BSKor79OnTPPvss6jVapycnHjxxRdJSEgweBumUjL5\nnZ+fr3Pbe++9x7///e8yJRo0P7AbQp9j69q1azz//PM4Ojri4eHBiBEjSEtLM3hbmvWWt42qvO/r\ne2zq+zoTD4+4uDg8PT3p378/jo6O+Pn5sXXrVmbOnMnq1au140ofj1W97uHhweHDhxkwYAAjR46k\nQYMGjBw5kgEDBnD48GE8PDyqNBaKexkFBAQQHBzM/PnzdUopGhqnpufSsGHDmDRpEl5eXvj6+rJ4\n8WJWrlxJ9+7dtWM1fY4CAgIYOHAgXl5eTJs2jYULF5a7bn1V1z435LHoezyYO7VaTfv27fnnP//J\n3Llz2blzJykpKSQnJ/PTTz8xatQoUlNTef/992nXrh0uLi707NmT6dOnc/jwYW2pTmFiioUBlNjY\nWFOH8cBiY2MVC3z6hBDV4PTp0wqgnDx50tShmK2vv/5asbW1VfLy8kwdiijh3LlzCqAcO3bMaNv8\n4IMPlLZt2z7weuRzW+grNDRUCQ0NNXUYopqY6vl8/vnnFUCZP3++kpOTo+Tn5ytnz55VXnzxxTLv\nRUC570+VLe/bt6/y888/K7dv31Z27typeHp6Ki4uLsrly5crXU9ycrLStGlTxcPDQ9m2bZuSnZ2t\n7Nu3T2natKnSrFkzJSMjQzv29u3bSvv27RVHR0dlyZIlSnJyspKdna3s2bNHadmypd6Px1DlrefC\nhQuKs7Oz0qhRI2XXrl1Kdna28vPPPyt9+/attu1Wlb7fcxMSEhRAUalUSrdu3crcfu/ePWXAgAGK\ntbW19jH99ttvVfoeXdkx9PLLLytnzpxRMjMzlQkTJiiAMmbMGIO2Ycj29FluyLFpyOtMH/L+b1yy\nv4U5qQ3HY2FhoXLy5Ell0aJFyujRo5UmTZoogNKgQQMlNDRUWbJkiXL16lVTh2mpPpYZ/EIIYWFu\n3LgBoNPUSOg6dOgQ7dq1w9bW1tShiBI0MwqN2bQvMzPTqE19hRCiOuzZsweAxo0b4+DggI2NDX5+\nfnz22WfVto3x48fTrVs3HB0d6dWrF1FRUWRkZJQpA1GeqVOncvXqVWbNmkVwcDBqtZqgoCDmzZvH\n5cuXmTNnjnZsZGQkR44cYfr06YSFheHh4YFarebpp58ut3F4TYqMjCQzM5Po6Gh69uyJWq2mW7du\njB8/3qhxPIiSJXrKK2VTp04dVq9eTZs2bbSfu1WZwa+Pf/3rX7Rs2RInJycmTZoEwPbt22tkW/oy\n5Ng0xutMCCHMhZWVFa1bt2bcuHH897//5dq1a1y8eFFbXumtt96iadOm+Pv7ExkZyZkzZ0wcsWWR\nBL8QQliYGzduUK9ePaM2Kq1tpMGuedLU3r99+7bRtikleoQQtdGgQYOA4n4O3t7ehIWFsXbtWtzc\n3MrUV6+q0nV8e/fuDeiXoN20aRMA/fr101nerVs3ndsB1q9fDxQ3PiztySefrLbHo48dO3YA0LNn\nT53lXbt2NVoMlfn111/58ssvuXPnTrm3l0zq36+GsoODAz/99JN2MkhNJfjbtWunva7ZVlJSUo1s\nS1+GHJvGeJ0JIYQ5a968OePGjWPt2rXcvHmTnTt30qNHDxYvXoy/vz/+/v5MnTqVkydPmjrUh54k\n+IUQwsLcuHEDLy8vqUF9H/n5+Zw6dYqnnnrK1KGIUtzc3Khbt65Rv/xLgl8IURstW7aMb7/9lkGD\nBpGTk8PSpUsZMmQIvr6+HD9+vFq24erqqvO3m5sbALdu3ar0vprGfY0aNdKpka5Zx8WLF7VjNe/5\nnp6e1RL3g0hNTQX+fqwapf82pdWrVzNhwgTq16/P66+/Xub2ymbwa7i7u7Nz504aN25cY2eyaX64\nLxmXqRPjhhybxnidCWHJpK9S7WJra0uvXr347LPPSExMZP/+/QwYMICVK1fStm1b/P39iY6O1uv/\nBGE4SfALIYSFSUpKkvI8FTh16hQFBQU8+eSTpg5FlKJSqfDw8DBqgl9K9AghaquQkBDWr19Pamoq\n+/bto2/fviQkJDB27FidcZrkSEFBgXZZVlZWpesvPUaT/G7YsGGl99U0e0xPT0dRlDKXkrPPNWNN\nPbMb/k7kax6rhj77y1jmzp3L3r17adWqFZ999hkjRozQub1kUr90M93SHnvsMRITE+nSpUuNxGqO\nDDk2Qf/XmRDCcOW9Bsu7CPNjZWVF165diYqK4vz58+zfv59OnToxY8YMHnnkEYYOHcq2bduMWnr1\nYScJfiGEsDA3btyQBH8FTpw4gZ2dHY8++qipQxHlaNKkCVeuXDHa9mQGvxCiNlKpVCQmJgLFX7KD\ngoKIjY0F4I8//tAZq5kZXzKBfuzYsUq3ER8fr/P3zp07AQgODq70vppyO3v37i1z2/79+3XK5GnK\noHz//fdlxh46dIiOHTvqLLO3tweKf7DIzc2t1tn1mse2a9cuneWl94Wpde/enZMnT9KhQwdWrlyp\nfW5AdwZ/yeuimCHHpiGvMyGEsFQqlYquXbuydOlSkpKS+OKLL0hMTOSZZ57h0UcfZf78+TVWCs6S\nSIJfCCEsTFJSEl5eXqYOw2ydOHFCp7GcMC9PPPGEXomn6iIJfiFEbRUWFsbp06fJz88nJSWF6Oho\nAPr27aszrk+fPgDMmTOHrKwszp49y1dffVXp+mfPns3BgwfJyclh9+7dTJkyBRcXF72a7EZGRuLr\n60t4eDjr168nLS2N7OxsNm/ezJgxY4iKitIZ27p1az788EOWLFlCSkoKOTk5bNu2jVGjRjFr1iyd\ndbdt2xaAX375hU2bNlVrT53IyEicnZ1599132b17Nzk5ORw8eFDbYNDcfP/991hbWzN06FDtGRoq\nlQpra2sURcHOzs7EEZofQ45N0P91JoQQAtRqNf/85z+Ji4vj7NmzPPfcc3zwwQc88sgjvPPOOyQk\nJJg6xFpLEvxCCGFhkpKSzKKOrbk6ceIETzzxhKnDEPfRrl07jh8/brTTOSXBL4SojeLi4vD09KR/\n//44Ojri5+fH1q1bmTlzJqtXr9YZGxMTw/Dhw4mNjaVx48ZMmjRJJ2Fdsr5xyesLFy5k2rRpeHl5\nMXDgQJ544gkOHDiAj49PpfG5ublx+PBhhg0bxqRJk/Dy8sLX15fFixezcuVKunfvrh3r7OxMfHw8\nEydOJCYmBm9vb3x8fJg7dy5Lly6lV69eOutesGABAQEBBAcHM3/+fGJiYgzdffd9zM2bNycuLo6A\ngAAGDhyIl5cX06ZNY+HCheWONzUvLy9GjRpFeno6GzZs0C7XlOlxcXGpsW3fbx8aet3Y2zPk2DTk\ndSaEEEKXn58fCxYs4Nq1a0yZMoXVq1fTokULhg8fzpkzZ0wdXq1jbeoAhBBCGFd6erpZNYMzN7//\n/juDBw82dRjiPtq3b09OTg4nT54kICCgRrdVVFREVlYWDRo0qNHtCCFEdevSpYveddPd3NxYuXJl\nmeXl1TUuvWzbtm0VrruwsBAov5mri4sLMTExeiXg1Wo106dPZ/r06ZWObd++/QM3OK2oprO/vz9b\nt2416D6mNGrUKJYtW8bHH3+s/f+mbt263L17t0Y/3+63Pwxdbort6XtsGvI6E0IIUT4XFxcmT57M\nm2++SWxsLNHR0bRp04bhw4fz4Ycf4uvra+oQawWZwS+EEBakqKiI27dvy4zk+0hISCAjI6PGE8ei\n6p544gmaNGnCxo0ba3xbmZmZFBUV1egMRyGEeNioVCrS0tIASE5OBpAv5ybUtWtXHB0dOXr0qLb0\ngaYMoaurqylDE0IIIbTq1q3LiBEj+P3331mzZg1Hjhzh8ccfZ/DgwVy4cMHU4Zk9SfALIYQFuX37\nNkVFRTg7O5s6FLP0+++/o1KpaN26talDEfehUqkYMGBAuc0Wq1tGRgZQvSUMVCqVXORS4WXdunXV\ndrwJYSqffPIJ2dnZzJ8/H4Dw8HATR2S56tSpQ7t27ahbty4//fQTUNwQFiTBL4QQwvyoVCpCQ0M5\nffo0a9as4fjx47Rq1YqJEydy+/ZtU4dntqREjxBCWJDMzEwASfDfx5kzZ2jSpImc4WDmQkJCWLhw\nISdPnqRNmzY1tp2aSPCvXbu22tYlHk7z5s0zdQhCPJBVq1Yxc+ZMPv74Y5o1a8ann37KhAkTTB0W\nKpV+dd3NtdTOg2jbti0nT57kxx9/ZNy4cdrl5l6y0ZKfMyGEsHRWVlaEhobywgsvsGjRIqZOncra\ntWuJiopi1KhRen9GWApJ8AshhAWRBH/Fzp07h5+fn6nDEJXo1asX/v7+zJ07l+XLl9fYdjQJ/uqs\nURwaGlpt6xIPJ5nBL2q7YcOGMWzYMFOHUYYlJ4FbtWpFXl4ecXFxwN/7wt7e3pRhVcqSnzMhhBDF\n6taty2uvvcawYcP43//9X1555RUWLlzIp59+SocOHUwdntmQEj1CCGFBNAl+maFevj///JPHHnvM\n1GGISqhUKt58801WrVrF9evXa2w76enp1KlTB0dHxxrbhhBCCFHTPDw8yM3NJTU1lYSEBG3i3MbG\nxsSRCSGEEPpxdXXliy++4LfffsPOzo7AwEDefPNNcnNzTR2aWZAEvxBCWBCZwV8xmcFfe7z88ss0\natSISZMm1dg2MjIycHJy0tYqFkI8HEr2PBDCEmhK8VhZWXH06FHu3bsHFM+KFEIIIWqTtm3bsmfP\nHlavXs2KFSto3bo1u3fvNnVYJiffWIUQwoJkZ2dja2uLra2tqUMxO5mZmdy8eVNm8NcStra2fPHF\nF6xatYodO3bUyDYyMjKqtTyPEMI8SNkPYWk0n2Xe3t6cOHFCm+CXGfxCCCFqq9DQUH7//Xdat25N\n7969ee2118jJyTF1WCYjCX4hhLAgeXl51KtXz9RhmKU///wTQGbw1yL9+vVj0KBBvPrqq6Snp1f7\n+jMyMqq1wa4QDxuZBS9E7aCptf/II49w4cIFmcEvhBDiodCoUSN++OEHvvnmG9asWUP79u05fvy4\nqcMyCUnwCyGEBcnPz5fZWvfx559/Ymtri7e3t6lDEQb44osvKCoqIjQ0lIKCgmpdtyT4hRBCPAw0\npeaaNGnC+fPnZQa/EEKIh8rLL7/M6dOnadq0KZ06deKTTz4xdUhGZ23qAIQQQhhPfn6+lOe5jwsX\nLtCiRQvq1Klj6lCEAdzd3dm4cSNdu3YlPDycRYsWVduM4vT0dEnwCyEe2Lp16+RMB2FSmuOvcePG\n/Pjjj9oyVYbM4Le2tmbIkCEMGTKkRmIUf5P3C+OS/S3MxdChQ00dQq3m4eHBjz/+yJw5c3jrrbfY\nu3cvy5Yts5jvc5LgF0IIC/LXX39Jgv8+rly5QrNmzUwdhqiCgIAAVq1axUsvvUR+fj5Lly7F2vrB\n/8XJyMjg8ccfr4YIhTCd06dP884777Bv3z6srKzo3Lkz8+bNw9/fXzumZE36mzdvMnXqVDZt2sTN\nmzdp2LAhzz33HB999BGenp7acSUTIprrr7zyCl999VWZ269fv87rr7/O9u3bsbGxoX///nz66adk\nZGTwP//zP+zduxd7e3ueeeYZ5s+fX6YR/M6dO/n000/Zv38/d+/epVWrVkyaNKnMF+GsrCwiIyPZ\nuHEjN27cwMHBAT8/PwIDAxk8eDAdOnS4735q3749R48e1f49ZMgQ1qxZo9c+rkznzp2JiIiolnUJ\ncT+DBw+udIyXlxeZmZnavw0p27h7926Sk5OrFJsQQojKPfXUU6YOodazsrJi8uTJdOjQgZdffpkO\nHTrwww8/0LJlS1OHVuMkwS+EEBZEZvDfX0JCAq1atTJ1GKKKBgwYwKZNmwgJCSErK4tvvvkGR0fH\nB1qnlOgRtd3Fixfp2rUr9vb2/PDDD3To0IETJ04wbtw47ZiSyf2UlBQ6duxIXl4eK1asIDAwkGPH\njjFy5Eh27tzJb7/9pk2+K4qiTeKX17S25O2TJ09mxowZLFu2jPfff5/PP/+ctLQ0bGxsiI6OplGj\nRkyZMoWFCxdiY2PD4sWLddbVp08fXnjhBc6fP09ubi5hYWEMGzYMFxcX+vbtqx03evRoNm7cyPz5\n8wkLC6Nu3bpcvnyZKVOm0LFjxwqb627evJk+ffrw3HPPERUVVYW9fX9NmjQhNDS0WtcphCHu3r0L\nFB+LAHXq1KGwsNCg/wmDgoJqJDYhhBCiuvXo0YNjx44xaNAgOnfuzOrVq+nXr5+pw6pRUoNfCCEs\niMzgv7+EhASpv1/LBQcHs2PHDuLj42nXrh2//PLLA63vYU3waxqjyinpFXsY9lNkZCSZmZlER0fT\ns2dP1Go1Xbp04b333it3/NSpU7l69SqzZs0iODgYtVpNUFAQ8+bN4/Lly8yZM6dKcYSFhdGyZUuc\nnJy0296yZQsTJ04ss3zr1q3lrmPevHm4ubnh7e3Np59+CsDMmTN1xuzZswcoLkPi4OCAjY0Nfn5+\nfPbZZxXGd/XqVYKCghg2bFi1J/eFMAc5OTkA2jMVNbX3pQa/EEKIh5WHhwe7d+8mJCSEAQMGEB0d\nbeqQapQk+IUQwoJIk93yFRYWkpiYKAn+h0Dnzp05ceIELVq0oGvXrkRGRpKbm1uldT2sNfgrmsV8\nP0FBQRY3e7Oi/VRb9seOHTsA6Nmzp87ywMDAcsdv2rQJoMwMp27duuncbqh27dppr5cs81NyeaNG\njQC4ceNGmfsrioKPj4/2b19fXwDOnDmjM27QoEEAhIaG4u3tTVhYGGvXrsXNze2+z+eff/5JUFAQ\n7u7u9/3hQ4jaLjs7G4CmTZuiUqmoW7cuKpWqWsrZCSGEEObKxsaGZcuWERUVxfvvv8+//vUvbaP5\nh40k+IUQwoIUFBQY1FDNUiQlJVFQUCAJ/oeEp6entsHS3Llzeeyxx1i+fDlFRUV6r+PevXvk5OSU\nSfDn5eVVd7i1QlFRkUH770GZ+8x5Y++PqkpNTQXAzc1NZ3npGvcaN2/eBIqT7SXPYNDc/+LFi1WK\no2S5LCsrqwqXl07EZ2Zm8t5779GyZUscHR11kpJpaWk6Y5ctW8a3337LoEGDyMnJYenSpQwZMgRf\nX1+OHz9ebmw9evQgLS2NgwcPsmrVqio9PiHMnWYGv1qtBopL9JR8LQohhBAPs7fffpuNGzeyevVq\nXnrppYfyO518qgshhLB4CQkJQPHMNvFwUKlUTJw4kQsXLjBgwADGjRtHmzZt+PLLL7lz506l98/M\nzERRFBo0aKBdtmHDBpycnBg+fDgHDx6syfDNzoEDBzhw4ICpwzAbtWV/aBLzmkS/Rum/NTw8PIDi\ns1cURSlz0ee1U90GDx7M7NmzGTJkCFevXtXGcj8hISGsX7+e1NRU9u3bR9++fUlISGDs2LHljl+w\nYIG2hE94eDiJiYk18jiEMKWkpCTq169PcnIyiqJIgl8IIYTFee6559izZw8HDhzgmWeeISsry9Qh\nVSv5VBdCCAtizjNiTenq1atYW1vj5eVl6lBENXN3d2fhwoX8/vvvdOzYkYiICBo3bkxERARHjhy5\nb6IwPT0dQGcG/7Vr1ygsLGT9+vV06dIFf39/lixZYpKkpxD6CA4OBmDXrl06y+/348QLL7wAwN69\ne8vctn//fjp37qyzzN7eHig+Oyw3N7fMmQLVQRPrW2+9pf3BLT8/v9yxKpVKm6C3srIiKCiI2NhY\nAP74449y7zNo0CDGjh3L888/T2ZmJmPHjq1SGauHwcPQd8IYauN+SkpKolGjRpw8eVK7TBL8Qggh\nLM1TTz3Fzz//zMWLF+nZs6f27NWHgXyqCyGEhbHUxEVFrl+/jpeXl9SifYi1bNmSZcuWkZiYyHvv\nvccPP/zAU089hY+PDxMnTmTPnj06p2pmZGQAugn+rKwsrK2tKSgoAIoThhMmTMDd3Z1XX32VU6dO\nVWvMWVlZRERE0Lx5c+rVq4erqyuBgYG8/fbbOg2E75ds0icJlZCQwIsvvoiTkxNqtZrnnnuuTCK0\novXcvHmTCRMm0KRJE2xsbGjcuDHjxo0jOTm5zNi8vDyioqJ48skncXBwoF69ejz++OOMHz+eQ4cO\n6Wyv9LbDwsIM3i+GOH36NM8++yxqtRonJydefPFF7Zk9pemzvy9evEhISAguLi4mTQRGRkbi7OzM\nu+++y+7du8nJySEuLo5Fixbdd7yvry/h4eGsX7+etLQ0srOz2bx5M2PGjCnTgLZt27YA/PLLL2za\ntKnMDwDVQdPrYPbs2WRmZpKenl5hrfywsDBOnz5Nfn4+KSkp2oZqffv2rXA7ixcvpmHDhuzcuVPb\nxNfSSH8O/dTG/hxJSUl4eXlx/PhxHBwcKCoqkgS/EEIIi9SqVSv27dtHVlYWTz/9NCkpKaYOqVrI\np7oQQliQ2jTbzJiSk5N1Gj+Kh5erqyuTJk3i4sWLHD16lFGjRrFr1y569uyJs7MzXbp0YdKkSfz4\n44+AboL/9u3bOokdRVEoLCwkNzeX5cuX06ZNGzp16sS6deuqpXnT6NGjmT9/PhMnTiQtLY2kpCSW\nL1/OpUuX6Nixo04c5dEnWTdu3DgiIiJITExk48aN/Pbbb3Tp0oUrV65Uup6UlBQ6dOjAhg0bWLZs\nGenp6axZs4bt27cTGBhIZmamdmx2djZBQUHMmjWL8PBwLl26RGpqKl9++SX79u3TSQyX3seKovDV\nV18ZvF/0dfHiRbp27cqJEyf44YcfuH79OhEREYwbN67c8frs7wkTJvD2229z48YNtm7danBM1aV5\n8+bExcUREBDAwIEDadSoEdHR0dqSNKUTfG5ubhw+fJhhw4YxadIkvLy88PX1ZfHixaxcuZLu3bvr\njF+wYAEBAQEEBwczf/58YmJitLeV/qGmqtdXrFjByJEjWbp0KR4eHnTv3l3neS45Ni4uDk9PT/r3\n74+joyN+fn5s3bqVmTNnsnr1au24kj0IVCoV69evx8PDg1u3bgHwxhtvoFKpOHLkyH33rSgm/Tl0\nmWt/jhs3buDl5cXBgwfx8vLi3r17kuAXQghhsZo1a8b+/fu5d+8effr0uW/5ylpFsTCAEhsba+ow\nHlhsbKxigU+fEOIBTZw4UQkMDDR1GGZnxIgRyoABA0wdhjChS5cuKStWrFBeffVVpXXr1opKpVIA\nRa1WK+3bt1dGjhyp9O7dW7G2tlaA+17q1KmjqFQqxc3NTZk8ebJy7do1RVGq9rldv359BVDWrVun\ns/z69etl1qXZfmmVLd+wYYPO8v/+978KoIwePbrS9bz66qsKoCxdulRn+XfffacAynvvvadd9uab\nbyqAMn/+/DKx/Pbbb3o/HkUxbL/oY8SIEQqgfPPNNzrLN2zYUOX9umfPHoPj0AgNDVVCQ0OrfH99\naPaVu7t7jW5HGOf5rE4VvfbMgbnEZy5xlFTR91x/f3/l/fffV5ycnJTevXsrDg4OilqtNnKEQggh\nhHm5du2a0rx5cyUgIEBJS0szdTgP4mP52V4IISyISqWSEj3lSE5O1jaXFJapWbNmjBw5ki+//JKT\nJ0/y8ccf4+zszLx58+jevTupqamkpKRQWFhY4XoKCwtRFIXU1FTmzJlDs2bNeOWVV6oU06BBgwAI\nDQ3F29ubsLAw1q5di5ubW7W9jkuXkujduzcA27dvr/S+mzZtAqBfv346y7t166ZzO8D69euBv2u8\nl/Tkk08a9Hiqe7/s2LEDgJ49e+os79q1q8Hr0ujQoUOV71vdVCoVFy5c0Fm2b98+AHr06GGKkISS\n2aL/AAAgAElEQVQQRlRUVMSlS5ews7MjKyuLxx9/vFrOMhNCCCFquyZNmrBnzx6ysrLo3bu3tkxr\nbSQJfiGEsCDmfFq7KaWkpEiJHqEjLy8Pd3d3wsLC+M9//sPWrVvx8PDQO4FsbW1NUVERDg4O2Nra\nVimGZcuW8e233zJo0CBycnJYunQpQ4YMwdfXl+PHj1dpnaW5urrq/K1pkqopVVIRTVOqRo0a6dSf\n16zj4sWL2rFJSUkA1fI6q+79ojklt3SD2AdpGKtpPmsuNGWR7ty5w65du5g8eTL169cnMjLS1KGJ\nKpD+HNKfwxCJiYncvXuXrKwsHB0dadmyZaU/VgshhBCWwtvbmx07dpCSksKgQYP466+/TB1SlUiC\nXwghLIiVlZV8qStHSkqKzOAXOjIyMnTq72uW3U+dOnW09Yx9fX1566232LFjB6mpqXzxxRdVjiMk\nJIT169eTmprKvn376Nu3LwkJCYwdO1ZnnCZJpGkADMXJrsqUHqNJdjds2LDS+2peM+np6dpa+SUv\nd+7cKTNWk+h/UPruF31oEvmla2/qs/9qg507d6JWqwkMDMTZ2Zlhw4bRqVMnDh8+zOOPP27q8EQV\nSH8O6c9hiPPnzwNw9epVOnXqhKurq/ZsMyGEEELAo48+yvbt2zl27BijR4+ulZ+RkuAXQggLYmtr\nS35+vqnDMCuFhYWkpqZKgl/oyMjIoEGDBjrLSid8ra2tAXB0dGTQoEEsX76clJQUzp07R1RUFL17\n99aOqQqVSkViYiJQ/ONcUFAQsbGxAGVm0mpmxpdMoB87dqzSbcTHx+v8vXPnTgCCg4Mrva+m3M7e\nvXvL3LZ//36dxJymrM73339fZuyhQ4fKJN80M+ALCgrIzc3VmU1vyH7Rh+ax7tq1S2d56X1TW/Xq\n1Ytvv/2W5ORkCgoKuHnzJrGxsZLcr8X27NkDQOPGjXFwcMDGxgY/Pz9t8+TqMH78eLp164ajoyO9\nevUiKiqKjIwMvc76mDp1KlevXmXWrFkEBwejVqsJCgpi3rx5XL58mTlz5mjHRkZGcuTIEaZPn05Y\nWBgeHh6o1WqefvppVq5caVDM1b1fIiMjyczMJDo6mp49e6JWq+nWrRvjx4+v0voA3nvvPQIDA7Gz\ns6Nfv35GSSCcOHECd3d3jhw5QufOnXFyckJRFLNsBiyEEEKYir+/P9999x3fffcdH374oanDMZgk\n+IUQwoJIgr+sW7duUVRUJAl+oaO8Gfw5OTlAcYK5TZs2TJ48mQMHDpCRkUFsbCyjRo3C3d29WuMI\nCwvj9OnT5Ofnk5KSQnR0NAB9+/bVGdenTx8A5syZQ1ZWFmfPntWZ2Xo/s2fP5uDBg+Tk5LB7926m\nTJmCi4uLXkm8yMhIfH19CQ8PZ/369aSlpZGdnc3mzZsZM2YMUVFROmNbt27Nhx9+yJIlS0hJSSEn\nJ4dt27YxatQoZs2apbPutm3bAvDLL7+wadMmnR8LDNkv+oiMjMTZ2Zl3332X3bt3k5OTw8GDB5k9\ne7bB6xLCGKQ/R/mkP0exDz74AB8fHyZMmEB6ejrHjx/Hz8+PS5cuERwcjJOTE4Cc0SmEEEKU0qNH\nD5YvX87MmTMf6CxskzBWO19zASixsbGmDuOBxcbGKhb49AkhHlB0dLTi4+Nj6jDMyqlTpxRAOXPm\njKlDEWake/fuSnh4uM6yxYsXK8uWLVOSkpIMXl9VPrfj4uKU0aNHKz4+PkrdunUVJycnJSAgQJk5\nc6Zy584dnbG3bt1Shg8frjRs2FBxcHBQBgwYoCQkJCiA9qJRctnp06eV4OBgRa1WKw4ODkq/fv3K\nfS2UXodGenq68uabbyrNmjVT6tatq3h4eCgDBgxQ4uPjy4zNzs5WPvjgA8XPz0+xsbFRXF1dleDg\nYGXfvn1lxv76669KQECAYm9vr3Tq1En5888/q7Rf9HXq1CmlX79+ioODg6JWq5Xg4GDl9OnTle6/\nipZX9f+00NBQJTQ0tEr3Feanpp7Pb7/9Vhk0aJDi4uKiPd68vb2VY8eO6Yy737Fo6PK8vDwFUKyt\nrSsdb21tXe7rQXOxt7fXjq1bt64CKHl5eXo97speW/ruF33UqVNHAZT8/Hy94zB0eXXSfM+NiIjQ\nbs/W1lZ59NFHlV69eikuLi5KQUGBcubMmXKfSyGEEEIUmzp1qmJtba3s3bvX1KHo6+OqnzcuhBCi\n1pEZ/GVp6qo7OzubOBJhTtLT08vM4P/Xv/5l1Bi6dOlCly5d9Brr5uZWbjkLpZxZq6WXbdu2rcJ1\na2Z51q1bt8xtLi4uxMTEEBMTU2mMarWa6dOnM3369ErHtm/f/r4Ncw3ZL/ry9/cvtx62PvuvsuVC\n1ISQkBBCQkIoKiriwIEDzJw5k23btjF27Fid8lwqlQpFUSgoKNC+hvXtz6GZ6Q2G9+e4fv16ue+j\n5Y1NTEwkKSkJHx+fStddGX33iz7c3NxISUkhNTWVRo0aaZebe3+OuXPnUrduXT799FOKioq4cOEC\ndnZ2PPPMM1hbW2ufV3nPEkIIIco3depUzpw5w+DBgzl69ChNmjQxdUiVkhI9QghhQWxtbcnLyzN1\nGGZFk+CvLAkhLEt5JXosiUqlIi0tDYDk5GSguHmwEML0pD+H9OeozMyZM+nYsaN2f509e1ZbMkkz\noUFq8AshhBDlU6lULFu2jIYNG/LSSy/VikmSkuAXQggLUq9evVrx4WRMGRkZ1KtXj3r16pk6FGFG\nymuya2k++eQTsrOzmT9/PgDh4eEmjkgIoSH9OaQ/R0Wsra1ZsWIFubm5ANy7d49nnnkGKP6RRHNm\nhyT5hRBCiPKp1Wq+++47zp49y8SJE00dTqUkwS+EEBZEZvCXZekztUVZf/31F3fu3LHo42LVqlV8\n9913NGzYkM2bN/Ppp58yYcIEU4elN5VKpddFiNooLi4OT09P+vfvj6OjI35+fmzdupWZM2eyevVq\nnbExMTEMHz6c2NhYGjduzKRJk3QS1CVfByWvL1y4kGnTpuHl5cXAgQN54oknOHDggF5ldNzc3Dh8\n+DDDhg1j0qRJeHl54evry+LFi1m5ciXdu3fXjnV2diY+Pp6JEycSExODt7c3Pj4+zJ07l6VLl9Kr\nVy+ddS9YsICAgACCg4OZP3++TnkwQ/aLPpo3b05cXBwBAQEMHDgQLy8vpk2bxsKFCyvdfxVdN9Z7\nj7e3N02bNgWKz+QoWV7JxsYGQCZ9CCGEEBV47LHHWL58OYsXL+abb74xdTgVkhr8QghhQezt7Skq\nKiI/Px9bW1tTh2MWJMEvSpOyTTBs2DCGDRtm6jCqTGpLi4eZ9OeQ/hz6KCgo0JYsKv2jguaMzry8\nPOzs7EwRnhBCCFErvPjii7zxxhu89tprdOnShebNm5s6pHLJDH4hhLAgmsZq5t4gzpgyMzMtOpEr\nypIEvxBClE/6c9Qe+/fv5+7du0BxD4aSP1Q4ODgAyFmdQgghhB5mz55Ns2bNGDp0KAUFBaYOp1yS\n4BdCCAsiCf6yMjMztQ3nhIC/E/yWXoNfCCHKI/05aoctW7agUqmoW7cuISEhvPXWW9qkhFqtBiTB\nL4QQQujD1taWVatWcerUqTL9gcyFJPiFEMKCSIK/rOzsbBwdHU0dhjAj6enpgMzgF0KI0qQ/R+3x\n7bffoigKbdq04eOPP+by5cssXrwYKC7dBHD79m1ThiiEEELUGq1atWLOnDnMmDGD+Ph4U4dThiT4\nhRDCgmhmqkuC/2937tzRnqouBBTP4LexscHe3t7UoQghhFkZNmwYp06dIi8vjz/++IPXX3+9ViXE\nFUXR61Lb/frrr1y9ehUobkzcvHlzwsPDmTZtGjk5OTRp0gT4u8ySEEIIISr373//m969e/PKK6+Y\nXaN6SfALIYQFqV+/PiqViszMTFOHYjYkwS9Ky8jIkPI8Qgghaq2FCxcC4OrqSmBgIADvvfce+fn5\nfPLJJ9q+CVeuXDFViEIIIUSto1KpWLRoEYmJicycOdPU4eiQBL8QQlgQa2tr7O3tZQZ/CZLgF6Vl\nZGRIeR4hhBC1Ul5eHt988w0AMTEx2uWurq5EREQwZ84c7Qz+P/74wyQxCiGEELWVt7c3M2bMYPbs\n2Rw7dszU4WhJgl8IISyMs7OzJPhLkAS/KE0S/EIIIWqrjz76iHv37uHm5sbo0aN1bouIiMDa2pqT\nJ08CcObMGVOEKIQQQtRqr732Gh07duTVV1+lsLDQ1OEAkuAXQgiL4+TkJAn+EnJyciTBL3Skp6dL\ngl8IIUStU1hYSHR0NADbt28vc7uTkxNvv/02X3/9NSqVirNnzxo7RCGEEKLWs7KyYtGiRZw4cYIv\nvvjC1OEAYG3qAIQQQhiXJPh1yQx+UVpN1uBft25djaxXPDwSExMBOVYeFvJ8CmN66623KCoqonfv\n3jz55JPljpk4cSILFiwgPz+flJQUI0cohBBCPBz8/f2JiIhg6tSpDBs2DDc3N5PGIwl+IYSwMFKi\nR1dubi729vamDkOYkYyMDJo1a1at6/Ty8sLa2prBgwdX63rFwys+Pt7UIYhqJM+nqGlWVlYkJSXh\n4ODAjh077jvOzs6OyZMn88Ybb3Dv3j0URUGlUhkxUiGEEOLh8MEHH/DNN9/w4Ycfmnwmv5ToEUII\nC+Pk5ERmZqapwzALRUVFFBQUYGtra+pQhBnJzMzE2dm5WtcZFBREQUEBiqLIRS5ykYtc5FKtl+jo\naIqKilCpVCQkJFT6mTR+/HicnJwA+Pjjj6v1804IIYSwFGq1mlmzZrF48WJOnDhh0lhkBr8QQlgY\nJycnzp8/b+owzMJff/0FgI2NjYkjEeYkLS0NV1dXU4chDJCTk0NaWhppaWmkpqZqr6enp5Obm8u9\ne/fIzs4Gis/QqIidnR0ODg7Ur1+f+vXr4+DggIODA05OTjg7O+Ph4YGbmxsNGzakbt26xnh4Qghx\nXytWrGDy5MkAHDx4UK8SczY2NkRFRTF+/HgWLFigvb8QQgghDDNq1CgWLlzIa6+9xr59+0x2Vpwk\n+IUQwsJIiZ6/SYJflCc9Pb3GavCLqsnNzeXMmTNcvHiRhIQErl69ytWrV7ly5QoJCQncvn1bZ7y1\ntTUNGjTA1dUVe3t7rK2tcXR0BKi0gXJKSgr5+flkZ2eTlZXFnTt3yM3NLfd908XFBXd3d9zc3PD2\n9sbb25tHHnkEb29vmjZtyiOPPCINm4UQNWbjxo2MHj0agA0bNtCpUye97/vKK68QHh7O9evXuXfv\nHtbWkhoQQgghDKVSqfjkk0/o3LkzmzZtYuDAgSaJQz7FhRDCwkiT3b9Jgl+UdufOHfLz8yUpayJF\nRUWcPXuWkydPcvLkSU6fPs3Jkye5fPkyRUVF1KlTh8aNG+Pt7Y2Pjw/PP/883t7eNGnSBFdXV1xd\nXXFzc6v2EksaGRkZ3Lx5k1u3bpGamkpycjK3bt3i1q1bXL16le3bt3Pt2jVSU1O193F2dsbX11d7\neeyxx7TXaypOIcTDb9euXbzwwgsALFiwQHtdX9bW1nTt2pWff/6ZuXPnMmnSpJoIUwghhHjodezY\nkZCQEN5//3369++PlZXxK+JLgl8IISyM1OD/myT4RWnp6ekAMoPfSLKysjh06BDx8fEcOnSIQ4cO\nkZWVhbW1NY899hj+/v6MHj0af39/2rRpQ7NmzUw6y9TFxQUXFxf8/PwqHJebm8vVq1e5du0aly5d\n4vz585w7d47Vq1dz+fJlCgoKAGjcuDGtW7emTZs2tG7dmtatW9OqVSvs7OyM8XCEELVUXFwcffr0\nAeDNN9/ktddeq9J6vv76a3x8fJgxY4Yk+IUQQogHMHPmTFq3bs3q1at5+eWXjb59SfALIYSFcXJy\nKlPOwlJJgl+UJgn+mnX37l327t3LTz/9xO7duzlz5gxFRUW0aNGCwMBAZs2aRefOnfH396/Vr0t7\ne3tatmxJy5Yty9x27949rly5wrlz5zh16hSnTp1i165dLFiwgPz8fOrUqYOvry9PPfWU9vLkk09K\nM3AhBADbtm2jX79+KIrC4MGDiYmJqfK6mjZtip2dHdnZ2fz222+0a9euGiMVQgghLIefnx8jRozg\nf//3fwkNDTX6dxlJ8AshhIVxdXXlr7/+4vbt29SvX9/U4ZiUJPhFaZLgr35//vknP/74Iz/99BP7\n9u0jLy+PgIAA+vXrx4wZM+jUqRMeHh6mDrNGZGdnk5SUpC3rk5aWRm5uLrm5uWRmZnLnzh3s7Oxo\n06YNLVq0ICcnh6ysLDIzM9m+fTuxsbH89ddfWFlZ4e7ujpeXFz4+PrRs2RI/Pz8aNGiAs7Mzzs7O\nuLm54e7ubpJTgoUQxqGZFagoCt26dSM2NvaB1zlixAiWLFlCWFgYv/32WzVEKYQQQlimqVOn4uf3\n/9i787Aoy/b/4+9hX2ST3RUXMFFBw1TcwA1ye3Jfykyf0tL0l23fbHHJyjIqM7M0U7MsFZcyNfeF\nREHcQBFUQkEFZJEdBGZgfn9wME+WmejADc75Oo45xGHmus8ZFef+3Nd1Xm1YvXo1L7zwQq0eWwJ+\nIYQwMC4uLgBkZGQYfMBf1SbD1NRU4UpEXZGdnY1KpZIe/A/o/PnzbNy4kY0bN3Lp0iUcHBwYMGAA\ny5Yt4/HHH8fd3V3pEvUiMzOTP/74g8uXL3P58mUSExO5fPkyV69eJT09nZKSktseb29vj6WlJZaW\nljg4OGBlZYW5uTlGRkbY2dlhY2ODjY0NTZo0ASpn+6enp5Ofn09WVhYJCQlER0fz888/37EeY2Nj\nXFxccHFxoVGjRri4uNC8efPbbs2aNZOLmkLUQ19++SUzZ84EKnv9Hj58WC/jzp07l5UrV3LmzBmu\nX7+u+/kjhBBCiOrx8PBgypQpfPjhhzz77LO1mjNIwC+EEAbmzwF/69atFa5GWRUVFQAy41XoZGdn\nY2trq2if9/rqjz/+0IX6586do3HjxowZM4ZVq1bh7++PsbGx0iXeN7VazYULF4iJieHs2bNER0dz\n9uxZ0tPTgcpVQM2bN6dly5a0b9+ewYMH4+bmppt17+LigrOzs14+5Gs0GmJjY4mKiiIiIoLjx49z\n6dIlysvLcXBwoEmTJjg7O2NhYUF6ejonTpwgKSmJ4uJiAFQqFY0aNdJt9uvl5UWbNm1o06aN4nsc\nCCHubO7cubz33nsAPProo4SHh6NSqfQydpMmTWjatCnXrl1j2rRpbN++XS/jCiGEEIbojTfeYOXK\nlaxbt47JkyfX2nHlE7wQQhgYFxcXVCoVGRkZSpciRJ2TnZ0t7Xmqobi4mI0bN7JixQqOHz+Oi4sL\no0aN4ssvv6Rnz5719uJZfn4+R48e5dixY4SHhxMVFUVxcTFmZmZ4e3vj4+PD448/jo+PD61bt6Zp\n06a1dgHDxMSEjh070rFjR6ZOnQpU/jmcPHmSw4cPExYWxuHDhykuLqZJkyYEBgby8ssv0759e0xM\nTLh69SpXrlzh0qVLJCQksGPHDlJTU4HKCxXt2rXDx8cHX19ffHx86NixI46OjrXy2oQQt9Nqtbzw\nwgt88803ALRv355jx47p/ULcnDlzmDp1Kjt37iQjI0M3GUQIIYQQ1dO0aVOefPJJFi1axDPPPFNr\n50MS8AshhIExMzPDzs5OAn4h7iAnJ0cC/ntw4cIFli9fztq1a7l16xYjRoxgwYIF9OvXr17O1C8t\nLeXIkSPs2rWLAwcOEBsbS3l5OV5eXnTv3p2nn36azp0707Zt2zrZ0svKyorevXvTu3dvoHJ/kaio\nKMLCwggLC2PWrFkUFRXRqFEjAgICCAgIYNasWbpNgAsKCrh06RIXLlzQrVDYvXu3boVCkyZNbgv8\nfX19ad26db38sxaivigsLGT48OHs378fgLZt2xIVFVUjG25PnjyZGTNmUFZWxuuvv87atWv1fgwh\nhBDCUMyePRtvb2+2bt3KqFGjauWYEvALIYQBcnFxkYBfiDuQGfz/rLy8nK1bt/L1119z+PBhPDw8\nmD17NpMnT66Xsz2vXbvGb7/9pgv1CwsL8fb2Jjg4mHnz5tGjR496+bqg8kJuz5496dmzJ2+//TZq\ntZoTJ07oAv/XXnuNwsJC3Nzc6NevH0FBQQQFBeHn58dTTz2lG+fGjRu6wD8mJoZff/2VkJAQNBoN\nVlZWdOzYka5du+Lv74+/v7/07hZCT65evUq/fv34448/gMpw//jx41haWtbI8UxMTBg9ejQ//vgj\nP/30E59//rnsRSOEEELcpzZt2jB8+HA++OADRo4cqbe2encjAb8QQhggFxcXMjMzlS5DiDpHAv6/\nKy0t5YcffmDRokVcuXKFwYMHs3PnToKDg+tdC560tDQ2bdrEhg0biIyMxMrKin79+hESEsLAgQNp\n3ry50iXWCFNTU7p370737t1588030Wg0nDx5krCwMPbu3cvUqVMpKyvD19eXoKAggoOD6dGjB25u\nbri5uREUFKQbq7S0lNjYWGJiYjh16hSHDh1i6dKlaDQamjRpQrdu3fD396dbt248+uijWFhYKPjK\nhah/jh49yuDBg8nLywPA19eX8PBwGjRoUKPHXbBgAT/++CMajYY5c+bw5Zdf1ujxhBBCiIfZm2++\nSefOnTl06BB9+/at8eOptFqttsaPUoeoVCo2btzImDFjlC7lgYSGhjJ27FgM7I9PCKEnI0aMwNzc\nnPXr1ytdiqLOnTuHj48P8fHxPPLII0qXI+qAvn378sgjj/DVV18pXYriioqK+Pbbb/nkk0/IyMhg\n7NixvP3227Rp00bp0qolOzubzZs3s2HDBsLCwmjQoAFPPPEE48aNo1+/fjXS7qK+KS4u5tixY+zf\nv5/9+/dz6tQprKys6N69O/3796d///74+fn94/OLioo4ceIEERERREZGEhkZSUZGBmZmZnTq1Ilu\n3brRrVs3evfuTaNGjWrxlQlRv3z33XdMmTIFjUYDQI8ePdi3b1+Nzdz/K29vb+Lj4zEzMyMrKwsb\nG5taOa4QQgjxMOrVqxdOTk78/PPPNX2oEJnBL4QQBsjFxYWEhASly1CcXCQVfyUz+Cv7sS9evJgv\nvviCkpISpk6dyquvvkrjxo2VLq1ajh07xooVKwgNDUWlUjFkyBA2bdrEoEGDZFb5X1hZWemCfICk\npCT27t3Lnj17+PDDD5k9ezYeHh4EBwcTFBREv379sLOz0z3f2tqawMBAAgMDdfclJiYSERHB8ePH\nCQ8PZ9myZWg0Gjw9PQkMDCQgIIA+ffpI4C8ElStjXn31VZYtWwZUTkrr378/27dvr9WLkAsWLGD0\n6NGUlZXx7rvv8sknn9TasYUQQoiHzcyZMxk/fjxXrlyhRYsWNXqs+rWuWgghhF5ID34h7iw7O9tg\n+w6r1WqWLVtG69atWbx4MS+++CLJycl89tln9Sbcz8/P56uvvsLX15cePXpw7tw5Pv/8c9LT0wkN\nDWXEiBES7t8DDw8Ppk6dypYtW8jKyiI8PJynn36aM2fOMGbMGJydnenXrx+fffYZly5duuMYrVq1\nYsKECSxdupSTJ0+Sm5vL3r17GTNmDHFxcUyePJnGjRvj5eXF1KlT+fHHH0lNTa3lVyqE8hITE/H3\n92f58uVAZbg/fPhwfvvtt1pfYTRy5Ejdz/svv/ySkpKSWj2+EEII8TAZMWIEjRs35uuvv67xY0nA\nL4QQBsjZ2VkCfiHuwBBn8Gu1WrZu3Ur79u159dVXmTBhAomJibz77rs4OjoqXd49uXbtGq+88gqN\nGzfm9ddfx8/Pj8jISE6fPs3zzz8vbSYegImJCT169GDBggUcP36c9PR01q5di6urKx988AFt2rTB\ny8uLV155hQMHDqBWq+84jrW1NQMGDOD9998nPDz8XwP/n376ifT09Fp+tULUrs2bN9OpUydiY2Mp\nLy9HpVIxbdo0Nm3ahIlJ7S+2V6lUhISEAJWrChYsWFDrNQghhBAPCxMTE1544QVWrlxJUVFRjR5L\nAn4hhDBALi4u3Lx5k/LycqVLEaLOKCsro6ioyKAC/mPHjtGzZ09GjRpF586diY+P59NPP60370FV\nMNyqVStCQ0OZP38+KSkprF69mq5duypd3kPJ0dGR8ePH89NPP5GRkcHvv//O8OHD2bt3L/3798fJ\nyYkxY8awdu3au27mbmVlddfAf9KkSbi7u9OpUyfeeOMN9u/fL7OJxUOjtLSUmTNnMnr0aIqLi3UX\nxubMmcOyZcsU3cB87NixutZZixcvls+KQgghxAOYMmUKJSUlbNiwoUaPIwG/EEIYIBcXF8rLy7l5\n86bSpdQJKpVK6RJEHVD176G+hNsPIjMzk2eeeYaePXtiYWHBiRMn+PHHH2u8N6S+REVFMWzYMDp0\n6EBkZCQrVqzg8uXLvPrqq9jb2ytdnsEwNjamV69eLFq0iNjYWC5fvswHH3xAfn4+L7zwAm5ubvj7\n+/PBBx8QHR1917H+Gvjn5OSwfft2evfuza+//sqAAQNwdHRk4MCBLF68mNjY2Fp6lULo19mzZ+na\ntSvffPMNULmKytTUlPXr1/Puu+8qXB0YGRnxwQcfoFKpKCkp4b333lO6JCGEEKLecnZ2Zvjw4axa\ntapGjyMBvxBCGCAXFxeAu86uNASyya74s5ycHODhDvi1Wi1r1qyhbdu2HDx4kK1bt3LgwAH8/PyU\nLu2eXLhwgVGjRtGtWzdu3LjBli1bOH/+PJMnT8bMzEzp8gxeixYtmDFjBrt37yYrK4stW7bQvn17\nli1bRqdOnfDw8GDmzJns27ePsrKyu45lbW3N4MGDWbJkCfHx8SQnJ/PFF19ga2vLBx98QIcOHWjS\npAmTJ09m/fr1Bv//maj7NBoN7733Ho899hiJiYmo1WpMTEywtbXl8OHDjBs3TukSdSZMmICrqysA\nixYtoqKiQuGKhBBCiPrrv//9LxEREcTFxdXYMSTgF0IIA1QV8EsffiH+Jzs7G3h4A/74+NXrhYkA\nACAASURBVHgCAwOZMmUKTz/9NHFxcQwbNkzpsu5JSkoKzz//PB06dCAuLo6NGzcSGRnJsGHDFG1l\nIf6ZtbU1w4YNY+XKlaSkpHDixAkmTpxIeHg4QUFBuLi4MG7cOH766SfdxbW7adasGc8++ywbN24k\nIyODkydPMnPmTK5fv87kyZNxcXGhXbt2zJ49m/3791NaWloLr1KIe3P+/Hn8/f15//33MTY2pqio\nCBMTE1q0aEFUVBTdu3dXusTbmJiYsHTpUgBKSkp4/fXXFa5ICCGEqL/69etHq1atWL16dY0dQ86I\nhBDCADk6OmJiYiIBvxB/8rAG/KWlpcyZM4eOHTtSXFxMVFQUixcvrhcbz+bn5zN79mw8PT3Zs2cP\nq1atIjY2ltGjRytdmqgGlUpF586dWbBgAWfOnCEpKYn333+fmzdvMmnSJFxcXOjXrx9Llizh8uXL\n/zqekZERfn5+vPHGG+zbt4/MzEy2bdtGnz59+Pnnn3XtfP68AkAIJajVahYuXIifnx+pqamo1WpK\nSkpQqVQEBwdz4sQJPD09lS7zjkaNGkXHjh0B+OKLL8jLy1O4IiGEEKJ+UqlUTJw4kbVr19bYJBQJ\n+IUQwgAZGRnh6OgoAb8Qf5KdnY21tTXm5uZKl6I358+fp1u3bixZsoSQkBAiIyN59NFHlS7rnqxf\nv562bdvy7bffsnDhQi5evMjEiRNlxv5DoHnz5syYMUMXzq9btw5XV1fmz59Pq1at8PHx4e233yYq\nKuqeWoPY2Njwn//8hy+//JKLFy9y5coVPvvsM6ysrHj33Xfx9vamWbNmPPfcc4SGhsr+M6JWHDp0\niE6dOrFgwQLs7OxIS0vD1NQUlUrFnDlz2LZtG3Z2dkqXeVcrVqwAKtsLzZgxQ+FqhBBCiPpr8uTJ\n5OTksHPnzhoZX86QhBDCQLm4uJCenq50GULUGdnZ2Q/N7H2tVss333xDly5dMDMz49SpU/y///f/\nMDY2Vrq0fxUfH0/fvn2ZMGECQ4YM4eLFi8yaNeuhuvAi/sfOzo6xY8fy008/kZWVxZEjRxg0aBBb\ntmyha9euuLq6MnHiRDZt2kRhYeE9jenh4cHUqVPZtGkTmZmZRERE8Nxzz3HhwgWeeuopXFxc6NKl\nC++88w5hYWGo1eoafpXCkKSkpDB+/Hj69u2LSqWivLyczMxMrKyssLa2Zvfu3cyfP79eXKzs0qUL\nQ4cOBeDHH3/kypUrClckhBBC1E9NmzalT58+/PjjjzUyft3/VCGEEKJGuLu7k5aWpnQZilKpVIBs\ntisq5eTkPBQBf1paGgMHDuTFF1/kjTfe4OjRo3W2BcSfFRUV8cYbb+Dr60t+fj7Hjh1jxYoVODo6\nKl2aqCXGxsb07NmTjz76iAsXLhATE8OsWbO4cOECY8eOxdXVleHDh7NmzZp73lTX2NiYbt26MXfu\nXMLDw7l58yZbtmyhc+fObNiwgcDAQBo2bHjbCgAh7odarSYkJIRHHnmEY8eO4eXlxfnz59FqtZiY\nmNC+fXtOnz7NgAEDlC61Wj7//HOMjY3RarVMnTpV6XKEEEKIemv8+PH89ttvNdL2TgJ+IYQwUO7u\n7ty4cUPpMhRlamoKVC49F+JhmMH/888/4+PjQ2JiIuHh4cydOxcTExOly/pXYWFhdOjQgZUrV/L5\n559z/PhxunbtqnRZQmF/btWTkpLC4sWLUavVTJ8+HTc3N3r27MnHH3/MhQsX7nlMW1tbhg0bxldf\nfcUff/xBYmIiISEhmJiY8M477/DII4/oVgBs3rxZtzeHEP9Eq9WyceNG2rVrx9y5c+nevTvp6ekk\nJCRgY2ODVqtl2rRpHDlyBA8PD6XLrbaWLVvy0ksvAbB//36OHTumcEVCCCFE/TRq1Cig8pxN3yTg\nF0IIA+Xm5mbwM/irAv6ysjKFKxF1QX0O+DUaDa+88gojRoxg2LBhnDlzpl4E5Ldu3eKVV16hb9++\ndOjQgbi4OKZPn14vWgmJ2uXu7s7UqVPZsWMHWVlZbN68GS8vLz755BPatm2Ll5cXr7/+Or///jvl\n5eX3PG7Lli154YUX2Lp1K1lZWRw9epRJkyYRGxvLuHHjcHFx0a0AOHLkiFwQFrfZtWsXfn5+PPnk\nk7Rs2RJ3d3f279+PWq3GxsYGe3t7Dh06xJIlS3SfOeqj+fPnY2lpCcBzzz0nKx+FEEKI+2Bra0tw\ncDDr16/X+9gS8AshhIGSFj3/C/il/7KAyoDfwcFB6TKqLT09nf79+7NixQp+/PFHVq5cSYMGDZQu\n619FRUXx6KOPsnr1alatWsW2bdtwc3NTuixRD1hbWzN8+HBWr15NWloa4eHhDB8+nB07dhAQEICr\nqysTJkxg48aN5Obm3vO4JiYmdO/enfnz53Ps2DGysrIIDQ2lY8eOrFu3jt69e+Po6KhbAZCQkFCD\nr1LUZceOHSMgIIBBgwbh6urKkCFD2Lt3L0lJSbq2YkFBQURHR9O7d2+Fq31wNjY2fPzxx0DlPik1\nMfNQCCGEMATjx4/nwIEDet8PUQJ+IYQwUG5ubmRmZlZrpuPDxszMDJCAX1SqjzP4IyMj6dy5M9ev\nXyciIoInn3xS6ZL+lUajYc6cOfTo0YOmTZty7tw5Jk2apHRZop4yNjamR48eLFq0iPj4eC5dusSb\nb75JamoqEyZMwNnZmT59+vDJJ59Uq5UPgL29PSNGjGD58uVcvnyZhIQEPvzwQwDefPNNvLy8blsB\nUJ2LCaL+0Wq17Nmzh759+9KjRw+g8u/BsWPH2LlzJ2ZmZtjY2GBsbMz69evZtGlTvbxo/E+mTZum\nu3gxY8YMg/78KIQQQtyvoUOHYmFhofeL5Sqtga2vU6lUbNy4kTFjxihdygMJDQ1l7NixsjxSCHHf\nfv/9dwICAkhLSzPYWbNZWVk4Oztz8OBB+vTpo3Q5QmGtWrViypQpzJ49W+lS7smKFSt46aWX6N+/\nPz/88EO9CJJSUlIYN24cp0+fJiQkhGnTpuk2uxZ3l5WVRWpqKlevXuXmzZtkZ2frblW/Lykpoaio\niPz8fDQaDTk5OX8bR61WU1paSoMGDTAxMaFBgwaYmZnRoEEDrKyssLS0xMrKCnNzc6ytrTEzM8Pe\n3h4XFxecnJxwdnbGyckJV1dXnJycsLa2VuDduDe5ubns2bOHnTt3smvXLrKysmjVqhVDhgxh8ODB\nBAQE6C70VpdGoyEiIoJ9+/axd+9eTp48CUCXLl0ICgqib9++dO3aFXNzc32+JKEAjUZDaGgoISEh\nREdHExQURM+ePVm7di2XL18GoEmTJly/fp3//ve/hISE1Iufx/dj8+bNjB49GoDvv/+ep59+WuGK\nhBBCiPpn1KhRFBQUsGfPHn0NGSIBfz0lAb8Q4kElJCTg5eXF6dOn6dSpk9LlKCIvLw97e3v27NlD\nUFCQ0uUIhTk4OLBo0SKmTp2qdCl3VVZWxvTp01mzZg1z5sxh7ty5GBnV/UWZe/fuZcKECTg6OrJp\n0ybat2+vdEl1SklJCQkJCX+7Xb16lbS0NEpLS3WPNTExwdTUFCMjI1QqFRUVFWg0Gr3sJ2JsbIyJ\niYnuZmRkhFar1V0Y+GsPegsLC1xcXHBxcdGF/82bN6dZs2a6m4eHh65/t1LKy8uJjIxk586d7Nix\ng3PnzmFjY0NQUBCDBw/WtVq5X9nZ2Rw8eJC9e/eyb98+kpKSsLS0pFu3bgQGBhIYGCiBfz2Tk5PD\n2rVr+eKLL7h69SqjR48mKCiIZcuWcerUKVQqFa6urhQUFNCoUSO++eYbAgMDlS67xrm7u3Pjxg3c\n3d25fv16vfj/RwghhKhL1q1bx3//+1/S09P1NSkgxEQfowghhKh/qmbtp6WlGWzAL5vsiirl5eXk\n5+fX+RY9eXl5jBw5khMnTrBt2zaGDBmidEn/qry8nHfffZcPPviA8ePHs3z58nqxR0BNunr1KtHR\n0URHR3P69GlOnjxJamoqWq0WlUqlC4FLS0t1kzlUKhUNGzakUaNGNG3aFAcHB+zt7bG3t8fOzk73\ntYmJCTY2NgDY2dn9a/iWm5uLVquluLiY0tJSSkpKyM/Pp6CggNzcXPLy8igoKCAnJ4cbN25w48YN\nMjMzda3NSkpKuHbtGllZWZibm2NkZIRGo+HWrVu3/Wx1dHTUBf/NmzfXfd2iRQs8PT11NdeUqlY+\nPXr0YOHChSQnJ+vC/unTp1NWVkanTp0IDg4mODgYf3//am2K2rBhQ0aNGsWoUaMAuHLlCmFhYRw6\ndIjVq1czb948CfzriSNHjvDNN9+wefNmTE1NmThxIoMHD2bJkiX897//xcjIiIYNG2Jqakp+fj6v\nvfYab775JhYWFkqXXiuWLVvGyJEjSUtLIzQ0lHHjxildkhBCCFGvDBkyBJVKxa5du/TWYlVm8NdT\nMoNfCKEPNjY2uhNWQ6RWqzEzM2Pr1q0MHz5c6XKEgrKzs3F0dGT//v3069dP6XLu6Pr16wwaNIib\nN2/y22+/4evrq3RJ/yo9PZ3x48cTERHBkiVL6vzqiJpQUlLCyZMnCQ8PJywsjGPHjpGfnw+Aubk5\nGo2G8vJyVCoVbm5ueHl54enpSatWrWjVqhVNmzalSZMmuLq6VitwrmnZ2dmkp6eTmZlJenq6Lviv\n+vrq1atcuXKFvLw83XOsra2xsLBApVLp2glVfZb982v/662mg9Pi4mIOHDjA7t272bNnD4mJidjY\n2NCvXz+CgoIIDg6mZcuWD3SMPwf+YWFhJCcn6wL/gIAAunfvTteuXbG1tdXTqxLVkZ6ezvr16/nm\nm2+Ij4+nc+fOTJkyhZYtW/LZZ5+xe/dujIyMsLS0xM3NjcTERMaPH89HH31E06ZNlS6/1rm6upKR\nkUHjxo25du2atFoTQgghqmnAgAE4ODgQGhqqj+FkBr8QQhgyNzc30tLSlC5DMaampqhUKtlkV+g2\nx6yrfZPPnj3LoEGDcHBwIDIysl4ESmfPnmXo0KGYmZkRERFBx44dlS6pVlT1Zt+9ezf79u0jOjoa\ntVqNqakpGo0GrVaLvb09vr6+PProo3To0AEfHx/atWtXr2YAN2zYkIYNG9K2bdu7Pi4vL4+kpCSS\nk5O5cuWK7uuqX7OzswHIyMjg1q1bxMXFUVZWRkFBAVqtFiMjI5o2baoL+9u1a4e3tzcdOnTAyclJ\nL6/FysqKoUOHMnToUAASExPZs2cPe/bs4f/+7/+YPn06np6eurC/T58+1V6F0qJFC1q0aKHbULoq\n8D98+DBr165l/vz5GBkZ0a5dO/z9/fH396dbt260adNGwtMakpWVxdatW9m4cSNhYWFYW1szfvx4\nfvjhB27cuMH7779PZGQkxsbGWFhY0Lp1a86fP4+TkxPr1q2ja9euSr8ExXzyySdMnDiRlJQUtm7d\nysiRI5UuSQghhKhXhg0bxptvvklJSYlezgFkBn89JTP4hRD60KtXLzp27MjSpUuVLkUxZmZmrFmz\nhqeeekrpUoSCTp8+jZ+fH3/88QetWrVSupzb7N+/n5EjR+Ln58fWrVuxt7dXuqR/9euvv/LUU0/R\npUsXNm3aVOdbHz2o1NRUdu/eza+//sr+/fspKirC1NQUtVqNsbEx7dq1IzAwEH9/f7p3706zZs2U\nLrnOyM/PJzExkUuXLnHp0iUuXLig+7pqpYOFhYWuhU9hYSG3bt0CwMXFhfbt29OuXTvdr+3atdPr\nvxG1Ws3Ro0fZs2cPe/fu5cyZM5iamtKjRw+Cg4Pp378/HTt2xNjY+IGOk5aWRmRkJBEREURERHDq\n1Clu3bpFw4YN6datmy7079KlS423M3qYpaamsmvXLjZv3sz+/fsxMzNj8ODBjB07ln79+rFjxw4W\nLlxIfHw8xsbGWFtb07JlS86dO4enpyfz5s1j7NixctEFcHJy4ubNm3h7e3P+/HmlyxFCCCHqlWvX\nrtGsWTN97Qcom+zWVxLwCyH0YcyYMVRUVLB582alS1GMtbU1y5Yt082qFIbp0KFD9O3bl8zMTL3N\nCtaHH374gWeffZYxY8awevVqzMzMlC7pX4WEhDB79myeffZZli1bVqfayujT9evX2bJlC99//z1n\nzpxBpVLpPpe1bduWYcOGMWDAALp06YKVlZXC1dZPqampXLx48bbw/+LFiyQlJVFeXo6pqalu1U1e\nXp5uI2IHBwe8vb3x8/PTzfjv2LGjXvZ+yMjIYO/evezZs4d9+/aRnp6OnZ0dvXv3JjAwkICAAL0E\n/mq1mjNnzhAZGUlkZCTHjh0jOTkZY2Nj2rZtS8eOHfH19dX96uzs/MCv7WGkVqsJDw/XtV+KiYnB\n0tKSoKAgxo4dy9ChQ0lJSWHlypWsWrWKvLw8VCoVtra2tGjRgrNnz+Lp6cmcOXMYO3bsA/+5Pkw+\n/fRTXnvtNQASEhJo3bq1whUJIYQQ9Uv79u0JDg7m008/fdChJOCvryTgF0Low0svvcTJkyc5evSo\n0qUoxt7eno8//tgge4OL//nll18YPnw4paWldSZEX758OdOnT+eNN95g4cKFdX7GaFlZGdOmTWPt\n2rWEhITw8ssvK12S3qWmphIaGsp3331HTEwMxsbGlJeXY29vzxNPPMHAgQPp169fnbpI9DCqauVz\n7tw5YmNjdb+mpqYClS13bGxsqKioIDc3F7VajUqlwsPD47YZ/97e3rRt2/a+l0VrtVrOnz+v66v/\n+++/k5mZiZ2dHb169dIF/p06ddJLMJyamkpkZCQnTpwgOjqas2fP6l5zo0aN8PHx0QX+vr6+eHl5\nGVwgXVxcTFRUFOHh4URERHDkyBEKCgpo06YNjz/+OI8//jgBAQGoVCq2bNnC8uXLOXr0KCYmJqjV\nary8vLCysuLs2bO0adOGd955h3Hjxv3rZtWGSK1WY2NjQ2lpKU8//TTff/+90iUJIYQQ9cprr73G\nrl279LESTgL++koCfiGEPnz44Yd8++23JCYmKl2KYlxcXJg3bx4vvvii0qUIBX333Xe8+OKLFBUV\nKV0KAEuWLOHll1/m/fff56233lK6nH+Vn5/PsGHDOHnyJOvXr2fw4MFKl6Q35eXl/PbbbyxdupQD\nBw4AUFFRgZOTE2PHjmXMmDH06NHD4ILUuig7O/tvoX9sbKxuo197e3ssLS3RaDTk5OSg0WgwNjam\nVatWf2v14+XlVe3VJ1WB/+HDhwkLCyMsLIzMzExsbW3p3bs3AQEBBAYG6i3wB8jMzCQmJobo6Ghi\nYmI4e/Ys8fHxqNVqLC0tad++Pe3bt8fT0xMvLy/dRsb1ab+Hf1JSUsL58+c5d+4c0dHRREREcPr0\naTQaDU2bNqVnz5707t2b4OBgWrRoQXl5OYcOHWLjxo2EhoZSWFiIkZERxsbGPPbYY9y4cYM//viD\nwMBAXnrpJf7zn/9IsP8vpk+fztdff42ZmRmFhYUP7YotIYQQoibs27ePoKAgkpOTH7SFpwT89ZUE\n/EIIffjuu++YPn06xcXFSpeimMaNG/P6668za9YspUsRClqyZAmLFi3SzYZVUkhICG+88QYhISG8\n+uqrSpfzrzIyMhg4cCBpaWns3r0bHx8fpUvSiytXrrBixQq++eYb3SbMNjY2TJ48mSeffJLHHnus\nzq+qEJWSk5N1QfC5c+c4f/68bjNfY2NjHBwcsLCwoKSkhJycHMrLyzEzM6NNmza0a9eODh066Db2\nbdGixT2Hvlqtlri4OA4fPszhw4f5/fffycjIwMbGhs6dO9OlSxe6dOnCY489pteNs8vKyjh//rwu\n8I+Li+PSpUskJydTUVGBkZERzZo1o2XLljRv3hwPD4/bbm5ubnVmJRNUrly4fPkyV65cITExUbd6\nIyEhgfLyciwtLXWbE3fv3p2ePXvSpEkToPICXVhYGKGhoWzatIns7GzMzMwoKyujdevWNG7cmNjY\nWAoLCxk3bhyzZs0ymA3B9SEnJwdHR0e0Wi3ffvstzz77rNIlCSGEEPVGaWkpjo6OLF68mClTpjzI\nUCEm+ipKCCFE/ePm5satW7fIy8vDzs5O6XIUUbURpjBseXl5dWLz2vfff5+5c+eyZMkSZs6cqXQ5\n/yo5OZmgoCDKy8sJDw+nZcuWSpf0wI4dO8aCBQvYu3evLsDv168fM2bMYNCgQTJDtR5q3rw5zZs3\nZ9CgQbr7NBoNly5dum22/7lz58jOztY9JjMzk6NHj7J3715ycnLQarVYWVnRtm1b3Uz/qvD/TrOu\nVCqVbuPfF198URf4h4eHc/z4cXbu3Mknn3xCeXk57u7uPPbYY7rA/7HHHtPtL1BdZmZmdOrUiU6d\nOt12f2lpKQkJCbo9Da5cuUJSUhJHjx4lOTlZt4cBVG6g6urqiru7O+7u7ri4uNCwYUMcHBywt7fH\nwcEBBwcH7OzsMDMzw9zcHCsrK4yNjbG1tb1jXeXl5eTn5+s2Si4oKKCgoICioiIyMzO5ceMGGRkZ\nZGZmkp6eTkpKCpcvX6akpAQAc3NzPDw8eOSRRxg1ahQ+Pj74+PjQunXr21ZEZGVlsXHjRvbs2cO2\nbdvIzs7G0tKSW7du4erqio+PDykpKcTFxaHVapk1axZTpkzB1dX1vt5vQ+bg4ED//v3Zt28fCxYs\nkIBfCCGEqAZzc3MCAgLYvXv3gwb8SMAvhBAGzN3dHYC0tDQJ+IVBqwsXuebMmcPChQtZvnx5vdgT\nIi4ujuDgYBwdHdm9ezdubm5Kl3TfysvL+fnnn5k3bx5xcXFAZfuuV155hUmTJknw9xAyMTHB29sb\nb2/v21b2FhUV3dbfvyr4r1o1q1KpyMjI4ODBg/zyyy+69j92dna3tfipCv9dXFx0Y/858H/++ecB\nKCws5NSpU0RFRREVFcXKlSt55513UKlUeHp63hb6+/j4YG1tfd+v2dzcXNey56+0Wi1paWkkJSXp\nwvWMjAxSU1NJT0/n4sWLZGdnk5ubq1vloE/W1ta4uLjg6uqKs7MzTZs2xd/fnxYtWtCiRQtatmxJ\n48aN77h6Qq1W6y7E7Nmzh1OnTqFSqTAzM6OkpARnZ2c6dOhAaWkpJ0+eJCIigpEjR/L111/Tq1cv\nWYnzgD777DM6dOjA1atXSUlJoXHjxkqXJIQQQtQbAwYM4L333tOtsrxfEvALIYQBqwrkbty4wSOP\nPKJwNcqoWqovDFtubq6iAf9bb73Fxx9/zKpVq5g0aZJiddyrqKgoBg0aRNu2bdm+fXudWP1wPzQa\nDd999x1vvfUWmZmZAPj6+jJnzhyGDRsmffUNkLW1tW4G/Z/dvHmTs2fP/q3VTxVjY2NSUlK4du0a\nP/30E4WFhUDlTPgOHTrQtm1b2rRpQ5s2bfD09KR58+YYGxvToEEDAgICCAgI0I2Vnp7OiRMniIqK\n4sSJE7z77rtkZ2djZGREixYt8PHxoX379nTo0IEOHTrQunVrTEwe7LROpVLRqFEjGjVqdE+PLygo\nIDc3l/z8fEpKSigrK6OoqAiNRkNBQcEdn2NkZISdnR3W1tZYWlpia2uLjY0N1tbWWFlZ3XOtqamp\nHD9+nIiICN2mwyUlJVhZWVFWVoZWq8XT0xNPT09ycnI4efIk4eHh9O3bl6+//ppRo0ZhY2Nzz8cT\nd9e+fXs8PDxISkpi4cKFLFu2TOmShBBCiHojMDCQl19+mXPnzuHr63vf40jAL4QQBszZ2RkTExPS\n09OVLkUx5ubmEvALRWfwf/zxxyxatIg1a9YwceJERWqojvDwcAYOHEhAQAChoaHVCubqioqKCtat\nW8f//d//kZGRgUql4oknnmDOnDn4+fkpXZ6ogxwdHenTpw99+vS57f6kpCRd6F8147/q/1RjY2NM\nTExITk4mMTGRdevWkZ+fD1T+39O6dWtd4O/l5aW7AODq6sqQIUMYMmSI7jiJiYnExMTojrVp0yYW\nLlyo2y+gdevWuk10q25t2rS5bQWBPtnY2NR4SK5Wq/njjz84f/488fHxnDt3joiICK5fv45KpcLG\nxobS0lJd/1pfX18sLCxISUkhNjaWq1evEhQUxMqVK/nPf/5Tby9E1gcffvgh48eP54cffpCAXwgh\nhKgGHx8fHB0dOXTokAT8Qggh7o+RkRFOTk7cuHFD6VIUY25uruvvKwxXXl6eIv3jV65cyezZs1my\nZEm9CPcjIiIYNGgQQUFBbNiwod71o9dqtYSGhvLKK6+QmpqKkZERo0aN4qOPPnoo9g8Qta9qY9rB\ngwfr7vun/v5Vs/qNjY2xt7entLSU2NhYoqKiyMzM1PXAd3BwoGXLlnh4eNy2Ca6npyf9+/fX9bgv\nKSkhLi6O+Ph4Lly4QEJCAvv27WPZsmUUFRUBYGVlhYeHB82aNbvt1rx5c5ydnXF1daVhw4a1/K79\nT15eHteuXSMpKYlr165x7do13Ua6Fy9eRK1Wo1KpaNCgAYDuPXR3d8fLyws7Oztyc3M5deoUBw8e\npGXLlgwYMIA5c+YQFBQkM/VryZgxY5g4cSIFBQWkpqbe80oQIYQQwtAZGRnRq1cvwsLCmDVr1n2P\nIwG/EEIYOFdXV4OewW9hYSEBv1CkRc+mTZuYNm0a8+bNqxcb6p4+fZrBgwfTs2dPfvrpp3oX7kdF\nRTFhwgQSEhJQqVSMGDGCkJAQCfaF3v1Tf//i4mIuXryo2+T2woULXLp0iRs3bujCfSsrK2xsbCgu\nLiY+Pp7Tp0+Tk5NDbm6ubpyGDRvqgv+qX9u2bUvfvn1xcXHB2dlZt6FuUlISV69eJSkpiYSEBA4c\nOMC1a9duW7lmamqKs7MzLi4uuLu7Y2dnh62tLXZ2djRo0EB3+/Omv3Z2dnfsE5ufn095eTlqtZrC\nwkLUajXZ2dm6W05Oju7rlJQU3YqGqtduaWmJSqWiqKhItz9Ow4YN8fT0xNXVFa1Wq5uhf/jwYVxc\nXOjRowcff/wxAwYMoHXr1vr7gxT3zMjIiJEjR7JhwwbeeustvvvuO6VLEkIIIeqNSVbSMgAAIABJ\nREFUwMBAFixY8EB9+CXgF0IIA+fm5mbwAX9VsCIMV2236NmzZw8TJkzgxRdfZN68ebV23Pt15swZ\nBgwYQNeuXfn5558xNzdXuqR7lpaWxtSpU9mxYwcAAwcOZOnSpbRq1UrhyoShsbKyolOnTnTq1Olv\n30tLS+PixYu6CwAXL14kISGB1NRU3f9RJiYmODk5YWdnh0ajISEhgbNnz5Kbm0tubu5tG9+amJjg\n7OyMs7Mz7u7uuLi40KlTJwYNGqSb1V5SUkJJSQmlpaUUFhZSUFBAXl4eRUVFZGVlkZubq7u/sLBQ\nt6HwvTA1NcXCwgIjIyOsrKwwNzfXnbBqNBpKS0tvq1elUuHg4ECjRo1wcnLCwsKCW7dukZaWxqVL\nl4iMjMTY2Jj27dvTvXt3XnrpJfz9/SXQr0OWLl3Khg0b2Lx5swT8QgghRDX06dOHWbNmERMTc8fP\nifdCAn4hhDBwbm5u0qJHZvAbvNoM+I8dO8bIkSMZN24cn3/+ea0c80FER0czYMAAOnfuXK/C/dLS\nUt59910++eQT1Go1bdq0Ye3atXTt2lXp0oT4G3d3d9zd3QkMDLztfq1WS1paGklJSX+7JScnc/36\ndd0FgKqQ3NbWFktLSywtLTExMSErK4sbN25w69Yt8vLyKCkpobCw8LaA/U5sbGx0m/dWtfSrag9U\nVFSkO25BQcHfxlKr1boZ+CUlJTg5OeHs7IyNjQ3m5ua6nyNarZbc3FzS0tK4du0aKSkpQOXmxL6+\nvvTp04eXXnoJHx8f2rVrh4WFxQO8y6ImOTk5YW1trdts+UE3fhZCCCEMRYcOHXBwcODo0aMS8Ash\nhLg/rq6uxMbGKl2GYqRFj4DKgL82NmCMi4tjyJAh9O/fn1WrVqFSqWr8mA/iwoUL9O/fHz8/P7Zt\n21ZvwrWwsDDGjBlDRkYG9vb2fPHFF0yYMKHOv99C/JVKpaJRo0Y0atSI7t27/+37VRcArly5Qmpq\nKunp6WRmZpKenk56ejoZGRnk5OSQlpam61//Z3Z2dpiZmWFhYYGlpSXGxsaYm5vrWnBZWFhgZmaG\niYkJZWVlVFRUAJUrBExMTCgvL9ctJy8uLtbdd+vWLYqKinSrAlJSUnThPVRePGjcuDGurq60adOG\nQYMG0apVK1q3bk2rVq1uawck6o8JEyawYsUKZs6cyddff610OUIIIUS9oFKp6NKlCxEREcyYMeO+\nxpCAXwghDJyrq6tBz+C3sLCgoKBA6TKEgsrLyyktLcXS0rJGj1NQUMDIkSPx9vZmw4YNdX52Y1lZ\nGWPGjMHLy4tffvmlXoT7hYWFPPfcc2zcuBEjIyNeffVV3n///XpRuxD3488XAP7NrVu3yMzMJC0t\njczMTG7dukVubi6lpaUUFRWRn5+vm91fWFhISUkJ+fn5FBcX/2MrOxMTE13Ln8aNGwPQoEED7Ozs\nsLOzw97eXndzcnLCzc2NRo0aYWVlpb83QdQZX331FStWrOCXX36554D/yJEj9O3bF41GU8PVCSGE\nEHfXpEkTrl27psix/f39Wbt27X0/v26fWQohhKhxVT34H2RDl/pMevCLqlChpgP3mTNnkpOTw/79\n++tF4LxmzRouXbpEfHx8jV/80Ift27fz9NNPk5eXR6tWrdi+fTtt27ZVuiwh6gxLS0uaNWtGs2bN\nlC5FPKSMjIwwMjIiKyvrnp+TlpaGRqMhNDS0BisTAhYvXgzAyy+/rHAlQt/GjBnDyy+/jL+/v9Kl\niHosIiJC93NCCd27d2f+/PncuHEDNze3aj9fAn4hhDBwrq6uaDQasrOzcXJyUrqcWic9+EVVwF/V\nkqImHDlyhO+//54tW7boZrnWZVqtlpCQEJ599llatGihdDl3VVhYyJgxY9i1axempqZ88sknvPLK\nK9KORwghFGBtbU1BQQFarbZaP4dHjx5dg1UJAZs2bQLk79rDqlu3bvJnKx6IVqtV9Phdu3bF2NiY\niIgIhg8fXu3nG95UTSGEELepujqcnp6ucCXKkB78omojyJqawV9RUcHMmTMJDg6+rw9rSjh69CiJ\niYk8//zzSpdyV8ePH6d58+bs2rWLrl27kpyczKuvvirhvhBCKMTV1RVAsRYHQgghRH1ka2uLt7c3\nERER9/V8CfiFEMLAVZ2IGWoffmnRI2q6Rc/PP//MuXPn+PTTT2tk/Jrw448/0q5dO3x8fJQu5Y60\nWi1vvfUW/v7+5Obm8u677xIZGYm7u7vSpQkhhEGrWvV1vwGFEEIIYai6dOnCiRMn7uu5EvALIYSB\nc3R0xNTU1GBn8EuLHlGTLXq0Wi0ffvihbnPd+qCsrIxNmzYxceJEpUu5o8zMTDp16sSHH36Iu7s7\nsbGxzJ07V+myhBBCAB06dAAk4BdCCCGqy8/Pj9OnT1NRUVHt50rAL4QQBk6lUuHi4mKwM/gl4Bc1\n2aJn//79nDp1irffflvvY9eU3bt3k5OTw/jx45Uu5W8OHjxI8+bNiYmJYdKkSSQlJclGukIIUYe0\nbNkSgLi4OIUrEUIIIeoXPz8/8vPzSUxMrPZzJeAXQgiBm5ubwc7glxY9oiZb9CxfvpxevXrh6+ur\n97Fryq5du3jsscdo2rSp0qXc5oMPPqB///5UVFSwY8cO1qxZU6MbIwshhKi+qo3kDfVz5YNQqVR3\nvN3p+02aNCEzM/OexxFCCFH3+fj4YGpqyqlTp6r9XAn4hRBC4OrqarAnYrLJrqiawa/vsDgtLY3t\n27fX+Y1q/2rfvn0MGDBA6TJ0NBoNo0eP5p133sHFxYX4+HgGDx6sdFlCCCHuwNHREYC8vDyFK6l/\ntFotWq32nn6fkpLC+PHjKS8vv+s4fx1DCCFE3WVhYYG3t7cE/EIIIe6Pm5ubwbbokYBf1NQM/u+/\n/x4bGxtGjRql13FrUnJyMomJifTr10/pUoDKfvuPPPIImzdvpnfv3ly5ckW3gaMQQoi6p2HDhgAU\nFRUpXMnDzc3NjQMHDsgeNEII8ZDx8/OTgF8IIcT9cXV1NdiA39zcHLVafccZUMIw1NQmu+vXr2fM\nmDGYm5vrddyatHfvXqysrPD391e6FE6fPo2HhweXL19m3rx5hIWFYWlpqXRZQggh7qIq4Jf2hzVr\n48aNmJiY8OGHH7Jjxw6lyxFCCKEnHTt25OzZs9V+ngT8QgghDL4HP8iJqCGriU12L1y4QExMTJ3c\nqPZu9u/fT0BAgOIXJbZv307Xrl1Rq9X89ttvzJ8/X9F6hBBC3BtbW1sAysrKFK7k4da7d28WLlyI\nVqvl6aef5sqVK0qXJIQQQg+8vb25efNmtfMZCfiFEELg7OxMVlaWQfborAr4pU2P4aqJFj0bNmyg\nSZMm9OzZU29j1rSKigoOHjyoeHuer7/+mieeeAJzc3NOnjzJ448/rmg9Qggh7p2VlRXwv4vnoua8\n/vrrDB8+nNzcXEaOHCmfZYUQ4iHg7e0NQFxcXLWeJwG/EEIIHB0d0Wg0BrkhWtVMZZnBb7hqokXP\ntm3bGDZsGEZG9eej1sWLF8nKyiIwMFCxGl599VWmT5+Os7MzCQkJ+Pj4KFaLEEKI6lOpVEDlRWMJ\n+WvemjVraN26NWfOnGHGjBlKlyOEEOIBubu707BhQwn4hRBCVJ+TkxMAWVlZCldS+2QGv9B3i55r\n164RExPD0KFD9TJebYmIiMDS0lKxUH3YsGF89tlntG/fnuTkZNzd3RWpQwghhH7k5OQoXcJDz87O\nji1btmBpacmqVatYs2aN0iUJIYR4QG3btiU+Pr5az5GAXwghhAT8SMBvyPTdomf79u1YW1sTEBCg\nl/Fqy/Hjx/Hz89P7ZsP/RqvVMmDAALZt28bjjz9OTEyM7t+lEEKI+qdqFv/NmzcVrsQw+Pj48PXX\nXwPw4osvEh0drXBFQgghHoS3t7fM4BdCCFF9VQG/IZ6IScAvqmbw6yvY3rNnDwMGDFB8o9rqOn78\nON26davVY2q1Wvr378/+/fsZOnQou3btqldtjYQQQvyz3NxcpUswGM888wxTp07l1q1bjBo1St57\nIYSox9q2bSsBvxBCiOqzsrLC0tLSIGfwSw9+oc8Z/BUVFRw5coQ+ffo88Fi1qaioiPPnz9O1a9da\nO6ZWqyUwMJCDBw8ybtw4fv3111o7thBCiJonIXPt+uKLL/Dz8yMxMZFnnnlG6XKEEHq0c+dOnnji\nCdzc3DAzM8PNzY2hQ4fyyy+//O2xKpXqjrd7fVx1bqJmeHt7k56eXq18RgJ+IYQQQOUsfkMM+GUG\nv9DnJrvR0dHk5OTUu/Y8J0+eRKPR1FrAX1FRQZcuXfj999+ZPHky69evr5XjCiGEqHlVoY/04K9d\n5ubmbN68GQcHB7loboB69epFr169lC5D6JlarWbChAk89dRT9O3blxMnTlBYWMiJEyfo168fzzzz\nDCNHjuTWrVu652i1WrRa7T/+/k733+nrfxrnn8YT+uPt7Q1QrT78EvALIYQAwNHRUVr0CINU1aLH\n2Nj4gcc6fPgwDRs2pH379g88Vm2KjIzE3d2dpk2b1vixtFotfn5+nDx5khkzZrB69eoaP6YQQoja\nZWRkJDP4FeDh4cG6detkZq0BqqiooKKi4r6fLzOy66aZM2cSGhrK/v37eemll2jatClmZmY0bdqU\nWbNmsXfvXn799VemTp2qdKlCj5o0aYKdnV212vRIwC+EEAIw3Bn80qJHaDQaTExM9HJSExYWRmBg\nYL3rI3/ixIlam73fu3dvoqOjefnll1m6dGmtHFMIIUTtkoC/+v4asN7t93cLYwcNGsTbb79ds8WK\nOufo0aMcPXpU6TKEHh0/fpwVK1YwadIkOnfufMfHdO3alYkTJ7Ju3TqOHDnywMeszsx8mcVfc1Qq\nVbX78Nevs08hhBA1xsnJySBn8Jubm2NkZCQz+A1YVcD/oKr679e39jwAp0+f/scTB30aNmwY4eHh\nPP3003z22Wc1fjwhhBDKUKlUEvBX01/bX/xbe4y7hWvvvfeehG9C1HPLly8HYNSoUXd93OjRowFY\nuXJljdckao+3t7cE/EIIIarPUGfwQ2XILwG/4VKr1Xrtvx8YGPjgRdWi3NxckpKS8PX1rdHjTJky\nhW3btvHEE0/w/fff1+ixhBBCKEtm8AtD8udNRxMTExkxYgQODg5/W2mRkZHBtGnTaNKkCWZmZjRu\n3JipU6dy48aNv415/vx5Bg0aRIMGDbC1tSU4OJi4uLg7bnD6T5ue5uXl8fLLL9OyZUssLCxwdHSk\ne/fuvPbaa0RFRd32/L+O9dxzz9021r3Wfq/vhfh3VTPyO3TocNfH+fj4AMgKjoeMBPxCCCHui6Oj\nowT8wiDpawZ/fe2/f/bsWbRaLR07dqyxY7zyyit8++239OjRg19++aXGjiOEEKJukIBfGJI/r5aY\nNm0ar732Gqmpqfz222+6+9PT0+nSpQs///wzq1evJjs7mw0bNrB37166d+9+27+XxMREevbsSUxM\nDL/++iupqanMnTv3tj7rf13dcSfPPPMMn3/+OS+99BI3b94kLS2NNWvWcPny5dtaM95ppci33357\nX7Xfy3sh7k1qaipQeZ5+N1XfT0tLq/GaRO1p3bo1aWlpFBcX39PjJeAXQggBGO4mu1C50a704Ddc\nZWVlmJmZPfA4R44coXfv3vWu/350dDSOjo40adKkRsZfuHAhixcvpmPHjnrpDSqEEKJu02q10qJH\nGKy33nqL7t27Y2lpycCBA3WB97x580hOTmbhwoUEBQXRoEEDevXqxeLFi7ly5QohISG6MebPn09u\nbi6LFi2ib9++NGjQgB49evDWW29Vq5ZDhw4B0LhxY6ytrTEzM6NNmzZ8+eWX1RqnOrXfy3sh9OvP\ne3OIh4eHhwdarZbk5OR7enz9OgMVQghRY6p68BviBy8LCwuZwW/ASktLdZstP4ioqCi6deumh4pq\nV0xMTI3N3t+8eTPvvPMOLVu25OTJk3LiIYQQBsLIyIjs7GylyxCi1nXp0uWO92/fvh2AgQMH3nZ/\n7969b/s+wL59+wDo27fvbY/t3r17tWoZOXIkUNmjvVmzZjz33HOEhobi5ORUrXO+6tT+Z//0Xoh7\n4+7uDvCvP0urVuE3atTotvurJh2Vl5f/43PLy8vr3eQkQ9GiRQsAkpKS7unx8qcohBACqAz4NRoN\neXl5SpdS66RFj2HTxwz+9PR0UlNT8fPz01NVtSc6OrpGAv7z588zfvx4bG1tOXPmDMbGxno/hhBC\niLrJyMjojn3FhXjYWVlZ3fH+jIwMoDKE/XOfeicnJ6CyLU+VqsC26ntV7O3tq1XL6tWr2bJlCyNH\njqSwsJBVq1YxduxYPD09iY6OvudxqlP7n/3TeyHuTa9evYDKdpp3U/X9qgsuVWxsbADuen6fk5OD\nra3tg5QpaoitrS0ODg4S8AshhKieqg9ohtiHX1r0GDZ9BPxVs9M7deqkp6pqh0ajIS4uTu8b7GZn\nZ9OtWzdUKhUnTpyQEwchhDAgWq0WY2Nj0tPTqaioULocIeoEV1dXoPIzUlWf+z/fioqKdI/9p/Oy\n+zlPGzFiBJs3byYrK4vff/+d4OBgrl69yuTJk2ukdqE/L7zwAgBbtmy56+M2bdp02+OrtGnTBoDY\n2Nh/fG5sbCxeXl4PUqaoQR4eHhLwCyGEqJ6qzXkk4BeGpqys7IFb9Jw6dYoWLVr86yZYdU18fDwl\nJSV6ncFfXl6Or68vRUVF7Ny5E09PT72NLYQQom7TaDRA5Qx+jUZjsPs7CfFXw4YNA+Dw4cN/+96R\nI0fw9/fX/T4oKAiAAwcO3Pa4o0ePVuuYKpWK69evA5X/Jnv16sXGjRuBys+Af1Y1216tVlNcXHzb\n6oHq1C70p1u3bjz//POsWbOGkydP3vExx48f5/vvv+f555/nscceu+17Q4cOBWDNmjX/eIxVq1Yx\nePBg/RUt9EoCfiGEENXm7OwMYJAnYtKD37CVlpY+8Az+U6dO1cv2PDExMZibm/PII4/obcxu3bpx\n/fp1Pv30UwYMGKC3cYUQQtR9VZ+nqno6S5seISrNnz8fT09PXnzxRTZv3szNmzcpKChgx44dTJo0\niY8++ui2x9rb2zN79mwOHjxIYWEh4eHhrFixotrHfe655zh//jylpaWkp6ezaNEiAIKDg297nI+P\nD1C5p9T27dtvC+2rU7vQr6VLlzJ69GgGDBjAF198wfXr11Gr1Vy/fp0lS5YQHBzM2P/P3p3HRVXv\n/wN/zcAgMmzDIsgiYJBabpjXNfRaCbmhYui1LLTceHDLLHP7mXkfZVp9Lc3uzRa1TEtQS3MpDUoU\nRKXUrgpuoCCr7MuwCMzn94f3TAwzw5wzzMIw7+fjweMBZz7nnPc5Z87nc+bNZz6fWbOwdetWtXWX\nLFmCRx55BF999RXi4uJw5coVNDY2orGxEZcvX0ZsbCzS09Px6quvmuHICB9BQUG8E/y2xg2FEEKI\npejevTu6d+9ulT34aQx+62aIIXr++OMPvPzyywaKyHSuXLmCvn37QiKRGGR7CxYswO+//46IiAj4\n+fkpvzJMCCHEMtnY2GDixImwt7fnVZ77RiSX4M/Pz8eAAQN0rkftBTG2vLw8+Pn5GWXbIpFI7fe2\nk9h6eHjg3LlzeOedd7B8+XLk5eXBzc0Nw4YNw549ezBixAhl2d69eyMlJQVvvPEGIiMjIRaLMXbs\nWHzyySd46KGH1CZFbbt/bt8pKSn44osvMHnyZOTn58PBwQGBgYFYv369WlJ369atmD9/PsLDwzFw\n4EB8/fXXesXO51wQ/iQSCfbs2YOjR4/is88+w/r161FRUQFXV1cMGzYMu3fvxuTJkzWu6+TkhLS0\nNGzevBmHDx/G7t27IZfL4eDggODgYEyePBnnzp3TOpRm62vZ+m+6nqYTEBCA3bt38ypLCX5CCCFK\nHh4e1IOfWJ2ODtFTXFyM/Px8i+zBn5GRgUceecQg2/r111/x5ZdfAgCOHz+O48ePG2S7hBBCzOvA\ngQOIioriVZZL8ItEIri5uWmdfLOtmTNn6h0fIXxFR0cbZbt8E54ymQybNm3Cpk2bdJZ99NFHcezY\nMZVlBQUFANQn39W2/9GjR2P06NG8Yhs6dGi7E+/yjZ2Sv8YxadIkvYbScXZ2xtq1a7F27VrB69K1\nNL/AwEDcu3cPcrkcUqm03bKU4CeEEKIkk8lQUVFh7jBMrlu3bjQGvxXr6BA9f/zxh0VOsAs8SPDH\nxMR0eDsNDQ2YNm0a7OzscP/+ffpAQHTiknkJCQlmjoRoQteHcEQikXJcfT645ynGGIKDg3Hr1i3l\n3zt27EBCQgJ+/PFHtX+sU7tBjM3S/okkEolw8+ZNBAcHK5edOnUKADBu3DhzhUUIMaHAwEAAQE5O\njs5OWTQGPyGEECUXFxdUVVWZOwyTs7OzQ1NTk7nDIGbS0SF6/vjjDwQGBlrcBLsNDQ24c+eOQXrw\nR0VFoaamBrGxsQaIjBBCiKW6f/++8veQkBDcunULly5dwvDhw7FgwQKcOHECFy9eNGOEhFiOuLg4\nZGdnQy6XIykpCStWrICzszPWrVtn7tAIISYQFBQEALzG4acEPyGEECVrTfBLJBKVD6TEunR0iJ4/\n//zTInvvZ2ZmoqWlpcMJ/u+++w4//fQTQkNDMWrUKANFRwghxBJxPfgVCgUCAgKQnp6OoUOH4uLF\ni2CMQSKR4Pz582aOkpDOLzExEY6Ojhg1ahRcXV0xe/ZsjBgxAufOnUPfvn3NHR4hxAScnJzg5uaG\n27dv6yxLQ/QQQghRcnFxQWVlpbnDMDluWBFinRobG+Hg4KD3+hkZGXjmmWcMGJFpZGRkQCKRqHz1\nW6iysjIsXrwYAPD5558jOzvbUOERQgixQFyCv7GxEdu3b0dZWRlaWlqUrysUCpw7d85c4RFiMZ58\n8kk8+eST5g6DEGJmgYGByMnJ0VmOevATQghRstYe/DREj3XryBA9TU1NuHXrFvr162fgqIwvMzMT\nDz/8MCQSid7bWLFiBRobGzFmzBgMHTrUgNERQgixRNykutXV1bh3757a+P0tLS1ITU01R2iEEEKI\nxenVqxfu3r2rsxwl+AkhhCi5urpabYKfevBbr44M0XPr1i00NTVZZII/IyOjQ3GfP38eO3fuRFNT\nE5YsWWLAyAghhFiiW7du4fnnn1f+rW3i3NzcXJSXl5sqLEIIIcRieXt7o7i4WGc5SvATQghRstYe\n/DQGv3VrbGzUuwd/RkYGxGIxHn74YQNHZXwZGRl6j7/f3NyMRYsWISAgAD4+PoiMjDRwdJ2fSCTS\n+KPpdT8/P5SUlPDeDtGuoaEBa9aswUMPPQRbW1s6Z4R0IgEBARg7dqzOcowxpKenmyAiQgghxLJ5\neXmhqKhIZzlK8BNCCFGy1gQ/9eC3bh3pwZ+ZmYnAwMAOjeFvDvfv30dWVpbePfi3bt2Ka9euoaGh\nATExMbC1tb5pnRhjKr1T2/s7Pz8fs2fPVhmHWlO5ttsg6t566y2sX78eL774Iqqrq3H8+HFzh0QI\n+R+JRIJ//vOfyr/FYs3pBjs7OxqHnxBCCOHBy8uLevATQggRxsXFBdXV1VaXYJJIJDQGvxXryBj8\nmZmZFjk8z40bN9Dc3KxXD/6amhq8++67eOaZZ1BYWIh//OMfRoiwa/H29kZSUhLWrl1r7lAsXnx8\nPAAgNjYWDg4OCA8Pt7o2i5DOjOsw0b17d0ilUo3/AG5qasLZs2dNHZpRdNZvERkqrs56fIQQYi28\nvb1RUVGhnMReG0rwE0IIUXJxcUFzczPq6urMHYpJUQ9+69aRIXoyMzP1HubGnK5fvw6xWIyQkBDB\n627dulX5T5EBAwagf//+Roiwa4mPj4etrS02bNiAI0eOmDsci8ZNMubm5mbmSAghmnDfVBKJRLhw\n4QICAwPVJnNnjCEtLc0c4RFCCCEWxcvLC4wx3Lt3r91ylOAnhBCi5OzsDABWN0wPJfitm749+BUK\nBa5fv26xPfj9/f3RvXt3QevV1tZi8+bNeOWVV3D06FHMnDnTSBF2LWPGjMG7774Lxhief/553L59\n29whWSyFQmHuEAgh7eC+UaNQKBAcHIwLFy7gqaeego2NjUq5yspKqgsJIYQQHby9vQFA5zA9lOAn\nhBCiJJVKAQByudzMkZgWJfitm749+HNyclBXV2eRCf6bN2/qNTHw5s2bcf/+fYwZMwbFxcWYNm2a\nEaLrmt544w1Mnz4dlZWVmDFjBhoaGswdksXRNInxypUrATz4x/TSpUvRu3dv2Nvbw93dHaNGjcKy\nZctw/vx55Xp8ywFAUVERFi1aBD8/P9jZ2cHPzw+LFy9W+4ClbYJkPsuzsrIQFRUFmUymVrahoQEb\nN25EaGgopFIp7O3t0bdvXyxevFhteJN79+4hNjZWGauvry8WLlzIa1I2QoyB68nv5OSEw4cPY9my\nZSqvi8VitXtOCCH3hz738t27dzF16lQ4OTnBy8sLc+bMQVlZmVr5tuvOnz9f4/bau9cTExMRGRkJ\nmUwGe3t7DBkyBHv37lU7Zr71l664+GpvO5omiG8dc2BgoMpxti6XkZGBp59+Gs7OznB0dMSkSZOQ\nmZmptn+q1wghBOjZsycA6Kz7KMFPCCFEydHREYD1JfhpDH7rpu8kuxkZGQCAPn36GDoko7tx44bg\nBH9VVRU+/PBDvPrqq0hJSYG/vz8NzyPQzp07ERwcjIsXL6pMREn40TSJ8caNGwEAMTEx2Lx5M5Ys\nWYKysjIUFhZi586dyM7OxvDhw5Xr8S1XVFSEYcOG4ciRI9i1axfKysrw9ddf49ChQxg+fLhKYlDb\nHAB8lsfGxmLZsmUoKCjAsWPHlMtramoQFhaGd999F3FxccjOzkZpaSm2bduGU6dOYeTIkcqyxcXF\nGDZsGH744Qfs2LED5eXl2Lt3L06cOIFRo0ahsrKS7ykmpMNa9+Dn2NjYYOPp6w78AAAgAElEQVTG\njdixYwckEglsbGxgY2Ojd4JfyP2h7728atUqbNy4EXl5eZgxYwb27Nmj9k8KTXXSl19+qfF1bfc6\nAIwfPx42Nja4efMmbty4AQ8PD8yePVttEnG+9ZeuuPhqbzuMMSQmJgJ4kHxqbGxUmZNnzZo1mDx5\nssok8pwFCxbgzTffREFBAQ4dOoQLFy5g9OjRuHPnjrIM1WuEEPJA9+7d4eTkpPufm8zKAGDx8fHm\nDqPD4uPjmRVePkKIkRUUFDAA7PTp0+YOxaR27tzJHBwczB0GMRNHR0e2fft2wet9+OGHzNvb2wgR\nGZ+npyfbsmWLoHU2b97MHB0dWUVFBXvsscfY4sWL1cpY4/MJgHaPue1rf/75J+vevTsDwHbs2KG1\nXFcXHR3NoqOjBa+n7Xw7OzszAGzfvn0qy/Pz81XK8y23YMECBoB98803KuW++uorBoAtWrSIV1y6\nlv/2228aj/O1115jANjmzZvVXrtw4YLKNhctWsQAqNVj33//PQPAVq9erXEf7dH3+nQmR44cYZGR\nkczLy4tJJBLm5eXFJk+ezH744Qe1stz1aPvDt5yQH0sj9PPzN998w0QiEQPAFAqF2utnzpxh7u7u\nDAAbPny4Xu2GkPtD33v55MmTymW3b99mAJiPj4/a/vi0Ae3d61yZ27dvK//OzMxkAFhYWJhKOb71\nF5+4+NK1nUGDBjEA7Ouvv1ZZPmDAAPbLL79o3NaxY8dUlnPXIiYmRrmM6jUiRFfJ8xHz6syfY4KD\ng9k777zTXpH3qQc/IYQQJRqih1ij+vp6wWPRA0B2djYeeughI0RkXBUVFSgpKRHcg//LL7/Es88+\ni8bGRly4cAETJ040UoRd28CBA/Hpp58CAOLi4nDp0iUzR9Q1zJgxAwAQHR2NXr16Yf78+UhISICH\nh4dKz1G+5bjJkJ944gmV/Tz11FMqr3fUsGHDNC7fv38/AGgcBis0NFQl1sOHDwMAJkyYoFJuzJgx\nKq9bi6amJsyZMwfPPfccnnjiCaSnp6O2thbp6el48sknERMTgxkzZqC+vl65Dvtf72Rtf2tarul3\nbdvRtr2urrm5WW3ZyJEjcfHiRfTv31/jsCx8CLk/9L2XhwwZovzdx8cHAFBYWKhXvID2ex148D4J\nDAxU/h0SEgLgr28KcvjWX6a0dOlSAMBHH32kXPbrr79CoVAoz3Fbo0aNUvmbK3fixAnlMqrXCCHk\nL97e3jQGPyGEEP64BH9tba2ZIzEtOzs7NDc30+SNVuj+/ftoaWnRO8Hfu3dvI0RlXDdu3AAAQQn+\nlJQUXLlyBQsWLEBycjJsbGwwduxYY4XY5cXExGDhwoWor6/HM888Q0MNGMCOHTtw4MABzJgxA7W1\ntdi+fTtmzZqFkJAQlX+i8C1XUlICAPDw8FDZD/f3vXv3DBK3g4ODxuVcIpGbWK09XCw+Pj4q41xz\nsWZlZRkkVkvx8ssvIyEhAYmJiViyZAn8/f1hZ2cHf39/vPrqqzhx4gR+/PFHLFy40NyhdkmtE83a\nOk/4+/vj3LlzakPQ8CXk/tD3XnZyclL+zs3T05EkurZ7vbKyEqtXr0a/fv3g5OQEkUgEW1tbAFAb\n859v/WVKs2fPRs+ePXHp0iX8+uuvAIAtW7ZgyZIlWtdxcXFR+Zu7Fty1AqheI4SQ1ry9vWkMfkII\nIfzZ2NjA3t7e6nrwSyQSAKBx+K0QN9GpPgn+27dvW2yC387ODgEBAbzX+eKLLzBo0CAMHToUp06d\nQmhoKJydnY0YZdf38ccf47HHHkNWVhZiYmLMHU6XEBUVhf3796O0tBSnTp1CREQEcnNzMW/ePMHl\nevToAQAoLS1VWZf7m3udw00k2bodqaqq0vtYvLy8APDrMcyVLS8vV+sxzhizqjb93Llz+OyzzzB3\n7lwMHTpUY5nhw4fjhRdewO7du3H69OkO71NI0tcaevG3Psb2nqscHBwwYsQIvfYh5P4Qei+b2syZ\nM7FhwwbMmjULOTk5Or/twbeeMxU7OzvlnDIffvghsrOzkZaWhjlz5mhdp+0/Lrhr4enpqVxG9Roh\nhPzFy8uLevATQggRRiqVWt1DM9czi4bpsT7cEA1CE/yMMdy5cwdBQUHGCMuobt68ieDgYNjY2PAq\nX1lZif379yM2NhYAkJycTL33DaBbt27Yv38/ZDIZfvzxR3OHY/FEIhHy8vIAAGKxGGFhYYiPjwcA\nlWFA+JabMmUKACApKUllP9ykktzrHK4nceuE48WLF/U+Hm4ojoMHD6q9dvbsWZUJNblhSk6ePKlW\n9vTp0yoTjnZ127ZtAwA888wz7ZaLjo4G8OCfl8Sw+PTg7ygh94fQe1kormd+U1MT6urq1L4poEtq\naioA4PXXX4ebmxsAoLGxUWNZvvWXIeISsp3FixfDwcEBx44dwyuvvIL58+e3+1zFHTOHuxbh4eHK\nZVSvEULIX/gk+G1NFAshhBAL4ejoaJVD9ACU4LdG+ib4CwoKUF9fb7E9+IUMzxMfHw+RSIRnn30W\nZWVluHr1KjZs2GDECK1HYGAgdu/ejcmTJ1tFz15jmz9/PjZt2oTg4GBUVlZiy5YtAICIiAjB5f71\nr3/h559/xsqVK+Hr64u//e1vSE9Px6pVqxAQEIB169apbHP8+PHYtWsXPvjgA7zzzjsoLCzEl19+\nqfexrFu3DklJSVi7di2kUikiIyMhlUqRmpqKl19+WTmPA1f2xIkTiIuLQ0tLC8aNGwc7OzskJydj\nyZIl2LFjh95xWBquR/6AAQPaLTdw4EAA6olG0nGt/3lsrG9GCrk/hN7LQg0cOBBnz57F+fPnkZeX\nJzjxHBYWhuPHj2PDhg1Yvnw5FAoF1q9fr7U833quo3EJ2Y6bmxtiYmLw6aef4vjx48p/tGmzbds2\nuLm5YfDgwTh//jxWrVoFmUymci2MVa/l5eVh3759eq1LOrezZ88qv01HiD7Onj1r7hC0cnd3R3l5\nefuFOjaPr+VBF5lduzPP7kwIsWyPPPIIe+utt8wdhkmdOnWKAWAFBQXmDoWYWEZGBgPALl++LGg9\n7j2Tl5dnpMiMJzQ0lC1fvpx3+YkTJ7KoqCjGGGOHDx9mIpGIlZeXayxrTc8nADT+tPe6NmvWrLGa\n88aJjo5m0dHRgtZp75ympKSwmJgYFhgYyCQSCXNxcWGDBg1i69evZ3K5XHA5xhgrKipiixYtYj4+\nPszW1pb5+PiwhQsXsqKiIrXYSkpK2LPPPss8PT2ZVCplU6ZMYbm5uR16b9TU1LA1a9awPn36MDs7\nO+bu7s7Cw8PZqVOn1MqWl5ez1157jQUFBTGJRMK8vLzYlClTWFpamqBzzNHn+nQG3bt3ZwBYY2Nj\nu+UaGhoYANa9e3eV5bru1dbldL3eVe5poZ+fExISlMefnZ2ts7y+7YaQ+4Pvvcy3Pm8tPT2dDRo0\niDk4OLARI0aw69eva11P03EWFxez559/nvXo0YPZ2dmx/v37K8+JvvWcrriE4LudGzduMLFYzP7x\nj39o3RZ3PLdv32aTJ09mTk5OTCqVsgkTJrCMjAy18sao17S13fRDP/RDP9xPZ7Rnzx4mkUiYQqHQ\nVuR9EWPW1V1IJBIhPj4eM2fONHcoHZKQkIBZs2ZRby9CiMENGzYMY8eOxQcffGDuUEzm7NmzGDly\nJHJyctCrVy9zh0NM6MKFC3jsscdw69YtPPTQQ7zX+/rrr7F48WLI5XKIxZYz4iFjDM7Ozvjoo48w\nf/58neXr6+vh4eGBrVu34sUXX8TatWsRHx+P69evayxPzyeEL+5ZPCEhwcyREE0s9fo4ODigvr4e\njY2Nym/naXL//n1069YNDg4OKsMScr0/ddVhIpGo3TJ8t2MJhH5+Pnz4MCIjIwEA169f1/mNMWo3\nugaFQgE/Pz98//33WudWMPd9Yan1GtGtq+T5iHl15vbop59+wsSJE1FTUwNHR0dNRT6wnE+khBBC\nTMKax+CnSXatDzdEj729vaD1bt++jaCgIItK7gPAvXv3UFtbi+DgYF7lExMTUV9fj6effhoAkJ6e\njr/97W/GDJEQQvTWs2dPAND5NXZuUk8fHx+V5Vyd3tLSonXdlpYWi6v7Tal1e0pDH1qPo0ePwt/f\nX++JkwkhhGjn6uoK4MHcaNrQkwkhhBAVdnZ2Wif36qq4HkUKhcLMkRBT03cM/uzsbIscfz8rKwsA\neMd+9OhRDB06FD4+PmCMUYKfENKphYWFAQD++9//tluOe33MmDEqy52cnAAAVVVVWtetqKiAs7Nz\nR8Ls0lq3p9RxomsTiUQ4e/YsKioq8K9//Qv/7//9P3OHRAghXZJMJgPw4BlEG0rwE0IIUdGtWzer\nS/BzE8K112OPdE3WmODv1q0bfH19eZXnvg4KAHfu3EFZWRmGDh1qzBAJIURvixcvBgAcOHCg3XLc\nJJtceU6fPn0AAFeuXNG67pUrVwRNVG5tWv/zg3rwdz4ikYjXD18jR45ESEgIJk+erByaSdt+Nf1O\nCCFEN+rBTwghRDBrTPBzX7WnHvzWp76+HiKRSO8heixNdnY2AgMDlf/Uas/du3eRm5uLcePGAXjQ\n41UkEmHAgAHGDpMQQvQyYsQILFq0CDt37sTvv/+uscy5c+ewa9cuLFq0SO0bSVOmTAEA7Ny5U+s+\ntm/fjkmTJhku6C6G62UIwOqeJy0BY4zXj5BtlZaWYt26dYL2SwghhD/qwU8IIUQwSvATa1JfX49u\n3boJ6k3W2NiIwsJCBAYGGi8wI8nOzuY9mXB6ejrEYjGGDBkC4EGv1YCAABqaghDSqW3duhXR0dEY\nP348Pv74Y+Tl5aGpqQl5eXnYsmULIiIiMGvWLGzdulVt3SVLluCRRx7BV199hbi4OFy5cgWNjY1o\nbGzE5cuXERsbi/T0dLz66qtmODLLwPUyBP76lhwhhBBC9NetWzd0796devATQgjhjxL8xJo0NDQI\nHp4nLy8PjDH4+/sbKSrjycrK4j200KVLl/Dwww8rx6S+cuUK+vfvb8zwCCGkwyQSCfbs2YPdu3cj\nMTERjz32GKRSKYYMGYJffvkFu3fvxu7duyGRSNTWdXJyQlpaGv71r3/h/PnzGD16NKRSKTw9PRET\nEwNPT0+cO3dO6z862w5vInS4k67A0dFR+XtdXZ0ZIyGEEEK6DldX13Z78NuaMBZCCCEWwBoT/Nxw\nJZTgtz719fWCE/z5+fkAAD8/P2OEZFRZWVmYMWMGr7K3bt1SjkcNPEjwc8NXEEJIZzdp0iS9htJx\ndnbG2rVrsXbtWsHr0tAjD/6pwXWcoAQ/IYQQYhgymYx68BNCCOHPGhP83AdRmmTX+uiT4M/Ly4NE\nIkGPHj2MFJVx1NXVobi4mPcQPbdu3VKWbW5uxo0bN/DII48YM0RCCCFdgFgshlgspiF6CCGEEANx\ndXVtN8FPPfgJIYSosOYEP/Xgtz76Jvh9fHyU7xtLkZ2dDcYY7wR/YWEhfHx8AAB37tzB/fv3VXr0\nt2fmzJl6x0msQ1paGgB6r3RWaWlpGDlypLnDIBZKLBaDMSaoBz/VBcTYqF4jhFgymUxGk+wSQgjh\njxL8xJroO0SPpQ7PIxKJEBQUxKt8RUUF3NzcADzozQ8AwcHBRouPEEJI18ANfUhD9BBCCCGGQT34\nCSGECGKNCX4ag9966duD3xIT/NnZ2fD29oaDg4POsowxyOVySKVSAA8S/O7u7pDJZLz2lZCQ0KFY\nSdfH9dal90rnRL2pSUeIxWK0tLQoh+iprq7G2rVr8eKLL2LgwIEa16G6gBgb1WuEEEvm6uqKvLw8\nra9Tgp8QQoiKbt264f79++YOw6RoDH7rVV9fD3t7e0Hr5OXlISwszEgRGU9WVhbv4XlEIhFsbGyU\n90RWVhZCQkKMGR4hhJAuwtbWFgqFAqWlpcjMzMSUKVOQlZWFiooKfP311+YOjxBCCLE4Tk5OqK2t\n1fo6DdFDCCFEhVgstrqe7DREj/XStwe/r6+vkSIyntu3b6N37968y9vb2yu/zXPt2jU0NDRY3T//\nCCGECMd9MzI9PR1Dhw5Fbm4uAODAgQNW9y1RQgghxBC6d+/e7tB3lOAnhBCionWvXWtBCX7rJTTB\n39zcjOLiYoscouf27du8x98HgJ49eyI/Px8AcO7cOVy6dAmvv/66scIjhBDSRYjFYkilUqSnp6O+\nvh5NTU0AHozJ/9NPP5k5OkIIIcTyODg4UIKfEEIIf9bYg5/G4LdeDQ0NghL8BQUFaGlpscge/Lm5\nuQgICOBdPjAwENnZ2Th27BgqKioAAJ988gmNk0wIIUSrsrIyVFVVKZMQjDHlazY2Nvjuu+/MFRoh\nhBBisSjBTwghRBBr7sFvbcdNhPfg5yY2srQe/KWlpZDL5YIS/EOGDMGZM2fw4osvKpeJRCLMnTsX\nmZmZxgjT5EQikfKH/IXOCyFEHxcvXsTgwYPR1NSkktjnNDc349ChQ+2OIUw6l71792L48OGQyWTt\ntg1dud1oaGjAmjVr8NBDD8HW1rbLHqcQdE6IIVD9IoyDgwPkcrnW1ynBTwghRIU19uCnIXqsl9AE\nf35+PsRiMXr27GnEqAwvJycHAAQl+J966inU1taitLRUuYwxhubmZkyfPr3dHiSWQlMCSpewsDCL\nnGRZSNz6nBdrYanXnxBju3XrFkaMGIGCgoJ2yzU1NeHIkSMmiop0xK5duzB79my4u7vj0qVLaGho\nwIEDBzSW7crtxltvvYX169fjxRdfRHV1NY4fP27ukMyOzslf6LlAP1S/CCeVSlFfX6/1fFCCnxBC\niApr7sFPCX7rIzTBX1hYCE9PT0gkEiNGZXg5OTkQiUSCvnlgY2OD/Px8tfqgqakJWVlZeOmllwwd\npkVQKBQmrSsM1WPJ1HF3VXQeCdHM398fc+fO1ZmIEYvF+Pbbb00UFemIDz/8EACwadMmBAQEoFu3\nboiKirK6ZFt8fDwAIDY2Fg4ODggPD7e6c9AWnZO/WNtzgaGeS6l+Ec7BwQGMMdTX12t83dbE8RBC\nCOnkrLEHP43Bb72EJviLiorg7e1txIiMIycnBz179kS3bt14lZfL5Zg7dy7EYrHGf/g1NzcjPj4e\nTz31lNUl+lNTU80dgl4sNe7Ohs4jIZp169YNn332GV544QWMHTsWCoVC6zA9P//8MyorK+Hq6mqG\nSAlfN27cAAAEBwebORLzunv3LgDAzc3NzJF0HnRO/kLPBfqh+kU4BwcHAA8mrOd+b4168BNCCFFh\nzT34re24ifAEf3FxMby8vIwYkXHk5OQIGp7njTfeQGFhYbv3BGMMsbGxuHDhgiFCJIQQ0gWMHj0a\nbm5u6N+/PwDA1la9T6FCocDBgwdNHRoRiOslamnfWjQ06gCkjs4J6SiqX4TjkvraxuGnBD8hhBAV\n1tiDn4bosV719fWwt7fnXd4aEvy///47tm3bhubmZp1lGWOIiopCVVVVR0NsV1VVFZYuXYrevXvD\n3t4e7u7uGDVqFJYtW4bz588ry2mbhIvP5Fy5ubmYPn06XFxc4OjoiEmTJqlNJtzedu7du4fY2Fj4\n+fnBzs4Ovr6+WLhwIYqKitTKNjQ0YOPGjQgNDYVUKoW9vT369u2LxYsX4+zZsyr7a7vv+fPn6z5h\nbbQX99WrVzFx4kQ4OjrCxcUF06dPR25uruB9WIP2zmNRUREWLVqkvP5+fn5YvHgxiouLzRApIeYX\nGhqKbt26YeTIkcrnrNb27Nljhqj4tycA//taaNvTenlWVhaioqJUJpnk8G0rAGFtEB+a2p+2P3wZ\nOjZT0nQeVq5cqfK3ruso5Pj5ljXWcxGfY2rvnAg5Br7nzxha77ugoAAzZsyAk5MT3N3dERMTg6qq\nKty5cweRkZFwdnaGt7c35s6di8rKSq3b0bb87t27mDp1KpycnODl5YU5c+agrKxM79iF1At86zAh\n76e2x6jvc2nb7Vhj/SJU6x78GjErA4DFx8ebO4wOi4+PZ1Z4+QghJrBnzx5ma2tr7jBMqqmpiQFg\nBw4cMHcoxMS6d+/Odu7cybv80KFD2bJly4wXkJGEhoayFStW8Cp79+5dNmfOHObl5cUAMJFIxEQi\nEQOg8cfW1pZNnTqVKRQKoz2fTJ06lQFgmzdvZrW1tayxsZFdu3aNTZ8+XW1/XFxt6VoeERHBkpOT\nWXV1NUtMTGTe3t5MJpOx27dv69xOUVERCwgIYF5eXuz48eOspqaGnTp1igUEBLCgoCBWUVGhLFtd\nXc2GDh3KnJyc2BdffMGKiopYTU0N++2331i/fv14H49QmrZz69Yt5urqynx8fFhSUhKrqalhycnJ\nLCIiwmD71SY6OppFR0cbbfvGoum8FBYWMn9/f+V5bP0eCggIYEVFRWaKVn+Wen2I4enz+dnT05Mt\nXryYAWByuZx9/fXXzNnZmUkkEuU9ZGNjw4qLi03+uZZveyL0vta37Rk/fjxLTU1ldXV17NixY8qy\nQtoKIW2QEPoeU2vGik0f+tZr7bWHuq6jkOMXUtYUz0Xajqm9dYVebz774kOfeorb95w5c1hGRgar\nrKxkcXFxDACbNGkSmz59unJ5bGwsA8AWLFigdTvalj/33HNq25k7d66gWDlC6gUhdZgh3k9Cdcb6\npbPnWbOyshgA9vvvv2t6+f3OG7mRUIKfEELat3fvXiYSicwdhkkpFAoGgO3bt8/coRATUigUTCwW\ns7179/Jex9/fn33wwQdGjMo43Nzc2H/+8x/B6+Xn57Px48czHx8f5uvrq0zK2NraqiT5xWIx+/DD\nD432fOLs7KzxHs3PzzfYB9kffvhBZflXX33FALCYmBid21m0aBEDwLZv366y/Pvvv2cA2OrVq5XL\nXnvtNeWHqLYuXLhg0g9Sc+bMYQDYN998o7L8hx9+oAS/FprOy4IFCzSeR+49tGjRIlOGaBCWen2I\n4enz+blHjx7Kui4vL48xxlheXh6bMmWKss0QiURs27ZtJv9cy7c9EXpf69v2/PbbbxrjFNJWCGmD\nhDBEAs5YsenDmAl+bddRyPELKWuK5yJtx9TeukKvN5998dGRBP/JkyeVy7jz13b53bt3GQDm6+ur\ndTt8tn/79m0GgPn4+AiKlSOkXhBShxni/SRUZ6xfWrdHn3zyCVuxYgU7fPgwa2pqErQdYyksLGQA\nWHJysqaXKcFvqSjBTwgxFmutX7pK+0D4q6+vZwDYoUOHeK9jb2/Pdu3aZcSoDK+mpoYBYEePHtVr\n/RdeeIFNmTKFMcbYzZs32RdffMGee+451qNHD2XCXyQSMRsbG/b2228bpf6YN2+e8sHe39+fvfTS\nSyw+Pp41NjaqldX3A0NpaanK8ry8PAaA9ezZU+d2fHx8GABWUFCgsry0tJQBYAMGDFAu69WrFwPA\n7ty5o/vA24lbKE3b4b6lkZ+fr7K8pKSEEvxaaDovPXv21HgeufeQpoRAZxcdHa08VvqhH6HPR97e\n3mz16tUMALt8+bLKawcOHGCenp4MABs9erTJnzv5tidC72tum23pWi6XyzXGKaStENIGCaHvMZki\nNn0YM8Gv7ToKOX4hZU3xXKTtmNpbV+j15rMvPvSpp7h9V1dXK5e1tLS0u1xTJzhd57H1dhobG7Vu\nhw8h9YKQOswQ7yehOmP90ro92rBhAwsNDWVisZgFBgaypKQkQdsyhqqqKgaA/fTTT5pefl99xhtC\nCCGEECvATe7Ed5LdyspKNDQ0WNwY/Hfu3AEAQZPstlZXV6c8R8HBwQgODlaOt3nz5k0kJyfjt99+\nQ1JSEv744w+DxNzWjh07MHnyZHz77bf49ddfsX37dmzfvh29evXCoUOHMHjw4A7vw93dXeVvDw8P\nAEBJSYnOde/duwcA8PHx0fh6VlaW8vfCwkIAgLe3t15xGlJpaSmAv46V0/Zv0j7uPaLtPHLvD0sz\ncuRILF261NxhEDObOXOm4HUkEoly4sTy8nKV16KiovDkk09ixYoVOHHihEFiFIJve2Kq+5obU7kt\nIW2FkDbI1DpzbIak7ToKOX4hZU3xXKTtmNqj7/XWZ1+G4uTkpPy99XwhmpYzxjq0fTs7O723Awir\nF4TUYaZ4PxmDMeuXlStXYuXKlbhz5w7eeOMNjB8/Hjt27EBMTIze2+woXWPwU4KfEEIIIVapoaEB\nAP8EPzchlaUl+HNycgAAvXr10mv9+vp6rQnfkJAQhISEKBP+CQkJOHjwoH6B6hAVFYWoqCgoFAqk\npqZi/fr1OH78OObNm4eLFy8qy4lEIjDG0NTUpEww8ZkEuKqqCi4uLsq/ueS3p6enznW9vLyQn5+P\n8vJyyGQynWXz8vJQWFiIwMBAnds2Jg8PDxQXF6O0tFTlw5GxJ03uanr06IGCggK188i9h3r06GGu\n0DrEz88P0dHR5g6DWCBbW1tlIquiokLtdRcXF2zbtg3Ag3bD1Pi0J0Lva33bHm2EtBVC2iBT68yx\nmYLQ5wMh58rYz0X6sPbrbWxC6gWhdRjf91NnYor3W2BgIPbt24c1a9bgpZdegr+/P5544gmj7EsX\nW1tbSCQSZSe1ttSnsyeEEEIIsQJCe/BbcoLfzc1NpQeREK178JuLSCRCXl4egAe9qMLCwhAfHw8A\nyMzMVCnL9WriejkB4PXBJC0tTeXvxMREAEB4eLjOdadNmwYAOHnypNprp0+fxsiRI5V/z5gxAwA0\n/iPk7NmzGD58uMoyrrdOU1MT6urqDNq7nju2pKQkleVtzwVp35QpUwCon0fuPcS9Toi1kEgkUCgU\nkEqlaj34zY1veyL0vta37dFGSFshpA0ytc4cmykIOX4hZU3xXKQPa7/exiakXhBShwl5PxnzuVQo\nU77f3nnnHUybNg3z58+HXC432HaFsrW1RVNTk+YXTThcUKcAPcbm6oysdYxsQojxWWv90lXaB8Lf\nlStXGAB29epVXuUTEhKYWCzuNBMt8bV8+XIWGhqq9/qjR49mr7zyCl+VdvEAACAASURBVK+yxqo/\nALCIiAh25coV1tDQwIqKitiqVasYABYZGalS9oUXXmAA2D//+U9WWVnJMjMz2XPPPadzTM8xY8aw\n1NRUVlNTw5KSkljPnj2ZTCZjt2/f1li+tZKSEhYSEsJ69uzJ9u3bx0pLS1l1dTU7fPgw6927t8oE\naxUVFax///7MycmJff7556yoqIjV1NSwn3/+mYWEhLDExESVbY8YMYIBYCkpKWzv3r1s8uTJep/D\ntnFnZWUxV1dX5uPjw5KSklhNTQ1LTU1lY8aMMdgYq9p0pTH4i4qKWEBAgPI8VldXK99DAQEBrKio\nyEzR6s9Srw8xPH2ejx599FG2du1a5ufnxzZt2tRuWVM/d/JtT4Te1/q2PdoIaSuEtEFCz5WQ2Dva\nPhqbMcfg10bI8Qspa4rnIn3OidDrbahnDX3qKUO8vw25nA8h9YKQOkzI+8mYz6VClxu6ftHVHhUV\nFTEnJyf2/vvvC9quIbm4uLDPP/9c00s0ya6lstYEHCHE+Ky1fukq7QPhLz09nQFg2dnZvMpv3bqV\neXp6Gjkqw5s1axabNm2a3ut3hgR/SkoKi4mJYYGBgUwikTAXFxc2aNAgtn79erWJ2UpKStizzz7L\nPD09mVQqZVOmTGG5ubnKDwat42u97OrVqyw8PJw5OjoyqVTKJkyYwDIyMtRi0fbBo7y8nL322mss\nKCiISSQS5uXlxaZMmcLS0tLUytbU1LA1a9awPn36MDs7O+bu7s7Cw8PZqVOn1Mqmp6ezQYMGMQcH\nBzZixAh2/fp1weev9XG2jf3KlStswoQJTCqVMkdHRxYeHs6uXr2qtbyhWGICub3zWFRUxBYtWsR8\nfHyYra0t8/HxYQsXLrTI5D5jlnl9iHHo83w0ePBgtmrVKjZw4EC2Zs2adsua+rlTSHsi5L7Wt+1p\nr54V0lYIaYP40Baf0OXGiE1f+tRr7V0rvtdRyPHzLWuK5yJdidaOXm++548PofWUod7fhrxP+BJS\nL/Ctw4S8n4z5XGru+oVPe7R8+XLWs2dPjRMQm4KHhwf797//reml90WM6Tm7g4USiUSIj4/Xa7Kg\nziQhIQGzZs3Se3IOQgjRxlrrl67SPhD+Tp8+jTFjxqCwsJDXZFVvvvkmDh48iMuXL5sgOsMZOXIk\nhg8fjs2bN+u1flhYGEJDQ/Hxxx/rLNvV64+Wlhbl+Jf37983dzgWjatrzTH+NtGNrg/h6PN8NGzY\nMIwdOxbp6el49NFH8e9//1tr2a7ebpDOg+q1ros+xxFD4NMe3b17F4GBgTh48KBZhmD08fHB8uXL\n8eqrr7Z96QMag58QQgghVokbg9/e3p5X+eLiYosbfx94MAZ/QECA3utzk7NZK5FIhLKyMgBAUVER\ngAeTCxNCCNFMIpGgqakJbm5uGifZJYQQQiyRv78/Hn/8cezdu9cs+7ezs9M6Bj8l+AkhhBBilbgJ\nkqRSKa/yZWVl8PT0NGZIBnf//n0UFxdTgr+DtmzZgpqaGuW3IOLi4swcESGEdF5cgt/d3R2lpaXm\nDocQQggxmKlTp+LEiRNQKBQm3zfXvmpCCX5CCCGEWCW5XA6JRAKJRMKrfGlpKdzd3Y0clWHl5uZC\noVB0KMFvb2+PhoYGA0ZlWb799lt8//338PT0xJEjR/Dxxx8jNjbW3GFBJBLx+iGEEFPjEhC+vr7I\nz883dzjkf6jdIKTz6Sr3ZVc5Dj7GjRuH0tJSswzb2t4wobYmjoUQQgghpFOoq6vj3XsfeNCD39IS\n/Dk5OQDQoQS/k5MTampqDBWSxZk9ezZmz55t7jDUWPu3KgghnVfrBH9eXp65wyH/Q+0GIZ1PV7kv\nu8px8DFo0CBIpVL8/vvvGDRokEn3TUP0EEIIIYS0IZfLBSX4y8vL4ebmZsSIDC8nJwcODg7w8PDQ\nexvOzs5WneAnhBAiTOsEf3V1NbUhhBBCugyxWIyQkBDcuHHD5PumIXoIIYQQQtqQy+VwcHDgXb68\nvNwie/B3pPc+8KAHf3V1tYEiIoQQ0tXZ2toqE/wAaJgeQgghXUrfvn1x7do1k++XEvyEEEIIIW0I\nGaKntrYWjY2NVpngl8lkqKioMFBEhBBCujqJRILm5mb4+fkBoAQ/IYSQrqVPnz64fv26yfdLQ/QQ\nQgghhLQhZIie8vJyALDIIXo6muD38fGh5AwhhBDeuB6Gbm5ucHBwQG5urrlDIoQQQgymT58+yM7O\n1ppsN5b2JtmlBD8hhBBCrFJdXR3vIXrKysoAwCp78Pv5+aGqqorGUCaEEMILl+AXiUQIDg7GzZs3\nzR0SIYQQYjCBgYFoampCUVGRSffb3hA9tiaNhBBCCCGkkxDSg59L8FtSD/6Wlhbk5eUZJMEPAHl5\neejXrx+vdUQiUYf2SawHvVc6r+joaHOHQCxU6wTEww8/zGsiQqoLiClQvUYIMQQXFxcAQFVVFfz9\n/U22Xzs7O609+CnBTwghhBCrJJfL4ejoyKtseXk5xGIxXF1djRyV4RQWFqKpqanDCX7uofXOnTu8\nE/wJCQkd2ifp+j766CMAwNKlS80cCdGEuz6E6KNtgv/IkSPK1zIzM7FlyxbMnj0bY8eOVS6ndoMY\nG9VrhBBDaZ3gNyWxWAyFQqHxNUrwE0IIIcQq1dXVwcvLi1fZsrIyyGQyiMWWM7phTk4OABhkkl0/\nPz/897//xYQJE9DS0oKVK1fixIkTuHjxosZzQj3kiC779u0DQO+Vzoq7PoToo3WCPyQkBDdv3sT5\n8+exYcMGHDp0CIwxSKVSlQQ/1QXE2KheI4QYCtfpy9QJfpFIBMaYxtcowU8IIYQQqyR0kl1LG3//\n7t27sLW1Rc+ePTu8rcGDB+PPP/9EeXk5oqOjkZycjJaWFpw8eRJPPPGEAaIlhBDSVXTr1g2NjY3K\nv11cXDBixAjY2tqCMQaRSIS7d++aMUJCCCFEf1KpFLa2tqisrDTpfttL8FtONzRCCCGEEAOSy+W8\nJ9ktLy+3qPH3gQdj5nt7e8PGxqbD2xo0aBDOnz+PwYMH4/Tp02hpaYFEIsGePXsMECkhpKtITExE\nZGQkZDIZ7O3tMWTIEOzdu1etnEgkUv5kZGTg6aefhrOzMxwdHTFp0iRkZmYaZNtZWVmIioqCTCZT\nLuM0NDRg48aNCA0NhVQqhb29Pfr27YvFixfj7NmzRj3+qqoqLF26FL1794a9vT3c3d0xatQoLFu2\nDOfPn1cpe+/ePcTGxsLPzw92dnbw9fXFwoULNU7sd/XqVUycOBGOjo5wdnZGREQEMjIyVM6JKTg4\nOKCkpATDhg3DvHnzUFpaCsaYslc/Ywx37twxSSyEEEKIMbi4uKC6utqk+xSLxZTgJ4QQQghpra6u\nTtAku5bWgz8/Px++vr4G2VZQUBAKCgqU4/oDQFNTE/bu3Yv6+nqD7IMQYvnGjx8PGxsb3Lx5Ezdu\n3ICHhwdmz56N48ePq5Rr/eF0wYIFePPNN1FQUIBDhw7hwoULGD16tFoCWJ9tx8bGYtmyZSgoKMCx\nY8eUy2tqahAWFoZ3330XcXFxyM7ORmlpKbZt24ZTp05h5MiRRj3+mJgYbN68GUuWLEFZWRkKCwux\nc+dOZGdnY/jw4cpyxcXFGDZsGH744Qfs2LED5eXl2Lt3L06cOIFRo0ap9BzMysrC448/jj///BM/\n/vgjCgoKsHbtWixcuFDjuTGWgoIC/Oc//8Hdu3dx4cIFAEBzc7Nauby8PKPHQgghhBiLjY2NxvbN\nmEQikdYx+CnBTwghhBCrJLQHv0wmM3JEhpWfnw8/P78ObYMxho0bN2LBggVoaGhQe4itr6/HTz/9\n1KF9EEK6lo8++ggeHh7o1asXPv74YwDA+vXrtZZfs2YNRo8eDUdHRzz55JPYuHEjKioqsG7dug5v\ne/Xq1Rg1ahS6d++OCRMmKBPc69atw++//463334b8+fPh5eXFxwdHfH3v/+9w99M4hPjb7/9BgDw\n9fWFVCqFnZ0d+vTpg08++USl3FtvvYWcnBy8++67CA8Ph6OjI8LCwvDRRx/h9u3b+OCDD5Rl161b\nh8rKSrz33nt44okn4OjoiNGjR2P16tUdOh6hunXrhoaGBgBAS0uL1nIlJSVakxSEEEJIZ6dQKEw+\nPxsN0UMIIYQQ0oaQMfgrKystLsGfl5fXoR78NTU1mDp1KtasWQPGmMaHSRsbG+zatasjYRqNqYek\nsFR0nixfZ7qGjDEEBgYq/w4JCQEAZGRkaF1n1KhRKn8/9dRTAIATJ050eNvDhg3TuHz//v0AgGnT\npqm9FhoaqndPd74xzpgxA8CDiWV79eqF+fPnIyEhAR4eHir7Pnz4MABgwoQJKuuPGTNG5XUA+OWX\nXwBAbV6UtudXX/PmzcOaNWvw008/tdtj0d3dHW+99RZEIhEkEonWcs3NzSgpKTFIbJ1JZ7ofOxM6\nL4SQrqalpcUgQ6EKQQl+QgghhJA2hAzRU1VVBRcXFyNHZFgdHaJn5cqVOHz4cLs9MJubm3Hs2DFU\nVFTovR9j0SdBFxYWhrCwMCNE03m1d56s8XxYIlMMu8JHZWUlVq9ejX79+sHJyQkikQi2trYAHgxz\npk3butXDwwMAVJK/+m5b27e0CgsLAQDe3t48jowfITHu2LEDBw4cwIwZM1BbW4vt27dj1qxZCAkJ\nwaVLl5Tl7t27BwDw8fFRSZBy5ygrK0tZtrS0FMBf54/j6upqkOO7d+8eDh06hEmTJiEoKAi//vqr\n1rIBAQFgjKFHjx7tJvm74jA91tT2CIm7s9RThBBiKJ2tB7+tSSMhhBBCCOkE7t+/j+bmZt5D9FRV\nVcHZ2dnIURmOQqFAUVFRhxL8b731lnK8ZxsbG62JfoVCgQMHDmD+/Pl676uzMPVwEVxPxs6a+LC2\n4TM6+/Xo7GbOnIlffvkFb731Fl555RXlxOS6euy2neOES1R7enp2eNvaeHl5IS8vD4WFhSo97jtC\naIxRUVGIioqCQqFAamoq1q9fj+PHj2PevHm4ePGiMs78/Hxew8R5eHiguLgYpaWl8PHxUS7nzmdH\nHT16FACQk5ODlStXIjw8HL/88gvGjRunVtbR0REAcOTIEURERKC8vFxjr//8/HyDxGbpLLXtscQ2\nIi0tDTNnzjR3GMQIPvroI+W3swjRx927dwWVN0eCnybZJYQQQghpRS6XAwDvHvzV1dUW1YO/pKQE\n9+/f71CCv0ePHvjuu+9w8uRJBAYGav0KKmMMX331ld776UxSU1ORmppq7jA6DTofRAjuvfL6668r\nk9uNjY281+MkJiYCAMLDwzu8bW24IXIOHjyo9trZs2dVJrrlS0iMIpFI2XtdLBYjLCwM8fHxAIDM\nzExlOW4IoZMnT6pt4/Tp0yqTAXPnKykpSWNchhIQEIDvvvsOM2fOxAsvvKCceL01rm318vJCSkoK\nZDKZ8tsMHIlE0iV78OvDUutaS42bEEIMoaWlxSw9+LX9c5V68BNCCCHE6ghJ8DPGUFNTY1EJfq5X\nZEcS/JyxY8ciMzMTH374Id58800AUEnoKBQKnDlzRnCvF0JI1xIWFobjx49jw4YNWL58ORQKRbsT\n4HK2bdsGNzc3DB48GOfPn8eqVasgk8lUJtnVd9varFu3DklJSVi7di2kUikiIyMhlUqRmpqKl19+\nGZ9++qngbQqNcf78+di0aROCg4NRWVmJLVu2AAAiIiJU4jxx4gTi4uLQ0tKCcePGwc7ODsnJyViy\nZAl27NihUvbw4cNYuXIlfH19MWzYMFy6dAmfffaZ4GPh47333kNQUBCOHDmC6dOnq7zGta1yuRwh\nISFISUnB448/joqKCmVPfrFYjPz8fLUhhQgxppEjRyIhIcHcYRADE4lEWLp0KX07g3RIQkICZs2a\nxassYwyNjY28vw1uKDQGPyGEEEJIK3V1dQC0j8/cmlwuR3Nzs0Um+FsP09AREokEK1asQEZGBh5/\n/HG1ifJsbW2xd+9evbZdVVWFpUuXonfv3rC3t4e7uztGjRqFZcuW4fz588py2ibo4zNxX25uLqZP\nnw4XFxc4Ojpi0qRJKr1kdW3n3r17iI2NhZ+fH+zs7ODr64uFCxeiqKhIrWxDQwM2btyI0NBQSKVS\n2Nvbo2/fvli8eDHOnj2rsr+2+249zBHf8yLE1atXMXHiRDg6OsLFxQXTp09Hbm6uxrJ8zndWVhai\noqIgk8lMNnli62NwdnZGREQEMjIytMbL99rpuh6tt19QUIAZM2bAyckJ7u7uiImJQVVVFe7cuYPI\nyEg4OzvD29sbc+fORWVlpdoxJCYmIjIyEjKZDPb29hgyZIjG+6cj74GhQ4eqxPyPf/yD1/ntiF27\nduH555/H9u3b4eXlhbFjx6r0hNf2/vjPf/6D9957Dz4+PoiMjMTgwYORmpqqMnSOkG1rupZtubq6\nIi0tDUuWLMGmTZvQq1cvBAYG4sMPP8T27dvx5JNPGvX4U1JS4O3tjcmTJ8PJyQl9+vTBsWPHsH79\nenz33XfKch4eHjh37hxmz56N5cuXo2fPnggJCcHnn3+OPXv2YOzYscqyvXv3RkpKCgYNGoTIyEj4\n+PjgvffewyeffAIABu9l6O/vjyFDhiAlJUXtNW6InpqaGgDAww8/jNOnT8PV1VXZk7+5udmsQ/RQ\n26O5ruOrvbiFtDWEEGKJampq0NLSYvLPh+0l+MGsDAAWHx9v7jA6LD4+nlnh5SOEmIC11i9dpX0g\n/Fy4cIEBYDdu3NBZNi8vjwFgZ86cMUFkhvHpp58ymUxmtO0nJCQwNzc3JpFIGAAGgPXr10+v+mPq\n1KkMANu8eTOrra1ljY2N7Nq1a2z69Olq2+L21Zau5RERESw5OZlVV1ezxMRE5u3tzWQyGbt9+7bO\n7RQVFbGAgADm5eXFjh8/zmpqatipU6dYQEAACwoKYhUVFcqy1dXVbOjQoczJyYl98cUXrKioiNXU\n1LDffvuN9evXj/fxCD0vfNy6dYu5uroyHx8flpSUxGpqalhycjKLiIjQ+7yOHz+epaamsrq6Onbs\n2DFBcUVHR7Po6OgOH0NKSgobPXp0h69de8fb9vU5c+awjIwMVllZyeLi4hgANmnSJDZ9+nTl8tjY\nWAaALViwQON2pk2bxkpKSlhOTg4bP348A8B+/vlnlXIduTcKCwtZ//792YoVK3if39b0uT5C6Trf\nxDDy8/MZANajRw+91m/v+WjOnDksMjJSbXlZWRkDwJKSklSWX7t2jXl4eDBbW1sGgP39738323Mn\ntT0dP+eatqNPW2MqpqjXiHnQ5zhiCELao9zcXAaApaWlGTkqVTExMWzixImaXnrf6p6ousqNb60J\nOEKI8Vlr/dJV2gfCz+nTpxkAlp+fr7Ps1atXGQB29epVE0RmGGvWrGH9+/c36j5KS0vZvHnzmEgk\nYiKRiAFg//d//ye4/nB2dmYA2L59+1SWc0mp1vRNsvzwww8qy7/66isGgMXExOjczqJFixgAtn37\ndpXl33//PQPAVq9erVz22muvKRNGbXH/VOITN2PCzgsfc+bMYQDYN998o7L8hx9+0Pu8/vbbb4Lj\n4OiTaNF2DEePHu3wtWOMf4L/5MmTymXc9Wi7/O7duwwA8/X11bid1gm+zMxMBoCFhYWplNP33rhz\n5w4LDg5m69ev13osulCC3zIBYDdv3lRZ9t133zEAbNasWXpvU9vz0UsvvcSefvppteXNzc1MLBar\nvXcZY+zy5ctMJpMxACwoKMhsz53U9hgnwa9PW2MqlODvuuhzHDEEIe3Rf//7XwaAZWRkGDkqVfPm\nzWMTJkzQ9NL7NEQPIYQQQqyOkCF6qqqqAADOzs5GjcmQ8vLyDDL+fnvc3d2xY8cOJCcnIyQkBAA0\nDtWgCzfZZXR0NHr16oX58+cjISEBHh4e2r+CKlBYWJjK30899RQA4MSJEzrXPXz4MABgwoQJKsvH\njBmj8joA7N+/H8BfE2O2FhoaKuh4DH1efvnlFwDAE088obL88ccfF7wtzrBhw/ReVx/ajmHUqFEa\nywu5dkIMGTJE+bu3t7fG5dzwWAUFBWrrM8ZUhp/h7p+MjAyVcvq8B65fv46wsDD06NEDq1evFnhk\npCuIi4tDdnY25HI5kpKSsGLFCjg7O6vMaWAocrkc3bt3V1tuY2MDZ2dnlJeXq73Wv39/JCcnw9XV\nFcXFxQaPiS9qe4zDGG0NIYR0NtznQ1dXV5Put71JdinBTwghhBCrI2SSXe4BztLG4Dd2gp8TFhaG\nK1eu4IMPPkBQUJDg9Xfs2IEDBw5gxowZqK2txfbt2zFr1iyEhITg0qVLBonR3d1d5W9uUseSkhKd\n6967dw/Ag4Rt6zGHuW1kZWUpyxYWFgJQTfrqy9DnpbS0FADUJrTsyASXpp5YTNsxaPtwJeTaCeHk\n5KT8vfW45pqWt02sVVZWYvXq1ejXrx+cnJwgEomUY5KXlZWplNXnPTBu3DiUlZXhzJkz+Pbbb/U6\nPlPQNmZ+Z9P6fdPeT2eRmJgIR0dHjBo1Cq6urpg9ezZGjBiBc+fOoW/fvgbf3927d+Hn56fxNTc3\nN1RUVGh8bcCAAUhOTsY///lPg8fEF7U9xmGMtoYQQjobc30+ZIxpnVOHEvyEEEIIsTpyuRwSiQQS\niURn2erqaojFYuWkgZbAlAl+4MEkvMuWLcOIESP0Wj8qKgr79+9HaWkpTp06hYiICOTm5mLevHkq\n5bhEWlNTk3IZ94DdnrZluASEp6enznW9vLwAAOXl5WCMqf1w/yxqXZZLtnQU3/PCB5dc4Y6dw+f8\ndRbajqHt3xwh185UZs6ciQ0bNmDWrFnIyclRxqKN0PfA1q1blZOqxsXFIS8vzyjH0VFtr0Vnpel9\no+mns3jyySdx4MABFBUVoampCffu3UN8fLxRkvsKhQKXL1/Go48+qvF1mUymNcEPAAMHDsR7771n\n8LiEoLbH8LpCW0MIIbpUVlbCzs7O5J1dFAoFJfgJIYQQQjh1dXW8eu8DDz6UOjs7d6pemrqYOsHf\nESKRSJmEFIvFCAsLQ3x8PAAgMzNTpSzXO7F1EuPixYs695GWlqbyd2JiIgAgPDxc57rckAcnT55U\ne+306dMYOXKk8m9uyIeDBw+qlT179iyGDx+usoz7UNDU1IS6ujqVHo5Czgsf3LEmJSWpLG97bjoz\nbceQmpqqsbyQawe0fz0MhYv19ddfh5ubGwCgsbFRY1l93gMzZszAvHnzMHXqVFRWVmLevHmdKgFN\nuo6rV6+iurpa61Bdbm5uGofo6Syo7TFOXdcV2hpCCNElPz8fPXv2NPl+KcFPCCGEENKKXC7n3eOi\nqqrKoobnkcvlqKqqspgEPwDMnz8fV69eRWNjI4qLi5W9OiMiIlTKjR8/HgDwwQcfoKqqCteuXcOX\nX36pc/sbNmzAmTNnUFtbi19//RWrVq2CTCbjNSb1unXrEBISgri4OOzfvx9lZWWoqanBkSNHMHfu\nXGzcuFGlbP/+/bF27Vp88cUXKC4uRm1tLY4fP44XXngB7777rsq2Bw4cCAA4f/48Dh8+rJZw5nte\n+Fi3bh1cXV2xcuVK/Prrr6itrcWZM2ewYcMGwdsyF03HkJKSgs8++0xreb7XDtB9PQyBG5N7w4YN\nqKysRHl5ebtj5ev7Hvj888/h6emJxMREfPzxx4Y7AEL+5+jRo/D09FTeN23JZLJOneAHqO0xRl3X\nFdoaQgjRpaCgwCyftRQKhfZOZwaayNdioIvMri1kdmdCCBHCWuuXrtI+EH7efvttFhISwqvsmjVr\n2MCBA40ckeFcv36dAWAXLlww+b71qT9SUlJYTEwMCwwMZBKJhLm4uLBBgwax9evXM7lcrlK2pKSE\nPfvss8zT05NJpVI2ZcoUlpubywAofzitl129epWFh4czR0dHJpVK2YQJE1hGRoZaLG23wSkvL2ev\nvfYaCwoKYhKJhHl5ebEpU6awtLQ0tbI1NTVszZo1rE+fPszOzo65u7uz8PBwdurUKbWy6enpbNCg\nQczBwYGNGDGCXb9+Xa/zwteVK1fYhAkTmFQqZY6Ojiw8PJxdvXpV5/lrb7m+7UV0dDSLjo7u0DE4\nOTmxyZMns6ysLAaAicVitfJCrl1714Pv+dC1vLi4mD3//POsR48ezM7OjvXv319537Qty/c94OLi\norL+vn37NF6n9PR03udZ3+tDuh5tz0cjR45kMTExWtdbvHgxGzdunM7tm+u5k9oezXUdX+21A0La\nGlOieq3ros9xxBCEtEfPPPOMWeqTZ599lk2bNk3TS+/b8v43ASGEEEJIFyF0iB5L6sGfn58PABbT\ng3/06NEYPXo0r7IeHh7Ys2eP2nKmYQiStsuOHz/e7rZbWloAQOO8DDKZDJs2bcKmTZt0xujo6Ii3\n334bb7/9ts6yQ4cO1TqZo5Dzwtejjz6KY8eOqS3nc/50LTcVTcdQUFAAQPMkjkKuXXvXQ+j50La8\nR48e2LVrl9rymTNnqi3j+x6orKzkvX9CDCEjIwNpaWnt1nNeXl5ITk42YVTCUNvTsYmE26tjhLQ1\nhBBiifLz89WGPzMFGqKHEEIIIaQVIUP01NTUwMnJycgRGU5eXh7s7Ox4TeJn7UQiEcrKygAARUVF\nAICQkBBzhkR0EIlEuHXrlsqyU6dOAQDGjRtnjpAIsTqffPIJgoOD8cQTT2gt4+vrq/yHM1FFbQ8h\nhFg2c813Rgl+QgghhJBWhPTgl8vlcHR0NHJEhpOfnw8fHx+LmhTYnLZs2YKamhps3rwZABAXF2fm\niIgucXFxyM7OhlwuR1JSElasWAFnZ2de41oTQjqmtrYWe/bsQVxcXLvtjM//Z+/Ow5o417+BfwOI\n7ILsgqIoIohL1aIF0bqBS1dUqj3l2FrcavtWj9ZWPaf1/GxdS9Vaq7Uu3bRqxZUqIK644QpSqYoo\nIkhYDTtJIHn/sMmBypIgMAS+n+vKJUyezNwzmUhy55776dABwPewBQAAIABJREFUBQUFKCoqasLo\ndAf/9hAR6SaFQgGxWMwEPxEREZHQSkpKNK7gLyoq0vjLgOZAqIoSXbRz507s27cPtra2CA8Px9df\nf41Zs2YJHZbGRCKRRreWJDo6GmZmZvDx8YGlpSUmT56MQYMGITY2Fj169BA6PKIWb9u2bZDL5Zgy\nZUqt41R/h1QttOh/muvfntb4N4WISFtisRgymQzOzs5Nvu3aEvzswU9EREStjjYteoqLi5ngb6Em\nT56MyZMnCx1GvbXGfsYjRozAiBEjhA6DqFUqLCzEsmXL8N5778HKyqrWsR06dADwJMHfvXv3pghP\nZzTXvz2t8W8KEZG2VK0iu3Xr1uTbZgU/ERERUSWlpaVM8BMREWlh+fLlkMlkWLhwYZ1jbW1t0bZt\nW/bhJyKiFiUpKQmmpqZwcHBo8m0rFIoar6Rigp+IiIhandLSUhgbG2s0li16iIiotUtPT8e6devw\nn//8B9bW1nWOF4lEcHBwYIseolaG7Zyosl27dmHgwIGwsrKq9dzQpfMmOTkZ3bp1EyRWpVLJCn4i\nIiIilZKSEo0T/Lo0yW5FRQUyMzOZ4Cciogb14YcfwsHBAe+9957Gj+nYsSMePHjQiFERUXPDVk+k\n8tNPP2Hy5MmwtrZGXFwcysrKEBYWVu1YXTpvkpKS4ObmJsi22YOfiIiIqJKW2qInMzMT5eXlgkz6\nRERELdOpU6ewf/9+REVFoW3btho/zt3dHbdv327EyIhaLlV1sC4lPql2re05/eqrrwAAoaGhcHFx\nAQAEBgbq/P7fvXsXo0ePFmTbTPATERERVdJSW/SkpaUBgOAV/L/99pug26fmT3Wu8lxpnvj8UGU/\n/PAD5s2bp/UE1+7u7oiMjNRoLM81amxpaWksgCBqQnfu3AEgzGS0jUnVokcItfXgZ4KfiIiIWh1N\nE/xyuRxyuVxnEvzp6ekQiURwdHQUZPuOjo4wMDBAUFCQINsn3XPhwgWhQ6Ba8PkhkUgEZ2dnLF26\nVOvH9ujRA+np6SgoKICFhUWtY/l3g5rCxIkThQ6BqNUoLS0FALRp00bgSBpOamoqCgsL4e7uLsj2\ny8vLYWBQfSqfPfiJiIio1dG0B39RUREA6FSC39raGkZGRoJs38/PD3K5HEqlkjfeeOONNx2/TZky\nBebm5jh48KBWrXlUevToAaVSqa7ivHHjBkaPHo0333zzqbFC7ytvLf/WGMn9mzdvYuzYsTAzM4OF\nhQUCAgKQmJhY44ShWVlZmDVrFpydnWFoaAgnJydMnz4dYrG4yrjKj1OtJyQk5KllIpEIjx49wvjx\n42Fubg5ra2tMmTIF+fn5SElJwSuvvAILCws4ODjg7bffhkQieWofoqOj8corr8DKygpGRkbo168f\ndu3a9dS4/Px8zJ07F66urjAyMoK1tTV8fHwwf/58XLp0qdbjNGDAgCoxT5o0SaPjKwSxWIwZM2ao\nnyNnZ2fMnDkTmZmZVcbV9BzXtvzvYyo/p5qqvP7k5GQEBgZWmcBWRdNzDdD+PNY0zupirs86tdmX\nxhYfHw+RSAQvL68m3zYAyGQyGBoaVnsfK/iJiIio1dG0gr+4uBgAdGaS3fT0dMHb8xARke5btmwZ\nfvnlFxw4cAAeHh71Woerqyvatm2Ls2fPYu3atdi5cydEIhEsLS0bOFqippecnIzBgwfDxMQEhw4d\ngre3N+Lj4zF9+nT1GKXyf73GMzMzMXDgQJSVleGnn36Cj48Prl+/juDgYERHR+PatWvq14ZSqay1\nX3vl+z/++GN8/vnn2LZtGxYvXowNGzYgNzcXhoaGWLlyJTp06ICFCxdi48aNMDQ0xObNm6usa9So\nUXjttdeQlJSEkpIShISEYPLkybCyskJAQIB63JQpU3Dw4EGsXbsWISEhaNOmDe7fv4+FCxdi4MCB\n1capEh4ejlGjRmHcuHFYsWJFPY520xCLxfD29kZFRQV+/vlnPP/887h06RLeeustREREIDY2Fvb2\n9gCqPgeVabK8tmNVl8rrmTVrFpYsWYIdO3bg1KlTGDt2LADtzjVtz+P6xPn3x2uT3NdmX5rCjRs3\n4OLiItjfMblcXvMVEcpWBoBy9+7dQofxzHbv3q1shU8fETWB1vr/S0v5+0B1Ky8vVwJQhoWF1Tn2\n1q1bSgDK+Pj4Jojs2QUHByvHjh0rdBhERKTD9u7dq9TT01OuX7/+mdaTm5ur7Nmzp9LAwEBpYGCg\nBKC+5eTkKJXK1vu+k5rexIkTlRMnTmyw9b311ltKAMqff/65yvLff/9dfZ5XNmPGDCUA5datW6ss\n37dvnxKActGiRVWWV7eO6u4/deqUell6enq1yx8+fKgEoHRycqp2Pffv31f//ueffyoBKP38/KqM\ns7CwUAJQ/vbbb1WWq7ZZU+wpKSnKbt26Kb/44osa9+VZNdTnuGnTplX7nP7www9KAMoZM2Y8td3q\nniNtl2tLtZ6TJ09We78255q253F94nyW5dq+bp6FJn+P3njjDeUrr7zSYNvUVv/+/ZULFiyo7q5V\nbNFDRERErUpJSQkAtMgWPY8ePWIFPxER1dvVq1cxZcoUvPvuu3j//ffrtY6SkhKsXLkSLi4uuHPn\nDsrLy1FeXl5lzO3btxsiXCLBHDt2DAAwfPjwKst9fHyqHX/48GEAwJgxY6osHzJkSJX7tdWvXz/1\nzw4ODtUu79ChA4An7xP/TqlUonPnzurf3dzcAACJiYlVxo0fPx7Ak3kMOnXqhJCQEOzZswc2NjY1\nVnjfvn0bfn5+sLOzw6JFi7Tcs6YXHh4O4OnndOTIkVXuby68vb2rXa7NuabtedzUGut1U5eJEyei\nX79+mDhxIi5evKhenpCQgF69ejXKNjUhl8trbNHDBD8RERG1KqoJn7Rp0aNLCX7VhzgiIiJt3Lt3\nDy+99BKGDBmCjRs31msd+/fvR5cuXfDvf/8bRUVFkMvlT43R19fHn3/++azhEgkqJycHAGBjY1Nl\neU2tO7KysgA8SbZX7kOuenxycnK94jA3N1f/rKenV+vyvyfiJRIJFi1aBA8PD5ibm0MkEqkn8MzN\nza0ydtu2bQgLC8P48eNRVFSErVu34o033oCbmxvi4uKqjW3YsGHIzc3F+fPnsXPnznrtX1PKzs4G\n8PRzqvpd9Rw2FyYmJtUu1+Zc0/Y8bmqN9bqpS3FxMe7evYuwsDC88MILcHV1RXJyMu7cuSNogl8m\nk9XYoocJfiIiImpV6pPg15Ue/GKxuEr1FhERkSbEYjH8/f3h5OSEXbt2QV9fv17riY6ORlZW1lMV\n+5UxwU8tgSrBqEqQqvz9dxVV7/a8vLxqJwFWvedsSkFBQVi+fDneeOMNPHjwQB1LTQIDA7F3717k\n5OTgzJkzCAgIQGpqKt55551qx69fvx7ffPMNAGD27NlIS0trlP1oKHZ2dgBqfk5V96uoeslX/iIz\nPz+/MUPUiDbnmrbncVMT6nVz5MgRFBQUoLi4GAsWLEBqaip69eqF8vJywSv4meAnIiIiwv8S/DVV\nvVSmTTsfoUmlUkgkEib4iYhIK/n5+Rg7dixEIhF+//13WFhY1HtdX3/9NaZPn17rJIpyuRw3b96s\n9zaEUrl6lGrWWo6Tv78/AOD48eNVlp87d67a8a+99hoA4NSpU0/dFxMTgxdeeKHKMtX7VLlcjpKS\nkqcqrBuCKtZ58+ahffv2AJ68n6yOSCRSJ+j19PTg5+eH3bt3A0CNX9iNHz8e77zzDl599VVIJBK8\n8847zzTBbGN7+eWXATz9nEZHR1e5X0X1njsjI0O97Pr16zWuvymeU0C7c03b87ipafu6aWjGxsZY\nuXIlDhw4gNLSUujr68Pd3b1Rt1kbJviJiIiI/qJN0r60tBSGhob1rmRsSmKxGEqlkgl+IiLSWGlp\nKV5++WVkZWXh2LFj6mrJ+tLX18d3332HZcuW1ThGqVTijz/+eKbtCKE+iUk/Pz/4+fk1QjTNV23H\nqSUdjyVLlsDS0hKffPIJTpw4gaKiIpw9exbfffddjePd3Nwwe/Zs7N27F7m5uSgsLER4eDjefvtt\nrFixosr43r17AwAuXbqEw4cPN0oiU/VcLF++HBKJBHl5ebX2yg8JCcHNmzchlUqRmZmJlStXAgAC\nAgJq3c7mzZtha2uL6OhofP311w23Aw3sv//9L1xcXNTPaWFhIU6cOIGFCxfCxcUFS5YsqTJ+1KhR\nAIDVq1cjPz8ft27dwpYtW2pcf1M8p4B255q253FT0/Z101heeuklmJqaoqKiAteuXWuSbVaHLXqI\niIiI/qJNi56ysjIYGRk1dkgNQiwWAwAT/EREpBGZTIYJEyYgMTERUVFRVSbafFaffPIJvvnmmxor\nudPT09V/j1syhUIBhULRZNtr7pXzTX08GpOrqyvOnj2LPn364JVXXkGHDh2wcuVKdUuayv3wgSet\nUGJjYzF58mQsWLAAjo6OcHNzw+bNm7Fjxw4MHTq0yvj169ejT58+8Pf3x9q1axEaGqq+r/Jz/Cw/\n//TTTwgODsbWrVthb2+PoUOHYuDAgdWOPXv2LBwcHPDSSy/B3Nwc7u7uOHLkCL744gv8+uuv6nGV\ne7eLRCLs3bsX9vb26v72c+bMgUgkwpUrV2o8tkKxt7dHbGwsXn75ZQQHB6N9+/YIDg7Gyy+/jNjY\n2Ke+AA0NDcWbb76J3bt3w8nJCQsWLMDy5cvV9//9tVjbc6qpvz+X1b3etTnXtD2P6xtnfX/W9nXT\nmEQiEYyNjbFjx44m2+bf1TbJrkETx0JEREQkKG1a9JSWlupcgv9Zqy+JiKjlk0qlmDBhAs6ePYuo\nqCh4eno2+DZmz54NR0dHTJo0CRUVFVUSu0qlEnfu3GnwbTY3zaXNRXPR0o5Hz549ceTIkSrLHj16\nBODpSUsBwMrKCqGhoRoldgcMGFDj5LU1XSWh7XI7Ozv89NNPTy0PCgp6apmvry98fX1rCldNIpFo\nvP3myN7eHps2bcKmTZvqHGtjY1Ntsrem/a3tOdWUpsdSm3NN2/NYEw11jgLa7UtjKSwsRHFxMTp0\n6IDLly8LFgdb9BARERH9RZsWPWVlZTrRfx94kuC3tLTUmXiJiEgYMpkMQUFBiImJQWRkZJWK3YYW\nGBiIiIgIGBkZVWl3JxKJcOvWrUbbLlFTEIlEuHv3bpVlZ86cAQAMGzZMiJCItMbzuG5XrlyBUqlE\n165d8eDBA8HiYIKfiIiI6C+lpaUQiURo27ZtnWN1rUUP2/MQEVFtVJX7p0+fRmRkJAYNGtTo2xw+\nfDhOnz4NCwsLGBg8aSJgaGhY48Sczyo/Px9z586Fq6srjIyMYG1tDR8fH8yfPx+XLl1Sj6tpMlhN\nJolNTU3F66+/jnbt2sHMzAzjxo17an9qW09WVhZmzZoFZ2dnGBoawsnJCdOnT1dfjVdZWVkZVqxY\ngeeeew6mpqYwMjJCjx49MHPmTFy8eLHK9v6+7ZCQEK2PizZu3ryJsWPHwszMDO3atcPrr7+O1NTU\nasdqcryTk5MRGBgIKyurZt9uSGX27Nm4d+8eiouLcfz4cXz88cewsLB4ql87UXPG87h2Fy5cgEgk\nQteuXVFWViZYHDKZrMYWPUzwExERUatSWloKY2NjjT40MsFPREQtRUlJCV555RWcPXsW0dHRjVq5\n/3cDBgzAhQsXYGdnhzZt2kAmkyExMbFRtjVlyhSsXbsWH374IXJzc5GRkYHt27fj3r17Vfa5Pq0i\nVKZPn465c+ciLS0NBw8exLVr1+Dr64uUlJQ615OZmQlvb2/s378f27ZtQ15eHnbt2oWoqCj4+PhU\naXFSWFgIPz8/LFu2TJ2Ay8nJwaZNm3DmzJkqk3RW3p5SqYRSqawy4aemx0VTycnJGDx4MOLj43Ho\n0CGkp6dj7ty5mD59erXjNTnes2bNwvz58/Ho0aOnWoY0R9HR0TAzM4OPjw8sLS0xefJkDBo0CLGx\nsejRo4fQ4ZGOqPwlV223xqLpeSx0nEIKDw+HUqmEo6OjRkVijUGpVKKiooIV/ERERETA/xL8mtC1\nFj1M8BMRUXVyc3MxYsQIXL9+HdHR0RgwYECTx+Du7o4rV67Azc0NSqUSN27caJTtnDx5EgDg5OQE\nU1NTGBoawt3dXT1pZEOYOXMmhgwZAnNzc4wYMQIrVqzA48ePNap2/eyzz/DgwQMsW7YM/v7+MDMz\ng5+fH9asWYP79+9j9erV6rFLlizBlStXsHTpUoSEhMDe3h5mZmZ48cUXtZ7osaGPy5IlSyCRSLBy\n5UoMHz4cZmZmGDJkCGbOnFmv9QHAokWL4OPjA2NjY4wZM6bZ924fMWIEwsLCIBaLIZfLkZWVhd27\ndzO5T1pRfSFX162xaHoeCx2nUMrLy3Ht2jVYWVlBoVDAzs5OkDhkMhkAMMFPREREBDypYNQ0aa9r\nk+w6OjoKHQYRETUzjx49wrBhwyAWixETE4N+/foJFoujoyNiYmLg7e2NtLS0RtnG+PHjAQATJ05E\np06dEBISgj179sDGxqbBkk9+fn5Vfh85ciQAICoqqs7HHj58GAAwZsyYKsuHDBlS5X4A2Lt3LwDg\ntddee2o9zz33nFb709DH5dixYwCetGCqbPDgwVqvS8Xb27vejyUiagzXrl2DVCrFK6+8gtu3b8PV\n1VWQOORyOQAm+ImIiIgAPEnam5iYaDRW11r02NvbCx0GERE1I4mJiRg0aBAUCgViYmLg7u4udEho\n3749Tp06hePHjzfK+rdt24awsDCMHz8eRUVF2Lp1K9544w24ubkhLi6uQbZhbW1d5XcbGxsAQHZ2\ndp2PzcrKAgB06NChSlsL1TqSk5PVYzMyMgCgQa7Qa+jjkpOTA+B/+67y99+1oen7MyKiprJr1y4A\nQEhICC5fvizIFXDA/xL87MFPREREhJbboiczM5MteoiISO348eMYPHgwXF1dcfbsWTg7Owsdkpqx\nsXGjzgEQGBiIvXv3IicnB2fOnEFAQABSU1PxzjvvVBmn6hetSpwATyajrcvfx6iS3ba2tnU+VvVl\nfF5eXrXtLYqLi58aq0r0PytNj4smVIl81b6raHL8iIh0xeHDh2FkZARHR0ekpaU1yeT01WEFPxER\nEVEl2iT4daVFj0QiQWlpKRP8REQEAFi/fj1Gjx6N0aNHIyIiApaWlkKH1GREIpG6/Y+enh78/Pyw\ne/duAMCff/5ZZazq72blBPr169fr3MaFCxeq/B4dHQ0A8Pf3r/OxqnY7p06deuq+mJiYKhPnqtrq\nHDhw4KmxFy9efOpLElUFvFwuR0lJSZVqem2OiyZU+/r3KzH+fmyIiHSVVCrFvXv38MILLyAyMhLm\n5ubw9fUVJBb24CciIiKqRNsKfl1I8IvFYgANcwk/ERHpLplMhpCQEHz44YdYvHgxduzYoRN/xxpa\nSEgIbt68CalUiszMTKxcuRIAEBAQUGXcqFGjAACrV69Gfn4+bt26hS1bttS5/uXLl+P8+fMoKirC\niRMnsHDhQlhZWWk0ye6SJUvg5uaG2bNnY+/evcjNzUVhYSHCw8Px9ttvY8WKFVXGenl54dNPP8X3\n33+PzMxMFBUVITIyEv/85z+xbNmyKuvu3bs3AODSpUs4fPhwlS8LtDkumliyZAksLS3xySef4MSJ\nEygqKsL58+exfPlyrddFRNQcbdiwAQqFAvPmzcP+/fvh7+9fY4ucxlZXix6DpgyGiIiISGglJSVa\n9eDXhRY9TPATEZFYLMaECROQkJCAQ4cO4aWXXhI6JEGcPXsW33//PV566SWkp6fDxMQEnTt3xhdf\nfIE5c+ZUGRsaGory8nLs3r0b27dvx/Dhw7Fhwwbs2LEDwJOqd9UEtKp2PgCwceNGzJ07F+fPn4dS\nqcSQIUMQGhqKzp071xmfjY0NYmNj8fnnn2PBggVIS0tD+/bt4e3tjR07dlRp/2BpaYkLFy5g5cqV\nCA0Nxfvvvw9zc3P0798fW7dufWqy3/Xr1yMkJAT+/v7o3bs3fvzxx3odF02oWj999NFHeOWVVyAS\nieDj44ONGzeiZ8+etR6/2pYDaLDJkImInsWWLVtgbGyMvn374uTJk+qJz4VQV4seJviJiIioVWmJ\nLXrEYjH09fWfaWI7IiLSXdHR0XjrrbdgYWGBCxcuwNPTU+iQBOPr66txCwUbGxt1Mr+y6hLMf18W\nGRlZ67orKioAVJ+MsbKyQmhoKEJDQ+uM0czMDEuXLsXSpUvrHDtgwIAaJ8zV5rhoqmfPnjhy5MhT\nyzU5fnUtJyISUkFBAW7fvo1Ro0Zh69ataN++PcaOHStYPGzRQ0RERFRJS23RY2dnB319faFDISKi\nJlRRUYElS5Zg9OjR8PX1xaVLl1p1cl9oIpEIubm5AP53dZ2bm5uQIRERUT2sWbMGCoUCs2fPxsaN\nGzFjxgzB2vMAnGSXiIiIqIqSkhKNE/xSqVRnEvyOjo5Ch0FERE3o4cOHGDZsGFatWoWNGzciLCys\nVU2m21ytW7cOhYWFWLt2LQBg9uzZAkdERETa2rp1K9q2bYuMjAzk5eXhvffeEzSeunrwM8FPRERE\nrUppaanGPfilUqmglRqaEovF7L9PRNSK/PDDD+jduzdycnIQGxuLadOmCR0SAdi5cyf27dsHW1tb\nhIeH4+uvv8asWbOEDktjIpFIoxsRUUuWkJCg/hL9iy++wNSpUwUvpmIPfiIiIqJKpFIp2rZtq9FY\nuVxe45uo5kQsFsPJyUnoMIiIqJGJxWLMnDkThw4dwrRp0/DVV1/B1NRU6LDoL5MnT8bkyZOFDqPe\n2A+fiAhYtWoVAKBLly44c+YM/vOf/wgcEXvwExEREVXRUhP8rOAnImq5lEolfvzxR3h6euLmzZs4\nc+YMvvvuOyb3iYiIGpBMJkNYWBjMzc2xY8cOzJs3Dx06dBA6LLboISIiIqpMJpNp3HZHlxL89vb2\nQodBRESNICEhAUOHDsXUqVMRHByM+Ph4DB48WOiwiIiIWpzw8HCUlpbC3t4etra2WLhwodAhAWCL\nHiIiIqIqtEnwy2SyZp/gr6ioQE5ODiv4iYhamOLiYqxevRrLly+Hl5cXzp07h0GDBgkdFhERUYv1\n9ddfAwCSk5MRFRUFY2NjgSN6oq4WPUzwExERUauibQV/c59kNysrCxUVFUzwExG1EOXl5di2bRuW\nLFkCuVyODRs2YOrUqdDT4wX4REREjens2bPQ09PDhx9+iJEjRwodjppcLodIJIKBQfWpfCb4iYiI\nqFVpaS16xGIxADDBT0Sk45RKJfbu3Yt///vfSElJwcyZM/HZZ5+hffv2QofW6IKCgoQOgVq4Cxcu\nAOC51lKtWbMGe/fuFToM0mEPHz4E8OTq6K5du2L58uUCR1SVXC6HgYEBRCJRtfczwU9EREStiqYJ\nfoVCAYVCoTMJfkdHR4EjISKi+jp69Cg+++wzXL16FZMnT0ZERAS6dOkidFiNztvbG5MmTUJFRYXQ\noVAL98ILLwgdAjWSiRMnCh0CtQBOTk4wMDBARUUFzpw5g7Zt2wodUhVSqbTWmJjgJyIiolZF0wR/\nXRMZNRdisRgmJiYwNzcXOhQiItKCQqFAWFgYli9fjri4OIwdOxbXrl1Dnz59hA6tyXTu3Bm//vqr\n0GEQEVErVlFRgREjRqC8vByvvfYaOnToIHRIT6krwc8mfkRERNSqaJrgr2sio+YiIyOD1ftERDqk\ntLQUW7ZsgYeHByZNmgQ3NzdcvXoV4eHhrSq5T0REJDSlUokZM2YgJiYGALB06VKBI6oeK/iJiIiI\n/iKXy6FUKltUBX9mZib77xM1kNLSUpSVlVVZ1qZNG5iZmQkUEbUkd+/exaZNm7B9+3YUFxfjH//4\nBw4fPozu3bsLHRoREVGrtGDBAvzwww9QKpWwt7dHz549hQ6pWkzwExEREf1FVZWvTYJf0wl5hSIW\ni5ngJwKQlZWF1NRUpKenIycnB48fP0ZeXt5T/+bl5UEikaCoqEj9OteEKtH/938NDQ1haWkJKysr\ntG/fvtp/VT/b2dlBX1+/EY8CNTdlZWUIDw/H1q1bERUVBWdnZ8yfPx/vvvsu7OzshA6PiIio1fr8\n88/x1VdfwdTUFGZmZhg3blyNk9gKjQl+IiIior/UJ8Hf3Cv4xWIxevXqJXQYRE0iIyMDt27dwu3b\nt3Hr1i3cunULKSkpePDgQZXKe3Nz86cS7S4uLujbt696mbGxMYyNjausv7pqfZlMhuLiYsjlcvWX\nApX/LS8vV3+BkJaWVuULhZKSkirr0tfXh52dHezt7dGhQwfY2dnByckJ9vb2cHR0hIODA5ydneHk\n5NTs/++hmimVSpw7dw4///wz9uzZg8LCQowaNQr79u3DSy+9xC95iIiIBLZq1Sp8+umnGDBgADIy\nMpCRkYHRo0cLHVaNmOAnIiIi+ktLTfCPHDlS6DCIGtzt27dx7do1xMXF4fr167h+/TpycnIAAJaW\nlnB3d0ePHj3g4+MDFxcXdOrUCR07dkTHjh1r/QDUlMrKyqpcOfDo0SOIxWKIxWJkZGRALBbj6tWr\nyMrKQlZWFpRKJQBAT08Pjo6O6Ny5s3q/OnXqBBcXF/W+tmvXTuC9o8oqKipw5swZHDx4EAcOHMCD\nBw/Qu3dvLF68GG+++WaznLCPiIioNQoNDcUnn3yCd999F1u2bMHHH3+M0NBQjBgxQujQasQEPxER\nEdFfWmqCny16SNeVl5fj6tWrOHfuHGJiYnD+/HlkZWWhTZs28PT0RN++fTFu3Dj07t0bnp6esLe3\nFzpkjRgZGcHR0VGjibDlcjmysrLw8OFDPHz4EKmpqUhNTUVKSgqOHTuG1NRU5ObmqsdbWFigU6dO\n6i8BVF8EqL4EcHR0ZKV4I8vJycHx48dx9OhRhIeHIzc3F56envjHP/6BoKAgTphLRETUzISGhuKj\njz7Cf//7X3z99dcICQlBZmYmXnjhBVhaWgodXo2Y4CeFkpoKAAAgAElEQVQiIiL6i1QqBaBZgl/1\nZUBzTvCXlpaioKCACX7SSQ8ePEBkZCSioqJw/PhxSCQS2NrawtfXFwsWLICvry+ee+65ZlON39ja\ntGkDJycnODk5YdCgQdWOKS4uxoMHD9TJf9Xtjz/+wJEjR5Cenl7ly8kOHTrU+iWAqalpU+6izsvP\nz8fFixdx4sQJREdHIy4uDnp6ehg0aBAWLFiA119/HW5ubkKHSURERNVQJffXrFmD8PBwWFlZ4auv\nvkKPHj3w3nvvCR1ercrKypjgJyIiIgK0mzi3vLwcAGBg0HzfLmVmZgKAzlQzE8XHx2Pv3r3Yt28f\nEhMTYWpqihdffBFLly7FyJEj0aNHD6FDbNZMTU3h6ekJT0/Pau9XKBTIyMhASkoKUlNT1VcCPHjw\nAHFxcUhNTUV+fr56vLW1tbr9T3XtgBwcHJrtZHONTS6XIzExEdeuXcP58+dx8eJFJCYmQqFQoEeP\nHhg5ciQ+/fRTDBs2DBYWFkKHS0RERLX4/PPP8emnn2Lt2rXIysrC2bNnERMTg+TkZDx69AhjxowR\nOsRaSaVSGBkZ1Xh/8/3ESkRERNTAtEnaV1RUAECzbnGRlZUFALCzsxM4EqKa3bx5Ezt27MDevXuR\nlJSEjh07Yvz48fj6668xePDgVlOh3xT09PTUVwH4+vpWO6agoEDd+qfyVQBXr17Fvn37kJGRof7/\nr23btnB2dlZX/zs7O6snCHZwcFC3H/r7ZMW6RCaT4d69e0hKSsKdO3eQkJCA+Ph4JCYmQiaTwcTE\nBP3798fYsWOxdOlSDBo0iFdNERER6QilUon58+dj7dq12LBhAxwdHTFnzhxs3rwZAwYMwIoVK2Br\na4u+ffsKHWqt2KKHiIiI6C8KhQKAZkl7bcYKJTs7GwBga2srcCREVT1+/Bi//vorfvjhB1y+fBku\nLi6YMGECJkyYgIEDB7baqvDmwMLCAl5eXvDy8qr2frlcjvT0dHXlv+oLgIcPH+LatWvIyspSXz2k\nYmlpiQ4dOsDe3h6Ojo5o3749rK2t0b59e/Wt8u/W1taNvp9FRUWQSCTIz8+HRCJBXl4eUlNT8ejR\nIzx8+BBpaWnqLzlUX2g4OTmhZ8+e8Pf3x0cffYTevXujR48ezfpKLiIiIqpeRUUFZs6ciR9++AHb\ntm2Dh4cHhg8fjhkzZiAkJAQAEBkZiTFjxkBPT0/gaGsnlUprba3IdypERETUamhTla8a25zf7GVl\nZcHExIR9tKnZiI2Nxbp167B//37o6+tj/PjxWLlyJV588UUm9XVEmzZt0LlzZ3Tu3LnGMaoJgdPT\n0yEWi5GRkaG+ZWZm4uHDh8jLy0NeXh5yc3PVc5pUZmVlBX19fVhYWMDQ0BCmpqYwMjKCsbExTE1N\nYWhoCHNzc8jlcpSVldUYi0KhQH5+Ph4/fgyJRKJO6quu2KrM2toaTk5O6NSpE7p37w5/f39069YN\nbm5u6NatG/8vJSIiaiFkMhneeustHDp0CL/99hu8vLzg6+uLoUOHYv369QCAwsJCnD9/HtOmTRM4\n2rpJpVK0b9++xvuZ4CciIqJWQ5sEv65U8LN6n4Qml8sRFhaGtWvXIjY2Fv3798c333yDoKAgmJub\nCx0eNYLKEwJroqioqErCPy8vDxKJBBUVFcjPz4dMJkNxcTFKS0tRVlaGoqIiyOVypKWlQSQS1drj\nXk9PD66urrC0tISlpSXatWun/rny7+3bt9fpVkJERESkGYlEgvHjx+Pq1as4duwYnJ2d8eKLL6Jz\n587Ys2eP+sq86OholJeXY+TIkQJHXDe26CEiIiL6izZV+bpQwZ+dnc3++ySY0tJSbN68GV9++SUy\nMjLw+uuv48svv8TgwYOFDo2aGTMzM5iZmaFTp05Ch0JEREQt2IMHDzBu3DhIJBKcPn0a5ubmGD58\nOGxsbBAREVHlar3IyEg8//zzOvF5qq4Ef/P9xEpERETUwOrTg7+5J/hZwU9Nrbi4GKGhoejSpQsW\nLVqECRMmIDk5Gb/99huT+0REREQkiPj4ePj6+kJPTw/nz59HaWkpXnjhBVhbWyMqKgpWVlZVxkdE\nRGD06NECRasdJviJiIiI/sIWPUT1J5PJsGbNGnTp0gWfffYZgoODce/ePaxZswYuLi5Ch0dERERE\nrVRERAT8/Pzg6emJmJgYXL58GcOHD0e/fv1w4sQJWFtbVxn/559/4sGDBwgICBAoYu2UlZUxwU9E\nREQEtMxJdnXhklLSfWFhYfD09MTixYvxzjvv4P79+1i9ejXs7e2FDo2IiIiIWimlUomVK1fipZde\nQlBQEMLDw/Htt99i4sSJmDZtGsLDw6udy+fo0aOwsrKCt7e3AFFrjz34iYiIiP7CCn4i7Vy+fBn/\n+te/cO7cObz55ptYtmwZ+6gTERERkeCKiorw9ttv4+DBg/jiiy8QHByM1157DVFRUVi3bh0++OCD\nGh8bGRmJgICAZv1ZrzIm+ImIiIj+0hIn2WWCnxqDRCLB4sWLsWnTJgwePBiXLl3CgAEDhA6LiIiI\niAhJSUl4/fXXkZmZicjISOTm5qJ3796wsLDAiRMnMGTIkBofW1paipiYGHz77bdNGPGzkUqlMDIy\nqvH+5vuJlYiIiKiBtaRJdouLi1FSUsIEPzW4w4cPo1evXti1axc2btyIU6dOMblPRERERM3Cvn37\n8Pzzz8PU1BSRkZHYvHkz3njjDQQFBSEhIaHW5D4AnDx5EmVlZfD392+iiJ8dK/iJiIiI/tKSWvRk\nZ2cDABP81GAePnyIadOmISoqCiEhIVi5ciWsrKyEDouIiIiICGVlZZg3bx6+/fZbvPPOO+jYsSOG\nDh0Ka2trHD16VOMJcyMiItCnTx906NChkSNuOEzwExEREf2lJU2yq0rwc5Jdagg7d+7E7Nmz4eDg\ngJiYGPj6+godEhERERERAOD27duYNGkS7t27h5kzZyI8PBwFBQVYtGgR5syZA2NjY43XFRERgQkT\nJjRitA1PJpPVmuBvnp9YiYiIiBpBS6rgz8rKAsAKfno2+fn5CA4OxltvvYWgoCBcuXKFyX0iIiIi\naja2bNmC/v37o6CgALa2tti8eTOGDRuG27dvY+HChVol9+/fv4+kpCSNq/2bA7lcDoVCwQp+IiIi\nIqBlTbKbnZ0NExMTmJqaCh0K6ajTp0/jH//4B5RKJSIiInSqDykRERERtWzp6emYOnUqjh07BlNT\nU6SnpyM4OBhHjx6Fm5tbvdZ55MgRWFhYwMfHp4GjbTxlZWUAwAp+IiIiIgBQKpUANEvaKxQKiEQi\niESixg6rXrKzs1m9T/WiVCqxevVqjBw5Et7e3khISGByn4iIiIiajbVr16Jbt26Ijo6GkZERpk6d\nirt37+L777+vd3IfeNKeZ+TIkWjTpk0DRtu4pFIpACb4iYiIiLSmVCqbbfU+wAQ/1U9BQQGCgoKw\naNEiLF68GHv37kX79u2FDouIiIiIWrni4mJ89dVXaN++PebOnQsTExOsWrUKGRkZWLduHZydnZ9p\n/TKZDKdOndKp9jyAZgl+tughIiKiVkNVja9UKuuszFdV+zdXWVlZnGCXtJKQkIDAwECUlJTgxIkT\n8PPzEzokIiIiImrlzp07h61bt2Lnzp2QSqUwNzfHunXr8P/+3/9r0O2cOXMGRUVFOpvgNzIyqnEM\nE/xERETUamiT4BeJRM06yc8KftLG0aNHMWnSJPTt2xd79uyBvb290CERERG1eOXl5SgsLMTjx49R\nVFSEwsJCFBUVoaCgQKPHt23bFiYmJmjXrh2MjY2f+plIV2VkZGDPnj3Ytm0bbty4gbZt26KiogIL\nFizA//3f/9VarV5fERER8PT0hIuLS4OvuzGxgp+IiIioksoJfl2XnZ0NT09PocMgHbB582a8//77\nGD9+PLZv315r9Q8RERHVTCKRICUlBWlpacjMzMSjR4+QnZ2NjIwMZGdno7CwEBKJBIWFhSgsLFRP\njtlY2rVrByMjI1hYWMDGxga2trawsbGBg4OD+mdbW9sqvxsaGjZqTEQ1kclkiIyMxM8//4wDBw7A\n2NgY9vb2EIlEePHFF/HNN9+gW7dujbb9iIgIjBkzptHW31iY4CciIiKqRJsEPyv4SddVVFRg8eLF\nWLVqFT799FN89tlnzXbSaCIiouYiKysLf/75J27fvo3bt2/j3r17SElJQUpKCiQSiXqcqakpnJyc\nYGdnBwcHB3h5ecHc3ByWlpYwNzeHmZkZzM3N1cvMzMzUy9q1a6dRLKWlpSgrK8Pjx49RVlaG0tJS\nSCQSlJWVoaSkBPn5+SgrK0NBQQGys7ORk5OD9PR0XL16Vf27TCarsk4HBwd06tQJHTt2RMeOHdG5\nc2f1z506deJVftTgkpOTsXnzZmzfvh25ubkYNmwYxowZg6ioKCgUCuzZswcTJkxo1BjS0tJw8+ZN\nrFmzplG30xiY4CciIiKqpCVV8GdlZTHBTzWSSqWYPHkyIiIisGvXLgQFBQkdEhERUbNSXFyMGzdu\nID4+HtevX8eNGzdw+/ZtPH78GABgYWGB7t27o2vXrggICEDnzp3h4uKi/rcpWuQYGxvD2NgYVlZW\n9V6HRCJBZmYmsrOzkZWVhYcPHyI1NRWpqam4cOECdu/eDbFYrH5/bGRkhE6dOqFr165wc3NT37p1\n6wYXFxcYGDCVSHUrLy/H4cOHsWnTJkRHR6NDhw6YOXMm9PX18c0330CpVGL58uV47733muSqkqNH\nj8LExEQn56BSJfhrO058VRIREVGr0VIq+EtKSlBSUsJJdqlaRUVFeP3113HlyhVERUVh8ODBQodE\nREQkKLlcjuvXryM2NhYXL17E1atXkZSUBIVCgXbt2qFPnz54/vnn8c9//hPu7u5wd3eHk5OT0GE3\nCEtLS1haWsLd3b3GMTKZDA8fPlQn/x88eIC7d+/i0qVL2LlzJ3JycgA8STB27twZbm5u6N69O9zc\n3ODp6QkvLy9YW1s31S5RM1ZcXIwdO3bgyy+/RHJyMoYPH46ffvoJWVlZWL16NSQSCd5//30sXLjw\nmb640lZERASGDRumk60qWcFPREREVElLqeDPysoCAFbw01MkEgnGjRuHu3fv4sSJE3juueeEDomI\niKjJ5efn48yZMzh9+rQ6oV9WVgYrKysMGjQIQUFB6Nu3L/r27QtXV1ehwxWcoaEhunbtiq5du1Z7\n/+PHj5GUlIS7d+/izp07SEpKwtmzZ7F9+3Z12yIHBwf07NkTXl5e6Nmzp/qmaTsi0m3Z2dlYv349\nvv32W5SWlmLq1KmYMWMGoqOj8dFHH0EikWDmzJlYsGABHBwcmjS28vJyHD9+HJ9//nmTbrehqNps\nsYKfiIiICNpX8DdX2dnZAJjgp6oyMjIQEBCgTmrUVqlHRETUkhQXFyMmJgYnT57EqVOncPXqVSgU\nCnh5ecHX1xfTpk3DwIED4e7u3qzf4zVXVlZW8Pb2hre391P3paWlITExEQkJCUhMTMT58+exdetW\nFBUVAQA6duwIT09P9OrVS13t7+HhATMzs6beDWoEubm5WLFiBTZs2AAzMzN88MEHCAwMxI4dOzBk\nyBBIpVLMmDFDkMS+yvnz55Gfn4/Ro0cLsv1nxQQ/ERERUSX1qeBXKpXN7oOgKsHPFj2kkpmZieHD\nh0OhUCAmJgadOnUSOiQiIqJGlZSUhCNHjuDIkSM4ffo0pFIpPDw8MGzYMHz00UcYOnQoiyGagLOz\nM5ydneHv769eplQqkZKSgsTERPzxxx+4efMmTpw4gQ0bNqC0tBQikQidO3dWV/mrqv49PT1rbUNC\nzUdxcTHWrVuHVatWoW3btlixYgX69OmD77//Hv3794eNjQ3mzZuHGTNmwMbGRtBYIyMj0aVLF3Tr\n1k3QOOpLJpNBJBKhTZs2NY5hgp+IiIhajZZSwZ+VlQVjY2OYmpoKHQo1A48fP8aYMWNQXl6O06dP\no0OHDkKHRERE1OAqKipw9uxZ7N+/H0eOHEFSUhIsLS0xatQobNq0CQEBAXB0dBQ6TMKT99FdunRB\nly5dMG7cOPXyiooK3L9/H3/88Ye66v/o0aNYs2YNZDIZDAwM0L17d/Tq1Qt9+vRBr1690KtXL7i4\nuAi4N1RZRUUFNm/ejKVLl6KoqAizZ8+GtbU1tmzZgoSEBPTt2xdbtmzBpEmTmmTyXE0cPXq0ynmo\na6RSaZ3Hkgl+IiIiajXqk+BvrhX8rN4n4EmPYX9/f+Tm5jK5T0RELU5FRQVOnTqFsLAw7Nu3D5mZ\nmfDy8kJgYCDGjh0LHx8fGBgwtaUr9PX10a1bN3Tr1g2vvfaaenl5eTmSkpKQkJCA+Ph4JCQkYPPm\nzUhJSQHwZKJgVbK/d+/e6N27N7y8vGBubi7QnrRO169fx7Rp0/DHH39g9OjRaNOmDdauXQsDAwNM\nmjQJ33//PQYOHCh0mFWIxWLExcVh6dKlQodSbzKZrM4rW/i/IBEREbUa9W3R09xkZ2fzknNCQUEB\n/P39IRaLcfr0aXTu3FnokIiIiJ6ZUqnEuXPn8MsvvyAsLAw5OTno27cvPvjgA0yYMIFzzLRABgYG\n8PDwgIeHB4KCgtTL8/PzkZCQoE78x8XF4ZdffkFBQYH6KgFVwl9V9d+1a1fo6ekJuDctT2lpKZYv\nX47ly5fD2toabdu2xaFDh+Dj44N169Zh8uTJzfbLlsjISBgaGmLo0KFCh1JvMpmMFfxEREREKi2l\nRQ8T/CSVSvHqq68iLS0Np06dgqurq9AhERERPZM7d+7gl19+wS+//IL79++jT58+mD9/PiZMmICu\nXbsKHR4JoF27dhg8eDAGDx6sXqbq73/jxg0kJCTgxo0b2L17N7744gtUVFTAxMRE3dffw8ND/a+L\ni0uzfn/fHOXm5mLVqlXYsGEDSkpKoFQq0bFjR7zxxhsICgrSiTmfIiMjMWTIEJ2e1JkteoiIiIgq\nYQU/tQRKpRLTpk3DtWvXcObMGbi5uQkdEhERUb0UFhZi586d+OGHH3Dx4kU4OTnhzTffRHBwMHr1\n6iV0eNQMVe7v/+qrr6qXl5aW4ubNm+rE/82bNxEVFYX09HQAgJmZGTw8PODp6QlPT0/07NkTPXr0\ngIuLC9s8/aWkpATnzp3DqVOncOLECcTGxkKpVMLGxgYfffQRgoODdaqoRKFQIDo6Gp988onQoTwT\ntughIiIiqkSV4FcoFBqPbY6ysrLg4eEhdBgkkHnz5mH37t34/fff0adPH6HDISIi0lpcXBy+++47\n7NixA+Xl5ZgwYQKWLl2K4cOHs70K1YuxsTEGDBiAAQMGVFkukUiQmJiImzdvqv+Njo5WJ/4NDQ3h\n6uqK7t27o3v37nBzc4Obmxu6d+8OJycnIXalyaSkpCA2NhaXL19GbGwsLl26BJlMBldXV5SUlKBN\nmzYIDQ3F+++/L3So9XLp0iVkZ2dj9OjRQofyTNiih4iIiKgSVXVORUWFxo9hBT81J99++y3Wrl2L\nH3/8ESNHjhQ6HCIiIo2VlZXh119/xXfffYfY2Fh4eHhg6dKl+Oc//wkrKyuhw6MWytLSEj4+PvDx\n8amyXCKR4M6dO0hKSsLt27eRlJSEkydPYvPmzSgoKAAAmJqaomvXrnBxcYGLiws6deqkvrm4uMDR\n0bFZFwWpPH78GH/++WeVLzni4uKQnZ0NAwMDeHl5YeDAgZg5cyYqKirwr3/9C7a2tjh27Bi8vLyE\nDr/eIiIi4OzsDE9PT6FDeSZM8BMRERFV0qZNGwCAXC6vc2x92vk0FSb4W6ewsDB88MEHWL16NYKD\ng4UOh4iISCNisRgbN27Exo0bUVBQgMDAQKxcuVKnJ70k3WdpaQlvb294e3s/dZ9YLFYn/5OTk5Ga\nmoq4uDgcPHgQGRkZKC8vB/Ck+t/Z2RnOzs6wt7eHnZ0dbG1tYWNjo/7dxsYGNjY2sLW1bZQvAx4/\nfoysrCxkZWXh0aNHEIvFSE9Px/3793Hv3j3cv38fjx8/BvC/NkU9e/bE6NGj4e3tjX79+sHExAQK\nhQKLFi3CqlWrMGXKFGzYsAEmJiYNHm9TioyMxNixY4UO45kxwU9ERERUiTYJftXl4c0twV9SUoLi\n4mIm+FuZ+Ph4TJkyBbNmzcK8efOEDoeIiKhO8fHxWLt2LX799VdYWFhg1qxZeO+992Bvby90aES1\ncnBwgIODA4YMGfLUfeXl5Xj06BFSU1ORkpKC1NRUpKenIzMzEwkJCcjOzkZOTg5ycnKe+hxhamoK\nQ0NDtGvXDvr6+rC0tESbNm1gZmYGY2NjGBkZqbdRWFhY5bH5+flQKBRQKBSQSCSQSCTqxL2Knp4e\n7Ozs4OjoiC5dumD48OFwdXVFly5d4O7ujs6dO1f7JYNUKkVwcDAOHTqErVu34p133nnWQyi4vLw8\nXL58GQsWLBA6lGfGHvxERERElWiT4NfX1wfw5A12XW+omlJOTg4AMMHfiuTm5iIwMBD9+vXDV199\nJXQ4REREtTp58iSWLVuG6Oho9OzZE9988w3eeustdfKSSJcZGBio2/QMHjy4xnEVFRXqRL8q6V9c\nXAypVIqCggLI5XLk5+dDJpOhuLgYJSUlkEqlAIC2bds+9V5f1cZKT08PlpaWsLS0hJWVFSwtLWFn\nZ6e+qT7DaKqoqAjjx4/H+fPncfjwYYwaNUrLI9I8RUVFQU9PDyNGjBA6lGfGCn4iIiKiSrRJ8Nen\nX39TyM7OBgDY2NgIHAk1hfLyckycOBEVFRUICwur8809ERGRUI4ePYovvvgC586dw7BhwxAREQF/\nf3+d6FFO1ND09fVhb2/frK9YEYvFGDt2LMRiMWJiYtC3b1+hQ2owERER8PHxgYWFhdChPDOpVFrn\nZwBOTU5EREStRn0q+Jtbgj8vLw8AYG1tLXAk1BTmzJmDixcvIiwsjFdtEBFRs6NUKnH48GEMHDhQ\n3ev6+PHjOHHiBAICApjcJ2qmkpOT4efnh4KCghaX3FcqlTh27BgCAgKEDqVBsEUPERERUSUtIcGf\nm5sLAwMDtGvXTuhQqJFt2bIF3377LebMmYN79+7h3r17QodERNRkHBwc4OfnJ3QYVIsjR45g8eLF\nuHHjBl599VVcvXoV/fr1EzosIqpDfHw8Ro4cCTc3Nxw+fLjFFQ7Fx8fj0aNHLSrBzxY9RERERH9p\nKQl+KysrVsS1cLdu3cL7778PpVKJNWvWYM2aNUKHRETUpAwMDDT6e01N79y5c1i4cCFiYmLw2muv\n4eeff4aXl5fQYRGRBuLi4jBy5Ej07dsXhw4dgomJidAhNbiIiAjY2tq2mKsSpFIpjI2Nax3DBD8R\nERG1Gi0lwd/SqmyoqrKyMkyePBnOzs5ITk6GUqkUOiSdExQUBADYs2ePwJFQQxOJRNi9e7f6OaaW\nac+ePXjjjTeEDoP+JjExER9//DHCw8Px4osv4sKFCxg0aJDQYRGRhlTJfS8vLxw8eLBFJvcBIDIy\nEmPGjIGeXsvoTC+Tyeq8ertl7CkRERGRBlpCgj8vLw/t27cXOgxqRHPnzkVKSgrmzJkjdChEREQo\nKCjAvHnz0LdvX6SlpSEiIgInT55kcp9Ih6iS+/3798fRo0dhamoqdEiNori4GBcuXGgx7XkA9uAn\nIiIiqqIlJPhZwd+yhYeH47vvvsOePXugUCiEDoeIiFoxpVKJvXv3Yt68eSgqKsLq1avx/vvvq98j\nEZFuuH79OkaNGoX+/fvjwIEDdbZ70WXR0dGQy+UYOXKk0KE0GE168LOCn4iIiFoNVYJfJpPVOVb1\n4bW8vLxRY9JWXl4eE/wtVH5+PmbNmoXg4GBMmDBB6HCIiKgVu3PnDoYOHYpJkyZh3LhxSEpKwocf\nfsjkPpGOuXbtGkaOHIkBAwa0+OQ+8KQ9T//+/WFnZyd0KA1GKpUywU9ERESkwgp+as7mzJmD8vJy\nTqhLRESCqaiowJdffom+ffuiqKgIly9fxsaNG/neg0gHXbt2DaNGjYK3t3erSO4DTxL8o0ePFjqM\nBsUWPURERESVaJPgNzB48japOSb42YO/5YmOjsaPP/6IvXv38vklIiJBJCYmYurUqYiLi8N//vMf\nfPzxx+r3Q0SkW65evQp/f394e3tj//79MDIyEjqkRnfnzh3cu3evRfXfB9iih4iIiKgKkUgEAwMD\nVvBTs1JSUoJ3330XQUFBCAwMFDocqoNIJFLfmrPGjFPbdevKMSNqzX766Sc8//zzkEqluHjxIhYv\nXszkPpGOunr1KkaMGAEfHx8cOHCgVST3ASAiIgIWFhbw9vYWOpQGJZVK1YVqNWGCn4iIiFqVNm3a\n6GyCX6FQID8/nwn+FmbZsmWQSCRszaMjlEql0CFopDHj1HbdunLMiFqjx48fIzAwEFOnTsVHH32E\nK1euoG/fvkKHRUT1lJCQgICAAHh7e+O3336rs7VLSxIZGQl/f/86k+G6hi16iIiIiP7G0NBQZxP8\njx8/hkKhYAuXFiQ5ORmhoaFYvnw5HB0dhQ6H/qKqNGdimohasvPnz2Py5MlQKBQ4fvw4hg4dKnRI\nRPQM7ty5A39/f3h4eLSatjwqUqkUp0+fxtq1a4UOpcGxRQ8RERHR3xgaGkIqldY5rjkm+HNzcwGA\nFfwtyJw5c+Dq6orZs2cLHQoREbUimzZtwrBhw9CnTx/ExcUxuU+k4+7evYthw4ahS5cuOHr0KExN\nTYUOqUmdOXMGxcXF8Pf3FzqUBqdJgp8V/ERERNSqGBsbo7S0tM5xTPBTYzty5AjCw8Nx/PjxFncp\nMRERNU/l5eWYN28e1q9fjwULFmDZsmXQ02PtJ5EuS01NxahRo2Bvb4/ff/8dZmZmQofU5CIjI9Gz\nZ0906tRJ6FAanFQqrbNFD/8XJyIiolZF0wS/KuEqk8kaOySNMcHfcigUCnzyyScIDAzE8OHDhQ6H\nKqk8EaxqYtiQkJBqxz58+BCvvvoqzM3NYW9vj1DkhTEAACAASURBVLfeekv9Ov37OkQiEZKTkxEY\nGAgrK6unJp3NysrCrFmz4OzsDENDQzg5OWH69OkQi8VV1pefn4+5c+fC1dUVRkZGsLa2ho+PD+bP\nn49Lly7VO04AEIvFmDFjhjoGZ2dnzJw5E5mZmRofv5s3b2Ls2LEwMzNDu3bt8PrrryM1NVXjxxNR\n48nOzsaLL76I7du3Y//+/VixYgWT+0Q6Li0tDcOGDUO7du0QHR0NKysroUMSREREBEaPHi10GI2C\nLXqIiIiI/kbbBL8m/fqbSl5eHoyMjGBsbCx0KPSMduzYgcTERHz++edCh0J/U7nvvlKphFKpxJYt\nW6odu3DhQqxYsQJpaWkICgrCjh07MH/+/BrXN2vWLMyfPx+PHj3CkSNH1MszMzPh7e2N/fv3Y9u2\nbcjLy8OuXbsQFRUFHx8fSCQS9dgpU6Zg7dq1+PDDD5Gbm4uMjAxs374d9+7dw8CBA+sdp1gshre3\nN8LDw/HTTz8hNzcXP/74Iw4ePIiBAwdqlORPTk7G4MGDER8fj0OHDiE9PR1z587F9OnT63wsETWu\n5ORk+Pr6IiMjAxcvXsSrr74qdEhE9IyysrLUk8pGRka22nm60tLScPPmTQQEBAgdSoNTKpUoLy9n\ngp+IiIioMk0T/Ko3Uc2tgp/V+7pPLpfjv//9L95++214eHgIHU4VlavNK9+qu9/Z2RnZ2dkar6cl\nmjZtGjw8PNCuXTt88sknAICoqKgaxy9atAg+Pj4wNjbGmDFj1Mn/zz77DA8ePMCyZcvg7+8PMzMz\n+Pn5Yc2aNbh//z5Wr16tXsfJkycBAE5OTjA1NYWhoSHc3d3xzTffPFOcn376KR4+fIiVK1di+PDh\nMDc3x4gRI7BixQo8ePAAn332WZ3HY8mSJZBIJOp1mJmZYciQIZg5c2adj23Jfv/9d7z66qtwcHCA\noaEhHBwc8PLLL+PAgQNPja3rNVjXOG1u1HpcuXIFvr6+MDY2xpkzZ+Dp6Sl0SET0jLKzszF8+HBU\nVFTg1KlTsLe3FzokwURERMDY2BiD/z97dx4WVfm/D/we2XcGhk3ETMW11NyFyDTFVNSSRK0M7Usq\naZllpmappZkWWppa5pImLiQZsoki7gvumruiIYsii8M6wzLM7w9/Mx+QbVgPw9yv65qrYebMOfcM\nHIz385z38/LLQkepc0VFRVAqldDXr7zLPgv8REREpFNY4Ceh/fbbb0hKSsLXX38tdJQyVDPWNfk6\nKSkJ48ePL3edipLbPbuPpqR79+7q+05OTgCAhw8fVrh97969y308NDQUADB06NBSj7/yyiulngcA\nb29vAMCYMWPQsmVL+Pn5ISgoCBKJpMLPWZOcYWFhAFCmZdSgQYNKPV+ZAwcOlLuPpvgHtyYKCwvx\n7rvv4p133sHAgQNx9uxZ5OTk4OzZs3jttdfg6+sLb2/vUv8mVXUOlvd4efcr2k9TPh+pfNHR0Rgw\nYAC6deuGEydOwNnZWehIRFRLWVlZeP311yGTyXDw4EE4OjoKHUlQUVFRGDBgQJO8yrmoqAgAWOAn\nIiIiKsnExAR5eXlVbmdgYACRSNSoCvwZGRks8Gs5uVyO7777DlOnTtX6RcAcHR1x8ODBRjlQ0VAs\nLCzU91V9rCsrnpqampb7+OPHjwEAzZs3LzXDWiKRAHjaWkNl06ZNCA4Ohre3N3JycrBx40aMHTsW\nrq6uuHTpUo1zqq7GUB1TRfW1KmNl0tLSKt2Hrvnoo48QFBSE6OhozJgxAy4uLjA0NISLiws++eQT\n7N+/H3v37mULI6o3kZGRGDFiBEaNGoXQ0FCdXHiTqKmRyWQYOXIkEhMTERkZiRYtWggdSVAKhQIx\nMTFNsj0PwAI/ERERUbk0ncEvEolgYGDQqAr8nMGv/f744w9kZGTg888/FzpKre3atQv6+vpYunSp\nRrO7qWKqy+ozMjLKzLRWKpXIzc0ttf3o0aOxe/dupKWl4ejRoxgyZAgePHiASZMm1TiDvb09gP8V\n6VVUX6uer4yqkP/sPjIzM2ucS1vFxsbit99+w8SJE9GzZ89yt+nTpw/ee+89bNu2DceOHav1Masz\nM5+z+Ju+iIgIjB49GqNHj8aWLVvUawsRkfYqLCzEmDFjcPnyZURFRaFdu3ZCRxLc6dOnkZGR0WQX\n2GWBn4iIiKgcmhb4gadtehpbgV9XF89qChQKBQICAjBp0iQ0b95c6Di19sorr+C7776DUqnEhAkT\ncP/+faEj1RnVTPvCwkLk5eXV+wz0N954AwBw+PDhMs8dO3YM/fr1U38tEomQmJgI4OlsfA8PD+za\ntQsAcOPGjRpnGDFiBADg4MGDpR6Pjo4u9XxlPD09y93HqVOnapxLW/36668AgLfeeqvS7caMGQMA\n+P333+s9E+mOvXv34s0338R7772HP//8E3p6ekJHIqJaUiqVmDx5Mg4dOoSwsDB069ZN6EiNQlRU\nFFq1atVkBztY4CciIiIqh7YX+DmDX3vt3LkT9+/fx2effSZ0lDrz+eef480334RUKoW3tzfkcrnQ\nkepEly5dAABnzpxBaGhoqQJ7fVi4cCFcXV0xbdo07N69G+np6cjOzkZYWBgmTpyI77//vtT2fn5+\nuHbtGvLz85GSkoJly5YBQK0uT1+0aBGee+45zJkzBzExMcjOzkZMTAzmzp2L5557DgsXLtTofVhb\nW6v3kZOTg5MnT2Lp0qU1zqWtVDPyX3zxxUq3U/2snThxot4zkW44dOgQxo4di0mTJuHXX39Vt+Ui\nIu326aefYvv27QgODoa7u7vQcRqNffv2lVnDqClhgZ+IiIioHNpc4GcPfu2lVCqxbNkyjB07Fm3b\nthU6Tp3avHkz2rZti4sXL2L69OlCx6kTq1evRteuXeHp6YmffvoJAQEB6udEIlGt7pf8WkUikSA2\nNhbjx4/H7Nmz4eTkBFdXV6xfvx6BgYHo37+/etvjx4/D0dERXl5esLCwQPv27REREYElS5Zgx44d\nNc7m4OCA2NhYjBgxAhMmTICNjQ0mTJiAESNGIDY2Vt1GqLJ9tG7dGsePH0fXrl0xcuRIODk5YdGi\nRVi3bl252zdlycnJAFDl72zV85UtzkykqbNnz2LUqFEYNmwY1qxZozPnG1FTN3/+fKxevRrbtm1r\nsq1oaiItLQ3nz59vsv33Ac0L/JU/S0RERNTEaHOBny16tFdMTAz+/fdf/Pnnn0JHqXNWVlYIDg5G\n3759sXHjRri7u9eqF3xj0LNnzwoXrK2od3l1H3+WWCxGQEBAqcGE8ri7u2s0c68meRwcHPDrr7+q\n28tUd98A0LlzZ0RERFTrNbpMVYBlIZZq69atWxg2bBhefvll7Ny5k215iJqI1atX47vvvsP69evV\nbd3oqf3790NPTw8DBgwQOkq94Qx+IiIionJoa4E/Pz8fubm5nMGvpdauXYuXX34ZXbt2FTpKvejS\npYt6lva0adMqLI4T6QonJycAT6+8qoxqQeJn1+VQtVVRKBQVvlahULD9CgEAUlNTMXz4cLRt2xa7\nd+/mgrpETcQff/yBGTNmICAgAH5+fkLHaXSioqLg7u4OS0tLoaPUGxb4iYiIiMphamqqlQX+9PR0\nAFW3e6DGJzk5GaGhofD39xc6Sr3y9fXF5MmTIZPJ8NZbb0EqlQodiUgwHh4eAIArV65Uup3q+Vde\neaXU4xYWFgCAzMzMCl/75MmTJl3UIM3I5XK88cYbKC4uxj///KNeJJyItFt4eDg++OADzJs3DzNn\nzhQ6TqOjVCpx4MCBJt2eB2CBn4iIiKhc1ZnBb2BggMLCwnpOpBkW+LXXb7/9Bmtra3h7ewsdpd6t\nWrUKPXr0QFxcHHx9fYWOQySYqVOnAgCCg4Mr3e6vv/4qtb1K+/btAQBXr16t8LVXr15Fu3btahOT\ntJxSqcTEiRNx48YNhIeHl1org4i019mzZzFu3DiMGzcO3377rdBxGqVLly7h4cOHTX5NAhb4iYiI\niMqhrS16VG0e2INfuygUCmzYsAF+fn4wMjISOk69MzIywu7duyEWi7F3716h4xAJpm/fvpgyZQo2\nb96Mc+fOlbtNbGwstm7diilTpqBXr16lnhsxYgSAp4tYV2Tjxo0YPnx43YUmrbN8+XIEBwdj9+7d\n6Nixo9BxiKgOxMXFYcSIEXjllVewefNmrtFSgX379sHR0bHJtr9UYYGfiIiIqBzaWuBPT0+HSCSC\nWCwWOgpVQ3R0NJKTkzFx4kShozSYVq1aYdu2bfyDlHTe6tWrMWbMGAwePBirVq1CYmIiCgsLkZiY\niJ9//hlDhgzB2LFjsXr16jKvnTFjBjp16oQ//vgD06ZNw9WrV5Gfn4/8/Hz8+++/8Pf3x9mzZ/HJ\nJ58I8M6oMYiOjsaXX36JH374AQMHDhQ6DhHVgdTUVAwdOhQtW7bErl27qizq6rKoqCgMGTKkyf//\nJgv8REREROUwMTGBQqHQqPVOYyvwW1pacuE8LRMYGIi+fftqTRsNkUhU6g+lyr5+9rmShg0bhi+/\n/LJ+wxI1cgYGBggMDMS2bdsQHR2NHj16wMzMDN27d8eBAwewbds2bNu2rdzf6xYWFjh16hQWLVqE\nM2fOwN3dHWZmZrCzs4Ovry/s7OwQGxtbYQ/+qs5l0m7x8fHq9h0c5CFqGrKzs/H666+juLgYoaGh\nMDc3FzpSo5WdnY2TJ082+f77gOYFfg4FERERkU5RLT6Xm5sLa2vrSrdtbAV+9t/XLnl5efjnn3/w\n3XffCR1FY0qlslbPl/Ttt9+ybywRgOHDh9eolY6lpSW+/vprfP3119V+bXXOVdIuRUVFeOedd9C8\neXOsX79e6DhEVAcKCwsxZswYJCQk4MSJE1xPowoHDx6EQqHAoEGDhI5S71jgJyIiIiqHhYUFACAn\nJ6fKAr+RkRHy8/MbIlaVMjIyWODXMiEhIZDJZBgzZozQUYiIqIlYvHgxzp8/j9jYWPWkBSLSXkql\nEh988AFOnjyJw4cPw9XVVehIjV5UVBR69uwJOzs7oaPUO4VCAQDQ09OrdDsW+ImIiEinqAr8WVlZ\nVW5rbGwMuVxe35E0kp6ezgV2tUxQUBAGDx7MWVgCOXXqFHx8fISOQURUZ44fP47Fixdj1apV6NKl\ni9BxiKgOzJs3D9u3b0dYWBi6d+8udBytsH//frz77rtCx2gQxcXFAIBmzSrvss8e/ERERKRTVAX+\n7OzsKretzoK89Y0terRLfn4+oqOjMWrUKKGjEBFREyCVSjFhwgR4enrC399f6DhEVAd+//13LFu2\nDBs2bICnp6fQcbTCzZs3ce/ePZ3ovw/8r+VeVQV+zuAnIiIinaKtBf6MjAy0bNlS6BikocOHDyMn\nJwdDhw4VOorO6tevH4KCgoSOQXWMC8WSrvrwww8hk8mwefNmngdETcChQ4cwffp0fP3113jvvfeE\njqM1oqKiIBaL0bt3b6GjNAjVDP6qfu+zwE9EREQ6xdLSEoD2FfjZoke7hIeHo2vXrhyUISKiWtu8\neTN27dqFqKgotn0jagKuX7+O0aNH480338SCBQuEjqNVoqKiMGjQoCoXnW0qNJ3BzxY9REREpFP0\n9fVhbGysdQX+J0+eQCwWCx2DNBQREYFhw4YJHYOIiLRcQkICPvnkE3z66acYNGiQ0HGIqJYePnyI\nYcOG4cUXX8SWLVt4RU41yOVyHDlyRGfa8wD/K/BX9XPCAj8RERHpHAsLC60r8EulUhb4tUR8fDzi\n4uJ06o8PIiKqH9OnT4ejoyO++eYboaMQUS3JZDK8+eab0NfXR3BwMIyMjISOpFWOHDmCvLw8nVqv\ngC16iIiIiCqgaYHf2Ni4URT4CwoKIJPJYG1tLXQU0sDx48dhYGCAXr16CR2FiIi02NatWxEWFobD\nhw/DxMRE6DhEVAvFxcV4++23cffuXZw6dQp2dnZCR9I6UVFReOGFF+Di4iJ0lAbDFj1EREREFdC2\nGfxPnjwBABb4tcSJEyfQvXt3mJqaCh2Fqkkul2P+/Plo06YN9PX1IRKJdP7SeX4mRMJITU3FrFmz\nMH36dHh4eAgdh4hqaebMmdi3bx/27t0LV1dXoeNopaioKLz++utCx2hQms7gZ4GfiIiIdI6lpaVW\nFfilUikAFvi1xYkTJ+Du7i50DKqBBQsWYMmSJXj//feRlZWFqKgooSMJjp8JkTD8/f1hamqKJUuW\nCB2FiGpp7dq1WL16Nf744w+4ubkJHUcrPXjwANevX9e5FpicwU9ERERUgerM4JfL5Q2QqHIs8GuP\nnJwcXLt2Df369RM6CtXArl27APyvsObp6an+w0pX8TMhanh79+7F33//jfXr18Pc3FzoOERUCwcP\nHsSMGTOwaNEijB07Vug4WisyMhJmZmY6d0UTF9klIiIiqoCFhQWysrKq3M7ExAQKhQIFBQUNkKpi\nLPBrj5s3b0KhUKBr165CR6EaSEhIAADY2NgInKTx4GdC1LAyMzMxdepUvP/++zq1kCRRU3T//n2M\nGzcOo0aNwvz584WOo9UiIyPx2muv6dzCxGzRQ0RERFSB6szgByB4mx6pVAo9PT1YWFgImoOqdvPm\nTRgaGuL5558XOgrVgOqPKPoffiZEDWvu3LkoLCzE999/L3QUIqqF7OxsjBw5Ei4uLti6dSvXr6mF\ngoICxMTEYOjQoUJHaXBs0UNERERUgeoW+IVu0yOVSmFlZcU/DLTArVu30LZtW+jr6wsdhaqp5Pml\nWkh2zpw5pb4WiUSIi4vD6NGjIRaLyyw4+/jxY/j7+6NFixYwNDSEs7MzJk+ejEePHpU5nqbbZmZm\nYubMmWjdujWMjY1ha2sLNzc3zJo1C2fOnCmT+dnfE5o8XtF7quwzqc570PTzI9J1Z8+exfr167Fy\n5UpIJBKh4xBRDRUXF+Ptt99GWloaQkJCYGpqKnQkrXbs2DFkZ2fr3AK7AGfwExEREVWoOovsAo1j\nBj/b82iHW7duoX379kLHoBoo2VdeqVRCqVSqZ9CWfM7f3x+zZs1CcnIyIiIi1I+npKSgd+/e2LNn\nDzZt2oSMjAzs3LkT+/fvh5ubm7rVVnW39fX1xU8//YQZM2YgPT0dDx8+xObNm3Hv3j306dOn3PwV\nva+KHq/oPVX2mVTnPWhyLCJdp1AoMGXKFLz88st45513hI5DRLUwe/ZsREdHY8+ePXBxcRE6jtaL\njIxEp06d0KpVK6GjNDjO4CciIiKqgLa16MnMzGSBX0s8ePBAJ//40CXz5s2Dm5sbTExMMHToUPUf\nXgsWLEB8fDy+++47eHp6wtzcHB4eHli5ciXu37+PH374Qb2P6mx76NAhAICzszPMzMxgaGiI9u3b\n45dffqn391SZ6ryH2h6LSBf8/PPPuHbtGn799Vde2UKkxbZu3YoVK1Zgw4YN6Nu3r9BxmoTIyEid\nbM8DcJFdIiIiogppW4GfM/i1R0ZGBmxtbet0nyXbm/Cm2e2vv/6q0+9BSb179y738dDQUAAo8wfo\nK6+8Uur56m7r7e0NABgzZgxatmwJPz8/BAUFQSKR1FlxvKL3VJnqvIfaHutZY8eOFfxnjLf6vY0d\nO7bWPyfaJCEhAQsXLsTcuXPRoUMHoeMQUQ2dPHkSkydPxhdffMErcepIQkICrl+/rvMF/qqwOSgR\nERHpnOoW+PPy8uo7UqVY4NceGRkZsLGxqdN9BgUF1en+dMHKlSvrbd8V9dF9/PgxAKB58+blPh8X\nF1ejbTdt2gQvLy9s374dMTEx2LhxIzZu3IiWLVsiJCQE3bp1q9H7KKkmvYGr8x5qe6xnzZw5E/36\n9av1fqjxOnXqVL2ex43NjBkz4OjoWGqNCyLSLklJSfD29saQIUOwZMkSoeM0GWFhYTAzM8PLL78s\ndJRGjQV+IiIi0jkWFhYoKiqCTCZTF/HLY2ZmBgDIyclpqGjlkkqlcHJyEjQDVa24uBhSqbTOC/xj\nxoyp0/3pgvqcwV8RBwcHJCUlISMjA2KxuM62BYDRo0dj9OjRKC4uxokTJ7BkyRJERUVh0qRJuHjx\nono7kUgEpVKJwsJCGBgYAHja4qs+VPc91KW+ffvyvGjidKl1U0hICPbs2YMDBw7A2NhY6DhEVAOF\nhYUYN24crKyssHXr1ir7pZPmIiMjMWjQIBgZGQkdpVHjTxwRERHpHCsrKwBVF77Mzc0BNI4CP2fw\nN35yuRwKhUI9MES65Y033gAAHD58uMxzx44dKzXjvDrbikQiJCYmAni6wJqHhwd27doFALhx40ap\n1zo6OgIAHj58qH6s5ABAXarOeyCi8uXm5uKTTz7BhAkTMGjQIKHjEFENTZs2DZcvX8bff/+t/juD\naq+goACHDh3S2fY81cECPxEREekc1WzTJ0+eVLqdnp4eTExMkJub2xCxKiSVSvnHghZQzSwqKCgQ\nOAkJYeHChXB1dcW0adOwe/dupKenIzs7G2FhYZg4cSK+//77Gm0LAH5+frh27Rry8/ORkpKCZcuW\nAQCGDBlSarvBgwcDAH744QdkZmbi5s2b2LBhg+Dvl4jKN3/+fGRlZeHHH38UOgoR1dD69euxYcMG\nbNq0CZ06dRI6TpNy5MgR5OTk4PXXXxc6SqPHFj1ERESkczQt8ANPZ/FzBj9pQk9PDwYGBoIvykw1\nIxKJytxXtQmp7DkViUSC2NhYLF68GLNnz0ZiYiJsbGzQu3dvBAYGom/fvjXa9vjx4/j999/h5eWF\npKQkmJqaolWrVliyZAk++eSTUhkCAgJQVFSEXbt2YfPmzRg4cCDWrFmDwMBAdfbqvKfKtqnOe9Dk\nWES65vLly/jll1/w66+/wt7eXug4RFQDp0+fxscff4z58+fjrbfeEjpOkxMZGYnOnTvjueeeEzpK\no8cCPxEREekcVYFfKpVWuS0L/FQdJiYmkMvlQsegGqis4KxpMVosFiMgIAABAQF1tq27uzvc3d01\nOr5EIlEX80sqL78m76mqbTR9DyzmE5VWXFyMKVOmoF+/fnj//feFjkNENZCSkoIxY8agf//+WLBg\ngdBxmqTIyEiMGDFC6BhagQV+IiIi0jmmpqYwMjLSeAa/kC16CgoKIJPJWODXElZWVsjIyBA6BhER\nNWKrVq3CxYsXcenSpVJXuBCRdigsLISPjw/09fWxfft26OnpCR2pybl//z5u3ryJtWvXCh1FK7DA\nT0RERDrJ2tpaK1r0qDKywK8d2rVrh9u3bwsdg4iIGql79+5h/vz5mDNnDjp27Ch0HCKqgU8//RQX\nLlzAqVOnYGtrK3ScJikyMhLm5uZwc3MTOopWYIGfiIiIdJJYLNaKAr+qjRAL/NqhQ4cOuHLlitAx\niIioEVIqlZgyZQpatmyJefPmCR2HiGpg586dWLNmDXbs2IEXXnhB6DhNVmRkJAYPHgwjIyOho2iF\nZkIHICIiIhKCtszgZ4Ffu3To0AE3btwQOgYRETVC69atw+HDh7FlyxYWrYi00O3btzFlyhR89NFH\nGDt2rNBxmqz8/HwcPnwYQ4cOFTqK1mCBn4iIiHSSWCzWikV2WeDXLj169EBaWhpu3boldBQiImpE\n4uPjMWfOHMyePRu9evUSOg4RVZNMJoOPjw86dOiAH374Qeg4TdqRI0eQk5ODIUOGCB1Fa7DAT0RE\nRDpJ0xY9FhYWghf49fT0YGFhIVgG0lyvXr1gZWWFyMhIoaMQEVEjoWrN4+zsjK+++kroOERUA/7+\n/njw4AF27doFQ0NDoeM0aZGRkXjxxRfRsmVLoaNoDRb4iYiISCdpUw9+KysriEQiwTKQ5vT19fHm\nm28iMDBQ6ChERNRI/P777zhw4AA2btwIY2NjoeMQUTX9/vvv+PPPPxEYGIhWrVoJHafJi4iIYHue\namKBn4iIiHSSpgV+MzMzwQv8bM+jXSZOnIhz587hzJkzpR6/efMmMjIyBEpFRERCuHPnDmbNmoVZ\ns2bBzc1N6DhEVE1XrlzBjBkzMG/ePBadG8D9+/dx+/ZtftbVxAI/ERER6SRtWWQ3MzOTBX4t079/\nf/Tu3RuLFy9WP6ZQKODh4YHOnTsjNjZWwHT1Y+fOnejTpw/EYjFEIpH69qzKniOqD/yZqxrP3/qT\nn5+PcePGoV27dvj222+FjkNE1ZSdnQ0fHx/07dsXCxcuFDqOTggPD4elpSUHRKuJBX4iIiLSSdq0\nyC4L/Npn8eLFCA0NRUREBADg6NGjSEtLw+PHj/Hyyy9jzZo19XZsDw8PeHh41Nv+n7V161aMHz8e\ntra2uHTpEuRyOYKDg8vdVqlUNliuv/76q1RBkremcauumvzMNfQ5JKTGev42FbNnz8bt27cRGBjI\nnt1EWuj9999HVlYWduzYAT09PaHj6ITIyEgMGjSIvzOrSV/oAERERERCEIvFyM7ORmFhIQwMDCrc\njgV+qonBgwdj/Pjx8PPzw4ULFxAUFARDQ0MUFBSguLgYH330EY4fP44NGzbAzMysTo9dXFxcp/ur\nyooVKwAAAQEBeO655wAAo0ePFrwY2K9fP8ycOVPQDFT3fHx86v0YDX0OCamxnr9NQUREBFavXo0/\n//wT7du3FzoOEVXTunXrsGfPHkRHR8PBwUHoODpBLpfj8OHD+Pnnn4WOonVY4CciIiKdJBaLATxt\ngSORSCrczsLCAoWFhZDL5YIsjCeVSuHk5NTgx6XaW7duHXr16oWRI0fizp07KCgoUD+nVCoRHByM\ns2fPIiQkBJ07d66z4544caLO9qWJ27dvAwDatm3boMetSosWLTBmzBihY5AWauhzSEiN9fzVdomJ\nifD19cX777+Pd955R+g4RFRNV69exWeffYb58+fj1VdfFTqOzjh8+DDy8vIwZMgQoaNoHbboISIi\nIp2kmhVfVR9+KysrAEBWVla9ZyoPZ/BrLysrK0RERCAhIaHcdlCFhYWIj49Hr169EBQUJEDCuiGT\nyQCg0ithiKhx4vlb94qLi/Hee+9BLBZjf4/dPQAAIABJREFU5cqVQschomrKzc2Fj48Pevbsia++\n+kroODolMjISXbp0gYuLi9BRtA4L/ERERKSTVDP4NS3wZ2Zm1num8kilUnUG0j5t27aFl5dXhX1E\ni4qKIJPJMHbsWEyePBmFhYW1Ol5FvcpLPp6QkIBRo0bBwsICDg4OePfdd5Genl7j45V3jJr0TH/8\n+DH8/f3RokULGBoawtnZGZMnT8ajR49qlI3oWQ8ePMCbb74JKysrmJubY/jw4bhx40apberyHIqO\njsbIkSMhFothbGyM7t27Y+fOnWW2K7nvuLg4jB49usyCt8/eSu6nVatWNVqjgOdv/fjiiy9w+vRp\nBAcHw8LCQug4RFRN06dPx6NHj7Bt2zb23W9gkZGRGDZsmNAxtBIL/ERERKSTtKnAzxn82kuhUCA4\nOLhUe56KbNq0Cf3790dycnKNj1dR3+ySj8+dOxfff/89EhMT4e3tjcDAQMyaNavWx1MqlaVu1ZGS\nkoLevXtjz5492LRpEzIyMrBz507s378fbm5uGi2ITVSVyZMnY+bMmUhMTERISAguXLgAd3d3/Pff\nf+pt6vIcGjx4MPT09HDnzh3cvn0bEokE48ePR1RUVIX79vf3x6xZs5CcnKxepFupVCI6OhoA4OTk\nhPz8fIwbN079mvnz58PLy6va5x3P37r3559/4scff8Qvv/yCF198Ueg4RFRNu3btwpYtW7B582a0\nbNlS6Dg65d69e7hz5w6GDh0qdBStxAI/ERER6SQLCwvo6+tXWXhQFfiFKlCwwK/dDh8+XOUgkopC\nocC5c+fwwgsv4ODBg/WW6YMPPkDHjh1hZWWF2bNnAwD2799fb8fTxIIFCxAfH4/vvvsOnp6eMDc3\nh4eHB1auXIn79+/jhx9+EDQfNQ1Tp07FK6+8AgsLC7z22mv4/vvv8eTJEyxcuLBa+6nOObRy5UpI\nJBK0bNkSq1atAgAsWbKkwn3PmzcPbm5uMDExwdChQ9XF9tdeew1du3bFw4cPy1wFsGrVKsyYMaNa\n76Eu8fx96sKFC5gyZQq++OILvP/++0LHIaJqunv3LiZPnowZM2Zg1KhRQsfROWFhYbC0tES/fv2E\njqKVWOAnIiIinSQSiWBlZaXRDH6RSCTIDP6CggLIZDIW+LXY7t270ayZ5v/LXVhYiCdPnsDT0xNH\njx6tl0zdu3dX32/evDkA4OHDh/VyLE2FhoYCQJlZW6+88kqp56lxqUkrFyF5eHiU+nrQoEEAqj/A\npek5pFQq0apVK/XXrq6uAIDr169XuO/evXtX+NzMmTMBoFRf95iYGBQXF6vfixDq8/w9ffo0pk+f\njmXLlpVpp9SYxMfHw8vLC6+++mqlAzhE1Djl5+dj7NixcHV1xffffy90HJ0UGRkJT09PrglTQ/pC\nByAiIiISilgsRkZGRqXbNGvWDObm5oIU+FWDDyzway+RSAQnJyf1/We/l+bm5jAyMlJ/raenB1tb\nWwCosG9/bZXsCa06RnVbctS1x48fA/hfsfRZcXFxDRmHNKRUKrWmuA9AfW6pSCQSAEBqamq19qPJ\nOSSVSrF8+XLs2bMHiYmJyMnJUT9X2ZoXpqamFT43fvx4zJ07F5cuXUJMTAwGDhyIn3/+WdDZ+0D9\nnr9KpRL//vsv/vnnH8yZMwfDhw/Hxo0b4eDgUON91rXMzEyMGDECtra22L59O3t2E2mhL7/8Enfu\n3MH58+dL/X8ZNQyZTIajR49i9erVQkfRWizwExERkc6SSCQaLS5qZWUlSIFf1RaIBX7ttXbtWqxd\nu7ZGrw0KCqrjNI2Xg4MDkpKSkJGRoV4fQ5eoiuRCD7Q0dZmZmaUWLU9LSwMA2NnZ1fmxfHx8cODA\nASxYsAAff/wxbGxsAKBWAyKGhoaYPn06vvzyS6xYsQKtWrXCqVOnyl24tyHV5/nbr18/HDlyBMXF\nxTh06BD8/f3h5uaGc+fONYrfFQUFBRg9ejQyMjJw6tQp/ntNpIWOHj2KlStXYsOGDeorrahhHTp0\nCDKZDEOGDBE6itZiix4iIiLSWRKJRF3gqYxQBf6srCwAgKWlZYMfm6ghvfHGGwCerlnwrGPHjrEf\nK9WJU6dOlfpatXCtp6dnnR/rxIkTAIDPPvtMXdzPz8+v9X6nTp0KU1NTRERE4OOPP4afnx9MTExq\nvd/aaIjzt1mzZnjttddw8uRJFBUVqdsVCamwsBA+Pj64cOECoqKi4OLiInQkIqomqVSKCRMmYNSo\nUZg0aZLQcXRWZGQkunbtCmdnZ6GjaC0W+ImIiEhnSSQSjVozCFXgz87OBsACPzV9CxcuhKurK6ZN\nm4bdu3cjPT0d2dnZCAsLw8SJE9kPl+rE0qVLcfLkSeTk5CAmJgZz586FWCyu9iK7mlD1+1+6dCmk\nUikyMjIwb968Wu/XxsYGvr6+UCqViIqKwocffljrfdZWQ56/EokE3377LXbs2IGUlJQ62291KRQK\n+Pr64sCBAwgJCUHnzp0Fy0JENefv74+ioiL8/vvvQkfRafv27SuzjgtVDwv8REREpLPs7Owa9Qx+\nVYHf3Ny8wY9N2qlk+4/a3G/o40kkEsTGxmL8+PGYPXs2nJyc4OrqivXr1yMwMBD9+/evdra6du3a\nNQwbNgzm5uawtLTEkCFDcP369QoXmn38+DH8/f3RokULGBoawtnZGZMnT8ajR49KbffsZyISieDn\n51fmMZFIhOTkZHh7e8PCwgK2trbw9fVFZmYm/vvvP4wcORKWlpZwdHTExIkT1S2+SoqOjsbIkSMh\nFothbGyM7t27l9veJTMzEzNnzkTr1q1hbGwMW1tbuLm5YdasWThz5kyln1PPnj1LZR43bpxGn299\nKfn5rlu3DosWLYKTkxNGjhyJbt264cSJE6UWwq2rn+mtW7diwoQJ6n7x/fv3R58+fTTaR1Xn4syZ\nM9GsWTO89dZbaNGiRaXbVkZbz98xY8ZAqVTiyJEjdbpfTRUXF2PixIkICQlBRESEejFhItIuW7Zs\nwa5du7Bhw4Yya7RQw7l9+zbu3r3LAn8tsQc/ERER6SxbW1uNC/zlFcvqW3Z2NoyMjOptsVVqeirq\n4V7dx4U4nlgsRkBAAAICAmqVqT7ExcXh5ZdfhqmpKfbu3YvevXvj8uXLmDx5snqbku8tJSUFffr0\ngVwux9atW+Hm5oaLFy9iwoQJiI6OxoULF9S9uksuVFve51Py+S+++AKLFy/Gpk2b8OWXX2LNmjVI\nT0+HoaEhli1bhubNm2Pu3LlYt24dDA0NsX79+lL7Gjx4MN544w3cuXMHeXl58PPzw/jx4yEWi0v1\nvfX19UVISAh++ukn+Pn5wcDAAPfv38fcuXPRp0+fSr+PYWFhGDx4MIYPH94orrx4NmtUVFS1tq/p\n4/b29ti6dWuZx318fDTeR0XatGkDBweHWi+uq63nr4mJCdq3b48rV66U+3nWp8LCQkycOBF///03\n9u7d2ygGH4mo+u7fv4+PP/4YM2fOZGFZYJGRkbCyskLfvn2FjqLVOIOfiIiIdJamPfitra0Fm8Fv\nYWHR4MclotIWLlwIqVSKZcuWYeDAgTA3N4e7u3uFLVcWLFiA+Ph4fPfdd/D09IS5uTk8PDywcuVK\n3L9/Hz/88EONcvj5+aFjx46wsrJSHzs8PBwzZswo83hERES5+1i5ciUkEglatmyJVatWAQCWLFlS\naptDhw4BAJydnWFmZgZDQ0O0b98ev/zyS6X54uPj4eHhgfHjxzeK4n5TFR4eDhcXF50uhlhbW6uv\ncmsoBQUFGDduHEJCQrB3714MHjy4QY9PRHWjuLgYkyZNgouLCxYvXix0HJ0XGRkJT09PGBgYCB1F\nq7HAT0RERDrLzs4O2dnZkMvllW4nZIseFviJhHfgwAEAwMCBA0s97ubmVu72oaGhAFBmVqCqlYfq\n+erq3r27+r6jo2O5jzdv3hwAkJycXOb1SqWyVDsaV1dXAMD169dLbeft7Q3gaSuUli1bws/PD0FB\nQZBIJBXO4r516xY8PDxgb29fJ73mqTSRSITTp0/jyZMnWLRoEb788kuhIwmutlcgVUdOTg6GDRuG\nQ4cO4cCBAyzuE2mxpUuXIjY2Fjt27BB8kXJdJ5PJcPToUV5FUQdY4CciIiKdJZFIAKDKWfws8JMu\nKdk/vbKbLlH9jlD9zlBRtdl51uPHjwE8LbaX/MxUr4+Li6tRjpK/D5o1a1bp488WP6VSKebNm4eO\nHTvCwsICIpEI+vpPO7amp6eX2nbTpk0IDg6Gt7c3cnJysHHjRowdOxaurq64dOlSudkGDBiA9PR0\nnDx5Etu3b6/R+6PK9evXD66urvDy8sLIkSPL3UZXzt9Hjx7BwcGhQY6VlJQEDw8PXL16FTExMejX\nr1+DHJeI6t6lS5fwzTffYMmSJXjxxReFjqPzYmJiIJfLS7UJpJphgZ+IiIh0Fgv8RGUplUqNbrqk\not8VFf3uUBUeMzIyyv3scnNz6zdwOXx8fLB06VKMHTsW8fHxVX4fR48ejd27dyMtLQ1Hjx7FkCFD\n8ODBA0yaNKnc7VevXq1u4TNt2jQkJibWy/vQVarvV1paGhYuXFjldk35/M3Pz8eDBw9KXY1SX65c\nuQI3Nzfk5ubi2LFj6NatW70fk4jqR0FBAXx9fdGrV69ar2FCdSMiIgLdunVTX31INccCPxEREems\nxl7gz8rKYoGfqBHw9PQEABw8eLDU4ydOnCh3+zfeeAMAcPjw4TLPHTt2rMwMYFNTUwBPF/DMy8sr\nc6VAXVBl/eyzz2BjYwPgaaG0PCKRSF2gb9asGTw8PLBr1y4AwI0bN8p9jbe3NyZNmoRRo0ZBKpVi\n0qRJWl9Ipsbp33//RUFBAXr06FGvxwkJCYG7uzvatWuHM2fOqFtaEZF2WrhwIeLi4vDHH39AT09P\n6DiEp2vKjBgxQugYTQIL/ERERKSzxGIx9PX1kZqaWuV2BQUFDT7rljP4iRqHhQsXwtraGnPmzEFM\nTAxycnJw/Phx/PbbbxVu7+rqimnTpmH37t1IT09HdnY2wsLCMHHixDIL0Hbp0gUAcObMGYSGhtZL\nCxAPDw8AT3sPS6VSZGRkVNor38/PD9euXUN+fj5SUlKwbNkyAKjyMvr169fDzs4O0dHR6kV8iepS\nTEwM7Ozs0K5du3rZv0KhwLx58/Dmm2/i7bffRkRERIXtuIhIO5w+fRrLly9HQEAA2rZtK3QcAnD5\n8mXEx8fDy8tL6ChNAgv8REREpLNEIhFsbW2rnMFva2sL4Gm7jYbEAj9R49C6dWscP34cXbt2xciR\nI9G8eXMsW7ZM3ZKmZD984OnVQbGxsRg/fjxmz54NJycnuLq6Yv369QgMDET//v1Lbb969Wp07doV\nnp6e+OmnnxAQEKB+rmS/9Nrc37p1KyZMmICNGzfCwcEB/fv3R58+fcrd9vjx43B0dISXlxcsLCzQ\nvn17REREYMmSJdixY4d6u5JFT5FIhN27d8PBwUE9aPrJJ59AJBLh3LlzFX62RNUVHh6O119/vcx5\nVxfS0tIwbNgwrFixAr/99ht+++03GBgY1PlxiKjhyOVy/N///R8GDBiAyZMnCx2H/r+wsDDY29vX\n+9VYukJf6ABEREREQpJIJGUWmHyWqp1Feno6XFxcGiIWABb4iRqTzp07IyIiotRjycnJAMouvgs8\nvfInICCgVLG+Ij179qxw8dqK2txU93F7e3ts3bq1zOM+Pj5lHnN3d4e7u3tFcdWkUqnGxyeqCwkJ\nCTh+/Dg++eSTOt93TEwMfH19YWBggJMnT6J79+51fgwianhffPEFkpKSsG/fviaxyHhToWrPUx+D\ntbqInyIRERHpNIlEUmWLHtUM/qoGAuoaC/xEjYdIJMLdu3dLPXb06FEAwIABA4SIRKRztmzZAltb\nWwwfPrzO9imXy/HZZ59h8ODB6N27N86dO8fiPlETcfz4cfzyyy9YvXp1g07SocqlpqbizJkzdfq7\nXNexwE9EREQ6zc7OrsoWPdbW1tDT02OBn0jHTZs2Dffu3UNubi4OHjyIL774ApaWlli4cKHQ0Yia\nvIKCAqxbtw4TJ06EoaFhnezz0qVL6NWrFzZs2ICNGzciODhYfdUeEWm33Nxc+Pr6YsSIEZgwYYLQ\ncaiEiIgI6OvrY9CgQUJHaTJY4CciIiKdJpFIqizwN2vWDNbW1izwE+mw6OhomJubw83NDdbW1hg/\nfjz69u2L2NhYdOjQQeh4RE1eYGAgUlNT8fHHH9d6XzKZDAsXLkSfPn1gYWGB8+fPY+LEibUPSUSN\nxrx585Ceno41a9YIHYWeER4ejldffZV/59Qh9uAnIiIinSaRSHDy5Mkqt7O1tWWBn0iHvfbaa3jt\ntdeEjkGkk3JycvDVV19h4sSJaNGiRa32deDAAfj7+yM1NRUrVqyAv78/e0ATNTGnT5/GmjVrsHHj\nRjg7Owsdh0ooLCzEgQMH8O233wodpUnhv2JERESk0zTpwQ88LfBnZGQ0QKKnCgoKUFBQwAI/ERHp\nvKVLlyI7OxvffPNNjfeRlJSEd999F56enujatStu3LiBadOmsbhP1MTk5+fj//7v//Dqq6/ivffe\nEzoOPePIkSOQSqXsv1/HOIOfiIiIdJqqRY9SqYRIJKpwu4aewZ+dnQ0ALPATEZFOu3fvHlasWIFl\ny5bB0dGx2q/Pzc3F8uXL8eOPP8Le3h4hISEYOXJkPSQlosZg0aJFiI+PR2hoaKX/b0/CCA8Pxwsv\nvIDnn39e6ChNCoeqiYiISKdJJBIUFhYiKyur0u1sbGxY4CciImpASqUSH374Idq0aYMPP/ywWq8t\nLi7GX3/9hU6dOmHFihX4/PPPcePGDRb3iZqwy5cv48cff8Ty5cvRunVroeNQOcLDw+Hl5SV0jCaH\nBX4iIiLSaRKJBACqXGiXM/iJiIgaVkBAAGJiYrBhwwbo62vWgKC4uBihoaHo0aMH3n77bbz++uu4\ne/cuFi5cCGNj43pOTERCKSoqwv/93/+hZ8+emDp1qtBxqBw3b97EnTt32J6nHrBFDxEREek0Ozs7\nAEBqairatGlT4XYs8JNQ/vrrL6EjaJ3ExEQA/OyaqtOnT7PtQhN3+vRpAMC8efOwePFi9O3bt8rX\nFBcXIzg4GIsWLcKNGzcwbtw47NixAx06dKjvuETUCCxfvhzXr1/HpUuXuLZGIxUWFgYbGxuNfqdT\n9bDAT0RERDqNM/ipsXJycoK+vj58fHyEjqK1Tp06JXQEqgcrV67EypUrhY5B9axZs2bw8fHB559/\nXul2BQUFCAoKwvLly3Ht2jX4+Pjgr7/+QseOHRsoKREJ7d69e1i8eDG+/vprtGvXTug4VIHw8HAM\nGzZM4yuySHP8RImIiEinmZqawtTUtMriva2tLaRSKRQKBfT09Oo9V3Z2NkQiEczMzOr9WNQ4eXh4\noLCwUOgYREQNKjY2FkOHDkXPnj2xcePGCq/WSE1NxW+//Ya1a9ciLS0NY8aMwc6dO9GpU6cGTkxE\nQvv444/RunVrfPbZZ0JHoQpkZmbixIkT+PPPP4WO0iSxwE9EREQ6z9bWtsoZ/DY2NiguLoZUKoWt\nrW29Z8rOzoapqWmDDCYQERE1BseOHYOXlxc8PDywe/duGBkZlXpeqVTi+PHj2LRpE3bu3AlTU1NM\nnjwZ06ZNQ4sWLQRKTURCCgoKQkREBGJiYmBgYCB0HKpAZGQklEolhgwZInSUJokFfiIiItJ5mrTf\nURX1MzIyGqzAz/Y8RESkK/bt2wdvb28MHz4cgYGBpQp1CQkJ2LJlC7Zs2YK7d++ie/fu+OmnnzBh\nwgSYmpoKmJqIhJSVlYVPP/0U77//Pl599VWh41AlwsPD4eHhAWtra6GjNElcdYKIiIh0nkQiqbLA\nr+rVn5qa2hCRWOAnIiKd8dNPP2HEiBEYM2YMduzYAQMDAyQnJ+OXX37BgAED0KpVK6xatQrDhw/H\n5cuXcf78eUyZMoXFfSIdN3/+fMjlcixdulToKFQJhUKBffv2Yfjw4UJHabI4g5+IiIh0niYteuzt\n7SESiZCSktIgmVjgJyKipi4/Px/+/v74448/8PXXX+Pdd9/FqlWrsHv3bpw+fRpmZmbw8vLC7t27\nMXz4cBgaGgodmYgaifPnz2Pt2rXYsGED7OzshI5DlTh58iTS0tLg5eUldJQmiwV+IiIi0nkSiQRX\nr16tdBtDQ0NYW1vj8ePHDZKJBX4iImrKHjx4AG9vb9y8eRNvvfUWwsLCsGjRIlhbW2Pw4MHYvHkz\nvL29udg8EZVRXFyMadOmwc3NDb6+vkLHoSr8888/6NChA9q3by90lCaLBX4iIiLSeZrM4AeezuLn\nDH4iIqKakcvlOHPmDH7++Wfs3bsXCoUCAHDnzh28/vrrCAgIgJubGxfKJKJKrVmzBhcvXsTFixch\nEomEjkNVCA0NxejRo4WO0aSxwE9EREQ6T5NFdgHAwcGBM/iJiIg09PjxY5w5cwaxsbE4cuQIzpw5\ng/z8fACAq6srPv30U4waNQpOTk4CJyUibfHo0SN8/fXXmDVrFjp16iR0HKrCtWvXcOfOHYwaNUro\nKE0aC/xERESk81SL7CqVykpnATk4ODToDH57e/sGORYREVFtZWRk4PLlyzh37hzOnDmDs2fPIj4+\nHiKRCO3atYOTkxOMjIxgZ2eHP//8E6+++qrQkYlIC82YMQNWVlaYN2+e0FFIA3v37oW9vT369Okj\ndJQmjQV+IiIi0nm2trYoLCxEVlYWrKysKtzO3t4eV65caZBMnMFPRESNUX5+Pm7fvo2rV6/i8uXL\n+Pfff3HlyhUkJiYCABwdHdG7d2/4+fmhd+/eMDIywvz583H06FFMnjwZy5Ytg6WlpcDvgoi00f79\n+xEUFITQ0FCuz6ElQkJCMHLkSDRr1kzoKE0aC/xERESk8yQSCQAgPT290gI/W/RQU5Sbm4uCggIA\nQE5ODgoLC6t8TXZ2NoqKiqp1HLFYXOnzRkZGMDU1LfWYnp4eC4FEAigqKkJSUhLu37+P27dv49at\nW7hx4wZu376N//77DwqFAgYGBujYsSNefPFFTJ8+HV26dEGXLl3g7OwMAEhLS8P8+fOxYcMG9OnT\nB2fOnEGPHj0EfmdEpK1kMhk+/PBDjBkzBl5eXkLHIQ2kpKTg7NmzmD9/vtBRmjwW+ImIiEjn2dra\nAnha4G/dunWF2zXkIrtZWVks8OsgmUwGmUwGqVSKvLw8yOVy9X2ZTIbMzMxS93NzcyGTyZCVlaUu\n1MvlcshkMvX+5HI5ACAvL0/d+7rkfW1iYmICY2Nj9ddWVlbqGWH6+vqlzhlTU1MYGRkBAKytrSES\niWBsbAwTE5NSj5UcWFDtz9DQUD0z0NLSEnp6erCwsIC+vj7Mzc1hYGAAMzMzGBoaljoOkbbIyspC\nQkIC/vvvPzx48KDULT4+HsnJyeoFcC0tLdG+fXu0b98ekyZNQvv27dGhQwe0b9++3MVwMzIysGrV\nKvz8888wMTHB2rVr4efnx9mbRFQrS5YswePHj7Fy5Uqho5CGQkJCYGxsjIEDBwodpcljgZ+IiIh0\nnmoGf1paWqXbOTg4QCqVQi6Xlyoy1gfO4NduGRkZ6tuTJ0/KvV/ec5UV3UUiEaytrWFqagpjY+My\n9+3s7GBkZAQDAwOYm5sDQKlCdclCdslCd8miuabF6pLH0ERBQQFyc3Mr3aa8qwIKCwuRk5Oj/rrk\n1QZKpRJSqVT9XH5+PvLy8srsr7i4GJmZmQCefl/y8/NLvbbkIMiTJ08AoNQgiaZUn6Pqc1Z99qrP\nSjUAoboqoVmzZrCyslJ/X4H/XeWgGnxQDTioBhk4uECVkcvlSEtLQ2pqKlJSUpCWlqa+PXr0CI8f\nP0Z8fDwePHhQ6twRi8Vo2bIlWrZsiZdeegkjR45Uf92qVSuNF8BNT0/HihUrsHr1ahgZGeGLL77A\n9OnTq/W7goioPLdv38aPP/6IZcuWqa8SosYvJCQEnp6eZa7QpLrHAj8RERHpPHNzcxgZGSE9Pb3S\n7VSL3qampsLFxaXe8iiVSuTm5rLA38gUFRUhJSUFSUlJePToERITE/Ho0SMkJCQgJSUFCQkJePz4\ncbltnPT19SEWi2FjY6O+icViPP/886W+FovF5RbvWcgVjlQqhVKpRGZmJoqLi5GVlQWFQqEeQFC1\nNVINPqgGDFSDBKqBB9Ugh6oIW1RUhOzsbCgUCmRlZakHIp4duNCEanBBNXBTm0GGigYXnr2C4dmr\nKaj2VD8TUqkUOTk56tuzXz958gSpqanq4r3q907JwTDg6QCfRCKBRCKBvb09HB0dMXz4cHXx/rnn\nnkPLli1r/W9NXFwc1qxZgw0bNsDIyAjz5s1jYZ+I6tTUqVPRuXNnTJ8+XegopKGcnBzExMRg3bp1\nQkfRCSzwExEREeFpmx5NZvADwOPHj+u1wC+Xy6FQKLh4WAN7+PAh7t69i7i4OMTHx+Phw4dITk5W\n31JSUlBcXKzeXiKRwNHRES1atICjoyN69OgBBwcH2Nvblyrk29jYsI+8Fnt2dn1DUl1R8OwgQ0WD\nC6rWSxUNMuTl5SE1NVV9ZcSzgww1GVwA/tfaqOSVHaqrDEoOHpS8ckQ1cACUvtIEKHslSclWTKpB\niWdV56qSZ/df1RUbz15JUpJqwEf1GZf8DFXfn5JXsKi+pyXba6nabamuJCmPubm5+iYWi9WFe1dX\nV9jZ2cHBwUH9mOrr+vy9o1QqER0djdWrVyM8PBwtWrTAV199BX9/fxb2iahOBQcH4/Dhwzh58qT6\n3w1q/KKiolBYWIjhw4cLHUUnsMBPREREhKcF/qpm8KsK/PXdh1/VZoSXs9YthUKBhIQEdRE/Li5O\nff/u3bvqz93ExETdlsLZ2RkdO3ZE8+bNS92cnJw4e5nqnWpQoTENLqgK2qpBhZIF7ZJtklTbqQYP\ngNJrPzx48ABKpRJA6TZJQOl2Tc+q2rq8AAAgAElEQVQOOlRWbBeC6oqGkgMMqqsgVAMJJdeHeO65\n56CnpwdjY2OYmprC2toaFhYW6uK9paUlrKysyhT0G4tHjx5h+/bt2LBhA27cuIH+/fsjKCgIb7zx\nBgtvRFTnCgoKMGfOHLz77rvo27ev0HGoGkJCQuDm5gY7Ozuho+gEFviJiIiI8HQ2dlUFfnNzc5ia\nmtZ7gV81k1Q105WqJz09Hf/++y+uXbuGW7duqQv4//33n7p/u5WVFdq0aYO2bdvCy8sLbdq0UX/N\n3q5Ewg4u1IRqtrwmVIMXKqqWRZXRls+hPshkMuzZswfbtm3D/v37YW5uDh8fH+zYsQNdu3YVOh4R\nNWEBAQFISkrC4sWLhY5C1aBQKBAZGYk5c+YIHUVnsMBPREREBM1a9ABP+/CX12O9LqkK/JzBX7mC\nggL8+++/uHTpEq5evaq+PXr0CMDTglz79u3Rtm1bvP322+oCfps2bTibiKiJqU5bGF0u1msqLy8P\n+/btw549e7B3717k5eVhyJAhCAwMxKhRo3gFExHVu5SUFHz//feYO3cuWrZsKXQcqoZjx44hLS0N\nI0aMEDqKzmCBn4iIiAhPZ/Dfvn27yu0cHBwarEUPZ/D/T1FREW7duoXz58+XusnlchgaGqJt27bo\n3LkzpkyZgh49eqBz5854/vnnIRKJanXcnJwcyOVyZGVlIS8vD3K5HFKpVN1SRCqVQi6XIy8vD1lZ\nWZDL5aXah5TX21u1mOqzSrYlAf7X5uNZqsVOn6XqeQ6gVEsQ1X5UrURUfdBLzlp+dhszMzMYGxuX\n2+uciJqm9PR0hIaG4p9//sH+/fuRn58PNzc3fPPNNxg3bpy6TR0RUUOYM2cOLC0t8dlnnwkdhaop\nJCQEHTt2RLt27YSOojNY4CciIiKC5jP4mzdvjuTk5HrNwhY9T/s8nz17FufPn8eJEydw/PhxyOVy\nmJubo2vXrujRowcmT56MHj16oGPHjuoFOCuSm5uLR48eISUlBampqXj48CHS0tLw5MkTZGRk4MmT\nJ6XuZ2ZmatTn28rKCsbGxjAzM4OFhQWMjIxKtfooWWhXadasGVq1alUms4mJiXpWbMm+5c96tr2I\nSnJysnoRYNWiniX7l6t6opfsg64JU1NTGBsbw9raWp1RLBaXuq8aNLC2ti7TW7zkTSwWVzhAQUQN\nSy6X4+TJk4iOjkZ0dDQuXLgAfX19DBo0CKtWrcLIkSNhb28vdEwi0kEXL17E1q1bsX37dl7RqoXC\nwsLw1ltvCR1Dp/D/rImIiIig2SK7AODs7IyLFy/WaxZdXGQ3Li4OMTExOHr0KE6ePIl79+5BT08P\nnTt3hru7O9577z306tUL7dq1K1MYT0lJQWJiIhITExEfH6++n5CQgOTkZKSkpCA3N7fUa8RiMezs\n7GBjYwOxWAwbGxu4uLiov7a2ti5TtC9Z6FYVtLWZarHS8gYBsrOzIZfLkZ2djZycHOTn5yMzM7Pc\nqxju3bunXlw1MzMTcrkcubm56kVZy2Nqaqou+ltZWcHKyqrUQIClpSWsra3V/y3vpkvnB1FdkMlk\nOHfuHE6cOIFDhw7h2LFjkMlkcHV1xaBBgzBnzhwMHjy4zKAkEVFDmzFjBvr06QMfHx+ho1A1Xb16\nFXfv3sWoUaOEjqJTWOAnIiIigmaL7AJPC/xhYWH1mkUXZvA/evQIBw8eRExMDGJiYvDff//BzMwM\nbm5umDBhAtzc3NC3b19YWlqiuLgYDx48wN27d3HkyBHcvXsXcXFx6sVzVQMiwNMWSs7OzmjRogVe\neuklDB06FE5OTrC3t4eDgwMcHR1hZ2cHIyMjAd9942BgYKDuRW5jY1Mvx8jNzUVWVhays7ORnZ2N\nJ0+eqO+rblKpFJmZmcjOzkZWVhaSkpKQlZUFqVSq/m95i6caGhpWWPxXDdKUd7OyslJfjUDUlCUk\nJOD06dM4efIkTp06hQsXLqCwsBBOTk7o378/Vq9ejUGDBuG5554TOioRkdquXbtw4sQJnD59utat\nFqnhhYSEwMHBAb179xY6ik5hgZ+IiIgIT2d0y+VyyOXyShcPdHZ2RnJyMpRKZb390aEq8DelRQwV\nCgVOnz6N8PBwhIeH48qVKzAwMECfPn3g6+uLgQMHok+fPkhOTsa1a9dw6dIlBAYG4tq1a7h586Z6\nBr6VlZV6oVwvLy+0adMGrVu3RosWLeDi4sLCfSNjZmYGMzMzODk51Wo/ubm5kEqlGt3u3buHJ0+e\nlHpMoVCU2aeRkVGFgwBVDRJYW1vzZ40aDYVCgdu3b+PSpUu4ePEiLl68iEuXLiEtLQ16enro0qUL\n3Nzc8NFHH8Hd3R2tWrUSOjIRUblkMhnmzJkDX19f9OrVS+g4VAMhISEYMWJEle0zqW6xwE9EREQE\nqBcTzczMrLSw3qJFCxQUFCA1NbXeehPn5eXByMgIenp69bL/hpKZmYnIyEiEhYVh3759SE9PR+vW\nrTF8+HAsXboUzZs3x40bN3D+/HksWLAAFy5cUPedd3FxQceOHdG/f39MnToVnTt3hqurKyQSicDv\nioSgGihwdnau0etVVwqorhZQrbNQ3gDB3bt3IZVKSw0SlNdqSLXmQFW3igYKDAwMavuxkI4pKCjA\nnTt3cOPGDdy8eRPXr1/HzZs3cfPmTchkMhgYGKBTp0546aWX4OXlhZdeegndu3eHubm50NGJiDTy\n448/Ii0tDUuWLBE6CtVAfHw8zp07h2+++UboKDqHBX4iIiIi/K/AL5VK4eDgUOF2qgJjUlJSvRX4\nZTKZ1vYXl8lkiI6Oxl9//YXg4GDk5+ejW7dumDJlClq0aIGUlBQcP34cW7duRWZmJgwMDNC5c2f0\n6NEDPj4+6NatGzp16qT+fhDVBVVvfxcXlxq9XtUqSJPbzZs3S31d0aLIZmZmGg0QlBwoUA0WWFlZ\naf0AIJUvNTUV9+/fx/3793Hv3j31/fv37yM+Ph5FRUXQ09NDq1at0LFjRwwaNAgfffQRunbtihde\neAGGhoZCvwUiohpJSkrCsmXL8OWXX9b6yj8Sxt9//w0rKysMHDhQ6Cg6hwV+IiIiIpSewV+ZkgX+\nl156qV6yyGQyreoPLpPJEBISgqCgIERGRkKhUGDAgAH44IMPUFhYiHPnzmH58uUoKirC888/Dw8P\nD4wePRo9/x979x0WxbX/D/y99A4KEVQELFhy1URNREE09t5QJPwsqDEKMRGxh2uCSazXiIq9oaJG\nwXItaOwaY9fEfjUqsYAgCEjvML8/DPtlcYHdZZehvF/Ps09g5syc9+yuBD5z9pxPPkHr1q2r1VRE\nVD2ZmZnBzMwMdnZ2Kh2v6M2BpKQkREVFyXxf0s+kwkWgzczMYGpqilq1akm/LvrfwsWKi24vXIeg\ncOFo0qysrCwkJCQgISEBiYmJiIuLQ0xMDCIjI6X/jY6OxqtXr5CVlQUA0NHRQYMGDdCwYUM0bNgQ\nXbt2RZMmTdCsWTM0b96cU0QRUbXz7bffok6dOvDz8xM7CqnowIEDGDhwIG82i4AFfiIiIiIAFhYW\nAMou8BsbG8Pc3ByvXr3SWJaMjIwqUeD/448/EBISgl27diEpKQmtWrVCz549kZiYiPPnz+P06dNo\n2bIlOnfuDD8/P7i6uqo8xQpRVVY4Cl8VgiC8N2VQUlKSdFHiwv8WLmAcHx+PZ8+eISUlRWax4ry8\nPLnnl0gk0mK/oaEhzM3NYWxsDENDQ5iZmcHExASGhobST0EYGhrCxMQEZmZm0NfXh6mpKbS1tWFm\nZiY9V+E1SyQSmJmZVflPGyQlJSEvLw8pKSnIyclBeno6MjMzkZKSIlO4L/w6Pj5e+nVCQoLMQuAA\noKWlBWtra9ja2qJu3br46KOP0KdPH+laIg4ODmjQoAF0dPjnOhHVDH/88Qd27dqFsLAw3niuomJj\nY3HlyhVMnz5d7Cg1En9jICIiIsK7KTy0tLSQlJRUZltbW1uNFvgr8xQ9b968QUhICLZu3YoHDx7A\n3t4ejo6OePbsGW7fvo3o6Gj06tULPj4+6Nmzp8amMSKqKSQSiXR6nvLIzMyU3gxITk5GcnIyMjIy\nkJmZibdv30q/Tk5ORnp6OjIyMpCamoqYmBhkZmYiLS0NycnJyMzMREZGBpKSkiAIgsL9m5iYQFdX\nF8bGxtDT04OhoaG0iFO4r6ji16urq/veXPJGRkbQ19dHdnb2e0X0okqaJgkouXiflZWF1NTUEm+M\nFDIwMIClpSVq164NS0tLWFpaonHjxnBycpLZVvzrqn7Tg4hIXQRBwNSpU9GxY0e4ubmJHYdUdODA\nAejr66NXr15iR6mRWOAnIiIiwrsRlaampmWO4AfeTdMTFRWlsSyVcYqeO3fuYO3atdixYwe0tLRg\nY2MDU1NTvHjxAlZWVpgyZQp69+6NNm3aQEtLS+y4RFSMoaEhDA0N1XrTrbCwnpubi7S0NOTn5yMl\nJUX6qQMA0hsBycnJKCgokBbN09PTkZOTAwDSfYXy8vKQmpoq01dKSgri4uLe25afny/9BEFJ5N1A\nKGRvbw9tbW3pwseFn1gwMDCQHmdhYQEdHR3ppxaMjIxgZGQEU1NTGBsbq/TcERHRO6Ghobh8+TJu\n3rwJiUQidhxS0YEDB9C/f/9KO0ipumOBn4iIiOgf5ubmChf4NT1FT2X45Tg/Px+HDx9GUFAQzp8/\nDysrK2hpaSE9PR36+vqYNm0aRo4cCUdHR7GjEpEI9PX1pXPB89M6RESkrNzcXHz33XcYM2aMxta2\nIs1LSEjA+fPnsWPHDrGj1Fgs8BMRERH9Q5kC//Xr1zWWQ+wR/Lm5udi5cyd+/PFHvHjxQjotRp06\ndTBu3Dh8/vnnsLW1FS0fEREREVV9GzZswMuXL/H999+LHYXK4fDhw9DW1ka/fv3EjlJjscBPRERE\n9I/KMoJfrAJ/Tk4Otm/fjh9++AExMTGQSCQwNjbGkCFDMGbMGHTv3p0fnSYiIiKicktLS8OCBQvw\n9ddfo2HDhmLHoXI4cOAAevXqVep0eaRZLPATERER/cPCwkLhRXaTkpKQlpb23qKP6pCRkQFzc3O1\nn7ck+fn52Lp1K/79738jPj4eBQUFaNq0KWbNmgVPT89KMV0QEREREVUfy5YtQ2ZmJvz9/cWOQuWQ\nmpqK06dPY926dWJHqdG4AhoRERHRP5QZwQ9AY6P4K3IE/+nTp9GkSRNMnDgRcXFx6NSpE44fP45H\njx7hiy++YHGfiIiIiNQqPj4egYGBmDVrFiwtLcWOQ+UQHh6O/Px8DBo0SOwoNRoL/ERERET/ULTA\nb2dnBwB48eKFRnJURIH/yZMn6Ny5M3r27IkXL16gT58+uHv3Ln777Tf07t2bU/EQERERkUb89NNP\nMDY2hq+vr9hRqJwOHDiAzz77DLVr1xY7So3GAj8RERHRPxSdosfS0hKmpqZ4/vy5RnJkZGRobOR8\nVlYWxo0bh2bNmuH333+Hk5MTbt26hWPHjqFVq1Ya6ZOIiIiICACeP3+ODRs2ICAgAMbGxmLHoXLI\nzMzEr7/+Cjc3N7Gj1Hicg5+IiIjoH4qO4AcABweHKjeC/+jRoxg1ahSSkpLQpEkTbNu2DS4uLmrv\nh4iIiIhInrlz58LOzg7jx48XOwqV0/Hjx5GZmYnBgweLHaXGY4GfiIiI6B/KFvg1OYJfnQX+lJQU\nuLm54cyZM9DX10dgYCCmTp3KaXiIiIiIqMLcvXsXu3fvxp49e6Crqyt2HCqnAwcOwMXFBXXr1hU7\nSo3HKXqIiIiI/lFY4BcEocy2mizwZ2Zmqm2KnqNHj8LGxgZnzpxB9+7dERcXBz8/Pxb3iYiIiKhC\nzZ49G23btsXw4cPFjkLllJubi6NHj3J6nkqCBX4iIiKif5ibmyM/Px/p6ellttV0gV8dI/i//PJL\nDBgwAFpaWjh16hROnz4NMzMzNSQkIiIiIlLchQsXcPz4cSxevJgDTaqBM2fOICkpCUOHDhU7CoFT\n9BARERFJWVhYAACSk5NhYmJSalsHBwfExMQgKysLBgYGas1R3gL/y5cv0aVLFzx//hwff/wxfv/9\n9zKvh4iIiIhIU+bMmYPevXuje/fuYkchNdi7dy8+/fRT2Nvbix2FwBH8RERERFLm5uYAoNA8/A4O\nDhAEAS9fvlRrhuzsbOTn56s8Rc+pU6fg6OiIly9fYvHixbh16xaL+0REREQkmv379+Pq1atYuHCh\n2FFIDXJzc3Hw4EF4eHiIHYX+wQI/ERER0T8KC/xJSUlltnVwcAAAtU/Tk5mZCQAqjeBfu3Yt+vTp\nA11dXfz555+YPXu2WrMRERERESkjLy8Pc+fOxeeff462bduKHYfU4MSJE3j79i2GDRsmdhT6B6fo\nISIiIvqHqakpACAtLa3MtrVr14a5uXmlKfD7+voiKCgI9erVw507d2BlZaXWXEREREREytqxYwci\nIiIQHh4udhRSk9DQUDg7O3N6nkqEI/iJiIiI/mFsbAxAsQI/ANjb26u9wJ+RkQEASk3RM2DAAAQF\nBaFDhw54+fIli/tEREREJLrc3FzMnz8fXl5eaNy4sdhxSA2ysrJw5MgRTs9TybDAT0RERPQPbW1t\nGBgYID09XaH2DRs2FH0E/8CBA3H06FEMHz4cV65cgba2tlrzEBERERGpIiQkBJGRkfD39xc7CqnJ\nr7/+itTUVE7PU8mwwE9ERERUhLGxscIj+B0cHDRW4FdkBP/QoUMRHh6OQYMGYe/evWrNQURERESk\nqtzcXCxcuBDjx49Hw4YNxY5DahIaGorOnTujXr16YkehIljgJyIiIirCxMRE4RH8Dg4OePbsmVr7\nLyzwGxgYlNpu2LBhOHjwIIYMGYJDhw6pNQMRERERUXls27YNkZGRmDNnjthRSE0yMjJw9OhRTs9T\nCXGRXSIiIqIilBnB37hxY8TGxiI1NVW6QG95ZWVlASi9wD9jxgwcOHAABgYGOHjwICQSiVr6JiIi\nEoOOjg7Onj0LV1dXsaMQkRrk5uZi0aJFmDBhAhwcHMSOQ2oSHh6OzMxMuLm5iR2FimGBn4iIiKgI\nZUbwN23aFIIg4MmTJ2jbtq1a+s/OzgYA6Ovry90fHByMZcuWoWXLlrh//z78/PzQsWNHtfRN1dOV\nK1ewfPlyhIWFiR2F1Gz58uUAAD8/P5GTEJXPiBEjEBMTI3YMIlKT4OBgvHr1CrNnzxY7CqlRWFgY\nunbtijp16ogdhYphgZ+IiIioCGNjY4UL/I0aNYKuri4eP36stgJ/Tk4OAEBPT++9fTdu3MCXX36J\nOnXq4ObNmzAwMECHDh3g7u6ulr6pehIEAQD4PqmGCtfe4GtLRESVRW5uLhYvXowvv/wS9vb2Ysch\nNUlLS8OxY8cQFBQkdhSSg3PwExERERWhzBQ9urq6cHBwwOPHj9XWf05ODrS1taGtrS2z/c2bN/js\ns8+gq6uLW7dulTjCn4iIiIhILJs3b0ZMTAzn3q9mDh8+jLy8PAwdOlTsKCQHR/ATERERFaHMFD0A\n0KxZMzx58kRt/efk5Lw3ej8/Px8uLi7IzMzEyZMnUa9ePbX1R0RERESkDjk5OViyZAkmTpwIW1tb\nseOQGoWGhqJHjx6wtLQUOwrJwRH8REREREUoM0UP8G4e/r/++ktt/WdnZ79X4P/iiy/w5MkTTJky\nBT169FBbX0RERERE6rJp0ybExsZy7v1qJiUlBSdPnoSHh4fYUagELPATERERFaHMFD0A4OjoqPYp\neopOv7N3715s374dTZs2RWBgoNr6ISIiIiJSl+zsbCxevBiTJk1C/fr1xY5DavTf//4XBQUFGDRo\nkNhRqAQs8BMREREVocoUPcnJyYiNjVVL/0Wn6Ll79y5GjRoFbW1tHDt2DFpaNfNXN4lEIvchb7+t\nrS3evHmj8HmIiIiIqPw2btyI+Ph4zJw5U+wopGahoaHo06cPatWqJXYUKkHN/CuRiIiIqATKjuBv\n2rQpAKhtFH9hgT8tLQ1Dhw5Ffn4+/P390bhxY7WcvyoSBAGCICj0/atXr+Dp6Yn8/PxSz1P8HERE\nRESkmqysLCxZsgQ+Pj4cvV/NJCYm4syZM3B3dxc7CpWCBX4iIiKiIpSdg79evXowMTFRW4G/cA7+\nr776CtHR0bC1tYW/v79azl0T2NjY4MyZM/j+++/FjkJERERUI2zcuBFv377FrFmzxI5CarZv3z7o\n6Ohg8ODBYkehUrDAT0RERFSEiYmJUiP4JRIJHB0d8eTJE7X0n5ubi/T0dOzcuRO5ubn46aefYGBg\noJZz1wShoaHQ0dHBokWLEB4eLnYcIiIiomotJycHS5cuxcSJE2FjYyN2HFKznTt3YvDgwTA1NRU7\nCpWCBX4iIiKiIgpH8CszfUvTpk3x119/qaX/2NhYREdHo3nz5mjcuDE8PT3Vct6aonPnzli4cCEE\nQcDo0aPx7NkzsSMRERERVVvbt29HbGws/Pz8xI5CavbixQtcvHgRI0eOFDsKlYEFfiIiIqIijI2N\nUVBQgKysLIWPadasmVqm6MnOzsbBgwdhYGCAv/76C/Pnz4eOjk65z1vTzJw5E0OHDkVSUhKGDRum\n1GtJRERERIrJz8/H0qVLMXbsWNjZ2Ykdh9Rsx44dsLKyQq9evcSOQmVggZ+IiIioCBMTEwBQapqe\n5s2b4+nTp8jJySlX3wEBAUhOToa+vj7+9a9/YdiwYeU6X022detWNGnSBLdu3cLXX38tdhwiIiKi\naicsLAx///03Zs6cKXYU0oA9e/bA09MTurq6YkehMrDAT0RERFSEsbExACi10G6rVq2Qk5NTrml6\nrly5gp9//hmtWrVCYmIiFixYAC0t/qqmKnNzc+zfvx+GhobYsmULtm7dKnYkIiIiompDEAQsWrQI\nHh4ecHR0FDsOqdmNGzfw4MEDTs9TRfCvRiIiIqIiVCnwN2vWDHp6erh7965KfWZkZGDs2LHo1q0b\nMjIyYGRkhP79+6t0Lvo/rVu3xrp16wAAkydPxu3bt0VORERERFQ9HDlyBPfv38ecOXPEjkIasGvX\nLjg6OuLTTz8VOwopgAV+IiIioiIMDAwAQKl523V1ddG8eXPcu3dPpT5nzpyJuLg4rF+/Hs+ePUPD\nhg05el9NvLy8MHHiRGRmZmL48OFISkoSOxIRERFRlbdkyRIMHDgQrVq1EjsKqVleXh5CQ0MxevRo\nSCQSseOQAviXIxEREVERhQX+zMxMpY5r1aqVSgX+CxcuYN26dVi7di2uXr2KnJwcNGzYUOnzUMmC\ngoLQrl07REREwMvLS+w4JIKsrCzMnTsXjRs3ho6ODiQSCf9gJSIiUtHZs2dx+fJlzJ49W+wopAEn\nT55EbGwsp+epQljgJyIiIirC0NAQgHIj+IF3BX5lp+jJzs6Gt7c3+vTpA09PT2zatAk2NjYwNTVV\n6jxUOn19fezbtw+1atXC4cOHxY5DIggICMCCBQswfvx4pKSk4MSJE2JHIiIiqrIWLlyIbt26wdnZ\nWewopAE7d+6Es7MzGjVqJHYUUhAL/ERERERFqDJFD/CuwB8VFYXExESFj5k/fz5evnyJNWvW4MmT\nJ/jtt99gZ2cHbW1tpfqmsjk4OGDnzp0cta2k6jLSPTQ0FADg4+MDIyMj9OrVC4IgiJyKiIio6rl+\n/TrOnDkDf39/saOQBqSnp+Pw4cMYNWqU2FFICSzwExERERWhaoG/devWAID79+8r1P7+/fv4z3/+\ng4ULF6Jhw4bYu3cvPvjgA9SuXRs6OjrKha7miheZS/u+tIJ0v3798O9//1uzYalSioyMBADUrl1b\n5CRERERV24IFC9C+fXt0795d7CikAfv27UNubi7c3d3FjkJKYIGfiIiIqAgtLS3o6ekpXeC3tbVF\n7dq1FZqHv6CgABMnTsTHH3+MyZMnAwAOHjyIQYMGIT8/nyP4ixEEQe6jtP0l+emnnzhyuwYqKCgQ\nOwIREVGV97///Q/h4eEcvV+N7dy5E/369YOlpaXYUUgJLPATERERFWNgYKB0gR8AWrZsqVCBf+vW\nrbhx4wY2bdoEbW1txMTE4ObNm9ICP0fwU2Ug71MSEyZMeG+bRCJBREQE3NzcUKtWrfc+RXH69GkM\nGjQItWrVgoGBAdq2bYs9e/bI7a/wERkZicGDB8PU1BTW1tYYNWoUEhISZNonJyfDz88PjRo1goGB\nASwtLeHs7IwZM2bg+vXrpV7HnDlzpNtev36NSZMmwdbWFnp6erC1tYW3tzdiY2NLzFfS9RZtEx0d\njWHDhsHU1BSWlpbw8vJCcnIynj9/jkGDBsHMzAw2NjYYO3YskpKSlH15iIiIKtyCBQvQvHlzDBw4\nUOwopAHR0dE4d+4cp+epgljgJyIiIipG1QK/IgvtpqSk4LvvvoOPj490Wp/ffvsN2tra+Oyzz5CX\nl8cR/FQpyPuUxObNm+Xu9/HxwYwZMxAdHY1jx47JnKdnz57Q1tbGkydP8PjxY1hZWcHT0/O9hW6L\nnu/bb7/F4sWLERUVhWHDhmHXrl2YMWOGTHsvLy+sWLECvr6+SEhIQExMDLZu3Yq///4bTk5OpV7H\n4sWLAbwr7rdv3x7h4eEICQlBQkICtm/fjkOHDsHJyUmmyK/I9RZtM3v2bMyfPx9RUVHw9PRESEgI\nRo4ciWnTpmHJkiWIjIyEm5sbtm/fjlmzZpX0MhAREVUKERERCA0Nxb///W9oabGcWB398ssvMDEx\nQb9+/cSOQkriv0giIiKiYgwMDJCZman0ca1atcL9+/dLnQImICAA2dnZCAgIkG777bff8Mknn8DU\n1JQj+KlK8vf3h7OzMwwNDdG3b9/3/g0sX74cVlZWsLOzQ1BQEIB3owBL8uWXX6JFixYwNzeXFr9P\nnjwp0+bcuXMAgPr168PY2Bh6enpo1qwZVq9erXDu77//HpGRkViyZAm6desGU1NTdO/eHYsXL8aL\nFy9k/p0qc70AMGHCBOk1FBhbSs8AACAASURBVE5lcPToUfj6+r63vfhNESIiosrm559/hr29PUaM\nGCF2FNKQnTt3YsSIETA0NBQ7CimJBX4iIiKiYlQdwd+6dWukpqbi77//lrv/4cOHWLNmDRYuXCgz\nr+Xly5fh6uoKABzBT1VS+/btS9wnCAIcHByk3zs6OgJ4N49vSdq2bSv9ul69egCAmJgYmTbDhg0D\nALi7u8POzg4TJkxAWFgYrKysFF5nITw8HADQrVs3me09evSQ2V9cadcr7xpsbGzkbi+8tujoaIXy\nEhERiSEuLg7bt2/H9OnTORClmrp37x7u3LmDkSNHih2FVMACPxEREVExhoaGyM7OVvq4jz/+GLq6\nujLzfxfl6+uLli1bysxjnp2djYcPH6JNmzYAwBH8VCUZGRnJ3Z6UlAR/f3+0aNECpqamkEgk0vd3\n8Tn1izI1NZV+raenBwDvFe2Dg4Oxf/9+DBs2DGlpadiyZQs8PDzg6OiI27dvK5T7zZs3AAArKyuZ\n7YXfx8XFyT2upOst6RqKTmUgbzsXfiYiosps9erVMDQ0hJeXl9hRSEOCg4PRsGFD6aAjqlpY4Cci\nIiIqRtUR/IaGhmjVqpXcAv+vv/6KU6dOYeXKlTIj9B89eoTc3FzpfPwcwU/VyYgRI7Bo0SJ4eHjg\nxYsX0jnw1cXNzQ379u1DfHw8Lly4gN69e+Ply5cYN26cQsfXqVMHABAfHy+zvfD7wv1EREQ1VUZG\nBtatW4dvvvkGxsbGYschDcjJycGuXbswfvx4rq9QRfFVIyIiIipG1QI/8G7qjmvXrslsKygogL+/\nP4YMGfLeqJgnT55AS0tLOm0JR/BTZVI4Uj03NxcZGRnvjXQvy6VLlwAA06dPR+3atQFApU/HyCOR\nSBAVFQXg3Uh4V1dXhIaGAng3HZYiBg4cCAA4c+aMzPbTp0/L7CciIqqpgoODkZaWBh8fH7GjkIYc\nOnQICQkJGDNmjNhRSEUs8BMREREVU94C/61bt5CTkyPdFhISgnv37sldVDQyMhI2NjbSaUg4gp8q\nk8JPlly/fh1HjhxBx44dlTq+8IbWokWLkJSUhMTEROnCsuowYcIEPHjwANnZ2YiNjcWSJUsAAL17\n91bo+B9++AH29vaYM2cOzp49i9TUVJw9exbffvst7O3tMW/ePLVlJSIiqmry8/OxYsUKjBs3DtbW\n1mLHIQ0JDg5G7969YWdnJ3YUUhGHhxEREREVY2BggMzMTJWOdXJyQlZWFu7du4d27dohKysLAQEB\nmDBhAj788MP32sfExEgX2gTejfZXpsB/9epVSCQSlbJSzXD16lWVj121ahUmTJiAXr16oXXr1ti+\nfbt0X9H3XeHXxaffCQkJwYwZM7BlyxYsW7YMTZs2xXfffSdzXOExxc9X1vaLFy9i06ZNGDBgAF69\negUjIyM4ODhgwYIFmDp1qkI5ra2tce3aNQQEBGD06NGIi4tDnTp1MHDgQPz4448yxQxFrlfZayhp\nO6nP0aNHsXHjRly7dg2JiYmoXbs2Pv30U3zxxRcYMmSITNuSfpaW9jqriq81EVUF+/fvx7Nnz+Dn\n5yd2FNKQV69e4dSpU9izZ4/YUagcWOAnIiIiKqY8I/hbtGgBCwsLXL9+He3atUNQUBASEhIQEBAg\nt316errMopsFBQVKFY+WL1+O5cuXq5SVqCyffPJJiQvWKlKgrFOnDkJCQt7bPmLECIXPV9J2FxcX\nuLi4lJmhrJzW1tZYv3491q9fX67zlNZG2e1Ufrm5uRg3bhzCw8Pxww8/YPXq1bC2tkZsbCz2798P\nLy8v9OjRAzt37oShoSEAvHfjpazXrfjNmpJuBGjiBgERUUUIDAzE0KFDpVNJUvWzdetWWFhYcFrC\nKo5T9BAREREVU54Cv0QiQbt27XD9+nWkpqbiP//5D6ZOnYq6devKbZ+ZmQkDAwPp94IgKFX8CQ0N\nlS5cygcf8h6F89IT1STffPMNwsLCcPr0afj6+qJBgwbQ09NDgwYNMHXqVJw8eRKHDx/GxIkTxY5K\nRFQpnT9/HteuXcP06dPFjkIaIggCtm3bhtGjR0NfX1/sOFQOLPATERERFWNoaKhygR/4v4V2V61a\nhdzcXEybNq3Ettra2sjLy1O5LyIiknXt2jVs2LABY8eOxSeffCK3jZOTE8aMGYOdO3fi999/L3ef\ngqD4pzGUaUtEJJalS5fC1dVV6fV3qOo4f/48IiIiMHbsWLGjUDmxwE9ERERUTHlG8APvCkePHj3C\n8uXL4evri9q1a5fY1sLCAklJSSr3RUREsgqnWxo+fHip7dzd3QEAmzZt0ngmIqKq5NGjRzh+/Dhm\nzpwpdhTSoODgYLRv3x4fffSR2FGonFjgJyIiIipGX1+/3AV+QRCQkZEhs9inPFZWVoiNjQXwbrqe\nly9f4sqVKyr3TURU0xWOyG/VqlWp7Vq3bg0AuHTpksYzERFVJUuWLIGjoyP69+8vdhTSkOTkZBw4\ncADjx48XOwqpAQv8RERERMXo6uoiNzdX5eONjIygpaUFJyenUkfvA+8W5Y2MjERKSgoWLlyI7Oxs\nHDt2DCdOnFC5fyKimiw6OhoAYGlpWWq7wv0xMTEaz0REVFVER0fjl19+wcyZM6GlxbJhdfXLL79A\nEAR4eHiIHYXUgP9SiYiIiIopb4F//fr10NbWVqht69atIQgCwsPDsWTJEul2Nzc3PHz4UOUMRERU\nusIFzZVZ2JyIqLpbuXIlatWqhZEjR4odhTQoODgYw4cPh4WFhdhRSA1Y4CciIiIqRk9PDzk5OSod\nm52djZUrV6Jbt264du0asrOzS23v4OCAZs2aYc6cOdJtgiAgJycHAwYMQHJysko5qHR79uyBk5MT\natWqBYlEIn0UV9o+Iqqc6tatCwBITEwstV18fDwAoF69ejLbC0es5ufnl3hsfn4+R7YSUbWTlpaG\njRs3YsqUKTAwMBA7DmnIvXv3cPPmTU7PU43wNxIiIiKiYsozgn/Hjh148+YNvvvuO2RkZODatWtl\nHvPJJ58gKipKps+8vDxERkbC3d291CITKS8kJASenp6wtLTE7du3kZWVhf3798ttKwhCBacjovJy\ndXUFANy9e7fUdoX7O3fuLLPd1NQUAEq9wfr27VuYmZmVJyYRUaWzdetW5OTkYNKkSWJHIQ3asmUL\nGjZsiC5duogdhdSEBX4iIiKiYlQt8BcUFCAwMBBjxoyBi4sLHBwccPbs2VKPSU5OLnG+/dzcXJw5\ncwbz5s1TOguVLDAwEACwbNky2NvbQ19fH25ubizmE1UT3t7eAFDijbtCe/fulWlfqFmzZgCA+/fv\nl3js/fv30bRp0/LEJCKqVARBwJo1azBmzJgy1zChqisnJwe//PILvvjiC35CtRphgZ+IiIioGFUL\n/AcPHsSjR48wbdo0AEC3bt1w7ty5Uo+ZPXs2kpOTSywuFxQUYMGCBQgNDVU6D8n3+PFjAECTJk1E\nTkJEmtChQwdMmjQJW7duxc2bN+W2uXbtGkJCQjBp0iR8+umnMvsGDhwI4N1I1pJs2bIF/fv3V19o\nIiKRHTlyBI8fP8aUKVPEjkIadPDgQSQmJsLLy0vsKKRGLPATERERFaOrq6vSHPyBgYEYNGgQPvzw\nQwBA165dcfXqVaSnp8ttf+PGDWzcuFGhmwljxozBH3/8oXQmel9mZiaAd68zEVVPq1atgru7O3r2\n7ImgoCDpNGhRUVFYuXIlevfuDQ8PD6xateq9Y319ffHhhx9i27ZtmDx5Mu7fv4/s7GxkZ2fj3r17\n8PHxwY0bNzB16lQRroyISDNWrFiBPn36oEWLFmJHIQ1av349+vbtC1tbW7GjkBqxwE9ERERUjJ6e\nntIj+G/fvo1Lly7JFHy6d++OnJwcXLp0Se4xAQEBEAShzIUaBUFAQUEBBg8eLF0UsrIpuhhtREQE\n3NzcZBawLRQXFwcfHx/Y2tpCT08P9evXx8SJE/H69ev3zvngwQP069cPJiYmMDMzQ+/evfG///2v\nXAvfFj2m6HlUOacy10JEFUtXVxe7du3Czp07cfr0abRr1w7GxsZo27YtTp06hZ07d2Lnzp1yb/SZ\nmpriypUr+OGHH3D9+nW4uLjA2NgYH3zwAby8vPDBBx/g2rVrJc7BX/xnCRfqJqLK7v79+zh//jxv\nXFZzDx8+xPnz5zF58mSxo5Ca6YgdgIiIiKiyUWWKnqCgIHz44Ycyi1XVrVsXzZs3x7lz59CrV6/3\njvn555/RuXNnXLlyBZcuXUJCQgIAQEdHB3l5eTJt8/LyEBcXh6FDh+Ls2bOVbvS5IAjSApaPjw/m\nzZuHXbt24fz58+jXrx8AIDY2Fk5OTsjKykJISAicnZ1x69YtjB49GqdPn8aff/4JCwsLAEBERAQ6\ndeoEIyMjHD58GO3bt8edO3cwceJEmT7Lk7P48coU4JS5FiIST//+/VWaSsfMzAzff/89vv/+e6WP\n5XoeRFTVBAYGomnTpujZs6fYUUiD1q5di0aNGsn9u4SqNo7gJyIiIipGV1cX+fn5KCgoUKj927dv\nERoaiilTprxXJO7WrVuJC+1++OGHmDNnDg4dOoT4+Hg8e/YM1tbWaN++Pdq1awcdnXdjMfT09KQ3\nHS5evAg/P7/yXaCG+fv7w9nZGYaGhujbt6+02BUQEIAXL15g4cKF6NWrF0xMTODq6orly5fj2bNn\nWLp0qfQc8+bNQ1JSEpYsWYJu3brBxMQELi4u8Pf3F+uyZChzLURERESVVVxcHHbv3o1p06bx00bV\nWFpaGnbs2AFvb+8yPz1MVQ9fUSIiIqJiCkfHKzqKf+PGjdDT08OoUaPe29etWzf88ccfSEpKKvM8\nDg4OsLCwQJ8+fXDz5k2kpaXh8uXLWLJkCdzc3FC3bl0AwJo1a3D58mUlrqhitW/fXu72I0eOAAD6\n9u0rs71z584y+wHg1KlTAN49f0U5OzurLWd5KHMtRERERJXV2rVrYWRkhJEjR4odhTRo586dyMnJ\nwbhx48SOQhrAKXqIiIiIitHT0wPwrsCvr69fatuCggJs2LABY8eOhbGx8Xv7u3XrBolEghMnTsDD\nw6PMvrW1tZGfnw8A0NfXR8eOHdGxY0fp/piYGNy7dw9t27ZV5pIqlJGRkdztcXFxAIB69erJ3R8R\nESH9unCtASsrK5k2lWXaG2WuhYiIiKgyys7OxoYNG+Dt7S3391iqPjZu3AgPDw9YWlqKHYU0gCP4\niYiIiIpRZgT/mTNn8OzZM5m54YuqVasWOnXqpPCIbh0dHWmBX566deuiV69eMDAwUOh8lYm1tTUA\nIDExEYIgvPdIT0+Xti0s7BdfVLiyLDKszLUQERERVUa7d+9GQkICfHx8xI5CGnTx4kXcunWLr3M1\nxgI/ERERUTHKFPi3bNkCZ2dntGjRosQ2AwcOxK+//vrewrnyyFtgt7oYMmQIAOD8+fPv7fv9999l\nPqlQuPjXmTNnZNpdunRJcwGVoMy1EBEREVVGK1euxIgRI2Brayt2FNKgdevWoU2bNiVOo0lVH6fo\nISIiIiqmsMCfk5NTarvExEQcOnQIa9asKbXd4MGDMX36dFy6dAldunQpta22tna1LfDPmzcPJ0+e\nxOTJk5Gfn4+uXbtCT08Pv/32G3x9fREcHCzT9siRI5gzZw7q16+P9u3b4/bt29iwYYOIV/B/lLmW\nymLv3r1iRyA1i4qKYlGGiIhUcu7cuUr1uxVpxps3b7B//36sXbtW7CikQSzwExERERVTdA7+0uza\ntQs6Ojpwd3cvtV3jxo3RrFkzHDp0qMwCf1lT9FRWEonkva8FQZBpY2VlhWvXrmH+/PmYNWsWoqKi\nULt2bbRv3x67du1Chw4dpG0bNWqEixcvYubMmRg0aBC0tLTQpUsXrF69Go0bN4aWlmofRC2eszCj\nstuVuZbKYsSIEWJHIA0o6+cPERGRPCtXrkSnTp04qrua27RpEwwNDfH555+LHYU0iAV+IiIiomIU\nnaInODgYI0aMgKmpaZnnHD58OLZv346ff/651OJ0VR3BX7yYX5JatWph2bJlWLZsWZlt//Wvf+HY\nsWMy26KjowG8v/iuokrKqex2QLlrqQwUfY2o6uBNGyIiUsWzZ88QHh6OPXv2iB2FNKigoACbNm3C\n+PHjYWRkJHYc0iDOwU9ERERUjCIF/gcPHuD27dvw8vJS6JweHh6IiorClStXSm1XVUfwa4JEIsHT\np09ltl24cAEA0LVrVzEiEREREVV5K1asgK2trXRNIaqewsPD8eLFC0yaNEnsKKRhLPATERERFaPI\nHPy7d+9GgwYN0KlTJ4XO2apVK3z44YcICwsrtV1VHcGvKZMnT8bff/+N9PR0nDlzBrNnz4aZmRnm\nzZsndjQiIiKiKic1NRXbtm3DN998Ax0dTuxRna1btw49e/ZE06ZNxY5CGsYCPxEREVExhX/slDaS\nPiwsDB4eHkrNBe/u7o69e/eWel6O4P8/p0+fhomJCZydnWFhYQFPT0906NAB165dQ/PmzaXtJBKJ\nQg8iIiKimm7Tpk0oKCjAF198IXYU0qCIiAicPHkSX331ldhRqALwVh0RERFRMdra2gBKLvBfv34d\nT548gaenp1LnHTlyJH788UecOnUKffr0kdtGR0eHI/j/0b17d3Tv3r3MdpxbnoiIiKhs+fn5WLNm\nDcaNGwcLCwux45AGrV+/HvXr18eAAQPEjkIVgCP4iYiIiIopq8C/Z88eNGnSBG3btlXqvI6OjnBx\nccHWrVtLbKOjo1Pm4r5ERERERMo6ePAgnj17hsmTJ4sdhTQoIyMDwcHBmDhxovTvGqreWOAnIiIi\nKqa0Ar8gCNi/fz8+//xzlc49btw4HDx4EPHx8XL36+vrIzs7W6VzExERERGVZMWKFRg4cCCaNWsm\ndhTSoK1btyIzMxPe3t5iR6EKwgI/ERERUTGlFfj//PNPvHz5EkOHDlXp3CNGjICenh527dold7+h\noSGysrJUOjcRERERkTx//vknLl68CF9fX7GjkAYVFBRg9erVGDNmDKysrMSOQxWEBX4iIiKiYkor\n8B86dAj169dHmzZtVDq3iYkJRo8ejdWrV6OgoOC9/QYGBizwExEREZFaLV++HC1btkTXrl3FjkIa\ndPjwYfz111+8kVPDcJFdIiIiomLKKvAPHToUEolE5fNPnToVGzZswLFjx95b+ErZAv/y5cuxb98+\nlbNQ9RcZGSl2BCIiIhJRdHQ0wsLCsH79+nL9DkuV3/Lly9G/f3+0aNFC7ChUgTiCn4iIiKiYkgr8\nz58/x927dzF48OBynb9p06bo2bMnVq5c+d4+Q0NDZGZmluv8RERERESF1q5dC3Nzc3h6eoodhTTo\njz/+wIULFzBt2jSxo1AF4wh+IiIiomIKC/x5eXky248cOQJzc3N06dKl3H34+fmhT58+uHHjBj79\n9FPpdn19faVG8Pv5+WHEiBHlzkPVV1hYGDw8PMSOQURERCLIzs7Gpk2b8NVXX8HAwEDsOKRBy5Yt\nQ+vWrfHZZ5+JHYUqGEfwExERERWjo/NuDETxEfwnT55E9+7doaurW+4+evfuDScnJ/z4448y27nI\nLhERERGpS0hICJKTk+Ht7S12FNKgqKgo7Nu3DzNnzuQ0TDUQC/xERERExciboicvLw8XLlxAjx49\n1NZPQEAAwsPDcf36dem27OxsvHz5EocPH1ZbP0RERERUM61evRqenp6wsbEROwpp0MqVK/HBBx/w\nk701FAv8RERERMVoaWlBIpHIFPivXLmClJQU9OzZU2399O3bFx06dIC/vz+AdzcUduzYgby8PHh5\neSE2NlZtfRERERFRzXLq1CncvXsXU6ZMETsKaVBqaio2b96Mb775Bnp6emLHIRFwDn4iIiIiObS0\ntGQK/KdOnYK9vT2aNGmi1n4CAwPh4uKC/fv348GDB4iIiAAApKenY9y4cTh27Jha+yMiIiKimmHF\nihX47LPP0KZNG7GjkAZt2bIFOTk5+PLLL8WOQiLhCH4iIiIiObS1tWUK/GfOnFHr6P1CHTt2xJgx\nY/D111/jhx9+gCAIAIDc3FwcP34cwcHBau+Tym/Pnj1wcnJCrVq1IJFIpI/iSttX2WVlZWHu3Llo\n3LgxdHR0qux1qBOfEyIiqiqePHmC48ePw9fXV+wopEH5+flYtWoVvvjiC1haWoodh0TCAj8RERGR\nHEUL/JmZmbh58ya6du2qkb78/f2Rm5v7XqFQEARMnjwZT58+1Ui/pJqQkBB4enrC0tISt2/fRlZW\nFvbv3y+3beENm6ooICAACxYswPjx45GSkoITJ06IHUl0fE6IiKiqCAoKgp2dHQYOHCh2FNKgAwcO\n4Pnz55yGqYZjgZ+IiIhIjqIF/hs3biAnJwcuLi4a6Wvu3LlISUmR+cRAofz8fIwaNUruPhJHYGAg\nAGDZsmWwt7eHvr4+3NzcqnQxX57Q0FAAgI+PD4yMjNCrV69qd43K4nNCRERVQUpKCkJCQjBlyhRo\na2uLHYc0KDAwEIMHD1b7NKJUtbDAT0RERCRH0QL/pUuXUK9ePdjb26u9n3Xr1mHfvn3Izc2Vuz83\nNxc3b97E8uXL1d43qebx48cAUO3/kIqMjAQA1K5dW+QklQefEyIiqgo2b96MgoICjB8/XuwopEGX\nL1/G1atXMW3aNLGjkMhY4CciIiKSo3iBv1OnTmrv48GDB5g6dWqZI4Dz8/Ph7++P+/fvqz0DKS8z\nMxMAoKurK3ISzSooKBA7QqXD54SIiCq7/Px8rFmzBuPGjYO5ubnYcUiDli1bhk8//VQjf6dQ1cIC\nPxEREZEcOjo6yMvLgyAIuHr1Kjp27Kj2Pu7evYuCggJoaWlBR0en1LaCIODzzz9HTk6O2nMAQHJy\nMvz8/NCoUSMYGBjA0tISzs7OmDFjBq5fvy7T9vXr15g0aRJsbW2hp6cHW1tbeHt7IzY2VqZdSQvM\nKrI9IiICbm5uMovYFsrKysLixYvRpk0bGBsbw8DAAM2bN4e3tzeuXr0qc864uDj4+PhIs9avXx8T\nJ07E69evVXqeiuYomleVxXTVnU2d5F3nnDlzZL4v63VS5voUbavo+1QT773SnhNlrkHR54+IiEgV\nhw8fxrNnzzB58mSxo5AGPXz4EAcPHsTs2bPFjkKVgVDDABBCQ0PFjlFuoaGhQg18+YioAtTUny/V\n5f8PpD516tQRVq1aJURERAgAhMuXL2ukn7S0NOHw4cPCqFGjBFNTUwFAiQ8dHR3B399feqw637eD\nBw8WAAgrVqwQ0tLShOzsbOHRo0fC0KFDZX4mxMTECA0aNBDq1asnnDlzRkhJSRFOnz4t2NjYCPb2\n9sLr169lzluYvbiytvfs2VO4dOmSkJGRIRw7dkzaNiUlRfjkk08EU1NTYdOmTcLr16+F1NRU4dy5\nc0KLFi1kzvn69WvB3t5esLa2Fk6cOCGkpqYKFy5cEOzt7YWGDRsKb9++Vem5UvWaitJUNnlU/ble\n0vUU3VfS66TM9SnTVtH3aWn5VX3vlXassq+nIn0pwt3dXXB3d1fqGKLKiL+HEalPly5dhAEDBogd\ngzRs5MiRQosWLYT8/Hyxo5AGKfh7/H9qXAWnuvziUFMLcESkeTX150t1+f8DqY+1tbUQFBQk7Nu3\nT9DS0hJSU1M13mdeXp7w+++/C3p6ekKdOnUEAIKurq4gkUikBUGJRCL89ttvgiCo931rZmYmABD2\n7t0rs/3Vq1cyPxO+/PJLAYCwY8cOmXbbtm0TAAiTJk2S2a5qkfXcuXNyc06bNk1a4C3uzz//lDnn\npEmTBADCli1bZNodOHBAACBzs0QZ6ijwayqbPJos8Jf0Oilzfcq0VfR9Wlp+Vd97pR2r7OupSF+K\nYIGfqgv+HkakHnfv3hUkEolw6tQpsaOQBj19+lTQ0dERdu3aJXYU0jBFC/ycooeIiIhIDi0tLRQU\nFODOnTto2rQpTExMNN6ntrY2OnXqhA8++ABz5szB//73P8yfPx9OTk7Q0tKCtrY2BEHAmDFjkJ6e\nrta+hw0bBgBwd3eHnZ0dJkyYgLCwMFhZWcmsERAeHg4A6Natm8zxPXr0kNlfXu3bt5e7fd++fQCA\nIUOGvLevTZs2MlmPHDkCAOjbt69Mu86dO8vsF0NlzqaMkl4nZa5PmbaKvk/Lo6RrKo2qr6cqfRW3\nd+/eEqeL4oOPqvIgIvUIDAxEixYt0L17d7GjkAYtWrQI9vb2GDFihNhRqJIofbJXIiIiohpKIpFA\nEATcuXMHH330UYX2bW5ujuTkZLRo0QItWrTArFmzEB8fj6NHj+Lw4cM4ffo07t27p9Y+g4ODMWDA\nAPzyyy84e/YstmzZgi1btsDOzg6HDh3Cxx9/DAB48+YNAMDKykrm+MLv4+Li1JLHyMhI7vaYmBgA\ngI2NTZnnKMxSr149ufsjIiJUTFd+lTmbMkp6nZS5PmXaKvo+LY+Srqk0qr6eqvRVXMeOHeHn51fu\n8xCJiUUqovJ78+YN9uzZg5UrV/LGWTUWGRmJHTt2YN26dWWu4UU1B98JRERERHIUFvhv374Nb2/v\nCu3b3NwcKSkpMtusrKzg5eUFLy8vjfXr5uYGNzc3FBQU4NKlS1iwYAFOnDiBcePG4datWwCAOnXq\nIDo6GvHx8TLFzPj4eOn+ogqfx9zcXOjq6gJ4t1CqqqytrREVFYWYmBg4ODiU2fbVq1dITExErVq1\nVO5TEypzNnVQ5vqUfS4UeZ8C6n/vqfMa1MnW1hbu7u4V2icREVU+69atg6GhIUaOHCl2FNKgJUuW\nwNraGqNGjRI7ClUinKKHiIiISA6JRIKsrCxERkaiVatWFdq3hYUFkpKSKrRPiUSCqKgoAO+mJ3J1\ndUVoaCgA4OHDh9J2AwcOBACcOXNG5vjTp0/L7C9UONK+cOQ9AJkirLIKp2g5ePDge/uuXr0KJycn\n6feF0/icP3/+vba/oB5BiQAAIABJREFU//47OnbsqHKO8qrM2dRBmetTpq2i71NA/e+90lT315OI\niCq33NxcbNy4Ed7e3jA2NhY7DmnI69evERwcjDlz5kBPT0/sOFSJsMBPREREJIdEIsGbN28gCAKa\nNm1aoX3XqVMHsbGxFdonAEyYMAEPHjxAdnY2YmNjsWTJEgBA7969pW1++OEH2NvbY86cOTh79ixS\nU1Nx9uxZfPvtt7C3t8e8efNkztmzZ08AwNKlS5GcnIxHjx5h8+bNKmecN28eWrZsie+//x6bNm1C\nbGws0tLScOLECYwZMwYLFy6Uaevo6IjJkydj3759SEhIQGpqKsLDwzF27FgsXrxY5RzlVZmzqYMy\n16fsc6HI+xRQ/3tPXddLRESkbnv27EFsbCx8fHzEjkIa9PPPP8Pc3Bzjxo0TOwpVMizwExEREclR\nWODX1tYucyoYdbO2tsbr168rtM+LFy/CxsYGAwYMgKmpKZo1a4Zjx45hwYIF2L17t0y2a9euYeDA\ngRg9ejRq166N0aNHY+DAgbh27Rqsra1lzrts2TL8v//3/xAaGor69etj1qxZWLRokXR/0Tlii38t\nb/5YCwsLXLlyBb6+vli2bBns7Ozg4OCAwMBAbNmyRWZROSsrK1y7dg2enp6YNWsW6tatC0dHR2zc\nuBG7du1Cly5dlH6eSsurzNeayKZOpb0WirxOylyfMm0VfZ8C6n/vldZGmWtQpC8iIiJlrFq1CsOG\nDUODBg3EjkIakpCQgA0bNmDmzJkwNDQUOw5VMhJBEASxQ1QkiUSC0NDQKr+IT1hYGDw8PFDDXj4i\nqgA19edLdfn/A6mPg4MDmjdvjqdPn+Lp06cV2ndgYCACAwOlU5GUhO9bUkRN/bleExT+2w8LCxM5\nCVH58P9nRKq7dOkSOnXqhMuXL3NKuGps7ty5WL9+PZ4/fw4TExOx41AFUfD3+KUcwU9EREQkh0Qi\nQUJCAhwdHSu8bxsbG8TGxqKgoKDC+yYiIiKiqmPlypVo164di/vVWHJyMtasWYPp06ezuE9yscBP\nREREJIdEIkFiYiIaNWpU4X3b2NggLy8PiYmJFd43EREREVUNr169wsGDBzFt2jSxo5AGBQUFQRAE\nrrFAJWKBn4iIiEgOLS0tJCcno169ehXed+E89hU9D39NVTgPelkPIiIiosokKCgIH3zwAYYPHy52\nFNKQ9PR0BAUFYerUqbCwsBA7DlVSLPATERERySGRSJCWlgYbG5sK77uwTxb4K4YgCAo9iIiIiCqL\njIwMbNmyBV999RX09PTEjkMasmbNGmRmZuLrr78WOwpVYizwExEREckhCAKys7NRt27dCu+7du3a\n0NPTQ2xsbIX3TURERESVX0hICNLS0jBhwgSxo5CGpKWlITAwEJMnT4aVlZXYcagSY4GfiIiISI7C\nBW7FGMEvkUhQp04dREdHV3jfRERERFS5CYKAoKAgjBo1Sjq1I1U/K1asQHp6OqZPny52FKrkdMQO\nQERERFQZ5efnA4Boo2UaNWqEiIgIUfomIiIiosrr5MmTePjwIXbv3i12FNKQpKQkBAYGYubMmahT\np47YcaiS4wh+IiIiIjkK51w3NTUVpX9HR0c8efJElL6JiIiIqPJauXIlunXrho8++kjsKKQhixYt\ngra2NqZOnSp2FKoCWOAnIiIikqOwwG9iYiJK/yzwExEREVFxT548wYkTJ+Dr6yt2FNKQmJgYrF69\nGv7+/jAzMxM7DlUBnKKHiIiISA5BEKClpQVdXV1R+nd0dERUVBQyMzNhaGhYYjsPDw94eHhUYDIi\nIiIiEsvKlSthb2+P/v37ix2FNOTHH39ErVq14O3tLXYUqiJY4CciIiKSQxAE6Onpida/o6MjBEFA\nREQEWrZsicTERKxevRqWlpaYPHmytJ2fnx86duwoWk6q/K5cuYLly5eLHYOIiIjKKSkpCdu3b8f8\n+fOhra0tdhzSgOfPnyM4OBhr164tdZAPUVEs8BMRERGVQMw/nJo0aQItLS3cuHEDO3fuxKpVq5CR\nkYHmzZvLFPg7dOgAd3d30XJS5Vc43RQRERFVbZs3b4aWlhbGjRsndhTSkLlz58Le3h5eXl5iR6Eq\nhAV+IiIiIjkkEomohdGUlBSYm5tj4sSJkEgkyM3NBQC8evVKtExEREREJI7c3FysWrUKEyZM4Lzs\n1dT9+/exe/du7N69Gzo6LNmS4rjILhEREZEcEokEBQUFFd7v8+fPMWXKFNjZ2SEtLQ15eXnS4j4A\npKamIi0trcJzEREREZF4QkNDER0djSlTpogdhTTE398fLVu2xPDhw8WOQlUMbwcRERERySFGgX/S\npEnYsmULtLS0ZIr6xb169QrNmjWrwGREREREJKbAwEC4u7vD3t5e7CikAdevX0d4eDiOHj0KLS2O\nxybl8B1DREREJIeWllaFT9Hz9OlTCIJQanEfACIjIysoERERERGJ7ezZs7h16xamTp0qdhTSkG+/\n/RYuLi7o27ev2FGoCmKBn4iIiEgObW1t5ObmlllsV6cjR47A1dW11Dk3tbW1K12BXyKRSB9UMj5P\nREREpIply5ahS5cuaN++vdhRSANOnjyJs2fPYv78+WJHoSqKBX4iIiIiOQqL7G/fvq2wPo2MjHDs\n2DG4uLiUWOTX0dGpdAV+VT7p4OrqCldXVw2kqbxKe55q4vNBREREZfvrr79w/PhxTJ8+XewopAGC\nIOD7779H//790aVLF7HjUBXFOfiJiIiI5NDV1QUAJCYmok6dOhXWb2GRv1+/frh06RLy8vJk9ufn\n51e6Ar8qKnp9g8JR8xU97ZKiKuL5GDFihMb7oIp15coVdOzYUewYRESkQUuXLkWTJk3Qv39/saOQ\nBuzfvx83btzAH3/8IXYUqsJY4CciIiKSo3AEfUJCQoX3XVqRPy8vD8+fP6/wTOp26dIlsSNUKnw+\niIiIqLi4uDjs2rULK1eu5MKr1VBOTg7mzJkDT09PfPzxx2LHoSqMBX4iIiIiOfT09AC8+8NKDKUV\n+atDgZ8qXlhYmNgRSM34qQwioupt9erVMDU1xejRo8WOQhoQFBSE6OhoLFiwQOwoVMXx9h8RERGR\nHNra2jAxMUFERIRoGQqL/J06dZKZk//Vq1cqnS85ORl+fn5o1KgRDAwMYGlpCWdnZ8yYMQPXr1+X\ntitpMVhFFol9+fIlhg4dCnNzc5iYmKB///54+PChwueJi4uDj48PbG1toaenh/r162PixIl4/fr1\ne22zsrKwePFitGnTBsbGxjAwMEDz5s3h7e2Nq1evyvRXvO8JEyYo/bwo48GDB+jXrx9MTExgbm6O\noUOH4uXLl3LbKvJ8R0REwM3NDbVq1eJCvURERDVAZmYm1q1bh6+++gqGhoZixyE1S0xMxKJFizB9\n+nTY29uLHYeqOBb4iYiIiOSQSCSwsLDA06dPRc1hZGSEo0ePwtXVVVrkz8zMREpKitLn8vLywooV\nK+Dr64uEhATExMRg69at+Pvvv+Hk5CRtV9I89YrMXz9x4kT4+fkhKioKhw4dwp9//gkXFxeZTx2U\ndJ7Y2Fi0b98e//3vfxEcHIzExETs2bMHJ0+ehLOzM5KSkqRtU1NT4erqioULF2Ly5Mn4+++/ER8f\nj/Xr1+PChQsy85IX7U8QBAiCgM2bNyv9vCgqIiICnTp1wp07d3D48GG8evUKfn5+mDhxotz2ijzf\nPj4+mDFjBqKjo3Hs2DGlMxEREVHVsm3bNqSmpsLb21vsKKQBAQEB0NHRwcyZM8WOQtUAC/xERERE\nclSWAj/wrsgfHh4OFxcX6cjtkkaDl+bcuXMAgPr168PY2Bh6enpo1qwZVq9erbas3t7e6Ny5M0xN\nTdG9e3csXrwYb9++xbx588o8NiAgAC9evMDChQvRq1cvmJiYwNXVFcuXL8ezZ8+wdOlSadt58+bh\n5s2b+OmnnzBhwgRYW1vDxMQEn332GXbt2qVUZnU/L/PmzUNSUhKWLFmCbt26wcTEBJ07dy7XH+j+\n/v5wdnaGoaEh+vbtW2kXCyaqSFlZWZg7dy4aN24MHR2dGvHpFkU+SaWIPXv2wMnJSeZTQfLOqa7+\niEg5giAgKCgIXl5esLGxETsOqdlff/2FDRs2YOHChTAzMxM7DlUDLPATERERySGRSGBubo7Hjx+L\nHQXA/03X4+rqCgCIiopS+hzDhg0DALi7u8POzg4TJkxAWFgYrKys1FYwLsxXqEePHgCAkydPlnns\nkSNHAAB9+/aV2d65c2eZ/QCwb98+AMCQIUPeO0+bNm2Uuh51Py+nTp0CAHTr1k1me6dOnZQ+V6H2\n7durfCxRdRUQEIAFCxZg/Pj/z969x+V8Pv4Df3UQ0lERUY3JsTnmVIpsCqOoFZmRzak1p2lO24iN\n5HwY5pA5jJUVpjBWSSqkPg6TnOkgFaVUSIf374996yfdpUhXh9fz8bgf6n2/7/t+Xbfc5dV1X9eX\nePr0KU6cOCE60ntXGa/Ve/bsgaOjI7S0tHDp0iW8ePECvr6+7+3xiKji/Pz8cOPGDcycOVN0FHoP\nXF1d0bFjRzg5OYmOQrUEC34iIiIiGeTk5KCtrY34+HiZ67+LoKysjOPHj2P27Nno0KFDhW+/c+dO\n+Pr6ws7ODllZWfD09MSoUaNgaGiIS5cuVUpGLS2tYp9ra2sDAB49evTG2xZuaKyrq1ts1mjhfby6\nH8LDhw8BoFJmtVX28/L48WMA/3/shV7/vCKUlZXf+rZEr6stM7K9vb0B/LeElbKyMiwtLVlIl8Oa\nNWsAAKtXr4aBgQHq168PW1tbPndE1YiHhweGDRv2Vj/vUfUWEBAAf39/rFq1CgoKCqLjUC3Bgp+I\niIhIBnl5eTRt2hTy8vI4f/686DhFlJWVsWrVqrfejMvW1hY+Pj54/PgxQkJCYGVlhbi4OEyYMKHY\neYXlX25ubtGxjIyMN97/6+cUlt1NmjR54211dHQA/LfpWOFa+a9esrOzS5xbWPS/q/I+L+VRWOQX\njr1QeZ4/Iiq/+Ph4AEDjxo0FJ6lZCt+Z1qZNG8FJiEiWkJAQhIeHY+7cuaKjUCXLy8vDzJkzYW1t\nXfQuV6LKwIKfiIiIqBRKSkro0KEDzp07JzpKpZCTkyta2kdeXh5mZmZFM2BjYmKKnVs4M/7VAv3i\nxYtvfIyzZ88W+zwgIAAAYGlp+cbbFi63ExwcXOK6M2fOFNs4t3BZncOHD5c499y5cyU2xy2cAZ+b\nm4tnz54Vm01fkeelPArHGhgYWOz4688NEb2bgoIC0RFqpOfPnwMA6tWrJzgJEcni4eEBc3NzmJqa\nio5CleyXX37BrVu3iu0rRVQZWPATERERySAnJwdJktCnT59aVcxOnDgR0dHRyMnJQXJyMjw8PAAA\nVlZWxc4bNGgQAGDlypXIyMjA9evXsWPHjjfev7u7O8LDw5GVlYWgoCDMnz8fmpqa5dpk183NDYaG\nhnBxcYGPjw9SU1ORmZkJf39/ODk5Yfny5cXONTIywsKFC7F9+3YkJycjKysLJ06cwLhx47Bs2bJi\n9925c2cAQEREBPz8/Ir9sqAiz0t5uLm5QUNDA/PmzUNQUBCysrIQHh4Od3f3Ct8XUWV7dWmewqV6\nJk6cWOKYnJwc7ty5A1tb22IbsRYKCAiAtbU1NDU10aBBA3Tv3h1eXl4yH6/wEh8fDxsbG6iqqkJH\nRwdjx45FampqsfMzMjIwa9YstG7dGg0aNICWlhZMTEzg6uqKiIiIMscxb968omNJSUmYMmUKWrZs\nCSUlJbRs2RJTp05FcnJyqflKG++r5yQmJsLOzg6qqqrQ0tLC+PHjkZGRgfv378Pa2hpqampo1qwZ\nnJyckJ6eXuL5SElJgbOzc1GuFi1aYPLkyTKXgouOjsbQoUOhoqICdXV1jBw58q02WH99vLLG/jab\n6VZkLERUPleuXMHx48c5e78WSklJweLFi/Hdd9+hbdu2ouNQbSPVMQAkb29v0THembe3t1QH//qI\nqArU1deX2vL9gSrPgAEDJGdnZ2nfvn1SvXr1pCdPnoiOVEJFv25DQ0Ol8ePHSx988IFUr149SV1d\nXerSpYu0dOlSKTs7u9i5jx49ksaMGSM1adJEatSokTR8+HApLi5OAlB0eTVH4SU6OlqytLSUVFRU\npEaNGklDhgyRrl27JjO7rNeatLQ06dtvv5VatWol1atXT9LR0ZGGDx8unT17tsS5mZmZ0g8//CC1\na9dOUlJSkrS0tCRLS0spJCSkxLkXLlyQunTpIikrK0t9+vSRbty48VbPS3ldvXpVGjJkiNSoUSNJ\nRUVFsrS0lKKjo9/4/JV1/G1fm+vq63pdYG9vL9nb21f4dm/6eiq8ftCgQVJYWJj07Nkz6dixYyW+\nPkeMGCE9evRIio2NlQYNGiQBkP7+++9S7+/zzz+Xrl27JqWnp0vOzs4SAMnJyanYuTY2NhIAad26\ndVJWVpaUk5MjXb9+XRo5cmSJzKWN4+HDh5Kenp6kq6srBQYGSk+fPpUCAgKkZs2aSQYGBlJSUtJb\njReANHbs2KIxuLi4SACkTz/9VBo5cmSJsU2aNKnY4yQlJUkGBgaSjo6OdOLECSkzM1MKCQmRDAwM\npFatWhX7PnP79m1JQ0OjaAyZmZnS6dOnJSsrq3d6PSjreavI8YqMpbyZ+HMYkSSNGTNG+uijj6SC\nggLRUaiSffXVV1KLFi2kzMxM0VGoBinnz/Er6txP+rXlBwf+R42I3pe6+vpSW74/UOWxsLCQpk6d\nKqWnp0tKSkrSvn37REcqoaZ+3ebl5UkApHr16omOUifU1df1uuB9F/ynTp0q85x79+4VfR4TEyMB\nkMzMzEq9v+Dg4KJj9+7dkwBIurq6xc5VU1OTAEh//vlnseMPHjwod8E/adIkCYC0d+/eYsd37dol\nAZCmTJnyVuN9fQyFmV4/Hh8fLwGQWrRoUew+pkyZIgGQPD09ix0/ePCgBEBasGBB0bGxY8fKHMOh\nQ4eqRcFfkbGUN1NN/H5GVJnu3r0rKSoqSr///rvoKFTJoqKiJHl5eWn//v2io1ANU96Cn0v0EBER\nEclQuESPuro6zMzM8Ndff4mOVKPJyckVLcVRuHyDoaGhyEhE9Aa9evUq9TpJkvDBBx8UfV747/na\ntWul3qZ79+5FH+vq6gIouVF24f4a9vb20NfXx8SJE3HgwAFoa2tDkqRy5fb39wcADBw4sNjxwg0N\nC69/XVnjlTWGwr1KXj9eOLbExMRit/Xz8wMADBkypNhxc3PzYtcDwD///CNzDP369XtjxqpQkbEQ\nUfmsWrUKenp6GDVqlOgoVIkkScKMGTPQt29fjB49WnQcqqVY8BMRERHJUFjwA4CNjQ3+/vvvoo0J\n6e2sX78emZmZWLduHQDAxcVFcCIiKkvh5tSvS09Px4IFC9ChQweoqqpCTk4OioqKAFBiTf1Xqaqq\nFn2spKQEACVK+507d8LX1xd2dnbIysqCp6cnRo0aBUNDQ1y6dKlcuR89egQAxTbTfvXzlJQUmbcr\nbbyljUFeXr7M46+PrfBxdXV1i615X5jrzp07Rec+fvy4zDGIVpGxVMS5c+fg5OSE2bNnY9u2bbhx\n40alZSaqzlJSUvDbb79h9uzZRa+nVDvs2bMHZ8+exS+//FKhfU6IKoIFPxEREZEMrxb89vb2ePHi\nBQ4cOCA4Vc21f/9+HDx4EE2aNIG/vz82bNgAZ2dn0bHKrbTNKN92c0qimszBwQHu7u4YNWoUYmNj\nIUlSuWfXl4etrS18fHzw+PFjhISEwMrKCnFxcZgwYUK5bt+0aVMA/78kL1T4eeH1VU1HRwcAkJaW\nVvScvXrJzs4uOrewKH99DBkZGVUXuAwVGUtFPXr0CGfOnIGrqyvat2+Pbt26wdvbu1K/xoiqmw0b\nNkBZWRlOTk6io1AlSktLw5w5czB16lR07dpVdByqxVjwExEREcnwasHfrFkz2NraYvPmzYJT1VyO\njo64evUqXrx4gZiYGEybNq1GFeKyCixZF6KaoHCmem5uLp49e1bhWeFhYWEAgNmzZ6Nx48YAgJyc\nnErJJicnh4SEBAD/zYQ3MzODt7c3ACAmJqZc9zF8+HAAQGBgYLHjAQEBxa6vaiNGjAAABAcHl7ju\nzJkz6Nu3b9HnlpaWAEqO4ezZs+8vYAVUZCwV0adPHxw9ehQRERF48uQJQkJCYGRkhDFjxmDYsGFI\nT09/l9hE1VJmZiY2b96MmTNnolGjRqLjUCWaP38+5OTk8PPPP4uOQrUcC34iIiIiGV4t+AHg66+/\nRkREBCIjIwWmIiJ6d507dwYAREREwM/Pr8JlrJmZGQDA3d0d6enpSEtLw4IFCyot38SJExEdHY2c\nnBwkJyfDw8MDAGBlZVWu2y9evBgGBgaYN28egoKCkJmZiaCgIMyfPx8GBgZwc3OrtKwV4ebmBkND\nQ7i4uMDHxwepqanIzMyEv78/nJycsHz58mLnamhoFI0hKysL4eHhcHd3F5L9dRUZy9tSUFCAmZkZ\n9u7di9DQUFy+fBmWlpbIysqqhBEQVR+//vorXr58WaPe2UhvduHCBezYsQNr166FhoaG6DhUy7Hg\nJyIiIpLh9YLfzMwMnTt3xpo1awSmIqLqqiYt1bRx40Z06dIFlpaWWLduHVavXl103av5SxvPnj17\n8MUXX8DT0xM6Ojro378/evfuXep9VOTj0NBQNGvWDMOGDYOqqiratWuHY8eOYenSpfjjjz/KlVNH\nRwfnz5/H8OHD8cUXX6Bx48b44osvMHz4cJw/f75oeZnyjvddxvPqx9ra2jh//jwcHR0xZ84cNG/e\nHIaGhti2bRv27duH/v37F53bunVrhIaGokuXLrC2tkbz5s2xePFibNmyReZ9l5eIsVSGvn37Ijg4\nGPfv38eMGTMq9b6JRMrJycG6devg7OwMLS0t0XGokuTn52PKlCkwMzPjxrpUJbhzBxEREZEMrxf8\nALBo0SJ89tlnmD17Nnr06CEoGRFVR5Ik1YhyHwCMjY1L3bC2PEtNNW3aFHv27Clx3MHBodz3V9px\nU1NTmJqavjHDm3Lq6Ojg119/xa+//vpO91PWORU9DgCamppYvXp1sV+qlKZTp044duxYhe7/TUSN\npTK0adMGmzdvhoODA1xdXdGhQ4cqeVyi92nPnj149OgRpk+fLjoKVaINGzYgOjoaly9frjE/G1DN\nxhn8RERERDLIKvhtbW3Rt2/fSl2KgoiKqymz4Imo6tnZ2aFDhw5Yt26d6ChE7yw/Px8rV67EF198\nAT09PdFxqJI8fPgQixcvxpw5c9C+fXvRcaiO4Ax+IiIiIhlkFfzAf2tO9+/fHydOnCj3etDv07lz\n51iGUpnOnTsnOgIRUaWQk5PD119/jXnz5mHTpk1QVGSlQTXX/v37cffuXfj7+4uOQpVo2rRp0NLS\n4oQgqlL8bkhEREQkQ2kFv7m5ORwcHDBp0iRcuXJF+KZZa9euxdq1a4VmICIiccr7S953WdqnOrGw\nsEBWVhb+/fdfdOvWTXQcoreSn5+PZcuW4fPPP0fbtm1Fx6FKcvjwYfj6+uLvv/9Gw4YNRcehOoRL\n9BARERHJUFrBDwBbt26FJEmYNm1aFacqydvbG5Ik8cJLqRdvb+9K/7qLjo7G0KFDoaKiAjU1NVhZ\nWeHatWulbjSbkpICZ2dntGzZEkpKSmjRogUmT56MpKSkYufJ2vB04sSJJY7JyckhMTERdnZ2UFVV\nhZaWFsaPH4+MjAzcv38f1tbWUFNTQ7NmzeDk5IT09PQSYwgICIC1tTU0NTXRoEEDdO/eHV5eXiXO\ny8jIwKxZs9C6dWs0aNAAWlpaMDExgaurKyIiIsp8noyNjYtl5kZ79D6U97Wgtmjfvj3U1dXf+O+P\nqDrz9vbGrVu3OMu7Fnn69CmmTZuGcePGVYt3+VLdwoKfiIiISIayCn4NDQ1s374d+/btk1kIEtVm\nd+7cQb9+/XD58mUcOXIEiYmJWLhwISZPnlx0zqv/dpKTk9GrVy8cOnQIO3fuRFpaGry8vHDy5EmY\nmJgUK99fvV1hKbljxw6Z18+dOxc///wzEhIS4OjoiD179uDzzz/Ht99+Cw8PD8THx8PW1ha7d+/G\nnDlzSoxj0KBBUFBQwK1bt3Dz5k1oa2vD0dERJ06cKHbe+PHjsW7dOsyYMQOpqal4+PAhfvvtN9y9\nexe9e/cu87ny9/eHkZER5s6dC0mS+HpBVAnk5eWhp6eHhw8fio5C9FYKCgrg7u6O0aNHo127dqLj\nUCWZO3cuXrx4gVWrVomOQnUQC34iIiIiGcoq+AFg8ODBmDFjBr788kuEh4dXYTIisdzc3JCeng4P\nDw8MHDgQKioqMDU1LXUW4qJFixAbG4tly5bB0tISKioqMDMzw9q1a3Hv3j2sXLnyrXJMnDgRHTp0\ngLq6etFjHz16FDNmzChx/NixYzLvY+3atdDW1oa+vj42bNgAAFi6dGmxc06dOgUAaNGiBRo1agQl\nJSW0a9cOv/zyS5n5YmNjYWZmBkdHRyxfvvytxkhEsqmoqCAzM1N0DKK38ueff+LatWuYN2+e6ChU\nSc6ePYtt27Zh/fr1aNKkieg4VAex4CciIiKS4U0FPwCsXr0aQ4cOhbW1Na5fv15FyYjE+ueffwAA\nAwcOLHbcxMRE5vl+fn4AgCFDhhQ7bm5uXuz6iurevXvRx82aNZN5XFdXFwCQmJhY4vaSJOGDDz4o\n+tzQ0BAAcO3atWLn2dnZAQDs7e2hr6+PiRMn4sCBA9DW1i71NeLGjRswMzND06ZNufwC0XvQqFEj\nZGdni45BVGGSJGHZsmUYNWoUjIyMRMehSpCTk4OJEyfCysoKY8aMER2H6igW/EREREQylKfgl5eX\nx969e9GuXTsMGTIEd+/eraJ0ROI8fvwYAKCtrV3seGkbTqekpAD4r2x/dT36wtvfuXPnrXKoqqoW\nfSwvL1/m8dft90WQAAAgAElEQVT/Laenp2PBggXo0KEDVFVVIScnB0VFRQBAampqsXN37twJX19f\n2NnZISsrC56enhg1ahQMDQ1x6dIlmdksLCyQmpqK8PBw7N+//63GR0Sly8jIgJqamugYRBXm6+uL\nq1evYv78+aKjUCX5+eefERsbi02bNomOQnUYC34iIiIiGcpT8ANAw4YNceTIEWhpaaFv377c9I9q\nvcJivrDoL/T654V0dHQAAGlpaTI3/hQxC9fBwQHu7u4YNWoUYmNj37gJqa2tLXx8fPD48WOEhITA\nysoKcXFxmDBhgszzN27cWLSEj4uLCxISEt7LOIjqqtTUVGhpaYmOQVQhkiTh559/xmeffYaPPvpI\ndByqBJcuXYKHhweWLVuGVq1aiY5DdRgLfiIiIiIZylvwA4CWlhaCg4PRs2dPWFhY4MiRI+85HYni\n5eWF3r17Q1NTs9hs9NeVdV1NZ2lpCQAIDAwsdjwsLEzm+SNGjAAABAcHl7juzJkz6Nu3b7FjysrK\nAIDc3Fw8e/asxDsFKkNh1tmzZ6Nx48YA/nuLvSxycnJFBb28vDzMzMzg7e0NAIiJiZF5Gzs7O0yY\nMAE2NjZIT0/HhAkTyv16QkRlkyQJjx494jrXVOMcPnwYV65cwffffy86ClWCvLw8fPXVV+jZsydc\nXFxEx6E6jgU/ERERkQwVKfiB/zb8++uvv+Dk5IQRI0ZgypQpyMrKeuPt7t27x016a4g9e/bA0dER\nWlpauHTpEl68eAFfX1+Z59bmMtfNzQ0aGhqYN28egoKCkJWVhdDQUGzdurXU8w0NDeHi4gIfHx+k\npqYiMzMT/v7+cHJyKrEBbefOnQEAERER8PPzK/ELgMpgZmYGAHB3d0d6ejrS0tLKXCt/4sSJiI6O\nRk5ODpKTk+Hh4QEAsLKyKvNxtm3bhiZNmiAgIKBoE18iejf37t1DVlYWOnXqJDoKUYUsW7YMtra2\nRd/nqGZbsmQJrl+/jl27dkFBQUF0HKrjWPATERERyVDRgh8AFBQUsGnTJnh7e8PX1xedO3eWOWv5\nVW5ubjA1NcWAAQNKnQEtQm2afV5ZY1mzZg2A/zZXNjAwQP369WFra1ury3xZWrdujdDQUHTp0gXW\n1tbQ1dWFh4dH0ZI0r66HD/y3pM/58+fh6OiIOXPmoHnz5jA0NMS2bduwb98+9O/fv9j5GzduRJcu\nXWBpaYl169Zh9erVRde9+vf4Lh/v2bMHX3zxBTw9PaGjo4P+/fujd+/eMs8NDQ1Fs2bNMGzYMKiq\nqqJdu3Y4duwYli5dij/++KPovFf3IJCTk4OPjw90dHTw6NEjAMDMmTMhJyeHyMjIUp9bInqzy5cv\nQ15engU/1ShHjhxBVFQU196vJS5evIjly5dj+fLlMDQ0FB2HCIqiAxARERFVR29T8Beyt7dHv379\nMHnyZHz88ccYNWoUfvzxR3To0KHEuYVLfISGhqJfv34YOHAgli5dij59+rxTfqp8N2/eBAC0adNG\ncBLxOnXqhGPHjhU7lpiYCKDk5rsAoKmpidWrVxcr60tjbGxc6ua1pf2brOjxpk2bYs+ePSWOOzg4\nlDhmamoKU1PT0uIWSU9PL/fjE9Hbu3jxItq0aQMVFRXRUYjK7eeff4aNjQ169OghOgq9o5cvX2L8\n+PHo1asXl+ahaoMz+ImIiIhkeJeCHwCaN28OPz8/HDhwAP/++y+MjIzw+eefIzo6uth5d+/eBQDk\n5+cD+P9rkltYWHDD3mrm+fPnAIB69eoJTiKenJwcbt++XexYSEgIAMDCwkJEJCKqIwIDA0u884eo\nOvP390dkZCR+/PFH0VGoEixevBh3797Frl27SrxrkUgUfiUSERERyfCuBX8hOzs7XLlyBYcPH0ZM\nTAyMjIzQqVMneHh44P79+0hLSyt2fm5uLoD/NgHt3bs3LCwsqnxJj9eXNZGTk8PEiROLnRMQEABr\na2toamqiQYMG6N69O7y8vGTeV+Hlzp07sLW1LbZBbaHo6GgMHToUKioqUFNTg5WVFa5du1bqZrUp\nKSlwdnZGy5YtoaSkhBYtWmDy5MlISkqq8Fje9jl5/VJe5c1e3bm4uODu3bvIzs5GYGAg5s6dCzU1\nNbi5uYmORkS11NOnT3HhwgUMGjRIdBSicikoKMAPP/yAESNGoHv37qLj0Du6cOECVqxYgRUrVvAd\nnVStsOAnIiIikqGyCv7C+xo+fDgiIyMRGBiI3r17Y9myZWjTpk2pj1FY9IeGhqJnz54YOHAg/ve/\n/1VKnjd5NZMkSZAkCTt27Ch2zqBBg6CgoIBbt27h5s2b0NbWhqOjI06cOFHqfTk7O8PV1RWJiYnF\nlne5c+cO+vXrh8uXL+PIkSNITEzEwoULMXnyZJn3k5ycjF69euHQoUPYuXMn0tLS4OXlhZMnT8LE\nxKTYUinlGcvbPieFl4qoSPbqLCAgACoqKjAxMYGGhgYcHR3Rp08fnD9/Hu3btxcdj4hqqYCAAOTn\n52PgwIGioxCVi5eXF65evYqffvpJdBR6R8+ePcO4ceMwYMAAODs7i45DVAwLfiIiIiIZKrPgLyQv\nL4+BAwdi586dSEpKwrfffvvG2+Tl5QH4b+keY2NjDB06FBcvXqzUXG9r7dq10NbWhr6+PjZs2AAA\nWLp0aannL1iwACYmJmjYsCGGDBlS9Py6ubkhPT0dHh4eGDhwIFRUVGBqaooFCxbIvJ9FixYhNjYW\ny5Ytg6WlJVRUVGBmZoa1a9fi3r17WLlyZeUPtpLU5Oyv+vjjj+Hr64ukpCTk5uYiJSUF3t7eLPeJ\n6L3y8vKCubk5tLS0REcheqPc3FwsWrQIY8eO5abQtYCrqyuSkpLg6elZoXduElUFFvxEREREMryP\ngv9VDRs2RMuWLcu9nnteXh4kScLx48dhbGyMc+fOvbds5SFJEj744IOizw0NDQEA165dK/U2vXr1\nknn8n3/+AYASMzJNTExknu/n5wcAGDJkSLHj5ubmxa6vjmpydiIikZ4+fQp/f398/vnnoqMQlYun\npyfi4uKwcOFC0VHoHZ08eRK//vortmzZAn19fdFxiEpQFB2AiIiIqDp63wU/8N8Gu2XNAFJQUICc\nnBzy8vKgoKCA9u3bw9zcHD179kTXrl3fa7aypKenY8WKFTh06BASEhKQlZVVdF1qamqpt1NWVpZ5\n/PHjxwAAbW3tYsc1NDRknp+SkgIA0NXVlXn9nTt3Sg8vWE3OTkQkkq+vLwoKCmBnZyc6CtEbvXjx\nAkuXLsWUKVPQunVr0XHoHTx+/BhOTk4YM2YMRo8eLToOkUws+ImIiIhkqIqC//bt23j58iWA/5bv\nkZeXR15eHuTk5NC6dWuYmpqiV69e6NmzJ7p06YL69eu/1zzl5eDggH/++QeLFi3C9OnT0bhxYwB4\n67cra2trIzk5GY8fPy5WfBcW/6/T0dHBgwcPkJaWBk1Nzbd6TFFqcnYiIpG2bNmCESNG8LWTaoQN\nGzbgyZMnpS43SDXH119/DQUFBWzcuFF0FKJScYkeIiIiIhmqouB/9OgRAKBFixaws7ODu7s7goOD\nkZGRgdu3b2P37t1wcXFBr169qrzcL5xtn5ubi2fPnhWbXR8WFgYAmD17dlG5n5OT89aPZWlpCQAI\nDAwsdrzwcV43YsQIAEBwcHCJ686cOYO+ffsWO1bWWKpaRbMTEREQHh6OCxcuYPr06aKjEL1RRkYG\nVqxYgZkzZ6JZs2ai49A72LlzJ3x9fbF7927+cpGqNc7gJyIiIpKhKgp+f39/yMnJCS2cS9O5c2ec\nO3cOERERSEhIKFY8m5mZ4cSJE3B3d8ecOXNQUFBQ5ua6b+Lm5gY/Pz/MmzcPLVq0QK9evXDp0iVs\n3bq11PNPnjwJFxcX5Ofnw8LCAkpKSjh9+jRmzJiBnTt3lnssVa2i2YmICNi4cSOMjY1L3ZuFqDpZ\nuXIl8vPzMXv2bNFR6B3cuXMHM2fOxKxZs0rsE0VU3XAGPxEREZEM8vLy773gb9KkSbUs94H/ypQu\nXbrA0tIS69atw+rVq4uu27NnD7744gt4enpCR0cH/fv3R+/evYuuf3Wpntc/lrWMT+vWrREaGoou\nXbrA2toaurq68PDwwC+//ALgv7+LV2lra+P8+fNwdHTEnDlz0Lx5cxgaGmLbtm3Yt28f+vfvX+6x\nlFdZY6rIxxXNTkRU1928eRM+Pj6YOXOm6ChEb/To0SNs2LAB8+fP54zvGuzly5dwdHREmzZt3mkS\nC1FV4Qx+IiIiIhnk5eWRn58vOoYwxsbGuHTpkszrmjZtij179pQ47uDgUOJYeX9J0qlTJxw7dqzY\nscTERAAlN98FAE1NTaxevbpcZX1ZYymv0sZR0eNAxbITEdV1ixYtwocffohRo0aJjkL0Rj/99BNU\nVFTwzTffiI5C72DBggW4du0aIiMjq80eWERlYcFPREREJIOCgkKdLvirmpycHG7duoU2bdoUHQsJ\nCQEAWFhYiIpFREQCXb16FQcOHIC3tzcUFVlfUPUWGxuLbdu2Ye3atUX7/1DN8/fff2PNmjX47bff\n0L59e9FxiMqFS/QQERERycCCv+q5uLjg7t27yM7ORmBgIObOnQs1NTW4ubmJjkZERAJ8++236Nq1\nK+zs7ERHIXqjRYsWoXnz5vjqq69ER6G3lJycjAkTJsDe3h7jx48XHYeo3FjwExEREcnAgr9qBQQE\nQEVFBSYmJtDQ0ICjoyP69OmD8+fPv7fZU4V7ArzpQkREVc/HxwcBAQFYu3YtX4up2rt27Rp+//13\n/PTTT1BSUhIdh95CQUEBvvjiCzRq1Ajbt28XHYeoQvgeNyIiIiIZWPBXrY8//hgff/xxlT7m+95E\nmYiI3k52dja+/fZbjBs3Dubm5qLjEL2Rq6srPvroI4wZM0Z0FHpLy5cvx+nTpxEeHg41NTXRcYgq\nhAU/ERERkQws+ImIiMSYO3cusrKy4OHhIToK0RsFBATg+PHj+OeffyAvz4UyaqKQkBAsWrQIK1as\nQI8ePUTHIaowFvxEREREMrDgJyIiqnr//PMPNm/ejP3790NHR0d0HKIy5eXlYdasWbC1tcUnn3wi\nOg69hZSUFDg6OmLIkCGYOXOm6DhEb4UFPxEREZEMLPiJiIiq1uPHj+Hk5ITRo0dj9OjRouMQvdGW\nLVtw8+ZNHDx4UHQUegsFBQUYO3YsGjZsiL1793K/D6qxWPATERERycCCn4iIqOrk5+fDwcEBSkpK\n2LRpk+g4RG/05MkTLFmyBDNmzIChoaHoOPQWFi5ciDNnziAsLAzq6uqi4xC9NRb8RERERDLUlIJ/\n7dq18PHxER2DqrH4+HgAgIODg+AkVNnOnj0LgH+3VDvs3r0b586dw5kzZ6CpqSk6DtEbLVmyBHJy\ncvj+++9FR6G3EBgYiOXLl2PLli3o3r276DhE74QFPxEREZEMNaHgnzVrFhISEkTHoGpOT08Penp6\nomPQe9C3b1/REYgqRffu3XHy5EkcOHCAG1xSjXD79m1s3rwZGzZs4MzvGig+Ph6jR4+Gg4MDJk2a\nJDoO0TtjwU9EREQkQ00o+NesWSM6AhER0Tv5/fffMX78eLi7u+Ozzz4THYeoXGbNmoU2bdrgq6++\nEh2FKignJwcODg7Q0dHB9u3bRcchqhQs+ImIiIhkqAkFPxERUU3m5+eHCRMmYNq0aZg7d67oOETl\nEhQUBH9/f5w4cQKKiqzVappvvvkGMTExOH/+PBo1aiQ6DlGl4CsRERERkQws+ImIiN6f4OBgODg4\nYOzYsVi7dq3oOETlkp+fj5kzZ8La2hqWlpai41AFbdmyBZ6envDx8UG7du1ExyGqNCz4iYiIiGRg\nwU9ERPR+REZGwsbGBtbW1tixYwfk5ORERyIql+3bt+P69evw8fERHYUq6OzZs5g5cybc3Nxga2sr\nOg5RpZIXHYCIiIioOmLBT0REVPkiIyNhZWUFExMT7N27FwoKCqIjEZVLZmYmFi9ejG+++QZt27YV\nHYcqICkpCfb29hg8eDB++OEH0XGIKh0LfiIiIiIZ6tWrh9zcXNExiIiIao2oqChYWVmhV69eOHjw\nIJSUlERHIiq3JUuWIDc3Fz/++KPoKFQBubm5sLe3h4qKCvbs2QN5eVahVPtwiR4iIiIiGVjwExER\nVZ7w8HAMGTIEpqamOHjwIBo0aCA6ElG5RUdHY/369Vi3bh00NTVFx6EK+Prrr3HlyhVERERAXV1d\ndByi94IFPxEREZEMSkpKePnypegYRERENV5oaCiGDh0Kc3Nz+Pr6on79+qIjEZWbJEn45ptv0KVL\nF0yZMkV0HKqA9evXY+fOnTh8+DA31aVajQU/ERERkQws+ImIiN7d0aNHMWrUKAwZMgT79+9HvXr1\nREciqpCdO3fizJkziIiI4J4RNcjJkyfh6uqKZcuWYfjw4aLjEL1XLPiJiIiIZFBSUkJeXh4KCgq4\nVidRDfX8+XO8ePECT548AQA8ffq01M2z1dXVUb9+faioqEBFRYUlJFEl8PT0xNSpUzFu3Dhs3boV\nioqsIKhmSU1Nxfz58zFt2jR0795ddBwqp+vXr2PUqFFwdHTE3LlzRccheu/43ZWIiIhIhsKN/16+\nfMl1gomqmdTUVNy8eRMJCQlISEhAXFwc4uPjkZycjCdPniAtLQ1PnjzBixcv3voxFBQU0LhxY2hp\naRVdGjdujJYtW0JPTw96enrQ19eHvr4+VFVVK3F0RLWDm5sblixZgoULF2LRokWQk5MTHYmowlxd\nXaGoqAg3NzfRUaic0tLSYG1tjY4dO2L79u2i4xBVCRb8RERERDIUzt5lwU8kTlZWFqKiovC///0P\nMTExuH79OmJiYvD48WMAgLy8PJo1awZ9fX20bNkS3bp1Q+PGjaGpqVn0Z8OGDaGhoQEAUFNTK3V5\nhSdPnuDly5fIzs5GVlYWXrx4gdTUVKSmpiItLQ2pqalITk5GZGQk4uLi8PTp06LbamhoQE9PDwYG\nBkXlf9u2bdGpUyd8+OGHfDcA1Sl5eXmYOnUqdu/ejW3btmHixImiIxG9lTNnzmD37t34888/uTlr\nDZGbmwt7e3u8fPkSBw8e5H4fVGew4CciIiKSoXAGf25uruAkRHXHjRs3EBwcjPPnz+PChQuIiYlB\nfn4+mjZtik6dOqFTp06wt7dH+/bt0bZtW+jq6gorz58+fYr4+Hjcv38fCQkJiI+PR1xcHKKjo/H3\n338jNjYWBQUFUFJSgqGhITp27Fh06dChA9q1a1f0OkNUW6SmpsLR0RHh4eE4fPgwPv30U9GRiN7K\ny5cvMXXqVFhZWcHOzk50HCqn6dOnIyIiAmFhYdDR0REdh6jKsOAnIiIikuHVJXqI6P148OABAgIC\nEBgYiKCgIDx48ACqqqowNjbGp59+Cjc3N/Ts2RP6+vqio5agpqZW9EsHWZ4/f170joPo6GjExMTg\njz/+wN27d5GXlwdFRUV8+OGH6Nq1K4yNjdGjRw90796ds0Spxrp8+TJsbW2Rl5eHkJAQrldONdqq\nVatw7949+Pn5iY5C5bRq1Sps27YNBw8eROfOnUXHIapSLPiJiIiIZGDBT/R+XL9+HYcPH8ahQ4dw\n4cIF1K9fHyYmJnB2dsbAgQPRs2fPWrERZ8OGDdGtWzd069at2PGcnBzcuHGjqPi/ePEiVq9ejaSk\nJMjJycHQ0BA9evQoVvpzjX+q7ry9vfHVV1+hZ8+eOHDgAJo0aSI6EtFbi42NxbJly/Djjz+idevW\nouNQOfz555+YO3cuVq1aBRsbG9FxiKpczf/JmYiIiOg9YMFPVHnu3buHPXv2wNvbGzExMWjatCms\nra2xaNEiWFhYoGHDhqIjVpn69eujc+fOJWYXPnjwAJGRkYiKikJUVBQ8PDyQkpICeXl5tG3bFr17\n94apqSlMTEzQsWNHblhK1UJeXh4WLFiAVatWYfr06Vi1alWt+AUd1W3ffPMNWrZsiW+//VZ0FCqH\niIgIODk5YdKkSZg1a5boOERC8DsvERERkQws+IneTVZWFnx9fbFr1y6cPn0aOjo6GD16NLZu3QoT\nE5NSN7utq1q0aIEWLVoUm3kYHx+PqKgoREZG4uzZs5g1axays7OhqakJExMTmJiYoF+/fjA2Noay\nsrLA9FQX3b17F59//jmuXLmCXbt2Ydy4caIjEb2zP//8E0ePHkVgYCA3aK0B7ty5g+HDh8PCwgKb\nNm0SHYdIGBb8RERERDKw4Cd6O7du3cL69euxe/duvHz5EsOHD8eRI0cwePBgzuytID09Pejp6WHE\niBEA/pstffnyZYSFhSEsLAybN2/G999/j3r16qF79+4wMTGBmZkZ+vfvj8aNGwtOT7XZ3r178c03\n36B169aIjIxEhw4dREciemeZmZmYNWsWJkyYAAsLC9Fx6A1SU1MxdOhQ6Ovrw9vbmxMHqE7jT9hE\nREREMrDgJ6qYU6dOYe3atTh69Cg++OADLFmyBOPGjYOWlpboaLWGoqIievTogR49emD69OkA/lsr\nOiwsDOHh4QgKCsL69esBAJ07d8aAAQMwcOBAmJmZQUNDQ2R0qiUyMjLg7OwMLy8vzJw5E+7u7pzl\nTLXGDz/8gBcvXsDDw0N0FHqD58+fw9raGrm5ufD390ejRo1ERyISigU/ERERkQws+IneTJIkHDly\nBIsXL8bFixdhbm6OP//8EzY2NpxJV0UMDAxgYGCAMWPGAACePHmCkJAQnDp1qqjwl5eXR7du3TBg\nwAAMGDAA5ubm3LiXKuyvv/6Ci4sL8vPzcfz4cVhZWYmORFRpwsPD8csvv8DT0xPa2tqi41AZ8vPz\n8fnnn+P69esICwuDjo6O6EhEwsmLDkBERERUHdWrVw8AC34iWSRJgp+fH4yNjTFy5Ei0atUKkZGR\nOH36NGxtbVnuC6SpqQkbGxusW7cOly9fRkpKCry9vdGnTx8cP34cw4cPR+PGjdGnTx/Mnz8fJ06c\nQHZ2tujYVI0lJSXBwcEBI0aMwMcff4yrV6+y3KdaJScnB5MmTcLAgQMxfvx40XHoDVxcXPD333/j\nr7/+Qvv27UXHIaoWOIOfiIiISIYGDRoA+O8/fUT0/wUEBGD+/PmIioqCjY0Ndu7ciS5duoiORaXQ\n1taGnZ0d7OzsAAApKSkIDg7GqVOncPjwYSxfvhz16tVDr169MGDAAFhYWMDExAQNGzYUnJxEkyQJ\nv/32G1xdXaGhoYETJ07A0tJSdCyiSvfjjz8iISEBf//9N+Tk5ETHoTIsXLgQO3bswIEDB9CvXz/R\ncYiqDc7gJyIiIpKhsNx6/vy54CRE1cPt27dhY2ODQYMGoVmzZoiKisKhQ4dY7tcwTZs2hYODA7Zs\n2YKYmBgkJiZi165d6NixI7y9vfHJJ59AU1MT/fv3h5ubG4KDg/HixQvRsamKhYWFoXfv3pg8eTKc\nnJzw77//stynWikiIgJr1qzB6tWroaenJzoOleHXX3/Fzz//jK1bt8LW1lZ0HKJqhQU/ERERkQwK\nCgpQUlJiwU91XnZ2Ntzc3GBkZIQbN27g6NGj8PPzQ7du3URHo0rQvHlzjBkzBtu2bcOtW7fw8OFD\n7N27F+3bt8eff/4JCwsLqKqqwtjYGPPmzUNAQADf2VSLxcfHY9y4cTAzM4OqqiqioqKwZs0abmBJ\ntVJOTg6++uor9O/fH1999ZXoOFSGw4cP45tvvsHSpUv5d0UkA5foISIiIiqFsrIynj17JjoGkTAH\nDhzA9OnTkZubi9WrV2PKlClQVOR/IWqzZs2awd7eHvb29gCA+/fvFy3ps3//fnh4eEBZWRmmpqZF\nS/r07NmTXxc13KNHj7By5Ups3LgR+vr6+OuvvzB8+HDRsYjeqyVLluDevXv466+/uDRPNXbq1CmM\nHj0aU6ZMwfz580XHIaqWOIOfiIiIqBQNGzbkDH6qkx4+fIiRI0di9OjRGD58OG7dugUXFxeWuHXQ\nBx98ACcnJ+zevRtxcXG4ffs21q9fj6ZNm2LTpk0wMTGBpqYmhgwZghUrViAiIgL5+fmiY1M5paSk\nYM6cOWjVqhV2796N5cuX4+rVqyz3qda7cOECVqxYgZUrV6J169ai41ApoqKiMGLECNja2mLjxo2i\n4xBVW/wJnYiIiKgUysrKLPipTincVHP27NnQ0tJCQEAABg4cKDoWVSMffvghPvzwQ0ycOBEAcOPG\njaIZ/mvWrMHcuXOhpqYGc3Pzohn+Xbp0gYKCguDk9KrExESsXbsWW7ZsgYqKChYvXgxnZ2coKyuL\njkb03r148QITJkzAgAEDMHXqVNFxqBRXr17F4MGDYWJigl27dkFennOUiUrDgp+IiIioFJzBT3VJ\nSkoKnJyccPLkScyYMQM//fQTyz56o3bt2qFdu3aYMmUKAODatWs4deoUgoODsXz5cri6ukJTUxPm\n5uawsLDAgAED8NFHH7GoEeTcuXPYsGEDfHx8oKWlhZ9++glTpkzhv3WqU7777js8ePAAx48f59I8\n1dTt27dhZWWFtm3bwsfHB0pKSqIjEVVrLPiJiIiISsE1+KmuCAgIwLhx49CgQQOEhoaiT58+oiNR\nDdWxY0d07NgRLi4ukCQJV69exalTp3Dq1CksWbIEM2fOhIaGBvr27QsTExP069cPPXv25Cau79Gz\nZ8/g4+ODX375BRcuXECPHj2wY8cOjBo1CvXr1xcdj6hKBQYGYtOmTdi3bx/09PRExyEZEhISMGjQ\nIDRt2hRHjx7l9weicmDBT0RERFQKzuCn2i4vLw8LFy6Eh4cH7O3tsXXrVqirq4uORbWEnJwcPvro\nI3z00UeYPn06CgoKcOXKFZw5cwbh4eHYtm0bfvzxRygqKqJbt24wMTGBqakpTE1NoaurKzp+jSZJ\nEkJCQrB79274+vri+fPnsLW1xbp162BiYiI6HpEQGRkZ+PLLLzFy5Eg4OjqKjkMypKSkYNCgQVBV\nVUVAQMpG1WsAACAASURBVAA0NDRERyKqEVjwExEREZWCM/ipNktISICDgwMuX76MrVu3Fq2pTvS+\nyMvLo2vXrujatSumTZsGAIiPj0doaCjCw8MREhKCX375Bfn5+WjVqhV69+4NY2NjGBsbo3v37lBV\nVRU8gupNkiRcuHABhw8fxv79+xEbG4tu3bphyZIlcHR0RNOmTUVHJBLKxcUFubm52LZtm+goJEN6\nejoGDx6MvLw8BAUFQUtLS3QkohqDBT8RERFRKTiDn2qr8PBw2NnZoXHjxoiMjESHDh1ER6I6Sk9P\nD46OjkWzaTMzM3H+/HmEhYXhwoULWLlyJZKTkyEvL4+2bdsWFf49evRAt27d6vzSDTk5OQgODsbh\nw4dx5MgRJCYm4oMPPoC9vT3Gjx8PIyMj0RGJqoUDBw5g//79OHr0KIvjaigjIwODBg1CWloazpw5\ng+bNm4uORFSjsOAnIiIiKoWysjIyMzNFxyCqVDt27ICLiwsGDx6MvXv3Qk1NTXQkoiKqqqr45JNP\n8MknnxQdi4+PR2RkJKKiohAZGYmffvoJqampUFBQQIcOHdC1a1d06tQJHTp0QKdOndCqVSsoKCgI\nHMX7k5eXh4iIiKJ9DcLDw/H8+XN0794dU6ZMgbW1Nbp27So6JlG1Ehsbi6lTp8LZ2RlDhgwRHYde\n8/TpUwwePBiJiYk4ffo090Ygegss+ImIiIhK0bBhQyQnJ4uOQVQpcnNzMWvWLGzevBnff/89Fi9e\nDHl5edGxiN5IT08Penp6GDlyZNGxe/fuFRX+ly9fxq+//oq4uDhIkoQGDRqgffv26NChA4yMjNC+\nfXsYGRmhdevWUFSsOf8FliQJt27dQlRUVNFYo6KikJWVhZYtW8LCwgKbNm3CJ598wkKMqBQFBQVw\ncnKCrq4uVq1aJToOvSY7OxvDhw/HvXv3EBQUhDZt2oiORFQj1ZyfboiIiIiqmLKyMpfooVohMzMT\ntra2OHv2LA4cOIDPPvtMdCSid9KqVSu0atWq2NdyVlYWYmJiEB0dXfTnjh07cP/+fUiSBEVFRTRv\n3hwGBgYwMDCAnp4e9PX1oa+vDwMDA+jr6wt5R8uTJ0+QkJCAmzdv4saNG7hx4wauX7+O69ev4+nT\np6hXrx6MjIxgbGyMsWPHwtzcHG3btq3ynEQ10eLFi3Hu3DmcP38eDRs2FB2HXpGdnY1PP/0U169f\nx6lTp9CxY0fRkYhqLBb8RERERKXgGvxUGyQnJ+PTTz/FgwcPEBISgu7du4uORPReqKiooGfPnujZ\ns2ex48+ePUNMTAxu376NuLg4xMXFITY2FsePH0dcXByePHlSdK6GhgZ0dXWhpaVVdGnSpAk0NDSg\nqqqKhg0bQkVFBaqqqkXvBlBSUiq2F0B6ejokSUJeXh4yMzPx/PlzpKWl4cmTJ0V/JiYmIjExEfHx\n8UWbucvLy8PAwADt2rWDiYkJvvzyS3Tr1g1dunRB/fr1q+AZJKpdQkNDsXTpUmzcuBGdO3cWHYde\n8ezZMwwbNgwxMTEICgpiuU/0jljwExEREZVCWVm5qHghqonu3LmDwYMHAwDCwsLQunVrwYmIqp6y\nsjJ69OiBHj16yLw+KysLsbGxiI2NRXx8PB4+fIjU1FSkpqYiPj4eFy9eRHp6elFZn5WVVeHH19TU\nLHYxNDTEgAEDoK+vD11dXbRs2RIffvghi3yiSpKeno6xY8fCysoKU6dOFR2HXlFY7kdHRyMoKAid\nOnUSHYmoxmPBT0RERFSKRo0aVbjIIaouLl68iCFDhqBly5Y4duwYmjZtKjoSUbWkoqKCTp06Vahk\nysjIQEFBAYD/lpl4+fJl0XXq6uqQl5cvMbOfiKrOxIkTkZeXhz179kBOTk50HPo/hWvuX716FUFB\nQTAyMhIdiahWYMFPREREVAo1NTU8ffpUdAyiCjt79iwGDx6M3r17w9fXF6qqqqIjEdUq6urqRR9r\namoKTEJEr9u0aRMOHz6Mf/75B1paWqLj0P/JzMwsWpYnICCA5T5RJZIXHYCIiIioulJXV0dmZmbR\nLE2imiA8PByDBw+GhYUF/P39We4TEVGdERkZidmzZ2PRokWwsLAQHYf+T0ZGBqysrHDjxg0EBgZy\nTwSiSsaCn4iIiKgUampqKCgo4DI9VGOEh4djyJAhMDMzg7e3N5SUlERHIiIiqhLp6ekYNWoUTE1N\nsWDBAtFx6P88efIElpaWuH//PoKCgvDRRx+JjkRU67DgJyIiIiqFmpoaAHCZHqoRCmfum5mZwdfX\nl5t1EhFRnSFJEr788ks8e/YM+/btg4KCguhIBCAlJQUDBgxAUlISzpw5g44dO4qORFQrcQ1+IiIi\nolKw4KeaonDN/UGDBsHLywv16tUTHYmIiKjKrF69Gn5+fggKCkKzZs1ExyEASUlJGDRoELKyshAc\nHIxWrVqJjkRUa7HgJyIiIipF4SaKLPipOouOjsawYcMwcOBAlvtERFTnnDt3Dt9//z2WLl0KMzMz\n0XEIQFxcHD7++GMoKioiLCwMurq6oiMR1WpcooeIiIioFIUz+DMyMgQnIZItISEBQ4cORbt27bB/\n/36W+0REVKckJyfjs88+g6WlJb777jvRcQjA9evX0a9fPzRs2BDBwcEs94mqAAt+IiIiolKoqqpC\nXl6eM/ipWnr8+DEGDRoENTU1HD16FMrKyqIjERERVZnc3FyMGjUK9erVw65duyAnJyc6Up33v//9\nD+bm5mjWrBlOnToFHR0d0ZGI6gQW/ERERESlkJOTg4qKCgt+qnaePXsGGxsb5OTk4OTJk9DU1BQd\niYiIqErNmjULUVFR8PPzg5aWlug4dV5ISAgGDhwIIyMjBAYG8u+EqApxDX4iIiKiMqipqXGJHqpW\n8vPzYW9vj5iYGLi5uSE0NFR0JCKiaqNZs2Zch70O+P3337F582Z4eXnByMhIdJw67+jRo7C3t4el\npSW8vLzQoEED0ZGI6hQW/ERERERlUFdX5wx+qlbmz5+PoKAg5ObmYsaMGaLjEBFVK4qKisjNzRUd\ng96jS5cuYcqUKZg7dy4cHBxEx6nz/vjjD4wfPx6Ojo7w9PSEoiKrRqKqxiV6iIiIiMqgpqaGzMxM\n0TGIAPw3Y3HlypXYtGkT8vPz4e3tDUmSeKnAxdvbGwCE5+Clai8A+O+lDly8vb2Rl5cn8mWa3rPU\n1FTY2trCxMQEP//8s+g4dd6mTZswduxYzJgxA7t27WK5TyQIC34iIiKiMnCJHqouIiIiMGnSJHz3\n3Xf48ssvRcchIiKqUrm5ufjss88A/PcLOwUFBcGJ6i5JkvD9999j2rRpWLp0KVauXMlNjokE4q/W\niIiIiMqgpqbGJXpIuPT0dDg4OGDAgAFwd3cXHYeIiKjKubi4IDIyEmFhYWjcuLHoOHVWXl4evv76\na/z222/YunUrJk2aJDoSUZ3Hgp+IiIioDBoaGrh//77oGFTHff3113j+/Dl27drFGYtERFTnrF27\nFp6enjh48CA6d+4sOk6dlZ2dDQcHB5w+fRp//fUXhg4dKjoSEYEFPxEREVGZtLW1ERkZKToG1WG7\nd++Gl5cX/P39oaOjIzoOERFRlTpx4gTmzJkDd3d32NjYiI5TZyUnJ+PTTz9FQkICTp8+jR49eoiO\nRET/hwU/ERERURm0tLTw+PFj0TGojrp79y6mT5+OWbNmcZYcERHVOTExMRg9ejTGjBmDOXPmiI5T\nZ929exeDBw9GQUEBzpw5A0NDQ9GRiOgV3GSXiIiIqAza2tos+EkISZLw5ZdfolWrVli2bJnoOFQG\nOTm5okt19j5zVvS+Szv/33//xfz589G1a1eoqKhARUUFHTt2xNSpU3H79u1Kz01E1Vdqaiqsra3R\nqVMnbNu2TXScOuvcuXPo3bs3tLS0cO7cOZb7RNUQC34iIiKiMmhra+P58+fIzs4WHYXqGE9PT5w5\ncwa//vor6tevLzoOlUGSJNERyuV95qzofZd2fufOneHn54dVq1bhwYMHePDgAdzd3eHv7w8jIyME\nBgZWRlwiquZycnIwcuRI5OXl4dChQ/w+KMiBAwdgYWEBExMTBAYGQltbW3QkIpKBBT8RERFRGQr/\nI8NZ/FSVHj9+jPnz52PGjBno06eP6DgE1IgZ+rWFl5cXPvnkE6irq0NdXR02Njbw9PRETk4OZs+e\nLToeEb1nkiRhwoQJuHLlCvz8/NCkSRPRkeqk9evXw9HREZMnT8bBgwehrKwsOhIRlYJr8BMRERGV\n4dWC38DAQHAaqiumT58OZWVlLFmyRHQUoipV2sx+U1NTAMDNmzerMg4RCTB//nz4+Pjg6NGjMDIy\nEh2nzsnLy8O0adOwfft2rFu3DtOmTRMdiYjegAU/ERERURk4g5+qWmBgIP744w/4+flBRUVFdByi\nauHRo0cAgC5dughOQkTv0/bt27FixQr89ttvGDRokOg4dc6TJ09gZ2eHCxcu4NChQxg+fLjoSERU\nDlyih4iIiKgM6urqUFJSYsFPVaKgoABz5szBsGHDMGzYMNFx6P+8ujRP4VI9EydOlHlufHw8bGxs\noKqqCh0dHYwdOxapqakl7q/wcufOHdja2kJTU7PEMkApKSlwdnZGy5YtoaSkhBYtWmDy5MlISkoq\ndn8ZGRmYNWsWWrdujQYNGkBLSwsmJiZwdXVFRETEW+cEgKSkJEyZMqUoQ8uWLTF16lQkJyeX+/mL\njo7G0KFDoaKiAnV1dYwcORJxcXHlvj0A7N27FwCwaNGiCt2OiGqOo0eP4uuvv8aSJUswfvx40XHq\nnLt378LU1BQ3btzA6dOnWe4T1SAs+ImIiIjeQEtLq2j2KNH7tHv3bly+fBnLly8XHYVe8eqyMZIk\nQZIk7NixQ+a58+fPx/Lly5GQkAAHBwfs27cPrq6upd6fs7MzXF1dkZiYiGPHjhUdT05ORq9evXDo\n0CHs3LkTaWlp8PLywsn/x96dx9WY///jfxwUbSoiLUOkMSQZS1LKYGSyhBpLt2Eyb8n61jBmLGNG\nfWeMjHfIMoYZjMZWMjMIg2RGWSoUUbaytSjti/bO7w+/cz7SouXUVec87rfbudW5rte5rsd1uOr0\nvF7X63X2LKysrJCVlSVt6+Ligs2bN8Pd3R3p6elITk7G3r17ER8fjyFDhtQ75/Pnz2FhYYHAwED4\n+voiPT0d+/btw7FjxzBkyJBaFfnj4uIwbNgw3Lx5E8ePH0diYiKWLFkCNze3t75WQnJOrFq1Ch99\n9FGtX0dELce1a9cwbdo0uLi4YPXq1ULHUTihoaGwtLSEiooKIiIiMGDAAKEjEVEdsMBPRERE9Bad\nOnWqsmcrkSwVFBRgzZo1cHNzg6mpqdBxKnm91/nrj6rWGxoaVntRrKZtyIM5c+agd+/e0NTUxIoV\nKwAAZ8+erbb9qlWrYGVlBRUVFdjb20uL/2vWrMGTJ0/www8/wM7ODurq6rCxscGmTZvw6NEjbNiw\nQbqNCxcuAAAMDAygpqYGZWVl9OrVC9u2bWtQzm+//RbPnj3D+vXrMXLkSGhoaGDUqFHw8vLCkydP\natWb3sPDA1lZWdJtqKurw9bWFvPmzXvra4FXxX07OzssWLAAa9eurdVr5MXJkycxceJEdOnSBcrK\nyujSpQsmTJiAv/76q1Lbt52fb2tXlweRrMXHx2P8+PGwtbXFzz//LHQchbN7926MGjUK1tbWuHjx\nIvT19YWORER1xAI/ERER0Vvo6OhwiB5qdBs3bkRWVlazHYJE0nO9Ns8TExPh7OyMsrKyGrfz5jbk\nweu9HvX09AAAycnJ1ba3sLCocvmJEycAAPb29hWW29raVlgPAE5OTgCAKVOmoGvXrnB1dYW/vz90\ndHSqfX9rkzMwMBAAMHLkyArLP/zwwwrra3Lu3LkqtzFs2LC3vjYmJgYjRozAokWL8L///e+t7eVF\nSUkJZsyYgU8++QQjR45EREQE8vLyEBERgVGjRsHFxQVOTk4oKCiQvuZt52dVy6v6vrrtyOO5Ss1D\nSkoKxowZA0NDQ/j7+6NNG04V2VTKysqwYsUKzJkzB0uWLMHRo0ehpqYmdCwiqgcW+ImIiIjeggV+\namw5OTnw9vbGF198AV1dXaHjNFiXLl1w/vx5fPvtt0JHaXIaGhrS71u1evXnVk2FUVVV1SqXp6am\nAgD09fUr9J6WTPwdFxcnbbtnzx4cPXoUTk5OyMvLw+7duzFt2jSYmJggKiqq3jkld2FI9ikheS7J\nWBPJz87qtlGdhIQEfPTRR1i6dCm++eabt+5Hnvz3v/+Fv78/goKC4O7ujnfeeQfKysp455138Pnn\nn+Ps2bM4fvx4nYY5ImqOcnJyMHbsWACvLhhyYvmmk5OTg0mTJsHHxwf79u2Dl5eX9HcBEbU8PHuJ\niIiI3oIFfmpsW7duRVlZGRYvXix0FJnw8/NDmzZtsG7dulr18qbKJBd6MjIyKvWiFovFyM/Pr9De\n0dERAQEBSEtLw8WLFzFmzBg8ffoUn332Wb0zdO7cGQAq/fyTPJesr4mkkP/mNrKzs6t9TVZWFuzt\n7eHm5lZpLG55HyImLCwMO3fuxKxZszBo0KAq2wwZMgSffvop9u/fj5CQkAbvsy4989mLn2SloKAA\nEyZMwPPnz3Hu3Dl06dJF6EgK48GDB7C0tMSNGzdw8eJFzJw5U+hIRNRALPATERERvYWOjg4n2aVG\nk5+fDx8fHyxevBja2tpCx5EJW1tb/PDDDxCLxZg5cyYePXokdKQGk/S0LykpwcuXL9/aA72hJk2a\nBAD4559/Kq0LCQnB0KFDpc9FIhESEhIAvOqNb2NjAz8/PwBAbGxsvTNMmDABAHD+/PkKy4OCgiqs\nr4mdnV2V27hy5UqV7YuKijBx4kRMmzZNISfalIw//vHHH9fYbsqUKQCAX375pdEzEclaWVkZZsyY\ngZs3b+LUqVMwMjISOpLCOHPmDCwsLKCpqYlr165h8ODBQkciIhlggZ+IiIjoLdiDnxrTTz/9hJcv\nX8pN732JL7/8EpMnT0ZWVhacnJxQWFgodKQG6devHwAgPDwcJ06cqFBgbwweHh4wMTHBwoULERAQ\ngPT0dOTm5iIwMBCzZs2Cl5dXhfaurq64c+cOioqKkJKSgvXr1wMAxowZU+8Mnp6e6NatG1asWIHg\n4GDk5uYiODgYK1euRLdu3eDh4VGr49DS0pJuIy8vD5cvX8a6deuqbD9jxgxcvHgR33zzjUJO8Crp\nkW9mZlZjO8n/x0uXLjV6JiJZEovFcHNzw99//43AwECYm5sLHUkhiMVibNiwAePGjYODgwMuXLgg\nnX+FiFo+FviJiIiI3kJPTw8vXrxAcXGx0FFIzhQVFWHjxo1YsGABOnXqJHQcmdu7dy969uyJyMhI\nLFq0SOg4DbJ161aYm5vDzs4Omzdvhre3t3Td64Xn+nxfVeFaR0cHYWFhcHZ2xldffQU9PT2YmJhg\n165dOHDgAIYPHy5tGxoaii5dumD8+PHQ0NBAr169cOrUKaxduxaHDh2qdzZdXV2EhYVhwoQJmDlz\nJjp06ICZM2diwoQJCAsLqzBfRHXb6NGjB0JDQ2Fubg4HBwfo6enB09MTO3bsqLJ9QEBApfdCkSQl\nJQEAOnbsWGM7yfqaJnAmao6+/PJL/P777wgICKjVZNvUcHl5eZg2bRpWrVqFH3/8Efv27UO7du2E\njkVEMsTpyYmIiIjewtDQEOXl5Xj+/Dm6du0qdBySI0eOHEFaWprc9d6X0NTUxNGjR2FpaYndu3fD\n2tq6QWPCC2nQoEHVTlhb3bjkdV3+Jm1tbXh7e1e4mFAVa2trWFtbv3V79cmjq6uLn3/+WTp0TF23\nDQCmpqY4depUrV7DMd5rR3JRRBHuaiD54enpiU2bNuHAgQOwt7cXOo5CePjwISZPnoznz5/j9OnT\n+PDDD4WORESNgD34iYiIiN7CwMAAAJCYmChwEpI327dvx+TJk2FoaCh0lEbTr18/aW/thQsXVlsk\nJyJIh8zIyMiosZ1k2Dh9ff0Ky1u1evUnfllZWbWvLSsrk7YjaiqbNm2Cp6cntm/fjunTpwsdRyGc\nOnUKFhYWUFJSQkREBIv7RHKMv9WJiIiI3kJPTw+tW7eWTmJJJAuRkZG4evUqFi5cKHSURufi4gI3\nNzcUFBTg448/RlZWltCRiJolGxsbAMCtW7dqbCdZb2trW2G5hoYGACA7O7va12ZmZqJ9+/YNiUlU\nJ1u2bMHSpUuxYcMGzJs3T+g4ck8sFmP9+vWYMGECxo0bh0uXLnEiYyI5xwI/ERER0Vu0adMGnTt3\nZg9+kqktW7bA1NS0UoFOXm3ZsgUDBw5EXFwcXFxchI5D1CxJip9Hjx6tsd2RI0cqtJfo1asXAOD2\n7dvVvvb27dt49913GxKTqNb27NmDzz//HF5eXvjiiy+EjiP3cnJy4OTkhNWrV+OHH37A77//DhUV\nFaFjEVEjY4GfiIiIqBYMDAxY4CeZyc3Nhb+/PxYuXKgwY2i3bdsWAQEB0NbWxvHjx4WOQ9QsWVpa\nYu7cudi7dy+uXbtWZZuwsDD4+vpi7ty5GDx4cIV1EyZMAPBqguvq7N69G+PGjZNdaKJq7Nu3D3Pm\nzMF3332H5cuXCx1H7kVFRWHgwIEICwvDv//+y/ecSIGwwE9ERERUC4aGhizwk8z8+eefKC0txdSp\nU4WO0qSMjIywf/9+hbmoQVQfW7duxZQpUzB69Ghs2bIFCQkJKCkpQUJCAnx8fDBmzBhMmzYNW7du\nrfRad3d39OnTB7/99hsWLlyI27dvo6ioCEVFRYiOjsb8+fMRERGBzz//XIAjI0USEBAAV1dXfP31\n1/j666+FjiP3fvnlFwwdOhSGhoa4fv06rKyshI5ERE2IBX4iIiKiWmAPfpKlAwcOYOzYsejYsaPQ\nUWpNJBJVKMzX9PzNda8bO3Ysiz1ENVBSUsKBAwewf/9+BAUFYeDAgVBTU8OAAQNw7tw57N+/H/v3\n74eSklKl12poaODKlSvw9PREeHg4rK2toaamhk6dOsHFxQWdOnVCWFhYtWPwv+08J6oNPz8/ODs7\n4/PPP8f/+3//T+g4cq2goABz5szB3Llz4ebmhrNnz6JLly5CxyKiJtZG6ABERERELYGBgQFOnz4t\ndAySA6mpqQgODsahQ4eEjlInYrG4Qetf99133+G7775raCQiuTZu3Lh6DaXTvn17fPvtt/j222/r\n/Nq6nMdEVTl48CA+/fRTuLu7Y8OGDULHkWv37t3DlClTkJSUhMDAQIwdO1boSEQkEPbgJyIiIqoF\nAwMDJCUlsfhBDXbo0CGoqalh/PjxQkchIiKSmcOHD8PFxQVLliyBt7e30HHk2h9//IEhQ4agbdu2\niIiIYHGfSMGxBz8RERFRLRgYGKCwsBAZGRktalgVan7++usvODg4oF27dkJHUWiKNv8BEVFj2rNn\nD+bMmYMvvvgCP/74o9Bx5FZhYSGWLl2KHTt2wN3dHT/++COUlZWFjkVEAmOBn4iIiKgWDA0NAQAJ\nCQks8FO95eTk4NKlS/D19RU6ChERkUzs3r0bbm5u+PLLL+Hl5SV0HLl17949TJ8+HfHx8QgICICT\nk5PQkYiomWCBn4iIiKgWJAX+xMREmJubC5yGWqqzZ8+ivLwco0ePFjqKwvP39xc6AjUhThRL1Dh+\n+eUXzJs3j8X9Rubr64uFCxfivffew/Xr19GzZ0+hIxFRM8Ix+ImIiIhqQU1NDZqamkhMTBQ6CrVg\np0+fhqWlJe8CISKiFs/Hxwdz587Fd999x+J+I8nNzcXMmTMxa9Ys/Oc//8GlS5dY3CeiStiDn4iI\niKiWDA0NkZCQIHQMasHOnDmDefPmCR2DiIioQTw9PeHp6YkNGzbgiy++EDqOXLpx4wamT5+OzMxM\nnDhxAuPGjRM6EhE1U+zBT0RERFRLRkZGiI+PFzoGtVCPHz9GYmIiPvjgA6GjEBER1YtYLMayZcvw\n3XffYefOnSzuNxJfX18MGzYMBgYGuHnzJov7RFQjFviJiIiIaqlnz56Ii4sTOga1UFeuXIGSkhIG\nDBggdBQiIqI6Kysrw5w5c7B161YcPHgQc+bMETqS3ElLS8PEiRMxe/ZsrFq1CufPn4e+vr7QsYio\nmWOBn4iIiKiWjI2NWeCnerty5Qr69+8PVVVVoaNQAxUWFmL16tUwNjZGmzZtIBKJFH4SV74nRPKt\nuLgY06dPx6FDh/DXX39h6tSpQkeSO2fOnEG/fv1w8+ZNXLhwAatXr0arVizbEdHb8ScFERERUS0Z\nGxsjNTUVOTk5QkehFujq1auwtLQUOgbJwJo1a7B27Vr85z//QU5ODs6cOSN0JMHxPSGSX/n5+XBw\ncMC5c+dw5swZ2NvbCx1JrhQWFmLFihUYO3Yshg0bhhs3bmDYsGFCxyKiFoQFfiIiIqJaMjY2BgCO\nw091VlZWhlu3bmHQoEFCRyEZ8PPzAwDMnz8fqqqqsLOzg1gsFjiVsPieEMmn9PR0fPjhh4iMjMSF\nCxdYeJaxO3fuwNLSEjt27MCOHTvg7++PDh06CB2LiFoYFviJiIiIasnIyAitW7fmMD1UZ8+ePUNR\nURHeffddoaOQDDx79gwAWIR5Dd8TIvnz+PFjWFtb4/nz57h48SLef/99oSPJDbFYjF27dsHCwgIq\nKiq4ceMG3NzchI5FRC0UC/xEREREtdS2bVsYGBjg4cOHQkehFubBgwcAABMTE4GTkCyUl5cLHaHZ\n4XtCJF+io6NhY2MDZWVlhISEoFevXkJHkhspKSkYP348Fi5ciC+//BKhoaHSu0SJiOqDBX4iIiKi\nOujZsyd78FOdPXjwAFpaWujYsaPQUaiBXp84VjKR7IoVKyo8F4lEiIuLg6OjI7S1tStNOJuamor5\n8+fD0NAQysrKMDAwgJubG54/f15pf7Vtm52djSVLlqBHjx5o164dOnbsCCsrKyxbtgzh4eGVMr85\nh04/dgAAIABJREFUAW5tlld3TDW9J3U5htq+f0TUuIKDg2FjY4N3330XISEhMDQ0FDqS3PDz84Op\nqSni4uJw5coVeHh4oHXr1kLHIqIWjgV+IiIiojowNjZmgZ/qLD4+Hj179hQ6BsnA6+PKi8ViiMVi\neHl5VVo3f/58LFu2DElJSTh16pR0eUpKCiwsLPDnn39iz549yMjIwOHDh3H27FlYWVkhKyurXm1d\nXFywefNmuLu7Iz09HcnJydi7dy/i4+MxZMiQKvNXd1zVLa/umGp6T+pyDLXZFxE1roCAAIwbNw6j\nR4/GyZMnoampKXQkuZCeno7p06fD2dkZU6dOxfXr1zkvDxHJDAv8RERERHXAAj/VR3p6Ojp37ix0\nDGpCq1atgpWVFVRUVGBvby8tXq9ZswZPnjzBDz/8ADs7O6irq8PGxgabNm3Co0ePsGHDBuk26tL2\nwoULAAADAwOoqalBWVkZvXr1wrZt2xr9mGpSl2No6L6IqGF8fHwwbdo0uLm5wc/PD+3atRM6klw4\nc+YMzM3N8e+//+L48eP46aefoKamJnQsIpIjLPATERER1YGxsbF0wlSi2srJyUH79u1lvt1p06ZV\nGNaEj7c/pk2bJvN/h6pYWFhUufzEiRMAAHt7+wrLbW1tK6yva1snJycAwJQpU9C1a1e4urrC398f\nOjo6MiuOV3dMNanLMTR0X2/D80X+H011fsubsrIyLF68GEuXLoW3tzd8fHzQqhXLRQ2Vm5uLuXPn\nwt7eHlZWVrhz5w7Gjx8vdCwikkNthA5ARERE1JIYGxujvLwcjx8/5oRzVGvZ2dmNMoHekiVLMHTo\nUJlvV55duXIFmzZtavT9qKqqVrk8NTUVAKCvr1/l+tfvEKpL2z179mD8+PE4ePAggoODsXv3buze\nvRtdu3bFsWPH0L9//3odx+uqO6aa1OUYGrqvt+H5Iv+a6vyWJ7m5uXB2dkZwcDAOHz6MKVOmCB1J\nLly+fBkuLi7Izs5GQEAAHB0dhY5ERHJMIQv8IhEnaCIiosr4+4FqQ1KkjYuLY4Gfai03N7dRevBb\nWlqyGFNHQg/1oquri8TERGRkZEBbW1tmbQHA0dERjo6OKC8vx6VLl7B27VqcOXMGn332GSIjI6Xt\nRCIRxGIxSkpKoKSkBODVRajGUNdjaEw8X+Sf0Od3S5OYmAgHBwc8ffoUZ8+exbBhw4SO1OIVFBRg\n1apV2LJlCxwcHLBz504O0UdEjU6h7rkqLS0FALmYoZxFKCJqLKWlpWjTRrGu/5aUlACAwh031U/7\n9u3RqVMnPHz4UOgo1IKIxWJ+fiMAwKRJkwAA//zzT6V1ISEhFXqY16WtSCRCQkICAKBVq1awsbGB\nn58fACA2NrbCa7t06QIASE5Oli57/QKALNXlGIio6YSHh2PQoEEoLi5GREQEi/syEBISAnNzc+zd\nuxd79uzBn3/+yeI+ETUJhSzwy0MBR/IHInsoEJGsKWKBv7i4GACgrKwscBJqKUxMTHD//n2hY1AL\noq6ujry8PKFjUDPg4eEBExMTLFy4EAEBAUhPT0dubi4CAwMxa9YseHl51astALi6uuLOnTsoKipC\nSkoK1q9fDwAYM2ZMhXajR48GAGzYsAHZ2dm4e/cufv31V8GPl4iaxtGjRzFixAj069cPoaGhMDIy\nEjpSi/by5UusWLECH3zwAXr27Ino6Gi4uLgIHYuIFIhCVXDkscBfXl4uF3ckEFHz8frt+oqCBX6q\nK1NTU9y+fVvoGNSCsMAvP16/E+PNTjc1rZPQ0dFBWFgYvv/+e3z11VdISEhAhw4dYGFhgQMHDsDS\n0rJebUNDQ/HLL79g/PjxSExMhKqqKoyMjLB27Vp8/vnnFTJ4e3ujtLQUfn5+2Lt3L0aOHInt27fj\nwIED0ux1Oaaa2tTlGGqzLyJqGB8fHyxduhSurq7Yvn27XNRHhBQSEoLZs2fjxYsX2LFjB9zc3ISO\nREQKSKF+kksK/PJQuJLMaM8PvEQka4rYg18yRI88/H6gptG3b18cPXpU6BjUgmhoaCA3N1foGCQD\nNX3+ru1nc21tbXh7e8Pb21tmba2trWFtbV2r/evo6EiL+a+rKn9tjultbWp7DPzbhqjxFBYWws3N\nDYcOHcLWrVuxYMECoSO1aDk5Ofjmm2+wbds2jB07FhcuXICBgYHQsYhIQSlUBUeexlhmjxYiaizs\nwU/0dmZmZsjIyEBycjL09PSEjkMtgL6+PoKDg4WOQURECighIQGOjo54+PAhAgMDKw3bRXXz999/\nY+7cuSgsLMTevXvx6aefCh2JiBQcx+BvoVjgJ6LGoog9+Fngp7oyMzMDAERHRwuchFoKU1NTxMTE\noKysTOgoRESkQC5fvozBgwcjOzsbly9fZnG/AdLT0+Hi4gJ7e3tYW1vjzp07LO4TUbPAAn8LxQI/\nETUW9uAnejsdHR3o6uqywE+11rdvXxQWFiIuLk7oKEREpCB27dqFESNGYODAgQgPD8d7770ndKQW\n68CBA+jduzfOnz+PY8eO4eDBg9DR0RE6FhERABb4W6zXJ9klIpKl4uJihSt0cwx+qg8zMzNOtEu1\n1qdPH7Ru3RpRUVFCRyEiIjlXWlqKFStWYN68eViyZAmOHz8OTU1NoWO1SI8fP4a9vT1mzpyJjz76\nCLdu3YKDg4PQsYiIKlDIAr88FHA4yS4RNZa8vDyoq6sLHaNJvXz5EgCgqqoqcBJqSVjgp7pQVVWF\ntbU1jh07JnQUIiKSY2lpabCzs8P27dtx5MgReHl5SesHVHvl5eXYtWsXzMzMEBcXh/Pnz8PX1xcd\nOnQQOhoRUSUK9VOek+wSEb1dbm4uNDQ0hI7RpDIyMgAA2traAiehlqRv3764c+cOx1SnWpsyZQpO\nnDiBgoICoaMQEZEcCgsLw4ABA/D06VNcuXIFTk5OQkdqkW7duoWhQ4di0aJFWLhwIaKjozFixAih\nYxERVUuhCvzyOEQPC/xEJGt5eXkKV+DPyspC69atFe64qWH69u2LgoICxMfHCx2FWggnJyfk5+fj\nzJkzQkchIiI5s337dtja2sLU1BTh4eHo27ev0JFanIKCAnh4eGDw4MFQUlJCVFQUvLy80LZtW6Gj\nERHViAX+FooFfiJqLLm5uQo3RE9WVhY0NTWlP1uJasPU1BStWrXiRLtUa3p6evjwww+xZcuWSuuC\ng4Oln1WJiIhqq6CgAP/5z3/w3//+F0uWLMHJkyc5jEw9nDp1Cn379sXmzZuxZcsWhISEoE+fPkLH\nIiKqFRb4WyhOsktEjUVRe/BzeB6qKzU1NXTv3p3j8FOdrFy5EhcuXEBwcLB0WUhICEaNGoXhw4fj\n+fPnAqZrHIcPH8aQIUOgra0NkUgkfbyppnVETY3/H9+O57bw7t+/DwsLCxw/fhynT5/mePv1kJCQ\ngI8//hjjxo3D4MGDERMTg7lz5/L/KxG1KAr1k1+eCvycZJeIGosijsGfnZ0NLS0toWNQC8SJdqmu\nPvjgAzg4OGDRokUoLCwEAPj5+UFJSQnh4eEwMzNDaGhoo+3fxsYGNjY2jbb9N/n6+sLZ2RkdO3ZE\nVFQUCgsLcfTo0SrbNvXn2teLjnzI/6Ou6vP/sanPLyE153NbUfz111+wsLBAu3btcO3aNYwZM0bo\nSC1KaWkpfHx8YGpqiqioKJw+fRqHDx+Gvr6+0NGIiOqs5Ve660Ayya6SkpLASRpO8iGVH5aISNby\n8vIUcogeFvipPvr27YuAgAChY1ALs2XLFvTv3x/u7u7YsWMH/Pz8pJ9TMzMzMXz4cPzwww9Yvny5\nzPfd1Hd/bty4EQDg7e2Nbt26AQAcHR2bxWdYf39/oSNQE5o6dWqj70OR7q5uzue2vCstLcXq1aux\nfv16uLm5YevWrVBWVhY6Voty/fp1zJ8/H1FRUVi6dCk8PDzQrl07oWMREdWbQhX45akHPwv8RNRY\nMjIyFG64mszMTBb4qV7MzMywbt06FBQUQEVFReg41EJ069YNv/32GxwdHVFWVoa0tDTpurKyMgCv\nhvK5dOkSfv/9d2hqasps35cuXZLZtmrj/v37AICePXs26X5rY8qUKUJHIDnT1OeXkJrzuS3PHj9+\nDGdnZ9y+fRuHDh3C9OnThY7UomRlZWHNmjXYtm0bbG1tcfPmTfTu3VvoWEREDcYhelooSYFfkXqJ\nEFHTSEtLg46OjtAxmhTH4Kf66t+/P8rKynDr1i2ho1ALM3HiRGzfvh0XLlyosuelWCzG33//jQED\nBuDOnTsCJJSNgoICAPJxBy0R/R+e200vICAA77//PvLz8xEeHs7ifh2IxWLs27cP7777Lo4cOYL9\n+/fjwoULLO4TkdxQqAK/PA3RwzH4iagx5ObmoqioCJ06dRI6SpNKTEzkeJtULyYmJtDS0sK1a9eE\njkIt0Jw5c5CZmYni4uIq15eUlODp06cYPHgwjhw50uD9VTce+evLnz17hokTJ0JDQwO6urqYMWMG\n0tPT672/qvZRn3HRU1NTMX/+fBgaGkJZWRkGBgZwc3OTy0mJqfl5+vQpJk+eDE1NTairq2PcuHGI\njY2t0EaW51dQUBAcHBygra2Ndu3aYcCAATh8+HCldq9vOy4uDo6OjpUmvH3z8fp2jIyM6jVHAc/t\nplVYWAh3d3dMmTIFEyZMwNWrV1mYroPIyEgMGzYMs2fPxrRp0xAbGwtnZ2ehYxERyZRCFfjz8vLQ\nqlUrubiFnkP0EFFjePHiBQAoXA/+pKQkFvipXkQiEQYMGIDr168LHYVaoODgYGRmZtbYprS0FIWF\nhZg6dSoWL14s7bBSH9V9bnx9+cqVK+Hl5YWEhAQ4OTnhwIEDWLZsWYP3JxaLKzzqIiUlBRYWFvjz\nzz+xZ88eZGRk4PDhwzh79iysrKyQlZVVr3xEteXm5oYlS5YgISEBx44dw40bN2BtbY3Hjx9L28jy\n/Bo9ejRat26NBw8e4P79+9DR0YGzszPOnDlT7bbnz5+PZcuWISkpCadOnZKuDwoKAgDo6emhqKio\nQq/v1atXY/z48XU+J3luN527d+/C0tISv/32Gw4dOgRfX1+oqqoKHatFyMrKgru7OwYPHoySkhJc\nvnwZW7dulemwd0REzYXCFfjV1dXr3EOhOWKBn4gag2QcaEUq8BcUFCAzM5MFfqq3QYMGsQc/1Yuf\nn1+t7iyVfN776aef8MEHHzRqz9Y5c+agd+/e0NTUxFdffQUAOHv2bKPtrzbWrFmDJ0+e4IcffoCd\nnR3U1dVhY2ODTZs24dGjR9iwYYOg+Uj+zZs3D7a2ttDQ0MCoUaPg5eWFzMxMeHh41Gk7dTm/Nm3a\nBB0dHXTt2hVbtmwBAKxdu7baba9atQpWVlZQUVGBvb299OfGqFGjYG5ujuTk5Ep3AWzZsgXu7u51\nOgZZ4rldM19fXwwaNAjKysqIjIzkkDy1JBaL4evri169esHf3x8//fQTrl69CgsLC6GjERE1GoUq\n8Ofn50NNTU3oGDIhGaJHMhEbEZEsSHrwK9IQPYmJiQAAAwMDgZNQSzVw4EDExMQgPz9f6CjUgpSW\nliIgIKBOPfLLyspw+fJl9O/fH48ePWqUXAMGDJB+L7nwmZyc3Cj7qq0TJ04AAOzt7Ssst7W1rbCe\nmrf6DN/SXNjY2FR4/uGHHwKo+8Wv2p5fYrEYRkZG0ucmJiYAgJiYmGq3XVPxcsmSJQBeXTSQCA4O\nRnl5ufRYhNDY5/a2bduwdOlS7Nmz5613SzUnubm5mDFjBmbNmoXZs2cjNDQUPXr0EDpWiyC5u2b2\n7NmYPn067t69Czc3N2n9hIhIXrX82WbrQNKDXx60bt0aAAv8RCRbaWlpaNeundxcDK2NpKQkAGAP\nfqq3wYMHo6ysDFFRUbC2thY6DrUQRUVF6Nu3L7KzsyssV1JSQvv27Su1V1ZWhpaWFoBXnwMbq0iq\noaFRYZ+A8HeMpqamAqj+53RcXFxTxqF6EovFLbK4DwAdO3as8Fxyp6OkY0Rt1eb8ysrKwo8//og/\n//wTCQkJyMvLk66raT6MmoZtcXZ2xsqVKxEVFYXg4GCMHDkSPj4+gvbeBxr/3M7Pz8fVq1exc+dO\nLFiwAN988w1WrFgh/Vu6Obp8+TJmzpyJ/Px8nDlzBqNHjxY6UouQkZEBT09PbN++HcOGDcONGzdg\nZmYmdCwioiajUAX+/Px8uSnwt2nz6p+utLRU4CREJE/S0tIUqvc+8KoHf5s2bRTuuEl2jIyM0LFj\nR1y7do0Ffqo1NTU1hIaGCh2jRdDV1UViYiIyMjKgra0tdBzBcajOppednV1h3G7JkIaN8dlh6tSp\nOHfuHNasWYPFixejQ4cOANCgiyPKyspYtGgRvv76a2zcuBFGRka4cuVKlRP3NqXGPreXL1+O5cuX\nIy8vD7/88gtWrVqFhIQE7NixQ+b7aqiSkhJ4enrCy8sLY8aMwZ49e6Crqyt0rGavpKQEO3bsgIeH\nB9TU1LB//34OZURECkmh7lOSpx78LPATUWNITExUuJ7sSUlJ0NPTa9a9uah5E4lEGDx4MMLCwoSO\nQiSXJk2aBAD4559/Kq0LCQnB0KFDmzgRKZorV65UeC6ZuNbOzk7m+7p06RIA4IsvvpAW94uKihq8\n3Xnz5kFVVRWnTp3C4sWL4erqChUVlQZvtyGa6txWV1fHkiVL4Ofnh507d+L06dMy2a6s3L17F1ZW\nVti4cSO8vb0RGBjI4n4t/P333zA3N8fy5csxd+5cxMbGsrhPRApLoQr88jQGPwv8RNQYEhISYGho\nKHSMJpWcnAw9PT2hY1ALN3ToUFy+fFnoGERyycPDAyYmJli4cCECAgKQnp6O3NxcBAYGYtasWfDy\n8hI6Ism5devW4fLly8jLy0NwcDBWrlwJbW3tOk+yWxuS8f7XrVuHrKwsZGRkYNWqVQ3ebocOHeDi\n4gKxWIwzZ85gwYIFDd5mQzX1ue3g4AB7e3v4+PjIdLv1JRaLsWvXLgwaNAgikQiRkZFwd3dvsUNZ\nNZUHDx5g6tSpsLe3h7GxMe7cuYN169bJTWdOIqL6UKgCP3vwExHVLDExUeEmm338+DG6desmdAxq\n4aysrPDkyRPppM1EzdHrRaOGfN/U+9PR0UFYWBicnZ3x1VdfQU9PDyYmJti1axcOHDiA4cOH1zlb\nY7tz5w7Gjh0LdXV1tG/fHmPGjEFMTEy1E82mpqZi/vz5MDQ0hLKyMgwMDODm5obnz59XaPfmeyQS\nieDq6lppmUgkQlJSEpycnKChoYGOHTvCxcUF2dnZePz4MRwcHNC+fXt06dIFs2bNQlZWVqVjCAoK\ngoODA7S1tdGuXTsMGDCgyiFdsrOzsWTJEvTo0QPt2rVDx44dYWVlhWXLliE8PLzG90lS2JQ8mlPv\n29ff6x07dsDT0xN6enpwcHBA//79cenSpQoT4crq/7uvry9mzpyJ3bt3Q1dXF8OHD8eQIUNqtY23\nnadLlixBq1at8PHHHzeoQ0dLPrenT5+Of//9t04TnDeGlJQUODg4YOHChVi0aBFCQ0PRq1cvQTM1\nd1lZWVixYgXMzMxw+/ZtnD59GidOnOAExEREULAx+PPy8tC5c2ehY8gEC/xE1BgSEhIwceJEoWM0\nqQcPHmDcuHFCx6AWztLSEm3atMGVK1fw8ccfCx2HqErVjdle1+VC7E9bWxve3t7w9vZuUKamEBcX\nh2HDhkFVVRXHjx+HhYUFbt68CTc3N2mb1481JSUFQ4YMQWFhIXx9fWFlZYXIyEjMnDkTQUFBuHHj\nhnSC5dcnqq3q/Xp9/fLly/H9999jz549+Prrr7F9+3akp6dDWVkZ69evh76+PlauXIkdO3ZAWVkZ\nu3btqrCt0aNHY9KkSXjw4AFevnwJV1dXODs7Q1tbG2PGjJG2c3FxwbFjx7B582a4urpCSUkJjx49\nwsqVKzFkyJAa/10DAwMxevRojBs3rtndifFm7jNnztSpfX2Xd+7cGb6+vpWWT506tdbbqI6xsTF0\ndXUbPLluSz63+/Xrh8LCQjx8+BC9e/dukn2+6Y8//sDcuXOhoaGB4OBg6V0bVLXy8nLs378fX375\nJUpLS7F+/XosWrSIw2sSEb1GoXrwc4geIqLqlZeX4/nz5wo1RI9YLEZ8fDyMjY2FjkItnLq6Ovr2\n7VtpnGYiUjweHh7IysrC+vXrMXLkSKirq8Pa2rraYVbWrFmDJ0+e4IcffoCdnR3U1dVhY2ODTZs2\n4dGjR9iwYUO9cri6uqJ3797Q1NSU7vvkyZNwd3evtPzUqVNVbmPTpk3Q0dFB165dsWXLFgDA2rVr\nK7S5cOECAMDAwABqampQVlZGr169sG3bthrzPXnyBDY2NnB2dm52xX15dfLkSbzzzjuwtLQUOopg\nJJMl5+XlNfm+s7KyMHfuXDg5OcHe3h63bt1icf8tzp8/j/79+8PV1RWffPIJ4uLi4O7uzuI+EdEb\nFKrAzyF6iIiql5qaiuLiYoUq8CcnJyMvLw89e/YUOgrJASsrK47DT0Q4d+4cAGDkyJEVlltZWVXZ\n/sSJEwAAe3v7CsttbW0rrK+rAQMGSL/v0qVLlcv19fUBvJpw/k1isbjCEDQmJiYAgJiYmArtnJyc\nAABTpkxB165d4erqCn9/f+jo6FTbc/vevXuwsbFB586dZTK+PFVPJBLh6tWryMzMhKenJ77++muh\nIwmqrKwMQP2GHWuI48ePo0+fPggMDERgYCB8fX3lpjbRGGJjYzFhwgR8+OGH6Nq1K6Kjo7Fx40bp\n3UxERFSRwhX45aUHv+SKteQDChFRQ0nGDlekMfgfPnwIACzwk0wMHToU169fR0FBgdBRiBrN6+Ol\n1/RQZGlpaQBejS/+uuoKU6mpqQBeFdtffw8lr4+Li6tXDg0NDen3rVq1qnH5m4X4rKwsrFq1Cr17\n94aGhgZEIpG0g1F6enqFtnv27MHRo0fh5OSEvLw87N69G9OmTYOJiQmioqKqzDZixAikp6fj8uXL\nOHjwYL2Oj2pv6NChMDExwfjx4+Hg4FBlG0U5t1NSUgAAurq6TbI/Sa/9iRMnYtiwYbh16xaHhqxB\neno6VqxYgf79+yMuLk56QYTzExAR1UyhCvz5+flyc5WcPfiJSNaePXsGkUgk7c2nCB4+fAhVVVWF\nOmZqPNbW1igpKUFERITQUYgajVgsrtVDkUkK85JCv8SbzyUkhcaMjIwq38v8/PzGDVyFqVOnYt26\ndZg2bRqePHny1n9XR0dHBAQEIC0tDRcvXsSYMWPw9OlTfPbZZ1W237p1q3QIn4ULFyIhIaFRjoP+\n75xNS0uDh4fHW9vJ+7l97949qKioQE9Pr9H3dfr0aZiZmeH48eP4888/4e/vj44dOzb6flui4uJi\n+Pj4wNjYGL///ju2bt2K6OhoXgwhIqolhSrwc4geIqLqxcXFQV9fHyoqKkJHaTJxcXEwNjaWix5p\nJLzu3buja9eu+Pfff4WOQkQCsrOzA/Bq7OjXXbp0qcr2kyZNAgD8888/ldaFhIRg6NChFZapqqoC\nAEpKSvDy5ctKdwrIgiTrF198gQ4dOgAAioqKqmwrEomkBfpWrVrBxsYGfn5+AF4Ns1EVJycnfPbZ\nZ5g4cSKysrLw2WefyUXxmJq/iIgI9O/fX/r3dGPIzs7G3LlzMXbsWAwdOhS3b9+WnudUkVgsxpEj\nR/Dee+9h1apVmDdvHmJjY+Hm5sZx9omI6kChCvycZJeIqHrx8fHo0aOH0DGa1MOHDzk8D8nU8OHD\nWeAnUnAeHh7Q0tLCihUrEBwcjLy8PISGhmLnzp3VtjcxMcHChQsREBCA9PR05ObmIjAwELNmzao0\nAW2/fv0AAOHh4Thx4kSlCwCyIJn4c926dcjKykJGRkaNY+W7urrizp07KCoqQkpKCtavXw8AGDNm\nTI372bVrFzp16oSgoCDpJL5Ejen8+fONOrFtYGAg+vTpgxMnTuD48ePstV+DsLAw2NjYYPr06Rg0\naBBiYmLg5eWF9u3bCx2NiKjFUZgCf1FREUpKStiDn4ioGpLe7IrkwYMHCnfM1LiGDx+OK1euVNvT\nlYjkX48ePRAaGgpzc3M4ODhAX18f69evlw5J8/p4+MCrIX3CwsLg7OyMr776Cnp6ejAxMcGuXbtw\n4MABDB8+vEL7rVu3wtzcHHZ2dti8eTO8vb2l616/I60h3/v6+mLmzJnYvXs3dHV1MXz4cAwZMqTK\ntqGhoejSpQvGjx8PDQ0N9OrVC6dOncLatWtx6NAhabvX5yAQiUQICAiArq4uXrx4AQD4/PPPIRKJ\ncO3atWrfW6KGuH//Pu7fv4+xY8fKfNspKSn49NNPMWHCBFhbWyM6OhoTJkyQ+X7kQWxsLBwdHWFp\naQkVFRXcuHED/v7+6Natm9DRiIharMa7L62ZycrKAlD95FYtDQv8RCRrcXFxsLa2FjpGkyktLUVs\nbCzc3d2FjkJy5IMPPsDLly9x7do1hTqfiKgiU1NTnDp1qsKypKQkAJUn3wUAbW1teHt7VyjWV2fQ\noEHVTl5b3TA3dV3euXNn+Pr6Vlo+derUSsusra1r9fNO8vdYbfZP1Bj27t0LAwMDmf9+PnLkCBYs\nWABlZWX88ccfmDx5sky3Ly+ePXsGDw8P7Nu3D3369MHJkycb5WILEZEiUpge/JmZmQAgHUOypWOB\nn4hkqaysDE+fPlWo3uz3799HYWGhdKgDIlkwNjZG165dqxxLm4gUh0gkwsOHDyssu3jxIgBgxIgR\nQkQiUmhFRUXYs2cP3NzcZDb+fnx8POzs7DB9+nQ4Ojri7t27LO5XISMjAytWrECvXr1w7tw5/PTT\nT4iMjGRxn4hIhhSmwJ+RkQHgVe8YedCqVSu0atWKBX4ikomnT5+iuLhYoQr80dHRaN26Nd577z2h\no5CcsbGx4Tj8RISFCxciPj4e+fn5OH/+PJYvX4727dvDw8ND6GhECsff3x8ZGRmYPXt2g7fJPP7E\nAAAgAElEQVRVWloKHx8f9OvXDykpKbh8+TJ27twJDQ0NGSSVHy9fvsT69ethbGyMX3/9FWvWrMH9\n+/c5gS4RUSNQmAK/pAe/vBT4gVe9+FngJyJZiI+PBwCFmmQ3Ojoa7777LlRUVISOQnLmgw8+wKVL\nlzgOP5ECCwoKgrq6OqysrKClpQVnZ2dYWloiLCyMF5aJBLB9+3ZMnjwZBgYGDdpOZGQkLC0tsXLl\nSixbtgwREREV5qcgoKSkBLt27ULPnj3x3XffYe7cuYiLi8Py5cvRrl07oeMREcklhRmDPyMjA23b\ntoWqqqrQUWSmdevWLPATkUzcv38fmpqa6NSpk9BRmkx0dDTMzMyEjkFyaPTo0Xj58iUuX77MoTiI\nFNSoUaMwatQooWMQEYCAgACEh4djy5Yt9d5Gbm4uvvnmG2zbtg3Dhw/HrVu30LNnTxmmbPnEYjEC\nAgKwatUqPHnyBJ999hk8PT3RpUsXoaMREck9herBL0+994FXPfjLysqEjkFEciA2Nha9e/cWOkaT\nunXrFgv81Ci6desGExMTnDt3TugoRERECq2goABffvklXFxcYGFhUa9t+Pn5oXfv3ti/fz9+/fVX\nBAUFsbj/hqCgIAwaNAjTp0/H+++/j9jYWOzcuZPFfSKiJqJQBX55mWBXQklJCSUlJULHICI5oGgF\n/tzcXDx58oQT7FKjsbOzw9mzZ4WOQUREpNB+/PFHpKenY+3atXV+7cOHD2Fvbw9nZ2eMHDkSsbGx\nmDVrFkQiUSMkbZnCw8MxcuRIjB49Gh06dMD169fh7++vUPN6ERE1BwpV4Je3Hvws8BORrChagf/2\n7dsQi8Xo27ev0FFITo0ePRqRkZF48eKF0FGIiIgU0oMHD/Djjz/i66+/hr6+fq1fV1BQAA8PD/Tt\n2xfJyckIDQ2Fr6+vQg1l+TZ3797F1KlTYWlpicLCQvzzzz84d+4c+vfvL3Q0IiKFpDAF/oyMDLnr\nwd+2bVtO4EdEDZaTk4OkpCSFKvBHRkZCU1MT3bt3FzoKyamRI0eidevWOH/+vNBRiIiIFE5xcTGc\nnZ3Ru3dvLFmypNavCwwMhKmpKf73v//B09MT165dg5WVVSMmbVkSEhIwd+5cmJmZ4c6dO/Dz88Pl\ny5cxfPhwoaMRESk0hZlkVx6H6GGBn4hk4e7duxCLxejTp4/QUZpMWFgYBg8ezFusqdFoaGhgyJAh\nOHfuHKZPny50HJJjV69e5c+yOrp69SoA4MiRIwInoabG80X+Sc7vRYsW4d69e7h+/TqUlZXf+rrE\nxESsXLkSv//+O8aPH49///0X77zzTmPHbTEyMjLw448/wsfHB507d8b27dsxe/ZstG7dWuhoREQE\nBSrwZ2RkyN04cCzwE5EsxMbGol27dujWrZvQUZpMREQEJk+eLHQMknN2dnbYuXMnxGIxC0rUKAwN\nDbFp0yZs2rRJ6Cgt0tSpU4WOQE2M54ti0NTUxO7du/Hnn3/i3XffrbHty5cv4e3tDS8vL3Tt2hVB\nQUEYNWpUEyVt/jIyMrBlyxZs2rQJKioq2LBhA9zc3Gp10YSIiJqOwhT45XEMfhb4iUgWYmNj0atX\nL4XpgZObm4t79+5h8ODBQkchOTd27Fh8++23iIqKwvvvvy90HJJDz549EzoCEVGz8tNPP2HRokXY\nvHkzHBwcqm1XVlaG3377Dd9++y1yc3OxevVqfPHFFyxc//+Sk5OxceNG/Pzzz1BWVsaXX36Jzz//\nHOrq6kJHIyKiKijMGPwcooeIqGrR0dEKNdlsREQEysvLYWFhIXQUknMDBgyAgYEBTp48KXQUIiIi\nuffbb7/hv//9L77//nssXry4yjZlZWU4fPgwzM3NMX/+fEyaNAkPHz7EypUrWdzHq78L5s2bhx49\neuDAgQNYs2YNnjx5gtWrV7O4T0TUjClUgZ89+ImIKouKikL//v2FjtFkwsPDYWBgAH19faGjkJwT\niUSwt7dngZ+IiKiR+fv7w9XVFd988w1WrVpVaX1xcTF2796N3r17Y8aMGTAzM0N0dDS2b9+Ozp07\nC5C4+SguLsbhw4dha2uLfv364cKFC9i4cSPi4+OxbNkyFvaJiFoAhRiiJz8/H0VFRezBT0T0hvT0\ndCQlJcHc3FzoKE0mIiKCvfepyYwbNw579uxBSkoKdHV1hY5DREQkd44ePYpPPvkE7u7u8PDwqLAu\nKSkJu3btwi+//IK0tDTMnDkTJ0+ehImJiTBhm5GoqCjs378f+/fvR3p6OhwcHHDu3DmMGjWKcwcR\nEbUwClHgz8zMBAD24CciekNkZCQAoF+/fgInaTrh4eFYsGCB0DFIQYwePRrKysr4+++/4eLiInQc\nIiIiufLXX3/B2dkZixYtgre3N4BXw/AEBwdj586dOHbsGDp06IDZs2djwYIFMDQ0FDixsB4/foyD\nBw/iwIEDiImJgbGxMebNm4c5c+bAwMBA6HhERFRPClHgT01NBQB06tRJ4CSyxQI/ETXUzZs3oaen\npzA9i5OTk5GQkMAJdqnJqKmpYfjw4Th58iQL/ERERDJ06NAhuLi4YM6cOdi4cSOio6Ph6+uLQ4cO\nITExEdbW1ti3bx+cnJzQtm1boeMK5s6dOwgMDMSJEydw+fJlaGlpYfz48fDx8WFvfSIiOaEQBf4X\nL14AkM8Cv+TuBCKi+rh586ZCDc8TEhKCNm3aYMiQIUJHIQUyfvx4fP311yguLuYEfkT/v6ysLCQn\nJyM1NRVJSUlITU1FZmYm8vPzkZOTg5ycHOTl5aGwsBAAkJeXh5KSkgrbUFZWhpqaGgBAQ0MDbdq0\nQfv27aGlpQUtLS1oampKv9fV1YW+vj46d+7M85BIDuzatQvz58/HjBkzoKOjA3Nzc0RHR6N79+74\nz3/+g08++QS9evUSOqYgXr58iZCQEPz99984duwYHj16BD09PTg4OGD16tUYNWoUlJSUhI5JREQy\npDAFfmVlZbRv317oKDLFHvxE1FA3b96Evb290DGaTEhICAYMGAANDQ2ho5ACmTRpEhYvXozz588r\n1PlGik0sFuPRo0e4f/8+Hj58iLi4ODx48ABxcXF4/PixtHAPAG3atEGnTp3QoUMHqKqqQlNTExoa\nGtDS0oKqqioAoF27dlBRUamwj8LCQhQUFAB4dcFALBbj6dOniI6ORlZWFrKzs5GdnV1hXwCgo6Mj\nLfh369ZN+jAyMkK3bt1gaGiIVq1aNfI7RET1UVBQgMWLF+PXX3+FlpYWfH19YWhoiIkTJ2L79u0Y\nNmyYwvVILy0txfXr1xEUFISgoCBcuXIFRUVF6Nu3L6ZPn46JEydi8ODB/LlGRCTHFKLAn5aWBh0d\nHbn7Rc8CPxE1RHFxMe7evYvly5cLHaXJXLx4EXZ2dkLHIAVjaGiIwYMH4+jRoyzwk1wqLS3F7du3\nERkZiaioKOkjJycHwKuCurGxMXr27ImpU6eiR48eFXrUd+7cuVELTwUFBXj+/Ln0joHExESkpqbi\n2bNnePToEf755x88ffoUxcXFAF59xn733XelDxMTE/Tu3Rumpqa8QEzUxMrLyxEdHY2goCCcOXMG\nFy5cQGlpKfT19TFr1ixMnjwZAwcOlLu/9WuSl5eHqKgoXLp0CaGhoQgNDUVWVhZ0dXVha2uLLVu2\n4KOPPkLXrl2FjkpERE1EIQr8L168kLvheQAW+ImoYW7evIni4mIMGjRI6ChNIjMzE7dv38Z3330n\ndBRSQI6OjtiwYQN+/vlntGmjEB+/SI4VFBQgPDwcFy9eREhICK5cuYK8vDyoqKjAzMwM/fv3h7Oz\nM95//32899570NTUFDSviooKunfvju7du1fbRiwWIzk5GY8fP8bDhw9x79493L9/H6dOncL9+/dR\nUFAAkUiEHj16oH///jA3N5c+unXr1oRHQyTfiouLcf36dYSEhCAkJASXLl1CZmYmdHR0oK2tjfLy\ncmzcuBFLliwROmqTKCwsxK1bt3D9+nXcuHEDERERuH37NsrKytCjRw9YW1tj3bp1sLW1RZ8+fYSO\nS0REAlGIvzBZ4CciquzatWvQ1NREz549hY7SJEJCQiAWi2FtbS10FFJATk5OWLFiBUJCQjBixAih\n4xDVWUxMDAIDA3Hy5EmEhYWhqKgI77zzDmxtbfG///0P1tbWeO+991rsBSyRSAR9fX3o6+vDysqq\nwjqxWIwnT57g5s2buHnzJm7duoV9+/YhPj4eYrEYWlpaFQr+5ubmMDMz41j/RG9RXl6Oe/fuISIi\nQvqIiopCUVERdHV1YWNjAw8PDwwaNAjr1q1DUFAQjhw5AkdHR6GjN4qnT58iJiYGt2/fxp07d3Dj\nxg3ExMSgtLQU7du3x/vvv49Ro0bhm2++gZWVFfT09ISOTEREzUTL/AReRyzwExFVFhERgYEDByrM\neJwhISEwMzNDx44dhY5CCqhnz54wMzPDH3/8wQI/tQglJSX4559/EBgYiMDAQMTHx6NTp06wt7fH\n7NmzYWtrCyMjI6FjNgmRSAQjIyMYGRlh4sSJ0uW5ubm4deuWtPB/9epV/Prrr3j58iXatm2LAQMG\nwNLSEkOHDsXQoUNhaGgo4FEQCUcsFuPx48eIiYnBnTt3pI/Y2Fjp+WJubg4LCwssWLAAQ4YMkU6Q\nm5CQgAkTJiApKQnBwcEYOnSowEfTMC9evEB8fDwePXqE+Ph4xMfHIyYmBjExMcjOzgYA6Ovrw9TU\nFGPGjMHKlSsxcOBA9OzZU6GGISIiorpRmAL/wIEDhY4hc8rKyizwE1G9RUREYNy4cULHaDIXL16E\njY2N0DFIgTk6OuLXX3+Fj4+PwlxYo5ZFLBbjypUrOHjwIPz8/JCWloZ+/fph2rRpmDBhAoYMGaIw\n/3dzcnJQVFSE3Nxc5Ofno6ioCFlZWSgoKEBhYSGysrJQVFSE/Px85Obmon379ujfvz969+6NlJQU\nZGRkICUlBb/++is2b94MsVgMZWVlqKmpQV1dHa1bt4ZIJIJIJEJxcTHy8/MrZSgtLUVubm6Dj6Wq\nCYol1NXVoaSkVGGZSCSClpYWgFcTIEvmHXh9O2pqatI7FDQ1NdGqVasKr1NSUoK6ujqAV0MktWvX\nrtL+tLS0IBKJ0KpVK+kwTpL36M19UMtQUFCAx48f49GjR9Ki9e3btxEbG4u8vDwAr+al6dOnD4YP\nH4758+fD3Nwc/fr1q/Lf+saNG5gwYQK0tLRw9erVGofZai4KCwvx6NGjCgV8yfePHj2SntNt2rRB\n165d0b17dwwYMACffvopTE1NYWpqig4dOgh8FERE1NIoTIFfR0dH6Bgyxx78RFRfL1++xN27d+Hh\n4SF0lCaRl5eHyMhILF26VOgopMAcHR3h6emJq1evVhoChEhI9+/fx++//46DBw8iPj4epqamWLp0\nKZydnVtsL/2SkhJkZmZWeGRkZFRaVlWbly9fvnX7mpqaaNu2LdTV1aGmpoa2bdtCS0sLrVu3Rvv2\n7aGhoYFu3bpBS0sLpaWlePHiBTIzM/H8+XMkJSWhoKAAbdq0gYGBAYyNjWFqagoTExOoqqpW2M/r\nxfH6ys3NRWlpaZXrMjMzKy0rKyuTTpD8+sWHly9fSv/2SE5ORllZWYVtvH5BoqioSPo+5ufnSycw\nrg9JoV9VVRVt27aVfpW8N29+fXPZ669RVVWVXkSQfJVcjHjzK1VWVFSExMREaeE6KSkJycnJ0ueP\nHz9GeXk5AEBbWxt9+vTB+++/j08++QSmpqbo168fOnfuXKt9/fXXX5gxYwasra3h7+8v+Fweqamp\nSE1NRUpKinTC7qSkpErLUlNTIRaLAQAdO3ZEjx490KNHD4wdOxY9evRA9+7d0aNHD3Tt2rXFDmlG\nRETNj0L8RuEQPUREFV2/fh2lpaUKM8FuSEgISktLYWtrK3QUUmD9+vVDnz59cPjwYRb4SXBlZWUI\nDAzE9u3bERQUBH19fTg7O2PGjBkwNzcXOl61cnNzkZCQgJSUFCQmJiIlJQUJCQlITU2tsLyqnu9K\nSkrQ1tZGhw4doK2tLX2888470u87dOgAVVXVCgV8dXV1KCsrQ0tLq8be8HVx//59XL16FVevXkVo\naCh+/vlniEQimJub44MPPsCIESNgY2MjeFFT1rKzs1FeXg6xWIysrCwAry7GSHp3FxYWoqCgAMD/\nXZiQfM3Ly5O2ff2r5AJCWloaiouLpRciJF8ld11IvtaW5O4FyUWb1+800NbWBvB/dyFI7mLQ0NBA\nmzZtpBcK3rwY8eZFBsnFhKr20VTKysqQmpqKFy9eICkpCS9evJAWryXfJycnIyUlBSkpKdLXaWtr\nw8jICN26dUPfvn0xfvx4dO/eHd26dYORkVG9j6O8vByenp74/vvvMWfOHGzbtk1mhfCcnBxkZ2dX\n+8jMzERWVpb0eUpKCp4/f44XL16gpKREuh1lZWV06tQJenp66NKlCwwMDGBhYYFOnTrB0NBQWsiX\nt/OX6P9j777Dorjet4HfS1U6UgUURLFFbGis2LDEWBPErmBi12hMjCYxsXytSTTGJAY1ViIKgiaW\naETEhh0lxq4BRAGRjiAd5v0j7+4PFBsCB2bvz3XNJczO7tzLMrL7zJnnEFHVJfsCf0FBAdLS0ljg\nJyIq5uLFi7CwsIC9vb3oKJXiyJEjaNasGScjI+GGDRuGtWvX4vvvv+fIPRIiKSkJmzZtwrp163D/\n/n307t0b+/btw7vvviu8/U5ubi4iIyMRERGBiIgIREVFqUa8x8fHIzY2tsToem1tbVhaWsLOzg5W\nVlZo2rQpevToAVtbW9SqVeuZQr6oUdlpaWmqEb1KFhYWGDBgANzc3FTtf86fP49z587hzz//xOrV\nq6GhoYGmTZuiffv2aNeuHdq2bfvMczAyMoKmpuYL9y+iaPw8xXOIakNSvNhf/N/iJwWysrJUVy8o\n/1WebFBe4VD8JMW9e/cA/N8JjMePH6OwsPCZkxCv4+mTCMqTB8VvU56EKCwshJaWFjQ0NJCbmwtN\nTU3k5+cjNzcXGhoaqudYWFiInJwcZGVlISsrC5mZmcjIyCjx+6mtrQ0TExPV8WNubo42bdrA1NQU\ntra2sLa2ho2NzXOPp4KCAvz777+qx1JuV/zKEKWioiJV33nlz2/ZsmW4evUqPvzwQ7i5ueH3339X\n/eyVJ3aefm2Ur5nyeSpfV+W6tLS0Uo9D5c/Q2NgYxsbGMDU1VX1tbW0NZ2dn1K5dGxYWFrCxsYGV\nlRUsLS1l2R2AiIiqN4VU2l85GYmPj0ft2rVx4sQJ2Y3c9PX1xbhx497oklciUk8jR45EWloaDh48\nKDpKpWjWrBneeecdrFy5UnQUUnMRERFwcnJCUFAQevbsKToOqZH79+/j22+/xaZNm1CjRg14eXlh\n6tSpcHJyqtQcqampqgJ+REREiYJ+TEyMqgBnYWEBR0dHWFtbo06dOiUK+cp/LS0tX3nSyaysLDx+\n/Fi1KEfp5ufn4/Hjx6rCobJAqCz0Kgu0ysJtae1oAKgKugCe21O/qlOOLn+aspisVLxPvtLTvfyL\n9+N/0eMXL1q/LMfL5gt4WcbnPcabKq1wXVzx35WcnBwkJycjPz8feXl5SElJQX5+PgoLC5GSkoLC\nwkLVVQjFC9S5ubnIyclBQUEBcnNzUVBQgLy8PBQWFj63/RIA1VwPGhoa0NDQQGFhoWruB4VCodp3\nVac8SaW80kF54kD5Oit/Z5RX2CivnCjePsvExERVvC++lPZ7QkREVFXs2rULw4YNK/UkdTHfyX7o\nWFJSEgDIcgS/np4e8vPzkZ+fX+5vVIlI3k6fPo0JEyaIjlEp4uLicOPGDaxatUp0FCLUr18fLi4u\n2LlzJwv8VCn+/fdfrFixAr/99husra2xcuVKeHl5VWhRq6ioCJGRkbh69apqkk1lET8lJQXAf4XH\nunXrwtHREQ0bNkTfvn1Rv3591aKc2LW43NxcJCUlISkpCf/88w8SExNV3yclJSE9Pb1EEf/x48dI\nTU0tUXx/mnIEtLJQWFqBUEdHB3Z2dqqRvspiafHR6MUnhFUWIZVKK2IrPb3t86SkpODy5cu4dOkS\nLly4gOjoaNSsWRPOzs5o06YN2rRpgzp16pR63+Jtb16ktF79pU30W7wXv9LTo6OLt90p/hzi4+NL\nrCttDoDnjXYvbQR2afup6oqfMFH+PgElr8YwMDCArq4uLC0toa2tDSMjI9XvpqGhoWqUvfL3Vl9f\nX9VaSlnMfvrEzKso7eepPLn1uko70aW8GuHpdRs2bMCCBQvQrVs3eHt7w8HBQfgVRURERNWJ7Av8\niYmJAP6b4EZulB/MsrKyqsxlt0RU9cXFxeH+/ftq0wM8KCgIurq6cHV1FR2FCAAwYsQILF68GL/8\n8gt0dXVFxyGZun37NhYvXgw/Pz84OjrC29sbY8aMKfdBIY8fP0Z4eDguXbqEK1eu4Pr167hx4way\ns7OhUCjg4OCAt956C507d4anp6eqgG9vb68qiCv758fExCA0NBT+/v6Ij49XFe6VfcCfLjRra2vD\n3NxctSjbijg4OMDIyAhGRkYwNTVVfV18UY7erU5FxF69eqm+vnfvHoKCghAUFISdO3fil19+Qd26\nddG7d2/07t0bbm5uwlrgVAWlnYQASj9JUB5e1CrpeVcZVEXKeSqKK8uJglcVHx8PLy8vHDx4EP/7\n3//wxRdfvPJVOURERPR/ZF/gT0hIgKampiwL/MpLV588ecICPxG9stDQUGhpaeHtt98WHaVSHDly\nBJ07dy71cn8iEYYPH445c+bgr7/+wqBBg0THIZlJTEzEokWLsGHDBjRs2BA+Pj4YNmzYS/u0v4rM\nzEyEhYUhLCwMly5dwuXLl3H37l1IkgRLS0u0bNkSXbt2xdSpU+Hs7IwmTZpAS0sLd+/eRXR0tKqA\nv3PnTty/fx+xsbF48OBBiYlPzc3NYWdnh9q1a8Pc3BxOTk4wNzeHlZVViWK+paVlhRYeqzoHBwdM\nnDgREydORGFhIS5cuICgoCAcPnwYW7ZsAQC0bdtWVfBv166dWs37oaen90rthkicwMBATJkyBUZG\nRjh27BgHYhAREb0B2b/LS0xMhJmZWbl8qKlqio/gJyJ6VWfOnEGLFi2ETTZYmSRJQkhICGbNmiU6\nCpGKjY0NXF1dsWPHDhb4qdzk5eXB29sbCxYsgL6+Pn7++Wd8+OGHb/QeOC4uDqdPn0ZoaCguXbqE\nixcvIi8vD6ampmjatCneeecdzJs3Dy4uLjA1NcWNGzcQGRmJO3fu4Pfff8eNGzcQHR2tao9To0YN\n2NjYwNHREXXq1EG7du3g6OiI2rVrw8bGBk5OTq/UroZK0tTURIcOHdChQwcsWLAAmZmZOHfuHPbv\n3w8fHx/873//g76+Pjp06ICePXti4MCBaNKkiejYpKbS09MxZ84cbNiwAWPGjMHatWtLbclFRERE\nr04tCvxy7L8PlBzBT0T0qk6fPq027Xn+/vtvxMfHl2hrQFQVjB49GtOnT0dqaipHlNIb27lzJz7/\n/HMkJyfjs88+w+zZs8vUYz8qKgohISEICQnBsWPH8PDhQ2hra6N169bo0KEDpk+fDisrK8TGxuLa\ntWu4c+cOgoODERERoWqHYmFhgUaNGqFhw4bo3LkzGjZsCCcnJzg6OvJKqkpiYGCAnj17omfPnliz\nZg3u3LmjGt2/ZMkSfP7553ByclKN7u/evTsLrFQpDh06pLrq5M8//8S7774rOhIREZEsyL7An5CQ\nAEtLS9ExKgRH8BPR68rOzsaVK1fw6aefio5SKY4cOQJLS0u0aNFCdBSiEoYNG4aPP/4Yfn5+mDJl\niug4VE1FRERg6tSpCA4Oxrhx47B48WLUrl37le+fkpKCoKAgHD16FCEhIYiMjISenh46deqE6dOn\nw8bGBnl5ebh27RouXryIX3/9FU+ePIGOjg6aNm2Khg0b4v3331cV9Bs2bFhteo2rE+VrM336dOTl\n5eHMmTOq/v3e3t7Q1NREx44dVQX/1q1bV6u5Cajqi4mJwaxZsxAYGIjhw4fj559/lmULXSIiIlEU\nUkXMMlSFDBkyBFpaWvDz8xMdpdylpqaiVq1aOHLkCHr27Ck6DhFVA8ePH0f37t1x//591KlTR3Sc\nCte1a1fY29vDx8dHdBSiZ4wdOxZ37tzBuXPnREehaqagoABr167FvHnz4OjoiPXr16NDhw6vdN/I\nyEjs378fBw4cwIkTJ1BUVISWLVuiRYsWMDY2RmZmJq5cuYJ//vkHOTk5qFmzJpo3b47WrVurFmdn\n53KfrJfESEpKwrFjxxAcHIxDhw7hwYMHMDMzQ48ePdCzZ0+88847qFu3ruiYVE0p/6+aP38+LCws\n8NNPP6Fv376iYxEREVUbu3btwrBhw/CS8v13ajGCX64jN5WXOXMEPxG9qtOnT8POzk4tivspKSk4\nc+YMPvroI9FRiErl5eUFNzc3XL16Fc7OzqLjUDVx9uxZTJo0Cf/++y++/vprzJ49+4XF9qKiIoSG\nhmLXrl04cOAAoqOjYWlpibZt22L48OFISkrC+fPncenSJejr66Nly5Zo164dpkyZAhcXF9VEuSRP\n5ubm8PDwgIeHBwDg6tWrqtH9M2fORE5ODpo1a4bevXujT58+cHV1Rc2aNQWnpuogNDQU06ZNw507\ndzB37lx8/vnnqFGjhuhYREREsiT7d+sJCQmy7cGvq6sLLS0t9uAnold24sQJdO3aVXSMSvHnn39C\noVCw/z5VWd27d4ejoyO2b9+Ob775RnQcquIKCgqwZMkSLFmyBJ07d0Z4eDgaNWpU6raSJOHMmTPY\ntWsXAgMDERcXh4YNG+Ktt95CgwYNEBYWhj///BNWVlZo27Yt5syZg06dOuHtt9+Gjo5OJT8zqkqc\nnZ3h7OyMTz/9FNnZ2Th9+jSCg4MRHByM1atXQ1dXF507d1b1+G/dujUUCoXo2FSF3Kpz1SUAACAA\nSURBVL59G19//TUCAwPRrVs3hIeHo3HjxqJjERERyZrsC/yJiYmy7cEP/DeKnyP4iehVFBQU4Ny5\nc1i1apXoKJVi//796NatG4yNjUVHISqVQqHA6NGjsX79eixdupSjpOm5bt26hdGjR+PWrVvw9vbG\nhAkTSt3uzp072LJlC3x9ffHgwQPUqVMH1tbWKCoqwp07d5CQkIAePXpgxYoV6NGjBxo2bFjJz4Sq\nk5o1a6oK+QAQGxurmqx35cqV+Pzzz2FjY6Ma3d+zZ0+Ym5sLTk2ixMXFYeHChdiyZQuaNGmC/fv3\no1+/fqJjERERqQVZz55UUFCA1NRU2Y7gB/4r8HMEPxG9iosXLyIjI0MtRvDn5+fjyJEjGDBggOgo\nRC/k6emJhIQE/PXXX6KjUBW1bt06uLi4QENDA5cvX36muJ+RkYHNmzejc+fOaNSoETZs2AA9PT3U\nrFkTMTEx0NTUxJQpU3D27FkkJSVh9+7dmDx5Mov79NpsbW0xbtw4+Pn54dGjR7hw4QKmTp2KyMhI\njBkzRnVFyLx583DixAnk5+eLjkyVICUlBV9++SWcnJwQFBSEjRs34u+//2Zxn4iIqBLJeqhYYmIi\nJEmS9Qh+fX19FviJ6JWcOHECtWvXVouizvHjx5GWlob+/fuLjkL0Qo6OjujevTs2bNjA31cqITk5\nGePGjcPBgwcxd+5cLFy4sESv/WvXrmHNmjXYuXMn8vLyYG1tDS0tLWRlZaFOnTqYMmUK3N3dYWdn\nJ/BZkFxpaGigbdu2qoL+48ePcezYMRw+fBj+/v5YtmwZDA0N0b17d9UI/wYNGoiOTeUoNjYW33//\nPTZs2ABdXV0sXrwY06ZNg66uruhoREREakf2BX4Ash7Br6+vzxY9RPRK1Kn//v79++Hs7Ix69eqJ\njkL0UpMmTcLIkSMRHR0Ne3t70XGoCrh8+TLc3d1RVFSEY8eOwdXVFcB/E+YePHgQa9aswdGjR2Fo\naIiCggJIkoS33noLS5YsweDBg2FkZCT4GZC6MTIywqBBgzBo0CAAQEREhKqdz5dffonp06fD0dER\nPXr0QLdu3dC9e3fY2NgITk1lcffuXXz77bfw8fGBhYUFFi1ahIkTJ8LAwEB0NCIiIrUl6xY9CQkJ\nACDrEfzswU9Er6KgoACnT59WmwL/gQMH2J6Hqo333nsPlpaW2LJli+goVAVs3boVnTp1QoMGDXDp\n0iW4uroiLy8P69atQ4MGDTBw4ECcOXMGkiShadOm+P777xEXF4dDhw5h7NixLO5TlVC/fn1MmTIF\nf/zxB5KSknDixAmMHDkSN2/exLhx42Bra4vGjRtj8uTJ8PPzQ3x8vOjI9AJFRUUICgqCu7s7Gjdu\njJMnT+KXX35BZGQkPvnkExb3iYiIBJP9CH4tLS2YmJiIjlJh2KKHiF7F5cuX1ab//tWrVxEVFcV2\nJ1RtaGtrw9PTExs2bMC8efNKtGEh9ZGXl4ePP/4Y69atw5w5c7B06VIUFBTgl19+wf/+9z/VlalG\nRkbw8vLC+PHj0axZM8GpiV5OW1sbXbp0QZcuXQAAT548wenTp3H8+HEcO3YMmzZtQkFBAZo0aYLu\n3bujW7du6Nq1q6wHaVUXCQkJ2Lp1KzZs2ICIiAh06dIFfn5+cHd3h4aGrMcKEhERVSuyL/Cbm5vL\n+s0HW/QQ0as4duwYrKys0LhxY9FRKlxgYCBsbW3Rvn170VGIXtnEiRPx7bff4uDBg6oWF6Q+4uLi\nMGTIEFy7dg2BgYHo378/vL29sXDhQqSmpqKoqAjOzs6YO3cu3N3dUaNGDdGRicpMX18fvXv3Ru/e\nvQEAmZmZOHXqFI4fP47jx49j/fr1KCoqQtOmTdGxY0d07NgR7du3R6NGjaBQKASnl7+8vDwcPnwY\nvr6++P3336Gnp4exY8di0qRJaNq0qeh4REREVApZF/iTk5Nhbm4uOkaF0tPT4wh+InqpoKAg9OrV\nSy0+GAcGBsLd3V0tnivJR7169dCrVy+sX7+eBX41c+3aNfTr1w81a9bEhQsXcOfOHdjb2+PRo0cA\ngM6dO+Ozzz5j2zGSLQMDA/Tt2xd9+/YFADx+/BgnT57EqVOncObMGWzfvh3Z2dkwMzND+/bt0aFD\nB3Ts2BFt27Zla5hyUlhYiJCQEPj7+2PPnj1IS0tDp06dsH79egwdOhR6enqiIxIREdELyL7AX6tW\nLdExKpS+vj7S0tJExyCiKiwrKwunT5/Gr7/+KjpKhbt9+zZu3LgBb29v0VGIXtvkyZPh7u6OqKgo\nThCtJkJCQuDu7o7mzZtjxYoVGDlyJMLDw6FQKDBw4ECsWLFCLa68IirOyMgI/fv3V7Xay8/Px+XL\nl3Hu3DmcPXsW69evx1dffQUtLS04OzujY8eO6NChA9q2bYsGDRrI+urt8pSRkYHg4GD89ddf2Lt3\nLx49egQXFxd8+eWXGDp0KOrWrSs6IhEREb0i2Rf4zczMRMeoUBzBT0Qvc/z4ceTl5aFnz56io1Q4\nf39/WFlZoVOnTqKjEL22/v37w87ODmvXrsXKlStFx6EKtn37dnz44YcYMGAACgsL0bFjRwBAp06d\n8PPPP6Nly5aCExJVDdra2mjXrh3atWuHmTNnAgBiYmJw5swZnD17FmfPnsWGDRuQn58PAwMDODs7\no2XLlqqlWbNmHIEOQJIkXL9+HX/99RcOHTqE0NBQFBQUoG3btvjoo48wbNgwNGjQQHRMIiIiKgNZ\nF/hTUlJkP/LAwMCABX4ieqGgoCA0b94ctWvXFh2lwu3evRvu7u7Q1NQUHYXotWlpaWHq1KlYtmwZ\n5s+fDyMjI9GRqIIsXboUX3/9Nfr27YtDhw4hKysLTZo0ga+vL1q1aiU6HlGVZ2dnh6FDh2Lo0KEA\ngJycHFy7dg3h4eG4cuUK/v77b2zfvh0ZGRnQ1NREw4YN0aJFC1XRXx3eF+Xk5CAsLAynT59WLSkp\nKTA3N0efPn2wefNm9OnTR/YtbYmIiNSBrAv8ycnJsv+QZGhoiMePH4uOQURVWFBQkOoydzm7e/cu\n/vnnH6xevVp0FKIymzhxIhYvXozffvsN06ZNEx2HypkkSZg+fTrWr1+PevXq4eDBg9DT08OmTZvw\nwQcfiI5HVG3VqFEDbdq0QZs2bVTrJElCZGRkiaL/2rVr8eDBAwCAiYkJGjZsiEaNGqFRo0Zo2LAh\nGjZsCAcHBxgbG4t6KmWSnJyMK1eu4OrVq7h69arq69zcXNjY2KBTp06YP38+OnfujFatWrGNERER\nkczIvsAv9x78xsbGSE9PFx2DiKqomJgY3Lx5E2vWrBEdpcIFBATA3NwcXbp0ER2FqMxMTU0xatQo\nrFmzBlOmTGERRkYKCwsxYcIE/PbbbwCAyMhIDBs2DFu2bEHNmjUFpyOSH4VCgfr166N+/foYMmSI\nan1KSgquXLmC27dv486dO7h16xbOnDmDe/fuobCwEMB//xc7ODiolrp168LKygq2trawtLSEnZ1d\npU7wm5ubi8TERNy/fx+RkZGqJSoqCnfv3sXDhw8BAObm5mjRogU6d+6MGTNmoHPnzpzThYiISA3I\nvsAv9x78RkZGHMFPRM91+PBh1KxZE507dxYdpcLt2bMHgwcPhpaWrP+0kRqYOXMmfv31Vxw+fBh9\n+/YVHYfKQUFBAcaMGYOAgAAUFhbCxMQE+/btg6urq+hoRGqnVq1a6N69O7p3715ifW5uLiIjI3Hv\n3j3VEhUVhdDQUMTGxuLRo0eqEwDAf3OhmZubw9TU9JlFS0sLRkZG0NTUhIGBAbS1tZ+b58mTJ8jO\nzsbjx4+RmZmJ7OxspKamIjExEYmJiYiPjy8xoEtHRwf29vZwdHTEW2+9hQEDBsDZ2RnOzs6wsbEp\n/x8YERERVXmyrYLk5+cjMzNTLUbw5+bmIjc3F7q6uqLjEFEVExQUhK5du8p+dOjdu3dx6dIlLF++\nXHQUojfWtGlTuLm5Yc2aNSzwy0BeXh4GDBiAI0eOQJIk9OnTB/v27YOOjo7oaERUjK6uLpo0aYIm\nTZqUentRURESEhLw6NEjxMbGIiEhAcnJyUhNTVUtcXFxuH79OgoKCpCRkYGCggJkZmYiPz//ufvV\n09ODnp4ejIyMYGBgAD09PZiYmKBVq1awsLCAlZUVrKysYG5ujjp16sDOzo5XdxEREVEJsi3wp6Sk\nQJIktRjBDwDp6emwtLQUnIaIqpKioiKEhITgiy++EB2lwu3YsQOWlpbPjMYjqq5mzJiBQYMG4ebN\nm88tNlHVl5ubC1dXV1y8eBEaGhr45ZdfMHnyZNGxiKgMNDQ0YG1tDWtra7Ro0UJ0HCIiIiIV2Z76\nT05OBgC1KfCzTQ8RPS0sLAxJSUno3bu36CgVbufOnRgxYgTb85Bs9OvXD05OTli1apXoKFRGeXl5\neOutt3Dx4kUYGhrixo0bLO4TEREREVG5Y4G/mjM2NgbAAj8RPSsoKAg2NjZ46623REepUGFhYbh9\n+zZGjRolOgpRudHQ0MDs2bPh4+ODBw8eiI5Dr6mwsBANGzZEREQE6tati0ePHqFRo0aiYxERERER\nkQzJtsCfkpICALLvwV+8RQ8RUXFBQUHo3bs3FAqF6CgVytfXF/Xr10ebNm1ERyEqV2PHjoW5uTl+\n/vln0VHoNUiShDp16iA6OhqtW7dGdHS07OdBISIiIiIicWRd4DcwMJD9BGYcwU9EpcnIyMC5c+dk\n356nqKgIAQEBGD16tOxPZJD60dXVxYwZM7Bu3TqkpaWJjkOvyN7eHg8fPoSbmxsuXbokOg4RERER\nEcmcbAv86enpqtHtcqatrY0aNWpwBD8RlRASEoLCwkK4ubmJjlKhQkJCEBsbixEjRoiOQlQhpk6d\nCoVCgfXr14uOQq+gcePGePDgATp16oTg4GDRcYiIiIiISA3ItsCfmZkJQ0ND0TEqhbGxMUfwE1EJ\nR44cQcuWLWFpaSk6SoXasWMH2rZty97WJFtGRkaYOHEiVq9ejZycHNFx6AVatGiB27dvo23btggN\nDRUdh4iIiIiI1IRsC/xPnjyBgYGB6BiVwsjIiAV+Iirh4MGDeOedd0THqFDZ2dnYs2cPR++T7M2c\nOROpqanYvn276Cj0HB4eHvjnn3+gpaWFixcvQqFQcOHChQsXAcsnn3wi+k8CERFRpdMSHaCiZGZm\nqk2BnyP4iai4K1euICoqCoMGDRIdpUL98ccfePLkCQv8JHu2trYYO3YsVqxYAS8vL2hpyfbtW7X0\n7bffIjAwEMbGxkhPT8esWbPQoUMH0bGoDIYOHcrXT82tXr0aADBr1izBSagsvv/+e8TExIiOQURE\nVOlk+wkxIyNDbQr8RkZG7MFPRCr79u1D7dq10bZtW9FRKtTWrVvRt29fWFtbi45CVOG++uor+Pj4\nwNfXF56enqLj0P937NgxzJ07F9ra2oiOjoaJiQnat28PDw8P0dGojPj6qbeAgAAA4O9ANaV8/YiI\niNSNbFv0qNMIfrboIaLi9u3bhwEDBkChUIiOUmFiY2Nx9OhReHl5iY5CVCns7e0xatQoLF68GAUF\nBaLjEICUlBT06tULCoUCZ8+ehbGxsehIRERERESkhljglwG26CEipbi4OFy6dAkDBw4UHaVCbd26\nFSYmJujXr5/oKESVZt68eYiOjoafn5/oKGpPkiQ0a9YMhYWF+O677+Di4iI6EhERERERqSkW+GWA\nLXqISGnv3r3Q09ODm5ub6CgVavv27Rg9ejR0dXVFRyGqNPXr18fIkSPxv//9j6P4BRs9ejQePnwI\nFxcXfPrpp6LjEBERERGRGpNtgV+devBzBD8RKe3btw99+vRBjRo1REepMKdPn8atW7fYh5zU0tdf\nf42oqCjs2rVLdBS1FRAQgB07dkBbWxvBwcGi4xARERERkZqTbYFfnUbwGxoacgQ/ESEzMxPHjx/H\ngAEDREepUFu3boWzszNatWolOgpRpWvQoAGGDx+OJUuWoLCwUHQctRMfH49Ro0YBALZs2QITExPB\nid6cQqEodSntdjs7OyQmJr7y4xBR+frzzz8xaNAgWFtbQ0dHB9bW1hgwYAD++OOPZ7Z92bH9su1e\nZyEiIiKxWOCXARMTE6SlpYmOQUSC/fXXX8jPz5d1X/rs7GwEBgbigw8+EB2FSJivvvoKd+/eha+v\nr+goaqWoqAhdu3ZFfn4+unbtqir0V3eSJEGSpFf6PjY2FiNGjCj15FLx7Z5+DCJ6M/n5+Rg9ejRG\njRqFHj164OLFi8jMzMTFixfh5uYGT09PuLu7Izs7W3Wflx3bpa0v7evnPQ6PcyIioqqDBX4ZMDMz\nQ3p6OvvxEqm5ffv2oWPHjrCwsBAdpcIEBAQgKytLNoU1orJo1KgRxo4diwULFiAvL090HLUxd+5c\n3LlzB9ra2vD39xcdRwhra2scPXoU8+fPFx2FSK189NFH2LVrF4KDgzFz5kzUqVMHOjo6qFOnDj7+\n+GMEBQVh3759mDhxouioREREJIAsC/ySJCE7Oxv6+vqio1QKMzMzSJKE1NRU0VGISJDCwkIcOnQI\nAwcOFB2lQq1fvx6DBw+W9UkMolexYMECPHz4EBs3bhQdRS2EhYXh+++/h0KhwKeffgorKyvRkYTw\n9/eHlpYWli9fjgMHDoiOQ6QWzp8/j/Xr18PLywtt2rQpdZt27dph7Nix2L59O06dOvXG+3ydkfkc\nxU9ERCSeLAv8+fn5kCQJOjo6oqNUCjMzMwBAcnKy4CREJEpoaCiSkpJkXeC/efMmzpw5w9FpRADq\n1q2LyZMnY8mSJcjKyhIdR9Zyc3Ph7u6OoqIi6OvrY86cOaIjCdOlSxcsW7YMkiRhzJgxiIqKEh2J\nSPbWrVsHABgyZMgLt/Pw8AAA/PrrrxWeiYiIiKoW2Rb4AUBbW1twksrBAj8R7du3D40bN0bDhg1F\nR6kw3t7ecHR0RPfu3UVHIaoS5s2bh8zMTPz000+io8jaJ598gpiYGGhra+OLL76Aqamp6EhCffbZ\nZ3jvvfeQlpYGd3d35OTkiI5EJGvKEfnOzs4v3K558+YAgNOnT1d4JiIiIqpaWOCXARb4iWj//v0Y\nNGiQ6BgVJjs7G9u3b8ekSZOgoSHLP11Er83CwgIzZ87EihUr2Kavgly4cAHe3t7Q0tKCsbExZsyY\nITpSlbBlyxY0aNAA4eHhmD59uug4RLIWFxcH4P8+8z2P8vaHDx9WeCYiIiKqWmRZJVG3Ar+uri70\n9fWRkpIiOgoRCXD9+nXcvXtX1u15du3ahSdPnsDLy0t0FKIqZfbs2dDQ0MCqVatER5GdwsJCjBs3\nDgCgpaWF2bNnw8DAQHCqqsHY2Bi7d+9GzZo1sWnTJmzZskV0JFlSKBRQKBRqu396PcrXiq8ZERGR\n+pF1gV9LS0twkspjZmbGEfxEamr//v2wsLBAu3btREepMBs2bMDgwYNhaWkpOgpRlWJsbIwvvvgC\nq1evRmxsrOg4srJmzRrcunUL5ubmKCgoUBX76T/NmzeHt7c3AGDatGn4+++/BScikqfatWsDwEsH\ncyUlJQEAbGxsSqxXXvlYWFj43PsWFhbyCkkiIqJqTJZ/xQsKCgCoV4G/Vq1aLPATqanAwEAMGjQI\nmpqaoqNUCE6uS/RiM2bMQO3atTFv3jzRUWQjLi4OCxYsQFFREWrVqgV3d3eeYCyFp6cnJk6ciOzs\nbAwZMgRpaWmiIxHJjqurKwDgn3/+eeF2ytu7dOlSYr2hoSEAID09/bn3TU1NhZGR0ZvEJCIiIoFk\nWeBXRxzBT6SeoqKicPnyZQwdOlR0lArj7e2NBg0aoEePHqKjEFVJOjo6WLp0KX777TdcunRJdBxZ\nmD59OgoKCuDi4oLbt29j0qRJoiNVWT/++CNcXFwQEREBT09P0XEqXXx8PCZNmgQ7Ozvo6OjAzs4O\nkydPxqNHj0psp2x383T7lBetf3qb8ePHl3q/Gzdu4J133oGRkREMDAzQr18/3Lx5s0L3n56ejlmz\nZsHR0RE1atSAmZkZOnbsiNmzZ+PChQtlzgkACQkJmDJliupnamtri4kTJyI+Pv6ZbXNycrBixQq0\natUK+vr6qFGjBho3bozJkyfj3Llzz2xfHU2ePBkAsHv37hduFxAQUGJ7pUaNGgEArl279tz7Xrt2\nDQ0bNnyTmERERCSQLAv8yssLi4qKBCepPCzwE6mnXbt2oVatWujevbvoKBUiMzMTPj4+mDhxInvK\nEr3A0KFD0aFDB8yePVt0lGrv0KFD+P3335GbmwsHBwc0atTomRGx9H90dXURGBgIU1NT7Nu3T3Sc\nShUfH4+3334bBw4cgI+PD5KTk7Ft2zbs3bsX7dq1K1HklySp1Md4lfWSJEGSJGzcuLHU2ydMmICv\nv/4acXFx2Lt3Ly5fvoxOnTrh3r17FbZ/T09P/PDDD5g5cyaSk5Px8OFDbNmyBZGRkSVaBr5uzkeP\nHuHtt9/G77//js2bNyMlJQV+fn4ICgpCx44dS1wlkpGRAVdXVyxbtgzTpk1DZGQkkpKSsG7dOpw8\neRIdOnQo9blVN+3bt8ekSZOwZcsWhIWFlbrN+fPn4ePjg0mTJqFt27YlbhswYAAAvHCujE2bNqFf\nv37lF5qIiIgqFQv8MsECP5F6CggIwHvvvSfblmS//fYb8vLy8MEHH4iOQlSlKRQKrFy5EidOnMCB\nAwdEx6m2srKyMG3aNJiYmGDIkCE4evQoJkyYwBOML+Hg4IDt27er3c9p/vz5ePDgAb755hv06NED\nhoaGcHNzw4oVKxAdHY0FCxZUSo6vvvoKnTp1goGBgWr/qampWLhwYYXt89ixYwAAW1tb6OvrQ0dH\nB40aNcLPP//8RjkXLFiA6OhoLFu2DL1794aBgQFcXV2xevVqREVF4bvvvlNtu3DhQoSFhWHx4sUY\nP348rKysYGBggG7dusHX17fCnrsIP/30Ezw8PNCrVy/8+OOPiImJQX5+PmJiYrBmzRr06dMHw4YN\nw08//fTMfWfOnImmTZti69atmDZtGq5du4bc3Fzk5ubi6tWrmDJlCi5evIiPP/5YwDMjIiKi8iDr\nAv/zRqTIEQv8ROpH2Z7Hw8NDdJQK4+3tjZEjR8LMzEx0FKIqr3379hgyZAhmz56N/Px80XGqpeXL\nlyMhIQHp6eno1q0b0tPTZf1/LIBn2rO86PvSWrkovfvuu2o3D4TyZNrTLeR69uxZ4vaK1rFjx1L3\nHxQUVGH7dHd3BwB4eHigbt26GD9+PHbt2gVzc/PnfgZ7lZz79+8HAPTt27fEtsqraJS3A//NQQQA\ngwcPfmZfrVq1ktVnQW1tbfj6+mL79u0IDg6Gi4sL9PX10bp1axw5cgTbt2/H9u3boa2t/cx9DQ0N\ncfbsWSxatAgXLlxAp06doK+vDwsLC3h6esLCwgLnz59/bg/+l/0fQUREROLJcsin8g0HR/ATkZzJ\nvT3PsWPHcPXq1RdeUk5EJS1fvhxNmzbFhg0bMG3aNNFxqpWEhASsWbMG5ubmaNGiBcLDw9GmTRvU\nrVtXdLQK9bIi6OsUSRcvXozFixe/aaRqIzExEQBgbm5eYr3y+4SEhErJYWxsXOr+lfkqwubNm9G/\nf3/s2LEDISEh2LRpEzZt2oS6deti7969aNmyZZlyKn9mNjY2pe43IiJC9fXDhw8BANbW1m/2ZKqR\nfv36lamVjpGREebPn4/58+e/9n3ldKKEiIhIrmQ5gl9TUxMAUFhYKDhJ5WGBn0j9KNvzlDZaSw7W\nrl2Ljh07wsXFRXQUomqjfv36mDFjBhYsWMD3Ba9p0aJF0NHRQXR0NObOnYvDhw+jf//+omNRFWZp\naQkASEpKKrFe+b3ydiXlIKTiV9ikp6e/cY6nj3Xl/i0sLCp0/++//z4CAwORlJSEkydPok+fPrh/\n/z7GjRtX5pxWVlYAgJSUFFXv/+LLkydPntlWWegnIiIiUleyLPDr6uoCAPLy8gQnqTy1atVCbm4u\nsrKyREchokog9/Y8cXFx2LdvH0cgE5XB/Pnzoauri6+//lp0lGojKioKGzduhKWlJdzc3GBhYYEH\nDx6oWogQlUY5eenRo0dLrA8ODi5xu5JypHnxgnR4ePhzH19PTw/AfwX5rKysZ64UUDp9+nSp++/d\nu3eF7V+hUCAmJgbAf+1RXV1d4e/vDwC4efNmmXMq2+0cP378mfufOnWqxMS5yjZBf/zxxzPbnjt3\nrsRkv0RERERyJssCf82aNQEA2dnZgpNUHmV/ao7WI1IPAQEBMDExQbdu3URHqRDe3t4wMTFRfXgn\noldnaGiI5cuXY/369QgLCxMdp1qYN28eateujZs3b+KLL77A8ePHYWBggLZt24qORlXYokWLYG9v\nj88//xwhISHIyMhASEgIvvjiC9jb2z8zyW2vXr0AAN999x3S09Nx69YtbNy48bmP37x5cwDAhQsX\nsH///hLF7eLWrVuH0NBQZGZmqvZvampa4fsfP348rl+/jtzcXDx69AjffPMNAKBPnz5lzrlw4UI4\nOTlh2rRpCAwMRHJyMjIyMnDgwAF4eXlhxYoVJbZt1qwZ5s+fj19//RWPHj1CZmYmDh8+jLFjx2LZ\nsmXPfW5EREREsiLJlJaWlrRjxw7RMSrNnTt3JABSeHi46ChEVAnatGkjffjhh6JjVIjc3FzJ2tpa\n+vrrr0VHIaq2ioqKJFdXV6ljx45SUVGR6DhV2pUrVyQNDQ2pZ8+eUpMmTaSioiJpwoQJUteuXV/7\nsQBI/v7+5R+SKkVZXr/4+Hhp0qRJko2NjaSlpSXZ2NhIEydOlOLj45/ZNjExURo5cqRkYWEh6evr\nSwMGDJDu378vAVAtxV28eFFq0aKFpKenJ7Vv3166ffv2M3kBSFFRUVL//v0lQ0NDSV9fX+rbt690\n48aNCt1/aGio5OnpKTk4OEja2tqSsbGx1KJFC2np0qXSkydP3ihnSkqK9MknVu2J0gAAIABJREFU\nn0j16tWTtLW1JSsrK2nAgAHS2bNnn9k2IyND+uqrr6RGjRpJOjo6kpmZmdS7d2/p5MmTpbxaL+fh\n4SF5eHiU6b4kHl8/IiKSG39//2feo5XiW4UkyXPWHENDQ6xZswYffPCB6CiVIiUlBWZmZggODoab\nm5voOERUge7duwdHR0ccOnTouaPkqjNfX194eXkhKioKdnZ2ouMQVVvh4eFo27Yttm7ditGjR4uO\nU2W9++67iI+Px7///oslS5ZgxowZcHFxQbdu3bBq1arXeiyFQgF/f38MHTq0gtJSRapur5+yp35V\n/zhXXXICUL32u3btEpyEyoKvHxERyc2uXbswbNiwl72P+k6WLXqA/9r05OTkiI5RaUxMTKCpqckW\nPURqQNmep3v37qKjVIhVq1bBw8ODxX2iN9SqVSuMHz8es2fPLpeJPOXo1KlTOHToEFxdXVFQUIAx\nY8ZAkiTcunULzs7OouMRERERERG9lGwL/Hp6emo14ayGhgbMzMyQkJAgOgoRVbCAgAC8//770NHR\nER2l3IWEhCA8PBwff/yx6ChEsrB06VLk5+djyZIloqNUSQsXLkSPHj1w6tQpjBgxAqampnj48CGy\nsrLg6OgoOh4REREREdFLybbAb2RkhMePH4uOUamsrKzw6NEj0TGIqALdu3cPYWFh8PDwEB2lQqxa\ntQpdu3bF22+/LToKkSyYmZlh6dKlWLNmDa5evSo6TpVy6dIlhISEYNCgQQgPD8ekSZMAANHR0QAA\nBwcHgemIXkzZ9ubpr6ua6pKTiIiIqDrTEh2gopiamiIlJUV0jEplbW2N+Ph40TGIqAIFBgbKtj3P\n7du38ddff+GPP/4QHYVIViZOnAgfHx9MmDABZ86cgYaGbMd3vJaVK1eiefPmuHv3Lpo1a6Y6sah8\n/2hubl6mxz137hwLmVThqkM/e6D65CwuJiYGAQEBomNQGcTExLDFIxERqSXZFvhr1aqF1NRU0TEq\nFQv8RPIXEBCAwYMHy7I9z8qVK9GgQQP069dPdBQiWdHQ0MD69evh4uKCjRs3YuLEiaIjCXfv3j0E\nBgZiy5YtmDNnDqZOnaq6LT09HVpaWtDT0yvTY69evRqrV68ur6hEVMnOnj2Ls2fPio5BZSTXq1yJ\niIheRLZDuExNTdWuwM8WPUTy9u+//+LixYsYOXKk6CjlLiEhAb6+vvjkk084upioAjg7O2PmzJmY\nM2cO4uLiRMcR7ocffoC1tTWsrKzw8OFDDBkyRHVbYWEhNDU1y/zY/v7+kCSJSzVciID/CsSifxe5\nlG1hcZ+IiNSVbKso6lrg5wh+Ivnavn07rK2tZdmeZ+3atahZsyZGjx4tOgqRbC1atAi1atXCZ599\nJjqKUKmpqdi0aRNmzZqFPXv2oGXLlmjcuLHq9ho1aiAvL48FXyIiIiIiqhZkXeBXxx78jx494gdS\nIpnauXMnhg8f/kYjS6uinJwcrF+/HtOnT4e+vr7oOESypaenh7Vr12LHjh04ePCg6DjCeHt7Q0ND\nA15eXtizZw+GDh1a4nZjY2NIkoT09HQAwDfffIOBAweisLBQRFwiIiIiIqIXkm2BXx3b1VhbWyMv\nL0/tTmwQqYMLFy7gzp07GDVqlOgo5W7btm1IS0vDlClTREchkr2+ffvC3d0dM2bMQHZ2tug4lS43\nNxc///wzpkyZgmvXriEhIaFEex4AsLe3BwBERUUhPDwc8+bNw4EDBzB//nwRkYmIiIiIiF5ItgV+\nGxsbpKenIzMzU3SUSmNtbQ0Aandig0gd+Pr6wsnJCS4uLqKjlCtJkrBmzRqMGTNG9X8YEVWsNWvW\nIDExEQsWLBAdpdLt2bMHiYmJ+Oijj3DkyBHUr18fTk5OJbZxcHCAjo4Orl69Ck9PTygUCkiShOXL\nl2Pv3r2CkhMREREREZVO1gV+AGo1kZyVlRUAsA8/kcwUFhZi165dGDNmjOgo5e7AgQO4desWZs2a\nJToKkdqwtbXFd999h1WrVuHMmTOi41SqzZs3o2/fvrC1tUVwcDB69er1zDa6urp4++23sWbNGty4\ncQMFBQWq28aMGYN79+5VYmIiIiIiIqIXk22B39bWFoB6FfjNzc2hra3NAj+RzAQHByM+Ph7Dhw8X\nHaXcrVq1Cn379kXTpk1FRyFSKxMmTEDPnj3x4YcfIicnR3ScShETE4Njx45h3LhxSE9PR1hYGNzc\n3ErddtiwYbhy5UqJvvuSJCEnJwfu7u7Iy8urrNjCKBQK1VIR/Pz80K5dO5iamr5wXxWdg0jOeBwT\nERGpB9kW+C0sLKCjo6NWBX6FQgFLS0sW+IlkxtfXFx06dHimjUR1d+nSJZw4cQKffvqp6ChEakeh\nUGDDhg2IjY3FsmXLRMepFFu2bIGJiQneffddHDt2DEVFRejWrdsz2xUUFGDTpk3Q0Hj2bXJ+fj7+\n+ecfzJkzpxISiyVJUoU9to+PD0aMGAEzMzP8/fffyMnJwe7duys9B5Hc8TgmIiJSD7It8CsUClhb\nW6tVgR9Qz8mFieQsKysLf/zxhywn1121ahWaN2+O7t27i45CpJbs7e2xdOlSLF++HJcuXRIdp0JJ\nkoRt27Zh7Nix0NXVxdGjR9G6dWuYm5s/s+0333yDf/75B/n5+aU+VkFBAX788UcEBgZWdGzZ+v77\n7wH893fA3t4eurq6eP/996tEEXDYsGElRhtzUa8lICBA9K9gtVGVj2MiIiJ1oyU6QEVycHBAZGSk\n6BiVytramgV+IhnZt28fsrOzMWTIENFRylVMTAwCAwOxefNmKBS8XJtIlGnTpiEwMBAffvghLl68\nCG1tbdGRKsTJkycREREBT09PAMD58+fRqVOnZ7a7fv06Fi1ahKKiopc+ppeXF1q2bIkGDRqUe165\nu3PnDgBUyZ/drFmz0KFDB9ExSJDVq1eLjlBtVOXjmIiISN3IusDv5OSEf//9V3SMSmVtbY3Y2FjR\nMYionPj6+qJ3796qSbTl4ocffoClpSWGDh0qOgqRWtPQ0MDWrVvh7OyMb7/9FvPmzRMdqUJs2bIF\nLi4uaNGiBQoKCnDt2jVMmzbtme2+//575OfnQ1tb+7kj+IH/rgjIy8vD4MGDERYWhho1alRkfNnJ\nzs4GgCp5Qql9+/bw8PAQHYME4Qj+V1eVj2MiIiJ1I9sWPcB/ownu3r0rOkalsrKyYg9+IplISUlB\nUFCQ7NrzpKenY+PGjZg+fTp0dHRExyFSe/Xq1cOiRYuwePFiXLlyRXSccpeZmYndu3dj3LhxAICb\nN28iOzsbrVu3fmbbb7/9Fj4+PhgzZgzq1KkDANDU1Cy1gJWfn4/bt29j+vTpZc5WvDVIXFwc3N3d\nYWhoCDMzM3h6eiI9PR337t3DwIEDYWRkBGtra3h5eSEtLe2ZxwoODsbAgQNhamqKGjVqoHXr1vDz\n83tmu/T0dMyaNQuOjo6oUaMGzMzM0LFjR8yePRsXLlx4Yd42bdqUyFyWyd+LX7X1vDYpryohIQFT\npkyBnZ0ddHR0YGtri4kTJ/K9MFUqHsc8jomIiISTZCwwMFDS0NCQsrOzRUepND/88INkZWUlOgYR\nlYNffvlF0tfXlzIyMkRHKVeLFy+WjI2NpdTUVNFRiOj/KywslLp16yY1bdpUdu+bfHx8JB0dHSk5\nOVmSJEnatm2bpKurK+Xl5b30vtHR0dLWrVslT09PydbWVgIgaWpqStra2hIA1eLj4yNJkiQBkPz9\n/V8rn/IxRo8eLd24cUNKS0uTpk2bJgGQ+vXrJ7333nuq9VOmTJEASBMmTCj1cQYPHiwlJiZK0dHR\nUq9evSQA0l9//VViu0GDBkkApB9++EHKzMyUcnNzpVu3bknvvfee9PRHA2U2pYcPH0rNmjWT5s6d\n+1rP8XnP+U3Wx8fHS/b29pKVlZV0+PBhKSMjQzp58qRkb28v1atXr0x/Y8ry+pG8eHh4SB4eHq99\nPx7HZVtf3sdxWV8/IiKiqsrf37/Uv6tP+VbWBf6///5bAiDduHFDdJRK4+fnJ2loaEj5+fmioxDR\nG+rUqZM0atQo0THKVWZmpmRhYSF9/fXXoqMQ0VOioqIkIyMj6bPPPhMdpVwNHDhQ6tevn+r7jz/+\nWGrTpk2ZHisyMlLavHmzNHr0aMnKykpVsKpRo4YUERHxRgX+48ePq9bFxsaWuv7BgwcSAMnW1rbU\nx4mKilJ9f/PmTQmA5OrqWmI7IyMjCYAUEBBQYr1yn6VlkyRJunfvntSgQQNp6dKlr/X8SlMehcFJ\nkyZJAKRNmzaVWL9nzx4JgPTll1+WKRcL/OrtTQv8PI7FHsfFXz97e3upSZMmUps2baQ+ffpIn332\nmfT7779LT548ea3HJCIiEulVC/yyb9GjUCjUqk2PtbU1ioqKkJSUJDoKEb2Be/fu4cyZMxg5cqTo\nKOXK29sbWVlZ+Oijj0RHIaKnODg4YPXq1Vi1ahWOHz8uOk65yMzMxJEjR+Du7q5ad/v2bbz11ltl\nerx69eph3Lhx+O233xAfH49///0Xv/76Kzw9PaGh8WZvq4u3DLK2ti51vY2NDQAgLi7umftLkgQH\nBwfV905OTgCAGzdulNhO+bPw8PBA3bp1MX78eOzatQvm5uaQJKnUbLdv34arqyssLS3x5ZdfvuYz\nqxj79+8HAPTt27fE+i5dupS4nagy8Th+PRV5HOfl5eHRo0e4efMmjh49iu+++w7vvfceDAwMULt2\nbYwYMQKRkZFlD09ERFSFyLrAr6+vDwcHB1y9elV0lEpTu3ZtAMDDhw8FJyGiN/Hbb7/BwsICvXv3\nFh2l3OTk5GD16tWYMmUKLCwsRMcholJ88MEHeO+99zBu3Dg8fvxYdJw3duDAAeTn52PAgAGqdQ8e\nPFD1139T9evXx/jx47Fu3boSRbmyMDQ0VH1d/GRBaeufLuClpaXhyy+/RJMmTWBoaAiFQgEtLS0A\nQHJycoltN2/ejN27d8Pd3R2ZmZnYtGkThg0bBicnJ/z999+lZuvevTuSk5Nx5swZ7Nix442eZ3lJ\nSEgA8F+xtHjfb3NzcwBARESEyHikpngcv56KPI7j4uKQnJyMzMxM5OfnIyUlBbt378bQoUOhUCjg\n7++P+vXro3HjxrI5qU1EROpL1gV+AGjRooUsJ4x7Hjs7OwD/fXglourL19cXo0aNUn2wk4ONGzci\nJSUFs2bNEh2FiF7A29sb2dnZsjhW9+7di65du6qKRQAQGxsLW1tbganK39ChQ7F8+XIMGzYM0dHR\nkCTpuaN4AeD9999HYGAgkpKScPLkSfTp0wf3799XTUT8tJ9++gk///wzAGDatGmIiYmpkOfxOqys\nrAD8NyG98vkWX548eSI4IdHr4XFcscexqakp3n//ffj5+SEuLg6xsbEYNmwYoqKi0L17d3Tp0gXp\n6enltj8iIqLKpBYF/ueNYpAjPT09mJmZscBPVI2Fhobi9u3b8PT0FB2l3OTn52PlypUYP3686tJ0\nIqqaLCwssGHDBmzevBmBgYGi45RZYWEhjhw5gn79+qnWZWVlITU1VTUgQi5Onz4NAPj0009Rq1Yt\nAEBubm6p2yoUClVhT0NDA66urvD39wcA3Lx5s9T7uLu7Y9y4cRg0aBDS0tIwbty4FxYeK8PgwYMB\noNSRt6dOnUKHDh0qORHRm+FxXFJFH8e1a9eGn58f0tPT4eHhgdDQUNjY2ODcuXMVtk8iIqKKohYF\n/oiICGRmZoqOUmnq1q3LAj9RNbZt2za0bNkSLVq0EB2l3Gzbtg1xcXGYPXu26ChE9AoGDhyIcePG\nYerUqdW27d/58+eRnJxcordzbGwsAMhuBL+rqysAYPny5UhLS0NKSsoLe2yPHz8e169fR25uLh49\neoRvvvkGANCnT58X7mfDhg2wsLBAcHAwfvzxx/J7AmWwcOFCODk5Ydq0aQgMDERycjIyMjJw4MAB\neHl5YcWKFULzEb0uHsdijuMaNWpg165dCA4ORlFRETp37oy9e/dW+H6JiIjKk1oU+IuKinDt2jXR\nUSpNnTp1WOAnqqays7MRGBgoq9H7hYWF+Pbbb+Hp6Ql7e3vRcYjoFf3000+oVasWRo4cicLCQtFx\nXtuhQ4fg4OCAxo0bq9YlJSUBACwtLUXFKkGhUJTL1z4+PhgzZgw2bdoEKysrdO3aFe3atSt129DQ\nUFhbW6N///4wNDREo0aNcPDgQSxduhQ7d+5UbWdiYlLi/oGBgbCyskJiYiIA4OOPP4ZCoUBYWJiQ\n52xubo7z589jxIgRmDNnDmrXrg0nJyds2LABvr6+6Nq162vlIiorHsfyOI579OiBu3fvQk9PD+7u\n7jh16lSl7ZuIiOhNyae583PUq1cPRkZGCA8PR/v27UXHqRR16tRRq3kHiORkz549yMzMxPDhw0VH\nKTd+fn6IjIzEn3/+KToKEb0GfX19+Pr6omPHjli5ciXmzp0rOtJrCQoKwjvvvFNiXX5+PgBAW1tb\nRKRnPK89xuuut7S0hI+PzzPrhw4d+sy6Tp06oVOnTi/NlpaW9sr7fx3l9ZyB/3pqr1q1CqtWrXrj\nXFSy8Cq6dUt1wuO47OuBqnUc29nZITw8HE2bNkXv3r1x586dcpuUnYiIqCLJfgS/QqFA27Zt1aqX\nHkfwE1Vf27Ztw7vvvgtra2vRUcqFJElYsWIFRowYAScnJ9FxiOg1ubi4YMmSJfjqq69w9uxZ0XFe\nWUZGBi5fvowePXqUWK+8EkFOE5gTlYWrq6uqJYzSi4qwpW1PJEf169fHxo0bkZOTgwEDBlTLK9iI\niEj9yL7AD/w3wkE5aZE6qFu3LuLi4vhmhKiaiY2NRUhIiKza8+zZswfXr1+vdiN/iej/zJ49G336\n9MHo0aPx+PFj0XFeSWhoKAoLC9GlS5cS65XvjTQ1NUXEIqo0CoWixIj8pxUVFaGoqOiVH+95279s\nP0TV0ZgxY9CuXTtcvXoVa9asER2HiIjopdSmwB8REVFtJ4l7XXXq1EF+fj7i4+NFRyGi1+Dj4wNj\nY2P069dPdJRys2LFCri7u6NZs2aioxBRGSkUCmzevBlZWVmYMGGC6Div5MSJE2jcuDGsrKxKrGeB\nv2Ioi7wvW6jqOH369GsNgHrd7an64XFc0ooVK1BUVISFCxciOTlZdBwiIqIXUosCf/v27aGpqVmt\nLi1/E8o+gWzTQ1S9+Pj4YOTIkdDV1RUdpVz8+eefCAsLw+effy46ChG9IUtLS2zduhUBAQHYtm2b\n6DgvFRoa+szofQDQ0dEBAOTk5FR2JFmTJOmVFiKqungcl9StWzc0atQIBQUFWLlypeg4REREL6QW\nBX4jIyM0a9YMZ86cER2lUtja2kJTU5MFfqJq5Ny5c7h165as2vMsX74c/fr1g4uLi+goRFQO+vTp\ng08++QTTp0/HrVu3RMd5rsLCQoSHh6Ndu3bP3GZjYwMAiIuLq+xYRGX2vNHTL1r/9Dbjx49/6f3K\nsv/n7ae0kd9+fn6q7R0cHNRuRDhVP8OGDYO2tjZ+/fVXnhgmIqIqTS0K/MB/bXpCQ0NFx6gUWlpa\nsLa2xv3790VHIaJXtG3bNjRt2hRt2rQRHaVcHD16FKdPn8YXX3whOgoRlaPly5ejefPmGDJkCLKy\nskTHKdW1a9eQlZWFtm3bPnObnZ0dgP/mPCGqLp43avpV1itHXW/cuPGl93uT/T+9H0mSEBwcDACo\nXbs2cnNzMXz4cNX2X331Ffr3769WI8Kp+unbty8eP36M9PR0BAQEiI5DRET0XGpT4O/RowfCwsKQ\nkpIiOkqlqFu3LkfwE1UTOTk58Pf3h5eXl+go5Wbp0qVwc3NDp06dREchonKkra0NPz8/PHr0qMr2\n47948SL09PTQuHHjZ27T19eHsbExYmJiBCQjUi9ubm5o0aIFHj58WGL0PgD8+OOPmDlzpqBkRK+m\nVatW0NXVhbOzMwv8RERUpalNgd/NzQ0KhQIhISGio1SKOnX+H3v3HRbF9b4N/F46CCuggnRERbFr\nULEHG4JdVCTGQqyJ5qsYGyYaYolGJbaYRBALioKIHWMvSBGIir2iqEhHepF23j/8sa8EkLa7Z4Hn\nc117BWbOzNyzyxh45sw5RlTgJ6SOOHnyJDIyMuDo6Mg7ilgEBQXh6tWr+PHHH3lHIYRIgJGREfbv\n3w8fHx94enryjlPGnTt30KVLFygoKJS73sDAgAr8hEiJs7MzAGDLli2iZVeuXEFxcTEGDx7MKxYh\nVaKsrIx27dpBV1cXly5dktkn1wghhJDy//KphzQ1NdGjRw+cP38e48eP5x1H4oyNjXH9+nXeMQgh\nVbB//34MHTpUNHREXbdq1Sr07dsX1tbWvKMQQiTEzs4Oy5Ytw/z589G1a1d069aNdySRBw8eoGPH\njhWub9euHe7evSux42/ZsgVHjx6V2P4JqUscHR3h4uKCyMhIXLlyBQMHDsS2bdtkuvd+aGgoJk6c\nyDsGqYHQ0FD06tVLrPs0MTEBYwy5ubkIDg7GkCFDxLp/QgghRBwaTA9+ABg6dCjOnTvHO4ZUGBkZ\n0Rj8hNQBsbGxuHjxIqZOnco7ilhcuXIFV69exdq1a3lHIYRI2Jo1a9C3b184ODggPT2ddxyRR48e\noX379hWu7969O8LDw6WYiJDaK5mMtqCgQLRMlq67iigpKWH+/PkAgN9//x0vX75EaGgovv76a87J\nCKkaY2NjJCcnw8jICBEREbzjEEIIIeVqMD34AcDGxgaurq54/PgxLCwseMeRKCMjIyQmJuLDhw9Q\nVlbmHYcQUoG9e/dCKBRizJgxvKOIxS+//IIhQ4ZgwIABvKMQQiRMXl4eBw8eRNeuXTF16lScOHFC\nVITkJSEhAcnJyWjXrl2Fbfr3749ly5bhwYMH6NChg9gzODs7U+/fOor3z+/nNG/eHHFxcYiLi4Ox\nsTGAj8NRVURNTQ05OTkoKChAQUGBqEgpblU5zty5c7Fu3TqcPXsWADBz5kyoqqqKPYu49OrVC0eO\nHOEdg9SAJP7tFQqFyMzMhKWlJW7duiX2/RNCCCGfwxir0u+oDaoHf/fu3aGtrd0gevEbGRmBMYZ3\n797xjkIIqQBjDPv27cOUKVOgoqLCO06tnTt3DoGBgVi9ejXvKIQQKdHV1YW3tzcCAgKwbds23nHw\n7NkzACh3gt0SPXr0QNOmTUXFRkLqgpJhQTZt2oT09HQ8efIEu3fvrrB9p06dAADh4eE4ffq02Ict\nqc5xtLW1MW3aNDDGcP78eXz33XcSyUKIJKiqqiI3NxcdOnTAkydPeMchhBDSwBQWFlY4t9inGlSB\nX15eHsOHD8fx48d5R5G4kp49NEwPIbLr6tWrePHiBZycnHhHEQtXV1cMHz4cVlZWvKMQQqTI2toa\na9aswZIlS3Dt2jWuWaKjo6GkpAQ9Pb0K28jJyWHs2LE4ePCgFJMRUjtubm746quv4OvrCwMDAyxd\nuhTr168Xrf9vz64dO3agc+fOGDp0KLZu3Qo3N7dy29bm68qO8ylnZ2fIyclh/Pjx9WbOIdIwKCgo\noLCwEMbGxvS3NSGEEKmraoG/QQ3RAwD29vYYN24cYmNjoa+vzzuOxDRr1gwqKir0SwghMszT0xM9\ne/ZE586deUeptVOnTiE8PBxhYWG8oxBCOFi+fDkiIyMxfvx4REREoEWLFlxyvHnzBsbGxpCT+3wf\nlm+++QYeHh4ICwtDz549pZSOkJpr2rQpvL29yyxnjJXb3tLSEpGRkeWuq2ib6i6v7DifatmyJXR1\ndWV6cl1CypOXlwcVFRUYGxsjKysLqamp0NLS4h2LEEJIA0E9+CtgY2MDdXV1nDhxgncUiRIIBGjR\nogVevnzJOwohpBxpaWk4fvw4ZsyYwTtKrTHG8PPPP2Ps2LHo3r077ziEEA4EAgE8PT2hp6cHe3t7\n5ObmcslRUuCvjJWVFbp3745169ZJIRUhJCAgAEZGRvSUH6lzSgr82traAD7+Dk8IIYRICxX4K6Ci\nogJbW1v4+/vzjiJxLVu2xIsXL3jHIISUw8vLC3JycnBwcOAdpdb8/f1x7949rFq1incUQghH6urq\nOHbsGF69eoU5c+ZwyVCdJzRdXV1x5swZhISESDgVIQ2TQCDAzZs3kZqail9++QU//vgj70iEVFtK\nSgq0tbWhrq4OAMjMzOSciBBCSENCBf7PsLe3x/Xr15GYmMg7ikS1bNkSUVFRvGMQQsqxd+9eODg4\nQCgU8o5SK8XFxVizZg0mTpxYL4YaIoTUTuvWreHr64tDhw7hzz//lPrxU1JS0LRp0yq1tbOzw5Ah\nQzBnzhwUFBSUWnfixAn89ttvKCwslERMQhqMXr16oXXr1hgxYgRGjRrFOw4h1RYfHw9dXV1RgT87\nO5tzIkIIIQ0JFfg/w87ODsrKyvV+mB4q8BMim8LDwxEZGVkvhufx8fHBw4cPqfc+IURk6NChWLly\nJRYuXIjAwECpHjslJQVNmjSpcvu//voLr169wuLFi0st//nnn7F8+XJ0794dT548EXdMIgYCgaDM\nhK9EtjDGwBhDcnIyXF1decchMqguXMclBf7i4mIAqHSOF0IIIUScqMD/GY0aNcLIkSNx4MAB3lEk\nqmXLlkhKSkJ6ejrvKISQT3h6eqJt27bo1asX7yi1UlRUhDVr1mDy5MmwsLDgHYcQIkNWrVoFW1tb\nTJo0CbGxsVI7bmpqqmic5KowMzODp6cnduzYAXd3dwBAcnIy7t+/DwB48OABOnfujO3bt392olFC\nCCH108uXL2FmZiZ6oktRUZFzIkIIIQ0JFfgrMW3aNAQFBeHp06e8o0hMq1atAIAm2iVEhmRnZ8PH\nxwezZs2S+R5LlTlw4ACeP39OY+oSQsoQCAQ4cOAAGjdujDFjxkht0t3s7Gw0atSoWts4ODjA1dUV\n3377Ldzd3XHx4kXRusLCQuTn58PZ2Rm9evWi36kIIaQBSUtLQ3JyMlrHBefWAAAgAElEQVS1aoX8\n/HwAVOAnhBAiXVTgr4SNjQ0MDQ1x8OBB3lEkxtTUFPLy8jRMDyEy5MiRI8jLy8OUKVN4R6mVgoIC\nrFmzBk5OTjA3N+cdhxAig4RCIc6ePYtXr15h6tSpUukBX1BQUKPiy6pVq+Dq6oq5c+dizZo1ZX6J\nLi4uxu3bt9GxY0dRT39JKBmuQiAQICoqCuPGjYOWllaZYSwSExPx7bffwtDQEEpKSjAwMMDs2bMR\nHx9fZp8PHz6EnZ0d1NXVIRQKYWNjg0ePHpU6Vk3k5eVhw4YN6Nq1Kxo1agQVFRW0bdsWc+fOxc2b\nN0u1jY+Px5w5c0R5DQ0NMXfuXCQkJJRql56eDmdnZ5iZmUFFRQVNmjRB7969sXjxYoSHh5d6n/77\nns2cObNG50GIuNF1XH+u45LOgK1bt0ZqaioAQEtLi2ckQgghDUxRURHk5eUrb8gasGXLljFDQ0NW\nWFjIO4rEmJiYsPXr1/OOQQj5P3369GETJ07kHaPWdu3axRQVFdnLly95RyGEyLjAwECmpKTEVq9e\nLfFjCQQCduTIkRpv7+vry5SVlRmACl8CgYDZ2Niw2NjYMtsDYL6+vrU5BdFxhgwZwoKDg1lOTg47\ne/YsK/m1PT4+npmYmDBdXV12/vx5lpmZyQIDA5mJiQlr0aIFS01NFe3rxYsXTFNTk+nr67PLly+z\nzMxMFhQUxPr06SM6Tk1kZGQwS0tLpqGhwTw8PFh8fDzLzMxkV69eZRYWFqX2GxcXx4yMjEQZMjIy\n2KVLl1jz5s2ZiYkJi4+PF7UdPXo0A8C2bt3KsrKy2IcPH9iTJ0/Y2LFjy2StTf6KiOPzI3XbhAkT\n2IQJE2q9H7qO+VzH4vr8SuzYsYNpamqy4uJidvr0aQaA5eTkiG3/hBBCSGWWLVvGunXrVlmzjQ26\nwP/06VMmEAjYxYsXeUeRmEGDBrGZM2fyjkEIYYw9efKECQQCdv78ed5RauXDhw/M1NSUfffdd7yj\nEELqiN27dzOBQMB8fHwkdozCwkIGgPn7+9d4Hw8fPvxscb/kpaSkxLS1tdnx48dLbS/OAv/Vq1fL\nXT9nzhwGgHl6epZafuzYMQaArVixQrTs66+/ZgDYgQMHSrUNCAioVWFt0aJFogLef92+fbvUfmfN\nmlVuhn379jEAbM6cOaJlQqGQAWB+fn6l2r57944K/EQqxF3gp+v4/5PGdSzuAv/UqVPZ0KFDGWOM\n7d27l6mqqopt34QQQkhVzJs3j/Xv37+yZhsb7BA9AGBubg4rKyvs27ePdxSJadmyJQ3RQ4iM8PDw\ngKGhIQYNGsQ7Sq24u7sjPj4eLi4uvKMQQuqIGTNm4LvvvoOTkxMiIiIkcgx5eXkoKCjgw4cPNd7H\nhQsXqjTGZX5+PtLS0jB27FiMHz9eNHSDOPXo0aPc5adPnwYA2Nrallrev3//UusBiOYTGDhwYKm2\nvXv3rlW2o0ePAgDGjBlTZl3Xrl1LDcd05syZcjMMHjy41HoAsLe3BwBMmDABxsbGmDlzJo4cOYKm\nTZvSJMekTqLruG5fx2FhYaLPMDo6GiYmJpwTEUIIaWiys7Ohrq5eabsGXeAHgG+++Qb+/v5ISkri\nHUUiqMBPiGzIz8/HgQMHMHPmzKqNnyajsrOz8euvv2Lu3LkwNDTkHYcQUods27YN1tbWGDNmDN69\neyeRY6iqqtZqQt9z586huLi4Sm1L2vn7+6Njx4549epVjY9bHjU1tXKXJyYmAgD09fVLjb/dtGlT\nACj1e19ycjIAiNaV0NTUrFW2uLg4AEDz5s0rbVvyO/Z/M5R8X3I+ALBnzx74+/vD3t4eWVlZ8PT0\nhIODA1q3bo3IyMhaZSaEB7qO+V3HTk5OcHFxwY4dO/Do0aNqb5+eno7nz5+je/fuAICXL1/CzMxM\n3DEJIYSQz8rKyqICf1VMnjwZjRo1kuiEaTy1bNkSMTExyMvL4x2FkAbt5MmTSE5OxrRp03hHqZUt\nW7YgMzOTeu8TQqpNXl4eBw8ehLq6OsaPHy+R301qU+DPz8/H9evXAQDKyspQVlausDe/srIydHR0\n0KZNG/Tp0we9evWq8SSX1aWrqwsAeP/+PRhjZV7Z2dmitiXFt5ICYYn/fl/TDCUFws/R0dH5bIaS\n9SXGjRuHo0ePIjk5GYGBgbCxscGbN2/g5ORUq8yEyBK6jiUvMTERFy5cwOrVq9G+fXu0bdsWe/fu\nrfJTBOHh4SguLi5V4G/RooUkIxNCCCFlUIG/ilRVVTFjxgz8+eefKCgo4B1H7Fq2bIni4mJER0fz\njkJIg+bp6QkbG5s6/WhvcnIyNm/ejKVLl5b5Q44QQqpCS0sLp06dwtOnTzF9+nSxD9egqalZ4+Fy\n5OTkMG3aNMyaNQuLFi3C2rVrsWvXLhw/fhzXr1/H/fv38e7dO+Tm5iIvLw8JCQl48uQJgoKC4Ofn\nB1NTU7GeS0VKhtO4du1amXU3btxAr169RN8PHToUAHD58uVS7YKDg2uVoWQIjhMnTpRZd/PmTfTs\n2VP0/ciRI8vNcOnSpVLrAUAgECAmJgbAx8+jX79+8PX1BQA8fvy41PYlPaMLCgqQk5NTpmcxIbKM\nruOPJHkdBwQE4NatW0hISEBISAgGDhyIWbNmYfDgwUhJSal0+5s3b8LIyAh6enpgjOHhw4do166d\n2PIRQgghVZGdnY1GjRpV3lAC4//XOa9fv2YKCgr1clKtzMxMBoCdPn2adxRCGqy3b98yeXl5dvTo\nUd5RasXZ2Zk1a9aMZWRk8I5CCKnjrl+/zpSVldny5cvFut8BAwZwnQAcYpxktyJJSUmsdevWTE9P\nj/n5+bHk5GSWkZHBTp8+zczMzNi1a9dEbaOiopimpibT19dnly9fZpmZmezGjRvM1ta2VpNbpqam\nsg4dOjANDQ3m7u7O4uPjWWZmJjt37hxr3bo1u3TpkqhtfHw8MzExEWXIyMhgly9fZnp6eszExITF\nx8eXOncbGxv24MEDlpeXx+Lj45mLiwsDwEaNGlUqg5WVFQPAgoKCmI+PDxsxYkSNzuVT4vj8SN0m\n7kl2K0LX8Ufivo4r+/wiIiKYqakps7KyYllZWZ/dV9++fZmTkxNj7GO9AAC7ceNGrfIRQggh1dW1\na1fm4uJSWbONlc8i1gAYGxtj1KhR2LFjByZOnMg7jlipq6tDR0eHxuEnhKPdu3dDS0sLI0aM4B2l\nxl6/fo0///wTbm5u0NDQ4B2HEFLH9e/fH/v27cNXX30FIyMjfPfdd2LZr56eXpWGm5BVnw7zU/I1\n+89TDk2bNkVYWBjWrl2LpUuXIiYmBtra2ujRowe8vb1hZWUlamtmZoagoCAsWbIEo0aNgpycHAYM\nGIA//vgDLVu2hJxczR7m1dTURGhoKH777Te4ublh/vz50NDQwBdffAFPT0/069dP1FZXVxdhYWH4\n+eefMWXKFCQmJkJHRwcjR47E6tWrRcOEAEBQUBA8PDwwYsQIvHv3DmpqajA1NcW6deuwcOHCUhl2\n7NiBmTNnYujQoejUqRP2799fo3P5ry1btogmHyUNT2hoaKne8zVB1zH/67gilpaWuHDhAvr27YsF\nCxZg9+7d5bZLS0vDzZs38f333wMA7t27B4FAgA4dOkg0HyGEEPJfVe3BL2D//W2jgbp27Rqsra0R\nEREBS0tL3nHEqnfv3rC0tMT27dt5RyGkwSkuLoaZmRkmTpyIjRs38o5TY9OnT0dgYCCePHkCJSUl\n3nEIIfWEq6sr1q5di+PHj5ca4qGmFi9ejOvXryMiIkIM6apPIBDA19dX5juMxMbGwsDAADo6OkhI\nSOAdR2YIBAJYWVnByMiIdxTCSUmB/8iRI7yjVIqu47JK/u2t7PM7fPgwpkyZgsjIyHKL9n5+fnB0\ndERiYiK0tbXh4uKCEydOlBliiBBCCJE0AwMDLF26FAsWLPhcs03Ug///fPnll+jUqRO2bt2KgwcP\n8o4jVq1ataIe/IRwcuHCBbx+/bpOTw744MEDHDx4EAcPHqTiPiFErH7++WdER0dj8uTJCAwMRJcu\nXWq1vzZt2mDXrl1gjElt0ltZJxAI8Pz5c7Rq1Uq0LDAwEABgbW3NK5bMcnZ2lvkbNERyZPWzp+tY\nvCZNmoSNGzdi06ZN5T41cP78efTs2RPa2toAgOvXr+PLL7+UckpCCCHk4yS7VenB3+An2f3UsmXL\n4OPjg+fPn/OOIlYtW7akAj8hnJQ84mxhYcE7So25uLigQ4cOMvtHLyGk7hIIBPDw8EDPnj0xfPhw\nvH37tlb769ChA7KysvD69WsxJawf5s2bh5cvXyI7OxuXL1/GsmXLIBQK4erqyjsaIaSK6DoWH4FA\ngClTpuDMmTMoLCwss/7ChQsYNmwYACAnJwe3bt3CgAEDpB2TEEJIA1dQUIDMzEw0adKk0rZU4P+E\ng4MDzMzMsHnzZt5RxKp169Z4+fIlCgoKeEchpEFJTk7G6dOnMWPGDN5RaiwoKAhnzpzBxo0bazzG\nKyGEfI6ioiL8/f3RpEkT2NnZIT09vcb7at++PQQCAe7duyfGhHXbpUuXoK6ujt69e0NTUxOOjo6w\nsrJCWFgY2rZtK2onEAiq9CKESB9dx+I3atQovH//Hjdv3iy1/N69e3j79q2owB8UFIT8/Hz079+f\nR0xCCCENWHJyMhhjaNq0aaVtqVrzCXl5eSxZsgR79+7FmzdveMcRGwsLCxQUFODFixe8oxDSoOzb\ntw/KysoYP3487yg1tnz5cgwYMABDhw7lHYUQUo8JhUKcOnUKSUlJcHBwqHGnBKFQCAsLCwQHB4s5\nYd01aNAg+Pv7Iz4+HgUFBUhMTISvr2+poiDwcRLQqrwIIdJH17H4tWrVCpqamnjw4EGp5UePHoWB\ngQG++OILAB+H5zE3N4e+vj6PmIQQQhqw5ORkAKACf01Mnz4denp62LJlC+8oYmNhYQF5eXk8evSI\ndxRCGpS9e/fiq6++qtJ4abLo1KlTCAkJwYYNG3hHIYQ0AKampjhz5gyCg4PxzTff1LgI9eWXX+Lq\n1atiTkcIIaS+adWqVZnheX19feHg4CB6cvX69es0PA8hhBAuqMBfC4qKili0aBHc3d2RlJTEO45Y\nqKiowNTUFA8fPuQdhZAGIzg4GI8ePaqzw/MUFRVhxYoVsLe3h5WVFe84hJAGwtLSEidPnoSfnx+W\nLl1ao31YW1vj9u3bSEtLE3M6Qggh9YmJiQliYmJE39++fRvPnj2Dg4MDACAlJQXh4eEYOHAgr4iE\nEEIasKSkJMjJyYkmff8cKvCXY9asWVBXV8fvv//OO4rYtGvXDo8fP+Ydg5AGw9PTE506dYKlpSXv\nKDXi5eWFJ0+eYPXq1byjEEIamIEDB2Lfvn34/fff4ebmVu3tBw0aBHl5eZw6dUoC6QghhNQXqqqq\nyMvLE33v6+uLFi1aoHv37gCAY8eOQV5eHnZ2drwiEkIIacCSk5Ohra0NeXn5SttSgb8campqWLp0\nKXbs2IG4uDjeccSiffv2NEQPIVKSlZUFPz8/zJo1i3eUGsnLy4OrqytmzJgBCwsL3nEIIQ3QpEmT\nsH37dixZsgT79++v1rZaWlqwsbGBr6+vhNIRQgipD1RUVEQFfsYYjhw5AgcHB9FExH5+fhg+fDiE\nQiHPmIQQQhqo5OTkKg3PA1CBv0Lz5s2DtrY21q5dyzuKWFhYWODp06coLCzkHYWQes/b2xuFhYWY\nPHky7yg1snPnTiQlJWHlypW8oxBCGrB58+bhhx9+wKxZs3Du3Llqbevg4ICLFy/Wm+EWCSGEiF9x\ncbGomB8WFobo6GjR8DzJycm4evUqJkyYwDMiIYSQBowK/GKgoqKCVatWwcPDAy9evOAdp9batWuH\nDx8+4OXLl7yjEFLveXp6wt7eHlpaWryjVFt6ejrWr1+PhQsXwtDQkHccQkgDt3HjRkyePBn29vYI\nDQ2t8nZjx46FUCjEn3/+KcF05Svp/UmvuvciBPjYa5v3zyK9avby8/Or1medmpoq+n3d29sbbdu2\nRZcuXQAA/v7+UFJSwvDhw8X+M0YIIYRURXUK/AoSzlKnOTk5YcuWLVi1ahUOHTrEO06ttGvXDnJy\ncnj06BHMzc15xyGk3oqMjERERAQ2btzIO0qNbNy4EYyxGk9uSQgh4iQQCODu7o74+HiMGTMGQUFB\naN26daXbqamp4dtvv8XOnTuxdOlSqKqqSiHtR87OzujVq5fUjkfEZ+LEibwjEBnQq1cvODs7845B\namDLli3Vap+WloY2bdogLy8P3t7eWL58uWhdyfA86urq4o5JCCGEVElSUhJMTU2r1JYK/J8hLy+P\n1atXY8KECVi8eDG6devGO1KNqampwdjYGI8ePcKYMWN4xyGk3vLw8IC5uTkGDBjAO0q1xcTEYOvW\nrfjll1+gqanJOw4hhAAAFBUV4efnh8GDB2PIkCG4ceMGjIyMKt1u/vz52Lx5M3bt2oWFCxdKIelH\nVlZWNKQDIdX06RMUjDGOSQBDQ0O6huuo6vbgT0pKQp8+feDv74/MzExMmTIFABAfH4/r16/D29tb\nEjEJIYSQKnnz5g369etXpbY0RE8l7O3t0bNnT/z000+8o9Rau3btaKJdQiQoNzcXhw4dwqxZs+rk\no/4//fQTdHR08P333/OOQgghpairq+PcuXPQ0tLCoEGDkJCQUOk2urq6cHZ2xurVq2ksfkJkHO+i\nPmmYoqOj0aJFC3h6emLkyJHQ09MDALi7u0NTUxOjRo3inJAQQkhDFhMTU6WOTQAV+Ktk3bp1+Oef\nf3DhwgXeUWqlffv2VOAnRIIOHz6MnJwcTJ06lXeUart79y4OHDiA9evXQ1lZmXccQggpQ1NTE+fP\nn4ecnByGDh2K1NTUSrdZsWIF1NTU6kVHDUKqguYTIKRq4uPjkZWVBVVVVVy7dg0zZswAABQWFsLD\nwwMzZ86EiooK55SEEEIaqpSUFOTk5FCBX5wGDhyIMWPGYOHChSgoKOAdp8YsLCzw+PFjFBUV8Y5C\nSL3k4eGBsWPHQkdHh3eUaluyZAksLS3h4ODAOwohhFRIR0cHFy9eRFpaGuzs7JCVlfXZ9urq6vj9\n99/h4eGB06dPSyklIYQQWRcVFQUACA4Ohr6+PoYNGwYAOHbsGOLi4jB79mye8QghhDRwb9++BQAq\n8Iubm5sbXr16hZ07d/KOUmPt2rVDXl4eoqOjeUchpN65f/8+bt68iVmzZvGOUm3//PMPLl68iPXr\n11OvP0KIzDMyMsLFixfx6tUrjB07Fh8+fPhs+4kTJ8LJyQnTpk2j34EIIYQAAO7cuQNNTU0cP34c\n06ZNg7y8PABg586dGDlyJFq0aME5ISGEkIYsJiYGAGBgYFCl9lTgryIzMzMsWrQIP//8M+Lj43nH\nqZH27dtDIBDQMD2ESICHhwfMzMxgbW3NO0q1FBUVYdmyZRgzZgwGDhzIOw4hhFSJubk5zp8/j3//\n/ReTJk1CYWHhZ9vv2LED+vr6GD16dJWG9iG14+Pjg549e0JLS0s0ZEx5N5A/t64+e/jwIezs7KCu\nrg6hUAgbGxs8evSowvcjMTER3377LQwNDaGkpAQDAwPMnj27zN8kn25Xsp+ZM2eWWSYQCBAbGwt7\ne3toaGigSZMmmDZtGtLT0xEdHY1Ro0ZBKBSiefPmmD59OtLS0sqcw6VLlzBq1ChoaWlBRUUF3bp1\ng4+PT5l26enpcHZ2hpmZGVRUVNCkSRP07t0bixcvRnh4+GffJ0tLy1KZJ02aVKX3l9ReQ7iGIyMj\nYWBggISEBFEHnYcPH+LGjRuYN28e53SEEEIaurdv30JbWxvq6upVak8F/mr48ccfoampiZUrV/KO\nUiPq6uowNDSkAj8hYpabm4uDBw9i9uzZkJOrW/+s7t27F48fP8a6det4RyGEkGrp3LkzTp48ifPn\nz2Pu3LmfnaRTTU0N//zzDzIyMmBra4vMzEwpJm1YvLy84OjoiCZNmiAyMhJ5eXnw9/cvt21DnFg1\nKioKffv2xd27d3Hq1CnExsZi1apVpYYD+fR9SUhIQI8ePXD8+HHs2bMH79+/h4+PDy5cuIDevXuX\nKr5/uh1jDIwx7N69u9z1y5Ytw9q1axETEwNHR0d4eXlh8uTJWLRoEX777Te8ffsW48aNw/79+7F0\n6dIy5zFkyBDIy8vj+fPnePbsGZo2bQpHR0ecP3++VLtp06Zh69atWLBgAVJSUhAXF4e9e/fi5cuX\n6Nmz52ffqzNnzqBDhw5YtmwZGGPl3kAg4tdQruHIyEikpqZi1KhRMDU1BfDxZrC5uTkGDRrENxwh\nhJAG7+3bt1UengcAwEi1eHt7Mzk5ORYeHs47So0MGzaMTZ06lXcMQuqVffv2MQUFBRYbG8s7SrXk\n5OQwQ0NDNm/ePN5RCCGkxgICApiioiL7/vvvK2377Nkz1rx5c9ajRw/27t27ctuEh4ezzp07s8OH\nD7Pi4uJqZQHAfH19q7VNfdO5c2cGgD169KhK7QEwWfmTRBqf39dff80AsAMHDpRaHhAQUO57MWfO\nHAaAeXp6llp+7NgxBoCtWLGi1PLK3s+S9deuXRMte/fuXbnL3759ywAwAwODcvfz6tUr0fePHz9m\nAFi/fv1KtRMKhQwA8/PzK7W85JgVZY+OjmatWrVi69atq/BcJGHChAlswoQJUj2mrKnL13BVP7/s\n7GymqKjIALCrV68yxj7+TKqoqLCdO3dKOCUhhBBSua+//pqNGDGiqs031q2upjLA0dERvXr1wsKF\nC+tkj4V27dpRD35CxMzDwwNjxoyBnp4e7yjVsnHjRqSnp9fZp5IIIQQA7Ozs4Ovri7/++gvOzs6f\nbdu6dWsEBgYiIyMDPXr0QERERJk2V65cwf379/HVV1+he/fuCAkJkVT0eunZs2cAgFatWnFOIpsu\nXrwIAGWGxevdu3e57Usmh7a1tS21vH///qXWV1e3bt1EXzdv3rzc5fr6+gCA2NjYMtszxkS9noGP\n1xaAMn9n2NvbAwAmTJgAY2NjzJw5E0eOHEHTpk0r/Fvq6dOn6NevH3R0dLBixYpqnhmprYZwDYeF\nhaGgoABt2rTBgAEDAADr1q2DtrY2nJycOKcjhBBCPvbgNzQ0rHJ7KvBXk0AgwI4dOxAeHg4PDw/e\ncaqtXbt2ePz4MYqLi3lHIaReePLkCUJCQurc5LqJiYlwc3ODi4sLdHV1ecchhJBaGTt2LA4fPow/\n/vgDixcv/mzb1q1bIzw8HN26dUPv3r2xYMECZGdni9bfu3cPAoEAjDFERkaiT58+GD58OKKioiR9\nGvVCbm4uAEBRUZFzEtmUnJwMAGjatGmp5ZqamuW2T0xMBPCx2P7peOcl29f051JDQ0P09afDC5a3\n/L+F+LS0NKxYsQIWFhbQ0NCAQCCAgoICACAlJaVU2z179sDf3x/29vbIysqCp6cnHBwc0Lp1a0RG\nRpabzdraGikpKQgJCcGhQ4dqdH6k5hrCNXz+/HkIBAIsWbIEAoEAb968gaenJ1atWgVVVVXe8Qgh\nhBA8f/68WjfbqcBfA127dsXChQuxdOlSvHv3jnecaunSpQuys7NFPTMIIbWza9cumJqaYvDgwbyj\nVMvKlSshFAqxYMEC3lEIIUQsxo8fD09PT2zZsgVr1qz5bFsNDQ2cOHECW7duxb59+9C1a1ccPXoU\nxcXFuH37NoqKigBA9N+LFy+iTZs2mDNnjqhAK02fFnajoqIwbty4UpNflqjqZKxA9Sd6rWrO8jLX\nZJ/VOZe6pKQw/9+fo4p+rkpuwr9//140rv6nr09vTknLxIkTsX79ejg4OOD169eiLBUZN24cjh49\niuTkZAQGBsLGxgZv3rypsKf0jh078McffwAA5s2bh5iYGImchzTRNSxb1/DRo0ehpKSEr776CgCw\ndu1aNG/enHrvE0IIkQlZWVmIi4tDmzZtqr6RuMcIaiiys7NZy5Yt69wYjR8+fGBKSkrM29ubdxRC\n6ry8vDzWtGlTqY8PW1uPHz9mCgoKbP/+/byjEEKI2O3Zs4fJycmxX3/9tUrtY2JimIODA5OTk2Pm\n5uZMXl5eNKb0f1+KiopMKBSyDRs2sLy8vDL7ggTHcC/JMGTIEBYcHMxycnLY2bNnRWNfx8fHMxMT\nE6arq8vOnz/PMjMzWWBgIDMxMWEtWrRgqampon29ePGCaWpqMn19fXb58mWWmZnJgoKCWJ8+fWo9\nnnZF21dneXXORZwk+fmVmDJlCgPAvLy8Si0/ceJEue/FvHnzGAB27NixMvsKDAxkVlZWpZapqakx\nACw/P59lZ2ezJk2alFovjs+n5BgZGRmiZXl5eeW2BcDevn1ballaWhoDwJSVlT97rNGjRzMAbPDg\nwdWeD6OmJDkGP13Dkr+Gq/L5JScnM4FAwIYPH84YY+zVq1dMSUmJ7dmzRyKZCCGEkOq6desWA8Ce\nPn1a1U02UoG/Fs6dO8cAsBMnTvCOUi1dunRhixcv5h2DkDrv4MGDTEFBocKJGmXV8OHDWefOnVlR\nURHvKIQQIhEeHh5MIBCw3377rcrbPHnyhI0dO7bC4v6nLzk5OdaiRQt25MiRUvuQRoG/ZELI/6rO\nZKzVnei1Jjlrs7y6E8uKizQK/FFRUWUKszdu3GC2trblvhdJSUmsdevWTE9Pj/n5+bHk5GSWkZHB\nTp8+zczMzEpNissYY1ZWVgwACwoKYj4+PmUmZxPH52NjY8MAMBcXF5aamspSUlLYokWLKizw29jY\nsAcPHrC8vDwWHx/PXFxcGAA2atSozx4rISGBNWvWjAFgW7du/cy7Kj7SKPDTNSy5a7gqn9+3337L\nALDIyEjGGGPTpk1jrVq1YgUFBRLJRAghhFTXoUOHmKKiIsvPz6/qJlTgr63JkyczIyOjUj1YZJ2T\nkxMbNGgQ7xiE1HkDBgxgY8eO5R2jWq5evcoAsAsXLvCOQgghEhD9lJwAACAASURBVLV161YmEAjY\nzp07q7zN4cOHmUAgqHKRHwCztLRkISEhjDHpFPizs7PLXa+vr88AsNjY2FLLk5OTGQDWsWNH0TJd\nXV0GoMwN6tTUVJkoDlbnXMRJGgV+xhh78OABs7W1ZY0aNWIaGhpsxIgRLCoqSvRz9V/v379nixYt\nYi1atGCKiopMV1eXjRw5koWGhpZpGxERwTp37szU1NSYlZVVqZ5f//0ZrunyhIQENmXKFKajo8OU\nlJRYhw4dmK+vb7ltg4KC2LRp05ipqSlTVFRkjRs3Zp07d2br1q0r9bPcuHHjUtv7+fmVe91FRETU\n/I2vAmkU+Okaltw1XNnnV1hYyBo3bsx0dHQYY4xFRkYyeXl5dvDgQYnkIYQQQmrC1dWVtWnTpjqb\nbPw4GxKpsW3btsHCwgIrV67E1q1becepkq5du+LEiRNgjNVobEZCCPD06VMEBgYiICCAd5QqKy4u\nxuLFi2FnZ4chQ4bwjkMIIRK1YMEC5OTkYP78+VBUVKzSZOgPHz6EkpISPnz4UGnb4uJiAMC///6L\nvn37IigoqNaZq0JNTa3c5Z9OxlqeTydjre5Er9JWnXOpi9q3b4+zZ8+WWhYbGwug7GcCAFpaWnBz\nc4Obm1ul+7a0tKxw8lpWwTj51V2uo6MDLy+vMssnTpxYZlmfPn3Qp0+fiuKKpKWlVfn4dR1dw9K5\nhps0aYJu3bph5MiRcHR0RLNmzeDv74/09HT873//A2MM3333Hb744gs4OjpKPA8hhBBSVc+ePYO5\nuXm1tqFJdmupSZMm2LRpE/744w+EhobyjlMl3bp1Q2pqKl6/fs07CiF1loeHBwwNDTF06FDeUars\n0KFDiIyMxG+//cY7CiGESIWLiwtcXV0xZ84cuLu7V9r+7t27yM/PL7NcIBBASUkJcnJyou8NDAxg\nZ2eHZcuWiSbq5ak6k7FWd6JXaZPFiWXFSSAQ4MWLF6WWBQYGAgCsra15RCIygK5h8Vq3bh2aNGmC\nlStXwsjICF9//TVWrFgBAJg6dSr27NmDsLAw7Nq1S/RvOyGEECILnj59Wr0JdkEFfrGYOnUqhgwZ\ngunTpyMnJ4d3nEp16dIFcnJyuH37Nu8ohNRJ+fn58PLywqxZsyAvL887TpXk5ORgxYoVcHJyQocO\nHXjHIYQQqVm1ahU2bNiAuXPn4o8//vhs28jISAgEAlGxR05ODsbGxhg5ciR++OEHeHl54datW8jO\nzkZMTAwCAgKwYcMGTJkyBSoqKtI4nQqNGTMGAHDt2rUy627cuIFevXqJvi+5OX358uVS7YKDgyUX\nsBqqcy511bx58/Dy5UtkZ2fj8uXLWLZsGYRCIVxdXXlHI5zQNSxec+fOhY+PD2JjY7Fz506EhoYi\nKipK9JSWi4sLvv/+e3Tp0kXiWQghhJDqeP78ebV78NMQPWIgEAjg6emJjh07YtmyZdixYwfvSJ/V\nqFEjmJub486dOxg3bhzvOITUOceOHcP79+8xbdo03lGqbOPGjUhLS8Pq1at5RyGEEKlbunQpBAKB\naFiG77//vtx28+bNQ1ZWFtq3bw8LCwu0bdsWysrKUk5bM66urrhw4QLmzZuHoqIiWFtbQ0lJCdev\nX8eCBQuwZ8+eUm1Pnz6N5cuXw8DAAD169EBkZCR27drF8Qz+v+qcS1106dIl/Pnnn+jduzdSUlKg\npaUFa2tr/PLLL2jbti3veIQTuoYlo1GjRpgxYwZ8fHwQHx8PVVVV9OvXDyoqKli4cKHUchBCCCFV\nERsbi4yMjGoX+GmSXTHy9vZmAoGA/fPPP7yjVMrR0ZENHz6cdwxC6qSBAweyUaNG8Y5RZTExMaxR\no0Zsw4YNvKMQQghXmzZtYgKBgG3btk0i+4eEJmlFOZONlqc6k7FWd6LXmuSs6fLqnou4SOrzI3WH\npCbZpWtYOtdwRZ9fSEiI6H3ZsGEDEwgETCgUsmbNmjEfHx+J5SGEEEKqKyAggAkEApaSklKdzTYK\nGKunsxdx4uDggODgYNy/fx9aWlq841Ro06ZNcHNzQ3x8PO8ohNQpUVFRaN26NU6dOoURI0bwjlMl\nU6ZMQXBwMB49esR9CAlCCOHNzc0NS5YswZYtW7BgwQKx7lsgEMDX17fcyUbrgtjYWBgYGEBHRwcJ\nCQm840hdXf/8SO2VfPZHjhzhnKRmGvo1XNHnN2zYMDx79gyJiYkwNjaGgYEBjh49imXLlsHd3R3j\nxo3Dn3/+CR0dHR6xCSGEEJFff/0VHh4eePXqVXU220Rj8IvZzp07UVRUBGdnZ95RPqtbt25ISEig\nAj8h1eTu7g4DAwPY2tryjlIlt2/fxqFDh7Bp0yYq7hNCCIAffvgBmzdvhrOzM7Zu3co7Djc00Ssh\ndRtdw1UTFhaG8+fPQ01NDQYGBoiLi8Pu3bvRuHFj/P3337hw4QL+/fdfdOzYEZcuXeIdlxBCSAMX\nGRlZo/lhqMAvZk2bNoW7uzv2798Pf39/3nEq1K1bNwgEAppol5BqKCgogJeXF2bMmFEnJtdljGHB\nggWwsrKi+TYIIeQTixYtwqZNm7Bo0SJs2bKFdxxuaKJXQuo2uoYr98svv6Br16549OgRnj9/jr/+\n+gsmJiai9YMHD8b9+/dhbW2NYcOGYfXq1SguLuaYmBBCSEMWGRmJzp07V3s7KvBLwMiRI+Hk5ITv\nvvtOZh+N1NLSgomJCRX4CamGEydOIDExEU5OTryjVImPjw9CQkKwbds2CAQC3nEIIUSm/PDDD3Bz\nc8MPP/yADRs28I4jdZcuXYK6ujp69+4NTU1NODo6wsrKCmFhYaUmehUIBFV6EUKki67hyt2+fRvn\nzp0TTVT4zTffYNKkSWXaaWhowMfHB9u2bcOvv/4KOzs7pKenSzsuIYSQBi4rKwtRUVE16sGvIIE8\nBMDWrVsRGBiIqVOn4p9//oGcnOzdS+nWrRvu3LnDOwYhdYaHhwdsbW1L9fqRVbm5uXBxccH06dNh\naWnJOw4hhMgkZ2dnqKmp4bvvvkNaWlqDKvQPGjQIgwYNqrQdTddFiGyia7hyP//8M3r06IGAgAAI\nhcJKh2WbN28eevTogTFjxqBfv344c+YMjI2NpZSWEEJIQ3f37l0UFxfTED2yRCgUwsfHB9euXcPm\nzZt5xylX165dqcBPSBW9evUKly9fxqxZs3hHqZLNmzcjJSUFa9eu5R2FEEJk2pw5c+Dl5QU3NzfM\nnz+/QRfDCCGkvggLC8OZM2egq6uLrKws/P7771BXV690u+7duyMiIgIKCgqwsrLCrVu3pJCWEEII\n+Tg8j6amZo06lVKBX4IsLS2xdu1a/PjjjwgNDeUdp4yuXbsiOjoa79+/5x2FEJnn4eEBHR0d2NnZ\n8Y5SqYSEBGzatAkuLi7Q09PjHYcQQmTe5MmT4e3tDXd3d8ydO5fGXyaEkDruxx9/hIWFBU6fPg0t\nLS1Mnz69ytvq6+vj2rVr6NChA6ytrXHjxg3JBSWEEEL+T8kEuzUZOo8K/BK2ePFiDBs2DJMmTUJq\nairvOKV069YNjDFERkbyjkKITCssLMT+/fsxc+ZMKCoq8o5TqeXLl0NTUxMLFy7kHYUQQuqMiRMn\n4vjx4/Dy8sKUKVNQWFjIOxIhhJAaCAwMxOXLl/HmzRuoq6tjxowZ1R4yVygUIiAgAEOHDoWdnR0C\nAwMllJYQQgj56NatW+jatWuNtqUCv4QJBALs2bMHBQUFmD17Nu84pejp6UFPT48eOySkEqdPn0Z8\nfDxmzJjBO0ql7ty5Ay8vL2zevBlqamq84xBCSJ0yfPhwnD17FqdOnYK9vT0+fPjAOxIhhJBqWrRo\nEVRVVWFmZobMzExMmTKlRvtRVFSEr68vRo8eDVtbW1y5ckXMSQkhhJCPMjMzce/ePfTp06dG29Mk\nu1LQrFkzHDp0CIMHD8bu3bsxc+ZM3pFEevTogbCwMN4xCJFpu3fvxuDBg2Fqaso7SqUWLlyInj17\nYsKECbyjEEJInWRtbY2zZ89ixIgRGDduHI4ePQpVVdUqb3/z5s0aPVZLZAN9fg1bTEwMAMDPz49z\nElITb9++BfCxB6ShoSFatWoFNTU1dOrUqcb7lJeXx759+1BYWIiRI0fi4sWL6N27t7giE0IIIQA+\n/g5aVFRU4//HCBjNJCY1K1aswLZt2xAeHo727dvzjgMAWL9+Pf744w+8e/eOdxRCZFJMTAxMTU1x\n+PBhmS+aHzlyBJMmTcLNmzfRo0cP3nEIIaROCwsLg62tLb744gscP368SpMzGhkZiQqEhBBCpE9R\nURHy8vK4efMmrKyssGPHDrF0sCssLIS9vT1CQkIQHBwMc3NzMaQlhBBCPnJ1dcWBAwcQFRVVk803\nUYFfigoLC/Hll18iJSUF4eHh0NDQ4B0JV69excCBA/H27VsYGhryjkOIzFm9ejW2b9+Od+/eQVlZ\nmXecCuXn56Ndu3bo27cv9u3bxzsOIYTUC5GRkRg2bBiMjY0REBCAZs2a8Y5ECCGkHDk5ObC0tMTj\nx49x4sQJREdH46effkJsbKzY/u7Ozc3F4MGDERcXh9DQUOjq6oplv4QQQsiQIUOgp6cHLy+vmmy+\nicbglyIFBQUcPXoU6enpMjNMT48ePaCgoICbN2/yjkKIzGGMwcvLC9OnT5fp4j4AuLm5IS4uDmvW\nrOEdhRBC6o0uXbogNDQUaWlpsLKywosXL3hHIoQQ8h+5ubkYMWIEnj59ikmTJmH06NHYu3cvHB0d\nxdqpTlVVFSdOnIC8vDxGjhyJ7Oxsse2bEEJIw1VUVITw8PBaDQFHBX4pa968Oby9veHv74/t27fz\njoNGjRqhffv2NA4/IeW4ePEioqKi8M033/CO8lmJiYnYsGEDli9fDiMjI95xCCGkXmnRogUCAwMh\nFArRv39/RERE8I5ECCHk/6Snp8PW1hY3b96EhoYGdu7cidDQUNy9e1cineqaNWuGf/75B69evcKc\nOXPEvn9CCCENz71795CRkVHjCXYBKvBzYW1tjdWrV2Px4sUICgriHQdWVlbUg5+Qcnh6eqJv375o\n164d7yiftWLFCgiFQixatIh3FEIIqZeaN2+O69evo3PnzhgwYABNwEkIITIgISEB1tbWePToEfLz\n87Fx40Zoa2tj9+7d6Nixo8TmpGrVqhV8fX3h4+ODXbt2SeQYhBBCGo7g4GAIhcJa1Z6owM+Ji4sL\nhg8fDkdHRyQlJXHN0rNnT/z777/Iz8/nmoMQWZKSkoKTJ09ixowZvKN8VmRkJPbt24fffvsNjRo1\n4h2HEELqLaFQiDNnzmDmzJlwcHDA6tWrUVxczDsWIYQ0SC9evEDfvn2RlZUFbW1t9O/fH7NmzUJm\nZiaOHDmCWbNmSfT4AwcOxIoVK7BgwQLcunVLoscihBBSvwUFBaF3796Ql5ev8T6owM+JQCDAnj17\noKSkhEmTJqGoqIhbFisrK+Tl5eH+/fvcMhAia/bv3w8lJSWMHz+ed5TPWrJkCbp37w5HR0feUQgh\npN6Tl5fH9u3bsXPnTqxbtw52dnZITEzkHYsQQhqUa9euwcrKClpaWrC1tUVMTAx2794NgUAALy8v\nFBcX4+uvv5Z4DldXV/Tv3x/29vZ4//69xI9HCCGk/ikuLsaVK1cwcODAWu2HCvwcaWlp4dixYwgN\nDcUvv/zCLUebNm2gpaWFkJAQbhkIkTV79uzB5MmToa6uzjtKhY4dO4bLly9j8+bNEAgEvOMQQkiD\n8e233yIkJAQvXrxAx44dceHCBd6RCCGkQfD09ISNjQ2sra2xYsUK/PHHH9i+fTvMzMwAAH///Tcm\nT54MLS0tiWeRk5PDgQMHkJ+fj4ULF0r8eIQQQuqfO3fuICkpCUOHDq3VfgSMMSamTKSG3N3d8e23\n3+LMmTOwtbXlkmHEiBFo1KgRfH19uRyfEFkSEhKCPn36ICIiApaWlrzjlCs/Px8dOnRAz549ceDA\nAd5xSB2Snp4uGlYkNTW1ytuVPGn238cGBQIBNDU1y7RXUFCAhoZGLZISIvsyMjIwe/Zs+Pn5YcmS\nJVi3bl2tHq0lhBBSvg8fPmDhwoXYtWsXVq1aBScnJ1haWsLOzg779+8HAFy8eBFDhw7F3bt30alT\nJ6llCwgIwIgRI3Dy5EmMGjVKasclhBBS961fvx7btm1DXFxcbTpubqICv4xwcnLCyZMncevWLbRo\n0ULqx9+wYYPoB4qQhm7GjBn4999/cffuXd5RKrRx40a4urriyZMnMDY25h2HiEl+fj5SU1NLvbKz\ns5Gamorc3Fzk5uYiLS2twq8/fPiAnJwcAEBOTg4+fPgAAMjKykJBQQG381JWVoaamhqAj+OYy8vL\nl7oBoK6uDkVFRcjLy0MoFEJFRQWqqqoQCoVQUlKCUCiEqqoqVFRU0LhxYygpKUFDQwOqqqpQVVWF\npqYmGjduDKFQCEVFRW7nSRouLy8vzJ07Fz179oS3tzf09fV5RyKEkHrj1atXmDBhAl68eIG9e/di\n0KBB6NevHxhjCA0NFc1DNXr0aKSnp+PatWtSz+jo6IgbN27gwYMH5XZ8IIQQQsozcOBAGBgY1Lbj\nJhX4ZUVOTg6srKygrKyMGzduQEVFRarHDwoKQr9+/RAVFSV6vJGQhigrKwv6+vr49ddfMX/+fN5x\nypWYmAhzc3MsXLgQrq6uvOOQz0hOTkZCQgLi4+MRFxeHpKQkvHv3Du/fvy9VxC/5Pjs7u8w+SnrI\nlxS4tbS0Sn1dUgzX1NSEkpKSaFipT4vqampqUFZWBvD/i+kAoKGhAQUFhVqdY0FBAbKyssosz8vL\nQ25uLgAgNzcXeXl5AIC0tDQwxkrdjMjIyEBRUZFoXyU3J9LT05Gfn4/MzEzRPj59AqE8JTcGSl5a\nWlqlvi95NW7cGJqamuWuoz/MSU3cuXMHDg4OSE5OxoYNGzBr1iwaPo0QQmrp6NGjmD17NoyNjeHn\n54cWLVpg1KhRuHPnDsLCwkQdXV6/fo2WLVvCx8eHyxxaycnJaN++PcaPH4+dO3dK/fiEEELqnpyc\nHGhra8Pd3R1Tp06tza6owC9LoqOj0b17dwwbNkzqQ258+PABmpqa+PvvvzFt2jSpHpsQWeLu7o4F\nCxYgNjZWKmN31sScOXMQEBCAp0+finosEekqKChATEwMXr9+jdevXyM6Ohpv375FQkICEhISEBcX\nh8TEROTn54u2UVJSQrNmzaCvr48mTZpAW1sbWlpapV7lLaPPuKyioiJkZGSUenohPT0dGRkZZV6p\nqanlLk9PTxfdbChPyRMBn94QaNKkSZlX06ZN0bRpU9H3JTdVSMOUmZmJH3/8EX/++Sf69++Pv//+\nG+bm5rxjEUJInZORkYHvv/8eXl5emD17NrZu3QpFRUVMnjwZAQEBuHr1Krp37y5qv3TpUnh7eyM6\nOprb03yHDh3ClClTcP36dfTt25dLBkIIIXXH2bNnMWLECMTExNT2CWAq8MuaixcvwtbWFr///jv+\n97//SfXY/fv3R5s2beDh4SHV4xIiS3r27Alzc3OZHdf+4cOH6NKlC/bs2YMpU6bwjlNvMcbw9u1b\nPH36FK9evcLr16/x5s0bREdHIzo6GnFxcaIx6VVUVGBiYgIjIyM0b94cOjo6MDAwgI6ODvT09ETL\nmjVrxvmsSHkyMzPLFP/Lu2GQnp6OlJSUMq+Sn4MSqqqqpW4ANGvWrNwbA5/eHBAKhZzOnkhKZGQk\nZs+ejcjISCxatAi//PKL6CkaQgghn3f16lV88803yM3NhYeHB0aOHInCwkJMnToVJ0+eREBAAL78\n8ktR+9zcXBgZGWHRokVYsWIFv+AAbGxskJqairCwMHqKixBCyGc5Ozvj8uXLuHfvXm13RQV+WbRh\nwwasXLkSFy5cgLW1tdSOu2LFChw7dgxPnjyR2jEJkSUPHz5Ehw4dcOXKFalee9UxdOhQpKSkICIi\nAnJycrzj1Hm5ubl4+vSp6PX48WM8e/YMT58+FQ2XIxQKYWJiAhMTE5iamoq+NjY2homJCZo3b875\nLAhP79+/L7fwn5KSguTkZCQnJ5dZXjI3QglFRcUyxX89PT3RjSF9fX00a9ZMdNOoZBgmItsKCwux\nfft2rFq1CkZGRti5cycGDhzIOxYhhMistLQ0LFmyBJ6enhg9ejR27doFHR0d5OTkwMHBAVeuXMGp\nU6cwaNCgUtt5enpi3rx5eP36NXR1dTml/+j+/fvo0qULvL29MWnSJK5ZCCGEyLZ27drB1tYWbm5u\ntd0VFfhlEWMMkyZNwuXLlxERESG1SXdLHg2Jj4+Hjo6OVI5JiCxZvHgx/P39ERUVJZPF85MnT2LM\nmDG4ceMGPfZbTYwxREVF4c6dO7hz5w4iIyPx+PFjvHnzBsXFxVBQUECLFi3Qtm1btG3bFm3atBF9\n3aRJE97xST2TlZWFlJQUJCUllXsDIDk5GfHx8UhMTERiYiJSUlJKba+qqgpdXV3R0yElhf9mzZqJ\nlpd8ra2tzeksSYk3b95g/vz5OH36NAYPHoy1a9eiZ8+evGMRQohMOXr0KP73v/+huLgY27dvx8SJ\nEwEAcXFxGDt2LKKionDmzJky/34yxtClSxd06dIF+/fv5xG9jOnTpyMwMBCPHz+mp7cIIYSU69mz\nZ2jTpg2uX7+O/v3713Z3VOCXVVlZWejduzfk5eURHBwslTF909PToa2tDT8/P4wbN07ixyNElhQW\nFsLIyAhz587Fzz//zDtOGfn5+ejYsSO6deuGw4cP844j0woKCvDo0SNERkaWKuhnZGRAXl4ebdu2\nRZcuXdChQweYm5vDwsICLVu2hJKSEu/ohJQrPz8fSUlJogmbk5KSEB8fj4SEBCQmJpZanpSUVGoS\n4pK5H5o3bw5dXV3o6OiUugnQvHlz6OnpQV9fnyYXlrCQkBD89NNPuHr1KgYPHowNGzbgiy++4B2L\nEEK4un37NhYtWoTAwEBMmzYNbm5uopvTgYGBmDRpEjQ0NHD69Oly5zQ5d+4cbG1tcefOHXTp0kXa\n8cv17t07mJubY926dVi4cCHvOIQQQmTQunXrsH37dsTGxkJeXr62u6MCvywrmXTXxsYGBw8elMox\nu3Xrhn79+mHbtm1SOR4hsuL06dMYPXo0Xrx4ATMzM95xynBzc8NPP/2Ex48fw9TUlHccmZKUlISQ\nkBDcuHEDwcHBuHPnDj58+AAVFRV07NgRXbt2Fb06deoEVVVV3pEJkZiioiJRob/kJkBSUpJo4ufE\nxMRSywsKCkTbqqqqQl9fX1Tw19PTK/V1yX9ldQLyuuLcuXNYuXIlbt26hfHjx2PVqlXo0KED71iE\nECJVsbGx+Omnn7B//35YWVlhy5Yt6NGjB4CPHW/WrVuHtWvXYsSIEdi/f3+F89UMGjQIioqKOHfu\nnDTjV2rZsmXYs2cPXrx4gcaNG/OOQwghRMZYWlriiy++wK5du8SxOyrwy7r/x959RzWVfW8Df0A6\nSJEq2HBURAWGsRfArlixAHaxjILY0C+K3bFhQxzbgIq9UaygiFIEuzh2ZWRURIEQaqT3+/vDl7wi\n6IAmuUnYn7WyxOTec55MAbLvuftUbrrr5eWFBQsWCH2+RYsWITw8XBAbPBAiUcaMGQMej4eIiAi2\no1STlZWF1q1bY86cOVi/fj3bcVj377//4vbt27h16xZu376Nf/75B7Kysmjfvj2srKzQtWtXWFpa\nwtTUFHJycmzHJUSsVd4ZkJycjNTU1G/++eW+AcrKyjUW/ulCQN2Eh4djyZIlePz4MTp27Ij58+dj\n/PjxkJeXZzsaIYQITWFhIby8vLBlyxZoa2tjy5YtcHBw4G9I++TJE8yePRvPnz+Hp6cn5s+f/83N\nap8+fQpLS0tcv369Wl9+tvF4PDRv3hwrV66Eu7s723EIIYSIkaSkJDRr1gxXrlzB4MGDBTEkFfgl\ngSg33a1cxUx9+El9kpmZCSMjIxw4cACTJ09mO041rq6uOH/+POLj4+vl5ppJSUkICwtDWFgYbt68\nidTUVCgrK6Nz587o1asXevbsiR49elB7EUKEqHJfgJ+9EFD5aNasGQwNDdGkSRMoKSmx+M7YxTAM\nIiIisH//fpw/fx46OjqYOnUq5syZg2bNmrEdjxBCBKasrAwnT57E6tWrkZ2djWXLlsHNzY3/M4DD\n4WDlypU4cuQIunbtCj8/P5iamn53zPHjxyMuLg6PHz/+5kUANi1evBj+/v549+4dtYIkhBDCt3Pn\nTqxduxZpaWmC+vlABX5JwDAMHB0dERUVhQcPHgh1091Pnz5BW1sb/v7+GDNmjNDmIUSc/Pnnn1i5\nciU4HI7YFdBfvXoFCwsLHDhwAE5OTmzHEYni4mLcvHmTX9R//vw5VFRUYGNjg759+6JHjx7o1KkT\nfVAiRAz914WApKQkcDicKq2BdHR0+EV/IyOjahcAmjRp8s3WDNLk/fv38PX1hZ+fH3g8HoYOHYqx\nY8di2LBh1N6BECKxioqKcPjwYWzduhXJycmYOnUq1q9fDwMDAwCfV/Tv2LEDmzdvRqNGjbB582aM\nGzfuPwv279+/R+vWrXHs2DGMHz9eFG+lzpKSktCyZUscPnwYEydOZDsOIYQQMWFjY4NmzZrh+PHj\nghqSCvySorCwEDY2NsjLy8Pdu3eF+kGvc+fO6Nq1K/bs2SO0OQgRJ5aWlujYsSMOHjzIdpRqBg8e\njLS0NDx8+BCysrJsxxGahIQEXL58GVevXsWNGzeQn5+Pdu3aYfDgwRg0aBCsra3r9SpfQqQJwzD8\non9KSgoSExORkpKC5ORkfPz4ESkpKfj48SMKCwv556ipqaFp06YwMjKCkZFRtQsAhoaGUnPnYXFx\nMYKCgnDixAlERkZCRkYG/fv3x5gxYzBy5Ej+5pPk23JycpCeno6MjAxkZmbyH/n5+cjNzUVOTg7y\n8/NRUFAAHo9X5dz8/HyUlJRAVlYWGhoaaNCgAdTV1SEvn8/5ggAAIABJREFULw81NTWoqqryN63+\ncgNrfX19agtHyBdyc3Ph4+ODHTt2gMfjYfr06XB3d+fvJZWRkQE/Pz/s2rULnz59wv/+9z8sXbq0\n1nslLViwAOfPn8fbt2/FurXZhAkT8PLlSzx58kQs7zIghBAiWhkZGTAwMEBAQABGjx4tqGGpwC9J\nUlJS0KVLF3To0AGXL18WxC7LNVqyZAkuX76Mly9fCmV8QsTJ8+fPYW5ujlu3bqFnz55sx6kiODgY\nI0aMQHR0NKytrdmOI3AfP37EuXPnEBgYiDt37kBFRQXdu3fHsGHDYGdnh+bNm7MdkRDCosLCQnA4\nHLx79w4pKSngcDj8PyufS01NReWvsgoKCtDW1oahoSFatmxZrT1Qy5Yt0axZM4kqwvJ4PFy6dAln\nz57FtWvXUFZWhl69esHGxgbW1tbo1q0bVFRU2I4pMpV3iCQlJVW7M4TL5eLjx4/gcrlV7hABACUl\nJWhra0NVVRUNGzaEuro6VFRUoKKiAk1NzSpFN0VFRaioqKC8vBw5OTkoKytDbm4uSktLkZeXh7y8\nPKSmpiItLQ0FBQX88xQUFNCqVSu0bdsWbdq0Qdu2bdG2bVuYmZnVq39HhGRmZmL37t3YvXs3SkpK\nMH36dCxZsgRGRkYAgPj4eHh7e+Po0aNQUVGBi4sL5s2bV6eLtNnZ2WjWrBnWr1+PhQsXCuutCMTf\nf/+NTp06ISIiAn379mU7DiGEEJbt27cPS5YsAZfLhaqqqqCGpQK/pPn7779hbW0NZ2dneHl5CWWO\n0NBQDB06FCkpKfxbJwmRVgsXLsSVK1fw+vVrsVpVU1paig4dOuDXX3+Fv78/23EE5sOHDwgKCkJA\nQAAePHgALS0tjBo1Cvb29ujXr59EFd4IIewrKCjAhw8fkJKSgqSkJCQlJSElJQUfPnzg3yGQmprK\nP75BgwYwMDBA06ZNq90BUNkiyMjICIqKiiy+q5rl5ubiypUruHr1KmJiYvg9nTt16gRra2t0794d\nHTp0gLGxsVj9PKuNwsJCJCcng8Ph4MOHD+BwOPx/l5V3d3A4nGp7PBgZGaFx48YwMjKCgYEB/09d\nXV3o6OjwHwL88FRFfn4+UlNTweVy8f79e8TFxeH169f8R3FxMeTl5WFpaYnu3bvz94ypLHQSIk3+\n/vtv+Pr64tSpU1BSUsL8+fMxb948aGlpobCwECEhIdi/fz8iIiJgbGyM+fPnY+bMmT/0/+fGjRvh\n5eWFxMRENGzYUAjvRrB69+4NDQ0NXLx4ke0ohBBCWNatWzeYmJjg6NGjghyWCvySKDAwEI6Ojvjr\nr78we/ZsgY+fl5eHRo0a4fjx43B0dBT4+ISIi5KSEjRp0gQLFy7E8uXL2Y5TxY4dO7BixQrExcXx\nb2WWVBkZGThx4gQCAgJw7949aGpqws7ODvb29ujfv79Y31ZNCJF8JSUl1S4AfPz4EcnJyUhOTsaH\nDx+QmpqKsrIy/jl6eno1XgAwNDTktwhie8+W5ORk3LhxAzdv3kRMTAzi4uIAfG5nZGpqCjMzM7Rv\n3x4mJiZo2rQpGjduDF1dXZFm5PF4SE1NRXp6OtLS0vgr3yv3YqhsyZSVlcU/R05Ojn8RpnHjxmjS\npEm1TZoNDQ3FfmP1iooKJCQk4P79+7h79y5u376NZ8+eoby8HC1atMDQoUNhZ2cHGxsb+jlIJFZ+\nfj5Onz4NX19fPHz4EO3bt8fs2bMxbdo0KCkpITIyEidOnMC5c+dQVlaGESNGYOrUqbC1tf3h1pPF\nxcUwNjaGk5MTNm3aJOB3JBwnT56Ek5MTkpOTpaadHCGEkLr7999/YWJigmvXrqF///6CHJoK/JJq\n1apV2LJlC8LCwtCnTx+Bj9+jRw+YmZnB19dX4GMTIi7OnTsHe3t7vH//Hk2bNmU7Dl9WVhZat24N\nFxcXbNiwge04P4RhGNy4cQP79+/H+fPnoaSkxC/qDxgwgDbIJYSIlYqKCn6rl68vAFR+nZSUhKKi\nIv456urq37wAUHmHgCgL6rm5uXj16hWeP3+Oly9f4sWLF3jx4kWVOxgUFRX5GfX19aGhoQE1NTWo\nqalBXV0dGhoa/KJbZe/5SiUlJcjPz0dxcTEKCgpQVFSEwsJCFBQUIDs7u8bHlyvuAUBXVxe6urr8\nzZS/LOJ/mUta95zJy8vD/fv3ER0djUuXLuHp06fQ1NTEkCFDYGdnB1tbW9YvHBFSG8+ePYOvry9O\nnjyJ4uJijBkzBrNnz0b37t0RGRmJwMBAXLhwARkZGejatSumTJmC8ePHQ0tL66fnPnDgAObNm4eE\nhAQ0btxYAO9G+AoKCqCvr4/NmzfD1dWV7TiEEEJYsnLlShw5cgSJiYmCbrtOBX5JxTAMJkyYgGvX\nruH+/fto1aqVQMdfs2YNjh07hoSEBIGOS4g4GTFiBIqLixEWFsZ2lCrmzJmDc+fOIT4+vkpxRRKk\np6fjyJEjOHjwIOLj49GtWzfMmjULjo6O1IOYECLxMjIyarwAUHmHwMePH5GTk8M/XklJiV/Mrmlj\n4KZNm8LAwEBo+yoBn1fYfvz4kd/2prJ1EZfLRU5ODvLy8pCbm4vc3FzweDz+ngZffg2Av8lsZY96\nZWVlKCkpQVVVFZqamtDS0qr20NPT47fM0dXVpTZsX0lISMCFCxdw8eJF3Lp1C0pKShg/fjycnZ3R\nsWNHtuMRUgWHw0FQUBBOnz6Nu3fvok2bNpg1axYmTJiAR48e4dy5c7h48SIyMzPRsWNH2Nvbw97e\nHi1bthRYBoZh0L59e/To0QMHDx4U2LiiMHnyZLx9+xZ37txhOwohhBAWMAyDX375BY6OjvD09BT0\n8FTgl2SFhYWwsbFBbm4u7t69K9BblW/dugUrKyvEx8ejdevWAhuXEHHB5XLRpEkTHDt2DOPHj2c7\nDt+rV69gYWGB/fv3Y9q0aWzHqbXIyEj4+vriwoULUFZWxqRJkzBr1iyYm5uzHY0QQkQqPz+fvy/A\nlxcAKi8K1HVfgMqV7UpKSiy+KyJsGRkZOH36NHx8fPDq1St07twZzs7OGDduHF0gJ6xJT0/H2bNn\nERAQgJiYGKioqGDkyJGYOHEi8vPzce7cOYSEhCA3NxedO3fG6NGjBV7U/9LFixcxatQovHjxAu3a\ntRPKHMJy9epV2Nra4vXr12jTpg3bcQghhIhYVFQU+vbti+fPn6NDhw6CHp4K/JIuKSkJXbp0gYWF\nBYKDgwW2MqqsrAw6OjrYuHEj3UZIpNKff/6J1atXg8PhiNUH58GDByMtLQ0PHz4U+xYFFRUVuHz5\nMjZu3Ij79++jY8eOmDVrFiZOnCi0DQ0JIUQalJSUICMjAxwOBykpKeBwOHj37l2Vrz9+/IjS0lL+\nOUpKSjA0NETLli35Pem//LryTyL5YmJi4OPjg3PnzkFZWRkuLi743//+h0aNGrEdjdQDPB4Ply5d\nQmBgIMLCwtCgQQP0798fo0ePhqamJi5cuIALFy4gPz8fvXr1wujRozFq1CiRtLu0srKClpYWLl26\nJPS5BK28vBxNmjSBs7Mz1qxZw3YcQgghIjZ9+nQ8f/4csbGxwhieCvzSIDY2Fr1798bkyZPh4+Mj\nsHFHjRqFiooKXLx4UWBjEiIuOnfuDDMzMxw6dIjtKHzBwcEYMWIEoqOjYW1tzXacbyotLcXJkyex\nZcsWxMfHw87ODsuWLUOnTp3YjkYIIVKjoqICXC6Xvy/At+4KKCws5J+jqqpa414ATZs25bcKMjAw\nYPFdkbpIT0+Hn58fduzYgeLiYri5ucHNzQ0aGhpsRyNS5tWrVwgNDUVoaChiYmLQoEED2NrawtHR\nES1atMCJEydw5swZZGZmolu3bhg3bhwcHBxE+v0kNjYWXbp0QUxMDKysrEQ2ryC5ubnhypUreP36\nNdtRCCGEiFBeXh4MDQ2xYcMGzJ8/XxhTUIFfWoSEhMDOzg4bNmyAh4eHQMbct28fPDw8kJmZCXl5\neYGMSYg4+Pfff9GmTRuEh4ejX79+bMcB8LlobmZmBgsLC/j7+7Mdp0YFBQU4ePAgvLy8wOFwMGHC\nBCxduhSmpqZsRyOEkHorKyurygWApKQkJCUlgcPh8J/LysriH6+goFDjXgBGRkb8iwIGBgb0u58Y\nyc/Px8GDB7Fp0yYUFhZizpw5WLZsGRX6yQ/Ly8tDREQEQkNDcfXqVSQmJkJbWxsDBw7EsGHD0K9f\nP4SGhsLX1xf37t1DmzZtMG3aNIwbNw4tWrRgJfOYMWOQlJSE+/fvszK/IMTExMDGxgb//vuvwPfQ\nI4QQIr727duH//3vf0hKShLWHZlU4Jcmvr6+cHFxwdGjRzF58uSfHu/Nmzdo3bq12K8mJqSuVq1a\nhUOHDuHDhw9C3diwLnbs2IEVK1YgLi6OtQ9O31JcXIw9e/Zgy5YtyM/Px4wZM7B48WI0b96c7WiE\nEEJqobCwsMa9AL68KMDlclFRUQEAkJWVhb6+fo17AXzZDkiQ+z+R//bp0yd4e3vD29sbioqK2LZt\nG6ZMmQIZGRm2oxExV1ZWhsePHyM6OhpXr17FzZs3UVZWho4dO8LW1ha2trbo3LkzsrOz4eXlBR8f\nHxQUFGD06NGYNWsWevfuzep/Z//88w/at2+PoKAgjBo1irUcP6usrAza2trw9PTEnDlz2I5DCCFE\nRMzNzdG1a1ccOHBAWFNQgV/aLF68GHv27MGVK1cEsjL5l19+wYQJE7B+/XoBpCOEfQzDoFWrVhgz\nZgy2bt3KdhwAn1dftm7dGs7Ozti4cSPbcfgYhkFQUBA8PDzA4XCwYMECuLm5QU9Pj+1ohBBCBKy0\ntBSpqan8CwBftgL68q6A4uJi/jnKyspo3LhxtX0Avn6OescLVlZWFv744w/s3bsXNjY28PHxQevW\nrdmORcRIfn4+7t27h1u3buHWrVu4d+8e8vLyoKuriwEDBsDW1haDBg2Crq4uACAtLQ3bt2/HX3/9\nBRUVFbi5uWHGjBn819k2depUxMbG4sWLF2K/R9V/GTlyJGRlZXH+/Hm2oxBCCBGBys11Hz58iI4d\nOwprGirwSxuGYTBp0iRcvnwZN2/ehJmZ2U+N5+Ligr///hsPHjwQUEJC2HXr1i1YWVnh6dOnMDc3\nZzsOAMDV1RVnz55FfHw81NXV2Y4DALh//z4WLVqEe/fuYeLEidi4caNINk8jhBAi3tLT08HlcpGc\nnIzU1NRqf1ZuFPzlhQAlJSV+wd/AwABGRkYwMDCoclHAwMAAOjo6LL4zyfPkyRPMmjULz58/x9Kl\nS7Fs2TIoKiqyHYuwIDk5GQ8ePMDNmzdx+/ZtPHr0CGVlZTA2NkavXr34D1NT0yor8XNycrB+/Xrs\n27cPDRs2hLu7O5ydnaGqqsriu6nqw4cPaNWqFfz8/ARylzrb9uzZgxUrViAjI4NaoRFCSD0wduxY\ncDgc3L59W5jTUIFfGhUVFaF///5ITk7G3bt3f2rzowsXLmDMmDHgcDi0apdIBRcXF9y8eRMvXrxg\nOwqAz5uaWVhYYP/+/Zg2bRrbcfD+/XssW7YM/v7+sLKygpeXF22eSwghpM4yMzNrLPx//WdRURH/\nHEVFxWoXAHR1daGvrw8DA4MqX4tTAZJNZWVl2LlzJ9asWQNjY2McPHgQ3bp1YzsWEaKEhAQ8evQI\njx49wuPHj/Ho0SNwuVzIysqiQ4cOsLa2Rs+ePWFlZQUjI6NvjhMQEAA3NzeUlJRg+fLlmD17NlRU\nVET4TmrH1dUVISEhePPmjVQUxOPj42FiYoJbt26hZ8+ebMchhBAiRCkpKWjRogWOHDmCCRMmCHMq\nKvBLq8zMTPTs2ROqqqqIjo6GmpraD42Tn58PHR0d+Pj4YOrUqQJOSYholZSUwNDQEEuWLMGSJUvY\njgMAGDx4MNLS0vDw4UNWbzkuLi7Gxo0bsW3bNjRt2hRbtmyR6B6nhBBCJEN2dja/2F/5+PLv6enp\nSE1NBY/Hq3KeiooKDAwMoK+vDz09vSoXASqfr/y6PuwVkJCQABcXF0RGRsLT0xOLFi2i3vwSrqCg\nAK9fv0ZcXBy/kP/48WNkZ2ejQYMGaNOmDX777TdYWlrit99+w2+//VarjZffvXuHuXPn4urVq5g0\naRK8vLzEphXP17hcLoyNjbF9+3ap6lnfsmVLTJkyBWvXrmU7CiGEECFavXo1fHx88PHjR2HfZUkF\nfmn29u1bdO/eHV26dMGFCxcgJyf3Q+MMGjQIGhoaCAgIEHBCQkSr8o6U9+/fi0W7meDgYIwYMYL1\njaxjYmIwe/ZsJCUl4Y8//sC8efOkYoUUIYQQ6VFcXMwv9nO5XKSnp4PD4SAtLQ1paWlVnk9PT8eX\nH3EUFRWhq6uLxo0bQ09Pr8rXenp6MDAwgJ6eHrS1taGtrQ0FBQUW3+mPYxgGu3btgru7OwYPHoyj\nR49CS0uL7VjkP3C5XMTFxeH169f4559/+F8nJiaCYRjIy8ujffv2VYr5FhYWdb6LhWEYeHt7Y+XK\nlWjZsiV8fHzQq1cvIb0rwVi6dCmOHj2KhIQEKCsrsx1HYGbNmoW4uDjcvHmT7SiEEEKEpLi4GC1a\ntMCMGTOwYcMGYU9HBX5pd//+ffTt2xcODg44dOjQD63k2bVrF1atWkV9AonEs7e3R1ZWFiIiItiO\ngtLSUpiZmcHc3Jy1i2d5eXlwd3eHr68vbG1tsW/fPjRv3pyVLIQQQoiglJeXIy0trcpFgK+/TklJ\nQXp6OtLS0lBWVlblfDU1NWhra0NHRwc6Ojr8wn+jRo34X1c+Kl9v2LAhS++2ugcPHsDR0REVFRXw\n9/enlj0sKyoqwvv375GYmFjlz4SEBLx+/RrZ2dkAAA0NDZiYmMDU1BRt27aFiYkJ2rVrh5YtW/70\nZ7CMjAw4OTkhLCwMa9aswdKlS8X+c92nT5/QvHlzLF++XGzuvBWUgwcPYuHChcjJyZH4TYMJIYTU\nzNfXFwsWLMC7d+9gaGgo7OmowF8fhIeHY9iwYZg1axZ27dpV5/MTEhLQsmVLREZGok+fPkJISIjw\n5eTkwMDAAHv27MH06dPZjgNvb28sW7YML1++xC+//CLy+e/evYspU6YgOzsbe/bswbhx40SegRBC\nCBEHlav+s7KykJmZyX9kZGRU+fuXj68vCigoKFQr/n95AeDLiwRaWlpQV1fnP4T1niZNmoTo6Gjs\n2LFDqtqbiJOCggKkpKQgNTUVqamp4HA4SE5OrlLM53A4/OM1NDTQvHlztGjRAsbGxjAxMYGJiQna\ntm0rtA//z549w/DhwwEAp0+fRo8ePYQyj6CtW7cOO3bsQGJiYq1aD0mShw8fonPnzvjnn39gYmLC\ndhxCCCECVl5eDlNTU/Tp0we+vr6imHLbj/VsIRKlf//+OHz4MCZNmoQmTZrUeQWEsbEx2rZti8uX\nL1OBn0isgIAAMAyD0aNHsx0FWVlZ2LBhAxYvXizy4n5ZWRnWrVsHT09PDBgwAH5+fmjcuLFIMxBC\nCCHiRFdXt849yHNycpCRkVHlIsDXFwjev3+Phw8f8v+en59f41iVBf+GDRtWKfxrampCQ0Oj2vMa\nGhrQ0NCo8tzX7Vp0dXURGhqKDRs2YP78+Xj69Cn27t37wy0764vc3FxkZWUhKysL2dnZ/K8r7/ao\nLOKnpaUhOTkZeXl5Vc7X09ND48aN0aJFC3Tt2hWOjo5o0aIFWrRogebNm4u8ZVJwcDAmTJiATp06\nISgoCNra2iKd/0cVFBRgz549WLBggdQV9wHAzMwM8vLyePLkCRX4CSFECgUGBuLdu3e4fPmyyOak\nFfz1yL59+zB37lzs378fM2fOrNO57u7uCAkJQVxcnJDSESJcffr0ga6urljsJeHq6oqzZ88iPj5e\naCv3apKSkoLx48cjNjYWXl5ecHZ2pg34CCGEEBEpKipCZmYmeDwecnJy+I/s7Gzk5uZWeS43NxfZ\n2dlVnsvJyalWUK7UoEED/kWByqK/srIyNDQ0kJGRgVu3bqFx48YYPXo09PT0ICcnBw0NDSgqKkJF\nRQWqqqpQUFDg/ykjI8PfnLjyGABQV1dHgwYNRPbP7Fvy8/NRUlICAPwWN8XFxSgoKEBubi4KCwuR\nl5eHnJwcFBYWIj8/H58+fUJhYSEKCgrA4/FQUFDAL+BXFvRLS0urzaWpqQldXV3+Zs6GhobQ09OD\noaEhf3Pnyj0dxKntzZEjRzBz5kw4OTnhr7/+Eqts/8Xb2xurVq1CQkKC2G4A/LPMzc0xZMgQbN68\nme0ohBBCBKxjx45o06YNTp8+LaopaQV/fTJnzhykpqbC2dkZmpqaGDt2bK3PHTp0KLZv3443b96g\nVatWQkxJiOBxOBzExMQgKCiI7SiIi4vD/v37sX//fpEW969fv45JkyZBS0sL9+7dg7m5ucjmJoQQ\nQgigpKQEIyMjGBkZ/fAYDMOAx+Ph06dPVS4G5OTk4NOnT/yLB5VFbh6PB3V1dVhaWuLJkyfw9fWF\ngYEBKioqkJOTg6KiIhQWFtY5R+UFhS+pqKhAUVGx2rFfXiz4Wm3m//TpEyoqKlBWVobc3Nw65WzY\nsCH/AoaGhgaUlZWhoqICLS0tNGrUCK1ateK3TWrUqFG1rxs1aiSRiyH27duHefPmwd3dXeIKyKWl\npdi5cydmz54ttcV9ALC0tMTjx4/ZjkEIIUTArly5gkePHuHAgQMinZcK/PXMunXrkJOTg4kTJ0JD\nQwMDBgyo1Xk9e/aEpqYmQkJCsHDhQiGnJESwzp49C1VVVQwePJjtKHBzc4OZmRmmTp0qsjm3b98O\nDw8P2NvbY//+/WK1ESAhhBBCak9GRgZaWlo/1OolMTERAwcOBMMwuH79Opo3b85/LS8vD6WlpcjJ\nyUF5eTnKy8uRk5MDACgsLERRUREAgMfjgWEYlJaWVruboLIQ/7WSkpJvticC8J/vpWHDhpCTk4Os\nrCy/XYuysjKUlJQAfO5rLysrCzk5OTRs2BBqampQVlaut7/v7N27F/PmzcOWLVvg7u7Odpw6O3r0\nKLhcLhYtWsR2FKH69ddf4enpyXYMQgghAubp6YkhQ4bgt99+E+m81KKnHqqoqMCECRMQGhqKyMhI\ndOzYsVbnTZo0CR8/fkR0dLSQExIiWDY2NmjSpAlOnjzJao7g4GCMGDEC0dHRsLa2Fvp8xcXFcHFx\nwbFjx7Bx40YsXbpU6HMSQgghRHxxuVwMGjQIWVlZuH79OvX/ljInT57ElClTsGnTJon8va+iogKm\npqawtrYW+cpHUYuKikLfvn2RnJwstA2WCSGEiNaNGzfQp08fxMTEwMrKSpRTb6MCfz1VUlKCYcOG\n4enTp4iJianVL/dnz56Fg4MDkpOTYWBgIIKUhPy81NRUNGnSBEFBQbCzs2MtR2lpKczMzGBubi6S\nfQCysrIwYsQIPH/+HKdPn8aQIUOEPichhBBCxB+Px8PQoUPx7t073Lhxg4r8UuLatWsYNmwY3Nzc\nsGXLFrbj/JCgoCA4OjrixYsXMDU1ZTuOUHE4HBgaGiIqKgq9e/dmOw4hhBAB6NGjB9TV1XH16lVR\nT71NVtQzEvGgoKCAc+fOoVWrVujXrx/evn37n+fY2tpCSUlJpLtAE/KzgoKCoKysjEGDBrGaY8+e\nPUhISMCmTZuEPteHDx/Qq1cvJCUl4e7du1TcJ4QQQgifpqYmrl27hjZt2sDGxgZxcXFsRyI/KT4+\nHuPGjYODg4PE9dz/kpeXF+zs7KS+uA8ABgYGUFFRQUJCAttRCCGECMD58+dx7949bNy4kZX5qcBf\nj6mpqSE0NBSGhobo06fPf/5yoaKiggEDBuD8+fMiSkjIzwsMDMSIESOgrKzMWoasrCxs3LgRixcv\nFvom1S9evEDPnj0hJyeH27dvo127dkKdjxBCCCGSR1VVFcHBwWjRogUGDBhQq8U+RDzxeDyMGDEC\nbdq0wcGDByVyU2Dgc8uae/fuYcmSJWxHEQkZGRm0aNGCCvyEECIFysvLsWrVKjg4ONS6DbqgUYG/\nnlNXV8e1a9egp6eHPn36IDEx8bvHjxo1CuHh4fxNtwgRZ6mpqbh9+zbs7e1ZzbFq1SrIycnBw8ND\nqPM8ffoUffr0gbGxMWJiYmBkZCTU+QghhBAiuSpvIdfX18egQYOQmprKdiTyA37//Xfk5ubi/Pnz\n/I2HJdGuXbtgZWWFrl27sh1FZFq2bIl3796xHYMQQshPOnbsGP755x+sXbuWtQxU4CfQ1NREaGgo\n1NTUMGDAAHA4nG8eO3z4cJSXl7PRT4qQOhOH9jxxcXHYv38/Nm3aBHV1daHN8/TpU/Tv3x+mpqa4\ncuUKNDU1hTYXIYQQQqSDpqYmwsLCICcnh4EDByI7O5vtSKQOfH19ce7cORw9ehSNGzdmO84P+/jx\nI4KDg+Hq6sp2FJEyMjJCSkoK2zEIIYT8hJKSEqxfvx4zZ85E27ZtWctBBX4CANDV1UVkZCTk5OTQ\np08fcLncGo9r1KgRrK2tqU0PkQiBgYEYPnw4q+15Fi1aBDMzMzg5OQltjufPn6Nfv36wsLDA1atX\noaamJrS5CCGEECJddHR0EBoaiszMTIwePRolJSVsRyK1EBcXh0WLFsHDwwP9+/dnO85P2b9/P3R1\ndTFq1Ci2o4iUgYEB3TlDCCESbu/evUhNTcWqVatYzSHH6uxErOjp6eHatWuwsbHBoEGDEBkZiUaN\nGlU7btSoUVixYgWKiook+jZQIt0q2/MEBgayluHq1au4evUqwsPDISsrnOupiYmJsLW1hbKyMiIi\nIqCqqiqUeQghhBAiWeTk5BAZGQkrK6v/PNbY2BihoaHo1asXXF1dceDAAREkJD+KYRjMmTMHpqam\n+OOPP9iO81MYhsHJkycxZcoUKCgosB1HpKjATwghki09PR3r16/HggULWG+RTAV+UkWTJk0QEREB\nGxsb2NraIiwsrFqrj7Fjx2LhwoUIDQ2td6ssiORNcdJFAAAgAElEQVSobM8zePBgVuYvLy/HkiVL\nMHLkSPTr108oc2RlZWHQoEHQ0dGBsbExmjRpgkWLFgllLkKIZHBwcICbmxu6d+/OdhRSB3fv3oW3\ntzcCAgLYjkKkiIODw3dbb37N3NwcAQEBGDZsGDp06IAFCxYIMR35GadOnUJMTAxu374NOTnJ/kj/\n4MEDJCQkYNy4cWxHEbnGjRsjOzsbxcXFUFRUZDsOIYSQOlq+fDkUFRWxbNkytqNQgZ9U16JFC0RE\nRKBPnz4YMGAAwsLCqqzkNzAwgJWVFfz9/anAT8QW2+15Dh06hLi4OJw5c0Yo41dUVGDixInIz89H\nVFQUFixYgKZNm7K+oTAhhH3dunWj7wUShmEYAKB/b4R1gwcPxoYNG7B48WK0bt0aQ4YMYTsS+UpB\nQQHc3d3x+++/o1u3bmzH+WkBAQH45ZdfYGlpyXYUkdPS0gIA8Hg86Ovrs5yGEEJIXTx69AiHDh3C\niRMnhLrfYm1RD35So1atWuHWrVvIyspC3759kZ6eXuV1BwcHBAcHIz8/n6WEhHwbl8vFrVu3MHbs\nWFbmz8vLw5o1a+Ds7Ix27doJZY7Vq1cjKioKZ8+elehN1QghhBAiXjw8PDBu3DiMHz8er169YjsO\n+cpff/2FnJwciW/NA3y+uHn27Nl6uXofAL8glJOTw3ISQgghdcEwDFxdXdG9e3ex+RlGBX7yTc2b\nN0dUVBTy8/NhbW2NlJQU/mtjx45FSUkJrly5wmJCQmp2+fJlyMvLY+DAgazMv23bNuTl5WHlypVC\nGT8yMhKenp7YvXs3unTpIpQ5CCGEEFJ/HTx4EKamphg9ejSys7PZjkP+n/z8fGzbtg2urq5SseL7\n7t27SExMhIODA9tRWFFZ4P/06RPLSQghhNTFkSNHEBsbi71790JGRobtOACowE/+Q7NmzXDz5k3I\nysqib9++SE5OBgDo6uqid+/e8Pf3ZzkhIdWFhISgX79+UFNTE/ncKSkp8PLywooVK4TywYvH42Ha\ntGkYOXIkfv/9d4GPTwghhBCipKSEc+fOIS8vD+PGjUN5eTnbkQiAffv2IT8/H+7u7mxHEYiAgACY\nmJjA3Nyc7Sis0NDQAEAFfkIIkSQ5OTlYsWIFXFxcYGFhwXYcPirwk/9kYGCAyMhIyMvLo1evXkhI\nSAAAODo64vLly3RLIRErxcXFCA8Px7Bhw1iZf+XKldDS0sK8efOEMv78+fNRVlaGAwcOCGV8Qggh\nhBAAMDQ0xIULFxATE4P169ezHafeKy4uxo4dO+Dq6godHR224/y0iooKBAUFiU1rAzZU7hVWWFjI\nchJCCCG15eHhgbKyMqxbt47tKFVQgZ/Uir6+PiIiIqCuro7evXvj7du3GDNmDCoqKhASEsJ2PEL4\nbty4gdzcXFY2hXv69CmOHTuGLVu2QEVFReDjR0dH48SJE9i7dy+0tbUFPj4RTzIyMjU+anq9SZMm\n1fZM+d44hBBCyPd06tQJW7duxfr16xEVFcV2nHrtxIkTyMrKwoIFC9iOIhC3bt1CcnJyvd5cXF5e\nHgBQWlrKchJCCCG1cePGDfj4+GDXrl38jdLFBRX4Sa3p6ekhMjISOjo66NOnD7hcLvr164czZ86w\nHY0QvpCQEFhYWKB58+Yin9vd3R3m5uZCWYlUUlKC2bNnY/jw4bCzsxP4+ER8MQwDhmFq9ffk5GSM\nHz++xlYKXx739RiEEELIt8ydOxfDhw/HlClTkJmZyXaceolhGHh7e2PixIlo3Lgx23EEIiAgAG3b\ntkX79u3ZjsIaeXl5yMjIoKSkhO0ohBBC/kNBQQF+//13DB06VCzvPqMCP6kTbW1thIeHo2nTprCy\nskK3bt0QGhoKLpfLdjRCAHzeYHf48OEin/fKlSu4fv06/vzzT8jKCv5b6549e/Dhwwfs2rVL4GMT\n6WFgYICIiAisXr2a7SiEEEKkhIyMDA4fPgxZWVna/4cloaGhePnypdSs3q+oqMC5c+cwfvx4tqOw\nTl5enlbwE0KIBFixYgXS09Ph4+PDdpQaUYGf1JmWlhauX7+OLl26YOvWrZCXl0dgYCDbsQjBixcv\nkJCQIPL+++Xl5Vi6dClGjRoFKysrgY+fnZ2NTZs2wc3NjZU7E4jk8Pf3h5ycHDw9Pal9GiGEEIHR\n0tLC8ePHcenSJbH9YCvNdu7ciYEDB4rVZn4/Izo6GhwOp16356kkJydHm1gTQoiYu3fvHnbv3g1v\nb28YGRmxHadGVOAnP0RFRQUXL16Eo6MjiouLsXPnTrYjEYKQkBDo6emhc+fOIp334MGDeP36NTZv\n3iyU8T09PSErK4ulS5cKZXwiPaytrbFp0yYwDIPJkyfzN0UnhBBCfpa1tTWWLVsGNzc3PHv2jO04\n9cabN28QHh4uNav3gc/teSwsLGBqasp2FNaVlZWhQYMGbMcghBDyDcXFxZgxYwZ69+4NJycntuN8\nExX4yQ+Tk5PDwYMHMWbMGLx9+xbLli1jOxKp50JCQjB06FChtMj5lry8PKxduxZz5sxBmzZtBD5+\nZmYmfHx8sGTJEqirqwt8fCJ93N3dMWrUKPB4PIwZMwZFRUVsRyKEECIl1qxZg44dO2Ly5MnUVkRE\n9u7di2bNmmHQoEFsRxGI8vJynDt3Dg4ODmxHEQtlZWWQk5NjOwYhhJBvWLZsGT5+/Ag/Pz/IyMiw\nHeebqMBPfoqMjAzOnDkDDQ0NbN68GR4eHmxHIvVUVlYW7t27J/L2PFu2bEFRURFWrlwplPF37twJ\nRUVFODs7C2V8Ip0OHz6MVq1a4fHjx5g7dy7bcQghhEgJOTk5HDt2DG/evMHWrVvZjiP1CgsLcezY\nMbi4uEjNKu/IyEikpaVRex583ougoqKCCvyEECKmwsLCsHPnTuzdu1fs2yVTgZ/8NFlZWcyaNQva\n2trYvn07XF1dqY8gEbnLly9DTk4OAwYMENmcqamp8Pb2hoeHB3R0dAQ+fnFxMXx8fDB//nyoqakJ\nfHwivTQ0NHD27FkoKyvDz88Phw8fZjsSIYQA+PzzeuTIkTAwMICCggIMDAwwfPhwXLhwodqxMjIy\nNT5qe1xdHqT2WrZsiTVr1mD9+vWIi4tjO45UO3XqFPLy8jBt2jS2owhMUFAQLC0t0bp1a7ajsK7y\nM7O0XLwhhBBpkpaWBicnJ9jb22Py5Mlsx/lPVOAnAjF16lRkZmbijz/+wKFDhzBq1Cjk5eWxHYvU\nI1euXIG1tTUaNmwosjnXrVsHDQ0NzJs3Tyjjnzt3DjweDzNmzBDK+ES6mZub46+//gIAuLq64smT\nJywnIoTUZ6WlpZg0aRImTpyIvn37IjY2Fnl5eYiNjUW/fv0wdepUjBkzBoWFhfxzGIYBwzDf/HtN\nz9f09bfG+dZ45L8tWrQI7du3h4uLC/0zFCJfX1/Y29tDT0+P7SgCwTAMLl++jNGjR7MdRSzk5+cD\nAFRVVVlOQggh5EsMw2DGjBlQVlbGgQMH2I5TK1TgJwLRvn17/Prrr3j37h1u3LiBBw8eoGfPnvjw\n4QPb0Ug9wDAMoqKiRNqbNCEhAX5+fli3bh1UVFSEMseBAwcwbNgwGBoaCmV8Iv2mTp2KWbNmobCw\nEGPHjgWPx2M7EiGknpo3bx4CAgL4m4U2bdoUCgoKaNq0KRYuXIhr167h0qVLmDVrFttRSS3Iycnh\n0KFDuH37Ng4dOsR2HKn09OlTxMbGYvbs2WxHEZiHDx8iOTkZw4cPZzuKWKhcEEd36hJCiHjx9vbG\n1atXcfLkSYnZC5EK/ERgpk+fDn9/f5iamuLu3bsoKytD9+7d8ffff7MdjUi5ly9fgsvlok+fPiKb\nc9myZTA2NsbUqVOFMv7bt29x48YN/P7770IZn9Qfu3btQseOHfH27Vuh/fdKCCHfc//+ffj6+sLJ\nyQmdOnWq8ZiuXbtiypQpOHHiBG7evPnTc9ZlVTmtQP8xFhYWmD9/PhYvXoyUlBS240idw4cPo3Xr\n1ujVqxfbUQQmODgYTZs2hbm5OdtRxAIV+AkhRPw8fvwYy5cvxx9//IHu3buzHafWqMBPBGby5Mmo\nqKiAv78/jI2Nce/ePVhYWMDGxgaXLl1iOx6RYlFRUdDU1ISFhYVI5nv69CkCAwPh6ekptE2xfH19\nYWRkJNK7Eoh0UlRURFBQELS0tOh7MSGEFT4+PgCAsWPHfve4yk03JeVWaAKsX78e2tracHNzYzuK\nVCktLcWpU6cwdepUqdojIiQkBMOHD5eq9/QzKgv8omwxSggh5NuysrIwduxY9OzZEx4eHmzHqRMq\n8BOB0dTUxKhRo+Dn5wfg8y8qly5dwpQpUzB69Ghs2bKF5YREWt24cQM2NjYi26Dqf//7Hzp16gQ7\nOzuhjF9eXo5jx45hxowZtOkWEYgWLVrgxIkT9IGaEMKKyhX5ZmZm3z2uclXv7du3hZ6JCIaKigr2\n7NmDgIAAREVFsR1HaoSEhCAzM1MiNvWrrZSUFDx58oTa83whNzcXABX4CSFEHFRUVGDSpEkoLS3F\n6dOnISsrWSVzyUpLxN6MGTNw//59PH36FMDn/pz79u3Dhg0bsGzZMsyfPx9lZWUspyTShGEYxMTE\noHfv3iKZ78aNGwgPD4enp6fQiqV37twBl8vFuHHjhDI+kSwyMjJV/lv73t+/fu1LQ4YMwYoVK4Qb\nlhBCalDZvkVbW/u7x1W+zuFwhJ6JCI6trS1sbW3h5uaGiooKtuNIhcOHD6N///5o1qwZ21EE5tKl\nS1BRURHZ7+ySIC0tDQ0aNECjRo3YjkIIIfXe8uXLERUVhbNnz0rk5vZU4CcC1adPH7Rq1QpHjhyp\n8ryHhwf8/f3h5+eHQYMGISMjg52AROo8e/YMGRkZIum/zzAMPDw8MGTIEPTt21do81y8eBGtWrVC\n27ZthTYHkRwMw9T4+N7r37J+/XrqNU0IEVtfXqwkksXLywsvX77EyZMn2Y4i8bhcLq5evQonJye2\nowhUcHAwBg4cCCUlJbajiI20tDTo6OhI3CpRQgiRNufPn8fWrVuxd+9edO7cme04P4R+khCBkpGR\nwbRp03D8+HEUFRVVec3e3h537tzB+/fvYWlpidjYWJZSEmkSFRWFRo0a/edt/4IQGBiI2NhYbNiw\nQajzhIWFYcSIEUKdgxBCxEnl3SdU2JVOjRs3BvC5r+n3VC4AMTQ0rPJ8ZfGrvLz8m+eWl5dTkYxF\npqammDZtGpYtW4aCggK240i048ePQ0VFBSNHjmQ7isAUFBTgxo0b1J7nK+np6dDV1WU7BiGE1Gv/\n/PMPnJycMHfuXEyfPp3tOD+MfgsmAufk5IRPnz7hwoUL1V6zsLBAbGws2rVrB2traxw+fJiFhESa\nREVFoXfv3kL/UF9WVoY1a9ZgwoQJsLS0FNo8WVlZePXqlUjuSCCEEHFBd5ZINysrKwCf77r7nsrX\nra2tqzxf2Z/606dP3zw3Ozsb6urqPxOT/KQNGzYgJycHf/75J9tRJNrx48cxfvx4qKiosB1FYK5f\nv46ioiLY2tqyHUWspKWlSWQbCEIIkRYZGRkYPnw4LCws4OXlxXacn0IFfiJwhoaGGDp0KHx8fGp8\nvVGjRrhy5QoWLFiAGTNmYPbs2SgtLRVxSiINKioqcPPmTZH08jx48CDevXuHtWvXCnWe6OhoAEDP\nnj2FOg8hhAgLmyvx2Zqb7j74PmdnZwDA2bNnv3tcYGBgleMrmZiYAABevHjxzXNfvHiBNm3a/ExM\n8pP09PSwaNEieHp6gsvlsh1HIsXGxuLZs2dS2Z6nS5cuMDAwYDuKWOFyuVTgJ4QQlhQVFcHOzg7l\n5eUIDAyEvLw825F+ChX4iVDMmTMH0dHReP78eY2vN2jQAJs3b8bp06dx8uRJ9OvXD6mpqSJOSSTd\nkydPkJ2dLfTV7oWFhdi4cSOcnZ3xyy+/CHWuR48ewcTEBFpaWkKdhxBCCBGVbt26Yfbs2Th8+DAe\nPnxY4zH379/HsWPHMHv27Gq9Tyvbenzvzk8/Pz8MHTpUcKHJD3F3d4eamprQ2xlKq8OHD6NNmzbo\n2rUr21EEhmEYhIaGYtiwYWxHETuJiYlStZEyIYRICoZhMHPmTLx48QKXLl2Cvr4+25F+GhX4iVAM\nGDAAJiYm+Ouvv757nKOjI+7cuYPk5GR06dIFd+7cEVFCIg2ioqKgq6uL9u3bC3Ueb29v8Hg8LF++\nXKjzAMDTp09hYWEh9HkIIYQQUdq9ezfs7e0xYMAA7Nq1C0lJSSgtLUVSUhL+/PNPDBo0CI6Ojti9\ne3e1cxcsWIB27drhyJEjcHV1xYsXL1BcXIzi4mI8f/4cLi4uiI2NxcKFC1l4Z+RLqqqqWLNmDQ4c\nOIDk5GS240iUoqIinDlzBjNmzGA7ikA9fPgQKSkp1H+/Bh8/fkTTpk3ZjkEIIfXOkiVLEBAQgLNn\nz6JDhw5sxxEIKvAToZCRkYGLiwuOHz/+3X6pAGBubo7Y2FhYWFjAxsYGnp6eqKioEFFSIsliYmJg\nY2Mj1LYIPB4P27Ztw+LFi0VyVTcuLg7t2rUT+jyEEFIpPDwcI0aMgJaWFpSUlPDbb7/hzJkz1Y77\nciPct2/fYvTo0dDS0qrSnubL78eVz8+cObPKOC9fvsSQIUOgpqYGDQ0NjBo1Ch8+fPhmvrS0NLi4\nuKBJkyZQUFCAkZERZs2aVe3Ov9rMXduxgM/Fts2bN8PS0hKqqqpQUlJC27Zt4ezsjHv37tVpXgLI\ny8vj5MmTOHHiBMLDw9GxY0eoqqrit99+w/Xr13HixAmcOHGixtujGzZsiLt37+KPP/7AgwcP0LNn\nT6iqqkJXVxdTp06Frq4u7t+//80e/F+3UKKWSsLl5OQEHR0d7Nixg+0oEuXixYvIzc3FpEmT2I4i\nUMHBwWjWrBnMzMzYjiJWCgsLkZmZSSv4CSFExA4cOAAvLy/4+fmhX79+bMcRHIYQIeHxeIyqqiqz\na9euWh1fUVHB7Ny5k1FQUGD69u3LpKSkCDkhkXT6+vqMl5eXUOdYtWoVo6mpyWRnZwt1Hob5/P+A\nkpISc+zYsTqfa29vz9jb2wshFSFEkgBg/P3963yOnZ0dk56eziQmJjIDBgxgADBXr16t8VgAzIAB\nA5jbt28zBQUFzJUrV5gvf6WsPKYmb968YTQ1NRlDQ0MmIiKCyc3NZaKjo5lBgwbVeF5qairTvHlz\nRl9fnwkLC2Nyc3OZmJgYpnnz5oyxsXG1783fm7suY+Xk5DCdOnViGjZsyBw4cIBJTU1lcnNzmaio\nKMbU1LTaHN+btzb8/f1/6nxCavIj3w8EZfv27YyqqiqTnp7OyvySaPDgwcyQIUPYjiFwnTp1YubM\nmcN2DLHz+vVrBgDz+PFjtqMQQki9ERwczDRo0IDZsGED21EEbSut4CdCo6GhgYkTJ2L37t1gGOY/\nj5eRkcGCBQtw584dfPjwAb/++ivCwsJEkJRIovfv34PL5aJLly5Cm4PH42H37t1wd3eHpqam0Oap\nlJmZiaKiIhgZGQl9LkII+ZK3tzd0dHTQrFkz7Nq1CwCwcePGbx6/fPly9OjRA8rKyrC1ta3Vz3kA\nWLt2LXg8HrZs2YK+fftCTU0N1tbW1TZVrbRmzRokJiZi06ZNGDhwINTU1GBlZQVvb28kJCRg27Zt\ntX6PdRlr7dq1ePjwIdavX4+ZM2dCX18fampq6N27N06ePFnrOQmpr5ydnaGsrIw9e/awHUUicLlc\nXL9+HVOmTGE7ikBlZmbi0aNHGDBgANtRxM779+8BgFbwE0KIiERFRcHBwQHTp0/HihUr2I4jcHJs\nByDSbf78+di/fz8iIiLQv3//Wp3TsWNH/P3333B2doatrS3mzZuH7du3S/yO1kSwHjx4ADk5OVha\nWgptjm3btqFBgwaYN2+e0Ob4UnZ2NgCgUaNGP3R+UlISAgMDBRmJEFIPfF2cb926NQDg1atX3zzn\nRy+uXr9+HQDQt2/fKs/36tWrxuODg4MBALa2tlWet7a25r/+vQsRPzpWUFAQAMDOzq7aOJaWlrW+\noEFIfaWqqoq5c+di165dWLx4MRo2bMh2JLEWGBgIJSUlqduINjIyEjIyMrCxsWE7ith5/fo1dHR0\nfvj3fkIIIbV3//59jBw5Era2tti3bx/bcYSCCvxEqNq3b49evXphz549tS7wA4C6ujpOnToFGxsb\nuLm54fHjxzh27BhatGghvLBEojx48ABmZmZQVVUVyviZmZnYvXs3Vq5cKbIPpUVFRQAAJSWlHzr/\n7t27uHv3riAjEUKkHI/Hw9atW3H+/HkkJSUhLy+P/1pmZuY3z1NRUfmh+TIyMgAAOjo6VZ7/+u+V\n0tLSAACGhoY1vv727dtaz12XsTgcDgDAwMCg1uMTQqqaN28evLy84OPjA3d3d7bjiLUzZ87Azs5O\naL/XsiUiIgKdO3eGlpYW21HEzr///os2bdqwHYMQQqTes2fPMGTIEPTo0QOnTp2CnJx0lsKpRQ8R\nuvnz5yM4OBhv3ryp87mzZ8/GvXv3kJWVBXNzcxw8eFAICYkkevDgATp37iy08bdt2wZFRUW4uLgI\nbY6vlZWVAQAaNGjwQ+fb29uDYRh60IMe9fhRVw4ODvD09ISjoyMSExN/eJzaqizkVxb6K3369KnG\n4ys3N8/Kyqrx/ebn59d67rqMVXlsZaGfEFJ3jRo1grOzM3bs2IHi4mK244itjx8/4s6dO3B0dGQ7\nisCFh4fXaZFXfRIfH08FfkIIEbJ///0XgwYNgqWlJS5cuABFRUW2IwkNFfiJ0I0ePRrGxsb4888/\nf+h8c3NzPH78GIsWLYKzszMGDx6M5ORkAackkoRhGDx58gSdOnUSyvgZGRnYt28fPDw8RHpLuYaG\nBgAgJydHZHMSQuq327dvAwAWL17MbxPws4W4ytX9paWlKCgoqLI6f+DAgQA+r+r80rfuPqpskXPj\nxo1qr928eRPdu3ev9dx1GWvMmDEAgAsXLlQ79t69e+jatWut5yWkPlu4cCEyMzP5ba9IdWfOnIGm\npib/+6O0eP/+Pd6+fYt+/fqxHUUsxcfH81viEUIIEbx3796hT58++OWXX3Dx4sUf7pQgKajAT4Su\nQYMGmDt3Lg4dOvTd2/2/R15eHmvXrsWtW7eQkJCADh06YP/+/QJOSiTF27dvkZubCwsLC6GMv3nz\nZqiqqop09T7w/3vvZ2VlAfi86mnv3r0izUAIqV+srKwAAJ6enuDxeMjKysLy5ct/akxzc3MAn++0\nCg4OrlI4X7t2LTQ1NeHh4YHIyEjk5eXhzp078PT0rHGstWvXonXr1nB1dUVQUBAyMzORm5uLkJAQ\nODk5YfPmzXWau7ZjrV27Fh06dMDq1atx4MABcLlc5OXlISwsDFOmTMGmTZtqPS8h9ZmhoSFGjBgB\nHx8ftqOIrTNnzmDMmDFSt6rw2rVrUFFRoe+HNSgsLMSHDx9gYmLCdhRCCJFK8fHx6N27NwwMDHD5\n8mWpa4FXI4YQEcjJyWE0NTWZTZs2/fRYBQUFzNKlSxlZWVlm7NixTHp6ugASEkly9uxZRlZWlsnL\nyxP42BwOh1FRUWG8vb0FPnZtaGtrM3v27GGys7MZHR0dBgBz4sSJ/zzP3t6esbe3F0FCQog4A8D4\n+/vX+ngul8tMnjyZ0dPTYxQUFJgOHTow/v7+DAD+48uxv37UJDY2lrGwsGBUVFSYbt26Ma9fv67y\n+osXLxhbW1tGVVWVUVNTYwYOHMi8fPnym+NmZWUxixYtYoyNjRl5eXlGX1+fGT58OHP37t06z12X\nsXJzc5mVK1cyJiYmjIKCAqOtrc0MHDiQiYmJqfO8/6XynzkhglTX7wfCcu3aNQYA8+zZM7ajiJ03\nb94wAJjw8HC2owicg4MDY2try3YMsfTgwQMGABMfH892FEIIkTpxcXGMoaEh06lTJyYzM5PtOKKy\nVYZhhNholZAvuLu749SpU0hISICCgsJPj3ft2jXMmDEDZWVl2LVrF+zt7QWQkkiCtWvX4vTp03j9\n+rXAx3Zzc4O/vz/evn0LZWVlgY//X3r37g0TExPIysrCz88PpaWlUFBQwJ07d9CxY8dvnufg4AAA\nCAgIEFVUQogYkpGRgb+/P/97ApEMAQEBcHR0FOr+B6T+EZfvBwzDoG3bthg4cCB2797NahZxs27d\nOuzduxfJyclStelfRUUFDAwMsHTpUixevJjtOGLHz88PCxYsQE5ODmRlqakCIYQIyqtXr9CvXz+0\natUKly9fhrq6OtuRRGUb/TQhIrNw4UKkp6fD399fIOMNHDgQz58/h62tLRwdHTFs2DAkJiYKZGwi\n3p49e8ZvhyBIHA4Hvr6+WL58OSvFfQDo0aMHQkJCsH//fpSWlgIAysvLMWTIEKSkpLCSiRBCCCHk\nR8nIyGDmzJk4fvx4nTbGrg/8/f3h6OgoVcV9AHj8+DHS09Npg91veP78OTp06EDFfUIIEaBHjx7B\n2toaJiYmCA0NrU/FfQDUg5+IkJGREcaOHYsdO3YIbExNTU0cOnQI0dHRSEhIQLt27bB27VqUlJQI\nbA4ifl68eAEzMzOBj7tp0yZoaWlhxowZAh+7tkaMGAEOhwMZGRn+c+Xl5cjOzoadnR39t034ZGRk\n+A9hOHPmDLp27QotLa3vziXsHIQQQiTf9OnTUVxcjNOnT7MdRWw8ffoUr169wrhx49iOInDh4eHQ\n09MTyoIcafD8+XOhfJYhhJD66vbt2+jbty+6dOmC0NBQqKmpsR1J5KjAT0Rq8eLFePLkCcLCwgQ6\nrpWVFZ48eYLVq1djy5Yt6Ny5M+7fvy/QOYh4KC0txfv37wW+KVVKSgr8/PywcuVK1lbvA8CdO3cg\nIyOD8vLyKs+Xlpbi8ePHmDVrFkvJiLgRZiuPY8eOYfz48dDW1saTJ09Q9H/s3Xtczuf/B/DXXTrQ\n+aBUFCmMiEREGlIOFZ20RgtDGnMeYptsDjTFtPAAACAASURBVJnZMtt3MkQYKscoKQwl5ZAkh0ik\nEyqdpIO6fn/sVysVHe7uz93d+/l43I/V5/7c1/X63Pfc9937c32uq6QER48eFXgOQgghokFFRQWO\njo602G4Nhw8fRrdu3URyEdrz589j7NixdPK/AXfu3KECPyGE8MnJkycxbtw4jB49GsePH+e0nsMl\nKvATgRo8eDAsLS2xceNGvrctISGBlStX4vbt21BWVsaIESOq5zYkoiMlJQXl5eXo1asXX9vduHEj\nOnfuzOno/czMTHz//feorKys9/53797B398fvr6+Ak5G2puqK622bt0KHR0dSElJwd7enor5hBBC\nmu3LL7/EzZs3ce/ePa6jCIXAwEC4uLiIXBG8pKQEkZGRGDt2LNdRhNKTJ0+QnZ0NY2NjrqMQQkib\nt2fPHjg6OsLFxQWBgYGQkpLiOhJnqMBPBG716tW4fPkyIiMjW6X93r1748KFC9i1axf+/vtv9OrV\nC7t27WqwaEralkePHgEA9PT0+Nbmy5cvsWfPHqxcuZIvC0A311dffVU9735DGGOYP38+Ll26JKBU\npD1KSkoCwN9/Z4QQQtq3UaNGQUtLi2/rcbVl165dQ3JyskhOzxMTE4O3b99izJgxXEcRSrGxsZCQ\nkMCgQYO4jkIIIW0WYwxeXl6YPXs21qxZg927d4vcejZNRQV+InDm5uYYOXJkq4zir8Lj8TBjxgwk\nJSVhxowZmD9/PgwMDPg+NRARvKSkJGhoaEBOTo5vbf7222/o1KkT3Nzc+NZmU0VERODEiRONnmPf\n3t4ez58/b+VUpL16+/YtgH+vjCKEEEL4QUxMDE5OTlTgx7/T8/Tu3Vski7yRkZHQ0tJCjx49uI4i\nlGJjY9G/f/92O4UEIYS01Lt37+Du7o7169djx44d8PLy4jqSUKACP+HE6tWrERoaihs3brRqP0pK\nSvD29kZCQgJ69uyJ8ePHw8bGBsnJya3aL2k9jx8/5uuo4jdv3mDHjh1YvHgxZGRk+NZuU6mqqsLS\n0rJ6pXdxcfEGLy+rqKhAQUEBrK2tqwuxpHXUXEA2IyMDDg4OkJOTg4qKCtzc3JCfn4+nT5/C1tYW\n8vLy6NKlC2bMmIG8vLw6bUVERMDW1hZKSkqQlpaGkZERDh8+XGe//Px8LFmyBLq6upCWloaKigpM\nTU2xfPlyxMbGfjCvsbFxrczNGRlYc6qAmm01ZzHdly9fwsPDA127doWkpCS0tLQwd+5cZGVlNTkX\nIYSQts/Z2RkPHz5EXFwc11E4U1lZiaCgIJEcvQ8AV65cgZmZGdcxhFZsbCyGDh3KdQxCCGmT8vPz\nYW1tjUOHDiE4OJjWKKyBCvyEExMmTICxsTG8vb0F0l+vXr0QHByMkJAQPH78GP369cOqVatQWFgo\nkP4J/zx79gzdu3fnW3u+vr4oKSmBh4cH39psjoEDByIsLAx5eXm4f/8+du/ejZkzZ6Jv374QE/v3\nrVpSUhLi4uIA/j1rfffuXcyaNYvL2CKv5pzzK1euxPr165GWlgYXFxf4+/tj2rRpWLp0KTZv3ozn\nz5/D3t4e+/btw4oVK+q0NW7cOIiLi+PRo0dISkqCqqoqXFxc6lxZ5ObmBh8fHyxatAg5OTnIzMyE\nn58fnjx5AhMTkw/mPX36NAwMDLBy5Uowxuo9gdCUY2aM1bo1xYsXLzB06FAcP34ce/bsQW5uLg4f\nPoxz587B1NS03pMghBBCRJuJiQm6d+/erkfxX7lyBenp6XB2duY6Ct9VVFTg2rVrGDlyJNdRhNK7\nd+9w+/ZtKvATQkgzPHr0CMOGDUNCQgIuXryICRMmcB1JqPAYrZhHOBIUFISpU6ciISEB/fr1E1i/\n7969w549e/Dtt9+isrIS33zzDRYuXEiXSbYRgwYNwvjx47Fp06YWt1VeXg49PT04ODhULyoqjIqK\ninDjxg1ER0fj6tWriIqKwuvXr6vv/+OPP/DPP/8AAAICAjhKKbqqRqz/888/MDc3BwBkZGRAS0ur\nzva0tDR069YNWlpaSEtLq9NOSkpK9QmqBw8e4JNPPoGZmRkuX75cvZ+CggIKCgoQGBgIR0fH6u1V\nfdb82K7KxhjDs2fPYGFhgZkzZ2L16tV8Oeb3vyI0Zfu8efPg6+uL3bt31zoRdfz4cdjb22P16tXY\nsGFDi3KSung8Ho4cOYKpU6dyHYU0QUBAAJydneHk5MR1FCJCAgMDhfL9YNWqVTh06BCePn0qcgvM\nNsbXX3+Nf/75BwkJCVxH4bu4uDgYGRkhPj4eAwYM4DqO0Ll58yaMjY2RmJiIvn37ch2HEELajPDw\ncDg7O6N79+44ceIEtLW1uY4kbLbQCH7CGXt7e/Tp06dV5+KvT4cOHTB37lw8ePAAX375JX744Qfo\n6+vjzz//bPT854Q76enp1YXVljp48CAyMzOxePFivrTXWmRlZfHpp5/C09MTwcHByM3NRXJyMg4c\nOICvv/4a6urqXEdsF4yMjKp/7tKlS73bNTU1AfxbjH8fY6zW1Sf6+voAgHv37tXaz8HBAQDg5OQE\nbW1tzJ49GwEBAVBVVW1wFP3Dhw9hZmYGNTW1Fhf3+SU4OBgA6oysGDVqVK37CSGEtC/Ozs5ITU1F\nTEwM11EEjjGGkydPVn/Wi5orV65AQUFBoIO32pJLly5BVVUVn3zyCddRCCGkzdi5cycmTZoES0tL\nREZGUnG/ATSCn3Dq8OHDmDZtGuLi4jgb5fHq1Sts3boV27Ztg5qaGtasWYNZs2a1+xW4hVFZWRmk\npaVx9OhR2NnZtagtxhj69+8PY2Nj7N27lz8BOVQ1Oo9G8PMfP0az5+Xl4aeffsLx48eRlpaGoqKi\nWo95v41jx47h77//xoULF6qv1tDW1sbJkycxcODAOn1paGggPz8fxcXFOHjwID7//PNmH29Tj62h\n7RISEnj37l2DfXTq1Alv3rxpUU5SF43gb5uqRvDT13LCT8L8fqCvrw8HBweBTdcpLKKjo2Fqaoo7\nd+6gf//+XMfhu6lTp+LNmzc4c+YM11GEkp2dHXg8Ho4dO8Z1FEIIEXplZWWYP38+9uzZg/Xr12PV\nqlXt8sq/RqIR/IRbzs7O6N+/P3788UfOMnTu3Bne3t548OABLCwsMH/+fAwYMACBgYGorKzkLBep\nKzMzE4wxaGhotLit4OBg3Lt3D8uXL+dDMkI+bOrUqdi0aROcnZ3x7Nmzj85pb29vj6CgIGRnZ+Py\n5cuwsrJCamoqZs6cWe/+27dvx++//w4AmD9/fp3pgbhQdWVJbm5unbn8GWNU3CeEkHZswoQJddag\naQ+OHTsGPT09kSzuA0BUVBQtsNsAxhiuXr1Kzw8hhDRCamoqRo0ahSNHjuD48ePw9PSk4v5HUIGf\ncIrH42Ht2rU4evQo4uLiOM2io6OD3bt3IzExEQMHDsRnn32Gfv36wc/Pj6buERKvXr0CAKipqbW4\nrZ9++gnW1tYwMDBocVuEfExUVBQAYNmyZVBWVgYAlJaW1rsvj8erLtCLiYnBzMysejHC+/fv1/sY\nBwcHzJw5E5MnT0ZeXh5mzpzJ+UjgKVOmAED1+hA1XblyBcOHDxdwIkIIIcJi/PjxiI+Pr3dKO1F2\n/PhxkZ2eJzk5GRkZGbTAbgPu3buHly9fVk9VSAghpH4XLlzA0KFDkZ+fj6tXr8LW1pbrSG0CFfgJ\n5+zs7DBkyBCsXbuW6ygAgF69euHvv/9GUlISLC0t8dVXX0FHRwdeXl7Iz8/nOl67VvX8Kyoqtqid\nK1euICoqCitXruRHLEI+qmq01qZNm5CXl4fc3NwPzpU/e/ZsJCYmorS0FC9evMDmzZsBAFZWVh/s\nZ+fOnejcuTMiIiLw22+/8e8AmsHLywv6+vqYP38+goKCkJOTg8LCQpw+fRozZsxod9MyEEII+c/o\n0aMhLS3drkbxx8XFITk5WWQL/FeuXIGUlBSMjY25jiKUrly5Ajk5ORgaGnIdhRBChFJFRQW8vLww\nbtw4jBs3Djdu3KABmU1ABX4iFNauXYvg4GChWmyrZ8+e2LZtG1JSUuDu7g4fHx9oa2tj1apVyMnJ\n4Tpeu5SXlwcejwd5efkWtbN582YMGzYMI0aM4FMyIqpqXgbYkp/9/f3h6uqK3bt3Q11dHebm5jAx\nMal338jISHTp0gXW1taQk5ND7969ERISgg0bNuDQoUPV+9U80cXj8RAUFAR1dfXqK10WL14MHo+H\nGzducHLMqqqqiImJgYuLC1asWAENDQ3o6+tj586dOHjwIMzNzZuUixBCiOjo2LEjRo0a1a4K/EeP\nHkXXrl1FtgAeGRmJoUOHQlpamusoQikiIgLm5ua0zhshhNTj1atXmDhxIry9vfHLL79g//79kJGR\n4TpWm0KfLkQoTJw4EWZmZli7di3Onj3LdZxaunTpAi8vL3z99dfV81z//vvvmDFjBhYsWIA+ffpw\nHbHdyMvLg4yMTIu+GCcmJiIkJAQnTpzgYzIiqhqa5qap29XU1ODv719ne30LH44YMaJRJ5/y8vIa\n3X9T8OuYAUBJSQlbt27F1q1bW5yLEEKIaBk/fjx++OEHvHv3rl0UPY8dOwZHR0eRnUM4MjIS9vb2\nXMcQShUVFbh48aLQXLFOCCHCJDw8HG5ubujUqROio6MxaNAgriO1STSCnwiNtWvXIiwsDJcuXeI6\nSr1UVFTg5eWFp0+fYv369Th79iz69u2LcePG4cSJE6ioqOA6osgrKCiAgoJCi9rw8fFBnz59YGNj\nw6dUhBBCCCGkqcaPH4/Xr18jNjaW6yit7uHDh7h//77IFsBzc3ORlJQEU1NTrqMIpevXryM3Nxfj\nxo3jOgohhAiN0tJSLF26FFZWVjA3N8fNmzepuN8CVOAnQmPs2LGwtLTEkiVLUFlZyXWcBsnKymLx\n4sVISkrCuXPnoKSkBEdHR2hra8PLy6t6egzCfyUlJS267Dc3Nxd///03Fi5cKLKjpwghhBBC2oI+\nffqgR48eOHfuHNdRWl1gYCDU1dVFtgAeExMDxhiGDh3KdRShFB4eDi0tLXzyySdcRyGEEKFw//59\nDB8+HLt27cKOHTtw6NChFg/mbO+owE+EypYtW3Dnzh0EBARwHeWjxMTEYGFhgYCAADx48ADOzs7Y\ntm0btLW1MWPGDFy5coUv02WQ/1RWVkJMrPlvW76+vpCUlMT06dP5mIoQ4cfj8Rp1I4QQQgTJzMwM\nUVFRXMdodUePHoWdnR3ExcW5jtIqYmJioKurCzU1Na6jCKXw8HBYWlpyHYMQQjjHGMPOnTthbGwM\nCQkJ3Lp1C3PnzuU6lkigAj8RKgMGDICrqys8PT1RWlrKdZxG09PTwy+//IK0tDRs27YN8fHxGDVq\nFHr16oX169cjNTWV64gioaKiotl/GFVUVGDnzp348ssvISsry+dkhAg3xlijboQQQoggDR8+HDEx\nMSI91eXTp09x+/ZtkZ2eBwBiY2NhYmLCdQyhVFBQgGvXrtH0PISQdi8tLQ2TJk3C/PnzsWLFCkRF\nRUFPT4/rWCKDCvxE6Kxfvx4vX77EH3/8wXWUJpORkcHcuXMRFxeHu3fvwsHBAdu3b0ePHj0wcuRI\n7Ny5E2/evOE6ZpvVkhH8x48fR2pqKr766is+pyKEEEIIIc1hamqKwsJCJCQkcB2l1QQFBUFRURHm\n5uZcR2kVjDFcv36dCvwNCAsLQ2VlJY3gJ4S0W4wx7Nq1CwYGBkhOTsbly5exdu1adOjQgetoIoUK\n/EToaGlpYdGiRVi/fj1yc3O5jtNs/fr1g7e3N54/f46jR49CRUUFCxYsgJaWFubMmYOIiAi8e/eO\n65htCmOs2QX+7du3Y9KkSdDV1eVzKkIIIYQQ0hwGBgZQUFDA1atXuY7Sao4ePYopU6ZAUlKS6yit\nIjk5GdnZ2VTgb0BwcDBMTU2hoqLCdRRCCBG4Z8+ewcrKCu7u7nB2dsatW7cwfPhwrmOJJCrwE6Hk\n6ekJSUlJeHt7cx2lxSQlJTFlyhScPHkSaWlpWLt2LW7duoVx48ZBQ0MD7u7uiIiIEOlLk/lFWloa\nb9++bfLjEhMTcfnyZSxYsKAVUhFCCCGEkOYQExODiYkJoqOjuY7SKtLT0xETEwMHBweuo7SamJgY\nSEhIwNDQkOsoQqeiogKhoaGwsbHhOgohhAhU1Vz7/fv3R3p6Oq5evQpfX1/IyMhwHU1kUYGfCCU5\nOTl8++232L59O5KTk7mOwzdqampYsmQJbt68iadPn+Lbb79FYmIiLC0toaamhi+++ALBwcEoLy/n\nOqpQkpOTQ1FRUZMft2vXLvTo0QMWFhatkIoQQgghVdrawt2HDx+GiYkJlJSUPpi9rR1XW2Jqaiqy\nI/iPHTsGGRkZkf4OGhsbC0NDQ3Ts2JHrKELn2rVryM7OhrW1NddRCCFEYB48eIDRo0dj/vz5+Prr\nr3Hr1i26yksAaMIjIrTmzZuHnTt3YunSpTh58iTXcfhOR0cHixYtwqJFi/D48WMEBgYiMDAQ+/fv\nh6qqKsaPH49JkybBysoKSkpKXMcVCrKysk0u8JeWluLAgQNYunRps6f3aSuio6MxdepUrmMQQjj2\n66+/IigoiOsYpAmeP3/OdQS+YYw1WAQ3MzMDAFy5ckWQkRrk7+8PNzc3TJgwAbdv30aXLl1w5syZ\nekdbf+i4SMuYmprCy8sLWVlZ6NKlC9dx+OrYsWOwtraGtLQ011FaTUxMDBVuGhAcHAxdXV188skn\nXEchhJBW9/btW2zYsAFbtmyBgYEBYmJiYGRkxHWsdkO0q12kTevQoQN8fHxw6tQphIaGch2nVenp\n6cHT0xO3bt3Co0ePsGLFCqSlpcHV1RVqamowNzfH5s2bcffuXa6jckpWVhbFxcVNms7o6NGjyMvL\ng5ubWysmI4QQQtqP5o5kr6ysRGVlZSskap5ffvkFALB161bo6OhASkoK9vb2YIxxnKx9MTY2BgDc\nunWL4yT8lZ2djStXrsDOzo7rKK2mrKwMt2/fpgJ/A06fPk2j9wkh7cKFCxcwaNAg+Pj44IcffkBs\nbCwV9wWMx+gbLBFyjo6OiI+Px927dyElJcV1HIHKy8vDuXPncObMGYSGhuLVq1fQ0dHBxIkTYWFh\nAXNz83a1YNOFCxcwduxYvHr1Cqqqqo16zOjRo6GkpIRjx461cjpuVY3cDwgI4DgJIYRLPB4PR44c\noat52piAgAA4Ozu3mcJyVXG/obwfu19YdOrUCW/fvkVZWRkkJCQ+un9bOa4qben9oFu3bliwYAFW\nrlzJdRS+2bdvH9zd3fHq1SvIyclxHadVxMbGwsTEBA8fPkSvXr24jiNUHj58iD59+uCff/6Bubk5\n13EIIaRVZGZmYuXKldi/fz+sra3xv//9D926deM6Vnu0hUbwE6H366+/IiMjA7/99hvXUQROUVER\nU6dOxb59+5CVlYXo6Gi4urri+vXrmDp1KtTU1DBo0CAsXboUp0+fRkFBAdeRW1XXrl0BAGlpaY3a\n/9GjR7h06RLmzJnTmrEIIYQQ0ga9ffsWABpV3Ceta8CAAUhISOA6Bl8FBwdj9OjRIlvcB4AbN25A\nUVER+vr6XEcROgEBAVBXV8fIkSO5jkIIIXxXVlaGLVu2oE+fPoiKikJISAiCg4OpuM8hKvATodet\nWzd88803+PHHH5GRkcF1HM6IiYlh2LBh+PHHH3H9+nW8evUKx44dw6hRoxAREQFbW1soKyvDxMQE\nnp6eOHPmDHJycriOzVdVBf7GzlXs7+8PLS0tWFpatmYsQgghROhkZWXB3d0dXbt2haSkJLp27Yp5\n8+bhxYsXtfZraPHYD21/f5/Zs2d/NM+HFql9+fIlPDw8qrNqaWlh7ty5yMrKarCN5ORk2Nvb11oc\ntynqO473b43V2Pz5+flYsmQJdHV1IS0tDRUVFZiammL58uWIjY1tUn5R079/f5Eq8JeWluLcuXOw\nsbHhOkqrunHjBgYPHkzrU9QjMDAQDg4OEBcX5zoKIYTw1alTp2BgYIC1a9di8eLFuHv3LiZMmMB1\nrHaPCvykTVi5ciVUVFSwatUqrqMIDSUlJUyePBnbtm3DnTt38OLFCxw6dAiDBw/GiRMnYG1tDVVV\nVfTp0wdubm7YsWMH4uPjmzR/vbDp1KkTVFRUGlXgZ4zh4MGDmDZtGn2xJoQQ0q5kZWVh6NChOH36\nNPz9/ZGTk4N9+/bh5MmTMDExqVXkb2i6mcZsZ4yBMYZdu3Z9NFND7b148QJDhw7F8ePHsWfPHuTm\n5uLw4cM4d+4cTE1NkZeXV28bHh4eWL58OTIyMhASEvLR/htzHFW3pmhKfjc3N/j4+GDRokXIyclB\nZmYm/Pz88OTJk3Y/h3n//v3x4MEDlJWVcR2FLy5cuICioiKRL/DfvHkTgwcP5jqG0ElKSkJCQgKc\nnJy4jkIIIXzz8OFDTJo0CZMnT0bv3r2RmJiIdevWoWPHjlxHI6ACP2kjOnbsiK1bt+LAgQP4559/\nuI4jlDp37gwnJyf873//w/3795GdnY3Tp0/DyckJ6enpWLFiBQYOHAhFRUWMGTMGq1evRlBQEB4/\nftxm5pIFAG1tbTx79uyj+125cgUpKSmYNm2aAFIRQgghwuP777/H8+fPsXnzZowZMwZycnIYO3Ys\nvL298ezZM6xdu5briNXWrl2LZ8+eYePGjbC0tISsrCzMzMzw66+/IiUlBVu2bKn3catXr4apqSk6\nduyICRMmcPZdpin5L168CADQ0tKCjIwMJCUl0bt3b/z++++cZBcm/fv3R1lZGZKSkriOwhfBwcEY\nNGiQSE9VUFJSgvv371OBvx6BgYFQV1eHmZkZ11EIIaTFcnNz8fXXX8PAwAAvXrzAlStXEBwcjB49\nenAdjdRABX7SZtjb28PGxgZz585FSUkJ13GEnoqKCiZNmoQff/wREREReP36Ne7cuYOtW7dCR0cH\nJ0+exGeffQZ9fX0oKipi1KhRWLhwIfz8/BAXFye0I6j69u3bqEu4Dxw4gIEDB6J///4CSEWI4DRn\n+ggutGbOprbdVp4zQvjl9OnTAIAxY8bU2m5hYVHrfmEQHBwMAHUu7R41alSt+983dOjQ1g3WSE3J\n7+DgAABwcnKCtrY2Zs+ejYCAAKiqqrbqCYqgoCBoaGhgyJAh8PDwQFRUlNAN7ujTpw8kJSVFYpoe\nxhiCg4NFfvR+fHw8ysvLqcBfj6NHj8LOzo6uIiaEtGllZWXYtm0b9PT0cOjQIfz888+IiYmhtUWE\nFBX4SZuyfft2ZGVlYdOmTVxHaXPExcXRv39/zJ07F35+fkhMTERBQQGuXbuGn376CX379kVsbCzm\nz58PIyMjyMrKYuDAgfjss8/www8/IDAwEHfv3uW88D9gwADEx8d/cJ+SkhIEBgbC1dVVQKkIERxh\nK8o0pDVzNrXttvKcEcIvr169AgCoqqrW2l71+8uXLwWeqSFVWTQ1NWudjKvKmpycXO/jOnXqJLCM\nH9KU/Hv27MHRo0fh4OCAoqIi7N69G87OztDX18ft27dbLWPV+kxjxoxBdHQ0Ro4cCSMjI9y6davV\n+mwqSUlJ6Ovr4+7du1xHabFbt24hLS0Ntra2XEdpVTdv3oSCggJ0dXW5jiJU7t+/j7i4ODg7O3Md\nhRBCmqWiogJ+fn7Q09PDmjVrsGDBAqSkpGDRokV04lKIdeA6ACFNoa2tjR9++AErV66Es7Mz+vbt\ny3WkNq1Tp04wMTGpNe9rRUUFHj58iLi4OCQkJOD+/fvYv38/UlJSUFFRgQ4dOkBXVxd9+/ZFnz59\n0KdPH/Ts2RO6urrQ1NRs9cyGhobIyMjAy5cvoaamVu8+ISEhKCwshIuLS6vnIaQ1VI00p8I0IaQ5\n1NTUkJGRgezs7FqfzdnZ2dX318Tj8cAYQ3l5OSQkJAD8uyCsIKirqyM9PR25ublQUlISSJ/81NT8\n9vb2sLe3R2VlJaKiorBhwwaEhYVh5syZiIuLa5WM3bp1w8KFCwEAmzdvRnx8PJYsWQITExNs2LAB\nK1asaJV+m0pXVxcpKSlcx2ix4OBgaGlpYdCgQVxHaVVV8+/T1XG1HTx4EFpaWtVX8RBCSFsSERGB\n5cuXIzExEbNmzYKXlxc0NDS4jkUagUbwkzZn4cKFMDIywpdffonKykqu44gccXFx9O3bF9OmTYO3\ntzdOnjyJR48e4c2bN4iPj8fBgwfh4uICSUlJnDlzBu7u7jAzM4OWlhY6duyIfv36wdbWFosXL8Zv\nv/2G06dP4969eygqKuJLPkNDQwDAnTt3GtwnKCgIo0aNanMfRPPmzcOGDRtE4o9bQggh3KmaGuT8\n+fO1tkdERNS6v0qXLl0AAJmZmdXbPlRsrho9X15ejuLi4jpXCjTFlClTAKDeNZauXLmC4cOHN7tt\nQWhKfh6Ph7S0NACAmJgYzMzMcOTIEQD/jvoVFENDQ5w/fx5btmyBp6cnfvzxR4H1/SE9evQQie9A\np06dwuTJk0W+8E0L7NbFGMOhQ4cwbdo0iIlRqYUQ0nZERUXh008/haWlJXr27Im7d+/C19e3zdVU\n2jMawU/aHDExMfj6+sLY2Bi7du3C3LlzuY7ULkhJSWHAgAEYMGBAre2MMaSnp+PJkye1brGxsTh0\n6FCtaQAUFBTQtWtXaGtrQ0tLC127dkW3bt2gpaVV/V8FBYUP5ujSpQt0dXVx6dKl6rmEayotLcWZ\nM2ewYcMG/hy4AO3atQuVlZX47rvvMGTIELi5uWHq1KktKpwQQghpf9atW4ezZ89i1apV0NLSwpAh\nQ3D9+nV4enpCR0cHXl5etfYfN24c/P39sWXLFqxfvx6ZmZnYtWtXg+0PGDAA165dQ2xsLNLS0lpU\nhPfy8sK5c+cwf/58VFRUYPTo0ZCUlMSlS5ewaNEi7Nmzp9ltC0JT88+ePRtbt26Fnp4e8vLysG3b\nNgCAlZWVQHPzeDwsXrwYsrKycHd3rk1SiQAAIABJREFUh4aGBmbPni3QDO/r0aNH9QmPtur58+e4\nffs2Nm7cyHWUVlVSUoJ79+7B09OT6yhC5erVq3jy5AmmTZvGdRRCCGmUmJgYrF27FmFhYTA3N0dU\nVJTQD64gDWCEtFHLly9nioqKLD09neso5AMKCwtZQkICO336NPP19WXff/89c3NzYxYWFuyTTz5h\nnTp1YgCqb1JSUqxbt25syJAhzNrams2cOZN5enoyHx8fdvDgQXbhwgXm6OjIBg0axN68eVOnv+Dg\nYMbj8VhqaioHR9syPB6v+nng8XhMXFyciYmJsdGjR7N9+/axwsLCBh/r5OTEnJycBJhWcGr+/5Ga\nmspsbW2ZrKwsU1NTY9OmTWPZ2dl1HpOZmcnmzp3LtLS0mISEBNPS0mLu7u4sKyurwbYfP37M7Ozs\nmKKiYvW29/dJT09n9vb2TFZWlikrK7MvvviC5eXlsZSUFGZjY8Pk5OSYuro6c3NzY69fv27x8Vbd\nvvzyy3r3aczz0ZhjZIyxFy9esHnz5lU/Z5qammzOnDksMzOzVnt5eXls8eLFrEePHkxKSoopKyuz\n4cOHs2XLlrGYmJhm52Ss8a9bzbbfd/fuXTZhwgQmIyPD5OXl2ZQpU9izZ88a3F/UAGBHjhzhOgZp\noiNHjvD9/8+srCzm7u7ONDU1WYcOHZimpiabO3duvf+eXr16xT7//HPWuXNnJiMjw2xsbFhqamqt\n94+arl+/zgwNDVmnTp3YsGHD2MOHD6vve//962PbGWMsNzeXLV26lPXo0YNJSEgwdXV1ZmNjw6Kj\no2vtV9/7Y3M1NSc/8kdGRjI3NzfWvXt3JiEhwRQUFJihoSHbsGFDvd9pWqqx7weenp5MRkaGJSUl\n8T1DU5w4cYLxeLxWeS4E5ffff2eysrLs7du3XEdpVTExMQwAe/ToEddRhIqHhwfr27cv1zEIIeSj\n7ty5w5ycnBiPx2PDhg1jp06d4joSaZmfRP8vXSKy3rx5w/T09NikSZO4jkJaKDc3lyUkJLDQ0FC2\nb98+9vPPP7Nly5YxV1dXNn78eGZoaMg0NDRYhw4d6vyBLS0tzTQ1NZmBgQEbNWoU09bWZmpqamz5\n8uVs48aNbPv27Wzv3r0sKCiIhYeHs9jYWHbv3j32/PnzZhdgW0vNAn/NW1WhX1JSkjk4OLBTp06x\nsrKyWo8V5QI/Y/8VVqZNm8bu3bvH8vLymIeHBwPAZsyYUWvfzMxM1q1bN6apqcnOnz/PCgoKWERE\nBOvSpQvT0dFpsMg/btw4FhUVxYqLi1lISEi9hZ3p06dX9z9//nwGgE2aNInZ2dnVyTVnzpwWH29T\nno8FCxbU+3w05hizsrKYjo4OU1dXZ2FhYaywsJBdvnyZ6ejosB49etT6tzJ58mQGgPn4+LCioiJW\nWlrKHjx4wOzs7OpkbkrO5r5uNT1+/JgpKipWt1FYWMguXbrErKysqMBPhFprFPgJaez7QVlZGRs8\neDAbMWKEAFI1LD4+ngFgiYmJnOZoCSsrK+bo6Mh1jFb3559/MgUFBVZZWcl1FKFRVlbGVFVVmbe3\nN9dRCCGkQbdv32aTJ09mPB6PDR06lIWGhnIdifDHTzzGaAU/0nZFR0fDzMwMf/31F2bOnMl1HCIA\nr169wpMnT2BqaoqVK1eiT58+yM3NxevXr5GTk4Ndu3ahe/fuUFBQQG5uLgoLC1FUVIQ3b9402Ka8\nvDykpaUhKyuLjh07QlpaGnJycpCQkICioiIkJCRq3dehQwfIyclVP15RUbF6nlUZGRlISkoCACQl\nJSEjIwPg30vhFRUVqx8jJyeHDh3+nSVNWloaHTt2hLKy8kePX0JCAuXl5ZCXl8dnn30GV1dXjBgx\nAs7OzgCAgICAJj6jbUPV8/vPP//A3NwcAPD06VP06NEDmpqaSE9Pr9537ty5+Ouvv7B//35Mnz69\nevu+ffswY8YMuLu7Y8eOHXXavnjxIj799NNG95+RkQEtLa0629PS0qqnnKqaa7m5x9vQR3R9edLT\n09G1a9c6z0djjnHevHnw9fXF7t27MWvWrOrtx48fh729PVavXl097ZWCggIKCgoQGBgIR0fH6n2r\nno+amZuSs7mvW83+XF1dceDAgTptnDhxAnZ2dh98TkUFj8fDkSNHMHXqVK6jkCYICAiAs7OzyP//\nSQSrKe8HN2/exJAhQ3DixAnY2toKIF1dhYWFkJeXx5kzZzBx4kROMrREUVERVFVVsXPnTnzxxRdc\nx2lVc+bMwePHj3Hx4kWuowiNEydOwMHBASkpKdDW1uY6DiGE1BIXF4dNmzYhKCgIBgYG+O677+Do\n6Cjy68W0I1uowE/avGXLlmHXrl1ISEigL1PtyOjRo6GqqorAwMDqbZGRkTAzM0NSUhL09fVr7V9Z\nWYn8/HwUFBRUF/0LCwuRl5eHwsJClJSUoLCwEG/fvq3+uby8HHl5eSgrK8ObN2/w5s0blJWVobS0\nFMXFxbXarVJQUICKigrBPAn/75tvvsHTp08BiH6Bv6CgoPrkSllZGaSkpMDj8WotuK2pqYnMzEyk\np6dDU1OzentVYfn9wntV22/evKleOLIx/VdWVkJcXLzB7e/nas7xfqzA39h+P3aMWlpayMjIQEZG\nRq2FlHJycqCqqor+/ftXL2w9a9Ys+Pn5AQC6desGS0tLWFpaYsqUKdUnt5qTs7mvW83nqEuXLnjx\n4kWdNrKzs9G5c+cPPqeiggr8bRMV+ElraOr7gaOjIx4+fIj4+HjOFghVVVXFunXrMH/+fE76b4nA\nwEC4uLggKytL5NdPGjRoECwsLLBlyxauowgNGxsblJWVISwsjOsohBBS7eLFi9iwYQPOnz8PExMT\nrF69GjY2NlTYFz1baJFd0uZt3LgRYWFhmDVrFsLDw+mNqp1wdXXF/PnzkZeXVz0y/uzZs+jRo0ed\n4j7w7+LMSkpKUFJSEljGqpMFAFBRUYGCgoLq+/Lz86uLm8XFxSgpKYGlpWWj2q0axa+mpoYvvvgC\nX331FVasWMH/AxBCNa+cqComv18Qe/XqFQDU+eO66veaCz/X1FBxv6H+axY/6tsuiEJdU/tt6Bir\nnpOaRfGakpOTq3/es2cPrK2t8ffff+PChQvYvXs3du/eDW1tbZw8eRIDBw5sVs7mvm41ZWdnf7AN\nQohoa+x3QDqRUj8vLy8MGDAA586dw/jx4znJoK2tjefPn3PSd0sFBwfD1NRU5D9zSkpKkJiYiJUr\nV3IdRWhkZWXh7NmzOHDgANdRCCEEABAREYHvv/8e0dHRGDFiBE6dOgUbGxuuY5FWxM3QDEL4SEpK\nCv7+/rh8+TJ8fX25jkMExNHREWJiYrVG8J89e1aoLunu2LFj9UkFVVVV6OrqVt8GDRqEwYMHY/Dg\nwTAzM8OYMWM+2JaEhAQAVE/NEx4ejqysLGzZsgXdu3cXwNG0HWpqagD+K/ZWqfq96n7yH3V1dQBA\nbm4uGGN1bu9PcWVvb4+goCBkZ2fj8uXLsLKyQmpqaoumSuPH61ZVVHm/jZpX2RBCRFd971/13Uj9\nDAwMMHLkSOzevZuzDOrq6o06oStsKioqEBoa2i6KJ3fu3EF5eTmMjY25jiI0/Pz8IC8vj8mTJ3Md\nhRDSjpWXl+PAgQMYOHAgLC0toaKigqtXryIyMrJdfD61d1TgJyLByMgIy5YtwzfffIOUlBSu4xAB\nkJeXh62tbfUfodnZ2YiLi4OVlRXHyZqnvoKDhIQEeDweZGRk4OzsjFOnTiE7Oxv+/v6wsLCgq1Ua\nUPXl5fz587W2R0RE1LpfmFWNtC8vL0dxcXGrjwacMmUKgH/nyn/flStXMHz48OrfeTxe9VQ5YmJi\nMDMzw5EjRwAA9+/fb3YGfrxuVVfBvN9GdHR0s3MRQkh7MmfOHJw6dYqzIruamlr1FV1tSWRkJLKz\nszlbv0CQbt68CQUFBfTs2ZPrKELD398f06ZNg7S0NNdRCCHtUEFBAX7++Wf07NkTM2fORN++fREX\nF4fg4OBaf8cR0UYFfiIyvLy80KNHD0yfPh3v3r3jOg4RgMWLFyMmJgaXLl1CWFgYOnTo0OAiqcKu\nqsAvJiYGHo8HaWlpODg44OTJk8jNzcX+/fthY2NTPZKfNGzdunXQ0dHBqlWrcOHCBRQWFuLChQvw\n9PSEjo4OvLy8uI74UQMGDAAAxMbGCuSLmZeXF/T19TF//nwEBQUhJycHhYWFOH36NGbMmAFvb+9a\n+8+ePRuJiYkoLS3FixcvsHnzZgBo0Qk2frxuXl5eUFRUrG6jqKgIV69exaZNm5qdixBC2hNHR0dI\nSEjg+PHjnPTfuXPnNjmCPzg4GHp6eujduzfXUVrdzZs3YWRkRANN/t/ly5fx4MEDzJo1i+sohJB2\nJisrC15eXujevTvWrVsHOzs7PH78GH///TcMDQ25jkcEjAr8RGRISUnh0KFDuH37Nn744Qeu4xAB\nMDExwaeffopNmzYhIiICpqamteb6bkvExcXRp08fWFtb4/Dhw8jJycGhQ4dgY2NTZ+HS9qbmH5CN\n+VldXR0xMTGwsbGBq6srlJWV4erqChsbG8TExFRPR1NfG/X9sdrU/hv6uSm2b98OQ0NDWFpawsfH\nB1u3buVbnvoyqaqqIiYmBi4uLlixYgU0NDSgr6+PnTt34uDBgzA3N6/eNzIyEl26dIG1tTXk5OTQ\nu3dvhISEYMOGDTh06FCzs7Xkdauiq6uLyMhIGBoawtbWFhoaGli3bh3+/PPPevcnhBBSW8eOHWFp\naYng4GBO+m/LBf6qq+FE3c2bNzF48GCuYwiNPXv2wMjIqN41iAghpDXcvHkTrq6u0NbWxq5du7By\n5Uo8f/4c27Ztg46ODtfxCEdokV0iUvr164eff/4ZCxYswKeffvrRec1J2+fp6QkrKytoa2tjxowZ\nXMdpNjExsRZNbyLKGpov+UPzKKurq2PHjh3YsWNHs9puSf/8mN/Z2NgYt2/fFmgeJSUlbN26tdbJ\nhPqMGDECI0aM+Gh7XL1u/fr1Q0hISJMeQwgh5D82Njbw8PBAYWGhwAdOqKmptbkC/6NHj5CUlARr\na2uuo7Q6WmC3ttzcXAQEBHz0uxMhhLTUu3fvcOzYMfz222+IioqCoaEh/vrrL7i4uLT7AYHkXzSC\nn4gcDw8PODo64osvvkBOTg7XcUgrs7S0xODBg5Gamophw4ZxHYcQQgghpE2bOHEiysrKcOXKFYH3\nraamhuLi4jqLuwuzkJAQyMvLw9TUlOsora5qgV0awf8vPz8/dOjQAdOmTeM6CiFEROXn52Pbtm3o\n2bMnXFxcoKSkhPDwcMTFxcHNzY2K+6QaFfiJSNqxYwfExcXh5uZGozbbARcXFwBAeno6x0kIIYRw\noWr6KZqCiZCWU1dXR69evRAVFSXwvtXU1ACgTY3iDw0NhZWVVbtYJ6lqgV09PT2uo3COMYadO3fC\n1dUV8vLyXMchhIiYmzdvYvbs2ejSpQvWrVsHZ2dnJCcnIzg4GBYWFvSdl9RBBX4ikpSUlHDgwAGc\nPXsWvr6+XMchrezly5dQVlbGd999h/z8fK7jEFJHzeLjh26EkP+YmZnBzMysUfvSyXxC+GvEiBGc\nFPgVFRUBAAUFBQLvuznevHmDS5cuYcKECVxHEQhaYPc/ERERSEpKwrx587iOQggREYWFhdi5cyeM\njY1hbGyMa9euwcfHB8+fP8dPP/2E7t27cx2RCDEq8BORZWZmhtWrV2Pp0qWIi4vjOg5pRTExMZg0\naRLKy8uxYsUKruMQUgdjrFE3Qsh/KisrUVlZyXWMOuiEHGkPRowYgevXr6O8vFyg/crIyAAAioqK\nBNpvc124cAGlpaWwsrLiOopA3Lhxg6bn+X9//vknzMzM0L9/f66jEELauJs3b8Ld3R1aWlpYuHAh\ndHV1ER4ejoSEBLi7u1d/NhLyIVTgJyLNy8sLZmZmsLOzo/n4RVhCQgJMTEzg5+eHv/76CwcOHOA6\nEiGEkBaKioriZAQxIeTfxd6Li4vx8OFDgfZbVcRoK3Pwh4aGwsjICJqamlxHaXUlJSW4d+8eFfgB\nZGRk4PTp0/Dw8OA6CiGkjaoarT948GAYGxvj0qVLWLNmDdLS0hAQEEDT8JAmowI/EWliYmLYv38/\nKioq4ObmJpQjAUnLZGRkIDc3FwYGBrCxscHXX38NDw8P3L9/n+tohBBCCCFt0ieffAJJSUncuXNH\noP3KysoCaDsj+ENDQzFx4kSuYwgELbD7H19fXygpKcHe3p7rKISQNqZqtL6mpiYWLlyInj17Ijw8\nHPfv38fKlSuhqqrKdUTSRlGBn4g8NTU1BAUFITw8HBs2bOA6DuGzu3fvAgD69esHANiyZQv69u2L\nqVOn4vXr11xGI4SQNqvm2hDJycmwt7eHkpJSnelpIiIiYGtrCyUlJUhLS8PIyAiHDx/+YHv37t3D\n+PHjIS8vD1lZWUyaNKnOSdkPrU2RmJiIiRMnQlZWFgoKCrCzs0NqamqDx9KcjA0dc808Vdtnz579\n8SeUkDZGQkICvXv3RkJCgkD7FRcXh5SUVJsYwX/v3j08ffq0Xc2/r6CggJ49e3IdhVOlpaXw9fWF\nu7s7pKSkuI5DCGkD3h+tf/nyZXz77bdIT0+n0fqEb6jAT9oFExMTbN26FV5eXggNDeU6DuGju3fv\nQkNDo/pMt6SkJIKCgpCfnw9ra2sUFxdznJAQQtqemmtCeHh4YPny5cjIyEBISEit/caNGwdxcXE8\nevQISUlJUFVVhYuLC8LCwhpsb86cOfjuu++QkZGBkydP4tatWxgxYgSePn1a7/41JScnY+TIkYiP\nj8epU6eQnp6OJUuWYO7cuQ0eS3MyNnTMNfepWjtj165dDfZNSFvWv39/gRf4gX+n6WkLBf6QkBAo\nKytj6NChXEcRiKoFdsXE2ncJ4cCBA3j9+jVNz0MI+SDGGKKiojB79mxoampiyZIlGDBgAKKioqpH\n66uoqHAdk4iQ9v3pTNqVBQsWwNXVFdOnT0dKSgrXcQifPHz4EJ988kmtbd26dcP58+eRnJyMyZMn\no7S0lKN0hBDS9q1evRqmpqbo2LEjJkyYUKf4/uuvv0JVVRXa2tr47bffAOCDV8x9++23GDFiBGRl\nZTF27Fh4e3vj9evX8PLy+mgWLy8v5OXlYfPmzRgzZgxkZWUxatQozJs374OPa2rGjx0zIe2Brq5u\nrRNvgiIjI9MmpugJDQ3FhAkTIC4uznUUgaAFdv+1fft2fPbZZ9DQ0OA6CiFECCUnJ2PdunXQ19fH\nyJEjcePGDWzatAnp6enw8/ODqakp1xGJiOrAdQBCBOmPP/7AzZs34eTkhMuXL6NTp05cRyIt9Pz5\nc2hra9fZrq+vj9OnT2PMmDFwcnLC4cOHRf71DgwMpEv7CCF896HRqe8XvvX19QH8O3VFQ97/w8bC\nwgIAcO7cuY9mCQ8PBwCMGTOm1vaRI0fyNSNXI3LpPZwIE21tbTx79kzg/crKygr9CP7CwkJERkZi\nz549XEcRiKoFdletWsV1FE5FREQgPj6ertwihNSSn5+PkydPYv/+/Th//jyUlZXh4OCAvXv3fvA7\nKiH8RAV+0q7IyMjg1KlTMDExgaurKwIDA9v9ZaZtXXp6OgYNGlTvfcbGxggLC4OtrS1Gjx6NU6dO\nQV1dXcAJBWf48OFYsmQJ1zEIIRyaOnUq39ts6ORoXl4efvrpJxw/fhxpaWm1Rtzm5OQ02J6CgkKt\n36umWHv16tVHs2RnZ9d6zPtt8CsjVyeEAwICOOmXiKaWvh9oa2ujqKgIr1+/hpKSEp9SfVyHDh1Q\nUVEhsP6aIzw8HO/evcO4ceO4jiIQtMDuv3x8fGBubg5jY2OuoxBCOFZRUYGLFy/C398fR48eRWVl\nJSwsLHDkyBFMmTIFEhISXEck7QwV+Em706NHDxw7dgxjx47FunXrsG7dOq4jkRbIyMiAlpZWg/cP\nHz4cV69excSJE2FqaoozZ86gT58+AkwoOF27doWTkxPXMQgh7cTUqVMRHh6OtWvXYuHChVBWVgbw\n8VHoOTk5teYcrSrad+7c+aN9qqqq4sWLF8jOzoampmb19vz8fL5m5Aq9hxNhoqOjAwBITU0VaIFf\nTEwMlZWVAuuvOUJDQzF06FCoqalxHUUgbt68CXl5+Xa9wO6jR48QGhqKo0ePch2FEMKhxMRE7N+/\nH3v37sWLFy8wePBgbNy4EdOnT6c59QmnaOgyaZdGjhyJHTt24Mcff8TBgwe5jkOaqbS0FDk5ObWK\nPPXR19fH1atXoa6ujiFDhrSby6kJIaQ1RUVFAQCWLVtWXThvzJonVY+rEhERAQCwtLT86GOr9jl/\n/nyt7dHR0XzN+CFVo/vLy8tRXFzc4NUDhLR1VVMgCnqaHh6PJ/QF/nPnzmHChAlcxxCYGzdutPsF\ndn18fNC9e3fY2NhwHYUQImDp6enYtm0bBg0aBAMDAxw+fBgzZszA48ePcePGDSxatIiK+4Rz7fcT\nmrR7M2fOxOLFizF79mxcu3aN6zikGV6/fg3GWKOKK507d8alS5ewbNkyzJkzBw4ODh+cnoEQQsiH\nmZmZAQA2bdqEvLw85ObmYvXq1R993I4dOxAZGYmioiJcuHABnp6eUFJSavQiu4qKili1ahUuXLiA\noqIiXL16FZs2beJrxg8ZMGAAACA2NhbBwcEYPnx4i9ojRFh16tQJqqqqSE1NFWi/YmJiQr2wdXx8\nPFJTUzFx4kSuowhMdHR0u36ve/nyJfz8/LB06dJ2s6gyIe1dTk4Odu7ciTFjxkBbWxs//PADTE1N\nER0djadPn8Lb27tdX9VEhA8V+Em79vPPP8PCwgJ2dnZ4/vw513FIE719+xYAIC0t3aj9JSQk4OXl\nhfDwcMTExMDQ0JDmOyaEkHrUnMKGx+PVO6WNv78/XF1dsXv3bqirq8Pc3BwmJib1tlHT//73P2ze\nvBmampqwtbXFwIEDERUVhe7duzfYfxVdXV1ERkbC0NAQtra20NDQwLp16/Dnn3/Wu39TMjbmmAFg\n+/btMDQ0hKWlJXx8fLB169Z69yNEFOjo6HBS4BfmEfwhISFQU1ODkZER11EE4vXr13j48GG7LvBv\n374dnTp1wowZM7iOQghpRXl5edi7dy8mTJiALl26YPHixVBRUUFQUBAyMzPxxx9/YNiwYVzHJKRe\nNAc/adfExMRw8OBBmJqaYtKkSbh8+TIUFRW5jkUaqarA37FjxyY9bsyYMbhz5w6WLVsGFxcX/PHH\nH9i2bRsGDhzYGjEJIaTNaczoWTU1Nfj7+9fZ/rGFPbt3747g4OBm99+vXz+EhIQ06jFNydjYEcPG\nxsa4fft2o/YlpK3T0dER+BQ9wl7gDw0NxcSJE9vNdDVXr14FY6zdFrXevHmDP//8EwsXLoSMjAzX\ncQghfPb27VtERERg//79OHXqFABg3Lhx2L17N+zs7CAnJ8dxQkIap318KyHkA+Tl5REWFob8/HxM\nnjwZJSUlXEcijVT1WjV2BH9NysrK8PPzw7Vr11BeXg5jY2PMnTsXKSkp/I5JRFDV6F5hXaizOfh1\nTIcPH4aJiQmUlJQ+2KYoPoeEECJq1NTUqhfCFhRhnoM/Pz8f165da1fz70dHR0NfX79RC6GLop07\nd+Lt27f46quvuI5CCOGTkpISBAcH44svvoCamhrs7OyQkZGBzZs3Iy0trfo+Ku6TtoQK/IQA0NLS\nQkhICBISEuDs7IyKigquI5FGKCsrAwBISko2u40hQ4YgKioKe/fuRUREBHr16oXPP/8c8fHx/IpJ\nRNCHRvqamZlVz/vdlvBjvmN/f3+4uLhARUUFt2/fRklJCY4ePdpq/RFCCGldioqKyMvLE2ifwjyC\nPywsDJWVlbCwsOA6isBER0fD1NSU6xicKC8vh4+PD+bMmUMLqhPSxpWWltYq6k+ZMgVPnjzB+vXr\nkZGRgcjISCxatIj+rZM2iwr8hPy/fv364cSJEzh37hwWLFjAdRzSCFVT8xQXF7eoHR6Ph+nTpyMp\nKQn79u1DYmIiBg0ahPHjx+PkyZMoLy/nR1zSTlRWVgptYaK1/fLLLwCArVu3QkdHB1JSUrC3t6di\nPmlwrntCiHBTUFDA69evBdpnWVlZiwZvtKbQ0FCMGDECysrKXEcRiIqKCsTGxrbb+ff//vtvZGZm\nYsmSJVxHIYQ0Q2lpKc6cOQM3Nzeoq6tjypQpePbsGby9vZGZmVld1FdTU+M6KiEtRgV+QmoYNWoU\njhw5gr/++gubNm3iOg75CHl5eQBAQUEBX9rr0KEDPv/8c9y+fRunT5/Gu3fvYG9vDy0tLSxevBhx\ncXF86achubm51esKkLYrKioKUVFRXMfgRFJSEgBAT0+P4yRE2DDGat0IIW0DFyP4S0tLISUlJdA+\nG4MxhrNnz7ar6Xnu3LmDoqKidjmCnzGGn3/+Gc7OztDR0eE6DiGkkYqLixEUFITPP/8campqsLGx\nwaNHj+Dl5YXU1FRcunQJX331FRX1icihAj8h77G1tcW2bduwZs0a+Pn5cR2HfAC/C/xVeDweJk6c\niIiICKSkpGDhwoUICQmBkZERDAwM4OnpicuXL+Pdu3d87Xf8+PFQU1PD119/TVMEkTap6gSVhIQE\nx0kIIYTwg6KiIvLz8wV6ZVpJSYlQFvjj4+ORlZUFKysrrqMIzNWrVyEvL4++fftyHUXgjh8/jnv3\n7mHlypVcRyGEfMSbN2+qp99RV1eHs7MzUlNTsXr1ajx69AhXr17F4sWLoaWlxXVUQloNFfgJqcf8\n+fOxZs0azJkzB0eOHOE6DmmAgoICgH8XPGst2tra+Pbbb5GUlISoqChYWFjg6NGjMDc3h5qaGj77\n7DPs3bu3euRyS7x8+RJFRUXw9fXFwIEDMXDgQPz1118oLCzkw5GInpqLtCYnJ8Pe3r7Wwq5VXr58\nCQ8PD3Tt2hWSkpLQ0tLC3Ln1WlboAAAgAElEQVRzkZWVVafNiIgI2NraQklJCdLS0jAyMsLhw4eb\nlel9iYmJmDhxImRlZSEvLw8rKyvcu3ev3sfU3Pb8+XNMnjwZcnJyUFdXx/Tp05GTk1On/aYcZ80s\nCgoKsLOzQ2pqaqOPs6Fjry9/cxbTbeyx5OfnY8mSJdDV1YW0tDRUVFRgamqK5cuXIzY2tkXHQwgh\n5N8Cf2VlpUC/iwjrCP5z585BVVUVhoaGXEcRmOjoaAwfPhxiYu2vbLBx40bY2dnBwMCA6yiEkHrk\n5ubC398fNjY2UFZWhp2dXfWc+mlpaYiMjMTKlSvRs2dPrqMSIhDt75OakEb68ccfsWzZMkybNg0B\nAQFcxyH16NChA9TV1VtcmGwsU1NT+Pj4ICkpCUlJSVi7di1ev34NDw8P9O7dG6qqqrC2tsb69esR\nERFRbxH2Q6rWEqia8//OnTvw8PCAiooKnJycEBERwfdjastqTvPh4eGB5cuXIyMjAyEhIdXbX7x4\ngaFDh+L48ePYs2cPcnNzcfjwYZw7dw6mpqZ1ph0YN24cxMXF8ejRIyQlJUFVVRUuLi4ICwtrcqaa\nkpOTMXLkSMTHx+PUqVPIyMjA999/j7lz59b72Jo/e3p6wtvbG2lpaXBwcMDBgwexfPnyWu035Tjf\nz5Keno4lS5bUytIc7+dv7nQsTTkWNzc3+Pj4YNGiRcjJyUFmZib8/Pzw5MkTmJiYtOh4CCGE/Fvg\nByDQaXqEtcAfHh4OKyurdlXsvnr1KoYNG8Z1DIE7deoUbt26BU9PT66jEEJqePXqVXVRv0uXLnB3\ndwcAbN++vdac+hoaGhwnJYQDjBDSoMrKSvbVV18xSUlJFhwczHUcUo9Ro0axefPmcZqhtLSUXbt2\njfn4+LDPPvuMaWtrMwAMAOvcuTMzNzdn7u7uzMfHh4WFhbGHDx+y4uLiOu3IyclVP+79m4SEBAPA\n9PT0mLe3N3v16lWtxzo5OTEnJydBHbLQqHp+Ll68WO/97u7uDADbvXt3re3Hjh1jANjq1avrtJeS\nklL9+/379xkAZmZm1mDfjdk+ffp0BoDt37+/1vYzZ858tJ1//vmneltKSgoDwDQ1NZt9nA1lOX78\neINZGqspz0lD25tyLPLy8gwACwwMrLVvenp6i46jLQPAjhw5wnUM0kRHjhxpk//P1vycEhaHDh1i\nQ4cOZYqKih/MJ4zZ+Y0f7wdVn4O3b9/mU6qPU1BQYL6+vgLrrzGKi4tZx44d2d69e7mOIjDPnj37\n4HcsUTZkyBBma2vLdQxCCGPs8ePH7KeffmImJiaMx+MxeXl55uLiwgIDA1lRURHX8QgRFj+1n+EH\nhDQDj8fD77//jhkzZsDBwQGhoaFcRyLv6d27Nx4+fMhpBklJSZiYmGDRokU4dOgQnj17hoyMDISF\nhWHNmjXo06cPHjx4gA0bNsDKygq9e/dGp06doKysDAMDA0yYMAGzZs1CSUlJg31UjepPTk7GmjVr\noKmpCUdHR0RERNCClQCGDh1a7/bg4GAAqLMg3qhRo2rdX4Uxhu7du1f/rq+vDwC4d+9ei/KFh4cD\nAMaMGVNre2MWrTMyMqr+WVNTEwCQmZlZa5+mHGdDWUaOHPnRLILQlGNxcHAAADg5OUFbWxuzZ89G\nQEAAVFVV6d8FIQIgbP/O/P394eLiAhUVFdy+fRslJSU4evRovfsKW3ZhRSP4/3X58mW8ffsWY8eO\n5TqKwEREREBaWrrdjeAPDQ3F9evX8e2333IdhZB2KzExEV5eXjA2Noaenh42/R979x3X1PX/D/wV\npiJDIGULgqLWatWidYF1WyqoqGitoqgUB1XrqKgd4gZH0dp+Po5aNwo42katylIIomI/tRZcCCKy\nguyhgJDz+6Pf5CcyA0ku4/18PPJ4yM2957xybgjmnZtztm1Dt27dEBgYiPT0dAQEBGDq1Kno0KED\n11EJaTbUuA5ASHPH4/Hw3//+FyUlJZg6dSouXryI4cOHcx2L/J/u3bvj4sWLXMeoxtTUFKamphg7\ndmyV7bm5uXj27BnS0tKQmpqKjIwMpKSkIC0trUGL9jLGUFlZicrKSpw9exZnz57FV199paiH0WJo\naWnVuD0rKwvA/y+Mvy0xMVH67/z8fGzfvh3nz59HamoqiouLpffJOt3S27KzswEAfD6/ynZJ4aQu\nOjo60n9raGgAqF6YkuVx1pbl7Z+5Istj+eWXX+Dk5ISAgACEh4fj0KFDOHToECwtLfHbb7+hb9++\nSslMCGkayRodTS26f//99wCAXbt2wcrKCgAwefJkKuY3gaR4IllEXdEYYygvL0e7du2U0l9DhYSE\noFevXrCwsOA6itJERETA3t6+2Z0LRdu6dSscHR0xYMAArqMQ0maUlZXh2rVr+PXXXyEQCJCWlgYr\nKytMmDABfn5++Oijj6CmRuVLQupCvyGENICKigqOHDmCV69eYcKECRAIBPjoo4+4jkUADBgwAOnp\n6UhKSoKNjQ3XceplYGAAAwMD9OvXr8r24uLiKoXc2vB4PKiqqqKiogLdunXD1KlT4enpSUX+Whgb\nGyMtLQ25ubnQ19evc99p06YhJCQE69evx9KlS2FgYAAAMi0OWxs+nw+RSITs7OwqhWtJsb2pZHmc\ntWVR5GLVspDlsQD/Fu8mT54MsViM6OhobNmyBVeuXMHcuXPx119/KSExIaS5kCx437VrV46TtB6S\nD5bLysqU0l9RURHEYjH09PSU0l9DXb16tdpFG61dREQEFi9ezHUMpQoLC4NQKER0dDTXUQhp9fLy\n8hAaGgqBQIDff/8dBQUF6NmzJ2bNmgUnJycMHTpULu/DCGkraIoeQhpITU0Np0+fxscff4xPPvmk\nwYtuEsUaNGgQtLW1W/wCtJIFdmuiqqoKFRUVqKioYMCAAdi8eTMePHiAR48eYcuWLdKrFEl1kyZN\nAgBcu3at2n1RUVEYPHiw9GfJm7mVK1dKi/vyKmhIigJhYWFVtsvrDaQsj7O2LDExMXLJ0lSyPBYe\nj4fU1FQA/34Q6+DggMDAQADAgwcPFB+WENKsSK4yV1dX5zhJ66GhoQEej4fy8nKl9Cf5sLk5Ffgz\nMzMRFxeHMWPGcB1FaR49eoS0tDSMGDGC6yhKtX79eowePbpBUygSQmSXkpKCAwcOSBfJnTFjBpKS\nkrB27Vo8fvwY8fHx8PX1hb29PRX3CZERFfgJkYG6ujpOnTqFadOmYcKECTh37hzXkdo8DQ0NDBs2\nrMUX+N/+6rvkK4jt27fHpEmTcPToUbx48QK3bt2Ct7c3evTowUXMFsfHxwe2trbw8vLCmTNnkJOT\ng6KiIly4cAHu7u7w9fWV7uvg4AAA2LZtG/Lz85Gbm4t169bJLUfHjh2xZs0ahIeHo7i4GEKhEPv3\n75db+w19nDVluXHjBrZt2yaXLE0ly2MBAA8PD8THx6OsrAwikQh+fn4AgHHjxnERn5AWjcfjSW/3\n79/Hxx9/DF1dXWhra2P8+PEyfXCWmZmJBQsWwMLCAhoaGrCwsMDChQshEomq9fl2/x4eHo3KXtPj\nePPWUFlZWVi0aJE0u7m5OTw9PZGZmVllv4KCAixfvhw2NjZo164dDA0NMWTIEKxatQq3b9+W+TE0\nRzweD+rq6kq7gr85FvivXLkCdXV16f8T2oLw8HDo6Oigf//+XEdRmj/++APR0dHYuHEj11EIaVXi\n4+Ph5+cHe3t7dO7cGcuXLwcAHDx4ENnZ2RAKhfD29paufUYIaSSulvclpCUTi8VsyZIlTFVVlR07\ndozrOG2ev78/MzAwYGVlZVxHabSHDx8yAAwAMzIyYgsXLmR//PEHKy0tbdDxrq6uzNXVVcEpmxfJ\neL15q0lubi5bsWIFs7a2Zurq6szY2Jg5OzuzmJiYKvuJRCLm5ubGjIyMmIaGBuvVqxcLDAyssf3a\n+q0rT1xcHHN0dGQdOnRgOjo6zMnJiSUmJjIATEVFpc7H1pD2G/o4386ira3Nxo4dy+Lj4+sdy7rI\nmlkej0UoFLI5c+awzp07M3V1daanp8f69OnDtmzZwkpKSmR+DK0BABYYGMh1DCIjyWtNcyD5nRwy\nZAgTCoWsqKiIhYaGMhMTE6avr8+ePn1a4/5vysjIYJ06dWJmZmYsLCyMFRYWStuwsrJimZmZ9bbR\nlOxN2Z6ZmcmsrKyYsbExu3LlCisqKmKRkZHMysqKWVtbs7y8POm+EydOZADY7t27WXFxMSsrK2MP\nHz5kLi4uzeJ8yuv1QFtbmx06dEgOieonFAoZAJaWlqaU/hpi5syZbNSoUVzHUCpXV1c2fvx4rmMo\n1YcffsicnJy4jkFIi1daWsouX77MvLy8mKWlJQPALCws2OLFi9mVK1da9Ht2Qpqx7dz/z5OQFkos\nFrMVK1YwVVVV9ssvv3Adp017/vw5U1VVZUFBQVxHabTy8nL2008/sdjYWCYWi2U+vi0W+FuDtLQ0\n6Yc6hMgDFfhbpuZY4L906VKV7UeOHGEA2Jw5c2rc/02ff/45A8COHz9eYxsLFiyot42mZG/K9gUL\nFjAA1Qra586dYwDYunXrpNt0dXUZABYcHFxlX8lrO9fk9XpgaGjI/vOf/8ghUf0uXrzIALDi4mKl\n9FcfsVjMTE1Nma+vL9dRlEYsFrN33nmH7dy5k+soSnPu3DnG4/HY7du3uY5CSIuUlZXFDh8+zKZM\nmcK0tbUZANavXz/27bffsjt37jTq/S0hRCbbaYoeQhqJx+Nh165d8Pb2hoeHB3744QeuI7VZFhYW\n+OSTT3DgwAGuozSauro6Fi9ejP79+9N8g60Uj8fDkydPqmyLjIwEgDY3xy0hpPl7ew7q0aNHA/h3\nsdH6XLhwAQAwcuTIGtuQ3N8cCQQCAICjo2OV7cOGDatyPwBMmTIFAODq6gpLS0t4eHggKCgIfD4f\njDElJa5famoqoqKiqk2P1FAaGhpKnYNfTU0NWlpaSumvPn///TcyMjLa1AK7//zzD168eFHt97e1\nYoxhw4YNmDJlCgYMGMB1HEJajKSkJOzZswdjxoyBmZkZFi1ahIKCAmzevBnPnj3D//73P2zcuBF2\ndnb0/pYQJaACPyFNtGXLFmzbtg1ffvklVq9e3aze0LUlnp6eCAsLQ0JCAtdRCKmVl5cXkpKSUFJS\ngrCwMHh7e0NXVxc+Pj5cRyOEkCrengOdz+cDAF68eFHvsZJ9JMe83UZWVpY8IiqEJJuZmVmV+fsl\n2RMTE6X7/vLLLzh79iymTJmC4uJiHDp0CNOnT4etrS3u3r3LSf6axMTEYNiwYTA3N8eYMWNkXh9A\nU1NTqXPw6+npNZti0NWrV8Hn89GnTx+uoyhNWFgYDAwM2sxjDgwMxD///INvv/2W6yiENGuVlZUQ\nCoVYs2YN3n33XXTp0gWbN2+Gvr4+Dh06BJFIhJCQECxbtgyWlpZcxyWkzaECPyFysHr1agQFBWHv\n3r1wdXVFaWkp15HaHEdHR3Tu3Fm6wCYhzU1oaCi0tbUxZMgQdOzYETNmzMCgQYNw69atZrtocm0L\nVTZ24UpCSMuRk5NT5efs7GwAwDvvvFPvsUZGRlWOebsNyf3NkbGxMQAgNzcXjLFqt5KSkir7T548\nGWfOnEF2djYiIyMxbtw4pKSkYO7cuVzEr5GrqysyMzMRHByMyspKDB48GJs3b27w8cq8gj8/P79Z\nLbAbEhKCsWPHQkWl7bxtvnDhAsaNG9cmHnNlZSU2btyIGTNm4P333+c6DiHNTm5uLoKDgzF79mzw\n+Xw4ODggODgYY8eORUhICDIyMhAUFITZs2dDV1eX67iEtGmt/682IUoydepUXLx4EaGhofjkk09Q\nUFDAdaQ2RVVVFZs3b8bhw4fxv//9j+s4hFQzatQonD17FpmZmXj9+jWysrIQGBjYbIv7AGosbtV0\nI4S0PtHR0VV+Dg0NBYAGTVXi7OwM4N8rgWtqQ3K/hGQ6ltevX+Ply5fVrvxXpkmTJgEArl27Vu2+\nqKgoDB48WPozj8dDamoqAEBFRQUODg4IDAwEADx48EDxYWVgbGwMFxcXhIeH48cff4SPjw/WrFnT\noGOVWeAXiUTSD1m4VlpaiujoaIwZM4brKEpTUFAAoVBY7Xe0tTp+/DgSEhKwfv16rqMQ0mw8evQI\nO3fuxPDhw2FkZIRZs2YhMzMTGzduxNOnT5GYmIg9e/Zg9OjRUFNT4zouIeT/UIGfEDkaOXIkhEIh\nEhISYG9vj+fPn3MdqU2RXBG9atUqrqMQQgghLdq+ffsgFApRXFyM8PBwrF27Fvr6+g2aUmzDhg2w\nsrLCmjVrEB4ejqKiImkbVlZW1dqQXDl7+/ZtCASCKkV0ZfPx8YGtrS28vLxw5swZ5OTkoKioCBcu\nXIC7uzt8fX2r7O/h4YH4+HiUlZVBJBJJv0k4btw4LuI3yKJFi3D48GFs374dx48fr3d/ZX5TqzkV\n+K9fv45Xr15J145oCy5fvozKyso2seZAaWkp1q9fj/nz58PW1pbrOIRwpqKiAhEREVi5ciW6deuG\nHj16wM/PD5aWljh16hRevHiBq1evYsmSJejcuTPXcQkhtaACPyFy1qtXLwiFQlRWVsLe3r5ZzcHa\n2vF4PPj5+SEiIgJBQUFcxyGEEEJarP/85z/w8/ODmZkZJkyYgL59+yI6OrrKm/s3C79v/tvY2Bi3\nbt2Cs7Mz3NzcYGBgADc3Nzg7O+PWrVvVCrh79+5Fnz59MHbsWOzevRu7du2SOW9tWWT9N5/Px61b\ntzBjxgysXr0apqamsLW1xYEDB3Dy5El89NFH0n2FQiFMTEzg5OQEHR0ddO/eHZcuXcKWLVtw6tQp\nmR+DMrm5uWHZsmVYunQp0tPTuY4j1ZwK/CEhIXjvvfdgYWHBdRSlEQgEcHBwgKGhIddRFO6HH37A\nixcv8M0333AdhRCly8vLk069Y2RkhJEjR+LXX3+Fo6MjQkJCkJ6ejmPHjsHV1ZWm3iGkhaDv0xCi\nAFZWVhAKhZg6dSrs7e1x9OhRTJkyhetYbYK9vT0WL14MDw8P9O3bF926deM6EiGEENLidO7cGQKB\noM596pqiy9jYGPv27cO+ffvq7at///5NviCitiyybgcAfX197Nq1q94PGoYOHYqhQ4c2PGQzs2XL\nFggEAqxZswbHjh3jOg4AIDMzE/b29lzHAPDvArtt4Up2icrKSly+fBnr1q3jOorC5efnw8/PDytX\nrmxTH+CQti0pKQmhoaEQCAS4evUqKisrMWjQIHh7e2PChAl49913uY5ICGkCuoKfEAUxMDDA1atX\n8cUXX8DV1RVr1qyBWCzmOlab8P3338PW1hYzZ85EWVkZ13EIIYQQQpodLS0tbN68GQEBAc1mzYDm\ncgV/ZmYm4uLi2tT8+zdu3EBOTg6cnJy4jqJwW7duhYqKCr766iuuoxCiMJWVlfjzzz/h4+OD/v37\no0uXLli7di3at2+PgwcPIjs7G0KhEN7e3lTcJ6QVoCv4CVEgNTU1+Pr6wsbGBkuWLEFiYiKOHDmC\nDh06cB2tVdPU1MTp06dhZ2cHLy8vHDx4UKnzx3IlNTUVwcHBXMcghHDs5s2bbeI1rzW5efMm1xFI\nGzVt2jRs2rQJu3btws8//8xploqKCuTl5TWLAv/Vq1ehrq6OYcOGcR1FaQQCAbp3797qv/2alpaG\nn376Cdu2baOpR0irU1JSgvDwcFy4cAG//fYbRCIRbGxs4OTkBF9fX3z00UdQV1fnOiYhRAGowE+I\nEnh6eqJnz56YMmUKhgwZgt9++40WqFEwW1tbBAQEYMqUKWjfvj1++OGHVl/wiomJQUxMDNcxCCEc\n8/f3h7+/P9cxSAv09rz0dU1jowwN/bvNdc6WTEVFBUuWLMGKFSuwfft2GBgYcJZFJBJBLBY3iwJ/\nSEgI7O3t29RFOQKBAM7OzlzHULhvvvkGxsbGWLBgAddRCJGLp0+fIiQkpNrUO8uXL6epdwhpQ2iK\nHkKUxN7eHjdv3gRjDB9++CGuXr3KdaRWz8nJCadPn8b+/fuxYsUKruMonKurKxhjdKMb3drwDQAC\nAwM5z0E32W6BgYEc/wX5V03Pp+aUp67nPWm8WbNmgcfj4dy5c5zmEIlEAMB5gZ8xhtDQ0DY1PU9i\nYiIePnzY6gv8cXFxOH78OLZu3QpNTU2u4xDSKG9PvWNjY4M1a9bQ1DuEtHFU4CdEiaytrXHjxg2M\nHj0ajo6OWL9+PSorK7mO1aq5uLjg2LFj2Lt3Lzw9PWlOfkIIIYSQN2hra+Pjjz/G2bNnOc2RkpIC\nHo/H+aKnDx48QGZmJkaOHMlpDmUSCATQ19fHkCFDuI6iUN7e3ujTpw+mTZvGdRRCZFJSUgKBQIAF\nCxbA3Nwc/fv3x/HjxzF06FCEhIRAJBIhKCgIs2fPRseOHbmOSwjhAE3RQ4iSaWtrIyAgAB9//DEW\nLlyIyMhIBAQEwNTUlOtordann34KLS0tuLm5IS4uDmfOnIGZmRnXsQghhBBCmgUXFxfMmzcPeXl5\n0NfX5yRDSkoK3nnnHbRv356T/iXCw8Ohp6cHOzs7TnMoU3BwMJycnKCm1nrLA2FhYbh06RJCQ0Oh\nokLXOZLmr66pd5ydndGzZ0+uIxJCmhH6y0YIR2bPno3o6Gikpqaib9++CA0N5TpSqzZhwgTcunUL\neXl56N+/PyIjI7mORAghhBDSLDg7O4PH4+HChQvV7lPWNEjPnz+HpaWlUvqqS0REBIYNGwZVVVWu\noyjFs2fPEBMTg88++4zrKApTWVmJ5cuXw8XFBaNGjeI6DiE1qmnqHck0swcPHsSLFy+kU+9QcZ8Q\n8jYq8BPCoX79+uHOnTuwt7eHo6Mjtm3bBrFYzHWsVqtHjx64desWBg0ahOHDh8PT0xN5eXlcxyKE\nEEII4ZSenh5GjBhRY4G/oqJCKVd2p6SkcF7gF4vFiIyMxIgRIzjNoUwnTpwAn8/H6NGjuY6iMAcP\nHsTDhw/h6+vLdRRCqigpKcHZs2cxZ84cGBsbo3///ggICMDw4cMRERGB/Px8CAQCzJ49m7NvVxFC\nWgYq8BPCMT09PZw5cwY7duyAj48PRowYgeTkZK5jtVq6uro4d+4cfvvtN1y+fBldu3bFgQMHaJE+\nQgghhLRpH330UY3fcGxLBf67d+8iOzu7Tc2/f/r0aUyfPr3VTs9TVFSEDRs24IsvvkC3bt24jkMI\nMjIycODAATg5OYHP52P69OlISkqCt7c3Hj16hMePH2Pnzp0YPnx4q/29JITIHxX4CWkGeDwevvzy\nS/z5558oLCxEnz59cODAAa5jtWrOzs74559/MGvWLCxevBj9+vVDcHAwFfqVhMfjSW+EEEII4Z69\nvT0yMzPx9OnTKtsrKyuVMl3N8+fP0alTJ4X3U5eIiAgYGhqid+/enOZQlr///htxcXGYMWMG11EU\nZsuWLSgrK8PXX3/NdRTShiUlJWHPnj2wt7eHhYUFvvzyS/B4POzZswfPnz9HVFQUvvrqK/oQihDS\naFTgJ6QZ6dWrF2JiYrBo0SIsWrQIU6ZMQXZ2NtexWi09PT3s2bMHt2/fhrW1NaZPn45+/frhzJkz\nNFWSgtX1QYqDgwMcHByUmIYQQgghH374Idq1awehUFhluzKu4H/9+jUyMzM5v4I/IiICI0aMaDOL\nsJ46dQqWlpYYPHgw11EU4unTp9izZw98fHxgaGjIdRzShrw5n/67776LLl26YPPmzbCxscHp06eR\nlZUFgUAAT09PmJqach2XENIKtI3/uRDSgrRr1w6+vr4ICQlBbGwsevXqBYFAwHWsVu2DDz7A+fPn\nce/ePbz//vv49NNP0blzZ6xZswZJSUlcx2tzxGIxfcBSC/rWg3LQOBNC2iJNTU3Y2dkhOjq6ynZl\nXMGflpaGyspKTq/gr6ioQFRUVJuZf58xhsDAQMycObPV/s1bs2YNrKyssGjRIq6jkDbg1atXEAgE\nWLBgASwsLNC/f38cP34cY8eORUhICDIyMnDs2DG4urpCW1ub67iEkFaGCvyENFMjR47EvXv3MGrU\nKEycOBHz5s1Dbm4u17FatV69euHYsWOIi4uDq6srDh8+DFtbW4wePRonTpxAUVGRQvsPCwurdtVc\nWxQdHV2tuEAIIYQQxRsyZAhu3rxZZZsyruB/8uQJAKBLly4K7acusbGxKCwsbDPz70dHRyM5ObnV\nTs8TFRWF4OBgbN++Herq6lzHIa2USCSSzqdvYGAAFxcX3L9/HytWrMCjR4+QmJiIPXv2YPTo0TSf\nPiFEoajAT0gz1rFjR5w8eRLBwcG4fPkyevbsicDAQK5jtXo9evTArl27kJ6ejitXrsDAwADz58+H\nvr4+7O3t4efnhz///FPu8/UvWLAADg4O6Nq1K3bs2AGRSCTX9gkhhBBC6tK7d288fPgQFRUV0m3K\nuII/ISEBHTt2BJ/PV2g/dQkPD4epqSl69OjBWQZlOnXqFHr27Nkq1xuorKzE0qVLMWrUKEyYMIHr\nOKSVSU5Ohr+/P4YNGwYzMzMsX74campq+Omnn5CRkUHz6RNCOEEFfkJagClTpuDBgweYPn06Pvvs\nM4wfPx4pKSlcx2r1VFVVMXr0aAQFBSE9PR1Hjx6FlZUVdu7cif79+8Pa2hrz58/HgQMH8Pfff1d5\nM9wYJSUlAIDExESsXbsW5ubmmDhxIi5evIjKykp5PKQq3lzoNjExEZMnT4a+vn616UmysrKwaNEi\nWFhYQENDA+bm5vD09ERmZma1NkNDQzFhwgTo6+ujXbt2+OCDD3D69OlGZXpbfHw8PvnkE2hra0NX\nVxfjxo3D/fv3azzmzW3Pnz/HxIkToaOjA2NjY8yaNQs5OTm19pueno4pU6ZAR0cHhoaGmDNnDgoK\nCpCcnIwJEyZAV1cXJiYmcHd3R35+frWcDR2vxmR8+1gPD48Gj21N/d6/fx8ff/wxdHV1oa2tjfHj\nx+PBgwfVjmnoeW3oc+OIgDsAACAASURBVKox7SnzvLzd/9vj3JhzXNt4FBQUYPny5bCxsUG7du1g\naGiIIUOGYNWqVbh9+3ZNp5AQQhSmV69eKCsrQ0JCgnSbsq7gt7W1VWgf9YmIiMCoUaM4zaAsFRUV\nOHPmDGbNmsV1FIXYv38/7t+/j71793IdhbQSby6Sa2Njg40bN8LExASHDx9GZmYmfv31V8ybNw/v\nvPMO11EJIW0VI4S0KFFRUaxHjx5MS0uL+fr6soqKCq4jtTkVFRUsJiaGffvtt+yjjz5i2traDADr\n0KEDc3BwYKtWrWInTpxgt2/fZvn5+Q1ut2PHjgxAlZuamhoDwPh8PvP29mZPnjyp8VhXV1fm6uoq\n82OR9DNmzBgWHR3NXr58yS5dusQkfx4yMzOZlZUVMzY2ZleuXGFFRUUsMjKSWVlZMWtra5aXl1et\nvUmTJrEXL16wZ8+esTFjxjAA7PLly7X23ZDtT548YR07dmRmZmYsLCyMFRUVMaFQyIYOHVpvOzNn\nzmT3799n+fn5bNGiRQwAc3d3r3X/WbNmSff38vJiANj48eOZi4tLtXY+//zzKm00Zrwak7GpJO0M\nGTKECYVCVlRUxEJDQ5mJiQnT19dnT58+rba/rOe1tudUY9vj4rzUpLFt1TYeEydOZADY7t27WXFx\nMSsrK2MPHz5kLi4ujTrXAFhgYKDMxxFuBQYGyuV3m5A3Neb1oLS0lKmpqVU5Tltbmx06dEje8apw\ndnZmM2bMUGgfdSktLWXt27dX+ONsLi5evMh4PB5LSkriOorc5eTkMD6fz7766iuuo5AWLi4ujq1f\nv5717NmTAWCGhobMzc2N/f7776ysrIzreIQQ8qbtPMbkPMcEIUThSktLsWnTJuzYsQMffPAB9u7d\niwEDBnAdq82qrKzE/fv3cfv2bdy6dQu3b9/GgwcPUF5eDgAwMjJCjx490K1bN3Tt2hVmZmYwNTWF\nqakpjI2NpV9H19LSwqtXr2rtR11dHa9fv0afPn2wePFizJo1C1paWgCAadOmAQCCgoJkyi65ijgi\nIgLDhw+vdv/ChQuxf/9+HDp0CPPmzZNuP3/+PCZPnox169Zhy5YtVdp7+vQpOnfuDAB4+PAh3n33\nXTg4OCAyMrLGvt/+M1TTdjc3N5w4cQLHjx+vcrXZpUuXMH78+DrbuXbtGj766CMA/36l1traGmZm\nZkhLS6t3//T0dJibm1fbnpqaik6dOsHc3BypqalNGq/GZGzqn25JO5cuXYKjo6N0+9GjR+Hu7o45\nc+bgyJEjVfaX9bzW9pxqbHtcnJeaxrmxbdU2Hnp6eigsLERwcDCmTp0q3S55jLKeax6Ph8DAQOlr\nAmkZgoKCMH36dLi6unIdhbQiwcHBjXo9ePfdd+Hq6oqNGzcC+Pf/J/v27cPs2bMVERMA0LNnT7i6\numLDhg0K66Mu165dw4gRI5CUlARra2tOMijT5MmTkZeXh4iICK6jyN2iRYtw/vx5PHr0CHp6elzH\nIS2IWCzGjRs3cOHCBZw7dw4JCQmwtLTEpEmT4OzsjOHDh9M8+oSQ5moHFfgJacHu3buHJUuWQCgU\nwt3dHVu3boWxsTHXsQj+LfonJyfj8ePHePToER4/fozHjx8jMTERmZmZKC0tle6rqakJIyMjpKWl\nQSwW19u2iooKGGPo0KED3N3dsWLFCnh7ewNofIG/pKRE+mHBm8zNzZGeno709HSYmppKt+fk5IDP\n56N37964d+9ere1XVlZCTU0NhoaGyM7OrrHvhhT4TUxMIBKJkJaWBjMzM+n2/Px86Ovr19lOYWEh\ndHR0AADl5eXQ1NQEj8erNtY17S8Wi6XzDte0/e12ZB2vxmaUV4E/Pz+/ypvftLQ0WFhYwNTUFOnp\n6bUe35DzWttzqrHtcXFeahrnxrZV23jMmzcPhw8fBgB06tQJY8eOxdixYzFp0iRoaGjUO3ZvowJ/\ny0QFfqIIjS3wT5s2DRUVFTh37hwAQE1NDcePH1fYYqxisRgdOnTAgQMH4ObmppA+6rN+/XocPXoU\nycnJnPSvTCKRCJ06dcKRI0fw2WefcR1Hru7evYv+/fvj8OHDnD2XSMtSWVmJmJgYBAcHIzg4GBkZ\nGbCxsYGTkxNcXV0xdOjQGqcOJYSQZmYHffxISAv2/vvv4/r16xAIBFi6dCm6dOmCVatWYe3atdDU\n1OQ6XpumqqqKLl26oEuXLlWukJbIzc1FZmYmMjMzkZ6ejoyMDKxevbpBbUsKl8XFxfjxxx8bXESt\nS21tZGVlAUCVovqbEhMTpf/Oz8/H9u3bcf78eaSmpqK4uFh639vzyctKUvR9e/G9jh071nuspPgL\nQFowratA/ub+KioqdW5/ux1ZxqspGeXl7SvbJOP74sUL6bbGntfanlONbY+L81KTxrZV23j88ssv\ncHJyQkBAAMLDw3Ho0CEcOnQIlpaW+O2339C3b98GZyMtn6wf0hJSl8YWpWxtbSEQCAD8+3oq+RBW\nUVJSUlBaWoquXbsqrI/6hIeHY/To0Zz1r0yHDx9Ghw4d4OLiwnUUuWKM4csvv8SHH37YatcWIPLx\n6tUr/PHHHzh79iwuXryIwsJC2NnZYenSpXBxcUH37t25jkgIITKjRXYJaQWcnZ0RHx+PVatWYfv2\n7ejduzcuXrzIdSxSBwMDA/Ts2RMjR47ErFmzsHDhwnqP4fF40jfYXbt2hbe3N6KiouDr66uwnJJv\nhOTm5oIxVu0mWRgY+PeKv23btmH69Ol49uyZdB95kBSe3766++2fuSbLeDUHbxfUJeP55gJh8j6v\ninye1Eae50UR53jy5Mk4c+YMsrOzERkZiXHjxiElJQVz586VuS1CCGkqGxsbJCYmgjGGiooKAP9O\nE6goT548AQDOCvwvX77E7du3MWLECE76VybGGH755RfMmTMH7du35zqOXAUEBCAqKgq7d++mK65J\nNaWlpTh//jw+++wzGBkZYdq0aUhLS8PGjRuRnJyM2NhYrFmzhor7hJAWiwr8hLQSWlpa8PHxQXx8\nPHr37g0nJyd88sknuHv3LtfRSAPUNve+qqoqVFVVoaKiggEDBmDz5s149OgREhIS4OvrC3t7e4W+\niZk0aRKAf+emfVtUVBQGDx4s/Tk6OhoAsHLlShgYGAAAysrK5JJj7NixAICwsLAq2yV9NheyjFdj\nSK4Cf/36NV6+fFntGw2yenv8QkNDAfz/8X5zH3mdV0U+T2oj63mpa5zlfY55PJ50vQAVFRU4ODgg\nMDAQAPDgwQOZ2iKEEHmwsbHBy5cvIRKJ8Pr1awBQ6BX89+/fh6GhYZUPl5UpKioK5eXlta4b05pE\nREQgISEB8+fP5zqKXBUWFmL16tXw8PDAhx9+yHUc0kyUlZVBIBBg9uzZMDY2xtSpU5GSkoLNmzfj\n+fPnuHbtGpYuXQpLS0uuoxJCSJNRgZ+QVsba2hpnz55FWFgYsrOzYWdnh88++0ymKSiI8r05J7+a\nmhp4PB40NDTw8ccf4+eff4ZIJMKtW7fg7e2Nbt26KS2Xj48PbG1t4eXlhTNnziAnJwdFRUW4cOEC\n3N3dq3x7wMHBAQCwbds25OfnIzc3F+vWrZNbjo4dO2LNmjUIDw9HcXExhEIh9u/fL5f25UWW8WqM\n999/HwBw+/ZtCASCJn9gsG/fPgiFQhQXFyM8PBxr166Fvr4+fHx8pPvI+7wq8nlSG1nPS13jrIhz\n7OHhgfj4eJSVlUEkEsHPzw8AMG7cuCY8akIIaRwbGxsAQFJSklKu4H/w4AHee+89hbVfn4iICPTo\n0UO6eHtrtm/fPgwePBi9e/fmOopcfffddygtLa2yyD1pm94s6hsZGWHSpElISkrCxo0b8fz5cwiF\nQixbtqzKOkqEENIqMEJIqxYSEsLef/99pq6uzjw9PVl6ejrXkUgNnj17xgAwXV1dNnv2bHbu3DlW\nUlLS4ONdXV2Zq6urTH0CqHarSW5uLluxYgWztrZm6urqzNjYmDk7O7OYmJgq+4lEIubm5saMjIyY\nhoYG69WrFwsMDKyx/dr6rStPXFwcc3R0ZB06dGA6OjrMycmJJSYmMgBMRUWlzsemrO2yjFdj2o6N\njWV9+vRhWlpabNCgQezRo0esMSRtP336lDk5OTEdHR3WoUMH5ujoyO7fv19l36ac15qeU4p8nsjj\nvDBW/zg39hzXNB5CoZDNmTOHde7cmamrqzM9PT3Wp08ftmXLFpleA97sMzAwUObjCLckvwOEyFNj\nXw8qKyuZpqYmO378OMvOzmYAWGhoqAIS/svBwYEtXLhQYe3XZ8CAAWzx4sWc9a8saWlpTF1dnZ08\neZLrKHJ17949pqamxn7++WeuoxCOlJaWst9//525ubkxPT09pqKiwoYOHcp2797N0tLSuI5HCCHK\nsJ3HmBJW8SOEcKqiogJHjx6Fj48P8vLysGzZMqxatQr6+vpcRyNvePz4MWxsbBr1Nfhp06YBaHsL\nNKanp8Pc3BxGRkYQiURcx2kxJNM60X8BWh8ej4fAwEDpawJpGYKCgjB9+nT6nSRy1ZTXg27dusHN\nzQ2enp4wMTHB9evXMWzYMAWk/Hfdl++++w5LlixRSPt1KSgogKGhIU6fPo2pU6cqvX9l+vbbb3Hg\nwAGkpKRAU1OT6zhyIRaLYW9vj8rKSsTExEBFhSYoaCsk5/z48eMIDAxEQUEB7Ozs4ObmhqlTp7aJ\nb+QQQsgbdtBfQELaADU1NcyfPx8JCQnw8fHB/v370blzZ6xduxZZWVlcxyP/p1u3bgqd47al4/F4\n0oX4JCIjIwGgTSyMRwghhCiLmZkZMjIyFD4Hv0gkQnZ2Nnr27KmQ9utz/fp1iMXiVj//fnl5OQ4e\nPIiFCxe2muI+ABw6dAixsbHYv38/FffbgNevX+PixYtwd3cHn8/HsGHDEBcXhw0bNiA1NRV37tzB\nsmXLqLhPCGmT6K8gIW1Iu3btsGrVKiQnJ2Pjxo04duwYLC0tsWDBAjx//pzreITUy8vLC0lJSSgp\nKUFYWBi8vb2hq6tbZc54QgghhDSNqakpMjIyFD4H//379wGAszn4r1+/jt69ezd50frmLigoCDk5\nOfj888+5jiI3OTk5WLduHZYuXYq+fftyHYco0J9//olly5bBwsICTk5OiI2NxbJly5CQkIDo6Ggq\n6hNCCKjAT0ibpK2tjWXLliEpKQk//PAD/vjjD3Tp0gWzZ8/G48ePuY5HSI1CQ0Ohra2NIUOGoGPH\njpgxYwYGDRqEW7duoUePHlzH4xSPx2vQTbLvm8cRQgghbzMxMUFmZqbCr+CPj4+Hvr4+TExMFNJ+\nfSIjIxU29VBz8p///AcuLi6wsLDgOorcrF69Gmpqavjuu++4jkIUID4+Hl9//TWsra3Rv39/RERE\nYPny5Xj27Bni4+Ph4+ODLl26cB2TEEKaDZoLgpA2TFNTE56ennB3d8exY8fg6+uL9957D1OmTMGy\nZcswePBgriMSIjVq1CiMGjWK6xjNkizzdtMc34QQQupjYmJSZYoeRV3B/+DBA86m5ykuLsbdu3fx\n1VdfcdK/sty4cQMxMTEQCoVcR5Gb6OhoHD58GIGBgdDT0+M6DpGTtLQ0nDlzBsHBwYiOjoaFhQUm\nT54MV1dX2Nvbcx2PEEKaNbqCnxACDQ0NeHh44NGjRzh69CgSExMxZMgQDBw4EAEBASgvL+c6IiGE\nEEIIURJTU9MqV/ArqsB/79499O7dWyFt1+fGjRuoqKho9YXDnTt3YsCAARg6dCjXUeTi9evXWLx4\nMcaMGQNXV1eu45Amys/Px7Fjx+Ds7IzOnTvDx8cHNjY2+P3335GcnIw9e/a0+t9RQgiRByrwE0Kk\nVFVV8dlnnyE2NhZ37txB9+7d4e7uDktLS6xZswZpaWlcRySEEEIIIQpmamqKsrIy5ObmAlDMFD2M\nMdy7d4+z+dOjoqLQtWtXmJmZcdK/MiQlJeH333/H6tWruY4iNzt37kRCQgJ++uknrqOQRiorK4NA\nIMDs2bNhbm6OBQsWAAACAgIgEomkBX9VVVWOkxJCSMtBBX5CSI3s7Oxw7NgxJCYmwt3dHQcPHkTX\nrl0xd+5cREdHcx2PEEIIIYQoiGROfJFIBEAxV/AnJiaisLCQ0wK/g4MDJ30ry65du2BpaQkXFxeu\no8hFQkICNm3ahO+++w5du3blOg6RgVgshlAolC6WO2nSJCQlJcHf3x8ikQgCgQCurq7Q0NDgOioh\nhLRIVOAnhNSpU6dO8PX1xfPnz7Fnzx789ddfsLe3R8+ePbFr1y5kZWVxHZEQQgghRCFOnz6NgQMH\nQl9fv9qi5W+q676WyNTUFACk/89TxBX8d+/ehaqqKidT9JSXlyM2NrZVF/hzc3Nx9OhRLF++vFVc\nCc0Yw+LFi9G1a1esXLmS6zikgeLi4rBy5Up06tQJDg4OuHHjBr7++mukpqZCKBTC09MTurq6XMck\nhJAWjxbZJYQ0iJaWFjw9PeHp6Yn4+HgcP34c27Ztg7e3N0aMGAFPT0+4uLgo5A0gaZiYmBhMmzaN\n6xiEEELaMEnBNCoqqkW2/6Zjx45hzpw5cHR0xN27d2FiYoKLFy9iypQp1fZljLWa4j4AGBoaQkND\nQ1rgV8QV/H///Te6desGLS0tubddn9jYWLx8+bJVF/h//PFHaGhoYO7cuVxHkYsjR44gPDwcQqFQ\nYWtCEPnIy8tDQEAAjhw5gjt37sDGxgYeHh747LPP0L17d67jEUJIq0RX8BNCZPbee+9Jr+o/fPgw\nXr9+jenTp8Pa2hrr1q3DvXv3uI5ICCGEkP8jzyvL62tLLBZDLBY32/Zl8f333wP4d5oTKysraGpq\nYvLkyWCMKaV/LvF4PBgZGeHFixcAFHcFP5fT85iYmLTaaV5KSkqwd+9eLFmyBNra2lzHabLs7Gys\nXr0aS5cuxeDBg7mOQ2ogFosRGhqK2bNnw8LCAqtWrYK1tTVCQkLw5MkTbNiwgYr7hBCiQHSpLSGk\n0dq3bw83Nze4ubkhISEBhw8fRkBAALZt24aePXti+vTp+PTTT9GtWzeuo7YJgwcPRlBQENcxCCEc\nak1XEJOWSdHr9ChzHaDHjx8DQKstAtfH1NQUOTk5ABRzBf/du3fxxRdfyL3dhoiKisKwYcM46VsZ\n/vvf/+LVq1dYsmQJ11HkYunSpdDS0sKmTZu4jkLe8vjxYwQEBODo0aNITk6GnZ0d/P39MWPGDOjo\n6HAdjxBC2gy6gp8QIhe2trbYunUrkpOTERcXB2dnZ+zbtw/du3fHe++9Bx8fHyQmJnIdkxBCCCGk\nQV69egVAMcXtlsDExAS5ubkAIPc53HNycpCamsrJFfxisRg3btxotdPzlJWVwd/fH4sWLQKfz+c6\nTpNdvnwZp06dwo8//tgqvo3QGhQWFuLYsWMYM2YMevTogYMHD2L69Ol4/Pgx7ty5A09PTyruE0KI\nklGBnxAid29O4RMWFoahQ4di7969sLW1xYcffojNmzfj7t27XMckhBBCWqyCggIsX74cNjY2aNeu\nHQwNDTFkyBCsWrUKt2/flu735rc6JNPfeHh4VGkrNDQUEyZMgL6+Ptq1a4cPPvgAp0+frtZnfW3V\nttCsvLLWtZBtaWkpfH190a9fP3To0AHt2rVDjx49sHDhQty8ebPOsaxJTVnevjVUVlYWFi1aBAsL\nC2hoaMDc3Byenp7IzMyssl9Dx0lZ+Hw+CgsLAQAqKvJ92/i///0PADgp8N+7dw/5+fmttsB/6NAh\n5OTkYPny5VxHabKXL1/Cy8sLM2bMgLOzM9dx2rw///wTCxYskL6GtWvXDoGBgXj27Bl8fX1ha2vL\ndURCCGmzqMBPCFEYVVVVjBw5EgcOHEBmZiYuXLiAfv364b///S/69esHKysreHl54cqVKygrK+M6\nLiGEENJizJkzB7t378ayZcuQk5ODjIwMHD58GElJSRg4cKB0vzfni2eMgTGGn3/+uUpbY8aMgaqq\nKhISEvD48WPw+XzMmDEDV65cqbJffW3VNje9vLLW1n5RUREcHBywdetWeHl5ISkpCdnZ2di3bx8i\nIyMbNWd3TVkkN1mIRCJ8+OGHOH/+PH755Rfk5ubi9OnTuHr1KoYMGYL8/Hzpvg0dJ2V5s8Avb7Gx\nsbCysoKxsbFC2q9LVFQU9PT00KtXL6X3rWivX7/Gjh07MH/+fJiZmXEdp8nWrVuH/Px8+Pv7cx2l\nzUpNTYWfnx+6du2K/v37QygU4ptvvkFqaioEAgFcXV0VskYHIYQQ2VCBnxCiFOrq6vjkk0+wf/9+\npKam4s6dO3B3d8fNmzfh6OgIPp+PqVOn4uDBg3j69CnXcQkhhJBmLSIiAgBgbm6ODh06QENDA927\nd8ePP/7YqPb8/f3B5/NhaWmJH374AQCwZcuWZpn1bT4+Prhz5w42bdoEDw8PGBsbQ1tbG8OHD8fJ\nkyfl0kdjrV+/Hs+ePcPWrVsxduxYaGtrw8HBAf7+/nj69Cl27Ngh3VfR4yQrQ0NDaYFf3ut7xMbG\non///nJts6GioqJgb28v92mHmoNjx44hLS0Nq1ev5jpKk8XExODHH3/E7t27OfkgqC0rKyvDyZMn\nMWrUKFhZWcHf3x8TJ05EXFwc4uPj4e3t3SqmfyKEkNaECvyEEKXj8Xiws7PDhg0b8OeffyIlJQU7\nduzAq1evpF9N79KlCzw9PREYGIisrCyuIxPS6jVm2gkuKDKnrG23lDEjrdOUKVMAAK6urrC0tISH\nhweCgoLA5/NlvsqcMYbOnTtLf5ZMs3D//v1ml7UmZ86cAQBMmjSp2n39+vWTSx+NJRAIAACOjo5V\ntksWeJXcDyh+nGRlaGiIoqIiAPIv8N+5c4ezAn90dHSrnJ7n9evX2LJlC+bOnQsrKyuu4zRJWVkZ\nPDw8MG7cOLi5uXEdp8148uQJvvrqK1hYWGDu3LnQ1dXF+fPn8fz5c+zatQvvvfce1xEJIYTUggr8\nhBDOWVhYYOHChbh48SJyc3Nx/fp1zJw5E/Hx8Zg1axZMTEzQt29frFy5EhcuXEBOTg7XkUkTOTg4\ntMo31zVpKY+VywKYLBSZszFFUUK48ssvv+Ds2bOYMmUKiouLcejQIUyfPh22trYyrXOTn5+PdevW\n4d1334WOjg54PJ50ugV5/b2VV9baZGRkAPh3UdjmRnKRgpmZWZUPBSVXvyYmJkr3VdQ43bx5E19+\n+SUuXboEsVjc4OP4fD5evnzZ6H5rk5mZidTUVAwYMEDubdcnISEB6enp0g9YWpOff/4ZaWlpWLt2\nLddRmuy7775Damoq9u3bx3WUVk8sFiM0NBTOzs7o1q0bAgICMH/+fDx58gTnz5/HhAkT2uxC44QQ\n0pJQgZ8Q0qxoaGhg2LBh2LhxI6Kjo5Gbm4vff/8dI0aMwNWrVzFhwgTw+Xz06NEDc+fOxYEDBxAX\nFyfTG1bCPbFYLJdz1hKunq7tsXKRvSWMFyGk4SZPnowzZ84gOzsbkZGRGDduHFJSUjB37twGtzFt\n2jRs27YN06dPx7Nnzxo1z7yystZGMn2HpNDfnEiy5ebmVpvLnzGGkpKSKvsrYpwYY7hx4wacnJww\naNAgPH78uEHHGRoaSv8tz78dsbGx0m9zKltUVBTat2/PSd+KVFpaiq1bt8LT07PKt3Faor/++gv+\n/v7YuXMnOnXqxHWcVisjIwN+fn6wtrbGuHHjUFpaWmXBXEtLS64jEkIIkQEV+AkhzZqOjg6cnJzg\n7++Pf/75By9evMCFCxfg6uqKZ8+eYeXKlejduzf09fUxbtw4+Pj4QCAQ4Pnz51xHJ3WIjo5GdHQ0\n1zGUoi09VkKI8vB4PKSmpgIAVFRU4ODggMDAQADAgwcPquyrpaUF4N8pPF6+fFll7mTJ69PKlSth\nYGAAAHUufF9XW4rOWhvJ1Da//vprtftu3rzJyQK1EpJpg65du1btvqioqCoLAMsyTrIYPHgwbt++\njXv37oHH42HgwIEN+kbAm2Mv7wJ/165d0bFjR7m12VBRUVEYNGgQNDQ0lN63Iu3fvx/Z2dlYs2YN\n11GapLy8HHPmzIG9vT08PDy4jtPqSK7WnzZtGiwtLeHv748ZM2bgyZMnCAkJoQVzCSGkBaMCPyGk\nRTE0NMT48eOxadMmhIeHIz8/H3/99Re2bdsGIyMjnDx5EhMnToSlpSX4fD5Gjx6NVatW4cSJE4iL\ni0NFRQXXD6FWe/fuxYkTJxTydXhCCCGtj4eHB+Lj41FWVgaRSAQ/Pz8AwLhx46rs9/777wMAbt++\nDYFAUKWoLJlCbNu2bcjPz0dubi7WrVtXa591taXorLXx8fFBr1698N133+HgwYMQiUQoLi7GlStX\nMHv2bGzdurVBGRXBx8cHtra28PLywpkzZ5CTk4OioiJcuHAB7u7u8PX1rbJ/Q8epMXr16oXr16/D\nzs4Ozs7OSE9Pr3N/RS2ieefOHU6m5wH+LfC3hGnzZPHq1Sts374dXl5eMDc35zpOk2zevBmJiYk4\nePAgfeNQjrKysuDn5wdbW1uMGTMGSUlJ+Omnn5CcnAxfX19YW1tzHZEQQkhTMUIIaWXy8/PZ9evX\n2Q8//MDmzZvHPvjgA6ahocEAME1NTWZnZ8dmzpzJNm3axAIDA9lff/3FXr58yXVs1rFjRwaAtW/f\nnrm7u7Pr168zsVjcoGNdXV2Zq6urghPWDUCdt3bt2lXbr7bjU1JS2IQJE5i2tjYzMjJiM2fOZNnZ\n2fX2N3/+/Cr7iEQitnDhQmZubs7U1dWZmZkZ+/zzz1lGRkaT+s7Pz2dffvkls7a2ZpqamszAwIAN\nHjyYrVy5kt26davGdhuavab7Tp06JT3Wysqqxjbr05Dxauz4P3nyhLm4uEifw29ma+g5aOiYypqT\nMcYyMjKYp6enNIO5uTlbsGABy8zMrHWc3hYXF8ccHR1Zhw4dmK6uLps0aRJ79uxZo86FIgFggYGB\nXMcgMgoMDJT5bRlw/gAAIABJREFUeSQUCtmcOXNY586dmbq6OtPT02N9+vRhW7ZsYSUlJVX2jY2N\nZX369GFaWlps0KBB7NGjR9L7RCIRc3NzY0ZGRkxDQ4P16tVLmqem53ddbb39GiPvrLW1zxhjRUVF\n7JtvvmHdu3dnGhoazNDQkI0dO5ZFRkbKNK719SXrdsYYy83NZStWrGDW1tZMXV2dGRsbM2dnZxYT\nE1NlP1nGqaGPoabXg7y8PPbuu+8yOzs7Vl5eXuvxFRUVjMfjMQCsrKxM5v5rIhaLGZ/PZ99//71c\n2pNFeno6A8BCQkKU3rci+fn5MW1tbSYSibiO0iR///03U1dXZ3v27OE6Sqtx584d5unpydq3b8/0\n9PSYp6cn++eff7iORQghRP62N593pIQQokDl5eXs77//ZkePHmUrV65k48ePZ127dmVqamoMAOPx\neMzKyoqNGTOGeXl5sb179zKBQMDu3bvH8vLylJKxQ4cO0sKA5AMJExMT5u3tzRISEuo8trkU+N+2\nfft26fiePn26yr417S/ZPnPmTHb//n2Wn5/PFi1axAAwd3f3WvevSWZmJrOysmLGxsbsypUrrKio\niEVGRjIrKytmbW1d7bzK0vfEiRMZALZ7925WXFzMysrK2MOHD5mLi0utxXxZsoeGhjIAzNTUtFpR\n5eDBg8zJyanG4+pTXzG6pjH44osv6h3/MWPGsOjoaPby5Ut26dIlaR+ynIPGjGlDcmZkZLBOnTox\nMzMzFhYWxgoLC1loaCgzMTFhVlZW1Yr8NY3RkydPWMeOHaVtFBUVsevXr7Nx48ZRgZ/IRWMK/ITU\np67Xg4SEBKalpcV8fX3rbENbW5sBYEVFRXLJdP/+fQaA3b59Wy7tyeL06dNMTU2NFRYWKr1vRcnL\ny2MGBgbsu+++4zpKk7x+/Zp98MEHbOjQoayyspLrOC1aQUEB279/P+vduzcDwOzs7Nj+/ftZcXEx\n19EIIYQoDhX4CSFtW1lZGbt//z47d+4c8/X1ZfPmzWNDhgxhfD6/ypV4urq6rFevXszJyYktWrSI\nbdu2jZ08eZJdv36dxcfHs6ysrCZn0dTUrPEqa8mHEH369GG7d+9mOTk51Y5tjgX+P/74g6moqDAA\nbNOmTdX2ravofe3aNem2p0+fMgDMzMys1v1rsmDBAgaAHTp0qMr2c+fOMQBs3bp1je5bV1eXAWDB\nwcFVtqelpcmlwM8YY3369GEA2NGjR6ts7927d6OvPmxogf/NMUhNTa13/CMiImpsT5Zz0JgxbUjO\nzz//nAFgx48fr7L9yJEjDABbsGBBjW2/adasWTW2cf78eSrwE7mgAj9RhPpeDzZv3sy0tLRYUlJS\nrfuYm5szADX+36MxDh48yNq3by+3bwTI4osvvmADBgxQer+KtGrVKsbn81lBQQHXUZpkw4YNrH37\n9uzhw4dcR2mx7t69y+bPn8+0tLSYtrY2W7BgAfvrr7+4jkUIIUQ5tvMYYwyEEEKqefnyJZKTk5GS\nkoKUlBQ8f/4cz549w7Nnz5CSkoK0tDS8fv1aur+amhr4fD7eeecdGBsbw9jYWPqzvr4+dHR0oKur\nCx0dHejp6UFPT0/6c/v27aGmpobKyspa86ioqIDH40FFRQUTJkzAnDlz4OjoCDU1NUybNg0AEBQU\npPBxaYhHjx5h4MCBKCgowKxZs3D8+PEq90vmVX37T5Bke2FhIXR0dAD8u+CapqYmeDwexGJxg9oB\nAHNzc6SnpyM9PR2mpqbS7Tk5OeDz+ejduzfu3bvXqL7nzZuHw4cPAwA6deqEsWPHYuzYsZg0aVK1\nhfvqe6y1/Rk+evQo3N3d0bdvX/z1118AgPDwcCxduhRxcXE1HlOf+vqsaQzEYjFUVVXrHP+SkhLp\nwphvkuUcNGZMG5LTzMwMGRkZSEtLg5mZmXR7WloaLCwsYG5uLl3UsrYxMjExgUgkqtZGdnY23nnn\nnTrHVNl4PB4CAwOlrwmkZQgKCsL06dObzfOItA71vR6Ul5ejT58+6NmzJ86ePVvjPr1790ZcXFy1\n1/HGmjt3LpKTkxEREdHktmRlZ2eHYcOGwd/fX+l9K0JaWhpsbW3h5+eHJUuWcB2n0e7evYuBAwfC\nz88PX375JddxWpTKykr89ttv+OGHH3D9+nW899578PLywsyZM6Grq8t1PEIIIcqzgwr8hBDSSJWV\nlXjx4gWys7ORlZWFzMxMZGdn48WLFxCJRMjKysKLFy/w4sUL5Ofno7CwEGVlZTW2paamJtMCwJL9\n33nnHfz44484c+YMgOZR4C8oKMDAgQPx6NEjDB06FGFhYdDU1Kyyj6xF78YUydXV1escUy0tLZSU\nlDS6j3PnziEgIADh4eHIy8sDAFhaWuK3335D3759m5Qd+Lfw0rlzZ2RkZCAsLAwjR47ExIkT4eTk\nhM8//7zWx1WXhhb45TH+gOznQBFjKslQVlZW5YOCsrIytGvXDurq6igvL6+zDcmHb2+30ZAxUDYq\n8LdMVOBXjoYu2tlazkNDXg8EAgEmTpyIu3fvShc4ftPIkSMRERGB5ORkWFlZNTlTt27dMG3aNGze\nvLnJbcni5cuX0NPTw8mTJ1vN66O7uzsiIyPx4MGDav/PainKysowYMAA6OrqIjIyEioqKlxHahEK\nCgpw5MgR7N69GykpKRg5ciSWLl0KJycnWpyYEELaph1qXCcghJCWSlVVFSYmJjAxMWnwMeXl5Sgs\nLERhYaG06F9UVIS8vDzMmTOnwe1I/vMuubq8uRCLxfj000/x6NEj2NjY4Ndff+XsTaexsTHS0tKQ\nm5sLfX19ubc/efJkTJ48GWKxGNHR0diyZQuuXLmCuXPnSq+4bwoNDQ188cUX+Prrr/H999+jc+fO\niImJwenTp+WQXjlkPQeKGFMjIyOkp6cjOzu72tX3kvvrw+fzIRKJqrVRUFDQqEyEEG60lsK9PDk5\nOaFv377Ytm0bTp06Ve1+ybeUartAQRbZ2dl48uQJhg4d2uS2ZBUbG4uKigoMGjRI6X0rwj///IMT\nJ07gxIkTLba4DwDr169HUlIS7t69S8X9Bnj8+DF++uknHDp0CCoqKpgxYwaWL1+OHj16cB2NEEII\nx+ivKCGEKJGGhgb4fD5sbGzwwQcfYPjw4XB2doarq2uDjgUACwsLLFq0CFFRUUhJSWnQscri7e2N\ny5cvQ09PDxcuXACfz5fep4gPIiTTwrx+/RovX76s0t+kSZMAANeuXat2XFRUFAYPHtzofnk8nnRa\nFxUVFTg4OCAwMBAA8ODBgyZnl1i4cCG0tLRw6dIlLF26FB4eHmjfvn2jczekT3mS5RzIY0xr4uzs\nDAAICwursj00NLTK/XUZO3ZsjW3ExMQ0OhchhDQHPB4PX331FYKDg/H48eNq90s+BJVHgV8oFAIA\nBg4c2OS2ZHXz5k2YmZnB0tJS6X0rwtq1a9GnT58W/W2EmJgY7Ny5E99//z26du3KdZxmizGGixcv\nYvTo0f+PvfuOiupa2wD+DL0jgqCAAiqKNLvYezQqKPYYC5qrIrZoNDexxGu5KpaoURN7WcYUuxFQ\nESwoKvZGEQugooJIr0Pb3x9+zA2hSB+B57fWrMA5++z9HBiEvLNnb1hZWcHb2xtr1qzBmzdvsGPH\nDhb3iYgIAAv8RESfhL+v5f93Skof3mjVsGFDTJs2DVeuXMGrV6/w008/oWvXrp/U7P1ff/0V69ev\nh5KSEo4ePYoWLVpU+ph5ywncvHkTHh4e+QrGS5cuhaWlJWbMmIGjR48iNjYWycnJ8PT0xMSJE+Hu\n7l6usSdPnoygoCBIpVJER0djzZo1AID+/fuXO3ueunXrwsXFBUIIeHt7Y/r06eXKXJIxK1Jpvwfl\n/ZoWZtmyZTAzM8P333+PCxcuIDk5GRcuXMCCBQtgZmaGpUuXlug+6tSpI+sjJSUF165dw+rVq8uc\ni4joUzFq1ChYWFhg06ZNBc4ZGRkBQL6lzMrq6tWrsLGxQd26dcvdV2kFBARU+u+8quLj4wMvLy+s\nXbu22s56T0tLw8SJE9G7d+8yLztY02VkZGDXrl2wsbGBk5MTlJWVcfr0aYSEhGDGjBnQ0tKSd0Qi\nIvqUVPo+vkRE9FHv378XAAQAoaSkJACI5s2bi+XLl4ugoKCPXj9y5EgxcuTIKkhaNDU1Ndk9FPUQ\nQhR6rCzHhRDi1q1bomXLlkJDQ0N07NhRhIaG5jsfFxcnvvnmG2FhYSGUlZWFkZGRcHJyEtevX8/X\nrrRj+/v7CxcXF2Fubi6UlZWFrq6uaNmypVi5cqVITU2tkOx5njx5IhQUFMQXX3xR7Ne/JIobs7zf\nl6L+pCjp96C8X9PiskRFRQlXV1dhbGwslJSUhLGxsZg6daqIiorK1664PgIDA8WAAQOEpqam0NLS\nEv369RNBQUEfvf+qBkAcOnRI3jGolA4dOvTJPIeo5ijNvwfr168XOjo6IiUlJd/x/fv3CwDC29u7\n3Hk6deokXF1dy91PWRgbG4u1a9fKZeyKlJ2dLezs7ISzs7O8o5TLzJkzha6urnj58qW8o3xy3r17\nJ9zd3YWxsbFQUVER48ePF48ePZJ3LCIi+rSt5Sa7RESfgOTkZBgaGsLS0hJjxozB8OHD0axZsxJf\nn/cW7U9hk12qWLm5uTA1NcXx48drzNrBVHm4yW71xE12qTKU5t+D2NhYmJiYYPv27Zg4caLsuL+/\nP7p164Zt27Zh2rRpZc4ilUqhq6uLXbt2Yfz48WXupywiIiJgYWGBy5cvo1u3blU6dkX75ZdfMHfu\nXDx69KhUfyd+Si5cuIC+ffviwIEDGDdunLzjfDKePXuGLVu2YPfu3VBWVoaLiwv+/e9/w8TERN7R\niIjo08dNdomIPgXa2tpITEyUrbNPlMfLywsNGzZkcZ+IiCqNvr4+nJ2dsWvXrnwF/ryNxSMiIsrV\n/61btyCVSuWywW5AQACUlZXRtm3bKh+7IiUkJOA///kPZs+eXW2L+0lJSfjqq6/g7OzM4v7/8/Pz\nw/r163H69Gk0adIE69evh4uLi2zfJCIiopKonov2ERHVQCzuUx6JRIKAgADEx8dj2bJlWLRokbwj\nERFRDTdlyhRcu3YNwcHBsmN5a/C/fv26XH1fvXoVRkZGaNy4cbn6KYsbN27A3t6+2hdMV6xYAYlE\nUq3/Jpg9ezbS09Oxfft2eUeRq9zcXJw8eRKdOnVCz549kZiYiGPHjuHx48dwc3Or9s9VIiKqeizw\nExERfYI6deoES0tLODo6YvDgwYW2kUgkJXoQERF9TO/evdGwYUP88ccfsmOamppQVFREdHR0ufq+\nevUqunbtWt6IZRIQEFDt3wX3/Plz/Pzzz1i2bBnq1Kkj7zhlcuLECRw4cAC7d++GoaGhvOPIRVZW\nFg4cOAA7OzsMGzYMBgYGuHr1Ki5fvgxnZ+dqu2kyERHJH3+DEBERfWKEEBBC4P3791i6dOlH233s\nQURE9DESiQQjR44ssJ+Puro6oqKiytyvEAIBAQFyWZ5HKpXi3r171b7AP3fuXFhaWmLKlCnyjlIm\nb968wZQpUzBlyhQ4OTnJO06VS01NxU8//YQmTZpg8uTJaNu2LR49egQPDw907txZ3vGIiKgGYIGf\niIiIiIiIMHLkSDx58gT379+XHdPT00NsbGyZ+wwNDUVMTIxcCvx3796FVCqt1gV+b29veHh44Kef\nfoKSUvXbQk8IgcmTJ6NOnTpYv369vONUqbyJGmZmZli0aBGGDh2KZ8+e4cCBA7CxsZF3PCIiqkGq\n318IREREREREVOEcHBxgbm6OI0eOoFWrVgCABg0a4NGjR2Xu8+rVq1BXV5f1V5UCAgKgr6+PJk2a\nVPnYFUEqlWL27NkYPXo0evfuLe84ZbJ582b4+PjgypUr0NbWlnecKvHmzRusW7cOO3fuhIaGBmbN\nmoWZM2dCX19f3tGIiKiG4gx+IiIiIiIigkQiwYgRI/It09OsWTNkZGQgNze3TH1evXoVHTp0gIqK\nSkXFLLEbN26gU6dO1XY/mrVr1yIyMhJr1qyRd5QyCQkJwYIFC7B48eJq/S6Kknr58iVmzpyJJk2a\n4PDhw1i5ciUiIiLwn//8h8V9IiKqVCzwExEREREREQDA2dkZz549Q0hICACgffv2EELg7t27Zerv\n4sWL6NmzZwUmLLmAgAA4ODjIZezyevnyJdasWYMlS5bAzMxM3nFKLSsrCy4uLrCxscHChQvlHadS\nRURE4Ouvv0bz5s3h4eEBd3d3PHv2DHPmzIGmpqa84xERUS3AAj8REREREREBADp16gRDQ0N4enoC\nAIYNGwYAOHnyZKn7ev78OSIiIuSyvMzbt2/x4sWLajtz/Ouvv4axsTHmzJkj7yhl8sMPPyA4OBi/\n/fYblJWV5R2nUoSFhcHV1RWWlpY4deoU3N3dERoaiq+//hrq6uryjkdERLUI1+AnIqoBFBUV8eef\nf1bbt6ATUcUZPXo0Ro8eLe8YVAb8N5wqWlk2ZVVQUED//v3h5eWFb7/9FqamplBRUcGVK1dK3df5\n8+ehoaEhl1n0169fh4KCAtq3b1/lY5eXj48PTp48idOnT0NVVVXecUrtypUrWL9+PbZt24ZmzZrJ\nO06Fe/ToEVatWoXDhw+jWbNm2LNnD7788stquQkyERHVDBIhhJB3CCIiKp+IiAjcunVL3jGIiIjo\nE6GoqIiBAwdCTU2t1NceOnQIY8eORXR0NPT19WFhYYGUlBTExMSUqp8xY8YgPj4eZ8+eLXWG8vru\nu+9w5swZPHz4sMrHLo+UlBTY29ujTZs2OHr0qLzjlFpMTAzatGmDtm3bluldH5+yK1euYM2aNTh9\n+jRsbW2xaNEijBw5EgoKXBiBiIjkah1fYiYiqgHMzc1hbm4u7xhERERUA3z++edQUFDAuXPnMGbM\nGHTo0AFHjhxBVlZWiZdbEULg0qVLcltiJiAgoFouz/Ptt98iKSkJW7dulXeUUsvNzcX48eOhoKCA\nPXv2yDtOhRBCwNPTE2vWrMHVq1fRtm1b7N+/H+PGjWNhn4iIPhn8jUREREREREQyurq66NKlC7y9\nvQF82HhXCAEvL68S9xEUFISoqCj06dOnsmIWKTs7G3fu3Kl2G+xeuHABO3bswM8//4z69evLO06p\nLVmyBJcuXcKxY8egr68v7zjlkpqait27d8POzg5DhgxB3bp14e/vj9u3b2PChAks7hMR0SeFv5WI\niIiIiIgon169euHChQsAPmy0K5FIcPz48RJff/78edSpUwetW7eurIhFevToEVJTU6tVgT8pKQmT\nJk3CkCFDquU+KidOnMDq1avx008/oV27dvKOU2ZBQUGYNWsWTExMMGvWLLRv3x6PHj3CqVOn0KVL\nF3nHIyIiKhQL/ERERERERJRPr1698OrVK4SHh0NVVRW6uroICAgo8fUXL15Ez549oaioWIkpC3fr\n1i1oaWnB2tq6yscuq1mzZiEjIwM7d+6Ud5RSu3btGsaOHYupU6fC1dVV3nFKLT09Hb/99hu6desG\nW1tbeHt7Y/HixYiMjMS+fftgY2Mj74hERETFYoGfiIiIiIiI8nFwcICGhgYuXrwIALC2tsaLFy9K\ndG1OTg4uX76MXr16VWbEIt29exetW7euNsuobNmyBQcPHsT+/ftRr149eccplWfPnsHZ2Rl9+vTB\nli1b5B2nxHJycuDv7w9XV1fUr18fLi4uUFNTw6lTpxAaGor58+dX+2WGiIio9qgef/EQERERERFR\nlVFRUUGnTp1w6dIlAECXLl2QmZmJyMjIj1579+5dxMfHy2X9/bzx27RpI5exS8vf3x/z58/HypUr\nMWDAAHnHKZWIiAh89tlnaNq0KQ4fPgwlJSV5RypWbm4url69ilmzZsHY2BjdunXDw4cPsWLFCkRG\nRsLHxwdOTk6QSCTyjkpERFQqLPATERERERFRAb169cL58+cBAAMHDgQAnDlz5qPXnT9/HoaGhnJZ\nIic7OxuBgYFyWfu/tF68eIFhw4bB0dER3333nbzjlMqTJ0/QvXt36OnpwcPDA+rq6vKOVKi0tDR4\neHjA1dUVDRs2RNeuXXHhwgW4ubnhyZMnuH79OmbPnl0tNzUmIiLKwwI/ERERERERFdCzZ0+8efMG\nz549Q8eOHQEAfn5+H73u4sWL6NOnj1xmQgcHByM9Pf2Tn8H//v17ODo6wtjYGAcOHKhWs8ZDQkLQ\nq1cvGBkZwcfH55NayiYnJwd37tzBhg0b0K9fP+jp6WHo0KEIDg7G7NmzERgYiKCgICxduhSWlpby\njktERFQhPu330BEREREREZFcdOjQAZqamrh48SKmTJkCLS0tPHjwoNhrMjMzcfXqVWzatKmKUuZ3\n9+5dqKmpwcrKSi7jl0RCQgL69euH1NRU+Pn5QVNTU96RSuzy5csYMWIErKys4OnpCR0dHbnmycrK\nwr1793D58mX4+fnhypUrSExMhIGBAXr37o3du3djwIABMDAwkGtOIiKiysQCPxERERERERWgrKyM\nLl264NKlS5gyZQpMTU3x8uXLYq8JCAhAamoqevfuXUUp87t37x7s7e2hrKwsl/E/JjU1FU5OToiJ\niYGfnx8aNmwo70gltnPnTsycORPDhg3D3r17oaGhUaXjZ2dnIzg4GLdv35Y9Hj58CKlUinr16qFH\njx5YsWIFevXqBRsbm2r1rggiIqLyYIGfiIiIiIiICtWzZ09s2bIFANCsWTOEhoZCKpVCVVW10PYX\nLlxAo0aN0Lhx46qMKfMpb7CbkJAAJycnPH/+HH5+fnL7GpVWSkoKZs2ahQMHDuC///0vvv/++0ot\nnicmJiI8PByPHz9GcHAwQkJCEBISgqdPnyIzMxMaGhpo1aoVOnXqhJkzZ6J9+/awsrJiQZ+IiGot\nFviJiIiIiIioUL169cLChQsRGhqKtm3b4tSpU3j8+DFatmxZaPsLFy6gT58+VZzyg9zcXDx48ADj\nx4+Xy/jFefXqFQYOHIiEhAScP3++2qz/fu3aNUyYMAFJSUn466+/4OjoWOa+kpKSEB0djffv38se\nMTExePv2LV6+fInw8HBEREQgPj4ewId3kDRp0gTW1tYYMmQIbGxsYGtrC2traygpsZRBRESUh78V\niYiIiIiIqFDt2rWDtrY2Ll26hE6dOgEAbt26VWiBPzk5GQEBAXBzc6vqmACAp0+fIjk5+ZObwR8Y\nGIiBAwdCR0cHV69eRaNGjeQdSSYzMxOpqakFPo6Pj8fmzZtx8OBBODg4YNWqVVBTU4OnpyfS09OR\nnp6OjIwMJCcnIysrCwkJCbLrU1NTkZmZibi4OMTExMiK+ZmZmfnG1tTUhIGBARo0aICGDRuib9++\nsLCwgLm5OSwsLNC4cWOoqKhU+deEiIioumGBn4iIiIiIiAqlpKSErl274uLFi3BycgLwYRmcwvj6\n+iInJwd9+/atyogyd+/ehZKSEmxtbeUyfmFOnjwJFxcXtGvXDsePH4eurm65+8zMzERUVBQiIyNl\nM+ITExORlJSEpKQk2ceJiYlISEhAYmIipFIpUlJSAHzYmDbv45K4fv06rl+/nu+YqqoqNDQ0oK2t\nDWVlZdSpUwcqKirQ1NSEpqYmVFRU0LRpU3Ts2BEGBgayh6GhIerVqwcDAwOoq6uX+2tBRERELPAT\nERERERFRMbp27YodO3agQYMGUFBQQGhoaKHtvL290bZtW9SrV6+KE35w79492NjYQE1NTS7j/11W\nVha+//57bNy4EVOmTMGWLVtKNRs9PT0dgYGBCA0NxdOnT/Hs2TM8e/YMERERePfuXb62derUgY6O\nDnR0dKCrqyv7uEmTJtDT04OOjg6UlZVlLy4oKipCR0enwMd3797FwYMHERQUBGdnZyxYsAB169aF\nsrIytLS0ACDfx0RERPRpYIGfiIiIiIiIiuTg4IBFixbh7du30NLSwqtXrwpt5+Pjg7Fjx1Zxuv/5\nVDbYffnyJcaMGYMHDx7gwIEDGDduXLHtpVIpbt26hWvXruHevXt48OABnjx5gpycHKiqqqJx48aw\ntLRE165dMX78eJiamsLIyAgNGzaEkZERlJWVy5w1NzcXnp6eWL16NQICAjBw4EDs27cPbdu2LXOf\nREREVLVY4CciIiIiIqIidejQAYqKirh58yb09fULzCAHgNDQUISFhaF///5ySPjBvXv3MGTIELmN\nDwD79+/HnDlzYGJigps3b8La2rpAm5ycHFy/fh2+vr7w8/PDjRs3kJ6eDmNjY7Rp0wbDhg1Dq1at\n0KpVKzRu3BgKCgoVnjMmJgZ79+7Fjh07EBERgUGDBuHmzZto3759hY9FRERElYsFfiIiIiIiIiqS\ntrY2rKyscOPGDZiYmCAiIgI5OTlQVFSUtfH29oaOjg46dOggl4wRERGIi4uT2wz+6OhoTJ06FZ6e\nnvj666+xcuXKfGvMp6Wl4dy5czh16hQ8PT0RExMDc3Nz9OjRAxMmTED37t3RpEmTSs2YlpYGLy8v\nHDhwAOfOnYOamhq++OILzJ49GzY2NpU6NhEREVUeFviJiIiIiIioWA4ODggICICZmRn8/f3x7t07\nNGjQQHbe29sbn332WbmWiymPu3fvQkFBAfb29lU6rhACv/76K+bNmwctLS34+vqiV69esvN37tzB\nzp078ccffyA1NRWtW7fG9OnT4eTkVOnL4AghEBwcjDNnzuDMmTPw9/cHAPTv3x/79u3DkCFDoKmp\nWakZiIiIqPKxwE9ERERERETFcnBwwKFDh9C5c2cAQFRUlKzAL5VKcfnyZWzYsEFu+e7du4dmzZpB\nW1u7ysYMDg6Gq6srAgICMHv2bCxbtgxaWlp4//49du7cif379+Pp06do06YNVq1ahVGjRsHQ0LDS\n8sTGxuLGjRv5HgkJCTAwMEC/fv2wZ88eDBo0CHp6epWWgYiIiKoeC/xERERERERULAcHB6Smpspm\n6EdFRcnLMcdCAAAgAElEQVTOXblyBSkpKejXr5+84lXpBrvp6elYs2YN3N3dYW1tjWvXrqF9+/YI\nCwvD999/j3379kFNTQ3jx4/HpEmT0LJlywodPyEhAU+ePMHjx48RGhqKJ0+e4MGDB3j69CkAwNLS\nEg4ODlixYgU6deqEVq1a5VtOiYiIiGoWFviJiIiIiIioWLa2ttDS0kJ8fDwA4MWLF7Jz3t7eaNGi\nBczMzOQVD3fv3sW8efMqfZxLly7Bzc0Nr169wrJlyzB//nyEhoZi9OjROHbsGBo1agR3d3d89dVX\nZV7+JjMzE69evcKLFy8QEREh+294eDhCQ0NlmxyrqqrC0tISzZs3x5gxY+Dg4AAHBwfo6+tX5C0T\nERHRJ44FfiIiIiIiIiqWoqIi2rZti4iICACQ/Rf4UODv37+/fILhw7sJoqKi0Lp160obIy4uDgsW\nLMCuXbswaNAgnDt3DkpKSnBzc8PevXthZ2eH3377DcOHD4eSUvH/m52bm4sXL14gPDwcERERskfe\n52/evEFubi4AQFNTE+bm5jA3N4ednR2GDRsGKysrNGvWDGZmZpyZT0RERCzwExERERER0cc5ODjg\n5MmTAIDIyEgAwNu3bxEYGIi1a9fKLdeDBw8AoMKXwgE+bFS7b98+fPvtt9DS0sKpU6fQq1cvrF27\nFj/++CP09fWxb98+jB07FgoKCvmuzcnJwfPnzxEUFISQkBAEBQXh8ePHCAkJQXp6OgBAQ0MDFhYW\nMDc3R6tWreDs7Axzc3OYmZnBzMwM9erVq/B7IiIiopqFBX4iIiIiIiL6KAcHB6xfvx4AEB0dDQA4\ne/YsVFVV0b17d7nlCgwMRIMGDWBgYFCh/UZFRWHy5Mk4c+YMJk+ejPXr1+Pu3bto3bo13r59i/nz\n5+O7776Duro6gA9r89+6dQtXrlzB1atXcfXqVSQlJUEikcDc3BwtWrRA7969MWPGDNjY2MDCwqJS\nN90lIiKi2oEFfiIiIiIiIvqojh07Ijc3FxKJBImJiQA+LM/To0cPaGhoyC1XYGAgbG1tK7TPgwcP\nYtasWahfvz6uX7+OZs2aYf78+bIlei5evAhjY2PcuXMHJ0+exMWLF3H79m1kZmbC1NQUXbt2xapV\nq9CxY0dYWVmVeT1+IiIioo9hgZ+IiIiIiIg+ytjYGKampoiKikJiYiJycnLg6+uLRYsWyTVXYGBg\nhb2DICUlBVOnTsWff/6JWbNmwd3dHefOncPgwYOhqKiI48ePw9zcHOvWrcPx48fx6tUrmJubo3//\n/nBzc0PXrl1hbm5eIVmIiIiISoIFfiIiIiIiIioRBwcHnDp1CikpKbh9+zZiY2PRr18/ueXJzc1F\nSEgI3Nzcyt3X48ePMXz4cMTExMDb2xs9e/bE999/j40bN2Ls2LFo1aoVli9fjnv37qFZs2aYNGkS\nnJ2dK3VzXyIiIqKPYYGfiIiIiIiISqRDhw44efIk0tLScPr0aTRq1Ag2NjZyyxMWFobU1NRyL9Fz\n4sQJuLi4wMbGBt7e3gCAXr164c6dO3B0dMSZM2dw7NgxjBo1Cj/99BO6du0KiURSEbdAREREVC4K\n8g5ARERERERE1UPr1q2Rk5OD9PR0eHh4wMnJSa55AgMDoaCgAGtr6zL3sXPnTowcORJffvkl/Pz8\nEBwcjFatWuHp06dQUlLC9evXMXnyZDx//hz79+9Ht27dWNwnIiKiTwYL/ERERERERFQibdq0AQBk\nZmbi/v37GDRokFzzBAYGwtzcHFpaWmW6fs2aNZg2bRrmz5+P7du3Y//+/RgwYADS0tKQkZGBRYsW\n4cWLF3B3d0eDBg0qOD0RERFR+XGJHiIiIiIiIioRfX19qKioIDMzE+rq6ujZs6dc8wQGBsLOzq5M\n1y5atAhr1qzBL7/8AldXV8yZMwc//fQTJBIJvvrqKyxduhQGBgYVnJiIiIioYrHAT0RERERERCWm\nra2N2NhY9OnTB+rq6nLNEhwcXKZlgjZt2oTVq1dj//79+OKLL9CpUyfcuHEDxsbGOH78OBwcHCoh\nLREREVHF4xI9REREREREVGI6OjoAgL59+8o1R25uLp4+fQorK6tSXff7779j3rx5WLduHRwdHWFu\nbo4bN25gzJgxCAsLY3GfiIiIqhXO4CciIiIiIqISU1ZWBgC0bdtWrjnCw8ORkZFRqgL/pUuXMHHi\nRMybN09W3E9JScGWLVswc+bMSkxLREREVDlY4CciIiIiIqISy8zMBABER0fLNUdoaCgAwNLSskTt\nY2JiMHbsWDg6OmLUqFFo2bIlsrOzcfLkSQwePLgyoxIRERFVGi7RQ0RERERERCX2/v17AMD9+/fl\nmuPx48do0KAB6tSp89G2Qgj861//gqKiIiZPnozOnTsjJycH58+fZ3GfiIiIqjXO4CciIiIiIqIS\nCQwMREpKCgAgKChIrllCQ0PRvHnzErVdt24dzp49i02bNmHw4MFQVFTElStXuN4+ERERVXucwU9E\nREREREQl4unpCXV1dQBAcHCwXLOEhoaWaP39J0+e4IcffsD06dMxd+5cSCQSFveJiIioxmCBn4iI\niIiIiErEy8sLFhYWAIBnz54hIyNDblkeP35cohn8c+fOhbm5Ofbs2YOsrCz88ccf6NChQxUkJCIi\nIqp8LPATERERERHRR8XFxSEgIEBW4M/JyUFgYKBcsiQkJCA6OvqjBf4TJ07gzJkzeP/+PVJSUvDj\njz9ixIgRVZSSiIiIqPKxwE9EREREREQfdebMGUgkEjRq1AgAoKGhgXv37skly5MnTwAAzZo1K7JN\neno65s2bh3r16iEuLg5z5szB3LlzqyoiERERUZXgJrtERERERET0UV5eXujRowdUVVUBAFZWVnIr\n8D9//hxKSkowMzMrss2WLVvw+vVrZGZmon///tiwYUMVJiQiIiKqGpzBT0RERERERMXKycnBuXPn\nMGjQIOTm5gIAbG1t5VbgDwsLg5mZGZSUCp+zJpVKsXbtWmRmZsLExAQnTpyARCKp4pRERERElY8F\nfiIiIiIiIiqWv78/YmNjMWjQIOTk5AAArK2t8ejRI1nBvyqFhYWhcePGRZ7fvn07YmNjoaysjCtX\nrkBdXb0K0xERERFVHRb4iYiIiIiIqFheXl5o3rw5LC0tZQV9e3t7pKamIiwsrMrzhIWFoUmTJoWe\ny8nJwYIFCwAAe/fulW0KTERERFQTscBPRERERERExfLy8oKjoyMAyGbw29nZQUFBAQ8fPqzyPGFh\nYUUW7qdMmYL09HR8/vnnGDduXBUnIyIiIqpa3GSXiIiIiIiIihQeHo7g4GBs3boVwP8K/HXq1EGT\nJk3w8OFDDBs2rMryZGZm4vXr14Uu0fPu3Tvs378fioqK0NLSwqhRo6osFxER0adGUVERq1evhrm5\nubyjUCXiDH4iIiIiIiIqkqenJ3R0dNClSxcA/yvwKysrw97eHo8eParSPBEREcjJySl0iZ7OnTtD\nCIGcnBxERkZWaS4i+rS8evUKR44ckXcMkrMjR47g1atX8o4hN3/++Sdu3rwp7xhUyTiDn4iIiIiI\niIrk5eWFzz//HCoqKgD+V+BXUVGBnZ0dDh48WKV5wsPDAaDAEj3r16/H8+fPUbduXcTFxWHu3Lmc\nwU9Uix0+fBijR4/G4cOH5R2F5EgikdTq3wcSiUTeEagKcAY/ERERERERFSo1NRV+fn4YNGiQ7Fha\nWhoUFBQgkUhgb2+PsLAwpKSkVFmmly9fQldXF3Xq1JEdCwsLw4IFCyCRSODu7l5lWYiIiIjkjQV+\nIiIiIiIiKtS5c+eQmZmJzz//XHZMKpXKZgTa29sjNzcXQUFBVZYpMjISpqamss+zs7MxYMAAZGdn\nQ1NTE2PHjq2yLERERETyxgI/ERERERERFcrLywsODg4wNDSUHUtPT4eioiIAoHHjxtDW1sbDhw+r\nLFNkZCRMTExkny9evBhPnz6Furo6pk+fDg0NjSrLQkRERCRvLPATERERERFRAUIInD17Nt/yPMCH\nGfwKCh/+V1IikcDGxqZKN9p9/fq1bAa/v78/1q5dC2VlZUilUkybNq3KchARERF9CljgJyIiIiIi\nogLu3LmD169fw9HRMd9xqVQqm8EPfFimpypn8L9+/RomJiZITEzEF198AQAwMzODo6NjgY13qWaR\nSCSFPgo7b2pqipiYmBL3Q0REVF2xwE9EREREREQFeHp6wtTUFPb29vmO/30GPwDY2dnJZYmeadOm\n4f3792jevDmePXuGGTNmVFkGkg8hBIQQJfr89evXGDNmDHJycort5599EBERVTcs8BMREREREVEB\nXl5ecHR0LDC7ubAZ/PHx8YiMjKz0TGlpaUhISEBERAQOHTqEzMxMWFlZoWnTpujbt2+lj0/VR/36\n9XH+/HksWbJE3lGIiIgqFQv8RERERERElM+7d+9w9+7dAuvvA0BmZiaUlJRkn9vb20MikVTJLP7X\nr18DAHbs2AEtLS2MHj0avr6+mDlzZr53FRAdOnQISkpKWL16NTw9PeUdh4iIqNLwLyAiIiIiIiLK\nx8PDA6qqqujdu3eBc/+cwV+nTh00bNiwSgr80dHRAICcnBzk5ubCysoKAODi4lLpY1P10r17d6xa\ntQpCCIwfPx7h4eHyjkRERFQpWOAnIiIiIiKifE6fPo1evXpBQ0OjwLl/zuAHPqzD/+jRo0rP9ddf\nf8kyLF68GH/88QcmTJgAXV3dSh+bqp9vv/0WQ4cORUJCAoYPH46MjAx5RyIiIqpwLPATERERERGR\njFQqhY+PD5ycnAo9n5WVJZcCf0xMDHbs2AEFBQWYmJjAxsYGoaGhmDZtWqWOS9Xbvn370LRpU9y7\ndw8zZ86UdxwiIqIKxwI/ERERERERyVy8eBEpKSlwdHQs9HxhM/jziu1ZWVmVlsvNzQ0AkJubi40b\nN2Lnzp3o3bs37OzsKm1Mqv50dXVx7NgxqKurY8+ePdi3b5+8IxEREVUoFviJiIiIiIhIxtPTE61a\ntYKpqWmBc0IISKVSKCsr5ztua2uLzMxMPH36tFIy/fHHHzh+/DiUlJSgo6MDe3t7nDlzhjOyqUTs\n7e2xbds2AMCMGTNw//59OSciIiKqOCzwExERERERkYyXl1eRy/MkJycjNze3QIG/RYsWUFJSQmBg\nYIXniYmJwZw5c9CjRw8kJibC3t4eW7duhYmJSZE5if7JxcUFU6dORXp6OkaMGIGEhAR5RyIiIqoQ\nLPATERERERERAODhw4eIiIgocnmeuLg4AICKikq+46qqqmjatCmCgoIqPNO0adOgrq6Ox48fw9zc\nHKampti3bx+mTZtWYKkgouJs3rwZbdu2xfPnz+Hi4iLvOERERBWCBX4iIiIiIiICAHh4eMDQ0BBt\n27Yt9Hx8fDyAggV+4MM6/BU9g//EiRM4ceIEunbtioyMDBgbGyMqKgopKSn417/+VaFjUc2nqqqK\no0ePQk9PD6dOnZJ3HCIiogrBAj8REREREREB+LD+vpOTExQUCv9fxaJm8AMf1uGvyBn8SUlJmD17\nNkaMGIETJ05g8eLFyMrKQkhICL744gsYGhpW2FhUe5ibm+PgwYOQSCTyjkJERFQhWOAnIiIiIiIi\nvHv3Djdv3ix2Xfv4+HhIJJIiZ/A/e/YM6enpFZJn4cKFsr6MjIwwc+ZMvH//HtHR0ZgxY0aFjEHV\ni0QiyVeYL+7zf577u4EDB2LRokWVG5aIiKiKsMBPRERERERE8PLygrKyMvr06VNkm7i4uAIb7Oax\ntbVFTk4OHj9+XO4sN2/exPbt2zF37lwcO3YMa9asgaqqKt69ewdTU1O0b9++3GNQ9SOEKPRR3Pmi\nrFixotjzRERE1QUL/ERERERERARPT0/07t0bWlpaRbaJj4+HmpoacnNzC5yztLSEqqpqudfhz87O\nhqurK7p164aLFy+iQ4cOGDFiBN6+fYuUlBR07969XP0TERER1SQs8BMREREREdVyUqkUPj4+cHR0\nLLZdfHw8VFVVkZ2dXeCckpISrKysyr0O/7p16xASEoKRI0fiwoULWL9+PSQSCXbs2AGJRAIHB4dy\n9U9ERERUk7DAT0REREREVMtdunQJycnJGDhwYLHt4uLioKamhpycnELP29jYlKvAHxERgZUrV+KH\nH37A5s2bMXLkSHTp0gVZWVnYvXs3lJSUoK2tXeb+iYiIiGoaFviJiIiIiIhqOU9PT7Rs2RLm5ubF\ntouPj4e6unqhM/iBDwX+8izRM3XqVFhYWKBu3boIDw/HqlWrAADHjh1DVFRUkev/ExEREdVWLPAT\nERERERHVcl5eXh9dngf4X4G/qBn8tra2ePHiBZKSkkqd4eDBgzh//jy2bNmCVatWwdXVFU2aNAEA\n/Pzzz3B2doaysjKysrJK3TcRERFRTcUCPxERERERUS0WGBiI8PDwEhX4Y2NjoaGhUWyBXwiB4ODg\nUmVITEzE/PnzMXXqVFy/fh0JCQlYuHAhAODBgwfw9/fHjBkzoKysXOS7B4iIiIhqIxb4iYiIiIiI\najEvLy8YGBigQ4cOH20bGxsLTU3NIovs5ubm0NLSKvUyPcuWLUNWVhbmz5+P9evX45tvvkH9+vUB\nAFu3boW1tTV69uzJGfxERERE/6Ak7wBEREREREQkP6dPn8aAAQOgoPDx+V95Bf6iZvArKCigRYsW\npdpoNzg4GFu3bsXWrVuxc+dOKCgoYN68eQCAhIQE/PHHH1i3bh0kEgln8BMRERH9Awv8RERERERE\ntVRiYiKuX78ONze3j7aVSqVIS0uDrq4uMjIyimxna2tbqgL/N998Azs7OwwYMABWVlZYuXIldHR0\nAAB79uyBoqIixo0bBwBQUVFBZmZmifsmIiIiqulY4CciIiIiIqqlvL29kZubi88+++yjbWNjYwEA\n+vr6SE5OLrKdjY0Nzp49W6Lxjxw5gnPnzsHPzw/Lly9HvXr1ZC82CCGwc+dOTJw4Edra2rKx379/\nX6K+R48ejdGjR5eoLREREVF1xQI/ERERERFRLXX69Gl07twZ+vr6H22bV+A3NDREUlJSke1sbW3x\n9u1bvH//HgYGBkW2S09Px7///W9MmDABRkZG2L9/P/bs2QNVVVUAwNmzZ/HkyRMcP35cdo2RkRGi\noqJkn8fExCAkJATdu3cv0P/cuXPRqVOnj94XEdVM169fx8aNG+Udg4io0rHAT0REREREVAvl5ubi\n7Nmz+Prrr0vUPq/A36BBA2RkZCArKwvKysoF2tna2gIAgoKC0KNHjyL7W7VqFWJjY7F69WrMmTMH\nVlZWGDt2rOz8tm3b0Lt3b9jY2MiO1a9fH8+ePQMA/P7775gxYwbS0tKQkJAAdXX1fP137NgRI0eO\nLNG9EVHNI4SQdwQioirx8V2UiIiIiIiIqMa5c+cOoqOjMWjQoBK1j4uLg0QiQf369QEAKSkphbYz\nMTFB3bp1i12HPywsDOvXr8eyZcsQGxuLo0ePYvny5VBUVAQAvHz5EqdPny6wN4CRkREiIyMxaNAg\njB07FomJicjMzERAQECJ7oGIiIiopmGBn4iIiIiIqBY6ffo0TE1NYWdnV6L2sbGx0NHRQZ06dQCg\n2HX4ra2tiy3wz5kzB40bN8bMmTPxww8/oGXLlnB2dpad37ZtGwwNDTFkyJB816WkpCAsLAw+Pj4A\nPszQVVFRgZ+fX4nugYiIiKimYYGfiIiIiIioFjp9+jQGDhwIiURSovaxsbHQ19eHjo4OAHx0Hf7A\nwMBCz509exYeHh7YvHkzHj16hL/++gvLly+X5cjMzMTevXvh6uoqWwIoIiICffr0wcaNG5GdnY2s\nrCxZf1lZWfD19S3RPRARERHVNCzwExERERER1TIxMTG4ffs2Bg4cWOJr4uLioK+vD21tbQDFz+C3\nsbHBo0ePChzPycnBt99+C2dnZ/Tp0wc//PAD2rRpk2+ZoMOHDyMuLg6TJ08GAPz888+wtrbGlStX\nIIQosK62EAK3bt1CRkZGie+FiIiIqKZggZ+IiIiIiKiWOXPmDJSUlNC7d+8SXxMXFwc9PT3o6uoC\nABISEopsa2tri/j4eLx58ybf8d27dyM0NBRr1qzB7du3cebMGaxcuTLfuwi2bduGoUOHwsTEBBER\nEZg9e7ZsU9+iZGZm4saNGyW+F6p5JBKJ7FEZ/vzzTzg4OEBPT6/YsSo7BxER0T+xwE9ERERERFTL\nnD59Gj169JDNxi+JhIQE6OnpQVtbGxoaGoiOji6yra2tLQDkW4c/JSUFS5cuxfTp09GsWTMsXLgQ\nnTp1Qv/+/WVtHjx4gGvXrmH69OkAAHNzc/j4+EBPT0+2XE9huA4//fOdHRXpwIEDGDNmDPT19XH/\n/n1kZGTg2LFjVZ6DiIioMCzwExERERER1SI5OTnw8fEp1fI8AJCYmCibvV+/fn28ffu2yLYGBgYw\nMjLKtw6/u7s7MjIy8MMPP+Dq1avw8fHBihUr8l33888/o0WLFujRo4fsWO/evfHgwQO0atUKioqK\nhY6XlZWF8+fPl+p+iEpqw4YNAIAff/wRZmZmUFVVxbBhw1jMp1KT97s75D0+EVUOFviJiIiIiIhq\nkWvXriEuLq5cBf4GDRoUW+AHPsziz5vB//r1a2zcuBGLFy+Gvr4+Fi9ejK5du+ZbIigxMRG///47\npk+fXqAAZWpqimvXrmH+/PkAUOC8EAIBAQGQSqWluieiknjy5AkAoGnTpnJOQkREVBAL/ERERERE\nRLXImTNn0LRpUzRr1qxU1/29wG9sbIzXr18X297W1lY2g3/hwoUwMjLCzJkz4efnh0uXLmHVqlX5\n2u/fvx8SiQTjx48vtD8lJSW4u7vj+PHj0NDQKLBkT2ZmJm7evFmqeyIqifT0dAAodpkoIiIieWGB\nn4iIiIiIqBbx9vbG559/Xurr/l7gt7CwQFhYWLHtbWxsEBQUhHv37uHgwYNYs2YNVFVVsWLFCvTs\n2RPdunXL137Xrl0YN26cbIyiDB06FHfv3kWTJk2gpKQkO851+Cvf3zeQffPmDYYPHw5tbW3o6+vD\nxcUFiYmJiIiIwODBg6Gjo4P69etj4sSJhW7I7Ovri8GDB0NPTw9qampo06YN/vzzzwLtEhMTMXfu\nXDRu3BhqamrQ19dH586dMX/+/I++oNOuXbt8mb/44osy3XNh91+WzXTfvXsHNzc3mJqaQkVFBSYm\nJpg6dSqioqJKnYsqT1RUFFxdXWXfJ1NTU0ybNq3AviNFPQeKO/7PNpMnTy70uuDgYHz++efQ0dGB\nlpYWBg0ahJCQkEodv6Q/a6XNCZTuuZ+RkQF3d3e0bt0ampqaUFNTg5WVFaZNm4aAgIAC7YkIgCAi\nIiIiIqJaISYmRigoKIi//vqr1NeqqamJAwcOCCGE2LFjh9DS0iq2/bVr1wQA0aVLF+Hg4CByc3NF\nQECAACB8fX3ztfXx8REAxIMHD0qcJy0tTUycOFEAEACERCIRPXv2FEIIAUAcOnSolHdIJZH39R43\nbpwIDg4WCQkJYsaMGQKAGDRokBg6dKjsuJubmwAgpkyZUmg/zs7OIiYmRrx48UJ89tlnAoA4e/Zs\nvnZDhgwRAMSmTZtESkqKkEql4vHjx2Lo0KHinyWNvGx53r59K2xtbcV3331XIfdcnuNRUVHCzMxM\nGBkZCW9vb5GcnCwuX74szMzMhIWFhYiPjy9XRiro0KFDhX5/ivP27VvRsGFDYWxsLM6fPy+SkpKE\nr6+vqF+/vjAzMxNRUVH52lfEc6Ow8507dxb+/v4iOTlZNr6enp4IDw+vtPHL8rNWkpylee4nJSWJ\ndu3aCW1tbbFr1y4RFRUlkpOTxcWLF0WLFi1K/f3My1qbfx/U9vuvJdaywE9ERERERFRL/Pbbb0JJ\nSUkkJiaW6jqpVCoAyF4Y8PX1FQBEdHR0kdckJSUJiUQiAIgrV64IIYQYOHCg6NixY4G2w4YNE926\ndStVpjy//PKLUFZWFhKJRKiqqsqysqBROfIKe5cuXZIde/36daHHX716JQAIExOTQvv5exEwJCRE\nACjwPNDR0REAxJEjR/IdzxuzsGxCCBERESGaNm0qVq5cWeZ7Lazfsh53dXUVAMSePXvyHT9+/LgA\nIBYuXFjunJRfWQr8U6ZMEQDEr7/+mu/4/v37BQDh6uqa73hlFfhPnz5d6PguLi6VNn5ZftZKkrM0\nz/1vvvlG9iLDP929e5cF/jKo7fdfS6zlEj1ERERERES1hI+PDzp37gwdHZ1SXZeYmAgAsuVz8tbv\nDw0NLfIaDQ0NKCkpwc7ODl27dsX9+/dx5swZLFmyJF+7N2/e4NSpU5g2bVqpMuVxc3PDtWvXYGxs\nDKlUitu3b5epHyqdNm3ayD6uX79+oceNjY0BfPge/5MQAubm5rLPLS0tAQDBwcH52g0fPhwAMHLk\nSDRq1AiTJ0/G4cOHYWBgACFEodlCQ0PRrVs3GBoaYuHChaW8s8rh4eEBABgwYEC+4927d893nuTL\n09MTAPJtAA4Affv2zXe+snXu3LnQ8c+dO1dpY5blZ60kOUvz3D969CgAwNnZucBYrVu3LjIHUW3H\nAj8REREREVEt4evri379+pX6un8W+Bs2bAh9fX08ePCgyGt+/fVXZGdny4q4K1asQKtWrQqs/79n\nzx7o6urKiktl0a5dOzx8+BBz5syBqalpmfuhktPW1pZ9rKCgUOzxfxblEhISsHDhQrRo0QLa2tqQ\nSCSy/RRiY2Pztd27dy+OHTuG4cOHIyUlBXv27MHo0aNhaWmJ+/fvF5qtV69eiI2NxbVr1/D777+X\n70YryLt37wB8eNHj72uYGxgYAACeP38uz3j0/2JiYgBA9n3Jk/d53vexsv1zL5K88fPyVYay/KyV\nJGdpnvtv374FkP9FQyL6OBb4iYiIiIiIaoHAwEBERkZWSIEfAOzs7Ios8GdlZWHFihWwt7fHy5cv\nEQOwyIwAACAASURBVBwcjJMnT2LJkiX5NnrMzc3F3r17MWnSJKiqqpY619/VrVsXGzduRKNGjcrV\nD1W+UaNGYfXq1Rg9ejRevHgBIUSxM3OHDRuGo0eP4v3797h8+TL69++Ply9fYtKkSYW237JlC7Zu\n3QoAmDFjBiIjIyvlPkrDyMgIABAXFye7378/UlNT5ZyQAMDQ0BAA8P79+3zH8z7PO58n79+zrKws\n2bG8fy/L458vdOWNX69evUodv7Q/ayXJWZrnfl7bvEI/EZUMC/xERERERES1wLlz56Cvr4+2bduW\n+tq8gtHfl/Zp2bJlkbM6d+7ciTdv3mDSpEl4/Pgxli9fDisrKwwePDhfO29vb0REROCrr74qdSaq\nvq5evQoAmDdvHurWrQsAkEqlhbaVSCSyAr2CggK6deuGQ4cOAQBCQkIKvWb48OGYNGkShgwZgoSE\nBEyaNEnuS3vkLTly6dKlAueuXLmCTp06VXEiKoyTkxMA4Pz58/mO+/r65jufJ2+m+d8L0vfu3Suy\nfw0NDQAfCvJpaWkF3imQJ+9n5J/j//MF2oocvyw/ayXJWZrnft47uU6ePFmgbUBAABwcHIq8N6La\njAV+IiIiIiKiWuDcuXPo27dvvuVUSio9PR3A/4pDANChQwc8fPgQaWlpBdquXr0abm5u6NmzJ6RS\nKY4ePYolS5YUGHvXrl3o2bMnWrRoUYY7ouqqW7duAIDVq1cjISEBcXFxxa6VP3nyZAQFBUEqlSI6\nOhpr1qwBAPTv37/YcXbu3Il69erB19cXmzdvrrgbKIOlS5fC0tISM2bMwNGjRxEbG4vk5GR4enpi\n4sSJcHd3l2s++mDZsmUwMzPD999/jwsXLiA5ORkXLlzAggULYGZmhqVLl+Zr/9lnnwEA1q1bh8TE\nRDx+/Bi7d+8usn97e3sAwM2bN+Hh4VHkCzvbt2+Hv78/UlJSZOPr6elV+vil/VkrSc7SPPeXLl0K\nW1tbLFmyBLt27UJ0dDRSUlLg7e2NCRMmYNWqVUXeG1GtVtXb+hIREREREVHVSk9PFxoaGmL37t1l\nuv7YsWMCgMjOzpYde/36tQAgfH1987V1d3cXWlpaIioqSmRkZAgFBQVhbGyc71ohhHj79q1QVlYW\nv/32W5kyFQeAOHToUIX3W9sByPco6/Ho6Ggxfvx4YWhoKFRUVIStra04dOhQoW39/f2Fi4uLMDc3\nF8rKykJXV1e0bNlSrFy5UqSmpsra6erq5rv+yJEjBcYHIG7duiWXexZCiLi4OPHNN98ICwsLoays\nLIyMjISTk5O4fv16qTJRyeQ9p0orKipKuLq6CmNjY6GkpCSMjY3F1KlTRVRUVIG2MTEx4ssvvxT1\n6tUTmpqawsnJSbx8+bLI58CtW7dEy5YthYaGhujYsaMIDQ3Ndz7vmvDwcOHo6Ci0tbWFpqamGDBg\ngAgODq7U8Uv6s1aWnKV57icnJ4vFixeL5s2bCxUVFaGvry/69esnLl++XMh36+Nq+++D2n7/tcRa\niRDcgpqIiIiIiKgm8/HxQb9+/fDixYsyrVH/559/Yty4ccjOzs53vGnTpvjyyy+xfPlyAB+W8mnS\npAnc3NywYsUKREVFwdjYGIMGDYKHh0e+a//73/9i06ZNiIyMhJqaWtlvrhASiQSHDh3CqFGjKrRf\nIqo+Dh8+jNGjR8t9eabSyFtT/1PPXF1yAvx9UNvvv5ZYxyV6iIiIiIiIajgfHx9YW1uXeQPazMxM\nqKioFDjeq1cv2ZrLAPDjjz8iJycH33zzDQBgw4YNUFVVzbexLvBhc909e/Zg4sSJFV7cJyIiIqpN\nWOAnIiIiIiKq4by9vQtszlgaRRX4nZyccOPGDbx58wbv37/Hpk2b8N1330FPTw9JSUnYuXMnunfv\njqCgoHzXnTt3jpvrEhEREVUAFviJiIiIiIhqsKioKDx69Ei2GWNZFFXg79evHzQ1NfHXX39h1apV\n0NTUxKxZswAA27ZtgxACEyZMQHh4OJKTk2XX7dq1Cz169IC1tXWZMxGVlUQiKdGDqCr9/Tn3KT//\nqktOotpESd4BiIiIiIiIqPL4+PhARUUFPXr0KHMfRRX41dTU0K9fP/z++++4ffs21q1bB01NTUil\nUmzevBnTpk1Dx44dIYRAcHAwHBwcEBUVBQ8PD+zbt688t0VUZtVh3XCqfarL87K65CSqTTiDn4iI\niIiIqAa7ePEiOnbsCE1NzTL3IZVKCy3wA8C4cePg7+8PbW1tTJ48GQDw66+/IiYmBjNnzoSFhQW0\ntLQQGBgIANi7dy90dHQwfPjwMuchIiIiog9Y4CciIiIiIqrB/Pz8yjV7Hyh6Bj8AdOjQARKJBC1b\ntoSamhqEENiwYQPGjx+Phg0bQkFBAdbW1nj06BGEENi7dy8mTJjAzXWJiIiIKgCX6CEiIiIiIqqh\nIiMjERYWVu4Cf1ZWVpEF/k2bNkFTUxP3799Heno6zp49i8ePH+Po0aOyNra2tggMDMS5c+fw/Plz\n/Otf/ypXHiIiIiL6gDP4iYiIiIiIaqhLly5BRUUFHTt2LFc/WVlZUFIqOD8sNjYW27dvx7x585CW\nloZt27Zhw4YNcHR0zLeBrp2dHR4+fIhdu3ahe/fusLGxKVceIiIiIvqAM/iJiIiIiIhqKD8/P3To\n0AEaGhrl6kdRURE5OTkFjm/YsAEqKiqYP38+0tPTsWLFCiQkJODixYv52tnZ2SEmJganTp3C3r17\ny5WlpAICAiCRSKpkLCL69AQEBMg7AhFRlWCBn4iIiIiIqIby8/PDqFGjyt2PkpISsrOz8x1LTEzE\nL7/8gu+++w5aWlr497//jY0bN8LQ0LDAkkC2trYAADU1NYwYMaLceUpi48aN2LhxY5WMRURERCQv\nLPATERERERHVQG/fvsXTp0/Lvf4+ACgrKyMrKyvfsY0bN0JBQQEzZswA8GEj3tzcXMTFxSEkJCTf\nEj1GRkZQUlKSbcRbFQ4dOlQhL24QUfV0+PBhjB49Wt4xiIgqHdfgJyIiIiIiqoEuXboEZWVldO7c\nudx9/bPAn5SUhM2bN2POnDnQ1tYGAPzyyy+oW7cu2rVrh6+++irfkj7Xr19HdnY29PT0yp2FiIiI\niP6HBX4iIiIiIqIayM/PD+3atYOmpma5+1JRUUFmZqbs882bNyM3NxezZs0CAEilUuzatQtubm7Y\ntWsX7v8fe3ce1dS1/g38G2YREARBGUSt1KHOWkQUrVrBCccK2mrVFqeqVVt/rbWD2l5F67JOba3X\n2aoFhGtVxFuLaAWq4lxFwZl5DIOgyBDO+4dvco2QkIRgDHw/a2WtZp+9n/Ock6Qsn+zsffUqvvnm\nG1n/3bt3w9bWFqmpqbXOhYiIiIj+hwV+IiIiIiKieuivv/7SyvI8AGBpaYmioiIAwOPHj7FhwwZ8\n/PHHsLa2BgDs27cP+fn5mD17Njp16oStW7ciMDAQBw4cwNOnTxESEgIfHx/Ex8fLfVFARERERLXD\nNfiJiIiIiIjqmezsbCQmJmqtwN+kSRMUFxdDIpFgx44dePr0KRYsWCA7vnnzZkycOBEtWrQAAEyd\nOhXXrl1DQEAAEhMTUVxcjICAABw4cAAJCQno0qWLVvIiIiIiauhY4CciIiIiIqpnTp8+DUNDQ/Tt\n21cr8aytrSEIAgoKCrBx40Z88MEHsLW1BQBERUXh2rVr2LZtm9yYtWvXIiUlBStXroS7uzu8vLxg\nZmaGa9euscBPREREpCVcooeIiIiIiKie+euvv9CjRw/ZBri11aRJEwDAgQMHkJSUJDd7/8cff0S/\nfv3w5ptvyo0xNDTE2rVrUVlZiYsXL+LQoUPo2LEjrl27ppWcSL+JRCLZQx8EBQWhd+/esLGxUZq7\nvl0XERHpPxb4iYiIiIiI6pno6GitLc8DADY2NgCALVu24J133sFrr70GAEhJScHRo0cxb968asft\n27cPTZs2xYwZM+Dn54eSkhJcvnxZpXOWl5dDIpFo5wLolSMIgsJjXl5e8PLyeonZKLd3715MmjQJ\ntra2uHr1Kp4+fYqwsLBq+yq7LiIiorrAAj8REREREVE9UlRUhPj4eHh6emotpqOjIwDg1q1bWLRo\nkaz93//+N+zs7DB27Nhqx+3btw9TpkzBTz/9hN9++w0PHjxAdHS0SkX+MWPGwNXVFT///DOePn2q\nnQuhl0rTmeyVlZWorKysg4w088MPPwAA1q1bB1dXV5iammLcuHEs5hMR0SuBBX4iIiIiIqJ65OLF\ni6isrKyyZE5tmJubw9jYGO3atUPv3r0BPJthv3PnTgQEBMDExKTKmOjoaCQmJmLq1KkAgIkTJ2LH\njh2oqKjAm2++iQ8//BAZGRkKzxkfH4+0tDTMnz8fzs7OWLt2LYqKirR2TfTqio2NRWxsrK7TkLl9\n+zYAoG3btjrOhIiIqCoW+ImIiIiIiOqRuLg4tGjRAk5OTlqLeePGDZSXl6NHjx6ytv/85z/IyspC\nQEBAtWN2796N7t27o1u3brK24cOHQyQSYfHixYiMjMTrr7+OuXPnIiEhocr4zMxMAM9mc4vFYnzx\nxRdo3rw5lixZArFYrLVrI6pJSUkJAMDY2FjHmRAREVXFAj8REREREVE9cuHCBXh4eGg15tq1a9G4\ncWOYmprK2rZs2QJfX1+4urpW6f/48WMcPHgQ06ZNk2u3trZGy5YtYWVlhYSEBHz33Xc4ceIEOnbs\nCG9vb+zduxdisRhisRilpaVyYyUSCZ48eYJ169bB2dkZCxYsQFpamlavsyHKzMzErFmz4OzsDBMT\nEzg7O2P27NnIysqS66do81hl7S/2UfRlkCrxACA7Oxtz5syR5erk5ISZM2fKvgyqLsa9e/cwbtw4\nuc1x1VHddbz4UJWq+RcWFmLRokVo06YNzMzMYGtrC09PTyxevBhxcXFq5U9ERPUfC/xERERERET1\nSFxcnFaX50lLS0NQUBDc3d1x//59AM/W4j9z5gzmzJlT7ZiwsDCUlpZi0qRJVY5169YN165dQ6NG\njbBw4UIkJiYiPDwcpqammDlzJhwcHODt7a0wn4qKCjx9+hRbtmxBq1atMGXKFNy5c0c7F9vAZGZm\nwt3dHeHh4bIvV/bs2YPDhw+jd+/eckV+RevNq9IuCAIEQcD27dtrzElRvKysLLi7u+PQoUPYuXMn\n8vLyEBQUhBMnTsDT0xMFBQXVxpgzZw4WL16M9PR0RERE1Hh+Va5D+lCHOvlPnToVGzZswIIFCyAW\ni5GRkYFdu3bh/v37siWyiIiIpFjgJyIiIiIiqicyMzORkpKi1QL/xo0bYWdnh1GjRiE+Ph4A8PPP\nP6NNmzZ4++23qx2ze/du+Pr6olmzZlWOde3aFVevXpU9NzAwwPDhw3H06FHk5OQgKCgITZo0qTGv\n8vJyVFRUIDg4GO3atcM777yDmzdvaniVDdM333yDlJQUrFmzBoMGDYKlpSUGDx6M1atXIykpCcuW\nLdN1ijLLli1DUlISVq1aBW9vb1hYWMDLywvr16/HgwcPsHbt2mrHLV26FJ6enmjUqBGGDRums41x\n1cn/1KlTAAAnJyc0btwYJiYmaNeuHX788Ued5E5ERK82FviJiIiIiIjqibi4OIhEIvTq1Usr8R4/\nfozt27dj3rx56NKlC8RiMe7fv49ff/0Vc+bMgYFB1X9SPnz4EH/99VeV5Xmkunbtinv37qG4uLjK\nMUtLS7zzzjvw9/eHkZGRSjmWl5dDEASEhYWhc+fOOHfunFrX2JCFh4cDAAYNGiTXLv3iRnr8VXD0\n6FEAwLBhw+Ta+/fvL3f8Re7u7nWbmIrUyX/8+PEAgAkTJqBly5YICAhASEgI7OzsdPYFBRERvbpY\n4CciIiIiIqonLly4gNdffx3W1tZaiffrr7/iyZMn+PDDD/HGG28AAH766SeUlZUpLODv27cPzZo1\nw9ChQ6s93q1bN1RWVuL69esKz5uamgpDQ0OluRkZGcnWP3d1dcXUqVOxbds2uU19SbmcnBwAgJ2d\nnVy79Hl2dvZLz0kRaS6Ojo5y699Lc713716148zNzV9ajsqok//OnTsRFhaG8ePHo7i4GDt27IC/\nvz/c3Nzkfv1CREQEsMBPRERERERUb8TFxWl1xvLPP/+M9957D/b29nBwcIC9vT1CQ0Mxfvx42Nra\nVjsmKChI6Qz81q1bw8rKSmmhMjU1FRUVFbLnIpFIFs/IyAg9e/bEwoULcejQIWRlZeHhw4fYvXs3\nPvjgA5iZmdXiihsWe3t7AEBubq5cu/S59LiU9AuV8vJyWVthYWFdpijj4OAAAMjLy6uyFr4gCHj8\n+PFLyUNT6uY/btw4hIaGIjc3F2fOnIGPjw+Sk5Mxffp0XaRPRESvMBb4iYiIiIiI6gFBEHDp0iWt\nrb8fFRWF69ev46OPPpK1derUCcnJyfjwww+rHXPt2jXEx8dj4sSJCuOKRCJ0794dly9fVtgnJSUF\nEokEAGBlZYVhw4bhu+++Q3R0NIqKinDx4kWsXbsWo0ePrlKEJtX5+voCAE6ePCnXHhkZKXdcqnnz\n5gCAjIwMWduVK1cUxpfOni8vL8eTJ0+q/FJAHWPGjAEAnD59usqx6Oho9OnTR+PYL4M6+YtEIqSm\npgJ4tkeFl5cXgoODATzb4JqIiOh5LPATERERERHVA3fv3oVYLNbaDP7NmzejX79+6Nmzp6ytoqIC\nhoaGsnXDXxQcHIyWLVvCw8NDaexevXrh4sWLCo9/9tln2L59O27evImCggIcO3YMS5YsQb9+/ThD\nX4tWrFgBV1dXLFmyBFFRUSgqKkJUVBS++OILuLq6Yvny5XL9hwwZAgBYu3YtCgsLkZCQgO3btyuM\n36VLFwDPflly9OjRWhXhly9fDjc3N8ydOxehoaEQi8UoKipCeHg4pk2bhtWrV2sc+2VQN/+AgADE\nx8ejtLQUWVlZWLNmDQDAx8dHF+kTEdErTLVdi4iIiIiIiOiVFhcXB2NjY1lRtTaSk5Nx9OhRHDhw\nQNZWVlaG69evQyKRICEhAR07dqwy7uDBg5g0aZJsKRdFevbsiY0bN6KkpASNGjWqctzb27vW10A1\nc3BwwPnz57Fs2TJMmTIF2dnZsLe3h6+vL7799lvZsjJS69atQ0VFBYKDg7Fr1y4MGjQIP/30E/bv\n3w/g2czz5zeB3bx5MwICAuDt7Y0uXbpgz549smPPv0eeH6eo3c7ODufPn8e//vUvfPbZZ0hNTUXT\npk3h7u6O/fv3y32p9GIMABpvTqtuntrIPyYmBtu2bcPIkSORlpYGc3NztGrVCitXrsTChQs1ug4i\nIqq/WOAnIiIiIiKqBy5evIguXbpUWzBX108//QQHBweMHTtW1nb48GEUFhbCwsICJ0+erFLgP3/+\nPO7evat0eR6pXr16oaKiAteuXatxtj/VLQcHB/zyyy/45ZdfauxrZ2cnK+Y/T1HxvFevXgr3WlA0\nRlkh3sbGBuvWrcO6deuU5qlpMV+dWHWZf9++fdG3b1/VkyQiogaNS/QQERERERHVA9euXUP37t1r\nHaekpAQ7duzAnDlzYGxsLGvfsWMHhg4dilGjRiEsLKzKuKCgILRr1w7dunWr8Rxt27ZF06ZNlS7T\nQ0REREQ14wx+IiIiIiKieuDGjRsYPXp0reMcOHAARUVFmDFjhqwtNTUVkZGRCAkJgYGBAcaPH4/0\n9HQ4OjoCACorK3Hw4EEEBASodA7pRruXLl2qdb5EREREDRln8BMREREREem5zMxM5OTkoHPnzrWO\ntWXLFvj7+8utv75z507Y2NhgxIgRGDp0KCwsLORm8Z85cwZpaWnw8/NT+Tw1bbRLVFdEIpFKDyIi\nIn3AAj8REREREZGeu379OgCgU6dOtYrz999/49KlS5g7d66sTRAE7N69G++//z5MTU1hZmaG0aNH\nY+/evbI+QUFB6NatW7Ub7yrSs2dP3Lx5E8XFxbXKmUhdgiCo9CAiItIHLPATERERERHpuRs3bsDO\nzg729va1irNt2zZ06dIFvXv3lrVFR0fjwYMHmDZtmqzt448/xsWLF3HmzBlUVFTg0KFDKm2u+7w3\n33wTlZWVCjdhJSIiIqKascBPRERERESk527cuIEuXbrUKkZRURFCQ0Mxc+ZMufb9+/eja9eucsv/\n9OrVC3379sW6devw559/IicnB/7+/mqdr1WrVmjWrBmX6SEiIiKqBW6yS0REREREpOdu3bqFnj17\n1irG/v37IZFI8O6778raysrKEBYWhiVLllTp/+mnn+Kdd96BSCSCh4cHWrVqpfY5e/bsyY12iYiI\niGqBM/iJiIiIiIj03J07d+Dm5larGNu3b8eECRNgY2MjawsPD0d+fn61y++MGjUKHTp0wLFjx9Re\nnkeKG+0SERER1Q5n8BMREREREemxwsJC5Obm1qrA/88//+DSpUtYv369XPv+/fsxaNAgODs7Vxlj\naGiISZMm4auvvoK1tbVG5+3ZsydWrlyJgoICjWMosn79eoSGhmo1JhHpj5SUFACAn5+fjjMhIqpb\nnMFPRERERESkx+7cuQMAaNu2rcYxtm7ditdffx39+vWTteXn5+PYsWN47733FI67du0aHBwc8O23\n3+Lp06dqn7dXr14QBAFXrlzRKG8iIiKiho4z+ImIiIiIiPTY3bt3YWRkpNEa+ABQUlKC3377DUuX\nLoVIJJK1Hzx4ECKRCGPHjlU4LiIiAl9++SVWr16NTz75BD///LNa53Z2dkbz5s1x8eJFDBw4UKP8\nFVm0aBFn7hI1YCEhIfD390dISIiuUyEdev7vGlF9xQI/ERERERGRHrtz5w5atWoFY2NjjcaHhITg\n8ePHeP/99+Xa9+/fjzFjxqBJkybVjvvjjz9QUlKCadOm4Y033sCYMWPw5ptvYvr06Wqd38PDA2fP\nntUodyIiIqKGjkv0EBERERER6bEHDx7gtdde03j89u3bMWrUKNjb28vakpOTERMTo3R5nt9//x19\n+vRBixYtMGrUKHz22WeYO3eu2svt9O3bF9HR0RAEQeNrICIiImqoWOAnIiIiIiLSY8nJyWjZsqVG\nYxMTExEbG4uAgAC59pCQEFhbW8PHx6facRKJBMeOHcOYMWNkbStXrkTfvn0xdOhQXL9+XeUc+vXr\nh9zcXNy+fVujayAiIiJqyFjgJyIiIiIi0mOpqalwdnbWaOyvv/4KJycnDBkyRK49NDQUY8eOVbjs\nz5kzZ5Cbm4tRo0bJ2gwNDXH48GF06dIFAwYMQFxcnEo59OzZE+bm5oiNjdXoGoiIiIgaMhb4iYiI\niIiI9FhaWppGBX5BEHDgwAG8++67MDD43z8NU1JSEBcXh/Hjxysce+jQIXTu3Bmvv/66XLu5uTmO\nHDkCd3d3DB06FFFRUTXmYWxsDHd3dxb46zmRSCR71Cf19bqIiEh/sMBPRERERESkp/Lz81FcXKxR\ngT86OhoPHjzA5MmT5doPHjyIJk2aYPDgwdWOEwQBhw8fxtixY6s93qhRIxw+fBje3t4YMmQIvv76\na1RUVCjNpV+/foiJiVH7Gkh/KNtjwcvLC15eXi8xG+3h3hFERKRrLPATERERERHpqdTUVADQqMC/\nf/9+dO3aFZ07d5ZrDwsLw+jRo2FiYlLtuMuXLyM5ORmjR49WGNvU1BRBQUHYsmUL1q1bh4EDB+L+\n/fsK+/ft2xe3b99GZmamrC0jIwNPnjxR86pIlzSdyV5ZWYnKyso6yEh/8FcARESkKRb4iYiIiIiI\n9FRGRgYAwNHRUa1xZWVlCAsLw3vvvSfXnpaWhnPnzildnic8PBwuLi7o3r17jeeZOXMmLly4gMLC\nQnTo0AGLFi1Cbm5ulX6enp4wNDTE33//LWsbOHAgHB0dsWzZMmRnZ6txdaRvYmNjuUQTERGRhljg\nJyIiIiIi0lNisRhGRkZo0qSJWuPCw8ORn5+PSZMmybWHhoaicePGVTbdfV5ERASGDx+u8mzjN954\nA5cvX8bGjRsRFBSEtm3bYuXKlRCLxbI+VlZW6Ny5s1yRNyUlBYWFhVi1ahVcXFwwe/Zs3LlzR63r\nJCIiIqrvWOAnIiIiIiLSU3l5ebCxsVF7aY/9+/dj4MCBVZb2kS7PY2ZmVu24nJwcXLx4EcOHD1fr\nfEZGRrIC/aJFi/D999/DyckJEydORGRkJCorK+XW4X/8+LFseZ6KigqUlZVh586daNeuHYYPH87Z\n3rWQmZmJWbNmwdnZGSYmJnB2dsbs2bORlZUl10/R5rHK2l/sExAQUGM+yjapzc7Oxpw5c2S5Ojk5\nYebMmXJLOb0Y4969exg3bpzsc6HuZ+P5WDdv3sTQoUNhZWUFCwsLjBgxArdu3VI5ljr3+sXzP3/v\nCgsLsWjRIrRp0wZmZmawtbWFp6cnFi9ejLi4OLWuj4iI6h8W+ImIiIiIiPRUXl4emjZtqtaY/Px8\nHDt2rMrmupmZmfj777+VLs9z/PhxGBsbY9CgQRrla2FhgWXLliEtLQ1btmxBamoqhgwZgtdeew13\n7tzBpUuXkJGRUaUACgDl5eUQBAGRkZHo168funXrhr1790IikWiUS0OUmZkJd3d3hIeHY+/evRCL\nxdizZw8OHz6M3r17y913RZvHqtIuCAIEQcD27dtrzElRvKysLLi7u+PQoUPYuXMn8vLyEBQUhBMn\nTsDT0xMFBQXVxpgzZw4WL16M9PR0RERE1Hh+ZfnMmDEDX3/9NdLT03H48GFcvnwZffv2xcOHD2uM\no+m9ru7eTZ06FRs2bMCCBQsgFouRkZGBXbt24f79++jdu7fa10hERPULC/xERERERER6Kj8/X+0C\n/8GDByESiTB27Fi59iNHjsDMzAw+Pj4Kx0ZERGDAgAGwsLDQKF8pCwsLTJ8+HTExMbh58yYmTZqE\njIwMSCQSODs7w9fXV+HY8vJyAMD169cxbdo0tGnTBhs3bkRJSUmtcmoIvvnmG6SkpGDNmjUYqCh1\nnwAAIABJREFUNGgQLC0tMXjwYKxevRpJSUlYtmyZrlOUWbZsGZKSkrBq1Sp4e3vDwsICXl5eWL9+\nPR48eIC1a9dWO27p0qXw9PREo0aNMGzYMIVfIKjiq6++Qt++fWFhYSG7T/n5+Vi+fHmNY7V5r0+d\nOgUAcHJyQuPGjWFiYoJ27drhxx9/1PTSiIioHmGBn4iIiIiISE9pUuDfv38/xowZU2Xd/iNHjmDI\nkCFo1KhRteMkEgn+/PNPtZfnqUmHDh2watUqXLt2DS4uLvDz80PLli1rHFdZWQlBEJCSkoJPPvkE\nLi4uCAwMRGlpqVbzq0/Cw8MBoMovMN5++22546+Co0ePAgCGDRsm196/f3+54y9yd3fXWg6enp5y\nz6X36cSJEzWO1ea9lv6qZsKECWjZsiUCAgIQEhICOzu7Wn2BQURE9QML/ERERERERHqqqKgIlpaW\nKvdPS0tDTEwM3n33Xbn2kpISnDp1CiNHjlQ49u+//0ZeXp7WC/zPGzBgAHJycjB69GgYGxurNEYQ\nBBgYGEAsFuOrr77C5cuX6yw/fZeTkwMAsLOzk2uXPs/Ozn7pOSkizcXR0VFuXXxprvfu3at2nLm5\nudZyePFLMOm5pfdRGW3e6507dyIsLAzjx49HcXExduzYAX9/f7i5ueHq1asqxyEiovqJBX4iIiIi\nIiI99fTpU5iamqrcPywsDI0bN8aQIUPk2v/880+UlJRUmS39vOPHj6Nt27Zwc3PTON+aDB48GLGx\nsUhNTYWBgeJ/rhobG8s2JnVxccEHH3yAkJAQZGdno0+fPnWWn76zt7cHAOTm5sq1S59Lj0tJ77F0\nWSTg2YavL4ODgwOAZ/tMSNelf/7x+PHjOs9BLBbLPZfep2bNmtU4Vt17XZNx48YhNDQUubm5OHPm\nDHx8fJCcnIzp06erFYeIiOofFviJiIiIiIj0VFlZmdoF/lGjRsHMzEyuPTw8HG+++SYcHR0Vjo2M\njFS6Pr82DBkyBE+fPsW1a9fkNs81MjIC8Kzg/MYbb2Du3Ln4/fffkZeXh+TkZGzduhUTJkyAra1t\nnean76R7G5w8eVKuPTIyUu64VPPmzQEAGRkZsrYrV64ojC+dPV9eXo4nT55Umb2ujjFjxgAATp8+\nXeVYdHT0S/kiJzY2Vu659D55e3vXOFbde63s3olEIqSmpgIADAwM4OXlheDgYADArVu3VL4eIiKq\nn1jgJyIiIiIi0lOlpaUwMTFRqW9WVhZiY2Nl63lLCYKAiIgIpcvzFBQU4PLlyxg8eHCt8q2Jk5MT\nOnTogNu3b6OiogIGBgbo1KkT5s+fj8OHD0MsFuPGjRtYv349Ro0aBRsbmzrNp75ZsWIFXF1dsWTJ\nEkRFRaGoqAhRUVH44osv4OrqWmXzWOkvPdauXYvCwkIkJCRg+/btCuN36dIFABAXF4ejR4/Wqgi/\nfPlyuLm5Ye7cuQgNDYVYLEZRURHCw8Mxbdo0rF69WuPYqvrll18QExOD4uJi2X2ysbFRaZNdde91\nTfcuICAA8fHxKC0tRVZWFtasWQMAdf6lGxERvfqMdJ0AERERERERaaasrEzlAv/vv/8OU1PTKrOP\nL126hLS0tCozip8XFRUF4Nka+XXt7bffxp9//okjR47Ay8sL1tbWdX7OhsLBwQHnz5/HsmXLMGXK\nFGRnZ8Pe3h6+vr749ttvZcviSK1btw4VFRUIDg7Grl27MGjQIPz000/Yv38/gGczy5/f5HXz5s0I\nCAiAt7c3unTpgj179siOSZf7eXGconY7OzucP38e//rXv/DZZ58hNTUVTZs2hbu7O/bv3w8PDw+F\nsQFoZfPZn3/+GfPnz8dff/2FyspK9O/fH+vWrUOrVq1qvC5177WyexcTE4Nt27Zh5MiRSEtLg7m5\nOVq1aoWVK1di4cKFtb5OIiLSbyKBW64TERERERHppZ49e8Lb2xuBgYE19vX29kaTJk1w8OBBufbl\ny5dj+/btSElJkStWPm/u3Lm4cOEC4uLitJK3MkeOHMGYMWOQlZWl0lrn1RGJRAgODoafn5+Ws6OG\nQJtfEpDuhISEwN/fn69jA9fQ/x409OtvINZyiR4iIiIiIiI9ZWBgILdWvSL5+fk4ffp0leV5AODo\n0aMYNWqUwuI+8Gzd8Lpenkdq4MCBMDY2xokTJ17K+YiIiIj0GQv8REREREREesrU1BSlpaU19vv9\n999hYGCA4cOHy7VnZWXhypUrVdqfl5aWhtu3b7+0Ar+lpSX69++Po0ePvpTzEREREekzFviJiIiI\niIj0lKmpKcrKymrsFxYWBh8fH1hZWcm1nzx5EoaGhujfv7/CsSdOnICZmRn69u1b63xVNXLkSPz3\nv/9V6dqIaiISiVR6SPs+P46IiOhVxwI/ERERERGRnlJlBn9RURFOnjxZ7fI8J0+eRJ8+faoU/p93\n5swZeHh4oFGjRrXOV1W+vr4oLCxETEzMSzsn1V+CIKj0qK4vERHRq44FfiIiIiIiIj2lSoE/PDwc\nEokEI0eOrHIsKiqqxqV3YmJi4OXlVas81dWmTRt07NgR4eHhL/W8RERERPqGBX4iIiIiIiI9ZWlp\niaKiIqV9wsPD4eXlhaZNm8q1JyYm4uHDh3j77bcVjs3KysLdu3df6vI8UiNHjsSRI0de+nmJiIiI\n9AkL/ERERERERHqqWbNmyMnJUXhcIpHgjz/+qHYT3cjISFhaWsLd3V3h+NjYWBgYGMDDw0Mr+apj\n/PjxuHfvHi5duvTSz01ERESkL1jgJyIiIiIi0lPNmjVDdna2wuPnz5+HWCyutsB/8uRJvPXWWzA2\nNlY4PjY2Fp06dUKTJk20kq863N3d0bZtWwQHB7/0cxMRERHpCxb4iYiIiIiI9JS9vb3SGfwRERFo\n3bo1OnToINcukUhw+vRppcvzAM8K/LpYnkdqwoQJCAoK4manRERERAoY6ToBIiIiIiIi0oy9vT2K\niopQUlKCRo0aVTkeERFR7ez9ixcvIj8/X2mBv6SkBFeuXMH8+fO1mrM6/P39ERgYiHPnzqFPnz5q\nj/X396+jzIiIiIheDSzwExERERER6akWLVoAANLS0tC2bVu5YxkZGbh69Sr+9a9/VRl3+vRpNG/e\nvMrM/uddunQJZWVl8PT01G7SaujatSvat2+PAwcOqF3gX7RokdpjiKj+OHv2LNavX6/rNIiI6hwL\n/ERERERERHrKzc0NIpEIt2/frlLgj4iIgJmZGd56660q42JiYtCvXz+IRCKFsS9evAhbW1u0bt1a\n22mrZfr06QgMDMSaNWtgbm4OADhx4gT++OMPrFu3TuE4Dw8PTJgw4WWlSUSvGC7tRUQNBdfgJyIi\nIiIi0lNWVlZo3rw5EhISqhyLiIjAwIEDZUVxKUEQcO7cuRrX1r98+TJ69uyp1Xw18cEHH6CkpAQH\nDx4EAOzZswfDhw/HDz/8gLi4OB1nR0RERKRbLPATERERERHpsXbt2iExMVGurby8HCdPnsSwYcOq\n9E9ISEBubm6NBf5Lly69EgV+Ozs7jBkzBlu3bsWqVaswffp0SCQSGBsb48cff9R1ekREREQ6xQI/\nERERERGRHquuwB8dHY3CwsJqN9iNjY2Fubk5unbtqjDmkydPkJiYiB49emg9X03MmDED//zzD776\n6ivZshvl5eUICgpCTk6OjrMjIiIi0h0W+ImIiIiIiPRYp06d8M8//6CyslLW9ueff+L1119HmzZt\nqvSPjY1F7969YWJiojDm1atXIZFIXokZ/KWlpdiyZQtKSkqqrKktCAL27Nmjo8yIiIiIdI8FfiIi\nIiIiIj3m6emJ/Px83Lx5U9Z26tQpDBw4sNr+sbGxKi3PY2Njg1atWmkzVbXl5+dj4MCBOHz4sNwX\nGFIVFRXYtGlTtcfo1SISiWQPIqp7/MzV3rFjxzB69Gg0b94cJiYmaN68OXx9ffH7779X6fv8/VZ2\n7xX1U+dB9CIW+ImIiIiIiPRY165dYWlpidjYWABAcXExLl++XG2BPycnB3fv3q2xwH/16lV0795d\np4WEzMxMeHh44OLFi6ioqFDYLyUlBSdOnHiJmZEmXvz1xfO8vLzg5eX1ErMhql+q+wzxM6e58vJy\nTJ48Ge+99x4GDRqECxcuoLi4GBcuXMDgwYMxdepUjB8/HiUlJbIxgiDI3fMXn1fXXt1/K4qjKB4R\nwAI/ERERERGRXjM0NISHh4eswB8dHY2KigoMGDCgSt/Y2FiIRCJ4eHgojXnr1i106tSpTvJVVWpq\nKlJTU2vsZ2RkhM2bN7+EjKgmms4urays1MtfYWhzNi1n5pIyNb0/1P0MKerP9+Ez8+fPR0hICCIj\nI7FgwQK4uLjAxMQELi4uWLhwIU6cOIEjR45g5syZuk6VCAAL/ERERERERHqvb9++iImJAQCcPn0a\n7du3R/Pmzav0u3jxItq1awdra2ul8RITE9GuXbs6yVVVvXr1QlJSEmbPng1DQ0MYGxtX26+iogLH\njx/HgwcPXnKGpC2xsbGyL6iISH3qfob4mVPs/Pnz2Lp1K6ZNm4ZevXpV26d37954//33sW/fPkRH\nR9f6nOrMzOcsfqoOC/xERERERER6ztvbGw8ePMCNGzeUrr9/+fJl9OjRQ2msrKws5OXloX379nWR\nqlrs7OywadMmxMfHw9fXF8CzGfsvMjIywrZt2152ekREVM/88ssvAIB33nlHab8JEyYAAP/20CuB\nBX4iIiIiIiI95+HhARcXF+zfv1/h+vsAcOXKFXTv3l1prISEBAB4JQr8Uu3atUNYWBj+/vtv2d4A\nzy8jUV5eji1btuDp06c6zFI/ZGZmYtasWXB2doaJiQmcnZ0xe/ZsZGVlyfVTtKGjsvYX+wQEBNSY\nj7KNI7OzszFnzhxZrk5OTpg5cyYyMzMVxrh37x7GjRsHGxsbjZYbKSwsxKJFi9CmTRuYmZnB1tYW\nnp6eWLx4MeLi4tS63sjISIwaNQo2NjYwMzNDjx49EBQUVO09UBZL1ZxIP2j7s6Xu5quanKe6jV6f\nfy+3atWq3izvI52R37lzZ6X9unTpAgD8JQS9EljgJyIiIiIi0nMikQijR4/Gb7/9hsrKSvTv379K\nn6ysLGRmZqpU4Le0tESLFi3qKl2N9enTB+fPn0dwcDCcnZ1haGgoO/bo0SOEhYXpMLtXX2ZmJtzd\n3REeHo69e/dCLBZjz549OHz4MHr37i1X5Fe0DIQq7dLNILdv315jToriZWVlwd3dHYcOHcLOnTuR\nl5eHoKAgnDhxAp6enigoKKg2xpw5c7B48WKkp6cjIiKixvO/aOrUqdiwYQMWLFgAsViMjIwM7Nq1\nC/fv30fv3r3Vut4hQ4bA0NAQd+7cwe3bt2FnZ4dJkybhjz/+UHgPqoulak6kH7T92VJ3yRZNziMI\nAiIjIwEALVq0QGlpKSZOnCjr/9VXX2HkyJH1YvmY9PR0AICtra3SftLjGRkZdZ4TUU1Y4CciIiIi\nIqoHxo8fj6SkJLRt2xb29vZVjl++fBnA/2YdKpKYmIj27du/sjMxRSIRJkyYgNu3byMwMBAWFhYw\nNjaGIAjYtGmTrtN7pX3zzTdISUnBmjVrMGjQIFhaWmLw4MFYvXo1kpKSsGzZMl2nKLNs2TIkJSVh\n1apV8Pb2hoWFBby8vLB+/Xo8ePAAa9eurXbc0qVL4enpiUaNGmHYsGFqFxxPnToFAHByckLjxo1h\nYmKCdu3a4ccff9ToOtavXw87Ozu0bNlS9v5cuXKlTnMi0sTgwYPRtWtXZGRkVPklyqZNm7BgwQId\nZaYb0r+Rr+rfSmpYWOAnIiIiIiKqB7y8vGBsbIwmTZpUe/zKlStwdXWFnZ2d0jh37tzB66+/Xhcp\napWZmRn+7//+Dw8fPsRHH30EQ0NDxMXF4fr167pO7ZUVHh4OABg0aJBc+9tvvy13/FVw9OhRAMCw\nYcPk2qW/TpEef5G7u3utzjt+/HgAz9bXbtmyJQICAhASEgI7OzuNZkq3atVK9tzNzQ0AcPPmTZ3l\nRFQbixYtAvDsiyupqKgoVFZWyv4/ou+kv17Ly8tT2i83NxcA4OjoKNduYPCs1CqRSBSOlUgksn5E\n2sB3ExERERERUT3w5MkTSCQSJCYmoqSkpMrxq1evolu3bjXGSU5OlitKvupsbW2xYcMGJCQkYN68\nebC0tNR1Sq+snJwcAKjyJY/0eXZ29kvPSRFpLo6OjnLrfktzvXfvXrXjzM3Na3XenTt3IiwsDOPH\nj0dxcTF27NgBf39/uLm54erVqyrHKSgowNKlS9GhQwdYWlpCJBLJNogWi8U6yYmotiZNmoQWLVrg\n6tWriIqKAgBs3LixXs3e9/LyAgD8888/SvtJj7+4JJ70b1BhYaHCsfn5+bCysqpNmkRyWOAnIiIi\nIiKqBy5cuIDKykqUlZXht99+q3JclQ12ASA1NRVOTk51kWKdeu2117B582a9+nLiZZMu3SSdeSol\nff7i0k7SpSfKy8tlbcqKVtrk4OAA4NksWul64M8/Hj9+XGfnHjduHEJDQ5Gbm4szZ87Ax8cHycnJ\nmD59usox/Pz8EBgYCH9/fyQlJcny1mVO9OrQ5WerNkxMTDBv3jwAwA8//ID79+/j7NmzmDx5so4z\n057Zs2cDQI17uhw8eFCuv1S7du0AADdu3FA49saNG3rxSznSHyzwExERERER1QPnz5+Hs7Mz/Pz8\n5JZPAIDi4mLcv3+/xhn8T548QV5eHpydnesyVdIRX19fAMDJkyfl2qWbZ0qPSzVv3hyA/CaSV65c\nURhfOnu+vLwcT548qXE5KGXGjBkDADh9+nSVY9HR0ejTp4/GsZURiURITU0F8GypDS8vLwQHBwMA\nbt26JddX2fXGxsYCAD799FM0bdoUAFBaWqrwvMpiqZMT6QddfraUUeU8s2fPhrm5OSIiIvDxxx8j\nICAAjRo1qpN8dMHDwwOzZs3Crl27cPHixWr7nD9/Hnv37sWsWbPw5ptvyh2T/n90165dCs+xY8cO\njBgxQntJU4PHAj8REREREVE9EBcXh969e+Pjjz/GjRs3cPz4cdmxxMREVFZWomPHjkpjSIuILPDX\nTytWrICrqyuWLFmCqKgoFBUVISoqCl988QVcXV2xfPlyuf5DhgwBAKxduxaFhYVISEjA9u3bFcaX\nbuAcFxeHo0eP1qoIv3z5cri5uWHu3LkIDQ2FWCxGUVERwsPDMW3aNKxevVrj2DUJCAhAfHw8SktL\nkZWVhTVr1gAAfHx85Popu17pMh+BgYEoKChAXl4eli5dqvCcNd07VXMi/aDLz5YyqpynadOmmDp1\nKgRBwB9//IGPPvqoTnLRpc2bN2PChAkYMmQINm3ahNTUVJSXlyM1NRUbN26Ej48P/P39sXnz5ipj\nFyxYgI4dO2L37t2YO3cubty4gdLSUpSWluL69euYM2cOLly4gIULF+rgyqjeEoiIiIiIiEjvOTo6\nCmvWrBEEQRDGjRsndOjQQSgvLxcEQRAOHDggGBsbC2VlZUpjnDx5UgAgZGdn13m+dQmAEBwcrOs0\nXkmZmZnCrFmzBEdHR8HIyEhwdHQUZs6cKWRmZlbpm5OTI7z77rtCs2bNhMaNGwu+vr5CcnKyAED2\neN6FCxeErl27Cubm5oKHh4eQmJgoO/b8mOfHKWoXBEHIy8sTPvnkE6F169aCsbGx4ODgIPj6+gpn\nz56V6/dijNqUOmJiYoSpU6cKrVq1EoyNjYUmTZoIXbt2FVauXCk8fvxY5evNysoSpkyZItjb2wsm\nJiZCp06dhODgYI3unTo50f9I7/erSJefLWWfFWXned7t27cFAwMDYeLEidq4HXWqNn8PwsPDBV9f\nX8He3l4wNjYWmjVrJowYMUI4evSo0nGFhYXCihUrhF69eglWVlaCoaGhYGlpKXTv3l34+uuvhYKC\nAqX5avP/afx72CB8LxIEbrlORERERESkz1JSUtCyZUucOnUKb731Fu7fv4+OHTti06ZNmDlzJpYv\nX46goCAkJCQojSNdcuDJkyeyNaL1kUgkQnBwMPz8/HSdChHpSEhICPz9/Wu19wFVr7KyEs7OzvjP\nf/4DDw8PXaejVEP/e9DQr7+BWMsleoiIiIiIiPTc+fPnYWBggB49egAA2rRpg9mzZ+Prr7/Go0eP\ncOfOHZU29MvJyYG9vb1eF/eJiKhuHTt2DC4uLq98cZ+ooWCBn4iIiIiISM/FxcXhjTfegJWVlazt\nm2++gUQiweeff47ExES0a9euxjiFhYVo0qRJXaZKRER6SCQS4dy5c8jPz8eKFSvw5Zdf6jolIvr/\nWOAnIiIiIiLSc+fPn0fv3r3l2po2bYp///vf2Lp1K27duqXSDP6ioiJYWlrWVZpEOiESiVR6EJFy\nffr0gZubG0aOHIlRo0bpOh0i+v+MdJ0AERERERERaU4ikeDy5cuYPHlylWPjxo2Dn58fgoODYWtr\nW2OsR48eyf0KgKg+4BrsRLXHzxHRq4sz+ImIiIiIiPRYQkICiouL0atXr2qPT506FQCwadMmSCQS\npbFY4CciIiLSLyzwExERERER6bHr16/DyMgIHTt2rPZ4dnY2TE1NERcXh48++khpLBb4iYiIiPQL\nC/xERERERER6LD4+Hm5ubjA1Na32eFpaGlxcXBASEoKdO3fi22+/VRirqKgIFhYWdZUqEREREWkZ\nC/xERERERER6LD4+Hm+88YbC4+np6XB0dMTIkSPx448/Yvny5dixY0e1fQVBgIEB/5lIREREpC+4\nyS4REREREZEeu3HjBt59912Fx9PT0+Hk5AQAmDVrFtLT0zFz5kyUlJRg3rx5cn0NDAxQWVlZp/m+\nLOfOnYNIJNJ1GkSkI+fOndN1CkRELwUL/ERERERERHrq6dOnuH//Pjp16qSwT1paGry8vGTPV6xY\ngaZNm2LBggW4c+cO1q9fL5u1X58K/OvXr8f69et1nQYRERFRnWKBn4iIiIiISE/dvHkTEomkxiV6\nWrRoIde2YMECNG3aFB9++CEKCgqwfft2GBsb16sCf3BwMPz8/HSdBhHpSEhICPz9/XWdBhFRnWOB\nn4iIiIiISE/Fx8fDxMQEbm5u1R6vrKxEZmYmHB0dqxybMmUKHBwc8M477yAhIQH79u2rVwV+IiIi\nooaAuycRERERERHpqfj4eLRv3x5GRtXP3crOzkZFRYVsDf4XeXt749q1azA0NETXrl2Rnp6OioqK\nukyZiIiIiLSIBX4iIiIiIiI9dePGDaXr7+fk5AAA7O3tFfZp3bo1Tp8+jfnz5+POnTuIiIhAVlaW\n1nMlIiIiIu1jgZ+IiIiIiEhPJSQkoEOHDgqPP3r0CABgZWWlNI6JiQnWrFmDESNGIDc3F25ubggM\nDMTTp0+1mi8RERERaRcL/ERERERERHpIIpEgOTkZbdq0UdinuLgYAGBpaalSzO7du6NNmzb48ssv\nsXr1ari5uWHv3r0QBEErORMRERGRdrHAT0REREREpIfS0tJQXl6OVq1aKexTVFQEkUiExo0bqxSz\nWbNmEIvF+Pzzz3Hr1i28/fbbmD59Onr27Il9+/ahvLxcS9mTlEgkkj2IiIiI1MUCPxERERERkR56\n+PAhANRY4Dc3N4eBgWr/9JMW+AVBgKOjI3bt2oVLly6hffv2+OCDD9C6dWusWbMG+fn5WrgCAqD0\n1xFeXl7w8vJ6idkQERGRvmGBn4iIiIiISA89fPgQpqamaN68ucI+RUVFKi/PAzzbjLeiogK5ubmy\ntm7duuHAgQO4d+8e3n33XQQGBsLFxQXTpk3D8ePH62xW/71791BZWVknsfVFZWVlg78HivBXDy8H\n7zMR0auPBX4iIiIiIiI99ODBA7i6uiqdna9ugb9du3YAgFu3blU55uLigu+//x4pKSlYvXo1EhMT\nMWLECLRo0QIzZszAyZMnIZFI1L+QaqSmpsLNzQ2urq5YuXIl0tPTtRJX38TGxiI2NlbXaRAREdEr\njAV+IiIiIiIiPZSUlITWrVsr7VNcXAwLCwuVYzo5OcHGxgbx8fEK+1haWmLevHk4e/YskpKS8PXX\nX+PWrVsYMmQIrK2tMWTIEKxZswaXLl3SeHPe/Px8CIKA1NRULF++HC4uLvD19cWxY8e09iUCERER\nUX3AAj8REREREZEeevjwodL19wGgtLQUZmZmasXt2LGj0gL/81xcXLBgwQLExMQgISEB3333HRo1\naoTAwED06tULLVq0wMSJE7Fp0yacPn0aeXl5KsV9/Pix7L8rKipQWVmJ//73vxg5ciRatGiBJUuW\nyPYg0IbnN7q9d+8exo0bBxsbmyrLk2RnZ2POnDlwdnaGiYkJnJycMHPmTGRmZlaJGRkZiVGjRsHG\nxgZmZmbo0aMHgoKCNMrpRfHx8Rg+fDgsLCxgZWUFHx8f3Lx5s9oxz7elpKRg9OjRsLS0hIODAyZP\nngyxWKzwvOnp6Rg/fjwsLS1ha2uLqVOnorCwEA8fPsSoUaNgZWWF5s2bY9q0aSgoKKiSp6r3S5Mc\nXxwbEBCg8r2t7rw3b97E0KFDYWVlBQsLC4wYMaLaX7Ko+rqq+p7SJN7LfF1ePP+L91mT11jR/Sgs\nLMSiRYvQpk0bmJmZwdbWFp6enli8eDHi4uKqewmJiAgABCIiIiIiItI7rVq1ElatWqW0z6effiq4\nu7urFXfmzJnCgAEDapGZIFRUVAhxcXHCmjVrhGHDhgm2trYCAAGA4OLiIgwfPlxYsmSJsH//fiEm\nJkZITk4WKioqZOMjIyNl/at7GBkZCSKRSBg4cKAQEhIilJWVyZ0fgBAcHKxWztLYQ4YMEWJjY4Un\nT54IERERgvSfzZmZmYKrq6vg4OAg/PHHH0JRUZFw5swZwdXVVWjdurWQn59fJd6YMWOEnJwcISkp\nSRgyZIgAQPjvf/+r8NyqtN+9e1ewtrYWHB0dhZMnTwpFRUVCTEyM0Ldv3xrjvPfee8KpDNW5AAAg\nAElEQVTNmzeFgoICYc6cOQIAYdq0aQr7T548WdZ/7ty5AgBhxIgRwtixY6vEmTFjhlwMTe6XJjnW\nljSOp6enEBMTIxQVFQmRkZFC8+bNBRsbG+HBgwdV+qv7uip6T2kaTxevS3U0jaXofowePVoAIGzY\nsEEoLi4WSktLhYSEBGHs2LEavdbBwcFaeY+QftPk70F90tCvv4H4nv+nIyIiIiIi0jPl5eWCkZGR\ncODAAaX9PvvsM6Fnz55qxd60aZNga2tbm/SqlZqaKkRERAirV68WJk2aJHTq1EkwNjaWK9q3bNlS\n6Nevn/DWW28pLfC/WOi3s7MTPv/8c+HevXuCINSuwH/q1Klqj8+aNUsAIOzYsUOu/T//+Y8AQFi6\ndGmVeM8Xh2/duiUAELy8vBSeW5X2yZMnCwCEX3/9Va792LFjNcY5ffq0rO3BgwcCAMHR0VGl/mlp\nadW2p6SkCAAEJycnuRia3C9NcqwtaZyIiAi59t27dwsAhKlTp1bpr+7rqug9pWk8Xbwu1dE0lqL7\nYWVlJQAQDh48KNcuvUZ1scBPgsACd0O//gbie5EgaLgoIhEREREREelERkYGHB0dcebMGXh5eSns\nt3TpUhw/fhxXrlxROfbZs2fh6emJmzdvokOHDtpIVyGJRILMzEw8fPgQKSkpSE5ORkpKCs6ePYvL\nly+rvYa/gYEBYmNj0adPHwQHB8PPz0/lsdJlQh4/fgxzc/Mqx52cnJCeno709HS0aNFC1i4Wi2Fn\nZ4fOnTvjn3/+URhfIpHAyMgItra2yM3NrfbcL15vde3NmzdHVlYW0tLS4OjoKGsvKCiAjY2N0jiP\nHj2SbbpcVlYGU1NTiEQiVFZW1ti/srIShoaGCttfjKPu/dI0x9qWNKRxCgoK0KRJE1l7WloanJ2d\n0aJFC6WbPKvyuip6T2kaTxevS3X3WdNYiu7HBx98gF27dgF4tvyXt7c3vL29MWbMGJiYmNR4714U\nEhICf3//Wr9HSL+JRCK1/x7UJw39+huItUa6zoCIiIiIiIjUIy382dnZKe1naGhYpTBaE3d3dzRt\n2hQnTpyo8wK/oaEhnJyc4OTkJNe+a9cuzJgxo8YNdY2MjCCRSGBoaIgBAwZg/Pjx6NGjR61yUlSI\nzc7OBgC5ovrz7t27J/vvgoICfP/99zh06BBSU1NRXFwsO/bievLqUvTaW1tb1zhWWvwFICuYKit+\nPt/fwMBAafuLcdS5X7XJUVueL+4D/7u/OTk5sjZNX1dF7ylN4+nidamOprEU3Y+dO3di5MiROHDg\nAKKiorBjxw7s2LEDLVu2xOHDh9GtWzeVcyMiaki4yS4REREREZGekRb/bG1tlfYzMDCosUj+IkND\nQwwcOBAnTpzQOL/aKi4ulitcPs/U1BTAs2Lm6NGjsXv3buTm5iIyMhJz5szRaKavKhwcHAAAeXl5\nEAShyuP5jYH9/PwQGBgIf39/JCUlyfpog7Tw/OLs7hef65o69+tV8GJBXXo/mzVrJmvT9utal+8T\nRbT5utTFazxu3DiEhoYiNzcXZ86cgY+PD5KTkzF9+nS1YxERNRQs8BMREREREekZsVgMkUiEpk2b\nKu1naGiodoEfAHx8fHD69GmUlpZqmmKtlJSUyJbzEIlEMDJ69uPzli1bYv78+fjrr7+Qn5+P0NBQ\nvP/++1VmX9eFMWPGAABOnz5d5Vh0dDT69Okjex4bGwsA+PTTT2Wvkbbupbe3NwDg5MmTcu3Sc74q\n1LlfmpDOAi8vL8eTJ09q/DVLTV68f5GRkQD+d7+f76Ot17Uu3yeKqPu6KLvP2n6NRSIRUlNTATz7\nctLLywvBwcEAgFu3bqkVi4ioIWGBn4iIiIiISM+IxWI0adJEVvhWxMjICBUVFWrH9/HxwZMnTxAT\nE6NpirVSUlKCsrIyGBgYwN3dHatWrUJCQgKSkpKwdu1a9O/fX7bu+MuyfPlyuLm5Ye7cuQgNDYVY\nLEZRURHCw8Mxbdo0rF69WtZXui9CYGAgCgoKkJeXh6VLl2otD2trayxZsgRRUVEoLi5GTEwMtm7d\nqpX42qLO/dJEly5dAABxcXE4evRorb8w+OWXXxATE4Pi4mJERUXhiy++gI2NDZYvXy7ro+3XtS7f\nJ4qo+7oou8918RoHBAQgPj4epaWlyMrKwpo1awA8+38SEREpUIc7+BIREREREVEdWLVqlfDaa6/V\n2G/z5s1Cs2bNNDpH586dhdmzZ2s0trbu378v7Nu3T8jJydFoPAAhODhYrf4vPqqTl5cnfPLJJ0Lr\n1q0FY2NjwcHBQfD19RXOnj0r1y8rK0uYMmWKYG9vL5iYmAidOnUSgoODq42v6LzK8rlx44YwbNgw\noXHjxoKlpaUwcuRI4d69ewIAwcDAQOm1vax2de6XJrEvXLggdO3aVTA3Nxc8PDyExMREQRPS2A8e\nPBBGjhwpWFpaCo0bNxaGDRsm3Lx5U65vbV7X6t5Tdfk+0cbrIgg132dNX+Pq7kdMTIwwdepUoVWr\nVoKxsbHQpEkToWvXrsLKlSuFx48fV+lfE+m9pIZN3b8H9U1Dv/4G4nuRIHA7cSIiIiIiIn2yePFi\nREdH4/z580r7/fbbb5gyZYpsNrw6vv/+e6xevRoZGRmyde/1hUgkQnBwMPz8/HSdykuTnp4OJycn\n2NvbIysrS9fp6A3pUlAsjdQ/ISEh8Pf352vbwDXEvwfPa+jX30Cs5RI9REREREREekYsFte4wS7w\nbENWiUSCgoICtc8xefJkPHr0CIcOHdIkRapDIpEId+/elWs7c+YMAGDgwIG6SImIiIh0hAV+IiIi\nIiIiPSMWi1XaVFTaJzc3V+1zODo6YsyYMfjhhx/UHkt1b+7cubh//z4eP36MkydP4vPPP4eVlZXc\nmvFERERU/7HAT0REREREpGcKCgpgbW1dY7/aFPgBYOHChbhw4QL+/vtvjcZT3YiMjISFhQU8PT1h\nbW2NSZMmwcPDA+fPn0f79u11nZ5OiUQilR7Svs+PIyIi0kdGuk6AiIiIiIiI1FNaWgozM7Ma+zVr\n1gyA5gX+fv36oW/fvli2bBn+/PNPjWKQ9g0ePBiDBw/WdRqvJHXWW+fa7EREVB9wBj8REREREZGe\nKS8vh7GxcY39zMzM0LhxY40L/ACwcuVKREZG4tSpUxrHICIiIqK6wQI/ERERERGRnlG1wA8ATk5O\nSE5O1vhcAwYMwLBhw7Bw4UJUVFRoHIeIiIiItI8FfiIiIiIiIj1TVlamcoG/ffv2SExMrNX5Nm3a\nhNu3b2Pjxo21ikNERERE2sUCPxERERERkZ5RZwZ/hw4dcOvWrVqdr23btli6dCm+/vpr3Lx5s1ax\niIiIiEh7uMkuERERERGRnikvL4eRkWr/nGvfvj02btwIiUQCQ0NDjc/5xRdf4Pjx43jvvfdw9uxZ\nlTb51aX169cjNDRU12kQkY6kpKQAAPz8/HScCRFR3eIMfiIiIiIiIj2jzgz+9u3b4+nTp7Vahx8A\njIyMsG/fPjx8+BCzZs2qVSwiIiIi0g7O4CciIiIiItIz6hT4O3bsCABISEhA69ata3XeNm3aICgo\nCCNGjECHDh2wZMmSWsWrS4sWLeLMXaIGLCQkBP7+/ggJCdF1KqRDIpFI1ykQ1TnO4CciIiIiItIz\nEolE5SV6rKys4OjoWOt1+KV8fHywYcMGLF26FFu2bNFKTCIiIiLSDGfwExERERER6RlTU1M8ffpU\n5f5dunTBpUuXtHb+efPm4dGjR5g3bx5EIhFmz56ttdhEREREpDoW+ImIiIiIiPRM48aN8fjxY5X7\n9+nTB7t379ZqDkuXLoUgCPjoo4+Qnp6OFStWcCkEIiIiopeMS/QQERERERHpGU0K/A8ePEB6erpW\n8/jyyy+xbds2BAYGwt/fH48ePdJqfCKi/9fe3QdFWe//H38tKKUikqgoaCRqek6mVt8QCTRFIU1U\nvEPLJpsQJWpMM287ipoWx+NdmqblTTZ2BCUrPU4peMj0KNopnEKd8iYVERAU8j6D6/eHv93jKhqL\nLOvC8zFzzexe1+f6fF6fncUd33vt5wIA3BkFfgAAAABwMrYW+AMCAlSjRg3t3LmzwrO8/PLL+vrr\nr7Vjxw49+eSTFboUEAAAAO6MAj8AAAAAOBlbC/z16tVTQECAtm3bZpc83bp10/fff6+mTZsqMDBQ\nkyZNsukeAQAAACgfCvwAAAAA4GTq1KmjS5cu2XROWFiYvvrqKzslknx8fJSSkqL3339fS5Ys0cMP\nP6zly5erpKTEbmMCzsJkMnGPCgCAXVDgBwAAAAAnY+sV/JL0zDPPKCsrSz/99JOdUl0vYsbExOjA\ngQPq3r27YmNjFRAQoOTkZJsL/a1bt1aXLl20adMmviQAAAC4DQr8AAAAAOBkylPgDwgIULNmzbRh\nwwY7pfofX19frVy5Ut9//738/Pw0ePBg/fWvf9V7772ns2fP/un5JSUl+uWXX7Rz50716dNH/v7+\nWrx4sS5cuGD37AAAAM6EAj8AAAAAOBkPDw/99ttvNp1jMpkUGRlZKQV+s/bt2ys5OVmZmZnq3Lmz\npkyZIl9fXw0ZMkQbNmy47ZcUBQUFMgzDcuX+iRMn9Prrr8vb21ujR4/W8ePHK20OuD3zsjMmk0lH\njhxR//799cADD9yyHE1eXp5iY2PVtGlTubm5ydfXVzExMcrJybmlz8zMTPXq1Uvu7u7y8PBQeHi4\nDhw4YDVWeVy5ckXvvvuuHnvsMdWpU0f333+/2rRpo1GjRmnPnj1WbXNycjRy5EhL3qZNm2rUqFHK\nzc21aldUVKQxY8bI399f999/v7y8vBQUFKRx48Zp7969Vq/Tza9ZdHR0ueYBAMDNKPADAAAAgJNp\n1KjRLcXGshg4cKAyMzPtukxPadq0aaPly5crOztbixYtUk5OjoYMGaKGDRsqIiJC8+fPV0ZGhqWg\nn5+fb3W+YRgqLi7WpUuX9MEHH6h58+bq1auXUlJSKnUesGYYhuVxbGysxo0bp+zsbG3ZssWyPzc3\nVwEBAdq4caNWrlyps2fPat26ddq6dauCgoJUWFhoaXvkyBEFBwdr//79+vLLL5Wdna2pU6cqJiam\n1DHL6vz58woJCdHs2bMVFxeno0ePKj8/Xx988IF27NihTp06Wdrm5OQoICBAmzdv1po1a1RQUKCP\nP/5YX3zxhTp27Gj1d/fiiy9qwYIFGj16tAoKCnT69GmtWrVKR48eVceOHUvNbBiGDMPQRx99ZPM8\nAAAoDQV+AAAAAHAyjRs31unTp20+Lzg4WC1bttTKlSvtkOrP1a1bV9HR0UpLS9Pp06f13nvvyc3N\nTbNmzdJjjz2m+vXrq1u3bpo+ffpt+/j9999lGIZSUlLUo0cPtWvXTmvWrNG1a9cqcSa42eTJkxUU\nFKRatWqpZ8+elqL2tGnTdPz4cc2ePVthYWFyd3dXSEiI5s+fr2PHjmnOnDmWPuLj41VYWKiEhAR1\n69ZN7u7ueuqppzR58uS7yhYfH6/vvvtOM2fOVHR0tLy9veXu7q6nn35aa9eutWo7depUnTx50pKh\nbt26Cg0N1bvvvqvjx49r2rRplrb//ve/JV1fkqpOnTpyc3NT69attXjx4rvKCwCALSjwAwAAAICT\nady4sS5fvqyioiKbzjOZTBo+fLjWrFmjq1ev2ild2TRs2FDR0dFKTk5WXl6efvjhB82ePVv+/v7a\nt2/fn55vLuhnZmZq+PDhatq0qRISEhw+r+oqICCg1P2bNm2SJPXs2dNqf+fOna2OS9K2bdskSd26\ndbNqGxQUdFfZzMtS9evX75Zjjz32mNUV9ps3by41Q/fu3a2OS9KAAQMkSYMGDdKDDz6o6OhoJSUl\nqUGDBuX6pQEAAOVBgR8AAAAAnEzjxo0lqVxX8b/00ksqKiqq1LX4/4yLi4s6dOigV155RR999JEm\nT56sGjVqlOnckpISubi4KC8vT5MnT9b3339v57QoTe3atUvdn5eXJ0ny8fGxWke/QYMGkq4vy2Nm\nXprJfMzM09PzrrKZ/07Mfzd3cubMmVIzmJ+b5yNJK1euVHJysgYMGKALFy5oxYoVioqKUqtWrZSR\nkXFXmQEAKCsK/AAAAADgZB588EFJKtfNZn18fDRw4ED9/e9/v2evMj5z5oxcXV1ve7xGjRqWLwB8\nfX318ssvKykpSXl5eVbrqcPxvL29JUlnz561rD9/43bjjZbNRfSb78Fw8/PyZijLF2KNGjW6Ywbz\ncbP+/ftrw4YNys/P144dOxQeHq4TJ07opZdeuqvMAACUFQV+AAAAAHAy9evXl6enp44ePVqu8ydO\nnKgff/xR27dvr+BkFaOgoMDquclkUs2aNSVJ9erVU9++ffX+++/r6NGjysrK0rJlyzRo0CB5eXk5\nIi7uwLwsTlpa2i3Hvv32W6svZMLCwiRJqampVu127dp1VxnMS+l8/vnntxzbs2eP1Q1xIyIiSs1g\nvqGz+bh0/X2ZlZUl6fqvUEJCQpSYmChJOnjwoNX55l84XLt2TZcuXbrlFwIAAJRX2X7zCAAAAAC4\np/j7++vYsWPlOrd9+/bq2rWrZs2apdDQ0ApOdvcKCgosa+nff//9CgkJUXh4uEJDQ9W+fXuZTCYH\nJ0RZxcfHa+vWrYqLi1NxcbG6du0qNzc3ffPNNxo9erTVDZ/j4+O1adMmTZw4Ub6+vgoICFBGRoaW\nLVt21xlSU1M1depU1alTR3369FGdOnW0a9cuvfbaa1q6dKml7fTp0/XVV19ZMjz55JPat2+fJk2a\nJD8/P8XHx1v1HR0drblz56ply5YqLCzUwoULJUnh4eFW7dq1a6c9e/Zo7969ysrK4pcmAIAKQ4Ef\nAAAAAJyQv7+/1frltpo9e7Y6deqkrVu3Wq6cvlcMHjxYTZs2VWhoqDp16iQ3NzdHR0Ipbvyixfz4\n5mWfGjRooPT0dL399tsaP368srKyVL9+fQUEBGjt2rUKDAy0tPX399fOnTv15ptvqk+fPnJxcVGX\nLl20ePFitWjRQi4u5VuEwNPTU7t371ZCQoLmzp2rV199VXXr1tUTTzyhFStWKCQkxNLW29tb6enp\nmjZtml544QXl5eWpUaNGioiI0IwZMyzL/UjSzp079eGHH6p37946deqUateurYceekizZs3S66+/\nbpVh0aJFio6OVlhYmNq1a6ePP/64XHMBAOBmJuNeXXQRAAAAAHBbb731lj777DMdOHCg3H1ERETo\n9OnT2rdvX5W6Kt5kMikxMVGDBw92dBRUgOzsbPn6+qpRo0bKzc11dBw4iaSkJEVFRd2z9xpB5aju\nnwfVff7VxBzW4AcAAAAAJ9S2bVv98ssvlqVsymP27Nnav3+/Vq1aVYHJgPIzmUw6fPiw1b4dO3ZI\nkrp27eqISAAA3NMo8AMAAACAE2rbtq3++OMPHTp0qNx9PProo4qLi9P48eOVn59fgemA8ouLi9PR\no0d18eJFpaamasKECfLw8Lhl/XsAAECBHwAAAACcUuvWreXm5qYff/zxrvqZMWOG7rvvPo0fP76C\nkgHll5KSInd3dwUFBcnT01NDhw5VYGCg0tPT1aZNG0s7k8lUpg0AgKqOm+wCAAAAgBOqWbOmHn30\nUX333XcaNmxYufvx8PDQkiVLFBkZqYiICEVGRlZgSsA2oaGhCg0N/dN2rKsOAMB1XMEPAAAAAE6q\nY8eO2rNnz13307dvX0VHRysmJkbZ2dkVkAwAAACVgQI/AAAAADipjh07KiMj465utGs2f/581a9f\nX1FRUfr9998rIB0AAADsjQI/AAAAADipwMBAXb16VT/88MNd91WnTh198cUX+vHHHzVy5MgKSAcA\nAAB7o8APAAAAAE6qVatWatKkidLS0iqkvzZt2mj16tVas2aNFixYUCF9AgAAwH4o8AMAAACAkzKZ\nTOratatSU1MrrM9+/fopISFBY8eO1erVqyusXwAAAFS8Go4OAAAAAAAov9DQUMXFxeny5cuqVatW\nhfQ5btw4nTt3TiNGjFDt2rU1ePDgCum3MkVFRSkqKsrRMQAAAOyKAj8AAAAAOLHQ0FBduXJFu3bt\nUvfu3Sus31mzZunixYt67rnndP78eb388ssV1ndlGDNmjDp16uToGAAcZPfu3Zo/f76jYwCA3VHg\nBwAAAAAn5ufnp3bt2umLL76o0AK/JC1YsED16tXTiBEjdObMGU2cOLFC+7enwMBADRo0yNExADiI\nYRiOjgAAlYI1+AEAAADAyUVGRmrjxo12KWhNnz5dCxcu1FtvvaVhw4bp8uXLFT4GAAAAyocCPwAA\nAAA4ucjISJ06dUrfffedXfp/7bXXtGXLFm3ZskUhISE6cuSIXcYBAACAbSjwAwAAAICTa9++vVq0\naKGkpCS7jREWFqa9e/equLhYHTp00IoVK+w2FgAAAMqGAj8AAAAAVAHDhg3TJ598oj/++MNuY7Rs\n2VLp6el65ZVXFBMTo969e+vYsWN2Gw8AAAB3RoEfAAAAAKqAF198UXl5eUpJSbHrOG5ubkpISFBa\nWpqOHj2qRx55RDNmzNCVK1fsOi5gD+vWrVPHjh31wAMPyGQyWbab3ekYAACORIEfAAAAAKqA5s2b\nKzg4WKtWraqU8UJCQrR//3698847mjt3rlq1aqWFCxfq6tWrlTI+cLfWrFmjoUOHysvLSxkZGbpy\n5YqSk5NLbWuPG1gDAFARKPADAAAAQBURHR2tjRs36tSpU5UyXs2aNTV69GgdOnRI/fr104QJE/SX\nv/xFS5cu1YULF+6q78OHD/OrANjVvHnzJElz586Vn5+f7rvvPvXv359iPgDAqVDgBwAAAIAqYsiQ\nIfLy8tLSpUsrddwmTZpo0aJF+vnnnxUeHq433nhDzZo10xtvvKGff/7Z5v4Mw1Dbtm3VpEkTTZky\nRVlZWXZIjerO/N5s2bKlg5MAAFB+FPgBAAAAoIpwc3PTqFGjtHTpUl26dKnSx3/wwQe1dOlSnTx5\nUhMnTtT69evVunVrBQYGatGiRcrNzS1TP+fPn9fVq1dVWFioOXPmyM/PTwMHDtSuXbvsPANUJ5cv\nX5Z0/ZcoAAA4Kwr8AAAAAFCFjBo1SpcuXaq0tfhL4+XlpQkTJujYsWPaunWr2rRpoylTpsjHx0eB\ngYGaOXOmvv/+e5WUlJR6/tmzZy2Pr127ppKSEn355ZcKDg5W27ZttXz5cktxFveWG29Ge+TIEfXv\n39/qBrZmeXl5io2NVdOmTeXm5iZfX1/FxMQoJyfnlj4zMzPVq1cvubu7y8PDQ+Hh4Tpw4MBd3fj2\nxnNu7Kc8fdoyFwAAKhoFfgAAAACoQry9vTVixAjNmjXL4UVwV1dX9ejRQ6tXr1Zubq6Sk5PVrl07\nLVu2TE888YS8vLzUq1cvvf3220pNTVV+fr4k6wK/2bVr1yRJBw8e1CuvvKImTZpo4sSJOnHiRKXO\nCXd24/r1sbGxGjdunLKzs7VlyxbL/tzcXAUEBGjjxo1auXKlzp49q3Xr1mnr1q0KCgpSYWGhpe2R\nI0cUHBys/fv368svv1R2dramTp2qmJiYUscsT07DMKw2W9gyFwAA7IECPwAAAABUMZMmTVJhYaFW\nrlzp6CgWtWrVUr9+/bR8+XKdPHlSGRkZmjlzpjw9PfXhhx+qe/fuatiwoZo0aaIRI0bctp+SkhIV\nFxerqKhI8+bNU/PmzdWrVy+lpKRU4mxQFpMnT1ZQUJBq1aqlnj17Worn06ZN0/HjxzV79myFhYXJ\n3d1dISEhmj9/vo4dO6Y5c+ZY+oiPj1dhYaESEhLUrVs3ubu766mnntLkyZMdNS0rtswFAAB7oMAP\nAAAAAFWMuUj+zjvv6OLFi46OcwuTyaT27dvr1Vdf1aeffqrjx4/r9OnT2rp1q958803Vq1evTEuk\nmJfv2bp1q3r06KH27dvr+PHjlTADlEVAQECp+zdt2iRJ6tmzp9X+zp07Wx2XpG3btkmSunXrZtU2\nKCiownLeDVvmAgCAPVDgBwAAAIAqaMqUKbp48aISEhIcHaVMGjdurB49emjs2LEaMmSIXF1dy3Se\nm5ubiouLVbNmTT3wwAN2Tglb1K5du9T9eXl5kiQfHx+rNe8bNGgg6fqyPGbmZZvMx8w8PT3tEdlm\ntswFAAB7oMAPAAAAAFVQo0aN9NZbb+kf//iHfv31V0fHsUlBQcFtC/w1atSwHPP19dXw4cOVlJSk\n/Px8paWlyc/PrzKjohy8vb0lXb/Xws3r3xuGYfWrE3Oh3FzoN7v5uaPYMhcAAOyBAj8AAAAAVFGv\nvfaamjVrpjfeeMPRUWxSWFiokpISSdeX86lZs6YkycPDQ5GRkZZ1/LOysrRs2TINGjRIHh4ejowM\nG/Tr10+SlJaWdsuxb7/9Vp06dbI8DwsLkySlpqZatdu1a5f9AtrAlrkAAGAPNRwdAAAAAABgH25u\nblq8eLHCw8O1YcMGDRw40NGRyqSoqEjXrl2Tq6urAgIC9OyzzyosLExPPPGEXFy4Ts3ZxcfHa+vW\nrYqLi1NxcbG6du0qNzc3ffPNNxo9erTVzaHj4+O1adMmTZw4Ub6+vgoICFBGRoaWLVvmwBn8jy1z\nAQDAHijwAwAAAEAV1qNHD0VHRys2NladO3dWo0aNHB3pT40dO1bPPvusnn76adWtW9fRcWCDG2+O\nbH5sGIZVmwYNGig9PV1vv/22xo8fr6ysLNWvX18BAQFau3atAgMDLW39/f21c+dOvfnmm+rTp49c\nXFzUpUsXLV68WC1atCj3Fz435zRntHW/LXMBAMAeTMbNn7QAAAAAgCqlqKhIjz76qAIDA5WUlOTo\nOHZnMpmUmJiowYMHOzoK7CQ7O1u+vr5q1KiRcnNzHR0H96CkpCRFRUXd8gUTqpfq/nlQ3edfTczh\nt40AAAAAUMXVq1dPq1atUnJyspYsWeLoOIBNTCaTDh8+bLVvx44dkqSuXbs6Iu+3InwAAAxxSURB\nVBIAAPcMCvwAAAAAUA2Ehobqb3/7m8aOHav//ve/jo4D2CQuLk5Hjx7VxYsXlZqaqgkTJsjDw0Px\n8fGOjgYAgENR4AcAAACAamLq1KkKCQnRoEGDlJeX5+g4QJmkpKTI3d1dQUFB8vT01NChQxUYGKj0\n9HS1adPG0s5kMpVpAwCgKuEmuwAAAABQTbi4uOjTTz9Vp06d1LdvX23fvl21atVydCzgjkJDQxUa\nGvqn7VhrHQBQHXEFPwAAAABUIw0bNtTXX3+tI0eO6IUXXlBJSYmjIwEAAKCcKPADAAAAQDXTokUL\nJScna/PmzRo5ciRXPgMAADgplugBAAAAgGooJCREn3/+uSIjI2UYhpYvXy4XF64BAwAAcCYU+AEA\nAACgmnrmmWeUlJSkgQMHytXVVUuWLJGrq6ujYwEAAKCMKPADAAAAQDUWERGh9evXa8iQIcrLy9Pa\ntWtVu3ZtR8e6a3v27JHJZHJ0DAAOsmfPHkdHAIBKQYEfAAAAAKq5Pn36KCUlRX369FFoaKi+/PJL\nNWzY0NGx7sr8+fM1f/58R8cAAACwKxZYBAAAAAAoKChIu3btUl5env7v//5P6enpjo50VxITE2UY\nBhsbWzXdEhMTHf3PEABUCgr8AAAAAABJUuvWrbV371498sgjCg4OVkJCgqMjAQAA4A4o8AMAAAAA\nLLy8vLR582ZNnTpVU6ZMUb9+/XT69GlHxwIAAEApKPADAAAAAKy4uLjob3/7m1JTU/XTTz+pbdu2\n+uSTTxwdCwAAADehwA8AAAAAKFWXLl20f/9+DRs2TMOHD1d4eLgyMzMdHQsAAAD/HwV+AAAAAMBt\n1alTRwsXLtSOHTtUUFCgDh06KC4uTvn5+Y6OBgAAUO1R4AcAAAAA/KmnnnpK+/bt06effqrNmzer\nefPmGj16NOvzo9KYTCbL5mxjrlu3Th07dtQDDzxwxz4dMUcAgHOjwA8AAAAAKBOTyaRBgwYpMzNT\nU6ZM0bp169SqVSuNHTtWx48fd3Q8VHGGYTjlmGvWrNHQoUPl5eWljIwMXblyRcnJyXYbDwBQvVDg\nBwAAAADYxN3dXRMnTtSxY8c0c+ZMJSUlyd/fX71799a//vUvlZSU3PUYa9as0Y8//lgBaeFMquLV\n6/PmzZMkzZ07V35+frrvvvvUv39/ivkAgApBgR8AAAAAUC61a9fWmDFjdOzYMSUmJurKlSuKiIhQ\n8+bNNX78eH333Xfl6vfSpUt68cUX1a5dOwUHB2v9+vW6du1aBacHKsfPP/8sSWrZsqWDkwAAqiIK\n/AAAAACAu1KzZk0NHDhQKSkpOnTokJ5//nl99tlnevLJJ9WiRQtNmDBB27dv19WrV8vUX2FhoeXx\n7t27FRUVJV9fX82cOVM5OTn2mgZgF5cvX5Z0/e8EAICKRoEfAAAAAFBhHn74Yc2ePVuHDx/Wvn37\nNGDAAH3xxRcKDQ1V/fr11atXL82bN0+7du2yFD5vdu7cOcvjkpISGYahM2fOaMaMGWrWrJkGDBig\nlJSUyprSPa+oqEhjxoyRv7+/7r//fnl5eSkoKEjjxo3T3r17Le1uvIFrdna2BgwYoLp168rLy0sv\nvviiioqK9Ouvv6pPnz7y8PBQ48aNNXz4cKsvXMxycnI0cuRINW3aVG5ubmratKlGjRql3Nzccre9\ncWkec87o6OhS53zy5En17dtXdevWlbe3t4YNG6aCgoJb2uXl5Sk2NtYytq+vr2JiYkr9oigzM1O9\nevWSu7u76tWrp8jISJ04ceL2L3wZlDanm7eyKutcyvp+AABUEQYAAAAAAHb266+/Gh9++KExaNAg\no2HDhoYko0aNGsZjjz1mjBw50nj//feNlJQUIysry9i5c6ch6bZbzZo1DUnGI488Yixbtsy4cOGC\n1ViSjMTERAfNtPL17dvXkGQsWLDAuHDhgnH16lXj0KFDRmRkpHHzf/vNr+GwYcOMAwcOGIWFhUZc\nXJwhyXj22WeNyMhIy/7Y2FhDkjFixAirPk6fPm00a9bM8PHxMVJTU43ffvvNSElJMRo3bmz4+fkZ\nOTk55Wp7Y77bMR9//vnnLTlfffVVQ5IxfPhwq7Y5OTmGn5+f4e3tbXz99dfG+fPnjR07dhh+fn5G\n8+bNjXPnzlnaHj582PD09LTkPH/+vPHNN98Y4eHhf5rpz9zufFv22zIXW94PVVliYmK1mi9KV90+\nD25W3edfTfydf+kAAAAAAJXuyJEjxqeffmqMGTPGCA4ONurXr28pbNauXfuOBX7zZjKZDFdXV6NO\nnTpGTEyMcfDgQcMwql9Bw8PDw5BkrF+/3mr/qVOnblvgT0tLu6XdzftPnjxpSDJ8fX2t+hgxYoQh\nyfjkk0+s9q9evdqQZIwcObJcbW/Mdzul5czKyjIkGT4+PlZtR44caUgyVqxYYbX/s88+MyQZkydP\ntuwbNmxYqTk3btx4TxT4bZmLLe+HqowCPwyj+n0e3Ky6z7+a+DtL9AAAAAAAKp2/v7+GDh2qefPm\n6dtvv1VBQYHy8vKUlpam5557rkxLlxiGoeLiYl28eFHLly9X27ZttWfPnkpIf28ZMGCAJGnQoEF6\n8MEHFR0draSkJDVo0ECGYZR6zuOPP2553Lhx41L3+/j4SJKys7Otzt28ebMkqVu3blb7u3fvbnXc\n1ra2uDFnkyZNJEmnT5+2arNp0yZJUs+ePa32d+7c2eq4JG3btq3UnMHBweXKV9FsmUt53g8AAOdF\ngR8AAAAAcE9o2LChunTposcff1w1atT40/bmm5bWqlVLvXv31pIlS6wKv9XFypUrlZycrAEDBujC\nhQtasWKFoqKi1KpVK2VkZJR6Tt26dS2PXVxc7rj/5qLwmTNnJEkNGjSw2m9+npeXV662tihLTnPf\nPj4+Vmvem8c+cuSIpW1+fv4dczqaLXMpz/sBAOC8KPADAAAAAO4p586dsyo6m7m6usrV1VWS1KxZ\nM8XGxmrbtm06d+6cNm3apJiYGLm5uVV23HtC//79tWHDBuXn52vHjh0KDw/XiRMn9NJLL1X4WI0a\nNZL0v6K4mfm5+bitbSuat7e3JOns2bMyDOOW7eLFi5a25kL5zTmLiorsls8WtsxFqtz3AwDAsSjw\nAwAAAADuKb/99puKi4slyXIlv7u7uyIjI/Xhhx/q1KlTOnHihBYuXKju3bvrvvvuc2RchzOZTMrK\nypJ0/Wr2kJAQJSYmSpIOHjxY4eNFRERIklJTU632p6SkWB23ta0k1a5dW5J07do1Xbp06a6uoO/X\nr58kKS0t7ZZj3377rTp16mR5HhYWVmrO3bt3l3v8imTLXCr7/QAAcCwK/AAAAACAe0pxcbGKi4vV\noUMHTZo0Sbt27VJhYaHWr1+vl156ybI2PP4nOjpamZmZunr1qnJzc5WQkCBJCg8Pr/Cxpk+fLj8/\nP02cOFHbt2/X+fPntX37dk2aNEl+fn6Kj48vV1tJateunSRp79692rRpk1Xh2lbx8fFq1aqV4uLi\ntGHDBhUUFOj8+fPavHmzhg8frnfffdeqraenpyXnhQsX9J///EfvvPNOucevSLbMRarc9wMAwLEo\n8AMAAAAA7ikzZszQmTNn9MMPP2jGjBkKCgqyLM2DW+3cuVONGzdW7969VbduXbVu3VpbtmzRrFmz\n9M9//tPS7sYbF9/NY29vb6WnpysiIkIvvPCC6tevrxdeeEERERFKT0+3LCdja1tJWrRokdq3b6+w\nsDAtWLBAc+fOLXfOBg0aKD09XUOHDtX48ePVpEkTtWrVSsuXL9fatWvVpUsXS1t/f3/t3LlT7du3\nV58+fdSkSRNNnz5dS5cuLbXvsqqo19yWuZT1/QAAqBpMBrdQBwAAAABUISaTSYmJiRo8eLCjowBw\nkKSkJEVFRd1y82VUL9X986C6z7+amMMV/AAAAAAAAAAAOCEK/AAAAAAAAAAAOKEajg4AAAAAAADg\nLMq6Fj9LwwAAKgMFfgAAAAAAgDKicA8AuJewRA8AAAAAAAAAAE6IAj8AAAAAAAAAAE6IAj8AAAAA\nAAAAAE6IAj8AAAAAAAAAAE6Im+wCAAAAAKqc+fPna8OGDY6OAcBBTp48KUkaPHiwg5PA0fg8QFVn\nMrj9OwAAAACgChk7dqyysrIcHQMAAIdydXXVO++8o4ceesjRUWA/cyjwAwAAAAAAAADgfOawBj8A\nAAAAAAAAAE6IAj8AAAAAAAAAAE6IAj8AAAAAAAAAAE6IAj8AAAAAAAAAAE7o/wE6he+KFEh+0QAA\nAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from IPython.display import Image\n",
- "Image(filename=\"graph_flat_detailed.dot.png\")"
+ "Image(filename=\"graph_flat_detailed.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Such a visualization might be more complicated to read, but it gives you complete overview of a workflow and all its components."
+ "Such a visualization might be more complicated to read, but it gives you a complete overview of a workflow and all its components."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"## detailed ``exec`` graph\n",
"\n",
@@ -415,47 +231,25 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACvYAAAL5CAIAAADuFhbnAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdezxU+f8H8M+QSS7DMJkxrikp3VXKtSLaLiSWajeptpSH72a7rC6739L2Fdqv7veWdnWV\n2rZVvqtQG5Lu26K2ooQZ5DKiosLvj/Pb853vKLdwBq/nHz3OfM7nfD6vc9CDM+/5HFZ9fT0BAAAA\nAAAAAAAAAAAAAAAAkG8KTAcAAAAAAAAAAAAAAAAAAAAAaBpKHAAAAAAAAAAAAAAAAAAAAKATQIkD\nAAAAAAAAAAAAAAAAAAAAdAIocQAAAAAAAAAAAAAAAAAAAIBOoAfTAQAAAAAAAAAAgGExMTExMTFM\npwAAaAFFRcWQkBBjY2OmgwAAAABAh8IqDgAAAAAAAAAA3V1MTExaWhrTKf5fTExMXl4e0ynkWlpa\nmvx8vQCYcuLEievXrzOdAgAAAAA6GlZxAAAAAAAAAAAAYmVldfLkSaZTEEIIi8VatmyZl5cX00Hk\nF3Vx5OTrBcAUFovFdAQAAAAAYABWcQAAAAAAAAAAAAAAAAAAAIBOACUOAAAAAAAAAAAAAAAAAAAA\n0AmgxAEAAAAAAAAAAAAAAAAAAAA6AZQ4AAAAAAAAAAAAAAAAAAAAQCeAEgcAAAAAAAAAAADo1s6f\nPz99+nSBQMBmswUCgYuLyy+//CLdgdVA43ub1LHnBwAAAADQdaDEAQAAAAAAAAAAALqpt2/fzpkz\n5/PPP3dwcLhx40ZVVdWNGzccHR19fHw8PDxev35Ndauvr6+vr2+4LdMis9HwqIbHAgAAAABAi/Rg\nOgAAAAAAAAAAAAAAM7788suTJ09evXp11KhRVIuBgcFXX31lZWVla2vr6+t7+PBhZhMCAAAAAIA0\nrOIAAAAAAAAAAAAA3VF6evr+/fvnzZtH1zfQxowZM3fu3CNHjiQnJ7d02CbXacBCDgAAAAAArYYS\nBwAAAAAAAAAAAOiO9u3bRwj59NNP37vX09OTEHLw4MEOzQQAAAAAAI3CgyoAAAAAAAAAAADej8Vi\nURv42H2XRK3QMGTIkPfuHTp0KCEkNTW1QzMBAAAAAECjsIoDAAAAAAAAAADA+723ssHOzs7Ozq7j\nw0CbE4lEhBBtbe337qXaxWJxh2YCAAAAAIBGYRUHAAAAAAAAAACAFqirq2M6AnQEag0PeiUPAAAA\nAACQB/9T4lBdXR0XF1dbW8tUGgDo1EaPHm1sbMx0CgAAAAAAAID2hScXdBm6uro5OTllZWUCgaDh\n3pKSEkKIUCikWxQUFOrq6mpraxUVFWU619bWKihgxVwAAAAAgHb3PyUOcXFxHh4eTEUBgM5u1qxZ\nx48fZzoFAAAAAAAAAECz2NnZ5eTk3Lt3770lDvfu3SOE2Nvb0y3q6uoVFRUVFRVaWloyncvLyzkc\nTrumBQAAAAAAQsj/VBa/e/eOEFIvHzw9PT09PZlOAZ1AdHS0/Hzfdmeenp5YAwYAAAAAAAA6Hutv\n2dnZ7u7uXC6XekntLS4u9vPz09fXZ7PZenp6vr6+hYWF0ocnJCS4urpyuVxlZWULC4sTJ040czrp\nxszMzClTpqipqXE4nEmTJmVlZcl0o1/m5eVNnz5dXV2dz+fPmTOntLS07a4EtNiSJUsIIadPn37v\n3piYGLoPxczMjBCSkZHRsHNGRkb//v3bJSUAAAAAAEjB4mkAAAAAAAAAANCJ1dfXUxt+fn4rV64U\niURxcXFUS1FRkaWl5ZkzZyIjI8vKyk6cOHHhwgVra2uJREIf7uTkpKio+OjRo4cPH/J4vNmzZ8fH\nxzdnOlp2dratre0ff/zx66+/ikSidevW+fr6ynSmN9asWRMaGpqfn+/h4XH06NGVK1d+9AWA1hs7\nduzixYsPHTp08+ZNmV3p6elRUVGLFy8ePXo03eji4kIIOXToUMOhIiIipk6d2q5pAQAAAACAoMQB\nAAAAAAAAAAC6hrVr11pbW/fq1Wvy5MlUScH69etzc3M3bdrk7OyspqZmZ2e3devWJ0+efP/999IH\nbt26lcfjGRoa7tixgxASHBzconmDgoIkEklYWJiDg4OampqNjc3atWs/1HnRokUDBw7U0NAIDAwk\nhFy4cKE1pwptZ+fOnZ6enk5OTjt27MjPz3/79m1+fv727dsnTZo0c+bMnTt3SncOCAgwNzf/8ccf\n/f39MzIyampqampq/vzzTz8/vxs3bnz11VdMnQUAAAAAQPeBEgcAAAAAAAAAAOgKLC0tZVpiY2MJ\nIZMnT6Zb7O3t6XZKfX29sbExtW1qakoIycrKatG8Fy9eJIQ4ODjQLdbW1h/qbGFhQW0IhUJCiFgs\nbtFc0OaUlJSOHj165MiRhISEkSNHqqqqWlhYXLx48ciRI0eOHFFSUpLurK6unpaWtmHDhuvXr9vY\n2Kiqqvbu3dvHx6d3797p6ekcDkdm8IYPK+mgswIAAAAA6Lp6MB0AAAAAAAAAAACgDaioqMi0FBcX\nk7+LCaRlZ2dTGxKJZPPmzWfOnMnPz6+qqqIaS0tLWzRvSUkJIYTH49EtmpqaH+qsrq5ObbDZbPK+\nx14AI6ZOndrMx0xwOJx169atW7euOZ3x9QUAAAAAaHNYxQEAAAAAAAAAALomPp9PCCkrK6v/Xy9f\nvqQ6eHl5hYSEzJw5Mzc3l9rVilmo4gaq0IEivQ0AAAAAAABtCCUOH6W6uvrbb7/t27dvjx49sNYc\nAAAAAAAAAIBccXNzI4RcvnxZujE5OdnKyoraTk1NJYSsWLFCS0uLEFJTU9OKWZydnQkhiYmJdAs1\nLAAAAAAAALQ5lDh8lPXr1wcHBy9YsODFixfx8fFMxwEAAAAAAAAAgP8KCgoyNTX19/c/depUaWlp\nZWXluXPn5s2bFxoaSnWws7MjhISEhEgkkrKysrVr17ZuFk1NzdWrVyclJVVVVaWkpOzfv78tTwMA\nAAAAAAD+hhKHjxIdHU0I8fPzU1FRcXZ2xtP1AAAAAAAAAAA6GL2sZsMlNnk8Xnp6+uzZswMDA3V1\ndU1NTQ8cOHD06NFx48ZRHaKiory9vSMiIvh8/rhx48aMGdNwzCY3TExMUlJShg0b5urqKhQKw8LC\ndu3aRQhRUPjvnbfmjAMAAAAAAABN6sF0gM4tLy+PEEKtZAgAAAAAAAAAAB2v8c+ccLnc8PDw8PDw\n9+7V0dGJioqSbvHy8mp88PdON2jQoLi4OPqlSCQihPB4vJaOAwAAAAAAAI3DKg4fpa6ujukIAAAA\nAAAAAADAMBaL9fjxY/rllStXCCETJkxgLhEAAAAAAEDXhBKH1pNZBXH16tWEkIqKimXLlpmYmCgr\nK2tra1tbW69cufL69etUz8b3EkIKCwsXL16sr6/PZrP19fWXLFlSVFQkPaPMiouNtGRnZ7u7u3O5\nXOkO1dXVoaGhI0aMUFVVVVZWHjBgwJIlS65du0YfXlxc7OfnRwXQ09Pz9fUtLCxs+2sHAAAAAAAA\nANC1+Pv75+TkvHz5MjExcdWqVRwOJygoiOlQAAAAAAAAXQ1KHFqPXk6wvr6+vr4+NDSUEOLj47Nt\n27aAgIDS0lKxWHzo0KGcnBz6OY6N7y0sLLS0tDx37lxUVFRpaelPP/109uzZMWPG0FUOzVnSkG7x\n8/NbuXKlSCSil0msrKy0s7PbtGkT9Sd3SUnJvn37rly5YmVlRXUoKiqytLQ8c+ZMZGRkWVnZiRMn\nLly4YG1tLZFI2vC6AQAAAAAAAAB0MQkJCWpqatbW1pqamrNnzx47dmx6evqAAQOYzgUAAAAAANDV\noMShjV26dIkQoqenp6qqymazzczMdu3a1cy969aty8vLCwsLc3BwUFdXd3R0DA0Nzc3NXb9+fSuS\nrF271traulevXpMnT6bqHoKCgm7evLlx48aFCxfy+Xw1NbXx48cfPXqUPmT9+vW5ubmbNm1ydnZW\nU1Ozs7PbunXrkydPvv/++1ZfkO7p/Pnz06dPFwgEbDZbIBC4uLj88ssv0h1YDTS+t0kde34AAAAA\nAAAA8D8cHR1Pnz5dWFj49u3b4uLi6Oho1DcAAAAAAAC0B5Q4tDEPDw9CiKenp6Gh4cKFC0+ePMnj\n8eiVFRrfe+7cOUKIg4MDPdrEiRPp9paytLSUaTl16hQhxM3NTbpxxIgRdIDY2FhCyOTJk+m99vb2\ndDs0x9u3b+fMmfP55587ODjcuHGjqqrqxo0bjo6OPj4+Hh4er1+/prpRK3803JZpkdloeFTDYwEA\nAAAAAACgO4iJiWnFZyQAuhKmfwoBAAAAgBk9mA7Q1URGRk6bNu3YsWNJSUkRERERERGGhoZnz54d\nPnx4k3ufP39OCOHxePRo1HZxcXErkqioqMi0iMViQohAIPjQIdREQqFQpj07O7sVAbqnL7/88uTJ\nk1evXh01ahTVYmBg8NVXX1lZWdna2vr6+h4+fJjZhAAAAAAAAADQBVhZWS1btozpFABM8vLyYjoC\nAAAAADAAJQ5tz93d3d3dva6uLjU1NTg4OD4+fv78+Xfu3Glyr46OjkgkKikpoYsMSkpKqHZ6cBaL\nVV9f//btWyUlJUJIRUVF84Px+fz8/HyxWGxsbPyhDgUFBWVlZVwutzVn3u2lp6fv379/0aJFdH0D\nbcyYMXPnzo2MjPT19bWzs2vRsE2u04CFHAAAAAAAAAC6G319fU9PT6ZTAAAAAAAAdDQ8qKKNsVis\n/Px8QoiCgoKdnV10dDQh5P79+83Z6+LiQghJTEykR0tISKDbKdQaDNR6DIQQunKiOajHZPzyyy/S\njdeuXRszZgy1TT3D4vLly9IdkpOTraysmj9Ld7Zv3z5CyKeffvrevdR9h4MHD3ZoJgAAAAAAAAAA\nAAAAAACArgIlDm1v4cKFmZmZNTU1RUVFYWFhhJBJkyY1Z++GDRuMjIxWr16dlJRUWVmZlJS0Zs0a\nIyOjoKAg+nAnJydCyPfff19RUfHgwYMffvih+cGCgoIGDx68bt26gwcPFhUVVVVVxcfHz507d9Om\nTXQHU1NTf3//U6dOlZaWVlZWnjt3bt68eaGhoR97UbqH5ORkQsiQIUPeu3fo0KGEkNTU1A7NBAAA\nAAAAAAAAAAAAAADQVaDEofVYLBa9QW+npKQIBIJp06apq6ubmZnFxcUFBwcfP368OXv5fH56erqL\ni4u3t7eWlpa3t7eLi0t6ejqfz6cnDQ8P/+yzz6Kjo/X09AIDA0NCQhqGaZiKoqmpmZaWFhAQEB4e\nbmhoaGxsvGXLloiICEdHR6oDj8dLT0+fPXt2YGCgrq6uqanpgQMHjh49Om7cuDa/el2SSCQihGhr\na793L9VOr8ABAAAAAAAAAAAAAAAAAAAt0oPpAJ1YfX19w0YbGxsbG5sPHdL4XkIIn8/ft28f9byD\n9+LxeEePHm0kxntT0dTU1DZu3Lhx48YPdeByueHh4eHh4Y0MAq1DVZzI1J0AAAAAAAAAAAAAAAAA\nAEAzYRUHgDajq6tLCCkrK3vv3pKSEkKIUCikWxQUFAghtbW1DTvX1tZSewEAAAAAAAAAAAAAAAAA\ngIL3UAHajJ2dHSHk3r17791Ltdvb29Mt6urqhJCKioqGncvLyzkcTrukBAAAAAAAAACANmVnZ0fd\nFwIAAAAAgPaGB1UAtJklS5b89NNPp0+fdnZ2brg3JiaG6kO3mJmZXb9+PSMjQ7rugZKRkdG/f/92\nTQsAAAAAAAAgt7Zu3Xrq1CmmU8ivtLQ0KysrplPAf9XV1TEdAQAAAACgu8AqDgBtZuzYsYsXLz50\n6NDNmzdldqWnp0dFRS1evHj06NF0o4uLCyHk0KFDDYeKiIiYOnVqu6YFAAAAAAAAAIA2kZqampqa\nynQKAAAAAIBuAas4ALSlnTt3VlZWOjk5bdiwwd3dnc/nFxUVnT59ev369TNnzty5c6d054CAgOPH\nj//4448qKip+fn6mpqaEkIcPH+7Zs+fGjRu7d+9m6CQAAAAAAAAAGLZs2TIvLy+mU8gvXBwAAAAA\nAOi2sIoDQFtSUlI6evTokSNHEhISRo4cqaqqamFhcfHixSNHjhw5ckRJSUm6s7q6elpa2oYNG65f\nv25jY6Oqqtq7d28fH5/evXunp6dzOByZwVksFovFargNAAAAAAAAANDZsf4mEok8PDzU1dW1tbV9\nfHwqKiqePn3q6urK4XAEAsG8efMkEon0gcXFxX5+fvr6+mw2W09Pz9fXt7CwULpDQkKCq6srl8tV\nVla2sLA4ceLEe+fNy8ubPn26uro6n8+fM2dOaWlpS5N//Lk0HpUQkpmZOWXKFDU1NQ6HM2nSpKys\nrIazN3lBAAAAAAA6NaziAND2pk6d2szHTHA4nHXr1q1bt645nevr6z8uFwAAAAAAAACAnKqvr6fe\np1+1atW//vWvyMjIb775Zvfu3aWlpWw2OywsTCgUrlmzZu/evWw2+8CBA9RRRUVFY8aMqa6ujoqK\nsra2vnPnjre3d0JCwu3btzU1Nak+Tk5Obm5ujx49evXq1cKFC2fPns3lcidNmiQz75o1a0JDQ+lZ\nlJSU3vt00UaSf+S5NBk1Ozvb1tZWRUXl119/tbS0/OOPP3x9fekZm39BAAAAAAA6NZb0m6YnT56c\nOXOmnLyNSi24d/LkSaaDgLyTq+/b7gw/swAAAAAAAJ2XXP1Nx2KxoqOj8SyGRsjV16sNUWUBly9f\nHjduHCFEJBLp6elJt+Tn5xsYGOjp6eXn51OHLFmyZP/+/REREQsWLKBazpw54+7uvnbt2uDgYHrY\nJ0+eGBsbE0IePHgwcOBAOzu7K1eufGjep0+f9unTRygUFhQUtCi59O2pVpxLk1G9vb2PHDly+PDh\nOXPmUC1xcXHUx2zoqZtzQboM6v+KGzdu9OrVi8vl8ng8gUBAXXkul0t369mzp4qKCv2Sw+EoKiqq\nqanJrLcKAAAAAJ2FXK/ikJaWhr9moUl5eXlMRwAAAAAAAAAAgLZhYWFBbQgEApkWoVBICBGJRHTn\n2NhYQsjkyZPpFnt7e6qdfkdfuvLA1NSUEJKVldXIvNQsYrG4g8+lyagXL14khDg4ONAt1tbWMjM2\n54J0Mf/+979bd6CioiKHw1FVVVVWVtbQ0FBRUVFWVtbU1OzVq5eysjL1uJBevXppamoqKyurqqpy\nuVytv6mrq7ftWQAAAABA88l1iQMAAAAAAAAAAAB0K/SbxwoKCu9tka4DKC4uJn+XC0jLzs6mNiQS\nyebNm8+cOZOfn19VVUU1lpaWNjIvm80mbfTA0BadS5NRS0pKCCE8Ho9uafjsiSYvSNfz5s2bqqoq\nsVgsFov/+uuvx48fp6am3rp1i8ViTZo0ydvb29zc/M2bN1Tn+vp6iURCCKmsrKyurq6srKyqqqqu\nrn7x4sXLly9ramokEklZWVl1dXV5eXl1dfXr168lEkl1dfWrV6+kJ+3Rowdd7iBd+tBwW/rrBQAA\nAABtQq5LHKysrLregnvQ5qgHVTCdAgAAAAAAAAAAOhqfzy8oKCgrK5N+MIE0Ly+vixcvrl+/funS\npVpaWuTvR0jIoSaj8ni8oqKikpISuoKBKnqQ1uQF6XqUlJS4XC6XyzU3N3d0dKQaJRLJuXPndu/e\nPWvWrHHjxu3cuXPIkCEfOdHr16/LP0AsFt+8eZPaLisrq6mpkT6Qy+Xq6uoKhUL6Xy6XS20YGBhw\nOJyPDAYAAADQ3ch1iQMAAAAAAAAAAADAh7i5ue3evfvy5cszZsygG5OTkwMDA9PS0gghqamphJAV\nK1ZQyyfIvPcsV5qM6uzsfPjw4cTERG9vb+lDpDV5QboJTU3NOXPmzJkz59q1a1999ZWFhcWqVau+\n++47ejmNVujVq1evXr0arpDRUFVVVdnfxGJxcXGxSCQqKioSiUS3b98uLCyUXpyDKoDg8/lCoVBH\nR0dPT4/P5+vr6xsaGurr61NrigAAAACANJQ4AAAAAAAAAAAAQKcUFBR04cIFf3//2traCRMmsNns\n33//PSAgIDIykupgZ2cXHx8fEhISGBhYV1cXHBzMbOBGNBk1KCgoNjZ29erVenp6lpaWd+/e3b9/\nf8M+jV+Q7mbs2LFXr149cODAsmXLbt++ffz4cQ0NjfaeVE1NTU1NzdDQ8EMd3rx5U1JSQi3/IBKJ\n6H+vX78uFovz8/PpJ2twuVwTExMTExNqBQhqu2/fvg2fUQIAAADQfaDEAQAAAAAAAAAAABhGP5SB\nxWLV19c3s4XH46Wnp//rX/8KDAzMz8/X0tKytLQ8evTo2LFjqZ5RUVErV66MiIgIDw/v37//P//5\nz1bM0h7JG7Y0GdXExCQlJeXrr792dXVVUFAYN27crl27+vbtK70yQZMXpBtSUFBYsmSJhYXFjBkz\nJk+efOHCBTU1NWYjsdlsoVAoFAoHDRr03g6FhYXPnj179uxZbm7us2fPnj59euXKldzc3PLycqqD\nlpaWoaGhoaGhsbGxkZERva2jo9OB5wEAAADADJQ4AAAAAAAAAAAAAMMaFhM0p4UQwuVyw8PDw8PD\n3zusjo5OVFSUdIuXl1crZmlE65I3bGkyKiFk0KBBcXFx9EuRSEQI4fF40n0avyDdlqWl5aVLl+zt\n7WfMmPGf//ynRw+5vjEuEAgEAoGlpaVMe3V1tUgkysnJycnJoRZ+yMrKOnfuXG5ubm1tLSGkZ8+e\nffv2HTRokMn/YuIkAAAAANpLa36To0uMaTKlx3p6enfu3Ondu3cjR7X0TwUAAAAAAAAAAGAWbgoB\nMIvFYj169Khfv37UyytXrhBCJkyYwGioTqN///6//fabtbX1d99999133zEdpzWUlZXfW7Lw5s2b\n/Pz83Nzcx48fP3r06NGjR+fOnXv8+HFNTQ0hhMvlmpqa9uvXr3///qamptQ2l8tl4gwAAAAA2kBr\nShyk/3aV/qOUbi8oKJg9e3Z8fLyiomLDvfg7tvns7OwIIcnJyUwHAQAAAAAAAADATSEA5vn7++/d\nu5fP51+7dm3VqlUcDicoKIjpUJ3G8OHDw8PDv/zyy8mTJ1tZWTEdp82w2Wyq9EG63qWuru7Zs2d0\n0cPDhw+PHTv25MmTt2/fEkJ4PB5V7kDVPQwaNKh///5KSkrMnQQAAABAc7XLelwCgSAxMXHdunXB\nwcHtMX73UVdXx3QEAAAAAAAAAIDmwk0h6HoaLl4irYMLdxISEvbs2WNtbV1aWsrlcidMmLBhw4YB\nAwZ0ZIbOzs/P7+eff16+fPnVq1cb/+J2dgoKCsbGxsbGxhMnTqQb3717l5ubSxc9PHr0KDU1NTc3\n9927d0pKSmZmZubm5oMHDzY3Nx8yZEjfvn2l69UAAAAA5ES7lDhER0c7OjqGhIRYWVlNmzatPabo\nJlJTU5mOAAAAAAAAAADQXLgpBF2PXK0+4ujo6OjoyHSKTm/z5s2jRo06c+aMu7s701k6Wo8ePfr2\n7du3b99PPvmEbnz79u3Dhw+zsrIyMzOzsrJOnDjx119/1dbWKikpUQs8mJubU/8OHDhQQUGBwfwA\nAAAApJ1KHOzt7Tdt2hQYGOjt7X379u0+ffq0xywAAAAAAAAAACBXcFMIAOTfiBEjZsyYsXXr1m5Y\n4vBeSkpKgwYNGjRokKenJ9Xy6tUrquIhMzMzIyPjxx9/zM3NJYSoqqoOHDiQXuZh8ODB+vr6jGYH\nAACA7qi9Ki6//vrrGTNmSCQSDw+P6urqdpqla2P9TbqxsLBw8eLF+vr6bDZbX19/yZIlRUVFTCUE\nAAAAAAAAAJAhzzeFKioqli1bZmJioqysrK2tbW1tvXLlyuvXr1N76VsxWVlZn3zyCYfDUVNTmzp1\n6v379+kR6D4ikcjDw0NdXV1bW9vHx6eiouLp06eurq4cDkcgEMybN08ikTB0lgDQND8/v5SUlD//\n/JPpIHJKRUVl1KhRPj4+mzdvjouLe/r0aUVFxc2bN/fs2ePo6FhSUrJv374pU6YYGBhwuVxbW9uA\ngICoqKjMzEw8eRkAAAA6QLus4kA5dOjQn3/+eefOnX/84x8//PBD+03UVdXX1zesb7C0tKytrT18\n+PDo0aOvX78+Z86c3377LT09nc/nM5UTAAAAAAAAAECa3N4U8vHxOXv27LZt2xYuXKikpPTkyZM1\na9aMGTOGehIBfStm0aJFmzdvHjZsWHp6+pw5c2xsbG7fvm1sbCzdZ9WqVf/6178iIyO/+eab3bt3\nl5aWstnssLAwoVC4Zs2avXv3stnsAwcOMHq6APBBDg4Offv2PXbsWEhICNNZOgcOhzNy5MiRI0fS\nLeXl5X/88cft27fv3LmTkJCwe/fu2tpaTU3NESNGjBgxwsLCwsLCon///oqKigzGBgAAgC6pHZ+b\npaGhcfr06V69ekVERBw6dKj9Juo+1q1bl5eXFxYW5uDgoK6u7ujoGBoampubu379eqajAQAAAAAA\nAAD8P7m9KXTp0iVCiJ6enqqqKpvNNjMz27VrV8Nu3377rY2NjZqaGnXvpby8PCgoSKbPwoULBw4c\nqKGhsXbtWkLI+fPnAwICpFvi4uLa/XwAoLVYLNa0adPOnz/PdJBOjMvljh8/fvny5YcPH87MzHz1\n6lVGRsb27duHDBmSnp6+cOFCc3NzFRWVQYMGzZ07d/v27SkpKfK2tA8AAAB0Uu24igMhZOjQoXv3\n7p03b56/v/+IESOGDx/ertN1eefOnSOEODg40C0TJ06k27s5mRUvgBH04/oAAAAAAACgm5PPm0Ie\nHh6HDh3y9PQ0MDBwdnZ2dnZ2c3OjlnCQZm1tTW9T914uXLgg08fCwoLaEAgEMi1CoZAQIhKJ2uEM\n/is/Pz8mJqZdpwDo2qZOnbp9+/b8/Hx9fX2ms3QFbDZ70KBBVEEDIeTNmzcZGRnUGg+3b98+ffr0\nq1ev2Gz2kCFDLCwsLC0tx44da25urqDQjh/CBAAAgK6qfUscCCE+Pj5Xr149cODAp59+evPmzfae\nrmt7/vw5IYTH49Et1HZxcTFjmeTGyZMnmY7Q3W3dupXpCAAAAAAAACBH5H3M5/oAACAASURBVPCm\nUGRk5LRp044dO5aUlBQREREREWFoaHj27FmZCgwNDQ16m7r3Qt2Tkaaurk5t0O/PybQ0rJxoW2lp\naWlpae06BUDXZmVlpaCgcOPGDZQ4tAc2m009q4J6WVtb++DBA7ri4dixYy9fvuRwOKNHj7aysho7\nduyYMWOk73sDAAAANKLdSxwIITt27Lh169atW7d8fHw6YLouTEdHRyQSlZSUUJ8GIISUlJRQ7Yzm\nkgtYP4Bx+OwIAAAAAAAAyJDDm0Lu7u7u7u51dXWpqanBwcHx8fHz58+/c+eOdJ/S0lJtbW1qm7r3\n0rt3bwayNsrT0xOf94Bu7iNXdVVTU+vfv/+tW7dmzJjRVpHgQxQVFak1Hry9vcnfFQ+3bt1KTU39\n+eefN23aVFdXp6ura2tra2NjM3LkyNGjR/fs2ZPp1AAAACCnOmIZqJ49e546dYrL5f76668dMF0X\n5uLiQghJTEykWxISEuh2AAAAAAAAAAC5Im83hVgsVn5+PiFEQUHBzs4uOjqaEHL//n2ZbqmpqfQ2\nde/F2dm5A2MCQAcZNmxYZmYm0ym6I6riYe7cufv378/MzCwvL09OTg4ICHj9+vXGjRvt7Oy0tLRs\nbW0DAgKioqKePn3KdF4AAACQLx30pCtjY+MjR458ZF0tbNiwwcjIaPXq1UlJSZWVlUlJSWvWrDEy\nMgoKCmI6GgAAAAAAAADAe8jbTaGFCxdmZmbW1NQUFRWFhYURQiZNmiTTZ9++fSkpKVVVVdS9Fy6X\ni3svAF2SkZHRs2fPmE4BhMPh2Nrarlq1KjY2tri4OCMjY8eOHQMGDEhMTJw/f36fPn2MjY1nz569\nY8eOP/74o66ujum8AAAAwLDWlDiwWCz679L3bks30qZMmfLNN998RNRuR/rCUht8Pj89Pd3FxcXb\n21tLS8vb29vFxSU9PZ3P5zMXEwAAAAAAAAC6i85+UyglJUUgEEybNk1dXd3MzCwuLi44OPj48eMy\n3fbs2RMWFiYUCl1dXYcPH56ammpsbEztani7pjkbACCfDAwM8vLymE4B/0NBQWHQoEFffPHFDz/8\nkJGRUV5efuHChS+++OLFixdBQUHDhw/v3bv39OnTt23bdvv27draWqbzAgAAAAN6tOKY+vr6FrXT\nNm7cuHHjxlbM2D2993ry+fx9+/bt27ev4/MAAAAAAAAAQDfX2W8K2djY2NjYNNnN2Ng4Njb2vbsa\nnmlzWgBAPvF4vLKyMqZTQGM4HI6Tk5OTkxP1MicnJyEhISEhITg4eNmyZWpqamPHjp04caKNjY2l\npSWbzWY2LQAAAHSMDnpQBQAAAAAAAAAAAACA/FBVVa2tra2urmY6CDSXiYmJr6/vyZMnnz9/np2d\nHR4erquru2vXLjs7Oy0tLScnp6CgoISEhDdv3jCdFAAAANoRShwAAAAAAAAAAACgc2P9jekg79e6\neCdOnBgzZgyXy33v4XJ+yp2CmpoaIaSqqorpINAaVLlDVFRUXl5ednb2li1bdHV1IyMjnZycpMsd\nampqmE4KAAAAbQwlDgAAAAAAAAAAAIR+qxjvGXdG730+iJ2dnZ2dXceHaagVjy+JioqaPXu2trb2\n3bt3q6urT58+/fFjggzqGuJHvgugyx2ePXt2//798PDw3r17Hzx40MnJSVtbe+rUqdu3b3/w4AHT\nMQEAAKBtoMQBAAAAAAAAAACA1EthOgu0jbq6urq6OqZTtNKWLVsIIeHh4UZGRj179nR3d8d3Zpt7\n+/YtIURJSYnpINCWBgwYsHjx4mPHjhUUFDx8+HDLli0qKiobNmwYOHCgkZHRokWLYmJiysrKmI4J\nAAAArdeD6QAAAAAAAAAAAAAAbS81NZXpCK338OFDQki/fv2YDtKVUSUObDab6SDQXkxNTU1NTX19\nfWtra+/evZuQkJCQkPD555/X1taOGDFi4sSJEydOtLe3x/cAAABA54JVHAAAAAAAAAAAAADky+vX\nrwkWGGhnZWVlysrKysrKTAeBdqeoqDhy5MhVq1ZdvHixrKwsPj7exsYmOjrayclJS0vLyclp+/bt\nT548YTomAAAANAtKHAAAAAAAAAAAAKDdsf6WnZ3t7u7O5XKpl9Te4uJiPz8/fX19Nputp6fn6+tb\nWFgofXhCQoKrqyuXy1VWVrawsDhx4kQzp5NuzMzMnDJlipqaGofDmTRpUlZWlkw3+mVeXt706dPV\n1dX5fP6cOXNKS0ulx2kyLT2RhobGjBkznj171tJrJZPnvafTUOPBKioqli1bZmJioqysrK2tbW1t\nvXLlyuvXr7coW1dSUlLC4/GYTgEdTU1NbeLEiVRNQ3Z29pYtW7hc7vr1601MTPr27bt48eKYmJiK\nigqmYwIAAMAHocQBAAAAAAAAAAAA2l19fT214efnt3LlSpFIFBcXR7UUFRVZWlqeOXMmMjKyrKzs\nxIkTFy5csLa2lkgk9OFOTk6KioqPHj16+PAhj8ebPXt2fHx8c6ajZWdn29ra/vHHH7/++qtIJFq3\nbp2vr69MZ3pjzZo1oaGh+fn5Hh4eR48eXblyJT1Ok2mlJyooKFi2bBk9UUuvVb2UJo9qMpiPj8+2\nbdsCAgJKS0vFYvGhQ4dycnLGjBnTomxdSWlpqba2NtMpgEkmJia+vr4nT54sLi5OSkry8vK6cePG\nzJkzdXR0nJ2dd+/enZeXx3RGAAAAkIUSBwAAAAAAAAAAAOg4a9eutba27tWr1+TJk6l37tevX5+b\nm7tp0yZnZ2c1NTU7O7utW7c+efLk+++/lz5w69atPB7P0NBwx44dhJDg4OAWzRsUFCSRSMLCwhwc\nHNTU1GxsbNauXfuhzosWLRo4cKCGhkZgYCAh5MKFC/SuJtPKTGRvb79kyZIWRW2dJoNdunSJEKKn\np6eqqspms83MzHbt2tUBweTW06dPDQwMmE4BcoHNZk+YMCEkJOT27duFhYU//PCDhobGmjVrDA0N\nR44cuWHDhjt37jCdEQAAAP5fD6YDNCYmJqbJtdcAAAAAAAAAAACgE7G0tJRpiY2NJYRMnjyZbrG3\nt6fa6ToG6WUMTE1NCSFZWVktmvfixYuEEAcHB7rF2tr6Q50tLCyoDaFQSAgRi8XNT9twIltb2xZF\nbZ0mg3l4eBw6dMjT09PAwMDZ2dnZ2dnNza0560PIs7Fjx2pqag4dOnT06NFcLld6F4fDUVRU7Nmz\np4qKCiGE2quiotKzZ0+qQzdfxAI+REdHx9vb29vb+927d9euXYuJiYmIiAgKCjI0NPzkk0+mTZs2\nadIkNpvNdEwAAIDuS65LHKysrJYtW8Z0CpB3aWlpW7duZToFAAAAAAAAAAA0C/V+s7Ti4mLydzGB\ntOzsbGpDIpFs3rz5zJkz+fn5VVVVVGNpaWmL5i0pKSGE8Hg8ukVTU/NDndXV1akN6o1M6TqAJtM2\nnEh6u/00GSwyMnLatGnHjh1LSkqKiIiIiIgwNDQ8e/bs8OHDOyBeO0lPTyeENP7UkoaUlZV79epV\nUVHx9OnTmzdv9urVS1lZmcvlcrncxrd79+6tpKTUPqcCcqdHjx62tra2trbbt2/PzMw8d+5cbGzs\nwYMHVVRUJkyY4Onp6erq2sh/IwAAANBO5LrEQV9f39PTk+kUIO86e6U5AAAAAAAAAEA3x+fzCwoK\nysrKZD6FT/Py8rp48eL69euXLl2qpaVFCGnF4q88Hq+oqKikpIQuAqBqEdo8bcOJKioqWjFRmwcj\nhLi7u7u7u9fV1aWmpgYHB8fHx8+fP79Tr8BfVlb2xx9//Pzzz1QFDCGExWK5u7vv3bu3qqqqvr7+\n9evX1dXVdXV11Fehqqrq7du3lZWVhYWF33zzzbhx47S1tV++fPny5UuxWPzw4UNqWyKRUD0bzqim\npqatra2trc3j8bT/pqWlRW9T7RwOp6OvBbSnQYMGDRo0aNWqVbm5ufHx8bGxsYsWLVqwYMHYsWNd\nXFxmzJjRv39/pjMCAAB0F3Jd4gAAAAAAAAAAAABdnpub2+7duy9fvjxjxgy6MTk5OTAwMC0tjRCS\nmppKCFmxYgW1uEJNTU0rZnF2dj58+HBiYqK3tzfVQg3b5mkbTkS1t7cmg7FYrLy8PH19fQUFBTs7\nu+joaE1Nzfv373dAtvbD5XLHjx8/fvz4HTt2XL582cvL69WrV6dPn05NTb179y6fz//QgdTzRLZv\n395In5qaGrrcgSp9KC8vr6ysLCsrKykpKSkpKS0tvXfvXunfpEsilJSUZEofZKoidHV1dXV1Gy5q\nAnLOyMjI19fX19dXIpH85z//OXv2bEhIyOrVq4cPH+7m5ubl5TVw4ECmMwIAAHRxKHGAbiQhIWHH\njh3JycmvX782NzcPDAycNWsWvZeu/c/MzFy+fPnVq1fr6urGjRv373//W/q30mYO8vjx46+//vrS\npUsSiYT8vdREdXX1tm3boqOjHz58WFtba2xsPH78+Hnz5o0dO/bj81dUVAQFBZ09e1YkEqmqqpqZ\nmVlbW3t5edGPtywuLl6/fn1sbGxxcXHv3r2nTp363XffCQQCeoTMzMyvv/76ypUrCgoKVlZWW7du\nHTRoELULS2UAAAAAAABAR7p27VorPqPffeTn5+vr6zOdoi0FBQVduHDB39+/trZ2woQJbDb7999/\nDwgIiIyMpDrY2dnFx8eHhIQEBgbW1dUFBwe3bpbY2NjVq1fr6elZWlrevXt3//797ZFWZqJ79+6F\nhIS0YqI2D0YIWbhwYXh4eL9+/SQSyfbt2wkhkyZN6oBsHWP8+PFXr161tbU1Nze/devWwIEDnz59\n+qHVFP78808+n99IfQMhpGfPnj179qQWDmmO169fl/8vsVgsEonKy8uLiooePHhANRYWFtJ325SV\nlYVCoa6uLpfLpTak/xUIBAoKCi26CNBhNDU1Z8+ePXv27Ddv3vz++++//vrrwYMHg4KChgwZMnPm\nzJkzZ/br14/pjAAAAF1UvZTo6GiZFgZ5enp6enoynQI6geZ/3xJC3Nzcnj9/npub6+TkRAj57bff\nZDoQQqytrVNSUiorKxMSEgQCAZfLffLkSUsHcXJySk1NffXqVVxcHBXvxYsXo0aNUldXP3jwYGFh\nYWVl5aVLl6jiiWaeaeNTT58+nRCybdu2qqqqmpqaBw8eUAX71N7CwkIjIyM+nx8fH19ZWXnlyhUj\nI6M+ffqUl5dTHR4/fqypqSkUChMTEysrK1NSUmxsbBr+L9EI/MwCAAAAAAB0XnL1N13H3RfrzOTn\n69V8Mqcgs7esrGz58uV9+vRRUlLi8/kuLi5paWn03qKiIm9vbx0dHTabPXjwYOp2kPQ4DUd+71wZ\nGRmTJ09WVVVVV1efNm1adnY2IURBQeG9IRsZp/G00hOpqak5OztnZmZ+6MSbvFZtGCwlJcXHx8fY\n2FhJSUlDQ2PYsGHBwcEvX75sTiQ5RAiJjo5u2E7djvvmm29YLNaIESM+dPinn37q4uLSngE/qLq6\nuqCg4MaNG7GxsQcOHNiwYYOfn9/06dPHjh1rYGDAZrPpr2zPnj0NDQ2trKymT5/u7++/YcOGH374\nITY29tatWwUFBe/evWMkP3xIbW1tcnLy0qVLdXV1CSHm5ubr169/9OgR07kAAAC6Gla91G/DJ0+e\nnDlzZr18/CXp5eVFCDl58iTTQUDeNf/7lsViPXnyxNjYmBDy4MGDgQMH2tnZXblyRboDISQuLm7y\n5MlUy08//TRv3jwfH58ff/yxRYNcunRp/Pjx0rOvWLFiy5Yt27ZtCwgIoBvv3LljYWHRzB+6xqfW\n0NB48eJFTEzMp59+SrWIRCI9PT1q8CVLluzfvz8iImLBggXU3jNnzri7u69du5b63IO3t/eRI0cO\nHz48Z84cqkNcXNzUqVNJs5dwwM8sAAAAAABA5yVXf9OxWKzo6GgqEryXXH29OjXq5omOjk5RURHT\nWaDFGvm/Yvr06c+fPx8+fPjevXt/+umnuXPnynSor68XCASBgYErVqzokLAtU1JSUlhYKBaLxWJx\nYWGhSCQqKioqKCgoLi4uKCioqqqiuikoKOjo6Ojq6hoYGBgbGxsaGhoYGBgaGhoZGQkEAqyFw6C6\nurqrV6/GxMScOHGiuLjY3Nzc09Nz7ty5JiYmTEcDAADoCvCgCmAe/dt2e5fXSI9vampKCMnKymrY\nzdramt6eOHEiIeTChQstHYR+PATt1KlThBA3NzfpRqqQvE3ye3h4HDp0yNPT08DAwNnZ2dnZ2c3N\njT4kNjaWEEKXbhBC7O3tqXaqxIF6+qCDgwPdQfo6NN+WLVv+/PNPNpvN4XD09fUNDAwGDBhgZmam\nqKjYitEAAAAAAAAAANoQi8V69OgRvXo89dGRCRMmMBoK2t6XX37p5OQUGRl59OjRlStXNixxyMjI\nKC4ulvmEkvzg8Xg8Hm/w4MHv3fvy5UuRSETXQIhEory8vFu3bp0+fVosFtfV1RFCevbsqa+vb2ho\nSFU8GErp1atXx55Nd6SgoGBra2tra7tly5a0tLSYmJjdu3dv3LjRysrK09PTy8uLWuYBAAAAWgcl\nDsC8+vr6DqgplkgkmzdvPnPmTH5+Pl3pXFpa2rCnhoYGvc3j8Qghz58/b+kgKioqMi1isZgQIhAI\n2il/ZGTktGnTjh07lpSUFBERERERYWhoePbs2eHDhxNCiouLCSFCoVBmWGo9RkJISUkJfb4UTU3N\n1kUtLi5+8+aNRCIpKCigniyoqqo6evToqVOnzpgxo2/fvq0bFgAAAAAAAADg4/n7++/du5fP51+7\ndm3VqlUcDicoKIjpUNDGHBwcDA0NDx8+/I9//GPTpk1XrlyhPu1Du3z5soaGBnXfrNNRVVU1NTWl\nPgEl4+3bt8+fPxeLxTk5OTk5OSKRSCwWnz9//vHjxxUVFVQfLperq6srFApN/ka9NDY2VlBQ6NhT\n6foUFRWpWofNmzdfuHAhJiZm3bp1y5cvp2odZs2axefzmc4IAADQ+aDEofuiqgrk5LkkHcDLy+vi\nxYvr169funSplpYWkVo9QkZpaam2tja1Tb3x37t375YO0hCfz8/PzxeLxdSTJtojv7u7u7u7e11d\nXWpqanBwcHx8/Pz58+/cuUPNXlBQUFZWxuVy3zs+j8crKioqKSmhyyCoc2+p5cuXL1++nH755s2b\njIyMO3fu/P7776GhoYGBgU5OTsuXL580aVIrBgcAAAAAAAAA+BgJCQl79uyxtrYuLS3lcrkTJkzY\nsGHDgAEDOjhG4zeUus/9uvajoKDg6el57ty569evh4SE7N69W6bE4ffff7e3t+96y44qKSkJhUKh\nUDhy5EiZXaWlpXl5ec+ePXv69Cm1ce/evXPnzonFYupbTllZ2cjIiHrmhYmJSd++fakCCOpWJHyk\nnj17uri4uLi4vH79+vz589HR0WvWrFm5cqWTk9OcOXNmzJiB1TUAAACaD1WZ0F2kpqYSQlasWEH9\nUl5TU9N4T0pCQgIhxNnZuaWDNOTh4UEI+eWXX6Qbr127NmbMmDbJz2Kx8vPzCSEKCgp2dnbR0dGE\nkPv371N7qQdkXL58WfqQ5ORkKysraps6x8TERJkZPxKbzbawsPjiiy+ioqKKiorOnTvHYrEmT548\nderUnJycjx8fAAAAAAAAAKD5HB0dT58+XVhY+Pbt2+Li4ujo6I6vbyCE1Deq4/N0SWPHjs3MzHz3\n7h2Px0tPT5feVV9fn5ycPG7cOKayMUJbW3v48OGurq5Lly79/vvvo6Oj09LSCgoKqqurHz9+fOnS\npf3793/22WdGRkZPnjw5ePDg559/Pnr0aG1tbS6XO3LkSC8vr9WrVx84cCAhISEnJ+fdu3dMn1Bn\n1atXr08//TQmJqa4uPinn35SUFDw8fERCARffPHFlStX8D8AAABAc2AVB+gu7Ozs4uPjQ0JCAgMD\n6+rqgoODP9Rz3759Wlpaw4cPv379+po1a7hcLr1cYfMHaSgoKCgxMXHdunWqqqqurq6qqqqpqalf\nfvnl3r172yr/woULw8PD+/XrJ5FItm/fTgihF0sICgq6cOGCv79/bW3thAkT2Gz277//HhAQEBkZ\nSXeIjY1dvXq1np6epaXl3bt39+/f3/yzaw5FRcUpU6ZMmTLlypUr//jHP0aOHHn48OFp06a17SwA\nAAAAAAAAAACjRo2qra29e/fuiBEjpD/VQwi5fft2cXHxhAkTmMomV9hsdt++fRs+W/bt27e5ubk5\nUuLj43Nycl68eEEIUVJSMjQ07Nevn6mpaf/+/akHZxgZGfXogXccmktNTe2zzz777LPPysrKTp06\nFRUVNW7cOH19/c8//3zBggX9+/dnOiAAAID86vSrOLD+lpWV9cknn3A4HDU1talTp9IfXpfuk52d\n7e7uzuVyqZfU3uLiYj8/P319fTabraen5+vrW1hY2IbjFxYWLl68mBpfX19/yZIlRUVF0qdQXV0d\nGho6YsQIVVVVZWXlAQMGLFmy5Nq1a42cdWZm5pQpU9TU1DgczqRJk7KysugMdJ8mz0s6/MKFC2XO\nRSQSeXh4qKura2tr+/j4VFRUPH361NXVlcPhCASCefPmSSQS6UgJCQmurq5cLldZWdnCwuLEiRPS\neysqKpYtW2ZiYqKsrKytrW1tbb1y5crr16+/9+xGjRpFx5g1a1Yj16FFoqKivL29IyIi+Hz+uHHj\n6LUTGi4MuGfPnrCwMKFQ6OrqOnz48NTUVPrREk0OInNhpYfV1NRMS0sLCAgIDw83NDQ0NjbesmVL\nRESEo6Njm+RPSUkRCATTpk1TV1c3MzOLi4sLDg4+fvw4tZcqV589e3ZgYKCurq6pqemBAweOHj1K\nl6ubmJikpKQMGzbM1dVVKBSGhYXt2rWLENIeT+Czt7e/fv26h4eHm5ubzLcKAAAAAAAAAADAxzM2\nNtbS0rp7966lpWVtbW1ZWRm96+TJk3369BkxYgSD8eSfkpJSv379nJ2dlyxZsnnz5lOnTt25c6ei\nouL58+fp6ek//fTT/PnzdXV1b9269d13302ePLlfv36qqqoDBgxwdXVduXLlvn37EhMTnz17hmUJ\nmqSlpeXr65uSknLv3r1Zs2ZFRUWZmZnZ2Nj88MMPlZWVTKcDAACQS9JroFEr2ze+TlqH8fT09PT0\nbE5P6kSsra1TUlIqKysTEhIEAgGXy33y5IlMHycnp9TU1FevXsXFxVFnWlhYaGRkxOfz4+PjKysr\nr1y5YmRk1KdPn/Ly8jYZXywWGxgYCIXCxMTEFy9eUMcaGRkVFhZSB7548WLUqFHq6uoHDx4sLCys\nrKy8dOnSwIEDG/lCPH78WFNTkxqzsrIyJSXFxsZG5qvZ/PP60PWcM2dOVlaWRCLx9/cnhEydOnXG\njBlUi5+fHyFk0aJFMke5ubk9f/48NzfXycmJEPLbb7/Re6dPn04I2bZtW1VVVU1NzYMHD2bMmCE9\nu3QYsVg8ePDgVatWfegKyGjD79sPXZPuqaCggBCio6PTzP7N/5mlrVy5skePHomJiS1PBwAAAAAA\nAG2pFX/TtR9CSHR0NNMp5Jpcfb0AmNLk/xXDhg1bu3YttYTqjRs36Pa+ffs2/94jNEdZWVl6evqR\nI0fWrVs3e/bsUaNGaWhoUPdae/XqNXToUE9Pz2+//fbYsWO3bt2qqqpiOq9ce/fu3X/+859Zs2Yp\nKyurqaktWLAgJSWF6VAAAADypeuUOMTFxdEtP/74IyHEx8dHps+lS5dkjl28eDEhJCIigm75+eef\nCSFr165tk/EXLVpECDl8+LDMsYsXL6ZeLl++nHrvX/qo27dvN/KFmDNnjsyY58+fl3lvvvnn1XB8\nqv3y5cvUS+p9bumWvLw8Qoienp7MUXTNB7XEhZ2dHb2Xw+EQQmJiYugWatiGYZ4+fdqvX7/g4OAP\nnX5DKHFoK4SQR48e0S+pFSBmzpzZzMNbcXulrq7O09NTKBSWlJS06EAAAAAAAABoW3L1ljlKHJok\nV18vAKY0+X/FpEmTFixYQN07PXXqFNWYnp5OCLl161aHZOzWioqKkpOTIyIiVq9ePWPGjAEDBigp\nKRFCWCyWkZGRs7Pz0qVL9+7dm5SUJBaLmQ4rjyQSyf79+y0sLAghZmZmoaGh9CcnAQAAurmu82Qs\na2trenvixImEkAsXLsj0sbS0lGmJjY0lhEyePJlusbe3p9qDg4M/fvxz584RQhwcHGSOpdoJIadO\nnSKEuLm5SR81YsSI+g+v33Xx4kWZMaWztfS8PoT6zYkQIhAIZFqEQiEhRCQSSfeXDmxqakoIycrK\nols8PDwOHTrk6elpYGDg7Ozs7Ozs5ubW8Bz/+usvJycnAwODtWvXNicktDl/f/+9e/fy+fxr166t\nWrWKw+EEBQW133QsFmv//v3m5ubffffd9u3b228iAAAAAAAAgC4mLS3Ny8uL6RQAck1XV7ewsFBL\nS4sQUl5eTjXGxMSYmJjQtzqh/ejo6Ojo6Nja2tItb9++zcnJuX///l9//fXgwYP09PSoqCjqgcia\nmppmZmbm5uYDBw4cPHiwubm5kZERc9nlgoaGhq+vr6+v782bNyMiIkJCQv75z3+6uLj4+vo6OTm1\nx/OFAQAAOouuU+JAr3xFCOHxeISQ58+fy/RRUVGRaSkuLiZ/v2cvLTs7u03Gp/pQ/aWPpeYlhIjF\nYiJVRtAcJSUlMmNqamrK9Gn+eX2Iuro6tUH/qiTTIl2gIJFINm/efObMmfz8/KqqKqqxtLSU7hAZ\nGTlt2rRjx44lJSVFREREREQYGhqePXt2+PDh0pNOmDChoqIiLy/v2LFjn332WTOjthUWi0VvNFJi\n0t6zv1fH5ElISNizZ4+1tXVpaSmXy50wYcKGDRsGDBjQrpNyudygoKClS5d+/fXX+vr67ToXAAAA\nAAAAAAB0H1paWn/99VdRUREhREdHhxBSX19/6tSpjr/xCBQlJSUz1ktiugAAIABJREFUMzMzMzPp\nxsLCQqro4f79+w8ePLh48WJ+fj4hhMPhmJubU+UOgwcPHjRoUMPb3d3EqFGjRo0aFR4efurUqYiI\niE8++aRv376LFy+eP3++9NsEAAAA3UfXKXEoLS3V1tamtqkigN69ezd5FJ/PLygoKCsr43K57TG+\njo6OSCQqKSmhf/2ijqV+paYC5Ofni8ViY2PjJkej8Hi8oqKihmO27rzahJeX18WLF9evX7906VKq\nLLrhG/bu7u7u7u51dXWpqanBwcHx8fHz58+/c+eOdJ+dO3e+ePFiwYIF/v7+9vb2HfyGd8eXNcjP\n7BRHR0dHR8eOn3f+/Pn//Oc/f/zxx2+//bbjZwcAAAAAAADojKysrE6ePMl0CgAmNf6RIUKIoqJi\nbW0tVeKgq6tLCLl27drTp089PT07Ih80j0AgEAgEEyZMoFskEklmZmZmZmZGRkZWVtavv/5KfaKP\ny+XSFQ/m5uZDhw7tVm/wq6iozJ07d+7cuQ8fPoyMjAwLC/v222+nT5/u6+vr6OjY5I8DAABAV9J1\n1jJKTU2ltxMSEgghzs7OTR5FPSHi8uXL0o3JyclWVlZtMr6LiwshJDExUeZYqp0Q4uHhQQj55Zdf\npI+6du3amDFjPjQmNa/0mNLZKM05L2rNibdv37569eojfxekAqxYsYKqb6ipqZHpwGKxqNpbBQUF\nOzu76OhoQsj9+/dlunl4eMyfP3/69OkSiWT+/Pny8K4/dAA2m/35558fPXqU6SAAAAAAAAAAANB1\nKCoqvnv3jipxoD4tdvDgwSFDhsisLAvyRlNT08bGxtfXd8eOHQkJCUVFRWVlZcnJyaGhoSNGjMjO\nzg4ODnZ0dOzdu7eWlpatrW1AQEBUVNStW7ca3pfukvr37x8aGpqbm7tnz54nT544OTkNGzZsz549\nlZWVTEcDAADoIF2nxGHfvn0pKSlVVVVJSUlr1qyhVr9v8qigoCBTU1N/f/9Tp06VlpZWVlaeO3du\n3rx5oaGhbTL+hg0bjIyMVq9enZSUVFlZSR1rZGREHxsUFDR48OB169YdPHiwqKioqqoqPj5+7ty5\nmzZtogdhsVjSNZhBQUGamprUmFVVVSkpKfv372/FeQ0dOpQQcv369djY2IYlHS1iZ2dHCAkJCZFI\nJGVlZWvXrm3YZ+HChZmZmTU1NUVFRWFhYYSQSZMmvXe0AwcO9O7dOyEhYceOHR+TCjqRKVOmPHjw\ngKqDAQAAAAAAAAAA+HhUiUNGRgaLxdLV1S0vL4+Ojvb392c6F7QYl8u1tbX19fXdvn37xYsXxWKx\nSCSKj49fs2aNsbHxpUuXFi5cOGrUKA0NjZEjRy5YsGDbtm1JSUllZWVMB29HqqqqX3zxxY0bN27c\nuGFpafn1118bGBgsW7as+c+qBgAA6Ly6TonDnj17wsLChEKhq6vr8OHDU1NT6Uc/0PUBMrUChBAe\nj5eenj579uzAwEBdXV1TU9MDBw4cPXp03LhxbTI+n89PT093cXHx9vbW0tLy9vZ2cXFJT0/n8/lU\nB01NzbS0tICAgPDwcENDQ2Nj4y1btkRERDTyvAATE5OUlJRhw4a5uroKhcKwsLBdu3YRQhQU/vvV\nbM557dy5c9iwYc7Oztu2bQsPD294Ls3fiIqK8vb2joiI4PP548aNo5egoDukpKQIBIJp06apq6ub\nmZnFxcUFBwcfP36cvgh0/1OnTvH5/OfPnxNCvvrqKxaLdfPmzQ9dCugybG1te/TocfXqVaaDAAAA\nAAAAAABAF8Fiserr67OystTU1BQUFA4ePKikpPR/7N13XFN3+z/+k0AYIZOdhLAUZLgQB+BWwG3d\n1tbVqlhv796OOlut1tG71jr7sXV1ibXuXQdiKyqKdSDIVFnZIUASMkjI4PvH++f55QZEROCAXs8/\n8jicnHGdE4gm53Wu9/Tp04muCzQDDocTHx+/fPnyw4cPZ2ZmarXaR48e7du3b9CgQQKBALV5cHNz\n4/P5o0aN+uKLL06dOlVUVER01S2iZ8+eBw8elEqlX3311dmzZ4ODg+Pi4i5cuAA9kgEAALzFSLb/\nzh0/fnzq1Klt5F++KVOmYBjWmDEF0XX0liu7pbf/5iQSCY/H8/T0RF3X3jVt6vf2Xdb4v9l6BQcH\nf/jhh+vWrWvWogAAAAAAAAAANMobfqZrXiQS6dixY6gkUK829XoBQJRXvlcsWbLk3r17ubm5HA4n\nKyurY8eOY8eO3blzZ2sWCYgikUgyMzMzMjIyMjIeP3789OlTi8XCZrN79OjRo0ePyMjIHj16dOzY\nsdYti+2d1Wr9888/d+/eff369aCgoH/9619z5851cXEhui4AAACgmb09XRzeKSQS6fnz5/iPN2/e\nxDBs8ODBxFUEwJsKCgoqLCwkugoAAAAAAAAAAO0D6YWcnJzhw4czGAwajTZq1Kjc3Ny6yxQUFEyY\nMIHNZts24CwtLV2wYIGPj4+DgwOPx0tISJDJZM24fZlMNn/+fLR9Hx+fTz75pNatKQaDAY0r7+Li\n4uTkFBIS8sknn6SlpbXgWWtW+OETXQgAL6XVamk0mlqtDgsLu3TpUnFx8YIFC4guCrQSLpc7fPjw\nlStXHjlyJCcnR6/XZ2Vl7dy5Mzw8/M6dO7NmzQoODmYymf369Vu0aNGhQ4eys7MtFgvRVb8pMpk8\nZsyYa9eupaen9+vXb9WqVb6+vmvWrLH9Bw4AAAB4C0DEob1auHBhYWGhTqe7fv36ypUrGQzG+vXr\niS4KgKZzd3cvKysjugoAAAAAAAAAAO0D3s1x3rx5a9eulUgk586de/ToUd++fYuLi2sts2DBgmXL\nlkkkkkuXLqE5crm8d+/eZ86c+fnnnysqKo4ePZqUlBQTE6NSqZpl+zKZrHfv3hcvXjx06FB5eflv\nv/127ty5Pn364CkHjUbTv3//r7/+Gn3DU1ZWtnfv3ps3b0ZHR7fUKWtu9TbU7N+/f//+/Vu/GADq\npdVq1Wp1TU3NpEmT9uzZExsb26lTJ6KLAsRwcHAIDw+fOXPmrl27bt++rVKp7t279+2334aFhaWm\nps6bN69z584o8bBkyZI//vijoKCA6JLfSLdu3X766SeBQLB48eIDBw74+/vPmzcvLy+P6LoAAACA\n5tHuIw54VLyFMuMtvf2mSU5OptFoMTExLBZr2rRpUVFR9+7dCwkJIbouAJqOyWRqNBqiqwAAAAAA\nAAAA0M6sWbOmb9++NBpt6NCh33zzjVKprHsTyOeffx4TE+Ps7DxixAh0YX7dunUlJSVff/11fHw8\njUbr37//jh07ioqKtm7d2izb//LLL4VC4ZYtW4YMGUKn09G6JSUl+PiM69evf/DgwcaNG+fOnevl\n5UWj0QYNGvT777+3wBlqVVar1Wq1El1FM4NmFbba19nQarVSqZREInXq1CkpKWnhwoVEVwTaCicn\np969e3/yySf79+9/8OCBVqt9+PDhzp07u3TpcvPmzVmzZnXs2NHd3X3kyJHr1q37888/S0tLiS65\nKTw8PNauXSsQCPbv35+amhoWFhYXF3fhwgWi6wIAAADelD3RBbypegPj7Wj7TTN06NChQ4cSXQUA\nzam6utrR0ZHoKgAAAAAAAAAAtDMxMTH4dGxsLIZhSUlJtZbp3bt3rTnoAs+IESPwOQMGDEDzN2/e\n/Obbv3jxIoZhQ4YMqbUumo9h2MmTJzEMGzdunO1aERERbfObqMZLTU0lugQA/n8KhaK8vJzL5W7a\ntCksLGzMmDFEVwTaKAqF0qNHjx49esydOxfDMJPJ9PTp09TU1Nu3b588eXLTpk1Wq5XD4US+0K9f\nPzabTXTVjeXo6Dhz5szp06efP39+69atY8eO7dOnz4oVK8aNG0cmt/ubYAEAALyb2n3EAQDwdqiq\nqnJyciK6CgAAAAAAAAAA7QyTycSn3d3dMQxTKBS1lqFSqbXmoPtxuVxurfl1O5M3bftoGbS87br4\nfcBSqRTDMG9v73oPCgDQLMRicVVV1aBBg86ePXvq1Cm4mgsaiUKhhIeHh4eHJyQkYBhWUVFx//79\nf/755/79+3v37pXL5XZ2duHh4dHR0TExMTExMR07diS65Fcjk8njxo0bN27cnTt3tm7dOnny5NDQ\n0NWrV0+dOtXeHq4TAQAAaGfgf3UAgDbBYDBAxAEAAAAAAAAAwOsqLy/Hp8vKyjAM8/DweOVaXl5e\nGIZVVFTU/C+dTtcs2/f09MSXt10XzccLQEGHlkN6oaCgYMKECWw223aUgdLS0gULFvj4+Dg4OPB4\nvISEBJlMZrt6cnLy2LFj2Wy2k5NTjx49jh492sjd2c7Mzs4eOXIkjUZjMBjDhg3LycmptRj+o1Ao\nfO+99+h0upeX1/Tp023PPL6MRCKZOHEinU53c3ObNWuWWq0uLi4eO3Ysg8Hw9vaePXu2SqWy3XvD\nx9jIXdsujO7wbvyZz8nJGT58OIPBoNFoo0aNys3NbfwZbvjla+S6zX7GXnY2Gnmq6x6LWq1esmRJ\nYGCgk5OTm5tbTEzMsmXL/vnnn8ac54bV1NRIpdKampqqqqru3bu/9957b75N8G5ydXUdNmzY2rVr\nz58/L5PJiouL//jjj7i4uCdPniQkJAQFBXl5eY0bN27r1q2pqakGg4Hoel8hJibmzJkzT5486dGj\nx+zZs4OCgnbt2tX2ywYAAABsQcQBANAmQMQBAAAAAAAAAEAT2I6MkJycjGFYfHz8K9dCI0TcuHHD\nduatW7eio6ObZfuoH/7169drrYv3yZ84cSKGYWfPnrVdKy0trU+fPq/ceOPhw14sWLBg2bJlEonk\n0qVLaI5cLu/du/eZM2d+/vnnioqKo0ePJiUlxcTE2F7wjouLs7Oze/bs2dOnT93d3adNm3b16tXG\n7A5XUFDQr1+/jIyM8+fPSySSL7/8Et0SbbswPrF69epvvvlGJBJNnDjx999/X7ZsWd0tr1y5ctOm\nTSKRaNq0aYcOHfrwww+XLl26ZcsWoVA4YcKE3377bcWKFfharzzG19o1CsEcPHiwoTNeZ6158+at\nXbtWIpGcO3fu0aNHffv2LS4uxhdr+Aw38PI1ft0WOmO1zkbjV6x7LLNmzdq5c+eiRYvKy8ulUukv\nv/xSWFjYLH8ISqXSYrHQaLQbN2589dVXtcI3ADSZn5/f5MmTv/vuu9TUVK1W++DBg88//5zBYOzZ\ns6dfv350Or1nz56LFi06dOhQSUkJ0cW+VFhY2KFDh549ezZ27NhVq1b5+/tv2bJFr9cTXRcAAADQ\nOLZB9WPHjtWaQ6DJkydPnjyZ6CpAO9Cmfm/fZW/4N9uzZ8/PPvusGesBAAAAAAAAANB4bep7GAzD\njh071pjFMAwbMWLErVu3NBrN9evXORwOm80uKiqqtUzddRUKRVBQEIfDOXHiRFlZWWVl5YULFwID\nA2/cuNEs25fJZH5+flwu9/r165WVlWhdPz8/mUyGFlAqlZ07d6bT6fv375fJZBqN5sqVK0FBQcnJ\nyY05RY1/vVCFf//9d6358+fPxzDsp59+wuecPn0aw7DPP//cdl38YFH7gf79+9fdeANzpk+fjmFY\nYmIiPufPP/982Vr4yS8qKsIwjMvlNrCMWCyuNUcoFGIYxuPxXvcYG7nrmteE1rp06RI+59dff8Uw\nbNasWbbLNOYM1335Gr9uC52xWsU0fsW6x8JgMDAMO3HiBD4HlVr3kOs9CQ28VyQlJWEY5u3tHRkZ\nabVaG7NBAN5QQUFBYmLiggULunbtamdnh2FYQEDA9OnT9+3bl5ubS3R1LyUUCv/zn/84Ozt7eXlt\n375dr9cTXREAAADwCqQam3j18ePHp06devz48bpJiNa3Y8cODMOWLFlCdCGgrbt79+6OHTvayO/t\nu2z79u18Pr/JLwSLxdqyZQv6SAwAAAAAAAAAoJVNmTIFw7A28uGaRCIdO3YMldTwYhiGFRUVffrp\npykpKVardcCAAdu2bQsNDbVdAGf7JRiGYUqlctOmTWfOnBGJRK6urr179/7888+joqKaa/tyuXzd\nunUXLlwoLS319PQcPXr0hg0b0PgUiFar3bJly4kTJ4qKiuh0emRk5Jo1a/r379+YU9T41wsVqdPp\nqFSq7XwejyeRSCQSCYfDQXPKy8vd3d27dOmSmZlZdzsWi8Xe3t7Nzc129A20cdsDrzXH29tbLpeL\nxWIul4vmqFQqNptd71qVlZV0Oh3DsOrqakdHRxKJZLVaX7aM1WpFlw9rzbFdqzHH2Phd13p9Xwmt\npVKpmEwmmiMWi318fDgcjkQiqbt8A2e47svX+HVb6IzVOhuNX7HusXz88ce//PILhmF8Pj8+Pj4+\nPn7cuHEODg4NHK/tMTbwXtG3b987d+5gGHbp0qURI0Y0ZoMANCONRpOWlnbnzp3U1NS7d+9qtVpv\nb+8BAwb0799/0KBB4eHhba2zSGlp6datW3/44QcWi7V69ep58+Y5OjoSXRQAAABQv/+JONy6dWvI\nkCFms5nAggAA7deSJUu2b9/ehBXlcrm3t/f169eHDBnS7FUBAAAAAAAAAHil9htxeN0Lz69VRotu\n/028bsSh7lFQKJR6vwOkUqk6nQ7DMJVK9e2336IIiFarxRdoINBQd469vb3FYjEajbZXrF+5VnPN\neeUxNnlHjVF3LaPR6OTkZG9vbzKZsKaeYaRZXp26c5p2xt5kReT06dNHjhz566+/lEolhmG+vr7n\nzp3r3r173SVrQe8VJ0+eZDKZZDKZRqNRKBRnZ2d0nlesWFFTU9O5c+cNGzYwmUwmk8lisVgsFpPJ\nRGkPAFqNxWJ5/Pjx7du3U1NTr1+/XlFRQafT+/TpExsb27dv3z59+lAoFKJr/P8oFIpt27bt3r3b\n3d39s88+++STTyDoAAAAoA0itc3PaQCAd8rt27f79+8vFAp9fHyIrgUAAAAAAAAA3kUQcWj97b+J\nN484+Pj4iMXiiooK1FOhrvj4+GvXrq1bt+4///mPq6trvZtqQheHsrIyDw+P191O0+a88hibvKPG\nQGuVlZW5ubmhObW6ODTtDCPN8urUndO0M/YmK9qyWq2pqambN2++evVq9+7d09PTX7ak7TZRxEGl\nUtXU1Gi1WpPJVFVVZTAY0AA0L1uRRqMxX0ChB9sABOLm5ubm5ubu7t7AQQHQBBaLJSMj4+bNmykp\nKbdv3y4rK2Mymf369RswYMDAgQN79uzZFiI4YrH466+/PnjwII/HW7t27cyZM9tCVQAAAACOTHQB\nAACAPX36lEql8ng8ogsBAAAAAAAAAADeCePGjcMw7MaNG7Yzb926FR0djaZTU1MxDPvss8/QFXSj\n0diEvcTHx2MYdv36dXwO2mzreOUxNhIaWMFkMun1end399da1/Z4k5OTsRfnBHuzM9wsr05djTlj\n9Z6NNznVJBJJJBJhGEYmk/v373/s2DEMw3Jzcxtf9vHjx5OSkq5du3b37t0HDx5kZ2cXFBSQyWQM\nw0JCQtBozXq9XiwWZ2Vl3bp16/z583v27Fm+fPnMmTPj4+ODgoIoFIpYLL59+3ZiYuLGjRs//vjj\n0aNHR0dHBwcHu7q6kkgkZ2dnLpfbs2fPMWPGzJw5c9GiRevXr9+1a9ehQ4eSk5Ozs7MlEglqzgHA\nK9nZ2fXo0WPx4sVnzpxRKBQFBQXffvutq6vrnj17oqKiWCxWXFzcli1bHj58SGDGjsfj7dmz59mz\nZ7GxsfPnz+/ateu5c+eIKgYAAACoy57oAgAAAHv48GGXLl3a2vhzAAAAAAAAAADaLPwjJInUIj1K\nW3r7hFu/fn1SUtLChQstFsvgwYMdHBxSUlIWLVr0888/owX69+9/9erV//73vytWrLBarZs3b27a\nXi5cuLBq1Soej9e7d+/Hjx/v27evWY/jFXtv+BgbqWvXrmlpaf/8849IJHrdeMTevXtdXV27d+/+\nzz//rF69ms1mr1+/Hj31Jme4WV6duhpzxuo9G294qufOnbtt27aOHTuqVKpdu3ZhGDZs2LA3OZDd\nu3erVCo7O7sRI0agOc7Oziim0Mgt6PX68vLy8vLysrKysrKychulpaW5ubkKhaK8vNx2lBAMw1xd\nXd1ecHd39/Dw4HA4+ISHh4eHh4ftoC0AYBgWGBiYkJCQkJCAYVhhYWFycnJycvKWLVtWrVrl5eU1\nYMCA2NjYYcOG+fn5tX5tvr6++/fv/+KLL77++usJEyb06tVry5YtAwcObP1KAAAAgFrezg9pAID2\npVu3bnFxcd999x3RhQAAAAAAAADAO6o9DlTxLmvk61XrXoJaXwMqlcpNmzadOXNGJBK5urr27t37\n888/j4qKQs+WlpYuW7bs6tWrKpUqODh47dq1U6dOtd2O7cZfNgfDsOzs7OXLl9+8eZNMJg8cOHDX\nrl0dOnQgk8kWi6VukY3fciP33vAxNnIjDx48mDt37rNnz7p27frbb78FBwdjjYA2VVRU9Omnn6ak\npFit1gEDBmzbti00NBQt8FpnGPvfl69ZXp0mnLEGzkbjT3WtY0lNTT1w4EBKSopYLKZSqf7+/lOm\nTFm8eDFqF/HKk1z3vaKmpoZOp+t0Oicnp927d8+bN++V22kyo9Fom35AuQecXC6Xy+UKhcJgMOCr\nuLq6enp6enh4eHp6ent7o9wDHoDw9vZmMpktVzBoLywWy+PHj1Hc4fbt2waDITAwMDY2NjY2dujQ\noah9Syt78ODBypUr//rrr9jY2G3btnXt2rX1awAAAABwEHEAABCssrLS1dX1+PHjEyZMILoWAAAA\nAAAAAHhHQcShfWlTr9drkUgkPB7P09NTLpcTXUvLQhf14avXFlXve8W6des2bNjQoUOHgoKCW7du\n9evXj6jycJWVlTKZTKFQKBQKmUxWWlqqUCjwAERpaWl5eTm+sKOjo4eHh5eXl5eXl20AgsPhcDgc\nLy+v1x0tBbR3er3+9u3b169fT05Ofvz4MYlE6tmzZ3x8/IgRI3r37m1nZ9eaxVy+fHnVqlU5OTkf\nffTRhg0bvL29W3PvAAAAAA4GqgAAECwtLc1isbxup0cAAAAAAAAAAAC0fSQS6dmzZx07dkQ/3rx5\nE8OwwYMHE1oUeGtVVVV9/fXXJBLp888/nzNnTkhICNEVYRiGMRgMBoPRQP8Pk8mEAhBSqbRWEiIr\nKwslIYxGI1rYwcHBy8sLRYW4XK63t7e3tzeXy/Xy8uJyuZ6enjAWxluGSqXGx8fHx8djGFZeXv73\n339fu3bt0KFDGzdudHNzi4uLGzFixLBhw7y8vFqhGLSvw4cPr1mz5ujRo1988cXixYsdHR1bYdcA\nAACALYg4AAAIdufOnQ4dOnA4HKILAQAAAAAAAAAAQPNbuHDhjz/+6OXllZaWtnLlSgaDsX79eqKL\nAm+nIUOGmM3mRYsWabVaDw+P9tLwgEKhcLlcLpfbrVu3ly1TVVUllUolEonto0gkun//vkQikclk\neMsQJycnLpfL4XDqPrLZbA6HU2vcENCOuLm5TZo0adKkSRiGFRYWJicnX7hwISEhwWg0hoWFjRkz\nJjY2duDAgRQKpeVqIJPJM2fOnDx58u7duzdv3rxnz55NmzbNnDmz5fYIAAAA1AURBwAAwW7cuNEW\negYCAAAAAAAAAACg2SUnJ//www8xMTHl5eVsNnvw4MFfffVVG7m3vskavkJcU1ODL0AiwTDBrScp\nKSktLc3Dw2Pnzp3/+te/QkNDia6oOTk7OwcGBgYGBtb7bFVVlUwmk0gkcrlcIpGUlpaKxWK5XH7r\n1i3UEMJisaAlqVQqGvMC9X5A+Hw+h8Ph8/lUKrUVjwm8kcDAwISEhISEBL1ef+fOneTk5HPnzm3Z\nsoVGow0aNGjMmDEjR4708fFpob07OzuvXLlyxowZX3311UcfffTLL7/s3LmzgYwOAAAA0LzgP9kA\nACIplUpPT8/ff/8dxlgFAAAAAAAAAAKhD2XHjx8nuhAMwzASiXTs2DH4nNiANvV6AUAU2/eKmpoa\nKpVqNBqLior8/PwGDx4cHBy8b98+omtsE6xWa2lpqVwuF4vFePpBKpVKpVKRSCSVSqurq9GSLBaL\nx+PxeDwOh+Pr68vhcHx8fLhcLo/H8/LygvYPbV9ubu7ly5evXLly8+bN6urqnj17jhs3buzYsZ07\nd265nd69e3fx4sUPHz6cN2/e119/zWazW25fAAAAAAJdHAAARLpy5QqGYWgwOQAAAAAAAAAAAAAA\nmiA6OtpgMPz73//28/OrqanJyMiYPHky0UW1FWQy2dvb29vb+2U32SuVStshMAoLCyUSSVZWVq0h\nMNhsdmBgoO3gF+hHPp/PYDBa8YDAS4WGhoaGhi5dulSn012/fv3ChQu7d+/+4osvOnTogLIOffv2\ntbOza96dRkdHp6WlJSYmrly58vTp01u3bp0xYwYEYgAAALQoiDgAAIj0559/9uvXj8ViEV0IAAAA\nAAAAAAAAAGiXvv3223v37vH5/O+//x7DsKKiIqVSGRERQXRd7QabzWaz2eHh4XWfqqqqEgqFUqkU\nPYpEIrFYnJWVdenSJblcbjKZ0GKurq5cLtfHxwclHlDjB19fXz6fD/f0E8LFxWXs2LFjx461Wq3p\n6ekXLly4ePHitm3bXF1dhw4dOnr06PHjx9Pp9ObaHYlEmjlz5nvvvffll19+/PHHBw8e/PHHH+v9\njQIAAACaBUQcAACEsVgsV69eXblyJdGFAAAAAAAAAAAAAIB26cmTJ6tWrbK3t8/JyUFz0tPTyWRy\nly5diC3s7eDs7BwcHBwcHFzvs/W2f8jMzEQ/omWcnJzwfg+2E8HBwc14iR28DJlMjoyMjIyMXL9+\nfWFhIco6zJkzZ/78+f369Rs9evSUKVM4HE6z7IvJZO7atWv27NkLFiyIiIhYsGDB5s2baTRas2wc\nAAAAsAURBwAAYe7du1dWVjZy5EiiCwEAAAAAAAAAAAAA7Y8YJNfUAAAgAElEQVROp4uMjKypqbl+\n/Tp+JTU9PT04OBgurLaCBto/6HS6kpISoVAoFApFIhGavnfvnkAgMBgMaBlPT08+n+/j4+Pn58d/\nwc/Pz9vbu9kHUwAYhgUGBi5atGjRokVlZWWXLl26ePHimjVrli5dGh0dPXny5KlTp3p7e7/5XiIi\nIlJTU/fu3btmzZrz58/v3bt32LBhb75ZAAAAwBYJH0kLAABa2ZIlSy5dupSfn090IQAAAAAAAADw\nrpsyZQqGYcePHye6EAzDMBKJdOzYMVQSqFeber0AIAqJRKJSqXq9fsOGDWvXrsXnjxo1islkHjly\nhMDaQAPw3g+o6wOaKCwsFAgEZrMZLcNmswMDA217P6BpDodDIpGIrf9totPprly5cvz48T///NNg\nMAwePHjKlCkTJkxwc3N7843LZLLFixcfO3Zs9uzZ27dvhyFLAAAANCOIOAAAiGG1Wn19fefOnbt+\n/XqiawEAAAAAAACAd920adOOHj1KdBUAAPDapk+fnpiYaDuHy+UuWbJk+fLlRJUEmsZsNkulUoFA\nIBAIRCKRUChEvR9EIpFCoUDLUKlUPz8/Hx8fPp/v6+sbEBDg7+/v7+/P4/Gg8cObMBgM165dO3Hi\nxJkzZ6qqqqKioiZPnjxt2jRPT8833PKff/75ySefmEymPXv2TJw4sVmqBQAAACDiAAAgxo0bNwYP\nHpydnR0WFkZ0LQAAAAAAAADwrisuLr5//z7RVQAAQGMtWrRIKpX26tXrn3/+sZ1fWlrq5eV17dq1\n2NhYomoDza6qqkogENiOeSEUCgUCQXFxMRr2gkKh+Pj4+NtA6QculwvRh9dSVVWVnJx84sSJ06dP\nGwwGlHX44IMPPDw8mrxNtVq9YsWKAwcOjBo1at++fVwutxkLBgAA8G6CiAMAgBgLFiy4e/fu48eP\niS4EAAAAAAAAAAAAALQbVqs1MDCwpKSkR48eDx8+rPXslStXRowYoVAo3N3dCSkPtDKlUln4Aj7s\nRX5+vlarxTCMQqG4u7vjQ13g/Pz8IPrQMI1Gc/78+ePHj1+9erWmpmb48OGzZs0aNWqUo6Nj0zZ4\n9erV+fPn63S6H374YfLkyc1bLQAAgHcNRBwAAAQwm808Hm/x4sWrV68muhYAAAAAAAAAAAAA0D5U\nVFR06tSprKysb9++t2/frrvAf//7371795aUlLR+baBNqTf6kJeXp9PpMAyjUCh8Pp/D4dRKP0D0\noS61Wn3u3LnDhw9fv36dxWK9//77M2bMiIqKasKmNBrN8uXL9+/fP2PGjO+//57BYDR7tQAAAN4R\nEHEAABDg6tWrI0aMeP78eWBgING1AAAAAACAdqampkalUqlUKvULRqOxsrLSYrEolUqLxVJZWWk0\nGvV6vV6vNxqNGo3GbDarVCr0+be6uhp9tY3g8zEMMxgMVVVVDeyaTqfb29vXmkmhUGg0GppmMplk\nMhnDMGdnZycnJwzD7Ozs0Le3Li4uDg4OaAtoMRaLhT8ymUx7e3s6nY62xmKxXFxcmnyTHAAAAPBW\n+ueffwYMGGA0GocNG3blypV6l5kyZUp1dfXZs2dbuTbQLtTU1Eil0qKiouL/JRAIqqurMQxzdHT0\n9fW1HfAiMDCwQ4cObzJMw1tDIpGcOHHi119/ffz4cadOnd5///2ZM2c24dvdq1evfvzxx/b29ocO\nHRo4cGBLlAoAAOCtBxEHAAABpk2bJhAIUlNTiS4EAAAAAAC0FWazWaFQKBQKuVxeWlqKpisqKtR1\nVFZW1l2dyWTa2dmxWCwUFHBwcHBxcUE5AxqNRqFQGAwGuicPzxwgtqkF27BCXTqdDn33XQuKU2Av\nshdoplarNZlMmE2iAiUt1Gq11WpVKpVoYRTIeNke0bEwmUwqleri4sJkMul0uouLi4uLC4vFotFo\naILJZDKZTBaLhU9TKJRGnHIAAACg3TCbzRs3bty4cWNNTc1HH330888/v2zJoKCg6dOnr1u3rjXL\nA28B264PeOOH3Nxc9N88Jycn1O8hLCwsPDz8HW/5kJ2dnZiY+OuvvyoUiujo6JkzZ06bNo1Opzd+\nCwqFYt68eefPn//000+//fZbyPUCAAB4XRBxAAC0toqKCh6Pt2fPno8//pjoWgAAAAAAQOvR6/Ul\nJSVCoVAoFIrFYpRmkMvlZWVlKNCAL0mhUDw8PDw8PNzc3Jj1wS/no0cHBwcCj+vNmc1mjUaDwhBG\no1Gn06lUKp1Op9PptFqtSqXS6/U6na6yslKj0aD5aAGtVqtWqzUaTa0NUqlUPO5ge8bc3Nxc66BS\nqYQcNQAAANBImZmZ06ZNy8nJIZFI27ZtW7JkycuWVKvVrq6up0+ffu+991qzQvAWQ9GH7OzsnJwc\nlH54/vy5Wq3GXox2Efi/QkJCXFxciK66NZhMpsuXLx86dOjixYv29vbjx4+fM2fOwIEDSSRSI7dw\n4MCBpUuXBgUFHT16NDg4uEWrBQAA8JaBiAMAoLV9//33q1evlkqlr5XtBQAAAAAA7YLFYhGJREKh\nsKSkBE0IBAKBQCASicrLy9EyLi4ufD7fw8PD09PT29vb3d3dw8PD29vb09MTzXR1dSX2KNoXq9Wq\negHvdWE7jX5UqVTl5eWoMYbt6k5OTnjcAc9AuLm5eXp6opfGy8vL09PzHfmyHgAAQJuiVCq3bNmy\nbds2i8ViZ2d34cKF4cOHN7B8UlLSsGHDpFKpt7d3qxUJ3kG1Wj4gRUVF6GoLm83GEw+o60OHDh1Y\nLBbRVbeUioqKY8eO/fbbb/fu3QsJCZk/f/7MmTMb+f/558+ff/DBB3l5efv27Zs2bVpLlwoAAOCt\nAREHAEBr69GjR0RExE8//UR0IQAAAAAA4E3JZLL8/Pxnz549ffr02bNn+fn5BQUFaDQHCoXC4/H4\nfL6fn5+Pjw+fz/f19fX19fXx8YEEA7EsFktFRUVFRQVKPNSrrKystLQUDbGBUKlUd3d3b29vjxe8\nvLzQhKenp5eXl7u7u5OTE4HHBQAA4G1iMpkOHDjw5Zdf6nQ6g8Hg5uZ29+7doKCghtfasGHDr7/+\nWlhY2DpFAmDLaDSKxWIUd8C7PpSUlFgsFux/cw84f39/MplMdOHNJjc397ffftu/f79erx87dmxC\nQsLQoUNf2dTBbDavWbPm22+/nT59+t69e6HBGAAAgMaAiAMAoFVlZmZ269bt9u3bffv2JboWAAAA\nAADwGsxmc35+fmZmZl5eHgo0PH36FA2RQKfTg4KCgoKCgoODO3Xq1KFDB19fX29v77fpG9t3U1VV\nlUKhkMlkCoUChR7kcjmalsvlpaWlCoXCYDDgy9PpdNTyAe/M4eHh4e7ujjIQaJpCoRB4RAAAANo+\ns9mcmJi4adMmoVDo6Oio1WqjoqJu3Ljh6Oj4ynVHjRrFZDKPHDnSCnUC0BjV1dXFxcUFLzx//ryg\noKCwsNBoNGIY5uLi0qFDB/x/0SEhIcHBwWw2m+iq34jBYDh+/PiuXbsePXoUEhIye/bsefPmvTLi\nfP78+dmzZ3M4nBMnToSFhbVOqQAAANoviDgAAFrVp59+eu3atdzc3MaPygYAAAAAAAihUqkyMjIy\nMjIyMzMfP36cnZ1tMBgcHBwCAwM7deqEvopFj1wul+hiAWE0Gg3KPSD15iFMJhO+PBoCw8vLi8fj\neXt783g8Ly8vHx8fT09PHx8fGo1G4LEAAAAgltFoPHz48H//+1+BQNC1a9f09PSampovv/xy/fr1\njVm9pqbG09NzzZo1ixYtauFKAXgjNTU1IpEIzz2g6HB+fj7KPXh4eISEhHTq1Ck4OBhNBAQEtMeQ\n6MOHD/fv33/kyBGz2TxmzJiEhITY2NgGli8qKpoyZcrTp08PHDgwZcqUVqsTAABAewQRBwBA69Hp\ndD4+Pp9//vny5cuJrgUAAAAAANQmlUrT0tIeP36Mkg3FxcUYhrm5uXXv3r3bC2FhYe3xC1ZArIqK\nCtTyoaysTCqVKhQKqVQqkUhkMplEIpHL5WazGS3p4uJiG31A01wuF81hMpnEHggAAIAWUlZW9uOP\nP+7Zs0epVMbHx2dkZIhEIhaLdfny5T59+jRyI0+fPu3UqVNaWlrjVwGgTZFIJGh4C3yoi+LiYqvV\nam9v7+vrGxgYGBYWFh4ejo9zQXS9jaJWqw8fPrxv374nT5706tXrs88+mzhxor29fb0LV1dXL1u2\n7P/+7/9Wrly5efNm6AkHAADgZSDiAABoPQcOHPj000+FQqGHhwfRtQAAAAAAAMxisWRlZaWmpt65\nc+fOnTtFRUVkMrljx47dunXDYw0+Pj5ElwnecjU1NXK5XCaTicViuVyOHkUiEXosLS2trq5GSzo7\nO3O5XI4N9CPKQLi5uRF7IAAAAJrg3r17Bw4cOHLkCJVK/fDDD0Ui0enTp0kk0tChQ0+cOMFisRq/\nqUOHDiUkJKjV6sYMaQFAu2A0Gp8/f26be8jMzERDxbFYrA4dOtjmHkJDQ6lUKtElv1RqaurOnTvP\nnDnj4+Pz6aefzps3j8Fg1LvkH3/8MWfOnIEDB/7xxx+v9SYAAADg3QERBwBA6+nZs2fnzp1//fVX\nogsBAAAAAHh3VVZWpqWloUxDWlqaRqNhMBhRUVExMTExMTFRUVF0Op3oGgH4H2jMC9vog1gsRh0g\nZDKZwWBAizk6OqJmD1wul8fj+fr6crlcPp/v4+PD4XAcHByIPQoAAAC2lErl4cOHDxw48OTJk65d\nu86aNausrGz37t0mk4lMJu/YsWP+/PmvO8jpwoUL09PT79y500I1A9BGKJVK1OMBzz3k5+dbLBYM\nwzgcDoo74LmHgICANjVecHFx8d69e/ft22exWD766KOlS5f6+fnVXezRo0fjx493dHQ8d+5caGho\n69cJAACgjYOIAwCgldy9ezcmJga6BQIAAAAYhlmtVrVajaa1Wq3tKPUYhmk0GrxnO1JZWYm+sWpg\nTgNMJpNWq214GSaT+bIuoI6Ojg3cDMRms1/2lLOzs5OTU71PkcnkWg3nGQyGnZ1dw0WCJjMajamp\nqVevXr127VpmZqbFYgkICOjbt29MTEzfvn3Dw8Ph5IP2q6KiAg17IX1BJBJJJBKBQCCTydBbJYlE\n8vb29vHx4XK5vr6+PB4PZSDQxMveqQAAADQ7g8Fw8eLFI0eOXLp0iUKhTJ069YMPPkhNTd2+fbvR\naKyuru7du3diYmKHDh2asPHIyMiBAwdu37692csGoI2rqqp6+kJeXl5+fv7Tp0/RR04mkxkcHBwe\nHo5CD2FhYX5+foSHHjQazc8//7x9+3aRSDRy5MjVq1fHxMTUWkYikUycODE7OzsxMfG9994jpE4A\nAABtFkQcAACtZObMmU+ePElPTye6EAAAAKC2mpoalUplMBiqqqpQ4ABNm81m1AJUqVRiL5IHVVVV\nBoOhurpap9PhSQW1Wm21WjGbdAJaAG1fpVKh/3WjdQk5xoZjCviRtgW26Qfbsl1cXPCbsFksFvpW\nzs7ODu9u6uTk5OzsjKbpdDo+vCsewqBQKDQaDU3bxi/wdAXaBV4AlUp1dHQkkUjttzlqXl7e1atX\nk5KSUlJSdDpdcHBwfHz8oEGDYmJiOBwO0dUB0OLMZrNcLhcIBGKxWCwWCwQCiUQiFApRBgKPl3l4\nePB4PB8fHz6fXysD0Za7PQMAQDui1+uTk5PPnj17+vRprVY7ePDgDz/8cMiQIYcPH0bhBhcXF7Va\nvWHDhqVLlzYteVlVVcVkMhMTE6dOndrs9QPQHslksry8PBR6QF0fRCIRhmE0Gi00NDQ8PBw9hoWF\n+fv7ExJ6MJlMJ06c2L59+8OHD/v16/fZZ5+NHTvWNnlvNBr/9a9//fbbbzt37vz3v//d+hUCAABo\nsyDiAABoDWVlZXw+//vvv587dy7RtQAAAHgLKZVKjUZTWVmJHisrK1FkQa/XV1ZWGo1GjUaj0+mM\nRiMeZVCr1dXV1Wg+Psr7y6AOB+j6N7robm9vj5r5o8vn+AV1dFEc+99L7/izDg4OLi4uaCZ+3b1u\nq4OmzWk5DXSMsE1y1IVnO+pCr4LtHJQjwf6354RtKAQvw7YHhm0Bti8lvmuLxVJZWVl3p3WbZ7wS\nfs7Ra4fHL9CvB/7iosAEHqdArz7++9BwigLfBZ7haIKKiorr168nJSUlJSUJBAI2mz106ND4+Pi4\nuDh/f/+mbROAt09NTY1MJsP7PeAZCDSBv/Ow2Wx8zAuUgeDxeHw+38/PD38/BwAA8DIikejixYsX\nL17866+/jEZjr1693n///alTp6rV6t27dx86dMjOzi44OPjRo0eDBw/eu3dvx44dm7yvW7duDRgw\noLi4uN6m9wAADMPUanVubm5WVhb+KBQKMQxzcXHB4w5hYWGdO3du5Q8Ot2/f3r179+nTpzt16rRy\n5coPP/zQNuq0a9eupUuX/vvf/96xY8fLWg8CAAB410DEAQDQGr755pstW7aIRCL4HhAAAMAr6XS6\niheUSiV6tE0wqFQqfBo91t0Ii8VydnZ2dnZmMpkODg50Ot3FxcXR0ZHFYqEr0wwGw9HRkU6no2vM\nbDYbzUfXmNHl6rqDKYC3Ep6uQCkKPGOBYhB4SAJFKPCAhV6vNxqNqAUIZpOfQOkKo9Go1+uxFx0+\n8CjGa40wgtISKCRBo9FQbIJCoaCcBPrVRb+xTk5ONTU1z58/z8rKys7OrqmpCQgI6NmzZ69evfr1\n6+fo6MhgMNDvc7tuSgFAq1EqlWjkC/RYWFiIJp4/f45HrJycnLhcbuALHA4H/ejn5wcjvwAA3mVW\nq/XBgwco2ZCenu7i4hIXFzd69OhRo0Z5enomJSXt2rXr6tWrHTp0iIqKunbtWnV19TfffDNv3rw3\nvIl869at27Ztk8lkzXUgALwLKisrnz17hno8oMfi4mKr1cpgMIKCgsLCwiIjI8PDw7t27erp6dnS\nxeTk5GzatOnYsWOhoaFr166dPHkyHmg4efLkjBkzRo0alZiYiLfuAwAA8C6DiAMAoMWZTKYOHTpM\nnTp169atRNcCAACAMCaTSaFQlJaWlpaW4tmFWtBMo9FouyKTyWSz2XQ6ncFgoEcWi8VgMPAf6XQ6\nm822/RFvnwBA24SPDNJwigKlJVBIAmUj0CMaDwWtq1KpSktLy8vLdTodiUSiUCgYhr2yMQn2ohcF\nekRNI1A7irq5CpSoQI8MBsPe3p7FYqFGJigYhD8Fl3XBu0CpVAqFwpKSkpKSEqFQKBAIhEJhcXGx\nVCpFIxY5ODjw+XxfX18+n+/v748mfH19/fz84Bv5huGjPjUGiqPhHXQglQgA4UpKSlJSUm7cuHH5\n8mWZTObn5zdq1KgxY8YMGjTIycnp2bNnhw4dOnTokFAoHDp0aFxc3PHjxzMyMubPn//VV1+5ubm9\neQGTJk0ym81nz559800B8C6rrKzMysp68uRJZmbmkydPnjx5giLdvr6+Xbp06dKlS9euXTt37hwS\nEoI+ejS7wsLCLVu2/PTTT7U6Ovz999/jx48PCws7f/68u7t7S+waAABAOwIRBwBAi/v9999nzZr1\n7NmzgIAAomsBAADQUvR6vVwul8lkKMcglUrRBD6nrKwMX5hMJrvaYLPZrnXgM+GiKQB1SaXS06dP\nnzx58tatW05OTqNHj540adLIkSPR2BkYhqE2Eqh7BLoQiHIV6BGlJVCWAm9EgbpZ1M1V4GuZzeYG\nBh9B2Gz2y9IPtZ5CXShe+VQrnEwAmoXJZEJDXZSUlAgEAhR9QEkIfDwdDw8P3xf8/Pzw9IO3tzex\nxb8hvV6vVCorKyvVarVara6srFQqlWgCJbHQ+0ytR/Q+Y/vYXPXg7x746D/44EGYTcALzURvOEwm\nk0KhMBgMJycnZ2dnFPCyXcbJyQla4ABQV35+/s2bN2/dupWSkiIQCBwdHXv37j18+PDRo0d37doV\nwzCVSnX8+PFDhw6lpqbyeLzp06cPHDjwl19+OXnyZGxs7I4dO8LDw5urGC6Xu3jx4hUrVjTXBgEA\niEAgyMrKwhMPeXl5JpPJwcEhJCSkS5cu3bp1i4iI6N69e/PGDlDQ4eeffw4KClq1ahUKOjx58mTk\nyJFMJjMpKYnL5Tbj7gAAALQ7EHEAALS4Pn36BAQEHD16lOhCAAAAvBGLxSKXywUCgUQiEQqFIpFI\nLBYLhUKpVCqTyfDrNxiG0el0Lpfr4eHh4eHB4XA8PDw8PT3RhIeHh5eXF1wkAKBpDAbDqVOnfvrp\np5SUFCqViicbWvPWcBSPQOGJqqoqg8GApx/MZvPLnrJYLGq1ut6nXpmZsLOzQyPL1A1GoKuPKEjB\nZrPR/dx0Ot3BwYHJZKJLlQwGA8UsWu0UAVBLRUUFCj3USj9IpVL0++/k5ISyDnXTD+gKPbHKyspk\nMplIJJLJZGKxuOwFhUKhUCjKysrQuDy22Gw2k8lEuQH0j75tz5i6nWNs+8c0vjBnZ+eamhqDwYDZ\ndMfBbIYfQt1usBepL+zFOxiKWaB3JNQ+R61Wm0ymyspKfNShejEYDBqNRqfTaTQam83Gp1GLKRqN\nhuYwmUy0JD6/8QcFQBtntVqzsrJSUlJu3bp169YtmUzm4uISFRU1YMCAgQMH9u7dG/2fRC6Xnzt3\n7syZM3/99Zednd348eNnzpwZGhq6efPmn3/+OTg4+JtvvhkzZkwzFvb8+fOgoKA7d+5ER0c342YB\nAHVVV1fn5eWhuENmZmZGRoZEIsEwzMfHB2UdunfvHhER0Sy3uuXn52/atOmPP/4ICgpau3bt+++/\nL5FI4uLizGZzcnKyn5/fm+8CAABAOwURBwBAy7p169aAAQPu3r0bFRVFdC0AAAAaRSKRFBUV4QkG\nkUgkkUgEAoFMJjObzRiGkUgkLy8vHx8fLpfr6+vL4XBq5RjawvUYAN4yWVlZBw8eTExMrKysHD16\n9MyZM4cPH/52NL1HN3Dbph/wMTjqBiNqPYUuW2o0GnSFsuFrk+h+biaT6eDgQKfTawUjaDSag4MD\ni8VCWQo8J1FrLZSxaM3zA95i1dXVIpHINv2ARr4oLi7Gf5O9vb3x9AOKPqD0Q7OPh20ymQQCQVFR\nUVFRUXFxcVFREQo1SqVSlCHAMIxKpaIIo/sLnp6eaMLV1ZXBYKBYw1uQKEJvNUqlEiUnqqqqqqqq\nVCqVRqPRaDRarVaj0aAf0TTqYIGmbUOfCBrfh8lkslgsNpvNehU09AYAbURNTc2zZ88ePXr08OFD\n9KhWq5lMZr9+/QYMGNC/f/+ePXvizerz8/MvXrx45syZu3fvOjk5DR8+fPz48WPHjq2qqtq6desP\nP/zg6em5fv36GTNmNHujpl9++WXhwoUqlcrBwaF5twwAeCWlUpmdnf3whfz8fIvFwmAwunTpEhkZ\nGR4eHhYW1rNnzyZ/UVBUVPTNN9+ggNR3330XGRkZHx+vVCqTk5ODgoKa91gAAAC0FxBxAAC0rAkT\nJsjl8tTUVKILAQAAUJvBYCgqKiooKCi0UVBQgK5k2Nvbe3l5+fr68ng8Ho/H5/N5PJ6Pjw9KNsBX\nhwC0Dp1Od+zYsYMHD969e7dDhw5z5syZPXs2h8Mhuq42DaUiNBqNXq83Go3oXm2tVovu1VYqlfUG\nI1D/icrKSpSlaLhtPovFcnBwQA0kHB0d6wYjajWQQDkJ27VQuqI1TwtoX8rKymyHukDRBxQ3RF/j\nODs7+/n51U0/+Pj4NCaFIxQK8/Ly8vPzc3Nz8/LyCgoKRCKRxWLBMIxGowUEBPj7+/v7+3M4HB6P\nx+VyuVwuj8djMpktfeBvAdQiorKyUqvVouiDyoZSqVTVUV1dbbsFCoVSdwAvNze3utNvQZoEtEFW\nq/Xp06d4oCE9Pb2ystLe3j48PLxHjx6RkZExMTFdu3bFMwqlpaXXr19PTk5OTk4WCASurq6jR48e\nP378sGHDnJ2dBQLB1q1bf/rpJyaTuWrVqk8++aSFkoJz5swpKCi4ceNGS2wcAPBatFptZmbm48eP\nHz9+nJ6enpWVZTAYHB0du3Tp0qtXr549e/bs2TMsLOy1WjdhGJaXl/fll1+eOHEiNjZ248aNixcv\nLikpuXbtWufOnVvoQAAAALRlEHEAALSgoqKioKCgo0ePTpo0iehaAADgnabT6dCVjIKCAjzTIJFI\n0H8FPT09AwMDO3ToEBgYiE94e3s3+81VAIDGe/To0YEDB44cOWI0GsePHz937twhQ4aQSCSi63qH\nmEwm22AEaiah1Wqrq6tVKhWekzAajbbBiHrTFS/bRb0NJGoFI2o1kMBzErXWas0zAwhkNBpR3EEo\nFBYXF+ONHwQCAWr8QCKRvL29a6UfXF1dVSpVYWEhusyQn5+Pfi3d3NxCQ0NDQkI6duwYEBCAkg0e\nHh4EH+S7R6/X1wo9VNgoLy+3/dE2fWVvb183AFErGIGegjAEaEB5eXl2dnZubm5OTk56evrjx481\nGg2FQuncuXNkZCSKNXTt2tX29muJRHLnzp07d+78/fffGRkZdnZ2UVFRsbGxsbGxffr0QZctc3Nz\nt23blpiY6O3tvWLFijlz5rRop7dOnTpNmTJl48aNLbcLAEDTmM3mvLy89PT0R48e3b9/Pz09Xa/X\nU6nUiIiInj17otBDcHBwIz/pJCcnL1u2LCcn58MPP8zJySkuLr527VrXrl1b+igAAAC0NRBxAAC0\noEWLFp07d+758+evG8sFAADwJtRqdV5eHv5NZW5ubnFxcU1NjYODg5+fX900AwwRDUDbYbVaL168\nuH379pSUlNDQ0Hnz5s2YMcPd3Z3ousAb0el0KPHQmAYSddtO4OkKk8n0sl28rIFErWBEw8NzMBgM\nCLe1X6WlpXji4enTp0+ePCksLCwvL8eHmSCRSFQq1cPDg8/nd+rUKSIiIjw8HDV+wJvMg7ZPpVLh\noYda6YdaUFsOBA9DvLI/BPTqeOtJJJLc3Nzc3Nzs7I4mQ5YAACAASURBVGz0kUGhUGAYxmAwQkND\nu3XrhmINXbt2tW3bVl1dnZWVdefOnbt376amppaUlNjZ2XXu3HngwIGxsbGDBg2i0+n4wsnJydu3\nb79y5UpQUNCKFStmzJjR0h3gFAqFl5fX5cuXhw0b1qI7AgC8ObPZnJOT8+DBgwcPHty/fz8zM7O6\nuprJZEZGRqLEQ69evfz8/BrYgtVqPXz48MqVKw0Gg5ubm1qtvnnzZmhoaKsdAgAAgLYAIg4AgJZS\nWVnJ5/PXrVu3dOlSomsBAIC3mUajycjIyHkhNzdXJBJhGEalUkNCQkJDQ8PCwkJDQ8PDwwMDAyFz\nBkCbVVVV9dtvv+3YsePZs2cjR45cunTpkCFDiC4KtC2oAT7KSdQdWaPeBhJ1206gdMXLdmFnZ/fK\nBhJ4TqLh4Tla88wADMOeP39+9+5ddPUxOzvbYrH4+/v36NGjc+fOXC6XyWRWVVWVlJQIXhAKhSj9\nQCaTvb29/f39UeMHPp/v7++PJlxdXYk+LNB0qBvEy2IQtvNtwxB2dnYvC0PUReDRgcaorKzER6PL\nz89HAWiVSoVhmJubG/qMEBYWFhYWFhISwufza62bkZGBmjo8fvw4KyvLZDIxmczo6Ojo6OiYmJg+\nffrYxhowDNNoNEePHv2///u/zMzMQYMGLVmyZPTo0WQyuRWO9NSpU1OnTi0vL4eMDgDtjtlszs/P\nf/jC/fv3q6urvb29e/bsGRkZ2a9fv759+zo7O9ddUafTbd269dtvv7VarVQq9cGDB4GBga1fPwAA\nAKJAxAEA0FK+++67DRs2CIVC+IQJAADNS6PRpKen418BPH361Gq1MhiMkJCQ8PBwPNPg7+/fOl8p\nAgDekF6v37t379atW1Uq1YwZM5YsWQI3IYGW9roNJOrNSaC1XraLenMSL2sg0XAXitY8M+2LXC5P\nTk6+du1acnKyWCx2cHCIjIyMjo7u27dvdHQ0h8NpeHWZTIY3fsDTD0KhsLS0FC1Ao9H8/PzQgBco\nAIGSEDweDxo/vE3UavUre0Igtr1kSCRSwwEI2/4QMNBSizKbzUKhsKioqNBGUVFRWVkZhmEkEonH\n43Xq1Al9WECPnp6etlsoKyvLzc3Ny8vLy8vLycnJz89HTeDc3NwiIiK6d+/evXv3iIiIkJCQej9f\n3L179+DBg8ePHzebzVOmTFm8eHFEREQrHTyGYRi2ZMmSlJSUR48eteZOAQAtQafTPXr0KC0t7c6d\nO2lpaTKZjEKh9OjRIyoqKioqKiYmxtfX13Z5kUi0du3aX3/91dHR8c8//xw6dChRlQMAAGhlEHEA\nALQIi8USFBT03nvv7dixg+haAACg3as30+Dh4YFua0C9ZGt9zgcAtAtarfaHH37Ytm2bTqf75JNP\nli9f7uXlRXRRALyelzWQqJuTMBqNLxueQ61WW63Wl+2ikQNt0Ol0R0fHBrpQvB0XWc1m840bN65c\nuZKcnJyZmWlvbx8dHR0XFzd48ODIyMhmGeoe9XtA0Qfb9INIJDIajRiG2dnZcTgclH5A0Qc8CcFi\nsd68ANBmaTQa2yYQDaQiqqurbVdks9l44oHNZrNYLBaLxWQy8WlbLT2oQfulUqnEYrFQKJRIJEKh\nUCwWFxcXFxYWCgQClD6h0+kBAQGBL6DpgIAAPCtmMpkEAkFRUVFRUVFxcTGaePbsWXl5OVq9U6dO\noaGhqANc9+7dG/6IUV5enpiYePDgwezs7G7dus2ZM2f69OlsNrsVTkUtvXr1iomJ2bVrV+vvGgDQ\nooqKilDW4e7duxkZGWazmcfjRb/Qq1cv1KjyypUr48ePNxqNS5cu3bRpU7P8dwgAAEAbBxEHAECL\nOH78+AcffJCfn9+hQweiawEAgHZJKBSmpKTcvHnz9u3b+fn5KNMQaQMyDQC0ayaT6Zdfflm3bp1W\nq/34449XrVr1yvutAXi7mc1m25yE0WhsoIHEy3ISRqNRq9W+bBcUCqXxA22gZ9HCDAbD3t6exWLZ\n29vT6XS0ZGueHAzD9Hr9lStXzp49e/HiRaVSGRYWFhcXFxcXN3DgQBqN1mplKJXKwsJCiUQilUrR\nneJouqioCH2/5OTkxOVy0eVVDoeDT/v6+sJoWe8UrVb7snExlEqlSqVSqVRqtRpN1/pykkqlMpnM\nWrkHNIf+Ao1GY7PZaALNIepIm1dNTY1cLheLxXiUQSQSiUQiiUQiEAj0ej1azMXFxdfXl8fj+fn5\n2aYZPDw8LBZLWVlZWVmZRCKRSCRisVgqlQqFQplMJhKJZDIZGpeERqMFvNCxY8eQkJBOnTrVGqvi\nZaxW6507dxITExMTE+3t7ceNGzdz5szY2NgWPC8N0mq1bDb7yJEjkydPJqoGAEAr0Ov1jx49evjw\nYWpqakpKSmlpKZVKjYiI6NevX2xsrK+vb0xMjEql8vPz27dvH4FvSgAAAFoHRBwAAC0iOjqax+Od\nPHmS6EIAAKA9KSgouHnzJko2FBUVOTg49OrVq3///r1794ZMAwBvDavVevjw4XXr1slksoULF65e\nvdrNzY3oogB4q7zWQBsv60LR8DAcGIY1kH5ATzGZTDs7OxaLhaIVr3yq3r1UVVWdPXv22LFjSUlJ\n1dXVMTEx48aNGzduXFsbbVqv1xcXF+ONH/DeD2KxGN3Nb2dnx+Vy8WYPqP2Dv7+/r68vg8EgunxA\nMLVarbJR60fbmRqNRqPR1Pu3iQcgaDQag8FgsVgo/UClUmk0GoVCYbPZtn+n9c5s6SM1GAwKhUIm\nk5WWlioUCrlcLpfLFQpFaWmpTCZTKBQKhcJsNqOF3d3duVwun893d3fncDiurq54Wxqz2YxOiFqt\nLi8vL7OB+jEgKHLE5XJ5PB6Hw+Hz+T4+PgEBAf7+/h4eHq9bPEo2nDp16tSpU0KhMCYmZs6cOVOn\nTnVxcWmu89M0165di4+PF4vFXC6X2EoAAK0pPz8ffX9y48YNsVhMpVK7deuWkZHh5OSkVCrnzJnz\n3XffwejJAADwFoOIAwCg+d29ezcmJubmzZv9+/cnuhYAAGjr8vLyUKYhJSVFLBY7Ozv36dNn4MCB\nAwYMiIqKolKpRBcIAGhOf//99+LFi3NycmbPnr1u3TofHx+iKwIANESj0ZjNZpVKZTabUdMInU6H\nwhDoKaVSabFYGn4KRSvQUw3sC11wZTKZ9vb2TCbTYDCoVCq5XG61WlEvhC5dutBoNCaTSSaTGQyG\nnZ0dnU5HV2ft7e3R6ugRBSnQpdBWO1f1slqtMpkMTz8IhcLi4mKUgVAqlWgZJpNpO9QFn8/38/Pz\n8/PjcDh2dnbE1g/aJtT0RalUarVajUaj1WorKytRAALNqaysVKvV6EedTodiT/gfcgNbRn9NaKgF\nMpmMXxtDf3cYhuF/VujPDcMwEonEYrFMJhPKRSH4dFVVFfrz12q1er0eDSeB2NvbOzk5OTo6UigU\nMplMoVCsViuZTDaZTCQSSafTYRimUqnqrRMlpVBzCzc3Nzc3N/cXPD090YS3t3ezZCgtFsvNmzdP\nnTp1+vRpqVQaEhIyadKkadOmhYWFvfnGm8W6det+//3358+fE10IAIAwBQUFKSkpKSkp165dk0ql\nZDLZ3t7ewcFh9erVy5cvp1AoRBcIAACg+UHEAQDQ/CZMmCASif755x+iCwEAgDZKp9P99ddfly9f\nvnz5cnFxMY1Gi4mJGTBgwMCBA3v16kX41QgAQEsoKSlZtmzZyZMnR44cuW3btpCQEKIrAgAQoIH0\nQ2VlpcViEQgEaWlpDx8+VKlUbm5uAQEBXC7XaDRaLBaUCUCPqLe/Wq22Wq0N7xFdkXV2dkY3qTs5\nOeETzs7OaDwOBwcHlIpwcXHBcxI0Gg3lJ+zs7FCigsFgoIu+tpd+m0yr1ZaUlJSUlNRKP0gkEnQZ\n2N7ensfj4c0e+Hw+noR4a0YlAIRAyQP8j9FkMqH8AfozNJlMaNQbnU6HmsEYDIaKigqTyYRavBgM\nBjTTYDCYXqj1/aqdnZ2dnZ29DScnJ/RXhkMLNPAnhsIT6BHDMDabjUJOTCazFRpOmM3mv//+++TJ\nk2fPni0tLe3SpcvEiRMnTZoUHh7e0rt+XUOHDvX19f3ll1+ILgQA0Cb8+OOPCxcu7NGjR35+vlar\npVAocXFxI0eOjI+PDwoKIro6AAAAzQYiDgCAZvb06dPQ0NATJ05MmDCB6FoAAKBtkUqlZ8+ePXv2\nbEpKislkioiIGDFixIgRI3r37g2jUwPwFjMajd98882WLVv4fP6OHTtGjhxJdEUAgLbowYMHu3fv\nPnbsGJPJnDFjxqxZs7p27dqYFVHQASUk0CO6dosetVqtyWRCd7GjR3QpFz3a3muOHvGn9Hr9K3eN\nbnbHO/yjy7EoNoG9uPEdJSfq/oiu6eK3wqO75+3t7V1cXMrKylQqVWlpqVQqLSsrE4lEYrFYKBSq\n1Wp8vzwez9fXl8fjoQnUz9/HxweGvQAYhqG/BXwwGqPRiNo52A5ho9Fo0CPeAQKHtxix5eLiQqfT\nmUymq6srm812faHe6fbbgEQqlSYlJSUlJV29erW8vDwiImLSpEkTJ07s1KkT0aXVz2QysdnsXbt2\nzZkzh+haAABtxebNm9etW3fmzBmxWLxixQp0CUyr1QYEBMTFxcXGxsbGxqL/wwAAAGi/IOIAAGhm\nCQkJf/31V35+fvv9SA8AAM2rqKjo1KlTZ86cSUtLo1KpI0aMGDVq1PDhw728vIguDQDQ4m7fvp2Q\nkCAQCNatW7do0SIHBweiKwIAtC0Wi+XUqVO7d+9OTU3t3r37f/7zn2nTpjk5ORFdF4ZhGJ6K0Ol0\n6E53PDmh0WisVivKHKBIRE1NDWqqj64r1/oRe9F/AgUpsBeNKBqZpUDIZDKNRrNarSgbarFYMAxD\n99bj3Szs7e2pVKqzszOTyaTRaDQajcFgeHp60ul0/DZ6tCQKZGA2Iw5gGGa7AH7xA49lvGwB0Hgo\nhYNhGP7S478q2IvfCvRbhxbAf81QlAf9sqHfRnxFjUZjMplUKhX67cJ3URfqiIBSOAwGg0ql0ul0\nBoPBYrHodDqaptPpLBYLTSCocQIaqOKtVFVVdfPmzaSkpGvXrj158sTR0bFv377Dhw+fOHFiYGAg\n0dW9wr1796KiovLy8tpsCAMAQIiPPvro9OnT9+/fZ7FYH3/88dWrV6dOnerr65ucnPzw4UMymRwV\nFTVs2LAxY8Z069aN6GIBAAA0BUQcAADNSS6X+/v779q1KyEhgehaAACAYAqF4tixY0eOHElLS2Oz\n2WPGjJkwYUJ8fHwbuWgBAGhparV65cqV+/fvHzFixJ49e/z9/YmuCADQtlit1lOnTn355ZdPnz4d\nOXLkokWLhg4dii66v4PQBWwUp8BeXAiv9SO6sI29GO8DJS0wDNNqtegefYVCodVqq6qq9Hq9RqNB\nDSrwq91oZG40OgCZTDaZTGQymUwmo0EH3qR42wwEGuaj7jJoSIJXrl4L3iGjLjQESb1PkcnkV45g\n0jA8iWIL5Q9s5+AvEM42r4CSCv+PvfuMi+Jq+wB8lt470gWMiBh7pYg+akTRKCoidtAYxZjEEmNv\neRJbEgumGoOKYhTRx45RQY0KAkYUEDAqvSO91933wyT7bthl2T67y//64G+ZOXPm3sW5mTN7zxlC\nCPs3JRR26QlVSkJ9sNQHQj3TgfwzNQhVd2JsbEx9kvr6+hoaGtTTHLS0tAwNDTU1NfX09DjLU4DF\nYiUnJ1MTNjx69Kipqalfv35eXl5eXl5jx46lJmJRCAcOHNi/f39JSUm3TZ4AwFNra+vYsWPr6uri\n4uK0tbWPHDmyadOmkSNHnjt3Tl1dPSoq6vbt27///ntRUVGvXr1mzpw5Y8YMd3d3Ja5mAwBQPihx\nAABJ2rJlS0hISHZ2tgweDAkAIJ9aW1uvXLly/PjxO3fuaGlpzZgxY/78+RMnTsSjKAC6lbt37wYG\nBra0tBw+fHju3Ll0hwMA8oXFYl2/fn3nzp1JSUm+vr5fffVVnz596A5KadXU1OTn5+fl5RUWFubm\n5hYUFBQUFFAv2M8j0NLSop55YWVlZWlpSf2rq6trYWFhbm7OZDLZ3/ezZwigHoVALWTPVMHZoANq\n+gGeEVIPE+ks+M4mJOAuOKBQRQZ8CiAEwbMgg7tEgJoUoUMz9oQH7PoMzmbsTjgnz2BvQj2+hCpN\nEDl46Ex9ff2TJ09iY2MfP378+PHj8vJyMzOz9957j6pssLGxoTtAUcycOVNFReXixYt0BwIAcic3\nN3fo0KGTJ08OCwsjhCQnJ/v5+dXU1Jw9e/Y///kP1SY1NTUiIiIiIiItLc3U1HTKlCl+fn5eXl7i\n/A0FAADZQIkDAEhMbW1tz549169fv3XrVrpjAQCgQUZGxrFjx06ePFlWVjZp0qSFCxf6+Pgo0C1Q\nACARTU1NmzdvDg4OnjVr1s8//2xmZkZ3RAAgX+7fv7927VrqOvvOnTtdXFzojqj7amhoyM3NLSws\npGogCgoK2MUQpaWl7GZmZmaWlpY2NjaWlpbW1tZWVlbW1tbsJfgyHuRZVlZWbGxsXFxcbGxscnJy\nW1ubra2tu7u7m5ubp6fnkCFDFPqWZRaLZWlpuWnTprVr19IdCwDIoxs3bkybNi0kJGTJkiWEkNra\n2mXLll28eHHbtm07duzgTIBpaWmXL1++dOnS06dP9fX1vb2958yZM3XqVNQ6AADILZQ4AIDEHDhw\nYOfOnTk5OaampnTHAgAgU9HR0QcPHrx586aNjc0HH3ywdOnSnj170h0UANAgJSVl7ty5BQUFR44c\nWbx4Md3hAIB8KSgo+Pzzz8+dO+ft7b1v374BAwbQHRF0qqWlpaSkJD8/n/q3tLQ0Ly+vtLSUWlJS\nUsJuaWJiQhU9sP/lfIEJDkHGcnNzk5KSkpOTnz59+vjx4+LiYnV19aFDh7q6ulKVDXZ2dnTHKDHp\n6en9+vVLSEgYMWIE3bEAgJzatGnTd999FxcXxz7v+uWXXz755JPp06eHhoZy35SSl5dH1Tr88ccf\nRkZGc+fOXbRokaurq8wDBwCALqDEAQAko7W1tXfv3r6+vgcPHqQ7FgAAGWltbT179uzBgweTkpLG\njRu3Zs2aqVOnqqqq0h0XANDj+PHjH3/88bBhw8LCwuzt7ekOBwDkSGtr648//rhjxw4DA4Pdu3ej\nBErRtba2sgsgCgoKOF8XFxeXlJSwr7YZGxtzFj2wSx/Mzc179OhhYmJC7xsBRdfU1JSamkrVNCQl\nJSUlJVGPX3F0dBw8eLCbm5ubm9uwYcOUtdTm2LFja9euraysVFdXpzsWAJBTbW1t48ePr6qqevLk\nCXtKhvv378+ePdvBweHKlSudPaansLAwIiLi5MmTz58/d3Z2njt37uLFi3v16iXD2AEAgB+UOACA\nZJw6dWrZsmWvX7/GBX0A6A6YTObFixe3bt2akZExZcqUrVu3oqgfoDurr6//6KOPTp8+vWHDhq++\n+kpNTY3uiABAjiQnJy9cuPDNmzcbN27cuHEjnmug9Nra2tjlDoWFhUVFRYWFhcXFxewCCCaTSbVU\nV1c3MzMzNze3sLDo0aOHubm5ubm5paWlubm5mZkZtVBPT4/etwPyo66u7vU/UlNTk5OT//rrr7a2\nNh0dnf79+w/6x4ABAwwNDekOVhYCAgIKCwvv3LlDdyAAINeys7MHDhz4ySef7N69m70wIyNj2rRp\n1dXVV65cGT58OJ/Nnzx5cvr06bNnz1ZUVIwbN27JkiV+fn4aGhrSDxwAAPhBiQMASMaQIUMGDBhw\n6tQpugMBAJAuFot1/vz5nTt3ZmRkLF68ePv27Q4ODnQHBQB0ysrK8vHxKSwsDA0NnTp1Kt3hAIAc\nYTKZhw8f3rJly4gRI0JDQ3HnHxBC2tvbS0tL3759W1JSQr0oKysrLi5++/bt27dvS0tLS0pK6urq\n2O21tbXZNRBmZmY9evSwsLCgiiHYhRF4UrjyaWpqevPmzWsOr169KioqIoSoqanZ29u7uLgMHDiQ\nqmno3bt395xJrlevXgEBATt37qQ7EACQdz/++OPq1atjYmJGjhzJXlhdXe3v7//o0aMLFy5MnjyZ\nfw8tLS03b94MDQ29fv26iYnJ8uXLg4KCrK2tpRw4AAB0CiUOACABkZGRU6dOffbs2eDBg+mOBQBA\nihITE1evXh0bG7tgwYIdO3b07t2b7ogAgGYPHjyYPXu2jY3N5cuXMZcVAHAqLi5eunTpnTt3tm7d\nun379u75BSSIprGxkbPu4e3bt9TrsrIydmFEU1MTu72+vr6VlRU1IYS5ubmJiYmpqamJiQnnCxMT\nE2V9WoFCe/v2bX5+fl5eXm5ubl5eXn5+fm5ubm5ubn5+PpPJZDAYdnZ2Tv/o06dPnz59HB0d8VwG\nQkhBQYGtrW1UVNSECRPojgUA5B2LxfL29s7JyUlMTOT8a9je3r5ixYrQ0NBffvllyZIlgnRVUFDw\n008/HTt2rLKycv78+Zs2berbt6/UAgcAgE6hxAEAJGDcuHHa2tqRkZF0BwIAIC2VlZUbN24MCQlx\nc3MLDg4eNmwY3REBAP1+/fXXVatWTZs2LTQ0VFdXl+5wAECO3Lt3z8/Pz8zMLCwsjP/sxwCiqa2t\npcodysrKqLkfqGKIsrKy8vLy8vLyioqKmpoazk20tbXZ5Q7s0gcjIyMjIyNDQ8MO/+IBGRLBZDKp\nXwp73o6ysrKcnBx2NQO7VMXc3NzW1tbOzs7e3t7Ozu6dd96hyhrwaJvOnDt3btGiRZWVlfi/CgCC\nyMnJGThwYFBQ0P79+zmXs1isDRs2HDx48NChQ59++qmAvTU3N589e3b//v2vXr2aNWvWzp07+/fv\nL4WoAQCgUyhxAABxPXnyZOTIkdHR0ePHj6c7FgAAqbhx48by5ctZLNa33347b948BoNBd0QAQDMW\ni7V9+/Y9e/Zs3759165dSAsAwOno0aOffPLJjBkzTpw4gfonoFFbW1sFF6r6ga2qqqqqqqq6urq1\ntZVzWzU1NarWgc3Q0FBXV1dXV5cqgGC/pl7o6+sbGBjo6up2h7kimExmdXV1ZWVldXV1dXV1TU0N\n9aK8vJxzpg2qsoF96VVFRYWaaaNnz562tra2trb29vZUWYOdnV13+Nwk6+OPP37y5El8fDzdgQCA\nwvjpp59Wr179/Pnzfv36dVj1zTffbNy48euvv16/fr3gHTKZzP/973+7d+9OTk5evHjxF1980bNn\nT4mGDAAAnUKJAwCIy9/fPyMj488//6Q7EAAAyauvr//000+PHz++cOHC4OBgExMTuiMCAPq1tbUF\nBQWFhoYeO3YsMDCQ7nAAQI60t7dv3br166+/3rBhw549e1RUVOiOCEBQ9fX11dXVVLkD57+VlZXs\nMoj6+vr6+vqqqqq6ujrqNXc/KioqVDGEhoaGvr6+mpqakZGRioqKkZGRmpqavr6+hoYGVQmhpaVF\nNaOWU5sbGxtTLwwMDKjHu+jo6GhqarJ7FvZ9tba21tXVsX+sqalpb2+nXjc3Nzc0NFANWlpa6uvr\nm5qaGhsbGxsbm5qaGhoampub6+vrW1paampq2HUM1dXVnB1StLS0DA0NTUxMqGeFWFhYmJubm5mZ\n9ejRw8LCgqpsMDMzQ06QoCFDhowfP/7AgQN0BwIACoPJZI4aNcrQ0DAqKop77dGjR1euXLlnz55N\nmzYJ1S2LxTp37ty2bdsKCws3b968ceNG6s8WAABIFUocAEAsWVlZffr0OX369Ny5c+mOBQBAwl6/\nfu3r61tUVHTs2LEZM2bQHQ4AyIXGxkZ/f//o6Ojz589PnTqV7nAAQI40Njb6+vr+8ccfJ0+e9PPz\nozscAFmorKykah3q6uqqqqoaGhrq6+trampqa2vb2tqqq6vb29urqqra29tramo4ywio0gGqGVVq\nQO8bUVdX19PT09TU1NHR4Sy/0NPTU1dXNzAwMDQ0NDQ05HxhbGzMfo1vs2SspqbGxMQkIiJi5syZ\ndMcCAIokNjZ29OjRly5d8vHx4V57+PDhdevWHTx4cM2aNcL23NLSEhwcTE3k8Ouvv7q7u0siXgAA\n6BRKHABALJ9++unVq1ffvHmjpqZGdywAAJJ048aNBQsW9OnT58KFC5hpEAAojY2N06dPT0xMvH79\nupubG93hAIAcaWxs9PHxefr06e+//z5ixAi6wwFQSFQlBPW6qqqKumhZV1dHPUSDmlxBkH7a2trY\n1ygYDIaRkRF7FVW4QL1WVVU1MDDgnEMCFMXvv//u7e1dVFRkaWlJdywAoGDmz58fHx+fmpqqpaXF\nvfbgwYPr168/efLk4sWLReg8Ozt75cqVUVFRX3311YYNG/BAQwAA6cFXkgAgusrKyhMnTnz55Zeo\nbwAAJXP69OmlS5cuXrz4xx9/xC1ZAECh6huePn16+/bt4cOH0x0OAMiRhoYGHx+fP//8886dO8gP\nACJTVVVlP6iC/QKAW0xMjJOTE+obAEAEX3/9dd++fYODgzdu3Mi9dt26dWVlZcuWLevRo8fkyZOF\n7dzBwSEyMvLgwYObN29OSEj47bffcE0JAEBK8AQ4ABDdjz/+qKKisnTpUroDAQCQpB9++CEwMPDz\nzz8PCQnBWBQAKI2NjdOmTXv27Nndu3fx/SUAcGpoaKDyw71795AfAABkICYmxsPDg+4oAEAh2dra\nfvbZZ19//TV73qAOdu/ePW/evDlz5iQmJorQP4PB+Oyzz6KioqKjo318fBobG8WLFwAAeMODKgBA\nRM3NzY6OjgEBAXv37iWERERERERE0B0UAHRrqqqqe/fudXBwEKeTixcv+vn5DRw4sE+fPhKKCwDo\n5+fn5+fnJ04P8+fPv379uqurK+dk1wCg0CRy5kAImTlzZmRk5NixY5EfAAAEJE4GbmtrMzY2PnTo\n0LJly7Kzszdv3tze3i7pAAGANuKP3bpUXV3tpPoOVwAAIABJREFU4OCwYcOGzZs382zQ2to6derU\n7Ozs5ORkns+zEERiYuJ7770XFBS0Z88eMYIFAADeMIsDAIgoLCysrKxs1apV1I8RERGPHz+mNySZ\niYiIyMvLozsKUACPHz/uPseFPDh37lxCQoI4Pbx48SIgIGDSpElJSUmSikrRIeMBUfxs9vjxYzEL\nMQ8dOhQRETF06ND09HRJRaXQ8vLyUNsKRPH/Roh/5kAIOXr06JUrV1paWlDfIHuK/j8QZEbRz2SU\nkjgZ+NmzZ3V1daNHjyaEJCQknDt3TqKhKTBkRSCKn/HEH7sJwtDQcNWqVQcOHKitreXZQF1d/eTJ\nkyUlJcHBwSLvZejQoZ9//vmxY8fa2tpE7gQAADqDWRwAQBQsFmvAgAEjRow4ceIEtWTOnDmEkPPn\nz9Mal4wwGIzw8HDqLQPw0a2OC3kg5rHJYrGoyU4/+eST+fPn4xyJgowHRPGzmZjxZ2dn9+vXb9u2\nbc+fPxenH2Vy/vx5f39/5ElQ9L8R4sdfUlLSp0+fCRMmXLp0CUeE7Cn6/0CQGUU/k1FK4hy/hw4d\n2r1799u3bxkMBs5JOCErAlH8jCez+CsqKhwcHLZu3bpx48bO2nz++efh4eGZmZlqamqi7eXly5cu\nLi4JCQkjRowQNVIAAOANszgAgCgiIyNTU1PXrFlDdyAAABITGhqakJDw448/qqqq0h0LAMiRdevW\nUY9rpTsQAJA727ZtMzAwmDlzJt2BAAB0IzExMe7u7gwGg+5AAECBmZiYfPzxxwcOHGhoaOisTVBQ\nUH5+flRUlMh7cXZ2Njc3f/Tokcg9AABAZ1DiAACiOHDgwOTJkwcNGkR3IAAAktHS0rJt27YVK1YM\nHjyY7lgAQI7ExcVdunQpODhYU1OT7lgAQL68fv36xIkTe/fuRX4AAJCl2NhYavo9AABxrFmzpqam\nJjw8vLMG77zzzpAhQ65cuSLyLhgMhpubW0xMjMg9AABAZ1DiAABCS0pKunfvHu5lBABlcvr06dLS\n0k2bNtEdCADIl/37948YMcLb25vuQABA7hw8eNDe3n7evHl0BwIA0I1kZGQUFRWNHj2a7kAAQOH1\n6NFj5syZR48e5dNm+vTp165dE2cvI0aMePbsmTg9AAAATyhxAACh7d+/f+DAgRMmTKA7EAAAyWAy\nmd9+++3ChQvt7OzojgUA5Mhff/119epVFD8BALeKiorTp09/9tlneL4VAIAsxcTEaGpqDhs2jO5A\nAEAZrFixIj4+PjExsbMGXl5eBQUFr169EnkXffv2zc7ObmxsFLkHAADgCSUOACCc/Pz8CxcufP75\n53jqofxj/ENx9y5IJ/S+TVAOd+/effnyJSangc6kpKRs3rx58ODBenp6enp6/fr1CwoKevPmDd1x\ngdQdPXrUwcHBx8eH7kBArt25c2fcuHEGBgYGBgbjx48X52G9oECOHz+urq4eEBBAdyAAAN1LTEzM\n8OHDtbS06A4E5BqTyTx58qStrS0uFgF///nPf959991jx4511mD48OG6uroPHjwQeRcuLi5MJvP1\n69ci9wAAADyhxAEAhBMcHGxhYeHv7093INA1Foul6HsXpBN63yYoh5MnT7q6ur777rt0BwJyauDA\ngdeuXfv2228LCgoKCgr27t17/fr1/v37R0dH0x0aSFFbW9vZs2cDAwNxizbwERoa6uXlNWDAgMzM\nzMzMzP79+3t5eYWFhdEdF0jd6dOn586dq6urS3cgAIQQ4unp6enpSXcUALIQGxvr7u5OdxQg127f\nvj1kyJDjx48XFBTQHQsogA8//PDMmTN1dXU816qrq7u5uYlT4uDk5KSmpvby5UuRewAAAJ5Q4gAA\nQmhsbDx+/PjKlSvV1dXpjgX+BdMYAIispqbm0qVLgYGBdAcCcu3cuXPvvfeeoaGhoaGhj49PSEhI\nc3MzZv5QbpGRkSUlJQsWLKA7EJBfRUVFq1atcnNzCw4ONjMzMzMzCw4OHjVq1EcffVRSUkJ3dCBF\nz549S05OXrRoEd2BAPyNyWQymUzB22P8CAqqtrY2LS3Nzc2N7kBArn366adffPGFON9JQ7eycOHC\nxsbGGzdudNZg+PDhz58/F7l/DQ0NR0dHlDgAAEgcShwAQAhhYWH19fUffPAB3YEAAEjMpUuX2tvb\nMTkN8MFisfr378+5xMPDgxAizvM4Qf6dPXt27NixvXr1ojsQkF8hISH19fVLly5lf1PIYDCWLl1a\nW1t7/PhxemMDqfrtt9/eeecdfMcG8iMmJiYmJobuKACkLiEhgclkjhw5ku5AQK69ePFixowZdEcB\nCsPU1HTs2LGXLl3qrMGAAQPS09Obm5tF3oWjo2N2drbImwMAAE8ocQAAIfz888/+/v4WFhZ0BwIA\nIDGXLl167733jIyM6A4EFMnbt28JIYMGDaI7EJCW5ubmyMhIX19fugMBuRYVFUUIGTVqFOdC6sfb\nt2/TExPIxNWrV319fXETPACAjMXHx9va2trY2NAdCMg1NTU1ukMABTNz5swbN240NTXxXDto0KC2\ntrb09HSR+3dwcMjJyRF5cwAA4AklDgAgqIcPHyYmJq5atYruQKAjzhsHGQzGsmXLOjTIy8vz8fHR\n19e3sLBYuHBheXk557aUjIyMWbNmGRsbc85ZWlpaunLlSltbWw0NDRsbm+XLlxcXF7O3ra6uXrt2\nba9evbS0tExNTd3d3devX5+QkCD43gkhxcXFK1asoHZha2sbFBTU5cTOqampU6ZM0dPTMzQ0nDlz\nZm5urjCfFsC/NDQ03LlzB3d4QFRU1PTp042NjbW0tIYOHXru3Dn+7U+fPk0I2blzp0yiAxpER0fX\n1tb6+PjQHQjQjH9yoC502tnZcS7s2bMnIQRT0SqxtLS0V69eIT+A4MQZcxGO4Y+BgcGkSZPS0tLY\nHXbon70J/5Ean/Ej/2D4vxEAGUhISOhQWQjdkLBjN4AuzZgxo76+nipf5ubs7KylpZWcnCxy//b2\n9pjFAQBA4lDiAACC+uGHH4YOHYr5AOUQi8Viv2CxWL/++muHBps3b963b19+fv6cOXPOnDmzfv16\n7m1Xrly5fv36wsLCyMhIaklJScnIkSMvXbp0/PjxioqKc+fO3b59293dvaqqimoQEBBw+PDh1atX\nl5eXFxUVnThxIjMzk/tyA5+9FxcXjxw58vr166dOnSovLw8NDb1y5cqoUaP4VDlkZGSMHj06KSnp\n6tWrBQUFa9euXb58uSifGgAhhJDbt283NTVNmzaN7kCAZhMnTlRVVX39+vWrV6/MzMzmzZt369at\nzhonJSXt27dvy5YtkydPlmWQIEtXr14dOnRoh6+uoRvinxyokyI9PT3OTagfKysrZRwqyMzVq1ct\nLCxcXV3pDgQUhjhjLs7hT2Fh4Y4dO9jDH85hYIc98h+pdTZ+7DIYPm8EQDaePHmCEgcQauwGIAgb\nGxvqLyDPtWpqai4uLikpKSL37+DgkJeX197eLnIPAADADSUOACCQoqKiS5curV69mu5AQBQffvih\ni4uLoaHhpk2bSCczJ2/ZssXd3V1bW9vb25u6dLVz586cnJw9e/Z4eXnp6el5enoeOnQoKyvrm2++\noTa5d+8eIcTGxkZXV1dDQ8PZ2fn7778Xau87duzIy8vbv3//+PHj9fX1J0yYsG/fvpycHD43Ru/a\ntauqqoraRE9Pb8yYMUFBQWJ9OtC93b59e/jw4Xj+DhBCDh06ZGZm1rNnzyNHjhBCdu/ezbNZUlKS\nl5fXRx991FkDUA63b9+eOnUq3VGAXBAwOUD3cevWrcmTJ6uo4HIKCE2EMVeH4Y+Hh8eWLVu63JGA\nI7UOugyGzxsBkIHc3NzCwkKUOADB6RlIwfvvv3/nzp3O1g4cOFDMWRxaW1sLCwtF7gEAALhhTA4A\nAjl69KiBgcGcOXNkvF8Glw7LbW1tqQei89lKxjHLoaFDh1IvrKysCCFFRUXcbbjn57h27RohxNvb\nm71kzJgx7OWEEOoJ5X5+fj179ly2bNn58+fNzMy4r3Dx2fv169cJIePHj2cvee+999jLeaLGG5yb\njB49urPGQLlx44aPj4+lpaWGhoalpeW0adMuX77M2aCzA62ztV2S7fsTS1RU1IQJE2jZNfKbXGGx\nWA4ODtRrJycnQkhaWhp3s7S0tHHjxn388cfffvutLMMDGcvMzMzKykJyANJVcjAyMiKE1NXVcW5C\n/WhsbCyzIEGWmpqa4uLiOM9F5RxSilwRYczFPfxxd3fvckcCjtSEDYbPGwHRYKQmlPj4eFVVVfYV\nBllCLpUrAo7dAIQyevTovLy8vLw8nmsHDBggZokDISQnJ0fkHgAAgBtKHACga62trb/++uvy5cu1\ntLRkvGtq5kw+rwsKCubNm9dhpi/2Ws5NujN9fX3qBXW3Gc/PREdHp8OS0tJSQoi1tTV7QG5mZkYI\nycjIoBocP3784sWLvr6+dXV1ISEh/v7+Tk5Oz58/F3zv1CUAqlsK9ZraNU9lZWU8NwGeWltbFy5c\nuGDBgvHjxz958qSuru7JkycTJkwICAjw9fVtbGykmnV2oHVY0uEF91YKd8QVFBS8fv2arm8xkd/k\nR1VV1ZYtW1xcXPT19RkMhpqaGiGkvLy8Q7P8/PzJkyevW7du+/btdIQJshMdHa2jo0PXPYJIDvKj\ny+Tg4uJCCOlwJTQ3N5cQ0rdvX9kGCzLy6NGjpqYmBSpxQEqRKyKMubiHP1RxFX8CjtSEDYbPGwFh\nYaQmgvj4+P79+3d4PpRsIJfKDwHHbgDCGjVqlIaGxqNHj3iufffdd4uLi0V+FJ2lpaWKikpxcbEY\nAQIAQEcocQCArl28eLG4uPjDDz+kOxAeLC0to6Ojd+zYQXcgSoiaur+iooL1b/X19ew2s2bNunDh\nQllZ2YMHDyZNmpSbm7tkyRLBd9GjRw/yz2U7CvWaWs4TdZWNc5Pq6moh3lU388knn5w/fz4qKmr1\n6tV2dnYaGhp2dnZr1qy5ffv21atX2c/x7baio6O1tLQEuROOFshvMjNnzpy9e/f6+/vn5OR0dv2x\nqqrK29t7+fLl27ZtYy/EzVjK6t69e6NHj9bU1KQ7EN6QHGSmy+RAzT4VHx/PuTAhIYEQ4uXlJbM4\nQZbu3bvXp08fW1tbugORGKQUenU55uIe/nC+5kOEkZogA0CQFIzURJCQkCC3T6lALpUZQcZuACLQ\n1tYeNGhQTEwMz7WOjo6EkKysLNE6V1NTMzU1RYkDAIBkocQBALr2ww8/TJ8+nT0LnFwJDw9XU1Pb\nu3cvn0cbdAfUbTStra0NDQ2SmtVgxowZhJD79+9zLnz48KGbmxv1msFg5OfnE0JUVFQ8PT3Dw8MJ\nIenp6YLvYtq0aYSQ6Oho9pKoqCj2cp6oLww4N3n8+LHge+xW4uPjjx49GhgYOHz48A6rRo0atXjx\n4rCwsIcPHwrbbZdXEBToEkNsbOzw4cO1tbXpDoQ35DeZoa5ifPbZZyYmJoSQ5ubmDg2am5t9fHz8\n/f056xtAicXExHh6etIdRaeQHGSmy+SwdOlSXV3dEydOcC48ceKEnp6eUEWfoEDi4+M9PDzojkKS\nkFLo1eWYi3v409m3L5y6HKnxHD92GQxICkZqImhvb09MTJTbEgfkUpnp8vQMQGQeHh6d/ZF1cHBQ\nUVHJzMwUuXMLC4uSkhKRNwcAAG4ocQCALiQlJT169GjVqlV0B8LbmDFj9uzZw2KxFi1aJHItrRIY\nOHAgISQhIeHatWuSugK1a9cuJyenVatWXbhwoby8vLa29vr164GBgfv27WO3WbZsWWpqanNzc0lJ\nyf79+wkhkyZNEnwXX3zxhb29/aZNm+7evVtbW3v37t3Nmzfb29vv2rWLT1RGRkbUJnV1dbGxsXv3\n7hXjXSqzn3/+mRAye/Zsnmv9/PwIIceOHZNpTHImLi7O1dWV7ig6hfwmM9SX2Xv37q2qqqqoqNiy\nZUuHBgsXLnzw4MH27dvxPN3uoKioKDc3V56/zkFykJkuk4O1tfX3338fGxu7Zs2asrKysrKy1atX\nP378+Mcff7S0tKQjZJAuFov17NkzWh4DLz1IKfTqcszVYfjz6NGjo0ePCtIz/5Eaz/GjIANAkAiM\n1ESQkpJSX18/cuRIugPhDblUZro8PQMQmaura0pKCs+6GU1NTRsbG3FKHCwtLTGLAwCAZKHEAQC6\n8P3337u4uMjz42Y///zzmTNnVlVV+fr6NjU10R0OPb777rtBgwZ5eXkdPnz4wIED1EL2128Cvujw\ndZ2ZmVl8fPy8efM2bNhgZWXl5OT0yy+/nDlzZuzYsVSDR48eWVpavv/++/r6+s7OzpGRkbt37z57\n9qzgO7WwsIiPj582bdqiRYtMTEwWLVo0bdq0+Ph4aopUnpv06tXr0aNHgwYNmj59upWV1RdffPHT\nTz91aAMU6r6fAQMG8FxLXdYU5CYwZVVfX5+amiq3twFRkN9k49SpU4sWLQoJCbGwsBg7diz7fwU7\nq1y4cIG+6EDW4uLiVFRURowYQXcg/CA5yEaXyYEQEhgYeOvWrefPnzs6Ojo6OiYnJ9++fXvRokU0\nhQzSlZWVVVFRMWzYMLoDkTCkFGkTZ8zFOfyxtrbev3//999/TwhRUVHh2T/1gv9IjXQyfuwyGD5v\nBISCkZoIEhIS9PX1XVxc6A6kU8ilsiHI6Rn5d5pCygIBOTs7t7e3d1al5OjoKE4Bk6WlJWZxAACQ\nLDW6AwAAuVZTU/Pbb7/t379fzgcDJ06cSElJefbs2ccff/zrr7/SHQ4Nhg8f/vz58w4LuWehFGQJ\nJ2Nj4wMHDrCveXXg4eHBZ55eAfdlYWHx888/U3exCNIJIeTdd9+NjIzsshkUFhYSQkxNTXmupZYX\nFRXJNCZ58ueff7a1tcl5iQNBfpOJHj16nDp1inPJnDlzOH9EkulWEhIS+vXrZ2BgQHcgXUBykIEu\nkwPFy8uLmkkelF5iYqKqqir17aOSQUqRKnHGXIRr+EOd5HM+nZC7f/4jNdLJ+LHLYHBGJCkYqYng\n6dOnQ4YMUVVVpTsQfpBLZUDA0zPkKxCBk5MTg8F4/fp13759udf26tVLzBKHv/76S4zoAACgI8zi\nAAD8hIeHM5nMBQsW0B1IFwwNDS9evKitrR0SEtLhccgAwBNVtyTn1UtS9ezZM3Nzczs7O7oD6QLy\nG4CMPXv2TCFu0UZyAJC9xMREFxcXXV1dugORPKQUecZgMN68ecP+8cGDB4SQcePG0RcRSBdGajw9\nf/588ODBdEfRBeRSAIWmq6traWn5+vVrnmsdHR3FeVCFhYUFHlQBACBZKHEAAH5OnDgxY8YMY2Nj\nugPp2sCBA6kHFqxatYrn/SgA3Y2VlRUhpKKigufasrIyQoi1tTV7CTXbbXt7O3fj9vZ2zrlwlUNK\nSsqgQYPojkIgyG8AspScnNzZxNHyBskBQMaePn06dOhQuqOQFqQUebZq1arMzMz6+vro6OiNGzca\nGBjs2rWL7qBAdBipCYvJZKampirE8A25FEChOTk5dVbi0KtXr+zsbJ6pWBAWFhYlJSWYXwQAQIKU\n/yQYAET26tWruLi4JUuW0B2IoAICApYvX97Y2Dh79uyqqiq6wwGgmaenJyEkOTmZ51pq+ZgxY9hL\n9PX1CSHV1dXcjSsrK+V/znZhJScnK9BE08hvALJRVlZWVFSE5AAAPCnKLC8iQ0qRT1FRUXp6eu7u\n7kZGRvPmzXN1dY2Pj+c5hzYoCozUhPX69ev6+nqFKHEgyKUAiszJySkjI4PnKkdHx9bW1oKCAtF6\ntrS0bGlpqaysFCM6AAD4F5Q4AECnjh8/bm1tPWHCBLoDEcKRI0eGDRuWkZEREBBAdywANAsKCiKE\nXLx4kefaiIgIdhuKs7MzIeTFixfcjV+8eNGnTx+pREkTJpOZlpbWv39/ugMRAvIbgAykpKQQQpAc\nAIBbTk7O27dvlbvEgSClyKUJEyZcvHixuLi4tbW1tLQ0PDwc9Q2KDiM1YSUlJampqb377rt0ByIo\n5FIABWVqatrZFDu9evUihGRlZYnWs6WlJSGkpKRE5NgAAKADlDgAAG/t7e2nT58ODAxUVVWlOxYh\naGpqXrhwwdjY+OrVq3THAkAzV1fXFStWnDhx4s8//+ywKj4+/tSpUytWrBgxYgR74bRp0wghPJ8Y\nGhISMnXqVKlGK2P5+fkNDQ2KdXUY+Q1ABl69emVkZERNH60okBwAZCM9PZ0oWgmUCJBSAGQAIzVh\nJSUlOTs7a2lp0R2IoJBLARSUgYFBTU0Nz1UWFhbq6urizOJACCkuLhY9OAAA+DeUOAAAb3fu3Ckq\nKgoMDKQ7EKE5ODiEhYUxGAy6AwGg33fffefn5zdx4sQjR47k5+e3trbm5+cHBwdPmjTJ39//u+++\n42y8evXqfv36nTx5ctWqVS9evGhubm5ubk5JSVm5cuWTJ0/WrFlD17uQBqrunqrBVyDIbwDSlpWV\n5ejoSHcUQkNyAJCBzMxMExMTQ0NDugOROqQUABnASE0oSUlJivKUCjbkUgBFZGhoyPOpQIQQFRUV\nCwuLwsJC0Xo2NTVVV1dHiQMAgAShxAEAeDt37tzIkSN79+5NbxgMBoM9IOT5mnMh25QpU7Zu3SrL\nOAHkk7q6+pkzZ8LCwqKiooYNG6arqzt06NA7d+6EhYWFhYWpq6tzNtbX13/8+PEXX3yRkJDg4eGh\nq6trbm4eEBBgbm4eHx/P/YTXzg5PhZCVlaWtrd2jRw8aY0B+A5BD8lDigOQAIJ+ysrIUrjiSIKUA\nyCuM1IRCe4kDcilAN2FgYNBZiQMhxNrauqioSLSeVVRUzM3N8aAKAAAJUqM7AACQRy0tLVevXt22\nbRvdgRAWiyXUcrYvv/zyyy+/lEJEAIpn6tSpAk5eamBgsGPHjh07dgjSuMvDUJ5lZ2c7ODjQe7EP\n+Q1ADmVlZY0ZM4beGJAcAOSTPJRAiQApBUCeYaQmiIqKivz8fHpLHJBLAboJQ0NDaqYcTU1N7rU2\nNjYiz+JACLG0tESJAwCABGEWBwDg4datW1VVVb6+vnQHAgAgFQr6LQUASFtWVpaDgwPdUQCAPMLJ\nAwAALZKSkgghCvegCgBQRKqqqoQQJpPJc621tbU4JQ4WFhZ4UAUAgARhFgcA4OH8+fPu7u729vZ0\nByK//P39/f396Y4CFICfnx/dIQAPWVlZAwcOpDsKhYGMB6R7ZLP6+vqysjJ8hSk4JZj4GkBwKHGQ\nTzhLAQF1hzMZZZWUlGRubm5paUl3IIoBWREIMp4YmpubCSEaGho811pZWd26dUvkzs3MzMrKykTe\nHAAAOkCJAwB01NzcfO3atf/+9790ByLX1q5d6+bmRncUIO8OHTpEdwjAW1ZW1vTp0+mOQmEg40E3\nyWZZWVmEEMziILjz58/THQLQbM6cOXSHICPV1dWVlZUocZBDOEsBQXSTMxlllZKSgikcBIesCMh4\n4mhublZXV6fmcuBmbW1dUFAgcuempqYZGRkibw4AAB2gxAEAOrpz505NTQ2eUsGfq6sraqKhSxER\nEXSHADy0tLQUFhbiW0zBIeNBN8lmVIkDZrESHDIDdB+ZmZmEEJQ4yCGcpYAgusmZjLJ6+fLl8OHD\n6Y5CYSArAjKeOJqbmzU1NTtba21t3djYWFVVZWRkJELnxsbGFRUVYkQHAAD/okJ3AAAgdyIjI4cN\nG2ZjY0N3IAAAUpGXl8dkMlHiAAAdZGdn9+jRQ09Pj+5AAEDuZGdnq6io9OzZk+5AAAC6nb/++svJ\nyYnuKACgW+iyxIEQUlhYKFrnpqam5eXlIkYGAABcUOIAAB3dunXL29ub7igAAKSlpKSEEGJlZUV3\nIAAgX0pKSpAZAICnoqIiExMTLS0tugMBAOheKioqysvL+/TpQ3cgANAt1NfX6+jodLZWzBIHExOT\nyspKFoslYnAAAPBvKHEAgH9JS0vLzMxEiQMAKDGqat7ExITuQABAvpSVlZmamtIdBQDIo7KyMjMz\nM7qjAADodv766y9CiLOzM92BAEC3kJeXZ2tr29laquBVnFkc2traampqRI0OAAD+BSUOAPAvN2/e\nNDExGTlyJN2BAABIS3l5uY6Ojra2Nt2BAIB8KS8vx1eYAMAT8gMAAC1evXqlpaVlZ2dHdyAA0C3k\n5eXxSTgMBsPc3Pzt27eidU7daYNnVQAASApKHADgX27evDl58mRVVVW6AwFBNTU1bdu27Z133lFT\nU2MwGAwGg+6IxKJkbwfkE76lAJC2Gzdu+Pj4WFpaamhoWFpaTps27fLly5wNGFz4r+2SRMLGXdoA\nUqWgmYGC/ABdUrKBjJK9HVBcWVlZvXr1UlHBFWwAaVHoMzSJ41/iQAgRv8ShoqJCtM0BAKADnCAC\nwP9raWmJjY2dOHEi3YGAEHbu3Ll79+6lS5fW1NTcunWL7nDEpWRvB+RTTU2NgYEB3VEAKKfW1taF\nCxcuWLBg/PjxT548qaure/LkyYQJEwICAnx9fRsbG6lmLBaL/QhSztcdlnR4wb0V97biqKmpMTQ0\nlFRvAMCm0JmBUlVVZWRkJNk+Qcko2UBGyd4OKK6cnJyePXvSHQWAclKCMzSJy83NlV6JA/VURJQ4\nAABIihrdAQCAHHn+/HljY6ObmxvdgYAQwsPDCSErV67U0dHx8vKS/9ECf0r2dkA+NTQ06Orq0h0F\ngHL65JNPzp8/HxsbO3z4cGqJnZ3dmjVr3NzcRo8evXz58tOnT9MbIR/19fU6Ojp0RwGghBQ6M1Dq\n6+tx8gD8KdlARsneDiiu3Nzc3r170x0FgHJSgjM0yWpubn779q2trS2fNuKUOBgYGKipqeFBFQAA\nkoJZHADg/8XFxRkZGfXp04fuQEAIeXl55J+5zpSAkr0dkE8NDQ3a2tp0RwGghOLj448ePRoYGMi+\nRsY2atSoxYsXh4WFPXz4UNhuu/xaRVIxB1GBAAAgAElEQVTfuzQ0NKDEAUDiFD0zUFDiAF1SsoGM\nkr0dUFxd3lENAKJRjjM0yUpNTWUymS4uLnzaiFPiwGAwjI2NMYsDAICkoMQBAP5ffHy8m5ubnD8U\nDTpgMpl0hyBJSvZ2QD7hW0wAKfn5558JIbNnz+a51s/PjxBy7NgxmcYkDNQ/AUiDomcGCvIDdEnJ\nBjJK9nZAQbFYrIKCApQ4AEiDcpyhSVZiYqKOjo6zszOfNuKUOBBCTE1NUeIAACApKHEAgP8XFxc3\natQouqMAIbDrURgMBoPB2LRpE/s1g8HIyMiYNWuWsbEx9SPVsrS0dOXKlba2thoaGjY2NsuXLy8u\nLubsk3+D6urqtWvX9urVS0tLy9TU1N3dff369QkJCZxhcFbJ8FnCHR7Pt9NlSPzfLwC3pqYmTU1N\nuqMAGgiYwdLS0iZPnmxgYKCnpzd16tT09HR2D+w2hYWFvr6++vr6pqamAQEB1dXV2dnZ06dPNzAw\nsLS0DAwMrKqqould0om6y2fAgAE81w4cOJAQEhMTI9OYhNHU1KSlpUV3FCBryAzSpuiZgdLY2IgS\nB+AD47Iu3y+ACCorKxsbG21sbOgOBGiAMzRpU44zNMl6+vTpkCFDVFVV+bQRs8TBxMQEJQ4AAJKC\nEgcA+FtVVVVmZuaIESPoDgSEwJ7ejcVisVisffv2cS5cuXLl+vXrCwsLIyMjqSUlJSUjR468dOnS\n8ePHKyoqzp07d/v2bXd3d/ZwrssGAQEBhw8fXr16dXl5eVFR0YkTJzIzM9mVMdzTzfFZwh0ez7fT\nZUh8OgToDC62dk8CZrAPP/xw+/bthYWFV65cSUxM9PDwyM7O7tBm48aNX331VX5+/rx5806dOrVg\nwYJ169bt378/Ly9v1qxZoaGhGzZskPn7o19hYSEhxNTUlOdaanlRUZFMYxIGk8lUUcH4qNtBZpA2\nRc8MlPb2dv7Xu6Gbw7iMf4cAoqG+RzQ3N6c7EKABztCkTTnO0CTr6dOnw4YN49/G3Ny8pqamublZ\ntF2gxAEAQILU6A4AAORFRkYGIcTJyUnkHvLz8yMiIiQXEYhry5Yt7u7uhBBvb29qaLdz586cnJyQ\nkBAvLy9CiKen56FDh2bNmvXNN9/s3r1bkAb37t0jhNjY2FBPI3Z2dv7+++8vXbokkfB46jIkYTuU\nMRwXigu/OOUjYAbbtm2bh4cHIWTChAn79u0LDAzctWvXyZMnOdssW7aMekLnli1bfvjhhxs3bty/\nf5+95KeffsI1fW4dbgxVUMjqlLi4OLpDkBhkBnopSmZgsVhdBonkAJ3BuEwe4C+4IiorKyOEmJmZ\nddkSv1zlgzM0einKGZoEtbW1paSkrFq1in8zquiqrKxMtAlmTE1NqcwGAAASwAIAYLFYLFZERISK\nikpTU5Nom1MPaes+wsPDJfv5i4yKh+fC+vr6Dsutra0JIYWFhewl1In1gAEDBGywZMkSqnM7O7sP\nPvggPDy8ubmZfzydLeEOj2fjLkPi3yG9uttxIQ8EOTbnzp07a9YsPg3Cw8Ppfh/yRX4ynpgEzGBV\nVVXsJfn5+YQQKyurDm1qamqoH9vb23kuYTAY0n9DsuPn5+fn59dls169ehFCioqKeK4tKCgghPTu\n3Zu9hJoyoa2tjbtxW1ubiooKz36oD1ywwP8mYPza2tonT57k34/MjjuFINRvQW4hM4iDCPA3Qm4z\nA0uw+Cm2trYHDhzobC3OHGgkP2cpVDw8F2JcRjv8BZdPXR6/ly9fJoQ0NjbyaYMM3IH8ZEUx4QxN\nZN1k7CZxf/75JyEkJSWFf7NXr14RQp49eybaXtauXevm5ibatgAA0AEmYgWAv2VmZtra2orzfHpa\nTkBpIcGPXap0dHQ6LCktLSWEWFtbsx9JSN0PQc3hIUiD48ePX7x40dfXt66uLiQkxN/f38nJ6fnz\n5xIJj6cuQxK2QxnrPseFPBDwl8JgMJhMZpfN6H438kK8I0C+CJjBDA0N2a+phMP9rE19fX3qBfu5\nBh2WKNlHJyBPT09CSHJyMs+11PIxY8awl1AfWnV1NXfjyspKAwMDqUTZOeriJv82yOoUZfo6AZlB\n2hQ9M1AEuYuR7uOyO5LBr14iMC6TB/gLLm8E+a2VlZXp6+traWl12ZLudyMvxD5Q5AjO0KRNOc7Q\nJOjmzZtWVlbvvvsu/2bULA7c/80EZGJiUl5eLtq2AADQAUocAOBvWVlZVAEvKDELCwtCSEVFRYdh\ncH19vYANCCGzZs26cOFCWVnZgwcPJk2alJubyy6uJ/9c/21tbaV+5Dn4kWzMAMLS0dFpbGykOwqg\nB/8MRuG84kDdnogHAAsoKCiIEHLx4kWea6kJhKk2FGdnZ0LIixcvuBu/ePGiT58+Uomyc9ra2kgO\n3RMyg1QpemagaGpqNjU10bJrUEoYlwEIor6+Xk9Pj+4ogDY4Q5Mq5ThDk6CbN29OmTKly6pWQ0ND\nDQ0NcUocKioqRNsWAAA6QIkDAPwtPz/fzs6O7ihAumbMmEEIuX//PufChw8furm5CdiAwWBQU/+p\nqKh4enpSN3Gmp6ezG1taWhJCioqKqB+fPXsm7ZgBhKWnp1dXV0d3FECDLjMYJSYmhv06KiqKEEI9\ncxq65OrqumLFihMnTlCTfHKKj48/derUihUrRowYwV44bdo0QsiJEye4uwoJCZk6dapUo+WG5NA9\nITNIm6JnBoqenh6+xwUJwrgMQBDNzc3iTDUKCg1naNKmHGdoklJZWZmQkODt7d1lSwaDYWpqKnKJ\ng6mpaWVlpSATiwIAQJdQ4gAAf6upqeGc3g2U0q5du5ycnFatWnXhwoXy8vLa2trr168HBgbu27dP\nwAaEkGXLlqWmpjY3N5eUlOzfv58QMmnSJPbaiRMnEkK++eab6urqly9f/vrrr9KOGUBY+BazO+Of\nwSg///zzo0eP6urq7t69u3nzZmNj4127dtEQq2L67rvv/Pz8Jk6ceOTIkfz8/NbW1vz8/ODg4EmT\nJvn7+3/33XecjVevXt2vX7+TJ0+uWrXqxYsXzc3Nzc3NKSkpK1eufPLkyZo1a2QcPL7C7LaQGaRN\noTMDRVdXF/kBJAjjMgBBtLS0qKur0x0F0AZnaNKmBGdoknLr1i1CyIQJEwRpLM5MDMbGxu3t7bW1\ntaJtDgAAnFDiAAB/q6+v19XVpTsKEA57/jTqYah8FlLMzMzi4+PnzZu3YcMGKysrJyenX3755cyZ\nM2PHjhWwwaNHjywtLd9//319fX1nZ+fIyMjdu3efPXuWvYsDBw7Mnz8/PDzcxsZmw4YNe/fu5Y6q\ns/B4ruoyJD4dAvCkr69fU1NDdxRAgy4zGOXHH3/cv3+/tbX19OnTBw8eHBMT4+DgQK3imcq6fNGt\nqKurnzlzJiwsLCoqatiwYbq6ukOHDr1z505YWFhYWFiHi9T6+vqPHz/+4osvEhISPDw8dHV1zc3N\nAwICzM3N4+PjuZ/n2uGPncQ/YSSH7gmZQQYUOjOwo8LFaOAD4zL+HQKIprW1VUNDg+4ogB44Q5MB\nJThDk5SbN296eHgYGRkJ0tjExKSyslK0HVG7EP/pUQAAQAhRozsAAJAXDAaDxWLRHQUIh+evjP/v\n0djY+MCBAwcOHBCtgYeHh4eHB5/+zczMzpw5wycePuF1top/SPh/C8KysLAoKSmhOwqgQZcZjOLg\n4HDt2jWeq7gTjiBLuqGpU6cKOFWpgYHBjh07duzYIUhjaX+2SA7dEzKDzChoZqCYm5uXlpbKYEeg\noDAu498hgGja29tVVHB7XjeFMzSZUegzNIloamq6du3a1q1bBWxvbGwscokDNYMyShwAACQCp4kA\n8DdNTc2Wlha6owAAkDorK6uGhgYMKQGgAysrK/YzywEAOFlZWRUXF9MdBQBA96Ktrd3Y2Eh3FACg\n5K5evVpTUzN//nwB24vzoAqUOAAASBBKHADgb8bGxiKfnwEAKBBra2tCSGFhId2BAIB8sbKyQmYA\nAJ4sLS1RAgUAIGN6enp1dXV0RwEASu7UqVNeXl5WVlYCtscsDgAAcgIlDgDwNwsLC1y2A4DuwNbW\nlhCSk5ND/fjnn3/GxMTQGhHIhW7+HFYghNjZ2eXn5zOZTEIIi8U6d+4c5qUHZAag2NjYlJSUUJPe\nUfkBz7UBAJA2PT29+vp6uqMAeYQzNJCU0tLS27dvL168WPBNxLlLUFtbW0NDo6qqSrTNAQCAE0oc\nAOBvvXv3fvnyJd1RAABInbGxsaWlZXp6OovF+uabb1xdXefNm0d3UEA/Fge6YwF6uLi41NfX5+bm\nlpeXT506dd68eXwekQ7dBDIDUPr27dvW1vb69euKior3339/3rx53377Ld1BAQAoOUNDw/r6eqq8\n7O7du35+fq2trXQHBXIBZ2ggKWFhYdra2tOnTxd8E3FmcSCEGBgYYBYHAACJQIkDAPxt8ODBeXl5\nZWVldAcCACB17777bmJi4tSpUzdt2tTe3p6Xl5ecnEx3UABAs379+jEYjAsXLgwYMCAqKooQEh4e\nTndQACAXnJ2d1dTULl++3L9//zt37hBCzp8/T3dQAABKztHRkclk5uTk/P77797e3hcuXDhz5gzd\nQQGAUgkNDZ0zZ46Ojo7gm5iYmFRWVopcXmNkZIQSBwAAiUCJAwD8zc3NTV1dnbqgDwCg3Pr06XPl\nypWoqChqRnoNDY1Lly7RHRQA0ExfX79Pnz6bNm0qLS2l7hHMyclJTU2lOy4AoJ+GhkavXr127tzJ\nzg+5ubkpKSl0xwUAoMx69+5NCAkPD58+fXpbWxuDwfjqq6+oERwAgPiio6OTk5NXrFgh1FbGxsat\nra0iP0bH0NAQJQ4AABKBEgcA+JuhoaGHh8fly5fpDgQAQIpYLFZwcPCxY8caGhrY05y2tLTgXm2A\nbq68vHzKlCmvX79ub29vb2+nFqqrq6P+CQCo/PDmzRvO/ID6SAAAaTMwMDAxMdm1a1d7ezuTyWSx\nWJmZmdeuXaM7LgBQEt988824ceOGDx8u1FYmJiaEkIqKCtF2ihIHAABJQYkDAPy/gICA//3vfwUF\nBXQHAgAgFdRXFOvWrWtra2N/RUFJT0/PzMykKzAAoNeTJ08GDx4cHR3d4b7A1tZW1D8BdHMJCQk8\n80NLSwueVQEAIFUXLlyorq5msVjsDKyiovLf//6X3qgAQDmkpKTcvn37888/F3ZDY2NjQkhlZaVo\n+0WJAwCApKjRHQAAyJG5c+du3rx5//79R44cYS88ceKEq6uri4sLjYEJ4ty5c4cOHXr16lVVVRW1\nhPOhaAwGg3uhOOLi4th9AnQmPz/f1ta2y2YS//8pP2R8YPLX1tY2ePDgwsJCnlObUg/YXrdunQwi\n6ZJcfW4EGQ8EzmYK6sGDB+PHj+e8es4pNTU1JyfH3t5e9oFxk7fkEBERIZsdAdDl4cOH48aN45Mf\nsrOzHRwcZB6X/JJ9msJZCghCuc9kJEXeTjPCw8Pnz5/PYrE499je3p6YmPjHH3+MHTtWNmF0Sd4+\nN2RFQMYT0DfffNO3b9/JkycLu6H4sziUlpaKti0AAPwLCwCAQ0hIiJqa2tOnT6kfKysrGQyGmpra\n9u3bGxsb+Wzo5+fn5+cnyC5Gjx49evRoCcTKITQ0lBDi7e2dnZ3d1NR08eJF7vwmwaRHZ9YGRSPg\ncUE15t9GGseOVMn4wKR6Cw8P59Ngy5YtKioqamo8SjwZDMaoUaOoZtRN24LsUQkSWpekfYyAohAw\nm8kn/mcpxcXFnp6eKiq857dTU1M7fPiwIP1wUvrkgMktgI3/X14512X8paWl//nPf/jkh0OHDrGE\nOXNQbrSc+wEISKHPZGRA3sZuoaGhKioqPL+qV1NTmzhxIrslxm7c+wJQ6Iwn+JhLHPn5+RoaGidP\nnhRh29bWVgaDcfHiRdF2vXr1ag8PD9G2BQAATnhQBQD8S2Bg4JgxY/z8/Kha1Li4OBaL1dbWtmfP\nHhcXl3v37om/CyaTyfMuKHEcPHiQEHLgwAF7e3tNTc1Zs2axpDy0U+iLuSAzfn5+EvxfJ41jR6pk\nf2B2affu3bGxsQ4ODtxVDiwWKyEhobi4WKgOlSOhdQkZDySbzeSNhYXFH3/88dNPP2lra6urq3dY\ny2QyRZiroJskB7r/YwL96P0fKAPm5uZ3797tLD+0t7djLhNOtKQpnKWAIGR8JsNgMBTuNnp5O83Y\nuHEj9bvjXtXW1hYVFZWUlCRsn93k9AxZEZR77CYp3377rZmZ2bx580TYVk1NTV9fHw+qAACgHUoc\nAOBfVFRUzp07197ePnHixLKyspiYGA0NDUJIe3t7Xl7e+PHjZ8+e/fbtW3F2ERMTExMTI6F4//bq\n1StCSO/evSXbLYBckcaxI1XyeWCOGjUqJSXls88+457OQUVF5dq1a0L1hoQGoBwYDMby5ctTU1Nd\nXV073K7NZDIfP34s7MkPkgOA0qDyQ1pampubW4f8wGKx4uLixBwcKROkKQDFJW/Hb3Jy8oYNGzQ1\nNXnOwKemprZ3715h+8TpGQBQsrOzf/rpp61bt1IXvUVgZGTEfjaNsAwNDUXeFgAAOKHEAQA6Mjc3\nv3fvXlVVlaur6/Xr11tbW6nl7e3thJCrV6++8847v/zyC4vuynROjY2NhBDuO6sAgEZye2BqaWnt\n27cvJibG3t6e85IZi8WSh3sx5fZzA1B6jo6OPKdzYDAY169fpzEwCpIDAI0cHBzu37/PMz8IWx+p\nxJCmABSXvB2/5ubm+/bty8vL27p1q46OTodCh9bW1oiIiDdv3tAVHpu8fW4AIIjt27fb2NgsW7ZM\n5B4MDAxEnonByMgIszgAAEgEShwAgAdHR8fY2Nh33nknJSWlQylDa2trbW1tUFDQ6NGjX758KWzP\njH9wL8nLy/Px8dHX17ewsFi4cGF5ebngfXboinsvPJWWlq5cudLW1lZDQ8PGxmb58uXCzlEPIFm5\nubkzZ840NDTU09ObOnVqeno6e5XIx05UVNT06dONjY21tLSGDh167tw5zrXsTjIyMmbNmmVsbMx9\nHDEYDPZWDg4OAk67Kv8Hpqur64sXL6jpHFRVVQkhTCbz/v37NTU1AvagQAmturp67dq1vXr10tLS\nMjU1dXd3X79+fUJCgoBRAXQf1O3aL168GDlyJOft2hcuXBCqEyQHAOXD+Ge6l1GjRomWH7o84oqL\ni1esWEEdsLa2tkFBQSUlJZwBdJZbuJd0OLWj1jY1Ne3bt2/IkCG6urpaWlp9+/YNCgqKi4tjby7O\naZj8n/sBCEIihyHnKgG/QuN/8HZ5mKSmpk6ZMkVPT8/AwGDSpElpaWkCHoA8Y5af49fc3HzXrl05\nOTlbt27V1dXlLHRQVVWlHhIhIJyeAQAlOTn5t99+27dvn8hTOBBCDA0NBb92xL1tXV0ddSchAACI\nhd5HQwGAPHvy5Amf7KGurq6urr5z586mpiYWi+Xn5+fn5ydIt9zJh1qyYMGCtLS0qqqqlStXEkIC\nAwMFD7WzPvksKS4utre3t7CwuHXrVm1t7YMHD+zt7R0dHSsrKwXZHZ5uCIIQ9riYNGnSH3/8UVNT\nExUVZWlpaWxsnJWV1aEN91b8jx1CyIwZM96+fZuTkzNx4kRCyO+//87dycSJE2NiYhoaGiIjI6m9\nREVFEUKsrKyam5vZjY8dO/b+++8L+PZlfGCyRD02Y2Nje/XqRV0vU1FROXv2bHh4uIDnSIqS0Hx8\nfAghhw8frqura25ufvny5cyZMwV/j8h4IHg2k08ixM9kMo8ePaqlpUXdlqeurl5TU6N8ZzsiJwfB\n8yQoN0X/GyFa/Nz54eTJk4IcEfyPuKKiIjs7O2tr6+joaPbZoL29fXFxMWfAAuYB7lO7mpqa4cOH\n6+vrHzt2rLi4uLa29t69ey4uLuzNxTwNEyo89o+0nPtBNyTgX3DJHobCBtnZwdvlYfLmzRsjIyMq\n7Nra2kePHnl4eAgbg/wfv2VlZTt37tTT02NPmaCurl5YWIixW4d9IStCNxy7CWXy5MkjRoxgMpni\ndDJlyhShcgWnO3fuEEIEP78CAIDO4LIUAHQqODiY51MPOampqTk4ONy9e1f8i/7379+nfszKyiKE\nWFtbCx6qCKPKFStWEEJCQkLYS/73v/8RQrZs2SLI7jBoBEEIe1xcunSJvYS6Vh4QENChDfdW/I8d\nQgi7ToKaFsLT05O7k3v37nFHNWjQIEJIaGgoe8mAAQPu3LkjyDviEzCfJeIcmCwxjs36+vpPPvmE\nuttm9uzZ4l8mk7eEZmBgQAiJiIhgNygoKMBlMhBct71Mlp6ePnz4cOqIi4iIUL6zHZGTA0ocgKLo\nfyPEif/ly5fs/LB27VpBjgj+R9yHH35ICDl9+jR7LXU2uGLFCs6ABcwD3Kd269atI4QcPnyYc2Fi\nYiJ7czFPw4QKj/0jXed+0N0I+BdcsoehsEF2dvB2eZgsXLiwQ9g3btwQNgZFOX7Lysq2bdumq6tL\nzcO3ZcsWjN067AtZEbrt2E0Q9+/fJ4RERUWJ2c+8efNmzpwp2rbUpCzZ2dlixgAAAHhQBQB0KjY2\nlvXvp1RwY7FY2dnZ7733nuBT+XVm6NCh1Atra2tCSFFRkZgd8kc9NNfb25u9ZMyYMezlAITXVJbS\n5unpyX793nvvEUJu377d5Vb8jx0Wi+Xg4EC9dnJyIoSkpaVxdzJy5EjuhdT1+kOHDlE/3r17l8lk\nUoFJiUQOTD09vb59+y5cuDA6OlrATXR0dI4cOXLv3j07OzuqoF5M8pbQfH19CSF+fn49e/ZctmzZ\n+fPnzczMuszwoDRkn82URt++fePi4qhZTJEcQPkgOYjD2dk5Li5u//79GhoaKSkpgmzC/4i7fv06\nIWT8+PHs9tRJF7VcWNyndtQDNWbMmMG5cMiQIewAaBkfYVAGgpBZspLsYSga7oO3y8OEOkXhDNvd\n3V3acQoSmCD09PRcXFw++OCDmJgYQdqbmpp++eWXeXl5W7du1dPTO3r0qJBR84DTM5ArOD2Tnra2\ntrVr106ePHnChAlidmVoaFhdXS3ytoQQkTcHAAA2lDgAQKf++OMP6sFgKioq6urqnE+cNTQ07Nu3\nr7e3d1BQ0J49e06fPm1kZCTm7vT19akX1LPQpD1+Ky0tJYRYW1uzBw9mZmaEkIyMDKnuFxSI7C8i\nmJqasl9T/yHfvn3b5VZ8jp2qqqotW7a4uLjo6+szGAxqXhaeBUk6OjrcC+fNm2dlZfX8+fO7d+8S\nQoKDg1evXi3UOxKWRA7M7777buHChdSDOYKCgtra2gTccOzYsenp6Tdv3hQh8g7kLaEdP3784sWL\nvr6+dXV1ISEh/v7+Tk5Oz58/l2pUID9wSVQcqqqqGzduTE1N3bx5s/i9ITmAXEFyEJOqquqGDRtS\nU1M71A10hv8RR531UQcphXpNHcjC4j61o760s7S07GwTWsZHGJSBIGSWrCR7GIqG++Dt8jApKysj\n/w5b/OszgpDU2G3u3LkpKSmenp6ffvqpgA+nNzY2/uKLL/Ly8q5evSpa8JxwegZyBadn0hMcHJyW\nlnbw4EHxuxK/xKGqqkr8MAAAujmUOAAAbywWy9TU1MnJafLkycuWLdu+ffvx48ejo6P/+uuvhoaG\nqqqq9PT0yMjI77//fvPmzfPnz6cmCVQgFhYWhJCKiooOk9vU19fTHVp3153L1TkHSNSFKnNzc3E6\nnDNnzt69e/39/XNycqj/4UJtrqGh8fHHHxNCDh48mJmZ+fjxY2oSVOmRyIG5ZMmSbdu2PXz48OrV\nq6dPn96/f7/g2+rq6rq5uQkdN90E+dxmzZp14cKFsrKyBw8eTJo0KTc3d8mSJfSFDNLSnVOoVPXu\n3Zs9I44CQXIANiQH6endu7fgJ2x8jrgePXqQf84AKdRrajmF+iW2trZSPwp1bZ1KCHzuTqZlfIRB\nmTzrhnlD2oehaLo8TKgvyLnDpj0wQSxZsmTnzp0JCQnnz5//9ddfd+3aJfi2RkZGspmvQrJwegZs\n3TDN0ig3N3fXrl1bt251cXERvzdxShyoKjTM4gAAID6UOAAAbwwG48WLF69evbp58+bRo0e3b98e\nEBAwfvz4Pn36aGtr0x2dBFD3WlHPYGN7+PChIn67CUrj8ePH7NdRUVGEEC8vL3E6pGb7/Oyzz0xM\nTAghzc3NwvYQFBSko6MTGRn56aefLlu2TNqHv2QPzPfff//LL7/86quvlL46vsvPjcFg5OfnE0JU\nVFQ8PT2pB9amp6fLOlAAkC0kBwC5wv+ImzZtGiGE8zFb1NkgtZxCzcHALlN49uyZ4HunZj6/fPky\n58K4uLhRo0ZRr2kZH2FQBnJFUochNRNDa2trQ0MD5+QKounyMKHGjJxhC/jQB2kHJpTZs2cfOnRo\n3759VJ5UYjg9A6DFxx9/bGNjs2HDBon0ZmBgIHKNgqampqamJkocAADEhxIHAOimdu3a5eTktGrV\nqgsXLpSXl9fW1l6/fj0wMHDfvn10hwbd1969e2NjY+vq6u7evbt582ZjY2Oh7mLh5unpSXVbVVVV\nUVGxZcsWYXswMTEJCAhgsVi3bt366KOPxAlGEBI/MD/88EMVFZVLly5JNk55I8jntmzZ/7F333FN\nXf//wE/CTggbAkGmoqIIVsCBUisiFisuPqhUBbUCWrRWa6tSd2udrWJtK1q10n5UXLWi1oGbURcu\n3AooK2GGJOyR3x/303z5ATJC4BLyev6Rx83NPTevBO7h3vDOOXMeP35cUVEhEAiokS1Gjx5NX2QA\n6AjoHAA6myaOuLVr19rY2Cxbtuzy5ctisZg6G7Sxsal7Njhq1ChCyJYtW4qLi589e/brr7+2/KnX\nrFnj5OS0atWqPXv2CAQCiURy/vz5oKCg7777TrZBx18f4aIMOhVFHYbOzs6EkFu3bsXGxra9XqfZ\nw2TNmjUGBgZUbIlEEh8fHxUV1SkHeZAAACAASURBVMYnVUiw1po9e7aJiUl0dLRic3Y2OD0D6Hgx\nMTGnT5/+5ZdftLS0FLJDfX19kUgkd3MOhyMWixWSBABApUkBABQhICAgICCg2c0a9j8tWdNO+yws\nLFy8eLGdnZ2GhgaXy/Xz80tKSmrhM8bExLQw1ePHj0ePHs3hcNhs9pgxY548edJwm1evXk2cOFE2\nXyb1qEAgmDt3rqWlpYaGBo/HCwkJycnJUeD+c3JyQkNDqf1bWlqGhYXx+fy6L6GsrGzDhg39+/dn\nsVhaWlq9evUKCwtr+i1KSUnx9fVls9kcDsfHx+fx48cN3/YWvi7KJ598Um99VlbWpEmTdHV1jYyM\ngoKChEJhWlqan58fh8PhcrnBwcFFRUV1I128eNHPz8/AwEBLS+u99947dOhQ3UeFQuHnn39uZ2en\npaVlZGQ0ZMiQL7744ubNm/XyUMuurq6yGFOmTGnifZBp7XHx+PFjHx8fXV1dNpvt6+vb6E+zVb/n\nAoFgxowZZmZmmpqaTk5O1Pc/3tWEvOOIe/HiBZPJnDp1aktechsDS9twYErfcWwOHz587ty5rQpP\nvVEteTr5XmN77LPp9y0+Pj44ONjW1lZDQ0NfX9/FxWX9+vUlJSUtjIQer6Gmew9ZmNZ2Wc3mbHoD\n8v+TdaGyh96+fTtu3DhdXV0zM7Np06bl5+c3/ZOVaWFv1mkpKn/XO9uRu3NobT+JzqFemC7TOZAW\n/I3ozBSVv4VHRLNHHJ/PDwsL4/F46urqPB4vNDS03g86Ly/v448/NjU1ZbPZfn5+b9++baIfaBhJ\nLBavWLGiV69empqaxsbGPj4+169fr7tBG0/D2qObavZJcZbSKFyX1dPyM4G2H4ZSqfT27dsuLi4s\nFmvw4MHPnz9vyfM2ffA2e5jU/YmPHTv29evXhBAmk9mSp5Z2puN38uTJ48aNa+EeKLh2qxcJvWJD\nqnZ6hmu3eoRCIfWLqsB9njp1ihBSXl4uX3M7O7tNmzYpMA8AgGpCiQMAKIayn0C3SksuGqX/XpN4\neHjEx8eLxeK4uDhzc3NDQ8O0tLR624waNSohIaG0tPTs2bPURR2fz7exseFyuefPnxeLxdevX7ex\nsbGzs6t7QdWW/efk5FhZWfF4vEuXLolEIqqtjY2N7HJLJBK5ublxOJw9e/bw+XyxWHzlyhVqvrp3\nvd5Xr14ZGBhQ+xSLxfHx8UOHDq13Jd/y1/Wu93P69OlPnjwRCoXh4eGEkI8++mjixInUmnnz5hFC\n6l20EEImTJiQl5f35s0b6gs3586dkz06fvx4Qsj27dslEklFRcWzZ88mTpxY99nrXWY7OTktXbr0\nXe9AQ13juKipqbGwsGj5Z1U0avTYDAsL8/LyatV+WvgxmYpAj9eoFvYereqyms3Z7AbS5rrQadOm\nUc8+f/58QsjMmTOb/clSlL036+ASB1XQ8n4SnUPX7hxa+Dei01JUfpw50AVnKY3CdVlDqvYXPCsr\nixBiZmZGd5CmNHr8RkREuLi4tGo/6IHrQq/YKFU7PVP2Hk/h+YOCgrhcbmFhoQL3ee3aNUKIQCCQ\nr7mLi8uKFSsUmAcAQDXhFBAAFEPZT6BbpVUXjWfPnpWt+e233wgh1LD/dbe5cuVKvbZhYWGEkL17\n98rWnDhxghASERGhkP2HhIQQQn7//fd6bcPCwqi7ixcvpq4A67ZKTk5u4qJx+vTp9fZ55syZehds\nLX9dDfdPrb969Sp1l/rUpu6ajIwMQoilpWW9VrKraGr2Sk9PT9mjenp6hJCjR4/K1lC7bRgmPT29\nR48e69evf9fLb1TXOC5OnTo1cOBAulO0SKPH5tKlS93c3Fq1H3xMVhd6vEa1sPdoVZfVbM5mN5C2\nuAul5vfl8XjveoH1KHtvhhIHhWttiQM6h3phukzn0MK/EZ2WovLjzIEuOEtpFK7LGuryf8EJIS9f\nvpTdPXToEGnxEBd0afT4XbduXe/evVu1H/TAdaFXbJSqnZ4pe4+n2PzHjh1jMBinTp1S1A4p9+/f\nJ4S8ePFCvubDhg1buHChYiMBAKggnAICgGIo+wl0q7TqolEoFMrWUJclFhYW9bZpOOQgj8cjhGRn\nZ8vW5OfnE0L69eunkP1bWFgQQrKysuq1lV2wWVtbE0LS09ObfZkyXC633j6LiorqXbC1/HU13D+1\nXiQSUXdramoaXcNgMN6VsLq6mhBibGwsWzNr1ixqJ1ZWVp988klMTExFRUXDJ3327JmVlZWHh0cL\n3woZpT4uCCFJSUmFhYWurq5//fUX3XFapNFj89tvv+3Zs2er9oOPyepCj9eoFvYereqyms3Z7AbS\nVnahTXSY9Sh1byZFiUM7aG2JAzqHemG6TOfQwr8RnZai8uPMgS44S2kUrssa6vJ/wQkhPj4+r1+/\nlkgkcXFx1tbWenp6T58+pTtXUxo9fhcvXtza8nr0wHWhV2yUqp2eKXuPp8D8GRkZRkZG4eHhCtlb\nXWlpaYSQ27dvy9fc19d31qxZio0EAKCCmAQAoHNjNInudM3T19eXLZuYmBBC8vLy6m3DYrHqrcnN\nzSWE8Hg82Sul2lJzarZ9/9Q21PZ121LPSwjJyckhhJibmzf7AmWoy9q6+5TNpyjH63oXDodDLTCZ\nzEbXSP+9GiSECIXCiIgIR0dHDofDYDDU1dUJIQUFBbIN9u3bd/z4cX9/f4lEsnfv3ilTpjg4OFC1\n2HWNGDGioKAgMTHx4MGDLczZNQwZMsTBwWHs2LHjxo2r95ASHZgcDkckEtGd4n+U6H2Tj+r0eC3s\nPVrVZTWbs9kNmtXEswO90DkQdA7oHKBz6wLdlOp0RLgu64Ta+wiKi4vT1dX18PAwMDAIDAwcPHjw\nzZs3e/fu3THPrkBZWVnUP4Y7AyV63+SjOr0iTs9UU21tbVBQkLm5+ebNmxW+c+rXu7i4WL7mHA5H\nLBYrNBEAgCpCiQMAdHZNF2rRna55dT+4oT5sMjU1bbYV9c2bhhPFlZSUKGT/ZmZmsu3rtqXWywJQ\nl44tRF2tNdynfK9LISZPnrxhw4YpU6a8efPmXb8wkyZNOnbsWH5+/vXr10ePHv327VtZgb/Mjz/+\nuHPnTkJIeHg4VXevCqh3LD8/f82aNe96VCkOTG1t7fLycrpT/I8SvW/yUZ0ej7Ss92iVZnM2uwEo\nL3QOjULn0MKc6BygA3SBbkp1OiJcl3VC7X0EjRw58vjx43w+v6qqKjc3NyYmRlbf0AHPrkDJycnO\nzs50p/gfJXrf5KM6vSLB6ZlK2rBhQ2Ji4n//+9+GlTRtp6enx2AwUOIAAEAvlDgAALSvhIQE2XJc\nXBwhxMfHp9lWEyZMIIRcvXq17sobN24MGTJEIfv38/MjhFy6dKleW2o9IcTf358QcvLkybqt/vnn\nn0GDBr1rn9Tz1t1n3WyUlrwu6tqjqqqqtLS0bsG7HKgAX3zxhZGRESGkoqKi3gYMBoP6aIzJZHp6\nelJDXFJTw9bl7+8/a9as8ePHC4VCaii5tqSCDqaurk6NhQsdQHV6vBb2Hq3SbM5mNyAK7UIBFAid\nQ7Nh2pITnQNAS6hOR4TrMlBS+fn5r169cnd3pzuIqlCdXhGnZyro7t2769at27BhQ//+/dtj/2pq\najo6OnKXKaDEAQBAMZquSAUAaCFln+mtVUhrZjf09fW9ceOGWCy+dOmShYWFoaFhWlpavW0ats3L\ny3NwcLCwsDh69Gh+fr5IJIqNjbW3t7969apC9s/n821sbHg83qVLl0QiEdXWxsaGz+dTGxQVFTk5\nOXE4nN27d/P5fLFYfO7cOQcHh7i4uHft/PXr1wYGBtQ+xWLxjRs3fH19623Tktc1ePBgQkh8fPzh\nw4fHjh3bxGtpds3o0aMJIcuXLy8qKiooKFi8eHG9DQgho0ePTklJKS8v5/P5y5cvJ4SMGzeu0R0K\nBALqOwfbt29v+JY2SqWOi86g0WPzwIEDWlpardoP5nOtCz1eoztvVe/RwjXN5mx2A2nbutAmKHtv\npqj8yv4+KFDL+0l0Dl27c2jh34hOS1H5ceZAF5ylNLpzXJc1hL/gnVDD4/f333/X0NAQCoWt2g96\n4LrQKza6c1U7PVP2Hq/t+QsKCuzt7X18fGpraxWVqiEzM7OdO3fK13blypX9+vVTbB4AABWEU0AA\nUAxlP4FulVZdNKalpY0dO5bD4bDZbF9f3ydPntTbQKZe88LCwsWLF9vZ2WloaHC5XD8/v6SkJAXu\nn8/nh4WF8Xg8dXV1Ho8XGhpa90JLKpWKxeIVK1b06tVLU1PT2NjYx8fn+vXrDQPUXZOSkuLr68tm\nszkcztixY6m5GJlMZqte1+3bt11cXFgs1uDBg58/f97wtbR8jUAgmDFjhpmZmaamppOTE/XZR90N\n4uPjg4ODbW1tNTQ09PX1XVxc1q9fX1JSQj1ad+bIo0eP1ns/b9++LW2OSh0XnUGjx+ahQ4fU1NRa\ntR98TFYXery6+5fdbbr3kK/LaknOZjeQuwttmrL3ZihxULjWljigc2gYpuVrWpKTrs6BoMRBKpXi\nzIE+LfwJqlpHJMV1WQP4C94JNTx+J02a5O3t3dr9oAeuC71i3f3L7qra6Zmy93htzF9TU+Pr62tt\nbS0QCBSYqiF7e/uNGzfK13bz5s22traKzQMAoIIYUozqBgCKMHnyZELIkSNH6A7SERgMRkxMDPWS\nm96MENJ+3Wx777/tsrOzLS0tzczMBAIB3VnooVLHRWfQ6LEZGxs7bty4kpKSls+/eOTIkSlTpnTm\ng6sjoccDovy9maLyK/v7oEAt7yfROXRtLfwb0WkpKj/OHOiCs5QWwnUZ/oJ3QvWO35ycHBsbm99+\n++3jjz9u1X7QA9eFXhGI8vd4bcz/5Zdf7ty58/r16+09642Li8v48ePXrVsnR9uoqKiIiIiCggKF\npwIAUClMugMAAEDXwWAwXr16Jbt7/fp1QsiIESPoSwRAjI2NCSGFhYV0BwEAAAAA6Ai4LgOlExUV\npa+vP2nSJLqDAIASO3HixPfff//zzz+3d30DIURXV1cikcjXlsPhiMVixeYBAFBBKHEAAABFCg8P\nT01NLSkpuXTp0tKlS/X09NasWUN3KFBp3bp1I4S8efOG7iAAAAAAAB0E12WgRKqrq3/99deQkBBt\nbW26swCAsnr48GFQUNBnn302a9asDni6NpY4VFVVVVRUKDYSAICqQYkDAEC7oMblq7ugXPuXT1xc\nnK6uroeHh4GBQWBg4ODBg2/evNm7d2+6c4FKs7KyYrPZz58/pztIV6aaPR4ANAudAwDQTjU7IlyX\ngXI5ePAgn88PDQ2lO4hKUM1eEbq8wsLCSZMm9e/ff/PmzR3zjG0scSCEYCAHAIA2Uqc7AABA19Te\nkw52zkkNR44cOXLkSLpTAPx/GAyGq6trQkLC7Nmz6c7SZalmjwcAzULnAAC0U82OCNdloERKS0tX\nrFgREhJia2tLdxaVoJq9InRtFRUV/v7+lZWVJ06c0NTU7Jgn1dXVLSoqkq+trMTBxMREoaEAAFQL\nRnEAAACALs7b2/vixYu1tbV0BwEAAAAAAID/s2HDhuLiYkykAgDykUqlISEhycnJp06dMjMz67Dn\nxSgOAAC0Q4kDAAAAdHGBgYFZWVmxsbF0BwEAAAAAAID/ycjI+OGHH9asWcPlcunOAgBKaenSpYcP\nHz527Fj//v078nnbUuKgp6dHCBGJRApNBACgclDiAAAAAF1cjx49xowZ880331RXV9OdBQAAAAAA\nAIhUKp0zZ461tXV4eDjdWQBAKUVFRW3dunXPnj2jRo3q4Kdms9kYxQEAgF4ocQAAAICub8uWLU+e\nPNmwYQPdQQAAAAAAAICcOXPmypUrBw4c0NTUpDsLACif2NjY8PDw7777Ljg4uOOfvS2jOLBYLDU1\nNZQ4AAC0kTrdAQCg60hKSpo8eTLdKTrItm3bjh07RncK6OySkpIIIapzXHRmvXv33rJly4IFC4yM\njFr4JSH84GTQ44Gy92ZJSUlDhgxR1K6U931QoIyMDKLMvxKgQPgbIYMjghb4DYSWUPYzma7q4MGD\n69evHzhwYNt3hR+uDHpFUPYer4XXbrdu3QoMDPzkk0+WLVvWAakaakuJA4PBYLPZKHEAAGgjtTVr\n1tCdAQC6CNWZQqxv3776+vp0pwAlYGVlZWVlRXcKFeLs7BwcHGxgYNDoowMHDmSxWIsXLy4pKfng\ngw/U1NTetR82my0QCKRSabslVSbo8YAof29mZWUVEBDQt2/ftu9Kdc52mqavr6+Q9xOUnbL/jWj6\nzKHlcOZAF2X/DYQOo+xnMl2PSCTKzMz08fH56aefGAxGW3aFHrgu9IpAlL/Ha8m126NHj3x8fIYP\nHx4dHc1k0jNO+fPnz2NiYlatWiVf859++snNzW3w4MGKTQUAoFIYOAUEAAAA1REdHf3pp5+6uLgc\nOnTI2tqa7jgAAAAAAAAqJC0tzdPT097e/ty5cywWi+44AKBknjx5MmLEiL59+54+fZrGPuTUqVPj\nx48vLy/X0tKSo7mjo+PHH3+8cuVKhQcDAFAd9NS4AQAAANAiKCjozp07EonE2dkZA3gCAAAAAAB0\nmNzcXF9fX2Nj47/++gv1DQDQWk+fPh05cmSvXr1iY2Pp7UN0dXUJIXLPVaGnp4eJKgAA2gglDgAA\nAKBaevfuffPmzeDg4MmTJy9cuLCyspLuRAAAAAAAAF2cUCgcPXp0bW3thQsXDA0N6Y4DAEomOTl5\n+PDh3bt3P3PmDJvNpjdMG0scOBwOShwAANoIJQ4AAACgcrS1tSMjIw8cOLBv376hQ4empqbSnQgA\nAAAAAKDLKi4u/vDDD4uKii5dusTlcumOAwBK5saNG15eXu+999758+c5HA7dcRRQ4iASiRSaCABA\n5aDEAQAAAFTUjBkzbt26VV5e7u7ufvLkSbrjAAAAAAAAdEFFRUWjRo3KzMy8ePGilZUV3XEAQMkc\nPnzYx8fH29s7NjaW9vEbKG0vcZC7LQAAUFDiAAAAAKrL0dHx5s2bkyZNmjhx4uzZs1FEDwAAAAAA\noEBFRUWjR4/m8/lXr151cHCgOw4AKJnIyMhp06aFhobGxMRoamrSHed/2ljiwGazS0pKFJoIAEDl\noMQBAAAAVBqLxdqzZ8/Zs2fPnz/fr1+/y5cv050IAAAAAACgK8jNzf3ggw9yc3OvXLnSo0cPuuMA\ngDIpKSkJDAxcsmTJjz/+GBkZqaamRnei/4MSBwAA2qHEAQAAAID4+vrev3/fzc3N29s7LCwMl5oA\nAAAAAABtkZGRMWLEiNLS0uvXr3fv3p3uOACgTF6+fDlkyJC4uLizZ89++umndMepT1NTU0NDAyUO\nAAA0QokDAAAAACGEmJqaHj9+PCYm5tixY87OzvHx8XQnAgAAAAAAUEoPHz4cMmQIk8m8evWqtbU1\n3XEAQJkcPHjQ3d1dS0vrzp07o0aNojtO43R1ddtS4iB3WwAAoKDEAQAAAOD/BAQEpKSkODo6jhgx\nYtmyZZWVlXQnAgAAAAAAUCZXrlx5//33e/bseePGDUtLS7rjAIDSyM/PDwgImD59elBQ0I0bN2xs\nbOhO9E5tLHHAKA4AAG2kTncAAAAAgM7FwsIiNjb2p59+Wrp06blz53bv3j1w4EC6QwEAAAAAdBGV\nlZUSiUQoFIrFYolEIpFIRCKRSCSSSCTl5eVCoVAqlUokkqqqqoqKitLS0tra2uLiYkJIcXFxbW0t\ntZOysrLy8vK6u637KCGEyWTq6+s3GoDFYmlpaRFC1NXVORwOtVJfX5/JZBJCdHR0tLW1qVtqS+qW\nzWZrampStxwOR1dXl81m6+vr6+npdaoZ4ml38ODBWbNm+fv779+/n3qfAQBa4vTp0yEhIRoaGhcu\nXPD29qY7TjN0dXXFYrF8bVHiAADQdihxAAAAAKiPwWDMnz9/9OjRYWFhQ4YMCQ8PX79+vezTTwAA\nAAAAaKiwsDAnJycvL6+gjsLCwroLQqGw0ZHSqKIBHR0dqmKAqjDQ0NDQ1dVlMpn29vbUNurq//sw\nk3qo7h6o4gPZ3dLS0oqKikZzUvUThBCqhIIQIpVKhUIh9WheXl5VVVVJSQlVilFVVUXdisXi6urq\nRneoo6Ojq6vL4XD09fV1/2VgYNDoMlUVwWazdXV19fT0Wvsmd2a1tbWrVq367rvvlixZsmnTJgaD\nQXciAFAOYrF48eLFv/76a1BQUGRkpIGBAd2Jmqerqyt3mQKbzS4tLZVKpegnAQDkhhIHAAAAgMY5\nODhcvnz56NGj4eHhx44d27Fjx3/+8x+6QwEAAAAAtE5VVdXbt2+zsrJyc3MFAkFeXl5eXp5IJCop\nKRGLxbLBD2T/+Dc0NKQKCKjRC/T19dXV1fX19bW1tU1MTNTU1Kqqqmpra0tKSnJzc7Ozs3Nycqjb\nusMq6Ovrm5qaGhkZGRsbGxsb29raGhsbGxkZGRkZUf/dr/dff9renVaiCh2Ki4tLSkokEgn1Bkr+\nJRQKqYWSkpK0tDRqQTZkRcMKCXV1dSMjI0NDQ+qdoRZkd+s9JCvv6JyKi4unTZsWFxf366+/zp49\nm+44AKA0jh8//sUXX5SWlp44cWLixIl0x2mpNk5UIZVKy8rKWCyWYlMBAKiOTn1mDAAAAEC7gICA\nkSNHLl++fPLkyR999NHPP/9sZWVFdygAAAAAgMbl5eU9fPgwJSUlJSXl9evXqampmZmZNTU1hBAG\ng2FqampiYmJqaqqvr89ms01NTWXzLFAzMlDjGVRUVOTm5ubl5eXk5BQUFJSWllKzSNT7J72GhoaO\njo6+vr6JiUn//v179erVv3//AQMG2Nvbd9W5G6ih3QwNDeVoW1FRIZFIiouLZTN0FBYWFhYWFhUV\nyRbS09Nla+qNQqGnp1evAEJ219jYmPrJcrlcWr79/PTp0wkTJpSUlFy7dm3QoEEdHwAAlNGjR48+\n//zzK1euTJ8+fevWrWZmZnQnaoU2ljgQQiQSCUocAADkhhIHAAAAgGYYGRlFRUV9/PHHYWFh/fr1\nW7t27fz587vqh7YAAAAAoFxKSkru3LmTmJiYlJR0+/ZtPp9PCDExMXF2dnZwcPDx8bGzs7O3t7ey\nsjI1NW30JLaiouLZs2fPnj17/Pjxs2fPnjx58vLlS2o6CR0dHTs7O0dHR1tbWzs7Ozs7Ox6Pp62t\nXVZWlpubm5WVJRAIqFEcnjx5cubMGaqVqalpjx49evbs6eDg0KNHDycnp169enXyQQg6gJaWlpaW\nlrGxcQu3LykpkVU/1KuEKCgoePXqleyuSCSStdLU1DQxMaHKHczMzBpdVmwZxMGDB+fOnduvX7+r\nV69aWFgocM8A0FUVFBSsWrUqKirK1dU1MTFx8ODBdCdqtbaUOFATLck9zwUAABCUOAAAAAC00PDh\nw5OTk9euXbtkyZKYmJidO3cOGDCA7lAAAAAAoIqqq6tv3rx5/vz5Cxcu3L17t7q62tLS0sPDY8mS\nJS4uLk5OTubm5u9qK5VKX79+nZycnJyc/OTJk6dPn6alpdXU1Kirq3fv3r1v377jx4/v06ePvb29\nnZ1dE/tpNNWbN29evXr18uXLFy9evHz5MiEhIT09vbq6WktLq2/fvs7/cnFxMTExUcQ70ZWx2Ww2\nm92tW7dmt6ysrMzPz8/Ly5NNRJKfn08tp6Wl5efn8/n8hmUQpqamZmZmVOmDqakpl8s1NTU1NTW1\nsLAwNzfX0dFp9nnFYnF4ePgff/yxYMGCLVu2aGpqtukFA4AKqKqqioqKWr16tZaW1q+//hoUFMRk\nMukOJQ9dXd28vDz52lKjOKDEAQCgLRhSqZTuDAAAAADK5MGDB59++uk///wzZ86cb7/91tTUlO5E\nAAAAAKASxGJxbGzsiRMn4uLiiouLbW1tfXx8RowY4eHhYW1t/a5WUqn01atXd+/evXv3LlXZIBQK\n1dXVHR0d+/bt26dPH0dHR0dHRwcHh/b4F3VlZeXTp08fPnz48OHDBw8ePHz4UCAQEEIsLCycnZ1d\nXV3d3d3d3d0tLS0V/tRQV2VlJVX6wOfzqYW6y1R5RN0yCA6HY2lpaWpqyuPxuFwul8vl8XhmZmZU\nAYSpqendu3enTZsmFov3798/ZswYGl8aACiFioqK/fv3b9q0KTs7+/PPP1+xYgU19Y+SWrx4cVJS\nUlJSkhxtMzIyrK2t//nnH8zsAwAgN5Q4AAAAALSaVCo9duzYkiVLRCLRsmXLFi1ahG8sAQAAAEA7\nKS0tPXny5NGjR8+dO1dTU+Pl5TV27FgfH5+ePXs20eTmzZvXr1+/cePGnTt3iouL1dXV+/Tp4/ov\nFxeXlnxNvz3k5uZStQ4PHz68c+fOs2fPamtreTzewIED3f+l2JkUoIUqKiry8vKys7MFAgGfz8/J\nycnNzc3Ozs7NzaXulpaW1t2ew+G4urpaW1ubm5tbWFiYmZlRZRDm5uZGRkZ0vQoA6GzKysr27Nmz\nZcuWvLy82bNnL1261MbGhu5QbbVq1ao///zz0aNHcrQtLCw0Nja+dOmSl5eXwoMBAKgIlDgAAAAA\nyKm0tHTz5s2bNm2ysbHZtm2br68v3YkAAAAAoEu5c+fO3r17Dx06VFpaOnLkyICAgAkTJrzrn8ci\nkSg+Pv7GjRvXr1+/fft2VVWVra3t+++/P2jQIFdXV2dnZ7pqGpomEonu3r17+/btW7du3bp1KyMj\ng8FgODg4DBo0aOjQocOGDevTpw+DwaA7JhBCiEQiiY2NXb58uUAg+Oijj3r37k0VQOTk5PD5/Nzc\n3OrqampLLS0tLpfbrVs3c3NzS0tL3v8PJSwAKqKkpGTXrl1bt24tLi4OCQn56quvusyYPZs2bdq1\na1daWpocbSsqKrS1tU+dOuXn56fwYAAAKgIlDgAAAABt8urVq4iIiKNHj44dO3bHjh12dnZ0JwIA\nAAAA5VZWVvb777//8ssvLkEJvwAAIABJREFU9+/f79Onz5w5c2bMmGFiYtJwy+rq6sTExL///vvC\nhQsPHjyoqalxdHT09PT09PQcPny4lZVVx4dvIz6fT5U7JCUl3bx5UyKRGBkZeXh4UOUObm5u2tra\ndGdUUWKxOCIi4ueff/bx8dm1a1fDL2FLpdLc3Fyq4kEgEOTk5GT//yoqKqgtdXR0qOoH6tbKykpW\nD9GtWzcWi9XhLw4AFCwtLW3Xrl379u0rKyubO3ful19+yeVy6Q6lSD/99NOaNWvy8vLka66hoREd\nHR0YGKjYVAAAqgMlDgAAAAAK8Pfffy9atOjt27dffPHFV199pdQzSgIAAAAAXfLz83/++eeffvpJ\nJBIFBgaGhIQMGTKk4WZ8Pv/vv//++++/L168KBQKHRwcPvzwww8++GDYsGFmZmYdH7udVFdX379/\nPyEhISEhIT4+PicnR0tLy9XVlSp38PDwaLTsAxSutrZ2//79K1asqK6u3rZt2/Tp0+XbT35+Pp/P\nz8zM5PP5GRkZAoGAWs7MzBQIBLIRIPT19S0tLS0sLHg8HrUguzU3N9fS0lLcKwMABautrT137tzP\nP//8999/W1hYhIaGfvrpp12yrz5w4MDcuXPLysrka66vr//999/PmTNHsakAAFQHShwAAAAAFKOy\nsnLHjh3r16/X1NRctWpVaGiohoYG3aEAAAAAQDlkZ2dv2LBh3759Ojo68+bNmz9/fsMvvN6/f//4\n8eNnz569d++elpbW8OHDx4wZ4+vr6+DgQEvmDpaamkrVOiQkJDx58oQQ0rt3b1m5g4q8CR3v2rVr\nixYtevTo0dy5c9esWWNsbNwez1JbW0sN/JCVlZWdnU0t5OTkUDUQubm5sg+xzczMuFyulZWVbBAI\nWQEEl8tVU1Nrj3gA0Kz8/Px9+/ZFRUWlpaV5eXl9+umn48aNU1dXpztXezl27FhAQEB1dbV83Y6l\npeVXX321cOFChQcDAFARKHEAAAAAUKTCwsLNmzdHRkZyudx169bNmDEDMwcDAAAAQBPy8vI2bdr0\n888/m5iYfPXVV7NmzWKz2XU3ePbs2eHDh2NiYp49e2ZjYzNmzJgxY8Z4eXmp8nj+hYWFiYmJVMXD\nnTt3ysvLuVwuVe4wdOjQ9957D9XGbffw4cPVq1efPHnyww8//OGHHxwdHelKUlVVJRAIMjIyZINA\nUJUQlKKiImozNTU1LpfL4/EsLCzqToRB3XalAU4AOo+ysrIzZ84cOnTo7Nmz2trawcHB8+bN69Wr\nF9252t3Zs2c/+ugjsVisq6srR/OePXvOnDkzIiJC4cEAAFQEShwAAAAAFC8jI+Pbb7/du3fvgAED\nNm3aNGLECLoTAQAAAECnU1JSsmnTpu3bt7NYrOXLl4eFhWlra8seTU9Pj4mJOXz48P379y0sLCZP\nnjxlypTBgwejgraeioqKu3fvUuUOiYmJ+fn5LBZr4MCBnp6eHh4eHh4eenp6dGdUMikpKWvXrj1+\n/Hj//v3Xr1/v6+tLd6KmlJWVUbUOWVlZDSfCKCkpoTbT1NSkyh1kM1/w6jAwMKD3VQAol+rq6ri4\nuEOHDp08ebKkpMTLy+vjjz8OCAioV6LXhV29enXEiBECgUC+8qn33ntvzJgx69evV3gwAAAVgRIH\nAAAAgPby+PHjtWvXHj161Nvbe+vWrS4uLnQnAgAAAIBOQSqVxsTEfPnllxKJZOnSpQsWLJD9W6i8\nvDwmJmb37t1JSUlGRkb+/v5Tp04dPnw4k8mkN7NSkEqlz549S0xMvHHjRmJi4suXL9XU1JycnKjJ\nLDw9Pa2srOjO2KndvHnzhx9+OHbsmJOT09q1a8ePH6/sJTUikYia80J2W3cijIqKCmozHR0dqu5B\nNvADNR0Gl8vt1q2b6vzXFqBp1dXVCQkJR48ePXr0aF5e3uDBg6dOnTp58mRzc3O6o3W0mzdvDh48\nOC0tzdbWVo7mw4YNc3Nz2759u6JzAQCoCpQ4AAAAALSvixcvLlu27MGDB0FBQatXr7axsaE7EQAA\nAADQ6eHDhwsWLIiPj581a9aGDRtMTU2p9c+fP4+Kijpw4IBEIpkwYUJwcPCoUaMw4UJbCAQCanSH\nhISEe/fuVVVVWVlZUaM7DBs2zMnJSb451Lue6urqEydObN++PSkpydXVddmyZf7+/spe3NAS+fn5\nsoEf6t0KBILq6mpqMw6H867hHywsLOoOvgLQJRUUFJw7d+706dPnz58vKipycnIKDAwMDAy0s7Oj\nOxptHj165Ozs/OTJE/km8Rk9erS1tfWePXsUHgwAQEWgxAEAAACg3dXW1h4+fHjlypWZmZmzZ8+O\niIjAt8cAAAAAVFB5efmaNWu+//57V1fXH3/80d3dnRBSU1Nz9uzZHTt2XLp0icfjTZ8+ff78+d26\ndaM7bFdTWlp669YtanSHxMREkUikp6dHzWTh6enp7u6umt/UT01NPXDgwP79+7OzsydMmLBw4UJP\nT0+6Q3UWRUVF1JAPDW/fvn0rK4DQ1tamah1kt/b29tSClZUVqpRAeaWmpsbGxp4+ffratWu1tbWD\nBw/28/Pz8/Pr06cP3dHo9/r16x49ety5c8fV1VWO5pMmTdLW1j548KDCgwEAqAiUOAAAAAB0kKqq\nqkOHDn3zzTdv376dOXPmqlWrLC0t6Q4FAAAAAB3kn3/+mT17dlZW1ubNm0NDQxkMhkQi+eWXX7Zt\n25abmztmzJi5c+d++OGHmJCiA9TU1KSkpFCjO8THx2dkZKirq/fp02fgv/r27auurk53zHYkkUhO\nnDixf//+a9eumZubz5gxY968efINt66aqqurBQJBo8M/8Pn8/Px8ajMGg8Hlct81/AOXy8XxDp2K\nVCp9+vTptWvXbty4ce3atezsbC6X+9FHH40ZM8bHx4fD4dAdsBPJycnh8XjXr1+XryxsxowZxcXF\np06dUngwAAAVgRIHAAAAgA5FFTqsXbs2MzNz5syZq1ev5vF4dIcCAAAAgHZUXl6+YsWK7du3jxw5\ncs+ePdbW1kKhcMeOHTt27KisrJw3b154eLi1tTXdMVVXRkZGUlLSrVu3bt++nZycLJFIWCzWgAED\nBg4c6O7u7u7ubm9v3zVmbSgoKIiNjT1x4sTFixdra2v9/Pxmzpz54Ycfdu16jo5XUVGRk5OTlZVF\njfpAoe5mZWWJRCJqM3V1dS6XS1U/dOvWjcvl8ng8LpdLLZiammpqatL7QkAV1NbWPnr06Nq1a9ev\nX79+/XpeXh6Hwxk6dOj777/v7e3t6uqKQpxGCYVCQ0PDc+fOjR49Wo7mc+fOffny5aVLlxQeDABA\nRaDEAQAAAIAGlZWVv/3227p16/Lz84ODg9esWWNhYUF3KAAAAABQvOfPn0+ZMiU9PX3r1q2ffPJJ\nfn7+tm3bfvrpJzU1tc8+++yzzz4zMjKiOyP8n5qamidPnty+ffvWrVu3bt169OhRdXW1np5ev379\nXP7l5OSkRLNa1NTUJCcnX7x48eLFi/Hx8erq6t7e3pMmTRo3bpyxsTHd6VRRaWlpo8M/CASC7Oxs\niUQi29LExITL5Zqbm1tYWJiamlpaWpqZmcnumpmZdY3KG+h46enpd+/evfMvoVBoYGDg6en5/vvv\nv//++wMGDEDZU7MqKyu1tLT+/PPPCRMmyNF8yZIl8fHx//zzj8KDAQCoCJQ4AAAAANCmvLw8Kipq\n48aNYrH4008/Xbx4sbm5Od2hAAAAAEBh/vjjj3nz5jk6Oh4+fNjQ0HD9+vW7du1is9mLFi0KDw/H\noN+dX1lZ2cOHDx/869GjRyKRiMlk9ujRgyp36Nmzp4ODg4ODQ6cqeigtLU1OTr5161ZiYuKVK1cK\nCwstLCy8vb2pAefxi9eZlZaW5uTk8Pn83Nzc7Ozs3NzcencrKiqoLdXV1WUVD2ZmZjwer+5dLpdr\nYGBA72uBzuPNmzf37t27c+cOVdmQn5+vpqbWu3dvV1dXNzc3T09PZ2dnjNbQWhoaGgcOHPj444/l\naLt69eoTJ048evRI4akAAFQEShwAAAAAaFZWVvbLL79s2bJFKBTOmjXryy+/tLOzozsUAAAAALRJ\naWnpggUL9u/fv3DhwvXr1+/fv3/16tVqamoREREhISEsFovugCAPqVSalpZ2//59qu7h0aNH6enp\nNTU1hBBLS0uH/5+1tXWHFRNkZWU9fvw4JSXl6dOnd+/epQafMDMzGzRokJeXl7e3t5OTU8ckgfZW\nWFjYRAFEbm5ubW0ttaWmpqaJiYmJiYmZmZmZmZmpqals2cTEhBoHwtDQkN6XAwonlUrT09OfPn36\n+PFj2a1YLGYymQ4ODm5ubm5ubq6uru+9956uri7dYZWbnp7eDz/8MGfOHDnabt68edeuXampqQpP\nBQCgIlDiAAAAANApVFZWHj58eP369a9evRozZszatWsHDBhAdygAAAAAkEdGRsaECRPS09P379+v\npaW1ePHi169ff/bZZ19//bW+vj7d6UCRKisrU1NTX7x48bKOzMxM6kNXNpttaWlpbm5uaWnJ5XK7\ndetG3XI4HD09PW1tbV1dXQ6H05Ix4cvKygoLC/Pz8wUCQV5eHp/Pf/PmTXp6OnUrEokIIWZmZk5O\nTs7OzoMGDRo0aBAqp1VQTU0NVejA5/Pz8/Pz8vJkvzPUXYFAUFxcLNteQ0NDVgbB5XIblkSYmJgY\nGxtjRozOSSqVZmdnp6ampqampqWlvX79+unTp8+ePSspKSGEWFpa9qnD2dlZT0+P7shdirm5eURE\nxGeffSZH259++mndunUCgUDhqQAAVARKHAAAAAA6kdra2jNnzqxZs+bevXsfffRRRETEkCFD6A4F\nAAAAAK2QmJjo7+9vbGz8ww8/REZGnj17duLEiVu2bOnevTvd0aCDlJWVvX79+u3bt7m5uZmZmQKB\noO5tZWVlve3V1dU5HI6urq6Ghka9h0QiUWVlJVXBIKOhoWFmZmZra2vzr169evXr18/Y2Lh9Xxh0\nCZWVlVS5A1UMkZ+fLyuDoCohcnNzi4qK6jYxNDQ0NDQ0MjKqd9vwLgYGaA/l5eU5OTnZ2dlZWVmZ\nmZlUQQN1S01coqWlZWdnZ29v37t3b0dHx759+zo6OmKmkvZmb28fFha2dOlSOdr+9ttv4eHhVDEK\nAADIofkCYQAAAADoMEwm08/Pb+zYsadPn96wYYOHh8fQoUOXLl06duxYfG8GAAAAoPP77bff5s6d\n6+3t3a9fv7Fjx/bt2/fy5csjRoygOxd0KB0dHScnp3fNDZGbmyuRSEQiUXl5uUQiEYvF5eXlYrFY\nLBZXV1fX25jD4Whpaenp6eno6BgaGlKTC+A/l9AWmpqaPB6Px+M1sU1VVZVsEIiCgoKioqLCwkLZ\n7YsXL2R3xWJxvZ2/qwBCT0+PzWYbGhqy2Ww2m62rq2tgYMBms7W0tNr5FXd2FRUVBQUF1FtNFZrw\n+fzMzEzqNicnp6CggNqSyWRyuVx7e3t7e3t3d3eqrMHe3p7H4+ETg47HYrHKysrka8tms8vKympr\na5lMpmJTAQCoCJQ4AAAAAHQ6DAbDz8/Pz8/v8uXLGzduHDdunJub25IlS/z9/Vsyhi0AAAAAdDyp\nVPr1119v3Lhx9uzZycnJV65c+f777z/99FM1NTW6o0HnQs0CQHcKgKZoaGhYWFhYWFg0u2V1dXW9\nAoh6d9PS0qgFsVgskUga7oEaxURfX5+qe5Ats9lsPT09qjCCzWbr6+tzOBw2m81isTQ1NdlsNtWQ\nyWR2qgmAJBJJVVUVVbRE1TAJhULZskgkKi4uFovFVE1DXl5eQUFB3beFwWCYmJhQM9qYm5u7ubmZ\nm5tTy9RMN/hMoPPQ0dEpLS2Vry2bzZZKpWVlZWw2W7GpAABUBP4cAgAAAHReXl5eXl5et2/f3rx5\n87Rp07766qsFCxaEhIR0qk9wAAAAAKCmpiYsLOzAgQP+/v5//PGHm5vbgwcPevToQXcuAID2pa6u\nbmpqampq2sLti4qKSkpKSkpKJBKJUCikFmTLJSUlVE1AQUHB27dvxWJxcXGxRCKh1jexWwaDQY1u\nYmBgwGAw6tY9sFgsaqAI2Tb1sNlsTU3NhuvLysrKy8tld6urq+tmEAqFUqm0uLi4trZWJBLV1NQ0\nOhCL7CmoyWj09fWpWg0LC4t+/fqZmpoaGxubmJgY/8vExATjMSgLFovVlhIHQkhJSQlKHAAA5MOQ\nSqV0ZwAAAACA5qWnp+/atWv37t1VVVUff/zx4sWLe/XqRXcoAAAAACAVFRXTp08/ffq0jY3Nmzdv\nvvnmm0WLFmHwBgAAxSouLi4pKSkvLy8vLy8rK6usrCwpKaEqD2pqakQikVQqFQqFhJCqqirZ0Aiy\nyoN6NQoUaieNPh01VkTdNYaGhrJlPT09NTU1Doejrq6uq6uroaFBlUpQFRVUTQOHw9HT09PX18dk\nBF2Sr6+vhYXFvn375Gh7584dd3f31NRUOzs7hQcDAFAFGMUBAAAAQDnY2tpu3Ljx66+/3rdv37Zt\n23799dcxY8YsXLjQ29ub7mgAAAAAqqu4uHjcuHHJycmEED09vbt37/bp04fuUAAAXRA1BALdKQD+\nh8VilZWVydeWqp5pdOoWAABoCRQPAgAAACgTDoezcOHC1NTUkydPFhYWjho1ytXVNTo6uqqqiu5o\nAAAAACpHKBR6e3snJyeXlJSEh4cnJiaivgEAAEAV6OjoyD1Rha6uLiHkXSOIAABAs1DiAAAAAKB8\nmEymn59fQkLCnTt3+vbt+8knn9jY2CxbtiwzM5PuaAAAAACqori42NvbOyUlpaqqav/+/Vu3blVX\nx4CpAAAAKoHFYsld4kCN4oASBwAAuaHEAQAAAECJUUM4vHjxYtq0aXv27Onevfu0adMSExPpzgUA\nAADQxRUXF3t6ej548MDAwODGjRvBwcF0JwIAAICOgxIHAAAaocQBAAAAQOnZ2dlt2bIlOzv7jz/+\nSE9PHzp0aJ8+fSIjI3G1DAAAANAeiouL3d3dU1JSXF1dHz586O7uTnciAAAA6FAsFqusrEy+tlpa\nWurq6vjQBgBAbihxAAAAAOgitLS0AgICqNkrPD09ly9fzuPxwsLCnjx5Qnc0AAAAgK6jvLx84MCB\nL1++nDJlSnx8vKmpKd2JAAAAoKPp6OjIPYoDIYTFYqHEAQBAbihxAAAAAOhqXF1do6Ki3rx5s2zZ\nsvPnz/fr18/X1/fUqVM1NTV0RwMAAABQbjU1NQMHDnzx4kVISMihQ4fU1dXpTgQAAAA0aGOJA5vN\nRokDAIDcUOIAAAAA0DWZmpouX7789evXJ06cqK2tnThxoo2NzcqVK9PT0+mOBgAAAKCsPD09Hz16\ntGDBgt27d9OdBQAAAGjDYrHaWOIgkUgUmAcAQKWgxAEAAACgK1NTUxs/fvz58+ffvHmzYMGC6Ojo\n7t27jxo1Kjo6Wu45IwEAAABU0+jRo5OSkubMmbNjxw66swAAAACdWCxWWz5X0dXVxSgOAAByY0il\nUrozAAAAAEAHqa2tvXz58u7du//8808OhxMQEDB//vx+/frRnQsAAACgswsODo6Ojh46dOjChQvp\nzgIAAK1gbm7u6elJdwroao4cOTJ16tSamhoGgyFH82HDhrm6ukZGRio8GACAKsB8gQAAAAAqhMlk\nent7e3t7Z2dn//7771FRUbt373Z1dQ0NDZ0+fTqLxaI7IAAAAEBntGPHjujoaFNT04SEhISEBLrj\nAABAK6irq1dVVdGdAroaHR0dqVRaVlYm32cpbDYbozgAAMgNozgAAAAAqK7a2toLFy7s2bMnNjZW\nV1d36tSpQUFBgwcPpjsXAAAAQCdy9erVkSNHcrncoUOHMhiMI0eO0J1ItRw5cmTKlCn4DBNagsFg\nxMTETJ48me4g0ImgD4F2cunSJW9v7/z8fGNjYzmaT5o0SUtL69ChQwoPBgCgCph0BwAAAAAA2jCZ\nzA8//PD48eMZGRkRERHXr18fMmSIo6Pjxo0bMzMz6U4HAAAAQL+3b9/6+vpqaGjcvn1bvpGoAQAA\noOuhBm8oLS2VrzlGcQAAaAuUOAAAAAAA4XK5S5YsSUlJSUlJGT9+/LZt22xsbIYNG7Z7925ccgMA\nAIDKkkgk7u7uFRUVZ8+etbS0pDsOAAAAdBYocQAAoBFKHAAAAADg//Tt23fjxo0ZGRknT57k8XgL\nFizg8XhBQUFxcXEY2BMAAABUTWBgYG5u7sqVK728vOjOAgAAAJ2Ijo4OaVuJg0QiUWgiAAAVghIH\nAAAAAKhPU1PTz8/vyJEjGRkZa9euffTo0ahRo3r27Llu3bpXr17RnQ4AAACgI+zZs+f06dM9e/Zc\ntWoV3VkAAACgc6FGcSgrK5OvOUZxAABoC5Q4AAAAAMA7mZmZff755/fu3bt//76fn98vv/zi4OAw\nePDgyMhIPp9PdzoAAACA9pKSkjJ//nwmk3no0CE1NTW64wAAAEDngokqAABohBIHAAAAAGiei4vL\nDz/8kJWVdePGjUGDBn3zzTeWlpbDhg3bvXu3SCSiOx0AAACAIpWUlEyaNKm2tnbRokUDBgygO06L\nMBqot75bt255eXlNt+rw1AAAAMqqjSUOurq6KHEAAJAbShwAAAAAoKWYTOawYcMiIyOzsrJOnjxp\nb2+/aNEiLpfr5+cXHR0t94U9AAAAQKeyZMmSt2/f8ni8devW0Z2lpaRSqVQqbWI5KysrMDCwpqam\n0VZ1mwAAAECztLS0mEwmRnEAAKAFShwAAAAAoNW0tLSosoasrKydO3eWlpbOmjXL0tJyzpw5ly9f\nrvfROQAAAIASuXbtWlRUVGVl5datW6kvaHYN5ubmly5dWrVqFd1BAAAAugIGg6Gjo1NWViZfczab\nXVZWVltbq9hUAAAqAiUOAAAAACA/AwODTz755NKlSxkZGStXrrx///7IkSN5PN68efOuXLmCWgcA\nAABQLmVlZSEhIVwu18nJyd/fn+44ihQTE6Ourr5hw4bTp0/TnQUAAKArYLFYbRnFQSqVYjhMAAD5\noMQBAAAAABSAx+MtXrz4zp076enpERERjx49GjlyJJfLDQoKio2Nra6upjsgAAAAQPNWr16dk5OT\nm5v77bffMpld6nOz999//7vvvpNKpTNmzEhLS6M7DihYeXn5ihUrunfvrq6uzmAwGAwG3YkAALo+\nHR2dtpQ4EEIwVwUAgHy61KUaAAAAANDOxsZm4cKF8fHxqampK1euTE1NHTdunLm5OWodAAAAoJO7\nf//+9u3b7e3t33vvPT8/P7rjKN6XX345ceJEoVDo7+9fXl5OdxxQpNWrV69fv3727Nkikej8+fN0\nxwEAUAksFkvuiSp0dHQIIXI3BwBQcShxAAAAAIB2YWtrS9U6PH/+fNGiRQ8fPhw3bpyVlVV4ePjV\nq1cxhwUAAAB0KlKpNDQ01NnZ+eHDh998801X/RL8/v37e/Toce/evfnz59OdRVl1zjESYmJiCCHz\n5s1jsVg+Pj5SqZTuRAAAXZ+2trbcJYMocQAAaAuUOAAAAABA++rZs+fXX399//79tLS0ZcuWPXjw\nYMSIEdQcFkePHsWojAAAANAZ/Pe//01OTraysnJxcfH19aU7TnvR19c/fvy4jo7O3r179+/fT3cc\nUJiMjAxCiJGREd1BAABUCEocAADoghIHAAAAAOggdcd1WLJkyfPnz6dMmWJhYTF16tQjR46IxWK6\nAwIAAICKKi8vX7FixfTp0y9evBgWFkZ3nPbl7Oz8yy+/EELCw8Pv379PdxxQjNraWrojAAConLaU\nOLBYLEJIaWmpQhMBAKgKlDgAAAAAQEfr2bPnsmXLbt68KRAIdu7cWVJSMn36dFNT01GjRkVGRvL5\nfLoDAgAAgGr5/vvvCwoKHBwcGAzGtGnT6I7T7oKDg0NDQ8vKyv7zn/8IhUK64ygT2RQV1HQVc+bM\nqXuXwWC8fv160qRJhoaGdeeziIuLGzdunKGhoba29oABAw4fPlxvn5SMjIzx48dzOBwulzt9+vSC\nggLZNsXFxYsWLbK3t9fW1jY2Nvbw8FiyZMmtW7caTbVs2TLqLp/PDwsL69atm6amZrdu3ebOnSsQ\nCBo+b8PMsoeys7P9/f05HI6xsXFwcHBxcXF6evq4ceP09PTMzc1nzpyJ3x8AUGU6OjoYxQEAgBYo\ncQAAAAAA2piamgYFBcXGxubk5OzatYvFYi1fvrxbt24ffPBBZGTkmzdv6A4IAAAAXV9ubu7mzZuX\nLl16+PDhwMBAPT09uhN1hB07dri6ur5+/To4OJjuLMpEKpXKFqRS6a+//lpv/bx585YsWZKdnX32\n7FlZq1GjRqmpqb18+fLFixcmJiaBgYHnz59vuM/ly5dv3LgxMzPT39//v//975IlS2TbBAcHb9++\nfeHChQUFBTk5Ofv3709NTR00aFCjqTZu3EgI4fP5AwcOPH36dHR0dEFBwYEDB/76669BgwbJqhya\nyCx7aOnSpd9++21mZmZgYGB0dPS0adMWL168adOmjIyMSZMmHThw4KuvvlLE+woAoJS0tbXlrlHA\nKA4AAG2BEgcAAAAAoJ+xsfHMmTP/+uuvgoKCP//809raes2aNba2tn379l22bFl8fDyG3gUAAIB2\n8s033+jp6Xl4eKSkpISGhtIdp4NoaWkdO3bM0NDw1KlTdGfpUiIiIjw8PHR0dHx9fWWFAoSQbdu2\nmZiYWFtb79ixgxCyfv36hm1DQkIcHR319fWpuoELFy7IHrpy5QohxNLSks1ma2pq9urVa+fOnU0n\nWbVqVUZGxqZNm7y8vDgczsiRIzdu3PjmzZvVq1e3MDMhZM6cOVSkiIgIQsiZM2cWLlxYd03dSg4A\nAFXTlokqtLS01NTUMIoDAIB8UOIAAAAAAJ2Ijo6On59fdHS0QCA4f/78iBEjDh8+7OnpaWlpGRIS\ncurUKXzFAQAAABS5EXR1AAAgAElEQVRIIBDs3bt3+fLlsbGxTk5Obm5udCfqOLa2tn/88YdsjgNQ\niIEDBzZcKZVKbW1tqWUHBwdCyJMnTxpuNmDAAGqBx+MRQnJycmQP+fv7E0ICAgKsra3nzJlz5MgR\nExOTeuUI9Zw+fZoQ4uXlJVvj7e0tW99s5nqRzM3NGw2ZnZ3dRAYAgK6tLRNVEEK0tbXxEQcAgHxQ\n4gAAAAAAnZGmpqaPj8/OnTvT09Nfv369bNmyp0+fTpw40djYeNSoUZGRkZmZmXRnBAAAAKW3detW\nfX39WbNmnT592s/Pj+448mMwGLJihUaX666UGTNmzNdff92RObs8auDxuoRCYUREhKOjI4fDYTAY\n6urqhJCCgoKGbTkcDrWgqalJ6swWQQjZt2/f8ePH/f39JRLJ3r17p0yZ4uDgcP/+/SaS5OXlEUJM\nTExka6jl3NzcZjM3jMRkMhtd03SZBQBA19aWiSoIITo6OhjFAQBAPihxAAAAAIDOzt7efuHChfHx\n8VlZWT/++CObzY6IiLC2tnZ3d1+3bl1ycjI+WgUAAAA5FBQUREVFffnll2/fvn316tVHH31EdyL5\nSRtodH3Dht988w1OpdrV5MmTN2zYMGXKlDdv3rzrp9ASkyZNOnbsWH5+/vXr10ePHv327dtZs2Y1\nsb2ZmRkhJD8/X7aGWqbWAwBA27VlogpCCIvFQokDAIB8UOIAAAAAAErD3Nx8zpw5J0+eLCgouHDh\ngoeHx549e1xdXblc7uTJk6Ojo4VCId0ZAQAAQGls375dU1MzNDT09OnTRkZGgwcPpjsRKAFqzIOq\nqqrS0tK6YyS8S0JCAiHkiy++MDIyIoRUVFTI8aQMBoMaw4zJZHp6esbExBBCnj592kQTalSSS5cu\nydbExcXJ1oPSOXPmzPjx483NzTU1Nc3Nzf38/E6ePFl3A0YDTT/arI59fQBKqY0lDjo6OpioAgBA\nPihxAAAAAADlo62t7e3tHRkZ+fbt27t37y5cuDArK2v27NmmpqYffPDBpk2bHj58SHdGAAAA6NRE\nItHOnTsXLVqkq6t75swZX19fNTU1ukOBEnB2diaE3Lp1KzY2dsiQIc1u7+npSQjZsGGDUCgsLCyM\niIiQ73nnzJnz+PHjiooKgUCwadMmQsjo0aOb2H7t2rU2NjbLli27fPmyWCy+fPny8uXLbWxs1qxZ\nI18AoEtVVdX06dOnTZvm5eV1+/ZtiURy+/btkSNHBgcH+/v7y74C3nD4lro7ka2pt/CuQV867uUB\nKDOM4gAAQBeUOAAAAACAEmMwGAMGDPj6668TEhJyc3MPHjzYq1evHTt2uLi4cLncoKCgo0ePFhcX\n0x0TAAAAOp0//vijsrIyPDy8oqIiMTGx6f8WA8j8+OOPLi4uPj4+27dv//7776mVsq+8N/z6e3R0\n9IwZM/bu3cvlcocPHz5o0KCGTZpdiI+PNzc3Hzt2LIfD6dWr19mzZ9evX3/o0KEmnp3L5d68edPP\nz2/GjBlGRkYzZszw8/O7efMml8ttNnOrsuHr/u1twYIFR44ciYuLW7hwoZWVlaamppWV1eeff37h\nwoVTp06FhobSHRBAdWlra7elRkFHRwclDgAA8lGnOwAAAAAAgGIYGRkFBAQEBATU1tbevXv377//\nPnv27NSpU9XV1YcNG+br6zt69Oh+/frRHRMAAAA6hV27dgUGBhoYGNy6dauiokL2j2eAprm5ud2/\nf7/eyia+9W5mZhYdHV13zeTJk5tu23DN0KFDhw4d+q6neNezc7ncXbt27dq1q1WtWhgJX/TvGDdv\n3oyKigoJCXFzc6v30KBBg4KCgvbt2xcaGkoNFtJyzf748PMFaAkdHZ02juKAiSoAAOSDURwAAAAA\noKthMpnu7u6rVq36559/BALBvn37zM3NN23a5OzszOPxZs6cefDgwdzcXLpjAgAAAG3i4+MfPXo0\nd+5cQkhycrK+vn6PHj3oDgUAUB9VofKf//yn0UcDAgIIIXv27OnQTADwrzZOVIFRHAAA5IZRHAAA\nAACgKzMxMZk2bdq0adNqa2vv3bsXFxcXFxc3e/bsiooKe3v7sWPH+vn5DRs2TFtbm+6kAAAA0HF2\n7drVv39/6lvRz549c3R0ZDLxRSAA6HRu3LhBCHnXWHTOzs6EkISEhA7NBAD/amOJA0ZxAACQGy7e\nAAAAAEAlMJlMV1fXpUuXXrx4sbCw8OLFiwEBAQkJCaNGjTIyMho1atSmTZvu3r2LEVkBAAC6vPz8\n/OPHj8+fP5+6+/r16+7du9MbCQCgUdnZ2YQQY2PjRh+l1ufk5HRoJgD4l7a2dmVlZU1NjXzNMYoD\nAIDcUOIAAAAAACqHxWJ5e3tv3Ljxzp076enpkZGRhoaGmzdvdnNzs7KymjVr1h9//IEPCgEAALqq\ngwcPampqTp06lbqbkZFhbW1NbyQAADkwGAzZLQB0PB0dHUKI3AM5oMQBAEBumKgCAAAAAFSajY1N\nSEhISEhITU3NnTt3Lly4EBcXd/DgwcrKyj59+nh5eY0cOfKDDz4wMDCgOykAAAAoRkxMzPjx49ls\nNnW3sLDQyMiohW2TkpImT57cbtGgERkZGXRHAKCNhYVFampqYWGhubl5w0fz8/MJITweT7aGyWTW\n1tbW1NSoqanV27impgYz8gAoFjXlZXl5ueykolUwUQUAgNxwTgMAAAAAQAghampqgwYNWrly5bVr\n14qKii5evOjn53fv3r3/x96dxzV1pXEDP4EkJGENhH1TiivVWlFEBHewLliNBbWVah2qUtqiU/e+\nU7Ejrcugdayj1KIWihW0Wpe2omhRoQhS0VqXwiAoIeyyyRoC7x/n7X0zoBASIBB+3z/43Jx7zrnP\nRcE298nz+Pn5iUSiMWPGbNy48dy5c9XV1ZqOFAAAAFQnkUhapSlUVVUZGxtrMCQAgBfx8vIihPz+\n++/PPUvHJ06cyIwYGhoSQiorK9tOLi8vNzIy6pYoAforJsVBteWo4gAAoDJUcQAAAAAAaI12spg+\nfTohpLq6OjU1NSEhISEhYefOnbq6uq+88go9O3HiRC6Xq+lgAQAAoBPi4uKMjY29vb1VWz5+/Pi4\nuLiuDQnaFxcXt3DhQk1HAaAZq1at+uabb77//nsfH5+2Z0+cOEHnMCNDhgxJS0v7448/FPMeqD/+\n+GPw4MHdGi1Af0MbVaicpsDn81HFAQBANajiAAAAAADQHkNDw+nTp2/fvj09Pb2goODYsWOurq7H\njx/39vY2NTX19vYODQ1NSEhobGzUdKQAAADQsbi4uPnz5+vp6TEjPB6voaGBHmdmZmooLgCA53B3\nd1+5cuWRI0fS09NbnUpNTY2Kilq5cuXYsWOZQV9fX0LIkSNH2m4VGRk5e/bsbo0WoL9Rs4qDQCBA\nFQcAANUgxQEAAAAAQFmWlpZ+fn4RERG5ubkPHz7817/+JRKJIiIivL29zczMZs6cuX379pSUlKam\nJk1HCgAAAM+Rl5eXlpbm5+enOGhqalpSUkII+eqrr4YMGUI/FQ0A0Evs27fPz8/P29v73//+t0Qi\nkclkEolk7969M2bMWLhw4b59+xQnh4SEDB8+/OjRo8HBwX/88UdDQ0NDQ8Pdu3eDgoJu3ry5evVq\nTd0FgFZSv1EFqjgAAKgGKQ4AAAAAAKoYMmTIqlWrvvvuu4KCguzs7P379zs4OBw4cMDDw4OWv6bV\nHZhPhQIAAIDGxcfH8/n8qVOnKg4OGDDg8ePHT548WbNmDSFk2bJlqOUAAL0Hh8OJiYn59ttvExIS\nXF1d9fX1R48efenSpW+//fbbb7/lcDiKkw0NDVNSUrZu3ZqWljZhwgR9fX1zc/OlS5eam5unpqYa\nGRm12pzFYrFYrLbHAKAMVHEAANAUtqYDAAAAAADo85ycnJycnN5++21CyJ9//pmYmHj16tWvvvpq\n69at+vr6EyZMmDRpkpeX19ixY+k7IAAAAKARly9f9vLyUuxSQQgZPnz4pUuXAgMDZTIZIUQmk73+\n+uu//fabQCDQUJgAAK3Nnj1byTYTRkZGn3zyySeffKLM5JaWFvXiAujX+Hw+IUTlNAU+n9/Q0CCX\ny3V1dbs0LgAA7YcqDgAAAAAAXWnIkCErV648duyYVCp9+PDh7t27RSLRf/7zn4kTJ5qYmHh5eX38\n8cc///xzVVWVpiMFAADoX1paWhITE6dNm9ZqfPLkyXfv3k1ISGBSHP773/8GBwdrIkaNOX78+Lhx\n44RCIesvimefOwgAANDPqd+oQp3lAAD9GVIcAAAAAAC6y5AhQ1asWBETEyORSPLz86Ojo0ePHh0f\nHz979mxTU1MXF5eVK1dGRUU9efJE05ECAABov7t37xYWFk6fPr3V+LBhwwQCgeJHmZuamo4ePXrk\nyJGeDVBjoqKiFi9ebGZmdvv27fr6+u+//77VBHzOGwAAoC0ej8disdRpVEEIqa2t7dKgAAD6BTSq\nAAAAAADoCTY2Nn5+fn5+foSQ4uLipKSk69evX79+PTIyUi6XDxo0yNPTc+LEiZ6ens7OzpoOFgAA\nQAslJCSYmZm98sorrcbXrFnT2NjYdv7KlStHjRr16quv9kh0mrR7925CSHh4uKOjIyFELBb3wpyG\nEydOaDoEAACA/8FisbhcrjqNKogafS4AAPozpDgAAAAAAPQ0CwsLsVgsFosJITU1NRkZGcnJyQkJ\nCe+9915dXZ2xsfHYsWMnTJjg6enp4eGBRuAAAABdIjk5eeLEiTo6/1PTNDo6+vz58899ot/S0iIW\ni+/cuWNkZNRTMWpGZmYmIaSXJ1n6+/trOgQAAIDWeDweqjgAAPQ8pDgAAAAAAGiSvr6+p6enp6fn\nhg0bGhsb09PTU1JSfv3110OHDm3dupXNZo8aNWr8+PHu7u7jx48fOHCgpuMFAADoqzIyMpYvX644\nUlRU9P77779oflNTk0QiWb58+cmTJ7s/Ok2inx/lcDiaDqQ9vbCwBPRCLBZL0yEAQP/C5/NVTnFA\nFQcAAJXpdDwFAAAAAAB6BJfL9fDw+Oijj77//vv8/Pz8/PxTp05Nmzbt1q1bf/vb35ycnKytrX19\nfUNDQxMSEvBRDwAAAOVVVFTk5ua26jqRk5Mjl8tbWlo4HE6r6g5UU1PTqVOn9u3b162xsf6SnZ0t\nFouFQiF9Sc8WFxcHBQXZ2dlxuVxbW9sVK1YUFhYqLr93796sWbMMDAyMjIxmzJhx//59ZkMlr94q\nDCWXdxgYAACA1lO/igNSHAAAVIAqDgAAAAAAvZSNjY2NjY2vry8hRCaT/f7770lJSb/99tvRo0dp\ngYfBgwd7enpOmDDB1dXVxcVF0/ECAAD0Xnfu3GlpaRk1apTioLu7e2Vl5e3bt5OSkq5du3bx4sVn\nz55xudympqbm5mY6p6WlZc2aNa6urh4eHt0UW0tLC80nCAoKCg0NjYmJSUxMnDVrFiGkqKho3Lhx\n9fX1UVFRHh4eGRkZAQEBCQkJt27dMjExIYRkZ2d7enoKBIKzZ8+6ubnduXNnxYoVzLadurri/A7z\nGzoMDAAAoD/g8Xgq5yjQKg749AIAgAqQ4gAAAAAA0AdwOBxXV1dXV1f6UiqV/vbbb8nJyUlJSd98\n801DQ4OVldWYMWNcXV1p0gN9rwQAAACo27dvm5mZ2drathrX1dWl/8KGhIQ0NTWlp6cnJiZevnw5\nOTm5rq5OT09PJpM1Nzf7+fndvXu3u4PcvHkzTaSYOXMmTTjYsmXL48ePIyMjfXx8CCFeXl579uwR\ni8W7du0KCwsjhISGhlZUVOzbt2/q1KmEkAkTJmzevHn27NndHWqHgQEAAPQHfD6/oaFB5bUEVRwA\nAFSCRhUAAAAAAH0Pre6wffv2pKSk6urq9PT0jRs3CoXCo0ePent7GxkZubi4rFy5Mioq6t69e5oO\nFgAAQPPu3r37yiuvtD+HzWa7u7tv3Ljx0qVLVVVVycnJn3zyyaRJk/T09KRS6aefftrdQbq5ubUa\nOXfuHCFk5syZzMjEiROZcULIpUuXCCE0v4HqvmoTnQoMAACgP1CnigOPx9PR0UEVBwAAFaCKAwAA\nAABA39aqwMOjR49S/nL48OGmpiZbW1t3d3d3d/cxY8aMHj3ayMhIswEDAAD0vLy8vIEDByo/n81m\ne3h4eHh4bN68WSaT3bx5087Obu3atd0XIfmrJ7ei4uJiQoiNjU2r8ezsbHpQWlpKCBGJRMypnukT\n0WFgAAAA/QGPx6uvr1dtLYvFUidDAgCgP0OKAwAAAACAVnFycnJycnrrrbcIITU1Nenp6b/++uuN\nGzfCw8MLCwt1dHQGDx48ZsyYMWPGjB07dtSoUW2fpgAAAGgfqVQ6btw41dZyOJyeKY3QlqWlZX5+\n/tOnT4VC4XMniESioqKi0tJSJtuAJj1oPDAAAID+QJ0UB0IIn89HFQcAABWgUQUAAAAAgNbS19ef\nNGnSpk2bzpw5U1BQkJ+f/8MPPyxcuLCiouKzzz6bMGECbWnx9ttv7927NykpCR8fAQAAbSWVSq2t\nrTUdRafNmzePEJKYmKg4eP369fHjx9NjHx8fQsjly5eZs8nJyb0hMAAAgP6Az+erk+IgEAjwv+EA\nACpAFQcAAAAAgP7CxsbGxsbG19eXvpRKpb/95Z///GdZWRmbzR48eLDrX8aOHaunp6fZmAEAANTX\n0NBQXl7etqtC7xcaGnrx4sXg4GC5XD5lyhQul3v16tWQkJDDhw8zE86dO7dx40ZbW1s3N7fbt29H\nRET0hsAAAAD6Ax6PV1NTo/JyVHEAAFANUhwAAAAAAPqpF2U8JCcnf/zxxzU1NRwOZ9CgQa6urp6e\nnhMmTBg2bJiODurAAQBA31NYWNjS0tJrqziwWCzFg5aWFuaUSCRKTU3dtm3b+vXrJRKJqampm5tb\nTEyMu7s7neDk5JSUlLRu3bq5c+fq6OhMmjTpyy+/fOmll5T/J1vx6vTSyox0GBgAAEB/wOPxysrK\nVF7O5/NRxQEAQAVIcQAAAAAAAEL+N+NBLpc/fPiQqfFw8uTJuro6AwODV155hanxMHz4cOaBBwAA\nQG9GK0gLBAJNB/J8ijkNbQmFwvDw8PDw8BdNcHFx+emnn5iXUqmUECISiVS+ujIjygQGAACg9dCo\nAgBAI5DiAAAAAAAArenq6rq4uLi4uLz99tuEEJlMdvfu3Zs3b6anp1+7du0///lPU1OTUCgcM2bM\nmDFjXF1dR40a5eTkhIwHAADonVqVItAyLBYrKyvL2dmZvrx27RohZMqUKRoNSmvV19dv27btu+++\ne/z4sVwuJx1lqPRyWnY7AAA9j8fjqZOjgCoOAACqQZlZAAAAAADoAIfDGT169MqVKw8dOpSRkVFV\nVZWSkvLpp5/a2NicPXt24cKFzs7OJiYmEydO/PDDDyMjI3/77beGhgZNRw0AAPD/aHeKAyEkODj4\n0aNHNTU1ly9f3rBhg5GRUWhoqKaD0k5btmwJCwtbvnx5VVVVfHy8psNRl5bdDgBAz+PxeGpWcait\nre3CeAAA+glUcQAAAAAAgM7h8/nu7u5Ms+3GxsasrCymq8Xhw4dramrYbPbgwYNdXFyGDx/u6urq\n5uZmaWmp2bABAKDf0u4Uh4SEhP/85z8eHh5lZWVCoXDKlClbt24dOnQoPdv+XeMj+50VGxtLCAkK\nChIIBD4+Pn39G6hltwMA0PPUTHFAFQcAANUgxQEAAAAAANTC5XIVu1oQQqRSKZPxEB0dvXXrVkKI\ntbU1k/Hg6uo6bNgwHR1UlQMAgJ7T3Nys6RC6xbRp06ZNm/ais3ho3bXy8vIIIaamppoOpGto2e0A\nAPQ89as4lJSUdGE8AAD9BFIcAAAAAACgi9nY2NjY2Pj6+tKX5eXl9+7doxkPCQkJ+/fvl8vlhoaG\ngwcPZjIeRo8eLRAINBs2AABoKwsLC0JIcXGxi4uLpmOBvk3LEmW07HYAAHoej8dTpwwDqjgAAKgG\nn5oCAAAAAIDuJRQKPT09Q0JCoqKi7t27V1tb+8cff3z55ZcTJkx49OjRxx9/7OXlZWxs7OLi4u/v\nHxoaeu7cuaKiIk1HDQAA2kMkEgkEAvqBdQCVMV0/WCwWi8XauHEjc8xisbKzs8VisVAopC/pzOLi\n4qCgIDs7Oy6Xa2tru2LFisLCQsU9259QWVm5Zs0aJycnHo9nZmbm4eGxdu3atLQ0xTAUe5G0M9I2\nvOfeTochtX+/AAD9DZ/PV7OKQ21tbRfGAwDQT6CKAwAAAAAA9KhWjS3kcnlWVtadO3cyMjJu374d\nERFB30a3t7cfNWrUiBEjRowY4eLiMnToUA6Ho+nYAQCgr7K1tUWKA6ippaWFPstXbP/BDAYFBYWG\nhsbExCQmJs6aNYsQUlRUNG7cuPr6+qioKA8Pj4yMjICAgISEhFu3bpmYmCgzYenSpWfOnPniiy8C\nAwM5HE5OTs6mTZvGjRtHA2Au3TYYZcJ77u10GFI7GwIA9ENqNqpAFQcAANWgigMAAAAAAGiSrq7u\n0KFDFy5cuH379gsXLhQUFBQUFPz888/BwcECgeCHH354++23R44cqa+vP2LEiEWLFn322WdnzpzJ\nzs5GaWUAAFCevb09UhygW23evNnDw4PP58+cOZMmDWzZsuXx48efffaZj4+PgYGBl5fXnj17cnJy\ndu3aRZd0OOGXX34hhNja2urr63O53CFDhnz55ZddFd5zdRhSZzcEANBuPB5PJpPJ5XLVliPFAQBA\nNUhxAAAAAACA3sXKyuq1117bsGHD8ePH7927V1NTk52d/f333y9YsKC5uTkmJkYsFjs7O/P5fFoK\nYseOHefOnXv06BHeXgcAgBcZOHBgZmampqMAbebm5tZq5Ny5c4SQmTNnMiMTJ05kxpWZsGDBAkKI\nn5+fg4NDYGBgXFycSCRS7T942ob3XB2G1NkNAQC0G4/HI4SoXMiBz+ejUQUAgApYeBMQAAAAAAD6\nlsbGxqysrN9+++3+/fv37t27f//+o0ePCCEmJiYvvfTS8OHDXV1dXVxcRo4caWFhoelgAQCgV4iI\niFi3bl15ebmurq7Km/j7+584caILowLl9ZL3MNt2dnjRICGEw+E0NTW13UQgENTU1CgzgRBy6tSp\nY8eOXblypby8nBDi4OBw5syZUaNGvejSyoy0c0qZkNrZUONa9ekAYPTOv7GgBa5cuTJt2rSSkhKR\nSKTC8oMHD3788cdlZWVdHhgAgHZjazoAAAAAAACAzuFyuS4uLi4uLsxIRUXFH3/8wWQ8hIWFlZSU\nEEKEQiGT8TB8+PBXX31VX19fc4EDAIDGjB8/vrq6+s6dO6NHj1ZznzVr1nRVVKCMlJSUPXv2aDoK\nVVhaWubn5z99+lQoFKo2gRAiFovFYnFzc3NycnJYWFh8fPw777yTkZFBz7JYrJaWFplMxuFwCCGV\nlZXdHXPvt2bNmvHjx2s6CuhF+u7vEOgTUMUBAEAjkOIAAAAAAAB9nomJiaenp6enJzPy5MmTe/fu\n3b17948//khKSvrqq6/q6+t1dXWdnJxGjBjx8ssvv/zyyy4uLs7OzlwuV4ORAwBAzxgxYoSdnd35\n8+fVTHGws7Pz8/PrqqhAGX33s9fz5s3bv39/YmLi/PnzmcHr16+vX78+JSVFmQksFisvL8/Ozk5H\nR8fLyys2NtbExOTBgwfMZCsrq4KCgoKCAgcHB0IIk/rQfTH3fu7u7vghBUV993cI9AlqpjgIBIKG\nhobm5mYdHbSVBwDoBKQ4AAAAAACAFnJwcHBwcFDsJC2VSpneFj/++OOOHTsaGhrYbLaDg4OTk9Pw\n4cNppYeRI0caGRlpMHIAAOgOLBZr9uzZp06d+uSTTzQdC/QXoaGhFy9eDA4OlsvlU6ZM4XK5V69e\nDQkJOXz4sJITCCGBgYHh4eHOzs4VFRV79+4lhMyYMYM56+3tHRUVtWvXrm3bthUUFHz99dfdHTMA\nACji8/mEkLq6OpWXt7S01NfXCwSCLo0LAEDLIcUBAAAAAAD6BRsbGxsbG19fX/qyoaHh4cOHDx8+\nfPDgwYMHD65evRoREdHQ0EAIsbOzGzp06NChQ4cPHz5kyJBhw4ZZW1trNHYAAOgCAQEBERERv/32\nm6urq6ZjgT6JxWIpHtCPhj93kBKJRKmpqdu2bVu/fr1EIjE1NXVzc4uJiXF3d1dyQlJS0qFDh+bM\nmZOfny8QCAYMGBAWFrZ69WrmEuHh4U1NTbGxsUeOHJk6der+/ftjYmLIXw0s2g/vuac6DKmdDQEA\n+iH1qzgQQurq6pDiAADQKSz8ZygAAAAAAAAllUppmYf79+8/evTojz/+KCwsJIQYGxs7OzsrFnsY\nOnSorq6upuMFAIDOefnll0ePHh0VFaXacn9/f0JIXFxclwYFHYiLi1u4cCHewwRlsFis2NhY+qMK\nQOF3CHSrgoICGxuba9eueXl5qbA8JSXFw8PjyZMn9vb2XR4bAIAWQxUHAAAAAACA/4dWepg+fToz\nUl5e/ujRI5r0cO/evejo6Nzc3ObmZg6HY29vTzMeaOrDqFGjDAwMNBg8AAB0aNOmTUuXLv3444+H\nDBmi6VgAAACgz1OzioOaywEA+i2kOAAAAAAAALyQUCh0dXVVLGleXV39559/0vYWDx8+PHPmTHZ2\ntkwm09HRcXR0HDJkCK3xQJmbm2sweAAAaGXRokXbt29fvXr1zz//rOlY+rbjx4/v2bMnMzOzoqKC\njjy3AwI+Ng0AANqNz+cTQurq6lRbjhQHAADVIMUBAAAAAACgEwwNDceMGTNmzBhmpKmp6cmTJ0yx\nh9TU1EOHDlVXVxNCTExMXnrpJae/DB8+fMSIEcbGxpoLHwCgX9PV1T148ODEiROjoqLefvttOpic\nnDxr1qxdu3a9++67zLN5aEdUVNTSpUtnzpx5+/ZtKyurH3/8ccGCBYoTWlpa8J0EAID+QE9Pj8Vi\nqZyjoGaGBCy0OV4AACAASURBVABAv4UUBwAAAAAAALWw2WyawaDY4eLJkyeZmZlZWVlZWVmZmZmn\nT5/OycmRyWSEEAsLi8GDBw8ePHiQAvreFgAAdLcJEyasWbMmKCho5MiRo0aNIoScOnXq2bNnq1at\nOnXq1NGjR62srDQdY2+3e/duQkh4eLijoyMhRCwWo1oDAAD0TywWS09PD40qAAB6GFIcAAAAAAAA\nup6Dg4ODg4Ni0gNT7IG6d+9eYmLi48eP5XI5IUQoFA4fPtzFxUWx5APyHgAAusP27dszMjJmz579\nyy+/DB48+Pz5883NzYSQK1euDBo06ODBg2+99ZamY+zVMjMzCSHOzs6aDgQAAEDzeDyemo0qUMUB\nAKCzkOIAAAAAAADQE5hiD4qDjY2NEomEaXLx6NGjhISEnJyclpYWNpvt4OCgmPHg4uLi6Oioq6ur\nqVsAANAObDb71KlTr7322uTJkyMjI7Oysui4TCZrampasmTJ6dOnv/rqK1NTU83G2WvRJzEcDkfT\ngQAAAGgej8dTs1EFqjgAAHSWjqYDAAAAAAAA6L+4XC7tcBESEhIREXHp0qXs7OyKior09PTo6Ohl\ny5ZZWVndvn17x44dc+fOfemll/T19UeMGCEWizds2HDo0KHLly/n5ubSOhAAAKA8Y2Pj+Pj4kSNH\nvv766ywWixmnDRfOnj3r4uJy5coV1TavrKxcs2aNk5MTj8czMzPz8PBYu3ZtWloaM6GwsHDlypV2\ndnZcLtfOzm7VqlVFRUXMWdZflBnJzs4Wi8VCoVBxQn19/fbt21999VV9fX0ejzd06NBVq1bduHGD\nWV5cXBwUFEQDsLW1XbFiRWFhoZJ3x1yF1Ub7C9W5KAAAQK/F5/NVzlHQ09PT0dFBigMAQGehigMA\nAAAAAEDvYmRk5Orq6urqqjhYWlqalZWVmZmZmZmZlZV18eLFAwcOVFdXE0I4HI6jo+NLL73k5OSk\n+NXAwEBDdwAA0AcYGRn9+OOP48ePz8jIoI0qGDKZrKSkZPr06YGBgV988YVAIOjUzkuXLj1z5swX\nX3wRGBjI4XBycnI2bdo0btw4mj9RWFjo5uYml8ujo6PHjh2blpa2ZMmSCxcupKamWlpaEkJaWlpa\npQu0MxIUFBQaGhoTE5OYmDhr1ixCSHV19dSpU//888/du3f7+vrq6+unp6e/9957ERERNICioqJx\n48bV19dHRUV5eHhkZGQEBAQkJCTcunXLxMSkw7tjLk13ozrMb1DzogAAAL2WOlUcCCF6enpoVAEA\n0FlIcQAAAAAAAOgDRCKRSCQaP3684mB5efkjBVlZWfHx8bm5ufRZnVAodGpjwIABOjqo5wcAQAgh\nLBbrv//9b1NTU9tTtEDOkSNHrly5Ehsb2yrtrH2//PILIcTW1lZfX58QMmTIkC+//PL06dP07Cef\nfJKXlxcdHT116lRCyLRp07Zv375s2bItW7YcPHiws7ewefNmDw8PQsjMmTNpzkFoaGh6ejpNsKBz\nJk+eHBMTM3r0aPpyy5Ytjx8/joyM9PHxIYR4eXnt2bNHLBbv2rUrLCysswEoSSMXBQAA6AFqpjio\nUwQCAKDfQooDAAAAAABAXyUUCtvWe2hsbJRIJIqpDwkJCX/++eezZ88IIbQoequ8h6FDh9LncAAA\n/cqtW7fKy8vbmdDU1PT48WM3N7d169b985//VHLbBQsWHDlyxM/Pz97e3sfHx8fHZ968eUzNg/Pn\nzxNCaH4DNX36dGa8s9zc3FqNnDx5khAyb948xcFXX32VCeDcuXOEkJkzZzJnJ06cSMe7L9tAIxcF\nAADoAWrmKKiZIQEA0D8hxQEAAAAAAECrcLlcmrigONjS0pKfn08zHrKzsx89enTnzp3Tp0+XlJQQ\nQnR0dGxtbVv1uRg4cKC5ubmGbgIAoCdcunSJzWY/t4oDIURHR4fNZrNYrKamph07dshkMiW3PXz4\n8Jw5c44dO3blypXIyMjIyEgHB4czZ86MGjWKEEJ/8YpEImY+PS4uLlbhFto20SgoKCCEWFlZvWgJ\nvZCNjU2r8ezsbBUCUJJGLgoAANADeDyeOp0m1FwOANA/IcUBAAAAAABA+7FYLDs7Ozs7O/qpWUZ9\nfb1UKlUs+XD69On79+/Td9n09PRo6gNlbW1tY2ODbhcAoDWSk5MV8xt0dXUNDQ1NTExMTU3Nzc1F\nIpFQKDQ1NaVfvby8NmzYoOTOYrFYLBY3NzcnJyeHhYXFx8e/8847GRkZhBALCwupVFpaWso87y8t\nLaXjzHIWi9XS0iKTyTgcDiGksrJS+ZuytLSUSCQFBQUDBgx40YT8/PynT58KhULlt1WTRi4KAADQ\nA9RvVNHQ0NCF8QAA9AdIcQAAAAAAAOi/eDxe25IPTU1NT548yc3Nffz4cW5ubm5u7sOHDy9cuJCf\nn0+b0/P5/IEDBzo6Og4YMIB+pQftfGgYAKAX2rdv39///ncmj8HIyKhLtmWxWHl5eXZ2djo6Ol5e\nXrGxsSYmJg8ePKBnfX19IyIiLl++HBAQQEcSEhLoOLODlZVVQUFBQUGBg4MDIYTmRihpwYIFe/fu\n/eGHH1avXs0M3rhxIyQkJDU1lRAyb968/fv3JyYmzp8/n5lw/fr19evXp6SkqH7b7dLIRQEAAHqA\nmikOqOIAAKACpDgAAAAAAADA/2Cz2W3zHgghMpmspKSkoKCAKfmQlZUVHx//5MkT+jFoxaoPTMkH\nVH0AgF5r4MCBAwcO7I6dAwMDw8PDnZ2dKyoq9u7dSwiZMWMGPbV169YLFy5s3LjR1tZ27NixN2/e\n3LRpk6OjY2hoKLPc29s7Kipq165d27ZtKygo+Prrr5W/dGho6OXLlz/55BN9ff25c+fq6+snJyd/\n8MEHBw4cYCZcvHgxODhYLpdPmTKFy+VevXo1JCTk8OHDXXb/z4uq5y8KAADQA/h8/rNnz1RermaG\nBABA/4QUBwAAAAAAAFAKh8OxsbGxsbFxdXVVHG9qapJIJEzJh9zc3MzMzEuXLkkkEtq6nsfjtS35\nMGDAACsrK6Q+AID2SUpKOnTo0Jw5c/Lz8wUCwYABA8LCwpiaCpaWlqmpqVu2bAkICCguLrawsPD1\n9f30008tLS2ZHcLDw5uammJjY48cOTJ16tT9+/fHxMSQvxpY0AM6kx7QQcrExCQlJWXHjh3h4eHv\nv/++oaGhq6trZGSkl5cXnSASiVJTU7dt27Z+/XqJRGJqaurm5hYTE+Pu7q7M3Sleum0wLxpR86KK\newIAAPQqPB6vpKRE5eV8Ph8pDgAAncVS/F8gAAAAAAAAgC5UXl7+6H9JpdLc3Nza2lo6QSgUtqr6\nQA8GDhyIp1kA0Nv4+/sTQuLi4jQdSP8SFxe3cOFCfNtBGf7+/rGxsfRHFYCiv0PwHAS6z/vvv3/3\n7t2rV6+qttzX11coFEZFRXVtVAAA2g1VHAAAAAAAAKC7CIVCV1fXVlUf5HK5VCp9/PhxXl5eXl4e\nrQBx/fp1iUTCfP6Jz+c7Ojra2dnZ2dk5Ojra29vb2dnZ29s7Ojrq6+tr4lYAAECT/Pz8NB0CQPeq\nr6/ftm3bd9999/jxY7lcTv63QEuvxeSkdira48eP79mzJzMzs6Kiou1y1fYE0BQ1yzCgUQUAgAqQ\n4gAAAAAAAAA9SldX197e3t7evu2phoaG/Px8qVRaUFBASz4UFBScP38+OzubeQecx+Mp1ntgikAM\nGDAA2Q8AAADQR23ZsmXnzp3btm1bs2ZNUlLSjBkzNB2RUlpaWjpbeSsqKmrp0qUzZ868ffu2lZXV\njz/+uGDBAjX3BNAgNXMU+Hw+8386AACgJKQ4AAAAAAAAQG+hp6dHUxbaniovL6f1Hmjhh7y8vMeP\nHycnJ0skksbGRkIIi8WysrJi6j04ODhYW1vb2dnZ2NjY2tryeLwevxsAgL6n/ceK+EQ1aAf697y3\n/X2OjY0lhAQFBQkEAh8fn94WXhfavXs3ISQ8PNzR0ZEQIhaLtfhmoT/Q09Orq6tTeTmPx1NnOQBA\n/4QUBwAAAAAAAOgDhEKhUCgcMWJEq/GWlpbCwkLFvAeJRJKamnry5MmioqKmpiY6TSQSWVtb29vb\nK+Y92NnZWVtbW1hY9PjdAAD0UnjQCKApeXl5hBBTU1NNB9LtMjMzCSHOzs6aDgSga6BRBQBAz0OK\nAwAAAAAAAPRhLBbL2tra2trazc2t7dny8vJWbS+kUunt27fpMZ3D5XLNzMxsbGyYzhf0wNra2sHB\nwdDQsGdvCAAAAPqj5uZmTYfQQ+gH1jkcjqYDAega6jeqQIoDAEBn6Wg6AAAAAAAAAIDuIhQKXVxc\npk+fvmLFitDQ0IiIiHPnzqWnp0ul0urq6vv371++fPnrr7/+8MMPPTw82Gz2nTt39u3b97e//c3b\n2/vll182MjIyNzcfOXLk7NmzAwMDQ0NDDx069OOPP965c6eoqAifdQYAAOhzmG4sLBaLxWIFBgYq\nvmSxWNnZ2WKxWCgU0pf0bEJCwty5c4VCIY/HGz169PHjx1vtSeXl5b3++uuGhoaWlpZLliwpKytj\n5lRWVq5Zs8bJyYnH45mZmXl4eKxduzYtLe25UW3cuJG+LCwsXLlypZ2dHZfLtbOzW7VqVVFRUdvr\nto2ZOSWVShcsWGBoaGhmZrZ06dLKysrc3Ny5c+caGRlZWVktW7asoqJC8V6Ki4uDgoLoFW1tbVes\nWFFYWKg44d69e7NmzTIwMDA2Np4/f/6TJ0/U+f4ran9hh4EBaIqanSbQqAIAQAWo4gAAAAAAAAD9\nkYGBwbBhw4YNG/bcs8qUfyCECIVCpuQD/SoUClEBAgAAoNdqaWmhT9NbpSoy40FBQaGhoTExMYmJ\nibNmzaJnvb29582bl5WVVVtbGxgYuHjxYqFQOGPGjFZrN23atH37dhsbm02bNh04cIDD4Rw5coTO\nWbp06ZkzZ7744ovAwEAOh5OTk7Np06Zx48bRMJ4bVWFhoZubm1wuj46OHjt2bFpa2pIlSy5cuJCa\nmmppadl+zMypDRs2bNu27fDhwx9//PH+/fvLysq4XO6OHTuYILlc7ldffUWvWFRUNG7cuPr6+qio\nKA8Pj4yMjICAgISEhFu3bpmYmBBCsrOzPT09BQLB2bNn3dzcbt26tWLFCvW//x3mN3QYGIAGoVEF\nAEDPY+FDJwAAAAAAAADKq6mpefLkSXFxsUQiKS4ulkqlRUVFUqm0sLCwsLBQ8fOapqamVlZWVlZW\nNjY2lpaWtra2FhYW9NjGxgbvyAP0Of7+/oSQuLg4TQfSv8TFxS1cuBDvYYIyWCxWbGws/VFtfxpp\nk+LAjP/yyy+TJ09ueyonJ2fAgAGEkIcPHw4bNszLy+vatWut1iYmJk6aNIkQkpubO3DgQBsbm/z8\nfDrB2Ni4qqrqxIkTb7zxBh2RSqW2trZMGG2jWrFixaFDh6Kjo5csWUJHvvnmm2XLlq1cufLgwYPK\nxKwYEr2c4ohEIrG3t7e1tZVIJHTJqlWrIiIiIiMjly9fTkdOnz4tFos3b94cFhZGCAkICPj2228V\nQ/rhhx/mz5//3O/ni7woxaGdkQ4Dawd+h0B3O3Xq1IIFC2QyGZutyoeK9+zZEx4ezvwYAgCAMlDF\nAQAAAAAAAKAT9PX12yn/0NDQ8Nzshz///FMqlRYXF8tkMjqTx+O1zX6wsrKytra2srIyNzdHj2qA\nXkgikZw4cULTUfQvN27c0HQI0L+4ubm1HVR8QD5o0CBCyP3799tOGz16ND2wsbEhhChWflqwYMGR\nI0f8/Pzs7e19fHx8fHzmzZvX/nP38+fPE0KmTp3KjEyfPp0Z7zDmViFZWVk9N0ipVMpMPnfuHCFk\n5syZzMjEiRPpOM0kuHTpUquQPD0927mFrtJhYMpIT09vbGy0tbV1dHTsjiCh3+LxeISQ+vp6AwMD\n1ZajUQUAQGchxQEAAAAAAACgy+jp6dnb29vb279oQl1dHW17ofj14cOHV65cKS8vV3wWwuPxWjW/\naHUgFAp75J4A4P9LSUlJSUnRdBQA0I0EAkGrkYqKip07d54+fVoikTx79owOKtZtYjA9qrhcLvnf\nxIjDhw/PmTPn2LFjV65ciYyMjIyMdHBwOHPmzKhRo14USUlJCSFEJBIxI/S4uLi4w5jbhqSjo/Pc\nEcUg6c409UFRdnY2PSgtLX1uSN2tw8CUsXPnTpqj5uzsvHjx4tWrV5uamnZhkNBvqZnioGafCwCA\n/gkpDgAAAAAAAAA9h8/nOzk5OTk5PfdsTU0Nrf1QXFxcUFBQUlJSUlJSUFBw7969xMTEgoKC6upq\nZrK+vr6lpaWlpaW5ubmlpSWt/cAcWFhYmJmZ9dRtAfQXfn5+aFTRw2iReU1HAT2B9iYgnWl50DP8\n/f0vXbq0ZcuWDz/8kD4UZ0LtFLFYLBaLm5ubk5OTw8LC4uPj33nnnYyMjBfNt7CwkEqlpaWlzKN9\nmmFgYWGh0n10zNLSMj8//+nTpy9KoxSJREVFRYohVVZWdlMwnQpMGTExMbt3787NzT179uzXX399\n5MiR6Ojotg0+ADqLz+cTQlSuxMDj8err61taWlT7xQIA0D8hxQEAAAAAAACgt9DX1x80aBCtgP1c\n9fX1NOmhuLi4pKSksLCQHjx69CglJYWmRDQ3N9PJHA6H5jpYW1ubm5ubm5tbW1tbWFiIRCKRSEQP\n9PX1e+rmAAAA2tNjT/gEAkFtba1MJpPJZA4ODjRvoB3JycmEkI8++ojWP2hoaFDhoiwWKy8vz87O\nTkdHx8vLKzY21sTE5MGDB+0s8fX1jYiIuHz5ckBAAB1JSEig4yoEoIx58+bt378/MTFx/vz5zOD1\n69fXr19PC9j4+PhER0crhtQzhW06DEwZHA7Hzs7Ozs7O09Nz8+bN77777pw5c27cuPHyyy93T9TQ\nXzBVHFRbzufzm5ubGxsb9fT0ujQuAABthhQHAAAAAAAAgD6Dx+O13wiDEFJeXi6VSsvLy2nnC3pc\nUFBw48aN8vJyiURSVVWluKFQAdMIQ/GlhYUFm403EAAAtBPNKuhthRO61ciRI2/cuJGWliaRSMaP\nH9/hfC8vr/j4+M8//3z9+vXNzc1hYWGqXTcwMDA8PNzZ2bmiomLv3r2EkBkzZrQzf+vWrRcuXNi4\ncaOtre3YsWNv3ry5adMmR0fH0NBQ1QLoUGho6MWLF4ODg+Vy+ZQpU7hc7tWrV0NCQg4fPsxMOHfu\nHA3Jzc3t999///zzz7spmE4F1lkmJibfffedj4/PwoUL7969y3TxAFCBmikOzHKkOAAAKA/vUAAA\nAAAAAABoFZqd0M6Eurq68r8wORD0+N69e0lJSeXl5cXFxXK5nFlCMyEUEyDaJkOoUzsaAACgx+zb\nty8wMNDHx2fkyJHffPMNHWQKSLTN+YiKilq7dm1kZGR4ePjgwYP/8Y9/MDPpNMW1LxpJSko6dOjQ\nnDlz8vPzBQLBgAEDwsLCVq9e3c7VLS0tU1NTt2zZEhAQUFxcbGFh4evr++mnn1paWnYYszIhtR0R\niUSpqanbtm1bv369RCIxNTV1c3OLiYlxd3enM52cnJKSktatWzd37lwWi+Xh4XHgwAEXFxfFTdrX\nTYGpgM1mHzx4cOjQoT/99NOcOXNU3gdA/UYVhJD6+npjY+OuDAsAQKsp9Z8dAAAAAAAAANCvyGSy\nsrKy0tLS0tJS2gujtLSUjjAvS0tLGxsbmSUCgUAkEpn9xdTUtO1XeoDPSkIf5e/vTwiJi4vTdCD9\nS1xc3MKFC/EeZvfpVVUc1AyGxWLFxsbSH1UAqv3fIdOnTzc3N//uu+96OCrQJoWFhdbW1levXp04\ncaIKy9PS0saNG5eTkzNgwICuDg0AQGvhPQUAAAAAAAAAaI3D4VhZWb388suTJ0/29/cPDg7esmXL\nv//972PHjiUkJNy5cyc/P7+hoaGysjIrKyslJeXcuXP79+//4IMPXnvttYEDBzY1NT148ODs2bPh\n4eGrVq3y9fX18PAYOnSohYWFrq6uqanpoEGD3N3dZ82aFRAQEBISsnXr1i+//PLYsWPx8fE3b97M\nyclR7KYBANAh1l/u37//2muvGRkZGRgYzJ49+8GDB23nZGdni8VioVBIX9KzxcXFQUFBdnZ2XC7X\n1tZ2xYoVhYWFXbh/YWHhypUr6f52dnarVq0qKipSvIX6+vrt27e/+uqr+vr6PB5v6NChq1atunHj\nRjt3fe/evVmzZhkYGBgZGc2YMeP+/ftMDMycDu9LMfjAwMBW9yKVShcsWGBoaGhmZrZ06dLKysrc\n3Ny5c+caGRlZWVktW7asoqJCMaSEhIS5c+cKhUIejzd69Ojjx48rnq2srFyzZo2TkxOPxzMzM/Pw\n8Fi7dm1aWtpz727MmDFMGIsWLWrn+wCgMi8vr/T0dE1HAX1bVzWq6MqYAAC0HRpVAAAAAAAAAICK\njIyMjIyMnJ2d259WW1v79OnTsrKyp0+fPn36lBaEYEZycnLoeFlZWVNTE7OKzWYztR9MTU2FQqGJ\niQnti0EPFF8aGBh0870CADl+/PiePXsyMzOZp9rPLYyvkXoALS0tNIB33313586dr7zySmpq6pIl\nSyZMmHDr1i360VhmTlBQUGhoaExMTGJi4qxZswghRUVF48aNq6+vj4qK8vDwyMjICAgISEhIuHXr\nlomJifr7FxYWurm5yeXy6OjosWPHpqWlLVmy5MKFC6mpqbTpQHV19dSpU//888/du3f7+vrq6+un\np6e/9957ERERL/p+Zmdne3p6CgSCs2fPurm53blzZ8WKFcx3gx4of1+trsKMb9iwYdu2bYcPH/74\n44/3799fVlbG5XJ37NhhY2OzadOmAwcOcLncr776ilno7e09b968rKys2trawMDAxYsXC4XCGTNm\n0LNLly49c+bMF198ERgYyOFwcnJyNm3aNG7cuOfe4/nz5729vWfPnr19+3YV/koAKOPll1/Ozs6W\nyWQcDkfTsUBfhRQHAICeh0YVAAAAAAAAANBbVFVV0XYYTNID87WioqK8vJz5Wltbq7iQw+G0zXto\n+5I5UPyIM4CS+nmjiqioqKVLl86cOfPAgQNWVlY//vjjggULWr212B0tD5RvVEGv/tNPP82cOZOO\nfPPNN8uWLVu6dOnRo0cV5/zyyy+TJ09WXLtq1aqIiIjIyMjly5fTkdOnT4vF4s2bN4eFham//4oV\nKw4dOhQdHb1kyRLFtStXrjx48CAh5KOPPtq9e/cXX3wREhLCrMrIyBg9evSL7j0gIODbb79V3POn\nn36aPXs2UfgjUP6+2l6FjicmJk6aNIkQIpVKbW1tFUckEom9vb2tra1EIlFcxZRbf/jw4bBhw7y8\nvK5du0bPGhsbV1VVnThx4o033qAjdFvm6kwwjx8/nj59+jvvvLN58+bn3v5zoVGFxrX/z6tGHka0\n/zskPj7+tddeq6ysNDIy6uHAQGu0tLTo6uoeP35ctV8+eXl5Dg4Ov/766/jx47s8NgAAbYUUBwAA\nAAAAAADoexoaGhQzHpivz33Zqo46IcTY2JhmPBgZGRkbGyt+fe6gsbGxRm4TepXOpjh0x/P+LqFa\nYKNGjbpz5879+/eHDRvWtTu3r7MpDhUVFcwPbH5+vp2dnbW1tVQqVZxTU1MjEAgU19ra2kqlUqlU\nam1tTUfKyspEItGIESN+//139fe3sbEpKCjIz8+3sbFRXMvkBzg6Oj558iQ3N9fR0VHJ74yVlVVR\nUZHinhUVFUKhkCj8ESh/Xy9KcaiqqjI0NCSENDc36+rqth1hsVjNzc3PjVAul9N6PKWlpXRk+fLl\nR44cIYTY29v7+Pj4+PjMmzePy+W2uujDhw+9vb3t7e2Tk5OV/G4wy5HiAK20/zvkypUr06ZNKykp\nEYlEPRwYaBM+n3/w4MGlS5eqsLakpMTCwuLKlStTpkzp8sAAALQVGlUAAAAAAAAAQN+jp6dnZWVl\nZWWlzOSWlpZWCRDMQVVVVWVlZVVVVV5eHj2mg3K5vNUmJiYmihkPzIHiuJECAwMDWnkYejO5XE6f\n2kKHMjMzCSEdNqbROMWEJPrMsqSkpNWcVvkHhJDi4mJCCJMrwMjOzu6S/ekcxWeo9JhelxBSUFBA\nCFHydxpF8wYU96S9JxQpf18vQrMZCCE6OjrPHVF8clxRUbFz587Tp09LJJJnz57RwbKyMmbC4cOH\n58yZc+zYsStXrkRGRkZGRjo4OJw5c2bUqFGKF50yZUplZWVeXt6xY8fefPNNJUMFUEFJSYmOjk7b\nnx2ATuHxeGhUAQDQk5DiAAAAAAAAAABajsVi0ZoNyi+pq6urr6+vq6srb4MZl0gkd+/eVRxvuw+P\nxxMKhXw+nx60On7RKTMzMz09va77BsAL2djYWFlZLV26dNGiRW0fA4Oiuro6Qkjvb1dfVlZmZmZG\nj2kSgLm5eYerLC0t8/Pznz592uEvCtX2t7CwkEqlpaWlzF8zutbCwoIJQCKRFBQU0BYPyhCJREVF\nRW33VO2+uoS/v/+lS5e2bNny4Ycfmpqakue1LRCLxWKxuLm5OTk5OSwsLD4+/p133snIyFCcs2/f\nvqqqquXLlwcHB0+cONHOzq4Hgof+qaioyNzcnM3GgxJQC5/PVzlHgc/nk7/+kQUAACXhX24AAAAA\nAAAAgNb4fD6fzxcKhco/9q6vr6+srKyurqZlIZ49e1ZTU0MrQ9TU1Dx79qy6urqioqKmpqa4uPj+\n/fvl5eV0vKampu1uPB7PwMCAFofg8/kCgcDY2JjH4+nr6xsZGdGzhoaGPB7P0NDQwMCAz+fTAx6P\nZ2RkpK+vr1j7HV6ktLS0uLh4w4YNa9eu9fT0XLZsmVgs7pKP8zJPdunB3/72t6+//pqOJCQk/Pvf\n/75+/XpdXd3w4cPXr1+/aNGitgv/+9//rlu37pdffqGdVuhn5e/du7du3bpr167p6OiMHz9+z549\nLi4u8sbTIwAAIABJREFUdD7zYfri4uItW7acO3euuLjY3Nx89uzZn376KVMeoJ3AlL8dRe23kGg/\nmO6QnJw8d+5cepyQkEAI8fHx6XDVvHnz9u/fn5iYOH/+fGbw+vXr69evT0lJUX9/X1/fiIiIy5cv\nBwQEKK719fWlLxcsWLB3794ffvhh9erVzKobN26EhISkpqY+d08fH5/o6GjFPdu2dVDmvgQCQW1t\nrUwmk8lkDg4ObfMklEcD+Oijj2ilh4aGhlYTWCxWXl6enZ2djo6Ol5dXbGysiYnJgwcPWk1bsGAB\nIeTMmTNnzpx55513Ll682PYvHkCXePDgQe8vTgO9nzpVHNhsNpvNRhUHAIBOQYoDAAAAAAAAAEAX\n4PF4PB7P0tKyswtpH41nf6F5EjT1gWZL1NbW1tbWVlZWPnv2rKioqKqqqr6+nuZM1NXVMdXgW9HR\n0TE2NhYIBDwez8TEhCkRweFwaCYEzZzQ09MzNDRks9kmJia6urrGxsZsNtvQ0FBPT08gENAJBgYG\nvf+z+6qhj+ebmpoIIb/++uuvv/66cuVKb2/vRYsWvfHGG23bDXRqZ/pQtm0GgLe397x587Kysmpr\nawMDAxcvXiwUCmfMmNFqYVBQUGhoaExMTGJi4qxZswgh2dnZnp6eAoHg7Nmzbm5ud+7cWbFiheKN\nEEKKiorGjRtXX18fFRXl4eGRkZEREBCQkJBw69YtmrrRTmCdvZ0Onzp3GEx3OHjwoKmp6ahRo9LS\n0jZt2iQUCkNDQztcFRoaevHixeDgYLlcPmXKFC6Xe/Xq1ZCQkMOHD3fJ/lu3br1w4cLGjRttbW3H\njh178+bNTZs2OTo6MmtDQ0MvX778ySef6Ovrz507V19fPzk5+YMPPjhw4ACzSas/gtDQ0HPnztE9\n3dzcbt++HRERocJ9jRw58saNG2lpaRKJZPz48R3eSzu8vLzi4+M///zz9evXNzc3h4WFtZ0TGBgY\nHh7u7OxcUVGxd+9eQgjzl7+Vr7766tdff6UpQSEhIeoEBvAi6enpEyZM0HQU0Oepk+Kg/nIAgH6I\n1an/mQEAAAAAAAAAgN6murq6vr6eJkbU19fTGhL0oKamhpaXqK2traurq6ysbGhooDkTDQ0Nz549\nk8lklZWVcrmclgpoh7Gxsa6uromJCc2B4HK5+vr6LBaLPqumaRA0MYJmVxBCjIyMdHV1aTqFrq6u\nkZER3UdHR4cmT9CtyF8JGd3/rWrtuQ/p2Wy2XC7n8/lisdjf33/mzJm0hrm/vz8hJC4urlObt33z\njcVi5eTk0H4EDx8+HDZsmJeX17Vr11ot/OWXXyZPnqy4MCAg4Ntvv42Ojl6yZAkd+emnn2bPnq14\nlVWrVkVERERGRi5fvpyOnD59WiwWb968mXnerEKKw3NXdTiiTDAdiouLW7hwoTLR0qvn5OR88MEH\nV69ebW5unjhxYnh4+LBhwxQnMFrtWV5evm3bttOnT0skElNTUzc3t82bN7u7u3fV/kVFRUxBCwsL\nizlz5nz66aeKSVHPnj3bsWPHiRMncnJyDA0NXV1d/8//+T9eXl6tAlDcVrGqx6RJk/bu3fvSSy/p\n6OjI5XLl7ys9PT0wMDArK2vkyJHffPPN4MGDW90LvaIyI8XFxWvXro2Pj6+oqBg8ePA//vGPhQsX\nKk5ITk4+dOjQ1atX8/PzBQLBgAED/P39V69eTdOJTExMKisr6fwTJ074+fkpfgNv3rw5ZswY0i4W\nixUbG0t/VAGodn6H1NTUmJmZff3118wvVQDVjB49esaMGZ9//rlqy83NzUNDQ4ODg7s2KgAALYYU\nBwAAAAAAAAAAIISQpqam6urqxsbGmpqauro6WiuC5kA0NzeXl5fL5fKqqio6ob6+vq6ujo4QQugc\nuoruQwipqKhoaWmpqalpbGxUPgwTExP66JSWlyCE0BIUhBCaV0EIYRImyF85E8xymmahuKFQKFR8\nSbMr6PHKlSvbiYTD4chkMpFI9Pbbb7///vsbNmwgXZHioEgul7PZbDMzM8XuAHRhTU1NqxuxsrIq\nKirKz89n+qdUVFTQu2OuYmtrK5VKpVKptbU1HSkrKxOJRCNGjPj999+VD0yZ2+lwRJlgOtTZFIfu\ne7ezu/dXn1QqtbW1tbCwKCoq0nQsmoEUB2irnd8h58+fnzt3bn5+PvM7CkA1Hh4e48aN27Nnj2rL\nHRwcQkJCPvroo66NCgBAi6FRBQAAAAAAAAAAEEIIm81ulQ3QhWQyGe2pUV5eTgihyRO0pITi2ebm\nZuZj3DRtgplMCKEpFK3m5+bmKl6oVUYFk2/BqKqqUvyMe/sxE0JKS0t3796tq6ur4p3/r4qKip07\nd9KP1DNNRsrKytrObNsmg6ZBiEQiZqRtu4fi4mJCCJMDwcjOzlYvcFX0qmC0EovFysrKcnZ2pi9p\nLZApU6ZoNCiAPuPnn38ePXo08htAfWhUAQDQw5DiAAAAAAAAAAAA3Y7D4dD8ie7Louis5ubmdhIX\nuFxuY2Ojubn54sWL/fz8JkyYwJTcV4e/v/+lS5e2bNny4Ycfmpqakhc0y3gukUhUVFRUWlrKJA0o\n1n6gLC0t8/Pznz592hu+z70qGG0VHBx84MABS0vLGzdubNiwwcjIKDQ0VNNBAfQBTU1N33//PVoD\nQJfg8/lIcQAA6Ek6HU8BAAAAAAAAAADQOs+tW05bYxgYGCxcuPDs2bNSqXTv3r2enp7KJyIwaBkG\nmUxWW1vLlF5ITk4mhHz00Uc0v6GhoUH5DX18fAghly9fZkbobormzZtHCElMTFQcvH79+vjx49sP\nrDsoE0xXYf6AVPiT6g37qyYhIcHAwMDDw8PExGTx4sXu7u6pqalDhw7VdFwAfUB8fHxxcfFbb72l\n6UBAG6iZo6BmhgQAQD+EKg4AAAAAAAAAANAfKaY4sNlsuVzO5/PFYvGbb77p7e1Ncx3UMXLkyBs3\nbqSlpUkkEuahvpeXV3x8/Oeff75+/frm5uawsDDlNwwNDT137tzGjRttbW3d3Nxu374dERHRds7F\nixeDg4PlcvmUKVO4XO7Vq1dDQkIOHz7cfmDdQZlguspzE1b60P6qmTZt2rRp0zQdBUCfdPTo0QkT\nJjg5OWk6ENAGPB6PNt5SeXldXV0XxgMAoPWQ4gAAAAAAAAAAAP0R89Cay+X6+vq++eabs2bN4vF4\nXbX/vn37AgMDfXx8Ro4c+c0339DBqKiotWvXRkZGhoeHDx48+B//+AcdZ7FYNJ5W1QIUn6w7OTkl\nJSWtW7du7ty5Ojo6kyZN+vLLL1966SUdnf9fqFUkEqWmpm7btm39+vUSicTU1NTNzS0mJsbd3b39\nwNqnGFXbOF80okwwAAA9Lz8//8yZM0ePHtV0IKAleDxeWVmZOstRxQEAoFOQ4gAAAAAAAAAAAP0R\nh8PZsmWLs7Pz66+/bmho2OX7jxkz5vbt260GLSwsoqKiFEf8/f0VX7ZfLcDFxeWnn35iXkqlUkJI\nq2YTQqEwPDw8PDy8U4G1r21UyowoEwwAQM/bt2+fubn5G2+8oelAQEugUQUAQA9DigMAAAAAAAAA\nAPRToaGhmg6hc1gsVlZWlrOzM3157do1QsiUKVM0GhQAQF9SXl5+8ODBDRs2cLlcTccCWkLNFAc0\nqgAA6CydjqcAAAAAAAAAAABA7xAcHPzo0aOamprLly9v2LDByMiozyVqAABo0L/+9S82m/3+++9r\nOhDQHmqWYeDz+UhxAADoFKQ4AAAAAAAAAAAA9A0JCQkGBgYeHh4mJiaLFy92d3dPTU0dOnSomtuy\n2tUlkQMA9AZFRUX79u1bt25dd/Qngn5LT09PnRQHPT29hoaGLowHAEDroVEFAAAAAAAAAABA3zBt\n2rRp06Z1+bYtLS1dvicAQC+0efNmExOTDz74QNOBgFZRs1EFUhwAADoLKQ4AAAAAAAAAAAAAAKDl\n0tPTjx49GhMTIxAINB0LaBUej6dOpwk1MyQAAPohNKoAAAAAAAAAAAAAAABtJpPJ3n33XS8vr4UL\nF2o6FtA2qOIAANDDUMUBAAAAAAAAAAAAAAC0WVhYWGZm5u3bt1kslqZjAW3D5/PVTHFAFQcAgE5B\nigMAAAAAAAAAAAAAAGit1NTUzz77bOfOnYMGDdJ0LKCFeDxeY2OjXC7X1dVVbTmqOAAAdApSHAAA\nAAAAAAAAAJSSkpLi7++v6Sj6l7y8PEIIvu2gpD179pw8eVLTUUAvQn+HLF68ePr06R9++KGmwwHt\nxOPxCCENDQ0CgUCF5WhUAQDQWUhxAAAAAAAAAAAA6Jifn5+mQ+iP7O3t7e3tNR0F9A34IYW27Ozs\nHB0dm5qaoqKidHR0NB0OaCea4lBfX69yigMaVQAAdApSHAAAAAAAAAAAADrm5+eHB6gAAH3Le++9\nV1JScvXqVZFIpOlYQGsxKQ4qL0cVBwCATkGKAwAAAAAAAAAAAAAAaJvdu3dHREScPHlyzJgxmo4F\ntBlNcairq1NtuZ6eXmNjY0tLC4vF6tK4AAC0FuoyAQAAAAAAAAAAAACAVjl58uS6det27do1f/58\nTccCWo7P5xP1qji0tLQ0NjZ2aVAAANoMKQ4AAAAAAAAAAAAAAKA9Ll68+NZbb33wwQd///vfNR0L\naD81G1Xo6empsxwAoB9CigMAAAAAAAAAAAAAAGiJ1NTUBQsW+Pv77969W9OxQL/QJSkODQ0NXRkT\nAIBWQ4oDAAAAAAAAAAAAAABog7S0tNdee23atGlHjhzR0cETEOgJaqY40OVIcQAAUB7+gQcAAAAA\nAAAAAAAAgD7v119/9fb2njBhQmxsLJvN1nQ40F+gUQUAQA9DigMAAAAAAAAAAAAAAPRtV69enTFj\nxpQpU06dOkWfGQP0DJriUFdXp85yVHEAAFAeUhwAAAAAAAAAAAAAAKAPO3Xq1GuvvTZz5swTJ05w\nuVxNhwP9i66uLofDQRUHAIAegxQHAAAAAAAAAAAAAADoq/bv3+/v7//WW28dO3aMw+FoOhzoj/h8\nvpopDqjiAACgPKQ4AAAAAAAAAAAAAABA39PU1PTRRx998MEH//znP7/++ms2m63piKCf4vF4Kqc4\noFEFAEBn4d97AAAAAAAAAAAAAADoY8rKyhYtWpScnPztt9+++eabmg4H+jV1UhzQqAIAoLOQ4gAA\nAPB/2bvzqCiuvP/jtxGBbrqBVmRXGCMx7ksyqCA4QcXgvkQdn4mDJsRlSMaYGEdJRsmTUXGM0ajz\nZDHGTKITF/KYqOGMisSjuGD8RZ1ETTTEjV3ARhZBlv79UU96GEAooLurgffrj5zqW/fe+lYf6+Qc\n6tP3AgAAAAAAoDU5d+7cjBkzqqurU1JSBg8erHQ5aO9YxQEArImNKgAAAAAAAAAAQOtgNBrfeuut\nkJCQRx555JtvviHfAFvQkoiDvb19hw4dWMUBAORjFQcAAAAAAAAAANAKpKenR0dHJycnv/nmm6++\n+qqdHT/jhE1oScRBCOHo6MgqDgAgHxEHAAAAAAAAAABg04xG49atW5cuXerp6XnixIkhQ4YoXRHw\nb2q1mogDAFgNCUcAAAAAAAAAAGC7Ll26FB4eHhMTM2/evAsXLpBvgK1p4SoOLRwOAO0NEQcAAAAA\nAAAAAGCLDAbDokWLBg4cWFxcfPr06b/+9a9qtVrpooDa2KgCAKyJjSoAAAAAAAAAAIBtKSkp+fDD\nD1evXl1ZWfnWW2+98MILHTp0ULoooH5OTk73799v9nBHR0dWcQAA+Yg4AAAAAAAAAADQiJycnIyM\njPT09Nu3b0sH2dnZhYWFZWVlxcXFRUVF5eXl9+7dkzprNBpHR0fpWKvVurq6urm5ubm5ubq6urq6\ndu7c2cPDw8fHx9PT08vLy9vbW6PRKHdnNqeoqOiDDz5Yt25daWnpokWLXnnlFTc3N6WLAhqiVqtN\nj38zODk5sYoDAMhHxAEAAAAAAAAAgP9QUVFx5cqVixcvXrhw4eLFi+fPny8oKJBOubu7+/r6du3a\n1d/fX6/XOzo6arVarVbr6Ojo6uoq9SkqKqqsrJSO7927V/gLg8GQnp6en5+fm5ubm5trupyLi0vX\nrl1/9atf+fv7BwQE+Pv7+/v7d+/e3d3d3co3rqz09PTNmze///771dXVCxYsWLp0aXv7BtBKqdXq\nFq7iQMQBAOQj4gAAAAAAAAAAgKiurj5//vyhQ4cOHz585syZ8vJyR0fHvn37DhgwYOLEiX379u3a\ntWvXrl2dnJzMcrmKiorc3NzMzMzs7OysrKzbt2/fuHHj4sWL+/fvz8zMrKqqEkLo9frAwMDAwMBH\nH3008BemIEWbUVVVlZiYuHXr1sTERA8Pj2XLli1YsICVG9CKtHCjClZxAIAmIeIAAAAAAAAAAGi/\n8vPzExMTDx06dOTIkdzcXG9v7zFjxjz33HMDBw7s1auXvb2l/oresWNHX19fX1/fuqcqKipu3779\n888/X7t27dq1a1evXt25c+f169crKiqEEB4eHrVCD4GBga1xqwuj0Xjq1Kldu3bt3bs3Nzd35MiR\n//jHPyZPnuzg4KB0aUDTtHwVh7KyMjPWAwBtGxEHAAAAAAAAAEC7c//+/S+++OKzzz47dOiQSqUa\nPnz4kiVLxowZ069fP5VKpWxtHTt27N69e/fu3UeNGmVqrKysvHHjhpR4uHr16rVr177++utbt25V\nV1cLIfz8/GomHh599NHu3bs7OjoqdxMPlZGRceTIkaSkpKSkpJycnN69e8fExPzud7/r3r270qUB\nzcRGFQBgTUQcAAAAAAAAAADtyNWrV997772PP/64uLh49OjR27Ztmzx5slarVbquRtjb2/fo0aNH\njx6RkZGmxvLy8rS0NCnxIElMTExPTxdCdOjQoVu3bqbQwyOPPBIQEODv76/T6axceVVV1U8//fSv\nf/0rJSXlyJEjV65ccXJyCgkJeemll8aOHdu/f38r1wOYXQsjDk5OTqziAADyEXEAAAAAAAAAALQL\nJ06cWLt2bWJiYkBAwNKlS5999lkPDw+li2oRR0fH3r179+7du2ZjaWnptRouXrwo7QQhne3UqZOU\ndfD39/fx8fHy8vL19fXy8vLx8XFzc2t5SQaDISMjIzMz84cffvjuu+8uXLhw6dKl0tLSDh069O3b\nd9y4cRs3bgwNDVWr1S2/FmAjWr6KQ1FRkRnrAYC2jYgDAAAAAAAAAKCNO3r06IoVK06dOjV8+PAv\nv/xy3LhxdnZ2ShdlKRqNZsCAAQMGDKjZWFJScuPGjRs3bty8eVP6b2pqanp6ek5OzoMHD6Q+arW6\nc+fOrq6ubm5upv+6uLgIITp06CAdmBQWFlZWVhYWFj548KC4uDgnJycrKysjI8P0ordTp04DBgwI\nDg6eP3/+gAED+vTpQ6wBbZVarW7JMgxOTk55eXlmrAcA2jYiDgAAAAAAAACANuvcuXPLly9PSkqK\njIxMSUkJCQlRuiJlODs79+nTp0+fPnVP3blzJycnJyMjIzs7u6CgwGAwGAyGwsJCaT2G4uJiIcSD\nBw9KSkpqjnJxcenYsaOrq6uDg4Ozs/OAAQPGjBnj5+fn7e3t6+vr4+Oj1+utdG+A0lq+igMbVQCA\nfEQcAAAAAAAAAABtUH5+/n//939v2bLl17/+dXJy8pNPPql0RTaqS5cuXbp06du3r9KFAK2VWq2u\nrq5+8OCBg4NDM4Y7OjqWl5ebvSoAaKuIOAAAAAAAAAAA2pTq6uotW7asWLHCxcVl165d06dPV7oi\nAG2ZtAnL/fv3mxdxcHJyYhUHAJCvzW42BgAAAAAAAABoh65evRoWFvbqq6/GxMRcuXKFfAMASzNF\nHJo3nFUcAKBJiDgAAAAAAAAAANoCo9G4adOmgQMH3r9//9y5c6tWrXJ2dla6KABtHxEHALAmIg4A\nAAAAAAAAgFavoKBg8uTJr7zyyrJly86cOdOvXz+lKwLQXrQw4sBGFQDQJPZKFwAAAAAAAAAAQIuc\nOXNm5syZRqPx66+/Hj58uNLlAGhfWMUBAKyJVRwAAAAAAAAAAK3Y3//+99/85jf9+vU7f/48+QYA\n1tfyiAOrOACAfEQcAAAAAAAAAACtktFojIuLmzNnzvz58/fv39+5c2elKwLQHjk5OYmWbVTBKg4A\nIB8bVQAAAAAAAAAAWp/y8vLf//73X3755ccffxwVFaV0OQDar5av4lBZWVlVVdWhQwez1gUAbRMR\nBwAAAAAAAABAK1NcXDx16tRvvvnm8OHDYWFhSpcDoF1zdHS0s7NrScRBCFFeXq7RaMxaFwC0TUQc\nAAAAAAAAAACtyZ07dyIiInJzc48fP96vXz+lywHQ3qlUKkdHx5ZsVCGEKCsrI+IAAHIQcQAAAAAA\nAAAAtBp37twZOXJkaWnpqVOn/P39lS4HAIQQQq1Wt3wVB7NWBABtFhEHAAAAAAAAAEDrIOUb7t27\nd+zYMfINAGxHSyIO0ioORBwAQCYiDgAAAAAAAACAVqCwsDAiIqKkpOT48ePdunVTuhwA+LeWr+JQ\nVlZm1ooAoM0i4gAAAAAAAAAAsHVlZWWTJ0/Ozc09efIk+QYAtkatVjc7o8BGFQDQJEQcAAAAAAAA\nAAA2raqqavbs2efPnz927FhAQIDS5QBAbWxUAQBWQ8QBAAAAAAAAAGDTXn755a+++urw4cMDBw5U\nuhYAqAcbVQCA1RBxAAAAAAAAAADYru3bt2/evHnnzp3Dhw9XuhYAqB+rOACA1dgpXQAAAAAAAAAA\nAPVLSUlZsGDBihUrZs2apXQtAPBQrOIAAFbDKg4AAAAAAAAAAFt0+/bt8ePHP/7447179967d6/S\n5QBop7y8vEJDQxvuo1arS0pKmje/FHFgFQcAkImIAwAAAAAAAADA5lRUVPz2t7+9d+/e6dOnT58+\nrXQ5ANove3v7ioqKhvuo1eq8vLzmzW9nZyeEqK6ubt5wAGhviDgAAAAAAAAAAGzO8uXLL168aDQa\nd+/ePWPGDKXLsbg9e/bMnDnTaDQqXQhaAZVK1U6eC1sgPZuNdmvJRhVCCDs7OyIOACCTndIFAAAA\nAAAAAADwH7766qu33377b3/7m9KFAIAsTk5OLYk4qFQqEk4AIBMRBwAAAAAAAACADcnOzo6Kipo7\nd25UVJTStQCALC1cxYGIAwDIR8QBAAAAAAAAAGBDYmJiXFxcNm7cqHQhACAXG1UAgNXYK10AAAAA\nAAAAAAD/59NPP/3iiy+Sk5N1Op3StQCAXKziAABWwyoOAAAAAAAAAACbkJWV9dJLL7344osjRoxQ\nuhYAaAIiDgBgNUQcAAAAAAAAAAA2ISYmplOnTqtWrVK6EPyb6het9+pyJqnb57vvvlu+fPnAgQO1\nWq1Wq+3du/eCBQt++umnllSCNkytVpeVlTV7OBtVAIB8RBwAAAAAAAAAAMo7fPjwvn37Nm/e7Ozs\nrHQt+Ddlf1lulqvLmaRun/79+x84cOCtt97KyMjIyMhYs2bNwYMH+/bte/To0ZaXhLZHrVaXl5c3\nO6bAKg4AIJ+90gUAAAAAAAAAANq7Bw8e/PGPf5w+ffpTTz2ldC3tl7SGAe9ZTXbt2tW3b1/peNKk\nSU5OTk899dQrr7xy4cIFZQuDDVKr1Uajsby8XK1WN2M4EQcAkI+IAwAAAAAAAABAYWvXrr19+/ah\nQ4eULgT4P3XfN4eEhAghrl69qkQ5sHVSsuH+/fvNiziwUQUAyMdGFQAAAAAAAAAAJd26dSs+Pv7P\nf/6zv7+/0rUAD3Xnzh0hxIABA5QuBLbIFHFo3nBWcQAA+Yg4AAAAAAAAAACUtGLFCi8vr5dfflnp\nQto1aZcK6UClUkVHR9fqcPv27UmTJul0Ok9Pz2eeeSY/P7/mWElaWtrUqVP1er30UTqbm5u7cOFC\nPz8/BwcHX1/fefPmZWdnm8YWFhYuXry4e/fuTk5OnTt3Dg4OXrJkydmzZ+VfXQiRnZ09f/586RJ+\nfn4LFizIyclp+H4vXbo0duxYrVbr6uo6ZcqUW7duNfoVffrpp0KIlStXNtoT7RARBwCwGiIOAAAA\nAAAAAADFfP/99zt27PjLX/7i4OCgdC3tmun1qtFoNBqNH374Ya0Oy5cvj4+PT09PnzFjxs6dO5cs\nWVJ37MKFC5csWZKZmZmYmCi15OTkBAUF7du376OPPiooKNi1a9fhw4eDg4MNBoPUISoqauPGjYsW\nLcrPz8/Kytq+ffvPP/88ZMgQ+VfPzs4OCgo6ePDgJ598kp+f//e///3LL78cMmRIAymHtLS04cOH\nX7x4cf/+/RkZGYsXL543b17D38/Fixfj4+NjY2OfeuqphnuifWphxIGNKgBAPiIOAAAAAAAAAADF\nxMbG9unTZ+bMmVa7oqqOWu1+fn7SlgQNjLJatbbj+eef79Wrl6ur67Jly4QQhw8frtsnNjY2ODhY\nrVZHRkZKuYeVK1fevHlz9erVERERWq02NDR0w4YN169fX7dunTTk66+/FkL4+vo6Ozs7ODj07Nlz\ny5YtTbr6ihUrbt++vXbt2vDwcJ1ON3LkyPj4+Js3bzaw3EJcXJzBYJCGaLXasLCwBQsWNHDvFy9e\njIiI+MMf/rBq1So531U78dVXX02aNMnLy8vBwcHLy2vChAlffPFFzQ4Pe9YedrZR1r2/ppEiDqWl\npc0bzioOACAfEQcAAAAAAAAAgDJSU1MPHjz417/+1c7Oen+sllYpaOA4IyNj1qxZVVVV9Y6qOaRd\nGTx4sHTg7e0thMjKyqrbJygoqFbLgQMHhBCRkZGmlrCwMFO7EGLatGlCiOnTp3fr1i06OnrPnj3u\n7u51v+EGrn7w4EEhRHh4uKll1KhRpvZ6HTlypNaQ4cOHP6zz5cuXn3zyyRdeeOGtt956WJ/2pqKi\n4plnnvnd734XHh7+zTffFBcXf/PNNyNHjoyKipo2bZppJYOHPWu1Wmod1B3VKh46jUYjiDgAgFW8\n20MtAAAgAElEQVQQcQAAAAAAAAAAKOO1114bMWLEmDFjlC7kP3h5eR09enTFihVKF2JbdDqddCDl\nUep9HSu95a0pNzdXCOHj42P6Ib67u7sQIi0tTerw0Ucfff7559OmTSsuLt62bdvMmTMDAwMvXLgg\n/+rSkhvStBLpWLp0vfLy8uodUld6evpTTz318ssv//nPf37YbO3Qiy++uGfPnqSkpEWLFnXt2tXB\nwaFr164vvfTS4cOH9+/f3+iuH21SCyMObFQBAPIRcQAAAAAAAAAAKODs2bNHjx61wTfHu3fvtre3\nX7NmTQPLAEAmT09PIURBQYHxP5WUlJj6TJ06NSEhIS8v7/jx42PGjLl169bcuXPlX8LDw0P8klqQ\nSMdSe72kQEPNIYWFhXW7GQyGyMjIefPmvf7666ZGG98uwQpSU1Pff//9OXPmPPHEE7VODRky5Pe/\n//2OHTtOnDjR1GkbXcPAxhc50Gg0KpWKVRwAwAqIOAAAAAAAAAAAFLBq1aqgoKCamwXYiLCwsNWr\nVxuNxtmzZ1+/fl3pcqxH+hl6RUVFaWnpw1Y1aKrJkycLIY4dO1az8cSJE8OGDZOOVSpVenq6EMLO\nzi40NHT37t1CiCtXrsi/xIQJE4QQR48eNbUkJSWZ2usVERFRa8jp06dr9SkvL580adLMmTNr5hsg\nhHjvvfeEEE8//XS9Z6dPny6E2Lp1q1VrsgEqlcrJyalmdqepw4k4AIBMRBwAAAAAAAAAANZ2+fLl\ngwcPvvbaa0oXUr9XX311ypQpBoNh2rRpZWVlSpdjJf379xdCnD179sCBA6YIQgvFxcUFBgbGxMQk\nJCTk5+cXFRUdPHhwzpw58fHxpj7R0dGXLl0qLy/PyclZu3atEKJJe5e88cYb/v7+y5YtS05OLioq\nSk5OXr58ub+/f1xcXANVubm5SUOKi4tPnTq1Zs2aWn2eeeaZ48eP//nPf1b9p6bdf1skrdDQr1+/\nes9K/4pOnjxp1Zpsg7OzMxtVAIAVEHEAAAAAAAAAAFjb6tWre/fu3cDv7BW3ffv2Hj16nD9//oUX\nXlC6FivZvHnzgAEDIiIiNm7cuH79eqnR9FJf5kGtEIC7u3tqauqsWbOWLl3q7e0dGBj4wQcf7Ny5\nc8SIEVKHlJQULy+v8ePH63S6nj17JiYmrlq16rPPPpN/UU9Pz9TU1AkTJsyePbtTp06zZ8+eMGFC\namqqtEdGvUO6d++ekpIyYMCAiRMnent7v/HGG++++26tPgkJCc35EtuBzMxMIUTnzp3rPSu1Z2Vl\nWbUm26DRaFjFAQCswF7pAgAAAAAAAAAA7UtWVtaePXs+/PBDW/5NvKur6+effz506NBt27aFhITM\nnTtX6Yos7oknnrhw4UKtxrqvXeW01KTX69evX2/KTNQSEhISEhLysLEyr+Xp6fnee+9JGyjImUQI\n0adPn8TExAa68b65eaSH2pYfbctpySoORBwAQD5WcQAAAAAAAAAAWNXWrVtdXV1nzJihdCGN6N+/\nv/Tj/piYmLrv/oH2ydvbWwhRUFBQ79m8vDwhhI+Pj6nFzs5OCFFVVVW3c1VVlXS2bdBoNGxUAQBW\n0Hb+zwEAAAAAAAAAsH2VlZVbt2597rnnnJyclK6lcVFRUfPmzbt///7TTz9tMBiULgdQXmhoqBDi\nX//6V71npfawsDBTi06nE0IUFhbW7Xz37l0XFxeLVKkEVnEAAOsg4gAAAAAAAAAAsJ4vv/wyMzNz\n/vz5Shci16ZNmx5//PG0tLSoqCilawGUt2DBAiHE559/Xu/ZvXv3mvpIevbsKYT4/vvv63b+/vvv\nH330UYtUqYSWrOJAxAEA5CPiAAAAAAAAAACwnvfffz8yMvJXv/qV0oXI5ejomJCQoNfr9+/fr3Qt\ngPKGDh06f/787du3nzt3rtap1NTUTz75ZP78+b/+9a9NjRMmTBBCbN++ve5U27ZtGzdunEWrtSaN\nRlNSUtK8sWxUAQDyEXEAAAAAAAAAAFhJZmZmcnLys88+q3QhTRMQELBjxw6VSqV0IYBN2Lx58/Tp\n00ePHr1p06b09PSKior09PR33nlnzJgxM2fO3Lx5c83OixYt6t2798cffxwTE/P999+Xl5eXl5d/\n9913Cxcu/Oabb1566SWl7sLs2KgCAKyDiAMAAAAAAAAAwEo+++wzrVYbGRmpYA0qlcoUVqj3uGaj\nydixY1977TVr1gnYrI4dO+7cuXPHjh1JSUmPP/64s7Pz4MGDjxw5smPHjh07dnTs2LFmZ51Od/r0\n6TfeeOPs2bMhISHOzs5dunSJiorq0qVLamqqi4tLrckf9oTaPjaqAADrsFe6AAAAAAAAAABAe7Fz\n587p06er1WoFa3jYe8RG3y+++eabb775pgUqAlqlcePGydxmwsXFZcWKFStWrJDTufW+6Xd2dmaj\nCgCwAlZxAAAAAAAAAABYww8//HD+/Pnf/e53ShcCAObHKg4AYB2s4gAAAAAAAAAAsIY9e/b4+vqG\nhYUpXYjtmjFjhtIlAGgmjUbT7FUciDgAgHys4gAAAAAAAAAAsIYDBw5MmDDBzo6/SwNog1qyigMb\nVQCAfKziAAAAAAAAAACwuNzc3G+//XblypVKF2LT9uzZo3QJaAVUKpXSJaAezs7ObFQBAFZAWhYA\nAAAAAAAAYHFfffWVg4NDeHi40oUAgEWwUQUAWAcRBwAAAAAAAACAxSUmJv7mN7/RaDRKFwIAFqHR\naCorKx88eNCMsXZ2dkQcAEAmIg4AAAAAAAAAAMsyGo3Hjh2LiIhQuhAAsBRnZ2chRPP2qlCpVNXV\n1eauCADaJiIOAAAAAAAAAADL+vHHH/Py8kJCQpQuBAAsRVqlptkRB1ZxAACZiDgAAAAAAAAAACzr\n1KlTarV64MCBShcCWcrKyl5//fVHHnnE3t5epVKpVCqlK2qRNnY7sFnSKg4lJSXNGMtGFQAgHxEH\nAAAAAAAAAIBlnTp16te//rWDg4PShUCWlStXrlq16tlnn713796hQ4eULqel2tjtwGa1cBUHNqoA\nAJmIOAAAAAAAAAAALCs1NXXo0KFKVwG5du/eLYRYuHChRqOJiIho7T8ub2O3A5vVklUc2KgCAOQj\n4gAAAAAAAAAAsKCqqqpr167169dP6UIg1+3bt4UQnTp1UroQ82hjtwOb1ZJVHNioAgDkI+IAAAAA\nAAAAALCg69evl5eX9+zZU+lCIFcbWzC/jd0ObBYbVQCAdRBxAAAAAAAAAABY0I8//iiECAwMVLoQ\nyKJSqUwHKpVq2bJlpmOVSpWWljZ16lS9Xi99lHrm5uYuXLjQz8/PwcHB19d33rx52dnZNedsuENh\nYeHixYu7d+/u5OTUuXPn4ODgJUuWnD17tmYZpms13FK3vHpvp9GSGr5foF6Ojo729vZsVAEAlkbE\nAQAAAAAAAABgQT/++KOXl5ebm5vShUAW03tWo9FoNBrj4+NrNi5cuHDJkiWZmZmJiYlSS05OTlBQ\n0L59+z766KOCgoJdu3YdPnw4ODjYYDDI7BAVFbVx48ZFixbl5+dnZWVt3779559/HjJkSK166lZY\nt6VuefXeTqMlNTAh0ACNRsNGFQBgaUQcAAAAAAAAAAAWlJGR4e/vr3QVMI/Y2Njg4GC1Wh0ZGSm9\nkV25cuXNmzdXr14dERGh1WpDQ0M3bNhw/fr1devWSUMa7fD1118LIXx9fZ2dnR0cHHr27LllyxZz\nlVevRktq6oSApNkRBzaqAAD5WPcGAAAAAAAAAGBBc+fOzcnJad6P4Nvb1gA28hd76WuvVYzUWFJS\notFoarb7+vpmZmZmZmZ6e3tLLfn5+e7u7v369fvXv/4lp8Ozzz67fft2IUTXrl0jIiIiIiImT57s\n4ODQQD0Pa6lbXr2dGy2p4QkV196eC1sg89ns0aNHdHS0aT8U+UJDQwcNGrRp06amlwYA7Y690gUA\nAAAAAAAAANqyu3fv6vX6Zg9fvHjxsGHDzFiPbTp9+vSGDRuUrqJxdd/35+bmCiF8fHxqtaelpcns\n8NFHH40fP/4f//hHcnLytm3btm3b1q1bty+//HLgwIEtL69ejZbU1Amtr508F7agSc+mRqO5f/9+\nM67CRhUAIB8RBwAAAAAAAACABRUUFPj5+TV7+NChQ6dPn27GemxT63276enpmZGRUVBQ8LAgS6Md\nhBBTp06dOnVqdXX1yZMnV61adejQoblz554/f146q1KpjEZjRUVFx44dhRCFhYWWrtn2tZPnwhY0\n6dnUaDQlJSXNuAobVQCAfHZKFwAAAAAAAAAAaMvKysrUarXSVcBSJk+eLIQ4duxYzcYTJ06Y1hho\ntINKpUpPTxdC2NnZhYaG7t69Wwhx5coVU2cvLy8hRFZWlvTRFH2wXM1A8zg7O5eWljZjoJTjMXs9\nANAmEXEAAAAAAAAAAFiQk5NTeXm50lXAUuLi4gIDA2NiYhISEvLz84uKig4ePDhnzpz4+HiZHYQQ\n0dHRly5dKi8vz8nJWbt2rRBizJgxprOjR48WQqxbt66wsPCHH3748MMPLV0z0DzNXsWBjSoAQD42\nqgAAAAAAAAAAWJBarW7e5vRQhEqlqnkgvXatt1Hi7u6empr6l7/8ZenSpenp6Z06dQoKCtq5c+fQ\noUNldkhJSdm6dev48eMzMjI0Gk1AQMCqVateeukl0yXWr19fWVm5e/fu7du3h4eH/+1vf9u5c6eo\n8cP3Bsqr91SjJTUwIdCAlqziwEYVACATEQcAAAAAAAAAgAVpNJrmvfODIup9nd/wO369Xr9+/fr1\n69c3r0NISEhISEgD87u7u0uZhofV00B5DzvVcElkGtA8Go0mJyenGQPZqAIA5GOjCgAAAAAAAACA\nBen1+ry8PKWrAACLY6MKALACIg4AAAAAAAAAAAvq2bPnjz/+qHQVAGBxbFQBAFZAxAEAAAAAAAAA\nYEG9evW6detWcXGx0oUAgGU1e18eNqoAAPmIOAAAAAAAAAAALKhXr15Go5GFHAC0eWxUAQBWQMQB\nAAAAAAAAAGBB3bt379Sp04kTJ5QuBAAsy9nZuXkRBzaqAAD5iDgAAAAAAAAAACyoQ4cOo0aNSkxM\nVLoQALCslkQcWMUBAGQi4gAAAAAAAAAAsKzp06cfPXo0PT1d6UIAwIJ0Ol1paWllZWVTB7JRBQDI\nR8QBAAAAAAAAAGBZEyZM6Ny58/vvv29qMRgM33//vYIlAYDZ6XQ6IUQzFnJgowoAkI+IAwAAAAAA\nAADAshwdHRctWrRly5b8/Hyp5fXXXx84cODatWtt+YfLu3btGjJkiF6vV/2i5tl6GwEb0Yb/fdry\ngylFHIqKipo6kI0qAEA+Ig4AAAAAAAAAAIt78cUXNRrNsmXLhBBVVVWfffZZVVXV8uXLJ02aVFhY\n2MLJQ0NDQ0NDzVHmv33yySezZs3q3LnzhQsXysrKPv/881odLPE+UgXIIOffksx/n5Z4dixKkQdT\nvmZHHNioAgDks1e6AAAAAAAAAABA2+fi4vLOO+/MmDFj7Nixrq6uBQUFQgij0fjPf/5zwIAB+/fv\n79+/f7Mnt8QC72+//bYQYv369f7+/kKIqVOnWuEF5J49eyx9CbQBM2bMMNdUrW5zBEUeTPm0Wq0Q\nori4uKkDVWxUAQCyEXEAAAAAAAAAAFjD008/PX/+/KioqFGjRjk4ODx48EAIUVFRkZGR8cQTT7z7\n7rvPPfdc82Y+efKkWSsVQoirV68KIXr06GH2mRswffp0a14OsMSzY1GKPJjysVEFAFgBG1UAAAAA\nAAAAAKxk06ZNI0aM+Oc//ynlGySVlZUVFRXR0dGzZ8++f/++guXVJFXSsWNHpQsB8G82/mCyUQUA\nWAERBwAAAAAAAACAlXTs2PGFF154WI5h165dQ4YMuX79epPmVP2ibsvt27cnTZqk0+k8PT2feeaZ\n/Px8+XPWmqruVeqVm5u7cOFCPz8/BwcHX1/fefPmZWdnN+l2APO6devWlClTXF1dtVrtuHHjrly5\nYjrV7GcnKSlp4sSJer3eyclp8ODBu3btqnnWNElaWtrUqVP1en3d50ilUplGBQQEyHm4RGt4MDt2\n7Ojo6Ni8VRzYqAIAZCLiAAAAAAAAAACwnn379jk4ONR7qrKy8ocffhg0aNChQ4fkT1j3p8+mluXL\nl8fHx6enp0+bNm3nzp1Llixp6pzGGhodlZOTExQUtG/fvo8++qigoGDXrl2HDx8ODg42GAyy7wYw\ns3nz5i1evDg9Pf3LL7/89ttvQ0JCbty4IZ1q9rMzevToDh06XLt27erVq+7u7rNmzar5zJomWbhw\n4ZIlSzIzMxMTE6X2pKQkIYS3t3d5eflvf/tbqdvrr78+fvx4OY9Yq3gwdTodG1UAgEURcQAAAAAA\nAAAAWElVVdWePXtq7lJRS0VFRVFRUWRk5LJly1r+m+bnn3++V69erq6uS5cuFUIcPny4hRM2bOXK\nlTdv3ly9enVERIRWqw0NDd2wYcP169fXrVtn0esCDViwYEFYWJhOpxs5cmR8fPzdu3fj4uIaHdXo\ns7NhwwZ3d/du3bpt2rRJCLFq1aq6k8TGxgYHB6vV6sjISOn9/ciRIwcMGJCVlVVz4YdNmzYtWrSo\nBbfYCCs/mDqdrri4uKmj2KgCAOQj4gAAAAAAAAAAsJJjx47dvXu34T7V1dVGo3Ht2rWTJ09u4eUG\nDx4sHfj4+AghsrKyWjhhww4cOCCEiIyMNLWEhYWZ2gGJzL0VzCU0NNR0PGrUKCEv69Pws2M0GgMC\nAqTjwMBAIcTly5frThIUFFS3cfHixUKIDRs2SB+Tk5Orq6ulwizELA/mmTNnFi1a9NZbb3333XcN\n99RqtWxUAQAWZa90AQAAAAAAAACA9qK8vLxbt25VVVWOjo4ajcbUrtPpTLtXqFQqd3d3lUrl5+fX\nwsvpdDrpQJrc0j+Szs3NFb+8Eq4pLS3NotdF62I0Gq2WbxBCdO7c2XTs7u4uhLhz506joxp4dgwG\nw1//+td9+/alp6eblivIz8+vO0nNZ9xk1qxZy5cvv3DhQnJycnh4+DvvvGPRJRyEmR5Mo9H47bff\nJiQkvPrqq4MGDVq/fv2TTz5Zb082qgAASyPiAAAAAAAAAACwkrFjx968eVN+f9NPvVsFT0/PjIyM\ngoICvV6vdC2oTUoVtMO3yIWFha6urtJxXl6eEKJLly4tmXDGjBlHjhxZuXLlH//4x06dOolfvluZ\nHBwcXnjhhddee+3tt98OCAg4ffp0zU0rLMEsD+awYcNOnDhhNBpPnjy5fv36kSNHvvjii2+//XaH\nDh1q9WxexIGNKgBAPjaqAAAAAAAAAADADKSdNY4dO1az8cSJE8OGDVOmIECI06dPm46TkpKEEBER\nES2Z8OTJk0KIV155Rco3lJeXN3WGBQsWaDSaxMTEP/7xj9HR0Wq1uiX1NMqMD6ZKpRo+fPi+fft2\n7NixdevWZ599tqqqqlafZq/iwEYVACATEQcAAAAAAAAAAMwgLi4uMDAwJiYmISEhPz+/qKjo4MGD\nc+bMiY+PV7o0tF9r1qw5depUcXFxcnLy8uXL9Xp9XFxcSyYMDQ2VpjUYDAUFBbGxsU2doVOnTlFR\nUUaj8dChQ3/4wx9aUowclngw/+u//uuLL77Yu3dv3dvX6XSm/TvkY6MKAJCPiAMAAAAAAAAAoBUz\nLZLfpANLzOnu7p6amjpr1qylS5d6e3sHBgZ+8MEHO3fuHDFiRHNu7CGFSS5fvvzUU0+5uLhotdpx\n48ZduXKlbp+0tLSpU6fq9Xrpo3Q2Nzd34cKFfn5+Dg4Ovr6+8+bNy87ONuP82dnZ8+fPl+b38/Nb\nsGBBTk5OzVsoKyuLj48fNGiQs7Ozk5PTY489tmDBgjNnzjRw15cuXRo7dqxWq3VxcRkzZszly5dN\nNZj6NHpfNYuPjo6udS+ZmZnTpk3T6XSdO3eOiooqLCy8cePGxIkTXVxcvLy85syZYzAYapaUlJQ0\nceJEvV7v5OQ0ePDgWlstFBYWLl68uHv37k5OTp07dw4ODl6yZMnZs2frvbsnnnjCVMZvf/vbBr6H\nJjHd8rvvvvvGG294e3tPnDhx4MCBJ0+eDAgIqPu1yD/45JNPZs+evW3bNk9PzxEjRgwZMqSBIQ97\n4hYvXmxnZ/f000/7+fk146Zs4cGMiIjYsmXLW2+9Ja2NYaLVapu3UQWrOACAXEYAAAAAAAAAAGyS\nEGL37t1KV2ENu3fvlvkXe+lv+8HBwSkpKUVFRUlJSV5eXnq9/vr167X6jB49+uTJk6WlpYmJidLk\n2dnZ/v7+np6ehw4dKioqOn78uL+//69+9au7d++aZf6srKyuXbv6+PgcPXr03r170lh/f//s7Gxp\n4L1795544gmdTrd169bs7OyioqKvv/66V69eDdz7Tz/95ObmJs1ZVFSUkpISEhJS6wWH/Pt62Pf5\nzDPPXL582WAwxMTECCHGjRs3ZcoUqWXhwoVCiOeff77WqMmTJ9+5c+fmzZujR48WQvzzn/80nZ00\naZIQYuPGjcXFxeXl5T/88MOUKVNqXr1mMVlZWX379v3Tn/70sG+g3ppb+3NRVVXl7e19+vRppQtp\nXMPP5vTp0wMCAu7fv29qiY2NHThwYFOv8txzz0VERDSzRABoZ4g4AAAAAAAAAABsVBt4lStTUyMO\niYmJppaPP/5YCCGt/F+zz9dff11r7Pz584UQ27ZtM7X87//+rxAiNjbWLPM///zzQohPP/201tj5\n8+dLH19++WXp3X/NUd9++20D9/7MM8/UmvOrr76qlVeQf19155fajx07Jn3MyMio1XL79m0hhK+v\nb61RpsyHtMRFaGio6ayLi4sQYu/evaYWadq6xdy4caNHjx6rVq162O3Xqw08F/v37w8KClK6Clka\nfjYzMjKcnZ3XrVtnalmzZs0jjzzS1KtER0ePHj26mSUCQDvDRhUAAAAAAAAAALQywcHBpuNRo0YJ\nIQ4fPlyrT1BQUK2WAwcOCCEiIyNNLWFhYab2ls9/8OBBIUR4eHitsVK7ECIhIUEIMXny5JqjBg0a\nZPzlrX9dR44cqTVnzdqael8PM3jwYOnAy8urVouPj48QIjMzs2Z/o9Fo2u4hMDBQCHH58mXT2WnT\npgkhpk+f3q1bt+jo6D179ri7u9e9xx9//DE0NNTDwyM2NlZmna2dSqU6c+bM3bt333jjjddee03p\ncszAx8dn0aJFa9asKS4ullp0Oh0bVQCARRFxAAAAAAAAAAC0L6oGKV2dLK6urqZjd3d3IcSdO3dq\n9dFoNLVacnNzhRA+Pj6mm5XGpqWlmWV+qY/Uv+ZY6bpCiKysLFEjRiBHXl5erTnd3NyafV8Po9Pp\npAM7O7t6W2oGFAwGQ2xsbK9evXQ6nUqlsre3F0Lk5+ebOnz00Ueff/75tGnTiouLt23bNnPmzMDA\nwAsXLtS66JNPPpmfn3/q1Kl//OMfMutsA4YNGxYYGDh+/PiJEyfWOtVKH8wlS5aUlZV9+umn0ked\nTmeKO8inUqkaCPoAAGoi4gAAAAAAAAAAaF8aXv1Y6epkqflCXQoBdOnSpdFRnp6eQoiCgoJat1xS\nUmKW+T08PEz9a46V2k0FSEEHmaSwQt05m3dfZjFjxow1a9bMnDnz5s2bD/s3M3Xq1ISEhLy8vOPH\nj48ZM+bWrVtz586t1Wfz5s1btmwRQsTExKSnp1uiVFsjfV15eXlxcXEPO9vqHky9Xj9r1qzNmzdL\nRWq12tLS0srKyiZNYmdnZ8v3CAA2hYgDAAAAAAAAAACtzMmTJ03HSUlJQoiIiIhGR0k7RBw7dqxm\n44kTJ4YNG2aW+SdMmCCEOHr0aK2xUrv4ZQeHL774ouaoM2fODBky5GFzStetOWfN2iRy7ktac6Ki\noqK0tLTmmhDNIBXwyiuvdOrUSQhRXl5eq4NKpZIiC3Z2dqGhobt37xZCXLlypVa3adOmzZ07d9Kk\nSQaDYe7cubzhbr0WLlx45cqV1NRU8cv6H02N16hUKjaqAACZiDgAAAAAAAAAANDKvPfeeykpKcXF\nxcnJycuXL9fr9fX+LL6WuLi4wMDAmJiYhISE/Pz8oqKigwcPzpkzJz4+3izzv/HGG/7+/suWLUtO\nTi4qKpLG+vv7m8bGxcX17dt3xYoVW7duzcnJKS4uPnTo0O9///vVq1ebJqm1K0FcXJybm5s0Z3Fx\ncUpKyvvvv9+M++rfv78Q4uzZswcOHKgb6WiS0NBQIcSaNWsMBkNBQUFsbGzdPtHR0ZcuXSovL8/J\nyVm7dq0QYsyYMfXO9sEHH3Tp0iUpKWnTpk0tqQoKevzxx3v16rVnzx7xS8ShqKioSTOwUQUAyEfE\nAQAAAAAAAACAVuZ//ud/1q5d6+PjM3HixIEDB548eTIgIEA6ZcoH1MoKCCHc3d1TU1NnzZq1dOlS\nb2/vwMDADz74YOfOnSNGjDDL/J6enqmpqRMmTJg9e3anTp1mz549YcKE1NRUaSMJIYSbm9vp06cX\nLVq0fv36bt26BQQEvP3229u2bRs5cuTD7rR79+4pKSkDBgyYOHGij4/P2rVrpc0d7Oz+/YJDzn1t\n3rx5wIABERERGzduXL9+fd17kX/wySefzJ49e9u2bZ6eniNGjDAtQWHqkJKS4uXlNX78eJ1O17Nn\nz8TExFWrVn322WemL8HUPyEhwdPT886dO0KIl156SaVSnTt37mFfBWzZ008/vXfv3urq6uZFHNio\nAgDkIxQGAAAAAAAAALBRKpVq9+7dM2bMULoQi9uzZ8/MmTPl/MVeeo9uub/tW3r+lsvMzPT19fXw\n8MjJyVG6FmW0n+fCFsh8Ni9evDhw4MBz58516dLF398/NTU1KChI/lUWLVr0//7f/0tJSWlZsQDQ\nLrCKAwAAAAAAAAAAsF0qleqnn34yfTx+/LgQ4sknn1SuIqC2/v37e3t7HzlyRKvVCjaqAAayrscA\nACAASURBVABLIuIAAAAAAAAAAABsWkxMzM8//1xSUnL06NE//elPLi4ucXFxShcF/JtKpQoPDz9y\n5Ii0UUVxcXGThrNRBQDIR8QBAAAAAAAAAIDWQdpFouZB65q/eZKSkrRabXBwsJub26xZs4YOHZqa\nmvrYY48pXRfwH0aNGnXq1Knq6mpHR8dmrOJQXV1tocIAoI2xV7oAAAAAAAAAAAAgi6V/522bvyMf\nOXLkyJEjla4CaERISEhZWdn58+d1Oh0bVQCA5bCKAwAAAAAAAAAAANAiPXr06NKly+nTp5sRcWCj\nCgCQj4gDAAAAAAAAAAAA0CIqlWrIkCGpqak6na64uLipY9moAgBkIuIAAAAAAAAAAAAAtNTAgQO/\n++47rVbLRhUAYDlEHAAAAAAAAAAAAICW6tOnz7Vr15ydndmoAgAsx17pAgAAAAAAAAAAeKgzZ86o\nVCqlq7C4M2fOCCH27t2rdCFoHdrJc2ELpGdTpt69e1dUVKhUqmas4sBGFQAgE+veAAAAAAAAAABs\nVNeuXdPT05WuAkC75ufnd/v2bTk9y8vLtVptaGiok5NTYmKi/Eu8/vrrBw4cuHjxYnNrBIB2hFUc\nAAAAAAAAAAA2SuZrRQCwBY6Ojo888khpaWlFRUWTBrJRBQDIZ6d0AQAAAAAAAAAAAEBb0Lt373v3\n7hUXFzdpFBtVAIB8RBwAAAAAAAAAAAAAM+jTp09+fn5RUVGTRqlU7CwPAHKxUQUAAAAAAAAAAABg\nBo899lh+fn5TRxFxAAD5WMUBAAAAAAAAAAAAMAN/f/+qqiqDwdCkUXZ2dmxUAQAyEXEAAAAAAAAA\nAAAAzKBr165CiAcPHpSVlckfxSoOACAfEQcAAAAAAAAAAADADHx9fTt06CCEKCwslD+KVRwAQD4i\nDgAAAAAAAAAAAIAZ2Nvbd+nSRTQx4sAqDgAgHxEHAAAAAAAAAAAAwDz8/PwEqzgAgMUQcQAAAAAA\nAAAAAADMw9/fXwhhMBjkDyHiAADyEXEAAAAAAAAAAAAAzOORRx4RrOIAABZDxAEAAAAAAAAAAAAw\nj27duqlUKiIOAGAhRBwAAAAAAAAAAAAA8/D09DQajXfv3pU/hIgDAMhHxAEAAAAAAAAAAAAwDw8P\nDyFEVlaW/CFEHABAPiIOAAAAAAAAAAAAgHlIEYfs7Gz5Q4g4AIB8RBwAAAAAAAAAAAAA8/D09BRC\n3LlzR/4QIg4AIB8RBwAAAAAAAAAAAMA83Nzc7OzsCgoK5A8h4gAA8hFxAAAAAAAAAAAAAMxDpVKp\n1erCwkL5Q4g4AIB8RBwAAAAAAAAAAAAAs9FqtUVFRfL7E3EAAPmIOAAAAAAAAAAAAABm4+rqWlpa\nKr8/EQcAkI+IAwAAAAAAAAAAAGA2bm5u5eXl8vsTcQAA+Yg4AAAAAAAAAAAAAGaj1+srKiqMRqPM\n/kQcAEA+Ig4AAAAAAAAAAACA2XTu3NloNJaUlMjsT8QBAOQj4gAAAAAAAAAAAACYjYeHhxDi7t27\nMvsTcQAA+Yg4AAAAAAAAAAAAAGbj5eUlhCgoKJDZn4gDAMhHxAEAAAAAAAAAAAAwGx8fHyFETk6O\nzP52dnZGo9FoNFqyKABoI4g4AAAAAAAAAAAAAGbj5+cnhEhPT5fZ387OTgjBQg4AIAcRBwAAAAAA\nAAAAAMBs3N3dhRCZmZky+xNxAAD5iDgAAAAAAAAAAAAAZqPX64UQWVlZMvsTcQAA+Yg4AAAAAAAA\nAAAAAGYjRRzy8vJk9ifiAADyEXEAAAAAAAAAAAAAzMbZ2dnOzi4/P19mfyIOACAfEQcAAAAAAAAA\nAADAnDp27FhQUCCzMxEHAJCPiAMAAAAAAAAAAABgTk5OTvfu3ZPZmYgDAMhHxAEAAAAAAAAAAAAw\nJ2dn56KiIpmdiTgAgHxEHAAAAAAAAAAAAABz0ul0paWlMjsTcQAA+Yg4AAAAAAAAAAAAAObk6upa\nXl4uszMRBwCQj4gDAAAAAAAAAAAAYE56vb6ioqKyslJOZyIOACAfEQcAAAAAAAAAAADAnNzd3YUQ\nBoNBTmciDgAgHxEHAAAAAAAAAAAAwJw8PDyEEAUFBXI6E3EAAPmIOAAAAAAAAAAAAADm5O3tLYS4\ne/eunM5EHABAPiIOAAAAAAAAAAAAgDn5+fkJIXJycuR0JuIAAPIRcQAAAAAAAAAAAADMycvLSwhx\n69YtOZ2JOACAfEQcAAAAAAAAAAAAAHPS6/VCiPT0dDmdiTgAgHxEHAAAAAAAAAAAAABzkiIOWVlZ\ncjoTcQAA+Yg4AAAAAAAAAAAAAOYkRRxycnLkdCbiAADyEXEAAAAAAAAAAAAAzEmn06lUqry8PDmd\niTgAgHxEHAAAAAAAAAAAAABzUqlUjo6Od+/eldOZiAMAyEfEAQAAAAAAAAAAADAzZ2fne/fuyemp\nUqmEEEaj0cIVAUBbYK90AQAAAAAAAAAAAEBb4+LikpWVJadnzVUcTpw4ER4eXllZadniAKCVsLe3\nT05ODg0N/XeLgtUAAAAAAAAAAAAAbVLnzp2vX79eUVHRsWPHhnvWjDhkZWVVVlbu2bPHGiUCtmrD\nhg1CiMWLFytdSFswY8aMxYsXDxs2TOlCmmnGjBm14mJEHAAAAAAAAAAAAAAz8/DwEEIUFBR4eno2\n3LNmxEEyffp0i9YG2Li9e/cKHgTzGTp0aFv6Mu2ULgAAAAAAAAAAAABoa7y9vYUQd+7cabRn3YgD\nAOBhiDgAAAAAAAAAAAAAZta1a1chRF5eXqM9iTgAgHxEHAAAAAAAAAAAAAAz8/f3F6ziAADmRsQB\nAAAAAAAAAAAAMDMPDw8hREZGRqM9iTgAgHxEHAAAAAAAAAAAAAAz69KlixDi1q1bjfYk4mBlqjpq\ntfv5+dVdfqPeIQCsj4gDAAAAAAAAAAAAYGbSKg7p6emN9iTiYGVGo9FoNDZwnJGRMWvWrKqqqnpH\n1RwCwPqIOAAAAAAAAAAAAABm5u3trVKpbt++3WhPIg62xsvL6+jRoytWrFC6EAD1IOIAAAAAAAAA\nAAAAmJmDg4Narc7NzW20JxEHW7N79257e/s1a9YcPHhQ6VoA1EbEAQAAAAAAAAAAADA/Nze3goKC\nRrsRcbA1YWFhq1evNhqNs2fPvn79utLlAPgPRBwAAAAAAAAAAAAA8/Pw8CguLm60GxEHG/Tqq69O\nmTLFYDBMmzatrKxM6XKgJNUvlC4E/4eIAwAAAAAAAAAAAGB+fn5+lZWV9+7da7gbEQfbtH379h49\nepw/f/6FF15QuhYoyWg0Kl0C/gMRBwAAAAAAAAAAAMD8/P39hRDZ2dkNdyPiYJtcXV0///xztVq9\nbdu27du3K10OzM+iazNYbnKWlCDiAAAAAAAAAAAAAJhfYGCgECIrK6vhbkQcbFb//v3fffddIURM\nTMyFCxeULgeAEEQcAAAAAAAAAAAAAEvo3bu3EOLatWsNdyPiYMuioqLmzZt3//79p59+2mAwKF0O\nACIOAAAAAAAAAAAAgAX06NFDCHH58uWGuxFxsHGbNm16/PHH09LSoqKilK4FtSUlJU2cOFGv1zs5\nOQ0ePHjXrl01z6p+kZaWNnXqVL1eb9rlwbTXg9QSHR1tGnXp0qWxY8dqtVpXV9cpU6bcunWr7nVz\nc3MXLlzo5+fn4ODg6+s7b968mlvSNDB5wwOFEGVlZfHx8YMGDXJ2dnZycnrssccWLFhw5syZRmdu\nP+yVLgAAAAAAAAAAAABog/z9/e3s7FjFobVzdHRMSEgYPHjw/v37la4FtY0ePXry5MnXrl0rLS2N\njo6eNWuWXq8fM2aMdNZoNEqZgIULF8bFxe3cufPYsWNjx46tecpoNNacMC0tbfjw4RqNZv/+/UFB\nQd9+++28efNqXTQnJ2fIkCFlZWWffPJJcHDw+fPnZ8+enZSU9O2337q5uTUweaMDi4qKwsPDf/zx\nx7fffnvChAnOzs7nzp37wx/+8P7770tTPWzmdoVVHAAAAAAAAAAAAADzs7Oz02g09f4EvFY3QcTB\ntgUEBOzYscP0A3rYlA0bNri7u3fr1m3Tpk1CiFWrVtXtExsbGxwcrFarIyMjGw4HxMXFGQyGtWvX\nhoeHa7XasLCwBQsW1OqzcuXKmzdvrl69OiIiQqvVhoaGbtiw4fr16+vWrWu41EYHxsXFnTt37s03\n34yOjvb09NRqtb/5zW927tzZhK+jHSDiAAAAAAAAAAAAAFiEu7t7Tk5Ow32IOFiZaauChx3XbDQZ\nO3bsa6+9Zs06IYfRaAwICJCOAwMDxUO2hgkKCpI54ZEjR4QQ4eHhppbhw4fX6nPgwAEhRGRkpKkl\nLCzM1N6ARgcmJCQIISZPnlxz1KBBg9rzmg11EXEAAAAAAAAAAAAALMLHx6ewsLDRbnZ2dkQcrMZY\nR73tdQe++eabvGm2KQaDITY2tlevXjqdTqVS2dvbCyHy8/Pr9tRoNDLnzMvLE0K4u7ubWmoeS3Jz\nc4UQPj4+ql9IfdLS0hqevNGBWVlZQggvr//f3p2HRXndCxw/wyZBVpmwi4aIxjRKrq0g6GjFijFa\nNFDh8kQrWuLy0Fz16lXDkyjtjSJNiVZzozFFE1ITWYw1Gm+1iAZBxSw1LpiroqIwArKMAkbCMveP\n98l0OsMyLMML+v389XLe3znndw761/vjHA8Ts308UeIAAAAAAAAAAAAAmIWfn19DQ0Nzc3P7YZQ4\nAF0QFRWVlJQUHR1dXFzcVmFKZ0k1B1Khg8S4Ssnd3V0IUV1dbVAWU19f3/7gHXaUAqRCB7SFEgcA\nAAAAAAAAAADALH7yk59otdpr1661H0aJA9AF+fn5QoiVK1cOGjRICNHQ0NCp7tLRDo2NjQ8ePNAd\n1RAWFiaEOHbsmC7s9OnTBh2liyROnDih33jy5Mng4OD2B++wY2RkpBDir3/9q37AmTNngoKC2h/5\nsUKJAwAAAAAAAAAAAGAWgYGBQoi8vLz2wyhxALpApVIJIZKSkjQaTXV1dUJCQqe6jx49Wghx9uzZ\ngwcP6ooMEhMTnZ2d165dm5OTU1dXd+rUqaSkJIOOiYmJ/v7+8fHxWVlZVVVVtbW1hw4dio2N3bRp\nU4eDt98xMTHxueeeW7du3fvvv19eXl5XV3fkyJFf//rXGzdubH/kxwolDgAAAAAAAAAAAIBZjBw5\nUvz4t+btoMQB6IK0tLR58+alpqa6u7tPmjRJd9SBQqEwftA962zbti0gICAsLGzLli0pKSlSo5+f\nX15eXkBAQHh4uKen5+9+97vt27cbjKZUKgsKCmJiYlavXu3p6env779z5849e/ZMmjSp/cE77Ojs\n7Hz69Olly5alpKT4+voOHTr07bffTk1NnTJlSvsjP1YUPXIlCQAAAAAAAAAAAAADLS0t1tbWzz//\n/Ndff91OmIODw5/+9KeFCxdmZGRER0fz/Q6PuaioKCFERkaG3Ik8ChQKRXp6urSl/ZFx/pziAAAA\nAAAAAAAAAJiFhYWFk5PT1atXOwzjFAcAMAUlDgAAAAAAAAAAAIC5DB48uLa29saNG+3EUOIAACai\nxAEAAAAAAAAAAAAwl2effdbCwiI3N7edGEocAMBEVnInAAAAAAAAAAAAADyyhgwZYmdn98UXX8yf\nP7+tGIMSh8zMzF5JDeijSkpKfHx85M4CfRQlDgAAAAAAAAAAAIC5DB48uKWlJTs7W6vVKhSKVmMM\nShyioqJ6Kzugj5ozZ47cKaCPosQBAAAAAAAAAAAAMJfBgwc/ePDgwYMH//jHP8aMGdNqjEGJg1ar\n7a3sgL6IKh+0w0LuBAAAAAAAAAAAAIBH1uDBg4UQHh4en332mdTy8ccfBwQE1NbW6mIMShwAAG2h\nxAEAAAAAAAAAAAAwF19fXyHE2LFjs7KyhBAnTpyYP3/+hQsXNm7cqIuhxAEATESJAwAAAAAAAAAA\nAGAurq6udnZ2AQEBly5dyszMDA8P12q1Wq32j3/847Vr16QYShwAwESUOAAAAAAAAAAAAABmNHjw\nYGtr6xEjRvzmN7/5/vvvm5ubhRAKhWL16tVSACUOAGAiShwAAAAAAAAAAAAAM3r66aevXLlibW39\n8OHDpqYmqbGxsXH//v1ffPGFoMQBAExGiQMAAAAAAAAAAABgRn5+fv/7v//73XffNTY26rdbWlrG\nx8c3NzdbWlpKRztAFoofdXOcvXv3BgUFubi4tDpgT80CPOYocQAAAAAAAAAAAADM6Pz589XV1brz\nG3Sam5svX778wQcfUOIgL61W2/1B0tLSYmJiXF1dz5079/Dhw3379pljFgBWcicAAAAAAAAAAAAA\nPLIOHDiQm5vb1lutVrtmzRo3NzdKHPq7t99+WwiRkpIyZMgQIURERAQ1Dd2RmZnJiRdoFSUOAAAA\nAAAAAAAAgLmMHTs2IiLi008/tbCwEEK0tLTov9Vqtffu3eMUh0fAlStXhBDDhg2TO5FHRHBw8IoV\nK+TO4lEQFRUldwo9jBIHAAAAAAAAAAAAwFy8vLw++eQTOzu73/zmN6dPn75w4YK1tXVjY6MuoKmp\n6e7du5WVlTImie77/vvvhRDW1tZyJ/KI8PHxmTNnjtxZoC+ykDsBAAAAAAAAAAAA4FFmY2MzePDg\noUOHnj9//quvvoqNjbWzs7OwsJDOdZDk5OTImGHfofiRWq2OjIx0cHBwdXWdP3/+vXv3bt68GR4e\n7ujo6OHhERsbq9Fo9DtmZ2eHh4e7uLjY2tqOGTNm7969+m/v3bu3YsUKPz8/W1tbV1fXkJCQVatW\nnT17ttUcfvazn+nS+Pd//3cT0zbIX6f9jhUVFUuXLvXx8bGxsfH29l60aFFZWZkpMwKPLUocAAAA\nAAAAAAAAAPMaNmxYUVGREOKnP/3pzp07y8rKtm/fPmrUKCGEtbW1Vqu9evVqbm6u3GnKT6vVSg9r\n1qx58803S0pKYmJi0tLSXn755f/8z/9MTk6+fft2RETEhx9+uHr1av2OU6dOtbS0vHr16pUrV5RK\nZUxMzJEjR3Rv58+fv2XLlmXLllVVVd25c2f37t3Xr18PCgpqNYdDhw4999xza9as0Wq1BqUSHaat\n1dNhr/Ly8sDAwP379+/atau6unrv3r1Hjx4NCQkxqN4AoI8SBwAAAAAAAAAAAMC8hg0bdu3aNd2P\nDg4OixYtOnfu3Ndff71w4ULpOIdly5bJl2CfExcXN3LkSCcnp4SEBCHE559/vmzZMv2Ww4cPG3TZ\nvHmzUqn09fXdunWrEGLDhg26V8ePHxdCeHt7Dxw40MbGZsSIEe+8806r8xYXF6tUqpiYmE2bNplp\naTrr168vLi7euHFjWFiYvb29SqXavHnzjRs33nrrLXNPDfRflDgAAAAAAAAAAAAA5vX000/rlzjo\njBkzZseOHePGjQsNDf3FL37R+4n1WWPGjJEePDw8DFq8vLyEEGq1Wj9eq9UOHTpUevb39xdCFBYW\n6t5GRkYKIebMmePr6xsXF5eRkaFUKo0PWvi///s/lUrl5uYmVVGY28GDB4UQ06dP17VMnDhR1w6g\nVZQ4AAAAAAAAAAAAAOY1bNgwtVpdX1/f6lvpXAH+dl+fg4OD9CAdcWHcol+goNFoEhISRo4c6eDg\noFAorKyshBBVVVW6gF27du3bty8yMrKuri41NTU6Otrf3//cuXMGk06ePLmqqurUqVMff/yx2Vb2\nTxUVFUIILy8vxY+USqUQQrrTBECrKHEAAAAAAAAAAAAAzGv48OFarfbKlSutvrW0tGxubu7llB4l\nUVFRSUlJ0dHRxcXFWq3W+HgGIURERERWVlZlZWVubu60adNu3bq1YMECg5ht27ZJF1jEx8eXlJSY\nO213d3chRHV1tfZftVUKA0BQ4gAAAAAAAAAAAACY2/Dhw21tbc+fP9/qW0ocuik/P18IsXLlykGD\nBgkhGhoaDAIUCoVUsmBhYaFSqdLT04UQly9fNgiLjIxcsGDBrFmzNBrNggULWi2V6EGzZ88WQpw4\ncUK/8eTJk8HBwWadF+jXKHEAAAAAAAAAAAAAzMvKymrkyJEXLlxo9S0lDt2kUqmEEElJSRqNprq6\nOiEhwTgmLi7u0qVLDQ0N5eXlycnJQohp06a1OtrOnTuffPLJ7OzsrVu3mjXtxMREf3//+Pj4rKys\nqqqq2traQ4cOxcbGbtq0yazzAv0aJQ4AAAAAAAAAAACA2Y0ePZoShw4pFIouPKSlpc2bNy81NdXd\n3X3SpElBQUEGAXl5eR4eHjNnznRwcBgxYsThw4c3bNjwySefSG+dnZ118VlZWe7u7nfv3hVCLF++\nXKFQfPXVV2ZKW6lUFhQUxMTErF692tPT09/ff+fOnXv27Jk0aVLHOwU8rqzkTgAAAAAAAAAAAAB4\n9I0aNerIkSOtvqLEQcf4bghTWtzc3NLS0vRboqKi9H8cP378+PHj25pUo9G0P36Hupa2EMLFxSUl\nJSUlJaWzM6Jv0tWvmPuWk8cZpzgAAAAAAAAAAAAAZjdq1KiysrKKigrjV5Q4AP2CSqWSbkVpS3+v\nbPj8889nzZrl4eFhY2Pj4eHxy1/+8q9//at+gMJI+2871IUkKXEAAAAAAAAAAAAAzG706NFCiIsX\nLxq/osQB6BdaWlpaWlp6c8Yu1wF0VmNj49y5c19++eXQ0NAvv/yyrq7uyy+/nDJlyvz58yMjI7//\n/nspTKvV6so49J8NWgwejHsZ9zUdF1UAAAAAAAAAAAAAZufh4eHm5nb+/PnQ0FCDV5aWlg0NDbJk\nBVO0/425v//hPkyXn58vdwrm8uqrr2ZkZJw6depnP/uZ1DJ48ODly5cHBwdPmDBh0aJFH330kbwZ\n6nCKAwAAAAAAAAAAANAbRo0adeHCBeN2TnHo47Ttkjs7oLsKCgree++92NhYXX2DTlBQ0K9//eu/\n/OUvJ0+e7OywHf7v6Np/H0ocAAAAAAAAAAAAgN4wevTo8+fPG7dT4gB0n+JHRUVFERERLi4u+rc8\nZGdnh4eHu7i42NrajhkzZu/eva32LSwsfOGFFxwdHe3t7WfMmHH58mXjGP2Oly5devHFF+3t7Z2c\nnF566aVbt24ZJ2bi1MZp6+aSWuLi4npin1qxY8cOIcSvfvWrVt/OmTNHCPH++++bafbOosQBAAAA\nAAAAAAAA6A0BAQEXL1784YcfDNopcQC6T3ckwNKlS1etWqVWqw8fPqx7O3XqVEtLy6tXr165ckWp\nVMbExBw5csS47yuvvPLGG2+o1eoDBw58880348ePv3nzpkGMTlFR0YQJE7799tvPPvustLR0xYoV\nixYtMk7MxKmN09a9ks4L+fOf/9zFremIdELDqFGjWn07evRo0Zcu6aDEAQAAAAAAAAAAAOgNQUFB\nDx8+/Pbbbw3aKXEAelBCQkJISMgTTzwxffp0/bqEzZs3K5VKX1/frVu3CiE2bNhg3Pf1118fP368\nvb39lClTNm3aVFNTk5iY2NZEiYmJGo0mOTk5NDTU3t5+4sSJS5YsaTXSlKnbSrsXqNVqIYSrq2ur\nb6X2O3fu9GZK7bCSOwEAAAAAAAAAAADgsTBixIhBgwadOXNm7Nix+u2UOAA9KDAw0LhRv2jA399f\nCFFYWGgcFhISonv+xS9+IYQ4evRoWxP9/e9/F0KEhobqWiZMmNDlqVtNuy8wuDVDdpQ4AAAAAAAA\nAAAAAL1BoVAEBgaeOXPm1Vdf1W83KHGIiorq9dSAPuT06dPBwcFd7m5nZ2fQotFo/vCHP+zfv7+k\npKSurk5qrKqqMu7r5OSke1YqlUKIu3fvtjVRZWWlLky/S9emNk6713h6el6/fr26utrDw8P4rbRM\nLy8vXYuFhUVLS0tzc7OlpaVBcHNzs4WFea+S4KIKAAAAAAAAAAAAoJeMGzfu1KlTBo2c4gCYVVRU\nVFJSUnR0dHFxsVarbecaCP3iA+nT/pNPPtlWsFTQIIVJ7t271+WpZaRSqYQQ58+fb/Wt1D5x4kRd\ni4ODg2htsUKImpoaR0dHs2T5I05xAAAAAAAAAAAAAHrJz3/+88TExBs3bjz11FNCiFu3buXn5xuU\nOGRkZMiXICC/Hj/IJD8/XwixcuVK6dt8Q0NDO5Hh4eHSc3Z2thAiLCysreCwsLCPPvro2LFj8+bN\nk1pOnz7d5albZWdn9+DBg8bGxsbGRl9fX/1yih60ZMmSDz/8cN++fa0uNjMzU4rRtYwYMeLs2bMX\nL17Ur3uQXLx4cfjw4eZIUodTHAAAAAAAAAAAAIBeEhwcPHDgwJycnMbGxrfeemvEiBEvv/zyDz/8\nwCkOgPlIpxQkJSVpNJrq6uqEhIS2Infs2JGXl1dXV5eTk/Paa6+5uLgkJia2FZyYmOjs7Lx27dqc\nnJy6urpTp04lJSV1eepWjR49Wghx9uzZgwcPdufyjvaNGzdu8eLFu3fv/uqrrwxeFRQUpKWlLV68\neOzYsbrGX/7yl0KI3bt3Gw+Vmpo6Y8YMM+UpocQBAAAAAAAAAAAA6CU2NjYhISHp6emjR49+7bXX\nHj58qNVqy8vLKXEAukmhUOgedM+StLS0efPmpaamuru7T5o0KSgoyKCLzrvvvpucnOzl5RUeHv78\n88/n5+cPHTrUeHzpwc/PLy8vLyAgIDw83NPT83e/+9327dsNYjqcup20hRDbtm0LCAgICwvbsmVL\nSkpKlzbGJNu2bZszZ87UqVO3bt1aUlLS2NhYUlLypz/9adq0adHR0du2bdMPXrZs2bPPPvvBBx/E\nx8dfvHixoaGhoaHhwoULS5cu/fLLL5cvX26+PIUQir552wcAAAAAAAAAAADw6KmpqVm4cOGBAwcs\nLCyksgYbG5uxY8fW19f/4x//yMjIiI6O5vsdHnPSRRW9fGOLVF7w6P3vUygU6enpJt798fnnn7/3\n3nsFBQU1NTXOzs6BgYFLliyZOXOmceT9+/e3bNly8ODBK1eu1NfX29nZDRs2bObMhQVd4AAAFvFJ\nREFUmStXrnRycjLOwaDF9H02zt/KxJ4AAAAAAAAAAAAAukyr1X700UfLly+vq6vTarW6YxsaGxtL\nS0sdHBzkTQ8AZsyYYeI1E46OjuvWrVu3bp0pwT1bOMJFFQAAAAAAAAAAAIB5VVZWhoSELFiwQKPR\nNDY26r/SarWlpaVcVNEOxY/kTqR1XUtv7969QUFBLi4urXbv40sGZESJAwAAAAAAAAAAAGBetbW1\n3333nYWFRat/zdzY2Pj999/3flb9RaubplKpVCpV7ydjrAt/oZ6WlhYTE+Pq6nru3LmHDx/u27ev\n+2OiO3TVJJSV9H2UOAAAAAAAAAAAAADm9dRTT124cOHZZ5+1smrlHnkLC4v6+vrez6pfa2lpaWlp\nkTuLLnr77beFECkpKUOGDBkwYEBERAQ1DfLS6pE7F3SAEgcAAAAAAAAAAADA7Hx8fE6dOhUeHm5h\nYfiFTqFQPHjwQJas+q/8/Pz8/Hy5s+iiK1euCCGGDRsmdyJA/0OJAwAAAAAAAAAAANAbBg4cmJWV\ntXHjRoVCoV/o0Nzc/PDhQxkTQy+T7iWxtraWOxGg/6HEAQAAAAAAAAAAAOglCoVizZo1hw4deuKJ\nJ/S/cDc1Nd2/f1/GxLpJ8aOioqKIiAgXFxfpR+ltRUXF0qVLfXx8bGxsvL29Fy1aVFZWpt89Ozs7\nPDzcxcXF1tZ2zJgxe/fuNXE6/cZLly69+OKL9vb2jo6O06ZNKywsNAjT/Xj79u1Zs2Y5ODi4u7vP\nnTu3qqpKf5wOs9VN5OTk9NJLL926dauze2WQT6vLMdZ+Yvfu3VuxYoWfn5+tra2rq2tISMiqVavO\nnj3bqdyAvo8SBwAAAAAAAAAAAKBXvfjii998842vr69+lcPXX38tY0rdpNVqpYelS5euWrVKrVYf\nPnxYaikvLw8MDNy/f/+uXbuqq6v37t179OjRkJAQjUaj6z516lRLS8urV69euXJFqVTGxMQcOXLE\nlOl0ioqKJkyY8O2333722WdqtXrdunWLFi0yCNY9vPbaa5s2bSopKYmMjNyzZ8+qVat043SYrf5E\npaWlK1as0E3U2b3S6umwV4eJzZ8/f8uWLcuWLauqqrpz587u3buvX78eFBTUqdyAvo8SBwAAAAAA\nAAAAAKC3DR8+/OzZsyqVytLSUmopKCiQN6UekZCQEBIS8sQTT0yfPl36cr9+/fri4uKNGzeGhYXZ\n29urVKrNmzffuHHjrbfe0u+4efNmpVLp6+u7detWIcSGDRs6NW9iYqJGo0lOTg4NDbW3tx8/fnxC\nQkJbwa+88srIkSOdnJxWr14thDh69KjuVYfZGkw0ceLEJUuWdCrVrukwsePHjwshvL29Bw4caGNj\nM2LEiHfeeacXEgN6GSUOAAAAAAAAAAAAgAwGDRp09OjRZcuWSTcU5Ofny51RDwgMDDRoOXjwoBBi\n+vTpupaJEyfq2iVarXbo0KHSs7+/vxCisLCwU/P+/e9/F0KEhobqWkJCQtoKHjNmjPTg5eUlhLhz\n547p2RpPNGHChE6l2jUdJhYZGSmEmDNnjq+vb1xcXEZGhlKpNOV8CKB/ocQBAAAAAAAAAAAAkIel\npWVKSop0DMCjcYqDnZ2dQUtFRYUQwsvLS/EjpVIphCgqKpICNBpNQkLCyJEjHRwcFAqFlZWVEKKq\nqqpT81ZWVgohpJElzs7ObQU7ODhIDzY2NuJfr73oMFvjifSfzafDxHbt2rVv377IyMi6urrU1NTo\n6Gh/f/9z5871Qm5Ab6LEAQAAAAAAAAAAAJCTdCTAwoUL5U7ELNzd3YUQ1dXV2n9VX18vBURFRSUl\nJUVHRxcXF0uvujCL9L1fqj+Q6D/3YLbGE927d68LE/V4YkKIiIiIrKysysrK3NzcadOm3bp1a8GC\nBb2QG9CbKHEAAAAAAAAAAAAA5GRtbS2E+P3vfy93ImYxe/ZsIcSJEyf0G0+ePBkcHCw9Szd0rFy5\nctCgQUKIhoaGLswSFhYmhDh27JiupWsXf3SYrfFEp0+f7sJEPZ6YQqEoKSkRQlhYWKhUqvT0dCHE\n5cuXeyE3oDdR4gAAAAAAAAAAAADISSpxaGxslDsRs0hMTPT394+Pj8/KyqqqqqqtrT106FBsbOym\nTZukAJVKJYRISkrSaDTV1dUJCQldm8XZ2Xnt2rU5OTl1dXV5eXnvvfeeObI1mOjUqVNJSUldmKjH\nExNCxMXFXbp0qaGhoby8PDk5WQgxbdq0XsgN6E1WcicAAAAAAAAAAAAAPNasrKxEPy9xUCgU+g/6\nl00olcqCgoI333xz9erVJSUlgwYNCgwM3LNnz7hx46SAtLS0VatWpaampqSkDB8+/I033tANJY2j\nP3hbLX5+fnl5ef/1X/8VHh5uYWExadKkd9555+mnn7aw+OeffJsyTofZ6k+kUChCQkK2b9/+k5/8\nRH8Q0/fK9AV2mFheXt77778/c+bM0tJSOzu7oUOHbtiwYfny5R3m0zedPn06KipK7izQF5n03wwA\nAAAAAAAAAACAmRw/fjw0NLSiouL48ePR0dF8v+sRarXa29vbzc2tvLxc7lzQOVFRUadPn9bdwYHu\nyMzMTE9P77/1IgqFwiB/TnEAAAAAAAAAAAAA5CRdVNHU1CR3Iv2bQqG4evXqsGHDpB9zc3OFEJMn\nT5Y1KXRRcHBwRkaG3Fk8CnQngjwyLDoOAQAAAAAAAAAAAGA2UolDv76ooo+Ij4+/fv16fX39sWPH\n1qxZ4+jomJiYKHdSAHoSJQ4AAAAAAAAAAACAnKysrAQlDt2WnZ1tb28fEhLi7OwcExMzbty4goKC\nZ555ppfTULSrl5MBHj1cVAEAAAAAAAAAAADIiYsqesSUKVOmTJkidxZCq9XKnQLwKOMUBwAAAAAA\nAAAAAEBOXFQBACaixAEAAAAAAAAAAACQEyUOAGAiShwAAAAAAAAAAAAAOVlZWQlKHADABJQ4AAAA\nAAAAAAAAAHKSTnFoamqSOxEA6OsocQAAAAAAAAAAAADkxEUVAGAiK7kTAAAAAAAAAAAAAB5rBhdV\nKBQKWdMB5Ddnzhy5U0AfRYkDAAAAAAAAAAAAICeDUxwyMjJkTQeQ2ebNm+VOAX0XJQ4AAAAAAAAA\nAABAb2tubi4vL6+rq6utra2oqBBCZGdn19bWCiHOnz/v7u7+29/+Vu4cAXlkZmbKnQL6LkocAAAA\nAAAAAAAAgN72H//xH++++65+y5YtW6QrKjZu3Ojm5kaJAwAYs5A7AQAAAAAAAAAAAOCxExISYtDS\n0tLS3NwshLC0tAwPD5cjKQDo6yhxAAAAAAAAAAAAAHrbr371KxcXl1ZfNTU1zZw5s5fzAYB+gRIH\nAAAAAAAAAAAAoLcNGDAgLi7O2tra+JWVldXkyZN7PyUA6PsocQAAAAAAAAAAAABksHjx4qamJuP2\nSZMm2dvb934+EsWP5EoA6DLdv97CwsIXXnjB0dHR3t5+xowZly9fNo4pKiqKiIhwcXHR/wdfUVGx\ndOlSHx8fGxsbb2/vRYsWlZWV9eD4ZWVlixcvlsb38fFZsmRJeXm5/hIePny4adOmf/u3fxs4cKCt\nre0zzzyzZMmSM2fOmHHX+htKHAAAAAAAAAAAAAAZPP3005MnT7aysjJonzVrliz5SLRarXGjSqVS\nqVS9nwzQKbp/va+88sobb7yhVqsPHDjwzTffjB8//ubNmwYxS5cuXbVqlVqtPnz4sNRSXl4eGBi4\nf//+Xbt2VVdX79279+jRoyEhIRqNpkfGLysrCwwMPHToUFpaWlVV1YcffnjgwIGgoCBdlUNtba1K\npdq4cWN8fPz169crKyt37NiRm5sbHBxsri3rhyhxAAAAAAAAAAAAAOTx29/+1vggh+nTp8uSTDta\nWlpaWlrkzqKHcViFvkdsN15//fXx48fb29tPmTJl06ZNNTU1iYmJBjEJCQkhISFPPPHE9OnTpbqE\n9evXFxcXb9y4MSwszN7eXqVSbd68+caNG2+99VaPjL9u3brbt28nJyeHhoY6ODhIfYuLi9evXy91\nSUxM/Oqrr/77v/87Li7O3d3d3t7+5z//+Z49e8ywQ/2YotU6LAAAAAAAAAAAAADm1tTU5OPjY3BS\nvezf76RP3bKnYW6PyTJN1Kd2IyoqSgiRkZHRhb7SQjQajZOTk9RSWlrq4+Pj6empVqv1Y+rr6+3s\n7PT7ent7q9VqtVrt6ekptVRVVSmVylGjRp0/f77743t5ed25c6e0tNTLy0u/r7e3d0lJiRBiyJAh\nt27dunnz5pAhQ7qw9rY2JD09XdrS/sg4f05xAAAAAAAAAAAAAORhZWW1ZMkS3V0VxpdWAOgCXf2B\nEEKpVAoh7t69axBjUH8ghKioqBBCeHl5KX4k9S0qKuqR8aUYKV6/rzSvEOLOnTtCCA8Pjw4X+Dij\nxAEAAAAAAAAAAACQzeLFi3V/Om98aUWrdN9fi4qKIiIiXFxc9G8ZqKioWLp0qY+Pj42Njbe396JF\ni8rKyvS7Z2dnh4eHu7i42NrajhkzZu/evSZOp9946dKlF1980d7e3tHRcdq0aYWFhQZhuh9v3749\na9YsBwcHd3f3uXPnVlVVGY+sVqsjIyMdHBxcXV3nz59/7969mzdvhoeHOzo6enh4xMbGajQa/dnb\nX6OJU+sHx8XFdWrnCwsLX3jhBUdHR3t7+xkzZly+fNn0HW7/12di3x7fsbZ2w8StNl7LvXv3VqxY\n4efnZ2tr6+rqGhISsmrVqrNnz5qyz92n/7uurKwUQjz55JMd9nJ3dxdCVFdXa/9VfX19j4zv5uam\ni9fvK7XrEpAKHdAmLQAAAAAAAAAAAAD5hIeHW1tbCyEGDBhg4vc76Uvf1KlT8/PzHzx4cPjwYalj\nWVnZkCFD3N3djxw5Ultbm5ubO2TIkKeeeqqmpka/7+zZs+/evVtcXDx16lQhxN/+9jfjwdtpuXbt\nmrOzs5eX17Fjx2pra/Py8saPH99Wr5dffrmwsFCj0SxdulQIERsbaxwzd+5cKSY+Pl4IMWPGjJde\nekm/1yuvvKLrYuIaTZzalN027hUSEpKXl1dbW5udne3h4eHi4nLjxo3O7rDxr8/0vmbaMYPFmt7R\neC2zZs0SQmzZsqWurq6hoeG777576aWXTNzwOXPmzJkzx5RIY1I+Bw4c0LV88MEHQoj58+e3v1it\nVitt5qeffqrfmJubO27cuB4Zf/HixUKItLQ0g75LliyRfly2bJkQYvPmzfq9Tp8+HRgY2P6q2yGE\nSE9P73J32RnnT4kDAAAAAAAAAAAAIKcjR44IISwsLMaNG9epEofjx48btEvfUFNTU3Utn376qRAi\nISFBv6/ue7x0/IBKpTIevJ2WuXPnCiE++ugjXcvnn3/eVq8TJ05IP964cUMI4eXl1U5MaWmpQcvt\n27eFEN7e3p1do4lTaztJ6nX48GFdS6tfuE3ZYeNfn+l9zbRjBsmY3tF4LY6OjkKIzMxMXYuUqvGS\njXW/xGH69OknT56sra09duyYp6encQ1Kq5ncvXvX39/f09MzMzOzsrLy/v37Bw8e9PPz0+1tN8eX\nSkak2qD79+9LfYcMGVJWViYF1NTUPPfccw4ODjt37iwrK6utrf3b3/7m7++fnZ3dtd3QPoolDgrt\nj1sMAAAAAAAAAAAAoPdptVo/P7+bN2/Gx8f/z//8jynf76S7AOrr6+3s7PTbvb291Wq1Wq329PSU\nWqqqqpRK5ahRo86fP288TnNzs5WVlaurq/7h+dLg+mkYtHh4eJSXl5eWlnp5eUktGo3GxcWl1V73\n7993cHAQQvzwww8DBgxQKBQtLS1txbS0tFhaWhq36PcyZY2mT93Zr6VSL41G4+TkJLWUlpb6+Ph4\nenqq1Wrj+HZ22PjXZ3pfM+2YwW6Y3tF4LQsXLty9e7cQYvDgwWFhYWFhYbNnz7axsWlnvTpRUVFC\niIyMDFOCDUj53Lhx49VXX/3iiy9aWlomTpyYkpIycuRI/QAdgyXX1NS8+eab+/fvLykpGTRoUGBg\nYEJCglR71CPjl5eXr1+//uDBgxUVFW5ubjNnzvz9738v3U8hqaurS05OzszMvHHjhoODw09/+tPX\nX39dpVJ1YSt0+aSnp0tb2h8Z50+JAwAAAAAAAAAAACCzP/7xj2vXrt2+ffuiRYtML3EwjrS2tm5q\najKOt7Ozq6+vF0JoNJo//OEP0hfcuro6XUA7BQ3GLVZWVs3NzQ0NDfpfrDvs1VMtHa6xyxOZwrhX\nQ0ODra2tlZVVY2Oj6OoOS3rkt2Pc0rUd605Hyaeffvrxxx/n5OTU1NQIIXx9fQ8cOPD8888bRxro\nfomD+T6Cm3v8HvfolThYyJgNAAAAAAAAAAAAACHEq6++mpeXpzsYoMukPwevrq42OOxd90E6Kioq\nKSkpOjq6uLhYdw58ZymVSiGE/tEC+s/m1uEae0FVVZXuWVr7k08+Kf3YnR3ukd+OsS7vWDe3OiIi\nIisrq7KyMjc3d9q0abdu3VqwYEH3l4PHHCUOAAAAAAAAAAAAgMwGDBigfxh+l82ePVsIceLECf3G\nkydPBgcHS8/5+flCiJUrVw4aNEgI0dDQ0IVZwsLChBDHjh3TtUjD9o4O12gi6WKFxsbGBw8eSEUb\nptNfb3Z2tvhxT0T3drhHfjvGTNmxVnejO1utUChKSkqEEBYWFiqVKj09XQhx+fLlbq0EoMQBAAAA\nAAAAAAAAeGQkJib6+/vHx8dnZWVVVVXV1tYeOnQoNjZ206ZNUoBKpRJCJCUlaTSa6urqhISErs3i\n7Oy8du3anJycurq6vLy89957ryeX0dHs7a/RRKNHjxZCnD179uDBg50tj9ixY0deXl5dXV1OTs5r\nr73m4uKSmJgoverODvfIb8eYKTvW6m50c6vj4uIuXbrU0NBQXl6enJwshJg2bVqPrKgt0i0S+g/9\na3yYghIHAAAAAAAAAAAAoD/R/85q8KlVqVQWFBTExMSsXr3a09PT399/586de/bsmTRpkhSQlpY2\nb9681NRUd3f3SZMmBQUFGY/Z4YOfn19eXl5AQEB4eLiXl1dycvI777wjhLCw+OfHx04N2KmHDtdo\nyiBCiG3btgUEBISFhW3ZsiUlJcVom9vz7rvvJicne3l5hYeHP//88/n5+UOHDpVedWqHDX59PfLb\n6cKOtbUbndpqg7Xk5eV5eHjMnDnTwcFhxIgRhw8f3rBhwyeffGL6JneB/m0a/XF8mELB7gMAAAAA\nAAAAAAB9QUZGRnR0dH/8fqdWq729vd3c3MrLy+XOxbykD/n98XfUj0RFRQkhMjIy5E7kUaBQKNLT\n06Ut7Y+M8+cUBwAAAAAAAAAAAACdo1Aorl27pvsxNzdXCDF58mT5MgLwWKDEAQAAAAAAAAAAAECn\nxcfHX79+vb6+/tixY2vWrHF0dExMTJQ7KQCPOEocAAAAAAAAAAAAAHROdna2vb19SEiIs7NzTEzM\nuHHjCgoKnnnmGbnz6hZFu8SPt1ToPwDoZVZyJwAAAAAAAAAAAACgn5kyZcqUKVPkzqKHabXabgYA\nMDdOcQAAAAAAAAAAAAAAAP0AJQ4AAAAAAAAAAAAAAKAfoMQBAAAAAAAAAAAAAAD0A5Q4AAAAAAAA\nAAAAAACAfsBK7gQAAAAAAAAAAAAA/FNmZqbcKQByKikpEfxH6DlnzpxRKBRyZ9FjFFqtVu4cAAAA\nAAAAAAAAAIiTJ0+GhoY2NTXJnQgA9AlWVlY5OTkqlUrXQokDAAAAAAAAAAAAAADoByzkTgAAAAAA\nAAAAAAAAAKBjlDgAAAAAAAAAAAAAAIB+gBIHAAAAAAAAAAAAAADQD1DiAAAAAAAAAAAAAAAA+oH/\nB9qML6J/AegmAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"from IPython.display import Image\n",
- "Image(filename=\"graph_exec_detailed.dot.png\")"
+ "Image(filename=\"graph_exec_detailed.png\")"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "In the middle left of the figure we have three ``preproc.smooth`` nodes of the ``spm`` interface with the names \"a0\", \"a1\" and \"a2\". Those represent the three smoothing nodes with the ``fwhm`` parameter set to 4, 6 and 8. Now if those nodes would be connected to another workflow, this would mean that the workflow that follows would be depicted three times, each time for another input coming from the ``preproc.smooth`` node.\n",
+ "In the middle left of the figure, we have three ``preproc.smooth`` nodes of the ``spm`` interface with the names \"a0\", \"a1\" and \"a2\". Those represent the three smoothing nodes with the ``fwhm`` parameter set to 4, 6 and 8. Now if those nodes would be connected to another workflow, this would mean that the workflow that follows would be depicted three times, each time for another input coming from the ``preproc.smooth`` node.\n",
"\n",
"Therefore, the **detailed ``exec``** visualization makes all individual execution elements very clear and allows it to see which elements can be executed in parallel."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# ``simple_form``\n",
"\n",
@@ -465,64 +259,38 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "170301-21:50:53,46 workflow INFO:\n",
- "\t Creating detailed dot file: /home/jovyan/work/notebooks/graph_orig_notSimple_detailed.dot\n",
- "170301-21:50:53,472 workflow INFO:\n",
- "\t Creating dot file: /home/jovyan/work/notebooks/graph_orig_notSimple.dot\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABBIAAAG7CAYAAAB+c7ZHAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdeVgTd/4H8Hc4QoAkhPsG7wMBUaHVCrZo1XoiVq2r1moPq61uq7ZW225tt1qr3bXW3W1X\nrT3U1rNaRVtbBa2CqFipIqgURI5yQxISjkDI9/dHN/NLOBQwZDg+r+eZh8kkM9/PTCYk855LwBhj\nIIQQQgghhBBCCGkBC74LIIQQQgghhBBCSOdBQQIhhBBCCCGEEEJajIIEQgghhBBCCCGEtJgV3wUQ\nQgghxDSUSiV0Op3RMJVKBa1WazRMrVajrq6uyWnodDoolUqT19Fa1tbWEIvFbR5fIBBAJpM1+7xI\nJIKtra3RMBsbG9jZ2Zm0DkIIIaQroiCBEEII+Z/KykrU1taiuroaNTU1qKmpQXV1NWpra1FZWQnA\neMPccIPcsF8/nYb9VVVV0Gg0jfr17TXsBwDGGBQKRaNa5XK5yeeftIylpSWkUqnRMAsLCzg4OBgN\ns7e3h1AobNRvZ2cHGxubRv22trYQiUSN+g1DD8N+w+BDKpXC0tISYrEY1tbWXHuG0yGEEEJMRUB3\nbSCEENIRabVaqFQqboNbLpdzG/QqlQq1tbVQKpXchrf+r0ajQVVVFfda/XQM97TrN8L1e86b2mvf\nEqbaCDTsFwqFsLe3N2rHwcEBFhbGZyNKJBJYWRnvDzDcWG2qRr2m9sa35vn7sbKygkQiafP4AKBQ\nKPAgP1EMA5ymNHVUhmG4o9cw2AHArWOG6urqoFarjYZVVFSgvr4egHEAZaowqjX065j+CAt9GGJ4\n5IZMJoNAIOBCCf06pl+v7O3tYWNjA5lMxk1PKpVCKBRCKpVy65p+OoQQQrouChIIIYQ8kNraWqhU\nKiiVSlRUVECtVkOlUkGtVkMul0OtVqOmpgYVFRXcRplCoUBtbS3UajXUajVqa2uhUCi4QMBwA6w5\n+g0g/QZNcxtKhnuKHR0dAfz/hnnDDSV9AKCfln7jyXDDuKkNc0L4YBgq6IOXhuFYw6Ns9CGIPvio\nr69HRUVFi4I2wwDvfvSfHbFYDBsbGzg4OHABlYODA4RCISQSCffZc3R0hEgkglgshlQqhYODAyQS\nCcRiMcRiMWQyGRdwEEII4R8FCYQQ0k2pVCooFArI5XIoFApu418fCOgf6wMBw8cVFRVQKBRcCNAU\n/Ya+RCKBSCSCRCIx2mNpY2PDbWgIhULIZDJuQ8NwL6d+414mk0EoFEIsFje5550QYj76YEKpVHJh\noj60MDx6SK1WQ6PRQKlUGgWFGo3G6IgjfZCo/x/UHFtbW4jFYkgkEjg6OnJBg0Qi4QII/WN9ACGR\nSCCRSCCTyeDo6AiZTNboWhiEEEJah4IEQgjpxKqrqyGXy1vdlZWVNRsAiEQiODo6chvwjo6OXNeS\nYfrH7u7utPeQENImhqcsGf7vaskww8elpaXNXli04f+ylnYuLi4UZBJCuj0KEgghpANQq9UoKytD\ncXExSktLUVZWZvS3uLiY69f/WK6urm40HUtLS26Pm77T//g1fNxUv/6IAUII6UpUKhV3BJbhUVgt\n6W/uoqZisdgoWHBzc4OzszNcXFy4vy4uLnB1deWGPch1RwghpKOhIIEQQtpBeXk5CgsLUVRUhMLC\nwkbBQElJCUpLS7lhDS/mZmNjY/Sj1M3Njet3cnJqNhB40AvcEUIIMXavoKG8vNzof7rh//qGF3C1\nt7eHs7MzXF1d4erq2ih4cHV1hbu7O9zc3ODt7U23HSWEdGgUJBBCSAvV1NSgvLwcBQUFyM/Ph1wu\n5/oNh+Xm5kKlUhmNKxKJ4OXlBU9Pz0aHyTY13MPDo9FV+gkhhHQehqdbGH5HGHaGw0tKSozCB/2p\nF4bfEfp+w78+Pj50qgUhxOwoSCCEdHuMMRQWFiI3N5frsrOzUVBQgIKCAhQXFyM/Px8VFRVG4zk7\nO8Pd3R0eHh7w9PSEm5sbvLy8Gg1zc3Pjac4IIYR0FvX19SguLkZRURHy8/O5756ioqJGwxqG1S4u\nLkbfPV5eXvD19YW/vz98fX3h4+MDFxcXnuaMENIVUZBACOnylEolFw7k5uYiLy8POTk5yMnJ4R7r\nLzwoEAjg4eEBPz8/eHp6wtvbG25ubkbBgLe3N1xdXekWgIQQQnhRVVWFwsJC7hS6hsFDXl4ecnNz\nUVpayo1ja2trFCz4+fnBz88Pvr6+XOhA13EghLQUBQmEkE6vrq4Od+/eRUZGBjIzM/H7778jMzMT\nd+/eRU5OjtGeG5lM1mgvjf6xj48PHSJKCCGky6iurkZ2djYXLOgDdMOj76qqqrjXu7i4wMfHBz17\n9kSfPn24rnfv3vD19aVT7gghHAoSCCGdgkajQVZWFn7//XdkZGRwoUFGRgays7O580pdXV3Ru3dv\n9OnTB7169Wq054UuXkUIIYT8v/Ly8kYhw507d7jvWv1pfTY2NujVqxf69u3Lfc/qOz8/P1hZWfE8\nJ4QQc6IggRDSoWg0GqSlpSElJQUpKSm4du0a0tPTkZubC51OBwBwd3dH3759jX7E6DsHBwee54AQ\nQgjpOkpKSpCRkWEU5Os7/e0xra2t0bNnTwwYMABBQUEIDg5GcHAw+vbtC0tLS57ngBDSHihIIITw\nJjs72ygwSElJQXp6OrRaLWxsbBAQEICgoCAMHDjQ6PBKusUhIYQQwr+ysjKjYCEtLQ3Xr19HRkYG\ntFotRCIRBg0ahKCgIKOAgS5CTEjnR0ECIcQs7ty5g4sXL+Ly5cu4evUqUlJSoFAoAAA9evRAUFAQ\nAgMDMXjwYAQFBaFfv350mCQhhBDSCdXU1HChQkpKCve3qKgIwJ9HFgYFBSEsLAwPP/wwHn74YXh4\nePBcNSGkNShIIISYnFarxa+//oozZ84gISEBly9fRnFxMaytrTF48GCEhoYiODiY20NBpyMQ0jEJ\nBIImh9/vp4PheN3pZ0Zbl1dHUlNTg3Xr1mHv3r3Izs5GfX09gM41D+2lu67XplRcXGwULly+fBm3\nbt2CTqeDv78/hg8fjvDwcERGRiIgIKDZzxQhhH8UJBBCTOLWrVs4ceIE4uLicP78eahUKnh4eGDU\nqFEYPnw4HnroIQwdOpRuLUXuKyIiAgBw/vx5nishevof8635ydCWcdqbudatjjjvLfXGG29g06ZN\nWLduHZYvX474+HiMHz++U87Lg2huXWnuvaX/W22nVCqRlJSEixcv4uLFi4iPj4dSqYSbmxsee+wx\njBkzBpMmTYK3tzffpRJCDFCQQAhpE8YYEhIScOTIEcTExOD333+Hs7MzRo8ejcceewyRkZEYOHAg\n32WSTmjkyJEAgISEBJ4rubfOvLHYWp0lSLhfm82tW6au1ZTTM/dy7NGjB7Kzs1FWVgYnJyeztMkH\nU68r5lq3uoP6+npcvXoVZ8+exZkzZ/DLL7+guroaQ4cOxZQpUzBjxgwMGjSI7zIJ6fYoSCCEtEpu\nbi6++uor7Nq1CxkZGRgwYACmTp2KyZMn45FHHqGrM5NuozttIHSVIMHU45ljeuZejpaWltDpdF1+\nvTbXutKd/k+0l+rqasTFxSEmJgbHjx/HH3/8gbCwMMyfPx9z586Fo6Mj3yUS0i1RkEAIaZHMzExs\n2rQJX375JcRiMWbOnIlFixZh2LBhfJdGCC+60wYCBQnmqaO9p9UR2+MLBQmdk06nw4ULF7B7927s\n3bsXOp0Ozz33HFatWkWnPhBiZhZ8F0AI6dgqKyuxdOlS9OvXD/Hx8di5cyeKioqwbds2ChEaEAgE\nXJeWloYnnngCUqkUYrEYkyZNws2bN5t9fWZmJqZPnw5HR0dumF5xcTGWLFkCHx8fCIVCeHt7Y9Gi\nRSgsLDRL+4WFhXjxxRe59n18fLB48WLu6tuGampq8OGHH2LIkCGwt7eHSCTCgAEDsHjxYly8eLFV\ny7C54bm5uYiKioJEIoG7uzvmzZuHsrIyky2Llg5v+Jrnn3+eG6ZUKrF8+XL06tULIpEIzs7OeOSR\nR/Daa6/h8uXLba4TaPn6ADz4+9ESqampmDhxIsRiMRwcHBAdHY2cnJxmX9+W9bml73nDcQ3fk7a8\nl4bj6Lt9+/Zxr+/Ro0eT02yOqeeprcuzuc97U+2tXr2aG3b69GlMnToVjo6OEIlEGDp0qNHyMNSa\nda816/T9lmtLhzd8TUvWlba031w7pl63ugsLCwuEh4dj27ZtyM/Px9///nccOnQIffr0wUcffcRd\nHJQQYgaMEEKakZ2dzfr27cucnZ3Znj17WH19Pd8ldXgAGAD2yCOPsPj4eKZSqdjp06eZh4cHc3R0\nZFlZWU2+fuzYsSwhIYFVVVWxH374gen/PRcWFjJ/f3/m7u7OfvrpJ6ZSqdi5c+eYv78/69mzJ5PL\n5e3afkFBAfP19WVeXl4sNjaWVVRUcNPz9/dnhYWF3LQqKipYaGgok0gkbMeOHaywsJCpVCp25swZ\nNnDgQNbSrxx9Tc0Nnzt3LktLS2MKhYItWbKEAWALFiww2XvR2nqaEhUVxQCwLVu2MLVazTQaDbt1\n6xaLjo5uNE5r6mzN+mCq9+Ne85qRkcFkMhm3fqhUKvbLL7+w8ePHNzlOW9fn1r7nrZ2Pe413+vRp\nBoB5enoyjUZj9NyOHTvY5MmTWzU9U85TW5dnc5/3ltQ+bdo0VlJSwrKzs9nYsWMZAHby5Emj17Vm\n3WvtPDTHlJ9fU07P1OsWaaympoZt2LCB2djYsEcffZSp1Wq+SyKkW6AggRDSpIqKCjZo0CA2ZMgQ\nVlBQwHc5nYb+R+MPP/xgNPyrr75iANgzzzzT5OvPnDnT5PRefPFFBoDt3LnTaPjhw4cZAPbmm2+2\na/svvPACA8B2797d5PRefPFFbtiKFSu4jeeGrl69arIg4ezZs9ywrKwsBoB5eXk1+/rWLovW1tMU\nqVTKALCDBw8aDf/jjz+aDRJaUmdr1gdTvR+GNTY0b968JtePI0eONDlOW9fn1r7nrZ2P+403ePBg\nBoB9/fXXRsODgoLYqVOnWjU9U85TW5dnc5/3ltRuGGzdvHmTAWARERFGr2vNutfaeWht3R05SGCs\n9esWaV5KSgrz8PBgkydPZjqdju9yCOnyKEgghDTp008/ZVKplOXn5/NdSqei/9GoUCiMhufl5XF7\nnpp6fWVlZZPT8/LyYgAavQ+lpaUMAAsKCmrX9j09PRkA9scffzQ5PW9vb26Yn58fA8Du3r3b5LRa\n6n4/yCsqKrhhGo2GAWACgaDZ17d2WbS2nqYsXLiQe97X15c999xzbP/+/Y32Ora2ztasD6Z6Pwxr\nbMjd3b3J9aOkpKTJcdq6Prf2PW/tfNxvPH2oExISwg2LjY1lgwYNalU7pp6nti7P5j7v92uvIa1W\nywAwZ2dno+GtWfdaOw+trbujBwmtXbfIvSUmJjIA7Pz583yXQkiXRxdbJIQ0ac2aNTh58iSSk5P5\nLqVTae7CWhqNBiKRCFZWVqirq7vv6/Wsra2h1Wqbbc/Ozg6VlZXt3r5Go4FQKGw0PWtra9TW1gIA\nhEIh6urqUFNTAxsbm2Zrvp/majLV8NYui9YO1zt8+DC+/fZbxMXFQS6XAwD8/Pxw9OhRhISEtKnO\n1qwPpno/7lWjlZUV6uvrG60fzY1jqvW5re9JW8erra1Fjx49UFBQgNjYWIwePRpRUVGYPHkyXnjh\nhRa3Y+p5MtXybEl7CoUCmzZtwpEjR5CXlwe1Wm30vOHrW7PutXYeWlu3udYVc61b5N7q6+thb2+P\nzz//HPPmzeO7HEK6NLrYIiGkSREREbh27RpOnDjBdymdUsOLppWWlgIAXF1dWzUdd3d3AEB5eTnY\nn0eRGXXN/cA2Vftubm5G4zecnv55w1oLCgpa1UZ7a+my0P/gNwwXlEplm9udPn06Dh06hNLSUpw7\ndw7jx49HTk4OFi5c2OY6W7M+mOP9cHFxMapVr7nl1tb1mW9CoRBLly4FAGzevBl37txBYmIi7xsq\n5lyes2bNwoYNG/DUU08hOzuba+NedbVk3TPVPJj682suHXXd6qz+8Y9/QKvVIjw8nO9SCOnyKEgg\nhDRp4sSJWLx4MZ566ins2rWL73I6nYSEBKPHp0+fBgCMGzeuVdOZNm0aAODs2bONnjt//jxGjBjR\nru1PmTIFABAbG9vk9PTPA8CTTz4JAPj+++8bTefixYt4+OGHW9W2qbR0WXh4eAAw3vi51xE5dnZ2\nAP7ccKmqquI2qoE/N2ry8vIA/HmV8YiICOzfvx8AmrwTQ0vrbM36YI73Q19bw/UjMTGxyde3dX1u\nqXu9Jw863uLFi2FnZ4cffvgBf/3rX/H888/D1tb2gep90Nrae3ka0q+fK1euhJOTE4A/j5ppSmvW\nPVPNgyk/v6bUkdetrqSurg7vvfce1qxZg61bt6JHjx58l0RI12eK8yMIIV2TVqtlK1asYBYWFmzi\nxIns6tWrfJfU4eF/58NOmDCBnT9/nqlUKhYbG8s8PT1bdacAvZKSEta3b1/m6enJDh48yEpLS1lF\nRQWLiYlhvXr1MrpgW3u0r7+iuuFdG/TTa3jXBrlczgIDA5lEImHbt2/nrtR+8uRJ1rdvX3b69OkW\ntW3q4S1dFvPnz2cA2NKlS5lCoWA3b95kc+fObXb6w4cPZwBYfHw827dvn9EV1gGw8ePHsxs3brCa\nmhpWWFjI1qxZwwCwqVOntrnO1qwPpno/7vVcZmZmo7s2JCQksFGjRjU5TlvX55bWc6/35EHG09Pf\nXcHKyorl5uY2+Zp7tWPqeTLV8mzJa/R34lizZg2Ty+WsrKyMu6hiw9e3Zt0z1TyY8vN7r3ZMvU7q\ntXTdIo2dPHmSDRkyhNnZ2bF///vffJdDSLdBQQIh5L7OnTvHhgwZwgQCAZs4cSI7efIk02q1fJfV\nIel/TGZlZbHJkycziUTC7O3t2YQJE1haWlqTrzXsmlJeXs5WrFjBevbsyaytrZm7uzubMmUKS0xM\nNEv7hYWF7MUXX2ReXl7MysqKeXl5sUWLFhmFCHoqlYq9/fbbrH///kwoFDJnZ2c2btw4du7cuWZr\nvVdNbR3e2mXB2J8bNHPmzGGurq7M3t6eTZkyheXk5DQ7/aSkJDZ48GBmZ2fHhg8fzm7fvs09Fx8f\nz5555hnWo0cPZm1tzRwcHNjgwYPZ+vXrG13orrV1tmZ9MPX70dRrbty4wSZMmMDs7e2ZWCxm48aN\nY6mpqc2+vqX1t+U9v9d70tbxDKWnpzMLCws2e/bsJp+/3/Iy9Tw9yPK818ZwU68pKipiTz/9NHNz\nc2NCoZAFBgay/fv3Nzu91qx7bfkf15ApP7/mfP/07rduEWNVVVVs7969LCwsjAFgTzzxRLPLlhDS\nPuhii4SQFvvxxx+xceNGnDt3Dl5eXpg7dy5mz56NIUOG8F1ah9GSi5l15fY7ks6yLDpLnQTQ6XTw\n8fHB4cOHMXz4cL7LIV0IrVv3p9VqER8fj2+//RYHDhxAZWUlpk6dijfffBPDhg3juzxCuh0KEggh\nrfb7779j165d2L17N7Kzs+Hj44PJkydj6tSpePTRR7lzQrsjvjcK+W6/I+ksy6Kz1EmAmJgYrFu3\nDpcuXeK7FNLF0LrVtPLycpw6dQrHjh3DyZMnUV5ejuDgYCxYsABz5szhLtZJCDE/ChIIIW3GGMPV\nq1cRExODmJgYJCcnw9raGg899BAiIyPx2GOPYcSIEd3qolF8bxTy3X5H0lmWRWeps7sSCARITExE\n//79MXbsWLzzzjuYOnUq32WRLoDWrcYUCgXOnz+PuLg4nD17FtevX4eFhQXCw8O5HRZ9+/blu0xC\nCChIIISYUH5+Pvflf/bsWWRmZsLa2hohISF4+OGHMXz4cAwfPhy9e/fmu9R2od8g1DP3v1e+2+9I\nOsuy6Cx1dmf698jZ2RlLly7Fu+++y29BpMvo7utWfX090tLScPHiRa67desWACAwMBCRkZGIjIzE\nqFGj4OjoyHO1hJCGKEgghLSbnJwcxMfH49KlS7h06RKSk5NRW1sLJycnBAUFcV1wcDACAwMhFov5\nLpkQQgghJlZeXo5r167hxo0bSElJwfXr15Gamgq1Wg2xWIzQ0FBuZ8PIkSPb7XachBDToSCBEGI2\nNTU1uHr1KpKTk3H9+nXuh4RKpYJAIEDPnj0RHBxsFDD06dMHlpaWfJdOCCGEkPuora1FWloaUlJS\nuMAgJSUF+fn5AP48+sLwez4sLAyBgYH0PU9IJ0RBAiGEV4wxZGVlcT829D88MjIyUF9fD5FIhH79\n+qFPnz6NOh8fn0aHhhNCCCGk/Wi1WmRnZyMjI4Prfv/9d2RkZCAzMxNarRZCoRABAQFGOwaCgoLg\n5eXFd/mEEBOhIIEQ0iFVV1cjLS0N169fR3p6utEPFrVaDQAQiURNBgx9+vSBr68vLCwseJ4LQggh\npPOpq6vD3bt3GwUFGRkZuHv3Lurq6gAATk5ORt+9AwcORFBQEPr16wdra2ue54IQ0p4oSCCEdDqF\nhYVGwYJhp1QqAQA2Njbw9/eHj48PfH194e/vD19fX/j4+MDPzw9+fn50TQZCCCHdUllZGfLy8pCT\nk4Pc3Fzk5uYiLy8P2dnZXL9WqwUAuLq6ckFB3759jYIDuggiId0XBQmEkC6lpKTEaK+J/gdRTk4O\ncnJyoFKpuNfKZDL4+Pg0GTL4+vrCy8sLIpGIx7khhBBCWqeyshI5OTnIy8sz+v7Ly8tDbm4usrOz\nUVVVxb3e2dkZvr6+XOju4+ODnj17ok+fPujduzccHBx4nBtCSEdFQQIhpFuprq5GQUEB7ty5g/z8\nfK5f/zg7OxuVlZXc60UiEby8vODp6QlHR0euv+Ffd3d3ulgUIYSQdiOXy7nvrfz8fMjlcq6/4TA9\nGxsbeHt7c99XvXr1Qq9evbjHffv2hVQq5XGuCCGdFQUJhBBigDGGwsJC5ObmoqCgAAUFBSgsLERR\nURHy8/NRXFyM/Px8FBUVQaPRcONZW1vDzc0NHh4e8PT0hJubG7y9veHm5gZ3d3e4urrC2dkZLi4u\ncHZ2hlAo5HEuCSGE8K26uhplZWUoLS1FSUkJSktLUVxc3OT3TnFxMXQ6HTeunZ0dvLy84O7u3uT3\njv60PmdnZx7nkBDSlVGQQAghbaTf81NcXIw//vjjnj8AG5JKpXBxcWkUMOiHubi4cMP0w+mIB0II\n6Zhqa2tRWlqKsrIylJWVoaSkBCUlJVxQ0DAwKCsrMzr6DQAsLS258NnLywtubm7NhgV0jR9CCN8o\nSCCEkHam0+mMfmDq+4uLi5sdrr9opCEnJye4uLjA0dERjo6OkMlkkMlkjfr1jw2HUwhBCCH3Vltb\nC4VCAblcDoVC0Wy/4d/y8nKUlJQYXX8HAAQCQaOQuGFY3HC4k5MTT3NOCCGtR0ECIYR0QHV1dc0G\nD/f7kdsUqVTabPBgZWUFxhgCAgIgkUggk8kgFou5TiaTQSqVUhhBCOmwamtroVKpoFQqUVFRAbVa\nDbVaDZVKBYVCwf29V1DQ8AgBALCwsGg2rJXJZHBycjIKBgzDAboFMSGkK6MggRBCupiGe830/WVl\nZbhz5w4yMzORn5/PhRJ1dXWwsLCAWCxGRUVFs9O1tbWFWCw2ChskEgnEYjEcHBwglUq58EEikcDR\n0ZF7bGdnB6lUCqFQCKlUCjs7O9jY2JhxqRBCOpKqqipoNBrI5XJoNBpUVVVBpVJxAUBFRQUUCgX3\nWK1Wc4GA/nX6cECtVqO2trbZtvT/i5oLU+/VTxciJISQplGQQAghXYxWq0VOTg5SU1Px66+/Ii0t\nDampqbh16xZ0Oh2EQiH69OmDYcOGYdCgQQgICEBYWBg8PDwAAEql0ugHvf7Hu/6Hu+GP9/v9wL/f\nV4xMJoONjQ3s7e0hkUggFArh4OAAW1tbiEQiODg4wMbGhgskhEIhZDIZRCIRbG1tIZVKYWNjA4lE\nAktLS0ilUggEAshkMm76AoGg3Zc5IV2FVquFSqWCTqfjTrGSy+UAAIVCAY1Gg8rKSqjVamg0GiiV\nStTU1KC6uhpKpRIajQZqtRqVlZXQaDTcOFVVVaioqIBGo2l0GkBDVlZWbQosG75GPx4hhBDToyCB\nEEI6sfz8fC4o0P+9evUqqqurYWVlBT8/PwQEBBiFBgMHDjTbIbf6DY7KykqoVCrU1tZCqVSiuroa\nNTU1RhsmbXm+pfSnZtjb20MoFHJBhY2NDezs7GBtbQ2xWMyFEcCfezEBwMHBARYWFpBIJLCysgJg\nHFC0tl8/PULq6uqgVqsB/P8GfFv69Rvq+unV19dzRxfpQwClUgmdTgeVSgWtVovKykrU1tZyn6Xa\n2tomD+1vjr29PWxsbLgwUH/UkT7Ya+vzYrEYIpHIBEuXEEJIe6IggRBCOgGlUomMjAyjowyuXbuG\nkpISAICnpycXFOj/Dhs2DLa2tjxX3r4Mg4aGG1GMMe6aEfqjIyoqKlBfX99oI6o1G2KGe2oflGGo\n0Fw/AKOjLAzpw47mpqlnGILoicViWFtbA/jzNnRNrStCoRD29vatnKs/WVhYwMHBodXjGb5vbaF/\nj+9FvwfdkH7vukAg4JaV4Ya+nn7dUCgUsLOzg1AobHKdMBy3uf4HYbhOtCYIaxim6d9j/VEAhu9b\nw2kYBgGEEEK6NwoSCCGkg8nKykJycjLXXbt2DXl5eQD+3LMdFBSEQYMGYfDgwQgMDERgYGCTG5mk\n/RluQBr2G24Mt7Yf+P/wQu9eG7TN1WOo4fSA/w9GqqurUVxcDFdXV9jZ2d13vJZSq9Woq6tr07j6\nU1fawnBjujn6De+G4+Xn50MulyMwMBASieSeAc6RI0cgl8sREBCAkJAQuLu7GwU4hnUYbpy3tt+w\nhubqIYQQQsyNggRCCOFJfX09bt++bRQaJCcnQy6Xw8LCAn379sWQIUMQEhKC4OBgBAYGwtfXl++y\nSReyfft2LF26FNHR0fjyyy8bBQndTW5uLp5++mlcuHABb775Jt55551mT/da/PQAACAASURBVEOp\nra3FV199hffeew9KpRLPPfcc3nzzTbi7u5u5akIIIcT8KEgghBAz0Gq1uHHjBq5cuYKrV68iOTkZ\n169fR1VVFYRCIQYNGoQhQ4Zw3eDBg+kiYaTdaDQavPzyy/jiiy/wzjvvYO3atXRRyv9hjGHr1q1Y\ntWoVIiIi8PXXX8Pb27vZ11dVVWHHjh348MMPoVKpsHTpUqxatQpOTk5mrJoQQggxLwoSCCHExHQ6\nHdLT05GUlIQrV64gKSkJv/32G6qrqyEWizF48GCj0CAwMJA7V52Q9lZSUoKZM2fi6tWr2L17N6Ki\novguqUO6cuUK5s6di+LiYnz22WeYPXv2PV9fWVmJzz//HBs2bEBlZSVefvllvPHGG01ex4IQQgjp\n7ChIIISQB5Sfn49ff/2V6xITE1FWVgYrKyv069cPw4YNw7BhwxAeHo6QkBBYWlryXTLpppKTkzFt\n2jQIhUIcPXoUAQEBfJfUoanVarz66qvYuXMnFi1ahC1bttz32g1qtRr/+c9/sGnTJtTV1eGll17C\n6tWr6doGhBBCuhQKEgghpBVUKhWSkpJw4cIFXLx4EUlJSSguLoalpSUGDhyIsLAwrgsODoZQKOS7\nZEIAAHv37sXzzz+PiIgI7N27l/aUt8KhQ4fwwgsvwM/PDwcOHED//v3vO44+UNi4cSMEAgGWLVuG\n5cuXt+lOFoQQQkhHQ0ECIYQ0gzGG9PR0XLx4EYmJiUhMTERqairq6+vh6+uLESNG4OGHH0ZYWBiG\nDh3a5tvkEdKe6uvr8dZbb2Hjxo1YtGgR/vOf/zS6FSS5v5ycHMyePRspKSnYtm0b5syZ06LxVCoV\nPv30U3z44YewtLTE0qVLsWLFivveWYIQQgjpyChIIISQ/1Gr1fjtt9/w66+/IiEhAWfPnkVJSQms\nra0RHByMkSNHYtiwYYiIiEDPnj35LpeQ+6qoqMC8efPw888/Y9u2bXjmmWf4LqlT02q1ePvtt7Fp\n0ybMmzcP//3vf1t8p4vy8nJs3boVW7ZsgbW1NV577TUsW7as298pgxBCSOdEQQIhpNsqLi7GpUuX\nkJCQgPj4eFy+fBl1dXXw9PTkrmkwcuRIhIaGQiQS8V0uIa2Snp6OqKgoqFQqHD58GA899BDfJXUZ\nR48excKFC+Hv74+DBw+iT58+LR63rKwM//rXv/Dxxx/DxsYGK1euxF//+tf7XnuBEEII6UgoSCCE\ndBt37txBfHw8zp07h/j4eNy+fRuWlpYYPHgwIiIiMGrUKIwYMQKenp58l0rIA/nxxx8xZ84cDBw4\nEIcPH4aHhwffJXU5mZmZmDVrFjIyMvD5559j5syZrRq/qKgIGzduxH//+184OTnhzTffxPPPP0/X\nVSGEENIpUJBACOmSGGNITU3lQoNz587hjz/+gEgkQlhYGCIiIhAREYGRI0dCIpHwXS4hJsEYw6ZN\nm/Dmm29izpw52L59O+3pbkcajQYrVqzAZ599hlWrVmH9+vWtvitLSUkJ/vnPf2Lr1q1wcXHB22+/\njeeee47u7kIIIaRDoyCBENJl6I84SEhIwA8//IC8vDyIxWIMHz4cI0eORHh4OMLDw+k0BdIl1dTU\nYNGiRdi7dy/WrVuHN954g++Suo1vv/0Wzz//PEaNGtXmO2Lk5eXhvffew1dffYX+/ftj/fr1iIqK\naodqCSGEkAdHQQIhpNP6448/EBcXx3U5OTmwt7dHeHg4Ro8ejdGjR2PIkCG0Z490eXl5eYiOjkZW\nVhb279+PMWPG8F1St5OcnIzo6GhYWVnh+++/R2BgYJumc/v2baxfvx7ffPMNwsLC8MEHH2D06NEm\nrpYQQgh5MBQkEEI6jfLycpw5cwaxsbE4c+YMbt26BaFQiOHDh3PBwcMPP0znGJNuJSEhAU8++STc\n3Nxw9OhRuqMIj0pLSzFr1iwkJSXhyy+/xIwZM9o8rZSUFLz//vs4ePAgHn/8cXz44YcYNmyYCasl\nhBBC2o6CBEJIh6XT6ZCcnIzTp0/j9OnT+OWXX6DT6RASEsKdqjB+/Hi6HzvptrZv345ly5Zh3Lhx\n+Oabb+iz0AEY3iJy1apV+OCDD2BhYdHm6SUkJGDNmjWIj4/HjBkzsG7dOvTr18+EFRNCCCGtR0EC\nIaRDKSkpwU8//YQff/wRp06dQklJCby9vfHEE0/giSeewOOPPw6ZTMZ3mYTwSqvVYuXKlfjXv/5l\nko1VYnqff/45li5divHjx+Pbb7+Fvb19m6fFGMP333+Pt99+G+np6Xj22Wexdu1aeHl5mbBiQggh\npOUoSCCE8Kq+vh6//fYbTp8+jZiYGCQmJkIgECAkJASTJ0/GlClTMHToUAgEAr5LJaRDMDx8/uuv\nv8b06dP5Lok0IzExEdOmTYOPjw+OHz/+wLeWra+vx+7du7F27VqUlZVhxYoVeP311+nOM4QQQsyO\nggRCiNlVV1fj9OnTOH78OI4ePYqioiJ4eHhg7NixmDJlCsaNGwcHBwe+yySkw7l27RqmTZsGS0vL\nB7qgHzGfrKwsTJo0CUqlEsePH8eQIUMeeJq1tbX47LPP8O6778LS0hKvv/46li9fTteHIYQQYjYU\nJBBCzKK4uBjHjh3D0aNHERsbC41GgxEjRiAqKgqTJ0/GwIED+S6RkA7twIEDWLhwIUJDQ3Ho0CG4\nurryXRJpIblcjunTp+PKlSvYv38/Jk6caJLplpeXY9OmTfjkk0/g5+eHdevWYcaMGXQEFyGEkHZH\nQQIhpN1kZWXh2LFjOH78OM6ePQsrKyuEh4dj8uTJmDVr1gMf5ktId8AYw3vvvYe///3veOGFF/Dv\nf/8b1tbWfJdFWqm2thbPP/889u7di61bt2LJkiUmm3ZOTg7Wr1+Pzz//HGFhYfjoo48QERFhsukT\nQgghDVGQQAgxqdTUVOzbtw/fffcdbt68CRcXF0yaNAlRUVEYP3487Ozs+C6RkE5DpVJh/vz5+PHH\nH/Hpp5/i2Wef5bsk8gAMQ6Fly5bh448/NulFMq9cuYLXX38dZ8+exeTJk/Hxxx+jT58+Jps+IYQQ\nokdBAiHkgWVkZGD//v3Yt28fbty4AV9fX8yYMQNRUVEIDw+HpaUl3yUS0ulkZGQgKioKcrkchw8f\nxvDhw/kuiZjI119/jUWLFmHmzJn48ssvTX6EybFjx7B69WpkZmZi8eLFeOedd+Ds7GzSNgghhHRv\nFCQQQtokLy8P3333HQ4ePIgLFy7A0dERkyZNwvz58zF69Gi6FR0hD+Cnn37CX/7yF/To0QPff/89\n/Pz8+C6JmNjp06cRHR2NyMhIHDhwACKRyKTT12q1+OKLL7B27VrU1tbinXfewUsvvUSnxRBCCDEJ\nChIIIS1WUlKCAwcOYN++fbhw4QIcHBwwffp0zJ49G5GRkXTkASEmsH37drz88suYOXMmdu7cCVtb\nW75LIu0kKSkJEyZMQGBgII4dOwapVGryNiorK/HRRx9h48aN8PX1xfr16zFz5kyTt0MIIaR7oSCB\nEHJPOp0OcXFx2L59O44ePQpLS0uMGTMG8+fPR1RUFN1ujBAT0Wg0WLx4MXbv3o3169fjjTfe4Lsk\nYgZpaWkYO3YsPD09cfLkSbi4uLRLO7m5uXjrrbewZ88ejB49Gps3b0ZwcHC7tEUIIaTroyCBENKk\n9PR0fPnll9i1axcKCgrw2GOP4dlnn8WTTz5Je0gJMbH8/HxER0fj1q1b+OabbzB58mS+SyJmlJWV\nhbFjx0IoFOLUqVPw9vZut7YuXbqE5cuX49KlS5g7dy4++ugjuLu7t1t7hBBCuiYKEgghnJqaGsTE\nxGD79u2IjY2Fp6cnnn76abzwwgvo3bs33+UR0iUlJibiySefhEQiwdGjRzFgwAC+SyI8KCgowPjx\n46FSqXDq1Kl2vdsCYwyHDh3Ca6+9hvLycqxcuRJr1qyBjY1Nu7VJCCGka6GroRFCcO3aNbzwwgtw\ndXXF008/DScnJ/z444/Izc3Fhx9+SCECIe3km2++wejRozFkyBBcvnyZQoRuzNPTE7GxsXB2dsaj\njz6K27dvt1tbAoEAM2fORGpqKv76179i06ZNCAoKwtGjR9utTUIIIV0LBQmEdFM6nQ7ff/89Ro8e\njZCQECQmJuKDDz5Afn4+9u/fj/Hjx9OdFwhpJ1qtFqtXr8bTTz+NV155BTExMXBwcOC7LMIzV1dX\nxMXFoUePHhgzZgwyMzPbtT2xWIz169cjPT0dw4cPR3R0NMaMGYO0tLR2bZcQQkjnR1sJhHQzKpUK\n27dvR0BAAJ588klYWlri2LFjSElJwbJly+Dk5MR3iYR0aWVlZXjiiSfwySefYNeuXfjwww8ptCMc\nqVSKH3/8Ed7e3oiMjERWVla7t+nj44Ndu3bh7NmzKC0tRUhICF555RWoVKp2b5sQQkjnRNdIIKSb\nyMzMxI4dO7Bt2zZotVrMmTMHr7zyCgICAvgujZBuIyUlBVFRUairq8ORI0cQGhrKd0mkg1IoFHj8\n8cdRUlKCc+fOwd/f3yzt6nQ67NmzBytXroRQKMSGDRvw9NNPQyAQmKV9QgghnQPtAiGki0tOTkZ0\ndDT69euHAwcO4G9/+xvy8vKwbds2ChEIMaPjx48jPDwc3t7euHLlCoUI5J5kMhlOnjwJqVSKsWPH\nIj8/3yztWlhYYP78+bh9+zZmzJiBhQsXIjIyEikpKWZpnxBCSOdAQQIhXdSvv/6KqKgoDBs2DLm5\nuTh06BAyMjKwYsUKOhebEDNijGHjxo2IiorC7NmzERsbS7fbIy3i4uKC2NhYWFtbY/To0SgsLDRb\n205OTvjkk09w+fJlaDQaDB06FK+88gqUSqXZaiCEENJxUZBASBdz/fp1zJo1C2FhYcjOzsb+/fuR\nlJSE6OhoOg+bEDNTq9WYMWMG3n77bWzZsgXbtm2DUCjkuyzSibi5uSEuLg4AMH78eJSVlZm1/WHD\nhuHChQvYuXMn9u7di969e+OTTz6BTqczax2EEEI6FtqqIKSLuHbtGmbNmoWQkBCkp6dj//79SE5O\nxsyZM+ncVkJ4cOfOHYwYMQLnzp3Dzz//jGXLlvFdEumk3N3d8fPPP0OpVGLKlCmorq42a/sCgQDz\n58/HrVu3MGvWLKxcuRKjRo2i0x0IIaQboyCBkE7u7t27mDFjBkJCQpCbm4sTJ07gt99+owCBkHbE\nGMN3332H2traJp8/d+4cRowYAUtLSyQlJSEyMtLMFZKuxs/PD7GxscjIyMBTTz2F+vp6s9fg5OSE\nTz/9FJcvX4ZWq8WwYcOwZs0aVFVVmb0WQggh/KIggZBOqqqqCu+88w4CAgJw48YNHD9+HImJiZgw\nYQLfpRHS5X3xxReYMWMGXnrppUbPbd++HY8//jgiIyNx4cIF9OjRw/wFki6pd+/e+O6773Dq1Cms\nWrWKtzqGDh2KxMREfP7559i+fTsCAwPx448/8lYPIYQQ86MggZBOKCYmBoMGDcLmzZuxatUqXLt2\nDZMmTeK7LEK6hdLSUqxcuRLAn4HCp59+CgDQaDR47rnnsHjxYrz55pvYu3cv7Ozs+CyVdEERERH4\n+uuvsWXLFmzdupW3OvSnO6SmpiI8PBwTJ07ElClTkJeXx1tNhBBCzIeCBEI6kd9++w2PPvoooqKi\nEBERgczMTLz77ruwsbHhuzRCuo3XXnuNO5SbMYZly5bh0KFDeOyxx3Dw4EEcOXIE7777Lp1aRNrN\nrFmzsH79eixfvhxHjhzhtRYPDw/s2rULJ06cwI0bNxAYGIhPPvmEl1MvCCGEmI+AMcb4LoIQcm9V\nVVV4++23sXXrVjz00EPYunUr3YOeEB7Ex8dj1KhRMPzqtLS0hFAohKenJ06cOIEBAwbwWCHpTpYu\nXYovvvgCcXFxGD58ON/loLq6Ghs3bsSGDRsQGBiIbdu20XcVIYR0UXREAiEdXHx8PEJCQvDll19i\nx44dSEhIoB9mhPBAq9XixRdfbHQb1fr6emi1WlhbW8PX15en6kh3tGXLFkRGRmLatGnIysriuxzY\n2tri3XffRVJSEmxsbDBixAi88sorUKvVfJdGCCHExChIIKSDqqurw6pVq/Doo4+iX79+uHHjBhYu\nXEiHSxPCk82bN+P27dtNHrJdV1eHzMxMzJkzB3SgHzEXKysr7N+/H56enpg2bRoqKyv5LgkAEBwc\njISEBOzcuRPffPMNgoODERsby3dZhBBCTIiCBEI6oKysLISHh+PTTz/Fjh07cPz4cXh7e/NdFiHd\nVk5ODtauXXvP8761Wi2OHz+OdevWmbEy0t2JxWIcPXoUBQUFmD9/focJsvQXY7x+/TqCgoIwduxY\nvPzyy3R0AiGEdBEUJBDSwRw7dgxDhgxBTU0Nrly5gmeffZbvkgjp9pYuXdqii8cJBAK8//77qK6u\nNkNVhPzJz88P+/btw7Fjx7B582a+yzHi5eWFo0ePYv/+/Thw4AACAwNx6tQpvssihBDygChIIKSD\nYIzhgw8+QHR0NGbMmIFLly7RRdsI6QBiYmIQExODurq6Jp+3trYGALi6umLFihVITk6Gra2tOUsk\nBKNHj8aGDRuwevVq/PLLL3yX08jMmTORmpqKsLAwjBs3DrNmzUJ5eTnfZRFCCGkjumsDIR2ARqPB\nwoULcfDgQWzevBnLli3juyRCCP68Y0r//v2Rn58PnU7HDbe0tARjDFZWVpg6dSrmz5+PCRMmwMrK\nisdqSXfHGMOMGTNw8eJF/Pbbb3B1deW7pCbFxMRg8eLFYIzhs88+Q1RUFN8lEUIIaSUKEgjhWWVl\nJaKjo3H58mUcOnQIjz/+ON8lEUL+Z82aNfjoo49QX18PgUAACwsLMMbw+OOPY8GCBZg2bRodfUA6\nFIVCgaFDh6J///44ceJEo7uMdBRyuRyrV6/G9u3bMXPmTHz22WdwdnbmuyxCCCEtREECITxSKBSY\nNGkSfv/9d5w8eRJDhw7luyRCWoQxBoVCwT2uqqqCRqMBAOh0OiiVykbjKBSKFl8ITqVSQavVtrge\niUTS4qMB7OzsYGNjYzTMxsYGdnZ23GOZTIb09HSEh4dz10YICQnBwoULMXv2bLi5ubW4NkLM7dKl\nS4iIiMC6deuwatUqvsu5p++//x5LliyBhYUFtm3bhsmTJ/NdEiGEkBagIIEQnlRWVmLcuHHIzs7G\n6dOn6XoIpFUqKipQXV2NyspKKBQKVFdXo7q6Gmq1GnV1daisrERtbS23gV9TU4Pq6mpoNBpUVVWh\ntrYWlZWV0Gq1UKlUqK+vR0VFhVEIcK+woDuTyWTcbVhFIhF3RII+jBAKhbC3t4e1tTXEYjEsLS0h\nlUphYWEBBwcHCAQCyGQyo2k5ODjAwsICUqkUVlZWkMlksLOzg52dHaRSKcRiMXctBkJa4qOPPsJb\nb72FixcvdviQury8HK+++ip2796NRYsWYfPmzbC3t+e7LEIIIfdAQQIhPKirq0NUVBSSkpJw7tw5\nDBw4kO+SSDurra2FUqnkOrlcbvS4srISarUaSqUS1dXVqKqqglwu5/qVSiXUajWqq6uhUqnu256t\nrS1EIlGzG7dWVlaQSCRNbtw6Ojpy09Fv4AJN77XXb1Df6zk9w43u+9HX2xL6EKQlGoYjeoYhSWuO\ntjB8rrq6GjU1NY1Cm7q6OqjV6kahjWE7crn8vrXr3zupVMqFDPrAwdbWFjKZDPb29rC1tYVUKoVU\nKoWDgwPXyWQyrl8qlbZoeZHOS6fT4fHHH0dhYSF+/fXXTnEKzuHDh7Fo0SJIpVLs3r0bI0eO5Lsk\nQgghzaAggRAz0+l0mDt3Lk6cOIG4uDiEhobyXRJpoaqqKpSVlaGsrAwlJSUoLS1FWVkZFAoFFwgo\nFAqjx/quudsB6jf27O3tYW9vDwcHB27D0NHREba2trCzs+Neo99IFIvFsLOz4zYsbW1tYW9v3+Rh\n+6TzUCgUqK+vbxQcqVQqVFVVobKyssmwqbq6GgqFAlVVVaiqqkJFRQUqKiqgVCqbvNuEPjgyDBca\ndjKZDM7Ozlzn4uLC9TcMiUjHlJeXh+DgYCxcuBD//Oc/+S6nRYqKivDss8/i559/xsqVK/H+++/T\n0TiEENIBUZBAiJm9+uqr+OyzzxATE4Nx48bxXU63VV9fj+LiYhQVFaGoqAhlZWVcMKDvSktLua6s\nrKxRGGBpaQlnZ2c4OjoabXzda+NM3zk6Oja5154QU9Mf0WIYdt0r9DJ8XWlpKSorK42mJxAImgwX\n9I/1nbOzM9zc3ODt7U2HqfPoq6++wnPPPYfTp08jMjKS73JahDGGHTt2YPny5QgKCsKePXvQp08f\nvssihBBigIIEQszoH//4B1avXo1Dhw5h2rRpfJfTJVVXV6OgoAD5+fmQy+Vcf8NhOTk5jS7mJxKJ\n4OXlBU9PTzg6OjbqGj7n7u4OS0tLnuaUEPOoqalBeXk55HJ5o87wc2XYFRUVGd0uUyQSNfoM6fsN\nh/n5+UEikfA4t13TzJkzcfHiRVy/ft3o1KWOLi0tDXPnzkVmZib+8Y9/YNGiRXyXRAgh5H8oSCDE\nTM6cOYNx48Zhw4YNeO211/gup1MqLCxEXl4e8vLykJOTg5ycHOTl5SE3Nxc5OTkoLi5GbW0t93or\nKyu4ubnBw8MDnp6ecHNzg5eXF9zc3ODp6QkPDw/ueQcHBx7njJCupba2FqWlpSgqKkJ+fj5KSkqQ\nn5+PoqIiFBYWoqCgAMXFxcjPz290zQ8nJyd4enrCz88PPj4+8PX1hZ+fH3x9feHj4wM/Pz+IRCKe\n5qxzKi4uRlBQEKZNm4Zt27bxXU6raDQarF27Fh999BGio6Oxbds2uk0kIYR0ABQkEGIGubm5CA0N\nxSOPPILDhw/T4exNqK2txd27d5GZmckFBA3DAsM7Bnh4eMDHx4fbsPD19YW7u7tRaEC36COk46uu\nrm4ULhQWFiI7O9soOKypqeHGcXNz40IGf39/rr9nz57o3bs3XFxceJyjjmnfvn2YM2cOTp06hTFj\nxvBdTqvFxsZiwYIF0Gq1+OKLLzBhwgS+SyKEkG6NggRC2plGo8GoUaOgVCpx+fLlbn21dI1Ggz/+\n+AN37tzBnTt3kJqairS0NNy5c8foVAP9KQa9evXiDn3u1asX99jf3x9isZjnuSGEmJNcLudOU7pz\n545R/507d5Cbm8tdWFL/PyQgIACDBg3i/n/06tUL/v7+3faUpGnTpiEtLQ3Xrl3rFHdxaEipVOKl\nl17C3r17sWzZMmzatIkuLksIITyhIIGQdvbyyy9jz549uHz5Mvr37893Oe2uvr4eWVlZuHHjBtLS\n0nDz5k1kZmYiMzMTxcXFAAALCwv4+Pigd+/eTXZ0mgEhpLXq6+uRm5uLzMxMZGRkcP939J1arQbw\n561K9Ucu9O3blwsbAgICuFugdlX5+fkYNGgQlixZgg8++IDvctrs4MGDWLRoEby9vbFnzx6EhITw\nXRIhhHQ7FCQQ0o5+/vlnPPHEE9i7dy+eeuopvssxKZ1Oh6ysLKSmpnKdPjioqamBQCBAjx49MGDA\nAPTt29coKOjZsyftRSKEmFVRUREXKuiDhvT0dNy8eZMLGXx8fBAQEIDAwEAMHDgQgYGBCAgI6FJH\nkv3nP//Bq6++ikuXLmHo0KF8l9Nm2dnZePrpp5GUlIR3330Xr7/+OiwsLPguixBCug0KEghpJ0ql\nEsHBwRgxYgT27dvHdzkPpK6uDikpKUhKSkJSUhKSk5Nx8+ZN7naIPXr0MPrRPWjQIAwcOJBOPyCE\ndHiMMdy9exdpaWlGwejNmzdRVVUFAPDz80NgYCDCwsIQGhqKsLAwuLu781x52+h0OowaNQparRYX\nLlzo1BvfWq0WGzZswN///neMHTsWu3btoutjEEKImVCQQEg7WbhwIU6cOIEbN250qov+1dfX49at\nW7hy5QqSkpJw5coV/Pbbb9BoNJBIJBg6dCiGDRuGQYMGcXvt6HZthJCuRqfT4e7du9zRVteuXUNS\nUhIyMjIAAL6+vkbBQmhoaKc5NSI1NRUhISHYvn07Fi5cyHc5D+zixYuYPXs26uvrsXfvXoSHh/Nd\nEiGEdHkUJBDSDo4fP44pU6bgu+++w/Tp0/ku557q6upw6dIlxMXF4cyZM7hy5QrUajVEIhFCQkK4\nH8ihoaEYMGBAp957RQghD0oul+PKlStGYWtubi4EAgH69OmD8PBwjB49GmPGjIGnpyff5TZr2bJl\nOHDgAG7fvt1pApB7USqVeP755/H999/jrbfewjvvvEPfV4QQ0o4oSCDExNRqNQYMGIDIyEjs3r2b\n73Ia0el0uHbtGuLi4hAbG4vz589DrVbDz88Po0ePxiOPPILQ0FAEBgbC2tqa73IJIaTDKyws5IKF\ns2fP4uLFi6itrcXAgQO5UOHRRx+Fk5MT36Vy5HI5+vfvjzlz5mDLli18l2MSjDFs3boVq1atQkRE\nBL755ptOewoKIYR0dBQkEGJib731Fv7973/j9u3b8PDw4LscAH/+YDxx4gSOHTuGuLg4lJWVwdXV\nFZGRkdyP3D59+vBdJiGEdAlVVVU4f/484uLiEBcXh+TkZDDGMGTIEEyYMAHR0dEd4kKHO3fuxOLF\ni3H16lUEBQXxXY7JXLlyBbNmzUJdXR2d6kAIIe2EggRCTCgrKwsBAQHYsGEDXn31VV5rqaiowMGD\nB7F//36cPXsWABAZGYnx48djzJgxCA4OhkAg4LVG0jUZrlcd+SvmXuu/UCjEgAEDsHr1avzlL38x\nez0debmR1pPL5Th79ixiY2MRExODnJwc+Pv7Y/r06Zg3bx5voYJOp8Pw4cMhk8nw888/81JDe6FT\nHQghpH1RkECICT355JNIS0vD9evXeTst4JdffsGOHTtw+PBhMMYwceJETJ8+HZMmTeoS58GSzkG/\nUdzwKyYiIgIAcP78ebPX1JyGtep0OqSlpeGZZ57B1atXcfLkSYwfkc3YRgAAIABJREFUP56XWvQ6\n4nIjbffrr7/iyJEjOHjwINLT0xEYGIgFCxbg2WefhaOjo1lrOXfuHB599FH89NNPGDdunFnbbm+G\npzqMGjUKe/bsoVMdCCHERChIIMREzpw5g9GjR+OHH37AhAkTzNp2fX09vv32W3z88cdITk7G8OHD\nsWDBAsyaNcvsP0oJAZrfIB45ciQAICEhwew1Nae5Ws+fP49Ro0YhIiIC586d47WWjrjciGkkJiZi\n165d2Lt3L7RaLRYsWICVK1eiZ8+eZqshKioKd+/eRXJycpfca5+UlISnnnqKTnUghBAToiCBEBNg\njOGhhx6Cm5sbTpw4Yda2T5w4gTfeeAPp6emYOXMmXn31VYSFhZm1BkIaam6DuCNqrtaKigo4ODjA\n2dkZpaWlvNZCuj6VSoUvv/wSW7duRW5uLpYsWYK//e1vcHZ2bve2b9++jcDAQOzcuRPz589v9/b4\nQKc6EEKIaVGQQIgJxMTEICoqCpcvX0ZoaKhZ2lQqlVi6dCn27NmDyZMnY/Pmzejbt69Z2ibkfjrT\nBnFztapUKkilUshkMsjlcl5rId2HTqfDnj17sHr1ami1Wmzfvh3Tpk1r93ZffPFFnDx5Erdv34ZI\nJGr39vhApzoQQojpUBRLiAm8//77iIqKMluIkJmZicGDB+Ps2bM4deoUYmJiulSIIBAIuC4tLQ1P\nPPEEpFIpxGIxJk2ahJs3bzb7+szMTEyfPh2Ojo7cML3i4mIsWbIEPj4+EAqF8Pb2xqJFi1BYWGiW\n9gsLC/Hiiy9y7fv4+GDx4sUoKipqtAxqamrw4YcfYsiQIbC3t4dIJMKAAQOwePFiXLx4sVXL0BTL\nBABOnz6NqVOnwtHRESKRCEOHDsW+ffvuW0tTNTWUmpqKiRMnQiwWQyqVYvz48UhLS2tyHMNhubm5\niIqKgkQigbu7O+bNm4eysrIW13QvycnJANDk57o7LzelUonly5ejV69eEIlEcHZ2xiOPPILXXnsN\nly9fbrK91n6O8vPz8eSTT0IikcDZ2RnPPPMMlEol7t69i6lTp0IqlcLDwwMLFiyAQqFo8bLsDCws\nLDB//nzcvn0bU6ZMQXR0NNauXdvu7a5duxYlJSX4/PPP270tvggEArzyyiuIj49HZmYmQkND6XQh\nQghpK0YIeSBHjx5lAoGAJSUlmaW94uJi5uPjw8LCwlhZWZlZ2uQDAAaAPfLIIyw+Pp6pVCp2+vRp\n5uHhwRwdHVlWVlaTrx87dixLSEhgVVVV7IcffmD6f3OFhYXM39+fubu7s59++ompVCp27tw55u/v\nz3r27Mnkcnm7tl9QUMB8fX2Zl5cXi42NZRUVFdz0/P39WWFhITetiooKFhoayiQSCduxYwcrLCxk\nKpWKnTlzhg0cOJC19F93eyyTadOmsZKSEpadnc3Gjh3LALCTJ08223ZLhmdkZDCZTMYtG5VKxeLj\n49nIkSPvO525c+eytLQ0plAo2JIlSxgAtmDBghYtn+Zqqq+vZykpKWzo0KHMycmJXblyxej13X25\nRUVFMQBsy5YtTK1WM41Gw27dusWio6MbtdnWz9G8efO4+l5++WUGgE2aNIlFR0c3qvuFF15oUd2d\n1c6dO5mlpSXbuHFju7f1yiuvME9PT1ZVVdXubfFNofg/9u48Lqp6/x/4Cxj2XdYZFnHBBRBMwA1I\nJbCrgVaau5h5g5tLml7DzLp4v5lSmpFbciv3rkvmQqUGgrFUBKgosiggKAw7DDDszJzfH96ZH5sK\nCnwGeD8fj/MA5wzn85ojM5zzPp/z+Yi4uXPncjwej9uxYwfrOIQQ0udQIYGQ5+Tq6sq9+uqrvdbe\n3//+d87a2poTiUS91iYLshOKX375pdXjhw8f5gBwy5Yt6/D5UVFRHW4vICCAA8B9++23rR7/8ccf\nOQDc5s2be7T9t99+mwPAHTt2rMPtBQQEyB9bv369/EStrevXr3e5kNCd+6TliV9aWhoHgPPw8Hhs\n2515fMmSJR3um59//vmp27l27Zr8sfv373MAOIFA0OHrfRzZttouixYt4oRCYbvnD/T9pqenxwHg\nzpw50+rx/Pz8xxYSuvo+aplPtt22jz98+JADwFlYWHQqd1+2c+dOTkNDg8vKyurRdgoKCjhNTU1u\nz549PdqOopBKpdynn37KqaiocIsXL+ZqampYRyKEkD6DCgmEPIfLly9zALjr16/3SnsSiYTT09Pj\nvv76615pjyXZiUPbgkleXh4HgOPz+R0+/3EHggKBgAPQ7sSwtLSUA8CNGTOmR9vn8/kcAC4/P7/D\n7bU8GbK2tuYAcDk5OR1uq7O6e5+01dzczAHgjIyMHtt2Zx43MzPrcN9UVFQ8dTtVVVXyxxoaGjgA\nnJKS0hNzPymTVCrlkpOTOWtra05JSaldsYDjaL8tX75cvh0rKytuxYoV3KlTp7iGhobHttfV91HL\nfBKJ5ImPd/X/uy9qamriBAIBt2vXrh5vayD1SpCJioriTE1NOUdHRy4zM5N1HEII6RNosEVCnsPM\nmTPR2NiIiIiIXmlPJBLB0NCwX8733dbjBp1raGiAhoYGeDwempqanvp8GVVVVTQ3Nz+2PS0tLdTU\n1PR4+w0NDVBTU2u3PVVVVTQ2NgIA1NTU0NTUhPr6eqirqz8289N05z4RiUT47LPPcO7cOeTl5UEs\nFrd6bts2Htd2R4/zeDxIJJJ2+6ar23nS40/S0c/8/PPP8PHxgZGREe7fvw9dXV35OtpvwI8//ojv\nv/8ekZGR8oEora2tceHCBYwdO/ap2+3q+6g7/7/7qsmTJ2PChAnYvXt3j7YjFAoxbNgw7N69G//4\nxz96tC1F8vDhQ8yZMwcZGRk4evQoZs+ezToSIYQoNBpskZBndO/ePVy5cgVr1qzptTYNDAxgY2OD\nX3/9tdfaZK3tAHCyafhMTEy6tB3ZyNzl5eXgHvXGarW0LCL0RPumpqatfr7t9mTrW2YtKCjoUhtd\n1ZV9Mm/ePGzfvh3z589Hbm6u/DndwdjYGMDj9w0Lr7zyCtzd3VFWVtbuxI32G/D666/jhx9+QGlp\nKaKjo/Hyyy/jwYMHWL58eYfP76730UBVWFiI5ORkvPDCCz3elkAgwLJly/D5559DIpH0eHuKwsrK\nCtHR0Zg7dy5ee+01bNq0CVKplHUsQghRWFRIIOQZ7dmzB1ZWVvDx8enVdjdt2oQ9e/YgOjq6V9tl\npe2I2rLeH13tkSGbPu3atWvt1sXExGDSpEk92r6vry8A4OrVqx1uT7YeAObMmQMAOH/+fLvt/Pnn\nn5gwYUKX2n6cruwT2X7YsGEDBg0aBODRVeXuINuXbfcN69HUP/nkEwDAF1980Wr6x4G+35SUlJCX\nlwfg0QwDHh4eOHXqFAC0m4nhcZme9X00EDU2NuLvf/87+Hw+5s2b1yttrl+/Hjk5Obhw4UKvtKco\nNDQ08O233+Lrr7/G7t27MWvWrH43KwghhHSbHrplgpB+raqqitPT0+N27tzZ621LJBJu3rx5nLa2\nNnfu3Lleb7+34H/3RM+YMYOLiYnhqquruatXr3J8Pv+Jo70/TklJCWdra8vx+XzuzJkzXGlpKVdV\nVcWFhYVxQ4cObTWIW0+0Lxvpv+WsDbLttZ21oaKignNwcOB0dXW50NBQ+awNly9f5mxtbbmIiIhO\ntd2d++Tll1/mAHAffPABV1FRwZWVlckHhexK2x09npWV1W72gZiYGG7GjBndsv2n7YsnrfPy8pK/\nbpmBvt8AcC+//DKXkpLC1dfXc4WFhdwHH3zAAeBmzZrV4c8/7/voWX/H+7qysjJu5syZnJ6eHvfH\nH3/0atuvvvoq5+rq2qttKpLY2FiOz+dztra23O3bt1nHIYQQhdN///oS0oP27t3LaWlpceXl5Uza\nb2pq4vz9/TkA3IoVK7iSkhImOXqS7ATh/v37nI+PD6erq8tpa2tzM2bM4FJTUzt8bsulI+Xl5dz6\n9eu5IUOGcKqqqpyZmRnn6+vb4QF6T7RfWFjIBQQEcAKBgOPxeJxAIOD8/f1bFRFkqquruS1btnAj\nR47k1NTUOCMjI2769OlcdHT0Y7P25D4pKirili5dypmamnJqamqcg4MDd+rUqQ63/7h2n5QnJSWF\nmzFjBqetrc3p6upyPj4+XFZWFgeAU1ZWfuJr68z2O7uP2j7nzz//bLVu+/btA36/xcbGcsuWLeNs\nbGw4VVVVTl9fn3NycuK2bdvWbmDP53kfPU/u/uDixYuchYUFZ2lpycXHx/d6+7GxsRwALiYmptfb\nVhTFxcXctGnTOB0dHe7UqVOs4xBCiEKhwRYJeQaurq6wt7fH4cOHmeY4d+4cVq5cibq6OgQGBmLV\nqlXQ09Njmqm7sB5EjXX75NGgbxYWFjA1NUVRURHrOH2GIu03eh91XVxcHDZv3oyYmBgsWLAA+/bt\ng6GhIZMsEyZMwJAhQ3Dy5Ekm7SuC5uZmbNmyBcHBwfD398fevXuhqqrKOhYhhDBHYyQQ0kVpaWlI\nTEyEn58f6yh47bXXcO/ePaxfvx7bt2+HlZUV1q9fj+zsbNbRCOkSJSUlZGZmtnpMNg7ItGnTWETq\nE2i/9Q+NjY04deoUJk6cCHd3d3Ach7i4OHz//ffMiggAsHLlSvz4448QCoXMMrDG4/GwY8cOHD9+\nHMePH4eXlxfzAh0hhCgCKiQQ0kVHjhyBhYUFpkyZwjoKAEBHRwcff/wxHjx4gC1btuDs2bMYPnw4\npkyZgu+++w5VVVWsIxLSKatWrUJ2djZqampw9epVBAYGQk9PD0FBQayjKTTab31XQkIC3n33XVhY\nWGDx4sWwsrJCbGwsoqOjHzsAbG9asGABDAwM8N1337GOwtzixYsRFxeHvLw8uLi4ID4+nnUkQghh\nigoJhHSBVCrF999/j2XLlkFFRYV1nFYMDAywceNGZGVlISwsDObm5li1ahXMzMzg6+uL7777jul0\nel0h6w7d9vuB0v5AFBERAR0dHUyePBkGBgZYuHAhJk6ciPj4eIwaNYp1PIWlyPuN3kftSaVS/P77\n79i4cSOGDRuG8ePHIzw8HOvXr8f9+/dx5swZuLm5sY4pp66ujmXLliE0NBTNzc2s4zA3duxY/PXX\nX7Czs8PUqVNx5MgR1pEIIYQZGiOBkC4IDw/H9OnTkZ6ejpEjR7KO81QikQjnz5/HuXPn8Ouvv6Kp\nqQnOzs546aWX4OnpCTc3N2hqarKOSQgh/VZmZiYiIyMRGRmJqKgoFBcXw9bWFq+//jrmzJkDV1dX\n1hGfKCsrC7a2trh48WKvT3esqCQSCT788EN89tlnWL9+PYKDgxXu4gIhhPQ0KiQQ0gUBAQFISkpC\nYmIi6yhdJhaLceXKFURERCAyMhJ3796Furo6Jk2aBE9PT7z00ksYP348eDwe66iEENJnCYVCXL16\nVV48ePDgAbS1teHh4QFPT0/MmDEDDg4OrGN2ydSpU2FiYoIzZ86wjqJQTp06hbfeegseHh44efIk\nDAwMWEcihJBeQ4UEQjpJKpXCwsICa9aswebNm1nHeW55eXnyA93IyEg8fPgQOjo6cHV1hYuLC1xd\nXeHq6gobGxvWUQkhRCHV1tbixo0bSEhIQGJiIv766y/cu3cP6urqmDhxIjw9PeHp6YkJEyb06ZH+\nDx06hH/84x/Iz8+HsbEx6zgK5caNG3j11Vehrq6OCxcuYPTo0awjEUJIr6BCAiGdFBsbCw8PD9y5\ncwd2dnas43S7e/fuISoqCvHx8UhMTERqaiqam5thYmIiLyy4uLjAxcUFfD6fdVxCCOlVTU1NSE5O\nRmJiorxw0NHnpLu7O9zc3KClpcU6crcRi8Xg8/kIDg7GypUrWcdROEKhEK+//jrS0tJw4sQJugWE\nEDIgUCGBkE7asGEDwsLCcPfuXdZRekVtbS2uX7/e6qD53r174DgOAoEA9vb2cHBwgJ2dHezt7WFn\nZwd9fX3WsQkh5LlIJBLcv38fKSkpSEtLQ0pKClJTU5GamorGxkbo6enB2dl5wPXcWrZsGTIyMvDn\nn3+yjqKQGhoaEBAQgOPHj2Pbtm0IDAxkHYkQQnoUFRII6aRhw4bhjTfewI4dO1hHYUYkEiExMRHX\nr19Hamoq7ty5g7S0NNTU1AAArKysMHr06FYFhtGjR1OBgRCicCQSCXJycnDnzh2kpqbKCwZpaWmo\nr6+HkpISBg8eDDs7Ozg4OMDBwQEuLi4YOXIklJUH3qRXly5dwiuvvIKcnBxYW1uzjqOwQkJCsH79\neixcuBDffPMNNDQ0WEcihJAeQYUEQjohNTUV9vb2+P333xVibm9FIxQK5YUF2dfk5GSIxWIAgKGh\nIYYOHdrhMmTIEJoajhDSIxobG5GXl4fs7Ox2S1paGmprawEAfD5f3rNK9tXJyQm6urqMX4HiaGho\ngKmpKT755BOsWbOGdRyFdunSJSxcuBD29vY4e/YszM3NWUcihJBuR4UEQjrhyy+/xNatW1FaWkpT\nPHWSVCpFTk4O0tPTkZmZiaysLPly//59NDQ0AAB0dXUxbNgw+TJ8+HBYW1vDysoK1tbW0NHRYfxK\nCCGKSiKRoLCwEA8ePMDDhw9x//59ZGVlyT9z8vLyIJVKAQCmpqYYPnx4q8+bESNGYPTo0VQw6KSF\nCxeiqKgIkZGRrKMovLt372LWrFkQi8U4f/48XFxcWEcihJBuRYUEQjrhlVdegaamJn744QfWUfoF\nqVSKhw8ftioutFyqqqrkzzUwMIClpSUGDx4MS0tLWFpaygsNlpaWsLKyoq6jhPRTRUVFyMvLQ15e\nHnJzc+XfywoHQqEQzc3NAAAVFRVYWVm1KhS0XKhY8PxOnz6NRYsWobCwkGZv6ITy8nLMmzcPcXFx\n+Oabb7B48WLWkQghpNtQIYGQp2hsbISRkRF27tyJgIAA1nEGBJFI1OGJw4MHD+T/rq+vlz/f1NQU\nFhYWEAgEMDExgYWFBUxNTWFubg4+ny9fT70bCGGvubkZxcXFKCwsREFBAYqLiyEUCls9VlBQgIcP\nH8p7LgGAmZmZvJjYtrBobW0NPp8PHo/H8JX1f2KxGCYmJjhw4ADefPNN1nH6hObmZmzZsgWfffYZ\n3n//fXz66acDcowNQkj/Q4UEQp7i2rVrmDZtGrKysjB06FDWccj/tL1SmZ+fj8LCQhQVFclPSkpK\nSuTdmgFAS0sL5ubmMDc3h5mZGQQCAUxNTWFqagoTExMYGRm1WtTV1Rm+QkL6DpFIhNLSUpSWlqKs\nrEy+FBQUyN+XsqJBcXExWh56aGlpgc/nt3pfmpmZUc8jBeXj4wMVFRVcuHCBdZQ+5eDBg1izZg1m\nzZqFI0eOQFtbm3UkQgh5LlRIIOQptmzZgpMnTyIzM5N1FNJFEokExcXFrYoLHZ3YFBUVoaKiot3P\n6+jowNjYWL60LTQYGRnB2NgYhoaGMDQ0hL6+PvT19emqKOmzqqurUVlZicrKSohEolZFgY4KBbJF\ndnuBjIaGBoyMjFr1CpIV7mRFA9lj1FOob/n222+xZs0alJSU0MlwF/3222+YO3curK2tERYWBoFA\nwDoSIYQ8MyokEPIUU6ZMga2tLb755hvWUUgPkkgkHZ4glZWVoaSkpN1jshOqlj0eZLS1tWFgYCAv\nLLT9vmXRQbZOS0sLenp60NHRgaamJt3PTbqkubkZ1dXVqK6uRl1dHcRiMUQiUauiQEffp6amoqmp\nCU1NTaipqYFEImm3bW1tbXnRTFZQ66iw1rJXD51g9l+lpaXg8/k4efIk5syZwzpOn5OdnQ0fHx9U\nVlbi4sWLcHZ2Zh2JEEKeCRUSCHmCpqYmGBgYYO/evVi+fDnrOEQBlZeXQyQSoaKiQn5y9qQTN5FI\nJF8qKyvbXcltSU9PD5qamtDW1oa+vj40NTWhpaUFAwMDaGpqQlNTE4aGhvLvDQwMoKKiAl1dXSgr\nK8PAwADAo+k3gUcDVyopKUFfXx/KysrQ09OjWUh6QU1NDRobG1FbW4uGhgbU1dWhvr4e9fX1qKur\nQ0NDA2pra9HY2Iiamhr54xUVFairq0NdXR1EIhFqa2tRV1eHyspK1NTUoK6uDlVVVRCLxWhqanps\n+7q6uh0WtfT19fHbb78hNzcXtbW10NTUhL29PZydneHu7g43Nzfw+Xy6pYC04+7ujlGjRlGB/RlV\nVFRg7ty5iI+Px4kTJzB79mzWkQghpMuokEDIE8THx2PixIlIT0/HyJEjWcch/VBNTY38JFF2UlhX\nV4fq6mpUVVWhrq4ONTU1qKyslJ9Itj3BlJ1UikQi1NXVobGxsUsZdHV1wePxoKOjA1VVVWhra0NN\nTQ0AoKam1urqsqwI8bR16urq0NLS6rA9WWHjabS0tDo1ToVIJEJn/pTJTtDbkkqlqKyslP9bduL/\ntHUSiQRVVVWoqamBtrY2KisrIZVKUVVVBYlE8tQT/LZ4PB50dXXl+7Vl8ahtwUhLS6vDXiwti0+y\nokFnikXZ2dmIjY1FXFwcfv31V+Tk5IDH48HJyQleXl5wc3ODh4eHvDhFBraPP/4YJ06cQFZWFuso\nfVZzczPeffddhIaGYtu2bQgMDGQdiRBCuoQKCYQ8we7du7Ft2zaUlJRASUmJdRxC2pFKpQgPD8fB\ngwcRFhYGQ0NDvPnmm1i9ejV0dXXlJ7scx0EkEgGAfDwI2Ql42xPg6upqeU8J2dVzmZZjSbRc13L7\nHf2cjOzqe2d0NG5FRzQ1NTt11VxJSemxJ8Ky3hrAo/v7NTU15etaFj7artPU1MSBAwdgZGSEV199\nFYMHD5YXZGSFEFk+2c/KiiyygoGqqqrCjRMgFAoRFxeHiIgIxMbGIi0tDcrKyhg5ciTc3d3h5eUF\nT09PGBkZsY5KGIiKioKnpydycnIwePBg1nH6tJCQEKxfvx4rVqzAvn37oKqqyjoSIYR0ChUSCHmC\nN954Aw0NDbh48SLrKIS0UlRUhMOHDyM0NBTZ2dlwdnaGv78/li5d2upEty+T9Qi6f/8+bGxsWMd5\nrLt372LVqlWIjIzE4sWLsXv37n53gl1YWIiEhAR5ceHGjRuQSqUYOnSovMfClClT6KRygKivr4eh\noSG+/vprLFu2jHWcPu/HH3/E0qVL4ebmhjNnzkBfX591JEIIeSoqJBDyBIMHD0ZAQAA2b97MOgoh\nAICkpCSEhobi2LFjUFNTw/z587F69WqMGTOGdbRud/r0aSxatAh1dXV94irdmTNnsGbNGjQ1NWH7\n9u14++23+21PpurqasTHx8t7LCQkJKCxsRF8Pl/eY8HNzQ329vaso5IeMm3aNNjY2ODQoUOso/QL\nN2/ehK+vLwwMDBAWFqbQxVNCCAEAZdYBCFFUZWVlePDgAVxcXFhHIQNcZWUlQkNDMWbMGLi4uCAp\nKQlffvkl8vPzcfDgwX5ZRACA3NxcCASCPlFEAB71YEpPT8eSJUuwcuVKTJkyBSkpKaxj9QhdXV14\neXlhx44diI2NRXl5OWJiYrB27VpUVFRg3bp1cHBwAJ/Px7x58xASEoKkpKQOZzkhfdO0adMQGRnJ\nOka/MXbsWPz5559QVVWFq6srYmNjWUcihJAnoh4JhDxGeHg4pk+fjsLCQpiZmbGOQwYgWe+D48eP\nQ0VFBQsXLsQ777yDsWPHso7WK1avXo3k5GTExMSwjtJlN27cwDvvvIOkpCSsXLkSn3zyyYCa0rO5\nuRnJycnyHgtxcXGoqKiAnp4exo8fL++xMH78ePnAnqRviYmJwYsvvojs7GwMGTKEdZx+QywWY9Gi\nRQgPD8e3336LRYsWsY5ECCEdokICIY/x2Wef4auvvkJeXh7rKGQAqaqqwsmTJ7F//34kJyfLxz5Y\ntGiRwg3I19N8fX2hr6+P48ePs47yTKRSKY4fP47169dDXV0d27dvh5+fH+tYTEgkEqSnp8vHWIiK\nikJpaSm0tbUxadIkuLm5wd3dHe7u7jTdZB/R2NiIQYMG4auvvsJbb73FOk6/IpFIsH79euzZswcf\nf/wxgoKCWEcihJB2qJBAyGMsXLgQYrEYYWFhrKOQAUDW++DEiROQSCTw9fWFv78/vLy8WEdjxtHR\nEb6+vti2bRvrKM+lrKwMmzdvxn/+8x94enpi3759NJ0saMrJ/sDb2xsCgQBHjhxhHaVfCg0NxapV\nq7B06VJ8/fXX1HuHEKJQaIwEQh4jOTkZTk5OrGOQfqy+vh5Hjx6Fs7MzXFxcEB0djY8++gj5+fk4\nffr0gC4iAMCDBw/6xSwARkZGOHjwIK5du4aioiK88MILCAoK6nB6zIFk6NCh8PPzw8GDB3H//n3k\n5+fj+++/h7OzM8LCwjB79mwYGxvD3t4eAQEBOHPmDMrKyljHJi1MmDABf/31F+sY/Za/vz/Onz+P\nH374ATNmzGg1xS4hhLBGPRII6UBjYyO0tbVx/PhxzJ8/n3Uc0s+kpaXhyJEjCA0NRW1tLWbNmjXg\nex+0JRKJYGhoiMuXL+Pll19mHafbNDU1Yf/+/fjoo49gZmaGPXv24G9/+xvrWAqJppxUfOfPn8fr\nr7+OiooKmrKwByUnJ+OVV16BoaEhfv75Z1hbW7OORAghVEggpCOpqamwt7fHzZs3qVcC6RYNDQ24\nePEiQkNDERERgREjRuCtt97CihUrYGxszDqewklJScGYMWOQkpLSL6cQzM/PxwcffIBjx47Bx8cH\n+/bto5ODp6ApJxVPfn4+LC0tERUVhalTp7KO068JhUK88sorKCoqwk8//YRx48axjkQIGeDo1gZC\nOpCeng5lZWXY2tqyjkL6uIyMDGzatAkWFhZYsmQJDA0NER4ejvT0dAQGBlIR4THy8/MBABYWFoyT\n9AwLCwscPXoUERERuHfvHuzs7BAUFITGxkbW0RQWTTmpeCwsLCAQCJCQkMA6Sr8nEAgQHR0NJycn\nTJkyBb/88gvrSISQAY56JBDSgU8//RT/+c9/cP/+fdZRSB/4ZBA6AAAgAElEQVTU2NiICxcuIDQ0\nFFevXsXQoUPx9ttvY/ny5TA1NWUdr084dOgQVq1ahdraWtZRelxdXR2Cg4MRHByMESNGYP/+/XBz\nc2Mdq8+hKSfZmD17NtTV1XH69GnWUQaExsZGrFixAidPnsS+ffvg7+/POhIhZICiHgmEdCAjIwOj\nRo1iHYP0MZmZmdi0aRMsLS2xcOFCAMCpU6eQkZGBwMBAKiJ0gVAohEAgYB2jV2hqaiIoKAi3b9+G\nQCCAh4cH/Pz8UFxczDpan8Lj8eDs7IzAwECEhYWhpKQEKSkp+Pzzz2FoaIidO3fCw8MDgwYNgre3\nN4KCghARETHgB718Xi4uLtQjoRepqanh6NGj+PDDDxEQEIBNmzaBrgkSQligHgmEdGDy5MlwdXVF\nSEgI6yhEwUkkEvzyyy/46quvcPXqVfD5fCxduhQrV66ke96fw+rVq3Hr1i1ER0ezjtLrwsLCsHr1\nalRXV+Nf//oXVq9eDRUVFdax+gWacrL7Xb58GTNmzEBRUREVS3vZd999h3/84x9YtGgR/vOf/0BV\nVZV1JELIAEKFBEI6wOfzERgYiHXr1rGOQhRUfn4+jh8/jn379iE/Px+enp7w9/fHa6+9Bh6Pxzpe\nnzdnzhyoqqri5MmTrKMwUVNTg88//xzbt2/HmDFjsH//fowfP551rH5HKBTKZ4WIjY1FWloalJWV\nMXLkSPkAjp6enjAyMmIdVWGVlpbCxMQEly5dohlIGAgPD8fcuXMxfvx4nD17Fnp6eqwjEUIGCLq1\ngZA26urqUFRUhCFDhrCOQhSMVCpFREQE5s2bBxsbG3z55ZdYtGgRsrKyEB4ejjfeeIOKCN1EKBSC\nz+ezjsGMtrY2goKCkJCQAA0NDUyaNAkBAQGorKxkHa1fEQgEeOONN3Dw4EHcuXMHQqEQ586dg6+v\nL5KSkrBgwQIYGxtj2LBhCAgIwNGjR5Gbm8s6tkIxNjaGhYUFbt26xTrKgOTt7Y2YmBikpaXB3d0d\nDx8+ZB2JEDJAUCGBkDZycnLAcRxsbGxYRyEKoqCgAMHBwRg6dChefvllVFRU4Pvvv8eDBw+wY8cO\n+l3pAQO9kCDj6OiImJgYHDp0COfOncOoUaNw9OhRuie6h5ibm8PX1xc7duxAYmIiRCKRvEh4584d\nvP3227CxsYFAIMC8efMQGhqKO3fusI7N3JgxY3D79m3WMQYsR0dHxMbGorm5GRMnTkRycjLrSISQ\nAYAKCYS0kZOTAwB0cjjAtex9YG1tjeDgYMyePRt3796Vn1jQ/ag9g+M4FBUVDZjBFp9GSUkJfn5+\nyMjIwLx587B8+XJMmzYNqamprKP1ezTlZOc4OjpSIYExGxsbxMXFYfjw4Zg6dSquXbvGOhIhpJ+j\nQgIhbeTk5MDQ0BD6+vqsoxAGioqKEBwcDFtbW3h7eyM7O1s+DkJISAiGDRvGOmK/V15ejoaGBuqR\n0IahoSFCQkLw119/oba2FmPHjsXatWshFotZRxswtLW14e7ujsDAQISHh6OqqgqJiYlYt24d6urq\nsHXrVri4uMDQ0BDe3t4IDg5GbGwsGhsbWUfvUWPGjEFaWlq/f52KztDQEFeuXIG3tzf+9re/4b//\n/S/rSISQfowGWySkjQ8//BBhYWF0v+cAk5SUhJCQEJw8eRJaWlqYP38+1qxZAwcHB9bRBpy0tDTY\n2dnh1q1bGDNmDOs4CkkqleKbb77Bxo0boaenh927d2Pu3LmsYw14EokE6enp8gEco6KiUFpaCm1t\nbUyaNAlubm5wd3eHu7s7NDQ0WMftNsnJyRg7dixSUlJgb2/POs6AJ5VKsXHjRnz55ZfYtWsXDRxN\nCOkR1COBkDYKCwvpSugAIRKJEBoaCgcHB7i4uCA1NRV79+6FUCjEwYMHqYjASGlpKYBHg7iRjikr\nK8Pf3x8ZGRmYNm0a5s2bB19fX/mtWYQNFRUV2Nvbw9/fH6dPn0ZJSQmysrKwf/9+DB06FEeOHIG3\ntzd0dXXh4uKCTZs2ISwsDCKRiHX05zJ69GioqanR7Q0KQllZGbt27cIXX3yBDRs2YO3atQPudhtC\nSM+jQgIhbRQUFFAhoZ9LSkpCQEAALCwssHHjRri5ueHmzZtITEyEv78/tLS0WEcc0EpKSqCkpERT\n7nWCubk5jh49iqioKGRnZ8POzg5BQUFoaGhgHY38z9ChQ+Hn54eDBw/i/v37yM/Px/fffw9nZ2eE\nhYVh9uzZMDY2hr29PQICAnDmzBmUlZWxjt0lampqsLW1pUKCglm7di2OHDmCAwcOYNmyZWhqamId\niRDSj1AhgZA2qJDQP1VVVSE0NBROTk5wcXFBUlISdu/ejfz8fBw8eBBOTk6sI5L/KS0thb6+PtTU\n1FhH6TOmTJmCmzdvYvv27di1axfGjBmDX3/9lXUs0oH+OuUkDbiomJYsWYJLly7h4sWLmDlzJqqr\nq1lHIoT0E1RIIKQNKiT0L7LeBwKBAGvXroWTkxOSkpLkvQ90dHRYRyRtlJaW0m0Nz0BVVRVr165F\nWloanJyc8PLLL8PX1xd5eXmso5En6C9TTtrb2yMlJYV1DNKBl156CVevXsWtW7fw0ksvoaSkhHUk\nQkg/QIUEQtooKyuDiYkJ6xjkOVRXVyM0NBTjxo2Di4sLYmJi8NFHH0EoFOLo0aMYN24c64jkCUpL\nS+k9+BwsLS1x5swZXLx4ESkpKXBwcEBISAgkEgnraKQT+uqUkw4ODsjJyaEr3grKxcUFf/zxByoq\nKjBp0iRkZmayjkQI6eNo1gZCWhCLxdDV1cUvv/yCGTNmsI5Duig1NRUHDx7Ed999h6amJsyaNQv+\n/v7w8vJiHY10wdKlS1FZWYmLFy+yjtLn1dXVITg4GDt27MDo0aOxf/9+TJo0iXUs8hyam5uRnJyM\niIgIxMbGIi4uDhUVFdDT08P48ePh5eUFNzc3jB8/vldvD8rMzIStrS3++usvuLq69lq7pGsKCwsx\nc+ZMFBQU4NKlSxg7dizrSISQPop6JBDSgmzkbAMDA8ZJSGfV19fjzJkz8Pb2hr29PS5fvowtW7Yg\nPz8fp0+fpiJCH0Q9ErqPpqYmgoKCcPv2bZiamsLNzQ1+fn7ymTFI38Pj8eDs7IzAwECEhYWhpKQE\nKSkp+Pzzz2FoaIidO3fCw8MDgwYNgre3N4KCghAREYH6+voezTV06FBoa2vT7Q0KztzcHNHR0XB0\ndISHhwfCw8NZRyKE9FFUSCCkhcrKSgCAvr4+4yTkaTIyMrBp0yZYWlpiyZIlMDQ0RHh4ONLT0xEY\nGEgj/vdhNEZC97O1tcWVK1dw4cIFREVFYeTIkQgJCWHeHZ48P0WZclJZWRkjR45UyPEbSGs6OjoI\nCwuDj48PfH19cfr0adaRCCF9EBUSCGlBdmBFhQTF1NDQIO99MHr0aJw9exYbN25EXl6evPeBkpIS\n65jkOZWWllIhqIf4+voiJSUFS5YswYYNGzBlyhQaab8fYjXlpIODAxUS+gg1NTV8//33WL16NRYt\nWoT9+/ezjkQI6WOokEBIC7IeCXRrg2K5d+8eNm3aBCsrKyxcuBAAcOHCBdy9exeBgYHUDb6fqaio\ngKGhIesY/Za+vj5CQkKQmJgIiUSCcePGYe3ataiqqmIdjfSQ3ppykmZu6FuUlJSwc+dO/Pvf/8bq\n1asRFBTEOhIhpA/hsQ5AiCIRiUTg8XjQ0tJiHWXAa2xsxIULFxAaGoqrV69CIBDgrbfewqpVq2Bl\nZcU6HukhHMdBLBZDT0+PdZR+b+zYsYiLi8OxY8ewYcMGnDlzBjt27ICfnx/raKSHyaac9PX1BfBo\nppv4+Hj5AI6HDx9GY2Mj+Hw+3N3d5QM42tvbP3G79vb2yMvLg0gkooJ8H7J582aYmZkhICAApaWl\n+Oqrr6CsTNcaCSFPRoUEQlqorKyEvr4+dY9nKC8vDydOnMDevXshFArh6emJU6dO4bXXXgOPRx9Z\n/Z1YLIZEIqHbi3qJkpIS/Pz84OPjg61bt2L58uU4fPgw9u3bh9GjR7OOR3qJbMpJ2eC0NTU1uHHj\nBuLi4hAREYF169ahrq4O5ubm8PDwgJubG9zd3fHCCy+0OuF0cHAA8GgGncmTJzN5LeTZrFixAiYm\nJpg/fz7Ky8tx5MgRqKqqso5FCFFgVG4kpAWRSEQnMAxIpVJERERg3rx5sLGxQUhICBYvXozs7GyE\nh4fjjTfeoCLCACHrXk89EnrXoEGDEBISgt9++w2lpaVwcnLCpk2benykf6KYtLW14e7ujsDAQISH\nh6OqqgqJiYnygsLWrVvh4uICQ0NDeHt7Izg4GLGxsTA3N4eenh7d3tBHzZo1C5cuXcLPP/+MGTNm\nQCwWs45ECFFgShzHcaxDEMJKQUEB6uvr5V0wt27diqioKFy7dk3+HA0NDWhqajJK2L8JhUIcO3YM\nBw4cwMOHD+Hp6Ql/f3+8+uqrdCVkgEpNTYW9vT1u374tv7pJeldzczP27duHjz/+GMbGxtizZw9m\nzpzJOhZRIBKJBOnp6fIeC1FRUSgtLYW2tjZ4PB5GjRqFTz75BO7u7tDQ0GAdl3RRUlISZsyYgSFD\nhuCXX36hwW8JIR2iQgIZsFJTU+Hg4IDOvAXOnj2L119/vRdS9X9SqRSRkZEIDQ3FuXPnYGRkhDff\nfBP+/v4YOnQo63iEsT///BOTJk1Cbm4urK2tWccZ0IRCITZt2oRjx47Bx8cHe/fuxeDBg1nHIgoq\nOzsbsbGx2L59O3JyclBfXw8ejwcnJyf5GAseHh40dkIfkZ6ejunTp0NXVxe//vorLCwsWEcihCgY\nurWBDFjDhw+Hjo5Op55rZ2fXw2n6v8LCQgQHB2P48OHw9vZGdnY2vv32Wzx48AA7duygIgIBQLc2\nKBKBQICjR48iMjISmZmZsLOzQ1BQEBobG1lHIwpINuWkv78/9PX1OzXlZGlpKevY5DFGjRqF2NhY\nSCQSuLu74969e+2ew3Ecjh07Jp86mxAysFAhgQxYampqmDNnzhO70CspKcHR0RGjRo3qxWT9B8dx\n8rEPrK2tsWPHDnh7eyMlJQWJiYnw8/ODmpoa65hEgVRWVkJJSQm6urqso5D/mTZtGm7duoWPP/4Y\nwcHBGDNmDCIiIljHIgrK3t4eRUVFUFVVfeqUkyYmJs895STpOdbW1vj9999hbm6OF198ETdv3my1\n/v3334efnx+2bt3KKCEhhCUqJJABbcGCBWhqanrsehUVFbz11lu9mKh/EIlECA0NhYODg7z3wd69\ne5Gfn4+DBw8+dQoxMnBVVVVBR0cHKioqrKOQFlRVVREYGIiUlBQMHz4c06dPh5+fH4qLi1lHIwpG\nNrbJnTt3Wj0um3Jyx44dSExMhEgkkg+me+fOHbz99tuwsbGBQCDAvHnzEBoa2m4bpPcNGjQI4eHh\nGDNmDKZNm4bY2FgAwP/93/9h165dAIB9+/YhLy+PZUxCCAM0RgIZ0Jqbm2FqaoqKiooO16uoqCAv\nLw/m5ua9nKxvSkpKQmhoKI4dOwZVVVUsWLAAq1atgqOjI+topI/YvXs3du3aRQelCi4sLAxr1qxB\nZWUlgoKCsHr1air+EDkjIyP8+9//xqpVqzr9M22nnIyLi+vUlJOkdzQ0NGDJkiX45ZdfsGzZMhw4\ncEC+TlVVFcuXL8fBgwcZJiSE9DYqJJABLyAgAIcPH25336+KigpeeuklXLlyhVEyNiQSCYKCgmBv\nb48FCxY89fmVlZU4deoU9u7di9u3b8PZ2Rn+/v5YvHgxtLW1eyEx6U+2bt2KU6dOITU1lXUU8hS1\ntbX47LPPsH37djg4OGD//v2YMGEC61hEAUyZMgUjR45EaGjoM2+jubkZycnJiIiIQGxsLOLi4lBR\nUQE9PT2MHz9ePoDj+PHj6Ra5XtLc3AxPT0/Exsa2G6haRUUFGRkZGDZsGKN0hJDeRiVdMuDNnz+/\nw8HDOI6Dn58fg0Ts1NbW4rXXXsMnn3yCDRs2QCqVPva5SUlJCAgIgIWFBf75z39i0qRJuH79OhIT\nE+Hv709FBPJMampq6Henj9DS0kJQUBBu3bqFQYMGYfLkyfDz80NZWRnraIQxZ2dnJCUlPdc2eDwe\nnJ2dERgYiLCwMJSUlCAlJQWff/45DA0NsXPnTnh4eGDQoEHw9vZGUFAQIiIiUF9f302vgrQVFhaG\nuLi4Dme7UlZWRlBQUO+HIoQwQz0SyIAnlUphZmbWbvRoDQ0NlJSUdHpmh76upKQEM2bMQHJyMpqb\nmwEAP//8c6v546urq/Hf//4XBw4cwM2bN2FnZycfpdvQ0JBVdNKPvPvuu7hx4wZiYmJYRyFdIBu9\nfePGjVBSUsJnn32GpUuXQklJiXU0wsCJEyfw1ltvoaqqCurq6j3WjmzKybi4OPz666/IycmhKSd7\nSHh4OGbOnAmJRPLYabOVlZVx+/ZtmumKkAGCeiSQAU9ZWRnz589vNXuDqqoq5s6dO2CKCNnZ2Zgw\nYQJu3bolLyLweDz5PZCy3gcCgQBr166Fra0twsPDcefOHQQGBlIRgXSbhoYGaGhosI5BukhJSQl+\nfn7IyMjA/Pnz8dZbb2Hq1KlISUlhHY0w4OzsjMbGRty+fbtH25FNOXnw4EHcv3+fppzsIcnJyfD1\n9X1iEQF4dDy1ZcuWXkxGCGGJCgmE4NHtDS1nb2hqasKSJUsYJuo98fHxcHFxQV5eXqt90NzcjF9+\n+QVOTk5wcXFBXFwcPv30UxQUFOD06dPw8vJimJr0V/X19VRI6MMMDAwQEhKCv/76Cw0NDRg3bhzW\nrl2L6upq1tFILxoxYgT09PSe+/aGrhIIBDTlZA/g8XgYMmQIOI574pTZzc3NOH/+PG7cuNGL6Qgh\nrNCtDYTgUbdcgUCAwsJCAI+mOyoqKgKPx2OcrGedP38eCxYsQHNzMyQSSbv1qqqqsLOzw969e+Hu\n7s4gIRlo5s+fD6lUijNnzrCOQp6TVCrF8ePHsX79emhoaODTTz8dcOPODGTdMeBid6uurkZ8fLx8\nAMeEhAQ0NjaCz+fD3d1dfjtEd01RXF9fj7q6un7Tay82Nhbbtm3DlStXoKqq2uH4UjweDy+99BIu\nX77MICEhpDdRjwRC8Khb7oIFC6CmpgZVVVUsW7as3xcR9uzZgzlz5qCpqanDIgLwqGdGfn4+Jk6c\n2MvpyEBVX1/fo/dUk96jrKwMPz8/3LlzB56ennjzzTfh5eWFjIwM1tFIL3B2dkZiYiLrGK3o6urC\ny8sLO3bsQGxsLMrLyxETE4O1a9eioqIC69atg4ODA/h8PubNm4eQkBAkJSU9ceDhJ3n//fdhZWWF\ngwcPPvGWgL7C3d0dly5dQkZGBgICAuTHTC01NzfjypUriI6OZpSSENJbqEcCIf/z559/YtKkSQAe\njQkwbtw4xol6BsdxCAoKwr///e9OPV9JSQnnzp3D7NmzezgZIcDLL78MKysrfPPNN6yjkG4WHR2N\nlStXIjs7G++//z42bdpEt7H0YydOnMDy5ctRVVXVZ/6fu3vKyREjRuDevXtQUlLCxIkTcfjwYYwY\nMaIXXknvKC4uxqFDh7Br1y6UlZWB4zhwHAcejwdXV1f8/vvvrCMSQnoQFRKIwquoqJB/L+smKCMS\nidpV+cVicat7/Z+k5fY4jsM777wDNTU1fPXVVx0+X01NrdNT0ykrK0NfX7/d4wYGBvKRzNXV1aGl\npSVfp6+vD2Xlnuso1NDQgCVLluDHH3/s9BUWFRUVTJs2DeHh4T2WixCZqVOnwsHBAXv37mUdhfSA\npqYm7N+/Hx999BHMzMywZ88e/O1vf2Mdi/SA9PR0jB49GvHx8Rg/fjzrOM9EIpEgPT0dcXFxiIiI\nQFRUFEpLS6GtrY1JkybBzc0N7u7ucHd3b1csKS8vh7GxsfwYRXblfvPmzdi8eXOnChF9RV1dHY4d\nO4bPP/8cmZmZUFZWhlQqRUREBF566SX582THXE1NTRCLxZBKpaisrJSvr6ysfOyxyZPWqaqqPnZw\n7JbrlJSU5DN4yI63dHR0njjuAyHk8aiQQJ5IJBKhtrYWdXV18u8bGhpQVVUFiUQiP2mvqalBY2Mj\n6urqUF9fL/9j0djYiJqaGjQ3N6O6uhoSiQRVVVXgOA4ikUjezpOKBQNV26KFnp4eVFRUADzqnsnj\n8eR/ALW0tKCurg5NTU1oaGjICxSyP6A8Hg88Hg979uxBVlZWu7ZUVFSgrKwMJSUlKCkpgeM4SKVS\n+QwOysrKqK6ublX0IKQnTJw4Ee7u7ti5cyfrKKQH5efn44MPPsCxY8fg4+OD/fv3w8rKinUs0o04\njoOpqSk++OADrF+/nnWcbtPZKSejoqIwZ86cdhc7VFRUMGLECBw5cgSurq6MXkXnlJeXo6ysDGVl\nZaiqqkJlZSWqqqogFoshFotRXV0NkUgk/7dYLEZubi7y8/NRV1cnPwbpygUeVjQ0NKCpqSnPrK6u\nDh0dHejr60NPTw86OjrQ0dGBrq4uDAwM5P/W0dGBgYEB9PX1YWJigkGDBkFPT4/1yyGkV1AhoZ+p\nqalBZWVlu0UkEskLAbW1taisrERNTQ3q6upQVVWF6upq1NXVQSwWo6qqSv68p5GdwMo+gDs6gdXV\n1ZVfnW9ZDW55Zb7lSfKTTqDbVp1lJ9QtPaky3VbLPJ0hK6B0hqzo0lLbAoqs8PK0dUDrYousMt+V\ngk5lZSXEYnGn7tNUVVWFqqoqdHV1oaGhAR0dHfD5fGhra0NTUxN6enrQ1dWFpqZmqz+ibRc9PT36\ng0q6ZOzYsfDx8cEnn3zCOgrpBT/99BPeffddFBcX45///Ge/u1I70L322msAgHPnzjFO0nOysrIQ\nExOD6OhoxMTEIDMzEzweD8bGxigvL3/sgIRSqRSrV6/Gp59+2umejs+jqakJxcXFEAqFKCwsRGFh\nIYqLi+WFAlnRoOXXjnoAdHRSra2tLX/M0NAQ2traKCsrA4/Hw4gRI+QXOWTHdyoqKvJjg5YDUcqO\nKTvypHUdHW91tE52MQv4/8dUsuMo2fMaGhrkF9BqamrkBZSWxZKWxZOampp2baqqqmLQoEEwMjKS\nf5V9b2xsDDMzM5iamsLCwkL+fU/2RiWkp1AhQQHJPtTbLiKRSF4YkH2wVVZWoqKiQv697ApyS7KT\nZdmHvaamJvT19VudFOro6EBLSws6OjrQ09ODpqYmtLW1oa+vD01NTWhpacHAwACampryk0fqCtZ3\nyf6YynqMVFZWoq6uDrW1taioqEBdXV2rXih1dXXtik9isRi1tbXyP6pVVVVP/f3rqNigr68PAwMD\n+R/atgv9cR1YRo0ahcWLF+Ojjz5iHYX0krq6OgQHB2PHjh0YOXIkDhw4gMmTJ7OORbrBF198gW3b\ntqGkpGTAfJYLhUJER0dj3bp1KCoqeuJzeTweBAIBDh06BE9Pz2dus7S0FLm5uXjw4AFyc3PlxYKi\noiIIhUIUFxejuLi41c/o6enB3Nz8sSe8RkZGMDY2lv/bwMCALgw8RkVFBUQiEUpLSx9blJEdy5eW\nlqKoqKjVxToVFRWYmprCzMwMAoFA/tXc3Bw2NjawsbGBtbU17X+icKiQ0MPEYrH8Q7zlh4hs6ahg\n0LYCrKWlBSMjo3YnYnp6etDX14ehoeFjT9BkzyOkNzytR0xH62Try8rKIBaL223zcQUG2UGO7EDH\n1NQUfD6/Sz1MiOIZMmQI3nnnHbz//vuso5BelpmZidWrV+PXX3/FkiVLsGvXLpiYmLCORZ5DUlIS\nXFxccPv2bTg4OLCO02vEYjEMDAw61YNRRUUFUqkUixcvRkhICAYNGtTuOeXl5bh79y5ycnKQm5vb\nasnJyWl1VZzP58sXMzMzWFhYwNTUVH6CKlunqanZra+ZdE11dTXy8/PlvUSKiopQUFCAgoICeQFI\nKBSirKxM/jOGhoYYPHiwfLGxsZF/HTFiRKd74xLSXaiQ8AwaGhpQVlaGiooKFBQUQCgUyr+2fEwo\nFLbqqg48ugfL0NCw1SIQCMDn89s9LlvXX+YfJqQzKioq5O+ltkvL95lsKS4ubnWwpq6ujkGDBrV6\nb7V8j7V8jN5bisfa2hpr167Fhg0bWEchjISFhWHVqlUQi8X417/+hTVr1gyYq9n9jUQigZGRET79\n9FOsXLmSdZxec+XKlWcaRNTY2BgbNmyAkpISsrOzWy0yhoaGGDp0aKtF9jdt5MiRdDLZz9TX10Mo\nFMp/D2TnHLJ/5+bmyo+BZL8bdnZ2sLe3l/9+2NnZUeGI9AgqJLQhFovx4MEDPHz4EHl5eXj48CEe\nPHiAvLw85OXlQSgUthphFnh0rz+fz4eJiYm84iur+squkpqZmcHY2Jju/SSkmzU3N6OsrAzFxcXy\nSn7L7pyyx4qLi1FSUtLqZ7W1tSEQCGBhYQErKytYW1vD0tISlpaWGDx4MCwtLanY0MusrKzw3nvv\n9avB2UjX1dTU4P/+7/+wa9cuODk54cCBAwo/MB3p2MyZM6Gnp4eTJ0+yjtJrPvzwQ3z22WftbvdT\nUlKS3xba1NTU4ZhFysrKGDx4MEaMGIERI0Zg5MiRsLW1xYgRI2BlZSUfM4oQ4NHFzZycHNy9e7fd\nIhQKATwas2HIkCFwdHSEk5MTHB0d4ejoCBsbG7bhSZ/He/pT+g+O45Cfn4+srCz5vWSyAkFubi7y\n8vJa9SDQ1taWn0xYWVnBzc0NfD4f5ubm8m5ipqamfWZ+ZEL6Ix6PJy/ejRkz5onPlQ02VVBQgMLC\nQpSUlCAvLw/5+fnIy8vDjRs3nvg5YGlpCWtra3nRYdiwYbCysmo34Cch5Ploa2tjx44dWLhwIVau\nXImJEyfi73//Oz7//HO6Xa+P8fDweOyUyv1VSkqKvIjA4/Ggra0NNTU1+QxWzc3NUFFRgZWVFezs\n7ODi4oKxY8dixIgRGD58+GMHFSSkLXV1dYwcORIjR9/dEFoAACAASURBVI5st04sFuPu3bu4d+8e\n0tLScPv2bRw+fBjZ2dngOA76+vryooKTkxOcnZ3h6OhIxzSk0/pdj4TGxkbk5eW16xKWnZ2NjIwM\n+T3YampqMDIygkAgaNc1TPY9n8+XzypACBk4ZF0J23YhlP07KytLXmxQVVWFlZVVu66mQ4cOha2t\nLZ30dJGlpSU2bNiA9957j3UUoiA4jsOxY8fwz3/+EzweDzt27MDSpUvp73Mf8fvvv8PNzQ13796F\nra0t6zg9SigUIi4uDuHh4UhMTERqaioaGhpgYGAAe3t72Nvbw87ODs7Ozhg3bhxNqUyYqK6uxt27\nd3Hnzh0kJSUhNTUVN27cQFlZGVRVVeHo6Ag3Nzc4OzvDw8MDQ4YMYR2ZKKg+W0h48OAB0tLSkJKS\ngvT0dGRmZiI7Oxt5eXnywQpNTEwwbNgw+TJ06FD593w+n/ErIIT0ZWVlZcjKypIv2dnZ8u/z8/Pl\nzzM3N5d/7owePRqjR4+Gg4MDhgwZQvd9d4AKCeRxKioqEBQUhL179+LFF1/Evn37YGdnxzoWeYrG\nxkYMGjQIX3zxBfz9/VnH6TZSqRQ3b95EeHg4YmJiEB8fj9LSUqirq+OFF17AhAkTMHHiREyaNAmD\nBw9mHZeQJ5JKpUhPT0d8fDz++OMP/Pnnn0hNTYVEIoGVlRUmTpyIqVOnwsvLCyNGjGAdlygIhS8k\ntCwYtPwqmwfW3Nwc9vb2rQoGskVXV5dxekLIQFRfX9+uyJCZmYm0tDTk5uYCADQ1NTFq1Cj5oEiy\nr0OGDBnQ98BaWFhg48aNWLduHesoREElJSXhnXfewc2bN/HOO+9g27ZtNMCcgps9ezYA4MKFC4yT\nPJ/79+8jIiICERERiIyMRGlpKczMzDB16lRMnDgREydOxAsvvEC3JpB+obq6GgkJCfLCwm+//Ybq\n6mpYW1vDy8sL3t7e8PT0hKmpKeuohBGFKSQ0NzcjLS0NiYmJSEhIwPXr1zssGLQ96O5omhxCCFFU\n1dXVSEtLw507d1oVR3Nzc8FxHDQ0NDB69GiMHTsWLi4ucHV1haOj44A5MKVCAumM5uZm7Nu3Dx9/\n/DH09PSwe/duzJ07l3Us8hihoaFYt24dSktL+1R3fqlUit9//x1nz55FWFgYsrKyoKWlhRdffBFe\nXl7w8vKCo6Mj3WZDBoTm5mbEx8cjIiIC4eHhiI+Ph0QigZOTE2bPno25c+cOqGleCaNCglQqxd27\nd5GYmChfbty4gdraWmhqauKFF17AuHHj4ODgQAUDQsiAUF1djfT0dKSkpCA1NRVJSUm4fv06Kisr\n5fcsuri4yBcHB4d+OSCSQCBAYGAg1q5dyzoK6QMKCgoQGBiIY8eOwcfHB3v27KGRyBWQUCiEpaUl\nfvrpJ8ycOZN1nCeSSCSIjY3FDz/8gB9//BFCoRCjRo3Ca6+9Bm9vb0yePHnAFHYJeZLq6mpcu3YN\nV65cwfnz55Gfn49Ro0Zhzpw5mDt3LsaOHcs6IulhvVJIaG5uxl9//YXIyEhcu3YNCQkJqKqqgpqa\nGhwdHeHq6io/OLazs+uXB8eEENJVHMd1WHStqamRF12nTJkCT09PuLm59Yt5oqmQQJ7FtWvXsGrV\nKty/fx/vv/8+PvjgAzrZUzDOzs6YOHEi9u3bxzpKhzIzM3HgwAGcOHECRUVFcHBwwNy5czFnzhy6\nykrIU0ilUvzxxx84e/Yszp49iwcPHmD48OFYvnw5/v73v9PtD/1UjxQSpFIpkpOTERkZicjISERH\nR0MsFsPS0hKenp6YNGkSXFxc4OjoCDU1te5unhBC+i2JRCK/DSw+Ph6RkZG4e/cu1NXVMWnSJEyb\nNg2enp6YMGGCfL7yvoQKCeRZNTU1Yf/+/diyZQv4fD727t2L6dOns45F/udf//oXDh06hNzcXIW5\nFUAikeDnn3/G/v37ER4eDisrK6xYsQLz5s3rcDo9QsjTcRyHhIQEnDx5EkeOHIFYLMbcuXOxcuVK\nuLm5sY5HulG3FRLKy8vx008/ISwsDFFRUSgrK4OJiQmmTp0KT09PeHp60iifhBDSA/Ly8uSF28jI\nSDx8+BDa2trw8PCAr68vZs2aBUtLS9YxO4XP5+ODDz7Au+++yzoK6aPy8vLw3nvv4YcffoCPjw8O\nHDjQZ37/+7OEhASMHz8eycnJcHR0ZJqlsbERX3/9Nb744gs8fPgQ3t7eWLlyJV555ZUBPdgtId2t\nrq4OJ0+exIEDB5CQkAAnJyds3rwZb7zxhsIUFMmze65CQkVFBU6dOoUzZ84gOjoaysrK8PT0xPTp\n0+Hp6UkD0JB+oeXv8PPW3W7duoXt27cjISEBeXl50NbWxpgxYzBjxgy8+uqr/eoKSHfuN9I19+7d\nQ2RkJCIiInD58mXU1NTAxcUFb7zxBhYtWgQLCwvWER+LCgmku4SFheHdd99FRUUFtm7ditWrV9NJ\nIkMcx8HS0hIrV67Ehx9+yCzDqVOn8OGHH6KgoAABAQFYtWoVhg8fziQPId1NkY+9EhISEBISgv/+\n979wcXFBcHAwpk6dyjoWeQ5dnsSc4zhcvnwZc+fOBZ/Px/r162FsbIzjx4+jpKQEly5dwnvvvQcn\nJycqIpB+obs+iC9duoRx48YhIyMDR48eRXl5OVJSUrB06VJs27YNo0aN6pZ2FIWi/QEbSGxtbREQ\nEIAzZ86gpKQEFy9ehKOjI7Zv347Bgwdj+vTpOHnyJJqamlhHbUdFRQVSqZR1DNIP+Pr64s6dO1i3\nbh0CAwPh4uKCP/74g3WsAUtJSQkzZszAzz//zKT9uLg4uLq6YvHixXjxxReRkZGB3bt3UxGB9CuK\nfOzl6uqK48eP4/r16zA0NMS0adPg4+ODe/fusY5GnlGnCwkNDQ34+uuvYWdnhxkzZqC0tBQHDhxA\nYWEhTp06hfnz50NPT68nsxLSY5SUlHq88LV582ZIJBIcOXIEkydPhpaWFvh8PlasWIHt27f3aNs9\npTf2G3k+Ghoa8PHxwTfffIOCggKcPHkSmpqaWLJkCYYMGYLt27ejsrKSdUw5dXV11NfXs45B+gkt\nLS0EBQXh9u3bMDExgZubG/z8/FBaWso62oDk4+OD+Ph4FBUV9Vqbzc3N2Lx5M6ZMmQIjIyPcvHkT\nhw4dgpWVVa9lIH0PHd/0HCcnJ1y+fBnh4eHIy8vDCy+8gG+++YZ1LPIMnlpI4DgOJ06cwOjRo/He\ne+/Bzc0Nt27dwrVr17B8+XIqHhDSSWlpaf+PvfsOi+Jq/wb+XXov0ruCSrErVkCjgg1RI2pMokQT\nSyyRx9hjyaZLoonYnphYwTyxJkFNUcAGKgI2pCk2UKrAAktbluW8f+Td/dEFYXco9+e69nIdhjnf\nXbacuefMGQCAvb19nZ9NnTpV0XFIJ6Suro4ZM2YgJCQEjx8/xttvv42AgAB0794dP/zwAyoqKriO\nCHV1dYhEIq5jkA6mR48euHDhAkJCQnDp0iU4OjoiMDCQRr8o2IQJE6Cjo4NTp04ppD2hUAgfHx/s\n3LkTe/fuxfnz59GnTx+FtE0IaZynpyeio6Px0UcfYfHixfjoo48gkUi4jkWaodFCQlZWFiZPngw/\nPz+4uroiKSkJ+/fvpw9hQl6DmZkZAOC3336r8zNra+s2PRyNdDx2dnb47rvv8Pz5cyxbtgwbN27E\nwIEDcefOHU5zaWhoUCGByI2Pjw/i4+MxZ84crFq1CqNGjcL9+/e5jtVpaGhowMfHB8eOHZN7W+Xl\n5fD29sbdu3dx+fJlLFq0SO5tEkKaR01NDd988w1OnTqFgwcPYt68edQfbkcaLCTExsaiV69eePLk\nCaKionDixAl07dpVgdHkSzpkicfjITExERMmTICenh50dHTg7e0tO3pc3/qPHz/G9OnTYWhoWGfo\nU05ODpYsWQJra2uoqanBysoKixYtQlZWlkLaz8rKwuLFi2XtW1tb48MPP6x3GGF5eTm2bt2KAQMG\nQFtbGxoaGnBycsKHH36IqKioVz6HhYWFWLlyJezt7aGhoQEjIyOMGDECq1evRnR0dL3ZMzIy4Ovr\nC11dXRgZGeG9995DYWEhnj17hilTpkBPTw/m5uaYN28eCgoK6rTZnMfX1HWrP3/SnAsWLKj3MT9/\n/hxTp06Frq4uzMzMMGfOHOTl5b3yuQKA2bNnAwDmz5+P9957D5cuXUJlZWWD69Pz9q/XeZ019z3V\n0ue3PdPV1QWfz0dCQgK6dOmC4cOH4/fff+csD41IIPKmr6+PwMBAxMbGorKyEgMHDoS/vz+EQiHX\n0TqF2bNn49q1a3j27Jlc21m6dCkSEhIQHh4OV1dXubbVXNQHbXkfFAASEhIwadIk6OjoQE9PD+PH\nj0diYmKNvNU15/mp/dir929as/8QFhaGKVOmwNDQEBoaGhg4cGC9hbam9oXq4+rqWiOztD/alrz5\n5ps4efIkjh07hh07dnAdhzQVq0dSUhLT19dn3t7erLS0tL5VOgQADAAbMWIEi4yMZEKhkIWFhTFz\nc3NmaGjInj59Wu/6Xl5e7Nq1a6y0tJT99ddfTPo0ZmVlMTs7O2ZmZsbOnz/PhEIhu3r1KrOzs2Pd\nunVjAoFAru1nZmYyGxsbZmlpycLDw1lRUZFse3Z2diwrK0u2raKiIubq6sp0dXXZzz//zLKysphQ\nKGSXLl1izs7OrIGXRg1Tp05lANiOHTtYcXExE4lELDk5mb355pt1fl+afc6cOSwxMZEVFBSwZcuW\nMQDM29ubvfnmm7LlS5YsYQDYwoULa2yjOY+vOetWz9cQ6c/fffddWc7ly5czAGzevHmvfK4YY6yk\npIS98847sm0BYAYGBmz27Nns7NmzrKqqqsF2O/Pz9jqvs+a+p1ry/HYkEomELV++nKmqqrLz589z\nkuGNN95gS5cu5aRt0vlUVVWxI0eOMGNjY2ZpacmOHDnCdaQOr6KighkZGbFvv/1Wbm1cvXqV8Xg8\n9scff8itjZaiPmjL+qCPHj1iBgYGsvaEQiGLjIxkbm5u9fZNXvf5edXfr6X9BwBs2rRp7OXLlyw1\nNZV5eXkxAOyff/6psd7r9IWkMjMzWe/evdm6dete+bxy7fPPP2fa2trsxYsXXEchTVDvO2TMmDFs\n8ODBTCQSKTqPQknfaH/99VeN5YcPH2YA2HvvvVfv+pcuXap3e4sXL2YA2IEDB2os/+233xgA9skn\nn8i1/YULFzIALDg4uN7tLV68WLbs448/ln0g1Xb79u0mfYjr6ekxAOzkyZM1lqenpzf4oXb58uU6\n69Ve/vz5cwaAWVlZvfbja8661fM1pL6cL168YACYpaVlg79Xn7i4OLZmzRrm6OhYo6gwfPhwlpOT\n88p2O9vz9jqvs+a+p1ry/HY0VVVVbPbs2axbt26srKxM4e2PHz+effDBBwpvl3RueXl5bMWKFUxJ\nSYmNGTOGJSUlcR2pQ1u4cCHr37+/3Lb/1ltvMQ8PD7ltvzVQH7RlfdA5c+bU296ff/5Zb9/kdZ+f\nhrRW/wFAjaJNUlISA1Dn9fs6fSHGGHv27Bnr3r07++qrrxp8LG2JSCRipqam7Msvv+Q6CmmCOu+Q\n7OxsBoCzo1GKJH2jFRQU1Fgu3dGxsLCod/2SkpJ6t2dpackAsIyMjBrLc3NzGQDWp08fubZvYWHB\nALD09PR6t1f9A8zW1pYBYM+ePat3W00xf/58WSYbGxv2wQcfsOPHj9dbgJKuV1RUJFsmkUgaXc7j\n8V778TVn3er5GtKcnM2RkpLCNm/ezHR0dBr94u7Mz9vrvM6a+55qyfPbEaWlpdXpCCnK1KlT2Zw5\ncxTeLiGM/Xsku0+fPkxNTY2tW7eOk2JaZxAREcEAsDt37shl+1ZWVmzbtm1y2XZroT5oy/qgZmZm\n9bYnEAjq7Zu87vPTEHn1HyorKxkAZmRkVGP56/SFkpOTmY2NDRsxYsQr221L5s2bx8aPH891DNIE\ndd4ht27dYgBYSkoKF3kUqqEPifLycgaAqaioNGl9KRUVFdk69d20tLQU0n7tDxXp9lRVVWXLVFVV\nGQBWXl7e4Paa4vTp08zX15cZGhrK8tna2tbpHDSUvTnLm/P4mrNuYzleN39z/f333wwAMzMza1G7\nHfV5a+nrrLnvKXn/vds6iUTCNDQ06hzpUYRZs2axGTNmKLxdQqTEYjHbsWMH09XVZQ4ODnWO2JLW\n4eTkxFasWCGXbWtpabHDhw/LZduthfqgLeuDKisr19teQ1lb6/l51c+bs1wgELANGzYwJycn2QGl\n6rfamtsXsrCwYFpaWgwA++WXXxp8LG3N6tWr2eDBg7mOQZqgzmSLzs7OUFNTw4ULF2r/qMOqPemb\n9PrSJiYmzdqOdFb+/Px8sH+LNDVuJSUlcm3f1NS0xu/X3p7059WzZmZmNquN2qZPn45Tp04hNzcX\nV69exfjx45GWlob58+e3aLv1ac7ja866iqKsrNzgtbM9PDwAAEVFRa3ebnt/3oDmv85a6z3VWV2+\nfBnl5eXo37+/wtumqzYQrqmoqMDf3x/JyckYMWIEJk2aBB8fH6SlpXEdrUOZO3cufvnlF7m8321t\nbZGcnNzq25UH6oO+HmNj40bbq+11nx95mjVrFr755hu89dZbSE1NlWVpSHP7Qrt27cLu3bsBAMuW\nLcOLFy/k8jhaW1JSUoea4L8jq1NI0NTUxMqVK7Fp0yYkJiZykUnhrl27VuP/YWFhAIBx48Y1azvT\npk0D8G8nvLaIiAgMHz5cru37+PgAAMLDw+vdnvTnAODr6wsA+OOPP+psJyoqCkOHDn1lezweT/ah\npKSkBA8PDxw/fhwA6sz42xqa8/iasy4AaGlpAQDEYjFKS0tlX1CtqaqqCiEhIfX+LDY2FgAwcODA\nVm+3vT9vr/M6a633VGeUnZ2NJUuWwMfHB71791Z4++rq6igvL1d4u4TUZmlpiaCgIISHh+PRo0dw\ndnYGn89HRUUF19E6hPfeew8FBQU4e/Zsq2972rRpOHr0KMrKylp9262N+qA1NbUPKs1Xu73aj0eq\nuc+PIvo30qyrVq1Cly5dAKDBwtrr9IV8fX0xf/58TJ06FQUFBZg/f36bv7RiamoqLly4IPt7kTau\nvmEKJSUlbNSoUczU1JRdvXpVvmMiOIT/P/Rn4sSJLCIiggmFQhYeHs4sLCwanbG2IS9fvmQ9evRg\nFhYW7OTJkyw3N5cVFRWxs2fPMnt7+zrnG7d2+9IZaavPmCvdXu0ZcwUCAevduzfT1dVlP/30k2zG\n3H/++Yf16NGDhYWFvbJtAGz8+PEsPj6elZeXs6ysLLZhwwYGgE2ZMqVJ2ZuzvDmPrznrMsbYsGHD\nGAAWGRnJjh07xiZPntzq+QEwHR0d9v3337OnT5+y8vJylpmZyX755RdmbW3NNDU1WWRkJD1vrfA6\na+l7qrnLO4qkpCTm7OzMevToUee8U0X56KOP2MiRIzlpm5CGiEQitnXrVqahocEcHR1ZaGgo15E6\nhIkTJ7Jx48a1+nbT09OZvr4+W7lyZatvu7VQH7RlfdDHjx/XuWpDREQEmzhxYr3rN/f5UUT/Zvz4\n8QwA27BhAxMIBCwvL082EWVr9rmzs7OZiYkJA+qf4LKtqKysZOPGjWPOzs4tPvWaKEaDnwjFxcVs\n2rRpTFlZma1Zs6bGpCEdhfSN9vTpUzZ58mSmq6vLtLW12cSJE1liYmK961a/1Sc/P599/PHHrFu3\nbkxVVZWZmZkxHx8fduPGDYW0n5WVxRYvXswsLS2ZiooKs7S0ZIsWLaqzA8gYY0KhkG3atIk5Ojoy\nNTU1ZmRkxMaNG1dv8ai+NiMjI9l7773HunbtylRVVZm+vj7r168f++qrr2pMxtNQ7uYub+7ja866\nMTExrF+/fkxLS4sNGzaMPXjwoEU561t27949tmXLFlmRTkVFhamrq7Pu3buzDz744JV/8876vDX1\ndVb991/nPdWS3O1dRUUF++GHH5iWlhYbMmRIncmoFGn16tVsyJAhnLVPSGMePXrEJk6cyHg8Hps7\ndy7Lzs7mOlK7dubMGcbj8VhycnKrbzs4OJjxeDy2e/fuVt92a6A+aMv6oIwxFh8fzyZOnMi0tbWZ\nrq4umzx5Mnv8+DEDwJSUlFr0/LRm/6ah5dnZ2Wzu3LnM1NSUqampsd69e7Pjx4/Xu25T+0L6+vo1\nfv/kyZP1/v1iYmLqPGYuVVVVsQ8//JBpamqyqKgoruOQJuIx1vgYl/3792PNmjVQU1PDpk2bsGDB\nAmhqajb2K+0Gj8cDAM6G+XDdPiEdDb2nmqeyshInTpzAli1b8OLFC6xfvx6bNm2CiooKZ5k+//xz\nHDt2rNOcWkfap7Nnz2L58uUoKioCn8/H8uXLoayszHWsdqeqqgrdu3fHtGnT8P3337f69gMCArBh\nwwZs3LgRn332GZSU6pzRyxmuv6+4bl9eMjIyYGVlBVNT0wbnpSJtS2lpKebPn48//vgDx48fp9Ma\n2pFXfqIuWLAAjx8/xty5c7F27VrY2Njgk08+wfPnzxWRjxBCSCvLz8/Ht99+CwcHB/j5+cHNzQ0P\nHjwAn8/ntIgAAAYGBhAIBJxmIORVfHx8kJSUBH9/f6xduxZDhgzBzZs3uY7V7igpKWHRokU4dOiQ\nXCa7W7duHX7++WcEBATA09OTJszsYHg8Hh49elRj2dWrVwEAo0eP5iISaaZbt25h0KBBCAsLw/nz\n56mI0M40qTTbpUsXbNu2DampqVixYgUOHTqErl27wsvLC0FBQSguLpZ3TkIIIS1QUVGBkJAQ+Pr6\nwtLSEl999RWmT5+Ohw8f4siRI7Czs+M6IgDA0NCQCgmkXdDS0gKfz0dcXBwMDQ0xYsQI+Pn51ZkF\nnzRuwYIFKC8vx7Fjx+Sy/Q8++AC3bt1CXl4enJ2dsX79ehQWFsqlLaJ4y5Ytw5MnT1BSUoLw8HCs\nW7cOenp64PP5XEcjjUhPT8fixYsxdOhQWFpa4u7du3jjjTe4jkWaqVljvExNTbFlyxakpqbi5MmT\n0NbWxsKFC2Fqaopp06bh8OHD7eYLVDqkq/b9ztI+IR0NvafqKikpwenTpzFnzhyYmZlh+vTpKCgo\nwI8//ogXL17ghx9+gL29PdcxazAwMIBIJKIrN5B2w9HREaGhoTh06BDOnz+P3r17IygoqMMNGZcX\nY2NjzJo1Czt37pTbc9anTx/ExMTghx9+wMGDB+Hg4ICAgADOLjXL9fcV1+23lrCwMOjo6GDEiBEw\nMDDA22+/jWHDhuHmzZtwcnLiOh6pR3FxMQICAuDs7Iy///4be/fuxYULF2BjY8N1NPIaXjlHwqvk\n5eXh999/x++//47w8HBIJBIMGjQIY8aMwZgxYzBixAjZJVQIIYTIT2VlJaKjo3Hx4kVcunQJ169f\nh1gshpubG9588034+vq2+S/ryMhIeHh4ICMjAxYWFlzHIaRZCgoK8Omnn2LPnj1wc3PD3r170atX\nL65jtXlxcXHo378//vnnH7lfplcgEODrr7/G7t27YWZmhsWLF+ODDz6AqampXNslpDN79OgRfvzx\nRxw6dAgA8Mknn2D58uVQV1fnOBlpiRYXEqorKirC+fPncfHiRVy8eBEPHz6Euro6hg0bJissDB06\nFKqqqq3VJCGEdFpVVVW4e/eurHBw9epVFBcXw8rKSvaZO2nSpHbVQY6Pj0efPn2QmJgIZ2dnruMQ\n8lpu376NJUuW4M6dO1iyZAm++uor6OjocB2rTfPy8gKPx8OFCxcU0l5qaip27dqFQ4cOobi4GL6+\nvli6dCnc3d0V0j4hHZ1EIsG5c+ewd+9ehIaGwsbGBosXL8aSJUtgaGjIdTzSClq1kFBbenq6rKhw\n8eJFpKWlQVtbG66urjVu3bt3l1cEQgjpMF68eIHY2FjZLTo6GgKBAKampnjjjTcwevRojBkzBj17\n9uQ66mtLT0+HtbU1rl27hhEjRnAdh5DXVlVVhaNHj+Ljjz+GhoYGvv76a/j5+XEdq806f/48JkyY\ngNu3b2PAgAEKa7esrAzHjx/H3r17ERMTAxcXF8ycORMzZsxA7969FZaDkI6gqqoKN27cwKlTp3Dq\n1ClkZGRg3LhxWLJkCby9venqNh2MXAsJtT1+/BiXL1/GzZs3ERsbi/j4eIjFYhgYGMDV1RWDBw+W\nFRdsbW0VFYsQQtqcnJwcxMbGIiYmRlY4yMrKgpKSEhwdHWWfmW+88QZ69+7drs9zra6kpAQ6Ojr4\n888/MWnSJK7jENJiWVlZWLt2LY4ePQpvb2/s3LkT3bp14zpWmzRgwAD07t0bwcHBnLQfGxuLoKAg\n/Pbbb0hPT4eTkxN8fX0xY8YM9O/fn5NMhLR1EokEkZGROH36NE6fPo2MjAw4OTlhxowZmDdvHhwc\nHLiOSOREoYWE2srLy3H37l1ZJzkmJgYPHjyARCKBsbEx+vTpA2dnZ/Tu3Vv2r7GxMVdxCSGk1RUW\nFiIxMREJCQlISkpCfHw8EhMT8eLFCwCAg4NDjRFcgwYNgq6uLsep5UtdXR0HDx7Eu+++y3UUQlrN\n1atXsXTpUjx58gRr167Fhg0b6PzgWoKCgrBgwQI8fPgQXbt25SxH9aOqp0+fxvPnz9GtWzd4eXnB\n09MTY8aMgZGREWf5COHa8+fPERYWJrvl5OSgd+/e8PX1xcyZM2lumE6C00JCfYqLi3H79m3cvn1b\n1rlOTExEQUEBgH9n961eWHB2dkavXr3a1TnAhJDOp6CgoEbBQPrZJi0YaGtrw9nZGS4uLnBxccGA\nAQPg6uqKLl26cJxc8czMzLBlyxYsW7aM6yiEtCqxWIy9e/di06ZNMDc3x+7duzF+/HiuY7UZYrEY\njo6OGDduHH788Ueu4wAAGGO4efMmzp07h7CwMMTGxoIxhoEDB8LT0xOenp5wc3ODhoYG11EJkZvC\nwkJcvnwZYWFhCA0NxYMHD6ChoQF3d3d4enpiXBunmQAAIABJREFU6tSpdKWMTqjNFRIaIhAIZB1v\n6b/3799HdnY2AEBDQwOWlpawt7eHi4sLevXqBXt7e9jb28POzo7OySGEyJ1AIMCTJ08avAGAmpoa\nunfvjl69esk+q1xcXODs7AwlpWZdkbfDcnR0xNy5c7Fp0yauoxAiF+np6diwYQOCg4MxefJk7N27\nt81fUUVRfvrpJyxfvhwpKSmws7PjOk4dxcXFiIqKkh2JvXXrFlRUVNCzZ0+4u7vDzc0NgwYNgouL\nS4c55Yx0Pk+ePEFkZCRu3bqFa9eu4c6dO6iqqoK9vb2sgDZhwoQOP0KSNK7dFBIakpGRgaSkJDx+\n/LjOTSgUAvi34961a1c4ODjIbvb29rC2toaVlRXMzMw4fhSEkPZAIBDgxYsXSEtLQ2pqap3PnLKy\nMgD/FjZrf950794dTk5OsLOzo87lKwwbNgzu7u7Ytm0b11EIkatz585hxYoVyMnJwebNm7Fq1Sqo\nqKhwHYtTYrEYPXv2hLe3N3bv3s11nFdKS0vD1atXcfPmTdy4cQNxcXEQi8UwNzfHsGHDMHz4cAwa\nNAh9+/aFiYkJ13EJqePZs2eIj49HbGwsoqKiEBUVhcLCQmhpaWHQoEGy17GHhwedYk5qaPeFhMbk\n5OTgyZMn9RYZsrKyZOtpaGjA2toa1tbWsLGxgY2Njey+ra0trKys6Fw4Qjq4oqIiPH/+HM+fP8eL\nFy9kBQPp/dTUVJSWlsrWNzIygr29fY2CgfRmaWlJxYIWmDBhAqytrbF//36uoxAid2VlZQgICMDW\nrVvh5OSEvXv3dvorlvz3v//FypUr8fjxY1hZWXEdp1lKS0tx69YtWWEhKioKGRkZAAALCwv07dsX\n/fr1Q9++fdG3b184OTnRZdGJQpSWliIhIQH37t1DXFyc7CYQCAD8e4plz5494eXlhZkzZ6J///6d\nvrBJGtehCwmNKS8vr7GzUH3nITU1Fenp6cjPz5etr6WlBVtbW5iZmcHS0hKmpqYwNzeHhYUFTE1N\nZctMTU3pNApC2gjGGF6+fImcnBxkZmYiKysLOTk5yMjIQE5ODrKyspCZmYnnz5+jqKhI9ns6Ojqw\ntbWtt6gova+trc3hI+vY5s6di8LCQpw5c4brKIQozKNHj7B8+XJcuHABc+bMwfbt2zvtEWyRSITu\n3btj2rRp2LVrF9dxWiwnJwdxcXE1duASExNRUVEBNTU1ODs7w9HRET169ICjoyN69uyJnj17wtDQ\nkOvopB3KysrCgwcPkJKSgocPH+Lhw4ey0dsSiQQ6Ojro3bu3rKhlbm6O+Ph4REdHIyIiAkVFRTAx\nMcGoUaMwcuRIjB49Gr169aIDJKSOTltIaIrS0lKkpqbWKDhkZ2fX2AnJysqSDWcGACUlJZiamsLE\nxASWlpYwMzODmZkZLCwsYGRkVONmbGxMXxKENJNQKERubi5yc3ORl5cnu0nfmy9fvqxRNKisrJT9\nrrq6ep33pqWlJaysrGBtbS0rHujr63P4CMn69esRGhqKW7ducR2FEIU7e/Ysli1bhuLiYnz66af4\n6KOPOuX8KdJRCcnJyZxewUFexGIxkpOTERcXh/v37yMlJQUPHjzAo0ePIBKJAAAmJibo2bOnrMjQ\nrVs32Nraws7ODhYWFrRj10lVVlYiPT0daWlpePbsGZ48eSIrGDx8+FB2YERXVxc9evSQvYb69OmD\nfv36wd7evsHPFIlEguTkZFy7dg1hYWEIDw9Hfn4+dHV1MXToUNn8CAMGDOiUn0ukJioktAKhUCgr\nLkh3YF6+fIn09PQaBYe8vDyUl5fX+F1lZeU6BYbqhQZjY2PZ//X19WvcCGnPhEIhCgsLZbfqRYG8\nvDy8fPmyzrL8/HxUVFTU2I6amhqMjIxgYmICKysrmJiY1DtayNzcvFNeAaE9CgwMxNatW5GZmcl1\nFEI4UVJSgi+++ALbt29H//79sXfvXgwePJjrWApVWVmJPn36YMiQIThy5AjXcRSmqqoKqampsp3C\nBw8e4OHDh0hJScGLFy9kxXF1dXXY2NjAzs5OVlzo2rUrbG1tYWFhAUtLS+jp6XH8aMjryM3NRXZ2\ndo05maRFg9TUVGRkZNR4HdjZ2cmKBT179pSNbLG0tGxxFolEgnv37uHKlSu4fPkyIiIiIBAI0KVL\nF3h4eGD06NHw8vKCi4tLi9si7Q8VEhSspKREtlMkPaqan59fZ4ep+o6UdNLI2gwNDWVFBQMDgzqF\nBuly6U1fXx9aWlrQ0tKCgYEBNDU1oampqeBngLR3FRUVKCkpQWFhIcrKylBaWgqBQICCgoIahYHC\nwsI6ywoKCmTLJBJJnW1raWk1WEhrqNBGMwZ3PKdOncJbb72F8vJyOneYdGr37t3D0qVLER0djaVL\nl+KLL77oVDuHx44dw7vvvovbt2+jX79+XMfhXO0j0ampqbKdTOn96gestLS0YGFhISuuS+9LC+zS\n0bJdunSBjo4Oh4+s45MeMJEWCaSnVmZlZSEjIwPZ2dmyA5DSESnAv6MKqheJ7OzsZMWjrl27wtzc\nXKEjU6qqqhAXFycrLFy5cgUCgQBWVlbw8vKCl5cXPD09YWpqqrBMhDtUSGgHKioqkJeXV2cnTSAQ\nNLjDVnu9xhgaGsqKCgYGBtDS0oKmpqas8CC9r62tDU1NTejp6UFFRQW6urpQVlaGnp4elJSUZKMk\npKdrGBgYgMfjQV9fn4Y/KYj0b11QUADGGIqKiiCRSCAUClFZWYni4mKIxWKUlpZCJBKhpKQEZWVl\nKCoqQnFxMcrKyiAUCiEUClFWVobi4mIUFRWhrKxMVjyoqqpqsH09Pb06haz6Clv1/bxLly5U2CIA\ngOvXr8PNzQ1paWl0STzS6THGEBwcjNWrV0NFRQVbt26Fn58f17EUgjGGwYMHw8rKCiEhIVzHaRey\nsrJq7JSmp6cjOzsbmZmZsh3XzMzMGpMHA/83uq9Lly51/jU2NpZ9X+vo6MhuhoaG0NbWho6OToef\nN0jaTyopKUFRUREKCwtRXFws6ydJDwo29G/tgyd6enqy0yytrKxkIyirF30sLS3b/CnQEokEd+/e\nlV0ONSIiAiKRiC4T2UlQIaGTkBYaSktLUVpaioKCApSVlaGsrAwCgUB2v6CgQLZOYzuX0qPSzaGr\nqwsVFRXo6OhAVVUV2traUFNTAwCoqqrWqIZL133Vz6QFjfro6ek1aeLL2ttviHTn+1UYYygoKKj3\nZyUlJbKh+VVVVSgsLKx3+7W3If07SY/OCoVCSCQSFBUVNdpeQzQ0NKCpqdlgoUhHRweamprQ1dWF\nrq4uNDU1oaOjAz09vTqjWqT3pYUjQloqNTUVXbt2RVRUFIYOHcp1HELaBIFAAD6fj927d2PkyJHY\ns2dPpxhOfP78eUyYMAGRkZFwc3PjOk6HIRQKkZWVVWOHt6Gd4Ly8PFk/sqGDCTweDwYGBtDV1ZX1\nIdTV1aGlpSXr+wGQnWIo7aNV7wsCqPN/qeoHrKprrA9UVlZWY4SG9P/SPqy0HwX83wGY6gdepLfq\nfbXaVFVVoaenV6PwUl8xRnrf2NgYZmZmHfbASWlpKa5fvy4rLNy+fRsaGhpwc3Oj+RU6ICokkBYR\ni8UoLi5GZWUlhEKhbOe4+ge79Ci59Auo9lFy4N+raFSftFL6gQ78O3tz9cp59S+yhgoa0jxNIT1K\n/yrS0RdNoaWlBXV19TrLpTvwUtV3vqVfuFLVR3Koqanh7NmzyM7OxqhRozBq1CgoKyvDwMCgxnak\nv9NQ0UZTUxMaGhpNegyEcKWiogIaGho4ffo03nzzTa7jENKmxMbGYunSpbh79y6WLFmCr776qsMP\nSx87dizKyspw7do1KlhzrLS0VLaDLRAIZPeFQmGNI/UikajGjntUVBQKCgrQu3dvAHV33KWq9/+q\na+wAVkMHjmofbKpe2JAulx7xr13Y0NLSqjHyQlogkR5UkY7OqK+vR/7PixcvEBoaitDQUISHhyMn\nJwdmZmYYO3YsJk2ahAkTJsDIyIjrmOQ1USGBkHaitLQU3377LbZu3QpnZ2fs2rUL7u7uXMciRC5M\nTU2xZcsWLF++nOsohLQ5lZWV2LNnD7Zs2QJjY2Ps3LkT3t7eXMeSm3v37mHQoEEICgrCO++8w3Uc\n0kynTp3CrFmz8PPPP+ODDz7gOg7hCGMMd+/eRWhoKC5cuICIiAhIJBIMHz4ckydPhre3t6zQRNoH\nKiQQ0s6kpKTA398f//zzD2bMmIHt27fTeeSkwxkwYAAmTpyIr7/+musohLRZmZmZWLduHYKDgzF5\n8mTs2rWrQ14qEQAWLVqEv/76Cw8ePOjw5+N3JHfu3IG7uzs+/PBDbN++nes4pA0pLS1FeHg4zp07\nh3PnziEjIwN2dnYYP348PD09MXHixA4/2qq9o0ICIe3U2bNnsWLFCrx8+RKrV6/GJ598Uu95hYS0\nR97e3jAxMcHhw4e5jkJIm3f58mUsXboUqampWLNmDTZs2NDhhlzn5OSgZ8+e+M9//gM+n891HNIE\n2dnZGDx4MBwdHfH333/L5rcipLaqqircuXMHYWFhOHv2LK5fvy6bW2Hy5Mnw9fWFtbU11zFJLVRI\nIKQdKysrQ0BAAAICAmBnZ4fAwECMHz+e61iEtNjChQuRmpqKCxcucB2FkHZBLBZj79692LhxI6ys\nrLB79254eXlxHatVfffdd+Dz+UhKSoKtrS3XcUgjxGIxvLy8kJaWhujoaBgbG3MdibQjL168wJ9/\n/olz587h4sWLKCsrw8CBA+Ht7Y0pU6Zg0KBBXEckAGjKTELaMU1NTfD5fMTHx6Nv376YMGECfHx8\nkJqaynU0QlrEysoK6enpXMcgpN1QVVWFv78/4uLi0KNHD4wbNw6zZs1CdnY219FazYoVK2BlZYWV\nK1dyHYW8wvLly3H79m2cOXOGigik2aytrbF48WKcPXsWeXl5uHDhAtzc3HD48GG4urrCzs4O/v7+\niIyMrHdyTqIYVEggpANwcHDAiRMnEBoaikePHsHFxQV8Pr9Jl6skpC2ytLRERkYG1zEIaXfs7e1x\n7tw5nDlzBtHR0XByckJgYGCd69i3R+rq6tizZw9+++03nDt3jus4pAG7d+/G/v37cfToUZo8j7SY\nhoYGPD09ERgYiNTUVMTHx2P+/Pk4f/48PDw8ahQVGro8KZEPOrWBkA5GOrx106ZNMDc3R2BgICZN\nmsR1LEKa5a+//oK3tzeKiopqXL6LENJ01a/24+Ligr1792LYsGFcx2qx2bNnIyoqCgkJCTTxYhsT\nGRmJsWPHYsuWLdi4cSPXcUgHl5CQgJMnT+LEiRNISkqCiYkJJkyYgJkzZ2LixIk0L4ec0YgEQjoY\n6fDW5ORkDB8+HN7e3vDx8cHTp0+5jkZIk9nb2wMAnjx5wnESQtovLS0t8Pl8xMXFwdjYGCNGjICf\nnx9yc3O5jtYiO3bsQGFhIb755huuo5BqUlNTMX36dEyePBmffPIJ13FIJ9CrVy/w+XwkJiYiPj4e\nS5cuRWJiIqZMmQILCwv4+fnh7NmzEIvFXEftkGhEAiEdXGhoKFasWIHU1FSsW7cOa9euhaamJtex\nCGmUSCSClpYWTp48ienTp3Mdh5AO4eTJk/joo48gFovxzTffYOHCheDxeFzHei27du3C6tWrcffu\nXTg7O3Mdp9MrLi6Gm5sbeDwerl27RiNFCKeSkpJw6tQpnDp1CnFxcTA1NcX06dMxZ84cjBgxot1+\n7rU1VEggpBOoqKjAjh078OWXX8LIyAjbtm2Dr68v17EIaZSNjQ38/f2xevVqrqMQ0mEUFBTg008/\nxZ49ezBixAjs3bu3XZ7HLpFIMHz4cCgrKyMyMhLKyspcR+q0GGOYPXs2wsPDER0dLRtRRkhb8PDh\nQ5w6dQrHjx9HXFwcunfvjjlz5mDu3Ln0Wm0hOrWBkE5ATU0Na9euxYMHD2QzeY8ZMwb379/nOhoh\nDXJwcMDjx4+5jkFIh2JgYIDAwEDExMRALBZjwIAB8Pf3h1Ao5DpasygrK+PIkSO4e/cuvv/+e67j\ndGpffPEFfv/9d5w6dYp2zEib07NnT3zyySe4d+8e4uPj4evrix9//BEODg5wdXVFYGAg8vLyuI7Z\nLlEhgZBOxMLCAvv27UNUVJTsmryLFy9u9+fLko7J3t6eCgmEyMmAAQNw7do1HDhwAP/73//g5OSE\noKAgrmM1i7OzM7Zs2YLNmzcjISGB6zidUkhICD777DPs3LkTb7zxBtdxCGlUr169sHXrVqSnpyM0\nNBQuLi7YuHEjrKys4OPjg5MnT9J8Cs1ApzYQ0kkxxhAcHIy1a9dCLBZjy5YtWL58OQ0PJW3GV199\nhYMHD1IxgRA5y8/Px4YNG/Dzzz9j9OjR2LNnD5ycnLiO1SQSiQQjRoxAZWUloqKioKqqynWkTiMp\nKQnDhw/H9OnTcfDgQa7jEPJaCgsLERISguDgYISHh8PQ0BAzZszA3Llz4e7uznW8No1GJBDSSfF4\nPPj5+SE5ORkLFy7E2rVrMXjwYERGRnIdjRAA/w5HTE1NhUgk4joKIR1aly5dsG/fPly5cgU5OTno\n168f1q9fj/Lycq6jvZL0FIfExERs376d6zidRn5+PqZMmYJevXrhxx9/5DoOIa9NX18ffn5+CA0N\nxaNHj7BixQqEh4fDw8MD/fr1ww8//ECnPjSACgmEdHIGBgbYunUr4uLiYGZmhpEjR2LWrFlIS0vj\nOhrp5JycnCCRSJCSksJ1FEI6BQ8PD9y5cwfffvutbBLGv//+m+tYr+Tk5AQ+nw8+n4/4+Hiu43R4\nEokEc+bMQUVFBX7//XeoqalxHYmQVmFvb49PP/0UKSkpiIiIwLBhw8Dn82FtbY25c+fSwbZaqJBA\nCAEAODo64u+//0ZISAhiY2Ph4uICPp9PR4MJZ3r27AkVFRUkJSVxHYWQTkNFRQX+/v5ITk7GiBEj\nMGnSJPj4+LT54vKaNWswePBg+Pn50TnOcrZq1SpcvnwZp0+fhqmpKddxCGl1PB4P7u7u2LdvH7Kz\nsxEUFISnT5/Cw8MDTk5OCAgIoFEKoEICIaQWHx8fJCQkYPPmzdi+fTt69+6Nc+fOcR2LdELq6uro\n2rUrFRII4YClpSWCgoIQHh6OR48ewdnZGXw+HxUVFVxHq5eSkhL279+P5ORkfPfdd1zH6bCCgoKw\nc+dOHDhwAK6urlzHIUTuNDQ0MHPmTERGRiImJgYeHh744osvYGNjg4ULFyIuLo7riJyhQgIhpA5N\nTU2sW7dONpGSj48PvLy8kJiYyHU00sk4OzsjOTmZ6xiEdFpjxozBnTt3sGbNGgQEBKBv374IDw/n\nOla9HB0d8dlnn+Gzzz6jyxvLQVRUFBYtWoQNGzbg7bff5joOIQrn6uqKn3/+GRkZGfjuu+8QGRmJ\nfv36YcyYMfj9998hkUi4jqhQVEgghDTI2toaQUFBuHTpEnJyctC/f3/4+/ujqKiI62ikk3B2dqYR\nCYRwTENDQzb/gL29Pby8vODn54ecnByuo9Xx8ccfY9CgQZg3b16bHT3RHmVmZmLGjBl444038Pnn\nn3MdhxBO6enpYdmyZUhMTMT58+ehqamJGTNmoHv37ti2bRsEAgHXERWCCgmEkFd64403cOvWLWzb\ntg3BwcFwdnbG0aNHQVePJfLm4uKCBw8edLoqPyFtkYODA/766y+EhITgypUrcHR0RGBgYJt6f0qv\n4vDw4UOsX7+e6zgdQnl5OaZNmwYdHR0cP36cLhNNyP/H4/Ewbtw4/Pnnn3j48CHeeustfP3117C1\ntYW/v3+bn1umpaiQQAhpEhUVFaxYsQKPHj3CjBkzMG/ePAwZMgTXr1/nOhrpwPr06YOysjK6cgMh\nbYiPjw+SkpLg7++PtWvXYsiQIYiOjuY6lkyPHj2wf/9+7NixA2fOnOE6Tru3bNkyJCcn47fffoO+\nvj7XcQhpkxwcHLB161Y8e/YMfD4fv/32G7p374733nuvw15NhgoJhJBm6dKlCwIDAxETEwMtLS24\nu7vT5SKJ3PTq1Quqqqq4d+8e11EIIdVoaWmBz+cjJiYGmpqaGD58OPz8/NrMTOZvvfUW5s6diwUL\nFiAjI4PrOO3Wtm3bcPjwYfz6669wcXHhOg4hbZ6enh5WrVqFx48f46effkJsbCz69u2LyZMnIyIi\ngut4rYoKCYSQ1zJgwABcuXJFdrlI6Yze5eXlXEcjHYi6ujp69uxJhQRC2qi+ffsiIiIChw4dwvnz\n59G7d28EBQW1iVPf9u7dCyMjI7zzzjtt6vSL9iI0NBQbNmzAt99+i0mTJnEdh5B2RU1NDfPmzUN8\nfDxCQkIgEokwcuRIuLu7t9kJa5uLCgmEkBaRXi5yy5Yt+P7779GzZ88204kkHUO/fv2okEBIG8bj\n8eDn54fk5GTMmjUL77//PkaPHo2EhAROc2lra+PEiRO4efMmvvnmG06ztDdPnz7F22+/jdmzZ2PV\nqlVcxyGk3eLxePDx8UFoaCgiIyNhaGgIT0/PDlFQoEICIaTFpJeLTE5OxsSJEzF//nyMGTOGdv5I\nq6BCAiHtg6GhIQIDAxEdHY2ysjIMGDAA/v7+KC4u5ixTnz59sHXrVvD5fFy6dImzHO2JUCiEj48P\n7OzssG/fPq7jENJhuLm54ezZs7hy5QrU1NTg6emJMWPG4OrVq1xHey1USCCEtBpLS0vs27cPN2/e\nREVFBQYOHAg/Pz9kZ2dzHY20Y/3790d6ejpyc3O5jkIIaYKBAwfixo0b2L17N44cOQInJycEBQVx\nlmfFihWYPHlym5rDoa2qqqrCu+++i7y8PISEhEBLS4vrSIR0OCNHjsTFixcRGRkJbW1tjBo1Cl5e\nXu3uoAkVEgghrc7V1RWRkZE4duwYrly5AicnJwQEBEAkEnEdjbRD/fr1AwDcvXuX4ySEkKZSUlLC\nokWLkJycjDFjxmDevHnw8fHB06dPFZ6Fx+Ph0KFDUFJSwnvvvUen3jVi8+bN+Oeff3DixAlYW1tz\nHYeQDk06QiEsLAwCgQADBw7ErFmz8OzZM66jNQkVEgghcsHj8TBz5kzZJcL4fD769OmDkydPch2N\ntDNmZmaws7PDzZs3uY5CCGkmc3NzBAUF4dKlS3j69Cl69eoFPp+v8MKyoaEhgoOD8c8//2DPnj0K\nbbu9+O233/DNN99gz5498PDw4DoOIZ3G2LFjERMTg+DgYMTGxsLFxQUbNmxAYWEh19EaRYUEQohc\nSS8RlpKSgmHDhuGtt96Cl5dXh72mLpGPIUOGICYmhusYhJDXNGrUKNy5cwfffPMNtm/fjj59+uD8\n+fMKzTBy5Ehs2bIFq1atwo0bNxTadlt37949+Pn5YcWKFVi4cCHXcQjpdHg8Ht555x08ePAAO3bs\nwKFDh+Dg4IDAwEBUVVVxHa9eVEgghCiEtbW17KhUbm4uBgwYgMWLF9N576RJBg8eTCMSCGnnVFVV\n4e/vj+TkZPTv3x8TJkyAj48Pnj9/rrAMmzdvhre3N6ZPn46MjAyFtduW5eXlYfr06Rg2bBi2bdvG\ndRxCOjVVVVXZaWHvvvsuVq9ejSFDhiAqKorraHVQIYEQolCjRo3CrVu3cODAAYSEhMDR0RGBgYGo\nrKzkOhppw4YMGYKsrCyF7nAQQuTDysoKJ06cwJkzZ5CQkABnZ2cEBAQo5HuAx+PhyJEjMDAwwMyZ\nM1FRUSH3NtsysViMGTNmoKqqCseOHYOKigrXkQghAAwMDBAYGIj79+/D0NAQbm5u8PPzw8uXL7mO\nJkOFBEKIwikpKcmuOT5v3jysWbMGgwYNwsWLF7mORtooV1dXqKioIDo6musohJBW4uPjg4SEBKxe\nvRqffvopXF1dcf36dbm3q6urixMnTuDevXtYt26d3Ntry1asWIHY2FicOXMGxsbGXMchhNTi5OSE\n0NBQ/PHHH7h8+TIcHR3x008/cR0LABUSCCEcMjAwwPbt25GQkABHR0eMHTsWXl5eSEhI4DoaaWO0\ntbXh7OxMhQRCOhhNTU3w+Xzcv38f5ubmcHd3V8hRtz59+mD//v3YsWMHjhw5Ite22qr//ve/2Ldv\nHw4ePIg+ffpwHYcQ0ggfHx/Ex8dj9uzZ+PDDDzF16lTOT8+iQgIhhHM9evTAiRMncP78eWRlZWHA\ngAFYuXIlBAIB19FIGzJ8+HCFHK0khChejx498M8//yAkJER21E3ek4zNnj0bK1euxJIlS3D79u0a\nP8vLy8NHH32E9PR0ubWvCA8ePICFhQWOHTtWY/m1a9fwn//8B3w+HzNnzuQoHSGkOfT09LB3715c\nvXoVDx48gIuLC3766SfOLmlLhQRCSJsxbtw43Lt3D/v378evv/4KBwcHBAQEKPwyYaRtcnd3R0xM\nDMrKyriOQgiREx8fHyQlJWHRokVYtWoVhg4ditjYWLm19+2332Lo0KHw9fVFXl4eACApKQkDBw7E\n7t27sXv3brm1rQiHDh1CTk4O3n77baxfvx5VVVVIS0vD9OnTMWnSJGzevJnriISQZnJ3d8ft27fx\n/vvvY+nSpfD29kZ2drbCc/AYVyUMQghpRElJCb777jsEBATA1tYWX375JR016eRSU1PRtWtXXLly\nBSNHjuQ6DiFEzu7du4clS5YgJiYGS5cuxRdffAE9Pb0G14+Ojkbfvn2hoaHRrHZycnIwaNAgODs7\nY9WqVZgxYwZEIhHEYjFMTEyQmZkJZWXllj4chauqqoKVlRWysrIAAMrKyhg1ahQEAgFEIhFu3LjR\n6PNJCGn7bty4gTlz5qC0tBRBQUHw8vJSWNs0IoEQ0iZpa2uDz+fj4cOHGDp0KN566y2MHTsWd+/e\n5Toa4YidnR1sbW1x9epVrqMQQhSgX79+uHbtGg4cOIBff/0VTk5OCAoKqnfdmzdvYtiwYZg3b16z\nh/mampri5MmTuHTpEiZNmoTS0lKIxWJneIR3AAAgAElEQVQAwMuXL3HhwoUWPxYuXL58WVZEAACJ\nRIKIiAgkJydjx44dVEQgpAMYPnw47t69i7Fjx2L8+PHw9/dX2NVoqJBACGnTbGxsEBQUhKioKIhE\nIgwaNAh+fn41Okek8/Dw8EBERATXMQghCsLj8WRX+Zk5cybmz5+PMWPGICkpSbaORCLBwoULoaSk\nhBMnTmDr1q3NakMikeCPP/5AZWUlqqqqaszLoKKiggMHDrTa41Gk4OBgqKqq1lgmFoshFosxbdo0\nnDlzhqNkhJDWpKuri6NHj2L//v04cOAAPDw8kJqaKvd2qZBACGkXhgwZgoiICBw7dgwRERHo3r07\n+Hw+nS/fyXh4eOD69esKud48IaTt6NKlCwIDA3Hz5k0IhUL069cP/v7+KCkpwZ49e5CQkACJRALG\nGDZu3NjknWShUAgfHx9s27at3p9XVlYiJCQEubm5rflw5K68vBwnT56UjayorrKyEuXl5XjzzTcR\nEBDAQTpCiDy8//77iI2NRVlZGQYPHozIyEi5tkeFBEJIu8Hj8TBz5kwkJiZi8+bN+OGHH9CzZ0/8\n9NNPcp3Zm7QdI0eORHFxcZ0Z1gkhnYOrqytu3LiBgIAAHDp0CL169cKGDRvqfAfMnj0b8fHxjW6r\nqKgIrq6uCA0NhUQiaXA9xhh+/fXXVsmvKCEhISgtLW3w59KRF+vXr8dff/2lwGSEEHlycnLC9evX\n4e7ujrFjx+LgwYNya4sKCYSQdkdTUxPr1q1DcnIyJk2ahKVLl2LYsGE05L0TcHZ2hrW1NcLCwriO\nQgjhiIqKClauXImkpCQoKyvXOR+YMQaxWIwJEya8ciSBnp4eJBIJeDxeg+tUVVXh559/bpXsinLk\nyJFGJ4hUUVGBmpoavvzyS4VOzkYIkT8dHR2cPn0an3/+ORYsWIDFixfLZSQnFRIIIe2WhYUF9u3b\nh7i4OBgbG2PkyJHw8fHBkydPuI5G5Gjs2LEIDQ3lOgYhhGOPHz/G06dP6+0gV1ZWIicnB1OmTGlw\n4jE9PT1ER0fj8OHDMDQ0hIqKSr3rMcZw//79djPZr3SCyPqeFyUlJfB4PLi5uSEuLg4bN26sM48C\nIaT94/F4WLduHX755RcEBwfLrkbTmqiQQAhp91xcXPDXX38hNDQUT58+hbOzM/z9/VFYWMh1NCIH\nXl5euH79OoqLi7mOQgjhSEVFBT744AMoKTXclRWLxYiOjsaqVasaXEc6mePjx4+xatUqqKio1Ltj\nraqqisOHD7dGdLk7duxYvctVVVVhZGSEw4cP4/Lly3B0dFRwMkKIor399tsIDw/HlStXMHnyZJSU\nlLTatqmQQAjpMDw9PXHnzh3s2rULv/76KxwcHBAYGNjoua+k/fH09IRYLMaVK1e4jkII4cj27dvx\n+PHjV36+SyQS7N69+5WnJhgYGGDr1q2Ij4+Hh4cHANQoUojFYhw+fLjVj+jJw6FDh+pceUJJSQkf\nfvghHj16BD8/Pw7TEUIUbfjw4YiMjERCQgJGjx6N/Pz8VtkuFRIIIR2KqqoqFi1ahOTkZLz77rtY\ns2YNBgwYQEPhOxAzMzP07duX/qaEdGLh4eFgjEFJSQlqamqvXH/p0qVNmsHc0dER4eHhOHPmDMzN\nzWuc7lBUVIQ///yzRbnlLSUlBXfv3gVjDMC/xZBevXrh5s2b2LlzJ/T09DhOSAjhQq9evXDx4kVk\nZmbCy8sLeXl5Ld4mFRIIIR2S9FJh9+/fR7du3TBu3DhMmDABcXFxXEcjrWDcuHG4cOEC1zEIIRwJ\nCwtDeno6jh07hg8//BCDBw+WFRRUVFTqzHfAGMPkyZObPIeOj48PHj58iDVr1kBVVVV2ukNbn3Qx\nODgYjDGoqKhAV1cX+/btw+3bt+Hq6sp1NEIIx5ycnHD16lXk5+fDx8en0Su7NAWPSUuWhBDSgd24\ncQOrV69GVFQUfH198e2336Jr165cxyKvKTw8HJ6ennjy5Am6devGdRxCSBsgEolw584dREdH4+bN\nm4iMjERaWhqAf0ericViODk54ffff68ziqGgoAANdYlTUlKwfft2xMbGQklJCb/++iu6dOnS5Fwl\nJSUNTvjYVJqamtDQ0HjlenPmzEF2dja8vLywePFi6OvrAwC0tLSgrq5e7+9Iiw7VqaqqQkdH55XL\nCCHtz6NHj+Dm5obBgwfjjz/+aHCi2VehQgIhpNNgjOHUqVNYv349srKy8NFHH2HDhg2yjhZpP8Ri\nMUxNTfHZZ59hxYoVXMchpEMrKytDeXk5ysvLUVZWBpFIhNLSUlRUVMgm7ioqKpLNV1BYWCg7R7/6\nDnr1+wKBAMC/n8sFBQV17ldVVckmzJVIJCgqKqqRqXp7UtXbJYpRX3FBTU0N2traNZYZGhoC+Hdy\nSwMDAwD/nnYh/f6tfl9ZWVl2Ckb1Ikf1+9Xbrd6enp4elJWVoaurCxUVFejo6EBVVRXa2tpNOgWG\nkM4iJiYGY8aMwbRp0xAUFNToJXAbQoUEQkinU1FRgcOHD2PTpk2oqqrCmjVrsHLlSupktDNvv/02\ncnNzaa4E0ulId+gLCwshEolQXFyM4uJiiEQiFBYWynb8CwoKUFVVJds5l+68S3fopTveQqEQlZWV\nKC4uhlgslh1BLy0tfa3JBaU7bwBkO3TA/+3kAYC+vr5sMsPq9w0MDGQdWunOZ+37AOrdMWzqsur5\nGltWXfVczVV95/l1VC+qvI7KykoIhcIGfy59Pb1qmfR11dxl1QtB1e9XzyUWi2VX4ql+v3qxSlrA\naihfU0hHZmhoaMhGeWhqasqKEdIChbRoIS1qSAsd0uXa2tpQV1eHgYGBbBv6+vpQV1eHjo7OK19P\nhLQFf/75J6ZNmwY+n4+NGzc2+/epkEAI6bQEAgECAgIQGBgIW1tbfPnll5gxY8ZrdxaJYv3vf//D\nvHnzkJOT06JOOiHyIj3CXlRUBKFQKLsVFhaisLAQxcXFsoJA9Z1/kUiEkpISCIVCiEQiFBUVyXbq\npcWAxkh3bKQ77tId9VcdrZXuZEl3sKTbUVdXh5aWVoM7W8Crd8QJkZfqRYXaRTLpyJVXFcteNepG\nWvSQ/l+6ncZIixDS95WhoaHsvaSnpwd1dXVZUUJDQwP6+vrQ0tKCrq4udHR0YGBgAD09Pejq6spu\nNIKStLZdu3Zh5cqVCA8Px6hRo5r1u1RIIIR0emlpadi0aROOHj2KoUOH4rvvvoO7uzvXscgrFBYW\nwsTEBEFBQZg9ezbXcUgHwhiDQCBAQUEBBAIBBAJBjUKAUChEQUFBvcuqFw0au163vr4+dHV1ZTsQ\n0p13AwMDqKurQ1tbG7q6ulBXV2/yzoj0CCkhRP6kI0WaUwSUFiiKioogEolknxMikQgFBQUoKyuD\nUCiUjcioj76+PnR0dGoUF6SfJ9IiRO1lurq6MDQ0hIGBAQwNDakgQWrw9fXFtWvXcPfuXZibmzf5\n96iQQAgh/19MTAzWrFmDK1euYPLkydixYwccHBy4jkUaMXbsWJibm+OXX37hOgppg8rKymSFgObc\nXr58icrKynq3qaGhAUNDQ9lNWgBozjJTU9PXntyKENI5SD+/pKMkqn9GNXWZdHl9an9GNfVmYmJC\no486mIKCAgwcOBCOjo74888/ZaeavQoVEgghpJawsDCsXLkSDx48wPz58/HFF1/A1NSU61ikHoGB\ngeDz+cjOzqY5LjowsViM3Nxc5ObmIi8vDzk5OXj58qVsWW5uLnJycpCbm4v8/HwIBIJ6RwOoqKjI\njshJb9X/39jPqp/rTwgh7YV05EPtUVa1/1/7Z9Jl9e0q6unpwdDQEEZGRjA1NYWxsTGMjIxgbGwM\nExOTOsuMjY2bvHNKuBEdHQ13d3fs2LEDS5cubdLvUCGBEELqUVlZiYMHD+LTTz+FSCTCunXr4O/v\n36TLbxHFef78Oezs7HD27Fl4e3tzHYc0UWVlJXJycpCVlYXMzMwaxQBpgSAvL0+2TDpZoJSSklKN\nDqqxsTFMTU1hYmKCLl26NFgQqH2JO0IIIY2TFhjqK0Lk5ubWKeq+fPmyzlwuPB5P9lndUMHBxMQE\nVlZWMDU1hampKc1XxYG1a9di//79ePjwIYyNjV+5PhUSCCGkESUlJdi9eze++uorGBgYYNOmTViw\nYAFV1tsQNzc3ODg4ICgoiOsonV55eTny8/ORmZmJjIyMOv8KBAJkZmYiLS2txqkD9Q2xtbS0hIWF\nRb3L6NQAQghp2wQCgexzX3qr/l1QfVl6enqdK8QYGhrCwsJC9rlf+19DQ0PY2tpSgbgVCYVCODk5\nYcqUKfjvf//7yvWpkEAIIU2Qnp6Ozz//HAcOHED//v3x3XffYfTo0VzHIgB27tyJTZs2ITs7G5qa\nmlzH6bBevnyJ58+fIy0tDampqUhLS0NGRgYyMjKQk5ODFy9e1JggjMfjyY4sWVtbw9TUFJaWljA3\nN4eFhQUsLCxgZmYGS0vLOtecJ4QQ0rkUFhYiIyMD2dnZSE9PR05ODtLT05GdnY3MzExkZmYiKysL\n+fn5NX7PyMgI5ubmsu8Wa2tr2NjYwNbWFl27doWNjQ1NLtkMwcHBmDdvHqKiojB48OBG16VCAiGE\nNENSUhI+/fRTnDx5Ep6enti+fTv69u3LdaxOLSsrC9bW1jhx4gSmT5/OdZx2SSQS4cWLF0hLS8Pz\n58/x7NkzWdFAWjiofs12MzMz2NrawtLSElZWVrKCQPXOnJmZGY0aIIQQ0qpEIlG9xYaMjAxkZWXJ\nvruqn16hr68PGxsbdO3aFba2trJCg62tLezs7GBpaQllZWUOH1XbwRjDiBEjYGxsjLNnzza6LhUS\nCCHkNVy4cAFr165FQkIC3n//ffD5fFhYWHAdq9MaPXo0TE1Ncfz4ca6jtFn5+fl49OgRUlJSZLcn\nT54gNTUVWVlZsgm1NDQ0ZB0sGxsb2NnZwc7ODjY2NrLOF80VQgghpC0rLi6WjZ6TFsmrj6hLT0+H\nWCwG8O9EvJaWlrCzs0P37t3Ro0ePGv/q6Ohw/GgU648//sD06dORmJgIJyenBtejQgIhhLymqqoq\nBAUFYcuWLcjLy8N//vMfrF27lobQceDHH3/EqlWrkJOT06mHyRcWFiIlJaVOwSAlJQV5eXkAADU1\nNdjb26NHjx5wcHCQDf2UFg7MzMw4fhSEEEKIfFVVVSEzM1NWWHj+/DlSU1Nl36GpqamQSCQAAEtL\nS/To8f/Yu/O4qKr/f+CvYUd2QfZNUBYR3BfcM3FL0fyoZaWlJmqhfNRSP62mllmZldqCaYallpqm\nZhq4ISqKuLCpgOzrIOsAwrCc3x997/3NwLAMMFyW9/PxmAfMXc553zt37tz7vuee21cuwcD93xVv\nqaytrYWLiwumTZuGXbt2NTgdJRIIIaSVpFIpDhw4gPfffx/V1dVYv349Vq9e3SV/XDqqvLw82NjY\nYN++fVi4cKHQ4ahcaWkpYmJicP/+fdy/fx/R0dGIj4+HWCwGAGhqasLR0RF9+/aFi4uL3IGPvb09\nNeEkhBBCGiGVSpGcnIz4+Hg+Ic8l6dPT01FbWwuRSARbW1u4uLhgwIAB8PLygpeXFzw8PDr9I6l3\n7tyJ9957D+np6ejZs6fCaSiRQAghbaS0tBR79uzBxx9/DCMjI7z//vtYsmQJ3SfeTp5//nkUFxfj\n4sWLQofSppKTkxEVFcW/7t27h6SkJNTW1sLQ0BBeXl7w9PSEu7s7f4XE0dGRtjtCCCFEBSorK/mk\nQmJiIh4+fIh79+4hNjYWFRUV0NTUhJubG59YGDhwILy8vGBpaSl06M1WXFwMKysr7NmzB4sXL1Y4\nDSUSCCGkjeXl5WHHjh3YuXMnnJycsHnzZsydO5eeiaxip06dwuzZs5GQkABnZ2ehw2mR9PR0XL9+\nHeHh4YiMjERUVBSKi4shEong5OTEX/Hg/vbu3Zu2K0IIIaQDqK6uRkJCAt9a8P79+4iKikJmZiYA\nwNzcHAMGDMDw4cMxcuRIjBw5EmZmZgJH3bCpU6fCyMiowf6nKJFACCEqEh8fj/feew/Hjh3D8OHD\n8emnn2LChAlCh9VlVVdXw97eHn5+fti0aZPQ4TSJMYbY2FhcvHgRoaGhuHHjBrKysqChoQFPT08M\nHz6cv4rh6elJz8omHY5sEqu7Hk6mpaXB0dERrq6uePDggWBxVFRUYOvWrTh8+LDcvd1CfS4NJTgN\nDAxgY2OD0aNHY9myZRgxYkQ7R0aUQd/xtpGfn4979+4hKioK9+/fx82bN/Ho0SMwxtC3b1+MHDkS\nEyZMwMSJE+Ho6Ch0uLyvvvoKmzdvhlgsVtjKkRIJhBCiYhEREfjf//6HCxcuYNKkSfj8888xcOBA\nocPqktavX4/ff/8dSUlJUFNTEzqcevLy8nDmzBkEBwfj4sWLyM3NhbGxMcaNGwdvb294e3tj6NCh\n3brDSNK5cCca3fVw8qOPPuITl9euXcOoUaNUWt/YsWMBAFevXpUbvmHDBnz22WfYunUr1qxZg7Cw\nMEyZMkXwz0V2+2CMobCwEHfu3MGePXtw8uRJLF26FHv27IG2tragcXYnDW1DDenu33FVKSgoQHh4\nOMLDw3H9+nVcv34dT58+hZOTEyZOnIipU6diypQpgj4x4uHDh3B3d29w30aJBEIIaSchISHYuHEj\n7t69i//85z/Ytm1bp22C31E9evQIbm5uCAkJwbPPPit0OAD+vWL522+/4c8//0R4eDg0NTUxfvx4\nTJw4ERMnTsSgQYOo80MiuJaeLLTFSYZQJyqtrZcxBicnJ/Tr1w9nz57F0qVL8eOPP6o0ptGjRwP4\nN2khy9HREampqcjPz2+wY7S21pz119g027ZtwzvvvINXX30VBw4cUGkcqtBZT7Ab2oYa0l7L2VnX\nZ1uprKzEjRs3cPHiRVy4cAE3b96EpqYmJk6ciFmzZmHu3Lnt9t2WZWdnhzfffBMbN26sN44SCYQQ\n0o4YYzh27BjeffddpKSkYPHixdi8eTM9cq8NeXt7w9HREYcPHxYshsrKSpw4cQL79+/HhQsXYGJi\nghkzZsDX1xdTpkyhFgekw6FEgvIuXLiA9evX4/Dhw3B1dYWBgQGys7Nb9f1uaUzq6uqora1t13XY\n2kQCAEyYMAFXrlzB5cuXMX78eJXFoQrd5cSXEgnCePLkCf766y/8+eef+Oeff1BdXY3Zs2dj8eLF\n8PHxabdWl9OnT4epqSkOHjxYb1zHa/dJCCFdmEgkwrx58xAbG4vdu3fj9OnT6NOnDzZu3IiSkhKh\nw+sSVq5ciePHj/OdG7UnqVSKwMBA9OnTBy+//DIYYzhy5AiysrJw4MABzJkzh5IIhHQR+/fvx+LF\ni+Hi4oLRo0dDIpHg6NGjgsRSW1srSL2ttWLFCgBodUsOQroaMzMzvPrqq/jjjz+Ql5eHgwcPIj8/\nH9OmTYOXlxeCgoL4vlBUyd3dHfHx8QrHUSKBEEIEoKmpCT8/PyQkJOC9997D999/D2dnZ2zfvh2V\nlZVCh9epvfDCC+jZsycCAwPbtd4LFy6gT58+WLNmDf7zn/8gNTUVwcHBmDdvXqd/nnRbEolE/Csu\nLg5Tp06FoaEh9PX18dxzz9XrsE52+sePH2POnDkwMTHhh3HEYjFWrlwJW1tbaGlpwcbGBn5+fsjJ\nyWmX+nNycrB8+XK+fltbW6xYsQK5ubn11kFFRQU+/fRTDBo0CHp6etDR0YGbmxtWrFiB8PDwZq3H\nkJAQ+Pr6wsTEBDo6Ohg8eDCOHDnS6PpuKH7Z5eCGv/7663LlxMbGYvr06dDX14eRkRGef/55pKWl\nNRifMp9HU3U3tyyg+eu2OfU2pri4GGfPnsVLL70EAFiyZAmAf5MLirTF5yBbRt2y604j2wy5udsK\n0H7rj+Pt7Q0AuH79utzwrrr9NHd/0pLvt7L7s7qU/Y639z6oO9PV1cW8efMQHByMqKgoeHl5YcmS\nJRg+fDhiY2NVWreVlZXC7woAgBFCCBHckydP2IYNG5iOjg5zcHBgP/zwA6uurhY6rE7r3XffZebm\n5qyioqJd6vv444+ZSCRi8+bNYzk5Oe1SZ2cGgAFgo0aNYmFhYUwikbCQkBBmaWnJTExMWHJyssLp\nfXx82LVr11h5eTk7e/Ys4w5jcnJymIODA7OwsGDnz59nEomEhYaGMgcHB9a7d29WWFio0vqzs7OZ\nnZ0ds7a2ZhcuXGAlJSV8eQ4ODnLbRElJCRs6dCgzMDBge/fuZTk5OUwikbBLly4xd3d31txDMwBs\n9uzZLC8vj6WmpjIfHx8GgJ07d67B9d1Q/LLTKJKYmMiMjY355ZNIJOzKlStsypQpCudr6eehiDJl\nKbtuG6u3Kd999x2bN28e/14ikTA9PT0GgCUkJCicp7WfQ2PjG5uvuduKKtZfU9NUVFQwAExXV5cf\n1tW3n+ZuB8p+v5Xdn8lS9jve0hhbs+0TeXFxcczb25vp6Oiw33//XWX1HDhwgPXo0UPhOPq0CCGk\nA0lLS2N+fn5MXV2deXh4qPTHoSvLzMxkmpqa7Ndff1V5XUFBQUwkErFvv/1W5XV1FdwB49mzZ+WG\nHzhwgAFgr776qsLpL126pLC85cuXMwBs3759csP/+OMPBoC98847Kq1/2bJlDAA7ePCgwvKWL1/O\nD1u7di0DwL766qt65dy5c0epRILsCcKDBw8YADZ27FiF0zYWv+w0irzyyisKl+/EiRMK52vp56GI\nMmUpu25bc+IybNiwetvPa6+9pnD56tbX0s+hsfFNJRKas62oYv01NU15eTkDIHei0tW3n+ZuB8p+\nv5Xdn8lS9jve0hhbs+2T+qqrq9nq1auZjo4Ou3Hjhkrq+PXXX5mmpqbCcfRpEUJIBxQVFcVmzJjB\nALCJEyeq7AeiK5s7dy4bOXKkyutxcHBgq1atUnk9XQl3wFhUVCQ3PCMjgwFgVlZWCqcvKytTWJ61\ntTUDwLKysuSGP3nyhAFgnp6eKq3fysqKAWCZmZkKy7OxseGH2dvbMwAsJSVFYVktVV1dzQAwU1PT\neuOail92GkUsLCwULl9eXp7C+Vr6eSiiTFnKrtuWnrjExMQwa2vreq3GQkND+c9bUYuy1n4OjY1X\nZlka2lZUsf6amiYpKYkBYM7Ozvywrr79NGc7qKs5329l92eylP2OtzTG1mz7RLGamho2adIk9txz\nz6mk/EOHDjF1dXWF46iPBEII6YA8PT1x+vRphIaGorKyEt7e3pg5cybu3bsndGidhr+/P8LDw3Hr\n1i2V1VFbW4uMjAz+Pl+iHCMjI7n3ZmZmAIC8vDyF0/fo0UPhcLFYDACwtraWux+XK+/x48cqrZ+b\nnpu/bnlcfACQnZ0NALC0tFRYVnMUFRXhnXfegbu7OwwMDCASiaChoQEAyM/Pb3C+huJvypMnTwA0\nvHx1tfTzaG1ZbbFum2Pfvn3IysqChoaGXEzjxo0DAGRmZuKff/5pcP6Wfg4tocy20l7rTxbXNwL3\nSEKg628/nIa2g5Z+v5Xdn8lS9jve3vsg0jA1NTWMHDkSqampKim/pKQEhoaGiutWSY2EEELaxNix\nYxEWFobg4GDk5uZi8ODBmDlzJu7fvy90aB3e+PHjMWTIEHz22Wcqq0NNTQ2jR4/Grl27UFFRobJ6\nuqq6B5zcwWyvXr2UKod7fGpBQQHYv60t5V5lZWUqrd/c3Fxu/rrlceNlY+VOWlpi/vz52LZtG154\n4QWkpqbyy6kq3MlE3eUrLi5WOH1LP4/WltUW67YpVVVVOHToEJKSkhTGs3XrVgANd7rY3pTZVtpj\n/dX13XffAQCWLVtWL46uuP00R0u/363Znyn7HW/vfRBpWE5ODn7++WeMHTtWJeUXFxfXS1JxKJFA\nCCGdwKRJk3Dr1i38888/yMzMxODBgzF//nwkJCQIHVqHtmHDBpw4cQJxcXEqq+PHH39EfHw8Zs2a\n1XDPxkSha9euyb0PCQkBAEyePFmpcmbPng0AuHz5cr1xV69ebbDFSFvVP3PmTAD/PrlDUXnceAD4\nz3/+AwA4efJkvXLCw8MxYsSIJuvj4l63bh169uwJAK1+2gt3pbCqqgrl5eVyVyK59VF3+W7cuKGw\nLGU/j8bqVqYsZddtY/U25PTp03B3d0fv3r0Vjn/ttdegrq6OU6dONXpltiEtiakxymwr7bH+ZG3d\nuhXXrl3DkiVLMGbMGH54V95+mqOl3+/W7M+U/Y639z6IKBYbGwsfHx/o6+vj448/VkkdKSkpsLe3\nVzyyzW6gIIQQ0i5qamrY77//zlxcXJimpiZbuHAhS0pKEjqsDqmmpoa5uLiwpUuXqrSeiIgI5uzs\nzMzMzNj333/PKisrVVpfZ4f/uxd22rRp7OrVq0wikbALFy4wKyurZvcyLisvL4/17duXWVlZsaNH\nj7InT56wkpISdvr0aebk5MQuX76s0vq5nuFln9rAlVf3qQ2FhYWsf//+zMDAgAUGBvI9w587d471\n7duXhYSENFk315P6//73P1ZYWMjy8/P5juIUxdlU/IwxNnLkSAaAhYWFsSNHjrAZM2bw4x4/flyv\nR/dr166xcePGKSxb2c+jsbqVKUvZddtYvQ2ttxkzZrADBw40ui6nT5+usNO+1n4OjZXR0HBltpW2\nXn9146qtrWWFhYUsODiYzZo1iwFgy5Ytq7e/7MrbT2PDOS39frdmf6bsd7y990FEXmFhIfvwww+Z\njo4O8/b2ZqmpqSqry8fHhy1evFjhOEokEEJIJ8UlFJydnZmWlhbz8/Or16EUYWzv3r1MU1NTpT+0\njP37+LfVq1czbW1tZmdnx3bu3Mny8/NVWmdnxR1UJicnsxkzZjADAwOmp6fHpk2bxuLi4hROK/tS\npKCggK1du5b17t2baWpqMgsLCzZz5kyFHZWqov6cnBy2fPlyZm1tzTQ0NJi1tTXz8/NT+DhQiUTC\n3nvvPebq6sq0tLSYqakpmzx5Mvenm2kAACAASURBVAsNDW0wVlm5ubls4cKFzNzcnGlpabH+/fuz\n3377TWGMzY0/IiKCDRgwgPXo0YONHDmSPXr0SG58TEwMmzZtGtPT02P6+vps8uTJLDY2tsFylfk8\nmqpbmbKUWbdN1dvYunz22WcVrseG1ndbfA4Nzd9Y2cpsK225/hTFBIDp6ekxV1dXtnTpUnbz5k2F\n64Cxrrn9NLRe6lL2M2vN/kyWMt9xIfZBhLGUlBT23nvvMWNjY2ZsbMy2b9+u8keFm5ubs507dyoc\nJ2KMbmghhJDOrKqqCj/99BM++ugjFBUV4fXXX8e7774rd192d1ZVVQVnZ2fMnz8fX3zxhcrry8zM\nxPbt2/HTTz+hqqoKvr6+WLRoESZNmgQdHR2V198ZiEQiABDsnlqh6yeEkLZC+7Ourbi4GKdPn8bP\nP/+MixcvwszMDKtWrcKqVasa7LugrSQnJ8PJyQlhYWFyHaJyKJFACCFdhFQqxYEDB/Dhhx+itLQU\nb775JjZu3AhjY2OhQxPcjh07sGnTJqSkpMDU1LRd6iwtLcXRo0fx008/ISwsDHp6epg6dSpmzZqF\nqVOnduv7P4U+8BW6fkIIaSu0P+t6UlNT8ddff+HkyZO4cuUKGGOYNm0aFi9ejOeeew6amprtEseP\nP/6IgIAA5OfnK7wQQokEQgjpYsrKyrB7925s374dIpEIq1atwrp162BgYCB0aIIpLS2Fs7MzXn31\nVZU+xaEhGRkZOH36NE6ePInLly+jqqoKXl5emDhxIiZOnIhx48Y1+HilrkjoA1+h6yeEkLZC+7PO\nLzc3F5cuXcLFixdx8eJFPH78GAYGBpg6dSp8fX0xffp0vlPL9jRnzhxUV1fj1KlTCsdTIoEQQroo\niUSCb7/9Fp988gm0tbWxbt06BAQEdNvm9Tt37sQ777yDxMRE2NjYCBaHRCLB5cuX+QOG6OhoqKmp\nwcPDA97e3hg1ahRGjhwJFxcXwWJUJe6gl9PehyFC108IIW2F9medT01NDWJiYnD9+nXcuHEDN27c\nQGJiIjQ0NDB8+HD+AsOoUaOgra0tWJwSiQSWlpb46quv5B7PKosSCYQQ0sU9efIEX3zxBb755huY\nmZlh3bp1WLFihaA/UEKoqKiAi4sLfH19sXv3bqHD4YnFYoSFheH69esIDw9HZGQkKioqYGJiggED\nBsDLywteXl4YMGAAPDw8oKurK3TIhBBCCGlCcXExoqOjERUVhfv37+P+/fuIiYlBWVkZDA0NMWLE\nCHh7e8Pb2xujR4/uUC1HDxw4gOXLlyMrK6vBW0IpkUAIId2EWCzGl19+ia+++gpWVlb43//+h6VL\nl0JdXV3o0NpNYGAg/P398fDhQzg5OQkdjkJSqRR37txBZGQk7t+/j6ioKP7AQ11dHS4uLnxigUsy\n2NnZCR02IYQQ0i3V1tYiKSkJ9+7dQ1RUFP9KTk4GAJiYmMhdFBg2bBg8PDw69PHX2LFjYWFhgWPH\njjU4DSUSCCGkm0lOTsbmzZtx8OBBuLm54aOPPsKcOXPqNZHsimpqavhbCH766Sehw2m22tpaPH78\nmL+iwR2kpKSkAAB69uwJFxcXuLi4oG/fvujbty/69OmDvn37dqu+FwghhBBVefLkCRISEuq94uPj\nUVpaCnV1dfTt27dest/e3l7o0JUSGRmJoUOH4tKlS5gwYUKD01EigRBCuqnk5GR8+umn2LdvH9zd\n3fH222/j5Zdf7tAZ8rZw6NAhLFq0CFFRUejXr5/Q4bRKcXExoqKiEB0djfj4eMTHxyMxMREpKSmo\nqqoCAFhYWPDJhbpJBj09PYGXgBBCCOk4CgsLFSYLEhISUFRUBADQ0dHhf0f79OkDV1fXLnX74YIF\nC/Dw4UPcvXu30ekokUAIId1cdHQ0tmzZguPHj8PDwwPvvfce5s6dCzU1NaFDU4na2loMGzYMZmZm\nOH/+vNDhqERVVRVSUlKQmJiI+Ph4uQOhtLQ01NTUAACsrKzg4OAAOzs72Nvbw97enn9vZ2eHXr16\nCbwkhBBCSNtgjCE7OxtpaWlIT09HWloa0tLSkJqaivT0dKSmpiI/Px8AoKWlBScnJ4WJeDs7uy57\njBQbGwsvLy8cOXIE8+bNa3RaSiQQQggBAMTFxeHTTz/FoUOH4Orqig0bNnTZFgrXr1/HmDFjcPLk\nSfj6+godTruSSqVISkpCfHw8kpOTkZKSwh9QpaenIycnh59WV1cXDg4OsLe355MNsokHW1vbbvsU\nEEIIIR1LaWkpnxxIT0/nkwPcsIyMDEilUgCAuro6LC0t4ejoyP/GOTg4wNnZGX379oWDg0OXPP5p\nypw5c5CUlIQ7d+40mSyhRAIhhBA5SUlJ2L59O/bv3w97e3ts2LABS5YsgYaGhtChtakFCxYgIiIC\nsbGx3e4JFo2RSqXIyMhAVlYWsrOzkZSUhKSkJP59fHw8JBIJP72Ojg6sra1hZWXF/zUxMak3zMrK\nqlv0w0EIIaRtPX36FNnZ2fzvUEN/CwsL+Xm43yYnJyf+t8jJyYl/2dnZQVNTU8Cl6nj+/vtvTJ8+\nHX///TemTp3a5PSUSCCEEKIQ14fC/v37YWdnh40bN3aphEJGRgbc3Nzw/vvvY8OGDUKH06nk5uYi\nPT0dWVlZyMrKQk5ODrKzs5GdnY2cnBxkZWVBLBbz/TQA/x7UcQkFS0tLWFtbw8LCAjY2NjAzM+Nf\n5ubmMDIyEnDpCCGEqBJjDPn5+Xjy5An/ys3Nlfstyc3NRWZmJsRiMd+KAPj3t4T7DTE3N4etrS3M\nzc1hY2MDCwsL/tY8ExMTAZew8ykvL4enpyeGDx+Ow4cPN2seSiQQQghpVEpKCrZt24affvoJNjY2\n+O9//4sVK1Z0iav4H330EXbs2IFHjx7ByspK6HC6nNzcXIjFYmRmZiI3N1cu2SCbdCgrK5ObT1NT\nk08smJqawtzcHL169eLfcwmHXr168e+7wvZICCGdUXl5OZ48eYK8vDzk5eXxyYH8/Hzk5eVBLBbz\n77lxtbW1cmUYGxvDysqKTzDLJgmsra1haWnJt3gjbe/tt9/G3r17ERcXB2tr62bNQ4kEQgghzZKa\nmoovv/wSP/zwAywtLbFmzRosX768U98jX15eDnd3d4wfPx5BQUFCh9NtPX36lD+45A44ZQ86c3Nz\n6x2Ech1GcgwMDPjEgomJCUxMTGBsbMz/r+g9N4xuuSCEdHfV1dUoKipCYWEh/2rsfUFBAb9PLi8v\nlytLS0urXksz2eSwmZkZLCws+P/NzMygpaUl0JKTqKgoDB06FLt374afn1+z56NEAiGEEKWkpaVh\nx44dCAwMhLm5OdauXdupEwp//fUXZsyYgXPnzmHKlClCh0OaqW6z2Pz8fIjFYhQUFDR44Ms9uqsu\n2QRDQ8kGAwMDGBgYQF9fH8bGxjA0NOSH0WM0CSFCKykpgUQi4V/FxcVyw5pKEsj2fcNRU1NrdN9Y\nNznQq1cv9OrVC4aGhgKsAdIST58+hbe3NwwMDHDlyhWlnkZBiQRCCCEtkp6eji+++AJ79+6FmZkZ\n1q1bBz8/v075DOV58+YhIiICMTEx0NfXFzocoiKMsXoHz01ddeP+l0gkqKysVFiuSCSSSy7o6+vD\nwMCg0WHce319fejr60NHRweGhobo0aMH3aZBSDdQXl6OyspKFBYWoqKiAk+fPkVxcTEkEglKS0v5\nZEBxcTH/vrFhDenRowe/72mshZai99RfTde3ZMkSnDx5Erdv34aTk5NS81IigRBCSKvk5uZi586d\n+Oabb2BgYIC1a9di9erVnSqhkJOTg379+mHx4sXYsWOH0OGQDqqqqoq/sldSUiJ3IN/QMNkrhKWl\npXxSorq6utG6TExMoK2tjR49esDIyAja2tp80kFbWxtGRkbQ1dWFjo6O3LSGhobQ1tbmkxSampr8\nXy5Jwc1HCFGsrKwMUqmUP9nnTvRlT/grKipQVlbGJxlLSkpQXl6OiooKFBUVyU1bWVnJ7xu4aRvD\nfYcNDQ1hZGQk1yLKyMiIH8YlJLlh3HvZYcpcYSbdS2BgIFasWIE//vgDs2fPVnp+SiQQQghpE2Kx\nGF9++SV27doFfX19rF27FqtWrUKPHj2EDq1Z9u3bBz8/P4SFhcHb21vocEgX9/TpU/7EoqysDBUV\nFSguLuZPVgoLC1FZWYny8vIGT0QUnbQUFRWhuYd2Ojo60NXVhZaWFvT09Pikg4aGBgwMDKCmpgYj\nIyO+xQUAvqMz7gTF0NAQ6urqctNw8wH/Pquda+bMlQuArwsAXz/pvkpKSvh+T4qLi/mO+GS3Z+7R\nflzLIgCora3lr8ZLpVKUlZWhqqoKpaWlqKmpQUlJCT+N7HxcuVxdXP2lpaVyT5tpDLc9yyb3uGRd\nQ4lAAwMDaGtrw9DQEHp6etDW1oaxsTH/XTQ2Noa+vj71F0BU7t69exg1ahTeeustbN68uUVlUCKB\nEEJIm8rJycHnn3+O77//HgYGBnj77bexfPnyDn/LAGMMkyZNwpMnT3D79m16vjTptLgTKu7kiPvL\ntYRo6Gorl7jg5q+uroZEIql3Qgb8/5M67oSMm7a1uJMv4P8nOgAobEWh6GprY8PKysr4hIWiTjab\n0/EmlzhpiZZ07Nma9cp9jsqWr2gYd3LekmHc9gZA7kS9OS1zmoNbr9yJPZe8UpQA46blPkcDAwNo\naGhAT08PWlpa9VrtcNsjl+zi/rZmOyBEaPn5+Rg6dCj69u2Lv//+u8XbMiUSCCGEqIRYLMYXX3yB\n7777Dtra2vD398eqVatgamoqdGgNSkxMxIABA7BmzRps3bpV6HAI6ZRkTyZlT2a5RAUAPnkBgG+F\nAfz/+8aBhk9AAfmr0hzZRIfssIKCAiQnJyMtLQ0DBw6EsbFxvem4ZEljZGNWluwyKos7gW0J7raW\nxtR9nJ7sCbiyw2Rbo3AaSgjJ9gciu4yyMXMn+oB8Eoea7BPSMuXl5fDx8UFGRgYiIyNhZmbW4rIo\nkUAIIUSl8vPzsWvXLuzevRsVFRVYunQp3nrrLdjZ2QkdmkLfffcd/P39cfHiRYwfP17ocAghrXD6\n9GmsXr0aRUVF2LRpE958803+xJQQQrqTqqoqzJ49G7du3UJoaCjc3d1bVR4lEgghhLSL0tJS7Nu3\nD1988QXEYjFeeOEFvPPOO3BzcxM6tHp8fX0RExODe/fu0WOsCOmEEhISEBAQgHPnzuGVV17B559/\nDgsLC6HDIoQQQdTU1GDRokU4deoULl68iGHDhrW6TGoTRAghpF3o6+sjICAAjx8/xt69exEREQEP\nDw/MnDkTt27dEjo8OT/++CPKy8uxYsUKoUMhhCihvLwcmzZtgqenJ7Kzs3H16lUEBQVREoEQ0m1V\nVVXh5ZdfxokTJ3Dy5Mk2SSIAlEgghBDSzrS0tLBo0SLExsbi5MmTyM3NxYgRIzBmzBicPn1a6PAA\nAObm5ggKCsJvv/2G3bt3Cx0OIaQZTp8+jX79+uHrr7/G9u3bcfv2bYwePVrosAghRDBSqRQvvPAC\nzpw5g1OnTuHZZ59ts7IpkUAIIUQQampqmDlzJm7evImzZ89CXV0dvr6+GD16NE6dOsU//ksokydP\nxocffoi1a9fi2rVrgsZCCGlYfHw8pk6dilmzZmHcuHF49OgRAgICqFd9Qki3VlxcjOnTp+PSpUsI\nDg7GpEmT2rR8SiQQQggRlEgkwrRp03DlyhWEhYWhZ8+emD17Njw8PPDjjz/yPbgL4b333sOkSZOw\nYMECiMViweIghNTH3cbg5eUFsViMsLAwBAUFwdzcXOjQCCFEUElJSRg1ahQePnyIS5cuwdvbu83r\noM4WCSGEdDiJiYnYtWsXAgMDYWhoiJUrV2L16tXo2bNnu8dSUFCA4cOHw8LCAhcvXuQfV0YIEc7p\n06fh7+8PiUSCDz/8EP7+/tQCgRBCANy4cQOzZ8+GpaUlTp8+DXt7e5XUQy0SCCGEdDh9+vTB119/\njZSUFKxcuRK7du2Cg4MDli9fjoSEhHaNpWfPnjhz5gzi4uKwbNmydq2bECIvPj4eU6ZMwaxZszB+\n/Hg8fPiQbmMghJD/ExgYiAkTJmDIkCG4evWqypIIACUSCCGEdGAWFhbYtGkTUlNTsXXrVpw7dw5u\nbm583wrtxc3NDYcPH8ahQ4ewbdu2dquXEPKvsrIy/mkMeXl5uHbtGt3GQAgh/0cikWDBggVYsWIF\n1qxZgzNnzqj88dV0awMhhJBOo7a2Fn/99Re2bNmCiIgIjB49Ghs2bMCMGTMgEolUXv+uXbsQEBCA\nn3/+GQsXLlR5fYSQf29jePPNN1FaWkq3MRBCSB137tzBggULUFRUhEOHDrXpkxkaQy0SCCGEdBqy\nT3o4f/48dHV14evri4EDB+LAgQMq75hx1apVWL9+PZYuXYq///5bpXUR0t09evQIkydPxqxZszBh\nwgR6GgMhhMiorq7Gli1bMHLkSFhbW+Pu3bvtlkQAKJFACCGkExKJRJg8eTKCg4Nx584deHp6ws/P\nDw4ODvjoo4+Qm5ursrq3bduGl156CfPnz8etW7dUVg8h3RV3G4OXlxfy8/Nx/fp1BAUFoVevXkKH\nRgghHUJSUhKeeeYZfPLJJ9iyZQtCQkJgbW3drjHQrQ2EEEK6hJycHHz//ffYs2cPSkpKMGvWLKxb\ntw4jRoxo87qqqqowZ84chIWF4Z9//sGwYcPavA5CuiPuNoaysjJ88MEHdBsDIYTIkEql+Pzzz/Hx\nxx+jf//++Pnnn+Hu7i5ILNQigRBCSJdgaWmJTZs2ISMjA3v37sXDhw8xcuRIjBkzBkePHkV1dXWb\n1aWpqYnjx49j3Lhx8PHxadeOHwnpih4+fAgfHx/Mnj0bEyZMoKcxEEJIHVevXsWgQYPwySefYNOm\nTbh+/bpgSQSAEgmEEEK6GG1tbSxatAhRUVG4evUqrK2tsWDBAri6umL79u0oLCxsk3q0tLRw9OhR\njB8/HlOmTKFkAiEtUFxcjICAAHh6eqKwsJBuYyCEkDpyc3OxdOlSjB8/Ho6OjoiJicH69euhoaEh\naFx0awMhhJAuLzExEbt27cK+ffugpqaGBQsWYO3atXB1dW112VKpFPPmzcOVK1dw/vx5ldxKQUhX\nwxjDwYMHsX79elRVVeGDDz7AqlWroKZG17gIIQQAKioq8NVXX2Hbtm0wNDTEl19+iXnz5gkdFo8S\nCYQQQrqNkpIS/PTTT9i5cyfS09Mxffp0BAQEYNKkSa0ql5IJhDTf/fv38eabb+LGjRt4+eWX8eWX\nX8LMzEzosAghpENgjOHYsWPYsGEDxGIx3n77bbz99tvo0aOH0KHJobQvIYSQbsPQ0BABAQFISkrC\nyZMnUVFRAR8fHwwaNAiBgYF4+vRpi8rV0tLC77//jjFjxmDKlCkICwtr48gJ6fyKiooQEBCAIUOG\noLKyEjdu3EBQUBAlEQgh5P+EhIRgxIgReOGFFzB06FDExsbiww8/7HBJBIASCYQQQrohNTU1zJw5\nE8HBwYiMjISnpyf8/f3h6OiIjRs3IjMzU+kytbW1cfz4cUycOBE+Pj44evSoCiInpPNhjCEoKAhu\nbm745ZdfsGPHDty8eRPDhw8XOjRCCOkQbt68iUmTJsHHxwdGRkaIiIjA77//DgcHB6FDaxAlEggh\nhHRrgwcPRlBQENLS0rBy5Urs27cPTk5OfIeNyuCSCatXr8YLL7yATZs2qSZoQjqJe/fuYezYsVi8\neDEmT56M+Ph4BAQEUF8IhBACICwsDNOnT8fIkSMhlUpx9epVBAcHY8iQIUKH1iTaixNCCCGo//jI\nu3fvYsCAAfzjI2tqappVjkgkwvbt27Fz505s2bIFfn5+bfroSUI6A+42hqFDh0IqlSI8PBxBQUEw\nNTUVOjRCCBFccHAwJkyYgLFjx6KkpATnzp1DaGgoxowZI3RozUaJBEIIIUSG7OMjz58/D0NDQ7zw\nwgtwc3PDrl27UFJS0qxyAgICcOzYMfzyyy+YO3cuysvLVRw5IcLjbmNwdXXFr7/+ih07diA8PBzD\nhg0TOjRCCBFUdXU1fv/9dwwfPhyTJ0+GlpYWLl++jLCwMEyZMkXo8JRGT20ghBBCmvDw4UN88803\nCAoKgpqaGl555RW88cYb6N+/f5PzhoWFYdasWXBxccGpU6fQq1evdoiYkPZ39+5d+Pv749atW3jj\njTewefNmGBkZCR0WIYQIqqSkBPv27cM333yDtLQ0zJ49Gxs2bOj0/cRQiwRCCCGkCW5ubvj222+R\nlZWFL774AqGhofD09MTQoUMRFBSEqqqqBucdM2YMrl+/DrFYjKFDhyIiIqIdIydE9QoLCxEQEIBh\nw4ZBXV0dkZGR+PrrrymJQAjp1uLj47Fu3TrY29vjgw8+wMyZMxEfH4/jx493+iQCQC0SCCGEkBYJ\nCwvDN998gxMnTsDMzAyvvvoq3njjDdjb2yucPj8/H6+88gouXbqE7du3IyAgoJ0jJqRtMcZw8OBB\nvPXWW1BXV8f27duxcOFCiEQioUMjhBBBVFZW4sSJEwgMDMTly5dhZ2eHN954A35+fjAxMRE6vDZF\niQRCCCGkFbKyshAYGIjvvvsO+fn5mDZtGgICAvDss8/WO6FijOGzzz7DO++8g5deegk//PBDh3w2\nNCFNuXPnDvz9/REREYE33ngDW7ZsgaGhodBhEUKIIBISErBv3z789NNPePLkCSZOnAg/Pz88//zz\n0NDQEDo8laBEAiGEENIGpFIp/vzzTwQGBiIkJAQuLi5YsmSJwqsQZ8+excKFC2Fvb49jx47B2dlZ\noKgJUU5hYSE2bdqEPXv2YPTo0di9ezc8PT2FDosQQtqd7O/+hQsXYGVlhYULF2LlypVwcHAQOjyV\no0QCIYQQ0sbu3r2L77//Hr/++ivU1NSwYMEC+Pv7y51wJSUlYe7cuUhJScEvv/yC6dOnCxgxIY2r\nra3FL7/8grfeegsaGhr49NNP6TYGQki3FBMTg6CgIBw4cAAFBQWYPn06li9fjqlTp0JdXV3o8NoN\nJRIIIYQQFSkuLsZvv/2Gr7/+GnFxcRgyZAhWr16NBQsWQFNTExUVFVi1ahX27duHZcuWYefOnXSr\nA+lwIiMj4e/vj9u3b9NtDISQbiklJQWHDx/G4cOHER0dDXt7eyxZsgRLly6Fra2t0OEJghIJhBBC\niIoxxnDhwgUEBgbKdc745ptvws7ODr/88gv8/f1ha2uLX375BQMHDhQ6ZEJQUFCAjz76CHv27MGY\nMWOwe/fuZj3ylBBCuoKCggKcOXMGBw8exIULF2BsbIwZM2Zg0aJFmDhxItTUuvcDELv30hNCCCHt\nQCQSYdKkSfj999+RkpKC5cuXY//+/ejduzdmzpwJS0tL3L9/H+bm5hg+fDg2bdqEmpoaocMm3VRt\nbS2CgoLg6uqKY8eOYf/+/bh06RIlEQghXV5xcTGCgoL43+YVK1bAxMQEf/75J3JychAUFIRJkyZ1\n+yQCQC0SCCGEEEFUVlbi1KlTfOeMrq6uWLFiBaRSKT744AMMHjwYQUFB6NOnj9Chkm7k9u3b8Pf3\nx507d7By5Uq6jYEQ0uUVFRXh77//xrFjx3D27FkwxjBt2jQsWLAAM2fOhK6urtAhdkiUSCCEEEIE\ndvv2bXz77bc4cuQINDU18dxzzyEiIgJisRhff/01XnvtNaFDJF0cdxvD7t27MW7cOOzevRseHh5C\nh0UIISqRmpqKU6dO4c8//0RoaCgAYMKECXjxxRcxZ84cGBsbCxxhx0eJBEIIIaSDKCgowP79+/HD\nDz8gMTER1tbWyM7OxsSJE/HDDz/QYyJJm+OexrBu3TpoaWlh27ZtWLRokdBhEUJIm4uNjcWZM2dw\n+vRpXL9+HT169MAzzzyDefPmwdfXl5IHSqJEAiGEENIBRUZGIjAwEAcOHEBNTQ1EIhFef/11fP31\n19DS0hI6PNIFREREwN/fH3fv3sXKlSuxdetWGBgYCB0WIYS0iZqaGty4cQNHjx7FiRMnkJ6eDnt7\ne0ydOhUzZszAlClT6Pe0FSiRQAghhHRgubm52L9/P7788ks8efIEurq6WL16NT744AN6VCSpRywW\nQ1dXt9GEQH5+PjZv3ozdu3dj/Pjx2LVrF93GQAjpEhISEhAcHIx//vkHly5dQklJCQYNGgRfX1/4\n+vpi8ODBQofYZVAigRBCCOkEamtr8euvv2L9+vXIycmBlpYWXnrpJaxZswZeXl5Ch0c6gKysLAwa\nNAj9+/fHhQsX6o3nbmNYu3YtdHR08Mknn9BtDISQTq2goAAXL17EP//8g+DgYKSkpMDQ0BDPPPMM\nJk+ejOeeew4ODg5Ch9klUSKBEEII6WR2796NjRs3oqKiAjU1NRgyZAj8/PzwyiuvyLVSSEtLw6BB\ng7Bz506FJ4wlJSXUI38X8fTpU4waNQoxMTGorq7G0aNHMXfuXH781atX4e/vjwcPHtBtDISQTqum\npgb37t1DSEgIQkJCcOXKFdTW1mLgwIGYNGkSJk2ahHHjxtEtC+2AEgmEEEJIJ5Sfn493330Xe/fu\nhbGxMUpKSqCvr4/58+fD398fnp6eWL58Ofbu3QuRSIQjR45g3rx5/PyhoaF45plnsGPHDvz3v/8V\ncElIazHGsGDBAhw/fhzV1dUQiUSwsLBAYmIiJBIJ1q9fj19++QXPPPMMdu3ahX79+gkdMiGENEtN\nTQ3u37+P0NBQXLhwAZcvX0ZpaSmcnZ3h4+MDHx8fTJw4kTpKFAAlEgghhJBO7OHDh1i3bh3Onj0L\nd3d3lJaWIj09HZ6enoiNjUVtbS0AQF1dHSdOnMDMmTMBAC+++CKOHj0KxhhWrFiBXbt2QV1dXchF\nIS20adMmbNmyhf+sAUBDQwNz587F2bNnYWJigp07d+L5558XMEpCCGmaVCrF7du3ERoaiqtXryIs\nLAwlJSUwNTXF+PHj4ePjvrhtggAAIABJREFUg8mTJ8PJyUnoULs9SiQQQgghXUBISAgCAgKQnJwM\nX19fhIeHIzU1lR8vEomgrq6OU6dOYcSIEbC0tERVVRWAf5MM48ePx4kTJ+hWh07m+PHjmDdvHhQd\nzmloaGDFihXYvn07dcxJCOmQysvLcefOHVy7dg1hYWEIDQ1FSUkJLC0tMXToUIwZMwaTJk3CoEGD\noKamJnS4RAYlEgghhJAuQiqV4ptvvsHmzZtRWlra4MnlsmXLEBgYiJqaGrnhffr0wfnz52Fvb9+e\nYZMWunPnDkaPHo3KykqFn7WmpibGjBmDixcvChAdIYTUl5eXh5s3byIsLAxXr15FREQEqqqq4OTk\nhLFjx2L8+PEYO3Ys+vTpI3SopAmUSCCEEEK6mLlz5+LUqVN8i4O6RCIRANQ7+dTU1ISRkRHOnTuH\nIUOGqDxO0nLZ2dkYNGgQ8vPzUV1d3ei0f/zxB93WQAhpd5WVlbh79y5u3bqFmzdvIjw8HElJSRCJ\nRHB3d8e4ceP45IGNjY3Q4RIlUSKBEEII6UISEhLg5uYmd7+8MtTV1aGpqYnffvsNvr6+bRwdaQvc\nExpiY2MbTBZxRCIRrKyskJCQQLc3EEJUKisrC5GRkfxtCpGRkaioqIChoSE8PT0xZswYjB49Gt7e\n3jAzMxM6XNJKlEgghBBCupAXX3wRf/zxR5MnmI0RiUQQiUTYuXMnVq9e3YbRkdZijGH+/Pk4efJk\nky0RtLS0UFNTg5qaGvz111+YPn16O0VJCOnqcnNzcefOHURGRuLmzZu4efMm8vLyoKmpiYEDB2LE\niBH8q2/fvkKHS1SAEgmEEEJIF/Ho0SO4u7srvF++JUQiEV5//XV8++230NDQaJMySesoekID8G8f\nF4wx1NTUQENDA+7u7hg7diyGDRuGoUOHon///gJFTAjp7FJTU3H37l3cuXOH/5uVlQUAcHR0lEsa\nDB48GDo6OgJHTNoDJRIIIYSQLiIzMxNvv/02Hj58iKSkJBQXFwP4NyGgra2NmpoapVsqqKurY8qU\nKfjtt9+gr6/forgYYygqKqo3vKSkRK7DR+DfHrwrKysbLEvRPMqora3l10triESiVj+3XEtLC3p6\neg2O79GjB7S1tfn3Z8+exapVq/gncFRXV0NNTQ3Ozs4YN24chg4dimHDhsHLywuampqtio0Q0j1x\ntydwr1u3bkEsFgMArKysMGTIEP41YsQImJubCxwxEQolEgghhJAOTPbEt6ioCIwxSCQSVFdXo6ys\nDFKpFABQWFjIz1NcXIza2lo8ffoUqampEIvFKCgoQHR0NLKyssAYU7rVgpGREUxNTeWGPX36FBUV\nFXLDqqqqUFpa2pJFJW3MyMio3uPS9PT0oKWlxb9XU1ODkZER/97ExETh/AYGBnyrFNkydHV1+auP\n2trafD8MmpqafOJJQ0MDBgYGctNz03Lj2iIxQwhpvuLiYsTExCAmJgbR0dGIiorCvXv3IJFIoKGh\ngX79+mHQoEEYPHgwBg0ahIEDB/LfY0IASiQQQgghzVZRUYGnT5+ipKQEVVVVKC4ubnQY95c7uVaU\nFOCusHNJgbrztIS+vj5/RVr2qraOjg50dXUB/Huip66uDolEgsrKSmhqasLW1ha1tbXQ0dHhWy/o\n6upCKpXC1NQUHh4e/BMfuDLqtlJo6ITQ0NAQ6urqcsPqXnEHmr5Kr66uDkNDQyXWRn2y66GlSktL\nW9UPBSCf/FGkuS02pFIpysrK5IY11PKCSzJxqqurIZFIAAA1NTUoKSkBUL8VCbe91o1Ldj3IxsZt\nxy3BJTC47ZhLPnDbhqLkQ9159PX1oaWlBWNjY34+2WFcIkP2u0JIVySVShEXF4fY2FhER0cjOjoa\nsbGxSE1NBfDvvtnDwwOenp4YPHgwBg8eDE9PT7o9gTSJEgmEEEK6FO7EqLi4GKWlpfyrsLAQZWVl\nKC0tRVlZGSQSCaRSKYqLi1FZWYny8nK5YdyJkOywpnAnNtyJC/dX9uSXu+LLnVhz09U9WVJmHtlx\nhHQ0sokOLmHGJdq4cbJJDC7BUjfJpsw8som9pnDfW9nkQt2Eg4GBATQ1NeWGGRoaQl9fH3p6ejA0\nNISRkRH09fX5l7GxsVzijRBVqqmpQXJyslwrg5iYGMTHx6O6uhpaWlpwc3ND//794enpif79+6N/\n//5wdHQUOnTSSVEigRBCiOBqa2tRVFSEoqIiFBYWKkwCcAmA0tJSFBUVQSKR8MOKi4tRUlKC0tLS\nek3tZXEH+NxJgKamJoyMjPgr1IqGGRgYQEtLC0ZGRo2eVNCVTUI6JkVJQdnkYVVVFYqKivhhpaWl\nkEqlDQ7jEhncPqixlhdcSwgusSCbaDAyMoKhoSE/Td1khLGxMYyMjGBsbEy3fRBeZWUlEhMTERcX\nh6SkJMTGxiIuLg4PHjxAeXk5gH/7MvDw8EC/fv0wZMgQeHh4wMPDg1oZkDZFiQRCCCFt4unTpygs\nLGzyxR3Uyw4Ti8UNdqCno6MDExMTmJiY8FfgW/K+V69edKJPCFEJbp9Wd/+maH/X2DQFBQUNdjYq\nu2+r+6q776v7Mjc3pyevNBNjDJcvX8bQoUMF7RMgOzsbDx48wKNHj/DgwQM8fPgQjx49QlpaGoB/\nbwPr06cP3N3d4erqCnd3d7i5ucHNza3FHeMSogxKJBBCCJFTUlKCJ0+e4MmTJ8jPz+df3HvZcYWF\nhXzrAEUMDQ3rXVWTfSkabmJiwl+5k+0UjhBCugOu9URxcTHfUotrrcX9X3ec7LC6/WVwZPexvXr1\ngqmpKf8yMzPj/5cd11h/JV1NbW0tjh49ik2bNuHhw4fYs2cP3njjDZXWmZeXh8TERCQmJiIhIYH/\nPz4+nr8tx9jYGK6urujXrx9cXV3h5uYGd3d3ODk5UXKICIq2PkII6cKkUiny8vKQnZ2N3NxcueRA\nQ8mCuh3IaWtr1zvgdHNzg6mpKX/SL5sYkB1Wt8d4QgghjdPV1YWurm6LH6vH3aohm2CQTUIUFBQg\nLy8P+fn5uH//vtxvQHV1tVxZOjo6comGugkIbpy1tTXMzc3Rq1evTtdXS3V1NQ4dOoSPPvoIycnJ\nUFNTg6amJt8ZYWvl5ubWSxRwLy5ZoK2tjd69e6Nv374YM2YMlixZwrcysLS0bJM4CGlr1CKBEEI6\nocLCQmRlZaGwsBDZ2dnIysri/8oOy83NleuhvbGmr9bW1rCysqo33MrKijoMI4SQbqDubRiyvyt1\nX9nZ2cjMzKx3Kwb3u1H3d4X7n/sr9O0WVVVVOHz4MD788EOkpaXJPRZXTU0N8+fPx+HDh5ssp6Ki\nAikpKUhOTkZycjL//+PHj5GYmMi32NPR0YGzszP69OlT72Vvb0+Jd9LpUCKBEEI6CMYYcnJykJGR\ngYyMDKSnpyM9PR3Z2dl8i4K8vDyIxWK5+XR1dWFpaQlLS0uYm5vDysoKFhYWMDc3h7W1NXr16sWP\n707NVAkhhKhecXExsrOz5Vq/icViZGVlQSwWIzc3F9nZ2RCLxZBKpfx86urqfCsGGxsb9OrVC7a2\ntrC1tYWdnR3s7Oxga2sLU1PTNo1XKpXiwIED+PDDDyEWi+USCLKGDRuGW7duobq6Gunp6XJJAtn/\ns7Ky+Hl69uyJ3r17w9HRsV7SwNbWlpLypEuhRAIhhLST3NxcZGRkIDMzE6mpqcjMzERGRgbS0tL4\n4bIHWZaWlrCxsYGNjQ0sLCwaTBRQp0qEEEI6g4KCgkYTDenp6cjIyOAf5wn8myy3t7fnkwz29vaw\nsbGBra0tHBwcYGNjwz8itzFlZWX48ccf8fHHH6OgoAC1tbUKEwgc7ja99PR0/pYPPT099O7dm385\nOjrK/W9kZNT6lURIJ0GJBEIIaSOFhYV4/PgxkpKS8PjxY/7FHRjJNv80NzfnD4QaOkDS1tYWcGkI\nIYQQYZSXlzeYcOf+Lyoq4qfX09ODvb097Ozs4OzsLPeysLDA3r178fnnn6OsrKxePxANUVNTw5Yt\nW+Ds7MwnClrabwUhXRElEgghRAmZmZlySQLZV0FBAQBAQ0MD9vb2/EEM10STa6Zpa2tLz3ImhBBC\nWqG0tLRegiEtLY3/Tc7MzGy0xUFzpKamwt7evo0iJqRroUQCIYTUUVNTg8ePHyM6OhoxMTGIiYnB\ngwcP8PjxY1RUVAD4t6ll3ase3MvBwQGampoCLwUhhBDSfVVUVODx48eIi4tDcHAw7t69i6SkJBQW\nFjY7wRAWFobRo0erOFJCOidKJBBCurWMjAzExsYiKioKsbGxiI6ORlxcHCoqKqCmpgYnJyd4eXnB\n3d1dLllgY2MjdOiEEEIIUVJNTQ2io6Nx5swZXLlyBXfv3kV+fj4AQCQSySUZXFxcMGHCBHh6eqJ/\n//7w9PRs884fCemsKJFACOkWGGNISEhAREQEbt26hXv37iE6Oprv0Mna2po/SOjfvz/69++Pfv36\noUePHgJHTgghhBBVEovFCA8Px/Xr13Hx4kXcu3cPVVVVGDt2LNTU1BAdHc3fvmhlZYX+/ftjyJAh\nGD58OIYNGwZbW1uBl4CQ9keJBEJIl1ReXo7w8HBcuXIF4eHhiIiIQGFhIbS0tDBw4EAMHjxYLmnQ\ns2dPoUMmhLShhh6z1tRhj+x83ekQqaXrqyOpqKjA1q1bcfjwYaSmpqKmpgZA51oGVemu23VLVVVV\nIS4uDn379uUvKGRlZfEtGGNiYnD79m08ePAANTU1sLa2xvDhwzFq1CiMGzcOQ4YMgYaGhsBLQYhq\nUSKBENIl1NTU4Pr16zh//jwuX76MiIgISKVSODk5YfTo0Rg+fDiGDx+OgQMHQktLS+hwCSHthDuB\nUuZwpyXzqNrYsWMBAFevXlVpPR1x2Ztrw4YN+Oyzz7B161asWbMGYWFhmDJlSqdcltZoaFtp6LNt\nr22rK5JIJIiMjERERARu3ryJsLAw5ObmQl9fH6NHj8aECRMwdepUDBw4UOhQCWlzlEgghHRapaWl\nOHXqFM6cOYPz58+joKAAzs7OeOaZZzB+/HhMmDCBmhuSDknokzWh629PnSWR0FSdXIdv165dU2q+\nto5DqLKaw9HREampqcjPz+/Srczaeltpr22ru3jw4AFCQ0Nx5coVXLp0CTk5ObC1tcVzzz2HmTNn\nYvLkydQhM+kSKJFACOlUamtrERISgoMHD+LEiRP8PYzTp0/HjBkz4OLiInSIhDRJ6AN0oetvT10l\nkdDW87VHee29HtXV1VFbW9vlt+v22la6035CVRhjiIyMxF9//YW//voLkZGRMDU1xYsvvoiFCxdi\n2LBhQodISItRIoEQ0ilIpVIcOXIE27dvR1xcHIYMGYKFCxfipZdeQq9evYQOjxClCH2ALnT97YkS\nCe0Th6rL6oj1CYUSCZ1XRkYGjh8/jgMHDuDevXsYMmQIVq9ejZdffhnq6upCh0eIUtSEDoAQQpoS\nHBwMV1dXLFu2DN7e3oiLi8Pt27cREBBASQQFRCIR/4qLi8PUqVNhaGgIfX19PPfcc3jw4EGD0z9+\n/Bhz5syBiYkJP4wjFouxcuVK2NraQktLCzY2NvDz80NOTk671J+Tk4Ply5fz9dva2mLFihXIzc2t\ntw4qKirw6aefYtCgQdDT04OOjg7c3NywYsUKhIeHN2s9Nrc+2fibO7zuNK+//nqbrL+2qL+4uBhr\n1qyBk5MTdHR0YGpqilGjRuGtt97CrVu3Whwn0PxtCGibz7ApsbGxmD59OvT19WFkZITnn38eaWlp\nDU7fku9Aeno6Zs2aBQMDA1hYWOCVV17hHzUnO33deRvaJpo7n+w83OvIkSP89I6OjgrLbEhbL1NL\n12dD+whF9W3cuJEfFhISAl9fX5iYmEBHRweDBw+WWx+ylNn2lNmmm1qvzR1ed5rmbCstqb+hetp6\n2+pObG1tERAQgLt37+Lq1auwtrbGa6+9Bm9vb8TExAgdHiHKYYQQ0oG9/fbbTCQSsfnz57OMjAyh\nw+k0ADAAbNSoUSwsLIxJJBIWEhLCLC0tmYmJCUtOTlY4vY+PD7t27RorLy9nZ8+eZdzPRE5ODnNw\ncGAWFhbs/PnzTCKRsNDQUObg4MB69+7NCgsLVVp/dnY2s7OzY9bW1uzChQuspKSEL8/BwYHl5OTw\nZZWUlLChQ4cyAwMDtnfvXpaTk8MkEgm7dOkSc3d3Z8356VOmPtn4G/ocmju8teuvLeqfNWsWA8C+\n+uorVlpayiorK9nDhw/Z888/X28eZeJUZhtqi8+wqWVNTExkxsbG/GcskUjYlStX2JQpUxTO09Lv\nwMsvv8zi4uJYUVERW7lyJQPAXnvttWbH2dT4xuYLCQlhAJiVlRWrrKyUG7d37142Y8YMpcpry2Vq\n6fpsaB/RnNhnz57N8vLyWGpqKvPx8WEA2Llz5+SmU2bbU3YZGqKq/Ycq62nJtkUUi4qKYqNGjWJa\nWlps//79QodDSLNRIoEQ0mFt376dqaurs4MHDwodSqfDHQCePXtWbviBAwcYAPbqq68qnP7SpUsK\ny1u+fDkDwPbt2yc3/I8//mAA2DvvvKPS+pctW8YA1NsWuPKWL1/OD1u7di1/IlzXnTt3mnUSqkx9\nsvHX1doTAWXXX1vUb2hoyACwo0ePyg3PzMxsMJHQnDiV2Yba4jOsG2Ndr7zyisLP+MSJEwrnael3\n4PLly/yw5ORkBoBZW1s3O86mxjc134ABAxgA9vPPP8sN9/T0ZMHBwUqV15bL1NL12dA+ojmxyya2\nHjx4wACwsWPHyk2nzLan7DIoG3dHTiQwpvy2RRpWU1PD3n//faaurs5Onz4tdDiENAslEgghHVJp\naSnr0aMH+/zzz4UOpVPiDgCLiorkhmdkZPBXkRRNX1ZWprA8a2trBoBlZWXJDX/y5AkDwDw9PVVa\nv5WVFQPAMjMzFZZnY2PDD7O3t2cAWEpKisKymkOZ+mTjr6u1JwLKrr+2qH/x4sX8eDs7O7Z06VL2\n22+/1bvqqGycymxDbfEZ1o2xLgsLC4WfcV5ensJ5WvodKCkp4YdVVlYyAEwkEjU7zqbGNzUfl9QZ\nOHAgP+zChQvMw8NDqXraeplauj4b2kc0VV9d1dXVDAAzNTWVG67MtqfsMigbd0dPJCi7bZGmLVq0\niPXv31/oMAhpFupskRDSIaWkpKB3794IDw/HiBEjhA6n02mok6zKykro6OhAQ0MDVVVVTU7P0dTU\nRHV1dYP19ejRA2VlZSqvv7KyElpaWvXK09TUhFQqBQBoaWmhqqoKFRUV0NbWbjDmxihTX2PxKzu8\nqfHKrr+W1v/HH3/g0KFDuHjxIgoLCwEA9v+vvbuPbaL+4wD+3tZ163NL98A2NsYGIUKR6BIeAoIa\nhYA8GEnQCMZofEpcJMG/MEb9Q2JiotH4DzHxP/6A4BNBiCagMCDL9A+IG0xww7BudKwbfVzXdd2+\nvz/43XFdr1s7ut26vV9Js1t7d9/P3X2vve/nvndXU4OTJ08mPA89kzgzqUPZ2IaTxajT6TA6Opq0\njVNNk619INt1YrLpYrEYamtr4fF4cO7cOTz99NPYvXs3duzYgTfffDPtcrK9TNlan+mU5/f78fnn\nn+Onn35Cd3c3wuFwwufK8TOpe5kuQ6Zxz1Rdmam6RZP77rvvcODAgaQ6SjQb8WaLRDQrVVdXo66u\nDocPH8bo6KjW4eSs8TdA6+/vB4CMb1JZXl4OALh37x7E/d5sCa9UB8vZKr+srCxh+vHzkz5Xxurx\neDIqY6rlAQ8OuJWN+0AgMOXyJemuv2yX/8ILL+D7779Hf38/mpqasHXrVnR1deG1116bcpyZ1KFs\nbMPJlJSUJMQqSbXeproPaE2v16OxsREA8OWXX+LWrVtobm7G/v37NY1rJtfn3r178dlnn+HFF1/E\n7du35TImiiudupetZZiu74/pNlvrVq4KBAL46quv8NRTT2kdClFamEggolmpoKAAx44dwx9//IE9\ne/ao3pmfJnf58uWE/8+ePQsA2LJlS0bzef755wEA58+fT/rs4sWLWL9+/bSWv3PnTgDAuXPnVOcn\nfQ4Ae/bsAQD8/PPPSfNJt4dLJuUBwMKFCwEkNj6uXLmScv5GoxHA/YZDJBKRG7Xjpbv+sll+Xl4e\nuru7AQD5+fl44okncPz4cQBQfRJDunFmUoeysQ0nI8U2fhs3Nzerjj/VfSBd6daJqUz3zjvvwGg0\n4syZM3jvvffwxhtvwGAwPFS8DxvbdK9PJal+vv/++1iwYAGA+71m1GRS97K1DNP1/fGwZnPdmmva\n29vxzDPPIBQK4ciRI1qHQ5SebFwfQUQ0XS5evCiWLFkinE6n+Prrrye8PpYewP+vbd22bZu4ePGi\nCIVC4ty5c6KioiKju/5LvF6vWLZsmaioqBAnTpwQ/f39IhgMilOnTom6urqEm69NR/nS3dGVT1GQ\n5jf+KQo+n0+4XC5hsVjEt99+K991/ddffxXLli0TZ8+enbTsTMoT4v51rQBEY2Oj8Pv9or29Xezb\nty/lcq1bt04AEJcuXRLHjh1LusN5pusvm+UDEFu3bhVtbW0iGo2K3t5ecejQIQFA7Nq1a8pxZlKH\nsrENJ/uss7Mz6akNly9fFps2bVKdZqr7QLrxpFsnMp1OIj1dQafTCbfbrTrOROVke5mytT7TGUd6\nEsehQ4eEz+cTAwMD8k0Vx4+fSd3L1jJM1/dHuutnpuoWJevr6xMffPCBKCoqEmvWrBH//vuv1iER\npY2JBCKa9UKhkDh48KAwGo2ipKREfPzxx0kNKUokHRj+999/YseOHcJisQiTySS2bdsmrl+/rjqu\n8qXm3r174uDBg2LJkiWisLBQlJeXi507d4rm5uYZKb+3t1e8/fbborKyUuh0OlFZWSneeuutpEa9\nEPfrzIcffiiWL18u9Hq9cDqdYsuWLaKpqSllrA9TntfrFS+//LIoLS0VJpNJ7Ny5U3R1daVcpr/+\n+kusXr1aGI1GsW7dOnHjxo0pr79sl3/p0iXx6quvitraWlFYWChsNptYvXq1OHz4cFIiL9M4M6lD\nD7sN1erV+HHa2trEtm3bhMlkEmazWWzZskVcu3Yt5fjpxp+qzIlimWibTHU6pZs3b4r8/Hzx0ksv\nqX4+2frK9jI9zPqcqDGsNs7du3fFK6+8IsrKyoRerxcul0scP3485fwyqXtT+V4cL5v770xuP8lk\ndYuSXb16Vbz77rvCaDSK0tJS8cUXX4h4PK51WEQZ4c0WiShn9Pf345tvvsGRI0fg9XqxceNG7Nu3\nD7t375a7htJ96dyYbC6Xn+tyZf3lSpwEjI2NYdGiRfjxxx+xbt06rcOhOYR1Kz0dHR344YcfcPTo\nUbS1tWHp0qU4cOAAXn/9dfkyEqJcwkQCEeWceDyO3377DUePHsXJkycRjUbR0NCA5557Dtu3b0dD\nQwMKCgq0DlNTWjfwtC4/1+XK+suVOAk4deoUPv30U7S0tGgdCs0xrFvqotEoLl++jDNnzuCXX37B\nzZs34XQ6sXfvXuzfvx/r16+Xv0OJchETCUSU0yKRCH7//XecPn0ap0+fhtvthtVqxcaNG7F582Zs\n2rQJDQ0NKCws1DrUGaV1A0/r8nNdrqy/XIlzvsrLy0NzczOWL1+OZ599Fh999BF27dqldVg0B7Bu\nJYtEImhubkZTUxPOnz+PlpYWDA8PY8WKFdixYwe2b9+ODRs2QKfTaR0qUVYwkUBEc8q1a9dw4cIF\nNDU14cKFC+jt7YXBYMBjjz2GNWvWYO3atVi7di2WLFmidajTZvwZjpn+mte6/FyXK+svV+Kcz6Rt\n5HQ60djYiE8++UTbgGjOmO91a2xsDO3t7fjzzz/R0tKClpYWtLW1IR6Po76+Hps3b8bmzZvx5JNP\noqamRutwiaYFEwlENKfduHEDzc3N8o99a2srRkZGsGDBArhcLqxcuRKPPvooVq5cCZfLBYfDoXXI\nRERENEt4PB60tbWhra0N165dw99//4329naEw2EYjUY8/vjjWLt2LdasWYMNGzagqqpK65CJZgQT\nCUQ0rwwNDeHKlSu4evUqWltb5YMDv98PAKiqqkpILqxatQqPPPIIb4REREQ0h/n9fjlZ0NraKv8d\nGBgAAJSXl2PVqlVwuVxwuVxoaGiAy+XipQo0bzGRQEQEwO12ywcNUnLh+vXriEajyM/PR21tLZYu\nXYr6+vqkF5MMREREs5/f70dnZ2fCq6OjAx0dHejp6QEAWK1W+USCsudiSUmJxtETzS5MJBARpTA6\nOorOzk60trbin3/+STjwkA44AKCioiJlksHpdGq4BERERPOLx+NBR0dHUsKgs7NT7l1QUFCAmpqa\nhN/rFStWwOVyYfHixRovAVFuYCKBiGgKhoaGVA9SOjs7cfv2bYyMjAAA7HY7qqurUVNTg0WLFqGq\nqiphePHixTAYDBovDRER0ewXCATQ3d2Nrq4u9PT0yMPd3d3o7u7G7du3EYlEAADFxcWqCf76+nrU\n1tbOu6c5EWUbEwlERFkWj8fR1dWFzs5O3Lp1Sz7Qcbvd6OnpgdvtxtDQkDy+0+lMSjBIw9KLl08Q\nEdFcJiUJlL+VbrdbThJ0dXUhHA7L41ssFjlRX1VVJQ9LyYLKysqkp8sQUfYwkUBEpAGfz4c7d+7A\n4/Hg1q1bScNutxuhUEgev7i4GA6HA5WVlaioqEgYVr5XXV0Nq9Wq4ZIRERHdF41Gce/ePXg8Hty5\ncwc+n08eVr7X09ODQCAgT1dcXJzwG1dXV6c6TETaYSKBiGiW6uvrQ3d3N+7cuYO+vj75b29vL3p7\ne9HX1wePx4NgMJgwnd1ux8KFC1FWVoaKigqUl5ejrKwMlZWVcDqdCa+SkhKesSEiorTE43EMDAyg\nv78fAwMDGBgYgNfrlX+TpN+pu3fvwuPxYHBwMGH6kpISlJWVoby8HJWVlSgtLcXChQvl36zq6mos\nWrQIdrtdoyUkonSq2JFJAAAEhElEQVQxkUBElOOGhobkAziv1wuPx4O7d++mdVCXl5eXlFxQvkpL\nS1Xf57WlRES5LRqNyskAKTmgTBCofabsNSCZKHktJQ0qKipQWloKvV6vwZIS0XRgIoGIaB7J9MDR\n6/Um9XgA7j8eq7S0FA6HA3a7Xf6rfNlstqT37HY7TCaTBktORDT3BINB+P1+1VcgEEh6z+fzyd/x\n4xPLAOSeamoJ5JKSEtXPmFgmmp+YSCAiogmNjIyoJhq8Xm/Cwanagaz09AqlwsLCpESDWiLCZDLB\nbDbDZrPBYrHAbDbDbDbDarXCarWioKBAg7VBRPTwYrEYBgcH4fP5EA6HEQ6HMTg4CL/fj1AoJA+n\nevl8PgQCAYyNjSXN22AwpEzk2u32CXuh5efna7A2iCgXMZFARETTJhKJpHW2bHwiIhAIIBwOy4/x\nUmMwGGA2m2GxWGCz2WA2m2EymWCxWGC32+X/zWYzHA6HPGw2m2G321FUVASj0Qiz2Qy9Xs9rcolI\n1djYGAKBAKLRKIaGhhAMBhGLxRAMBhEMBuUkQDAYRCAQwODgIMLhMEKhEPx+v/x/OByGz+fD4OAg\nYrFYyvKkxOlEyQCHw5Hy86KiohlcO0Q0XzGRQEREs5YQQj5DJx2sBwIBBINB+eBc7eBdSkRIL7/f\nj3A4POHBOwA5uWCxWKDX62Gz2VBcXAyDwaD6ntVqhV6vh9VqhcFgQHFxMWw2G/R6PSwWC/Lz82Gz\n2QDcv444Ly8PZrOZXYGJskBq2MfjcYRCIfn7AgD8fj9isZj8vRGLxeDz+eSeANL3gd/vx/DwMCKR\niOp7oVAI8Xh8wjjUkprKpKU0bDKZ4HA4EpKcys+l5AERUS5gIoGIiOaNkZER+azgRA2KUCiEWCyW\n8izk0NAQotEoAoEAYrEYQqEQIpEIhoeH045FSjzo9XqYTCYUFBTIj+50OBwAIF/CYTQaUVRUJCc6\ndDodLBYL8vLy5J4UyumV7yvnBwA2m03uvqy8RIQJDkpF2geAB13ygQf7EwCMjo7K91ORzuBLfD5f\n0vt+vx9CCLmhLu0/0vyV85OmDwaDGB0dnfSM/njS/mO326HX6+WGvF6vh8PhkPdBZe+kiZKKymSh\ncn8iIppPmEggIiLKIuWZULUzpdJ1zVJjSGqkSY0ytcZWOBzGyMiInMBQa2wpG3UPS2p4AQ8SHsCD\nHhtKUuNKSUp0jKdMaEgsFgt0Ol3Ce8oyJ6I2v3QVFhbCbDZPadpU16anQ7nNJqLWWJYSXenMT6o7\nSlI9UlKecVeWmWlibCLKxvb4JJnUoJfqkVqSTJpeSnZJ9UPahmo9f5SNfSIiyj4mEoiIiOYYKYEB\nJJ4FViY0gMTGpnS2F8iscanWOFWewVaLSUk626yUTnfyh23oqjW005UqUZIuZaImFbWkjbLXiZLU\neFZS62GilvRJJ2kknbEHEpdd2YAf3wtGLSYiIpo7mEggIiIiIiIiorTxoi4iIiIiIiIiShsTCURE\nRERERESUNiYSiIiIiIiIiChtOgAntA6CiIiIiIiIiHLD/wCF1glT5p/LXQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"# Write graph of type orig\n",
"spmflow.write_graph(graph2use='orig', dotfilename='./graph_orig_notSimple.dot', simple_form=False)\n",
"\n",
- "# Visulaize graph\n",
+ "# Visualize graph\n",
"from IPython.display import Image\n",
- "Image(filename=\"graph_orig_notSimple.dot.png\")"
+ "Image(filename=\"graph_orig_notSimple.png\")"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python [default]",
+ "display_name": "Python 3",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.11"
}
},
"nbformat": 4,
- "nbformat_minor": 0
+ "nbformat_minor": 2
}
diff --git a/notebooks/basic_import_workflows.ipynb b/notebooks/basic_import_workflows.ipynb
index c1b255f..4151ffc 100644
--- a/notebooks/basic_import_workflows.ipynb
+++ b/notebooks/basic_import_workflows.ipynb
@@ -2,10 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Reusable workflows\n",
"\n",
@@ -30,12 +27,9 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "# How to load a workflow from Nipype\n",
+ "# How to load a workflow from the Nipype library\n",
"\n",
"Let's consider the example of a functional MRI workflow, that uses FSL's Susan algorithm to smooth some data. To load such a workflow, we only need the following command:"
]
@@ -43,23 +37,16 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "from nipype.workflows.fmri.fsl.preprocess import create_susan_smooth\n",
+ "from niflow.nipype1.workflows.fmri.fsl.preprocess import create_susan_smooth\n",
"smoothwf = create_susan_smooth()"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Once a workflow is created, we need to make sure that the mandatory inputs are specified. To see which inputs we have to define, we can use the command:\n",
"\n",
@@ -84,34 +71,24 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "As we can see, we also need a mask file. For the sake of convenience, let's take the mean image of a functional image and threshold it at the 50% percentil:"
+ "As we can see, we also need a mask file. For the sake of convenience, let's take the mean image of a functional image and threshold it at the 50% percentile:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "!fslmaths /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz \\\n",
- " -Tmean -thrP 50 /data/ds102/sub-01/func/mask.nii.gz"
+ "!fslmaths /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz \\\n",
+ " -Tmean -thrP 50 /output/sub-01_ses-test_task-fingerfootlips_mask.nii.gz"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Now, we're ready to finish up our smooth workflow."
]
@@ -119,25 +96,18 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
- "smoothwf.inputs.inputnode.in_files = '/data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz'\n",
- "smoothwf.inputs.inputnode.mask_file = '/data/ds102/sub-01/func/mask.nii.gz'\n",
+ "smoothwf.inputs.inputnode.in_files = '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'\n",
+ "smoothwf.inputs.inputnode.mask_file = '/output/sub-01_ses-test_task-fingerfootlips_mask.nii.gz'\n",
"smoothwf.inputs.inputnode.fwhm = 4\n",
- "smoothwf.base_dir = '/data'"
+ "smoothwf.base_dir = '/output'"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Before we run it, let's visualize the graph:"
]
@@ -145,46 +115,20 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Populating the interactive namespace from numpy and matplotlib\n",
- "170301-22:02:29,361 workflow INFO:\n",
- "\t Converting dotfile: /data/susan_smooth/graph.dot to png format\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI5CAIAAABsFtTUAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nOzdd1hT1/sA8BMgrLAJU1kKyBZZylJAQJEhKqMgzgKKWq3WWa2i1tVqFVu17oq1TmQqogiy\nkQioiMgQBGTHBAghkITk90davvxwwc2FhHA+D0+feDn3PW/Q5uXec+45GDabDSAIgiAIKSFeJwBB\nEASNbbCQQBAEQVyBhQSCIAjiigivE4Cg8aizs7Ovr49Go/X09DCZTAqFMvD4oMY9PT00Gu3jIBIS\nEuLi4oMOCgsLy8jIcF5LS0uLiIiIi4tLSEgICQnJysqi/T4gCABYSCAIATqdTvoPhULp6upqb2+n\nUqlUKpVCoXR0dHBed3Z2UCgUKrWru5vW29vb3d3NYrE6Ojp5m7yMjLSwsDCnCElIiONwUjIyMjIy\nsjgcDofDycrKSklJcV7Ly8vjcDgZGRkFBQV5eXkFBQUxMTHeJg/xJwyctQVB/RgMRmtra0tLS3Nz\nc2tra1tbG5FIJJFIZDKZRPrAqRxkMrmrizroRDk5aRxOEocTl5aWlJHB4XDikpJicnLSUlISkpLi\nUlKSWKyIlJQEAEBeXhoAwDkiJoaVlBQXEhKSlcVx4oiLi0lIDP6wFhLCyMpKfZxtZye1r4816GBP\nTy+N1st53dFBZbFY3d09vb0MBoPZ1dUNAGhv72Kz2VQqjU5nUqm07u4eCqW7o6OLSu3p7u7t6Oii\nULq7u3uoVBqZPLjm4XCS/UVFQUFR4T8qKipKSkqqqqqqqqpKSkqioqIIfvjQ2AULCTS+0On0hoaG\n+vr62trahoaG5ubmtra2xsaG1tbW1tZWIvFDf0tJSXElJQU8XlZBQUZBQVpBQUZBQUZeXobzov+P\nsrI4HE6Ch+9oRFGptM5OKonUSSZTSKTO/746/jtCIZE6icT2tjYylfq/m2+Kiv+WFnX1CcrKysrK\nyhMnTtTS0tLQ0Jg4cSIsM4IHFhJIMHV2dlZVVdXW1tbV1dXV1dXX19fX19XV1TU1NXP+zYuKYtXV\nldTU8MrKcqqqiqqqikpKcurqeGVlBWVleTU1POcCAhoiKpXW1PShpYXU1kZubCS2tpJbW0mNjcS2\nto7m5g8NDa29vXQAAAaDUVVV0dTU1NDQ1NDQ4FQXLS0tXV1dOIQzdsFCAo157e3tb9++rf6ft9XV\nb2tqajn/tuXlZSZNmqCmpqiujv/vhdKkSepaWmrCwnDW4ughkymNjW1NTR+qqxuqqxsaG4lNTaTq\n6oba2ibO/AJ5eblJkyZNmjR50n+MjY3V1NR4nTj0dbCQQGMMiUQqKSkpLS0tKSl59arkzZs3nPtR\nIiLC2toTdHUn6OpO1NPT0NWdqKs7UUtLTUwMy+uUoS+h0xm1tc1VVe+rqt5XVtZVVTVUVb1/966R\nwWACABQU5A0MDExMTE1NTY2Njc3MzBQVFXmdMjQYLCQQX2MymaWlpUVFRaWlpSUlL1+9etXY2AQA\nkJOTMTGZbGKiY2SkwykbWlqqWCychSggmMy+2trmqqr6qqr3paXVpaU1JSVvOYP/qqoqJiYmpqZm\nxsbGFhYWJiYmWCz8XYHHYCGB+E5jY2NhYWFhYWFOTnZubm53Nw2LFdHT0zQ21jEy0rG0NDA21tHR\nUcdgMLzOFBpVZDKltLS6sPDN69c1paXvnj8vp1JpWCxWT0/XwcHR3t7e0tLS0NBQSAjesRxtsJBA\nvNfb2/v06dO0tLS8vFwCgUAmt2OxIqamejY2htbWhtbWRkZGOnA8Axqkr4/15s07AqGMQHhNILx5\n8aKCTmfIyclaWVnZ2dk7OTnZ2tp+/MAmNBJgIYF4g8lkFhQUpKenp6en5ebm0mg9OjoTHBzMrK2N\nrK0Nzc31xcXhJFFoGHp7GS9eVBIIrwmEsuzsl2/f1ouLi9na2jo5Obu4uNjY2MBpxyMHFhJoVDU1\nNSUkJCQkxGdmZnZ1USdOVHF2tnB2tnR2ttTWhvNzINTU1TWnpxempxelpxfV1TVJSko4OjrOn+/r\n4+MzYcIEXmcnaGAhgUZDeXl5XFxcXFxsQQFBQkJs7lxbd3cbZ2dLPT0NXqcGCb63bxuePClMSXn6\n4EF+V1e3lZXlggUL58+fb2RkxOvUBAQsJNAIampq+uuvv6Kjr7x5U66kpODj4zB//kxXV+uPVwGB\noFHQ00NPS3sWF5eRkJDd0vJBX18vJGTJypUr4TUKl2AhgdDX19eXkpJy/vy5pKR7srJSISFzFi1y\ntrMzgwPmEJ9gsVj5+aV37qT9/fcDEqnTw2NuWFj4vHnzRETgDHIkYCGB0NTR0XH69OkzZ06/f98w\na5ZFWJjPwoXOcNgc4lt0OiMuLvP8+fi0tGeqqiqrVq3+7rvv5OXleZ3XGAMLCYQOCoVy9OjRkyej\nWKy+Vat8Q0N99PU1eZ3UmIfBzOC8YLPzUQlIILzeuvWP9PTTqETrh3qeAzk7r/nll3XW1iM7nlFd\n3XDhQsKff8Yymax1677btm0bXPtr6OCtBohbbDb70qVL+vp6J08e37w5qLY29pdf1o1oFXF0XOXo\nuGrk4vMPdD+XL1xIcHffsGFDIPehBv0VfDJPtP6a1q8PcHNbf/58PPehvmDSpAkHD0bU1sbt3Lns\n3Lkzenq6f/75J/w9e4hgIYG48v79+7lz54SHh/v5zayqurNz53I5OemR7pTFYrFYg/fhGDUYzIz+\nX8DHkOTkvPDwQ3/+uc3Xd9bQz/rcmx3KX8HHbZD96BYscDp1asuqVYeTk/OGe+5wSUtLbtu2pLLy\n9pIlbt99t87Fxfndu3cj3akAgLe2IORyc3MXLlygoIC7fHnX9OnGvE5nlHA+CkfiHs7IdUenM3R1\n/TQ1VbKzz41Q70Npyc17sbUNbWwkVlXdGbUV1YqKypcv39/URL59+46Tk9PodDpGwSsSCKHc3Fx3\ndzcLC938/Avjp4qMUTEx6fX1LcHBc3idCHLBwXPq6ppjYtJHrUcLiykFBZfmzrVxd3e/f//+qPU7\nFsFCAiFRXV3t4THX09MuMfGojAxuNLvm3B4ZeIek/0h9fcv8+VukpZ1VVDxCQvZ8+NDxcZvXr2vm\nzv1eRsZFSsrZ03NTWdm7oUQeeGTgt0JDDw49BwBAc/OHVasOT5zoLSrqMHGi9+rVR1paSAMblJZW\nz5u3UUrKWVZ29oIF2+rqmj/+CbS2kiMifuEEmTDBKzz8UHPzh4+bDZSQkAUAsLIyRPfNfqHHIUbr\nb8b5unHjEaeNtrbvoNOtrQ3738ioERcXjY7eHRzs7u/v9+bNm9HsemyBt7YgJNzd3VpaagmES6Ki\nPFjB++M7JJwjixfP2blzhbo6fseO02fO3F2+3PPy5Z8GtbGzM/3ll++mTtV7+vRVSEhkby+9qCi6\nf3WWz0X+8pEh5tDc/MHGZmVfX9/Vq5HW1kYFBaUhIZFiYtinTy+pqCgAAN6+bbCyWi4pKXb1aqSN\njXFR0ZuDB6+kpOQP7K6lhTR9+sqeHnp09B47O7Pi4vIlSyKFhISKiq58YXTKwCCwvLy2ufk+pyO0\n3uxwz/1ktMePCa6u36mp4d+9i+3/53ThQkJ8fGZi4tH+Zk1NRHV1LwMDrbKym597myOEyeyztw/H\nYmWzs3NGueuxAl6RQMNWWlr66FHqb7+t50kV+YKwMF9DQ21ZWamtW5cAAB4+fPpxm127Vtrbm0lJ\nScyebX348BoymRIZeWF0cti9+1x9fcuRI+tcXKykpSU5CdTWNu/Zc57TIDLyfHs7hdNASkpi5sxp\nq1cvGBR/z57ztbXNBw9GuLtPl5KScHQ0P378+5qaxl9/vfaFrBoaWgEAozAPAoHZs62nTtVraiL2\nX44AAE6evDlodpm8vAwAoKGhbbTzA0BERDgqamNOTm5BQcHo9z4mwEICDVtmZqaCgqyLixWvExnM\nwmIK54W6Oh4A0NT0iRs+dnam/a9dXW3AZ+rNSOSQlJQDABj4c+MkkJSUzfnjo0cFgxo4OEwdFD8x\nMQsA4OFh239k5sxp/cc/p7u7FwAgKsqnj21v3PgNAOD48RucP6alPWOx2K6u1gPbcJLv7u4Z/fQA\nADNmmGhoqGZkZPCkd/4HCwk0bCQSCY+X48N9paSlJTkvOJdKn7xtKysr1f8aj5cDALS1kUcnB05H\nePz/HnPjJNDa+m8CRGL7JxsMxGmsru7VP66Ax88BALx92/CFrCQlxQAAdDoT6dsaWUFB7mpq+OfP\nK9LSngEAoqIGX46A/5KXlOTZ/iJKSvIfPnxlLGrcgoUEGjZtbe26uuauLhqvE0Fi4Og354NbSel/\n62FwqiNnt3AAQEdHF4pdKyvLAwCIxMEJcI6D/8rGwAYfJ8AZ5CCRHrHZ+QO/qNQnX+h6wgRlAEB7\nO2XgwRF9s8MiKopdt84PAPDbb9erqxvy8kpCQuYOasPZZ3fCBCUe5AdATw+9qqp+0qRJPOmd/8FC\nAg3bvHnzMBjMxYsJvE4EiZycl/2vU1MLAADu7tP7j6iqKgIAmpqInD8WF1d8HIHzSzGDwezu7uFc\nDQyRt7cjAODxY8KgBDjH+zMZ2CAv79WgIJzHCZ88KRx4MCvrua1t6Be6njZNHwBQW/v/5oCN6Jv9\npC9EW716oaSk+P37uevX/xYaOv/j9aE5yZub63OZAzJXrybTaL0+Pj486Z3/wUICDZu8vPzGjZt+\n+ulceXktr3MZtj//vJud/aKri5aW9mzHjjPy8tKRkf/7CHZzswEA/PrrtY6Orjdvai9c+MSyHGZm\nugCAgoLXiYnZtramHzf4nL17w7S0VLdvP5WW9oxC6eYkoKWl2p9AZGSonJw0p0FXFy03t+TQoSuD\ngkRGhurpaaxde/TOnbQPHzoolO6kpOzly/cfPrz2C117ezsAAJ49Kxt4cETf7Cd9IZqCgsyyZfPY\nbHZKSv6aNYs+PpdAKAMA+Pg4cpkDAjU1jdu2nVq7dq2qquro9z4mwOm/EBK9vb3Ozk4NDbVPnpzS\n0VEfza4HPlvAmUg6lCP9B2tqYr/77lhGRhGLxZ450/zYsQ2Ghtr9jYnE9g0bjj969LS7u9fFxfLU\nqS2amvMHxXn2rCw09GBlZb2Zme6VK7s5q4oNMYeWFtKePecTE7NaW8nKyvJeXg779oUPnJJbWlq9\nZcvvmZnPMRhgZ2d2/Pj3xsZBg4KQyZSff74UG5vx/n2rgoKMjY3Rjz8unzHD5As/NDqdMXnyIm1t\ntayss6PzZj/59j8ZrV9lZb2BQWBAwOzr1/d//BZsbUPfv299+zZmlOcKvn/f6uy8VkYGn5WVLSkp\nOZpdjyGwkEAIkclkV9fZ9fXvbt8+OGvWNF6n83WjvLQJv7l3L8fbe/P16/sDA115ncunsVisiRN9\n7t49/HFRvHYtZcmSyMTEo56e9qOZUm5uyaJFO/B4lbS0dCUl3gzPjAnw1haEkLy8fGZmlpPTbBeX\ntZs2RfFqXiY0RJ6e9n/+uW316iNxcXw6h/XevVwNDeWPq0hs7JM1a345c2braFaRnh76jh2nZ81a\nbWNjm5ubB6vIl8FCAiGHw+Fu3bp948aNK1ce6OsHnDsXx8NFeaGvCg/3TUmJOnHiBq8T+X8wmBn5\n+a/IZMrevRd27lzxcYOoqJuPHv2+atXgZzNHTmJitrFx8MmTt48ePRYXFy8tzY8PcvIVeGsLQgGR\nSNy/f/+pU6cMDLS3bl0cHDxHRESY10n9P5+8ZQ/xA85fjaKi7Lp1/gMnPow+Fot1717uvn2XCgvL\n/Pz8fv31Vy0tLR7mM4bAQgKhprS09ODBgzdv3tTQUPn2W+8VK7x4NesfgoalufnDX3/du3gxsbq6\nYdGihbt2/WRmZsbrpMYSWEgglFVWVp45c+bq1WgyuX3ePLuwsPnz5tkJC8ObqBDf6etjpaTkX7iQ\nkJSULSUltWTJ0oiICAMDA17nNfbAQgKNiN7e3ri4uPPnz6WnP1FRUfT1dVywwMnJyWLUdiWCoM9h\nMvsyMori4jLj4jIbGlpnzZoZGhq2aNEicXGerb8y1sFCAo2s6urqv//+Oy4utrj4uZyczLx5tr6+\nM+fOte1fkwqCRgeVSnvwID8+PjMpKYdM7jQzM/X1XRASEqKnp8fr1MY8WEigUVJbWxsXFxcfH5eZ\nmSUiImxnZ+bsbOHsbGljY8Rvy9FDAoPJ7CsoeJ2eXvjkSVFOzks6nWFvbzd/vq+vry9cOAtFsJBA\no+3Dhw/3799PTU198iS9rq4eh5Owt5/q5DTN2dnSysqQ36Z7QWMOk9lXVFT+5ElhenpRdvaLrq7u\nCRPUXVxmu7i4eHp6widCRgIsJBAvNTY25uTkpKampqQ8qK2tw2JF9PQ0HRzM7O3NLC0NDA21hYTg\nKD30dY2NxMLCN4WFb3JySvLyXlKpNGVlpVmznOzt7R0cHCwsLPhw1wNBAgsJxC/Ky8vz8vIKCgoI\nhIIXL14yGAw5ORkbGyNrawMLCwMzM10dHXU4+wsCALBYrJqappKSqqKicgKhjEAo+/ChHYvFmpgY\nTZ9ua21tPWPGDCMjI16nOY7AQgLxo97e3ufPnxcUFBAIBAKhoKKiksViSUiIGxnpmJhMMjbWMTXV\nNTbW0dBQ4XWm0GhoaGgrLa0uKXlbWlpdUlL9+nV1d3cPBoPR09O1traxtra2sbExNzeXkJDgdabj\nFCwk0BhApVJfv35dUlJSWlpaUvKytLS0sbEJACAnJ21oqKOnN1FPT0NXdyLniz93JoeGqKOjq6rq\n/X9f9RUV78vKaji7WqmqqpiYmJiYmBobG5uamhoZGcHFS/gELCTQmEQikTh1paysrKqqsqqq6t27\nWiaTCQDA4+V1dSdyqou2tpqmpurEicoTJyqLicG5YXyETme8f9/6/n1rbW1zbW1zZWV9VdX7ysp6\nzobEIiIiWloaurp6urp6BgYGxsbGZmZmioqKvM4a+jRYSCABwWAwamtrq6qqqqqqKisrOdWltrau\nt7eX00BNTUlDQ2XiRCUNDWUtrX+ri5oaXkVF4eP9+CBU0Gi9ra3kxsa2xkZifX1LbW1zfX3L+/dt\ndXUtzc1EzoePmJiYpqbG5MmTdXX1OHR1dbW1tbFYWPjHDFhIIAHX3Nz8/v37+vr6urq6urq6+vr6\n9+/ra2trm5tb+tcqlpbGqasrKSvLq6jIq6kpKinJq6vjlZUVlJXlFRVl5eWlFRRk4LSfj5FInZyv\n1lZSayu5sZHY2kpqaSE1NZHa2tobG9s6O//dBx6DwaiqqmhqampoaGpoaGhpaWloaEycOFFDQ0NN\nTY237wLiHiwk0DjFYDCam5sbGxtbW1tbWlqamppaW1ubmppaWprb2lobGhq7uqgD28vLyygoyCoo\nyMjLSysoSHNe4HCSeLysnJyUlJSkpKS4lJSEnJw0DieOw0mMuUf3KZRuKpXW3d1DJlOoVBqV2tPV\n1d3e3tXV1c2pFmQyhUSi/Peig0TqGHi6lBROTU1NRUVFWVlFXV1dSUlJVVVVVVVVWVlZXV1dVVVV\nVFSUV28NGmmwkEDQp9FotNbWVtIAZDK5/0VLS3NJSQmDwRATE2tv7/hkBBkZKRxOAoeTkJXFAQDk\n5KQxGIDDiXOe5JeXl8ZgMHJyUgAAKSnJ/lXIJCTExMUHf+bicBKiov9vmTIGg9nVRRvUrLeX0b/D\nGJPZR6FQAQDt7V1sNptKpdHpTDqdQaX2AADIZAoAgEhsp9OZ3d09HR2UT74FOTlZKSkpBQUFeXl5\nBQXF/14o9PT0HDt2TEFBYd++fU5OTsrKynAb2vEMFhIIGraCgoJvvvmGyWT+888/Dg4OAICuri4q\nlUqlUslkMudFV1dXe3s75zWFQmGz2e3t7QAACoXS1NSUm5traGigoKDQ2dkJAOjs7Ozr6+ME57xm\nMJgiIsL999Pa2zs+/l9VXl6O84LNZjOZfSIiwsLCwrKyspyDQkJCnNcyMjLCwsLi4uISEpLCwsIy\nMjIAAFlZWQwGc+nSJUlJyYiIiMmTJ0tJSeFwOBwOJy8vz3khJSX1hR9Cc3PzqlWrkpKSQkNDf/vt\nNxwOh9JPFxqD2BAEDRmLxTpx4gQWi/X29iYSiQgi3LhxQ1xcfMGCBVQq9XNtGhsbAQCZmZlDjFlU\nVAQAqKioGG4yFRUVnNlQ9+/fH+65HLdu3VJQUJg8eXJGRgayCJAAgIUEgoaqtbXVw8NDRERkz549\nfX19wz2dxWLt2bMHg8GsX7/+y6e/ePECAFBWVjbEyHV1dQCA3Nzc4abEZrNpNFpoaCgGg9m2bRuT\nyUQQobGx0cfHR0hIKDw8/AvVERJgsJBA0JCkp6erq6traWkh+7zu6elZvHixiIjI6dOnv9r48ePH\nAIChX/HQaDQAQHx8PILEOK5cuSIpKenk5NTU1ITgdBaLdf78eRkZGSMjo+LiYsRpQGMUXLkIgr6i\nr68vMjLS1dV1+vTpxcXFtra2w41AJBLd3Nzu37+fkpISERHx1fZtbW3CwsLy8vJDjC8uLi4lJUUk\nEoebWL+lS5dmZWXV1dVZW1vn5w97T3sMBhMaGlpSUqKsrDxjxowTJ06w4eDreAILCQR9Ced21uHD\nh48dO3b37t2hf7j3Ky0ttba2bmhoyMnJcXFxGcopbW1tioqKw1r5GI/Hc1NIAAAWFhbPnj2bOnWq\nk5PThQsXEETQ1NRMS0s7cuTItm3b3N3dOSM90HgACwkEfdbjx4+nTp1aW1ubn5+/YcMGBBEePXpk\nb2+vpqaWl5dnaGg4xLPa2tqGu22GkpISl4UEACAvL5+YmLh3795Vq1atWrWKTqcPNwIGg9mwYUN2\ndva7d+/Mzc2TkpK4TAkaE2AhgaBPYDKZkZGR7u7uDg4OBQUF5ubmCIKcP3/e09Nz7ty5jx8/VlZW\nHvqJRCJxuIUEj8e3tbUNM8FP4Iy6x8fH37x509nZuampCUEQa2vroqKiuXPn+vj4rFq1ijOEAwkw\nWEggaLD6+npnZ+cjR4789ttvt2/f7n8yY+j6+vq2b9++atWqH3/88fr168Nd3pxIJOLx+GGdgsoV\nST8vL6+CggIymWxlZYVgyAQAIC0tHR0dHR0dfePGDTs7u4qKCrRyg/gQLCQQ9P/Ex8ebm5uTyeTC\nwkJkt7O6uroWLlx44sSJ6OjoyMhIBIt0dXZ2ch4bHDoZGRkK5dNPpyOjr6+fm5s7bdo0Jyenixcv\nIgsSEhJSVFSExWKtra3v3r2LYnoQX4GFBIL+xZmdtXDhQk9Pz6dPnyLbYq++vt7BwSE/Pz89PT0k\nJARZJlQqdbgPiuNwuK6uLmTdfY6cnFxCQsLmzZvDwsJ++OGH/mfvh2Xy5MlZWVnLly/38/PbsGED\ng8FAN0mIH8BCAkEAAEAkEufOnXvkyJGzZ89GR0cjW/AjPz/fxsaGyWTm5+cjmCXcD1khoVKpX283\nTEJCQj///PPNmzfPnDnj5eXV0fHpVcW+TExMLCoq6urVqxcuXHB1dUU27gLxM1hIIAg8e/bMysqq\noqIiMzMzNDQUWZCbN2+6uLhMnTo1JydHR0eHm3y6urr4pJBw+Pv7p6WlPX/+3MHB4d27d8iCLF68\nODc3t7Gx0dzcPD09HdUEIR6DhQQa786dO2dvb29iYvL8+XNra2sEEdhsdmRkZFBQ0JIlS5KSkhAM\nzg/CJ7e2BpoxY8azZ89ERUWtra0zMzORBZk6dWphYaGjo6O7u/uRI0fQzRDiJV4/Wg9BPEOj0Vas\nWMGZ8Ipg7SwOCoWyYMECUVHRixcvopWYnJzc2bNnh3XK1atXRUVF0UrgcygUyvz588XExKKjoxEH\nYbFYBw4cEBYWXrx4MY1GQzE9iFdgIYHGqYqKClNTU0VFxQcPHiAOUl9fb2lpqaiomJ6ejl5qbCwW\n+/fffw/rFM6cKDqdjmIan8RkMjdt2oTBYPbu3ctNnJSUFDk5OVtb25aWFrRyg3gF3tqCxqPExEQb\nGxssFksgEObMmYMsSF5enpWVFZ1OJxAITk5OaOXGYDAYDMZw94ni3AobuWGSfsLCwseOHTtz5sy+\nffvCw8ORTeUCALi7uxMIBBKJZGlpWVxcjG6S0CiDhQQaXzhzfH19fb29vbOzsxGPil+/fn327NkW\nFhZZWVlcDq0PwnkOfLjPMHIKT3d3N4qZfMGqVatiY2OvXbs2b948xM+v6Orq5ubm6urqzpw5MzEx\nEd0ModEECwk0jhCJRA8Pj/45vsP9sOZgs9mRkZHBwcFhYWGoDK0PwvkdX0RE5KstB+Ks8MhisdBN\n5gu8vb3T09OLi4tdXV0Rr86ioKCQkpLi5+e3YMECOPw+dg3vHysEjV3Pnj3z8/Njs9mZmZnIZmcB\nALq6ukJCQh48eHD58uXly5ejmuC/OIVkWEv/AgCEhYXB6BYSAICNjU1eXt7cuXNtbW2Tk5P19PQQ\nBBEVFb18+bK5ufmmTZvevn176tQpLBaLeqrQiIJXJNC4wJnja2xsXFxcjLiK1NfXz5w5Mycn5+HD\nhyNURcB/xYBTGIaOU3gQj1ggxnlwXU5ObubMmYWFhYjjbNiw4c6dO//884+Xl9eIzmOGRgIsJJCA\n6+np+fbbb1evXr1x48bExEQFBQVkcXJycqysrPr6+ggEwsyZM9FNcqAxdEXCoaqqmp6ebmpq6uzs\nnJGRgTjOggULMjIyXrx4MXv2bBQXoIRGASwkkCCrqamZPn16fHz8/fv3Dx8+PNxP534XLlxwcXGx\nt7fPzc3V1tZGNcfBxtYVCYe0tHRSUpKHh8e8efNSUlIQx7G0tMzLyyORSI6OjvX19ShmCI0oWEgg\ngZWammptbS0kJPTs2bO5c+ciC9LX17dx48bw8PAtW7bExMQgW4NruD2C4V+RjP5g+yCioqL//PPP\nN9984+Pjw81Cvzo6OllZWaKiog4ODuXl5ShmCI0cWEggwXTu3Ll58+a5urpmZ2cjvobgPLV+5syZ\nv/766+eff0awIDwCyK5IeHhra2AOFy5cWL16dUBAQHR0NOI4qqqqT5480UKodvkAACAASURBVNDQ\nsLOzQ7YbCjTK4KwtSND09PRERERcvXr1wIEDW7duRfzp//btWx8fHzKZnJmZaWNjg26SX8DNFQmv\nbm31w2AwJ06cwGKxK1euZDAY3377LbI48vLyDx8+XLRokZubW0xMjLu7O7p5QuiChQQSKA0NDQsX\nLnzz5k1sbKy3tzfiOFlZWYsWLZowYUJ+fr6mpiaKGX4Vp/Kx2ezR7BRFGAzm6NGjSkpKYWFhFArl\n+++/RxZHUlIyPj5+6dKlPj4+169fX7BgAbp5QiiCt7YgwZGdnW1lZdXR0fH06VNuqsi5c+dmz57t\n5OSUk5MzylUEACAqKgoAoNPpwzqL055zLj/Ytm3boUOHNm3a9NtvvyEOwhl3WbFiRWBgINxgka/x\neK0vCELJ2bNnRUVFvby82tvbEQdhMBjbtm3jcj1gLrW0tAAAhrsKZEFBAQCgurp6ZJJC6Pjx4xgM\n5tSpU9wEYbFYa9euxWKxcXFxaCUGoQve2oLGvN7e3nXr1l28eHHr1q0HDx5EPMeXRCIFBATk5OT8\n/fffwcHB6CY5dIJxRcLx/fffs9nsdevWYbHYsLAwZEEwGMzvv//OYrECAgLu3LnDzbUmNEJgIYHG\ntsbGxkWLFpWWlsbExHBzG72ystLHx4dCoWRlZVlZWaGY4XAJUiEBAGzcuJFEIkVEROBwOMTlmXNZ\nw2Kx/Pz87t696+npiW6SEJdgIYHGsMLCwoULF4qJieXn5xsZGSGO8/Dhw8DAQAMDg/T0dFVVVRQz\nRICz0tRwCwmDweg/l9/s37+fTqcvXboUi8X6+/sjC4LBYE6fPk2j0fz9/RMTE2fPno1ukhA34GA7\nNFb9/fffjo6OxsbGBQUF3FSRc+fOeXp6zp07Ny0tjedVBACAxWKFhIQE5oqE4/Dhw+Hh4SEhIffu\n3UMcREhI6NKlS4sWLfLx8YG7vvMXXg/SQNCwoTUkzmAw1q5di8Fg9uzZw2KxUMyQS2JiYleuXOG8\nplKpXV1dn2w28FsxMTEAAAaDMUopDh+LxQoNDZWQkEhLS+MmDoPBCAgIkJKSys3NRSs3iEsY9pid\nrg6NT0QiMTAwsKCg4PLly35+fojjfPjwwd/fn0AgXL161dfXF8UMESgrK4uNjSWRSCQSiUgkPn78\nWFZWlsFgdHZ20ul0CQmJzs7Oj3cokZeXb29vx2KxMjIyYmJiJBLJ1dUVj8crKCgoKCh4eXlNnTqV\nJ2/nc/r6+oKDgx88eJCVlWVmZoY4DoPB8PPzy8nJyc3N1dfXRzFDCCFeVzIIGoYXL15oa2tPnjz5\n5cuX3MQpKSnR0dGZOHFiYWEhWrlxY9++fQAAUVHRT66Moq+v/8mzPjkpQFhYmHODa8uWLaP8LoaC\nTqfPnj1bXV29rq6Omzjd3d22trY6OjrNzc1o5QYhBsdIoDEjNjbW3t5+0qRJBQUFpqamiOMkJyc7\nODioqak9e/bMwsICxQwRW7lypbCwMJ1O/3iNE1FR0c9NePX09Px4UKSvr49Op2MwmJUrV45IrtzB\nYrF3795VVFScN29eR0cH4jgSEhIJCQkiIiJeXl6jsFM99BW8rmQQNCQnTpwQEhIKCwuj0+ncx/n2\n2297e3vRyg0VixYt+tycqwcPHnzylOzs7E+2FxYWdnNzG+X8h6WmpkZFRcXDw4PLQZ2qqiplZWVP\nT09+HhwaD2AhgfhdT0/P0qVLhYWFDx8+zGWc5cuXcx9nhGRlZX2yKmCxWCqV+slTGAzG55a1T05O\nHuX8h+vZs2c4HC40NJTLOE+fPpWUlAwPD0clKwgZWEggvtbY2Dh9+nQZGZmkpCRu4rS1tc2cOVNa\nWjohIQGt3FA3derUQY/lYzAYZ2fnL5wyf/78QcMqGAxGW1ubV+u7DEtSUpKwsPAvv/zCZZyEhARh\nYeFff/0VlawgBIQjIyO/evsLgniCs+sqnU5//PixnZ0d4jgvX750dnamUqmPHz92cHBAMUN0iYuL\nc+pc/xEsFrtq1Sp7e/vPnUImkzkXH/1HhIWF9+3bN3369JHNFQ36+voyMjJbt241Njbm5kmgKVOm\nSEtLb9261cjIyNjYGMUMoaHidSWDoE+7ffu2pKSkm5sbiUTiJk5SUpKMjIyjo2NraytauY2Qnp6e\nj7eUf/78+RdOqa6uHtReUlKyo6Nj1HLm3rp163A43KtXr1CJ8+LFC1SygoYFFhKI77BYLM7+6uHh\n4dwMraMVZzTt2rVr4PMiCgoKX31SUkNDo789FovlrJM4hjAYDEdHR319fS7rH4PBcHJy0tLSamtr\nQys3aIhgIYH4C41GCwkJEREROXnyJJdxlixZwrdD65/T2NjYX0hERERCQkK+ekpERET/JGAMBlNe\nXj4KeaKrqalJTU0tICCAyzhEIlFHR8fV1ZXJZKKSGDREsJBAfKShocHa2lpBQSE1NZXLODY2NvLy\n8o8ePUIrt1ETGBjImQcsJCQUHR391fZ3797lbKooIiIyb968UchwJKSlpQkLC3P52wObzSYQCOLi\n4rt27UIlK2iIYCGB+EVxcbGGhoaenl5ZWRmXcTQ1NbmPwyu5ubn9lxeNjY1fbd/R0dE/cevhw4ej\nkOEI2b9/PxaLzc7O5jLO2bNnhYSExuLvEGMXLCQQX7h586akpKS7uzuZTOYmzq1bt1CJw1vm5uYA\nAAMDgyG2t7GxAQDo6ury1dKTw8VisebPn6+hocH9IEdwcLCysvJQyjCECrgfCcRjbDZ79+7dBw4c\n2LBhw9GjRz+52NSw4qxfv/7YsWOI4/AWmUymUqnBwcHPnz+3tLRMTU3t/1ZnZ2f/AipCQkKysrL9\n3zIzMysoKAgODn7//r2UlJScnBznZtfYgsFgLl68aGlpGRIScv/+fcQ7XQIAzpw5Y2FhsXTp0pSU\nFG7iQEMEV/+FeIlGoy1btiw+Pv7UqVOhoaE8jzNyWltb6+vrGxsbiURiW1tba2srkUgkEts4/6VQ\nuqhUKpXajVZ3kpISOBxOWloa/y8lPB6vrKysrKyMx+NVVVU1NTVVVFTQ6g5FBALBwcHhwIEDmzdv\n5ibOs2fP7O3tuY8DDQUsJBDPEInEBQsWlJaW3rlzx8XFhfs4MTExzs7OKGaIQGdnZ3l5eUVFRVVV\nVV1dXX19HQeN1sNpgMNJ4PHyKioKeLwsHi+rpCSHx8vJyOAkJcVxOHF5eRlJSXFJSTEZGRwGg5GT\nk+6PjMOJi4r+uxgXg8Hs6qL1f6u9ncJmsymU7u7uHiq1h0zu5LygULrb2shEYgeR2E4kdrS0kNra\nyFTqvyeKi4tpampqaGhoaGhqaWlNmjTJwMBAX19fTk5utH5an3b48OHIyMinT59yuQw+WnGgr4KF\nBOKN0tJSLy8vISGhpKQkQ0NDxHFevXrl7e3NfRxk2tvbi4uLnz9//ubNm4qK8jdv3jQ3twAAREWx\nkyZN1NRU0dBQ1tBQ1tZW09BQ0dBQmThRWUJCbJSTHIRG621sJNbVNdfXt9TWNtfVNdfXt9XVtVRX\nv+/tpQMAlJWVDA0N9fWnTJkyxdzc3MLCQl5efjQzZLFYLi4ubW1thYWF4uLiPI8DfRUsJBAPpKam\n+vv7GxoaxsXFKSsrI47z6NEjf39/Y2Pj2NhYbuIMHZlMzs/PLy4uLioqKi4uqq6uAQCoqCgaGeno\n62vo62saGGhNmaKlra0mLDzGbs339bFqa5sqKurfvHlXXl5XUVFfVvauqakNAKCtrTVtmoWFhcW0\nadNmzJihqKg40snU1NSYm5uHh4f/+uuv/BAH+jJYSKDRduHChTVr1ixYsOCvv/6SkJBAHOf8+fNr\n165duHDhX3/9NaK/bzY1NWVnZ2dnZ+fkZBUXv2CxWGpqSpaWUywtDSwtDYyNdSZNmjByvfMWmUwp\nLa0uLHxTWPimsLCirKyazWZPmqRjb+/g4OBgb28/cmtbXb58OTQ09NGjR9zc9kQxDvQFsJBAo4fN\nZu/du3ffvn1bt249dOgQ4plFfX19O3fu/OWXX3bv3r1nz56RmKFEpVLT0tLu37+fkvKgpuYdFiti\naWlob286c+Y0OztTPJ7Howi8QiJ15uS8zM5+kZ398tmz13Q6Q1NTY86cuR4eHm5ublJSUuh2FxAQ\nkJeX9/LlSy7vraEVB/ocWEigUUKlUkNCQpKTk8+fP79kyRJu4gQHB6ekpFy8eHHx4sUoZggAqKur\ni4uLu3//XkZGJp1Ot7Aw8PCY4exsOX26saQkvMn+/9BovQUFr588KUxOzicQXouIiDg6Osyb5+nr\n6ztp0iRUuiASiaampm5ubtHR0fwQB/ocWEig0dDU1OTj41NdXX337t1Zs2YhjtPY2Ojj4/Pu3bvY\n2FhHR0e00iORSElJSVevRj9+nCYpKe7sbOnt7eDpaT9hghJaXQi2Dx860tKeJSZm37uXSyJ1GBkZ\nLl26bOnSpWpqalxGTkpK8vb2TkhI+Nx+w6McB/okWEigEVdSUuLl5SUqKpqUlDRlyhTEcV68eOHt\n7S0uLn7v3j09PT3uE2MymfHx8RcunE9NfSwuLurj4xgU5ObuPr1/li00XExm36NHBTduPIqLy6RS\nac7OTqGhYQsXLvzcLsJDsXTp0tTU1NLSUi5vTKEVB/oYLCTQyEpJSQkICDAzM4uNjcXj8YjjJCcn\nBwYGTp8+/fbt29w/6EAkEs+fP3/mzOmGhsZ58+wWL57j4+MIb16hiEbrvXcv59q1lMTEbBUV5dWr\nI8LDw5E9AkkikYyNjefNm3fx4kVuUkIrDvQxWEigEXTu3Lm1a9cuWbLkzz//7F/qHIGoqKhNmzat\nXLny9OnT3PxuCwCor68/cODAlSt/SUiIffut95o1i3R01LkJCH1ZXV3zmTN3L1xIpFCowcGLd+/e\nra2tPdwgCQkJ8+fPT05Onjt3LjfJoBUHGgQWEmhE9PX1bdy48Y8//ti9ezc32zkzmczvv//+9OnT\nXMYBALS1tR06dOjMmdOqqoo7diwNCZkLL0FGTU8P/Z9/Ug4diq6raw4LC9+1a5eqquqwIgQEBDx9\n+vTVq1fS0tJfbz3ycaCBYCGB0NfV1RUUFJSamnrp0qWgoCDEcSgUyjfffJORkXHt2rX58+cjjtPX\n13fs2LH9+/dJS0vu3LksLGw+HAXhCQaDefly0v79l0mkzu3bd2zfvn3o15etra3Gxsb+/v6nT5/m\nJge04kADwUICoayhocHb27u+vj42NtbBwQFxnJqaGi8vr/b29oSEBEtLS8RxSktLV6xYXlJSsmvX\nio0bv4FXITzX00P//fdbkZEX9PWnXL78F2fN/KG4du3a0qVLs7OzbW1tuUkArThQP1hIIDQ9f/7c\n29tbTk4uMTERwa3wfvn5+b6+vioqKomJiZqamojjHD9+fMeOHdOm6V+6tNPQEHk+EOqqqt5/++2B\nvLxXkZGRO3bsGOJTpa6urq2trYWFhVwOlaEVB+IYY8sBQfwsNjbW3t7e0NAwOzubmypy+/ZtFxcX\nCwuLrKwsxFWEyWSuXr16y5Yte/eGZmefHYtVBIOZwflCHIFAeO3svIbzuqeHvmvXn5MnLxIRsRtK\n2I97d3ZeQyC8RpzMILq6E9PTT/3yy9o9e3avWLGCTqcP5awzZ85UVlaeOnWKy97RigNxwEICoSMq\nKsrPz2/x4sX37t0buOfSsLDZ7CNHjnzzzTdhYWFJSUkyMjLI4nR3d/v4eP/9d/Tdu4e3bVsy5tZP\n5GCz87k5/cKFBHf3DRs2BHL+uGfP+QMH/lq50ruzMy0lJQpB7+vXB7i5rT9/Pp6brAYSEhL6/vtv\nkpKOxcbGeHjM7erq+uopenp6mzdv3r17d0NDAzddoxUH4oC3tiBuMZnMDRs2nD179sCBA9u2bUMc\np7e3Nzw8/Nq1a1FRUWvXruUmnwULfPPzc5OTf7OyGu2F5dHFuSBAUFGSk/M8PTddv74/MNCVc0Rb\n27e2tvnDh4cKCkMtzx/3fu1aypIlkffu/ebhgebowsuXVe7uG+zsHGNi7n71HheNRjM1NbW0tLx5\n8yY3naIVBwKwkEBcolAogYGBmZmZXE6sIpFICxcuLCoqun79uqenJzcp7dmz59dff0lPPzV9+kgt\nTDtqkBUSOp2hq+unqamSnX2u/6CwsB2LxRpWqE/2bmsb2thIrKq6g8WiuVF3dvaL2bPX7dy5a/fu\n3V9tnJycPG/evJSUFHd3d246RSsONCYv+SE+UVNTM3369BcvXmRkZHBTRaqqquzs7Orq6vLz87ms\nIi9fvjxw4MDRo98JQBVBLCYmvb6+JTh4zsCDLBYLleDBwXPq6ppjYtJRidbPwWFqVNTGvXv3Pn36\n9KuNPTw8FixYsHHjRiaTyU2naMWBYCGBEMrPz58xYwYWi83Ly+Nmei5nFqa8vHxeXp6RkRGXWe3c\n+aOlpUFExEIu4wzSP/Lc2EhctGi7tLSzoqL7smX7Ojq63r1r8vHZLCPjoqo6b/ny/e3tlIEnpqYS\nfHw2y8u7iYs7WlgsvXHj0cDvdnR0bdx4YtKkheLijoqK7nZ2YZs3nywo+PSAtpXV8v40vvlm1xey\nTUjIAgAMvK3XP2bOOX379lPD7b2ftbVhfxfoWr16oaOj+Y4d24fS+OjRo2/fvj137tzXm45KnHEO\nFhIICVQmVgEALl26NHv2bCcnp7S0NGQLMQ1UX19//37ytm1LUN+hpP/2zrZtf/z88+r37xODgtyj\no+8vXrxn06aoI0fW1dcnLFzodOXKva1b/xh4opvbd8LCwpWVtysqbuPxckFBP6Wk/O9O0bJl+06c\nuLFhQ+CHDw+bmu5dvryrurpx+vSVn8whKemYicnkbduWsNn5N278/IVsi4srAABaWv97dLw/fzY7\nn83OP3x47XB778cJW1xc/uVmyOzYsfTJk4yKioqvtpw0adLatWsjIyM7Ojq46RGtOOMcLCTQsEVF\nRXE/sYrFYm3fvj00NHTbtm23bt3iZqvEfo8fPxYTE/X0tOc+1OeEhs43NNSWlZX68cflAIB793I2\nbAgceOT+/dxBpxw//j0eL6epqXry5A8AgAMH/ur/Vnp6IQBgwgQlHE5CVBQ7ZYrWH39s/mS/tbXN\njo6rgoLcODXgyxoaWgEAcnJfWQJk6L0PJC8vAwBoaGj7aksEXF1tZGWlHj169PWmAPz0009sNvvg\nwYNcdopWnPEMFhJoGPr6+tasWfPDDz9ERUVFRUUJCwsji0Oj0QIDA0+cOBEdHb1v3z60LiDevHlj\nZKQjJjaCj5hZWPy7DL6qqsKgI+rqeABAYyNxYHs2O19b+989OfT0NAAAr1/X9H930SJnAIC//4+a\nmvNDQw/euvUYj5f9eDy8vLzW0XGVsrI8p1Z9VXd3LwBAVPQrg+FD7H0QTtju7p6hZDJcwsJCZmZ6\nb968GUpjOTm5n3766cSJE1VVVdx0ilac8QwWEmioqFSqr6/v5cuXr1+/vm7dOsRxPnz44O7u/vjx\n4wcPHoSEhKCb4UivgCItLcl5ISQk9MkjA6dBtrdTfvzxjKFhoLS0MwYzQ0TEDgDw4cP/bqFcurQr\nJubwokXOXV3dFy8mBAbu1NPzf/588I0dZ+e1Hz505OaW/PNPylCSlJQUAwDQ6V8ZQB5i74Nwwo7c\nz1lKSmIoD5RwRERE6OjoDGWi1+jEGbdgIYGGpLm5edasWXl5eampqf7+/ojjVFVV2draNjY25ubm\nOjk5oZcgAADg8fiWFhK6MbkRELDz0KErgYFutbXxnMGJj9ssXOh0584hIjElM/PPOXNm1NU1r1gx\nePzj999/4Nx0Wrv26Pv3rV/td8IEZQDAoGH/TxpK74OQyZ0AgJHbO7K5maSkNNTgWCx23759N2/e\nLCkp4aZTtOKMW7CQQF9XVVXl6OjY3t6em5trb498BCInJ8fW1lZRUTEvL8/AwADFDDmsrKwqK+ua\nmz+gHhmZnJyXAIAffgjmPAPY28sY1ACDmcEpDEJCQo6O5jdv/gwAKCurGdRs0SLnFSu85s+f2d5O\nWbFi/1ef/Zo2TR8AUFvb/OVmQ+x9EE5Yc3P9LzdDpr2d8vJlhZWV1dBP8ff3NzU1/fnnr9S/UYsz\nPsFCAn1FXl5e/6e/vj7yj4+bN2+6urrOmjUrLS1NWVkZxQz7OTs7y8rKXLlyfySCI+DoaA4AOHTo\nSns7hUTq/PHHT6xbHhp6sLS0ureX0dJCOnLkKgBgzpxPr4J17twOJSW51FTCyZO3vtyvt7cDAODZ\ns7KvZjj03vsRCGUAAB8fx68GR+Dq1QdiYmJz5sz5etP/YDCY3bt33759+8WLF9x0jVac8Qk+2Q59\nSUxMzJIlS+bOnXvt2jXEE6vYbPbevXv37dv33XffHT9+vH90YSTs2LHj/Pk/KypuDX0hkKEYuHYh\n5w7VUI60tpI3bz6ZkpLf3t6lr6/5008rAwN3DmyQk/Py/Pn4jIyihoY2SUlxbW21gIDZ33//71r3\ncnKuHR3/jhbcvn3Q3//HgSkRCJc/twAMnc6YPHmRtrZaVtbZj/MfYu8fvx0OW9vQ9+9b376NQX1P\nFwqle8qUQD+/b06ePDmsE9lsto2NjaamZkxMDDcJoBVnHIKFBPoszga369at4+bTn06nh4aGXr9+\n/eTJkxEREehm+LGOjg4jI0MHB2POjZpx6969HG/vzQPX2kIFZ62txMSjqM+xZrPZfn4/5uSUvnpV\nisfjh3t6QkKCr69vYWHhtGnTuEkDrTjjjTCX25dCAqmvr2/Dhg379+8/dOjQzz//jHh6LplM9vb2\nTk9Pj4mJCQ4ORjfJTxIXFzc3N//xx/0YDGbWrPH7WaCvr6mmhv/+++MGBloGBtqoxIyNfRIWdigq\namNQEPorU+3ff+nixcR79+4hGzzT19ePj4+vqKhYtGgRN2mgFWe8gVck0GA9PT1Lly5NSEi4cuVK\nYGAg4jjV1dWenp4UCiUpKWnou+Ch4uzZsxEREbt2rdi7Nwz1p9zHkIKC11u3/v7kyRlUojk5Rfzy\ny3c2NtwuY/Oxgwf/2rXr7JkzZ1atWoU4yN9//71ixYqqqiotLS1ukkErzrgCCwn0/3z48GH+/Pll\nZWVxcXGOjsgHVPPz8+fPn6+mppaUlDRx4kQUMxyiK1euhIWF+frOjI7eIy4uOvoJQEPR18f67rtj\n587Fcbl3AACAwWDo6ur6+fkdO3aMH+KMK3DWFvQ/b9++tbOza2pqys3N5aaKxMTE9K/ExZMqAgBY\ntmzZ/fv3Hz4kODmtKSt7x5McoC+rrKx3cloTHZ0cFxfHZRUBAGCx2HXr1p0/f769vZ0f4owrsJBA\n/3r69Kmtra2cnFxeXt6UKVMQx4mKigoICOCsxCUt/ZXlnkaUq6trXl4+AJIWFssOH45mMvt4mAw0\nUF8f67ffrpubL+nqYufm5nl5eaESNjw8HIPBnD9/nk/ijB+wkEAAABAbG+vs7GxnZ5eeno74IQ8m\nk8lZiev48ePcrMSFIkNDw5yc3H379u/bd8nKasXHKypCoy81lTBjRuiPP57ZsWNnQQHBzMwMrciy\nsrIrV648c+YMl5uvoBVn/ICFBPrfdut37tyRlJREFqSrq2v+/PnR0dF3795dv349uhlyQ1hYeMuW\nLc+fv9DRMfTy+sHRcXVmZjGvkxqn8vNfubisc3P7TllZq7CwaNeuXVgsyg+jrFq16t27d2lpaXwS\nZ5yAhWRcY7PZ27dv37hx408//XT+/HkREYSbpzY0NDg6OhYXF2dkZPj4+KCbJCr09fVjY+Py8vLE\nxBRmzYpwcVkXG/ukrw/+vjkaWCxWYmK2u/sGW9vQvj6J7Ozse/fuGxuPyBaWBgYGdnZ23N+VQivO\nOAELyfjV29sbFBR04sSJa9eucfM40YsXL2bMmMFkMvPz87nZKnEUTJ8+PTX1cVpaGg6n4uf34+TJ\nfkeOXB24HC+ELjKZcuzYP3p6AfPnbxESkk1JScnIyORmubahCAsLi4uLa239+uqWoxNnPIDTf8cp\nEonk6+v76tWruLi4mTNnIo7z4MGDgICA6dOn37lzR1ZWFsUMR1p1dfW5c+fOnz9HpVLd3Gz8/V0W\nLnSWkkJhfy2ot5fx8OHT27fT7t5NFxISDgoKXr9+/QhdgnyMRqNNmDDhxx9/3Lz56/t0jUKc8QAW\nkvGopqbGw8ODTqffv3+fm1V4o6Kifvjhh2XLlv3555+o3+weHVQq9c6dO9ev/5Oa+lhCQszXd1ZA\nwOzZs61Gel8TgUSj9aanF96+/Tg2NrOrq9vJaVZw8GJ/f//Rn7y3Zs2arKws7teERyuOwIOFZNwp\nKCjw9vbW0tJKTExEvE16X1/fpk2bfv/99927dwvGKjutra23bt26fv2fvLx8MTHRWbMs5s2znTfP\nTleXN8/BjCE1NY3JyXn37uU+eVLU3U2zsbEOCgoODAxUU1PjVUpZWVkzZ84sKSkxMTHhhzgCDxaS\n8SU+Pj44ONjBweHOnTuIf0+kUqnBwcEpKSmXL18OCgpCN0Oea25uTk5OTk5OfvgwpaOjU09P08lp\nmoPDVEdHcx0ddV5nxy/q6pozM59nZ7/IyHj+5k2NtLSUm5ubh8c8Dw+PCRMm8Do7wGazdXR0lixZ\nsn//fn6II/BgIRlHLly4EBERsXTp0rNnzyKeoNXU1OTt7f3u3bvY2Fhunn7nf0wmMycn5+HDh5mZ\nGQTCs97e3gkTVGbOnGpnZ2ppaWBmpovDjaMBFRqt9+XLqsLCN7m5JVlZL+rqmkRFRa2sLB0dZ7q7\nuzs4OIiK8tc6NJs3b46Li6usrORysTW04gg2WEjGBTabvW3btqNHjx48eHD79u2I47x69crT01NU\nVPTevXvcbHI15vT09BAIhMzMzOzsrLy8vI6OTmFhYX19LQsL/WnT9M3N9YyMdNTUhr34OT9raSG9\nfl3z/HlFUVF5cXFlefk7JrNPRkZ6xowZDg6OM2fOtLGxQbxFzSggA6Zw9gAAIABJREFUEAg2NjYE\nAmFY+y2OXBzBBguJ4GMwGCtXrrx169bly5e5Wcv90aNH/v7+JiYmcXFxCHaMECTV1dVFRUXFxcXF\nxUXFxcXNzS0AAFlZaX19TQMDzSlTtKZM0dTT09DQUEF3f60R0t5Oqatrqaysr6ioKy+ve/Omtry8\nlrPlu7Ky0rRp06ZNs7CwsJg2bdrkyZPH0C/mkydP9vf3P3z4MJ/EEWCwkAg4KpUaEBCQmZl5+/bt\nuXPnIo5z7ty5tWvXBgUFXbhwgd9uYvBcS0tLWVlZeXl5RUVFWdnr8vLy2tq6vr4+AAAOJ6Glpaap\nqTJxopKGhoqGhgoeL4fHyyopyauoKEhLI1xHYLi6umitraTWVjKR2N7W1t7Q0FZf31Jf31pX11JX\n10yhUAEAQkJCWlqa+vr6hoZGU6ZMmTJlioGBAQ8HzLm3cePGR48evXr1ik/iCDBYSAQZiUTy9vYu\nLy9PSkqaMeMre3F/DovF2r59+9GjR/fs2bN79+4x9AspD/X29lZXV9f/p7a2tr6+rr6+vqGhgUrt\n7m8mJiaKx8spKclLSUlISorLyuKkpSUlJcVxOHF5eRkAgLi4qISEGKexqCgWh/t3UnJ3d09vL4Pz\nuqeHTqP1AgDI5M7u7p7u7t7OTmpnZ3d3dw+F0k0kthOJ7T09vf2dSkpKqKura2hoaGhoamtra/xn\n0qRJ4uICNek5NTXVzc2turpaR0eHH+IIMFhIBFZtbe2cOXPodPqDBw8Qj2f09PSsWLHi7t27Fy5c\nWLJkCboZjk80Go1IJLa2tra2thL/09XVRaVSOzs7KZROKpVKpVI5a5hTqVQ6nd5/Yn89EBMTk5T8\nd3wCi8VKSUkBAGRlZXA4KRwOJyMjKy0tjcPhpKSk8Hi8kpIS57/Kysp4PB7xcmpjDp1Ox+Pxhw4d\n4nKNerTiCDBYSARTaWnp3Llz5eTkHjx4gHg6JpFIXLBgwevXr2NiYpycnFBNEEKiqqpKT0+vsLDQ\nwsKC17mMDYsWLaLRaPfv3+eTOIIKrrUlgDIyMhwcHHR1dbOzsxFXkdevX1tbWzc2Nubk5MAqAo1R\nnp6e6enpNBqNT+IIKlhIBE18fLyHh4ezs3NycjLixa8eP35sb2+vqqqal5fHzRoqEMRbbm5uPT09\nubnc7kODVhxBBQuJQLl8+bKfn9/KlSvv3LmDeOD08uXLHh4erq6uaWlpiDe5giB+oKGhMXny5PT0\ndD6JI6hgIREcR44cWbly5Q8//PDHH38ICSH5m2Wz2ZGRkStXroyIiLh58yY/P24GQUPk4uKCSgFA\nK45AgoVEEPT19UVEROzcufPs2bOIH5vq7e1dsmTJgQMHzpw5ExUVhawUQRC/cXZ2LigooFAofBJH\nIMEPizGvt7c3ODj48uXLN27cCA8PRxbkw4cP7u7uCQkJiYmJq1evRjdDCOIhZ2fnvr6+nJwcPokj\nkGAhGdva29vd3d0fPXr06NEjPz8/ZEGqqqrs7Ozq6+vz8/O5efodgviQqqqqnp4e9+PkaMURSLCQ\njGHNzc3Ozs6VlZXp6emIF+LNzc21s7OTl5fPy8szMjJCN0MI4gc2NjYFBQX8E0fwwEIyVr19+9bR\n0bG3tzc/P3/q1KnIgty8eXP27NmOjo5paWmIN7mCID5nbW1NIBC4f/garTiCBxaSMYlAINja2ioo\nKGRkZGhqaiKIwGazjxw5EhQUFB4efvv27fGzbAY0DtnY2JBIpLdv3/JJHMEDC8nY8/jx49mzZ5ub\nm6empiopKSGIQKfTly1btnPnzj/++ANO0IIEnrm5uaioKPd3pdCKI3jgJ8gY8/fff3t4ePj6+t67\ndw/ZXrkkEmnOnDmxsbHx8fFr1qxBPUMI4jfi4uKmpqYEAoFP4ggeWEjGkqioqGXLlkVERFy5cgWL\nxSKIUF1dbW9vX1lZmZmZ6enpiXqGEMSf4Hj7iIKFZGxgs9nbt2/fuHHj4cOHo6KikG0Kkp+fb2tr\nKyYmlp+fP23aNNSThCC+ZW1tXVRUxGAw+CSOgIGFZAxgMpmhoaHHjx+/du3ali1bkAW5c+eOi4uL\nhYVFVlbWxIkT0c0QgvicjY1NT09PSUkJn8QRMLCQ8Dsqlerj43Pz5s34+PigoCBkQaKiogIDA8PC\nwpKSkpCNrEDQmGZoaCgjI8P9XSm04ggYWEj4GpFIdHFxKSwszMjIQPbMOZPJjIiI+OGHH06cOBEV\nFSUsLIx6khDE/4SEhCwsLLgfJ0crjoAR4XUC0Gc1NDS4u7vTaLScnBxdXV0EESgUSkBAQHZ2dmxs\nrLe3N+oZQtAYYmNjk5yczD9xBAm8IuFTNTU1s2bNYrPZmZmZyKpIdXX19OnTS0pKsrKyYBWBoKlT\np5aVlfX29vJJHEECCwk/Ki0tdXBwkJeXz8zMRDYwnp2dPWPGDHFx8adPn5qbm6OeIQSNOWZmZkwm\n882bN3wSR5DAQsJ3CgoKZs2apa+v//jxYzwejyDCzZs33d3draysnjx5gnjPdggSMAYGBmJiYtxP\nuEIrjiCBhYS/pKWlubq62tnZ3b9/X0ZGZrinc7Y4DAoK4kzQQhABggSViIiIgYEB9wUArTiCBA62\n85G4uLigoCA/P7/Lly+LiAz7r6anp+fbb7+9devWqVOnIiIiRiJDCBrTTE1NX758yT9xBAa8IuEX\n0dHR/v7+33777ZUrVxBUkaamppkzZz548ODhw4ewikDQJ5mamqJyJYFWHIEBCwlfiIqKWr58+Q8/\n/PDHH38gWIv35cuXM2bMIJPJOTk5zs7OI5EhBAkAMzOzhoaGDx8+8EkcgQELCe8dOXJk48aNR48e\nPXz4MILTk5OTHR0dtbS08vLyDAwMUE8PggSGmZkZAID7iwm04ggMWEh4icVirV69eteuXVeuXNm0\naROCCFFRUV5eXgEBAYineEHQ+KGuro7H47kvAGjFERhwsJ1nmEzm8uXLY2JiYmJifHx8EJy+fv36\nc+fOHTx4cNu2bSORIQQJHhMTE1QKAFpxBAMsJLxBp9ODg4OTk5MTEhLc3NyGezqJRPLz8yMQCHfv\n3kVQhCBo3DIzM3v69Cn/xBEM8NYWD/T29vr7+6ekpCQlJSGoIlVVVfb29hUVFRkZGbCKQNCwmJqa\nvnr1isVi8UkcwQALyWijUqleXl5ZWVmpqakIZlhlZ2fb2trKyso+e/bMwsJiJDKEIAFmampKpVJr\namr4JI5ggIVkVHV0dLi7u798+fLJkyfTp08f7ukXL150cXFxdnZOS0tTVVUdiQwhSLCZmJgICQm9\nevWKT+IIBlhIRg+ZTHZ3d6+pqUlLS+NMHxw6ztonYWFhmzZtunHjhqSk5AglCfGbLVu2mP7Hy8tL\nVFT0m2++6T8CHz4dLhwOp62tzf04OVpxBAMcbB8RP//8c3R09JMnT9TV1TlHWlpa3NzcOjs7s7Ky\nJk+ePKxoXV1dISEhDx48iI6ODgkJGYF8If5FJBJLS0vZbHb/kcrKSs4LDAajp6fHo7zGMBMTk9LS\nUv6JIwDgFQn62tvbDx8+XFVV5ejo2NTUBACoq6tzdHSk0+nZ2dlfqCKfHLhraGiYNWtWTk7Oo0eP\nYBUZh4KDgwdWkUGWLFkymskIBhMTE1RuSaEVRwDAQoK+kydP9vb2stns+vp6e3v7p0+fOjs7Y7HY\n9PT0L2wuUlhYKC0tfe/evYEHnz59amVlRafTCQSCo6PjyOcO8R0XFxdFRcVPfktCQgLZBszjnLGx\ncXl5OZ1O55M4AgAWEpRRqdTffvuNyWQCABgMxvv37318fOTk5LKystTU1D53Vl9fX2hoKI1GCwwM\n7N8w586dOy4uLlOnTs3OztbW1h6d/CF+IywsHBwcLCoqOug4FosNCAiQkJDgSVZjmomJCYPBqKio\n4JM4AgAWEpT98ccfVCq1/48MBoNMJre3t395Y84///zzxYsXbDa7t7fXzc2NSCQeOXIkMDAwJCQk\nKSlJVlZ25BOH+FdQUNDHv/YyGIzg4GCe5DPWGRgYYLFY7u9KoRVHAGC+cPsVGq7u7u6J/8feeYc1\nkbVt/NBCaAkloSQBIYCUgIWiIkVBUUGxYQFE1BWxi22VVb9Xd21YVsXed8XeRewoohSVIqiEJoSW\nQgmQRgj9+2N2WQQFNENCcH4XFyYnM/c8wZPcc9pzSKSampoO5UpKSkZGRgkJCV+ds1teXm5mZiYQ\nCNoOtrCwyMnJOXr06OLFi3s9aARZYMCAASUlJe1LtLS0KioqfmDHAQQAAIVCmT59+vbt2/uIjqyD\ntEjg5PTp0zwer3N5Y2NjSUmJu7t7dXV151fXrFnTvr3S2NiYnZ3t7++PuAhCG4GBgUpKSm1PUSjU\n3LlzERf5YZDxdnhBjAQ26uvrd+/e3dzc/K0DPn/+3HnW+evXr69du9bY2Ni+sLm5+eLFi+fOneuV\nQBFkkMDAwPaVpKGhwd/fX4rxyDoUCgUWA4BLR9ZBjAQ2zp8/z2azO5crKSkpKirOnj07Ozt71KhR\n7V9qaGhYuHDht3ayWrp0KZIVDgHCysqq/WYzBALhBzIjILRha2tLo9HaD2dKV0fWQYwEHhobG3fu\n3NlhwElRURGNRi9durSoqOjixYud147t27evsLDwW42YpqamKVOmIJMLESCCgoKg3i0UCjV//nw5\nOTlpRyTD2NjYtLS0ZGdn9xEdWQcxEniIjIxksVhtRqKgoIDBYDZv3sxgMCIiIohEYudTCgsL//jj\nj6+6CPR9oaent3Tp0vY94wg/M3PmzIGmlSP9WuJjamqqqqoqfoITuHRkHWSwDgaam5u3b9/e2toq\nJycnJyeno6MTFhYWEhKirq7exVnLly/v0IJRUFBobW1Fo9HTp0+fNWuWt7e3goJCL8eOIDMYGRk5\nODikpKRYWFjY2NhIOxzZRl5e3srKSvwEJ3DpyDo/l5HU1dWJRCJoVQfUrdlhqi6Xy22fp0RZWbl9\nekQlJSXIGzQ1NZWVldXU1DQ0NBQVFa9du1ZcXAwAMDIy2rx587x585SVlbuO5M6dO48fP4Yey8nJ\nycvLt7a2urm5zZ8/39fXV01NDaZ3jNCnEYlEdXV19fX1QqEQ+t1W2OFIDofT2tpqa2ubkpJiZ2d3\n8+ZNAICWllaHw1RUVNBodNuD9r8l8oZkCWTiFozI/DqSuro6BoPBYrHYbHZNTU31F1RVV1dxuTyB\nQFBfX8/lfmVirvgoKCgoKio2NzfjcDpGRkba2tra2jra/6KlpaWtrY3H40kkkq6uLtRPJRAIzM3N\ny8rKFBUVm5qahg4dumDBAj8/Pzwe3xsRIvQ2IpGIzWZXVVWx2WwOh8Pj8fh8PvSbw+FwuVw+nwc9\n5fP5kE+IRKK6OpEkg1RRQUOoqKioq6tjMBgNDQ0MBgvx71OMhoaGpqYm7l/6sQPt3bv32LFj0C1g\nX9CRaWSjRSIUCgsLC2k0WmFhIWQbTCaDxWIxGIz29qChoaatjdXWxmhrY7S1NczMsNrahlisuoaG\nKgqlhMWqqagoo9HKWKyasjJKXV0FOkVR8b/uI3V1FSUlxXbXFdXX/zfnsq6uXiSqBwDU1PDr6xuF\nQhGfX1tf38jj1dbV1dfW1lVX86qredXVdDo959/HXOgUAICcnJyenq6+vl5DQ1NZWRkGg3Fzc/P1\n9R01apShoSGyJqDPUl1dzWKx6HR6WVkZk8msrKxks9lVVWw2m11RUcFmswWCLybtqKuramioYTBq\nGIwaFquGxarp6amZmRExGDV1dVUVFWU0GoVGo1RUlJWVUaqqaGVlJVVVNAqlpKaGBv8MsHVsknao\nmQCApqZmPl/Y4TA+v7apqRn8W3Wh31C9FYka6urqoUKBQMjnC3m8Wj6/kkYr5HJroac8nkAg+EJT\nTU0Vh8Pp6uricDgcDo/D4XR0dIhEor6+PolEMjAw+FYesL6PsbExg8FobGwUcxgSLh2Zps+1SIRC\nYXZ2NpVK/fz5M41GKyykFRYWlpWVQ6/i8dokki6RiNPX1yYSdQ0MdAgEPIGAIxBwOJxmh09aH0Eo\nFFVU1DAYlSwWm8lkM5mVhYXMwkJWba2opKQM+twqKioaGpLIZLKJCZlMJkOd4GQyGXEXicHlcqGb\nleLi4tLSUhaLxWDQmUwmk8lsazqoqKANDHC6ulo4HFZHB4vDYXV1tfB4LR0dLA6nicNhcThNTU31\nb83nlglaW1travhsNqeqistmc9lsDpvNqaioYbM5bDa3qopXWclhMiuEwn/+Jmi0MpFIMDAgkEiG\nBgYGhoaGAwYMIJPJJiYmfTy1z7t370aMGFFYWChmIju4dGQaKRtJY2NjZmZmZmYmlUqlUjOzsrKK\niopbWlqUlVFmZoYmJgZkMsHEhGBiQiCTiSYmBKgZ0Z+oqKgpLGQWFjJpNEZhIZNGY9FojJKSspaW\nFmVlZUtLCysraxsbGysrqyFDhpDJZGnH2x8oLS3Nzc2FGrjQzQqNRquqqgYAyMnJGRjgSSRdAwNt\nQ0M9fX0dEglvYIAjEvEEAl5LS0PasfcVuFwBg1EJ3RhBN0l0emVZWXVJSRmLxYYGGrW1tdrujUxM\nTMhk8sCBAwcMGCDt2P+hvLxcX1//5cuXo0eP7gs6Mo2kjaS5uTknJyftH1Lfv39fVydSUlI0NNS3\ntjamUEysrU0oFLKNjamy8s/bTmxoaPz8uTQrq5BKLczKKqRSi3JyCltaWrBYjI2Njb29g729vb29\nPYVCkXakMgCTyczKyqJSqVlZWVRq5qdPn3g8PgAAjVYmEPBkMoFMJpDJROi3hcWA/nezImEaGhrp\n9AoajUmjMWg0Bo3GpNFYBQWlHA4fAKCsrGxqSqZQbKytrSkUCplMtrGx6XZySm/Q2tqqrq5+/Pjx\nefPm9QUdmUYSRlJfX//u3bu4uLhXr+KSk5MFglo0WnnIkIEODpYODpYODlYWFgPaD1QgdKa2ti4j\n43NqanZaWk5qam5ublFLS4uBgb6zs8vo0aNHjx5tbW2NrFADAAiFwg8fPqSlpb1//z49PS07OxfK\nY2ZkZGBpOcDa2tjKytjKytjS0hiP15R2sD8XbDYnJ6c4O7soJ6eISi3KzS0uLma1traiUChLS4uh\nQ+0ghgwZ0vW8eRixtLT09/ffunVrH9GRXXrLSJqbm9+8efPixYtXr+Levn1bVycyMjIYPXqoi8tg\nR0crCoXcN8czZAU+X/j+fW5yMvX164z4+A9cLh+Px7m5uY0aNXr8+PEDBw6UdoCSo76+PjU1NSUl\n5f379+/fp+Xk5DY3N2tqYuzsLOztLWxsyNbWJpaWxkg7ow9SW1sHWUtmZkFaWu7797nV1Vx5eXkL\ni4F2dvZ2dnaOjo6Ojo69N3NswoQJBALh/PnzfURHdoHZSGpra2NjYx88eHD/flRZWbmBAd7FZdDY\nsY7OzoMoFKR/v1dobm7JySlKTPz4/HnKixep1dVcMtlk7FjPSZMmjR8/vvOGSP0AgUDw9u3bhISE\nxMSExMTEujoRFqthY0O2t7ewt7e0t7e0tjZB2meyCJPJTkvLgX5SU3PKytiKioqDBw9ydnZxcXHp\nYrPIH2PBggUVFRUdtiWVoo7sAo+R1NTU3Lhx4+bNG69fx7e2tjg7D5k0aeSkSS6Wln1lYO0nobm5\nJTHxw4MHidHRCTk5RVpaml5e3v7+/uPHj5f1uYkikejVq1ePHz9+9Sru06fM5uZmCwtjZ2dbV9ch\nLi6Dzcy+uYcxguxSWMiMj89ISPiQkPAxJ6dITk7OxsZ61Cj3CRMmuLu7i787ZGhoaFpaWkJCQh/R\nkV3EMpLGxsbHjx9HRl548OChgoK8j4/L5MkuEyY4aWtjYAwR4cfIz6dHR8ffuxcfH5+Ox+P8/QPm\nzp1rb28v7bi+j6KiosePHz969DA2NlYorBs8eKC7u52r6xBn50F6etrSjg5BclRWcpKSPr5+nR4X\nl56enotGK48ePdrbe6KXl5epqemPaf7vf/+7d+/ex48fxYwNLh3Z5QeNpLS09MiRI3///VdVVfWo\nUXZBQV6+vu4aGqrdn4kgcYqKWJcuPbl48UleXjGFYr18+Yp58+a1T/3SB8nNzb1y5cqtWzezsrLV\n1VXHjnX09h7p5eVEIulKOzQE6cNisR8/fvPo0ZuYmGQeT2BhMXDGjJkBAQHW1tbfpbN///4jR46I\nvygdLh3Z5buNJD09/c8//7xx44aurtaSJdOCgryMjL6yfSxCH+Tt28zz56MvXXqqpqa2dOmy5cuX\n6+npSTuoL2CxWNevX79y5XJKSqqBAX7WLI9Jk1zc3IagULLdL4fQSzQ2NiUkfHjwIOHGjVg6vXzI\nkMGBgXP9/Py+mm+7M6dPn964cWPnvbG/F7h0ZJfvMJL09PQNG359/vzF4MED16718/PzRD7eskhl\nJef48VvHj9/hcmuDg4O3bduGw+GkG1Jra+uzZ88OHToYE/NcTU1l+vTRc+aMd3e3V1CQ4SXiCJKk\npaXl9euMy5ef3L4dx+UKPDzcQ0NXT5w4ses5F9evXw8ICGhqahJzagZcOrJLjz6oZWVlwcHBDg4O\nQiE7JuZIRkZkUJA34iIyCh6vuXVrcHHxvYiI1Xfv3jA3Nztw4IC0ts+qr6//66+/Bg2ynTBhQlNT\nzdWrf5SXP/rrry1jxzoiLoLQc+Tl5UePtjtzZhOL9fDWrV2KisLJkydbW1udPn1aJPpmckwMBtPS\n0iIQCMS8Olw6sks3n9XW1taIiIiBA81jYh5dvvx7QsLJsWMdJRMZQq+CRqMWL56Wm3tjxYrpW7Zs\ntrGhxMfHSzKAxsbGQ4cOGRsPWLJksZ3dgIyMizExh2fOHING98P5yggSQ1lZadq00Y8fH/z06bKz\ns8WqVSsHDDDau3fvV2+VMBgMAIDHEzcvOFw6sktXRlJdXT1lyuT169evW+eXk3PNz89ThhpucnIj\noB/phpGSkuXuvgx6LBI1bNly0tTUV1FxZE9i6/wW3N2XpaRkwRieurrK9u2Lc3KuWVsTPTw8du7c\n2X47lt7j+fPngwcP+u23sLlzPQsL71648L/BgzvuQ9yP+d6aACOfPhX89tvxIUPmqqu7q6u7W1v7\nLVmyJz+f3nOFPl6l26BQyGfPbiouvrdo0cTff99qY0N59OhRh2M0NDQAHAYAl47s8k0jSU5OHjp0\nSEZGalzc8a1bg1VUpJAMRxxaW992LnR1XezqulhiMZw9e3/cuNDQ0NnQ061bz+zc+fcvv/jweLFP\nn0Z0e3rnt7Bq1SxPz1VnzkTBG6eRkf69e3sOHAjdvv2PCRPGV1dXw6vfHiaT6es73dPT08JCn0q9\nsnfvCgJByiM0kud7awKMDBo0Jzo6Yf/+VQxGNIMRvXv3sgcPEmxs/F+8SOnJ6bJSpdvQ09PesWNJ\nTs71oUONJ06c6OMzqbS0tO1VaHEVtIGxOMClI7t8fbA9Li7Ox2eSq+vgixe36uj06VzQXQDd+LSv\nu87OiwAAiYlnJHD1x4/fTJy49urV7bNnj4VKjI2nFheXVVU96/k6m85v4fLlp3Pnbnv48ICXlxPs\nMaemZs+YsQmLxcXEPNfVhX+i7YsXLwIC/LFYlaNH140bNxx2fVnhB2oCXMjJjfj06bKNzX8LL54+\nfTthwurBg80zMi52fa4sVun2vHyZtnz5/spK3sWLlyZMmAAA+Pz588CBA9+/fz906FBxlOHSkV2+\nYiSZmZnOziO9vEZcvLhVpjNida6yEqOhodHMbIaRkV5Cwum2QgWFkS0tLd8Vz1ffgpNTMJPJzs+/\n1Rv/OyUlZWPGrNTW1o+LeyX+yuH2XL9+fe7cudOnjz5z5reffMnRD9SE3kMgqNPQcFdRURYKX3Vx\nmOxW6fYIhaIlS/ZcvRpz9uzZefPmFRYWksnk5ORkR0exhn7h0pFdOnZt1dXVzZjhO3iwWWTk/2Ta\nRaTL7dsvS0vLAwLGty+Ea/ghIGB8SUnZ7dsvYVHrgJGR/qNHB/Lz89atWwej7JMnT+bMmbNixYyr\nV//4yV0EwFcTYKGysgYA0O0YlexW6faoqqIjI7du2BD4yy+/3L17F+qSamxs7PbEroFLR3bpaCR7\n9+5lsZiXL2/rpdm9baNtTCbb1zdMQ8NdR2fcvHl/cLmCoiLW5MnrMRgPfX3v+fO3Q7sXtFFRUbN0\n6V4SyQeFciESJ4WE7C4rq2p/AJVK8/Zeo67ujsWOmTZtY0lJ2bcu3b7w+fOUyZPXa2l5otGudnZB\n167FfPWU0tLyKVN+1dBw19PzCgzcWlXF7fpt3r8fDwBwcLBqL9VeMyzsGACAyxWsWXOITJ6ORrvq\n6IwbOXLR+vWHk5O7GXt0dLRqu0RvYG5ueOzY+pMnT6ak9KjfvFuYTKaf3+y5c70OHAiVzHyN3qtm\n4leYr9aEzpWzi5Kua6NI1BAeHjl0aJCa2mg02tXScvaSJXvevs381t/q4sXHAICtW4O7/pPKdJXu\nwM6dS5YsmR4UNJfFYgE4xjagnUx/5jGSL4xEJBIdOXJ47Vo/Q8PeWvDc1qTduPHojh1L6PRof/9x\nkZGP5szZunZtxJ49K0pL70+fPvrChYcbNhxtO6u8vHrYsAV378adP7+lujrm2rUdz569GzlyUdu3\nQEEBw8Vl8YcPn+/f38dgPFizxi8kJPxbl26Pp+dKBQWFz59v5uXdxOE0/f3/7+nTt51P+e234+Hh\ny+n0aF9f98uXn65ff7jrt5mengcAGDDgvzX/bVKtrW9bW9+Ghy8HAMyb98ehQ9dCQ2dXVT1jsR7+\n9dcWGo05fPgvXYtDsunpuV0fJg5+fp7DhlH27dsLi9qWLVt0dDAnTmyARa0n9FI1A3BUmK/WhM6V\ns4uSLsT5fKGr6+Jdu/5evnwGjXaHzX528uTG16/TnZy+7hMfPnwOD4/ctGn+hAndTLiS9SrdgUOH\nVhsa6u7evQsgRgIHXxjJ69evq6trgoOnSODCwcFTrKyMsViKX3LHAAAgAElEQVT1TZvmAwAePkwM\nDZ3dvuTRo6S2g7duPVNcXLZr19Jx44arq6u4ug45eHB1YSFz377L0AHbtp3hcPh79qzw8HBQV1dx\ncxu6ZMm0HkZy8OBqHE7TyEj/8OF1AICdO//ufMyiRVOh2DZsmAsAePbsXdeaDEYFAEBTs5udWV++\nTAMAEIl4NTUVFErJwmLA0aPruw1YSwsDAGAwKrs9UhwWLvR59OgRtCuUOAgEguvXr23cGCiVBSLw\nVjOI3qgw30UX4tu2nUlNzd6+fXFw8GQ9PW11dZXRo+0uX/7jqzofPnweN27VsmW+O3cu6fai/aBK\nt0dJSXHLlvkPHjwAiJHAwRdG8vHjRxJJj0jES+DCdnYW0AN9fe0OJdB8UCaT3XZwdHQ8AKD9pA43\nt6Ft5QCAmJhkAICHh0PbAS4ug3sSRmvrW2NjA+ixubkhACArq7CLaKHYWKyqzse0RyisBwCgUN0M\nMvn6ugMAZs7cZGQ0JTh4140bL3A4bLdDl5CsUPjN9bqw4ORkU1srzM/PF1Pn48ePQmGdt/dIWKL6\nXuCtZqDXKsx30YX4rVsvAQBTp45qf/zQoQM7V6qsrEJ392UrVszcv39VTy7aD6p0B7y8RjY2NgHE\nSODgi2ohEAgwGDXJXLhtxFVeXv6rJe2nk1VU1AAACIRJHUQKChjQAzabAwDA4f6bqYzDdb+RKofD\n37v30t27cXR6hUBQBxV+dfyjLTZo6KjbBGWqqsoCQV1DQ1PXO8+fP79l0iSXK1eexsamnjt3/9y5\n+0ZG+lFRe4cM6WqLw4aGJgCAqmpvbRsHAdUEPp/f7ZFdw+FwAABaWt3cyfYS8Faz3qsw30UX4iwW\nGwCgr9/N7k90esWECavXrg3YsmVBDy/aD6p0B7BYNQUFhebmZsRIxOeLFomenh6TWdmnppRAQDtP\nVFfHQL2xbT+1tXHQAZBtsNn/faS53O7z3syatXn37guzZ3sWF0dBgnAFTCTqAgA6DOR+lenTR9+6\ntZvNfvr69cnx40eUlJQtWLCj61NqangAgN5uOJaWVgAA9PXFTe1saGgIAPiutdPSottq1nsVBgAA\nTUOA7pFBzypwZ6C3ANnJt+Bw+F5ea0JCprZ3kW4XpfeDKt0BGo3Z3NwM4LD5zjclPxtfGImLi0tN\nDa/bKRaSB2qqx8WltS+Mj89oG0KEVre1X5375s03p6m0kZj4EQCwbl0AtJyqvh622XtDhw4EABQX\nd5w51gE5uRF0egUAQF5e3tV1yPXrOwAA2dlf6SppDyTb9S2e+Dx9+pZEIhobG4upY2NjY2RkeOnS\nEziC6l26rWa9V2HAv82INg+ABre/F6hn6d69L1aEvH2b2TbcXV/fOGXKhtmzx/a8LQLRD6p0By5d\neoLH4wAACgoKYkpBhiS+juzyhZHY2toOHTrkzz+vSiuab7FtW7C5ueHy5ftv3YqtquLy+cIHDxLm\nz98OTRSBDtDU1AgLOxYbmyoQ1CUlfdq9+0K3sq6uQwAAu3df4HD41dW8TZuOwxWwj48LACA1Nbvb\nI4ODd1GptPr6xvLy6j17LgIAxo/v5t4wJSUbADB5sisckX4dgaDu1Kl78+bNF19KTk5u3br1R4/e\nys3t69v+dFvNeq/CAAA8PYcBAPbtu8zlCnJyis+e/ZGsIdu2BdvYmP7vf6fPnIkqL68WCOqePn0b\nFPT7rl1LoQMCA7e+fp3+f/93qm0ycQ+Tfcl6le5AYSFz//7Ly5evAIiRwEHHle0PHjzw8fF5+PBA\nL42Otq+yUM9AT0oAADU1/B07zt+9+4pOr9DWxgwbZr1p0/wRI2zajqRSab/+euT16ww5OTBy5KCD\nB1dTKP5dy1ZU1Kxff/jp07ccjmDgQKP/+79fZs/e/AOxdaahodHU1NfY2CA+/lTnN952bmLixzNn\nol69es9gVKqqoo2NDWbNGrN6tR/UWfytazk5BdPpFQUFt3svk/+KFfuvXYvNzs7B42HobWhqanJ1\ndampKU9MPCWZjDu9VM1gqTBfrQkAADabExp6MCbmnVBY7+Fhf+zYr0ZGU37gLQgEdXv2RN68GVtY\nyNTQULW3t9yyZQFkgZ2v/tVIvoqsV+n2cLkCV9cliorqT5481dPTe/Lkyfjx47s/rStBrqampvg6\nsstXUqQEBQU9fHj/7duz0KQUhB/j4cNEH5/17RMTwQKUmCg6ev/Eic4wyrbnwoWHCxbsuHz5sr+/\nP1yaLBZr5EgnNTXFZ88ifsIsjf0D2a3S7Skrq/LyWltZyU9KeqOhoaGtrR0TEzN2rFjvqKamBhYd\n2eUr2X9PnTplbm7h4bEiL69E8gH1GyZOdD55cuOSJXs6dFiLw927ccuW7T1xYkPvfeSuXHkaHLwr\nLCwMRhcBABgYGMTHJ7S2ouzs5vUw0SxCX0NGq3R7Xr9Ot7efX1vbnJCQaGRkBFeXFNK19RUjUVFR\nefLkKYlkPGJEcFTUa8nH1G8ICZn69GnEoUPX4BKMiLgeE3Nk8eKerrX8LpqamjdtOhEYuG3NmrW7\ndu2CXZ9EIr19+87dfayn56qgoN87pB5BkAlkq0q3p7qaFxp60MNjhb398HfvkqFZJJABtE0N/2Hg\n0pFdvrlnu0gk2rhx45EjR1aunLlv30pkY93+TXl5dWDgtoSED+Hhe0JDQ3v1WtHR0atWraysrFi/\nfs6mTfOQqoXQq7S0tFy69GTduiNKSsrh4Xvmzp3blvCNxWIRCIT4+HgXFxdxLgGXjuzyTQtFo9ER\nEREXL148f/6ho+MvsbGpkgwLQWI0NTUfPXqTQglgMHgpKam97SIAAB8fHyo1a82adXv2XLS2Djh6\n9GZtbV1vXxThJ6Surv7UqbvW1gGLFoUvXBiSl/c5KCiofdpQpGsLLrppi82ZM+f9+3Qjo4FjxqyY\nOnXj58+lXR+PIFs8epQ0aFDg+vVHFi4MSUlJtbGx6f4cOFBVVd2+fXtWVran58SNG48bGU397bfj\n7bOVICCIQ3l59f/+d9rIaOrq1YdcXcdmZmaGh4erq6t3OAwxErjovlPP3Nw8OvrBs2fPaLQqG5uA\n4OBdX00uhCBDtLa2PnyYOHr0sokT11IodllZ2Xv27FFTk1B2nDZMTExOnDhRXFyyZs36v/9+amIy\nbfr0sDt34kSiBglHgtA/aGhojIp6PWvW5gEDpp48eX/58lXFxSVnzpwxN//6bivIGAlc9PSde3p6\npqdnnDhxMjEx18YmwNt7LTL3RhYRiRrOnr1PoQT4+KxXVdWNj4+/efMWmUyWYkg4HG7Lli1FRcVn\nzpzl8eRnztxkYDBp4cKdL1+m9cFsPQh9kNbW1vj4jCVL9hgYTJo+PayiovH48RPFxSXbtm3resdo\nKLm1srKymAHApSO7fHOw/Vu0trY+fPjwwIE/X76Ms7ExmzfPKyBgPLIyoO/z/n1uZOSjK1dieDzB\nnDmBa9eupVAo0g7qKzCZzGvXrl26dDE9PcPAAO/t7eTtPXLsWEeJpRNFkBUEgroXL1IePUp69OgN\nnV4+aJDtnDmB/v7+UHq3npCenm5nZ5eXl/etJouEdWSX7zaSNtLS0s6cOXPjxnUejz9mjOPcuROm\nTRulpgbnLt8I4kOnV1y+/PTixSdUasHAgeaBgXMXLVokfipGCZCdnX3r1q1Hjx6mpKTKy8u5ug71\n8hrh7T3S2tpE2qEhSJPc3GLIPOLjMxobm+zt7by9J/r6+tra2n6v1Js3b0aOHFlSUtJz7+lVHdnl\nx40Eor6+/tmzZxcvRkZF3ZeXl3NxGTxpkrOvrzuJ1FWLEqG3oVJpDx4kRkcnvHnzCYPR8PGZHBQU\nNGbMGMnsdAsvVVVVsbGxz58/j46+z2KV6enpODpaubgMdnYeNHw4RUmpmx0yEPoBNBrj+fOUhIQP\nr19/KC5mamtrjRkzduzYsZMmTSIQCD8s+/LlSw8Pj4qKCjFTAcGlI7uIayRtsNnse/fuPXgQHRMT\nU1cnsrOz9PFxHjduuKOjtaLizzuZQZLweLXx8RmPHiU9eJBUUsIyMNCfNMnHx8dn/PjxKJQUdieE\nnebm5tTU1FevXsXHv05MTKyp4WAw6iNH2rq4DB4xgmJnZymtXU8QYIfLFbx/n/vuHTUh4UNi4kcO\nh4/FYpydnV1d3dzc3IYPHw7LFKnHjx97e3vzeDwNDbFqDlw6sgtsRtJGXV1dbGxsdHT0gwfRDAZT\nXV3V2XnwqFFDRo2yc3S0Qu4f4YXLFcTHZ8TFvX/1KiM9Pbe5uXnIkME+PpN9fHwcHBxksf3RQ1pa\nWrKysl6/fp2QkBAf/5pOZwAATEyIdnYD7ews7Ows7ewsdHW1pB0mQk9hsznv3+f++5NHo9FbW1sN\nDPRdXd1cXFzc3NxsbW1hnxZ19+7d6dOnNzQ0KCmJtSoWLh3ZBX4jaU9OTs6rf4hjMllqairDhlEc\nHa0cHa0cHKzatixF6DlNTc2ZmQWpqTmpqdnJydkfP35uaWmhUKxHj3YfNWqUm5tb19NU+issFuv9\nf6SVlJQCAEgkPRsbMoViYmlpbG1tYmVljDRZ+ggcDj87uygrqzAnpzgrqygzk1ZSwgIAkEhEOzs7\nOzt7Ozs7Ozs7IpHYq2FcvXo1MDAQmrzbF3Rkl941kvbk5eW9fv06KSkpNTUlKyu7ubkZh9NycLBy\ncLAYNMiMQiGbmxsi7ZXO8PnC7OyizMyCjIy81NTcjIy8ujqRmpqqnZ2dg4MjdLOGwyGz5r6AzWan\np6e/f/+eSqVmZVFzcnJqa4UAAD09HQqFbGFhaGVlQiYTTEwIZDIRje4P/X59FpGooaiIVVjIpNEY\n2dlFkHOwWJUAAFVVFUtLCysrCoVCgZxDwmMMf/3114oVK2pra/uIjuwiOSNpT21tbUZGRkpKSmpq\nampqSn5+QXNzs5KSorm5EYViYm1tYm1tYmFhRCYT27an/kkoL6+m0RhZWYXZ2UWZmYU5OcXFxUwA\ngIoK2tbW1tFxmIODg4ODg5WV1c+8jPZ7aW1tLSkpycnJoVKpOTk5WVnU3NxcNvufrJEGBngymWBi\nYgD5iokJgUjEE4l4FZWfd1nADyASNTCZlQxGZWEhk0Zjtv1mMiuhLxkdHe2BAwdaW1MsLS0pFIql\npaWxsbF0e19PnDixZcuWqipx84fCpSO7SKcFoKam5uzs7Oz8T+JokUiUk5OTnZ2dmZmZnZ195Uoc\njfYX1E7E47WhDzmZTIRuIYlEPImkK+vzjNlsTllZVXFxGY3GpNEYNBqzsJBFo9GhrFOqqipWVlbW\n1hR7e/fjx48LBIKJEyctX7589OjR0g5cJpGTkxswYMCAAQPa7zvE4/EKCwsLCwtpNBr0b1paUmFh\noUhUDx2grY0lEPAkEl5fX9vQUM/AAEci6erra+vqauNwWFmvgT+AUChiszkVFTVlZVUMRiWTyabT\nK8rKqktLK1gsNptdAx2GRiubmJiYmJgMHuw8bRrZ5F+wWEnsafZdiEQiNBrdd3Rklz7RlYRGo4cM\nGTJkyJC2kvr6+oKCAugTTqPRaLSC+/dTaDSaUPhPdj91dVUSSU9PT4tEwuvpaZNIujicprY25t8f\nrLY2RkFBOhkLRKKG6mpedTW3upoH/ZSVVZWVVTEY7LKyagajsqyMXV//TxYQHE6HTCaTyaY+Pi5k\nMtnExIRMJhsZGbWNK27dujUqKur06dPu7u4WFhYLFixYvHixpqamVN5afwKDwQwePHjw4MEdylks\nFoPBYDKZdDqdxWKVlpayWKyUlDdMJqumhtN2GBqtjMNp4nCaeLwmHq+po4OBnmKx6hiMmoaGKgaj\npqmpjsWqa2io9tkMx42NTTxeLZcr4HJrebxaHq+Wz6/lcARVVVw2m8Nmc6uqeBUVNWw2h83m1NWJ\n2k7U1MQSiQQikWRgYGZn525gYEAikQgEApFINDCQmbFPxEjgQjpdWz9MeXk59CEvKytjMBhlZWUM\nBr2srIzJZFZVVbXdS0JgMOqQqaioKKuooLBYNRRKSUNDVU1NRVlZSVNTAwAgLy+Hxf6Xyg2FUlJT\n+69CcDiCtr9Pc3MLj1cLAGhqaubza2trRQ0NjTU1/Pr6RqFQxOMJRaKG6mpudTVXKBS1D0NDQ11X\nF29gQCAQiAYGBgYGBgQCAXpgZGTU8/mC6enpJ0+evHz5sry8vL+//8qVKyWWYxEBoq6ujsViVVZW\nstnsqqoqNpvNZrMrKiqqqqrY7EqohMvlNTR0zBWGRitjMGoaGmqamuqKiooaGioKCgoYjCpU/eTk\n5DQ11QEAWloY6HglJUV19S9aPJ1LBIK6xsam9iW1tXUNDf+UcDj81tZWLre2paWFx6ttbm7h8YTN\nzc18vrCpqZnLreXza3m82vbeAIFCoTAYDRxOB4fD6+jgcDgcHo/H4/E6Ojo4HE5HRwePxxsYGKiq\n9oc+561bt96+fTszM7OP6MguMmYkXSMUCqu/hkgkqqur43K59fX1AgFfIBDU14u4XB4AoKGhof0Q\nWV1dXXs30tBQV1T8r9GmqakpJyenoKCAwWBUVVWVlZW1tLQFAkFmZqavr6+6urr214B3RiCXy71+\n/fqhQ4eys7OdnZ1DQ0OnTZvWPkgEqSMSifh8Po/H43A4vH9pK2lpaeFyue1+t5U0Q3USACAUCqH0\nTW10qJkAAGVlZVXVL6wFhUK1Zd7EYDQUFBQxGIyCggIGg4UqbdtvLBaLwWAwGIyGhgYGg8FisZqa\nmtDjn+rOet26dYmJiW/fdrVZvSR1ZJd+9QWkqqqqqqpKIpEkeVE6nT5kyBCRSHTw4EEJXA6LxYaE\nhAQHB8fGxp4+fdrf319XVzcoKGjlypW9PVcSoYeg0Wg0Gt0bE5Dy8/PNzc3T0tLs7OxgF/8JEQgE\nnXPLS1FHdvl58x7DBYlEOn369MmTJ2/cuCGxi8rLy48dO/bGjRt5eXlBQUHnzp0jk8mzZs16/vy5\nxGJAQJB1amtrYTEAuHRkF8RIYGD69OmLFi1asmRJSUmJhC9NJpPDw8PpdPqlS5fodLqnp6e9vf3p\n06eFQqGEI0FAkDmQFglcIEYCD4cPHyaRSNJa3aqsrDxz5sykpKTU1FQHB4fVq1cTCITQ0FAajSb5\nYBAQZAXESOACMRJ4QKPRV65cSU1N3b17txTDsLe3P3XqVFFR0W+//RYVFWVubu7p6Xnz5s2fOXkD\nAsK3qK2thWVjULh0ZBfESGDDxsZm9+7dv//+e1JSknQj0dXV3bhxI41Ge/r0KRqNnj17toWFxZ49\ne37mlbcICJ1BWiRwgRgJnKxatcrLy8vPz6+mpkbasfwzIB8dHZ2bmztjxow9e/YQicSgoKCMjAxp\nh4aA0CcQCASwtCTg0pFdECOBEzk5uXPnzjU1NYWEhEg7lv8wNzcPDw8vLi4+fPhwRkbG0KFDHRwc\nTp8+XVdXJ+3QEBCkCTJrCy4QI4EZPB5/4cKFO3fu/P3339KO5Qs0NDRCQkI+fvyYmppqbW29YsUK\nExOTsLCw4uJiaYeGgCAdkK4tuECMBH48PT3XrVu3cuXK3NxcacfyFezt7SMjI4uLi9esWXP58mUy\nmezj4/P8+fP+lOMAAaFbmpub6+rqxDcAuHRkGsRIeoUdO3ZYWVnNnDmzz67nMDAw2LhxY0FBwbVr\n10Qikaenp6Wl5Z49e/rC6A4CggTg8/kAAPE3x4VLR6ZBjKRXQKFQt27dYrFYixYtknYsXYFCoWbO\nnBkTE5OdnT1hwoTt27cPGDBg8eLFnz59knZoCAi9C3TPpKUl7n7McOnINIiR9BZGRkYXLly4du3a\n+fPnpR1L91haWkZERDCZzP379yckJAwaNMjFxeXmzZtNTU3dn4yAIINwOBwAgPg7MsClI9MgRtKL\neHt7b9iwYfny5enp6dKOpUdgMJiQkJBPnz7FxMQQCISAgAAjI6OwsDA6nS7t0BAQYAYyAPG324JL\nR6ZBjKR32bFjh4uLy6xZs7hcrrRj6SltGSGLiopCQkLOnTtnamqKZIRE6GdAH0nxDQAuHZkGMZLe\nRUFB4dKlS0KhcN68eTI3LYpIJG7btg3KCMlgMDw9Pe3s7E6fPt1+BxcEBBmFw+GoqamhUKg+oiPT\nIEbS6+jp6V25cuXhw4eHDx+Wdiw/ApQRMjExMTU11dHRcfXq1UQicfHixdnZ2dIODQHhx+FwOLAM\nbMClI9MgRiIJRo0a9fvvv//666+JiYnSjuXHgTJCMpnM33///dmzZzY2NkhGSATZBTESGEGMREL8\n9ttv3t7e/v7+bDZb2rGIhaamZmhoaEFBQVtGyIEDB+7Zs0fW3xfCzwaXy4XFAODSkWkQI5EQcnJy\nf/31l6Kiop+fXz+4hW+fEXLmzJl79+4lkUizZs168+aNtENDQOgRSIsERhAjkRxaWlrXr19PSEgI\nDw+Xdiyw0T4jZG5u7siRI5GMkAgyAWIkMIIYiURxdHTct2/f1q1bX7x4Ie1Y4ERdXT0kJOTDhw9t\nGSGNjY2RjJAIfRnESGAEMRJJs3LlylmzZs2ePbuwsFDascAPlBGypKRk7dq1V65cIZPJnp6e0dHR\nMjf1GaHfw+FwYFn8AZeOTIMYiRQ4d+6ciYnJxIkTeTyetGPpFfT19dsyQgIApkyZAm3RiGSEROg7\nIEYCI4iRSAEVFZXbt29XVVXNnz+/H9+qKykpQRkhs7KyvLy8kIyQCH0KpGsLRhAjkQ5GRkZ37tx5\n+PDhzp07pR1Lr9M+I2RiYuKgQYMcHBwiIyMbGxulHRrCT0pLSwuPxxPfAODSkXUQI5Eazs7OBw8e\n3Lp1a3R0tLRjkQTtM0KSyeSFCxcOGDAAyQiJIBX4fH5LS4v4BgCXjqyDGIk0WbZsWXBw8Jw5c6hU\nqrRjkRBycnLtM0KeP38eyQiJIHmQHPLwghiJlDl69OjQoUOnT58O1cifBygjZGlp6aVLl5hMpqen\np7W1dUREBJIREkECIEYCL4iRSBklJaUbN24IhcLZs2f3gxXv3wuUETIhISE1NdXV1XXTpk0EAmHx\n4sVZWVnSDg2hP4MYCbwgRiJ99PT0oqKiEhISNm/eLO1YpAaUEZLBYPzxxx/Pnj2ztbWFMkIiWzQi\n9AbIrlbwghhJn8DOzu7UqVN79+69evWqtGORJp0zQhobG2/btg3JCIkALxwOR1VVVVlZuY/oyDqI\nkfQVAgMDQ0NDFy5cmJqaKu1YpExbRsi8vLzAwMAjR45AGSGTkpKkHRpCPwFZRAIviJH0Ifbv3z9q\n1ChfX9+Kigppx9InMDMzCw8PZzAYp0+fzsvLc3Z2/gkzQv7666+2/zJp0iQUCuXn59dWsnTpUmkH\nKJMgy9rhBTGSPgS0L6+iouKMGTPq6+ulHU5fAY1GBwUFZWRktGWEJBAIoaGhRUVF0g5NErDZbCqV\nmpmZmZmZmZub29DQ8PnzZ+gplUotLy+XdoAyCdIigRfESPoWOjo6Dx48+PTpkyzu8d7btGWEDAsL\nu3v3rqmp6c+QETIgIKCLNzh37lxJBtNvYLPZeDy+7+jIOoiR9DmsrKyuX79++/bt7du3SzuWvgiU\nEbKwsPDevXugXUbI6upqaYfWK3h4eOjo6Hz1JRUVlQkTJkg4nv5BZWUlLAYAl46sgxhJX2TcuHEn\nT57ctm3bpUuXpB1LH0VBQcHHxycmJiY7O9vLy2vHjh1QRsiPHz9KOzSYUVBQCAgIQKFQHcqVlJRm\nzZqloqIilahkHTabjcPh+o6OrIMYSR9l4cKFa9asWbRoETJVqWssLCwiIiIYDMaff/6ZmJg4ePDg\n/pcR0t/fv6GhoUNhY2NjQECAVOLpB7DZ7G+186SiI+sgRtJ32bdv3/jx4ydPnpyfny/tWPo6UEbI\nzMzM+Ph4KCOkkZFRWFhYaWlp1ydWV1dXVlZKJsgfxsnJycjIqEOhlpaWu7u7VOLpByAtEnhBjKTv\nIi8vf+nSJSMjo8mTJyNbQvUQFxeXGzduFBcXL168+Pz582ZmZlBGyG+NV8+ePdvS0jItLU3CcX4v\ngYGBSkpKbU9RKNTcuXMVFRWlGJLsIhKJamtrxTcAuHT6AYiR9GnU1dWjo6P5fP7UqVORCcE9h0Ag\nbNu2jU6nX7p0qaam5lsZIT9//vzixQsOh+Pq6hoTEyOtaHtCYGBg+866hoYGf39/KcYj00BtUPEN\nAC6dfgBiJH0dIpH49OnTT58+zZ07t6WlRdrhyBIoFAraojE1NdXNza1zRshjx44pKiq2tLTU19d7\ne3tfuXJFugF3gZWVlaWlZdtTAoEwfPhwKcYj00AZd8SfbQWXTj8AMRIZwNra+u7du/fv3//111+l\nHYtM0j4jZExMjI2Njaen56VLl86dOwfd5re0tDQ1Nc2ZM2fPnj3SDvabBAUFQb1bKBRq/vz5cnJy\n0o5IVkFaJLCDGIlsMGrUqAsXLhw6dOjQoUPSjkVWgTJC5ufnP3v2TEtLa8GCBUKhsMMxv/3226pV\nq/pmy2/OnDlQLmSkX0tM2Gy2kpKS+KlN4NLpByBGIjPMnj07PDx83bp1N2/elHYsMgyUEfLGjRtk\nMrnzq62trcePH+8wINFHMDIycnBwAABYWFjY2NhIOxwZBpqzK36TDi6dfgAy60OW+PXXXxkMRmBg\noI6OjoeHh7TDkWHi4+Pz8vK++lJzc/PNmzeZTOb9+/cxGExvR9LQ0FBbWysSierq6oRCITSlgsfj\nddjljM/nNzU12drapqSk2NnZ3bx5U1FRUUNDo/0xCgoKUMAoFEpNTQ2NRquoqCBJzjtTVVUFS38U\nXDr9AMRIZIwDBw6UlpbOmDHj1atXtra20g5HVjly5IiSktK3mh1NTU1JSUmjRo16+vSprq5uDzVb\nWloqKysrKyvZbHZ1dTWPx+N+CYdTAz1oaGjgcrlNTU18vuAHgr969er37lujrq6mpKSExWKUlFBY\nLFZTU1NTUwuLxWIwGGw7tLS08Hg8DofD4/EKCgo/EBNlUzsAACAASURBVJtMgCwigR25/p3wrl/S\n0NAwadIkKpWakJBgYmIi7XBkj/LychKJ1O3ei0pKSkQi8cWLF22dYBwOh06nl5SUMBgMFotVWVlZ\nUVFRXl7GZldWVrIrK9ntP01qaipYrAYWq47FqmGx6lisqqamhqamBharhkIpYTBqiooKGhqqKJSS\nmpqKsrKSqipaRUUZjUYBAFRUlNHoL5oRaDRKReWLEpGooa7uixnh9fUNQqGo7aW6unqRqKG2tq6h\noVEgqGtsbOLzhfX1DVxuLYfD53IFXG4tl1v77wO+QPDfiJGcnBwOp4PH4/F4vK6unp6eHg6HMzAw\nIBKJRkZGRCJRW1v7R/70fYNZs2a1traK30UMl04/AGmRyB4oFOrWrVseHh6enp4JCQn6+vrSjkjG\nkJOT8/Lyqqio4HA4XC6Xz+d3WF8CAJCXl29qaioqKqJQKMOHD6uoqCgpKamt/eerVkNDjUjUxeM1\n8XhNCgWPxw/E4bB6etq6utp4vCYer6WtjVFQ6N0BSDQaBbkOXDQ3t1RX89hsTmVlTUVFTXl5dWUl\nh83mlJWxP3zIZ7O5TGYll8uHDlZVVYEchUQyNDIyMjQ0NDMzMzMzI5FIfX/MgM1mt59LLXWdfgBi\nJDIJBoN5/Pixm5vbuHHjXr16paWlJe2IZAldXd379+9Dj5lMZlZWVkFBQWZmZl5eHo1WUFpaWl/f\n0NLSoqyMgtoTZDLG3X2goaEekYgnkXQNDfUwGDXpvoXeQEFBHrJGKyvjbx0jENSVlJTR6RUMRmVp\naTmdXsFg5KelJRYXs/j8WgAAGq1sako2MzM3MzM3NTU1MzOztrYmEomSexs9AOnagh3ESGQVPB7/\n7NkzFxeXiRMnxsTEqKn1w6822OFyufn5+VQqNS0tLSuL+unTp/LyCgAAGq1MJhMpFBNf35FkMpFM\nJpLJBBMTQt+/uZYw6uoq1tYm1tZf6VCtqeHTaAwajUGjMWk0xocPCZcvXygrYwMAsFiMmZmZtTXF\n3t6eQqHY2NhItxmNZGyEHcRIZBhDQ8NHjx65ubn5+fndvXsXybzUGQ6Hk5KSkpycnJz8Li0tjcFg\nAgCwWA0KhWxjYzJ58lwKxcTGxlRXF2nSiYuWloa9vaW9/RddPWw2JzOTRqXSPn0qoFI/RUff43D4\nAAACwcDOzm7YsOGOjo7Dhg2T8IgLMmsLdpDBdpnnzZs3np6evr6+f/31l7z8z74wqLm5OSMjIykp\nKTk5OSUlOS/vc2trq5GRwbBh1g4OloMGmVEoJkZGyKiS1KDTK6hU2seP+ampOcnJWUVFTACAubmp\no+PwYcOGOTk52dnZ9eotEZfL1dTUfPLkyfjx4/uCTv8AuYeVeZycnG7fvj1lyhRVVdXjx4//nL0x\nNBrt+fPnz5/HvHjxorq6BoNRt7U1HT9+yPbt81xdh+jrI/0PfQUSSZdE0h0/fgT0lMsVfPpUkJj4\nMSHhw65dTyoqqtXUVJ2cnMaO9XR2dh4+fHj7nMewACXIEr8lAZdO/wBpkfQToqKiZs6cuXTp0oiI\nCGnHIiHKysqio6MfP3786lVcdXUNDqfl5jbE3d3O3d3e2trk5zRUWSc7uygu7v3Ll2mvXqVXVFRr\namLd3Ny8vLwnT55MIBBgucTbt2+dnJyKi4s7b/EiFZ3+AWIk/Yfbt2/7+fmFhobu379f2rH0Ijk5\nOVFRUffu3U1OTkGjUWPHDvPwsHd3t7exISM9e/2G1tZWKpX28uX7ly/TYmKSa2vrHBzsp06dNnny\nZDHTwzx48MDHx6e2tlZVVbUv6PQPECPpV0RGRi5YsOCPP/7YvHmztGOBmaKior///vvq1St5eZ91\ndbV9fFwmT3b19BzWYZkeQv9DJGp48SIlKup1dHRiWRnb1JTs7x8wb948MzOzH1D7+++/ly9f3nnl\nkLR0+gfIGEm/IigoqKmpKTg4WElJacOGDdIOBwaEQuHt27f//vuvuLhXurrac+aMmzbtVycnG6Tx\n8fOARqMmTnSeONG5paXl3Tvq3buvzp8/tXPnTldXlwULfpkxY4a6unrP1crKymCZfAyXTv8A+TT2\nN3755ZeDBw+GhYUdP35c2rGIRWlpaWhoqIGBfnDwQiy29d69vaWlUfv3r3J2HoS4yM+JvLy8k5Pt\n3r0rSkqioqP36+qilixZTCAYLF++vKioqIci5eXlenp64gcDl07/AGmR9ENCQ0MFAsGKFSsUFRVD\nQkKkHc53k5+fHx4efvHiRT097a1bf5k71wuP15R2UAh9CAUFeaiNUlXFvXTpSUTEjTNnzgQEBISF\nhXWbs6SsrAwWA4BLp3+A3Nn1TzZv3rx79+4lS5YcPXpU2rF8BywWa+7cuZaWlq9ePTt+fH1+/s21\na/0RF0H4Fjo62NDQ2Xl5N86e/S05+TWFQvHzm11aWtrFKUiLpDdAjKTfsnHjxvDw8FWrVh0+fFja\nsXRPS0vLyZMnra2tEhNfXry4NSfn+sKFk1EomNcQ9CdSUrLc3ZfBLisnNwL6gV0ZAODuviwlJQt2\nWUVFhaAg78zMyzdu7ExPf0ehWEdERHTY0KWN8vJyWMY24NLpHyBG0p/ZsGHD3r17V69e3ccXl+Tl\n5bm6uqxatTIkZHJm5mV//3G9nTpX1jl79v64caGhobPFl3J1XezqurjtaWvr226P+WFWrZrl6bnq\nzJko8aU6Iy8v7+vr/uHDxdWrZ23Y8KuT0wgqldr5MKRF0hsgYyT9nPXr18vJya1evbquri4sLEza\n4XyFR48eBQT4m5uTUlP/HjToRyZ0/mw8fvwmJGT31avbp04d1fOzoEZGZ5/oyQb1nY/5llrXTJs2\nWiisnzt3G4mk6+Xl9F3n9hA0GvXHHyH+/uMWLtw1YsTwixcvTZ06te3VxsbG6upq8Q0ALp1+A7KO\n5Kfg4MGDa9eu3blz56ZNm6QdyxfcuXPHz89vzpzxJ09uVFZGOrK6p6Gh0cxshpGRXkLC6e86sedf\n/T058seMBMLJKZjJZOfn31JS6sUb2cbGppUr/zx79n5kZGRAQABUyGAwSCRSQkKCs7OzOOJw6fQb\nkA6En4I1a9YcPHhwy5Yt4eHh0o7lP968eePv7x8SMuX8+c2Ii/SQ27dflpaWBwTIcKLAgIDxJSVl\nt2+/7NWrKCkpnjy5ce1a/3nz5sXFxUGF5eXlAADxWxJw6fQbECP5WVi9evXRo0c3b94cFhbWF5qh\nQqHQz2/2uHHDDh9e29t5sdoGkJlMtq9vmIaGu47OuHnz/uByBUVFrMmT12MwHvr63vPnb4eSnLdR\nUVGzdOleEskHhXIhEieFhOwuK6vqLFtQwJg+PUxLy7P9MDWVSvP2XqOu7o7BeIwfH5qVVdh5HLtr\n/a9y/348AMDBwapzGF2XtH8pOHjXt47s4q/XtVrbYdDPtWsx0DHGxlM7nO7oaNX2RnqbPXuWT506\nyt/fj8fjAcRIeg3ESH4ili1bdvHixQMHDixdurQnPeO9yrFjx2pqqs+d2yyB1YVtPTAbNx7dsWMJ\nnR7t7z8uMvLRnDlb166N2LNnRWnp/enTR1+48HDDhv9mS5eXVw8btuDu3bjz57dUV8dcu7bj2bN3\nI0cuajObNtmlS/esXz+HyXzw6NFBqKSggOHisvjDh8/37+9jMh/+738LQ0J2dzirW/2vkp6eBwAY\nMOC/+UKd+5e6KGltfdva+vbs2U3fOrIzPVRrbX37/PkRAICBAa6+Pt7PzxM6ZsuWXyZNcmkvAgWf\nnp7b7aXFR05O7tSpjfX1dQcOHAAAlJWVqaioaGhoiCkLl06/ATGSn4uAgIA7d+5cuHBhzpw5jY2N\nUowkMvLCggUTJbyjVHDwFCsrYyxWfdOm+QCAhw8TQ0Nnty959Cip7eCtW88UF5ft2rV03Ljh6uoq\nrq5DDh5cXVjI3LfvcgfZTZvmjxxpq6Ki7OXlBH1jbtt2hsPh79mzwsPDQV1dxdl5EKTfnp7rt4fB\nqAAAaGr2xa+wMWMcBw82Z7HYbc0RAMDhw9c7zC7T0sIAABiMSslEpa2NWbx4amTkBYDM/e01ECP5\n6Zg0adLjx48fPnw4bdq0uro6qcQgFAozM6ljxjhK+Lp2dhbQA3197Q4lBAIOAMBkstsOjo6OBwC0\nn1zk5ja0rbw9w4ZZdyiJiUkGAHh4OLSVjBxp2+GYnuu3RyisBwCgUH10vuWaNX4AgIMHr0FPY2NT\nW1pax4794j8aCl4oFEksKk/PYYWFRWw2G5n720sgRvIzMnr06NjY2Hfv3nl5eUF9xxIGuqiWlqRv\nqzU0/sn43daf1qGk/ehRRUUNAIBAmNTW74/DjQcAFBQwOsiqqqI7lLDZHAAADodtK+nchui5/pfX\nUgYANDQ0dftmpYK//zgDA1xGRl5sbCoAICKiY3ME/Bt85z9a7wG1gWpqahAj6SUQI/lJcXBwiI2N\nzc3NHTt2bGWlhDoZ2sDj8SgUikbr6htT6ujpaQMAqqtjoJGAtp/a2rhuz8XhNAEAbDa3rQSyFvH1\niURdAECHcRRotkJj4z/uwuUKuo2wl0ChlFasmAEAOHDgKo3GePPmU2DghA7H1NTwAABEIl5iURUU\n0OXl5QkEAtK11UsgRvLzYmtrGx8fX1VV5ezsXFBQIMlLKygojBnjceNGrCQv+r1Ay/3i4tLaF8bH\nZzg5BXd77rhxwwEAL16ktJUkJn6ERX/o0IEAgOLisvaF0F7CLNY//XLQgHwHoBZAY2OTUCiCmj7i\n0IXakiXTVVXRjx4lrVp1IDh4SucNY6DghwwZKGYMPef69ecuLs5qampIi6SXQIzkp8bMzCw5ORmP\nxw8fPjwxMVGSl165ctWjR4mvXqVL8qLfxbZtwebmhsuX7791K7aqisvnCx88SJg/f3t4+PKenKup\nqREWdiw2NlUgqEtI+HDq1F1Y9H18XAAAqanZ7Qs9PYcBAPbtu8zlCnJyis+e/UoOEihrQHJyVnR0\ngpNTxwGb76ULNW1tzLx53q2trU+fvl22zLfzuSkp2QCAyZNdxYyhh7x7R71zJ27lylUASf3bayAr\n2xFAbW2tn59fbGzstWvXfHx8JHbdqVOnpKW9S0k5D91Q9x7tFzFAs6p6UgIAqKnh79hx/u7dV3R6\nhbY2Ztgw602b5o8YYdNZFnSaJkul0n799cjr1xny8nKjRtlFRKwxNfWVl5dvbv5vYljX+l+loaHR\n1NTX2NggPv5UWyGbzQkNPRgT804orPfwsD927FcjoykdokpNzQ4O3vX5c+mgQWYXLvxv4EAjcf4y\nX1Vr4/PnUkvL2bNmjbl6dXvnt+DkFEynVxQU3JZAUs6qKq6j4y/m5tZPnjxtbm5WVla+ceOGr+9X\n7K3nNDU1waLTn0CMBAEAAJqbm1esWHHmzJnDhw8vWwZ/TtmvwuFwRowYrqDQ9OLFkd72EqnDZLKJ\nxEm6ulrl5Y/FlHr4MNHHZ/3Vq9tnzx4LS2yw09LSQiJNvnMnvLMpXr78dO7cbdHR+ydO7PXkImw2\nx9MzlMutf/cuGY/HM5lMIpEYHx/v4uIijixcOv0JpGsLAQAAFBQUTpw4sXPnzhUrVoSGhkrm9kJT\nUzM29mVzs+KwYQvfv5fE8jRJIic3Ij+f3vb09et0AIC7u734yhMnOp88uXHJkj337r0SX603ePgw\nydBQt7OL3L0bt2zZ3hMnNkjART5+zB82bCGP1/DyZRwejwcA0Ol0AACRSBRTGS6d/gRiJAj/sXHj\nxnPnzp04cWLevHn19fUSuCKBQEhKemNlZTtixMKwsGMiUYMELioxli/fR6MxamvrXrxI2bjxGAaj\ntm3bIliUQ0KmPn0acejQNVjU4EJObsTbt5k1Nfzffz+7efOCzgdERFyPiTmyePG0Xg2jsbFpz56L\nw4cvJBKNk5LeDBgwACpnMpkAAPFnW8Gl059AjAThCxYsWBAdHR0VFeXh4QElFOpttLW1Hz9+cvTo\nsRMn7tnYzHn+PKX7c2SB58+PqKurjBy5SFNzrL///40YQXn37ryl5QC49IcNs46LOwGXGlw4OQWb\nm8+YNMnlq2PpcXEnOi/ehJekpE9Dh877/fdzGzeGxca+bD8kzmQydXR0VFRUxLwEXDr9iT66PhZB\niowfPz4lJWXy5Mn29vZRUVH29jD0xnSNvLx8SEiIl5fXihXLx41bNXmy26ZN83r7G6e3GTPGUfJL\n96XLj2WVh4v09Lzduy/cvv1y3DjP6OgYExOTDgcwmUwCgSD+heDS6U8gLRKErzBw4MCkpCRLS8tR\no0bduXNHMhc1NDSMirp///59Fks4fPgvnp6r4uLeS+bSCDJNQsIHb++19vbzCgqqb9269fjxk84u\nAhAj6U0QI0H4Otra2k+ePFmxYsWMGTMkmXl+0qRJ794lx8TENDerursvc3T85eTJO10nxEX4OeHx\nas+ciXJyWuTqupjPl3v48GFa2vtp0745AIMYSe+BGAnCN1FUVAwPDz958uSBAwdmz54tFAoldumx\nY8fGxr5MSkqysrJft+4IgeAzZ87W589TpJ79HkHqtLa2vnyZFhT0u4HBxFWrDpDJtq9fv46PT/Dy\n8ur6RGjarvgBwKXTn0CMBKEbQkJCnjx5Ehsb6+bmVlRUJMlLOzk5RUZGslhlERGHi4p4np4rjY2n\nr1z55/PnKW15pRB+EpqammNjU0NDD5iY+Hp4LM/Jqdy//wCLVXb58mVX1x4tkmcwGAYGBuJHApdO\nfwJZkIjQIwoKCnx9fUtLSyMjIydOnCiVGHJycq5evXr/flRGxgdNTYyX14gpU9wmTBiBxapLJR4E\nCcDnC588eRMVFf/oUVJNDc/GhjJ58hR/f38bm67W/3dGJBKpqqreuXNn6tSp4sQDl04/AzEShJ4i\nEolCQ0PPnDmzcuXK/fv3KylJbZf14uLip0+fRkfff/Ysprm5eciQgc7Oti4ug8eNG46YSj+grq4+\nLS0nMfHj8+ep8fHpTU3NI0YM9/GZPGXKFEtLyx/TpNFopqamycnJjo5iTaWDS6efgRgJwvcRGRm5\ndOlSR0fHq1evSr2BX1NTExMTExcX9/JlbE5OrpKS4vDhNu7udi4ugx0drSW/3wnCD8PlClJTs+Pj\nP7x8mfbuHbW+vsHc3NTdfYy7u7unp6eOjrgZdBISElxdXel0upjDG3Dp9DMQI0H4bjIyMmbOnMnj\n8a5cuTJmzBhph/MPLBbr5cuXL1++jIt7mZ9fICcnZ2ZmOGyYtaOjlaOj9dChAzvnM0eQIiJRQ0ZG\nXkpKdkpKVnJydl5ecWtrq4mJ8ejR7u7u7h4eHvB+U1+/fj0gIKC+vl5RUazFc3Dp9DOQvwXCdzNk\nyJDU1NT58+dPmDBh165d69evhzZWki4GBgYBAQEBAQEAgIqKiuTk5JSUlJSU5O3bL1RVVSsqKtjY\nmNnakm1syDY2phQKecAAJMWFRCktLadSCz99yqdSCz99on369LmxsUlLS9PR0XHmzEBHR0dHR8fe\na+OyWCxdXV3xv/3h0ulnIC0ShB+ktbX1zz//3LRp06hRo/7+++++3NIvKChITk5+//79p0+fqNRM\nOp0BAMBiNSgUso2NCYVCNjc3NDMjGRsbKCkhXxAw0NjYVFxclp9Pz88vzcykUamFmZkF0GIgAkGf\nQrEZNGiwnZ2do6Ojubm5ZEJau3ZtYmLiu3fv+ohOPwMxEgSxSE1NDQwMLC8vP3bsGNQa6PvU1NRk\nZmZSqVTIV6hUKptdBQBQVFQwMjIwMyOZmhLMzAzNzEgmJgQSSRcZa+kCDodPp1cUFrLy80sLChj5\n+Yz8fHpxMbOpqRkAoKOjbW1tTaHY2NraUigUW1tbbW1tqcQ5Y8YMBQWF69ev9xGdfgZy/4UgFg4O\nDunp6WFhYYGBgffu3Tt9+rSmpqa0g+oGLS0tV1fX9osPOBxOQUFBfn4+9JtKzY+KesNksqBXVVXR\nAwYQiEQckYgfMECfSMSTSLokki4Op4nHa/b7RkxjYxObzams5DAYlQxGJZ1eUVJSxmCw6fSK4mJW\nbW0ddJi+vp6ZmZmZmYWr60RTU1MzMzNTU1MtLS3pBt9GcXGxh4dH39HpZ/TzzwCCBFBRUYmIiPD2\n9l6wYMHQoUMjIyN7uECs76CpqWlvb98hPaVQKCwqKqLT6QwGo6SkhE6n0+mlqalJpaV0Hu+/lC1a\nWhhdXW08XhOP19TTgx5oaWlpYLHqWKwaFqsO/fTBZk1NDZ/LFfz7U8vlCjgcfmUlp7Kypqysms3+\n//buO66pq30A+ElCAiGLACEkYcbFUFTADW7rRKUWJ7iKo2q1ta2r/qp9377Wttaq1WrVVtG2blFx\nbxlqFURFhoOwQyCEbAIkIb8/bptSQESSEMbz/fCx4ebkOc+NNk/uveeeI8ceSyQy40toNKq7u7u7\nu7ubm9+AAaM9PDx4PJ67u7unpyeFQrHivrxRXl6ecT751hCnnYFTW8BsRCLR/Pnzr127tm7duvXr\n11vxRhNLUygUQqGwrKxMLBaXlJSIxWKxWFxWViYSFYvFpWVlEqlUVn9BFwYDqy5UEsmGwaDi8TgH\nB+xPGh6PZzAoNjYEGu2vj2Mazd7GhmB8LQ6Hc3D41y0ycrm69oQxOp1eqfxrDhulUq3T6RUKtV5f\nI5MpDQYklSpragxSqVKn0/9dOepOX2Zra+vgwHB2dmKxXNhsVxaLxWKxnJ2dORyOs7Mzi8XicDgM\nBsNc72FL0mg0FAolLi7OxHtpzRWn/YEjEmA2rq6uFy5c2LVr16pVq86dO/fLL78EBgZaOymLoNPp\ndDq98TaVlZVyuVyhUMjlcplMJpPJ5H+rqqpSKBR6vV4mk9XU1AgEUr1er1DkarValUqFvVwqldaO\nptVqVSp17S0Uij2JRKq9xcHBARs+R6FQSCQSjUazsbFhMBzweDyf3yk/Pz8n5+W8efN4PB6DwWAw\nGEwmk1GLnZ2dGd6aVunJkycGg8H0C/vmitP+wBEJMD+BQLBgwYL4+PglS5Zs2rSplZ/06CDKy8sH\nDBhAo9Hu3LnT0f5GPv/8899//930meLWrVt37Nix7OxscyTVrsCkjcD8+Hz+9evXd+3adfDgwZ49\ne966dcvaGQFsJcpL+fn506dP1+v11k6nRcXFxU2aNMksccLCwkyP0/5AIQEWgcPhFi5cmJWV1aNH\njxEjRixatEiphDVFrIzP558+ffratWtr1qyxdi4tJz8/Py0tbcKECSbGycvLe/bsGRSSBkEhARbE\n4XBiY2MPHTp06tSp7t27nz171toZdXQhISExMTHff//9Tz/9ZO1cWkhcXByNRhs8eLCJcc6dO0en\n09vciMSWAYUEWFxkZGRGRsbgwYPDw8PDwsJycnKsnVGHNm3atC+++GL58uXnz5+3di4t4dSpU+PG\njbO1NXWmtdOnT48dO7bOAAeAgUICWoKLi8vhw4dv376dm5vr7++/cePG+qNjQYvZsGEDNi/Z06dP\nrZ2LZZWUlMTHx0+dOtXEOMXFxQkJCdOmTTNLVu0PFBLQcgYPHvzo0aOvv/5669at3bt3v3LlirUz\n6qBwONwvv/zSp0+fcePGFRUVWTsdCzp58qSdnd3o0aNNjHP8+HEKhTJmzBizZNX+QCEBLYpIJK5Y\nsSItLc3f33/MmDHTp08vKCiwdlIdEZFIPHHiBIVCmTRpklqtfvML2qYTJ06EhYWZPtz52LFjkydP\nJpPJZsmq/YFCAqzA09PzzJkzcXFxKSkpPj4+GzZsaMefZa1Wux8QXFhYmJiYaPp5rfz8/Pv375se\npx2DQgKsZsKECRkZGZs2bdq+fXvXrl337t1be84P0ALa94DgmJgYBweHcePGmRjn0KFDzs7O77zz\njlmyapegkABrws50ZWdnv/fee0uWLOnXr19SUpK1k+pY2uuAYIPBcPDgwcjISBPHa2FxoqKi2vHc\ncaaDQgKsz8nJafv27cnJyVQqNTQ0NDIyMi8vz9pJdSDtckBwQkLCq1ev5s6da2KcO3fuZGdnz5kz\nxxxJtVsw1xZoXU6dOrVmzZqCgoKlS5euW7fOycnJ2hl1CAaDYc6cOWfOnElMTAwICLB2OmYwb968\np0+fpqSkmBhnzpw5WVlZsCRi4+CIBLQuU6ZMycjI2LFjxx9//OHl5bVmzRqYW6UFtLMBwSqV6uTJ\nk/PmzTMxjlwuN0ucdg8KCWh1iETiwoULX716tX79+t27d/v4+Ozdu1en01k7r3auPQ0IPn78eHV1\n9fTp002Mc/DgQTweP2PGDLNk1Y5BIQGtFIVCWb169cuXL8PDw5ctWxYQEHDy5Ek4E2tRxgHB06ZN\na9MDgg8cOBAeHu7s7GxKEIPBsHv37qioqDa6nFdLgkICWjUXF5edO3dmZGT06tVr2rRpvXv3Pnv2\nLJQTy8EGBF+/fr3tDgh++fJlUlKS6eejrl279vz58w8++MAsWbVvUEhAG9C5c+c//vgjLS0tICDg\n3Xff7dmz54kTJ6CcWEhbHxC8d+9eNze3kSNHmhhn165dQ4cO7dGjh1myaucMALQpaWlpEREROByu\nX79+586ds3Y67dbGjRsJBEJcXJy1E3k7arXa0dFx06ZNJsbJzs4mEAjHjx83S1btHhyRgDame/fu\nx48f//PPPx0dHSdOnBgSEnLp0iVrJ9UOffHFF7NmzWpzMwQfOnRIrVa///77JsbZunWru7t7eHi4\nWbJq96CQgDapT58+Fy9evHv3Lp1OHzduXHBwcGxsLMywYkY4HG7//v1tbkDwTz/9NGvWLBcXF1OC\nlJeXHzx4cOXKlTY2NuZKrH2DQgLasAEDBly8ePHJkyd+fn4REREBAQGHDh2CgcLmgg0IplKpbWVA\n8PXr19PS0pYsWWJinB9//NHW1hZuH2k6KCSgzcPqx5MnT3r16jV//nxfX99ffvmlurra2nm1B46O\njhcvXmwrA4J//PHHwYMHBwUFmRKksrJy9+7dFM1tiAAAIABJREFUS5cupVKp5kqs3YNCAtoJf3//\n33777fnz50OHDl2yZIm3t/e3334rl8utnVeb11YGBOfl5V24cOHDDz80Mc6+ffsUCsWyZcvMklVH\nYe2r/QCYn0gk2rBhA5PJpFKpy5cvz8vLs3ZGbd7Ro0dxONyuXbusnchrffLJJzwer7q62pQglZWV\nPB7vo48+MldWHQQUEtBuKRSKbdu2ubu7E4nEiIiIBw8eWDujtq01DwhWqVRMJtP0Ub87d+60s7Mr\nLCw0S1YdBxQS0M5VVVUdOHDA398fh8ONHj360qVLNTU11k6qTaqpqZk9ezaNRnvy5Im1c6nrxx9/\nJJPJYrHYlCDV1dWenp4ffvihubLqOOAaCWjnSCTS3Llz09LS4uLidDrd2LFj/fz8du/e3SaGIbUq\ntQcEFxYWWjudf+j1+m3bts2fP9/EybX2798vEolWrVplrsQ6DliPBHQsL1682LVr1/79+21sbObO\nnbty5UpPT09rJ9WWlJeXDxw4kEKhxMfHUygUa6eDEEJHjhyJiorKysrq3Llzs4OoVKquXbtGRERs\n377djLl1EFBIQEdUVla2d+/eXbt2lZaWhoeHL126dPDgwTgcztp5tQ0CgaB///59+/Y9e/YsgUCw\ndjooKCioc+fOx44dMyXIxo0bt27d+urVKxNvZuygrH1uDQCrqa6u/v333/v164cQ8vHx+eGHH8rL\ny62dVNuQkJBga2v7ySefWDsRw7Vr1xBC9+/fNyVISUkJjUb7+uuvzZVVRwNHJACgzMzMmJiYvXv3\nVlRUTJw4ceHChabPHdvuHT9+fPr06Tt37jT9TnJTjB49WqfT3bhxw5QgixcvPn/+/IsXL+zt7c2V\nWMdi7UoGQGuhUCh+/vnn3r17I4R8fHw2b94skUisnVSr1vIDgu/cucPn87du3apUKg0Gw5MnT3A4\n3KVLl0yJmZWVZWNjc+DAAfOk2CFBIQGgruTk5IULF1IoFDs7u4iIiMTERGtn1Eq9bkBwVVWVUCi0\nRI9bt27F4/EEAoFOp3/55ZcRERE9evR4q/HcKpWqzhDwSZMmBQQE6HQ6C+TbUUAhAaBhcrn8559/\n7tmzJ0IoKCjo559/xr4Fg9qqq6uHDx/O4/EKCgqwLSKRKDAw0NnZuaqqyuzdrVy5kkQiYWdTbGxs\nCATC6NGj3+r+wd27dyOEQkJCXrx4YTAY4uPjEUKXL182e6odChQSAN4gISFh1qxZdnZ2DAZj6dKl\njx8/tnZGrYtEIunWrVtgYKBKpXr27BmPxyMSiTgc7uTJk2bvKyIiAo//191vRCLRxsYmMjISKwxv\nNGPGDAKBYGNjQyKRNm3aNGDAgGHDhpk9z44GCgkATVJWVrZly5auXbsihAICAr7//vvi4mJrJ9Va\nZGdns1isfv36UalUbA0PAoEwatQos3fUt2/fBq/1EolEAoFw48aNN0ZwdXU1vopAIBCJxEOHDpk9\nz44GCgkAbyc5OXn58uXOzs54PH7kyJExMTEqlcraSVnfmjVrcDhc7cMFHA6Xm5tr3l44HE6DhcTG\nxqZLly5lZWWNvzw3N7f+C3E43IIFC+C8pSlgihQA3k5QUND27dsLCwvPnDnDZDKjo6N5PN7s2bOv\nX79u6JCD6Q0Gw4YNGzZv3mwwGGovUmljY3Pw4EEzdlRTUyMWi+tvJxKJHh4ed+7ccXJyajxCQkJC\nnTNj2DX2AwcO+Pn53b5924zZdizWrWMAtHUSieTnn3/GFlPy8PBYvXr1y5cvrZ1Uy6moqAgPD6/z\n6WzE4XD0er25+iouLq7fBZFI9Pb2LioqakqERYsWEYnE130YDh8+3FypdjRwRAKASRwdHRcuXJic\nnPzs2bMZM2bExMR06dIlODh4+/btEonE2tlZ3I4dO2JjY2sfiNRWXFyM3XluFvWXjicSiTweLzEx\nkcvlNiXC9evXtVpt/e14PH7MmDEnT540Q5Ydk7UrGQDtilarjYuLi4iIsLOzI5PJ06dPj42N1Wg0\n1s7LUlQq1bp160gkUoPf9IlEYnh4uLn6OnPmTJ3gXl5eTR/7KxaL60+nhsfjcTjc6tWrzXjk1AFB\nIQHAIqRS6Z49e4YMGYLH4+l0emRk5Llz5yorK62dl0Xk5+fPmjULIVR/DkcbG5uSkhKz9LJz505j\nucKORd7qYn5sbGydQkIkEhkMBtxEYjo4tQWARTg4OCxatOj27dslJSU//vijSCSaPHmyq6vr7Nmz\n4+LiqqurrZ2gObm7u//22283b97s2rVr/eslhw8fNksvRUVFWHAikchisRITE99qCYDExMTah002\nNjbdunVLTU0dPXq0WdLr0KxdyQDoKAoKCrZt2zZo0CAcDsdkMqOios6dO2fiGuOtjV6vj4mJYTKZ\n2N0kGD6fb5ZVKWfPno3H421sbNzc3PLy8t725dgsahgcDjdr1iy1Wm16VsAAp7YAaHn5+fnGiuLo\n6IhVFK1Wa+28zKa8vHz58uXY7X7YB3dSUpLpYUNDQxFCHA5HIBC87WtVKhV22g3Latu2babnA4xg\nGnkArCY7O/v48ePHjx9//Pixq6treHj45MmThw4dapxOqhFHjx7V6XSRkZEtkGfzPHv2bNmyZXfu\n3EEIzZ0798CBA7WflcvlVVVVKpVKpVJptdrq6uraix/rdDqlUlm7PZVKXbhwoUaj2b59O5vNtre3\nt7W1tbGxodFoFArF1tbWwcGhkWRu3LgxcuRIPB7PZrPPnj3bp08fs+5rRweFBADre/78+fHjx2Nj\nY1NTUxkMxrhx4yZPnjxmzBg6nd5ge4PBwOFwSkpKwsPD9+/f7+jo2MIJN0gikRQXF4tEIolEUv63\nx48f37t3r7q62sena0WFRiaTVVZWajSVlkjAzs6WTCY7ODiQyWTHvzhh/7l3796FCxcCAgJ27tzp\n6+tr4uruoA4oJAC0Ivn5+ZcvX46Li7ty5YrBYOjXr19ERMR7773H4/FqN3v69Ck2LbGNjY2Tk9Mf\nf/wxfPjwlslQLBbn5OQIBIK8vDyhUCgUCouLhUVFRSKRqLKyCmuDx+OZTLqj418/DAYFj8d16eJh\nb2/r4ECzsyORybZ0OsXWlkSj2VMoZBLJBo/HMxjU2h0xmbTav8pkytqfVQqFWq/XV1fr1GqNSqWp\nqqqWy1WVldUaTZVcrlKrK6VSRXm5orxcWV6uKC9XiEQSpVJt/LiztbV1dWXzeDxXVw6Px+NwOF5e\nXt7e3nw+H5babQYoJAC0RlKp9Pr163FxcWfOnFEqlX5+fhEREWFhYdgt9F9//fWGDRuwe+sIBEJN\nTc2yZcu+++47W1tbM+ZQWlr67NmzzMzM7OxsgUCQkyMQCAQqlRohZGND4PHYPB6Lw3Hk8VgcjjOX\n68zlsrhcZzbb0cmJYcY0zAirKMXFZUIh9iMuLpYIhWVFReLCwhKdTo8QolDssYri7c3v3Lmzr6+v\nv79/7akeQX1QSABo1TQazbVr186ePRsXFycWi7t16zZ58uTLly8/ffq09v+8BAKhS5cux48f79Gj\nR/M6ksvljx49ysjIePbsWWZmxrNnzySScoSQoyOjc2d3b29XPp/n7c319uby+Vx3dzaRaPPGmG2I\nTqcvKCjJyREKBMKcHCH24NWrQolEhhBydGT6+/v7+fn7+/v7+fkFBQU1fkmmo4FCAkDbUFNTk5qa\nGhcXd+TIkVevXtWflQRbBeTbb79dvnx5/Vu461Or1ampqSl/Sc7Kel5TU+PgQOvUyc3Pz8vfn+/n\n5+3v7+3tzW1KtPZKKlWmpwsyMnLS0wUZGbnPnglEojKEEIfjGhQUHBQUFBQUNGjQoFZymcpaoJAA\n0MYcO3ZsxowZr/s/F4fDjRgx4tChQw3OuC4Wi+Pj4+/cuXP79q2MjEy9Xs9iOQYH+wQH+wQH+wYF\n+fB4LAun3+YVF5elpGQlJ2clJ2cmJ2eVlEjweLyvr8+QIUOHDBkyZMgQNptt7RxbGhQSANqYOXPm\nHDlypMHJBzFEIpFGo8XExEyYMAEhJJfLr1+/fvv27du3b6WnZ+Dx+N69uw0Z0mvAgB7Bwb6ennD2\n3yQFBSXJyZn376ffuZOakpKp0+l9fbsNHTp86NCho0aNYjKZ1k6wJUAhAaAtMRgMLBarifMKDxs2\nzN6efO3adb1e362bZ0hIwMiRfUaM6OPo2PCoYmAitVpz796zxMQnSUlp8fGP9PqaXr16TpgQNnXq\nVD8/P2tnZ0FQSABoS1JSUoKDg7FVxxFCBoNBr9fr9foGGxMI+PDwoZMnDxk7dgAUjxYmkymvXPkz\nLi7x0qV75eXyrl07T578bmRkZLNHQ7RmUEgAaEvy8/PXrl1LpVIZDAadTqfRaHQ6Hbtv8f79+1eu\nXE5Le+bu7hoRMWzChJDQ0F42NnWn4wUtTK+vSUp6cv580okTN3Nzhb169Zw9e87MmTPb06UUKCQA\ntG3x8fHbtv1w/vwFOzvSlCnDZs8eO2RI79ctWQisyGAwJCQ8PnTo0smTt9RqzdixYz766OMWu5PU\noqCQANAm6XS6U6dOff/9locPkwcN6vnBB++Ghw+xt7ezdl7gzTSaqnPnEvbsib19O6V3714rV34y\nbdq0RtYAbv2gkADQxtTU1Bw+fHjDhi8KC4vefXfoJ5/M7NfP39pJgeZIScn6/vs/Tp68yWazN2zY\nOG/evPorg7UJUEgAaEsSExM//vijx4+fREdPXLUq0tu7SWuVg9YsP1+0Zcvve/bE+vn5/fDDtmHD\nhlk7o7cGJ1IBaBvKy8tnzJgxePBgJtMmNTVm9+5VUEXaBw8P1x07PklL+93dnT58+PApU94Vi8XW\nTurtQCEBoA24d+9eYGDvxMRb5859d/Xq9u7dO1k7o5aGw/XHfpod4eHDjGHDlmCPKyur16/f06nT\nFBubgU0JW7/3YcOWPHyY0exk6uvWzTMubsvVqztSUx/07t0rPj7ejMEtDQoJAK3d1q1bhwwZ0r27\nR2pqzIQJIdZOxzoMhvumvHz//nPvvLNixYpp2K8bNuz73/8Ozp8fplDcvHJlezN6X7586qhRy/ft\nO2tKVvWNGtX30aOD/fp1GzFixKZNm8wb3HLgGgkArdrq1au3bNmyefOSTz+d1UEmT8S++Nf/7H7d\n9je6dOne+PErjxz577RpI7EtXl6T8/JEEsnVpt+nWb/333+/EhW18cKFrWPHDnjblN5ox47jn3yy\nfcmSpdu2bWv9f+9QSABovb7//vvVq1fHxHwxa9Zoa+fScsxbSKqrtZ07v+fhwU5M3GvcSCAMrKmp\neatQDfY+YEC0UFj26tVJS0yqf/LkzRkz/m/Dho3r1683e3DzglNbALRS9+7dW7169TffLO1QVcTs\nTp26VVBQMnPmv97D+pPwN8/MmaPz80WnTt0yS7Q63ntv+I4dn3zxxRc3b960RHwzgkICQGtkMBgW\nLVo4cmTflStnWKgLuVz18cfb+Px37exCnZzeGThwwaef7njw4K8LyMbLy0Jh2ZQpa2i0YU5O78yZ\n8x+5XJWbWzxx4qd0+nBX13Fz5/5XJlPWDisSSRYt2uzmFkYihbi5hS1e/E1JSXnTGxgvaGO9R0fX\nvU5QUFAyadJnNNowNntsZOQGiUTe+G6eO5eAEAoO9n1dF2vW7Hrju/E6ffr4GruwhA8+eHfy5CGL\nFy963XRqrUS7WuMMgHbj0qVLz56lHznyu+XOj8+Z85+zZ+O3bfs4OnoikWiTkyNcu3Z3v37zsbM3\nBsN97AN39eqdX321+Ndf13/++Z5du05KJHISifjNN8u4XOe1a3/avfs0iWSzd+9aLKZIJOnbd75e\nrz98eGOfPn4PHqRHRm68fPnen3/+ymY7NqWBsd/XnXdau/anzZuXcrnO69f/vHPnCSLR5sCB/2tk\nN1NTXyCEas+W32AXjb8br4OFTU193oT3u5m2bPmwa9epp0+fjoiIsFwvJoIjEgBao9jY2AEDAvz9\n+Zbr4tatFIQQj8eiUMgkErFbN8+dOz+t3yw6epKvrxeDQV23bi5C6MKFpBUrptXecvHiXWPjL77Y\nW1BQ8s03y4YPD6bR7EeM6LN585K8PNGGDfua2OCNFiyYjPW+Zs1shNDVq3823r6oqBQh5OBAM8u7\nUQeTSUcIFRVZ8LYPPp83fHhwbGys5bowHRQSAFqjtLSn/ftbdgWLKVOGIYQiItZ5eEyKjt50/PgN\nZ2dG/S/ggYHdsAeuro51tnC5zgghobDM2Pj8+SSE0PDhwcYtI0f2RQidP5/YxAZvZOydw3FCCBUX\nv2FploqKKoQQifSGsy9NfDfqwMJWVFQ2Lfdm6t/f/+nTxxbtwkRQSABojZRKJY1GsWgXv/66/tSp\nzVOmDFOpKn755dy0aZ936RLx+PGLOs1oNHvsgXFG4Tpbao/8FIulCCFnZ4Zxi7OzA0KotFTaxAZv\n1EjvDbK3t0UIVVfrGm/WxHejDiyspefKZDCoSqXKol2YCAoJAK0Rm83GzslY1LvvDj158uuysivx\n8XtGj+6fny+aN+8rUwK6uDARQmVl/1wALyuTGbc3pYHZ8XguCKE6IwIa1Ix3QypVIIQsvdB9QUGJ\nq2urXhEZCgkArVFISOi1a8nmGqXaIByuf2FhKUIIj8eHhvY6duwrhFBmZo4pMcPCQhFCN248NG65\nfv2BcXtTGqC/v+BrtbqKikpnZ1OHPvfu3RUhlJcnarxZ894NLGyvXl1NTLIRBoPhypUHISGhb25q\nPVBIAGiNIiMjCwpEJ09a5AYFo+joTenpgqoqbUlJ+TffHEYIjR7d/MmsEEJffrnA09N1zZpdN28m\nK5UVN28mr12729PTdePG6CY2QAgFBHRGCD14kBEXlzhggKkL04aFhSCEkpMz39iyGe/Gw4eZCKGJ\nEy34KX/hQtLz57mzZ8+2XBemgzvbAWil5syZc/PmlbS039444qh5kpKe7tt39s6dR0VFYnt7Oy8v\nztSpIz76aDp2QFB7gkLsmnNTtiCESkrKN2zYFxeXUFoqdXFhTpgQ8p//LMSG9jaxQXJyZnT0ppcv\nCwICOsfEfNG1q0fTe6+vulrbqdMULy9OQsLP2JY6UzRir33bdwMzYEB0YWFpdvYpEskiy1KpVJqe\nPaMCA/udOHHSEvHNBQoJAK2URCLp2TPA39/jwoXvYel1U1y4kBQW9mntubbMAptrKy5uy/jxg8wY\n1kivr3n33TX372c+fvyEw+FYogtzgVNbALRSTk5OZ8+eu3s3berUz6urtdZOpw0bP37Qnj2rFy/+\n5syZO+aKGRt7e8mSb3fvXmWhKqLV6iIjN1679uDMmbOtvIogOCIBoJVLSkoaP36cj4/HsWNf1b49\nG7ytBw8yVq368fbt3WaJNnToB99++2Hfvha516eoSDxjxhepqS/OnYtrEwsmQiEBoLV78eLF1KkR\nOTmC/fvXRkSMsHY6wLJu3kyeNWsjg+F4/PiJgIAAa6fTJHBqC4DWrmvXrvfu3Z82bca0aeujor7E\nRqmC9kckkkRHbxo1avk774xLSXnUVqoIgkICQJtAJpP37t17+vTpe/eed+s2bePG/Wq1xtpJAbPR\naKo2bTrYpUvE9euPjxw5EhMTQ6FYdl4D84JTWwC0JVVVVTt27Pjf/76iUOxWrIhYuHCyhQYHg5ah\nUKj37z+3bdsxqVS5du26jz/+mEwmWzuptwaFBIC2p7S09Lvvvtu3b29Njf7998NWrJjm5dXaB/aA\nOgoKSnbsOL5v37maGsP770evWrWq9Y/Oeh0oJAC0VQqFYv/+/Tt2bC8sLBo7dkBU1NiJE0Pt7EjW\nzgs0pqpKe/Fi0qFDly5cSHJxcVm+fMXChQsdHBysnZdJoJAA0LbpdLrTp08fPHjg6tVrNBolImJ4\nVNSYkJCellsRCzTPvXtphw9fOnbshkymHD582Ny58yIiIkik9lD4oZAA0E5IJJJTp04dOhSTlHSX\nxWKOGdM/LCxkzJgBxnnXQcurrKxOTHwSF5cQGxtfUCDy9fWZOnXanDlzvL29rZ2aOUEhAaC9SUtL\nO3PmTFzcueTkFDLZbsSI4AkTBo0Y0adTJ561U+socnOLb9x4eOHC3atX/6yoqOzdu1dY2MTJkyf3\n6tXL2qlZBBQSANqt4uLi8+fPx8Wdu3HjRkWFxs2NPXRo4JAhvYcM6d2li7u1s2tvBIKiO3dSb99+\ndOfO47w8oZ2d7fDhw8PCJk6YMMHNzc3a2VkWFBIA2r/q6uoHDx7cvn37zp3bd+/erajQ8Hgu/fv7\nBwf79unjGxTkA2OIm0GhUKekZCUnZyYnZ92796ygQEQm2/Xv33/IkKFDhw7t16+fnZ1lV05sPaCQ\nANCxaLXaBw8exMfHP3jwIDn5YWFhEQ6H69zZIzi4W1CQT48enXx9vdzd2dZOszUqKhJnZOQ8e5ad\nkpKVnPz8xYs8g8HA5XKCg4P79u03ePDgvn372traWjtNK4BCAkCHJhKJHj58mJycnJz8MCUlpaSk\nFCHEYNB8fb38/b19fb26d+d37uzu4cEmEm2snWzL0en0+fmiV68K09MFmZm56em5GRkCbL1eFss5\nKCgoOLhPcHBwnz59uFyutZO1PigkAIB/SCSS9PT0jIyM9PT0zMyM9PR0kagEIUQgENzd2Xw+j8/n\neHtz+Xyep6eruzubzXZs0wVGp9OXlJQXFpbm5hbn5AgFgiKBQCgQCAsKRDqdHiHk4sLy9/f39fXr\n3r27r69v9+7dnZ2drZ11qwOFBADQmPLy8uzsbIFAIBAIcnJyBIJsgUBQUFCo0+mwBmy2E5vt5ObG\nYrOZbm4ubLajkxPD0ZHu6EjHHjAYVGslr1Coy8sV5eUKiUSO/VlSUl5UJBaJJEVFZSKRpKREgn0G\nEggEd3c3b29vPr8T/2+dOnVycnKyVvJtCBQSAMBb02q1RUVFRUVFIpGo1p/FQmFRSUmpRFJeU1Nj\nbEwgEBwdGY6OdCqVTKdTbG2JNJq9vb2drS2RyaSRSEQKhYwQsrMjkcn/XGCgUMgkks3f3elUqn8m\nqdRoqiorqxFCFRWVVVXVUqmyulqrVlcqlRXV1Tq5XKVWV5aXy8vL5dhRBQaHwzk5ObLZLlwuj8Ph\ncrlcDofD4XCwB+7u7kSiRZbL7QigkAAAzE8mk5WXl0skEqlUWv43lUqlUCiqqqqUSqVaraqqqpLJ\nZJWVGo2mEiGkVqurq6uNEeRyhbEa4XA4BweG8SkikUilUhFCdnZ2ZDLZwcHB1taWQqHSaDRbW1s6\nnU6hUBzrYTKZLfsedCBQSAAArdSrV6+6dOmSkpISGBho7VxAY2A9EgAAACaBQgIAAMAkUEgAAACY\nBAoJAAAAk0AhAQAAYBIoJAAAAEwChQQAAIBJoJAAAAAwCRQSAAAAJoFCAgAAwCRQSAAAAJgECgkA\nAACTQCEBAABgEigkAAAATAKFBAAAgEmgkAAAADAJFBIAAAAmgUICAADAJFBIAAAAmAQKCQAAAJNA\nIQEAAGASKCQAAABMAoUEAACASaCQAAAAMAkUEgAAACaBQgIAAMAkUEgAAACYBAoJAAAAk0AhAQAA\nYBIoJAAAAEwChQQAAIBJoJAAAAAwCc5gMFg7BwAA+Mtnn312+fJl7LFWq83JyfH09LS1tcW2hISE\n7N6923rZgYbZWDsBAAD4R1lZWXp6eu0vuC9fvsQe4HC4Ll26WCkv0Bg4tQUAaEVmzpzZyGmSqKio\nlkwGNBGc2gIAtCJ6vZ7NZkskkvpP2dvbl5WVkcnkls8KNA6OSAAArQiBQJg5cyaJRKqznUgkTp06\nFapI6wSFBADQusyYMaO6urrORq1WO3PmTKvkA94ITm0BAFodT0/P/Pz82luYTGZpaamNDYwPao3g\niAQA0OpERkYSiUTjryQSKSoqCqpIqwWFBADQ6kRGRmq1WuOv1dXVM2bMsGI+oHFwagsA0Br5+vpm\nZWVhj7lcbmFhIQ6Hs25K4HXgiAQA0BrNnj0bO7tFIpHmzp0LVaQ1gyMSAEBrlJ+f7+XlhX1ApaWl\nde/e3doZgdeCIxIAQGvk4eERHByMEOrWrRtUkVYORkEAACxIr9crFAqEkEql0mq1Op1OqVRiT1VU\nVFRVVdV/CdYSIdSjR4+HDx8GBgaeOHECIWRjY0Oj0eq3J5FIFAoFe0ylUolEIpFIpFKpCCE6nU4g\nECyzZ+AfcGoLANAwvV4vlUplMplUKpXL5QqFoqKioqKiQiaTaTQajUYjlUorKio0Go1cLlOr1RpN\nhUKhNBgMMpkMIVRRoWmwTrQ8EolEodgjhBgMBh6Pp9FoZDKZSqXS6Qx7e3t7e3sHBwcymUwmk5lM\npr29PZlMZjAYdDqdyWQymUwHBwcYedw4KCQAdDhlZWVisVgsFpeWlpaUlEj/JpPJpNJyY/FQKJR1\nXmhrS7K3t3NwoJHJtmSyLZOJPSA5ONDs7e3IZFsGg4oQcnCg4nA4OzsSmWyLEGIy6QghMtnWzo6E\nx+MZjL+OHmxsCDQapX56trZEe3u7+ts1mqrKyrp3vCOEVKoKrVaHPZbL1TU1NVVV2oqKSoSQTKY0\nGAyVldUaTRVCSCpVIoTkcpVGU1VRUSmXqyoqqjSaKplMVVFRWVlZLZUqNJqqysq69Y9Go2IVhclk\nMpmOfz9gMplMNpvt4uLCYrFYLJazs3PHHBQAhQSA9kahUBQWFhYWFgqFwsLCQqxslJSISktLy8rK\nxOIynU5nbMxiOTo60plMGpNJc3Cg/v2AxmTSmEy68TGDQWUwKHh8h7iqajAYZDKVQqGWShVSqVIm\nU0ql2I9CJlNhj7EH5eVysVhq/BQlEAgslrOzs5OLC5vNdsWqC5fL5fF4bm5ubm5uDAbDurtmIVBI\nAGiT1Gq1QCDIy8srKioSCoV5eXlCYVFRUVFBQYFSqcLa2Nvb8XguLBaTxWK4uDDZbEcWi+nszHB1\ndWKxmCyWA4vFJBA6RG2wHL2+pqxMJhZWA5rKAAAZB0lEQVRLxWKZSCQRi2VlZbKSkvLSUqlYLBeL\npYWFJdjhEUKIQrH38PDg8Xg8npu7uzuXy3Vzc/P09PT29m7w8k9bAYUEgNZOKpUK/uWVQCDIycnD\n/ue1s7Plcll8PpfDceJynTkcZy7Xmc/ncTjOHI5TxzzT0tpoNFXFxWUCgVAoFBcXS7A/BYJioVAs\nEpVhf49MpgOfz+fzO/Fr8fDwaBOXZ6CQANCKqNXqzMzMzMzMjIyMrKysjIz03Nw8bCpce3s7b28e\nn8/l87l8PvaA5+XFafByAmgrNJqq3NxigaAoJ0coEBh/CtVqDUKISCR6eXn6+vr6+vr5+vr6+fn5\n+Pi0wmMXKCQAWI1Go3n69GlaWlpWVlZ6enpWVmZeXr7BYCCRiN26efn6evr6enXu7IaVDVdXJ2vn\nC1pOSUm5QFAkEAizswszMnKysvKzsnKrqqoRQh4ebj4+vn5+/r6+vj169AgICDCOfrYWKCQAtByl\nUvnkyZOUlJSMjIz09LTk5JSqqmoSidi5s7u/v7efn7e/vzefz+vevZOtLfHN4UAHIxSWZWTkpKcL\nMjJy0tNz09JeKRQqAoHg6enh5+cfFBQUFBQ0YMAAZ2fnFk4MCgkAFqTX658+fZqQkHDv3r1Hj1Je\nvcquqalxdmb27t01MLBrYKBPYGC3Tp14cCUDNI9AUPTo0fNHj56npr549Oh5aWk5Dofj872CgoL7\n9x8QGhraq1evFrjKAoUEADOrrKx8+PBhfHx8YmLC3bt3FQolk0kfOLBHUJBP795dAwO7eXi4WjtH\n0D4VFpY+evQ8NfV5Ssrzu3fTJBIZlUoZOHBgSEhoaGhov379LLRWMRQSAMzj8ePHFy9evHz50oMH\nD6uqqng8l8GDe4WE9AwN7eXv791B7sAArYfBYMjIyElMfJKY+DQ+/nF+fjGJRAoODhozZuy4ceMC\nAwPNeBwMhQSA5lOr1devX79w4cLFixeKioSurs5jx/YfOjQwNLSXtzfX2tkB8I/8fFFCwpPbt1Mu\nXbpfVFTK4biOGzd+3Lhxo0aNMn0YGBQSAN6aRqOJjY397bfDN2/e0mq1wcG+48cPHD9+UGBgN7ja\nAVo5g8Hw5MnLixfvXrhw788/nxEIhKFDh0RGRr377rvNHv0FhQSApjIYDImJiTExMSdOHNdoNGPG\nDHjvvWFjxw5ksRysnRoAzSGRyC9fvn/y5M2LF++SSKQpU96bM2fOkCFD3vZMLBQSAN6svLz8559/\n3r9/n0CQ07u3z5w5Y2fMeMfFhWntvAAwD4lEfuTI1UOHLj98mO7h4R4dvWDx4sUsFquJL4dCAkBj\nhELh119/feDAr0Sizfz54+fOndCjRydrJ9WB4HD9sQcGw32zBHz4MGPVqp23bv1klmhGZs+ztmHD\nlnz77bI+ffzMHrm+zMzcmJgL+/fHVVRUzpkzd926de7u7m98FYwkAaBhSqVy9erVnTt3Onv25KZN\niwsKzn7//QqoIi3MvJ/L+/efe+edFStWTDM9VGjootDQRcZfG8yzTptmW7586qhRy/ftO2t6qDfy\n9fXavHlpfv6ZLVs+vHz5XNeuXVauXIktMNMIKCQANODs2bN+fr6//LJ306bFL14cX758KpVqkQH4\nloDD9Td+QW6L8S3k0qV7Cxd+vWfP6smThzT9Va/b2ZqampqamsZfW79N89668PChu3Z9tmjR5kuX\n7r3ta5vH3t5uyZIpz58f27Llw99/j/H19cEWqXwdOLUFwL9otdpPP/30xx9/nD173JYtHzo7t70L\n6dhHlSXOsbRMfEt0V12t7dz5PQ8PdmLiXgv13pSWpuzLgAHRQmHZq1cnicQWnQ9YKlWuXr1r//6z\nCxcu3LZtm51dA5OEwhEJAP+orq5+770pv/66/48//nPw4P+1xSoCGnTq1K2CgpKZM0dbO5Hmmzlz\ndH6+6NSpWy3cL5NJ27t3zdmz3x0/fmT06HdUKlX9NlBIAPjHnDmz4+Nv37ixc/r0UVZJQCSSLFq0\n2c0tjEQKcXMLW7z4m5KScuOz2ImR2udGGtxS+6no6E11WmZk5IwZ8xGdPpxKHTZ+/MrMzFzzxi8o\nKJk06TMabRibPTYycoNEIm/6DiKE0tMF48Z9TKUOYzBGhIevzs8X1X+XSkulH3zwLRaEx5uwcOHX\nIpGk8Tf23LkEhFBwsK95d7aRHpsYzdgM+zl69BrWxstrcp2X9+nja9yRlhcWFnLr1q6MjGezZs2s\nfx4LTm0B8JejR4/OmjXr6tXtI0b0sUoCIpGkb9/5er3+8OGNffr4PXiQHhm50daW+Oefv7LZjlib\n+udGmrKl9vaBA3t8++2HPXt2+fPPZ5GRG6uqqh89OuTlxTFX/FmzRn/++Twu13nt2p927z49d+74\nAwf+r4k7mJ1dFBw8197e9vDhjX37+j96lLVpU8yVK/drd1dSUt6v3/zKyupDhzYMHBiQmvo8Kmoj\nHo9/9CjGweG1d2j7+Ex7/jxPJLpofCfNsrNv+9oGo9248XDkyA85HOfc3FgS6a9Zn/fvP3f2bHxc\n3BZjs+LiMi53go+PZ2bmsdftpqXdvZs2ZMjiPXt+fv/992tvhyMSAP7yzTebZ80aba0qghD64ou9\nBQUl33yzbPjwYBrNfsSIPps3L8nLE23YsM+MvaxfP3/QoAAqlYzFl0qVGzfuN2P8BQsm+/p6MRjU\nVauiEEJXr/5pfOqNO7hx4z6ZTIk1oFLJgwf3Xrw4vE78DRv25eWJNm364J13+lGp5NDQXj/88FFO\njvC7735vJKuiolKEUCOVxopGjOjTs2eX4uIy4+EIQmjHjmN1RpcxmXSEUFGRuKXzq2XgwB4LFkz6\n9ttv6hyBQCEBACGEpFLp48dPZs2y5jn08+eTEELDhwcbt4wc2RchdP58ohl7GTiwR534tT/rTRcY\n2A17wOU6I4SKi/856fTGHbx27UGdBiEhPevEj4tLQAiNHTvAuGXw4N7G7a9TUVGFECKRWumytR9/\nPB0h9MMPR7Ffb95MrqkxjBz5r+80WPLG5d+tJTJy7IsXLwsKCmpvhEICAEIIlZWVIYRcXBzf2NJy\nxGIpQsjZmWHcgl3tLy2VmrEXBoNaJz7Wr7nQaPbYA+wsTe2vrm/cwbIyWYMNasMac7kTjNcVnJ1H\nI4Sys4saycre3hYhVF2ta+5uWdaMGe9wOM6PH7+4eTMZIbR9e93DEfR38lZfWRk7N4j9/2IEhQQA\nhBDy8PAgEolpaa+smAM250pZ2T9Xp7EP1tpzsWCTQmq1f30gyuUNDKFpXO2r31h8Fsuc8Rvxxh3E\nykbtBvUTwD7IysuvGQz3a/+o1bcb6ZrHc0EIyWTK2hsturNvhUQiLlv2HkJo69YjAkHRvXtpkZFj\n6rSRShUIIR6vqdOWWMiTJy/xeLy3t3ftjVBIAEAIIVtb2/Dwydu3H9fp9NbKISwsFCF048ZD45br\n1x8Yt2OwlduLi//6Ppia+qJ+HOxLq1arq6ioxL6t15aU9LRO/Hfe6WfG+KbsIJZJ7Qb37j2rEwS7\nnfD27ZTaGxMSHg8YEN1I1717d0UI5eX9awyYRXe2QY1EW7z4XXt7u4sX7y5fvjU6ehKZbFvntVjy\nvXp1NTEHU9TU1Pzww9ExY0Yzmf+aaA4KCQB/2bjxy8zM3PXr91grgS+/XODp6bpmza6bN5OVyoqb\nN5PXrt3t6em6ceM/H5GjRvVFCH333e9yuSorK2///gamzQgI6IwQevAgIy4uccCAHnWe3bPndGLi\nE5VKg8VnMmnmjW/KDm7cGO3gQMMaqFSau3fTvv46pk6QjRuju3RxX7p0y8mTNyUSuVJZcf584ty5\n/928eWkjXYeFhSCEkpMza2+06M42qJFojo70OXPGGQyGK1fuL1kypf5rHz7MRAhNnBha/6kW89VX\nBx48yPjqq//V2Q7DfwH4R0xMzPz58z//fO6XXy6wysoiJSXlGzbsi4tLKC2VurgwJ0wI+c9/FtYe\nsVpWJlux4odr1/6sqKgaPjxo167PPDwmYU8ZB5UmJ2dGR296+bIgIKBzTMwXXbt6YNuxsac5ObEf\nfvj9nTuPamoMgwf3+v77Fb6+XqbHr33HA9ay/pam7GB6uuCzz36Mj3+Mw6GBAwN++OEjf/8ZdYJI\npcqvvvo1NvZOYWGpoyO9b1+/devm9u/fvZE3trpa26nTFC8vTkLCzy2zsw3u/uv+ajAvXxb4+Eyb\nOnXEkSP/rb8LAwZEFxaWZmefMg4RbmHffHN47dqffvrpp8WLF9d5CgoJAP/y66+/Llq0aMKEQb/+\nup7JbI2jRZuthac2aW0uXEgKC/v0yJH/Tps20tq5NKympsbNbeLp05vrF8Xff78SFbUxLm7L+PGD\nWj4xhUK9cOHmkydvbt++fenSBo784NQWAP8yf/78W7duPXz40td3+h9/XIFvWu3G+PGD9uxZvXjx\nN2fO3LF2Lg27cOGuu7tL/SoSG3t7yZJvd+9eZZUqcvLkTV/f6bdvP7l69WqDVQRBIQGgvpCQkPT0\njGnTZs2e/Z9+/aLj4sx5GwewooULJ1+5sn3btqPWTuRfcLj+9+8/k0qVX365//PP59VvsH37sWvX\nfly0qO69mZZ2927asGFLp079fMSIMc+epQ8fPvx1LeHUFgCvlZqa+vnn6y5duty/f49PPpkRHj6U\nQGir370aPGUPWgPsr8bJibFsWUTtgQ/WUlNTc/580pYtfyQkpI4aNfKrr/7Xt2/fxl8ChQSAN7h7\n9+6WLd+dPXvOzY0dFTU6Kmpst26e1k4KAPPLzi46fPjS4cOXc3OF48eP++yzVaGhTRokBoUEgCZ5\n9erVL7/88ttvhwsLi/r37xEVNWb69FGOjnRr5wWAqWQy5fHjNw4fvpyU9MTVlT1z5qzo6GgfH5+m\nR4BCAsBbqKmpuXnz5qFDh06fPqXT6YYNCxo/fuC4cQP5fJ61UwPg7eTliS5evHvhQtKNG8k4HG7y\n5PDZs2ePGjWKQCC8bSgoJAA0h0qlio2NPXfu3NWrVxQKpa8vf/z4AePGDQwJ6dnCC9gB0HQ6nf7u\n3acXL969ePF+WtpLKpUyatSosLCJU6ZModObf3gNhQQAk2i12oSEhIsXL164cD4r6zmdTg0J6RkS\nEhAa2qtPHz9bW+vcOwaAUXW1Njk5KzHxcULCk8TEJzKZskuXzuPHTxg/fvzgwYNJJJLpXUAhAcBs\nBALBpUuXEhISEhLihcJiOzvbPn38QkN7DhoUMGhQQO1pdwGwKKWy4u7dp0lJT+PjHz94kKHRVLq6\nskNCQgYPHjJmzJguXbqYtzsoJABYhFAoTEpKSkxMTEpKePToscFg4HCcg4J8sJ9+/fxrz+kLgIkU\nCvXTp69SUrJSUrJSUp5nZeXW1NRwOK4hIaEjR44cNGiQn5+f5Wb9gUICgMWVlpbeu3fv0V9ShMJi\nhJCXFy8wsGtgYLeAgM5+ft5eXpy2e5MKaGE1NTV5eaLMzNwnT14+evT80aMXAkEhQsjVlR0YGBgY\nGBQYGNi/f38Oh9My+UAhAaCliUSi1NRUY13Jzc1DCNnZ2fr4ePn4ePj5efv4ePr6enXt6mGt6flA\nq6LV6l69KszIyMnKyktPF2Rl5Wdl5Wo0lQghd3c3Y+UIDAzkcrlWyRAKCQBWplAosrKyMjIysrKy\nMjLSMzMzc3Jy9Xq9jQ2Bz3fr3NmNz+fy+Vw+n8fn8/h8LoVCtnbKwFI0miqBoEggEAoERdiDly8L\nBYJCrVaHx+O9vDx9fX39/Px9fHz8/f19fHwYDMabg1oeFBIAWp2qqqqsv2VnZwsE2QKBoLj4r0WZ\n2GwnPp/H53P4fJ6XF4fLZbm7u/B4LAeHdjVXcfsml6uKisSFhaVCYVlubvHfxUNYXCzGGrDZLny+\nN5/fmc/n+/n5devWzcfHh0xupd8hoJAA0DZoNBpBLTk5AoEgOzc3T62uwBrY29t5eHC4XGcez9nN\nzYXLdfbwcGWzHTkcJxaLWX/FPWBRGk1VWZlMJJIUF0sKC0uFQnFBQWlRUZlQWJafX6xWa7Bm9vZk\nLy8vb29vPr8T/2/e3t4UCsW6+b8VKCQAtG1yubywsLCwsFAoFBYUFBQVFRUVFRYUFAiFwrIyibEZ\nlWrPZju5uDBZLAcWy8HV1ZHFYrJYDq6uTo6OdCaT7uBAhQHKTaRQqGUypVSqLC9XiEQSsVgmFktL\nSspLS6Visby0VCoSlalUFcb2Tk6OXC7Xw8ODy+XxeDx3d3cul+vu7s7j8RwcHKy4I+YChQSAdquy\nslIkEolEIrFYLBaLjQ9KS0tKSkrEYrFYXKbT6Yzt8Xi8gwONyaQzmTQHByqTSWMyaQ4O2J9UKtWe\nTLZlMKgUih2ZbEunU7AtNJq9FffRRCqVRqOpUirVSmWFRlOlUmnkcpVGU6VWa6RSJVYtpFKlTKb6\n+0+FTKbU6/XGCAQCgcVyZrGc2WxXNtvV2dmZxWJxOBwWi+Xs7MxmszkcTqs9JWUuUEgA6NDKysrK\ny8tlMplUKq3/p1SKPVUuk8nVanVlZVWDQeh0KplsS6GQGQwqHo8jk23t7Eh4PJ7BoCCEKBQ7EolI\nIODpdApCiEq1N84iY2NDaLAOYXFqbzEYkEymrN9SpdJotX/VQp1Or1SqEUJKZYVOp6+u1qrVlQgh\nuVxdU1NTVaWtqKjE4qjVGo2mSqFQNbg7tra2FIo9k+ng4MBkMplMpiP2qP6fTCaTxWI17Z1uz6CQ\nAACaqqamRi6Xq9VqjUajUCiUSqVGo1GpVHK5XKPRVFRUSKVShJBKpdJqtTqdTqlUIoSUSoVOp9Nq\ntSqVCiGkUCiM3+g1Gk1lZWWdXvR6vULRQM2g0ag2NnXnMbO1tbW3/6sU4fF4bBQThUIhkUgEAoFO\nZyCEqFQqkUgkEolUKhUhxGQyyWSyvb09g8GgUChkMplOp9NoNDKZTKVSGQwGHg839LwdKCQAAABM\nAoUXAACASaCQAAAAMAkUEgAAACaBQgIAAMAkUEgAAACYBNYEBaCdMK42AUMxQQuDIxIA2gmoH8Ba\noJAA0PbgcDjLrXYHwNuCQgIAAMAkUEgAAACYBAoJsBS5XP7xxx/z+Xw7OzsnJ6eBAwd++umnDx48\nwJ7F/c3Yvv6WxiMghK5fvz5x4kQmk2lnZxcYGHj06NHaCRgDFhQUTJo0iUajsdnsyMhIiUSCmqaJ\nuyAUCqdMmUKj0ZycnObMmSOXy3NzcydOnEin011dXefOnSuTyWqHFYlEixYtcnNzI5FIbm5uixcv\nLikpaXoD41uE9R4dHV0n7WbvLwDNZADAMiZNmoQQ2rZtm0qlwpb8Cw8Pr/1Prv6/wDpbmhJh8uTJ\nYrE4Ly9v1KhRCKHLly/XDzhr1qyMjAyZTPbBBx8ghObOnWveXYiMjMTiL126FCE0fvz48PDw2j0u\nWLDA+JLi4mJsOYobN24oFIrr16+7urp6enqKRKImNmjwrWtwf5ctW/ZW+wtA80AhAZZCp9MRQidO\nnDBuKSoqeqtC0pQIOTk52OPMzEyEUGhoaP2At2/fxn7NyclBCHG5XPPugjE+9mztLQUFBQghHo9n\nfMmCBQsQQocPHzZuOXjwIEJo0aJFTWxgeFMhMfZeWFj4VvsLQPNAIQGWMm/ePOxzzd3d/f333z92\n7FhVVVXtBm8sJG+MUBu2QJOTk1P9gAqFAvu1qqoKIYTD4cy7C8b4xtnR62yp3SOHw0EIFRUVGbdg\nH/fGYvPGBoY3FZJGegfAEqCQAAs6derUlClTmEwm9gHn4eGRmppqfPaNhaTxCFKpdO3atT4+Ptgi\nE0aNB3zdR7DldqHOFmxFjdoFCVuQg0gkNrFBI3th+v4C0AzwLwxYnF6vj4+PHz16NEKoV69exu3Y\nRePq6mrsV+MV6SZGwC6KbNiwQSKRYFssUUga34Vm9Mjlchs/4Hhjg0b2AgoJsAoYtQUsBYfDYZ+A\neDw+NDT02LFjCCHsSgbG1dUVIVRcXIz9mpqa+lYRkpKSEEKffPKJo6MjQgg7bdXCu9AMYWFhCKEb\nN24Yt1y/ft24vSkNEELYmoBarbaiosLZ2dmUfAAwA2tXMtBuIYRGjx797NmzyspKkUi0du1ahNDE\niRONDWbPno0QWrZsmUwmy8zMnDVrVp1/k41HwI4P1q5dK5VKJRLJypUr6/+TbsoWU3ahGT2KRCJP\nT0/joKwbN25wOJzag7Le2MBgMPTv3x8hlJiYePTo0QkTJphrfwFoHvgXBiwlMTFxzpw5Xl5eRCKR\nwWD07Nnzf//7n1qtNjYQi8UzZ85ksVgUCiUsLCw/P7/O95vGI5SUlERFRbm4uJBIpO7du2OHC7Vf\nXv8L09t+hWo8gabEb7BH7DYRLpdrY2PD5XIXLlxYu0g0pcHDhw979uxpb2/fv3//58+fm2t/AWge\nWLMdAACASeAaCQAAAJNAIQEAAGASWNgKdFyNz8QOZ30BaCK4RgIAAMAkcGoLAACASaCQAAAAMAkU\nEgAAACaBQgIAAMAkUEgAAACYBAoJAAAAk0AhAQAAYBIoJAAAAEwChQQAAIBJoJAAAAAwyf8DDv4t\nLaUavpAAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
- "%pylab inline\n",
+ "from nilearn import plotting\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
"from IPython.display import Image\n",
"smoothwf.write_graph(graph2use='colored', format='png', simple_form=True)\n",
- "Image(filename='/data/susan_smooth/graph.dot.png')"
+ "Image(filename='/output/susan_smooth/graph.png')"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"And we're ready to go:"
]
@@ -192,12 +136,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true,
- "scrolled": false
- },
+ "metadata": {},
"outputs": [],
"source": [
"smoothwf.run('MultiProc', plugin_args={'n_procs': 4})"
@@ -205,10 +144,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Once it's finished, we can look at the results:"
]
@@ -216,32 +152,70 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%%bash\n",
+ "fslmaths /data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz -Tmean fmean.nii.gz\n",
+ "fslmaths /output/susan_smooth/smooth/mapflow/_smooth0/sub-01_ses-test_task-fingerfootlips_bold_smooth.nii.gz \\\n",
+ " -Tmean smean.nii.gz"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nilearn import image, plotting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
- "!fslmaths /data/ds102/sub-01/func/sub-01_task-flanker_run-1_bold.nii.gz -Tmean fmean.nii.gz\n",
- "!fslmaths /data/susan_smooth/smooth/mapflow/_smooth0/sub-01_task-flanker_run-1_bold_smooth.nii.gz \\\n",
- " -Tmean smean.nii.gz\n",
- "\n",
- "from nilearn import image, plotting\n",
"plotting.plot_epi(\n",
" 'fmean.nii.gz', title=\"mean (no smoothing)\", display_mode='z',\n",
- " cmap='gray', cut_coords=(-15, -5, 5, 15, 25, 35))\n",
+ " cmap='gray', cut_coords=(-45, -30, -15, 0, 15));\n",
"plotting.plot_epi(\n",
" 'smean.nii.gz', title=\"mean (susan smoothed)\", display_mode='z',\n",
- " cmap='gray', cut_coords=(-15, -5, 5, 15, 25, 35))"
+ " cmap='gray', cut_coords=(-45, -30, -15, 0, 15));"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
+ "source": [
+ "# Inspect inputs and outputs of a loaded or created workflow\n",
+ "\n",
+ "If you want to see a summary of all possible inputs and outputs of a given workflow, use the `_get_inputs()` and the `_get_outputs()` function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Show all possible inputs\n",
+ "smoothwf._get_inputs()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Show all possible outputs\n",
+ "smoothwf._get_outputs()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
"source": [
"# How to change node parameters from existing workflows\n",
"\n",
@@ -251,42 +225,23 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "['inputnode', 'mask', 'meanfunc2', 'median', 'merge', 'outputnode', 'smooth']\n"
- ]
- }
- ],
+ "metadata": {},
+ "outputs": [],
"source": [
"print(smoothwf.list_node_names())"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Ok. Hmm, what if we want to change the 'median' node, from 50% to 60%? For this, we first need to get the node."
+ "Ok. Hmm, what if we want to change the 'median' node, from 50% to 99%? For this, we first need to get the node."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"median = smoothwf.get_node('median')"
@@ -294,22 +249,15 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Now that we have the node, we can change it's value as we want:"
+ "Now that we have the node, we can change its value as we want:"
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"median.inputs.op_string = '-k %s -p 99'"
@@ -317,10 +265,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"And we can run the workflow again..."
]
@@ -328,12 +273,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true,
- "scrolled": false
- },
+ "metadata": {},
"outputs": [],
"source": [
"smoothwf.run('MultiProc', plugin_args={'n_procs': 4})"
@@ -341,10 +281,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"And now the output is:"
]
@@ -352,75 +289,55 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAADICAYAAABPngpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXWm0VcWZ3RgVpxjTIjOIgiiIKAENoEZxHgIRo0gbW0jH\nRDPYHTOtqK3S0U5rG5doO6zWxKljbKdIoizURNsxRk23xsQxRAERZIgdjY0mLdg/XPvcfc/dr865\n97737rvw7bXe4lL3nKo6VV9VnVvfrv31AvA+AoFAIBAIBAKBQCAQCPRobNTqCgQCgUAgEAgEAoFA\nIBAoRvyADwQCgUAgEAgEAoFAoA0QP+ADgUAgEAgEAoFAIBBoA8QP+EAgEAgEAoFAIBAIBNoA8QM+\nEAgEAoFAIBAIBAKBNkD8gA8EAoFAIBAIBAKBQKANsHGrK9AVWL58Ofr379/qagQCpfH6669jwIAB\nra5GIBAIBAKBQCAQ6MHohfUwDvz77693jxTYANCrV69WVyEQCAQCgUAgEAj0YASFPhAIBAKBQCAQ\nCAQCgTZA/IAPBAKBQCAQCAQCgUCgDRA/4AOBQCAQCAQCgUAgEGgDxA/4QCAQCAQCgUAgEAgE2gDx\nA76NcPvtt2PEiBFYu3Ztq6uyQeHee+/F3Llza9Jnz56NCRMmJO9955130LdvXzz88MNdVb1AIBAI\nBAKBQCCwgaDtw8httNGGsQexbt06nHPOOfjmN7+JD33oQ62uzgaFe++9F7fddhu++tWv1n3v5ptv\njlNPPRVnnXUWHnjggeS1jfYrx4Cq2K9bt67mOn7vxoym8bPWh5EdNO3Pf/5z1XcAsPHGG9eUz/w2\n3XTTmrI22WSTqvsA4L333uvweTTt//7v/wAA7777bk2dnKK/a5MipCJauO9cuc1ExdB7+bk75zx9\nnrLl8h6916WxP4rap8heU9/lx4b77i9/+UtNHrRBvVc3ThuxpTxc3xZd5+wrZXP6nSujrG2uW7eu\nZXaXsifXNkXPWbYN3b2uXVP1T9m9oqw9ufJTz110HT8XtWPKxroy6k93252i7DyWsgW3DipcGzYz\ndvNpZSPblF23XJ3KjoWyY9Xdq+3YHVGmWF5P+n3BttB3MNavkbWk3nas932naP5w+abm5iLbKztu\nHJw9dsYa3wjqKbftf8BvKLjvvvvw+9//Hscff3yrqxKoE7Nnz8Y555yD3/zmN9htt926rBw38FMv\nDfq9m9jdjxi3eOgPG96rP8h5Heun9XQTtpZLsAwti581D9bP5VGEzvjx7RajRhYUV6fuDI/p6u7q\nUfYlN/WyX7QIpzaj3L3a9/lNMf0/Pzv7KXpBb+bHkMs31bdlf4Q5tFtI1ZTdKVI/Xurd5OgoP3dv\n6oXe2Vb+X6CyYaRzGTcjHdx83dH3Zb4r+0Pf3bOhhzqt98eo6696N2saqZ/7f9kfzR3l1dH3jcxj\nhLZPvWvEhgr3I7OZzZFG7KE7Nu9SZaVsqezGQRHqbZ9WoOdsL3UxSHeeP38+Ro8ejS222AJHHnkk\n3njjDSxcuBBTpkzBlltuiQkTJuCZZ56punfdunU4//zzMWLECPTu3RsjR47E9ddfX3XN/PnzcfDB\nB6Nv377YeuutMXHiRNx7771V18yZMwd9+vTBU089hYkTJ2KLLbbAuHHjStGrr7/+ehxyyCH48Ic/\nnKX98Y9/xEknnYSBAwdis802w9ChQ/H5z3++5pkVixYtQq9evXDXXXdlaT/4wQ+w6667YvPNN0ef\nPn2w33774dlnn82+//a3v43ddtsNW221FQYPHozPfOYzeP3116vyHTZsGL7xjW/g4osvxuDBg/HR\nj34UM2fOxB//+Mfkcy1duhQzZsxA3759sfnmm2P48OE466yzap6hkX5bs2YN/u7v/g79+/fHZptt\nhj333LOmTwDgsssuw0477YTevXtjxIgRuPjii7Pv5syZg4suugiLFy9Gr1690KtXL8yePbvq/p/9\n7GcYO3YsttxyS+yzzz5VbQcAQ4YMwZ577okbbrgh2RaBQCAQCAQCgUAgkMIG8wMeAJYsWYKzzz4b\n5513Hq666ir84he/wBe+8AXMnDkTM2fOxG233Yb33nsPM2fOrNp1OfXUU3HeeefhC1/4AubPn4/p\n06fjb//2b6t+BL/yyiuYOnUq/v3f/x233347Jk+ejMMPPxyPPvpoVR3WrFmDWbNm4eSTT8btt9+O\n3r17Y/r06VizZk2y7vfffz8mT55clfa1r30NjzzyCC6++GLcc889+O53v1v3jtNDDz2EU045BSec\ncAIWLFiAa665BpMnT8abb76ZXbNy5UqcccYZmD9/PubOnYuXX34ZBxxwQM1Z/FtuuQX33Xcfrrrq\nKlxwwQW46667cMYZZyTLP/HEE/Hqq6/iqquuwoIFC3DmmWdmNGii0X77/Oc/j2uvvRZnnnkm7rjj\nDgwZMgRHHnkkHnnkkeyaq6++GqeeeiqmTZuGO++8E8ceeyy+/vWv4/zzzwcAnHTSSTj++OPRv39/\nPPbYY3jssceqNhiWLFmCb37zmzjzzDNx0003YeXKlZgxY0bNrt3kyZPx85//vGSvBAKBQCAQCAQC\ngUAtNigK/RtvvIHHHnsMw4cPBwA888wzuPDCC3H99dfjxBNPBPABXeLII4/ECy+8gFGjRmHhwoW4\n8sorce2112LWrFkAgIMOOgjLly/HP/7jP+KTn/wkAOArX/lKVs66deswZcoUPPvss/jBD36Avffe\nO/vunXfewdy5c3HAAQcAAAYMGIBx48bhoYcewmGHHWbrvWzZMixfvhxjxoypSn/iiSfw5S9/Gccd\nd1yWdsIJJ9TVJk888QTGjh2L008/PUubNm1a1TXXXHNN9nnt2rWYNGkSBg8ejEcffRSf+MQnsu82\n2WQTzJs3L6NPP/fcc/iP//gPXHHFFcnyb7rpJkydOhUAsP/++9dc00i/Pf/887jpppuq+u3QQw/F\n2LFjce655+Kee+7BunXrMGfOHMyePRsXXXQRAOCQQw7Bm2++iX/+53/GV7/6VQwePBgDBgxA7969\nMXHiRFu3Rx99FDvttBOAD/p++vTpePHFF7HLLrtk1+2+++7413/9V7z77rvYbLPNOmyPzoI7O5Y6\nj+nS3Bl4pXq6c2LuvHCezq5l8Tql3LMMLV+/z9fJiTo2Qodv5nxpWUpvO9CyFGXPvbl7iiilKSqp\nO6rhytW+T9GvWZY7gqH1dBT6FIWfGg4KN0YaoR/WS5dvBN1tj51Fwa53fDdyzjJ/9EfT3JznbJtp\naiek0Ls6OXtyx4Ecrd6dE26kves9CrK+o5HjHPW2V2e1a/6om7PTsuugOxpXtvxUvh1d19nn9dcH\nNKO/0MyxoY7uqaeMoj6ud44qus6ttes7NigP/LBhw7IfgQAwYsQIAMh+TGvaa6+9BuCDs+cbbbQR\npk+fjvfeey/7O/DAA/H0009nk9zSpUsxa9YsDBo0CBtvvDE22WQT3HvvvXjppZeq6rDJJptU/Ugd\nPXp0dn9HIF29T58+Vel77LEHLrzwQlxxxRU15ZTFHnvsgaeeegqnnXYaHnroISvotGDBAkyePBkf\n+chHsPHGG2Pw4MEAUFPmlClTqn5ojR49GitXrrR5avmnn346rrvuOixZssRe00i/Pfnkk3j//fdx\n7LHHZtdstNFGOPbYYzMP/NKlS7Fs2bKqawDguOOOw1tvvYXf/OY3HdZb68Yf73xm5q3o06cP1q5d\ni1WrVhXmGQgEAoFAIBAIBAIOG5QHfptttqn6P1WxNZ1pVLZevXo11q5di4985CM2z+XLl2PgwIGY\nNm0a/vSnP+E73/kORowYgS233BJnn302Vq5cWXX91ltvXbUrmi/Pgd/17t27Kv2yyy7D2Wefje98\n5zv48pe/jBEjRuDcc8/FzJkzO26EHA466CBce+21uPTSS3HJJZdgq622wgknnIALL7wQW265JZ58\n8klMmzYN06dPx7e//W307dsXvXr1wsSJE2vq7Nr3/fffx1/+8pfsOfO4+eabceaZZ+K0007DH//4\nR+y+++646KKLcOCBBybzzafn23H58uXYaqutsMUWW1Td269fP6xZswZ//vOfsXz58iwtfw3wgXe9\nCB3VLd827LtUP3eEzhJBc3DezZRQT749gWqvEZ9fvZC8l54kbQOm6W5/XrUe+EDNX7/TMjS/d955\np6Z+qbCL7hmLRPbKop13glPsAQfnsS4ruFUUAcHdSzt00QtcvXgsx13jvJ4KMmZ0IzJlU5of28KJ\nlHWWh8Rd31O9VI0oE7vru0oM0tm72qLztqeeg/amx8JoC87br3VzdpnyWqltp8StynqU23n+ahTd\nwZYq266OZVF0b55BVGRjzsadGCg/N6LSXa/dNTNHtDOK5qjUnN4IU86hmTbN22hRndwcVZbNkkpz\nKNu27WZTG9QP+EbwV3/1V9h4443x6KOP2hfSvn37YuHChXjqqaewYMGCKhq8+zHRaB0A1AjCbbPN\nNrj00ktx6aWX4plnnsG//Mu/4DOf+QzGjh2L0aNHY7PNNqvxfrsfpbNmzcKsWbOwatUq/PjHP8Zp\np52GrbfeGueffz7uuOMObLfddrj55pszI1+8eHGnPBcADBo0CNdddx3WrVuHJ554AnPmzMG0adOw\nZMkSbLvttg3nO2DAALz99ttYs2ZN1Y/OFStWYIsttkDv3r0xYMAAAKjZZFmxYgWASrt3Bth3nZln\nIBAIBAKBQCAQ2LCwQVHoGwHF2t58801MmDCh5m/TTTfNfqirh3zx4sU1AnaNYocddsCmm26KV155\npcNrxo4diwsvvBDr1q3DCy+8AAAYPHgwFi1aVOWh/NnPftZhHttttx1OPvlk7LvvvnjuuecAfLAJ\nsckmm1TtYN14443NPlINNtpoI0ycOBHnnHMO1qxZ0/QmwZ577olevXrhtttuy9Lef/993Hbbbdhn\nn30AfNA+AwcOxK233lp17y233IKtt946C/m26aabNuQ5VyxatAjbbrttclNi7dq12V+gPbFu3brs\nT/sz/9cT6uf+Au2LIttrdf/mba0njIdA8yiaU3qa3fWkugWaQzvbXqB90VPsLjzwBdh5551xyimn\nYObMmfjWt76FCRMm4N1338Wzzz6Ll156Cd///vexyy67YPDgwfj617+Oc889F3/6059wzjnnYNCg\nQZ1Sh969e2P8+PH4r//6L3z2s5/N0vfZZx9Mnz4dY8aMQa9evXD11Vdjyy23xF577QUAOOqoo3D2\n2WfjpJNOwuzZs/HUU0/h2muvrcr7nHPOwRtvvIH9998/C3H34IMPZirsBx98MObOnYuvfvWrmDp1\nKn7xi1/ghz/8Yac815tvvolDDz0UJ554IkaOHIk///nPuOiii9C/f3+MGjWqqbxHjRqFv/7rv8ZX\nvvIVvPXWWxgxYgSuvvpqvPDCC7jyyisBfLBpMGfOHJx88snYdtttcfDBB+PBBx/ElVdeie9+97sZ\ndXaXXXbBihUrcN1112HMmDHo06cPhg0bVld9fvWrX9VEEShCMyIjKZqQbsaQgqzXk7qeP7IBAAMH\nDsw+U5Nh1113TdZvu+22AwD86U9/AlDNTNFIDsQXv/hFAF6USal+ZE7cd999WRo3frQMF6/exZB3\naJRS9corr6Bfv35Yu3Yt3n77bdx99934yle+gv/93/9tKL/OxCuvvIKTTjqpqt2IVBzhFNyCVUSh\nY18qVdiVx++VLs+jK/3798/SRo4cCQDYcssts7SXX34ZADLdDmUkPfHEEzXXUxBUN+x+8pOfAKjo\nawDA22+/XVNPp/XB59HjIE7ELH99R98XXdeZdtcVdMKObK8MbbuzqbWOXqxznqMcp/JxDD0n6sn8\n1CbcvRwfRfO7E9YjTd/RU7siznZPnu+A9JynKEtFdu3lYpoX5e2+Y94637k+dmsi73XHNGiDLg93\ntMgd9VQ75pyvc787PtXVtOR2t72yopplj0XVS7UvqlPq2JsTGnZzmYMTkWVakSBnZ4j3FdH5i9AT\n7C488CVw+eWX46yzzsINN9yAI444ArNnz8b8+fMzBfbevXvjxz/+MTbeeGMcc8wxOOuss3D66adj\nv/3267Q6HH300bj77rur0iZNmoTrrrsOxxxzDGbMmIHVq1djwYIF2cvqmDFjcM011+Cxxx7DtGnT\n8OCDD1YpygMfeKqfe+45nHLKKTj00ENx5ZVXYs6cOfj7v/97AMARRxyBCy64ALfffnuWh/vR1Qg2\n22wz7Lbbbrjkkkswbdo0zJo1C1tssQXuvffe7MxzM7j66qsxa9YsnHvuufjUpz6FxYsX46677so8\n8MAHoeYuvfRS3HHHHfjkJz+Jm266CRdddBG+/e1vZ9fMmDEDs2fPxre+9S3sueeemDNnTl31eO+9\n93Dffffh05/+dNPPFGgfTJ06FR/+8Iexxx57YNy4cVWRHgKBrkLYXaAVCLsLtAphe4FWoNV21wtA\ne53az8Ht9qyPlLwVK1Zg6NCheOSRR7Dnnnu2ujqBOnDPPfdgxowZWLZsWZW3Lw/nncyj3t1IJ7ak\nedPjpDueFPEbOnRolkZRQXrTgQ8YFPl7XbiufN1VB4DHQlQkkuWql5M6BkUiQ08++SQA4I477sjS\n6PlXIbGUh6oZ8Lnzu+4XXHABdt111yzsZNldakVKHK6ePFIegXzeRXZWb5rmT4aL89ZstdVWWRr7\nXjfAHAOGXiTVvGB+ZGSop+nhhx8GgOyoTEf50tuv+dKm5s+fn6Xxs3riWa7zjipS48V5CjoSMesK\nu2O5zdgd8+jI9lJ2l0pz35cVLHKhCp1Hyc3LKl5KJtL48eOzNIrW0cY5VwLIjtZpVJnDDz8cQLXO\nzX//938DAH7/+99nafTuqA25kGFOdIxpZT2mZb3Ia9eubVu7S9WtrBe0rKBWWUYN+1M98E5glTbg\n1njHiCorbMjydSyQBaXzp/PeO698/vqOyi0bvlCvc33bU9Za5tPMnFckltlM6Myy97o8aA/O0VaW\nPu6YK7xXbSrllW+GUdCMiGxXz3llER74NkG/fv1w0kkn4ZJLLml1VQJ14uKLL8Zpp52W/PEeWH8x\naNAgHH744Vi4cGGrqxLYgBB2F2gFwu4CrULYXqAVaJXdxQ/4NsJZZ52FUaNGrZcMg/UV77zzDiZN\nmoSvfe1rra5KoJsxb948vPXWW1i6dClWrlyJc845p9VVCmwACLsLtAJhd4FWIWwv0Aq02u5CxK6N\n0L9/f5x55pmtrkagDmy++eadOqiboSxTiEbFk1x89wMOOABAhUoPVIS+dPPICTQRjv7H65T+SUq+\nshNIO1YhOlJSte6ss1KdJk2aBABVIohz584FUE1PJT3fUQLLUviKqLpHHXUU7rvvPnziE5/Aj370\nI/Tp0yej0jYrGtUKpJ67SNSJ35NSrN/rdaRtHnLIIVnavvvuW1MX2peKzTmKMNNYvlL+SJ1XKjPr\nokI0TnSM+WjYUI6bCy+8MEtbvnw5gArlXvPRcZCKQ1uvfRTZXbvYWwr1Upn1era/O5qgfcxjHFtv\nvXWWdsQRRwBAFoIUqBwJUsox25v29+EPfzj77g9/+AOAavHGHXfcEUD1WGBZq1evztJIv1c9HM5r\njlbv6N9ObLFszOYUUna3PqOMAKO7HvBHN2gXrv3d8Ru1Gc5LnB+LjvPQ3nW95j26NrpyHdWe1zmx\nO0XZmO+pI0Oatj7YXtF7R+oeR0PvKO8ycO3tjl66o2HuGIUr3x0TdaKv7qhGvqyOynBw4qRl3+ny\naa22u/DABwKBQBfioYcewnXXXYfvfe97ra5KYANC2F2gFQi7C7QKYXuBVqBVdhce+ECgh6B37954\n7733sHbt2ro8ZandTfV4OrEjeobU40lvkObrdlWd2I56zQl6FOgx/+hHP5p9x51UF7JOd1zpadUd\nUpalacxHQzj+wz/8AwDg8ccfz9IoOKa7pfQ8uHBzirKeFsXcuXOxaNEi7L777vj1r3/dci/oJpts\nUtXmtLsyKBvOS+E8PbTNbbfdNks75ZRTaq4j+8KFRHLeLHev8/ZTOFF3+2mr6h1gWerNYr6axva8\n4IILsrTvfve7AFB1No4eUxc+z3m6mhEjyttdPo9W2KGzvUa9mGUF67St1T7yaVovihFNmDAhS+Oc\n47xcOn7ybBC1E0an0bJcyDiyQHR8UOxOI6ksWbIEAHDZZZdlaW+99VZVPRTaFmXFoMp6BAlnd61G\nM3Me0Yy3PSUYVzQXsJ5qu1xPVQCWYTWZ3//8z/9k373++usAqufAIUOGVOUFfCCYnL+XDCIngKh1\n5+eUZ1afsbNFZIH2sb16ReSIIiHfeuHyKxLUY1/q+15eJLHIw+1C+TpWB9dnN0a4DufLy6NoHKYY\nHmVF5Zqxu0b7b730wHOiCgTaCe+++27dIeoC7YHVq1fjhhtuwFlnndXqqgAAFixYgHfffTf7C7tb\nP9HT7A4I29sQEHYXaBXC9gKtQCvsbr30wKv3LYVevXold2A7CuUF+BABbpeJO6Z6PT/rzg53l7Tu\nM2bMAFB9fpK7mS+99FKWxjN1b7zxRk25eo6Z8eHHjRsHoNpjwN1WPdvH3Xv1Uq5ZswZAJfwXUDlv\nrHXn+UEtg3W/9dZbs7Tnn38eQPVOGr2t6rVwu3WpnTHnecjjQx/6UEM7XxpipBFvLLB+hjoMVLDD\nDjvUpH3pS19qQU1q4eoWWD/Qk+0O6Nj2mg3XFGgt2tXuAu2PdrW9mPPaGz3B7tbLH/BEZ1EFywrm\nuOtJ/3CUTI11TBrU3nvvnaXxR6jeS0GdPfbYI0vjj+9ly5ZlafyROXDgwCyN9CoKhjmxJ43z7X5k\nkvaqNGimqUCUo2uzXY455pgs7fLLL6+pOzcfHF2rMymfnZFXUf93Zr4dISU44ihLSuUaPnw4AGDE\niBE1+TmBELVF2q/baNE02gfp+ioK5WycaRovfuXKlQCqN3p4j9qdo+LzujFjxtSU8eCDD2ZpFIvS\nMpxQX1kBnhRaTWPuCHl6WVkRnSJhJqYpXZ1zk8Z3dxRy17YuNmz+OyBNoVdKXv5ezcNtwroNRdZd\nqaf0tHzrW9/K0rhB6TY3XRmKeml9ZdFT7LFeanzR/OuOVbgNdFKIjzzyyCxtr732AlA9H3BeK6of\n82Zfu2NLmka6vNbTHYNyYns77bQTAODcc8/N0r7zne8AqNChtZ6OOtpd9OZ2R2q+c23ooH3s3nVc\nW/OdbZtttsnSOH/quyBty1Hzf/KTnwCoHK8AgOOPPx5A9bzLe+68884sjUeAVAiWY0GFRN2azPZR\nunW99hT2V0ERNb0seI8TUHTluXfJIrHCVB5OTI52qA44d1SD4yZ1bEnLKxKka9c5L7aAAoFAIBAI\nBAKBQCAQaAOs1x74ZjxkLp+y9G0XFkl3zLmj/olPfCJLIzWdAmJanpZFz7cL3bH77rtnac6byF1c\nxwpg+QrucmmIL+fR4K6w7g6zTro767xMxx13HADgiiuuyNLyXjOg6zxPXY1mdkjrLcN5b7S9uCs+\nffr0LG38+PEAqo9JuPycJ5o7our1Zp85YRvmoTbhvJu0T93F526/ejdZT+d1d+wStWOOFQpAFZXh\n2CCdhXqFyboDzXg93c4++0i9iRQJU5tiH+h1LM+xL5xXR+0rbyOOCaW2x+udR0qf0Qkeurme4+qM\nM87I0r72ta8BqD7yxOfVZ3Sso66yi1bbWwpOdKhe5pO7V+cXerFHjhyZpdEGXLg/nRtpA2qztAGu\nq2p3LFftjnbshEN1bXYii27MfPnLXwZQEVHU64rmG2d3PXGO6mo0IyLr4ERfXVvTLpSptv322wOo\nhEkFKgJ0Ot+xjx0Dku+bRZ5H1kmFbckMnTdvXpZGdoce8XShYvm8bu5tJuRZZ9tfq+25bIjgRton\nNTfquxrtRT3gKSaY9innH+an5bv5jde7shw7TUGbcnXX61Oe93bztjus1z/gyyB1zj3Qvijq11YP\n2LC79RM9vV9T5+66cpMp0PVoZ9sLtC96+lobdrf+oqf3bU+vX6Ax9JR+7Rm1CAQCgUAgEAgEAoFA\nIJDEBuOBLxtXsZHv89e5eIlKFSId6mMf+1iWRiqIUkdcrENCaVik6+m9jibPNBcbl4JhTsRCKaF8\nDo0bSuq8XkfaX5HACUVXdtlllyyNCvtaF96rdMKy9CtHE+uM+JmaTz3f10urd/RPFzvTxbPW63g8\nQ+2O9CUVVHz77berytIyXBuqjdEulc5JW3ExYl1MZtqx9j/zYN20fCeYo2OGZbgjAYzJDFSogHov\nxaWU5tWM4EmrvVEOne15dzG1+dz7779/lkabcx48bSf2rxOWc7HZFbQb1kXr5NJoP+x3oNL3WhZp\nelpPN+fye43VfN555wEAvvGNb9SUUSTcWe/RBoeumAc7C2VppO47d7yLfevWnC9+8YtZmpsvnRgj\n28mtic4++J3L13lx9EiIGxeuLFenPn361Dzj9ddfX1OGqx/HkRNW2xBZOs0cJXBHi3Qt4b26XvJd\n7OCDD87SKDbrjotpGu3OvRMwIpGW5SjLTnCUc/Xf/M3fZGl33XUXAODll1/O0ngsSO2TduSODih6\nyhzU3ejsMZWijafmFKBim27NcQKwOq9SAFuFsIlXX30VQPXcwzVRbYWfVWjRUehZT/cuqXV39l02\nXnw7IDzwgUAgEAgEAoFAIBAItAE2GA98Co2I3TlhnZR4k+5UHXbYYTXllj1ToTtY+XLV281dNXob\ntAx+p7tSvM6JQri66a4Yy3WeS/Vk0VPvhC/OPPPMLO2OO+4AUB3ii2JQTvCqyFNQdoe8kd23rtyx\nS3mjtE/42V2vnvWjjz4aQLUHwDEuyo4B5qP5OcG4vAChXu/C3bBN1XacAGIqfJPu6uaZJ/q9jss9\n99wTQCVkjpZXFN6r3VCWOVLkrXX26Hb5OfYZmkvvdYJcrn5Ftkq70j7lrjzT3NyjdeccptdxflOx\nJpblPPoOOjdzTFKECqh4KJw3rcjr125egzIoema3/jqxLK5rQ4cOzdI4DyorgswuN2+o55D97phy\n2sdcpx10TMiaAAAgAElEQVT7x7GUaIMUn9X8dH1z4om0ba07oTZ2xBFHAAB+9rOfZWkMC+aesWw4\nJkW72mJne0Hd3EY4YVkN9ztt2rSq7zQ/rSfnCvcO48ISOiFPx8Bwdefnvn37Zmn0xt96661Z2u9+\n9zsAwKpVq7I02pNjVBaFz3PoKhtrVSjNrgpnrHB9ynucd9oxPHVtIktEhasnTpwIoCK0rdc/8MAD\nNeXzfUvLeuyxxwAAixYtytI4rzmxRLUfrpcuZKjzyjsUsV172vwWHvhAIBAIBAKBQCAQCATaAPED\nPhAIBAKBQCAQCAQCgTbABkehL6JI1AtHZVYKByl8/fv3z9IGDx4MoJoSQhQJSjgKnRPuIv1PaXr5\nGLIqUuLawOXBuvzhD3/I0hg328Wmd2J7TtyKVD4AGDNmTE1+N910U9X1gBcIbDUNqytQJOzEfnU0\nzVGjRmVppO46OpFrD6W6O9EZ2pujbjoKFu3IUTMVrLt+R0qqE4h0scAd/d7FG3VijI5OqOU2I/zV\nU+IpF8XRTgnhuHt0TLsYxCeddBKA6rnECcExH3dUxs1XKmrJ75UaTRoq83Vl6XEgJ+DlymI+jq6n\n9SR0ruf3xxxzTJZ22WWXdfg87piAm//LzoOtECJrRLAz9R0/a1uzL/TYGKnzhx56aJbG9uK6pWlO\nMEnLoH04OqfOg5yTncAr7U5th3aqdeeaqPNWihKqaaSx6nhjLG8dH7fffjuAiviY1qtI+KloDilz\nfU9BZ7wL6vuKO+7DvtM+ISX9qKOOytIoQKhzgYt77SjQqbWJ5bojS+56R//XtZb5ffrTn87SfvSj\nHwGoHkd8V9R6uncB946xoaOR473uendU0dHQCb2O8wXtEqgI1elcQpFEJy48fvz4qnoAlTlKyzry\nyCMB+Ln5xhtvzNI4/+oYIdT2nBCpE4cti7J9UG/ejdL0wwMfCAQCgUAgEAgEAoFAG2C98cCXFb0p\nuqesd80Jh3FnnTtLQEXsgQIPgPdEcxdKvegMmaU7VM6bmP8OqOx+uTBdTlTEeT25U+V2lh0rQOF2\n/NyOLsXpXLi5YcOGZWmuP5w3InV9I17HrkTZ3dWyoducR0ftjvbhdmF1J9OJZ/Gz81C5HU/1vtLL\nTbvX53Gh5WhPOj7oyVK7Z52dZ1Tr5Ox92223BVDtFeBY3XrrrbM0jkG1T6IR2+kpXqhGPKIpwTr1\nMPJ7DTk0YMCAqus1Pw0N6ISZ2PZOVMl5nxwTxdmA8zy4kJyO6eNEpXivCjjSk6D3sn10fjvxxBMB\nANddd12WxlA6+twufE4zHoWuQFcJgunzOY8k20mFlSiUpHMJvX9u3tIyuBZrf9JDrjbr1j9elw+h\nmf+crzvnIKDS18omcnZHqGCpqye/nzBhQpZGoViuw0DF9l0ZRV7SnmKDjaIRjydtx9miC33JuRCo\nsHDUZt167kRcucbr+sf+zocxBNKMHvc+50J56jzvRECPPfZYANXeUrdOu9Byri4OPS30ZU+De0d0\nrLCUMKJ628kYVgFaQu2b7Az2i/aPCxnrGHC0JRXfpJ3NnDkzS5s3bx4A4LXXXsvSnP24d5bOCC3X\nU4TtwgMfCAQCgUAgEAgEAoFAGyB+wAcCgUAgEAgEAoFAINAGaHsKfVnRm0bz6Og6UkE0jYIOKoxF\nKtsOO+yQpbn4rqS4OHqz0uqd2IqLa+iobvnrHL3L0fX1OkfNSsUSVXoJ6V2aRlqVlsu2UBEMtqO2\nBWkxSm92bVEvPaYr0Axl2QlwKPWMFE9tG1KWlArFfDQ/ioE4oSS9zgllOequo6LyOkfNZx+rsI+j\nUdM+SCsGKrbjbF3Lpz2pQBTr6eI+H3DAAVkaKaYq3uMoWKkjPO1I9VPKWR5OmFKfkccTKEYJVPrK\nib5p29EedT6gXeu86vqc9qrzAevl5lcntEkKs+bPeUuFOzlelP7n1oRULHdN41EXpWt/73vfq3oG\nLdcdoVKkaH9dbY9l869X0FFt0o0tzhsUWAIqwkruiIc7wuaO8qgtpI6a6b35flIbc7brxJjy9VU4\nQUel0LMMJ3qmdSEtde7cuVkabVbLcPRU1wf19mlPoaISjazT7t2J7aXX0S6PO+64LI1zmhNDdvm5\ndzZF/jiHu0bzdUfjOH9qXqyTzsHMWwUduZ5PnTo1S6MY47Jly7I0Z59ubit7FDJQgbMf9rM7Gqbz\nIMW2lcJ+2GGH1eTHIzd69Ib58V1O3+mc/TI/7W/anptT9P2N6+XPf/7zmjLUllmejgOu00XvjSn0\nFBsMD3wgEAgEAoFAIBAIBAJtgLb3wHfnTojbnVUvMUOC6G66Cy3EXSHn4dTn4Q6WExjR3SMXRoa7\nULoblQ83pru++RBzeq/uxNIb5XZJnciT211zQhbqPXChwHid7sK58D2uLvWip+yuOQ+Hsyd6PFev\nXp2lcddUBdmciJ1jWTBvJ3yiHnBXP/a3jgH2N8eKhh5xO8POw00vrLIMXB+7UI7Oy8D6uRBiAwcO\nzNLowVu1alWWRltUT29KSKwRUa9W2GBRPVMh/7S9p0yZAsCHxNL2zoveaFqR2F0qhJLWkx5tx1Lh\nvS4UmYJzk9o0x4GzQWdTbm5W0G5Hjx6dpVHsytmezt1uDKfQVaFw6kXZseKYAy6N6+W0adOyNMcO\nY39rP6TCiDm2gwvj5wQSac/q5Uo9o84prlzmq2ueCw/KZysKGbb99tsDqGYIPvvsswCq119X987w\njvaUtZYoK2Kn449zhgvtp4waCrypyLGbA5232707sdzUfKJwzArapa7JvNe9f+nzuDmYacqCYfjC\nn/70p1ka89Z6soyid9tABW7NcywhziWO9ct3HAAYMWIEAGDcuHFZGucXxyxzAsJO2JZ961gdjnWq\n13GtVVvh2qjhuVkXF/7YzddO2M6hp7GEFOGBDwQCgUAgEAgEAoFAoA0QP+ADgUAgEAgEAoFAIBBo\nA7Q9hb4z0EjsT0IpyqSMKg2OtD5NIzVKKVKkcygdysV853WOEqJwAnikMJPi4ihfTqhPQWqLXsfy\nHa3e5afUWraPo+coPcbFc3TCQymxDofuEq0oG9u06F7So/TIAZ9fqd+77747AE9ZVtEZto1S45yw\nXD6eNpCOU632nqdZK9WUcbK1fFKvlDLNOjtBRy2faU4cR5/bjQG2oz73fvvtBwB48cUXa8pQu3Li\nK/nrgZ4Tw7aofDd+nbgh20DtcdKkSQCqBW4c1Y/5KFXTUdloN9r3Lj/WT4810a5YlvYtn9GluVj3\nqfkQqNiXE4lUar47rkT6n46Dz33ucwCACy+8sOYZ3ZynKEs772lIUdmd0Jf29cEHHwygmq7ujg0x\nb6V4uuNitG2dy/i92in7UfuYdWD9nDito7O6PHQccQy49c29E6j4Zl7QUe8lvRsAXnjhhZq6pOjS\ninawsWbghGXdM/MdZ8cdd8zSSE/WNkwJt7kjiU6oUO/NC4i5dVDtie+v+jxubXQCYbRtHauOGj9o\n0CAAlaN+QGW+cyKyanfuvZRY32ys7DMWrcn87GxKxz6P/PIYDQBMnjwZQPWaSBvSvi8jaqnXs1y3\n1urvINqUUvN1Dss/46677pql8aiZ2hQ/a1u4I6Kp97eejPDABwKBQCAQCAQCgUAg0AYID3yD4K4R\nd7EAH57AeW2cOBh3mZzIknplXBnOa+U88PzMHU4nrKO7V8xDd8M0P8LtGDvxoLxXQq9znlUVe+HO\nnXpRGfKpyEPh0FN32pzHTNuQ7aC7lm+88QaAai+KC0vEtnG7kbrrzf7R3X5+r/lyt137k15z15+s\nu3pcuWuqz8N7KXym92j7uLHg2ofQMGDcHXbh5lyIJt05dl5Ql18KPVkYBUgzXhwz49RTT62513kp\nnfiT83Y775OmqWeJcGElaY+O/eOEfZx31LGjnNdN7TVfhguBpmU4ITqKC6kX7+WXXwZQLObo0A4h\nmdycx89ujlKxLHpjnCfahUJ1Qpfaluw7ZQIxH2fHuk7zM+1U7ZX2qfMg51q9zrH33PrrBM74PC4/\nBddTFTGjCKCKjnHed8JPbi7r6fNbHinmgGMNORaStu/gwYMBADNmzMjS+G6l13E+0jWZ74Jqs/Re\n61rLvtM6c91jvk7E0Aklqt07G3PvU7QFnVNZnr5H0suvbXHllVcCqB5brItjDWj92sGeGkEj7w5O\nsM4J/7FfdJwzVNynPvWp5L387H4HpEQ/1abduu5EOjk2dC51bCK+o+n8P3z48Jo6keHp1ku1M8c6\naYcwwOGBDwQCgUAgEAgEAoFAoA0QP+ADgUAgEAgEAoFAIBBoAwSFHmkRIP2s1FrSgrbZZpsszQl4\nkbqh9BPeo2ksQylSpENpXSgc5qjuSgl0NBZS9khT0bIcVYkULRfXXuknfEYnFKR1d6JALvanExMj\nXV7jkJNmoxQu0mwcrdTRY1qJsnG3tV1JGdK2Yd8p5d2JZ7mjE2xrJ8aotDnXrqQd6TESUv2WLFmS\npbG/SWHXPmT5K1asyNJo20p7YpqWxedxVFSlYJEyq21G6p6OD97rRCF1nPPIghPLcrHhm6H/dYed\npgTmHFWYYxGoCCfqkQXOF06YUtNSx10cRd6J9zgo1Y55O2oen0dppqyn2qg7jpT/DvCUO3evO17k\njmXw82c+85ks7dxzz+3wuiI76wlznkPR+uv6mmkHHXRQlsb12QlTavu7Yw3spyIxMVcnFyM7f1xM\n52Ee+dJxxPlFy+Kc5/raHQnQIxxsC6XMMj+lLbs49RShfPjhh7M0zmtOAM8dd+mptlYE996n0H4k\nOFf16dMnSzv++OOrvgPSAp0pIWKg0u6apv2Yz8/Vk33sjnDquuXmaifexz5Wu+c6oLbI61Qs7bDD\nDgMAzJs3L0vjGHUCavq+26621QiK5kb2s5v71Qb4bqMx36dMmQLAvys5kUxHf0+98+tcyjLc0Rq1\nY9qAzkfumADtUOu+//77AwB22GGHLO3uu++uei59Nn0e145Fx3B7AsIDHwgEAoFAIBAIBAKBQBtg\ng/PAux2gIuEw7o7qjhZ3GnVHkruOLtSW7ipyl8ft4qs32XlWXDgGJ8rDnTEXosmFfdMdKsKF+mD9\nnICXE6PSOvE5XHgJ52VQcbpx48YBqPbs8jrd+WYfFHnGUmgmrGA9KBLM4WfdZeSz6q6lsxOmqedY\n88nXQXc8uQuqts00Zyea77BhwwBUe2QXLlxYlYf2De1U+5r2pu3DUDR77bVXlvbb3/4WgA/bqOwS\nPod6HlxYPNq7tgXzmzp1apZ24403AqhmLfDeIg98Cq32LDiGio5Lxwhi2Blnj64PnLfO7axrX6VC\n2qkHwHkP2B/sU81DGSsEbVQ9tilWj7aPE+Vx3/GzC/3jQjKq14TjX1lRKRHRVtpUkbiZu47t6WxC\n02iLI0eOzNLY166fXKgrbUPajNpOqq7aT7RBnTfyoZSKntuxApynlOW6emoaPyuTxDHgOL+pnXA+\nP/roo7O0q666quY6F16qqO3zaPWcl4dbf4vSyDr74he/mKXRFrStOR/qM7t3LMfGJIrCR2p5gA8P\nq+VzLDh2kRNg1vdJ1l1ZHoTaIuug9rzzzjsDqH4/IUNP24I2VjYscDPoabaYh/sdQmj78HsVeKMQ\nKpkPQG1YaaBitzo3cm5yvy9S9XSimdp3nMMdq0TnFGeHLF/fwbieU0ASqPxeueWWW7I0MihdGS50\nZk8WUAwPfCAQCAQCgUAgEAgEAm2A+AEfCAQCgUAgEAgEAoFAG2CDo9CXRRGFnvQQpfsw5qAT/1q0\naFGWRjq40oxJCVG6CMsookqR/uTorq4uhKMQKjXGxTft379/zb2kVem9LF9pqqyz0kkdFZbl/v73\nv8/Snn766Zq6kJKlcZJfffXVmmetlzrf1TFsU5RCF3dbKWpsV9oaUGlPpcGRaqs0PD6Ltj/7Xelt\nTjAnJTTmbJFUeqAybpYuXQqgmm5Ne1c6E/uY4wSoUO6cGFgRjZn1JNVR0yj2p8+h/UM7Uioi6fxq\nszy6oeMiJaTo6OrdGTu5iN7Mz0oLJiVP24zzgfYL28CJxKgdub7idWqPKdEZpWDyOhVQol1xnlZK\nsRMJ41ym84cT7Ek9g4OLyatzvRMnY96adsIJJwAAzjvvvJp7i46HdReK6OL15kFb0LTDDz8cQPXc\n6NYh14bsdxf72tXT0Zb1XYDf61jJi29pP3BO1utZP50/+H3REb+yVE83HzFN12m296677pqlkapK\nmrOW4erXTiKKgK+bO7rh3okOPfRQAOWPFeqcwTVHbZZtXUSVdsecUnBCXXw2R3d2c5Gu3a6etF9t\nT/euzPeTL33pS1naxRdfDKB6jnbP6MZoZ9hWd66/jcAJy7JNdS3hmqiigccccwwAf3xD11r2lRMQ\nLhL4pA07wVjakjuC6d55HbQszo3u94CWwXc1vj8ClaOX+g7thP+Y5o639BT7CA98IBAIBAKBQCAQ\nCAQCbYANzgNfJFCWErFzId6WL1+epXFHi7s+ALDvvvsCAAYMGJCl8bPu7LgQX+qhJ7gLptdx58l5\n7/W6vAd+9erV2WeGtHFiGG53Xr2uvE7bh+IRKsrH59Hn5o6upjkhK/aB7gDTo6q7dh/96EcBVHsy\nnMeFKGsPnbnjlhJ0UvD5VaiDz6JiMuy74cOHZ2lsQ+0ntpO2K9NcuBvtk3y+eo+2K8PBqe0y9Bvt\nSO2Ou+1qdxMmTKh5bo4z7VfutGrfuLBItEu1RdZdd1y5I6s2xnppXzEf3emld1rrlxcUKkJ3hoxz\naW7OUw83n1HHOT2gK1euzNJoN04kxolVKtzOvhMOcwKPzstPtgDnTWUPOPtm/6m3gfmqt9eJhDk4\ngcnU82jdOca1HTnnqS07gUnHmOkur0HZclJzq85HfFYdW44N4p7ZrY1u3nLsJCe8yHsdW0W9VnkR\nOyegqeC8pfbEshzLw3l7nSieImUT+oysg9rYscceCwC4/PLLa/LTtnUhEsuudz1BcNGF6HJpOi+6\nsMDsbxem1LWDzkVsQyew6sIhKvjexzqph5Ll6vuce69y4VkJXdf53uGYLHqvY8GwDA0Ly3CZ11xz\nTZbmPLZuXJRlHPUUz2kR2FdO1NK9s2q/0PN+8MEHZ2kutCv7ShlrXOPcmNbfD479yD5lXXSe45yi\n73S0B82X/a3zvxOxc/MMy3O/JTTc6KpVqwBU26hj4zmh464SUGwU4YEPBAKBQCAQCAQCgUCgDRA/\n4AOBQCAQCAQCgUAgEGgDbHAU+kbiepNWoRRKUjOUwjdt2jQA1bEWScNQ2gspTEr1II1EKUOk4Oq9\nTvSEtHGlKJFuoxTTPCVT6SCkxWoepGuSKqXlKq2FZThKrIt/rGWwLkqjcccJdtppJwDAiy++WPM8\nSl1j22pdygrqdKWYWJHdOcoU6W9Kg3O0cfaTo//odU4wkGlOZEuvY/1crHnXx05EkONHbfL1118H\nUH3EhM+rVHuOFaWlu9idhFIN+RzOJvS58xQwfQ59xiFDhgAAXnjhhZo0CvVp/YoE61LobMpfSrBO\nxzTnA40l6wQPOUaVUsr2dtQ4F8/X9Z/Cxb52deE8pc/B71182dSRGrVRdxzozTffrMkjRZd3NqDP\n46jZbBcdhxxDSj3ls7n2UbvtSgGeRijTjrbMZ1V7Iu1Sn8XRNDk3aB87Crub85xQLdPUnpywGaHr\nEOcf1tmJiTpxNHcMwtmYO4qi1/Gzi+/t5nUdqy6O8+jRozssV9uR5baDiF2R2CJtQduBfUIRNv3s\nhDx1THLO0PWF7ytqO7xOy3W27WjEeZvVNuc84YRJdXzQZt17pxNqVDEwR7tn3k4sTTF27FgA1e+b\npDtrO7r1oKfZViNw9qjzkc4hBN+LdD3g7xD+LlDoXMa89dgO+1mp7o5K7uYV9ocTBGXf69yTEg4t\nWkPdPOMEGd1RDQrBUjQRqBwj0HLdsb+g0AcCgUAgEAgEAoFAIBCoG+u1B76slyu1gwlUdklV/IM7\noeqpGT9+PIDq3SknHON25Z1YFnfDnDiOlss6604o83M7eLx+1KhR2XfcGXPiaLrryp1ibR96gJWN\nwDo7oSatE+/V52bddQeRIll6Hb23Gh6M7aK7vY7J4Hb1ukvELgUn3qSeP7cj7bwt7Gu1E+fxdDuj\nvM4JdGl+b7zxRoflOuER5+GmV0A9brRjt+OrNuaex7EHaL96nbNP2puWy/rRKwJUvBZPPfVUTbnq\nmWEf6Zhy7JdW7+o626ZdKOuI9qBji9CxynuULUFxw7yQJuDDTzr7cTbvQrxoHzBv2qUTQVTQVtRG\naZtaJw2nlS/fQW2PZeh64rwrzgPAe8j4ACrzoI5Dfi4KLZZCd815+nxsm379+mVpLoyfC53nWEzO\nY+4YEEQRGySfr8J5/p0nVNdTwrHXWL8iD1DKE67PmPJ0OTaezoMcAzq2OAZ6inhiZ8CF4nUsD77r\nAV5Ekm3owlK5UIG6rnKe1XXD9bt7n8r3u2OPaD05f+r8w/ql8tXn1jS2n9qJE4N0ZbB91APPd4wi\nGyuLrgpB11VwAr3u/U3XA64RRf2sNkfQ5rQMjoNUmEyg0vfMV693aS50ar6+HcExgd37INP0vZHs\nAm0zlueYwEVMnVbaT3jgA4FAIBAIBAKBQCAQaAPED/hAIBAIBAKBQCAQCATaAOs1hb4RkBrhxJE0\njRSgoUOHZmmkc2hMTSfWQTqHfudiW7rYjaR1KE3ExUQmvc1RhF08UJfG+hVRcXiv0l6c6BjpM1on\nR58h3VZplLxOy6XImcaxdIIpTizJoREqTJF4UypPvY5tou1Pqo/S+kivUyrSLrvsAsDHznRiIE7s\nSvuENujoUS6+ul7nbDYvJKV2T3qW9hepeUoJJoVd6YeEHjFwAjwOKcqq1oV5axrtTccq+0Wp5LxO\nqZCpenWV8FNZMbEiQTjOWyoIw77XfmHbuqM/zh4VjhrHe9XOaIeaH9tZBXhI52ceanu8XscN73Vz\ns9LrWBcXL17nZl5XJNTDvB3lXetHTJo0Kft85513VtUdqIwXRz0tmp8asbmifFI2qGORz6BjmjRa\nXd9I0XX36vEHJ3bENimK75uiUDqapotLTTtytHln45ov8ysSZHUxmZm3jmkn5pkSElTbYb369++f\npTnxxBQttifDCXny+XVu4/fan+wTnRdpv87u3LEPHeOuXGeDri75I4RF4nRct9T+nQCmE0pkPk4o\nU22HZWhaam775Cc/mX2+7LLLqsrXOjhhUEVPpsYXwfU321n7gHOdrgfsPyfyp+/j7jgu12y31upx\nOvaHHiVLxYHn8+i87uCOavCzrsl8T3YCz3qU2B0l45g48sgjs7Rrr70WQHX7uCNM3X2ktgjhgQ8E\nAoFAIBAIBAKBQKANsF574MuKljnxF+e5UM86PRy6I82dGt05ZX5OuEt3qLgzpTtAhF7nhJdcyDB6\ny3T3iGJv3EnT3SvusukOGfPQHS23i8/dOhfGTHfSeJ3z/OsuIMUl9F6285QpU7K0m2++GUC1wNjA\ngQNr6uK8f2V30OrZaUuJXbhdd+eBVw+AY0BwR3GHHXbI0kaOHAmgejfbeQNdOBB6Id2OZ1HoFtqM\nC5/jwuGxj9WeeL16D/m8KqJHL5wTV3E7pM7unNdd24xeUB0X7H+9l2PUCa1o//H7IpG6lLBOI2Ev\nO8qrKD8XVkufkbaibcG+UhvgPXovr3N94AT9nJiYC4GjcMyRPOtIxWwI9SykhH3UA89dfBd2LOUl\n1fo5D5cT0VIbdZ5atq2OIdbPMVaKPFedhbK265gIThBVhS65hjibdWuoeiId64jtWSQuyTKckKNr\na2cnrn5qC/my3JyicOE0XUglMqbUY+ved1x4UD4bw7kCwOLFi2vq50T7yjI/ugL1itU6USy9l/25\n4447ZmlO5DIlIunYGEWev3ydtC4q4ss5g89TxBDieHPt495Z3Luy5sd3Wx0Ljo3BZ1O7Y/vpOGd4\n2eXLl9fU2eVbxPAieooHtSOk+l7tzAlNc45wIQddqGl9HyecMLH+hnFhYWlrZB4qG5HrqmNr6PO4\ndTD/nX52c48TWtR5k+upPg/ZM8oocAyo8MAHAoFAIBAIBAKBQCAQqBvxAz4QCAQCgUAgEAgEAoE2\nwHpNoW8GTjiONF6gQuNhTGigQrVwMbUd5VFpKqRxFgnCpMQoVCyL9dM00su1zgRpS0oXWbZsGYBK\nnGGgQqdR2qmjLefrBlTaxcXEdc+o15HarxRXijepiB2fTa8jtcbRFJuFo9IUxRp19GhHZWS9ldbD\n9j/wwANr0hydSEX/SJlydCIt17UT6+yu06Mlru8oRkibWbRoUU09lcbFsUL703KVEkrKsKP/a9s6\nUR5Hj+V1Oi6dsB3HiI4tF9eWbesEr5qJz10WKQqho0eq/bA/dJ5hnffaa68sjeNM+4X3OLq6OyLi\nhDOLxNxcfG/CUdMpeubosHoMivnqXJ8Sn3JjztE4nUiUEx3TNLVDgu2jx1DY3m4MaX5ufq4nLnKK\nPliWLu+uc8edtAzOVyrU5CjKKfqlXse2Udop28bNv4427OzIjXPmoXMu12ZHe9X2cUJknGvd8zh7\ncvOgsysnwKfg2NNjTVxb3NpdJGLXXfG4U+JmRXVwxxVJu1XaOttB12mOSXeUS+3E2Zg7tuWOztAu\ndI3Pi80VCTC6OYt5uPnOCRq7vNWe2GZKWWbd9VgS7VLnVL4zvPrqq1ka66rrQeqdpWi+agUduii2\neGo+1fmA77u6/rojkE4ske2oY5ptr+/37DdtJ85DmsY6pIRg1facCCK/d7R6fR4noMk667s/n03r\nwmMHei/XlpdeeilLc0dJUiLJRcezuwLhgQ8EAoFAIBAIBAKBQKANsMF44MuKQqV2XZxIjXoTU7ue\nuhOju0uE88pwp82F33ACXwy/BlR2nFwYNydawR0yfUYKh+juJ+vOXSygIlahu1wp0RO3Y6+7cC48\nGXZnIOUAACAASURBVD8re2D//fcHADzwwANZGndxnUCf88AW7ZB1106aC+XFNPWYcOdfhV7ITtBd\ndNqMCvzxHrUnfi4KD+OEjehhVc+D223nvbxen5FlqceTaXodd+rV88id3rI78frcvMd5qJz3SHeO\nBw0aVJMf20BDHzqhK+eBd2yAsuEH6wXvLQolxe+1vVkn9T4R2t8u7JoTDqM9qnAm20LvzdcJqPSz\njg2OcycOyfrp7jz7VOdD1/fOO8s0JzCn9WSd9DrOydoWrJd601g/TaPNa53pjVCBMZbnxpqzvTLe\ng3pDIJb1sjqWloJ9p8KdfGYnCKZ5OHt3rBrnWXGhs1wZLmQbbYXfqT074TDahLaZC0HLe9064eBs\nUZkxjj3gGC+si4q3/epXv6q5173btBOcF1Sfj6JqyjpjXztb1PXIvYc45oUT6HJw4TXzwq7uXcvB\nrfVO5LEoBB0/6zxLz6iW4d47WK6uJbvuuisA4Le//W1NnbuLxdGZKLt2p8Kuap9yzlePOdvZhaR0\nzCEXLlL7gNDfHI4tkQ8B61hnbt5SW0mJiLv134Uw1rmW96jAK9l4CoZi1jLcXOvYKanfll3N9AgP\nfCAQCAQCgUAgEAgEAm2A+AEfCAQCgUAgEAgEAoFAG2CDodCn4OhLLqa2UkJI+9htt92ytBRl1lFX\nlDpKQawiiiGpditXrszSKOLmYrkq1TIv8qNxGkk/USoz6bPaFqSsrFq1qiaNsRSBCuVO7+Vzuxjy\nSj/jvU5MTO8dPnw4AOCJJ57I0tje+tykA7l46p1JaykrGubSHA2Tn5VitM8++wCofj7SiZTO5Giw\ntLEi4Scn3sP2V/qlUucJRwVmfrQZJ9ijgnW0RbUd9pce8WBddBw54RpnE26c8xmVlsU0bTPaufYf\nKZV6tIE27aiQ3XF0o2wevE7HYP7YA1A5OjBkyJAsjXOjE/109q3tTVtxAp+ufk7YxtGbdQzRDt0R\nFcLRth3l2h0zKRKJcnMe79XnoQ3r8QTWS6mnnP+VBsg2035mPjqHOhplV9JQi2j1jt7ujurwWIq2\nK+mcjr7thDuVEurGeYrKrPVj+yu9nWUotZW24uJdp46SORFM14f6PKm1Re3d0WJZL31GPpuLa67H\nGNgWOm842rk7NkT0FMqzo8a6NYICniqc647ncK1xlGGl+NKO9aijm+/cfMP6qb2z79j+ul66tqY9\nueN3TgTNUYJ1rLJ8XZPz8cE1b83PHTdimzZiOz3FthT1HuXVZ2Cf6jsG30XUBvLXA5X3E9dXOi/Q\nNtVuaA9FIsCcI5iHPiPT9D5e74Qe3fuEzjNOJJLvty6GvY5Nfu9suehdrew7VXfZXnjgA4FAIBAI\nBAKBQCAQaAOsNx74RoSd3K4id2B0B5HQXXfusNIrBaR3cYqEg9yODXejVDCFu5hOuES9N9y1cuEg\nKOigXhx6U3XXjs/oQus4T6h6OLmL6oTtdFea+ehOGnfNnMdLd6q5+6iCetzp0+dmftqODl25a+Z2\n8dxuurYN21o9nmRNaDuwrdVmnWfFhX1xwjr87DxE2u/8XgVCuNPpRLvobdDdUNbThe3SHVf2sdoi\nd1yd51jb1nnvXQge1xZObIf11/Bjr732Ws1zs/+cZ64ZW+sMwTDHwnBigHrdZz/7WQDVbeauKxtq\nJSUa6DzgRWEqU54+J3rDz84rUOSB4GetZz50mH52bBLNj7as8xafV+vCOit7ih4ZZcTwe2VQcP5r\nJuRbs9e6OU/hQj6OHz8eQPX6wnXQCRbpvWx3nS8JZ7Nq26lnciwLxxBx/3fh4fKid/q9E4N0IpQK\n1468TudrtoF6rZxQLtPUPh2DxoWo66koCtuVD0EJVN45NISoYx3Q7opEyNg/RaJYjq3iQnPl83Pz\nfFGYS8fo4b1uTtfyaRNqx06gkfOT3uvA6zQ/xxAo+07dk1HE0uS7NMNBA5Wx7FiDTrTXraGOzalz\nDvtI+4r5OIYAy9I1z83NriyudS5fnZsdi8qJ0qYYoU5YXN+hWRf3+7DVYQiJ8MAHAoFAIBAIBAKB\nQCDQBogf8IFAIBAIBAKBQCAQCLQB2p5C34xwmKMlkUarlAsnXENqj1LKXOxNR5tydHB3L+khSksj\ndUuvc1QqUkGUepSnvTg6q9LMnUiKiz3qBM54jwpkOPoJ6S5K10vRypTq5Y4qMO650t7Yp46S3wzy\n9lXWFllv7S+2k9oYn2X06NFZGu3NiWIpSBNyol3an6yL9qej8LFPlALFfJR2RFt09WP7Owq20oSd\nwCDbRduHY0Ep+exrRzV0AoEKR4VMjUsdv3w2HQOO0p2ilZelZdV7XKhoznOxX10838GDBwOofm7O\nF1pfR6tnn7vjDo4O7KjpSslzNPl8vkA11RWoppk7qjA/L126tOY6R0d2c5CzPUfh07nWHZdy17Fc\nPb7Bz9ovpNW//PLLNfVz9tDofNiMLbrjLo5+ud122wGoHpcUtlPxSz6/UjKdMJaj7rs1gn3rqMQK\nJ0qXnzecTTjKvZbFfte5MS/KmP+ch9qOO/ZB6Pyvdk5w3tWySN/VNqPwraNp1xsDu6uQOjrphGD1\nuAqPTK5evTpL4zjVeYS2mBI2Bir2URTz3c2LbCelSufTitaelECZtk+Koq7j0lHi3dFS997hBB9T\ngn5ujehJseHrPVZUdCyG3+s6zXdE/R3i3u9dH7jjjk7wmWPfHVlwNkK4/tY1yr3nuWOHfL/UNZTz\nmjvSU/S7wdH5Ocb1uKo7rpxCK+wsPPCBQCAQCAQCgUAgEAi0AdreA58SdGpE/p87pi60kXqj9t13\nXwDe2+N2sJ2wjnrW3Q4sd350N8zt7NJ7oGn0NOkOFXeUVqxYAaDam8k0DfXBHWXdDXPtw90tfUYX\nJsTtprr8nMgT+03rTC+T7ny70BTcuSva4UyhjHBYEeODcJ5HPr8KDDnvtAtN5rzEjsXgQm9Q+FDb\n313nvM70ghXteDqhpHy+zjPndnzV20/hO90hVQ9vPj+3I+zEm7QubHvXV3od7Vg98GSXaJ2cfabs\npqt2dYtCGLKfnVe+SODNhclkGZqfCxHkxHGcl8rZGeulXvd8CFB6CIFKv9CLoffqMzrxJ37WcePm\nNxeSK1+3juqnnuT8PToOJ06cCAC4++67szQnOsl7nZBRV4vypOZbtTvWUed5rmHar7QdDanEZ9U1\njO2k7cUynLfVeTi17i5UEeuq7eZYP3m4EHjOo6VruPOiuzC3/F7r6YRNnTeeddD3Ha5LzrbVy+8Y\nWO59qEjgsjvg1hytK5//kEMOydL4vdod20Ttk7bo2DMuRLHaO9uhaJw6Jh+/d6Fl+TkVqlM/FzF1\nHAOAY0+f0XmEuU46773eSyalG+eOeeBQ9K7XarE79z7omDtsn4997GNZGm3UsQG1bbnW6ful2hzB\nuUbblmVomrOhfN11PmJd3Du4e893YtoKx95iG7jw0+q952ftd94zZsyYLO2pp56qygPwYWFTbMCu\nRnjgA4FAIBAIBAKBQCAQaAO0vQee6KxdNhf+jDt+uivEUA66O+TCDnB3SXesuKOjnjl3ttzterI8\n3R13Z9BdGBnuBtPjpJ6KVatWAajeRWad1UPFsyK6I8qdr6KQTu5MfSq0iraZC9XjvBvuHBVDkLnw\nZe7sV1lbKXOduybF0NDnoz0tX748S0udHXNeNC3L2Y4L7ZcKc6f9znucZ9KdvWOba91pO2433bFg\ntJ5qR/l7nSfL7ZQ6j4KOfY4RvY79QhYOANxzzz0Aqnd/6T3QeuoYTSFlW+4Z64XLX9uHfaQ79i68\nn/Pg0cuu17kdeNqyepodQ8HV2Xl/nJeb+dHOdH7j8+r8xvGiXiDWz3lI3FjW56Yt6b2cj9Q7x3o6\nDQXtZ9qSjg2yaDQ/hjVUW3bhc5x3LP9dCmU9X6nrtL3YruPGjavJR+3Esb7Y//rM7ny6O+/s1n22\ncVHoQ9dP7G+nycGx5dpEr3M6NrpmEyl2mNbJ2SznU72O64OuE6yLPjf76OGHH87SnB5P6nm7y/tZ\nNFfyuZzmh84xHFc6L1KjwTGOlB3oUDbUqJvb+L2uOXl9BZ3H9DNB+9R6cn1LhePU8l0IuqL114Xc\n5D1ufdG19uabb64qP59PvowiG+sqtlvZcene3xxbg/O8voNxrdV5g3OYst3c+uv6mXnrvU7/Il93\noDKXuOvdOsg+c2F7FW5scvwVvTfyGXWMMM2xXjiWgYodujKaeffqTIQHPhAIBAKBQCAQCAQCgTZA\n/IAPBAKBQCAQCAQCgUCgDdD2FPp6QzW4NEelU6qHE1UbNmwYAE/91uscxZR0JaVcES6ci9ad9zh6\nsaOEuOcg1VKFL1599dWqugGVdlEKMOk2SnMiNVsFk5woD+GolfrcrJ/SeBy9in2lYV5Ih1UxKFL9\nXn/99SyNdExHCSuLRilXTuDPUQ8d3BEBwtmxE0srom+lxK5ciLUiahVthnVWGjNtUmlcbhw5e3YU\nUxcKjnAiaDoGaOdObE/rwu9HjhyZpf3nf/5nTX6kfCndksJ7jjJZL8oIK+avcxQw2ooThDn22GNr\n6qm250QIHTWP9DpHj9RjERyXRXRb3qv97MRp2M6c15zonaP6FwkPOqFFJ3bnKOpOrMlRvfk8bgwr\nnXzo0KFV32ldlG6pFPt8fk7wtTORmntc+3/84x/P0jiOdJ7nvTrPc+7XdmV5LqyZ2h3LcMfaikTY\n3DGgvC04u3dhZF3b67qaoh4XiUG6sc96KT2V67lex6Mduk5TPHHBggVZGuvl3nsU3S0c5uzbtZfa\nBOm0+h7CuVxtgm2jfZx6/1G4fnKCiqn2VFtgXd2c7sTxXIisVPhEF5bY0eVduXrc1IV3dPMs32n5\nvq15l13rWi1SV/Z4r1s3dH3r27cvgOoQye59kPfovMF+dkd53Pu99pUTMCZ0vHBs0Ab1t4SzX/cO\n7uyMcKHt3HEpfW5C+4D5uPla10sK+jnRXjc2OztMdRmEBz4QCAQCgUAgEAgEAoE2QNt74FMo2vly\nXhwX0oGevkGDBmVp3G1RTwh3FZ0nXMEdLSeo5EKxuZ1QJ8qju0d8Jt1lYt4urBd3y3SXjc/tduh0\n55R1cuFR3I6o7vpy91p3uZygkGNG8NmOO+64LG3u3Lk1ZVAETgWAnKCTQzPhSRQufIbzoqg9sQ2H\nDBmSpTnRG+cpcnbivPapMdBR/fPlFoUKzIdU0l1bfnZ1L7J7J8qTF/HRMtSOmY+OAdqMSyvrrXFh\ng9zOtaKrQ8Y5aFlse31uftZndF4B1t3NeW7X2zEz9N6UWJNjUDjvmLuOY19twO3UO1aAszM+m84z\nzovuvGlsCx3rTNO2ZbnOLvReth89NHovGR9ar84UsUvNgW5ecJ4Lx6pS1grXoSKPUsp7UzRHEUXi\njk44lfVyYYnYr8q243jTecGJ4zlPkXuelAfPpbm1SK+jbTlBXS2XYowuxFdRCDSHZue/lEe2yBY5\n7nT8kQWiwla8V+dKJ8TrBHudACX71q3njq1SxKjIP49jjyiKvNh5uPcA55V3c6DO1bQZnft5j1sv\naWtAZb5wNtbTkbJH199qK4ceeiiAaiaSazOOZe0rx6pxIohkNDkR77Lt7cLI8beOY9o6oWvHFFCB\nV6bp2syxpM9DW9H5l3O4zquc87R9uAZR4Dtf/xS6650uPPCBQCAQCAQCgUAgEAi0AeIHfCAQCAQC\ngUAgEAgEAm2A9ZpCX1YYxFG/ldZBitBuu+2WpZFy7ugaTqzDCTWpAI8T83JiN6SnKMXF0eAcPZFC\nNWyXP/zhD9l3pOVoWUp5ytfdxXzXstyRAFJgtM34vVLN2FaOaqb3kpYzfPjwLG3AgAEAqmkvru8d\nndQhRYXpiBJYRNdz4oB8ZqVgs4+Vosj20vqw3ZXe4yiUTozRCSUyHyfyoXQ53qv9xLo4QR8VSsp/\np/acr0e+Lnm4ttUxzXbW61h3LZdjuki0hPm5/nexbouoo6nvO+sIR/4eZ6Mupvr999+fpU2aNAlA\ndVtwPtB7+Vlp0HwOd4xBkaI/63e0pX79+mVpLm4rKeSc19QGaV86Hjh3u7lMj+C48eXEH/nZzaVK\n63PiZKyzrh2OwurmMhdj11H8G6HONyNy5+KS65zH9tfjZXwWPTbAvtN7HXU0VVdta0fdJLQ93BEd\nJ8bk1mTCrWX5Z9C6FFHoXT0d3DM6mr4TiOK41XHB751gaJG4o6tzV9BOU/TksqKmWh+1QcLFqaYd\n67sg89PxTDvXd8HUuuHifWu7sv7uaIw7wsY5yFGRHf3ejRm1idS7qDviuXLlyiyN5Wld2LaaxrnU\njYuiIwOtQNn5VPvF2RSv03WI0HtpF9pm/EyhTy1D60d7VDt384ZbX5g37dz9RnHHhl37aL58L3PC\nv+53mo45fta60G7Kxql3a4J7z2tm3mr03vDABwKBQCAQCAQCgUAg0AZYrz3wirJCEc4Dz51y9cAz\nxIDzemp+bpfLhdBwnj7eozuchNt50t1R5yXMe43Ue+HC6DA/3ZVmfm6XVD0KzgPvxMTYjrpD5rzM\nhJbhvK0HHnggAGDevHk1z+08yq59ugLO46lgfZw41fbbb5+luXBzTjDQPR9tVcN7EG4XX/uOfaZt\nzfKcKJ32MW3K7do626U9OU9akbAd+9iFN9FnpO0rC8WNQdqnjgt6AJyn3on3aF3KhhcqY4v1sEJS\n9ziBJLbVhAkTavJ2QnTO4+ZQJFhDm3feMa0f+1TFjTg3qH2TiZMPr6Rp2o9kIukuPvtP664es/zz\nFIXAcXMox6baGdOcIKRbY9Qz4+rsBJRSQljdJarohAB1Hixr547R4YTbUkJ1Ltyc1s/ZthPUy8+N\nbs4rCk/nPKFlRQfL9rV7Z+G7gHr/+L2OC4ZlXb16dU2dizzrjYomppCyZUWqPnovx7iyZ/h87p3M\nMSXVJjjPOCagY8W4OVDnDHrPnRCcY0qyfpqv8zw6OM86bYJrJFCx96L5hDajts38XF20vfncOgc3\nIpro6lUGncFAKmpv9rOyFviMKubmWAh891KGF8eyesBZBx3ntA0XurJo/OZFsrWdOIaccKvrOzdG\nnO2pwCTnJlc3naP4WccN3yf0vZV1duPQ/Y5sJoxco79DwgMfCAQCgUAgEAgEAoFAGyB+wAcCgUAg\nEAgEAoFAINAGWK8p9EWxFglHfXMiBUpncYIsjoZHuNiWjhrn6qK0NVeGixdMCozSY/KiY05sSeHi\nJTJNr3exsvkcLm7itttum312NBXCCTq5tlVaUP/+/QEUx6nn55Q4mqIjSlhZyrKrt/Y/28kJzDiK\nk6Y58S73XKyL0qMcPcnFOSe1yD2Ho4Npu7Cuy5Ytq3oGhQqesX5FbeaODvC59RkpZObinaodc5y5\nYwJKMXWCY9OnTwcAzJ07N0tz1KoUzbc748AXCfA5cUk3h/F5HKVM+4ptqjbF8ly8aS2XtDulyw8c\nOBBANbWSdHmNfc46cCxpn7lYyfys+Wp8dYL2pc/NZ3OiTm4O1THMZ9T24XqjdU4dJVEKPe/VZ3N9\n5fJrhiJaD5y9p2L56jzPe90RNoU7HuKud+8H7oiWE5ZlnfW6vJin9kMqprem8dk0zQnGlY0tnaLv\nOpqoti3t0wmBOlps0ZGxzkLZvItsnu2q73gc9+74Y5GIlXvHov1qXXhd0XzMvNWO2NZuPXV0edqn\n9qvabL4sd6RK6+nEPQknGqbUb87HSr/n+qtzIJ9D1/M+ffoAAJYuXZql8Znc0SLXjs2IJ6aO9BTN\no678PPUcqLwXa8x3tpmOQfafrjmcO90aof3CNCemrHbLtnfPrfmxLu6d3v1GcO937jt3rNnZFMvV\nufm1116rudfNf2wzPXaw9957AwAWLlyYpXGu03GTap+IAx8IBAKBQCAQCAQCgUCg/T3wqR3Yoh1p\nJ6Dldnu4K6WecEJ3M13YH+7A6I6WE2njrpAKptDjpLuKrL8LZ6I7TxSY0R087i7zXq07d5607ixL\nxUL4vQvT5URcioRY3M6uE3RzDIVU+CRNo2CZ7uK6XcoUyggp1Sua4jyzmseUKVMAVPc/n093Cp0Y\nCdPUa8X+UW8gbVHtk/k4NoC2IaF1duGG6Bl9+umnAQDDhg3Lvlu8eDEAYN99983SWK4TN9N6si2c\nF07ruWLFiqpnBSpt4MQTFc6eXBvQK6D9QhvT8ePGfnfu3KaYSG4cKZyAk5sTeZ3zfDjWT5E9cr4Y\nNGhQlsZ5Ur3t3G138xDz1fHAftT5KC96B1TGA/tYr9NwlU44juU6r1JR+zhRJ86JWj83dzshyrJC\ndUWMkLLe+rJeb01zDBW2g85vLuyqE0UqK2zm1hfeo15C5y3jWNH2V1vR+mq+KTaOluG8XG7MdJRP\nHu69SOviRE455tXuyJrSfuFc57xrXSEYWzZEV9H6zT50HlydH/jMOj+yL7Qd2E66NtEGdP3gOHVt\n4+rsQh47AVF+p3O1Y+o5cbqyjA6Wq8/INLUh2q+ujbxO50/nRaeHVcfWfvvtB6DyPgGkxXCL1trO\nQGquK5p3U6H3FGSdFc0RFGlT77SzZUKv4+8FZUSyLk60V+cDzpPsP2VmuPco9/7mWELMT23AhRHl\nvU5gUpk1bAO1UY5NfT9g3mVFVLuTQUmEBz4QCAQCgUAgEAgEAoE2QPyADwQCgUAgEAgEAoFAoA3Q\n9hT6FIpEYhyVmbQOpXD069evJm9HESd1w8VDd7R6LZf0K6W8DxgwAEA1FcVRYFgXpdFQKE6fgxQc\nUkeUEkOKidLAlixZUlNPJ6znaLSk8ei9LE8pf2wrJxxWdNwhJRzi4pprvzh6VbOoNw6twlHoCW0b\nJzLi7I59ogIl/F7tiZRcbVfanYqGueMUzEdjqb/55ptV5QPASy+9BAB44IEHAFSLgu2///4AgBdf\nfDFLGzx4MIBqe3btQsqWUqH4PHr8wtFene2QlqWULt6r48jFfSZNX9NITXPzQauQsj03lykV2I0j\nUuiUcueomk7Qj5+V8u7EbjiX6dz4zDPPAKgcFdJ73DEgwh090rFE+yUdH/BxdTlGdDzwOZzdFq07\nTszK0QmZt1IC2R865jjX6vPWS3cvg7Lxxl05TsyNtuPWXAXvVZsl/dEdsypqV34uWnOYnxvTep3a\nYD5flqXlMz9N4/jROTwlOuYEYx3ckSdXd6UycwwqPZX3Dh06NEtjH7j1txm6e7NwtGM336nArnsX\n5HU637GftM/ZDtpfnL/cEcKiYySsi9oCPztBtJRomTtyoTbBe3T+dvXkPc529BmdqBnzVpt1R684\nj6ktMm9Hs3b93ApxsSIUHU+gnenRQvfuzfbWeZ79p+3DMeiOO7i52wmxOgFDffdiH7B/lI7OdzX3\n/q5wR2ppr/rctH21ZUfJp03pdTyKpzHk3dEPHWv5MtwxFEV32Vd44AOBQCAQCAQCgUAgEGgDtL0H\nvqxYi/N6cFdGPdH8rDux48aNq7nO7cSwDN2d566UprlwTPTuqNeTddXdRworaH6E7poxH/XUsM5u\nN467ZupNpRddd77czq4Ln+SELLhL6LyQWhfm48JQKJw34s4776xJcyGfnEiIq1dZr7pe04hYj9t1\nJwNi1KhRWZoTx3EiSs67xevcTqr2Hb1f2u/0TGo9aYNaF4qKse5AxWZZdxUjY2g5Fy5F60l71nFJ\ntoiOGXpEX3nllSzN7eA6L5jbreWzubCJip/+9KcAqnfCUyH3UrYG1O+NqjccmLMBnWc4b5C1o3XX\nuYc71vrcvFdtiran1zmPPvtA68JyNWwQ5xUV4HGeh7zol869js3Cuqi4Em1TBXv4WW1q5cqVNflx\nF9/Nb3qvm/PcHM+8tQzHdkqFNHWhSh1DwNlIPj0l8FPkZXIeMo5vHdNuXNLu9FnY1lqGC0mZF/oC\nvGija2vm44TytI9ZrvNwOy+TY4S5UKAuLJ271439VAhd9Tax7XX8Mm8db5xrR44cmaU9//zzAIrZ\nAF3pbW8ErIcTDNRncSJ9vNd55Zwdq2cy5W3XMlIhZZ3gshOYYx/rM/Kzsx1933Xtw3m+yINLOG+t\njl83Vll/FyJX3/84Htz7uKIV9lY2tJy2BdvAsSCcKK7aBb3dTuBTbc/NoayLXucYjISuUfztwPJ1\nfXMsHPcOTrvQtdYxR2mHat9uzaPN67uxs03mrc/DsevYVt0VarUI4YEPBAKBQCAQCAQCgUCgDRA/\n4AOBQCAQCAQCgUAgEGgDrNcU+rLUFaVVkuKp9JzHHnsMADBx4sQsjfQKpWs4yiOpK1oXlqG0NVJG\ntFxHTyWVWZ+HVBUtg1Q3FVshrYp0EaWJUqxKKXKEE/pyxwn0eViuXudoTq7uZemfrKu2GWk8So9k\n/zoqZNkYoY1Sr8rSSdkm2ja/+93vAFQLmZBK54RjUrG7AR9/2lH9VKyLcAJvbBM9pkEsWrQo+5xv\na/2OdHoVtqO9Oyqy2hifW+lW7Hel0LuYpSkRO2cTSgejvVG4DqiIqandMT+lu5a1u2btrZHvHQVb\n+5ZUbZ2P2EdOMEfbm7Q1vdfF7XZHP0jnUwod29SVoX3AfHiMw1HoXV/odaTuK33U0fDYZhqb1q0n\nzMfNb2pnbBe9jnOe1oXHVtg/gD8uk4qLXMYGy9KyHVLHi1zsdXc0QuOxs++0rbnWOPq2K6PoiJ2b\nT117OQG8/PXuWI6L5e6o2S4/fddgfprm6uSODbljhC7WPMegE4365S9/maU5m00JxjZLaS473zlx\nQif+tuOOO2ZpPEqm44ptzeMymreuoTx2o2VwnOocyLZ27aX2547suDjw/MzvHPXcPbfOmayfoye7\nY5L6vuBEQjlGlZbNNnPvJ/qMbFMVU73xxhtrynACeA495eiG+23i3gd1zWPbazuyvbUP2AY6pvPf\n6Well7NP1R5oI05kz4nd0W7cO6rWnfOV6wu1AR4P0Ofhe6Cu0/ys8xvXDF07+Dz6+4c2qs/Ib5/3\nCQAAIABJREFUdzqd89wRv9QxsmaORZZBeOADgUAgEAgEAoFAIBBoA7S9B74ZuF137vzrbo8TTOrf\nvz+A6t0rd53bseGOjtud0V107q5pfrxXPTDc6VKREO72ajge3kOvJ735Wk/1KrINVGCMu1taFuvk\nvEzOy6HP48LnsK10d4/5OeGS5cuXZ2lOeI+7ay58SjO7Yfl7y4ZPcl4cF7qHbALdyWS7664720av\n42dtayeMwvJUHI51UVt0ngK2p5bLuuywww5ZGvuWAkfqNWP4uL322itLc+JNtEWG7wJ8ODcn1ON2\nol2IILJGtHwnEEhvyMKFC7M0J5TH8aV211U7/2XFPFPhgNTjwrlM7YxtoO3DMarX8XudI1x7pzxy\nmh/7zzGl9Dp6IZSlwXIZFk49FWQXqJ2zLZwXXQU+aSsdibsRbFOtO8ek5kc4T7HOefyscyNFjbSM\nFNOjLOsoj3oEPTsqx4l2uTB+OmYdM4btoH3tmFZO6MuJJzmvbMqb5xg5bv7Ne0T1O/XYsk5qd04w\nz83hqRCkzgPvmH869umZcmwAZfSxrhrKkWOlyEZS4QcbRdmQhqlx8Pjjj2dpRxxxBIDqvnPeUkLX\nCPaxCo6x/XUNywsLA5V3N+cp13HBNc6Fx3XsL1cW5xHta3pJ3Tro6ukEjfW5nQgly1N7cu+MTpBt\n8eLFNc/NtnXikq1Cagy4eV7B5/31r3+dpU2fPh2AF8nWdY1rt/aBY+448U3nxXYsxJSAoZsDHOPC\n/Q5yfeYEuWkr7r1D51AnMMl2ce+3+oyPPvoogOp5vewaGmHkAoFAIBAIBAKBQCAQCGSIH/CBQCAQ\nCAQCgUAgEAi0AdqeQt8Z8fhc3EmlYZCmolQK0oyUjkYahlKuSN1wNFYnMKKUEFItleLiqEK8Tqls\npK+OHTs2S8vTyVQ4jHk42qsKT5BionQxUmGUrp0SUXJCJ47Sq+1D6pjey3a5+eaba55D+1RpX/ky\nitIaQRF9xgn9uH7l82lbO1ol+8xRPl0ZSmWjzaoYGL93wkt67IJ567hw1Coey5gwYQKA6n4dN25c\nzfXuGd3RFtqv0olZZ20z3quUKd6j45f1Ukogx7KzT1II898Tzu5S1ys6U/CkbB6OSqfzIPtW25b1\ndEIvOlZTIl2ubdWmeK+j/ym93M05nK/Yp2rnRJGIHp9D51fWRe3RiYS5Y1ru6AfhhPK0vfm8mkax\nS/dMZWPDK1LCdqn0FFz8XHd0g/OLE9DS413OTsrGfHfruYv57Y4hUFBJj5UROq+xXCeEx3x1zDjb\ncXCieO5YQgraB04g0Imdufed5557rqYuReWVua4r6KfuaIS2NdtQj7XwaJ6bY3T8udjZnGeUIu5s\nkfam8xLz0fw4H+uc6o4HaDzwjuCuceKizhadrand057UTpim6zTrrtRv947Btfvqq6/O0vi9i5He\nU2K/1wPag4vbrmKJPNri1kZ3tEJtim2gfU+7ce9KTnDQHZXU9Sp/XEzfHXivExh17wRFxyP4zqu2\nT1vS8cV8io668XlVsJKfnXBzkdioQ1fYYXjgA4FAIBAIBAKBQCAQaAO0vQe+LFIeV+cx0R0tenGc\nN8PtAmp+3HXUnSruTGkZ/Ky7YU6Ux4UgSnn/nOeHZalgA3dgNS8ncMLvdTeOu1y6U+XCorFOLryE\ngwvLp/XjTqx6ZthWuvvnPMouvxQa3dlNeRWcN0rr6LyWFPRw7AQn4OJEPrRdUyF1lI2xZMmSmvpx\nh9cxSXS3nSFgKN6jnutXX30VADBkyBCkwDbg9UBlLKgoUIrxos9DW3UCYXovPQmOGaHeA+cZYzs7\nISnnBe0qT0FZcSs3PtQjtd122wGoHudud559r2kU1nFzaFlBmKKQWGxv7Sv2qesf5yXlvc7Dpgwj\nF+qJZTnvqNbdCVa6ecJ5s1w4xxdeeKHmuZ1AUSqcV1fD9aELg8V1aNmyZVnasGHDAHgBJOcR1D7h\nGqfeKLa/Gxc6N7kx6lhkzE/nEubtWEqObee8Yc522I7OdhSpPlZmENdQjm3AhxHls+l7zEMPPdRh\nuU54r2z96kEj63KqPup55HvF9ttvn6WxrV24RxUN41yhY5fzos4jvEdtx/U76+W84m5edGG+nNii\nY9s4Nop773PrP+1SbcyF2SP0PY3Q67huaOhZ977j5s+uXk+bCRGm1zmWDqHz0f333w8AOOCAA2ry\nUdsjM1EZtu7d2zEd1Q4JPpv+XnHhrDk3OCaUmyNZd2fTOkYYEtjZudoe5y0VZNZxmoeu02Q6KJuX\nHngncqtIsT+6GuGBDwQCgUAgEAgEAoFAoA0QP+ADgUAgEAgEAoFAIBBoA2wwFPqycPHYSddQ+u7Q\noUMBVNNPHOXbCYYwP6UZkUrkqFlKlyMcnVAxZsyYmjoxP6YprVCFQzqqL1ChDjoROy2Lz6aUNCeO\n4uru6LGOzk96ldIZ2VZK93GCTkSztJdGhO9SsWSdEJIeEWA7FMXidrQnQq9j+6st8h6K+ACVdiId\nXtPUFpwgC8sgJUnLpxiUUjOZrxOIVHshrV/tOEXhcwKI2gdOIIzPoe3I8twRiKJY3Pnr9ftmRBTr\nvbco/jLb8c4778zSRowYAcCLARZRhAmXVjQGnfhTvp762VESaUtqK6y7tgWfzdFMU/Q5wB8bckcm\nXBxw1k/tzM2XXE90HJBuruUSjlbfFVS/svanz+IEA5n2wAMPZGmf+9znau5leynNl22iNqHibISz\nTydOROizOfou+0TnsPxRN9eHTmxJ5yjSSB111LWZq7M7zqFzlIvF7OjXrKvW77XXXqvKN1/Xng5t\nf7eG3n777QCAb37zm1ka1yu3Xur44/uc9g3LKxL8dEc78/HdgYqN6XPkjwppnWhjTmBO50Xe44TM\nND++M6pQH/N217k48PrcfF6tixOgzV+vz13vcZJG0IxQnnv342e3lmk7/vznPwdQLUzNttJ1g3R6\n/S3BdtR3G9qo9rM7okPxWrU99of+bmD/snztWx7RcceM1B6dWDXz1f5mPprGMall8AiCigHS9nR+\nu/feewFU5jTAr6ess1s7WoHwwAcCgUAgEAgEAoFAINAGaHsPfJF3K3Ud4byFbuf68ccfz9IOOeQQ\nAF70RncQ6W1RUQbCCZHpLr7brWMZugPMHSfdUWJ5KhLCHTkXGou7cFqW24FycOJILhwf21TbJ+Wl\n1F0uto/uDD7zzDM1deY9zrNf1utZz46aEzJp5F5nd064jQId2jfsOycc5PrQCa3pLix3P8lwAPzO\neuo5XBg/3qs24cRIuFvrhMQce0MZCrRxJ9TnBE20nrzH9b/z9D388MM1ZTjGSVnmRzO2VC+c51jB\n8lXEzglypYS23POoQBbHsooLOo9lyrOu+fGz807269ev5l7OKeq9YPnKnHKhbZwAUGps6NzshDb5\njOqNYN1VoIj1YkghoDJO3TzY0+DCeTnbcR4T9fRxnVQPEO1I25DtoHOZW6+cF9utk7zXeTa1zfnZ\nhUByocj4uYgV4MInEvruwDLUxtwaz2fUNBeaim2vY5Vt6sLcthJl504n8KtpZLZo+EiyZtTuHDuN\nfaHzCNvfCUsWiWty7XKMz9T7ir4vcV1X76YTLOQ7rZbPOjlmql7HvJ24s64lbAN6d/WzPuO//du/\nAfDivooUu6iIbdZVKPubw7ELUmGl582bl6WdcMIJADz7R9cIzgPa3mwXnUtYF7Ub5qfvT+xLFwJU\nQ7ERFBp2YqI6ZzgBPN7jGMtad7436jsY66JzGcvV3270vGsZ+TlcPxeFzuwutH62DQQCgUAgEAgE\nAoFAIFCI+AEfCAQCgUAgEAgEAoFAG6DtKfSdTTV1InakPyqVivQLpXqkBJ2UmuHoPi6+b/56oELd\nUOqIo9+RdqLPQSoMy1CqCdOUOkPKjqY5gTlHK+S9SjVL3avPyPJcXfQ60rWKYtI7CnMKjVKuUteW\npRg7URelTO2yyy4AqqlIvNdR87RPnJgfPyvdivko/Y/lKXWI9CSlsA8fPhxAtX2SvvT9738fADB1\n6tTsO1K6NA9SYJV2TKjtsJ4qtuco9E6UiTbj4oi7OMl6HZ9bab68R/svFXe7yK7qpfqlqINl83Kx\n7ikUCPi5h9e5WN5qj6Tgqk05AScXX931Fe3WzW/uOiduyPlPy2L93DO6YyFOEFJBm1PqIqG0bn5W\nSivrov3HNlu6dGmW5o4DlZ2LUuisuU/hjqtp+7Nd9fl+97vfAQB23333LM2JHbH/3VEyvY5wApbO\ndtx86dZzJ4rmjjLxs1Lo3ZrsjhjQ3txxAqXRMj+ljjoBVD6v0mMdXZ51+OEPf5ilsc00P6a5fi4b\nN7tZmnMjsbjdPezj66+/Pks79dRTAVT3CceptiFtWudAHoVxArtF9Wff6vEQ2rQek2D7O7FhQst3\n70uExtN2z+OOiHFN1DS2i45zvj/rPMvrHnnkkSyNxwd1vDl0hUBxVyBl7zp/uKNp7CvOhwDw4osv\nAgA+/vGPZ2lsR30vYn76Pu5is7vjM7RbFV3lPdovrP/LL78MAJg4cWJNnfS9leNG3/04/xUdoUsd\n1dEjZ04Ilm3B91Gg8tvO2ZlbE4rmju5CeOADgUAgEAgEAoFAIBBoA7S9Bz6FIk9DKpyXE3XRnSJ6\nCAYNGpSlOY9bagded3ZcCCLCeVbdDrDuUDkPWt++fQFUdnPVK+FCYzEPFxpL68RyXZvpvfQAFIWR\nUy8EkRKecKJsTtCtCPXupDXK/kjdp+3KZ1ZRkFdeeQUAMGHChJp71bvpPE5Mc+Xrzix3V9WenBAN\nvfa6y+/CqeXFe9QbSW+PPjfvdR4bLYt9rLvFTgSF+eh1ThCNdqmeLMegYX9ov6TEExVlQ8Z1hgc1\nNa+5MDZFjBCKRo4fPz5Lc8wYtpnuttOzrO3DPi8SsCS072mjeh37Qz0K7EtXhmNmsH4ujI3agPPK\nE0W78xyn2gf0wOv875gwbO+bb745S3OesNScV9YT2tVwwpSst9rJrbfeCgDYeeedszR6HV1ILO07\nzj3aHi4UmxNPdKFL2dYutJv2U95j6YTwXOhWJ2Ln0tw64dZVrTvnWseWUS8uoR7lRYsWAQB+85vf\nZGmOwcJyu2P9bRbOJpyIrDIvf/nLXwIAJk+enKXRQ+hEKZ1tu3c3xwRTdhFtxYVI1DFAu+B7kubr\nQmA5AVx63p09OSEz5zl2omrOxnS+oyjsFVdcUVO/elmUQPeElOsMOA+8e0/gOFNmzC233AIAePLJ\nJ7O0ww47DEC1LdPOdA3jZw21yetUdJvvTW791X7hXML3QrVfN1ewfCduqEw0J3TMsrTNWIbaKO95\n6aWXsrT58+fXPKNrb7cWOVZWKxEe+EAgEAgEAoFAIBAIBNoA8QM+EAgEAoFAIBAIBAKBNsB6TaHv\nLJBCovQPCpucccYZWZqL25qPgQ1UKBku5rqL7+5opwqlKxEu1uzTTz9dlYeKlJDWrPRTfnaxrZ2g\nhNaTbabULNZT60T6l6Pfq8gT773vvvuyNNLElDLJ+jUiZNMTUEThueeeewBUU+hJTVM7cBTkvKCX\nwgkqKuWcddB7hwwZAsAfBVH74D2M06kUJ9bJxTB2VF9H61Oqlhsf7jtHAUvRtrUtfvKTn9Tkl7Kj\nrhBqyudRli7o0lx8dye0eMcddwAAPvaxj2Vp7FsnoKm2wj7SuYRzndo373G0ZaW6c95Qmj7nA60z\nn0n7L/+dUjt5naM8F1GueZ0TA3RHidTmSRlUm+Jnve7KK6+seR6W58SIFKmjF11BN23kiJE7gsOj\nazwyBVSOgzm6pLYN20QpmWwvd1TLiWppO7h1jXbk5lVer/nSZpX6zDKUTur6lfam9HuOLSeeq+OI\nc5k+T4paq+34T//0TwCq11o3b7j41T1tjXVzm6O3E9oOXH+HDRuWpW2//fYAqscu29UJp2p78Xs9\nfsH2V2FZZ6tOVJT3Ms2tee590omGal+zDdw7o17HMaB1cuOSdvzcc//f3rnG2lGVb/w5CZUPpom1\nrQhSGqBKaxSMSWsEQQwSQVNoolDqpcb0ixdsjdZLvUQ0ckuVmxYQSEMqWkuLkUuK1NoqgiRWUKT8\nAenFeiwEYqW1okcN7f8DeWY/e5/nzEz33ueyT59f0vRkzey11sy8s2Zmvc963/8rylauXDloP7eM\nhG3ocQzXM3a04PlxyxP0W4JBA3U84DLL8847ryjjM9stbdT3J44RGiST10NtkLJ7ld8/+uijTX1S\niTrHOr22LgAuj1fvB7dUhMvlXABHHfOefPJJAM2BoNkHvdd53Hpuy2Ty7Qa67jbxwIcQQgghhBBC\nCD1Az3vgy4JC1U3VVDWbwjKdpeQsF73aQCOFlgaZ4OyWzua4lEbsg84AufRwLogNPdXqqaH3QD0P\njzzyCIDGzO78+fOLbc5jw5lVbZ+zXNqWUx7wOHQGkW24QH26H+vW883ZvO3btxdlzls2kkGZhmqj\nboAyZ3cuZZDCgDqqTuBvdYbUXROdaW1F2yoL6KPXhPapZS7IImft3/ve9w7ZvuK8IW521XlSytLy\nuG3uuLU+esR+8IMfFGVMU+KuVVk6N9endigbo9pJEeYC27lgVNu2bQPQnJ6GqWXUtpz9sD311nD8\nUy8qvZM6vtGu3ey4jhv8rUuTxOPQWXy271RPamcuZY5TjjjFjEuV5zzw7Jf2j33fuHFjUcZgPOp5\n4Pl2gcPasbN2ftNJOlc91xxL3LPk5ptvLsouu+wyAM1qLp4TLaP3Rss0zVBru6ro4G+cqkfPtRvz\nWMbr7sYtLePzTW2X9bk0h+rd4v2hNubeWXivuLS0uh/t/Stf+cqg/rn3BKdiqhoHR9NrVRbc03mO\ndX96Om+66aai7Atf+AKA5nHMBS+kLepzmve4C7zp0qjqGOiCdrI9d115DdV23TPcjdW8t7R9euDV\nW8pzpZ5Zl/KR49gdd9wxaD/3HHKBQave+0YzQKdSFSSb/dNz61SIziPs0qny79/97ndF2axZs5rq\nBRrjgQsgrOMg7Vq/a3gt9Tpv2rSp6dg07VyrMkT3mzRp0qA+OTWplvGdUs8ZUw66dzWnlnRKubJz\nrL8dbZsi8cCHEEIIIYQQQgg9QD7gQwghhBBCCCGEHqDnJfSkrnS1nfpcPZSQ3HXXXUXZpz/9aQDV\nOdIpcXE5Hp3sVKVUTgbMvuh+TupBGQuDPWk+bsqrVJLCfqr8kG243K963CxzElOV+7A9t58eD6VW\nmgeebajslOenTC4OjB0JTCvO7vSaU8L3l7/8pSg7/vjjATRLfF2ANxc80QWE4Xl3wcW0zEmbyuS8\nDIyix8j9nfxQoQ3q8fB4nXy7Kk8z26jaj/mPNaCQy7HM86N9GWtyK8XlgVfccgKes+XLlxdlV199\nNYBqmRlloy5Xssv5qlJi2qOOQ2zPBRNT+R9txOVv5ZinY1lrP4CGbbqAUCoh5HlUG2B7em9y+YuO\nW/yt2h7tbPXq1YP67O4hdw2q6JZttvP8dVJyXmtnd5qP++c//zkA4Nxzzx1UnwbacsGJeF7dc80t\n+VLpr5OI83q7JUe0E73WrE+XQREnZXfXVetzS0zcOOzGPGd3l1xyCYBG8EDts94X7KtbEjdW5PIO\n1x8egx4fcedfg4Z95zvfAQAsWbKkKOOY5p4ROt65oI0u8CJtVc8rJfQusCDHWZdzXq81bccFwHQB\nwvT8cLs+u7ldbYd/r1q1qijj89QtI3W4ZR9OVu8YbVusK+t371Y6HrklMGXLcZ566qmibMWKFQCA\nuXPnFmVHHXVUU1tA45pWLcfkb9w7P//X57C7v/iM12OknF5tj+O+ew9mQGEA2LFjx5D9dOh+bslZ\nJ8vQRop44EMIIYQQQgghhB5g3HjgHVVedLefK9OZJMKZQ3rogEZwJ85saT0u3ZALCOMCcukMZ+ss\nl/5GZ8M4u6VlZ555JgDg/vvvB9A88+XOAWdq1VPhvI9sw3lC1aPggvKUzUQyKAXQCHpSFXSMfaia\nNRvOACfdsjt6WZxnRYO/fP7znwfQfF5pn+0EbnPeStdXF3CKdau9t94DTr3hUi+qV4DXVb0Nrccw\n1PHQPvU+5rl1Hlzt3z333AOgeUbYBTwaK7O17dieS4nmzg+3qxphw4YNAICzzz67KOM11Vl81qOq\nGo4/2k9eX/XMuGBJzgPglE1OHUR4ndWbyXOhY26ZkkLHULarZVVBcYi7N6666qqm49I23L1ZNwXO\naNtoK1VjD8+JngeqEtTbztSa+ryiDWrQN9qCBlmibbngedou93NeeZf+yqUvZDAoFxxW70Eehz7r\n+bcqPzg2aZ+cB5jqNR23eD9+85vfLMr43HXH48a8usqPsWZ3ilNW8FrrdXLPVZ7XK6+8sij7xCc+\nAaA53Ryvk/6W5995ifV5xf30HucYpeMxbZupvNTGqYBzKjFtn/eKXleX7pdeUFVFMmjYvffeW5TR\nA699d+8lrLsqPZwb28aybSllAYz1uNz7qXtelnmYdTz461//CgC47bbbijKOIe94xzuKsqOPPhqA\nD6bqvgOeeeaZoozjNMcIVQAcd9xxAJrHYd5Lv/zlL4syqknVBtg+g3ADDft2aVcV9w7E86hjbWuw\nW6A3UhPGAx9CCCGEEEIIIfQA+YAPIYQQQgghhBB6gHEtoa+iTEat0gtKW1zABpUjMaDdokWLijIX\nxIZBv5w0TmF7KsmknFT77HJ08jcqyaSE6t3vfjeAZjmLkwC7IGqUnWhb7GdVLnFKvlQK66C0Zu3a\ntUWZC6LD9urmoe0F3BIKl8t9165dRRmXF5xyyilFGe1OZVROJsTzWVcaqee/LF+7y4VNXNA7lVuz\nz/o72oS7B7VPlBq6IHoaeMgFreJ+v/71r4sySrVcQD+9t1ze39HmUHPSu/vI5bvWsltvvRUAcMIJ\nJxRlU6dOBdB8fhicRsccZ9+8Li7AjMrv3VIiFyiHfXB20doP3U9tr2zZhtpP2b3k7MwdtwYI5PIs\nPUbXbifLN0YqV7KTjhI3vrlxXst4Ta6//vqi7HOf+xwAYMaMGaX18VzrM5l/6xjBMUn7N2XKlKZt\nQENC7ALGsZ9qE639APx1cHJt/q0Selc321fbccsvLr30UgAN6bP22QX41DLeI+0ETxxNysZA9w6l\nuPcfHr/myb7xxhsBADNnzizKLrjgAgDN14TLFFQuzzZUssz93FIzbZf7UW58/vnnF9v43NVr7ZZ/\nuGVEvD/27NlTlO3cuRNA85jO5Zl6Hzlps3ufcIFyx8rStG5TdTzc7p5vahet2wB/zmgruh+v0Zo1\na4qy173udQCAs846qyhje3o/MIDi5s2bB/WFY64GmOPzX/vO+jTg4ZYtWwb13R2Py9vOZ33dpW4u\nN3wVZWPHaBAPfAghhBBCCCGE0AOMSw98Xa+C8wq433KWR2ePnIeZaQx0NpPeKBeoyaUYUVi3znBy\nFlW9W26GzM0UcRaV+2n77njYT52p4n4ueIRLx+RSSSmsT70RDLjBWT7tl/OuVaX5cYzVGV1ndwrP\ng3plrrnmGgDNgYg4e652wMBGOmPvvIZlfdHzz9lcZ9tuFt3ZmDse135rOjCg2WaIC7ZDj4MLgqbt\nUtWwbt26oswFoXKKE6egIZ2ksem2nZZ5QvV4OIuu59gpLrjfFVdcUZQtW7YMQEPxA/jUPy4QHT1R\nOpa5VEfczwX+0fpooyxzHh+t16WJaq1Df6vH44KOsX86NrJMPcBMx6fpIWl7LkijC9TXzpg3nONg\n3YCK7jdO6VOWQhVoBP27+OKLi7JZs2YB8M8wrY/XWINVsi+abpXjqtoM7dMFOyMueKNT8Kg9OyUS\nn/8uSKhTHel9xPcTTefFvuv1YRtVz/2yQIljmTJlkt67PDd6DnmPV3kIOX5s3bq1KKOnUb3i06ZN\nG/Rb9kGf07QFfQdlei0dq+jBZFtPP/10sc2lAKadqn22qpaARspDvpsBwMaNG5v6oX2vUnIStWOn\nGumFQGLDgbun3buVC2znvmHK0vvq+MLnjwZJ5pinYxptU+2RARM5hrr9nVrHXW+nwHI25d5bFaes\nIa7dXrO3eOBDCCGEEEIIIYQeIB/wIYQQQgghhBBCD9AHYOzqA2qgUos6VEn5uF33o0yEEmSgIclQ\nSQrlLG984xuLsg996EMAvIRS66MU1ck/9RgpHXUSQ5V68G+Xu5F9doHotMzlbW/dX+tTqZnru6uP\nMi2VwjCfqga3cAF4WI/rizsXjnbkMU4Weyg4G2vdBjTOicubrv3mfsccc0xR9o1vfAOAD1in0jzK\nnKqWZLA9J/t0AR91P/aBgUzUJigTdvJtDRDJep2MWoPiuXPKPLl6v/E3uqyDSxA0r62TXpXl9q5r\nT53Y3aGOeXVxQavcuXWycYXX+aKLLirKTjrpJAB+fFOpPevTYEnsix43+6X9I2o3rcEPtb9l11Ht\nwgX5473BvLlaN+WmgB/zeNy33HJLUcZAlNr31v21L1US3tb9O+XAgQPDZncKz5eTLZctywEa51iX\nyrzpTW8CAHz0ox8tyli3SoTZhkqEuV1tzAWRY7/UPihXZxDMN7/5zcU2t5yD9er4xu0qReV4eeyx\nxxZltFVd7sO/b7/99qJs+/btg/Yjer6dhN4FQB2JfNwjZXfEPT+cjel+bvmjew/hfjoGvfa1rwXQ\nbGMu7zYD1Pb39xdllK5r+7RFyph1G/uu7wnMU68yeNqbBrvjmKbvDmzLjU863pXJk12w0qqlGSMh\naR7uZ21dqt4RXf9cnnO3RMRdF9cer6XWx3p0DKUtc8zTcavsmlYFS2af3H3o3j/0GeqWJpUtoRkL\nEvpDWZoUD3wIIYQQQgghhNADjGsPfN3AOe43zhOqs+6cXXKpDdTTN3/+fADAySefXJRx1krTdHCG\nsyrIA2ec1MvAvurMOvun6UlavexuFtkFhVBvFGd2dT8GY3Izbi5Vjpux/t73vlf8zVnVgc7hAAAT\nLElEQVRmndmdPHkygOaAfjxelyqnygPfyaxaO7OzdW1R93MeJc7su8Boek2YvuZrX/taUcZgN2on\nnFHX+miXeu24X1lqHcAHT2KfeRw6a+q87bRTtSd6KNyMvQYDc2m2XDoontvLL7+8KOP5ccHpqryg\nZV6GKur+Zri8AmWz/HoeOZa4IDpOqaD2wxRKb3/72wf91qmTNDiZS4nobJ5/6/XjeOHGI/bZXceq\nIGr8rdoelQd6zmjDjz76aFH2k5/8BEDzuMp7Us8F69H7wAVLHAmvwUh74BVeV5dG0P1W6+D1UZXH\nRz7yEQDNqQ85JtF7BHjPk1ODsH8M4gQ00og9++yzAIALL7xw0P4ueKILROveMfRdhOPWk08+WZTd\nc889TfsDDRtztqF2Vzc47Eh5QseSF7TMQ1mV2tEFEOVzzQWl1DKnBuG4oHbEoMm0Yw3KSNyz2ant\ntH2n2ix7n3NeRJfqrB0Vx+HkgXc4eyxLnaplLmWnuwY6Hjj1K9F2+X7H55p7L1dc2sAym3LH7QLq\nOpWB+64aSynh2h1Xx551hhBCCCGEEEIIYRD5gA8hhBBCCCGEEHqAcS2hb4eyICYql6Q8xQV6UbkG\nZaef+cxnijIG1qnKJUsphcqLKQ9R+T37p+1yP5XCtEronMRG26f8yuXGpVwUaCwZcHKtqtzwN910\nE4Dm4EGsxwW7U1mfO99lwSgcYyWYWJnd6XWihM5JSNUWKWc6/vjjizLm51YJPZduqDSPv9Xryb9V\n/u4kpk7a1Cq/d/IoPR4eh/aJElgNEOaunVsKwn7q8otvf/vbTX0DGrbvAvDoPVgmy6qb+3q07M7d\nH2VBFfVccPzT43ZLOpwElDY1ZcqUoowBlLjMCPA5Z9lXtW9eXz0XLvjT448/3rT/cccdN+jYVNrJ\nOnR85Xa1KRe4jH9rLvc1a9YAaL6XXGAdlyOZ569q+YajlyT0dZcXuUCbek3c88AF5OR2ze9Ou3jX\nu95VlNHe9bcsc+PLb3/726KMQQk5vrzmNa8pts2ePRtA8/jm8j472ToDcj700ENF2d/+9jcAzeM6\nbcbZp+KWopQtG6pLrwVPrIuTLLduG6rMLfFxOPm9W7rh3uNoZwxAp8t03DtDWd+rlo7wbx1vXd5t\n/t3OOOY43CX0iguS6mzUlblntwu0SHT8YD1lywhdsD33jaJ2yXtE2+e7gLMft8yjnSVlZcsERpoE\nsQshhBBCCCGEEMYZ8cAPQVnQBaARREb34wy4eoo486OByBYtWgSgMRMPeI+Oa5cBaxQXRIWef+3f\nww8/DKCR7sEFuKsK4MXzrb+lV82lu9GZNKYqoVcKAJ555pmmtrQPLriVSxlXxXB4o4DOba9uSkOX\nPst5PN350OtEjxODOAEND716HOkt1IBORK8nZ/5VmeKCgO3atQtAQ6mhXlii3iO2r/vRu6YeBefJ\nZxAf9ZgzpRPVHoAPGuk80S6AGRlp78FIppFzZc4Lw+1qFzxX7pyprbjAhEyP9f73v78o41irv2XA\nMBcI7qc//WlRxu1MS7dw4cJiG71VanscX1yAMR2jWN/9999flDH4pio9OCa6dI5V3tGy+7qKXvLA\nO6pskfe+Pld5vvQ5VBaITscP/q1ecY6Xev6dV57nWtOeHnXUUQAa44z2qSxwqNbrUre5YJE8bpeC\nUCnzTHXLk9VtesED754bZYECXRpOlwrOBeNSW3BjL/vF/aqCd5Wl7XLjU1XQUPceWeZt77Y9dVP5\nAYy+B95dq6pgbnXrKytz6Qe1rGwMdSo/jls6RjnFFNty6YqrUsG5bWWKXHduRyuInRIPfAghhBBC\nCCGEMM4Y7MLqMUZyzYLOKjrvZF9fX5MnM4xvRnq9jFuXFA4/htvuXNyKEEZ7faBT3ITxz2jbHTD6\nntgwOoy27eVZHMroeQn9WGPq1KlNMjcNukYoaz766KOLMuaJPfHEEwftrzcxJfRO+qvyJk42qJyU\n7b3+9a8H0ByIzsk1+dDS4ykLUKV5cBlY5+677y7KmKdWA4exbpf/VuU2ZZKwKoZLQj/SHHHEEcU1\ncQH+3DIEPXbup0FvaBNz584tyigtdpJMbdflZ+b2m2++uSijdP7kk08GAJx00knFNkpLtS1OVKiE\nnssvnFRbl1X84he/AAA8/fTTRRllrCqVdtLB1nqB8sBP7eQR7YaEfrgZ6qXBBcwpC2Skx+ruX2fL\nlDBrnuvJkycDaF7mwfZ0SRGvs45DvCcob1cZPuudM2fOoGNlEDKgIZfnmAY0xnU9Htqyswvdj2Od\nk0Y76alSJgUczhzdo/0iC3gJp3vm6bFze1VwSW5XO2Z7zo4VtqG2xWcig865YGJq963yU23LBS5T\nWJ9uY336WydvJnXlpKMhoR8L8DyWSegdVbJ69wx1S5BYjxsfnM0QrZc24d6r9HjcRBnHJ3c8Vc9L\nRzfsqK5Uuh3Git25gLpVy9rqystdmZPkuzI3/urfgP9uqHpHLVvG6KhaYtC6rWp78sD3OBMmTMDa\ntWuxc+dOHDx4EO985zubtn/961/Hf//7X+zfv7/4p5G+Q2iX6dOn4+DBg0229dWvfnW0uxXGGRnD\nwmhw5plnYtOmTdi7dy927tw5aPvOnTvxr3/9q7DJ++67bxR6GcYjS5cuxWOPPYZ//OMf2LFjB5Yu\nXdq0PbYXhoMlS5Zg+/bt2LdvH3bv3o2rrrqq6aM8dhc6IZo0wwMPPIBrrrkGa9eutdvXrFnTFAhM\nGRgYaJoN46yUziJxZopeRQC47rrrADSnm5k3bx6AZo8lZ0ddCiKdOWX6JPV2//nPfwbQmNVTz5Pz\ntrIN55XQfjIQnabRWbdu3aB6GZxMZ8CcLJy/qZvGpipARa/xqle9asigaWUBhlxAEZeeTcsYYO7G\nG29sah9oBDsEgLe+9a0AmtPSsQ31li5fvrypLaAxW8uHk6pM6KlSNQjvGQ38xL/1uLdt2wYA2Lhx\nY1HGAGKatst5D1wAnkMNCDMWAp60S9kYVoVTwej1doHDaCu6H1F75HXTa//3v/8dQHVaGnpANXAj\nvfK0C/XY07P+xBNPFGVsQ+8l2ohLw+QUHO78uICcVd6IThRG3fZIdYMXX3wRK1euxOrVq/HlL3/Z\n7jN37txCRVOGS1fl4Dlu9Q4B3nOpdue8rS64FdtQ26bNOm97qzdXj8elkXMpolxAv6oUdGVqorp2\nUjU2jiV7U/r6+rBw4UL88Y9/xIknnogNGzagv7+/KaBume3VeTbUVTG4ALRl6biA8mvn7NMFouO9\n4oLjubZcn5xntB1vdSfj01hQhtTl7rvvxq233op9+/Zh0qRJWLduHRYvXoyrr7662KfM7uqmP6ui\nLM1tJ3artsT3djeWlfXpULdV7Vd1jI521JRjgZ73wF944YVNnqSBgQFs3ry57fr+97//4dprr8WD\nDz7YVvTfcPjQbdsLoQ6xuzAadGp3W7ZswW233VZkhQihLp3a3vLly/H73/8eL730Ev70pz/hzjvv\nxGmnnTaMPQ7jgU7tbseOHcWkcV9fHw4cOIAZM2YMV3fDYUbPf8DffvvtmDhxIiZOnIhjjjkGO3bs\nwOrVq/HFL34RL7zwwpD/OmHu3LnYs2cPtm7dio9//ONdOpLQawyX7e3atQv9/f1YuXJlsU43BNIN\nu8sYFg6VkXjW/vCHP8Tzzz+P++67r4iZEUK3be/0008vVIokthda6YbdLViwAPv27cOePXtwyimn\n4Pvf/37T9thdaJdxE8Sur68Pd911F/r7+/HJT36yK3X29/fjwx/+MH71q18VZbNmzcLevXvx3HPP\n4W1vexvuuOMOfPazn8WPf/xjAC9L9VSu5wI1ubzCTq7HelTKPG3aNAAvryckrFvl6pREaxsMvETZ\n8gUXXFBsY/5lJ/XTPjGQ06ZNm4qy3bt3A2iWpzpJPo9bA6u4XPOHKs1qR0LfzWBi3bK9V77ylZg5\ncyb+8Ic/YPLkyVixYgUmTpyIc845B8DQwcXKbEzPg5M2l507zbHMa6a2yPo0QBOzM6gEmdt5jTXI\nGO1OZc/cX5d/OGk1/1bpapl8qyrXLX/bTqDEuowFu6saw6rsrLUP+v9QuBzIbnmRk/7yt248cMHh\nnFydtucCfbl6y451qPbLZHjtyGZdvcMl66uqt/U4OxnvzjrrLNxyyy2D4i6ceuqpeOSRR9DX14cl\nS5ZgyZIlmDlzZvFc0edqWcAit9TCncOq8ZJULbNplS1ru2W4PNtue9WSPBf0rLW/ynAGfx3u4Ind\neNZecsklmDdvHubMmVM8O6pszz07y6ibG3645OB15dFldl9FWT/rBlXrpI3hlDgPh93NmDEDCxcu\nxIoVK/Dcc88BqLY7985Sd3xz1A2y284ywtbfuDGt28+ybi+VHc5AsHU5LPPAX3rppZg4cSIWL15c\n+zfTpk1rksfU4YknnsCzzz6LAwcO4KGHHsK1116LD3zgA+12O4wDumV7L774Ih5++GG89NJLeP75\n53HxxRfjPe95TxHFPQSlHbsDMoaFzmjX7qr4zW9+g4GBAfz73//GFVdcgb179+L000/vahuht+nU\n9j71qU9h4cKFeN/73tc08RvbC2V0Y8zbtm0bHn/8cVx//fVFWewudMK4CGI3f/58LFiwALNnzy68\nG8uWLRsyUA7wcmqr/v7+jj+ODh48OGgWSL3JLp0LUyWpd9wFhWhNgQQAzz77LADgwQcfHNSGC/qm\nXgvO7NDD+aMf/ajYxkBkmrqLx8VAUEDDA+9SIGn7LhiUCzzEYxxOr+dwMpy252ZDy4K/uEA0zmOg\n599tZz2qqOB+moqNuEB52udW7ydTKwGN4GIuEI/amPNaOm+tUyO4+8MFJOsklUjdFCbdol27c7SO\nYW5MA8rTldVN6aPXpSwgo+JS0Ln6iBsHy+xccUqosvY78XpWecI6CTBW15NyqLbZTburwtkl4fVx\n/a/7LKm6ds6OaW9V6f7K4uew7+2kDHRBIMt+244H+FAp88J1qw2gc9v72Mc+hi996Us444wzCtXg\nUAw1BjrK9qvyQmp7deqrqtvVV4d2gqWV9bNufWNB5VFFN8e8I444wqaKJq12V1dh1FpHu9S9Lof6\nXK1Tl7bf7d9WjYNjMehrHXreA/+Wt7wF3/3udzFv3rymPL2XX355sXbF/SvjFa94RSEZ1r8B4Lzz\nziuidM+ePRuLFy/GnXfeOQxHFsY63ba9OXPm4A1veAP6+vrw6le/Gtdddx02b97cJCUPoVO7yxgW\n2qFTu+vr68ORRx6JCRMmNP0NvKxIOvXUUzFhwgQceeSRWLp0KaZMmdI0UR0OXzq1vQ9+8IO47LLL\ncPbZZw9KYRjbC0PRqd0tWrQIU6dOBfDy0rVly5YVEedjd6FTev4D/vzzz8ekSZPwwAMPFHLk9evX\nd1TnU089hYGBARx77LHYsGEDBgYGMH36dADARRddhG3btmH//v1YtWoVrrzySqxataobhxJ6jG7b\n3gknnICf/exn2L9/P7Zu3Yr//Oc/WLBgQRd7HMYDndpdxrDQDp3a3RlnnIGBgQHce++9mD59OgYG\nBrBhwwYAL3usbrjhBrzwwgvYvXs3zjnnHJx77rlFOrZweNOp7X3rW9/C5MmTsWXLluL3N9xwA4DY\nXhiaTu3utNNOw2OPPYZ//vOfWL9+PdavX1947mN3oVPGTRC7sYJKxgEvJeffKm/nfhr8rUyap/I7\nlxOZbah6wAXpaq1Dg4m5PlF+7ySCmtPd5d11eUjLpIZ1AzqNdhC7keJQgouV/aadPJkuJ3GZPbn2\nXL7i1n5U1edyubfec611uHvGybcPVT5W1b/hDug0XLjAOa3lrdQNYqfH4ALwEBfgy0mZuRxpqDZa\nc7hX2YqTSLfWpfXVlfC1E5zuUO3HBY6qO14eShC70UKvXZmEXjnUZR9OvurKquTvdWyhG1JXracb\ngaeG2q9ufd1mLNgd0LC9sudl3Xu8GxL5oeqrcy3q2mvd3Nnt2F3Z9rqB94aTsWJ37v1Nx3k3DtZ9\nP3H7l42N7jdl29pZWtPJ/eWoO765oMZl7Xabdu275z3wIYQQQgghhBDC4UA88CGEEEIIIYQQQg8Q\nD3wIIYQQQgghhNAD5AM+hBBCCCGEEELoAfIBH0IIIYQQQggh9AD5gA8hhBBCCCGEEHqAfMCHEEII\nIYQQQgg9QD7gQwghhBBCCCGEHiAf8CGEEEIIIYQQQg+QD/gQQgghhBBCCKEHyAd8CCGEEEIIIYTQ\nA+QDPoQQQgghhBBC6AHyAR9CCCGEEEIIIfQA+YAPIYQQQgghhBB6gHzAhxBCCCGEEEIIPUA+4EMI\nIYQQQgghhB4gH/AhhBBCCCGEEEIPkA/4EEIIIYQQQgihB8gHfAghhBBCCCGE0APkAz6EEEIIIYQQ\nQugB8gEfQgghhBBCCCH0APmADyGEEEIIIYQQeoB8wIcQQgghhBBCCD1APuBDCCGEEEIIIYQeIB/w\nIYQQQgghhBBCD5AP+BBCCCGEEEIIoQfIB3wIIYQQQgghhNAD5AM+hBBCCCGEEELoAfIBH0IIIYQQ\nQggh9AD/D34EYhl/d4bNAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAADICAYAAABPngpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnUXUWZPbwDCYEEAgQhISOBkACZgIR5RomEBCUIGkTF\nAREQ2xYX9KLtQAjYreJyAMVWsRtBoFsxOBCiKINoQCMKIkNMghkJmRBxSOOPJPf7g2+fu++5+61z\n7jvkvjd59lrvyk3dc6rqVD1VdW49u/bTA0AFgUAgEAgEAoFAIBAIBLo1dmh2BQKBQCAQCAQCgUAg\nEAgUI37ABwKBQCAQCAQCgUAg0AKIH/CBQCAQCAQCgUAgEAi0AOIHfCAQCAQCgUAgEAgEAi2A+AEf\nCAQCgUAgEAgEAoFACyB+wAcCgUAgEAgEAoFAINAC6NnsCnQFXnzxRQwcOLDZ1QgEAlsZa9aswb77\n7tvsagQCgUAgEAgEAl2CHtgG48BXKtvcIwUCgZLo0aNHs6sQCAQCgUAgEAh0CYJCHwgEAoFAIBAI\nBAKBQAsgfsAHAoFAIBAIBAKBQCDQAogf8IFAIBAIBAKBQCAQCLQA4gd8IBAIBAKBQCAQCAQCLYD4\nAd9C+O53v4uRI0di8+bNza5KaSxYsACzZs2qS581axbe8IY3dFm5Tz/9NHr06IGHH364y8roLLi6\n9ujRA1/60peaV6kcVq5cibe97W3o168fdt99d8yYMQPr1q2ru+7rX/86Ro0ahd69e+Pggw/Gt771\nrZrvX3vtNVxyySXYc889MXbsWPzyl7+s+/6ggw7CPffcU5NeqVQwbtw43H777Z3/cIFAIBAIBAKB\nQIug5cPI7bDD9rEHsWXLFlxzzTW44oorsOOOOza7OqWxYMECXHvttfZHfKBtPPbYYxgxYkSzqwEA\n2LRpE6ZMmYItW7bgv//7v7FlyxZcddVVmDJlChYsWJDZ41133YUPfehDuPLKK3Hqqadi3rx5eM97\n3oO+ffti+vTpAIBvfOMbuO+++3D77bfjpz/9Kd7xjndgyZIl6NWrFwDgS1/6EgYNGpRdT/To0QNX\nXnklrr32Wpx33nno2bPtqatXr15WiX7Lli0NP3sqooX7zpXbkagYei8/b805T5+nbLnuOuaj+bE/\nitrH5Zeqi37HzyzXfff//t//q8tj06ZNdXXXjdP22FIerm+LrnPtmLpHr3NllLXNLVu2NM3u3DPz\ns2uboud0bZdqT9dPRe2fr7Oze0VZe3Llp5676Dp+LmrH1LzWlVF/trbdKVJ259IctF/dc7g27MjY\nzaeVjchSdt1ydSo7FsqOVXevtuPWiDLF8rrT7wu2hb7/s37tWUsabcdG33eK5g+Xb2puLrK9suPG\nwdljZ6zx7UEj5bb8D/jtBQ888ACef/55vPOd72x2VQJbAUcffXSzq5DhO9/5Dp577jksXLgQBx54\nIABg9OjRmDBhAu655x6cc845AF5nVbzrXe/Cpz71KQDA5MmTsXz5csycOTP7Qf7Tn/4Ul112GaZN\nm4bTTz8d3/jGN7Bo0SKMGTMGGzZswCc/+Uk8+OCDth7nnnsuLr30UsybNw9nnnlmm/Xdcccda35s\nNTqJK1L3uoWi6MdWo4tmR+7tCFI/FMv+oCy7iVK0CKfucffqj+/8Zqf+n581D5eWerb2/Bhy+Za1\ns7IvvmXy7Y5odIPCpZW1xbIvs2U3sZxt5f8FqhtGOke99tprbeardUv9CCy6N5VWZO9lf6xt62j0\nx6jrr0Y3a9pTP/f/RueORjepivJ2+Wn7pDaEmrUOdke4H5kd2Rxpjz1sjc27VFkpWyq7cVCERtun\nGeg+20tdjPe+972YNGkS5s6di0MOOQR9+vTB1KlT8ac//QlLlizBKaecgr59+2LSpEl46qmnau7d\nsmULPvWpT2HkyJHo3bs3Ro0ahW9+85s118ydOxennXYa9tlnH/Tr1w9HH3007r///pprSBt/4okn\ncPTRR6NPnz447LDD8POf/7yw/t/85jcxefJk7Lbbblnan//8Z1x44YUYNGgQdt55ZwwbNgwf/OAH\n68r71a9+hUmTJmGXXXbB8ccfj6VLl2LdunU466yzsOuuu+Lggw+u+9G0efNmzJo1C8OGDUPv3r0x\nZswY3HnnnXX1+va3v41x48ahd+/eGDp0KD7xiU9kL9C33norPvKRjwB4fTD06NEDJ598cs39Zdri\nlltuwZgxY9C7d28MHz4cn/nMZ+quufnmmzF06FD07dsXZ555Jl588cXCNnXoSJt1Zl3zFPqutq8U\nnnzySQwfPjz78Q4A48ePx4ABAzB37lwAwMaNG7F48WK86U1vqrl38uTJeOaZZ7Bs2TIAr7+87rLL\nLgCAnj17YqeddspeaP/t3/4N5557LsaPH2/rsfPOO+OMM87Abbfd1qHnCQQCgUAgEAgEWhXbzQ94\nAFixYgWuvvpqXH/99fja176GRx99FBdddBFmzJiBGTNm4O6778amTZswY8aMml2Xj3zkI7j++utx\n0UUXYe7cuZg+fTre//734957782uWbp0Kc4880zcfvvt+O53v4tjjz0WU6ZMwfz582vqsHHjRlxw\nwQX40Ic+hO9+97vo3bs3pk+fjo0bNybr/uCDD+LYY4+tSbv88svxi1/8Ap///Ofx4x//GP/+7/9e\nt+O0ceNGXHTRRfjYxz6Gu+66CytWrMC73/1unHfeeTj++OMxZ84cDB48GOeee25NHa6++mp88pOf\nxEUXXYQf/OAHOO6443D++efjrrvuyq65//778Y53vAOHH344vv/97+MjH/kIPvvZz+Kyyy4DAEyd\nOhUf//jHAbxOCX/sscdw8803N9QWN9xwAy655BKcddZZuPfee3HJJZdg5syZNT9uv//97+PDH/4w\npk2bhjlz5mDcuHF4//vfn2zPFNrbZl1Z1860ry1btmDTpk3JP/UOvfrqq9hpp53q6tS7d28899xz\nAIB//OMfqFQqddf17t0bALBw4UIAwMSJE3H77bdj7dq1uO2227Bp0yaMGjUKTz31FO6++25cd911\nyXY49thj8cADD3TrXdFAIBAIBAKBQKArUWnlvx122KHuz+GCCy6o7LjjjpUlS5ZkaVdccUUFQOWb\n3/xmljZ37twKgMqzzz5bqVQqlcWLF1d69OhRufXWW2vye/e7312ZNGmSLWvz5s2V1157rTJ58uTK\n+973viz9mmuuqQCoPPDAA1naE088UQFQmTdvns2rUqlUXnjhhQqAyr333luTPmbMmMqNN97Y5n0s\n7+GHH87SvvzlL1cAVK699tos7ZlnnqkAqNx3332VSqVSeemllyp9+vSpzJo1qya/KVOmVEaNGpX9\n/6ijjqqcfPLJNdd8+tOfruywww6VlStXViqVSuWmm26qAGizbqm2eOWVVyp9+/atq8fMmTMrAwYM\nqGzatKlSqVQqRxxxROX000+vuebCCy+sAKg89NBDbbaPQ3vbrLPrCqBy00032Tp21L4uuOCCwnF1\n0kknZdffeOONlZ122qmyYcOGLO2FF16o7LjjjpUDDzwwS+vfv3/l8ssvr6nrxRdfXAFQueOOOyqV\nSqXypz/9qTJx4sQKgEqvXr2ycXXKKadUPve5z9nnVTz00EMVAJVFixa1ec3OO+9c6dWrV91fz549\nS/25e3bcccfkn5uH+Nfo9W39pea8zv5zdXbtw7+ddtqp1N/OO++c/aWu69OnT/a36667VnbdddfK\nbrvtVven17m/vn37Vvr27VvZZZddKrvssktN+fxOr99zzz0re+65Z2WPPfbI/lxZzM/VqegZnT2m\n2rvI9jrjr4ztdZVdpZ69rXGZatfUd/q9S+vdu3f2xz52abSdvn37ZvbZr1+/7I+20L9//0r//v0r\nAwcOzP74HfPaZZddsvI1X/5p+fzTZ2Oam7c6Mg+WtcWunIe21nyXstWytuP6pMgWG+2TsnNG3l53\n2WWXurmrrT/OXWXr556n6BnLjtWyc2VX2F0zbc/Nl3z+snZW1LYdsbPUPF32+kbXqLLvamXtsayd\nbe0+b+j3b5lf+NsK9ttvPxxwwAHZ/0eOHAkAOPXUU+vSXnjhBQCvnz3fYYcdMH369BoP5Rvf+EY8\n+eSTmady1apVuOCCCzB48GD07NkTvXr1wv33349FixbV1KFXr141NPJDDjkku78trFmzBgDqVNsP\nPfRQ3HDDDbj55pvryiF22mknnHDCCQ0989NPP42NGzfi3HPPrcnrHe94BxYtWoR169Zh8+bN+O1v\nf2uv2bJlCx577LE2n4coaovHHnsMf//733HuuefWtP2pp56KtWvXYtWqVdi8eTOeeOIJvPWtb63J\n++yzzy4svy20p826uq6daV+zZs3Cr3/96+TfV7/61ez6d77zndh5553xgQ98ACtWrMCyZcvwvve9\nD0Dt2c6LL74YX/3qVzFnzhy8/PLLuOuuuzLVeF6355574te//jUWL16M9evX44ILLsCcOXOwevVq\nXHbZZXjmmWdwzDHHoH///nj729+Ov/zlLzXPxzHAMREIBAKBQCAQCGxP2K5E7PbYY4+a/5Puq+lM\ne/XVVwEAGzZswObNm7H77rvbPF988UUMGjQIb3nLW/DXv/4Vs2fPxsiRI9G3b19cffXVdaG2+vXr\nVyPckS/Pgd+Rjkx86UtfwtVXX43Zs2fjwx/+MEaOHInrrrsOM2bMyK7ZbbfdbHmpZ+aZ7AEDBtSU\nx/+//PLLqFQqeO2119q85k9/+lObz0MUtcWGDRsAAGPGjLH3r1y5Er1798amTZuwzz771HyX/38j\naE+bdWVdt2zZ0qn2NWzYMAwZMiRZph7F2GuvvXDnnXfiAx/4AIYPHw4AOOuss3DGGWfU/MD+xCc+\ngcWLF+Ntb3sbAKB///6YNWsWrrjiiho76dGjR7YB8o9//ANXXHEFbrrpJvTq1Ss7qnDppZfi/PPP\nx+zZs/HZz342u5djIDVedsgJB6XCLlaM4ImKDHWGCEoromJEq1LP40Tn8v2g+Sp2MMrwRZE2qKPA\n6AVAup8pEqYCd7xej30wuoHaAL//xz/+UaosrRPz0XJd2+a/y38uA2fLbX3fLBTV0V3nrm/0WToi\nGKi26KIZpNqa/a62Q1t04nhaN7WjfL6uTLWxlLhVeyIYbC/oiOhbe8pIQculfRTdmxfhLLIxZ+N5\n29XPem9ZMb5G7a4jc0Qro2iOajQSRHvGb0faNG+jRXVyc1TqHmcXZW2lbNu2mk1tVz/g24P+/fuj\nZ8+emD9/vn0h3WeffbBkyRI88cQTmDdvHk4//fTsu//7v//rtDoAr4vWKfbYYw/ceOONuPHGG/HU\nU0/hM5/5DM4//3yMHz8+87y2B/vuuy8AYN26ddhrr72y9LVr12b16d+/P3r16lX3A1Kv6SiYx733\n3lu3UQC8roTep08f9OzZs64eLkZ5V6Ir69rZ9vX+97+/ToQxj5NOOqkmLv3UqVOxatUqLFq0CP36\n9cOQIUMwduxYTJs2LbumT58++Pa3v421a9di/fr1GDlyJO69917stNNOOPzww205n/vc5zBq1Khs\nM+CJJ57AI488gr59++LCCy/ENddcU3M9x0Bn2FcgEAgEAoFAINBqiB/wBTj11FOxefNmvPLKKzjt\ntNPsNfwhpR7y5cuXY/78+W0qajeCESNGYKeddsLSpUvrVNyJ8ePH44YbbsAdd9yBhQsXdugH/Nix\nY9GnTx985zvfwdVXX52lf/vb38aoUaOw9957A3hdkOw73/kOLrnkkpprdthhBxxzzDEAaj3AO++8\nc0P1OOaYY7DLLrtg9erVmDp1apvXHXroofj+97+Piy++OEubM2dOQ2V1FF1Z1862r1mzZmVCg21B\nox0QPXv2zOzqZz/7GRYuXIi777677roBAwZgwIAB2LJlC/7zP/8T55xzDvr161d33Zo1a3DDDTfg\n0UcfBVDd/dy4cSN23XVX/P3vf6/bEV22bBl22GGHzIPf3VDWK+E2A7cGiurXrHoFOo4yttfM/k3V\nr4hxEei+aGW7A2LOa2W0su2F3bUuuovdxQ/4AowePRoXX3wxZsyYgSuvvBKTJk3Cq6++imeeeQaL\nFi3CLbfcgoMOOghDhgzBxz/+cVx33XX461//imuuuQaDBw/ulDr07t0bEydOxG9+85vs7DEAHH/8\n8Zg+fTrGjh2LHj164Otf/zr69u2LI488skPl9e/fH//8z/+M66+/Hj179sSkSZMwZ84c3HfffTUq\n9Ndeey3e/OY3433vex9mzJiB3//+95g5cyY++MEPZhTtgw46CADwxS9+Eaeeeir69euH0aNHl6rH\nHnvsgVmzZuGjH/0oli9fjhNPPBFbtmzBokWL8NBDD+Gee+4BAPzrv/4rzj77bFxyySWYPn06fvaz\nn+FHP/pRXX7vfe978fDDD2chzToTnV1XRWfb13777Yf99tuvoXuuuOIKHHfccdh1112xYMECfPKT\nn8S//du/Zf0LvM4+WL58OQ4++GCsW7cOX//617Fw4cI2vf1XXXUV3vOe92R57L777pgwYQIuv/xy\nvOc978F//Md/1OgOAMDjjz+OMWPGtHmkBXj9GMHf//737P+cSJX2zM/tiTddBkuXLsWAAQOwefNm\n/O1vf8OPfvQjXHbZZTX1ahaWLl2KCy+8EA888EDdd6k4wim4Ba2IQscfbUoVduVxE1Cp7mQGDRw4\nMEsbOnQoAKBv375ZGrUS9txzTwC1VOYnn3wSAGpsacqUKXXXkYmycuXKLO1vf/sbgNrn5rEOR+vT\nZ2TYxI7QxNu6rjPtrivohG3ZXhnadmdTax29WDdJHeXYgdfx+IUrQ+nIhDu64e515Tt6tb4wkqbv\n6KmdfTwB6N7zHZCe8xRlqciuvbT9i/os9R3zVptwfcx73BEPd0yDa57Lw9mnO4qnayjnPp0D3fGp\nrqYlt7rtpeyr6AhbZ1Dti+qUOvamtkd7LfvDlbak+TNNbaojx/nyebSVn6PzF6E72F1sAZXAl7/8\nZcycORO33XYbzjjjDLz3ve/F3LlzceKJJwJ4fdGfM2cOevbsiXPOOQczZ87EVVddhZNOOqnT6nD2\n2WfX/dA75phjcOutt+Kcc87B29/+dmzYsAHz5s0rPN9cBrNnz8ZVV12Fr3zlK5g2bRoeeeQRfOtb\n36o5Xz958mT8z//8Dx5//HGceeaZ+MIXvoCPf/zjNWHTTjjhBFxxxRX44he/iKOOOgof+tCHGqrH\nlVdeia997WuYN28e3vrWt+K8887DHXfcUSMyN336dNx000344Q9/iLPOOgtPPPEEvvGNb9TltXHj\nxg6djd+adVVsDfsqwvLly3HRRRdh6tSpuOuuu/CFL3wBs2bNqrmmZ8+e+OpXv4pp06bh0ksvxT77\n7IPHHnvMbjQ8/vjjmDt3bh1F/rbbbsPChQvxtre9Dfvvv38NAwQAfvSjH2Vn7Ls7zjzzTOy22244\n9NBDcdhhh+Gqq65qdpUC2wHC7gLNQNhdoFkI2ws0A822ux54XY6+ZeF2e1ICQ62KtWvXYtiwYfjF\nL36BI444otnVaUkMHz4cs2fPxgUXXNDsqgTagT/84Q8YM2YMlixZkmQQXHrppfjxj3+c/Z+CivR8\nAmkPVUfAuSe/6/7pT38aY8aMyTQD2kOvSonDNZJHyiOQz7to17vRNM2fR2qct0aPXNBDPnny5Cxt\nxIgRdfeyffr06VOXRu84+x0AFixYAAA48MADszRGKVFbYF30CBC1GH7yk59kaWxP3YHfuHFjXT21\nDoRbs1KegrZEzLrC7lhuRymBKdtL2V0qzX1fVrBIvUdlPUr0RJLRAVRFSJWNxD4m80LFPh9//HEA\ntVFl6AwgswMAFi5cCAB4/vnnszTmowwR5511omNMK+sxLetF3rx5c8vaXapuZb2gZQW1yjJqaIPq\ngXcCq7QxJ6joGFFlhQ1Zvo4F2rET43TiiUWMrLJj1X2n9un6trustcynI3NeWbFMh47YY5Fnn/ZA\nMVlF2WOEjrniRF9TXvmOMAo6IiLb1XNeWYQHvkUwYMAAXHjhhfjiF7/Y7Kq0JFavXo3XXnsN5513\nXrOrEmgnPv/5z+Nd73pXw/T/ZmPw4MGYMmUKlixZ0uyqBLYjhN0FmoGwu0CzELYXaAaaZXfxA76F\nMHPmTBx88MHbJMOgqzFo0CCsXr265txhoHVQqVQwYsQIzJ49u9lVKY3vfe97+Mtf/oJVq1Zh3bp1\ndccFAoGuQNhdoBkIuws0C2F7gWag2XYXInYthIEDB+ITn/hEs6sRCGx19OjRA//yL/9S6tpjjz0W\no0aNyv5/6623AqgN10cqqtKZU3Foi0RQHN3qrLPOwgMPPIATTzwRd955J97whjfglVdeKXVvd0Tq\nuYtEnfi90tAdbZmUvFNOOSVLO+644wDUUkpJ4SM1HqjS1Z0oDstSgTuKaTKqhl7nhGiULrjHHnsA\nQE1YR9bzlltuydIomKkUam4iqu2VFSwrgyK7axV7S6FRKrNez/Z3RxNUxI5HJ5QuTz0T1fWgoKLa\n51//+lcAVftT26Gd6lgg/V7HzBlnnAGgdt765S9/CQD4+c9/nqVt2LABQO1YyMcD1896lIgoG7M5\nhZTdbcsoI8Dorgf8HMi5zbW/O37j5k+maV8zmo07EqK2y3vUUZQqV8vndU7sTtGRtTZ/PbBt2F5R\nW6TucTT0tvIuA9fe2s+cJ93RMHeMwpXvIo+wXHW0uaMa+bLaKsPBiZOWfafLpzXb7sIDHwgEAl2I\nRx55BLfeeis++9nPNrsqge0IYXeBZiDsLtAshO0FmoFm2V144AOBwDaFHXfcMRM5A4CPfvSjAIBf\n/epXWRqFR1566aUszXke3HGVsp4WxRe+8AUsW7YMEyZMwO9+97ume0F79epV423ctGlT6aM5ZcN5\nKZynh96ifffdN0tjlAv1lDvvkxNkcuJPFPtyQl/0outuP71fmgfbRb1ZzFfrRLE9ZUkxIsczzzyT\npb388ss1ZQH14Z8UHREjyttdPo9m2KGzvfZ6McsK1mlbu5BtTFO7o2ji4YcfnqU58UuXH7+nnerY\nOvroowHUevu1fgRtTMcHvfLHHntslrZ06VIAwB133JGl0WvvwoNpWWXFoMp6BAlnd81GR+Y8oiPe\n9pRgXNFcwHqqrdFW+/fvn6UNGDCgJj+KbQLACy+8AKB2DqSejAu9SWYHUGUQOQFErTs/pzyz+oyd\nLSILtI7tNSoiRzhWTUfazuVXJKjHviSrQ9PcnOLGjQvl61gdXJ/dGFExz0YF/cqKU5YVleuI3bW3\n/7ZJDzwnoEAgsH1BF5TuhA0bNuC2227DzJkzm10VAMC8efPw6quvZn/5kICBbQPdze6AsL3tAWF3\ngWYhbC/QDDTD7rZJD7yLO+3Qo0eP5A6sO6NBuBABbpfJhaLhZ93Z4e6SKmxPmTIFQO3ZNu6oc9cd\nqO6U0rOj5Wrc82HDhgEAxowZU1NfoBpqizu4QHWHTM9vMsyNbpLsv//+AGrbnTu62r70YM2dOzdL\n406VPiM/q8fL7daldsac5yGPHXfcsV07XxpipD3eWKA41GHPnj3bFSJD7wdqz1m63U16IU8++eQs\nbeTIkXX5cRdUd5HZP+op4I6o9g3vpcdVz5TyXs2XULujTejzEDq2dtttt7rvmwFlABCXXnppE2pS\nD1e3wLaB7mx3QNu219FwTYHmolXtLtD6aFXbizmvtdEd7G6b/AFPdBZVsKxgjrueP170RxN/vGms\nY/6QmjhxYpbm6FX88bPrrrtmafzxrWI3rJfGmiUVjz9y9EcW66Q/4F0sTPcjjHGXVaiHPyCV8sV8\nNJ7ziy++CABYvnx53b2OrtWZlM/OyKuo/zsz37aQEhxxlCWNk00hL42FzXudQIjaMW1QN1p4j1Kb\n+OOc9q52nxcZA6qbL2pj69evryuL96jdsSx9bqaNHz++rtxHH300S+P40bozH91wSQnwlEWzacxt\nIU8vKyuiUyTMxDTdqOGG4pvf/OYszY1917YuNmz+O6BqLy4OvaMt817Ng3O43uvs1gk4XX755QCA\n66+/Pktz9HsX0zl1fKORWLFl0F3ssVFqfNH8y/Z065C2IeekN73pTVnakUceCaB2M5ifi+rH67jx\nqP3KoxaaRmE7V0+3aamU57FjxwIAPvaxj2VpN910EwBgxYoVWRqf11FHtxa9udWRmu+K5ixC553U\nWqvgWqtr4tChQwFU13Cg3rbUxnhsjE4YAHjLW95SVxbr/tBDD2VpixcvBlB75IzzmBNP1DWZdVB2\nXKP2FPZXRVmRvyLwHieg6Mpz75JFYoWpPNwGBtdBnXPdUQ3Ok1o+7ymay/J1auu6VrC52AIKBAKB\nQCAQCAQCgUCgBbBNe+A74iFz+ZSlb+vOEne3VCiJu+fc4VcccMABdfloWRQs0TKGDBlSdx298uqx\n5C6uYwVwd9TR/3W333nXyB5w1GhH/9fd2WnTpgGohvoCqt4I3YXrKs9TV6MjO6SNlqHeG7ezz/6n\nEBJQZXxo2CyXn/NEc0dUvarc3dfdUrV9oNYm3BGTPOUeqNqxivKwnlq+sxPWWen1EyZMAFD17ANV\nj4IeRcmLUeU/dwYaFSbbGuiI19Pt7NOLqMwhhorT69jP6nVkeS7smtoSr3OeHtqIY0JpmivLhXVy\ngodurmddPvzhD2dps2fPBgCsXr06S+PzKvvDsY66yi6abW8pONGhRplP7jtlAh188MEAUBN+ku3v\njmM5O1KbpQ2w/12oL51fOf+6eUbtmfe4McN1GADOP/98AMDNN9+cpTG0nYO2p7O77jhHdTXKPl/Z\n69wRNreW8Ht9nyJdl+sWUPXA61xFW6CdaL/xfVPrS5vV90SWf+KJJ2ZpLPfBBx/M0lauXAmg9qgb\nx4LWydlsikHV2e1eFs2256JQeUR72qcsI4TvYTrnpZhgbo1nflo+5zBNIxPUhYcrCmFIm3J1d6GB\nFSmRvVbDNv0DvgxS59wDrYuifm32gA272zbR3fs1de6uKzeZAl2PVra9QOuiu6+1YXfbLrp733b3\n+gXah+4HtfsYAAAgAElEQVTSr92jFoFAIBAIBAKBQCAQCASS2G488GXjKrbn+/x1Ll6ilk86lArW\nkeKplCLmo7RKQmmavFdpJ6ShOyqzi41LupYTsdCy+BwqhMZ79TqWXyRwQgEWCvEAwNNPPw3AU8KZ\nL1CefuWov50RP1PzaeT7Rmn1jjrqYme6eNZ6HYXqNK4xv1dqM+mcLsa2a0MngqJ0Uva3ixHrYijT\njtUWaW9K9Wf5ak8uPqiLD066qR5jIRXQ0ZjdcY72ULCa7Y0iutLbznZ2kQWOOuqo7DP7ICWcA1T7\nV+c3luFisytoN6yL1sml0TbVzkjJ07JcPHAX657f77333lkaxcauu+66LI0UwyLhzkaPNjh0xTzY\nWShLI3XfOcE69q2uV3vttRcA4LzzzsvSeEzMCS86yrPOtUxz9uGip6S8N0qXd0KkHCtaFvtO6zRo\n0CAAVSo9ANx9990AainPTtjORRLZGkfBuis6cpTAHS3StYT36hrGyEHHHXdclsbIMGrHhNon83bv\nBBQx1vmOfaxzqxOH5fvBWWedlaU9/PDDAIBFixZlaRS5Uxozy9Bx2RHq/LaGzh5TKdq4Y8toX9B+\n3JrjBGDVHgcOHAigVjibWLZsGYDa3wM8DqxzGb9/5ZVXsjT9Pl9P9y6pdXdie2XjxbcCwgMfCAQC\ngUAgEAgEAoFAC2C78cCn0B6xOyes4zyS3O1UD+cJJ5xQdx0/F52t0B36fLm6u8VdNRXuyovi6a4U\nr3OiEFon7ozpDivLVQ8YPVjqyaLHzQlf/NM//VOW9oMf/AAA8Nhjj2Vp3Nl1IaKKPAVld8jbs/vW\nlTt2KW+U9gk/u+tV2Oi0006r+z51frFoLHAX1IVZ0p3ZvN3p9dw1VU8Bv3de0KI6sT901zbPPNHv\ndVySBaIeBTcGnKjLtoayrBVnj86m6FWaNGlSluaE5VL97Dz1ep0TyaR9Mc3NPVp32oVex/lNRcBo\nA44J5eqncyM9wBpHlmGatG1TbbEtCPCkUPTMbv11Yllc11QclmELaZNAdV3Vdc2JHPJ750HU9Zf5\n0WbV++jEP2mDFJ/V/LQsJ57ohMiY3/7775+lvfGNbwQA/OxnP8vSuK5q/RoNx6RoVVvsbC+oexck\ntF25TjKkJlDtJxVZdOw1FzKV7c+107FRnCfcMUS07pznBg8enKVNnz4dADBv3rws7dlnnwVQG9KY\ntloksttsFluzQml2VThjhbNH3uO8025eVVYlWbdcywDg0EMPBVD1rOva6EQVx40bV1fP3//+9wCA\npUuXZmnOK+/mKM7NLhSn88o7FLFdu9v8Fh74QCAQCAQCgUAgEAgEWgDxAz4QCAQCgUAgEAgEAoEW\nwHZHoS+iSDQKR2VWCgcpfMOHD8/S9ttvPwC1gmyE0jucoISLk+jE7khfUdoLaVhO4MRR910erAup\nd0A1Nrfm4egszM9RTZUurYJ2xD333FNTPlClz3QnGlZXoEjYKUXTPOSQQ7I00p7K0omc2I6C9uYE\nlRwlj3bk8tI+dHQrF0+ZdXdxv3Vs0RZdbFOl+rsjHo4i3hHhr+4ST7kojnZKCMfdo2PaiVWee+65\nAGqP9Lj42pwj3FEZna9YrvYzv999992zNPav3kuwzkqbpk07uraWxe8dXc+VpfR7js3JkydnaYwJ\nr/OgO/rBNnPzf9l5sBlCZO0R7Ex9x2fWYxXsC7UxUuc1pjX7neuW5udiDmt/0hZd7GudB1kv2qLm\n4cQOOVb0SA/rp+PEUULdOOJcpuOSomgU7AOq9GelPLNeRcJPRXNImeu7CzrjXdCJuSqcONyQIUMA\n1B5voxiYHslwca8dBTq1NnH91Xo6gTAneOaOaXJu5ZEUwK+169evr6sn6+JEOwNVtOd4r7uefan2\nw/5wR2X0Os4lKsTKz3pEk3brKPd8p9f3KOahZVEAj3R8rd/cuXOztA0bNgCoXZP5PDqHp4RIO+v9\nzaHRvNtL0w8PfCAQCAQCgUAgEAgEAi2AbcYDX1b0puiest41JxzG3W56OoHqjtL48eOzNOdl4i6U\n7nD+7W9/q/kO8DuchKZxlzcVpsuFCdPn4U5V0c6yE5NzO35O0IVeBn1u3qOsBddXzhtBtMdjsLU9\nBGV3V4tCt7GPta/pyVG7Y787QTbnsS4bAkd3PJ0YY94Lqs/jxHloT+o94k4vd161XPXA0wa1Tvys\nXjCKr+gYZJruKjM/tU+iPbbTXbxQ7fGIpgTrnIdRQw5xLDuPNec5wAszse2d6KfzPjmxJNqtzkfO\n48PvNV/nqXDzP59bPZyc39zcyNBQAHDOOecAAP73f/83S6OtuzBRRaFKm4muEgRz65VbX1RYiZ4f\n9XrSM1Tk2SYbQ/uT86rarPNikgXAuU/r6dZQ1l3fHThvudCZro2VecDPWk+Koh1xxBFZ2m9/+1sA\nteJ5LvQdUeQl7S422F60x+Pp2CBufuL3Q4cOzdKmTJkCoDb0FucRtU/ago572rSu3exvx95MMXr0\nOtqzC+Wp8zzHkeZHb7yul6yf2qILLefq4tDdQl92N7h3RMcKc+s5r1OBT67dY8aMydKcfXO+dCw2\nzkdOhFHf1Vg+Wcpt1f0nP/kJgGp4Os2nSGS3M0LLdRdhu/DABwKBQCAQCAQCgUAg0AKIH/CBQCAQ\nCAQCgUAgEAi0AFqeQl9W9Ka9ebR1naOcU7BGhbGYpjF/XSxX3qOUIn6v4nSuLo4S76huecEy/b8T\nSXGCeS6N1CdHt9U6kUKlaaQ/O7G7IuoiaTFK13KibI3SY7oCHaEsOwEObS+2k9oJ7U6pUHkRQ6Aq\nruVEsfQ6J5TlqLupoyyOmk9qngqeOBo1667iUaTmuT7XejI/FYji8yj9lXU45phjsrT58+fXlKXl\nOfq2gs/dilQ/J2pJuLGqz0ib0+Mbbpw7Gjrt0QmH6bzq5jfaq84HrBfz0/mN85bWiTFsNX/OOUoz\npi274yP6PI76Smja0UcfDaD22MhXvvKVujJYZ3eESpGi/XW1PZbNv1FBR20vN7Y4fimmpJ+dyKI7\nGqZpnE+dwKars1uTnY052+X4cM+fEpjVcnW9ZBl6HdN0rj3jjDMAAC+88EKWxqMbeq+jN7s+aLRP\nuwsVlWjPOu3endxRl0GDBgEApk6dmqVxnXbzosvPvbMp8sc53DWaL59D5xjOn5oXx4XOwcxbBTp5\nTOOUU07J0l5++WUAwIoVK7I0Pod7xiLx3O5gJ90Zzn7Yz442rnMjbXTYsGFZGgVA9RgS+1xjszM/\nzi86zzj7dcfVaHtuTtGjjXy30PdBCnGq3TJvd6zOzcOtdhQyPPCBQCAQCAQCgUAgEAi0AFreA781\nd0Lc7qzuStHzpN46F1qIu0LOw+k8Ck5gROE8kG43My92prvDzgPhvEz0RrmdPBeOQtOcGJXzjrpQ\nYGwLFepx4XtcXRpFd9ldcx4OZ08UbeJONwCccMIJAGp3LZ2Ql2NUMG8nHqI7nq5+LEOFl/LhczTM\nl/PsOw93XiAlf08+P91xdV4GerzUdpg3d6H1s4ZZos2qp7csG6EsmmGDRfV137OddRf/2GOPBVD1\nxgDVecP1gWPkONaRsm9cCCX2vc5rnFfoOdJ8aatq5y6EYb5ugBfuJJw3y4UCVbDO48aNy9IGDx4M\noBpiDvBClG4Mp9BVoXAaRdkwZI454K5jX6v3z6117G/th9SzOo+gY9+4EE20GR0fKSE6tc8Us0jn\nLa6JzsacAKJet//++wOoFVSkd03HW77u+XxSaSl0l7WWKDt/qz3Rxlx4Vl1/Tz/9dADAgAEDsjQ3\nPzBv9Xa7dyeWq/aZF+1yNqHzHe1S12SWof3vWJFuLDBt3333zdImTZoEoFaAlp5bJ2rm3gW6m510\nF7i5xK1hbuyzvdUeR40aBQA46KCDsjTacJH4cT78oLMzx+pwrFO9zrFOaV/KtnLvGLy36D0htXZ2\nN5aQIjzwgUAgEAgEAoFAIBAItADiB3wgEAgEAoFAIBAIBAItgJan0HcGOkJ7VZooqWxKrSX1Wykh\npNopRYp0Ehe/WilSLv6ioyHzHifS5eKx814n1Kd5OAo/y3dUQxf/WGnwrJOLA64CbE5YzcUQd2Id\nKTr91hKtKBvbtOhe0oicIJvGl50wYQKA2j4hnVNFZ5i32iKp7no8JB9PG6jS6R1NU8cA6+yExEj7\nV2oer1MKHz87arWWz+dxdFZ9bkd7dEI9EydOBAAsXLgwS6M9ueMhRbTS7hLDtqh8J8zlxiDbQONX\nkzLpKLguhrzS8JifO/qjfe/iu/KziufkxUEdHU6vd3CiZ4Q7XqRlMK1IMI1jU8ccY8NTzA6otoGb\n8xQp2nmzbS8FZ3eE62sdq8cffzwAL+bmBJ2U4sl+dNRNncucAC37USmepIy6OPC8V+cP1sXloUJR\nrnx35MgJvKbmRsbvBqpznTuuVBQ7uRVsrCNwwrLumfleSEoyAIwePbouv7zYocK9t+i67+ZK2gzn\nND26wevUnljPouOcrKfOd5yrdFxyLtfxS7qzvs9xLdbx5sYAy21UHLGVUPbdz13v1mT3ruYE60id\n1+Mzhx56KAD/PubEVFOili6+u661qXdPfSfQo2v5/LTu69evB1BrU5z/tC3cEdHU+1t3RnjgA4FA\nIBAIBAKBQCAQaAGEB76d4K6R7iq68ATOa+PEwbjj5Ha9dTfMhbZxAgx5ER2guvvmhKcIF4JBd8Oc\nB9R52/nZCeWpl4nXuV02ZTe4cFUM+aQ7yqxfkaBTd91pcx4z3XHlDqbuWvL5Ge4DqLaD3ss0txup\nXhn2j+7202bUFvhZ+zPlKWfd1TPLXVPnKfjzn/+cpVEUz3nM1e5YhvPCqcgf7dyJujgPle4cO9vm\nbnN7Qmh1R1t0Hm62i7YF+/7d7353lkabUu+fCxnH/JxHoUgQU/sof53aHu2G+Sr7x4W2caJJzNeJ\nRWmdaK9OOMr1t97L+U/LoIidevGee+65umcsK9jZCiGZ3JzHz+qZo92p4OQhhxxSlx/73YVCdUKX\njsWm85UToOVnnXP4mXaq9spxoXNp/nqgOs60r9286gTOnLCeztMEn41CqABw2mmnAQDmzZuXpdFj\n6oSfnG139/ktjxRzwLESHQtJ25dhg6dMmZKlsb30Os5HOu6d15D9o+s++0TrzO+Zr9aTa54TSlS7\ndzbmGAK0haLwrGRnKcvjzjvvBFAbmtOJ7DJN69cK9tQIGn2eIsE6t4bxOhVVpI2+8Y1vrMu7SMTV\nvV8STkCbdqh10vmP4NjQuZQ25X7L6O8veuO1ThROdEwkF1quKExmd0N44AOBQCAQCAQCgUAgEGgB\nxA/4QCAQCAQCgUAgEAgEWgBBoUdaBEg/K/Wd9G4XZ1vpGvyscbFJKXLx4pVeRTqU0tZIl3bxjJUS\n4mgsrAOpeVqWo1KRouXqqTQn1sUJBWk7OlEgF/uTZSit+g1veAOAWho0aTZKiyXNxtFKHT2mmSgb\nd1vbde+99wbgKd1KZSM1Um3CHZ1w1GJ+Vtqpa1feqzQm9tOKFSvq7iVdTmPJMw9S6QFP9SPtVcvi\n8yjFlW2gFCzeq3bsYmc7UUTmw+MaQHVMaTsyPxcbviP0v61hp26sklLm4h0r3Xb48OEAauMIu+Mw\njoLJtiqKqV0kaJa/TvuZebOv1C74PDpG2I8qeMi6u+dyol5O/MlR3ovam3WdNm1alrZ48eK669yx\ng1agyxNF66/ra9rH0UcfnaUpvTh/r1svHR28SIg1daxJbYv2xjVWbYxruAo/8j1Cy+I86CizTuxW\njxzxXUXHJdtA50u3dh955JEAgF//+tdZGseUvgO5+a3VRezce59C+5FgX/PICwCceeaZAGpt0r2T\nMD9n4zq3sN3VPh2FPj+n6TOwnu4Ipxsfri2cYKzaPZ9XbZHXqeAYj/vpMQ3amLYx7VIp+a1qW+1B\n0dzItnJzv45pvtMNGTIkSzviiCMA1M4Rbh5045zXaRl5G9brUyKy+tuIdqjvVm6MMB99b+VaQNFE\nAHj44YcB1L5fumMZrh2LjuF2B4QHPhAIBAKBQCAQCAQCgRbAdueBdztARcJh3PnRnUHuNOqOJD2L\nbpfU7Vzrvfxed5ScZyUfJkTLc6GKdHeLO0ou7JsLD8cdUf2OzANtH3oAnLCPCwniwks4j5J6ag88\n8EAAwNKlS+uuo9cXqO78FnnGUuhIWMFGUCSYw8+6w81nVS+KE+Bg2yhDRPPJQ3c82d/aJ04Aj99r\nvsOGDQNQy+54/vnn28yDdqp97WyR+Y4fPz5L+8Mf/gCg1jPq2CVsHx2DtEutC+1d24LPdsopp2Rp\n99xzT91z894iD3wKzfYsOIaK2oCb8xiuUPvAhfhyYmIpz7/u7KdC2mmfsi91fmF/sE81D2Ws5K/X\nfkyxerR9Uh5JtTM3XzsPPK9Tz97AgQMB+FCQTkS0mTZVJG7mrnNih2wbTXNhuji/FD0z10TH1HCh\n2Nx6oPaZEoV1Iob5vADPCnCe0lQ+ToxR51XahHpbWWd9Rq4ZkydPztK+9a1vAahtM7aBjjc3RhoN\nk9VMuPXXpWk/0eN33nnnZWm0T21rJ8TL9tQ2JFx4y6LwkTpvAbVrFNdELZ9jwXm4nQCzvk9yXlSx\nYUJt0Qk0ctwqy2P16tV1deE9ZcMCdwTdzRbzcL9DCG0ffs8wcUD1/fmEE07I0vhbwwldurnRsTld\n/Qhnv9p3fD/QuvO9VseDs0PWWW2PdqYsA6bde++9WdratWvbLEOfy62r3c1GwgMfCAQCgUAgEAgE\nAoFACyB+wAcCgUAgEAgEAoFAINAC2O4o9EUoS6EnPUTpPi+99BKAWsoFKU2rVq3K0kiDVpov6VVK\nF+H3RTEZndiNo6fkRZgcTUbpNC6+KWk5Lh64tg+pKy6GvaOuuNjbf/zjH7M0ijfpdWwzCmkBwAsv\nvFD3rI1S57s6hm2KUujibqvICPtVxfwcddjFjeWzKJ3X9Ttple46J5jjxOa0T3gd+0bp/+44B+1N\n6fKkgOl4c/HYnVga7UTF1/i8WhfajObH8atHW0iZVHvn0Q0dFykhRUdX35qxk4vozfystGAKKOrY\nYlvoPMM2aI9IjKMjs0+d7enYYN5ubNBG3VEN7W93FMLFJ3bPULa/XSxpd8SA5SqVeurUqQCAG2+8\nse7eouNhWwtFdPFG8+Dz63ijCJaKS7LPnJirtiv73cW+LhJM5GfXd2qzefEt7QfOb0oxZf10bKUo\n9EVHN1y/u2MVTgCVzzF27Ngsje3s1lV3xKCVRBQBXzd3dMO9Ex1zzDEA/LFG7Sfm52K+69zCOc3R\ned2c6QTwiCLBM2e7hJuLlEJP+rLWk/Ontqd7V+Z75Dvf+c4s7b/+678AVGN3az5FRwc6w7a25vrb\nHrhjVmxTnY84Vg844IAsbcqUKQBq+4pjWdc69pV7p9P3Szf280Lc+u7pjs/m7wP8GksUHSVmmpYx\ndOhQAMBBBx2UpfF5KaoMeCFwPpvabXcT6QwPfCAQCAQCgUAgEAgEAi2A7c4DX1agzHngddeVnuUX\nX3wxS+POzogRI7I0hmpQISJ6rXSnyHmeXFgc3uN2+x1DQK/jjhvbQHc66Z3UXS7mq7vz9Arorh3L\n1fbhPSoywbrrjpYTrXACVUxTjymZDHodQ/Podc7jQhTZQ1fsuKUEnRR8LteGuhPO3ez99tsvS2Of\naD+xP7W9mKY7n9yNdGJyTlBE25UCIWq79NzSJtTuXCgcet5VgI9hQFzIEb2XNu7GkXrR3Zgh1Hac\n4Bg9JNq2fEatX15QqAhbM2ScS3NznvYBn1Gfi22hXm/ajWPaOG+m83wUid05gUf2pd5L+2Kair85\n+6b9aN0dE8aJhDk4ITTnxXVCZLQl9dhxrKstuznUeeq2ltegbDmpudWFQNL+4tyv483N78zHCbw6\nj3WRiJ0Lh+RC1fEe9okT0NR8OabUnpxIHOG8wk4UT5EKi6RtwTrouk8P3i233FKXn7atq0vZ9a47\nCC46j7VLU+YHP+u8yP52YrpuHlPbdmw3erZduDcF3/s4b6uHMiUuqmueY6cRei/ftRyTRcelY8Gw\nHVVw7C1veQsA4K677srS3BrK+rmQj0U21F08p0VwTBsngujWQYbrO/bYY7M0FzaXfaUh/xz7g9c5\n9o0bG7QRzYPrrq5bLqw066nzf+qd05XvRBA13CjfP927mgub60LqdReEBz4QCAQCgUAgEAgEAoEW\nQPyADwQCgUAgEAgEAoFAoAWw3VHo2xPXm7QKpVAyTUWrTj/99Jp/AS9E4yiBjrpJ6orSNniPUkxI\n4VKqB8tVak2ekqlUHBcPlvkqXcxRElmGE1Nx8Y+dOIq2I6krSv/iEYRnn302SyPFS2k5pP1p/coK\n6nSlmFiR3TnKFJ9f28GJIrF/1CYcTZR563WOJuqEBXmd5ufE85iWF0wEqv2kNknKvcYs5fcqMsKx\noHQrF7uTcDSqIvEb5qdHQfLHTrSujG8PVI/FUKhP8ysSrEuhsyl/KRqnE9AkbV7vdYKHSrV3xzfc\nMRZ+dsIxCtbLCcbp/MpxoPnl6aBFtEt+VhvlERadZ0g7dONL4WLJOrq8o0fyOfR5uAbts88+dc/o\n4oDr83alAE97KNOOtsxnUXti+yu93NE02cdu7OuRGtcOru9cmhM2I3QN43zFftA5JV8PoGof7hiE\nq6c7iuLGllKuWZ6bL3W+Zn667lAESu91a4cTyiO6G325SGzRvYfw+XRe5HGOIiHPV155BUDt3MLP\naju8TsvlXKr24URc8wKZ2uakMeucyefQ8cEynBiz1oljS49PKS2ZYHlarosRzqNz999/f5a2Zs0a\nALVt69aD7mZb7YGzRx1vbg5hX/H9AwBOPvlkALVrhBv7/KzHytjPemyT7e1+myjYH8xD6+uOaqaE\nQ9166eYZBa/TcvmMOl6nTZsGoPruCVSPaGq+7thfUOgDgUAgEAgEAoFAIBAINIxt2gNf1svlBGnU\nG0Wvroq6cDdKvTKHHXYYgNqdQV7nBGZ0p4j36HXcyXJCHrqLyzqrGAXz0x03ei1YxqhRo7LvuDuq\nO/H0aDkhPBe2wglEud1+xx5QsO7KeOBOrJbLNA0PxjbVMtwOXipNsbXDRjjxJrUxt1NIqJ24MH7O\n48m+1TRepx4v55nkzrsL7ZYSptKdeO7Yq8eNHgi346s25jzCLuSje0bmp/ZEUR71WtKrxzoBVZt9\n5plnsjTWX23RCQ4670azd3VdX7GPdAzSHtQGCOcxVXvkbrdjZmj/cY5ywjXO4+JCvGgf5AU2tXwn\nDkZb0bmZz6Z1UiHGfPmuPZ096nrivCvOA8DrGB5Hv1eviGNvNTqHba05T5+PbaOMHBdOz3nCHYvJ\nXZcKyeXWKwfHGnFMJOcJdaw8J+jI+hWF0Ep5wos8WY4hQhvTeZBzno4tx8BqpnhiZ0Db2rE8+Kwa\nlort4EKhurC86m2nveucynnWCTS6/ndsQycwyGfT/uL86VgG7p3ArclO+JGsBK2D2pgLPcxn03v5\nvqNIiTEWoatC0HUVnECvW0s0bC/XK7VH9psT4lbQ5tzvBv0dwDlM1xz2M/NVm3J5pJgUTmDWMbWc\nd1xtnnnrWOIcpqLPtEfHBC5i6jTTfsIDHwgEAoFAIBAIBAKBQAsgfsAHAoFAIBAIBAKBQCDQAtim\nKfTtAakRThxJ00i10DiW/F7pGkoZIUgDdoIgSntROgfhhI1cfE8KgCnFhHRYPqNSs3mdprF+jnKl\nVBzmp3V39H+2j6O4KA2FtCknoKW0U1LN9OiAE0xxYkkO7aHCFIk3pfLU69gm+nykImsf8pm1/UkF\ncvSkIvEs9pmW4eLA83stg/ah1zkRmzx13lGrnLiJ2g4p7G5MqM06gUbCHZVxlFUneKX1I31a7d0d\nBeARA22TlD10FRWrrJiYm/N0rHLeUlo95wZnK44G5+xR4UQy2S7a3k6kkbah9sC6Mg+1PV6vz817\n1QZYlqPfa50c5Y7fO6q31t2JJTqhPuLQQw/NPq9bt67mWYHqPOHozUXzU3vssCiflA3q3OMEAzmO\ndH0jzVbthPfqde5Ij+s7R1FOCdY5+9S2ZhrtyL0HOBq+prm52bVzSsxMy2XejpLv6Kn6PFyXVCyL\nc7KjUHeE5twMOJEvJ7DL9tR5hPeqaJjaL8H50M0Fur6w3XW+cccfXB/T9t17kOsTzhOarzsS4I5p\nuKMorKfaDtcNtx64IysnnXRS9nnp0qUAaqnabky3gmhiI3BzDvtD1w3OeePGjau73s1H2o7uWCT7\nSPuKtq7rC+unQsOpOPC0H32/zddDn80JsuqYYz76Hsw6q6iiO0rGsXb88cdnaatXrwZQO+ZSR5i6\ni22FBz4QCAQCgUAgEAgEAoEWwDbtgS8rWuZ2gJzngoJWQHXnUsWEuCOqnkPeq14B5qO7rtxR0ntZ\nL91FTe1i6nNoXQmKN3DXTne0+Fl3jrlzqh5ut4vvxKB4nRP0c95x3Zlz3mPu/B955JFZ2ve+9z0A\ntQJjgwYNqqufE+opu4PWyE5bSuzC7bo7b496dlIMiNGjR2dpFCPUdnVMDX52LA8XHq4odAt3/nVX\nl/k54S2OAbUn2rvu7i5btgxAbb9yp9eJq7gdUq0n28yFhdL8WBe9Li+CBlT7w4lLan4udFpZ8cTO\n3OEt6wl1IcxcqEvH1lAb5We1C6alQq0BXkDJ1d19zzK0LnnWkc6LTNOQOSlhH+1vzt1FYbXyzwVU\n20XrmRKsc55a57HTuVu/z6PIc9VZKCsi68JVudBGzsPpwqm5cek8kTrXso2LxCVZhmNFuPWF17l5\nRuGYQ84r7NZaF/bThVTieqIeW/e+w/wco06Fn/74xz/WPY8T7SvL/OgKNCpWq/bkPNZsO20H2qXa\nU0pE0rEx3DtjEWuH+aiwYF6oWPvQhV3lnO7WKLeuuvGhz831QlkLrh0dS4v56PPwvU/tk3V2+RYx\nvMNpY8EAACAASURBVIju4kFtC26ddGsj28qFGnYeeBdqWt+9naee+eg7GstwbE6+31EUWOvnwpo6\noUVne0XXsQytE5/DhRbV9ZJ2pqKJjgEVHvhAIBAIBAKBQCAQCAQCDSN+wAcCgUAgEAgEAoFAINAC\n2KYp9B2Bo2uqYAOpGUorIdXCxf50NDgn/KQUICcIQ+qGUq54j4plkSqqogykl1McTp+Rz6F0EQo7\nvPjii1kaKXlO0MKJmSgcvY40MPeMeh3pLkpdfPDBBwHUUrL5bEqFdZTAzkKRWJq7jp9dDEtHZXzp\npZeyNNKdjjrqqCyNz6p2x3uVQsm2c3QiR4Vy9XexjpWW7PqO9CT24cqVK5P15FhZs2ZNlubi1ZL6\n7ARPtA/Ytk60SsF7lT7GNEdPVZogP+t1jmbtxLKaIV7n6JlKUSMV080zKphDe3Q06KJ46OxLpfBx\nPkjRkbWuKbEfvU5pmQTz05jjvF6FcBxtmWNX2ywlHKlpThzHCWA6oUW2j9aP7U3hQcDHyXWU00aO\nb6Tog2Xp8qk45oAXqGJ/qnCfE3RytErCHQ9RKjPbxs2/7oiHW8P03vy6r3Mu+8sdjdP2cUJkPFqg\nz+3EE9Uu88+o8xvhYkYrnJCjO+LlhM0ctlY87pS4WVEdXDtwrdX5hGk6Jh3Nm32sc6CzMfd+4EQO\n2Se6JubfI4sEGN1YcXOrE6dzxzmdGDPbx72LqD25/Pieqe3IZ9O1NvXOUjRfNYMOXRRbPDWf6nzA\n9109oks4cUn324THgYFq3+v7PfPWOceJFdMO3RFdlqvlu7nCHf10wnZ859Q01lnf/Z1gONdJteUJ\nEyYAAJ577rm651KkRJKLjmd3BcIDHwgEAoFAIBAIBAKBQAtgu/HAp3ZdFU5gzIUT4fdr167N0lK7\nnorU7rjbgXc7wbprxp1f9Vjyew1rxfxciBMXAo+e91WrVtXVXb09LMOFVnFhT5y3XdO4U6s7smwD\n9ZbRCz1//vwsjd4FrQs9JM4DW7RD1pU7aW7Hzgn8qceEO67a/uxP3SFle6mdcIfSedGdx9MJ1uiO\nOXc3lSHA3VrdEebur/NSEypY54S6eK+yLbjTq23mwnY5DzzzdmHknHde60IbVJtlGwwcODBLSwld\nFYlllQ0/2ChSAkXO+6teJUJtj/dofztvnZvfaI86Hzk7y5el+enYcOJQnHNYP82Xu/zKAHCeQ+ed\ndcwM5zljndQWWAddB1xYHNbPhc/R9ubYGDZsWLLc1Lgu4z1oNARiWS+rprm5gc88fPjwLI0eGNfn\nji3jvPxu3ihar1wZTkQuL4CkdueEQ+mV1zbTfs9f557RwdmiCgQ6kT3HeGFdBg8enKUtWLCg7l73\nbtNKKArxRjaZexd0Y82Jvuo65JgXTtDSwbHi8sybsuH83DuZls98dXy4EHTMx4XDdYLGjq2kHtQD\nDjgAAPDUU0/V1XlrsTg6E2XXbjdXu3mZItr6nu9Yv25+c78v8qHgFE5Y1NmIY6Kx7x2LTstKrbVF\n4rkcky78ogrqMQSptsWBBx4IoLbNnNi4Y8Wlflt2NdMjPPCBQCAQCAQCgUAgEAi0AOIHfCAQCAQC\ngUAgEAgEAi2A7YZCn4KjjiptwsVZJ0WIFB+gSg9xVG0Xv1OpQqSuF1EMSQ/ReIWkHxcJOuRFfpRW\nQvqJUmZJV3axrdetW1eXpnF6SbnTdmT7KBWG9zq6nlLo+WxKKxwxYgQA4Le//W2WxnZWChcpOkq3\nIfW2M2ktZUXDXBrpREoJZZtonOrDDz+8Lo32pvRFJ55FG3PCT45y7mLDK41KRR0JJ1jDtqbNOrq+\nCiU6qr2LL8u6KAU7RRN2Yj9ahqNvuXaknWubkW6lom/sS0cr3RpHN8rmwevU9tg+KlC4//77A6il\najsBLabpOGcb6DinrRTFuXbxsFPPpmXQDlPxux1tu+hoReq4lNbTzXmss6PQqziWE4TiONDrHD2S\nc7uOl1SscUVnzYlFtHpHb3fUXx5LcWJu+nwp4U6laTr6paMyO7vj+C57RIvP44Te3NEZJ1Kmx0RY\nhjuiVHQky9FiXaxjPpvaJ+tPyi5QbTN3HMeJUDV6VGhrwq2DTNO+PuSQQwDUzovunYOf3ZE4pfiS\nhu6EBbX9Ha3d2Xv+vUuPRLpjSex/J7aXit+udVLbZvm6JrMMPSbn3lnccQ6uEUXvxQ7dxbYUjR7l\ndeKbjg6uY9uNQc6T+k7NvtJ7aSM6r7J/i0SAacPMQ5+RaXofr3e2594n9P2E87DWibauY4ljQ8em\nG2vu2IETQSz7TrW1bC888IFAIBAIBAKBQCAQCLQAthkPfHuEnZwHgDuCTujNhbCiqInm5zxuTtDB\nhQ5RcDdKd1HpFdddJNZLd+a4k6ThILibybpz9w6oelN1B4q7VrrDyp00J2am3n7uAOuumfMKuHAr\n3DVzoUP0uekJ1edgXfS5mZ/umju0Z9esUVESvaeI+UE7Uo8nBcS0Hdg2arPsM8d2UDjvUUrYznn0\nlA3gQtpxt5TeBucNU28+66m2Q9vWZ+C4cJ5jbdv8zrDWT70XKU+atgXHhQoqLl++vO65nQhWWfHE\nFDpDMMyxMJwIl+Z79tlnA6gd5847XTbUCu914Sdd+DMXFqdIkI2fWSe1H+dpoq04O1e7cMI6LN+F\nlnNsEs2P5em8xTK0LrxXhQR5jwpWcrxoGue/joR86+i1bs5T8Jm1bQ4++GAAtfMbn8V54J1Ypc6X\nbgzwHp0PUs/kPOWp8FxO7MnZhGNvFIlBuvq6duT3Ol+7dZXto7bDNBXLct5R593qrigK28U+0/cL\nzvn6TlaWtUkUhWxN1U/tyIXcys9Lbp4vCnPJdwetu2N55OsBVG1Cx4KzCc5Pem++TkB1bksJP2v9\n2+Op7y4oGtN8z2c4aKA6Hl0ISxdO1bFl1DvNe3TOccwIx87g9xwH+p7Pct17phP4dMwDnZtZvq7n\nvE7XCb5r6m83Z9+ss7YFf2s5pmyzwxAS4YEPBAKBQCAQCAQCgUCgBRA/4AOBQCAQCAQCgUAgEGgB\ntDyFvoh2kvrO0ZJIo1W6BinAmkYRIaWUOQEeR1HK5wt4ui3pIUpBckJkjkpFGolSj/I0I6V+kM6i\n1DDWXeknzMMJzClF3cUDd/QTUq6Urufou/ny889GUChFaW/sU0cJ7wjy9Strd6y39pdrLx4HGD16\ndJZG6pkTk1GQJuREu1ysaSeypHBiN6yrUpZSol1sfy2fz6g0KtqW1oM2qLZIW1VKN/u6iLLq4ke7\nuL+OdujGJeuqIn+Ofp+i+JWlZTV6XKgsFVNtzwkz8SiH0uA45h01XtPY5+64Q5HAmxOYcfNp/hmB\nqo0w7aWXXqq7Xuce9t/q1avrnsfRXR2t0AkzOQqfzrW0KZ1DeZ2msa1UxI4ib5of+821k7OH9s6H\nHbFFd9zFtRePSulcxrQ1a9ZkaaRf6rrq6Jyuzm6NYD86KrGC97gjHu6oRYpy70RH9ZgAx1FZ+rfa\njhMOc0JkTkjSCduR3qztTRFcR9Nuz3GzroCrD5/L9cnee++dpQ0ZMgRAlV4LVNtL5xG2iRPIdMcp\n3buMq7OzP9dfnE9S86Teq3Oba//U8SSdAx0l3s3p/OwEY12aExdzx5e6C7UZaPxYkaO3Oxt174h6\npMq937s2Yz5qo3yX0j7g3OiOmqXa2I0lnStcHm7O5fulvjdyXtPfX3weZwPuKInaPNtPj6tSqNsd\nPXVohr2FBz4QCAQCgUAgEAgEAoEWQMt74MvuepT1NDjBBu5G6c7XYYcdVncdd8ydp0Z3tOgd0Z0d\nt7PK753wku6auZBtFAVTwRruGnNnSb1ha9eurbkGqO7u6fOk2kef0bWBE/ljHTQ/7sy5XWH1zHD3\nTb0MLjRFPpSU1qUsygiHlWWDOM8jn189nnwGF5pM28sxPxyLgW2ju5HceXRemSI2CD0TRSHoHGsj\nVU9+diI16u2nt0fzdZ51to/bEXZedK0LvV/OdtSrx7GnHnjWVevk7DNlN121q+t29vV5HOvICRk6\nD44Lk+m8B/zeeaSKvFRuZ92FwOE4YR4aJpP1VM+Z83oSZRk8bn5zHjbHMtD6ubBPtDOda8ePHw8A\neOihh7I0J4CXbwtFV4aTayt/Qu2ObaK2w3leGQa0I13f+Hy6hnG86RzqGGvOC5aaD5yIrMJ5/vPQ\n8h07jf3khA3d2uG8rTouOTe5sH0K1kH7gHXQMvhsamN8bs3XvQt0B7ExxwbRuvL5jzrqqCyNz6+e\nP/ad2qezE5bhPNZqQ6kwg67Ozo7dnOlEHl2+Li21Hml+HHv6Luo8wrRFJ/qqaXzHUIFmzte67qdY\nbEXves321Lv3Qdd/XEsOOuigLI02qvObY6zRvnS+dPMWv9e2dV55F+4t/+7nWMJu7nHvYHqdvhMT\nbj1lGxSFn+Y7jRPfHPH/h6YGgMcff7wmD8AzTItYLl2J8MAHAoFAIBAIBAKBQCDQAmh5DzzRWbts\n3P3THRvupupu+uDBgwHUegR5ndaFu5O6e8UdHect1N0ot+tJz4ML5aTeP3duk9/znLjWff369QBq\nvdncyVIPFXeedQfanWVxu3DctVIvHJ/RhZfQNnPnBp13w+0y87yonmt1nsNGQ3yVua5oxzqfps/H\nHcUNGzZkaWxDx95wu89aFncy1XacNzl1/kp3cHlPUSgvwjE16GV0u+mO5aFjxu0gu113Z4spaFu4\n89y098MPPzxLI+NFd8Kpw+DO/BchZVtlPQuN5u/O+Wt/uz5wtufOu7sdeNqUtpkL7ebq7OzbhYfJ\nhxDU+Y1lcD7U/Nw4dN5R1wdqP479Q9aLeuxYhtaP/aH3OrYV7Uw9oZwzdIy4eTp1XrK98xtR9jyq\n2gmvY+g4wNuJO3fuvJmpdUj72K37LhSYC2no5hWW4TQ5aKep+4Dq+qxpaqv58l2oUoU77+485u4d\nw7EGx40bBwCYP39+XX46dztNk3yduhpFcyX7U5+Z5921n1588UUAtawIjj99n6Jt6buTQ9lQo6mz\n5S6Ulgtt587jc67SdYnziJuDHStS6+k8s47R587FEzoGmc/EiROztJUrV9aV69qxLIutq9huKdZm\nkRaIO/tPO9Pz7rRXt0boe7Zbf13INtq13sv8UmxSoGpL7ncN09w7pVvD3fub1skxBZxNcY3VtYPP\nrXZGu1FtGX6v93bGu1dnIjzwgUAgEAgEAoFAIBAItADiB3wgEAgEAoFAIBAIBAItgJan0DcaqsGl\nOSqdppGmoVQPFTsg+L1e5+gxpFUpPZVQCj3zcbQ6pdbwOkcp1nuZN2maKpJEerkKALENHCVRaTKk\n12l+TpTHwQmcsX6Oau/ou0p7IXVUn4N0TIYe0roWhU9Job2UK0e/ddTDFMXShY5x4jhF4XycfbIu\njkKnFEMnvuLKyPexC5+l9XTjyFGXXKhERz0jnAia0qNo505szwn6HXDAAVnaL37xCwC1NGaOC6Vb\nkmpfRMEtgzLCivnrXDuyvzWNz3jMMcfU5e3EbFLhtQBPr3M0zxSd0VEmtU85XzjKMymi+h3nAEeb\nLis86MaXO1KicCJqbsyRfu/KVbsdOnRozXcKXWMcnde1d1fQA1Nzj7Y17UQpszyu5e7VeZ6f3dEq\nR6F34ZOcmJiba7W92Bd6XT4snD4jbbbseqnXOXErZ3fu6I8bU05wkvOW1oXjR+dGHiF64IEHsjRH\n1XXY2sJhzr7dOHXhC1VEi7bojia6Pi5qB7fGEmVFd93xBzcGnDieO3bkQho6wTy2QVFfupCkbCsd\ng26e5XXDhw/P0lJjpb1HgboSZY/3urVC+5HhQjWsIdtP7ZF9pPMG21ZthWO5KHysEzB29eNaw/x0\nvXHvmayfmzeLQl3SLnTMse76Dubanval76GEHg3me5s+B+vgxPg6O0x1GYQHPhAIBAKBQCAQCAQC\ngRZAy3vgUyja+XK7im6niLtRFDUBqrstuivF3SC3i6/gjpYTLHKhwDQP7ri53VHdPeIzOfE8F56M\nu0z6PHxuFeFiubpzmgqP4nZEdRefu9e6W+gEhZzYDvOZMmVKlkaBE302hmai9xPwO88OZUWaiuB2\n050XRduBbThgwIC6fJwgjO7Cche0SCAkFYpG4cRmUoIeen3eq+mEddwurMtPn8eJ8jgmA8vVnWbm\n4wTUXJpjCOjuL3fF1SNIuHBgiq4OGeegZTnRSH7WdnQiMW7Oc3A7187rlfJYue/Uc+gYGawz+0XL\n0n7Ol6GeBX7WeYt95sQkncfciZipXTjxPGffbp7gcyvDiNfpnJfyyrZXYCw1BzpRJue5cMKUyhzg\nuqaeFcf8SHk9XV1Sc5p+dkwSBfvCiSeyr1XgjHana63rGyf66ZgMrp4ujZ+LvPeufq5cimo5lkfZ\nUIWKjs5/KY9skS26UJpjxowBUDuuXOgrF/aU17nwVTqunZiue55Gn829/+Xva6ussu88jgXlRB55\nj66/HNNOSMyJhmkYOc4Xbv7u7kj1mUvTuZFsOGWcut8hjuHpWDWEe1d2It5lx7QLBUtvt2Paut8y\nTlBXhRbd+wnTtAyOZ51/mebElHVs0gNP4Up9tiJsrXe68MAHAoFAIBAIBAKBQCDQAogf8IFAIBAI\nBAKBQCAQCLQAtmkKvRMucRQ+pU046jcpF6NGjcrSSP9QGgavc2IdSs0iXYN0FcDHP3Z0LX6vtHbC\nUVFcLGZC6b6kwWk9lfKUr7uL+e7E7pzYixPq03tZB0eP0XtJ7TnwwAOzNB5zeOGFF7I01lX73lEW\nHVJUmLYogUV0TdZD+5DPrMcq2P56NMLFiGUfu5j2ahN5WifgBcwcrc89B9tQbYb96GjRfB5Hw3MU\nbKVCOWG5fP6an9oO89br2H5aLumfStVlW+hzs9/KCpgVUUdT33fWEY78Pc5GnUjNk08+mX0+8cQT\nAdTOl06IxtGGCTdHOHsoOpZB6rweL+E40LqQQs5nU8q9Eyfl3O1i2ep86WiCjkLPz06QU9vHxXxn\nnd0RL4U7asV73Jzgjt8oys6J7YHey3ronEfbUoEh2oweG2Af63XMr6z4l5uT3fEid4RN+yRFMXXC\nVOwTHW/uKIMTLE0dWyrqNze2HE3fzeGc89z7hDtW4N5jXFu4d7TOpJ2mxBPdURvtE/f+w75249QJ\nAeq7oKPQMz99F0ytG1ou83PCnKnjH9pfnIO0Tu5dlNA2c8cO3BzI6zR+Oa9bv359lkYb1LowHx1v\n7Bddpwl3FKHZKDufajs6MTm22SuvvFKXh3sHc0cV9V63bri46e7dj5913uD7U+odUPvMvcvmv9N8\nnfCvszNtMydO6o6S8ns3b7lx6N7zOjJvtffe8MAHAoFAIBAIBAKBQCDQAtimPfCK1E6sE19zYaMY\njgyoChy43XHNz3l6nZiX2xXiPUVhcZyYCHdnU2I36vngTpULhaK7cY61wGfU3Wvngecul6axHZ2Y\niduV0jIcy+Doo48GANx333119zqhtLLiLZ2J1M66epm4k8gwUYBnJ7AvnPfGhQZz4aTUnlyIPec9\ncPbuBAjZP27XNiWE4zxpReFumLfahPME0/Zfeumlunu1XNqn5kcPgIqqOMaDs8+y4RXL2GIjrJDU\nPc7TSIwePbruOhci0IkWORSFNaTdOO+Ygv2iXh3ODeploIfH2S/7UcccxZJ0F59jTp9RxeEIt54Q\nzjOk8zrrrrbi2B+svz4H52dlCLBdikIIdsSj21lwQqvaJ5yvyoYCc2hPKKeUUKETm3OsFvaxCy1b\nJDDGe5w4XVnxVffcrv/VZvkuoB5l2pumrVixAkA1dCtQ9eAVedbbK5qYQuqZFan66L20O2XAufWF\n/anvSc6L7rz3TvQtX0+tn/YT5yj37uS806yfe08sWmvdeGNdNEwq7b1oPqHN6LjgvU5cUtmKXM/X\nrVuXpbVHNNHVqww6g4FUFF6QbasCkaynvne4dYX2oO89HLdqF6yD8/LrdSmRTAXHhrMB9p/aaorp\noXBsN85HFNLU53DjWt/z+FnrwrZS1o0L2e3mic4II9fe3yHhgQ8EAoFAIBAIBAKBQKAFED/gA4FA\nIBAIBAKBQCAQaAFs0xT6oliLhBO3cnQ8pWumhA3cvS5mpaNcOGqNUlx4ndJOHIWaFBi9Nx87sUhw\ny8VLZFlaPr939EMXw1ZjepKy4mhTmsb2c/QYpVsyHrcTVimKP55CW5Sw9lAzCaU/kU6k9SY1TWmL\nbBNNc0cymLeW4drLHVdw4nQp4baiuMvs49WrV9c8g0JpeLTdojZzgpNO3IoCQXr8gnRjtWOOFX1u\nR110aaeccgoAYMmSJVmaiw/s6GJlabGdiSJhFieWSRtVSrGLOcv+dfRIJ9Tj4qu7eO06/+67774A\naqmspGU6sTnaoPaZqyc/a74aB5qgjbr50s09+ox8Nr2O+bnx7+J2q63wez0aQ/qfPpvrqxRdtqvh\n7N6JldJOdEzzHneErYi+XVaYlO2q86o7VuZiEudF3xyFXuGEkNgGjrasSD2He7cpWmt5ndosn9eJ\nECrdlmtLUQzzzkLZvItsnu2q7yak5+p1TuzK9R1txsXC1rqwXNdPCqapHTm743XsL3c8VPtVbTv1\nPKnjN05UzR0F0vHL9xdd9936656D8/GyZcuyND6TewcqOoLSqHhiarwVzaOufFdPrldqj6TTu/dY\nbW/OG+64oTv64QSktS4c3+7Z3FFJpjkRavdOV/Qu4n6vuNjwbDOdmxnD3R3xc3OtvlePHz8eAPDc\nc89laWwLJ0TZFceCihAe+EAgEAgEAoFAIBAIBFoALe+BT+3AFnngnYCW2+1x4eHcbiZ3fpzQl+bH\nHTcXskB3gLj7pjtZrL96UfPlA1XxJt3B424nd4y07mXDJzkRJXobXHg4t4ur97rwSU7QLf8d4L3H\nbkeZO7+an9ulTKGMYFijoinO46l9fcQRRwCo7RMXxsh55dlOuuvNZ9Z+d7boBA3p0VNvixtTLtwQ\nxWaeeuopAMCgQYPqvjvyyCOzNI437Wvn+XCieITWk2Xodc7Tyry1fZyX3wk10SugHgW2t4YISo0L\nRVft3KaYSM6rq2C7OPEXBdvZeamczbt+cfOv2g3roGJyDB2p8yDzYxkq3Ol20+nFVzEbjoe99tqr\n7joV8KItubnehd5z4dw0jbanfcF7lRlB1pHOCS68n/P8pmyvLRss660vsmvnCXEsAT6XCwHoPDqu\nXcuKBDkxLx3TqfCB6jlUtghQuzY6Zk4qlJKON9qRm8MVZVk9ri70ajnPs9qdY4hxbizytHXW/Fb2\n+YrWb+cJd6xEznc6JjnGtB04f2g/0Qb0PcS946Tq7Dzq2v/5MKq6vrkwm06crqwAoguH6BhmLFfb\nh9fp/Om86GQV6XMfdthhAIDf/OY3WRqfu2iO66p1NTXXFa21KUaIPjdZZ2p7bo6gSJsT2XW/JfQ6\n/l7QdZ3XufC6uk5yPmAZ+ruBdXbPXRS6zdkybUXXc96j1/G5dQ6nfelzMz99X3ZjM1+WYmsyKInw\nwAcCgUAgEAgEAoFAINACiB/wgUAgEAgEAoFAIBAItABankKfgqPOuDQXU12pOKTDOQEXpbOQuuEE\neJwwlpZLepFS7wYOHAigVpzIxZEmlUlpNMxH60cKDqkjSolhrFOlxKxcubKunvn6Aj7+IqmtTgxD\nKV9OqCcVa9FRe929rlyl1qZizbcXjcahVbjY546ayc/u2IDaHftEKY/8XqlNpAk5qpYev2BdlA5O\n8RqNsck0tY/FixcDAB599FEAVcqv1l3tfsiQIXV1d9QqirooFYrPo/SnlICKEzJR0Fa1Xxxln/Rt\nBevl5oNmIWV7OrY4lyht3B3B4Hyh8Wqd+CXbzwn6afs4ajTroGU8++yzAIA1a9bU5edE5AhHi9Oy\nODacIJnSCgcMGACgdjxwfnFCQUVzlKPwEtpnzFtjU9PO9IgX57wUDVDR3nkwRVEvohm6mOq0OxUO\ndMeieK+2VyrOtjtO5+baoiN27pgN+1Gvy8dCdtR8LYv5ubLUFnWNJ5zonIMrl+NX68e6a7tzLXB0\n/mHDhmVpnP/Vtp0Abap+XUFF1Txdf3Fc6XznxiSv07mI85wTtnJt6IQ83dEiBeuqayI/O0E0J1DG\nNHfkwh2D0+tcPXmP2qezHSdUzLzVZt06zflL5172gfaLO+rmxPiIZtCdFUXHe9kHEyZMqLtO53m2\nt87z7HNtH37vjt64eVpt1M1hbFt992IfsO+Vjp4SZFW4scnxoLbMz+74iLMpvW7w4MEAat9D+b3+\n1nJzrTu22Uw6fXjgA4FAIBAIBAKBQCAQaAG0vAc+tdPhvAJOYEg90fzMECIAMGrUKAC1u1wuDBnL\nUI+SE51xIeW4o6teTyfwRtEGJ4qjnh96aFS8gTtkFLhzYl3qUaJn1YmjudATTmxNvb2p8GBaF+aj\nu3DOu+BC2j388MMAanfcXMinVCgfRVmvul7THrEeJ45Er+6YMWOyNCeO43afnXfLsUtYnu7s0/ul\nu970rGhb0wbVFmk/auPc1XReXZahO58sS+vJcaHjw7FWWP7SpUuzNNqC7lw7Rgfb1IXqcSH/NI12\np7vOuoudL7eIDdCoN6rRcGD6nRO44fyhwnF8Hu1v9pv2N+ccnQ/YzjqH8p6ikFxsM4aEAar9rCGM\naF9aLvOh3WpZfB7Xt5wjAc9O4medG3mP81w5D6fao5vzHCOEz6HjkEJQLiyoszMXsqooZJTzvOXv\ny39f5GVyZXNu0DmC0LWWnh8ndKlluDUnL/SVz4dwLC3Xrqmwa84b5sTRXFmOneaEyNy9jYZX0/mf\n86mOI+atolGsHxlTAPD0008DKM8GaLYnlGA9tB34/PosfJ9x/a99Qhtz4dS0DZ03nPdqGXw/dCFl\nneCnY4rw2Zwn09mOrmVOLI3zohvTTgxZvbXuXcSF42L9tW1pdzp+Od7c+7iiGfZWNrRcUThr4+qm\n8wAAIABJREFUftZ3dPf+RlvRe10oP67drly9zgnLErqe8vcC139d39xa5lhPTNO1ljagvyVoh44J\n5cLx6btYSqhb8+NzqE25ubuZCA98IBAIBAKBQCAQCAQCLYD4AR8IBAKBQCAQCAQCgUALYJum0Jel\nrigNxIl6PfnkkwCAo446KkujiJHSNRxNhJQMrUueXgdUKTAuBqbSTkkZ1edxInKkKykNmvVz4mOk\nzSmV2VEcSSfROjmBFdJ49HhCPiZzW3VPiY/ocysVjWDMb0evcnGpy8YIbS/1qiydlG2iNrR8+XIA\nxWIgtBkn8Kdt7dqBlCWlpqtAD0E7dpQlFdTK112vYxuuXr06+45CjRxPQNW2dGy5OMSkRTlaoZbv\nYpY6CqejfbIOSgdje6twnT5TPj9Hqe6qOPDtEVDM100/a99y3nBx1t0cqu1N2poTF3T2qM/Pca4U\nOtenLEPnUObjBAXdEQc+tz4P+1nnayekxHt1XuLzap2Yj6Olu1jJ2j6cC5QGSMFQjansaPCOap2K\nF55PK4oLnUKKQu8E3pRuy7Gnx8HYdzo38rMTmSwSB0wJ2hYJEDoqaJ7OWXQEh5+LjjK4Y3pubk6J\n52kay9Vx6cYKv9c6sy6///3vszQnRJYSjO0opbnsfOfECbVs1pECrkBV5Eopy2wTvmdo3nrsg/Om\nlsH5S9uaduyOdjohTV2H8seDNB/3rsXPTvRO5ycneMZ83fEkfcd0opkcly5mt9oT51x9Rr6X6Dr0\n1FNP1dRJn61IJLa7HN1wv02cqKUeEaOt6NrEttV1g22g79757/SzroPuXdKJ3dEOnGCrE+R0wnbu\niBDzUBtgW+nzcDxoWzA/nd/4LqtrB59H10vOedova9eurXkewB/xS/1O6cixyDIID3wgEAgEAoFA\nIBAIBAItgJb3wHcEbjedOzG6k8idQ91BpHCL7l5xh1V3mbh7ozs23MXR3SvuzuiuN3eX1BvhQsZx\np0t367grq6ES6K2i11PzZZ10Z5nPod5Z5qtluV1cJyhEaLlsH72ObaXtw/y0DNZ51apVWRpZBdo+\n7DcnGNOR3bD8vWXDJzmvF+1I7YQ7hJofGRK6685n1R1Pfta2pp3rrjzLUyE4J1bGdneeAhd+TEML\nPfLIIzV11vGxbNkyAMDEiROzNBdGh+NRbcLt9DqhHva/E/vRe7lz68Kf6ThnGc8991xdXXTnmGPE\nea06G2XFPB0DgN/rTjPtTOtOG3Bhg7TPXEgWJ1qU8shpfi4MJD9r/egJcnMjGRLaP/TqOOaUzvUs\nXxlL3Nl3tqpgm2oZzFvzy9cX8GGa2Adqj0440jG/UoJ1ZdCIoGdb5bj20jSuoeptcTbLdtC+dl5i\n50VPhYwr2zYulJMLa8Vn03WLZem6yrqo3bF8fR7m54SViuAEojiXaX4pUURlZ7GvVFySfVBkIyl2\nQXtRNqShGwd8PmUTTJkyBUDt+HPeUsL1sbKGCPXy8zodu2TUOE+5vpemwhY78TeWpdczD+1rx2Rh\nG7h6OkFjfW7HOOGzufBwLlSs1pkCtVoXF6a02V721BhwzBgF2/4Pf/hDlvbWt74VgF+T3XuHMkec\n0GZKfNOt027tdOPKzQH8rDbl3scd+G6qLAwXRo6fnfiilkvbVPuhfast/+53v6urS9k1NMLIBQKB\nQCAQCAQCgUAgEMgQP+ADgUAgEAgEAoFAIBBoAbQ8hb4z4vEpfYh0EqWykV6h9EZS/FRUi3QWJ5jj\nynMCI0oBIv1ZKS6OKsTrKLoAVGkkBx98cJZGWgefQ2Pd83mVcu3igZJGoxRO1t3F+dT+ScWTdND2\nYXsrlYr1uu+++7I00mOUJqhUGaIjgkxFKKLPuJjvrl/dUQtHRSVVuSi2OPtEaUfsR7Vjfq/Xsd2V\nFp2KH650p5NOOglA9aiD9iuPbCj9kOU6G9dxyaMgSnviWFH7dLRTPq8+t6NRMc3RLV1bKJzdEUU2\n0pmCJ2XzcBR6HdP77LMPgNq2dWJE/Kw0aCfIlpoH1KZ4j6OKal14j45jivs4O3f1cFRq9qPOr6yL\nE/N09ENtH9qhm29cjGYdG05kiMdQnChX2djwipSwXSo9BRc/19EqaXeOHqvHuwi3Jrt5Ve2Jn93R\nBGdjmh/XPyfcqc/BZ3ProLMJ1rPo3cHN/05kKrWW6Xe0MRV5cmJnXGsdxdSJBrZVXpnruoJ+6uZv\nbWu2pwpbUbxSqcPsT513XOxsvn8oRZzl6Ximvbn48zp/cjzouHDPwXJTx1303YjQeYz25OYxJziq\n/U/7cIKfLv62tq0TbuN8cOedd2ZppO67mO/dJfZ7I+A85ET5dM5bs2YNgNq2daLS/F77mW3gBH91\nHuR6r7bsjnK5fmb/0Ub1XY1lpYSC9XPZ3zwKjjWtpxPKc+DzqjAx13tdE9yx67L21RV2GB74QCAQ\nCAQCgUAgEAgEWgAt74Evi5TH1e006g4Ud9tT4To0TfPjTq3uVDFv3TXjbqvuUjqhJubjvC3Oa+TC\nZLFc3Y1z3gt+7wQb1PPhwtiwzprmwjy4UE756xUuLIt6xliu7v45j7LLL4X27uymvArOY6J1dKJM\nDFVTdB3hPH/ars7D7ETInPecO7zO+6r9Ss8tPeYqcEMWSJGXhnap4dpYvtpxqp/0eVw4EHpGtC70\njOjYZ/s5T4ZjLWh+tP0itkRnoohtwjo5+1GP1KBBgwB4oTVNcyHW2OdF81aq/1ydtQwXJjFv386D\n5ASFnIfNzSn63CxLxwjL07rTztQTly8LqLaj2pmba//4xz/WlesEilLhvLoarg/ZXmp3XId0nI8c\nORKAF0ByNqt9Qq+MCz+ZEo8CPGvAhU1kftqf+XnfhQx1YQQdc8jV04UMVaT6WN87aPvKxlOvMeFs\n9je/+U1NPbXcIqZNZ9lge9ZlVx8XApLvFSrc58Jc8Vl1XaOH0HnWdR2i0Ji2qxN65DtjUThEfuZ7\nYlGIMNdWjnHK65wX1rFBdHywTiqU696zCRV35Prz/PPPZ2m8R8t171ldvZ52JESYY0Y66Pr785//\nHABwyimn1OWjtkfhar53AdX+0LLcbxj3DuSYuI5tnA8Vq/3jRJpdGFFCxwjrXvTOwrGr4RxdmGrC\nCXfOnTs3S3MeeCdimQp73dUID3wgEAgEAoFAIBAIBAItgPgBHwgEAoFAIBAIBAKBQAtgu6HQl4WL\nx05qhsYbHzFiBIBaOpajfCu9lyD9Q2lGSt0iSEFR2gnhqJFal/Xr19ddR7BcpWYqZSUF3uvisbt4\nkirEwu/1OIGjQDpqK+k5Sssh/cwJDjoBra6g8rVH+C4VS9YJAqmQCSlBjp7kqMDumR3lTW2Xbafx\nfZmPUi0dXdIJsrAMxr3WNiddTm2C3zuBSLWXlStXAqi1Yxfrlm2h1FHaoqM2K+2Qz6H2xHo523Ei\nQ0XHJxqNr+3Q6L1F8Zf5/SOPPJKlHXTQQQB8HGGl5jlBTqI9x1ic2I6j7jtaH6+jjaituLjDtAtH\na0xRb4HqcztxMr2Oz6FUUdqU2pkTu2P91c44Tt1c7+jNXUH1K2t/2jf87GivpGcDwOjRo+vK4Hzh\njm3p2qT0Z8LZpxMncrRYRw/lGq9zGPuT9dPn5vVObEn7lWuyo7PqvSlatYshr2U4YVknOsbytL0p\n+KRldJYQ7NaAtiGfVZ/vpz/9KQDgwAMPzNJIA9c25JjVtZvvJO6IjTvW5o41OJE9JxjnjvvwOr3e\nHf3ic+tayzZwQmZO6FTB/JwwpTtu6p5b68d3PCcI646+Ovvr7PmuI0J57t3PjWl+1rV2/vz5AGqF\nqXm819Hb9bcHj3SorfAeFzfdCRO747AqOEgbYp/pWkZav87N7D+dN3lPkaiiW+tpI1p31kXfoTmW\n9N5HH30UALB8+fIsza2nbl5tpkhieOADgUAgEAgEAoFAIBBoAbS8B77Iu5W6jnDeQifM9dRTT2Vp\nkydPBlC7C8kynEdQwx7kd0mB6o6T7ka552FddUeSu1G6izphwgQAtbtreU+WtonulhFuB8qFmHHh\ndrhDp95xt/OV8lKql4Pto/dS2MTVxXn6yno9G9lRc0Im7bnX2R2fX3cFBwwYUHdd/nrN23n0ndCa\n9hNtQXdXaZcuvyLPJG2QIixjx47NvqPtar7crXWeBe1/3qMihs5D6YSH8vkC1bZw/e92n5944om6\n63S8ObEqV65L62pPlvMcK1i+tq3bnXdj2oHfq0eU85ELx6f5OVEl1k/7lOJb2o7MRwV9CNq5zn0s\n3wkjuhBjLuyjg3ozeY/aCp9R53DWXQWKaN8q8kYvg9qMYz90B7i52q1vDJkEVNtVbYfzkQs5pWuo\nExhz6xXbWuviWBguZBvnBm3z/LjQ71woMn4uYgUwzQnmqY2xDJ3XuYZqfs6Txe+1zTjOyOwDqnbn\nQj41E2XnThc+WNNWrFgBoDa0FBlo7r1PxbNogzqPcLw79qQbr9qWnNucmKrOS3lhTP0/+1+9m27O\nZL86xpNjtmk9naAu60wGHlBtAw3HyM+6dt9999115aZYXGXZblsDZX9zOOaue3dg+LwHH3wwSzvr\nrLMA1NoZ5wEVwOM8oOEiCccEUruhLetay7po3TlfcI5wgqX628gxR7kWa9u5dzo+j9aT9dN1lW3g\n1lqd38jmdMxdxxpzNtgMNH+2DQQCgUAgEAgEAoFAIFCI+AEfCAQCgUAgEAgEAoFAC6DlKfSdTTV1\nVCFSUlTUy9EWSQlR6p2Li+mocSzP0dYd1drF99T88iI6QL3YnNJKWL7SaVzs0bICKzwyoBRHR7ly\n1DHWQevC/PR6Vz8nqOcozCm0l3KVutbl6SjTSm+jHT300ENZ2pgxYwDU0kmdwAyfuUjskGlKt6KN\nKZ3XxXznPXrvfvvtB6CW2sR+Wrp0ac01QJV2qNRMUrbccRLtaz6b0m1ZTx2/HCuOYqr58boiISmW\np/MB79H+S8XdLrKrRql+Kepg2bx0bLFtSS3TNCdg6WJ5q+2RqqlUPyfgxDo48Sc3hrSfaS96b14I\nVPuWdqnX0370GR291sWcd/Rq2pRSRQml8HGe1BjcbCt3zEP7xVHRy85FKXTW3Kdwx9W0/dmupC8D\nwOLFiwEAEydOzNKc2BHnKx3nXDf0OsKJHTo6v9aZn9XuHK2ddeD1ujbys67hbk12/Up7c8cJdL5k\nfkoJzdOrNW8dl8xbj/2x3B/+8Id19zpxKdfPZeNmd5Tm3J5Y3O4e9sWcOXOyNI5j7Tu2nVKMadM6\nB3K8O5quwvW7E5ujTesxCba/Oy6Rvw9Iv3fqkQD3PE4Mku/FmsZ20XHO69yYWbBgQZb2/7V37rFy\nVWUUXzeh8gdpIqUo1JZKC7VFBURbSZvyiFVKAEFjxBqtMcRE0bSGNBGMicb4jImCBBsUEMEGS/FR\nhNIWBIm8lMjDtrSQPmhKQTAICOhVQ+sfZp1ZM3f1nHNn5t47c1m/pOnNnpnz2Oc7+8zsb+31cZmk\nW+KpjIRB8UhQFu9uaZrCsXHbtm1FG/8++eSTizbGiH4/4T2o38cZw3oN+D7tb143NV11z1OOA1ze\ndfzxxxevMQZ0nOGzVpfpcb9Ofq/x45Y8EcYW4OOa8c/lGUBjmUyVWaJb8hsTuxBCCCGEEEIIIZTS\n9xn4MqoyDWXlvLSNs1I6U/Tkk08CAGbMmFG0udkZl53m3y5z7IyQXBbVlRbSGSqXQePME2fedLvc\nhjPncaWx9LPO7MeVrCkrOaX7dbOtPGadVXRlbDijrDOYdTPww51Ja1f9UfY57Vees2aYOSM9f/78\nIZ/V2U32uyuB5Pavpjyc8dSMAvtQZzeZeXdlDl2mk9dajVSYcXQmcQqPWTMfvMaaUeC+nPGTm1VW\nXFkTHrOeD9UCqjzgMVeZm9QtGdeNDGrZuObK2LgMmfYZTTznzZtXtDH740zx1LCG11n7h9e8ysCS\nOAWF7pcmSRqPTsXR+prGlFNMuRhw2aey0o0K71O9BsyM6H3A89D7mjF36623Fm08LpcpdtTNhI40\nzpjSKSvWr18PoFFOTl/XjCSvZ9V44Er7ufuyNYsO+GyyK3/F+HSmr4wZp05zce+M7dxzQvvRlYdj\nZl23x9jRLG5r6UUA2Lp1KwDgkUceKdqYoXeKw9F4/naKiwlX6kxN7JgdXrBgQdHmDAOZ1awyluS9\nrdfOmdPx+axjG5+jrgQcTcacykTP0SmJmHl3SklnZKbHxG3ruMu/tX94rXVMZcnS66+/fsh5D1dF\nCYxOSblu4DLwbjzi9dDvYLfccgsA4PHHHy/a3HdDXjftb/6t38cYj87UWJ+Tzgibn2HJtiq1G8dp\nZ26ocebuTW5bt8f9u+/B2j933303gObvb2WGqm5MaCceR4Jk4EMIIYQQQgghhD4gP+BDCCGEEEII\nIYQ+YFxL6LsFJSQqcfnNb34DAFi2bNmQ9zuzI1cX00noVTbF/TlzKZWuOJkopSVqUPHoo482bUNN\nSmjOou/n3662tTOU0HN0JiqUeqkUh8fuliyoxJDHogYnlDKrzNdJFsvoNUmVk/BoTNx3330AmmXM\njDGNAyfl5vacmZGTQGu/cnsas1OnTh3S5oypeL1Zi1uNuogeu5PkE7cvJ7l3ONmpk3pqTLCvVA52\nxx13AGiW6taVLJe1DZequvF198tj12vG92kc3X777QCazcTcUgRK2NxSGTXGcmMjr72TLauEnmOJ\nynwp6dRz5DG4ZTmMJScXVJwZoZN/O1k9Y9MtJXL1ynUJFeNV+3HVqlUAmsdG9o8zI1LKll6MhNy0\nE4NZ7S9KmNXY7qijjgLQLLV04xb7RMcc9rU+15wRHbftliFp//L6uHGL+9DtMmY1dnlMjGHdh36W\n+9L7iDHm7je9j/S5S3ivan/zHFWqu3LlyiH7deOGuwecHHgsn7vORLbMCFLHB8q8p02bVrTNnDkT\nQHNMMHac7Fjfx7HAyX7V2JXH4JZiaNzxs2zTZx7jSPfvlnPyeurzjX9PmjSpaKP0Wt/H/TqjUze2\nbtq0qfh7zZo1AJrNPXldNJ5cP47UM3as4PXQa+u+D3JJqd6rO3fuBAAsWrSoaDvppJMANMcDr4cz\n/NXxktdXx0sux9Hxl2ajXGqs940zE+WxuOe/btctFaH8XffhjBZp8sdlWEDzctHW89bnb9l3ul4Z\ny5KBDyGEEEIIIYQQ+oC+z8CXmULVLdVUdzZFZwE52/Twww8XbbNmzQLgy8NpG2eKXOZQZ4DcjKkz\nkeOMpWZ0XNmGLVu2AGjMXp199tnFay5j47LoPCaX9XdKATc778rOOOMpne1nZoL9DjRmBMfKlOlA\n+6hrUObizpneaBuzUTpLzT52GSU9xrqmYWWGPi6z7sp26TFPnjwZALBw4cIh73fn7WY+naGUK8dY\nVk5GX2NfuPPW/mEWREsJ0aRFcdl70u3sZlm2oZ0SYc7YzplRPfHEEwCajTGnTJkCoHksc/HjSsbx\nM660jI6DrSaIQKO/ddzgZ90sP89Ds558n2YfGdMaK65kDs9Nt+dMb9x5uww8t6PXhfu78847i7bH\nHnsMQHMGnv1dpSapy3A+040yru7Z6FRszNABwMUXXwyg+fozo6RKDWaKNBOq2arW/WqWx5m9sm9c\nX7ux2xkMtr4HKC93p+Ml7xV9NvL+0M86YyxnPOXKNvL1yy+/vGjjd4YyZZdur5ezn2Xmni5zrLAf\nVq9eXbR95jOfAdCcnXbf+xiL2td8n1Mlahy7Y+KzST/bmrHWfblSvDxfd/01npjp1OvP89Hxm/2o\nxmiMT41ZmoppZlTHNOJMI8vK8PaKQadSZZLN49Nry+vh7lXFGfnyWvH7PgAce+yxALzSUcc3jlf6\nXOP11cw196fX/o9//GPTsWnpVG5X7y8+t1x5OqdO0/uBn9HzpvJAS13yHnFqSfd90I3T7jvnWMcU\nSQY+hBBCCCGEEELoA/IDPoQQQgghhBBC6AP6XkJP6kpX29me2w5lKipvPProowE0y4ycGYWTwrTW\njdVjUOmIkyhTHqLvc1IPylgoA1OZE7fhTJRU9uJqufOYVIrj6oE6Ew7uT6WLTh5L8xg1duE+9LM8\nlipjs16RwLTi4k7jiTKzXbt2FW2zZ88G4PvVXROlzFjHmYs4M0a9xowLZzCjkqrWc1QpFo9ZY5wy\nQT1HxrOeIz/jTHlUFub24eo5b9++HQDw9NNPF23OIIr9o8fXa3IrxdWBV9xyAkqUf/KTnxRtX//6\n1wE0jxHuvCmjVNMZ9pka5nC/anjEa69SUSdldjLoVgmzky1XLengciRnCKVjKD+jMcD9qvyey1/0\nON19wD5bu3Zt0cb7v25d8yo6jc2yz9ddSqTHzbFHt8v+1KUbd911FwDgjDPOKNq4HZUyc3tuHNR4\n4rVwNa1Vfukk4s6MsfUZptea21NJKt/vlpe566pjlFti4sZhN+bxbz1vSufVNJD3oxtXndS8V0ye\nHO543PI+4pYI6DKqq6++GgDwqU99qmijQbB7RrjxzhnB6fsYq9qv/B6nYyX3x3FW38+xxY0xzgCz\nqq49X1fDMfLUU08Vf/PZefPNNw9pc8Z2Dr1mZbJ6x1jHYl1Zv/tuVbUExo2hHFdUQs9rdeqppxZt\nRxxxRNO+9H1uOaa7D/R9HKd5L+n3QrdMj9de45zLMnS7rBPvlg3zOQA0ltdWfeclbumlM7bstfFL\nSQY+hBBCCCGEEELoA8ZNBt5RlUV373NtOttNOOu+Y8eOoo2zjlpixJUbcmZHbr98n86YcubLlWnR\nmXDO6Gp2ae7cuQC8cZzrA563Ziq4X2fUp5kn7teVm3Olp3T/PA/NMm/duhWAVze4bE3VrNlIGpzU\njTv3Gf0sszZOlbFx48aijQYl2q8uK+RmUssyDlV94wynysrxuOvP43OmVZoV4HV1Jk8ui+5iQrNg\n/NtlcPWznOHVbJkzPOqV2dp2xjyX/XP9w9dVjcDSch/4wAeGbNtlhlQlxPFHj5PXXjPWVG64cVBn\n2/Vvwvhy2UdnmMPj1KxSmZLCjW8aF05t5e4RZ0R3zTXXAGg2f2o9Jv27bgmcsY7RVlwsOmM7vfd/\n/etfA2hWQJx88skAmp9XzChpNpH9pOZJjC1XTlOfa4wLjW1eM21z90DrMTnDWmcSqmM4/9bzdgZ4\nzGrp+dAI1qllrrrqqqKNZpVVZfbctSqLrV6LO8UpKxgTek9yXNJrx1JeV155ZdG2ZMkSAMAxxxxT\ntDkTOWdUx2PQ8c6VuWIsqiqRx0eFgKpRmN106kQdi3icrgSwQjUQlQBAI1v6hz/8oWij8a4zAXXH\nUFUersyottcpMzDW83LfT93z0j1fiN6/NHjTMpWMjRNPPLFoO/LIIwF4RaSOq4whxr4eF8cwGhUC\nwPTp04ccE8erBx54oGh785vfPOS8GDcsCQcAf/3rXwE0j6/OpNl9B2I/6vcdno/7XaX0WpwlAx9C\nCCGEEEIIIfQB+QEfQgghhBBCCCH0AeNaQl9FmYza1aV25ggq4aDclvIpoCHPVAkSZVAqh3JSGMo6\nVC7Hv1Vu40xsnEyEkkFKDV1tRO0LZ47ENidddXJbbWNfqDzHQYnhhg0bhrTp+Tg5fz/UoSVV5ibu\n/Cgn0uUFrA3NJRJAQ+qo8elkQk72WyaN1P530mJuR2Ox1eRIJcvOtMwZKjrDOt6DekyUJLo6zVpn\nlu9zplUq6aL8z91bKnd18q2xZrg16d19pP3Iv1WOzNrcumyIf2v/UAavcnAX35TpOYm4yk15rZxJ\nlzPacnHhzttJVd2yDWdO6gzBymT1bsxXGS6lzHosbr+dLN8YrVrJTjpK3HIsN85rG5e0XH/99UUb\nx5U5c+YUbew7Z4jpltToGMHnqvYNZaeurrxeT8YiY8eNrxrPrl/YF87cSr8TuHvGPZP5uspYf/rT\nnwJoXhbjDOvccTozz14a/w5E2RjoxnmFfeKWq6iUfdWqVQCA4447rmhbvHgxAG8Oq8s03ZjBa6J9\n7cwQGb80MFu0aFHxGuONBmCAX/7hlhHx/tBzpCxbt/fQQw8NeZ+T7LvvE84ot1eWpnWbqvPh69oX\njDkde1pfA3yf8frqtaCcXs0qjzrqKADN3yU5rur9wOur35Val6txeR3QMHV0pnyUw+v2nGmhjmVu\n7HHLJ1v3BTTuf/0uWTe+ysaOsSAZ+BBCCCGEEEIIoQ8Ylxn4ulkFlxVwn+Usj858uZlYljHQGVEa\nh7iyb86oR2ckXTkPV8aNx6VtbqaIs7yuPI3LmHPWzhk1uXJzzpzOKQUUbk/7dvfu3QCAZ599tmhz\n2VZnblQ3A9+rM7ou7hT2g2Yyr732WgDNhjWTJ08G0NxfNDbS+HSz/W7//NtlnTWTxGvhZtFdaSOX\nSXWx6NQDzgCImQKNf2bIVPnhjCSparjllluKNmcgxvPW/ikrV9JJGZtux2lZJtT1t/axi0f2j2aO\nP/e5zwEADj/88KLNzY47IzqOURpnHP90Fp3vc8Y/ur3Wcoou4+PMPDUT60oyuvvFmY65+8aZObIU\nFZ8het56zPxbr58rq+QYbVOeTsw8nemrUyzodaIR29KlS4u2t7/97UM+48YXXmN91vJYNNvNMURj\nhs81Z7xE9D5i7Og5ujHFGaYxG1bVP+45yNjSsoRqatW6D413p7wrM0rsZcqUSXrv8rrqtXZqB6dY\no5kbM9JAw1ju9NNPL9qoVtJ+dYofjsc67tBAjPsCgE2bNgFoZDVZBlU/q7Hjyvi69zHjqso/GtWp\nkRmP043L7v5190CViV2vfnfrJq5Mqvtu5Yzt3G8YN+Y5ZTHHCFVQ8Hujjmn8DqnXj1l23jf6PZPj\njFPWueelU2C554lTyShOWUNcnPVbvCUDH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQBAwB6Vx9QA2e0\nUkaVlI+vO9MbSkmAhiRDJSmUHp1wwglF24c//GEAXoqqJiGUsTj5px4LpaPOfMvJU1RHnSltAAAV\nr0lEQVSa3moGoRISSp9UatJa11HR4+T23DG566PbY7+o5GrlypUAgD179gz5rL6P+1NjDie36XZt\nWieLrcLFXVWbqw3srjXfN2PGjKLtoosuAuANtVTaRFmUW5LhpMVOQu8MH/V9vCY0UdTXnPyU21XJ\nFrerEkLeC2qK5+RjrFOr9y8/oxLSSy+9FECzqYqrLe6ko8M12+kk7oY75tXF1SWv6lvGin72iCOO\nAACcddZZRRvNnJwpD5cZ6fZUFspj0fPmcenxER0PGEN1lwSwzZk66fsZhzxXPXaVdbeeA9CI+Rtv\nvLFo27x5c9PxKjomO6lfWex1S/63b9++EYs7xUkj2a9OIu6WVKnk/fjjjwcAfOhDHyraKBdW4zDu\ng6aV2qYxxv7UscSZLNHgi7Lpd7zjHUPe72Si+rxmX2hMMC7f8pa3FG2MJ5X/01hMjWApj9VlQTwf\n7W8noXdLmEajHvdoxR1xz2QXY/o+J+N130M4ZqhcnXW3NcZ4v+uzbtasWQCapc2Uruv+ec34jHdL\nNzR2WHdbxyxKtdWcjn9rG2PCmYHpM75MnuyW6VUtzRgNSfNIP2vrUvUd0R2fM7B2S0SIW+7g9lE1\nXvFZyDHPfX9zVJkl81jKzGn1s/r8d0uTypbQ9IKEfjhLk5KBDyGEEEIIIYQQ+oBxnYGva5zjPuMy\noTqzz9klV7qFJZMA4NxzzwUAnHTSSUUbZ1s1A88ZUDdTpBkYznipIRePVbNGPD7NMrSaMblZZGfO\npOZznOXX93FGWWfcnALAmTdxtuxnP/tZ0bZjx44h502DDM0e8Hx1VtHNpHV7Vq2d2dm6sajvYz/p\ntebMpzNG075m5umLX/xi0caZdY0T9qeeC2NGZzc5o+/KcbgMvL6Px8zz0OPk9XezphpPvGfcjL1m\nNFyZLZflZ8xQ7QE0Zo6dyV5VFrQsy1BF3c+MVFagbJbfGcc5Ex2n3NHx7eyzzwYAzJs3r2hjfOlY\nwr5QIye+rm18n37WmXMybnntNdPlyti5+HUZVrbp9pzChOPlo48+WrQxK6rZLMaofpbHoPeBy6CM\nRtZgtDPw7tnkyghWfZYxq4aK55xzDgDg2GOPLdp4HVX54Yxl3TOMx6dKkuuuuw5AI0uqapRWM1nA\nZ8Lds4zjpN5bNOnctm1b0caStjrWu7J4reeqf1eZw45WJrSXsqBurGR/VZV2dNlFxrQzL3aKI312\nuhKFjHM+y1SVQVxJw6o+5vV347xTILgsoit11o6K4/WUgXe4eKzKTrPNlex018AZYrv36X75/Y7j\njPterriygWUx5c5b2/i90X1Xc7+reqkkXLvjau9FZwghhBBCCCGEEIaQH/AhhBBCCCGEEEIfMK4l\n9O1QZmKiUl3KU5zRi0ogKLu/4IILirZ3vetdTdsAvMzXmTK0ypH1+FxdapXCUE7H7ar809WJ5DG5\nWti6TICGPk6u5Yze9HxuuOEGAA3TH92fM7tTWV9ZzdF+MxMrizuNE14zJzvSfqXEcvbs2UXbhRde\nCKBZYsS+1n0wtvR68m+V8LkapK5PWuX3bpmGq6Gs8Ul5qsqO3bXjPpwZlMpjf/zjHwNoGNwB/p5x\n92CZLKtu7euxijt3fzg5GtG+4Pin5+2WdLAftY1jhJq+HX300QCAxYsXF22UoTtjJI1bV6uY10iP\n+bHHHgPQiIu3vvWtxWtO/u8kyjwfJ6t3Zp67d+8u2m677TYADZkz0BjDXD8q7L+q5RuOfpLQ111e\n5Iw2dSxxzwP3Pu5Pn2GMxfe85z1Fm5O68x7QNvaL1vzmMjAujZsyZUrx2pw5c5q2D/gxxdUu5nil\nSzIol9albhxD3fIQxS1FKVs2VJd+M0+si5Mst752oDb2sbvXlbJnie6Xr+uz+01vehOAxnijMeGW\nnZQdu1s64tr0WevGav7dzjjmeL1L6BVnNO1ixbW5Z7f7/kRcPJYtI3TfC91vFI1L3iO6f45lLn50\nH26Zjzt2R9kygdEmJnYhhBBCCCGEEMI4Ixn4A1BmugA0Muv6Pma4XekpZpYA4PzzzwfQbOhUNuui\n++WMvpvdcpkCne3dtGkTgMYsrWYAeMzOqElnvrgv/SwN5jRLyb7QY2eJnltvvbVoe/LJJ4fsg8eg\ns4rsH5fxqmIkslFA57FXt6ShM7NxGU/XH6rUoMGNllSaOXMmgGaDRs7aM7Oj6MwoZ/5VmeLMe1gO\nkFl0NZQizmyJcQU0Ykvf50zLJk2aBKBZqcHySatXry7aeG7aZ2WmfK5vRzt7MJpl5Fyby8LwdY0L\n9pXrM40V/q3bmz59OgBg0aJFRRvHTo1lXmfNMFHpcccddwxp47hJU1EAmDp1KoBmkziOL86EUcco\nZkIfeeSRom3Xrl1N+9Tj075w2Qg3/pfd11X0UwbeURWLvD4aE+wvvZ5lRnR6jV2JL8aY9j9f13jn\ntdPykxy7qBhypeD0+ebKwzIWNUPlyiK583aUZaa6lcnqNv2QgXfPjTKjQFeG06l79LrzM+555YyC\nnUGnu9ZlZbvc+ORMQ10JWKckHY146qbyAxj7DLy7VlVmbnW3V9am8ehMGt0Y2qrI1GvBZ6f+RnCK\nKe7LlSuuKgXnXitT5Lq+HSsTOyUZ+BBCCCGEEEIIYZwx1Ku/zxjNNQs6q+iykwMDA01rJ8P4ZrTX\ny7h1SeH1x0jHnfOtCGGs1we60kJh/DPWcQeMfSY2jA1jHXt5Focy+l5C32scfvjhTVJLlfISGjpR\nwgkAZ555JgBg1qxZRRu/sOhN7OrFUwqi8ibKTm6//faijTLpY445pjhWwmN2Uk89H1ejlPI/NQV6\n9tlnATTq0QLAli1bADQbOjnJqjNlK5OEVTFSEvrR5qCDDrKSUErZVXLnZJCU3+vyB8bgaaedVrTR\naKyq5ivjTU10uN+bbrqpaOPEw9ve9jYAzcZ6vP56rbk9ldAznpzZksrqH3jgAQDAE088UbT9/e9/\nB9Bsxuikg63nAJQbP7VTR7QbEvqR5kBfGpxhTpmRkZ6ru39dTW1KlClfBoDJkycDaDaWY4xwPAQa\n4wrHV6ARI1zGoa9xKdFxxx035Fyfeuqp4m/K5dXwkOO63iNlEmY9b95DGmdu/K0rOS0zFOoWY/1F\nFvASTh0P3JjH16vMJfm6M+nUz7olQvyMmm5S2v+3v/0NQPNSDx6njj3OENS9z11Xxri+xu3pZ528\nmdSVk46FhL4XYD+WSegdVbL6smeok8u78cHFDNHtMibc9yoXiwrHJ3eu+r2j7vXqRhzVlUq3Q6/E\nnTPUrVrWVldeXkaVTN+Nv63mxO53Q9V31LJljFXHWfd7WdnrqQPf50yYMAFr1qzBrl27sH//fpx6\n6qlNr3/1q1/Ff/7zH7z88svFPzrYhtAJ06dPx/79+5ti6ytf+cpYH1YYZ2QMC2PBaaedhjvvvBMv\nvvhi4Reg7Nq1C//85z+LmNywYcMYHGUYj6xYsQKbNm3CP/7xD+zcuRMrVqxoej2xF0aC5cuXY8eO\nHXjppZewd+9efP/732/6UZ64C50QTZrhnnvuwaWXXoo1a9bY11evXo1PfvKT9rXBwcGm2TBntMVM\nDbNCAHD11VcDaC43c/rppwNolJ0B/IybM9zYtm0bgOasEc28+D7NwLuSEi4rwcFHs6NPP/00AGDr\n1q1F2/r16wE0Zz35t+7DycI5Q1y3jE2VQUW/8cY3vvGApmlOAUGcoYjOeLp+ZSZRS1/RNOzII48s\n2pildD/0NPPEOH7nO99ZtNHo6/e//z0AYNq0acVrzIjS4A5oxJiqVxg7OsvLUk33339/0eay7a58\njjPgGa4hTC8YnrRL2RhWhVPBqLmkU4kwHp3Bp14fXje99lyuVGW05Ep80USM29WMPbdLc0/drstq\nuThymQ83m+4MOauyEZ0ojLqdkeoGr776Kq655hrccMMN+PKXv2zfc8455+B3v/td5bZcuSoH+9iV\nrnTXWFUULtvqnrXch2Y2OQ650pTchnvW6njkzFxdfDpFh4unMjVRO5k5Ry/FmzIwMIClS5fiL3/5\nC2bOnImNGzdiz549TcamZbFX59lQV8XgDGjLynEB5dfOxacbH3mvOHO8KpWJy27yfe7YqpQHnYxP\nvaAMqctvf/tbXHvttXjppZdw6KGH4qabbsKyZcvwgx/8oHhPWdzVLX9WRd0yt3Xj1j0TW8tou+9W\ndZ9vnTz7qjL6jnbUlL1A32fgP/rRjzZlkgYHB5tk28Plv//9Ly677DLce++9bbn/htcP3Y69EOqQ\nuAtjQadx9+CDD+LnP/85du7cOYJHGcYjncbe9773PTz88MN47bXX8MQTT2Dt2rVYsGDBCB5xGA90\nGnc7d+5sqhy1b9++YglrCJ3S9z/gb7zxRkycOBETJ07ElClTsHPnTtxwww340pe+hBdeeOGA/zrh\nnHPOwfPPP4/Nmzfjs5/9bJfOJPQbIxV7u3fvxp49e3DNNdc0KR1CALoTdxnDwnAZjWftqlWr8Nxz\nz2HDhg04/vjjR+hMQr/R7dhbuHBh4clDEnuhlW7E3ZIlS/DSSy/h+eefxwknnIArr7yy6fXEXWiX\ncWNiNzAwgJtvvhl79uzBhRde2JVt7tmzB5/4xCdw9913F21z5szBiy++iGeffRbvfe978ctf/hIX\nXXQRfvGLXwD4v1RP5XrOqInSDJWfOLkeJaE0FQMadZLf/e53F23cn5p5rVq1CkCzFJXyQJrZnXXW\nWcVrlDU7oyCVl1B2+qc//alo41IAylVb90sotVJjFVdrvkya5WhHQt9NM7Fuxd4hhxyC2bNn45FH\nHsFhhx2GK664AhMnTsTixYsBHNhcrCzGtB+ctLms79Q0jLGosnrGiho0PfPMMwCaJausi81rTfMw\noGGip/WXGTsaT6+88gqAZokr36dtZXXbqyTY7It2jBLr0gtxVzWGVcVZ6zHo/wfC1UB2y4uc9Jef\ndeOBM4dzcmWOL87oy2237FwPtP8yGV47slm33ZGS9VVtt/U8Oxnv3ve+9+Gqq64ashxn/vz5eOih\nhzAwMIDly5dj+fLlmD17dpHB0jGlzLDImS25PqwaL0nVMhvXd3Vcy12dbfd61ZI8Z3rWerzKSJq/\njrR5YjeetV/72tdw3nnnYd68ecWSnqrYc8/OMurGyUjJwcv2XyWNr0vZcdY1VetkHyMpcR6JuDvm\nmGOwdOlSXHHFFYUpb1Xcue8sdcc3R12T3XaWEbZ+pp2lFcOl20tlR9IIti6vyzrw3/zmNzFx4kQs\nW7as9memTZvWJI+pw9atW/HMM89g3759uP/++3HZZZfhIx/5SLuHHcYB3Yq9V199FX/+85/x2muv\n4bnnnsMXvvAFnHHGGU3O2SGQduIOyBgWOqPduKvivvvuw+DgIP71r3/hO9/5Dl588UUsXLiwq/sI\n/U2nsff5z38eS5cuxVlnndXkx5HYC2V0Y8zbvn07tmzZgh/96EdFW+IudMK4MLE7//zzsWTJEsyd\nO7fIblxyySUHNMoB/m+etWfPno5/HO3fv3/ILJBmk105F5p+aQbelVngDzvNMLK80T333FO0cVZe\nTXS4Hc2oc4aemc1f/epXxWssAceSTUBjdkszoTTF04cf/64qO1ZWlm4ks54jyUjGnpsNLTN/cUY0\nLmOg/e9e53b0ujOLrhNdPBZnZKLH3Jr9ZJYeaJg9OSMezSi5rKXL1jo1AmPQxZ07704yT6NlhtJu\n3DlaxzA3pgHlRjR1S/rodXHXz+FK0LntEWd+WRbnilNCle2/W1lPFz+dGIzVHTuGG5vdjLsqXFwS\nXh93/HWfJVXXzvUX462q3F+Zfw6PvWobRM/HmUCWPQvayQAPl7rGWJ3Saex9+tOfxsUXX4xTTjkF\ne/fuLd3XgcZAR9n7qrKQur8626vattteHdoxSys7zrrb6wWVRxXdHPMOOuggzJw584Cfa427ugqj\n1m20S93rMtznap1t6f67/dmRNFUcS/o+A3/iiSfi8ssvx3nnndfkuP7tb3+7WLvi/pXxhje8oZB5\n698A8MEPfrD4sTt37lwsW7YMa9euHYEzC71Ot2Nv3rx5mDVrFgYGBjBp0iT88Ic/xF133VX8eA4B\n6DzuMoaFdug07gYGBnDwwQdjwoQJTX8D/1ckzZ8/HxMmTMDBBx+MFStWYPLkybj33ntH/TxD79Fp\n7H384x/Ht771Lbz//e8fUsIwsRcORKdxd8EFFxTVnubMmYNLLrmkcJxP3IVO6fsf8Oeeey4OPfRQ\n3HPPPYUced26dR1t8/HHH8fg4CCmTp2KjRs3YnBwsFh7/rGPfQzbt2/Hyy+/jOuuuw7f/e53cd11\n13XjVEKf0e3YmzFjBtavX4+XX34Zmzdvxr///W8sWbKki0ccxgOdxl3GsNAOncbdKaecgsHBQdx2\n222YPn06BgcHsXHjRgD/z1itXLkSL7zwAvbu3YvFixfjzDPPLBQ64fVNp7H3jW98A4cddhgefPDB\n4vMrV64EkNgLB6bTuFuwYAE2bdqEV155BevWrcO6deuKzH3iLnTKuDGx6xVUMg54KTn/VlMevk9l\n8GXSPJXfOVkf96HqAWfSRSiFOeSQQ4a8psdEwzInEdSa7q7urqtDWiY1rGvoNNYmdqPFcMzFyj7T\nTp1MV5PYxVOZTNfVK279XOv2yt7HGGu951q34e4ZJ98ernys6vhG2tBppHDGOa3trdQ1sdNzcAY8\nxBl8OSkzlyMdaB+t9WqrYsWNpa3b0r+rTOxIO+Z0w40fZxxVd7wcjondWOGWY7Uj1S1b9uHkq66t\nSv5eJxa6IXXV7dStddxJzHbyvnbohbgDGrFX9ryse493QyJ/oO3VuRZ147VuPLVjeFb2el3jvZGk\nV+LOfX/Tcd6Ng3W/n7j3l42N7jN1a8kP935p5/5y1B3f3NhYtt9u0258930GPoQQQgghhBBCeD2Q\nDHwIIYQQQgghhNAHJAMfQgghhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB+QEfQggh\nhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB+QEfQgghhBBCCCH0AfkBH0IIIYQQQggh\n9AH5AR9CCCGEEEIIIfQB+QEfQgghhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB+QEf\nQgghhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB+QEfQgghhBBCCCH0AfkBH0IIIYQQ\nQggh9AH5AR9CCCGEEEIIIfQB+QEfQgghhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB\n+QEfQgghhBBCCCH0AfkBH0IIIYQQQggh9AH5AR9CCCGEEEIIIfQB+QEfQgghhBBCCCH0AfkBH0II\nIYQQQggh9AH5AR9CCCGEEEIIIfQB/wN/f3iAs0cvEAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!fslmaths /output/susan_smooth/smooth/mapflow/_smooth0/sub-01_ses-test_task-fingerfootlips_bold_smooth.nii.gz \\\n",
+ " -Tmean mmean.nii.gz"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from nilearn import image, plotting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
- "!fslmaths /data/susan_smooth/smooth/mapflow/_smooth0/sub-01_task-flanker_run-1_bold_smooth.nii.gz \\\n",
- " -Tmean mmean.nii.gz\n",
- "\n",
- "from nilearn import image, plotting\n",
"plotting.plot_epi(\n",
" 'smean.nii.gz', title=\"mean (susan smooth)\", display_mode='z',\n",
- " cmap='gray', cut_coords=(-15, -5, 5, 15, 25, 35))\n",
+ " cmap='gray', cut_coords=(-45, -30, -15, 0, 15))\n",
"plotting.plot_epi(\n",
" 'mmean.nii.gz', title=\"mean (smoothed, median=99%)\", display_mode='z',\n",
- " cmap='gray', cut_coords=(-15, -5, 5, 15, 25, 35))"
+ " cmap='gray', cut_coords=(-45, -30, -15, 0, 15))"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
- "display_name": "Python [default]",
+ "display_name": "Python 3",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.6.11"
}
},
"nbformat": 4,
diff --git a/notebooks/basic_interfaces.ipynb b/notebooks/basic_interfaces.ipynb
index 82cfae8..f46b16e 100644
--- a/notebooks/basic_interfaces.ipynb
+++ b/notebooks/basic_interfaces.ipynb
@@ -2,80 +2,82 @@
"cells": [
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"# Interfaces\n",
"\n",
- "In Nipype, interfaces are python modules that allow you to use various external packages (e.g. FSL, SPM or FreeSurfer), even if they themselves are written in another programming language than python. Such an interface knows what sort of options an external program has and how to execute it.\n",
+ "In Nipype, interfaces are python modules that allow you to use various external packages (e.g. FSL, SPM or FreeSurfer), even if they themselves are written in another programming language than python. Such an interface knows what sort of options an external program has and how to execute it."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interfaces vs. Workflows\n",
"\n",
+ "Interfaces are the building blocks that solve well-defined tasks. We solve more complex tasks by combining interfaces with workflows:\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
Interfaces
\n",
+ "
Workflows
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Wrap *unitary* tasks
\n",
+ "
Wrap *meta*-tasks\n",
+ "
implemented with nipype interfaces wrapped inside ``Node`` objects
\n",
+ "
subworkflows can also be added to a workflow without any wrapping
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
Keep track of the inputs and outputs, and check their expected types
\n",
+ "
Do not have inputs/outputs, but expose them from the interfaces wrapped inside
\n",
+ "
\n",
+ "
\n",
+ "
Do not cache results (unless you use [interface caching](advanced_interfaces_caching.ipynb))
\n",
+ "
Cache results
\n",
+ "
\n",
+ "
\n",
+ "
Run by a nipype plugin
\n",
+ "
Run by a nipype plugin
\n",
+ "
\n",
+ " \n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
"To illustrate why interfaces are so useful, let's have a look at the brain extraction algorithm [BET](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) from FSL. Once in its original framework and once in the Nipype framework."
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "## BET in the origional framework\n",
+ "## BET in the original framework\n",
"\n",
- "Let's take a look at our T1 image on which we want to run BET."
+ "Let's take a look at one of the T1 images we have in our dataset on which we want to run BET."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Populating the interactive namespace from numpy and matplotlib\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAADeCAYAAACKVPIgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVlsZdl13v/deeZMVhVZXT1Ud1vubhm2WpBkIQGUIB5g\nSwkSWHaEvHiAHgxHT4H84Dix85CH2FYgGclDnqSHCFAkIIgg2zAM2LIBQ7I6hiCl5R7UQ3VX18Ai\nWZwv78h7/g/Ut/m7qy4lstT5y6pwAwTJe8/ZZw9rr/Wtb629T05SpvNyXs7LeTkv5+W8nJfvs+R/\n0A04L+flvJyX83JezsuDUc5BxXk5L+flvJyX83Je3pZyDirOy3k5L+flvJyX8/K2lHNQcV7Oy3k5\nL+flvJyXt6Wcg4rzcl7Oy3k5L+flvLwt5RxUnJfzcl7Oy3k5L+flbSnnoOK8nJfzcl7Oy3k5L29L\nKf6gG/D9ltu3b+vixYs/6Gb8wMvq6qouXbr0g27GeTkv5+W8nJf/h0tOP+SHX2XZD3Xz39aSy+V+\n0E04L+flvJyX8/L/cDkPf5yX83Jezst5OS/n5W0pP/Thj/NyXPL5vHK5nA4PD5XP59P/g8FAxWJR\nw+FQhUJBuVxO+Xxeg8EgsRv5fF6j0eieekajUfquVCppOBwql8uNPYd1ZFmm0WiU7svlcvewSVmW\nKZ8/wrPFYjE9ZzQaqVAoqFwuq9vtpvuHw+FYG/28YvFYfEejkbIsSz9nGbNCoaDhcKhyuax+v698\nPq/Dw0MVi8VUX6FQ0OHh4T39KJVK6R5JKhQK6Tu2i89xHwqFQvrbfWL/+GzPnT/3fHIuPJZ+dpZl\n6XvPrefDMuAxODw8HLvO8jMaje6RJ7fLbXU9rsP9pQx4bi2L/o7P8HyyX67X12ZZpsPDQ5VKpdRv\n3+sxch84TxwvP59jwvHy5+VyOa0Rf8d5yeVyKpVKGgwGST58reeCcsIx5jiy/mKxOLa2LFtet/6c\n64Vyz/H3vGZZpnK5rF6vd+p1Ydn3M/xsfzcYDMbk3PPF+ebYes68li1jHHNeWy6X07N7vZ5KpVK6\nz3PCOeeat2xJSmuHOi/KPfUK15h/ouy4767Da9xjQPmfpDd8n9cDx4zr3Z+VSiVlWabhcJjkw+No\nOfPYRZ0yHA6Vz+fTb8o55486ynM3qd2nKedMxQNULNBeZFRCEVBYKC1U0Sj6Pv/vBWmh83cWxmhE\nC4XCmIDzWWybjSwNnQ0PlZoNDv82GHHf2f6zFLd3MBiMgRIbuzjGDDNxMbqwz9Go+7OojE4CAARl\nBCixrbFtNir+vFwup3YWi0WVSqVUnxWYjTMNnpUqFT7lKo6jZcPj5jH0+FgGfb3vcTusOGkoPN9R\nYff7/dQfKlLe67mNz2ZfY3vy+bxKpVLqXwR+hUIhybwNnPvo77h+DE4oS+43gaukNAYcaz/fAMPy\nQdAZx4ltt5E6a/Hcu1BuPQ7FYjHNl+eac881ROPHMeOcecz6/b4ODw/THLsuAiYaR+nYGaLsU79Y\nf8X+UPe4/ax7OByO6axJQMr/F4vFVKdlIbbJY9Lv9++RT98jSaVSKYGS4XCY1iyf6bZxzClLBrOV\nSmXMGSNY9Nhxzr6ftIJzUBHKG2+8oVwupz/6oz86031/+Zd/qVwup29961t/L9pEYGElycVgYafX\n5muokKOipRfgawg2CGr8LCshLzgrUhorKvvohUnHi+ckpUJEfpZCD8+LjH9zsRHpk23xGFgpUblG\nFsJz4x+Pz2g0SgqQCtqKjIaPbAKVJK+jN8Z2UWn42Z4Pz6/7yva43dKxp0jlGT09f0dlasNKBoyl\nUCgkj5Rt5TjQoPpZBGUEdBFEcD6tbP1dZNVo3NkHyg2NCT15t9/K3oYoGhuvB45blH1fQ6Ywgi3K\nPI2zmZT7NRD07MkssUTmgTLtNtDYcrx4v8eI9RFwc/zo1RNoRN0wyWGizrDsW7dxvbreUqmkcrmc\nZJNjEI03P4tGnuuW+oUOUgTy/X4/ybMBBuWM80s5sS7h/MX6Oa5c37Gt9yU3933nA1ouXbqkr371\nq/oH/+AfnOm+d73rXfrqV7+qq1ev/l9q2fcukaWgAbHiJKql12HlbSEmRWsajYbdQmrjSHqNSJdA\nI7bHz6OBjSENGkcbP9O4fq49nkne8/cqVnz0QOhp05i7ve6PqUcqUrcr1u86uGBdlxUC+xj/trLz\nnBiQWYGwbioeKmrPf/T6CD59v+eTgMTPsaJ1P+xB0zATpHieqtVqep6/k5QUMp9LrzX2TVLyjg1o\nCSQIculNEqjQSEaWi94v5Zb/sxBg+JrIFEWl778ty5zjLMvU7/eTjEQgTvni2HieKpWKJCUPdxIY\nOE2hwR+NRhoMBhoMBmM6gkCejMgk2p/ANhpw99Fj7/CW+xgZActlDGX5+fTE+b3bQUbBrFdk+nyv\n56jX642BOj+Hsmx9RF1rEOF+WqbJQpB9NFiQlMZkMBio2+2OyYh0tPZ8LXWWn+3xIXNGO0GQ4fvJ\n0t1POQcVKN1uV5VKRe973/s0MzNzpnunpqb0vve9T7Va7f9S605XrOAsIFSUVMr0zug5S8cL0gY+\nepVUjpGR4ML0M7jw/b3pOC8YImkqAKJp0/RG547TutC4nLaw3aQ53U8CJ7Iq9JxjvJLAg0CNCoHh\nJ4IVjqv7SyMVlSs9Qc5/DAGwvzGcYMVnOtaGK3ozUQkTXBGQ+X7Xa2/JfeZY06P1s1y3x5bt4f3M\nI4l9cVvdf85zBNdkLTjOvj6GKAh6/FwaWMsy8yMIoDnXnEsalKj0LQucRzoF5XI5tc1jzlDMWUsc\nxwiUCEAp01EO+dvtLpfL98hgHAvPi8fDfeLz3AaPFVksAlTLj8eGgNx1lUqlMT1lQyxJlUplLC+D\nayg6UmQjyFIw94Nt970xb4jgms+mzpU0pmNc8vl8kgc/l9e5ToIf2gayk/dTHmhQ8fnPf17vfOc7\nValU9NBDD+nf/tt/mxTbZz7zGeVyOT333HP6wAc+oFqtpt///d+fGGro9Xr69V//dc3MzGh+fl4f\n//jH9clPfnJskU8Kf+RyOX3qU5/Sb/3Wb2lxcVFLS0v6jd/4jbGEqdu3b+tXf/VX9dhjj6lWq+nJ\nJ5/Ub//2bydP5SzFgsyYYIy5UaiNjK0M/b8FlLQtFQiVs+uUjsGH/7cw85muk/QgUbwpSdfBGL8X\nixcHFzbbcD/jxme5Tv/tBehr/FlUtB5zMjMECpENYYiFCmMSiPF3NlJWtOwv8wv8P+unvBIsRLaE\nistz5jFwfVY6nkuPBYFZBDZUouybjQUVcjS2UZny2QQEvibmLzCvIwJhG+CYy8A5dTuYG+HvaEij\nsYrGx9dENsVjwPXideA5N0vA5xC4GIT1er0x4OU+nqUwXDEJqNpDp6wTGHLdcl5zuZx6vd6YgbOT\nwcRxzlnUU5T/KH8eA84vAQuBVnRYIjPKNczQsAG4x2ESaI3MUwRWHhOzShw7ht48Nv7b4CAyX9EZ\nIsDjHLqeKJduq9sZ19pZygMLKv7sz/5Mv/RLv6R3vetd+uIXv6iPfexj+oM/+AP963/9r8eu+8hH\nPqIPfvCD+pM/+RN98IMfnFjXb/7mb+ozn/mMfud3fkef/exndf36dX3iE584VTs+8YlP6NatW/rv\n//2/6+Mf/7j+23/7b/rUpz6Vvt/Y2NDc3Jz+83/+z/rTP/1TffzjH9enP/1pfexjHztzn6NXSeFh\nnN6CaC+PFKkNN9FypOIjHS+Ne3gU4Ji4xYXOdlmY+b3bQCNlhVmpVNL3o9FI5XL5vuLHHgcqBAMG\nK2IuOI+z+8Y2R6U7yctjkqQXvseCngrHmsrOiXEEVgQzNjyuPxpkKlnOVa/XG1NM/JushalRt5FG\nkfkkBqmTDLll0ln1NEgOq4xGxzS+jUChUBj73jIRjYvng0CK7AQBB4EWQx30MunREXwRxEc2Tzqi\nprmbKI5/BHVxfXr92YDH0Ivlj7JLw8O5OyudzfCmHRBS/xHI+DP3hQDa69R/c62THaWcRLbO15pR\n4Odcv5TPyGgwv4UGn312vQRzxWJR5XJ5DCR5XAn4zQ54HXJM/Dl/DLAsnwaClFcDQj6L3zE/h30h\nSxRZFDqIDJ2yzu8HVEhHh1/90P6cVN773vdmH/jAB8Y++0//6T9l+Xw+e+utt7JPf/rTmaTsk5/8\n5Ng1165dyyRlX/rSl7Isy7KNjY2sWq1mv/d7v5euGY1G2VNPPTX2/C9/+cuZpOz5559Pn0nK/uE/\n/Idj9f+zf/bPsve+970ntnswGGSf/exns0qlkvV6vYltOqnk8/msWCxmuVwuk5TlcrmsVCpluVwu\n/RQKhSyfz2e5XC4rFotZsVjMyuVyurdYLGaFQiHVk8/ns3w+nxUKhfS/r8/n81mlUkl15fP5rFQq\npfp5D9vi63yf28tnF4vFTFK619e4nfl8fux73+vPT/vjuvhTKBSyQqGQlUql9Df75va57e5bpVJJ\ndfhajwHbx2dyjPnDMeX1bhPn1HPN9nt847iyPR4D1uW+lMvlsXrZ59gu91XS2LyWSqV0jeuN/Y7t\n9n25XC6rVCpj91Sr1axarY7NfRybOKes3/3ztZRHt4/P8/wWCoU0Fqyf9eVyuTRmXDtup8c0zrP7\ny3UT5cx/uy7LGeXTc2kZi3N21nUhKSuXy6m+uA7cFj+T7XcbOf/UNXEe/D375TbEvlP2WTd1W5xX\nXhPv9RjGunk/1y71qe89afwoex5Pri/qg0qlkr7neFrfRr0ddaukpIvZJ35PHRrXLWWEsns/Pw8k\nU3F4eKivf/3r+vCHPzz2+S/90i9pNBrpq1/9avrs53/+579rXc8//7y63a7+6T/9p+mzXC6nD33o\nQ6dqy0//9E+P/f/UU0/pxo0b6f8sy/TJT35STz31lGq1mkqlkv7Vv/pX6vV6un79+qmewRKpRnpl\n+e94WDGBiV6BdJxQlcELz0DLM0+AlCWfZ7Sbn+DVGiEbRdsLsdfqPtirl46Th0j75eF9GXGfNRZI\nTzV6A/QE8wgXMZRhDyN6ZmSCPC+kzTk+/t7j4HHn+Pm3i719JjmSkWAinD+LCXWWBbMfHAu3gXQ8\nWQVf47Zzzv18jhGvd7snJYSRhrZ37HbQK/Y8M1fB4xp3rfh699f9Yds8fgx90ANn4hxDKZR9t9sy\nEel0bm/knPC5WZbdw2r4b9d1UniGMuI1wnyOsxbLMet0+zjXzEnh+oxJnaPRKDE3pVIpsY2+vtfr\njc0jQxoe0+w7bFlkBf0MSWmdMgRjGeJc+V72zzon/x3G1uyYP2N+A+fxpPHzb8uz2+02upAFomzm\nvhNqcdtjn8yOkK1hTo9/XBfviWEir4/IiJ21PJCgYmNjQ4PBQBcuXBj73P9vbm7e89lJZXV1VZK0\nuLg49nn8/6QSEz59sJPLJz/5Sf2bf/Nv9M//+T/XF7/4RT333HP6r//1v0rS2HWnKRYc6VjZRKrO\n8TrGCxmTtjGkwvcZBzSmNMCuIyb+RIDgOizw0nj8nO2XjpSns7KZ6OQ2urgO3nvaQgPPvlHRuF4v\nugjM3KZIA8d2MqmUORnRAPI5kbKNyjDSykxcjPksHH8/w+01Xetnus4IrPg3/+dYWnY8DpQ/X0+A\nZkMRQSjrJzV9UviDgNr9yOWOEy0Jlmm4IxgloCbAsFGxbHoMmDhsat73S+M7RgiwCJr9LK4r94Mh\nsklz7+toaGPYwIbktIVt8FwwIdn9Ln7nMCgmP3K82Gf/TdBBQ+qQI0Gq2+L/y+XyWIiCwCIaeG/J\npAyxHf7MffFai0mTlDcCKwPC71aoR+gwTJJbyw/DuDbyXp8MK1IefT+dN/afII05KG4PdUPUW2ct\nD+SJmgsLCyqVSlpbWxv7/M6dO5Kkubk5tdttSd/7fRl+Wdn6+rrm5ubS5+vr629LW7/whS/owx/+\nsP7jf/yP6bMXXnjhvuoigLAgRSMhjXtbk7xgLiBfx8NXqHAZc+WikY4zk60UubAmnSRH4+fCdjgH\ngcrE17t995PgaiXivvt3NPZ+no0VlS7j2C6eC5boSRIIWGFSCdIIuS4qBT8nem02oFaW7ovrHAwG\n6TuechlBaPTIKpWKut1uOn2U4Io5CVaEBoQ2ggRwNiqFQiGBR8qgWRQ/nx4VZSYaYSrSmEPksXTC\nr58ZjRKBZQSakZGxHFNJ+z73m58RZPC7CLDZft5DoOY2UC4oN673rJ4n5ZmMov93Ozy2fF4EA2Tx\nOGYRbE1iF8gKRaYvrrcIbFhi4i6v4TMITJ1nRH3ntsdnn1QIQuI6ifPkttA58zp125zvFsE8QTx1\nNGU4sl5uExkY33PW837G+nzfd/49LoVCQc8++6y+8IUvjH3++c9/Xvl8Xj/5kz956rre+c53qlqt\n6otf/GL6LMsyfelLX3pb2trpdFJCmstnP/vZ+6rLQi+N08+FQkG1Wk2j0VHymxWBBS5S5/Tq6KEw\n7MHwgD1NKlWCGgo7DSG/M8VMDyKiaXvUVFpcLN1u98zKMypLewn8nADKoGWSsrFSo3cZPSX2nwmX\nksYOu5GOt9T5WRz/yAJwvPP5vKrVamonx4mKMRpAylDcHugfH59uZWcFRAOTZVkCCVSoBBQeI4OG\nSNHaaPi57CcLQWicr2j4+Z3HmpSvv/f/0dAQFJMF4bzFJNDIGNmg8MjqYvHeEykNxhi+sGx5jfAs\nB69hJle7//E0z9MWjoXbQG/+8PBwbM26jfaqLUeUS8+xHRWPJcN17D/HzLJmdoRjKx178WctWXZ0\n9g11B3fO+Dse8X3aQpBiMMvtnB4bz2V0zCKg6/f7Y2FB1+2xNsCIYVSuMY+nn+v6uSOErOpZywPJ\nVEjSf/gP/0E/8zM/o1/5lV/Rv/yX/1LPP/+8/t2/+3f66Ec/qsuXL5+6nvn5eX30ox/V7/zO76hU\nKulHf/RH9elPf1q7u7vfk+U4Tfmpn/op/eEf/qHe+9736urVq/rsZz+rV1999b7qikbLwuaFSxRL\ngSJr4d/2RKVxNqf0nXcdGATQAyVtaeViA2SFQQqbgEI6jvHRO45eED1XA55qtTpGt54VZdNT4VHI\nNCqRoYl0tH9TYZKepHdncOLYMPMEosdsD5v9c3vcb3oebrv74XFie6NHTraHLBY9GY6554FzQkaL\n18QYtIEtDzDjOFOO3C/fZ3nz2MW99gR29N48x24TAYfnMwKWSfNAZex6zfKQ8ZlUT/QIfRZHpPMj\n40FAwnVYLBZTeJRxcBrlCDbPYnAJlmikyCiwz/TECWqih2yZMCh1HgUBJR0LAggaSNcnjYfszlom\nMR6Tyv2AFWmcmeIcEVBISrqW75Eh0GSozIUskZ2YYrGYGJZarTZ2qBdPwvX6nZRXMYlBOUt5IJkK\n6ShB8nOf+5z+9m//Vh/60IdS7sJ/+S//5cx1/d7v/Z5++Zd/Wb/7u7+rj3zkI7pw4YJ+7dd+TVNT\nU993O//9v//3+shHPqLf/u3f1kc+8hGVy2X94R/+4X3XF+kuKk3G5kg500O3UTA1zeNnjehZfwwX\nGNGzkJHwtQQx/jsqZLfbz3M9EQSRZj8rU+GxoLdE8BBpXRtAj9kkxsV9sOJgEmRsPw2hlYLr40ub\n6HnSoHHeaXwYquLc0OtnPgaNQgR0fq77TuaFFGzMSWG4gwqVIQzGpiOQ8bN9L/fve9zofbH9/psU\n/qQkX/flu71LxWuHY03ZiKya6/DzyJJYZpynFHNiaGg8pr7XffOarFQqKYTlsfZzY3vOanRpjLgu\n3M7IsBHIeTyLYSumz6Lg2PLFYdJxQnOxWEyJnAyDefxs+CqVyvdlAM86LhHcfbdSqVTuCVMRCFvu\nKXseLzKblH+uA8sWwUe3201t7Ha7SQ64llk/22cdYSB3vyWno20gP7Ql0qH/f5V/8k/+iQaDgf7q\nr/7qB/L8ScULjwjev+150HshPUylHD3xuJD4Pz0qFy9UGi9eT4AQvUQaKf7232w3KfK40+K0hd4/\nM6hJO0bj7/7Y6zppEdIgkT0hNWk2hx6Cn0WD6MJ2er6jt8HfUdlHSj+GeTzOZC/IzlChM7mN7abi\nIrvh75nISG+c4TrOP8FMNHSeKzIWBBaMx7OuCIDYdwPsyKxJuievKDIabJNfJEYQ5XXI8BhlkYCF\nIDCyR+7npBwEyjTH66y6krLL8FNktQiiOcZuA+fSdUb9QsaAgI2snMeyUqmo0+mMyfJ36xtDRmS1\n7CQwn4dr3P1kiGcS8+I+EEySvXVoo9PppDYxN4LjHdtGYGzZpFwwDBRDX5ZPtpNOJdcn13dkmM5a\nHtjwx9tZvvzlL+trX/ua3vWud2kwGOh//I//oT//8z+/J2fjB12iJ0uPkUJoJUyAEeld3394eDj2\nSnDWH58dPVIaSyoWPp/K3IVUK1G1PTC+7+G0XsP3KjTE0vgbIqMxY5jFC5gJkQw7uD4qTSoJKhJe\nG8EUY/DR46d3y3AL58/GkQDP17F/NE4cD48D543tJYNAFoSAyLLo+6yo6a2TSicg4Vh7vqLii/kM\nrjNePxqNxk5mJWhhGzk/NEbsD9vowlAa+0LZoaxMWiNkjJgETSNPGWJYhkYxgvTTFu5oYXiBwIbz\nS9kiuOf3vCf2l/NmY27PfTQapfdeeH5oXONr3c2IxFANnRyPp/XaSevbxt9gkLlGEbxRFgn4eCKo\nvyNLHOWLRp1OS9Qx/s4yzfXI0HVkoaOuphy9Hfr0gQ1/vJ2l2Wzqf/2v/6UPf/jD+hf/4l/o61//\nuj7zmc/oF37hF37QTRsrRqyRAeD2UO7EoJcoHYcl6JVEkCCN5zxE75DJTFYGXpQuXrgUYlOFDC94\nIdCQGfkzMcnPYhtPW/y8uKBYF1kJKloqOYZPvFAjvUlDQY+WIDACLnpZnksCLYZIOGcEO3yGx5Ze\nJZ9lGfF2QV5vAOPS6XRSvxjGioaaVDlDFZYft5dz79+eV7aTz5k0Z9E75m8zCOyX5cfyQJkwy0dP\nlr+ZYOdx5nHaBA3xHSMELpwPrkl+Z6MX805Yj0FHzHk5q7FwnewDY/oED173nE+2nfNqgxrlLjIB\nHDcbxlqtlgwsdZgNLuWef3NdRsBjR4WFDJLXgVkGh2TIAhDceI4JFgjurEvovERwTBaBQIdODtkd\n38vEb86f83e4dswo0iHxs+43PyXJhs7DHw9MiTSWP5PGE4b8veOepM24+LyYueMiemrR66Rik44X\nb1R+ksaoQ3pYkaWg9xI9a4YKJnmT36sw8ZOeFcMLNgjRU7eCl8a37TEJioog0r7SvWcYuG9x9wWN\nEWntOLaUhWhQfT0TCun9mq6PzIXrowfpZEs/33V4/ukZUtFF5RjDMaSp6TXSW47hJsqmQTPBG8ck\nhi5iOC0aoWq1OsbSuK0nhWTYZ7IKbo9LlDWPWzQIZLg4rxEMWV45jmQsPD6nLdVqdSyvIhp7/s9Q\nnfvrvpMBtS4hyI2JvCzsJ3UHcxKYJ0PDPQmYU0dwPujhk5nxTjkC5Rg2Yzt9HUMNnpMIFOK9MRzt\nEvtNFtfzTpAQZSzqHM9LBF5R3ggaz1rOQcUDVAqFwj3xPEljC4KJORRiMgH0nC1o0ei6Xv6OiD8q\ntaiA+RwvxhgGiIJNQxG9r/uhermoCJBYR4zdEszENrlQgUWvj2NAox4BHD0Y32Ma1oooGmy30+ES\nGkxJ95z1EQ0Gx5xt5vjSsPB5TMKjcYwyQ1DJ/lFuY1x+EhhhngENJ2X8JCDgZ0bWjIDCrIY9Y4ID\nMgxec6TB6aVHYxY9Wa8RGvAIENleAjd6wWRHOG4cx9MWy3YMdcSQA9mtCH6j4WQ7ec6Jn2MvP4Ja\nhzpcF3Mv/Bnnhh571IMcD+YsuH3uN0EAwy0c98iKEby4XQbr3JbP3C0CXLNeMYTovkYg5L85V/6M\nu/QY9iG7435aBjlXZ5UXlvPwxwNWHEOnAmMSjxF9FHLp2IhET4/Uvv+mtxz32U/yRCPdK42DEFJz\nZkhILUrjHp37yuL2nKVQYcZzJuhRuW/sd/QwaXDIIEQPmYmV7C/HmF6928ff7Osko00PmfMRDaeV\nMI2a58ZKkoaDsWz+0Bi48H4yORyjaHjcbxvpGFKa5ClLx+cKUMZjnXFMabAsq/Rs3S+fI0MQRhkw\nvRyfxznNsuM3nLINnL8ICjwPHGeeo0L59d/MvWDC6VmLnzHpXhsl6xmyEpR3zjcTfgnmWCfZUdaV\nZdnYmzrr9fqYPomAxTrKsuW8DIM8HxHvtlWrVTUaDc3MzKQ3UU9NTWl2djb9XSwWVa/XEwtjHeoz\nI9xm53ZY7xLU+DrKKQEFnQACJMqCQ3ec5+ik+Vm+hrtFJgGgeOZFdA7PWs6Zigeo0Ii4EOFSgZLK\njhnkNEDS+EmdNlgWPtLl9HJpaOnFWGnEsxnsJfjzuJOFnjgT6aKid3tPWyKL4me5kIVx3yclR3Hs\nosc/iZ6nF+WQhBUNPTPXTSM8KabOMbCy4NhQCbOuqNyjPLl9nAsqRHpMZBA8h/aWKIOkvAmAbKyo\n/CZ5mh7nGDqhFxf/txxy3gjQ4sFGZD7IOLkNfj6VtT1kG3MyN66TO4fy+XwCJOxznDO2gd97fE5i\n8ya1+bSFgITsg8fERpk7eSatAesIevBut9tKeYlsAMGjx8TsEfUADah0DCRKpZLK5bLK5bIajYbq\n9bpyuZza7baGw6H6/f5Ykuf09LR6vV7KRWo2m7p7964qlYpyuZzW19eVz+c1MzOjpaUllctldTod\n7ezsaH9/X+12e+yAPLeF4JJMC3UW16TBB3cLuU6Oc2T7XJ8dILK/dhR8NkhkbtiuOF9nKT/0oOL2\n7dvpKO3/l8vq6qpWVlYkjSslC7Zj4BHRkq2IXrR/U9gZV6RBtsHwNRGYsHjRRAVCKpKFwCQyB15I\nzOM4C9CMQIIKKhofKkgaFSo2ei0EHX7nS6TgYxyf+QJWnlSorDcaVZdI1ft5k5SY66TBiMaZ7Y2A\nIn7PbYbMEaBxiiCQ88j5dj3M7qeBn2TwTppbesq+1se6R+DAftIbjMyZS4xbk22hd+5xZzuYQ8R5\nYmIwDQBh2mAdAAAgAElEQVSBahxTl5hzQiN02sKdBvxbOtIlBkP+m7lZHCuOZQTFlAODTa4ZyrEP\ndYpy5zXgubS8WMe0Wi3Nzc2lkyg3NjY0PT2tWq2marWa3s1Ur9e1sLCgSqWSDHi321W9XtcLL7yg\nJ554QuVyWW+88Yb29/d1eHiol19+Wfl8XrVaTeVyWc1mU6PRSAcHB1pdXVWn0xljjfmOFM+/D3KT\nxnc4RacvGnyyeR5vggHPB8fL8kIdRH3HNU7wc9byQw8qYvHARoPFOJjRJVEcwwDSvYljMUlHGl+s\npK/8/STjxIVND8LPjnVx0v1MLkr32d5e3MrH+2Isz9cVCoWxNwS60Lh44fuUPd4bwyW+1211IfXr\nv8lUTPLG2H7Pn417HEMutrPKi+c/giIeTMX547Y+jwU9iygjk+afxsPjEw0rvXB6J6Q36dEZbMSw\nAb11Age2ncaRxpSAknJDhiFSujQSnFf+T2DAumN+hvtG4y6Nv22VDE9UwJHp8N+TYs1sP3MGOFYe\nn+hhTwLRBBUe03iomeWIrI77R2bJdbO9BOFkIU8a59MWy6blknrHhttGksDXz4vjHkEj2R3PhXUQ\nwabHlyFBh3i5HdSflctlLS0tJdnY3d3V008/rVarlZ5RrVZ1cHCgu3fvan9/X3fv3tX29rYqlYpq\ntVp6zmAw0OzsrAaDgRqNhr797W9renpaCwsLunz5svb39zU3N6dqtaqpqSn1+31du3ZN169f18bG\nht7//vdrf39f+/v7euONN8Z0mXR8iiZzKdw2ggLqPuoIgl6vESaUR0eC+phryHlcHjPK4/2UgqTf\nva87/54Wx8wkjSkjUp3RCFLxukQDnM/nx9C4r/Fz/GxPnIWdipCLKHreEQRwkfKHW0IjG8E+UEHy\ncyrWCFg4RjTq9GijoLpMUmKsN+Z6MFRjo+LrPH+kAS3oBCH0dGKW9WlL7LPna5J3ypgnx50Kn3VS\njqKssP3RwEemgR4e+0xQE+fVvwkmqNw5R24flRaVddySyDH33NgQZ9n44VGcK8qjjSlpYSpOf0ev\nKlKyJ42FP+cWTj+b647rlQaZsjfJSPM5URZYR9Q1Hus4jpzDWEdcNzTWHJ84L5Y9zyHX42kLARef\nQeeFY8p2u6+WI7aN/Y46lmPFZxI4x+2yvnZlZUUrKysqFAra3t7WxYsX9WM/9mO6cuWKOp2O1tfX\ndf36db3wwgtaXV1Vlh1vhT08PFSv19NgMEi/O52ODg4O1Ov1dOvWrZR3YZCwubmpzc1NPfLIIynf\n4ZFHHtGVK1dUKBR07do1bW5uqtVqqdVqqdvtqtvtJpnki8LcZzoD/J5rNjJ7LhHYcWzoiNJBIgjk\ncejfT/jjgQMVpNW5AOIguvha/x0NqifDyT/RmNOz4eL1NVyU0WPgBFNhUAFRaUwCRwxFRErb99Jg\nxjppeCaxAzY2VGYel2gQ/CzWFT0PAi4aFnr60TuNYIZjOKldZwEVbjvBlQ3hJPaCxeNIJixmbLsP\nBCTsBwEtwYPHnkrC7Y1Kme2I8+l2Rg9nEgCm9x7BHgEG5c3/OxmMYIJjxjZx7cRxpHfmpDSuF75E\ni8xMDCNwHcV5cv/i2rS3Flke95Heo+tnOwxkmARNNolzHmWZc8fwGWWDsXHO4STA5vtcSKGfpkRZ\nimyepLFdDZZNgmHOl8c1jonDKvS2qRc89h5XAz0e+d1qtbS8vKx8Pq+NjQ3lcjn93M/9nC5evKh+\nv68//uM/1vPPP6/t7e00dvv7+9re3tZgMNDMzIymp6fHzqyg3PisisFgoJ2dnfTiQr+078UXX9Q3\nvvENvfrqq7p06ZJarZZ6vZ4uX76spaUljUYj7ezs6NKlSymHw89ikiR1JVm/6BhSjgw8GEb12mGe\nEFli9o9MLL+jfJ+1PHDhD0n3KDwaywgaXKhEqVBo1CSNKZoIUrwQYn1Efb6G3iFjX4zJsx1+Nhdt\npKsjhUvFTWXu9lMRc9GT6fFzaRSIll23nzPJ02boyM+NSXM0uBGw8H4qMBo6KsyzLAaPi8e+Uqno\n8PA4I5qLclL4iM9zLJd0scd60nZLGkUqEFLa7CeNowvbGfMLYlyVIQrKVASq3C5IY0lDR6NpwzJJ\nHpl463FkG/l/XD9cW3QMIrNAhRqBw0lA1GuBa5FeMg1ynG/2M+qDuBZiXQTsbFMMPfq7SqUyBlK4\ntmKojWCO9edyufTK+tOWaNz4m6COjgPHn6CAHnAEuK6HuRmk7q0/CRKdRDk/P6+ZmRltbm7qscce\n09NPP61XX31VL774ojqdjvL5vDqdTpLlarWqvb09lUol1ev1lOzJMAsTyP2s6CRabmZmZpRlmer1\nutrtdmI+Go2GZmdntba2psuXL+vpp5/WwsKCbty4oa985Ssp9+0b3/jGPWuGchR1IK+LtsGFNoA2\nzECj2+2OhQmjXeBaOGcqvlNI1XJQPFhEYy6eBCoBAhJPQvQ2rCi5ACd5ZH5+VE5x8qOHbyGmNx9R\nPj3H6MGxDRFwsI8ETVGZ+joKePycAk+k799UEAQBNBBsp/vgRc15pJfG+wzQIlj8XiXuDWe7Twpx\nuA++zn2OHiflbhIVTNBCkEpAZtljfoUVAp/l//kZ83LILrBvNBYx5BI9G8uPr4mAhPd6PCwnkXLl\nfEYDy+ey7ri9jt8TkLAQtLsfvocHjMVnR/BFGedYE2wS0ERnxs+mHuAYnyQfnEeuddZl+eG4RjbE\nn522cA44Jh4Lt4nrk3Pp/2NehOujw0XHx8VhH8u6+5PPH9H0jz76qIrFojY2NvShD31IDz/8sP7n\n//yfun79umq1mjY2NlJyJx27QqGgRqORxqper6ter2tmZkbFYlGtVivljfG9PO6vXwTn8e90Ojo8\nPFSz2RyTi62trRTy+PrXv67FxUVdunRJm5ub+ta3vqVut6ulpSW12+3URzMf/t/5HcyfioAshgc9\nN2RdOKZ0QBhSppxOslVnKQ8cqKBg06hygUb6n4omDjg9ZN773diCqICl44VJgEAAMcmjid4/n8FQ\nAe+LisqFiowMgQ2W47Y0MEbxVGbSvQlhURlQYTIB1e04yfNjgmqMmxJIMN7Oz6MSP628eF4nATDO\ndQRmk4AP59t/e2w9NhE4RO+VHjnnKAJW9oHtjePh66PBcjs5d5QjKzd+NskA0lvl3EdZIID2XPM+\n1kMZiwmMbgtlwOPF+aLXZxmMIUFfT3aQQJtgzzJJcOSQSZQ7rlmyEAaxfHZkOaJcu70EKpGxsZft\nkBF1HwHdaQtlnrJNbz4CMF7HMWJ/KT8cK4JThp+4Bs3aLC8vazQ6Cj/87M/+rNbW1vQnf/InyrJM\n7XZbnU5HCwsLY3NmdqNWqynLMjWbTVWrVeVyuZQ7sbe3pwsXLmgwGCTmxG0YDoeqVqtqNptp3v1q\ngdHo6HwKj4FZku3tbR0cHKjVaunmzZt66aWX9MEPflBPPvlkGqO5uTlJSq8rjywimQOPEcGrr+cb\nXW3nOKZxXcRQvp9DFuws8sLywIU/TEHTsEv3JioadfLaXC43lvEaFZ50bzZ/3LYTlVhUvlS4NB4x\niz1uJ/PnDCPwbz/Pz3RMLSLbmK0dvS23i2clUPmzj1TmBGzsj41p9II9vu4D5yh6XLzeBoZnXZCu\n85ycttBQUvmzDWQo3BZ+zwXocaARJAiIxidS93EsCOR4j9tzUtstO77O7fQ9nHPfQ9bC99NwU44j\nAPD3MdRFA00Z8HOZ/BxjzFSYzlCPgI5AniA3GvG4U8Bj63AfQ59O3uPcRuAQjfUkZ4HjGVkFrg97\nlgwfTJJPzz3Dh5PAgndpeRcN23LaYt3oQkBjfcc+Uc/E/mVZplqtlraE0lnyPJO95JhSjp966ql0\n4NTP/MzP6Ctf+Yq2t7e1sbGhdrutmZmZFA7q9/sJzM/OzqZXiheLRwe4vfLKK6k9lq9KpaJms6la\nraa9vT0dHBwkNiGXO3pNe71eT8bXYeJOp5PmpN1uK5/Pa3d3VwcHBxoMBqpWq2leH3/8cW1sbGh5\neVlPP/20/uIv/kKVSkXtdjslj3KtRmaL51d4ByOBpmWEDm3U27SNZoNYh+XmfkHFA8dUTGINpOOY\nrb+TjpVtfPubhY+0F1Ff9BAo+CyevJjbETPxqXR9vbdrMT7sOqR73xnBvvvZNMh8vu+P40LFYGVA\nYxdBDsfXsUcaBverUqmMKUt6KVYoku7Jcqdho1IklUoq1nWfZTFE1uqkv+MccG7j1ivOJWlkl0gt\nE3RNAp0eJ3p7/k0mgzLl+fR10eiSUWNdUb54cA/lw+2NoQUyTHyu+8rtkJQfKjQCJc4P5ZxyS++X\nazLKGfse54KyTqbS653Hp0fg5fZHNohKnc6D54rbIunZ02Mki8kx4vM41pRX/qa+OG3hfBPE+Ydy\nPel5BHuug2PFOqjLfD9DjA8//LCKxaKmp6f10z/90/rc5z4nSbpz50562ZdzRqy7/aIxhzY8r4PB\nQIPBIAEvvwgsn89rZWVFpVIphTOcWFkulzU/Pz+mB12fWYvDw0PV63X1ej21221Vq1VNT0+nl50V\nCgXduXMnnYXx2GOP6d3vfre2t7eVZUds2d7e3j2OrPVMzGGivEYAy1Aznay4niY54JyP+ykPHKiw\nMo/CTS+cKNiepTTucdKjivFKLmC/eCca+ei5+vOIPmkI4uK3F0VAQ2EjaCD48LM8HvTColdH8OD7\nyMRQgfgz18fM4ahIXY8ZBRoTXmejTEDiBRaNheslQPHCIdV7lhKNbblcvsdD59HIVKTR8NCTdiFV\nGY2DqWrO6SRGh/33M5mE6fmz8vF8RDnkGLJQrtx3P8Nrhc+mAmOJbAnlMeblTFpTlif2xUqPfeJ8\nEbhMymmJ98S5dnE/JzELERhOYreoZyKYiONMgBHHjfLCPnIco2cf1737QL1x1t0fcb6dS5DP58dk\nLII4yoXbSRbW7bEjx2OrJ81JPp/XwsKCZmdndeHCBb3jHe/QN77xDR0cHOjmzZtp3BqNRpIdsxmN\nRkPNZjONe7lc1szMjHK5nPb39zUajTQ1NaV6vZ6O6jZAcD9t6Ofm5pTLHR0R7jemcowou8PhUM1m\nU3Nzc2o0GqpUKlpdXdXh4aGmpqY0GAzU7Xb1v//3/1ahUND73vc+/e3f/m0CN37NO8Gz9aHBbZR1\n6sWYV0hbF8Ou/IyOIXXSWcsDBypiQpt0rFgY7pCOlWu1Wj2RkaA3SJbCE2kPyPWRdXB7LARkQvws\nhljcZiowK6Go6NxG9o+F11PRUQEz4z0qILI0fBbbwHqLxaKq1erY+HJcvAiouOmVRKPNmGD00rmI\nOBb3ozh9r9viA5vi99EA0qh4rPyZFcAksBC960mxzSgT7DuVueeTsujicWYeQDRy7Bvl0vNjBsZz\nQVaCYxDngv2ljEyaxxgyICDgXNK4RvbO38cwDevkOPlvUrz+btJ4RLZuEnAleInGlWt20hqOrBvb\nwOuob+L4e679OR2Z79bukwoZGAIgPt/1s20n6SI+n6ycn+HP6fhlWaannnpKh4eHunLlira2tvTt\nb39br7zyijY2NtLhVIuLi5qbm9PFixc1MzOjVqul/f19VSqVBIYKhYL6/b7m5ubU6XSUy+XUbDZV\nLBYTIGk2m3rooYc0Nzenzc1NDQYD1Wo17ezspJM3W62WLl26pOXl5RTWMCNiBsTyWavV1Gg0dHh4\nqOnpae3u7kqSNjc3U+il1+tpY2NDzzzzjG7duqWpqanEkDCUSJmn7onssn+bEYv6x3M4ac1Rlu4X\nUEgPIKg4aSHa448Kwgsw0owEAgQVVGLx85hw5f/p0TBcwphnVNCcYC4+MhBUkPRW2H/+JpDx/1QO\nFrTDw+OXhvk79iWOARU3k/P8DP6moSALxOup/KXjnAn2g2CO7TkrwuYY8r0U7B/nmTJmIBMNRaQR\nyei4GDi4HssI82bctzjeVBDxGo4hPX2Op8fJ++89J/SMCDYp99Ho00PyOvN39ITIDhigeBzYfh6c\nxX4QoET5jbkW7iPn2IUyZCeDypdjFEFvZAE8VpE949qfZMy/mzKnLrExj6GQSbIZHRyGavj9aQvZ\nGbJVEfxGvSgdO1K+l0DV48Q1z/AaHYnl5WX1ej0988wzevzxx/X666/rrbfeSszn3NycKpWKpqen\n7xkfH2Dlce73+xoOh1paWkpAgIC7WCwmdiGXy+nOnTup3cPhUPV6XZI0Pz+f8jampqbUbDbVbDZV\nLpdTHoV0lAfksEu321Wn01Gn09FoNNLs7GySlXK5rJ2dHb366qt65zvfqWvXrmlxcVG7u7vp2HHP\np20VZd3jFcOOll+Pqdc5GeC43imDcU7PUh5IUMHFSnaC3jKVY61WG0vOouBzwKORjkYserOMabtM\nUv5eeFFBRq+W3zPOSwTqeuntRmVChRDDNm63FW1MQqRXzTGP9Ha83uEBKhvfG71Zadzosv1Uulw8\nNlQ0nqcplAe+DthtjguPoPOk8Y00fmwTQQnnnaCMfePcuH02XFQEHl/OYwRIvp/jGb0djnEEF7Hd\nVGqU05MMNceUHrT7Eo0Oxy2CKY8L2Q4/x/fGUwmjrLt9ZJ24Hul9U9a4tq3sCdh9jRm86L1zjPmZ\n5Yqyw/6wLbF9nofYNjpXpy1RLqP8xnw0zznnm8mnnt/Dw6OzNwi8OGZeWxcvXlSz2dTVq1f1oz/6\no/rKV76i119/Xd1uV1mWpTMiSqVSqs/tLZfLarfb2tvbS/+7fbVaTVNTU9rf309trdVqWlpa0sLC\ngnq9nra2ttLJmpaRer2uWq2WjHK321W5XE5gZDgcphMzLSMrKyvq9XqJoSgWj7bAktk7ODhQo9HQ\n5cuX9corr+g973mP9vb21Gg0tL29ncKxBlKeV4JW71ShLvecRXkgIx9BY5T5+y0PHKiISpw7F+iN\ne/BNQROJW1gZVyeqtVdGQXa9VNhW8lTCk7zG6InHNkoaW5S+JnqPUalGsOL76PkZvVpI7amfFB5x\n/ewL6TQXj3VsY/S8o+cVyySqm54uFfD9xAJpaKPi57PpkRHEcJ7cR4JXt4vJUm4j+0PjOklGeJ/b\nwh1CHKOT2CKOub+fdNwygYzHxn0l5Up5iyyW5WoSgCBbaObC8kZgxzG1TMetbgRQ/p9gmWsgjiPr\n5/rinHN+2P7Yf4LCKA/eLhiBApW4t0u6L3zJ1CT5oxyQLeOpk5zv+2Uq4j2WmUKhMGawqtXqPawI\n5ZxjzpwR61W2fXZ2Vq1WS4888oju3Lmjl156Saurq+r1emo0GnrooYc0OzubXkVeq9V06dKllJPQ\n6/VUq9VUq9VSGIS6zSGTpaUlraysJPbhrbfe0t27dxOz4CTNUqmkRqORwhvb29vpUC0nXQ6HR288\n7ff7ajQaWlpaSky0X7Wey+XUarV0+fJlXbx4MQGeTqejW7dupZc+vvvd706nc25tbSXZYQIv8+To\n9Hmc+bfniUA/OhJR9r+f8sCCikmL0Av28HD8PH3fx8nxJEjHWxmtwGkMosdNzynG910fY6j0suLE\nSxrb8jMYDNL/0jgj4fpcCIhoJFwXPQ0rcib50GhG9ErDQ2M2iZab5N36GeyrqfNYl/vI51Kpss/3\nqzwJQNlOj4Ovi+Aml8ulPBK3I553wAXO8TrJg6RM0pujLLPtVM5xK63vYx84duxTlI1JoIZKiHQq\nPSGug2j8OX/0kqLROQnETWK1mAjowiRWjmkE2DxSm8aSc8Y5PwkEx3XP8WG7JgHrk/JAuI64xjnO\n7BedIBtnafxAtrOA7ajb4i43ynAEX7EPnAcyv5GVKRaLmpub0+zsrCqVit7znvfo7/7u77S9va31\n9XXNzs6m/AfqBDMRBDvWleVyWfv7+4ktajQaajQaaUeGJLXbba2trWl/f1/5/FFo5ODgQJubm8rl\njs6x8MvGsuzoBE0C4UajkeYynz86eyLuHikUCtrZ2VGz2Rw7atx6zy8eW1hY0P7+vn7kR34k7Wox\nq0JQ6udxjRAcx3Mqoi3kfHm9RMbofssDByo8cDHWbUUaDSK9KV9Hz08aP53OgISUka+JiiJSwlRs\nnkhOKD1VgiCeyUCwEmOu9EApOO6X20JESvBEpWmlxDH1bx5cFEM80TDRm+LzOSccs+h9WflMUo6k\n+yJaP0txu6KHRzqWz/fcs800LBxvegB8nttPResFTgbMcsXxmCSvbLOkMUBsY8O5oty6PdEgcv4p\nvzGHIYIX9tHXMLTgaw3WPd+UKz5XGves6KVRljlezGRnnyNoIjDjGnGbOW9xT3/83jIY2RRJyYBE\nUBfBHeUoAg63iWNh/RFlJ9Z/P2vC7AnnM+omzhGfzTVKQBJZNLb1ypUrWllZ0Wg00pUrV/Rnf/Zn\narfb2tra0tzcnOr1ulqtlkqlkqrVajpXYnp6WsPhUPv7+6rX62mezMDu7e1pe3tbkjQ9Pa1Wq5Xy\nIA4PD/Xaa68l1sE6udVq6cKFCylksbW1lUIZBglu/9zcXGJYXG+xWNTNmzfTiZmrq6vqdrtp98n0\n9LSko8RPy0a9Xtfq6qoWFxf1rW99K+1MmZ+f19ra2kRnj+MsaSznIs5nlFPOaWQlJ4UaT1vy3/uS\nH65Cr5+Kzn9HYbYh597vCBSsEKNHy8m1keFEMNHTik4aj+FGj4w7Lrh4qXRIezEmS/QtHRtdtoPG\niH0jJSspnRAnaUwpsD00rjEsE+lnxgSjh20D48+9KGmkOB6eP3osrvd+5IXFCb1uu+XAij4aG+aR\nROBDwxWNt+ulLPC0RRqSSOn7c3/GHSvOPo/KhXIZDZm/c/9otHkPgbZ07ClZBiNo59i6TQRrbEeW\nZer1eulargGCbb7y3s+Inn6hcJTp72f6OtPH9ML9OyarTjKiTKpm4nIEGWy7//aBc2y3NM7K+Llc\nUwRzkXFiWM3zRsBhmZok59+ruG6Pmet3W9x3x/wj8KRMOfxjYxXfYutSq9W0vb2td7zjHfryl7+s\narWqra0t5XK5BCjsgft149Z5Pu9jNDp+0Zfb4NM1u91u0hdus6+VjhiLYrE49rKyfD6vhx9+WMvL\ny1paWlKxePS+lc3NTeXz+XTY1Wg0GruHffNctlot1ev1xLg4T0NS2l0yPz+vF154QU888YRWVla0\nu7urer2e5JJyTH1Ou+Hidrh9tCOT9KhP5eS23vspDyRTQaPmzyRNVGikDKOgR0QevU9PFpMUozdN\nb8GKa9I2PysJLlbW6UVgxU0F6j6cZHQJPvh3ZC7ouZEK428bT44vx8r1sj383IXeTfRwqbQ4bpxf\nzhOpcSru0xQq90lywr5xfKJccI6oUCkPnC8/m89k/Jz3sV4C3Hitf/Oo5qjYCPqiAaRh5vhMokwj\n4KLh93WWExp+Mi9sYwRenAcXyu4ko8S+sH4+Jxpo3k8gQWVML47PIdBnu8lCRp0wyUvk55Qbfk+d\nQ4DrdrFNnusIeM6yLigPdK74m46Z222wZTATxyg6XdKRrDgs8eijj+rChQva2NjQ2tqahsOhLl++\nnBIibfymp6fHDq3q9/va3t5OiZv9fj/VLR0fg728vKzp6el0RLdPsnS4pFarpe98X7PZTEdyMwwi\nHTkh8/PzyufzKZfD43Hnzh0VCgV1Oh0VCgVVq1XNz8+rWq2q0+lob2/vnlD44eFhOoOjVCrpJ37i\nJ/TNb35TzWZT7XZ7bHt3tD101KJD4rngSckR9EuTw5FnLQ8cqLByl8ZPFOTnXhjxgCV64dK98U4m\nc0UqlM+nEZykqKxkiGyNtu0F8ZRG32uEb4XpJDc+18LJeJ0Fhbkek1gPGi8Kp0EXFZTrmrTdkzFt\nxlCj5xUPuoneKdsUDZ0XEZF6fPnYaeWFAIfGmXIRqWQqchp5GvhohGg4JwFcX8dXSnO+GVohkOIr\nwi079GI5v+4n2xCN2CRD6WdaLgwWbLy8NvgGRCYbeq05/u0xdHssS5bZqNQ8Dmx7fNma12s0uh6D\nk2SRAMNtYggjGvzILnw3toIKnc+nofYzaYhjlj7r9ngQsNEJINPkcYqnvn6vQt3HNnDMohNCeXE/\nCNqph+m4XL58WRcuXND73/9+dTodffnLX05hA+cY5HJH+UvValWFwtFLwfL5o3d5eNdFlh2f3lur\n1ca2tjqUUKvVNDs7q1zuaAfHnTt3kq6yLms2m8lwu83ValWLi4vpbBMyJI1GQ1NTU+nVCDb0d+/e\n1f7+vu7cuaP5+fmUy7G9va27d+9qd3c3jXG321W73U662wdxvfjii/rFX/xFra6uqtFoJOYmy7Ix\n3U7nzbLn/lseLH/cqcT1FgH+/ZYHDlRQkD1QjC8bODiea+PFBUTvfpJXIo0f7+vvo6KhQeKCm8Qu\nkN4iqIleTlSgfiaVmRcezwKw0jbKdqKqNL6zhLF7e+L0RDiGPGnSdZGi9+KKHrfHOAKcfD4/dspk\nBCrR6MeFxO9OW7w4Y2jGhV4q48ExKTKCSX4e2QB+ToBAcMPrY39imI3jyNwVhnLiWNpwUWZdN/sb\nAafXjTQO1i0XpKdHo9HY6YSWM2fEx9i0QQlzjLjOopEliI5Gm+PuI5Q9tpGRcd3MJTkJXEUwS/Ao\njSfqErS7ToIirhWPOV8THpN+eT3DXuwvASINxFkBN3UEZZa6lYDJ7YzsFB0812U949wFG+R2u62/\n/uu/1vT0tNbX11OdPmrb77oYDAbpHRzWQf1+XwcHBwm88tUAdAQqlYqmpqZULBa1ubmpu3fvpn75\nOTMzM+mcCG5/LZVKunjxYgIUDn3MzMyoVquN6ft+v6/bt2+n3SOtVkszMzPa29tL21aHw2Gqo91u\nJ5Yln8+nl5AtLy9re3tbq6urWl5e1sHBQWI+4hzTdkW2wbJBcBrlyfLLo+TvpxS/9yU/XMUxLy5k\nKx3v5eVn0rghpAKTjrdQWeHQGEYPNHpyVC70Rk3NRe+cC9j9oNLycy38g8EgvTXPp8hVq9VUl1+y\n0/tY+ZIAACAASURBVOl0tLW1lZ7ptpGl8EK30qCnybGJVBv/Zz/8N2lXbu8dDodjFK3v9+cETZLG\nPIAIYKRjau+sHpnbQoMUjxT38z0Hvo+GzOwVz+UnExABZAzpREDqZ0WwyvH1HLIusxSeq+jtc56i\nMSIDRZBjuSA4NDDxljqzEGbwyuVy2udvJVytVpPy3NnZUavVkiTt7OwkT9P9ct0+AMheINdoLnf8\nAkAbG/ebcuF1FKniCEwJymjcyRzGUCfXOOWX9VJxT3JG/H/UM1T8nBPnJ5EJI40enxuZz9MUMqeU\nQ9fLvIPICHEOGeIg0LKxvXLliqrVqorFop5//nldunRJb7zxRjLEo9FIc3NzKSfFc9ntdsfCEE60\npCx7W6jPkPBzHH4YDo/e6trtdjU9Pa1ms5n0qN9Qynm+e/euyuWyFhYWUr5Ov98fe2U5x99tbTQa\nKpfLqlQqqU31ej05Jjdu3NDi4uLY8d9ZdpRjNBwO9dJLL+nq1ataXV3V0tKSNjY2kvH3My1bTKC3\nXMX5icCToNXjfFbGl+WBAxXcShYVYfQM6ZlHxoCfU9l68bt+LhpJ9xgMtoHeEBer64sJbxcuXFCt\nVhvbf91sNrW/v6/hcKhKpSLpSHi73a4ODw+1t7c3tlfdSLjRaCSvfHp6Wr1eT9VqVd1uV41GQ7dv\n39ZwOEwnwlFJup1MTrPyjWCjVCqNgTqiXp4WSSDmMYo0szR5p4TH3W8AdALWpCO2v1chu2GFRMXO\n9rodpqatnDjPZFFGo9HYwvdYxGe7bx5bh+Z4ZgOBCWWRyn4S6KNsRsbH9RoE+Pp6vZ7GwXM6PT2d\nqGZf659Go6GdnR1Vq1Xt7OwkcOUYs1/e5LXhZFKPnd/JICmBYicAbm1taTQaaX9/X+12WwcHB+n5\nvV4vyRHniEaZhtBOBQ3FJEUa2QUeMhc9bwJIeuiux3WQzaD8U6H7OzIxdFYcc4+Ahs8ny+U6qRNP\nWwiCI4i1cSeryR0opNvNRllmDQ59hLa3Yz7++ONaX1/XnTt3VCwWtbi4qO3tbV25ciW1aW1tTZVK\nRa1WS9vb28rljnZeTE1NaXd3Vzs7OwmsWMYsIwYgjzzyiHK5XGrXpUuX0mmZ+/v7unHjRpLVfr+v\n3d1dzczMJHm7ffu2bt68qWq1qieeeGIMiHJ9e12YLVxaWkoA1+8DsX7odruamppKuqBWq6nf7+ux\nxx7Tm2++mUDUj/3Yj+lv/uZv1Gw21e12x9hSvjPEY+32eDwsN2YL6WRH5+77KQ9c+IN0ajReDBf4\nGtJykWolg0E6NTIMk7xJ6ZjBcBiFhokL3ga3UqlodnY2vUDH2c35fF57e3spUcfJPPbivDC5PdUe\noRF1LpfTwcFBUkxe6F7c3opVq9XGAIL75HaS0iQYo/IhwPI4EzVHGpXj6EXKxNnIfnABkIqnITht\noSxQDjhv7JefT2/A99MbjiEDGnveE5UyGS4aE8oZwx8eK/aHssax4rjaALgQ2BaLRT300ENqNBop\ncc2Aotfrqdfr6eDgQFmWpc8MBiyfpnHdN59Q6DY0m82028NKfjQaqd1up2cYwNiQTE1NqVarJaaE\nCZFc1+4/55RyGUEHv2cYkXLpEpmOSTLKuijHLnQyJI2BbX9PJ4j1+tmum32OTBf1wVk9T8s5n802\nmb2yYeQZM3622cWoI33N0tKSqtWqnn32WX3ta1/T5uZmGt/Z2Vnt7+8nXcPzHiwDzrHI5/M6ODhI\nDpHZCI+jkzSXlpbSa9APDg5S0qVf8NVut9XtdlUsFrW9vZ0OuzILZycilzs6u8Lrw330rrVKpaJu\nt6u7d++qUDg64Gpqakr9fl/7+/sJoHsbbC6XSyzKzMxMGoN2u50YlfX1db3rXe9KgGxra2ss3OF+\nW29L42FUJ/6b4YgOEOWI4fD7KQ8cqGA5ibGgJ8KB5aIm/c1FaUUZPWz/z1iUFxI9F3obnuxaraaF\nhQUtLy+nLGcL3HA41M7OTlLUpoDb7XYCBD4a1t7f5uZmMhL25v0sK5m9vT1JR7Qh2Y1qtZr2d09P\nT6fX8nrcHOdlEpP7agPCsafxYoye40bD5zEymPLcRANNT8o/97MIfG8ElGwXCxfqpJwbz08cF8pD\nfPak/AFSmRFsRKMTvcrIsNgA+bqYhGgA0Gg0NDs7m1iDwWCg4XCoTqej/f39pGSlY0No5ZjPH2W/\nm6UaDAYp2c4UNIG0dOQZmnkgO2P2wH2w51goFFSv1zUzM5Peu2AjQAPM/ylD7q+/t0cXw4tcrzSq\nnAdfT/mhLFi+fR+ZEbaH90fWIzJRbAPnflL7YpjuLEDbfXO7CVA5VgT0HFvKHtvh+2zglpaW9NRT\nT6nb7eq1114bSwb3y7x8v6Sxus3e+k2kBrgGHQadNrIXLlzQ/Pz8WHjcIICnaFomZ2ZmVC6XdeHC\nBW1tbSXQxJwbAwG/NMwMmtfDxsaGhsOharWa6vV60sVLS0spnMKDtebn57WwsJDWTbfbVb/f197e\nnn78x39cN2/e1I//+I+n/BG/aZVMENc15SI6Y7Rx0nGSsD+PodOzlJyk+z866+9hsRBFj4yUHQ1b\nVD5WMtyJQYbjJCNGjyJ6u5GubjQa6SU4zmI+ODhIXp7/l5SEVVKisnxEbaPRSMfQbm5uSlLadnV4\neJjot7W1NS0tLaWX2ty8eVOHh4fa2tpKx89Wq9UEcAxYpKPDYixwGxsb6YhaLxwKMfsad2PQ2EWW\nIrJDNKqsk0xJvNf1nTV+TM80GnPLySQ24DQsFmnHCDR4rRc3QQPDSARPBGL+nOxIPN45jinvy+fz\n6XCdmZkZbW9vp/cUuK5c7pjW7fV66X0EVoTeQjc3N6ft7W0tLCwkoz09Pa1bt24l2S2XywlgzM/P\nJ2Yjn89re3s7hd92dnYkHQHepaWllJsxGh0dEOT4uefPANSy6yQ7x8ZpmOituTA0F1klf+/nO6zo\nLYhWvtQ1TIizPNGoRo+dwJkOB2WM1zBvh4Zh0tpyud+8CtdFoEIAS/0Yw8QES9a90lGI6+rVqyoU\njt7x8Xd/93eJJTA7awbCutCvMneSb6VS0cLCQnq9uD37drutQqGg+fn51OaT2Ot2u61bt24lJs0M\nhPvUbDZTaPDGjRsJPLifDos89dRTY0nrdsA4Px4P93NjY0N7e3uq1Wqam5vT4uJichZv3LiRwiL9\nfl/Xr19XLpfT8vJyemnZe97zHr322mu6du1amnvOW2TTqYsIgsna+XvfT2ByJrnRA8ZUePFHj4BK\n3//7GguEFYsXPb0Al0kxaXpGXjgWZisY37e0tKSLFy9qampKWZZpe3s70cIOVdgg7+zspAX27LPP\nqlqtql6vq16va2lpKbEepsh9Wlur1UptN2Inje1Ez2q1mo6NXVtbG9sSZcpQkrrdriQl1G1Kj6+O\njmNl0EWPzCV69zSUniN6aQwf0UC4Dnp5rOe08uI2uc0xBEGjQKXOGDM9Ac99jJNTMdMj9TzRu7UM\n0Rv28wmqbFD5mWXTgINGx332SYRmJe7evZvAE8GHqeGDgwM1m0294x3v0MrKSopFt1otzc3Npb39\nCwsLCRz4hEJ7nDYKrVYrzaeZLybiOk4+PT2dXu5koMG57vV66nQ6yrIsrSF6uM4NIWA1SHJdHkMa\ndToI/Nuyyc8p12RErVMsT5ERnRQapNFmbJ6Givkd0eEhe0oWjKD5LOsisnV8LuU4giOOCcGy/3/4\n4YfTWzy/8Y1vaHp6Wmtra+r3+1paWtJwOFSr1boHuPm5xWIxAWE7XJ5v77KwjvIYeA5sPEejkXZ2\ndnRwcDCW92GQ6h1DlUpF6+vrunv3rnZ2dpRlmXZ2drSzs6PFxcWkX+O5HB4TA2KCDJ970Wq1tLi4\nmEDR7u6utra2UiKm5TqfzyeAfOXKFT3zzDN6+eWXdfXqVV27dm2MuaVdkzQmI2ZSLH+RaeUcez7v\npzxwTIWFx/ScjQIXvCedGcwcQIY7uEBo/Lzouf2NisGCPBwOtbCwoJWVFVUqFV27dk3tdltzc3Mp\npux4Yblc1iOPPJIEwJ4gvcW33noreUw7OzvqdDpjW78MBnK5oxwKU8ZUWHNzc5qZmRmLtzq26LyL\n69evq9/vp8XCN/TxCO9er6f19fUx6tgLlzQzvWWO7aREWX/u9kVv30aeP2RGzoqwuaBcJiX7sR+U\nB/5N1oCAZVKYjTkBPHHRn3McXA+Vh68nA2J5tpF3GMGJYeVyWZcvX05JaKVSKeVHOJRWKpX02GOP\npb44w51hE+/uWF1d1ezsrPb29lK4ZG9vLx1Q5Gz3ZrOZEjotv+vr66k/pqZbrZbm5+eTR8e15L4e\nHBwkunp1dTUpdbN+HlsaZ/82g+HXUHuuTIt7Dj3+fibBAUN8BLuUYwI5ykEMvXjuLRMRFMSdSAQH\n0WFyIRhgH+I26O9WqMfI1ETGjeCI4xT7LSnla129elWzs7N64okn9Nxzz+nVV19Vo9HQxYsXU30O\ncdkA8pyTfP5oyyWfGRkB616DVussJ7zncjndvHlTq6urYzZiYWEh6Rzp6C2i1WpVu7u7CdS4zp2d\nnQRC5ufntbi4qOnp6TEdaCDN3U3c6m25+z//5/+o3W6P5XB0u92Uc2Fgn2WZ3v/+90uSXnvtNa2v\nr6vdbqd5myQbXAdkNOgY+VrKy1mZLZcHjqmwIpTGPQfpmAYyu0Dlz4Hn5HtxEJ3T24geuhWgvaSl\npSUtLS0pyzKtr6+npDbHp9vttsrlslZWVnT58mVNT08nQVtcXNTBwYG2tra0v7+v9fV1vfXWW+lv\nK+QLFy6o3++nN955axIBgBXUYDDQ3t6e1tfXlcvl0nHGly5dSjHJmZmZdPb99va29vf31Wg0khJ2\nDobjgE5i2t/fH6N+DQoovBFVUyk4ZMU58DzGz6L3Huf5rMV1UIFGpoRxx8i2uJ3ctXFS+xiCi56N\nnxM9YsofY/oEwFTw0vH2Rsvx8vJyUtR3795NddvLPzg40Pz8fEoSZghqampKlUpFa2tr2tvb0/7+\nvq5fv57CYc7rkZSSOm2E7M05d0NSCuN566CfZQZiZ2dH29vbY2ETH17UaDQS+OA5B2tra6n/XpdW\nuM7bcJjEnqzZlEnKNQIFyhbBRHRATmLLbIAY0mDIgkwcWTPLR/w/gi0/k4cZ0dCflcFzGyKAjUac\ncu2xYMjB/RoOh5qdnVWhUNBP/uRP6sUXX9Tq6mp6kZb11/T0dHKEWq1Wyp+wh0858jOYEOr5sfG2\nDElK2/klpTwHO18zMzPpKO7Dw8P0uXfQeRy9JvhSylwup1qtplarlRhnsuVul0GRx2dvb083btzQ\n5uam9vf3tbOzk7aq+jwKg1yH/XZ3dxNLMTMzM/YadzLHzE1j6OMknUF9x3E6a3ngQEU0VEzGYvwx\nLgYarmhgIiL3QnHhdX7Www8/rFqtpmazqc3NTbXbbeVyRzE7J1Tmckehip/4iZ9IB1b5RTOHh4d6\n6aWX9PLLLycg4JfZmBJzYpET5Lx32wLjw2CyLNP+/n7yJp2/YWXqOPbm5qamp6fTi3pGo5Gmp6c1\nPz+vO3fuJCHPsmyMoXGOSKfTSd4qFR8NZFTC9OK5CLlAfK+VGr06gyUa37MozwhYSNP6e4JQAwLK\nFePg0bNkSIfMBz0CPpuGPFKYkUq2wiCd7/Hznn3piLV4+OGHU2Jju91Or2ne3d1N8/fMM8+o1Wql\n8yOcz7O+vq6NjQ3dvXtXN27cUKfT0e7ubkrStHFjPocVq1+wFI1RtVpNQNh9ZBJepVJJCcZmO/b2\n9hKbYOPsUMnS0lIaw52dnRQGMQPIMxUcLyebQg+WYCLKh+fFskrQNimZjzJG8Gj5sCPDdeV7uRY8\nLgQhDHuQ4fNaYR+o705b6DBxXUSGzLIdt9oTgGVZpoWFBS0uLurRRx/VYDDQCy+8kAzicDhUo9EY\n23ngg56Y6OtwsItDwAxduO02kAb6Bs9uu0NyZij8ZtHd3d30avNarabV1VXNzc0lZ9Hj7FCU18mF\nCxeSPJsVPDw8HHtpnvXHcDhMb0d1foUPxjIL6HC3nV+v9ccff1z7+/t68sknValU9Prrryf5o8xY\nX5ip4WeeJ68lz7UdRzL0Zy0PXPjDC8hKJ3oaHFSiWy6EiMhdr+uzAqTB9Pfvfve7NRwOk0fXaDSS\nZz8cDrWyspIMtxX60tKS7ty5o5s3b47lMjhZM5fLJQRtStjnSxh5ul80fMViMXmRW1tbaWeJUagN\ni3MtbAisNK2sHbv0WRirq6va3NxM1GC1WlWj0UhvEnzxxRcTzezihcf4KBcLjSULkbXbxWQ7Gua4\naE4rL/7tZ3BRUol6scf22ZDwBMRIIzIencvlxrZX0kNl+MNtsEIgfe0+07AwLDQajdILjC5evKhO\np5MOmep0OpqZmVG9Xk/JcoVCISnxjY0NbW5upnY7R8FsA+fOcVqGq7g+YsJpPp8f24bq+gxMcrmj\nZDYCCmn86HLPr8NzudzRWx8PDw/TevN1+/v76na72tvb09TU1FgyGsGGQU6hcHRoknc9ERDbeBIc\nEwzQ2aAcWPYtrzaczCOJRtmGgGe+UBYNRrjuI5PlEsH8aQpZG69b6xbmGHHtxPsJrmq1mp544gn1\nej098sgjeuONN1QsFvXKK69ofn5eu7u7GgwGunDhgur1etI18/Pzko703dzcnFqtlpaWlhIgHQ6H\n6Z0fkhLr5bMnDCIYDnGbJKXzGtw/7wTxtbdu3VKWHYWMy+WyZmdnk6y4XdPT0+l9Ip4Hyql1Q7vd\nVrPZTKHOb3/72ynxstPpqNlsKpc7yq3I5/MpSd6JnVmWJbbwmWeeUbfb1auvvqp3vOMdeu6558Yc\nXT7XshtBpeeQADG2+37KA8dU2BMyhcMYOL1P/k/Pmp6llV00eETwvq5Wq+mRRx5RvV7X7du303P6\n/X7aW3zx4kU9+eSTaXdFq9VStVrViy++qNdffz3t3XcCmgViYWFBly5dSsi6XC6nGLVPMfROD9Nw\nVlo++8L0dKfTuccTy+fz6WAtKwgbjbW1NeXzec3NzaVx9baobrebdgtkWZZAio0rvXh6XPS4o5c+\niWmKxt7Pm0TxntUbI6tAo8DQhdtFw8GF6Os9pjQQMYxicOm6maNAQMfxsTGKXjSf7fFwWy9duqSF\nhQXVajXt7e2p2+1qZ2cnhRGeffZZtVot9ft9zczMaHV1VW+++aZu3bqVEuSazaaazWbaEmdAxLlg\nfk2WZarX6+r3+2lbnD1N53iQTbGxN/g088Y5MdD1tlI/x15jpVJJANNAyOM5GAwSQ2Mww90tTEC2\nRzk1NaVGo5HkmAcpxXwIjz1pZssUHRkypL4nMmG+nh42gQzHjve5L/5NuvysAJuFjC7nnM6Uf3st\nMLmU69SesA3y7du31Wq1EqNkcNVqtdJ7OQxmvGNtOBxqamoqhbqKxWI68MosbJZlaU4NVhmiIjNk\ntsDt99g7IbLf7+vGjRva2dnRpUuXtLW1lYCrw4N+U6rPvvD6I7C3LnA7KD9mJngcOHPCzNyMRqN0\nRkaxeHSGxuLiotbW1nTx4kUVi0Xdvn17IotlneKxiMwFnWQ7JvfLbLk8cKCCCyDS07wmLmzS1jHU\nwRJZj1zuKISxsLCg+fl53b59e8xDkqTZ2Vk9/fTTiZI2oPjmN7+pV155JS0qKwLvvTdNu7y8rHw+\nn96U58VRKpVShrMXi2PZg8FAMzMzY/eRenO/rSjsPXe7Xc3OziZqezAYpLi5lcPCwoIqlUqqy0eA\nWxGbTi+Xy4myZljCz430sj+PIQHuqCHNS2/egOKssWN6/BFAuo1W8M4IZ1tjH2zg2GYyCQy1+R6H\nB7iF1ve6HQwNRc+CsXV/9tBDDymXy6X97Dam3sK2vLys4fDoVNY33nhD165dS8bfh6k5lu3TCK2M\nJp1R4T76nBR7mpLSGygd4vP2ZReHBA24nOfgtne7XW1vb6fENa8vK8jhcJjeNWJAs7u7m5KdzU4s\nLCxoZmYmKWEbGyt0y9xoNEq7pRha8/OY10Dj6XsJKvzD+SHQjGBiUqhkkodpOfQP5Yrx8/stlHG3\nk+xv1JNsF0N3HquLFy/q4OBAzz77rN58802VSiXt7u6mXIHLly8n58iME3dvWC6d2+PDAN3XXq+X\nknt92JSTkL12Go2GhsNhApzULV6DBhT5/NH7OLLs6DyKGzduaGVlRfl8Pu1eciiEgNLrj/qcoTLr\nWidE2+k06I1bm61zPcaVSkU7OzvK5Y5CiE8++aRefvll7e3tpf6QUbM+obzSKXa7Ioik/J21PHDh\nD08KvUkKu9Epz7LgthuzEzyERzr2WH2PjfXCwoIajUbKd3D878KFC3r44YfT6YPeN/21r30ttclt\nuXTpUmIZfDKcT2xzzNiMhBWvn2PFuLKyosFgoLW1tRSX84tzsixLxt15D44ZmtYbjUbp2YVCIR35\nagNg4fc+8cuXL+vSpUspzJHP5/X888+nhLhWq5WSOx2793X0wr0QmGnMOaOi5dzag/eY0IM6y2KI\nZxZwcRHcELBYfhhu4uKk4ec9VjD0KCxbVkBURAQwVgQMpUjHZyxIRxT+hQsX1Gw2dfv27fTWQ1Oo\nzhqv1Wp68cUXtba2NibvfOutQRSVkuXfiu7w8HDM2/eWO4+Bt5rOzMykeHXMf3GCqM9A4UmDNi4M\ne/ANjtzSbGDu9hjI3LlzJ43n1atXU0jotddeS7R+r9dLR0B7Hp1sKimdR+BcEu/WiDJhY+W5Mlvo\necrnj1605hCn72cYi8Xtdh0EHAQvhUIhAXobKM8hZfosYJuJlmTJYrv9DBomgvPRaKTHH39c9Xpd\nTzzxhL75zW9qampK3W5Xb731VjrY6bXXXtOjjz6awnY+3Mwy1+/3kzPj0yqHw2FiYHu9nnZ3d5PO\nWl5eTsmfZqUcUvM1dnasS20f9vf3tbm5qV6vpw984AMpoXRubi4xx97yap3kcYihceo7X8f7zI5c\nu3YtOXHWYa4rvk5hc3NTe3t7+pEf+RFdvXpV7XZbN2/e1EsvvTQmk5PYTMuF7QbDlnQwzyovY7Kj\nB4ypiF6gNP5yG6IwLhxp/C2mvs9IlnVayV+8eFHLy8vpOFa/AGZ6elqPPfZYQrwbGxtaW1vT66+/\nPpbYNj8/r+np6ZQk5BCGjZSTl1qt1tipbI4Duj1O8BwMBtra2kqUsI1Co9HQ9vZ2iiOTcp+enk6e\nqY2Pj8e1InFM2Nfu7e1pe3tbOzs7unz5clLgNhqOgx8eHqbDabIsS9v4SPX7OrICNq709nlNjCET\nAJw1UZPzT+YhhkEIMIj0eU0MD3BhR+Xj4r5QFmkMCFIi0CFjk8/ntbKykv53yMMs1ezsrB555BH1\nej1tbGzozTffVL1e1/T09JjH5uK2ci3YSysWiwksky1i0uJoNNLU1FTKx4l0vteB5y/LjpKJXbeB\nqZMny+VyOhPDrIeBveWp1WqlLdEGVK4nl8tpdXVV6+vr2t7eTucZOJF0ZmZGOzs72tjYGAtXMGTo\n9en8IradzJH7T/1BxyXqqGj8T5LjyIwwuc7PpvHnbrazep6WO4bbLAuRdSHbQvq+VCppampKCwsL\naVeHGaJut6vNzU0tLi4mvXF4eHyglNvdaDRUr9dT+MxrwUnjDpFkWabbt29ra2tLU1NTKRfIcsKx\n91EC1pFkA1555ZW0VfQf/+N/rNu3b+ull15KyfFmR/r9vmZnZ5OONkD1XHssCKIZWqCdmZ2dTSHz\nWq02dnS3dTgdmK2trfSKhlwupytXrqRcKLMhXoexkMWn3TN4ZfvOwx/fKUSHkZJiIeDgNZHiNCDx\nRHgCHnroofQWRR+gIh2dZ+/8h6mpKY1GoySUzjD3jgony5m6NDK1xzgYDJK357CClaWTML1w6/X6\n2K4OZzU734PUssGJz56wYiZS94J+6KGHVK/XU9vdRx9I5C2xzr6vVCopLuns6Sw7StTyGQUWXo9x\nNKRUnFTuvJYedLznrMpTOmaiaOBdHz9nmIX08EkGIYbUSA3TMBCIMEM9yrXbTMBXq9W0tLSUdnd4\nC3I+n095B48++qj29vZ0+/Zt3bhxIyksFsq6Fa238Hmbn8GKcyYcHvFBava2fL9l02EK95VjZgBp\nFqBarSaw7V1TTARm4qdBk4GFQbmVOplGy8zh4aHW1tbS+jHzceHChbSmfTKj56Pdbmt/f1+zs7Np\nO6ENKI2q55cyyO2F/p/gMzo3lBsm/lFmKfcEm2QQCHbPyuAxGZc7n6IXTVbCbSBDd+nSpbST5/r1\n62k3w507dyRJy8vLkpROB6bu7XQ6mpqaSm3yVnzrN0npHrMNPm24WCyOvZI8y47f+mmQyZ0ibi93\nxf2jf/SP9MILL6QTiG2sc7lcAuRu68HBQbIfzK8wm0rH1uvAYRMf1U3d7qRPz3e1WtXe3p5KpVLS\nr+12W/V6XVeuXNH169clKbXDc0TAy/lnCM/t5udnDSOPyc593fX3uNBjsID6fyszXuuFZwPlyY9Z\n+V408/Pzunz5sm7cuJEO4fGZEvPz81pZWVG5XNaf/umfJkF3DoUPdHEoQ1JShAyJZFmWXhMdKalS\nqaROp5NOOHSdu7u7aSuUaT0rwEKhoMXFxeRdStLFixfHsqY9Vk7MM4viHSPD4dHRyqa8DVqyLNOL\nL76ob33rW3riiSd05coVzc/Pa21tTQcHB7px44ZKpVIyEv1+X1tbWwm5u0QGiTFjzwENrhdfjAee\nFV1HMEI2xDJixc58B1PgBBmWIyaD2SuPFCiNRgRGVOS+jvUz+evxxx9PWydXV1cT+Jifnx/zwt96\n6y3dunUrJbsZ3PGNpM1mM42L8xScV2EDY/ZjZmYmeZWeE58fYFraHqYTpl2vx5JgbWdnR1NTU4n9\nMsCdnZ1NW5399kYbF2f4W3H3er10qJs/d2htMBhoc3MzMYpZlo1l+nc6HT366KNqNptj3vPB9vhs\nbQAAIABJREFUwYFeffXVVJ+349opGAwGun37dsohMeAh6CNwJdXssfL1vsasAOWa4NqfxTAi10QM\nM561UAZp6Bl6tDyy/R5v99Wn+87Pz6vX66Wwgo26mVTnthi8mQl2Do/DBGYDb926lYCtTwNeWlpK\ndc7Pz6e+2yHKskwvv/yy3nzzzbRLzwDIANWvYve5O+985zv16KOPJrnjm0CZxGtgYpnJsiyd3+O8\ntFu3bqX7p6endeXKlTTXs7OzaafL7du305j6dem2TU609o7CJ554Qn/xF3+hXC6XXsluxoIgj/rN\nc0kWhYUsyv2UB46psBL2ABIoEHmbUqXCjyjb3qjZC789tN/v6+7du0lZraysaHZ2VtKRUnjppZfS\nlrRyuTyWiW8az4vFh7x4sh2r9wlsbpMpNrcly7KUbyEpHaTV7/e1s7OTAAHZAGn8ECyjauYEOEwx\nMzOTDiZym4lujdxtXPL5vFZXV7W7u5sMXZZl6Z0k0lFsen5+XvV6PSmCSOFK41uZaHzc/shEeTzY\nvtMWHjTlv12vY+yTGAnLGg1/VOoupBx9Hz2EGNZgYhbBlefL7SiVSrp48WJKTDQTJEmXL1/W1atX\ntbS0pOeee0537txJQMPKzwyUQ1tWvqaqnQzsREY/34ejeX24zY7t+226CwsLY1v7GLYzYDeAdG7D\ncDjU5cuXk7F3/3l2hsEPvVDLgde22+Z2OT4vKXmjNDh+eZ4TWm0wFhcX09zxfSM+88V5Q8z34S4h\ne4yWFcqC59WGmeEDgtX/j703623sys6/H1KkJA6SOIvUrJo92+24ASPdDeQiQF8ESH+A3OcqnyyX\nGRAgSXe6Gx24EZdju+yaqySVJlKcRVHUwOF/wf4tLR47eEuVq7eQAxiuUlGH5+y9hmc9a9i+fsLL\nYZC9C17IkE8nXOfyDJu3qdwLuxGUVdYP21EoFLS9vW1OGWaXtC/ryvsSfeNk+TfW9vLyUpVKxdK9\nsVjM0mwwCEwj9l0Pg8FA//Vf/6Xj42Ntbm5aYBQKXY2zD4VCFihWq1XzD/yfgM+zT77OqdFo2LrQ\npj8ajbSzs6PBYGCTOQE/PhVD/QR+wtfX1et1WwfSm/iXaDSq5eVl7ezsaH19XQcHBxMskrc53IM/\n+xQz++zTNG9yvXWgwueSPH3oc2o/lov0lKZnDRAA8tX0+5+fnyubzWp9fV3Ly8vWlnf//n3b8NXV\nVd28edPYiVgsZlQg34dxpWiN1imP4qHyMCThcNiq+HkHOkaYjUEO2h8PTC4apJxMJi1Hfnp6ajQe\nNRqj0Uj5fN6UlSIzZl/4Y7Chvy8uLvTdd9+pXC5rdXVVhUJhYtRtv99XKpVSPp+34lZJE0COvfEG\n0xthaTLNwL8HP3OdKwgoPXgLpmYwFIAQHBBOgft5AMDPvAP0FKw32hgO/xlABazWe++9p4WFBWup\nI8ecSCS0srKiXC6nWq2mL7/80tac1EE4fDXwBpqVsxdOTk7sPBgGBhE5ehkiKicyx4iR9iJKTSaT\nVicByMXBUiQLgC6Xy5Zm8ZG7b62j7keSMSNMj2WNALQM0eJ3iRw598af9MtJlICZSqWibrdrRdal\nUkmbm5sql8tqtVomK1D0uVxu4ve9Q/bsJ/bG15T4Z/c/8wwV9/EghXvi0HxA5WXRp3Jf9+L3g8Cd\ny4PJYK0F63779m1tbm5qa2tLs7OzajQaisfjarVaEyldouxMJqO1tTWtrKzo4OBA5XJZh4eHqlar\najabBiYrlYqmpqYsiKINlb1EfknvkgJrNpt69OiRLi8v9dVXX+nw8FDFYtH8w/n5ubEm2GSYXQCr\nB4EUkB4cHOibb77RF198YSf9Atb5zNHRkS4vL02+pauWUXTH6/3p6amePHmibrerdrutcHjcgppM\nJrW3t6dcLmdTcZG9+fl5NRoNY+R8XRrf4Rl89s0zaj9ma697vXWgwjud/4li9obd/x6K5xd7NBqP\nwZ6bm7N++na7rfX1da2urmp+fl6tVkvfffed6vW6ndqYSCSUzWbNiaNoMAPB3L2PCMiFRyLj3m0U\nBFAEy0HBGM8NpQ2VSI7XGyGqnWmLkmTTOGE5ksmkAZF0Om1rhhMBUYfD46prmBVy4Qh0o9HQZ599\nZsbXR+ZEwKenp+YsUFgfXbAmvrDTRy0+wnsTRUAughGgZ3g8UAgifvbO/9wzKcHiTA9G/qe0DevB\nuwFYMAoUGJ6fn6terxszkM/ntbKyokKhoG+//Vb7+/sGDD1VizNGNmu1mjEIfiwyn/drgsH1OWae\nn+4HBvqUSiXFYrEJ/SIi9O9Jnvz09NRakQE9PiIGhJAy9KDM58MB5L44lhZovm80Gh8MRd0Fek+L\nI+wMY77pGoE1IeVBix8Azae4/B4jDz41gsx5WffshJc3b8M8c+cBAzoR1J2gvL7O5Z/P7x3vJU0e\ngucBsSStra1ZrUqlUlEymdTp6ani8bgajYaGw/E0VA62I+hqNBra39+3bhYGRmErz87OJlhZ7GA0\nGrVgDSCKDJGaa7fbevLkiUKhkIGcer2uTz/91O7F+hOM0daKPNDu7Fnd3/zmNzZxOJVKqVQqmTOf\nmhoPlatUKup0Omb/eb4gYwdYi8VidqYS7bJ0fwCGkYvFxUV1u12trq7qq6++srNzgiAyKBeeafLp\nLQ8w3uR662oq/CJJ+gHa9oVMXCguuT4fHXLEM1H16emp5e8QhPv375tS4CR9dEUFs88/+4gEY+w3\n3AMHj5ABFzy/p7kwvLTXeSOEssCQAEZ4LwzSycmJFhcXJclasLyDBFB4yrfT6Wg4HKpWq1k7F0qx\nu7urfD6v4XCo7777TktLS1ZEOD8/b0dj+0mHPtfJO0pXA43YZ09nexbnOgfheCMO2PMGkjX164As\n+Xv4P/uiNpyKR//Btj/kgc/z3nyetY9EIlpZWbE+feaKJBIJzczMaGNjw2SVPKx3ygC7cDg8MUKY\nz3rDwuUjbP935gHAkPnplhhiikFx1j5qouCM82bK5bI5A5yZN3p+Roiv7/CpQ8/80QLNupEqgZGj\n6I36o1AoZG21rBVrUa/X1el0lE6ntbCwoPn5ed27d09bW1s6OTnRzMyMKpWK5ufnlc/n7WTLH5MT\nnzJjPZEP/u5BQDC37e+BfkuT04GDgMI7k9e9giDI2xJf1+Rl29utSCSio6MjHRwcqFQqqd1uK5PJ\n2L29LSIgajabVk8wGo1UqVRMP3GCMEHYa2QqWLfkn48LOaA+IxwO6+DgQDs7O1pZWZmwy37Ymm9H\nRS5CoZAeP36sly9fWmE79To+0EHXSMGxL2dnZ8rlcpJk83z4d5+a6HQ6Zm9brZZ2dnZ09+5dnZ6e\nKp1OG0NJTd3Pf/5z1Wo1lcvlCXuK3pGGRCY8IPV7TMD3Jtdbx1RIkxMG+btXwOBn/ee94lB8yfCd\nqakp3b17V3fu3NHx8bHu37+vly9fSpIWFxdtXCtImrweggoN7KkxQI6n0tlgojAMg0fSU1NT5lAw\nsNDICAWdHt7goijkt1utli4uLtRoNFStVpXP561HnHqPIGXto6NEImH1IuVy2d5Lkt555x09efJE\n33//vQaDgd577z2jM8n/03tO5wp7wnsDmjxj4D/j99VHha97YcxhR3weHCpXmlTIIDj1+W8U2Ueg\nvvYgyHZ4RZau6GTvXPj99fV1MzSdTkdHR0ean5/X2tqabt26pUqlomfPnml/f99AZiaTmWgtxOEO\nh0OTVYoyOfMF4MNaEvX49cWwB8EwTMX5+bk2NzcVDoctome9WF+GqpH2II1BSyDvjl76oUSpVMoK\nQHEifA49aLfbBu6JTJlnwM9Iy/FM7AX64mdKDIdDYygotCsWizaMiNkv8XhcKysrVqXvZQXg5ZkJ\nnI839LxLUN6lKxDtGQMcsx9n7vXW59df5/LPjENnnX0q2dtZ5OzOnTsajUY2Owc7hX4cHx+bbWHu\nBGzP+fm5ms2mut2uDStjnSjIZSja9PS0stmsAVrStvF4XIlEwlgyD356vZ6azabVr4VCIT19+lQP\nHz7U+fm5DYXjOyVZR9DMzIweP36sP/zhD/riiy/04sULnZ6eGjvS6/X0wQcfWC0IwZ007lIhnYg+\n7O/vmx0GXPGeg8HAUtB02oVCId27d88Y4cFgoN3dXQ0GA62urqparVowd+PGDVWr1Yk0Mu8E+8nP\nPNPL5//vQDF3+byRF/ofM+YoDsoGvTkcDm16GtMIz8/PdffuXaVSKXU6HX377bcKhcatRRRw+vHY\nREJQokR0TBX0zgPHBZDwzomLNIYkaxHl54CK0WhkEzWhBAFIrAtChaKRHy6XyzZ0BiBCIZ93mhiC\n4NCoeDyuSqWiwWCgfD6vZDKpZrOpfD6vTqejdrutQqGgxcVFnZ+fm4ItLCxYvQhT4Xwk5p08ayT9\ncAYJV5CFeh158blvvs8rowcz3th7h+eZk2AEwO/71IE0OVeAz3v55WKQGTUUklSv120eCsb7wYMH\nlgKbm5uzdBu1DUR5Hkg1Gg2j9JFN5Mk7KViq4Hp54wOAIApcXFycKATzoGQ4HNp3Y2RZb7pKfE2K\nj0Dr9brm5+cn2BUAH86dk3VhGkOhkKU7QqHxYC7+jaFdRNIUDsI8wmiQbwfcwLYRQbNGsICRSMTS\nJzAv6Iy3Ab6OBzBAgIHcsAbeJviUYVAf+H4CF6+rr3MFI9ggU+dBrwfj0WjUhk4tLy8bk8O7kGb1\nJ8VyVatVG0K2tLRktoc1YMbIcDi04XroynA4VKFQsKFUDE3zz9lqtaz+pdvt2sRM9nl3d1eFQsH0\nxqdsGSz461//2mahMM59OBwag/Hpp5+azYddowaN1BoylE6n1W631el0Jmo3kFfOoIlExu3WnC+C\nnyEtwr2SyaS2t7etzmc0GlnhcXAf8Q3BPfQpx+uyW1xvHaiQfkjdSVfOw1N1KDaLx7/RUtntdm2E\ncD6f19LSkrWYUblLLgtmgO8sl8sW2ePgURK+E1oLytU/S5C69gV9QQoV+hlB9DQk+UEfVWPgyPfR\n+jo7O2s93Dgj7uHziNCbksyIStLx8bEGg4GBkdnZWdXrdUvhHB4eKplMqlQqqVwu275QI3BwcGDv\n56l4H/H7NA/rIb3ZgB+/njgtX4nPd/F9/Buy4oEAP8eQ8Rkvk0GnwPp5w+lZEGns2PL5vOLxuKWn\n2u22gdvPP/9czWZT33//vVHAGOuTkxMDiaHQVRFut9udKMRMpVITOWP/vNLVLACeEZYCB8H6h8Nh\nNRoNY3WWlpYMQAUNFFNWY7GYFhYW7BTIk5MT0wsP+H31PUec0xpL6g46vNFomHOjHun4+HgC2Hvm\nBFaRcz8o9OTsHPYf4BAKhSZy+sxDIJVEW3epVNLCwoI6nc6ErKFPXl7RJ/YPWeD30N3ghYwB8r3z\n4N+97rzu5dkz73ywSaQvgum70Whkp+LWajVjZkm1wTKwzoeHh9ZFR9cR8sjMEt4dGSgUCuZ40RG6\nPpA3asp4h1arpVqtZg4VJ+zTt8PhUJVKxVqGmapKMeZ///d/W10dskqr/dLSkm7evKmNjQ2zWX4v\nALTUpDUaDXtH2MFut2vAh1QdBfH4JSbKAlKOj4/V6XS0tLSkUGh87tMnn3yir7/+WmtrazZUiws7\nib3D1vhA7k3r07jeOlARVCpJEw7IU+koAf8mSfl8XrlcTsfHx1at/NFHH2lxcVFfffWVDg4OlMvl\nFA6HVSwWVSqVFI/HJ9qHMNycCElbWjAHjJHwxWbQ8P7/PmKXJofp4NT9qXlQcigbdK4vOsK4LSws\n2PfwXQACDyiCuXiiPOj0UChknSGMHb+8vFQ6nTa0Pjs7q0qlot3dXf3sZz/T+fm5Op2O9vf3FY/H\nrRjWR3Psk3fi0hWN58FikMV4ncuDBq9IAEK+MyhTnv1iT6SraXr+XqwvcuZpa/7d39sb7NXVVZtD\nQVSTy+VUrVb1y1/+Uv/2b/+mRqNhbBq99oDEUChkMyqYPIisAiKoY/AsDQac5/QUO7VFONmzszPF\nYjE1m03r5onFYlpcXLROEd6V+1DHk8vlzPlj7J89e2Ytm5xYiZzVajWlUik1m03t7e0pm80awwVt\ni+OZmhpP0+z1esYYEOlBjXc6HSsYRI8xznQnnJ6e2smRBBOAom63q1qtpkKhoJWVFR0dHdm64DCg\n9Xk2HxR4efDO2ctzMA3iGS/0M8ia+d/zqbjXvTyQ4ff983oW2Nd8FYtFZTIZpdNpbW9vG9gi2q9W\nqxZ0tNttLS8vW2cZ7JoPNACxgAvfgsrR4IVCwVJ54XDY9pjnvLi4MHnyIItDHmHEYKaPjo4sKGy3\n2/r+++8NULAm5+fn+vzzz3X79m3zARySBnANhUITQN/XHiUSCe3u7qparVp7LMwIQd3i4qLZ4mQy\nqfn5eZVKJeumqdVqNmNleXnZWmibzabu3bunR48eGasCgPFBtmd52F8/Zv5NQUX4//sj//+6PLrn\nP28gGUYVVNjRaGSFWOFwWO12W3NzcxZNcVAYBptjlLl8qyVFbOT/iOR9Tl6S1UnAVqCcPsLF2HtK\nHSfoaVPGtnJfnKJPfwAavNOYnp62GRsYCHKXntaE8YBWxUCiMNLVgWJcfiQ4QoyD6nQ6unnzpqVt\narWaYrGYtWP9GIMEIMTgUQ/A399UCXyKw6eefBoEx8iacvlo2htaz2p42tHT9T4Vxb7idKHbSSlg\nlMmzfvLJJyY7x8fHZiTT6bTm5uYm8vQwZXwn58DwHL4gC5n0NTi8LzLqazSCqQf/HpIsFRAETZIm\nGC//e8vLy5qfn1e329XR0ZG1zErjaa4URQ+HQzvMzss19wbkw9DA4kkyKpnjprnoSvJr4UE2A7hw\nfLAZDx48ULvd1p07d7S4uGhFxc1mU6lUSoVCYaI7hBoFDy488+jfCZvA+3nWkfX3wIQraAuvc3n7\nyXOgI6PRaMKmAmyi0aiSyaQWFxdVqVRsHZEZdNW3tvP7sMOlUkmLi4vWhg9DisPlvWhdZi4KDABB\nEQEaMshe+9k47OnKyopN9sQ3MHm20+no1atXEyzmaDTSrVu3bFaLJKsZkWS1NcgfQJXuFGnsh27e\nvKmVlRXbe894SWPAG4/HlclktLKyYgXv0pg9rFarxtaxlhcXF9rZ2bH39a3OPpj1DKL/+5uwvcHr\nrQMVONAgfeqNOgU0nvIJhUJ2nC1U6uXlpUqlkvb29vTs2TOtrq6qXq9bixRKA60VCoV0cnKik5MT\no6wYPwuw8JGJz9UjkJ4iJd+Ik0Igif54Jx9JhsNhq4mQrnJlUMTkg3GQ0JU4CNYIEOHXFeH1kffp\n6amtJ2OPJRl44j8cGdHFo0ePJlB5r9fT9PS0MpmMGQVvOEej0QRwwiHxb57Vuc7F2sBKeGDgjbJ0\nVaDov5f98flx7utpRYwwjBL7iRP0ESyGkbMszs/P7bAtnNzm5qYePHhg3wmQTafTVjHu86Qcesee\n0z5MXpYpgD5CZo35Lx6PG0Bh/oN0dTIuDpJIkSK0oEHmXQG6nPUBuMIJk26MRCLW0kndD5EsQIoo\nDcPNrAzW26ee+P5EImEtjUw0ZI2RO+xAOp3W0tKSzXZhP31a7+HDhyoWi/rkk0+srZBjuxn05FNr\nwfQYPwc4+FRaEEQAEH0Qgn56EIEeXVcvPGPnmQmfVuYzMGQUvs7OzlphYSgUsg4FUq3MQ2k2mwZU\nYc2YMwGIInUE9U+azk+rZGw88kgwxxEC3s5i9zzjEg6HbUIq79nv963rB11FXgED2CP01rMYnDjK\nd3nQRWp5amrcEcKQOkArMhgKhaz9GaBB2zTg23dYsTd02L377rt2wrX3i95mcnkG7H8LLN669IcX\nFi6MCdGBr55GqBKJhFKplLUxffDBB7p165YJ/zvvvKODgwOLqEHSGHSKjDg0yw+eQkhPT09tPkQk\nErFIFINKWkK6yrVjPCgS81EJOXEADVQfExJRUHqrw+GwUd8op39/vh862BsxntNTnuQj6Sc/Ojqy\nKBclu7y8tMpn0jSM/X78+LH++q//WslkUuVy2UaP53I5tVqtidMgPaULyPL7jLO6DsUbvJ/PM/qa\nFT7H/zESvt4jaLh9dMe/eZqVtWHf+E+ScrmcNjc3rTjNd/ncu3dPd+7c0a9//Ws1m01rgwyHw3r3\n3XctQiLimpqaMrqVlFg6nbbInbQAdRMYLE/bEuXwDr4A2dcDccXj8R+MSUZmeCaAuGcduEe/37dC\nPvr5oczZd4on19fXJ/QER04NSiKRMICPnHtGjUFJODdAMt1IJycnmpubUy6XUygUsvkxo9HIdAhd\nvri40O7urtrttt5//309efJEklSr1RSJRHTjxg3VajVro/XpBNbIgwHAPdEujsU7AOTpx6YgBuXz\nOo4iyLJ53fdy7kHo+vq6sZycGMp7xmIxmypJxE2KGH2iG4hBV8PhuGCYkznZP+Qbhg09omttMBjY\nxGNJNioe9pb19QwnDMrR0ZHpLbUO2K1oNKqf/vSnVljuQbdPNwI6YbWw/3QN4dyPj4/tTA8CuKmp\nKRtTz8m9vKdPi5+cnJje+EFupKTpxOOMJ1h0dM/bvCC7yPq86fXWMRXSD2lDhBsn5R0khjydThvF\n3O12tbCwYGdXZLNZO6Y3Go3q9PTUZq9DwXMvqvSpZ4A1GA6vTtaTZH300lWRG8YKsOKdGxEXdKA3\nKCgFfyZiIwKXZKzHj+VDUaBcLmdFUBhw6aoYDKcDJe+jbv4N5UGIu92u9W5zD6Z+rqys6KuvvjKQ\nRqcNjswXm/qWK/8+PtcraUIxXucK0svcxxtoXzjJ3vGdHt1jHFFY1t+jfx8t+OjZU+DU7LDGtIV+\n9tlnKpVK+u677yZAVa/X08rKykSlt2+Lw/idn5/bYLN4PG7A2PfWc+wzAK3X65necMEG5HI5A6NB\npgugg/P3LdM8OwXCAPFw+OrUUcA/Tpz3gUomWvWMUpCpQraRIeocyLGzl+wJjAsp0na7bXURXvZG\no5GdHMwMmrOzM2UyGSug++abb/Thhx+aoa/X6yqXy5qfn58Ye+5lzqcYPOhAx3BkHqhKMpnz9Twe\nLAfBxutcnpnw98GpeZvA+sECdLvdiSJan74ERACu/PszoRdQwFrAEnlGtt1uG6OMncDWcqYRTFUk\nErF19/7ArwkAmbUGgAOyR6ORMRmSJkZz8/usF6yKDzywS51Ox2oopqenTf7wBdS9tVotVatVC1Z3\nd3d1dHSkVqulXC5naXqYQeSAZ43H4zo4ONCDBw+USqVMfoJ2jp+hUz6V+6bXW8dUeGfr6XppsiDS\nI/dMJqN8Pq9Xr14pk8lofX1df/jDH7S/v69UKqWDgwPF43EtLS0pm80qm82qWq0akkTAksmkCoXC\nxMmiMBTkvKGgB4OBHdCFwwTt+ny4r8SFsSDKpYCNz0H54lSGw6FR5xhSKt1ZC2g2jIU/KpjDpjAY\nGGgUlUiXWQO0AjJREYVhfsfGxoby+fxEDvbi4kIvX77UJ598ooODAzu6neOSeVdvoHwKye958M+v\nc/miJAwzcoGT8srKZz2YAwh6kBY0uji/YCTJZ9hDKr8bjYZOT0+1vLysbrer9fV17e3t6enTpwZ8\nh8OhlpaWdPfuXVtTwEosFjO6HXkgfYHxBnzidBmnDn3sj1f2Z3b4TiefwkCOgtGt1znks9fraWdn\nxw7Ho+vIp+NY6/Pzc83Pz/+gO8efK0JUFolEzKnAdiCvnOQI69FqtSRdAdRarWYnRhI90okwOzs7\nMaWRd6WIVho7GnQaFukv/uIvrE2yUqloc3PTwJtndyRNgAZ/oX8EFN4pBtM6Xoa9nHqG83UuD1p8\nnZT/Hp/OYijb7OysyuXyRAojHo/r/PxcW1tbVmvWbDa1sbGhUqlkrcz8Dt0gDAwkvXJ0dKRGo6F+\nv2+j1jlbifMyOOmWZwSUIy/MKEE+PdMZCoWMqQqHx9OEGVM/Nzenzc1Nc+DIKPYTBoXajEgkopOT\nE7OP8/PzNgGX4uZWq2XzNmCVs9msGo2Gjc3HTtKuL8latiXZ/CSaCrBXFGa+//77KpfL5rN4zx9L\nq6HfXvfe5HormQqPsrwh8zl5HwlgsKSxwnz//fcmMOS2fb6PgU+ZTEbT09Nqt9tqtVoTveDe8IRC\nIcv/gbC5N+jbU50YSZ6JKA+F4zn5PxFYkJXh+2BWcBR+LLOnTQEiRJRcvJdH6RRqUg1fKBSUz+cN\nUPFMGGKQOhX+KPzCwoJCofGpg0wj3N/ft4Or/EwAn07wBtUXkAUN8uvICu9BDhPj/j8plS/m9M/g\nazA8gPBpDu9IfO4SIMKBdbQyn5+f6/bt27p165ZqtZpFgrBezP3wUQaGhfoexrCHQiEb6c13jkYj\nqylgvWE0cGToDkwe6SzWmjokABRy72c3eFDS7/etjY9oslwuWy0SzrPf75uB9awezhw2EIDD+8PG\n+JoE1qXT6ajZbNp6EBl3u137DtgyCgphS5BhQBXOaX5+3sBRr9ez04PD4bAeP35sUTsjqtETz3J5\ncIttYg1Yf88QeBnzQRQ6AkPGHl13TgVX8P6ejfJ6ODc3p+FwPFANh8l+S7LzPjKZjAVhrGcsFjNm\nywN0ZoRQo0ONDUGaB0kEb7AM2FT0AJ0mpeH3D2Dg05rsf/B8Jmo5pCsmLB6PGxglPYjuosv8LjYG\n0Atj520D6wyDC1PGWPF2u61Go2HpDGSWdQG0M5OjXq+bLHv5QVd9GsT7rDe93rox3VwoAotFro+F\n8zQjgpZOp23R6XumiNCnM1h47vvs2TOjiD1Nz+eI/DgbhPM1QJTSVQ7T57ykK+TojRppBZQKGpFo\nk/x4LBaznDmgZTgcWrFQLpezdfERLYaJ3KV0BT588RvgA+qR3DKpDy6enbX1NSn9/vjMiidPnugv\n//IvNRqNdHh4aDMDGJDk62A8y8S6B+nM68gJ68Lao/gYJemKfvapDp9O83voozyf1ghGYrZ8AAAg\nAElEQVSCP96HNAGGBiBYLBaVSCTsICtqWKhmZxoh+0HueGZmxgwaQBSK3FPmGFrysBhXwAB0tSQD\nucgy9QqwccgXP/dOA4CBbpBLp+CSNavX68aeQB/X63UDWL7uAKPoAQVA1ReRIqPMPPBA/uzszM6k\nAABz2isAF2cCMwjQovUxFAoZs7a/v6/BYNyGyPHUOzs7+vM//3O7B90q8/PzdkR1MF2BPAdZCy/f\nyBEBhB8ihX3zDMWbpD886IWt88XInr3jO/v9vlZXV60OYHp6Wt1u1869QL6xVYymJoih0BGdQo4u\nLy/NztK5c35+brJL0EadDvuETE5NTRlAlGQyhX6wVtTfBIEqf/e1bqw/gBFZHgwGVqDr2QXsHnrJ\nsEXeFbtO4fFoNFKz2dRgMD4afX5+XvV63YJM1pLzUEgJ+iCs0WjYgDZkyPtFbDo/90Hbm15vZfoD\npZQmK6JxlKDTwWBgdCTtYOFwWK1Wy8bs1uv1CboYQfEV4zhAhgpBy83Ozurk5ES1Ws1oLk7yxJij\nVB7F4oTIUeIwUSRJxkR4hzozM2MjbpvNphYWFpRIJJTP5616n1bYaDRqxwVDEftDlzDa/kwH5kqg\nwCgVtDrPvLu7q7OzM2WzWS0uLhrd7KnN+fn5ieLRaHR8BDUT8er1uhWLMlTLG1je2dPAPPN1aF4P\n5jzt5w09P/P1EOyTN15e1nwhmJfDcPhq1ofPa0rSe++9p7OzMzUaDZVKJTti/NWrV3r48KGGw6E5\n8o2NDeVyOe3s7JhzBQBQH3B8fKyLiwtVKhUdHx9rOBxa3QqV45xSC+NEjQApM96Bz2DEGa41HI4L\nxUhV8f10ZTD7wef7y+WyOp2OPv74YwOXiURCmUzG6pFIm6VSKaVSKdVqNZMvT+37GQg4NZ4xkUio\n1WopFBp3ZeXzeWu1gzEDQFOQfX5+bq3lkci466TVahmDQpAQjUbNMTEQiXQgTMb8/LyOj4+1tbWl\ne/fuqd8fDyuq1+taXFy046ylSdAKWPG1FuyDlxlkzqc5AIfIJLLr/3+dy9tK7s938pwwbK1Wy2j6\nSCRief/t7W2T6aWlJc3NzWllZUVra2vmFE9OTjQYjM8VSqfT1uZeq9U0Go30k5/8RH/3d39n81BI\ndy0sLCgaHZ/QCXABsPgagouLiwk7hE0HDONQX7x4oXA4rFKppEKhYAwvjBQsK+CUvV5bW9Ps7Kyq\n1aq1uXLxPHQCIoc8b7PZtIAAJmZxcVHNZtMYMIa3RaNRY9pOT09VLpdt+jN2hxT5xcWFXrx4oc8/\n/1x/+MMfTEaQeQ8SvWz4oPlNrrcOVHB5hfMKCorjv+XlZYsAC4WCnj59ahW3RMgUq/H7kUjE8rSg\nVhwwrZFER4ACInkcKD3JMAFsNtEY0ZAv6AJVenRJXQXTPZk2mE6n7djyYJ0As/FpawpG2/zZGzho\nYhSQd/QRFimA58+fK5PJWAseYAgFodpemjxSudVqWYR4eHiofD4vaTySOpiCCRbOsZ+s4+tePiIK\nGnL+DQULMgxennwaCZnzn0dRiY58ESzPv7a2pmq1qrm5ORtxvbe3p+3tbU1PT1tBIMNuAKw4fPaa\n6Jk2TMArBrbf71uhof+8L6idmpqy2RDkiwHKDI6iKJf9922+sClQvzBgl5eXKpfLikajKpVKEywH\na+wPD5NktT0MoPJOgLWXNNEFRaTv5wVQnT8cDg1QkLfmd6nOT6fTluvvdru2dlDR/A5g5uzszNaa\ns0lgP0KhkJrNpu7evWssFHLqASmOmudFxnxKJMggAC6Crc7IrK+zuI5e+PSnB3G+3ot/C4VCKhQK\nisfjun37tgGwRCKhdrttYG1jY8NqTQaDgU5PT80Osl6SjNGjnRgG4Te/+Y1evHhhdhMwATMGO8Le\nI4fIF63QBE98n295JdXGmUQMlSPNQeeHnzmysrJiASQMsmecWHdf90RKENvMmuXzeasrY9x8KBQy\ncI3dTSQSViTt7T5sCfaVws6DgwO7p2edvC3zNSZvmi6T3kJQgcB7ow217ZUCRdnY2LAN7vf7evXq\nlSkUaBfnTk8/KQNYCwoUY7GYXr58qUgkokwmY9FSLBZToVCwlAdz68nB+UI+DCr3945Nmhxk4yvX\nmVaHkPpaBlI8tLmSp+O7pCvjgJHz+V6MM+tGLhCBRIGgfnu9nhkZCtmGw6HlWXlvPzs/Go1qZ2dH\n2WxWuVxOh4eH6vf7WlhYsMFjPI90VWDJM/nahutEZB5AofA+IpMmR1Z7hoHf9ZSwZziChpy/+9Qb\n906n0wqFQhalFItFdbtdPX/+3CIrantKpZKOj4+tXoK0G84X48k0VR9hYZCJCn3xspcvD0RpzyQn\n7kE5NRjsDflxRm3jcC8vL+0MGJ4jk8lM7B0RIPoaBObhcHii9TUajdq9fZeJN9we/OEMAF8UvPJs\nGG3PIA6HQ3NW/jno/iJ3PhwOjXUJhUJmvEOhkMkvsslckOXlZTtYzzOrXL6uxwdI/nMeUHtdDq7n\ndSntYI2HZ0OQY8BiJBKx4Gx+fn5Cz4+Pj61NM5FIqFqtKpfLKRKJWFqkUqmo2WwaOwHYk2S2ptPp\nKBwOW6q63+8bE+YLOj2bxfPDxvkOEYAFwDgSGbdwcugco/FhDkiHLi4umr4DypnaClhk+BX7yvPA\nynKmB+/hR2lTa4M/abValrLx7BTyTQ3Pq1evDDABZElfAoQl2cRPz1B4kMq++59d93rrQAVK54sb\ngwvH54bDoTKZjNrttmKxmJ4+fWqbIV0ZfXJxCwsLmpmZsTwvEUw4HLYDijDsOE4EAGeNc2cMK0rq\nc1w+CkB4R6ORpWOY0kkhHkjbDxwqFos/GEDlc60+L8xzeuAlXU3m7PV6NtuAz3kwA2uyvb2tg4MD\nbW5uWhdDq9VSo9GwrhOATTqdViKRsPG5KNLW1pYVXZFqgQXxRY6+iFDSxDteRxk8S+OvIHOD80W+\n/GdYN77XMyaeWuR5PTDkXTY3N62b6L333lOz2VSlUjGnQw2MT0MRXdODn8/nJ2ozJJlMQN+SZiB9\nQc4V44cMktJioBaROJ+bnp62an/WkaJbwEa9XrcTQHFwFPT6AVKwRNQtsIY489FoNDHKmaIzZB3j\nydwWzp2AIodhAOCHQiHrhBqNRmo0GkokEpqfnze5ZW4KrAYGu9/vGyjwAI48P2ANJ0TXCAzT+++/\nbwAjm81O1KgE02/+z56S9pGlZw+9XfP1BG9SV+G/H1n9n+wo+5PP560YfG5uTpL0/Plze9fLy0vl\n83mj5wl4mN2zu7urRqNh9gDA5oc78c7U43A4Gee9eEZHugLE1BX44AFnC+PHqaPT09O6d++e2XJS\nMJ1OR5ubm4pEIjY0LZFISJKBHsAFNp2iU9aJYDE4gZbD0GC6FxcXtbKyouXlZWUyGaVSKeuUoU35\n4uJCv/jFL3RycqLnz5/bkDZavLE9u7u7+slPfqKLiwsDeD54wt7zs+sC0OD11nV/YBSD+XfvAFhU\nHMVoNJooykJ4JU203UE90RZ5cnJiVevtdnuiluL4+HhCsaHQuCd5Yzafn/uqeo+6oX9RNCrNib68\n8tBOhMGbnZ21HDsH0HB6IPemJoLnkGSKTdQJNS3JhtT4iYnlclmhUMgiB6hxnAHsCEWvMDO8J2vN\ngVkINlEjTjSoBD4ave7lnTssBP95BfORYZAK9qkf7sO9PVjzDIdnQ2iHI9/abrd1fHw8cUQzEQ4p\nCRwpMuZHwUPN8mzIN8+Fk/Vggp97sOYBra/bwVBKshw19R+lUsnOz7lx44ZyuZw6nY6mpqastgeH\n4iNsZIvWwWazaU7C6zEpO9bFF4WSqjg5OdHLly+1tbU14WyJLNFRUjmwHj7d2e/3rXOAdaa4k7SH\nL9RFp3FYiURCzWbT2KRcLqdarWZpvWg0aueOUAOC/AAMWXfPyrHHvpsKcO9TKH7vPfh+3cunA9EL\nD6xxlMi4b5+XxgCaTjfoe+TLDyPjfoz3ht14+fKltTjjjAEqsHLoGsCSNWKvAJ3sNSkTL+/sGQAT\nIMAawoywtgRR5+fnxgaz377NNMjoeOaXZySI8ixoLBbT+vq6BbvHx8fGfNB1BaMZiUT09ddfa3t7\nW9lsVvF4XIeHhxPMBowQQSF2l/oj9joYGHm9u+711jEVFBUFlcgrHI7BO+DBYGDHzCJ00lUBpaff\niVzJ/XlQwME2jUbDnKDPdzKu15+EiFFAGH2LE/e+vLxUq9VSvV633uRQKGSIHYFGwVFA6j8opMOx\nkAtEiHx+DUMlXRkXnkuSjdplsNXJyYkODw81Go2sStkLLUaXdAiO6fLy0oARz9FsNtXpdHT37l0D\nZ8wUYN+IVvg9D86uW1wUBHaSJhymlyX/ZwwG0Su/42tS+LsHQkGAMjU1pbW1NYVCIct/Tk1NGfhD\nBpkyyloSweGMAAMwFL6GA2BDftkPYZPGlemkSthv5B29If3hU0F8DiaLd2Xfafek954old/x4IxU\nAhNf6XIBUHrZBAR7wI3ecsT7+fm59vf3defOnQlQB7sAA3l6emp5aXTSsz8YXNYFQEEAAZXup+uy\n7vV6faL7KpVKaWdnR++9956mp6e1u7tr60aLrU8zICNBkOpBabAegz3zNUEeIF9HL9CxYNoO+Qcw\nEGy9//771hZMOopTikulkjqdjgFZL/++vR4G7PT0VNlsdgIgAxxx9jwXp4kCENBVz1ojNz8G7Le2\ntiwwjETGg7Lu3Lljqdvt7W2btUGt0/r6uskg30Hqg/XzqSkf1JIeW1lZUaFQUCQSmagXisViqtVq\ndu4NdRo+vUOBcKVSsWF1AA7AM+vT6/U0NzenarVqLLdnCD2bjW5c145OyI7eMlDhUXowZ4QgEV3l\ncjnF43Gtrq6qWq2q3W7buO7Ly8uJQkYKecgJX1xcaGVlxSJqZgFwGBLOE2M2NzenbDZrOWkMHFEK\nkZt0VQfiDSrGCwoxlUrpvffeUzweV7Va1cnJiVqtlubm5tTtdu2dMdY4+0QioWKxqMXFxYmIw0cO\ndHaEw2FTar9+U1NTVnjZ6XQMta+vr2t+ft4OVZPGxoczFmAspKujrH1REhQ4QG19fV3VatU6ZjCK\nwTy5N8LXLUjDeAZrVjyY8hQwF0abFrbgWqK0RIs8pzcwkixVtLOzo/X1dSts3N3dNQNRLBbtXZPJ\npLUks4/ZbFYLCwtqt9sql8vq9XrK5XKSZEAA44uT8ixRNBo1pg3jDoUuSdVqVaHQuBiP52cGCqDB\nrz2O6Pz83IodJenbb7+d6DIhFQHAZNYBdSAAEBgCZArnxrArX7RG6uby8lI3b940499ut61+AkDG\nCGOKCgGH7Of09LSlVXz9Cv+RzkPfYUokTbTqspYwG1tbW7p586aOjo5UqVSUTqcnzgvydRAAGm/P\nPDCVJlN4Xg59avC6aUGftmMPgpQ5zwb7GIvF9OrVK6P4aW9HPmBUfVcRf/YAAOdKdwcswMLCgpLJ\npDGezWZTmUxmIk2KPFOoSGoBufH+wTtobE6lUtHq6qreffddY9/++Mc/KhKJaG1tTbdv39bm5qbZ\nCA/iYLF8MWswXYXM93o9ffnllzo6OrL0O3LHacScTEytECwkA+wAwicnJ2a/pqamrBsEW5pIJLS9\nva1ut6tkMmk1L942BdNtbxKgcb11cyouLy/NuPgKXOlqKFAoFLLogiE55XLZ6FeiGYaFQJsRhVCZ\nTGTI9yEYg8H4CODgyXn+nASMJw5culJkjADzAogEqNtAyaemxpPUyONtbm5qd3fXcnOkKhYWFqyF\n0NOEUJW+cMd3ZZC6gWmBRh0OhxNVxkFkC+L1Y28l2VknOGNoa5Sm0WjY7xwdHWltbc3WNx6Pq9vt\nTkQb/s8+1XCdCwMQTF14+hIA6JG9pwn5swddfh2CRcO+WHhhYcEK1kKhkDKZjB48eGB0MkVXdFP4\nWhOf5ovH4zZnBZYMMIZ8woYFGSTSYP1+3+omeF9a73C67B2yz7Aj3pU1JFICXJRKJQPefDf7xvrS\n4ufTKzhHPxeC/SE69M/Oni0vL2t/f99kotVq2TAj/xweNJ6enlqrM/rOevF8pGQ84ASgMDdBks2O\nIA2ysLCg4+Nj+9mDBw+Uy+W0t7enly9fam1tzToA0EkiU2QTEEXKy7MYrAWt7/wbzu+6OXI/FwY5\n83vMngHiisWizfVhgFun07FCRt8K75lggNxwODSWl1oUzgAB2JES40RT7DKBD6lTAAZ7xZogdz79\nEAqFzFbT2ukZY9LYsChra2sTjC33Ih3h05ye3UIu2CtJKpVKNnq70+konU6r3+9rc3PTCofD4bC1\nN2NzAce8UzKZVK1Ws8mzw+HQRhywLqwloAZAyH38QZP/W6biraupkH5IfXl62CMwFHwwGNjGEdkB\nOkDhVL5ns1kVi0UzctB39F5LVyfhEaGnUinrkfZFSAggwAKKmc31z48TJt3Bc/P7zBV49eqVGWIO\nQlpbW7MUCQdL8ewoJI7HU3YYEh/xeEDDFMZMJmPRdDgctnXzUQzrSe4ZgAOIQ/npNGGPOAodwEZq\nyCsvTt7XDbzu5R0hIJQLJ8fngs4EZxYsGPURAHvE2nr6mggchmxmZkabm5uWAvDpNPK4RPRM0OMc\nDmhb5qbs7e1ZDY6nRsPhsBWDefCXSCQMZPocNYDBD3WLRCJG82K8/e8Q+YXD4QnKdmlpyZ6/2+1a\nrhvGzq81OXTWiq4l2C6cCYEA8gYYoO32u+++087OjmKxmM3twFkCBJABD7r9z4icoZxxlh4QebnD\nIeNwfd4/mUyqXq/r7OzMxj4HW3xJi2KrPFAOtlYjr36WDnqBDfFMxnUu3tuzaz4VQ4BFUS/AGLnh\nPBTGXQ+HQ3O+Hsz5M4So7ZqZmVE+n9dXX31lReXYOtKCfD96hf303XnYO9YCxw9wpQC5UCgonU6r\nWCzanjWbTR0cHOjmzZvKZrNaW1szxpquNRhWdB+A7tkkz1ACrtB3zjXZ2NgweYOd9TUQdH4BdNAv\ndNkHaTwLawIDBqDwa4bf8X4RPXrT661Lf3iH6BkKL8ShUEilUknpdFrJZNKMDcLLrPfRaGRCKcmc\npac7w+Gw7ty5YzMhfKRKkSNo3Oe5eCYfVfgcJcgY4+lTOdLVxnMWCc4NRz0zM6OPPvrI2uS8oeMA\nJ5iM09PTCUBB/7TPP/Pdvt4DZ++HFfFn6DqMJcVV3AcHCd0Pw4SiQo8Xi0Xt7u4qmUyqWq1KuqJj\nfV7ZF01e5/JpE+7l99DLjW+3ZQ1YJy5+xnp6CtnTvNSYDAYDay9cWFjQzs6O9vf3FQpdFbyShgJM\nzs3N2RkCRC+AHopgt7e3ba8ikYgajYZR+KQfvPHjdx8/fmz98RQpAgDoWhoOh5Z2Q85pWfW0K+kb\njPdoNG7vq1QqisfjloKTriY2Ir+SbI4AERX7AbgjCmNgF7nzubk5AyRQyrBdOCX2gz1HN1k/GBPP\nkJBG4QRWUp8UcvrJjDAfPCdyHg6Pi1oZ7sbJslTuNxoNkxc/p8ZT1J798qwn3+VTFL5+5zpsBXbU\n/45PHXDf4XCo1dVVFQoFSw/BKpTLZS0tLZk+AyKD+tvr9Sw1Qqr44mJ8PPpf/dVfaX9/3+ZbAGZ9\nihkAzn4TebM/OHNsVjgctsLM0WhkKavl5WXrxqlUKqpUKjo7O9Mvf/lLra6u/mAcPb4Bx4xek1Ij\nHcZAP7qCIpHxuSAwiQR33IughJRlLpezWpR+v29DsQhgKNCv1+uq1WoG8mKxmNl2uqI6nY6q1art\nrbebPvD538ypeOvSHyyUR14YIgwIiNYXIlGII8nSFj63TPEchW6rq6vGfkCR0r7H5VkI6apF01fX\nB52Xp3g59hqGhJkACDdOA/ai0+lYFwjGn3fhmF1aoMLhcbvn/v6+zs7OdOfOHUs9YBQ9WvWpGQwC\nRoxoD8qXQs2Liwv7Pl/rcHZ2ZoV4KBvpI/aOnGmpVNLZ2ZnlRYMFaKxV0ABeR158ugLj7JUtyE54\n440zZI18lM5nfC4c6rHf76tYLGpnZ0crKyvK5XI6Pz/X48ePzTmm02kbEc/zMEiM9BWGCNYDY5BK\npQyQtlot7e3t6f3337d78BzSJHUOtbqysmJzVRYWFtRoNIytA2guLCxYdIwTPj4+tpz39va2ARGf\nJsvn82q1Wnb+Br+LvBF1+9oAb2jZN+lqABdyhwwjQ75lkzH50Wh0YpQ8jAeDjTiwCdtA6sd/L3Zm\nMBjYADrPgLDv0WjUigoBaNHoePjds2fPtLS0pHQ6rUePHumDDz6wOgMcgaehSYUE5dwDa9ImABH/\nzNe5fCEmqQCCDc+0Efx0u1077hzdx4lSBwEgwCmPRiMDFOyZf8fRaKS///u/1+rqqqW2SJVKV8Gi\nLyRFX/3ZNawnYNUDSpzucDhuLd3409wiztcpFAo6ODgwPfGpKIp8fWeQZ4U8i8Gzs1/IGwHVcDi0\nQmyACClPH3QRuHqmtlAoGMDHB2HDKfAkkMBvsCZc+MugfXuT660DFVyepgs6a6LOfr+vpaUlPXr0\nyAoMp6enbVAVaFkaGy9f3OjrLdiMH0uvBB0KAk+FO4JK+gFDPzU1pd/+9rdqt9sKhUJ65513dO/e\nPcu79Xo97e/vm/IwEZGK+WQyqa2tLaNsybkz0OXJkyf6j//4D0UiEd24cUMnJydaWlqydaOeA0Wc\nmroa5c0zAo5A5qwJE0jpz8cI7e3tTRhzP1qZ6YtTU+Mq+fn5eSuePTk5sUmcXvA9EPN7fp2LfDgG\nlEgEQ+ONMyCO7/IpD2my3ZR3phXUF4KGw2HdvHnTgCBRRrlctnvSBUIRH/NIOBfgzp07Jps4MmjZ\neDxuJ5cSvTETgdwuDoKL92eGBEN+eAee9fj42J4B+a7VarY/AA3YgGq1qps3bxoQxdCm02mVy2VJ\nMkMaDodVLBYNsAMmqCXBkHLEO8XJgOhqtWo5cdr9ACuRSMQcG/cCEADauC9pIV8Uhw7gRNLptP0+\nQDsSidh7AMr5dyZ14uQAN3/84x+1ubmpZDJp7YCAAxgBbAjOhWfE1gDoAfiewSOKvq6TwDEh0z44\n8nYONm12dlavXr1SOp3W6emp7TtyjN4wjhvmh/Z8UsboyOzsrH72s5/p8ePHWlpaUq1WM31AZ3xK\nzwcGADNfa4Ft4t+os8Gusd/lclmZTEaNRsOcPjaOMduADuZyBMd/X1xc2LwT6qGwm9Q5TE9P27At\nAKqvbbu8HB9lQM0V3W+zs7MqFosGGJhYOhqNbOLu4eGhzV3xwC+VSpnNIKDFb8FmAyB9cHzd661M\nf6A8PpIlUkJ4KWpbWFjQgwcPVCgUbBAQlcYg0FevXtmchVgsNtEGRlRC8ZcHMN4BeoTJc/oKap4T\nZY5EItrf31ckErHzPKCw+J1KpWLtRtB4fnx4s9m0bpV33nnHANDXX3+tL7/8UtFoVOvr67px44bd\nk+cCPbNe3nCCgn3NBZEcz8L9yMdzOipOu91uG/CAugfJY4jD4bAZEaIZgB/Ph+L6vPN1LkADwMAD\nTw8iMOKeufgxQx38N58b9/u/tLSk4+NjZbNZLS8v6+zszOphUqmU0um0KTbMDjU/pJgqlYry+bw5\nt7OzM0sbUbfCM/n8enBgFLlsSVZf5NNh9L1PTY1ns7AuzD/BeVKM6NeQHnlaSFutljlmDt7K5XIq\nFAra+NNR2HRVAJYlWfoiGo2ajhYKBQM34XB4orCOugo/ZwM9w1l6WQVo4IBxdBha9h0qHyfkUxOA\nU4wyfwb0sU6wFUz0BNR0u1071Mwzghh/7AaO1H+3B9m+TsjL3HVABfcLsr08F/fkDCQi5Gg0qtPT\nU7OTADv/vEyoHAwGlkoiQON7ST/v7+/byabIHekCaoEIXKiBAghPT0/baZ28gy88xc75U21JgwM2\nSQvyvf5wO9aC9fI6DoBA5jyzwO8cHByYfHm2hHvDsnE+Cs+F36FGhe4t2A6Yd+w9AGt+ft5Gkfu0\nLEy7D5hoOHiT661kKhAA0g/SZDWzN7KewiUaINLkMwAKIr5kMqmdnR0zzhRNXl5eWvsU6A9nxwTE\naHQ8kMorpvTDaPf8/Fyrq6t27kW5XNarV69ULpd148YNhUIhm8JICxKUsq9tmJub09LSkp2OVy6X\n9fXXX0uSFXESvXJ0LoYJ9I1QskYU9CGQHhT5vK9XJvLG3iFJY7BHURKnV0Lv4xAoVpybm7OJe9zb\nM0Q8x3XygcFnJ5qEUvW0drDbBDnyVfbcx+d5MT7cN5fLKZVKqVwuq1gsampqynrNfaqAvaTriO4F\n3j0ajf6A3SC9gaPyMs/7sRfUWGSzWYs66aJgsiA6xJ8ZYsQ601KbTqetOwewwXft7e2ZQ6WgeHZ2\nVqurq1pZWZkopmPv/FHfPkLGYdK5VSgU7OAn5ItDnSKRiE3W9EWePCc63u12zQEBWJFv5J7v9+/u\nwQoRKnIDQJBkB7SxH9ls1g4YDIVC2tnZUSqVsuJSuncIMDzg9REtF89BkIJe8DN+9zqXr0dDD1hf\nngn7B6MLk9LtdlUqlWyvSK9h92hF5718upp96HQ6evHihUKhkB0gRvcY4MPXP2FTAHAEMt5pAr5Z\nx1AoZDYZBo199dOGARycs8M7AaComUDnAHN8p++oY20BVujX1NSUyuWyLi8vtbS0ZM8M8+Q7DjOZ\njE2qxQ4AVJlc6s/4II0yPT1twbIPdHhnn559U0AhvYWgAgPExuLEoOqpfcDw//rXv9bHH39sDvns\n7OwHh7IUi0Uby9rtdlWtVlWr1SyCpnDK06XkwKB69/f3Tcip0vdTI1FS6F3qEWKx2MSUxX/5l39R\nOBzW6uqqfvGLX+jevXuampqyMzcwvLOz49MYiRb/8R//UdVq1YRIkp2s58ERBsPnsz2KLpfLVtiE\nIjOcyed/e72e5UF9rQXvSzQM+IGBoDguFBoX0x4cHCiVSumbb77R3bt3JwwRFwmWh7MAACAASURB\nVEaCdbzuBePi88coJGvjAaDPOXpqmvobwIa/J4YzFBoPQNve3lYoNC4g/Kd/+icbQz0ajexMFHLy\nS0tLVkAoyYAdKTRmj0Bzklf37BEyivE8Pj5WPB63sfEMSKOOwoOgWq1mBaKkqfi3+fl566f3ZyBE\no1EdHh7aJNfV1VUtLi7qnXfe0a1btyzC9Kkl5B/WAHaGqB+2iMhzauqqOp7IKp/PT5znwXROnDqT\nBaHpI5HxTBBfp3NxcWG1Iefn58rlcpbG4meh0HieQDgctsFFDIUjUsU2cH4DbYsMPPJzL9B35t/s\n7OzY3uEEvLzyrL7IztdhePDLul3ngoL334Ej8h09yWRSl5fjQ+IWFxdt3gaBCnYIx9fr9bS0tKTD\nw0NjUUnLUczZ7/fVaDT0q1/9Sg8fPlS9XjeZRudIswKgYCGQDwLFQqEwcdAY+4ysJRIJO06cYvJa\nrWbsBKCTQlLfccf92G+A+fHxsf0O9WY8nweE7BXMHXVjvV5PCwsLls7s9Xo2KoCTb6lX4T2Xl5ft\nfjAb1NqRXnz16pUdisaEZ882Y/N/rG7nOtdbByqkycN3fG6QBfTdDUdHR1peXlalUjFFSKVSE0Vk\n3jj7AkNfIIRxJjXA5ZXcG+vBYDBR5OYjMnL50F/hcNjoQD8g5f79+1peXraxyERGvDsMxrNnzzQY\nDCzFw/PwbuFw2HKAvA9K4lkd+qn5dxSOKneiWJQI5gM2o1gsGlWJA8QQ887SWKmIcmKxmEqlkp4/\nfz4x85498fsjXRWzXefyaQzeObhfvm7Dsxf8HtGtpxKDBVUoMXs9NzenWq1mxWBQ+5KszdCnnDBM\n9MXDDoTD46Lbzc1NkxfeBdki+sB4MFPAR9y8r4/M2X+KF+ng4WceYJLbhcqfnZ1VPp/X/Py87t27\nZ2kNAALdFOgaf6ZgzQ+8wpGFw1fTFGOxmNVrMB2XdaYzifTZ6emptra21G63Ta4AAnTCkB8fDMbn\nPUgyY00aEBbGzw2RZAcN0nUSDodt1DLyDDsBiwmlPT09rZs3b1rdDMd5ezqdgCjIXLAX1Gl4cOSZ\nV2TvdS9ALfvpU8rSFSMJECa9RRDFmhE4+PoM0n7IKHVVwdbm8/NzOwqAllXAMrUa0hVYCIVClgKk\n/oXnBYT4tQMAwnDwXuwNAROFp9hqr888JywfIMEDTHQJYE8QhLzG43HTLwBZtVpVPB5Xr9dTpVIx\nwAV7xvpjt9FvwAaNCMgztUXFYlGzs7OWmvEF6T6gDNrV61xvHajASWI8ffELQi3JBHnjT/3BGGtP\nccNoYGRBjtIYePg5ARQCIZy+CO78/NwiQJwnCshFbYbPQRKlhUIhvffee1aIhgCSDsnn8/rss8+M\nHpfGefitrS19++23ksasBCc83r17V/F4XKVSaYJ2REl4NhQhHB5XSTebzYniPW8QaLXjnAeABU4K\nNMz9QPrSFRBg5PdgMDBDRJsZA3X8TAQcor+HZxRe5/Iywb55EOn30gMC/s3vJ7/rDZZPQbC3OLZU\nKqXnz5+bHJEy4Du9DOFcPTOCzFGDwryL2dlZa03EuFKQisFgzXByfKdfY96HfDnDybjX0dGRdSOx\nLjj3UCikzz//3ChX2CjehRZMnASnrvZ6PVWrVV1eXpph9vU9pGd4F4KBdDqtGzduTBxyhrElmpZk\nQ4KgsgEKGGCcSjwet4mhTOz0MuK7q6Srs0UYd55IJCz/7utXAGO0CBJFdjodLS8v69GjR5JkI6KR\nTV/TgH76uge+I8i0Ydeue+EAvd3kngAd1oHuD3SP76Uegd8n1YzdSyaTajQaWl1dnahDWVhYUDab\n1e9//3srnoV9wPESyPmaKOyOnwLsp6eyjsGCWr9mFLyPRiMDFX4wFLJIOg92id+XZLLigRysFCkV\nXyhJaheAe3p6qlu3bunbb7+1U1Oz2ewPanx8rY+3UzwnMieNfdejR48sfcT3BtOj3va/6fXWgQpJ\nP4jqWDDvLGZnZ7Wzs6NSqWR0aa/X09HR0cSAKF/4RC6YzSd3jYMBNHjgMhiMzxTBmVJ7IV0N+cHB\n4gBQMIwTgrmxsaFoNGrtr1tbW9bWBMX4D//wD/roo4+0vr6uzc1Ni2YZGOSZFFgP38ng6x58nQDU\nOf+HOvZUZ7lctgI5QMX6+rokGRVNNIESkusOUq0YZaqYM5mMpLFxocgThcAZsu/XuTDUoHacBPvP\nvrJXnlXx8uHZHU8lBmsq3n33Xe3u7mp1ddXGwfM5Wn7Zbz+ngQpy5CKVSimXy6ndbqtSqdj0SL6H\ncbyRSETvvPOORTHIJMAVuaaw9+joSJKsvRI5SSaTlsJDrn7605/aPiPP7K1f34uLC1UqFV1cXBgb\nMBqNlMlkbGz7xp9a+c7Pz1WtVrW/v6+joyM9efLEDDFgBJ2+vLzU06dPbQ9+97vfKRKJ6Pbt27p1\n65YKhYLlxjudjm7fvq2NjQ2Fw2E9fPjQDPba2poVB/IdhULB8vuxWEz1et1OIj05OdH+/r7y+bxF\npjgKf/ZKo9GwAWSxWEwbGxvqdDr284uL8WmeqVRKjx49svZbTk2t1+sTNQ3IGFcQWGA3PBBBlnwX\ny+tcPt/O35Fl7Cdy5Pe/2WxaWi+RSFiKCHtZKBSsBoVZDRQOFgoFK95kmB4nQwOUPcPsuzqoY0Fv\nj4+PLcjyNWCj0bhYGN0DMKBfg8F49svh4aGBE9bPp+D4OUCHDq/p6Wm1Wi1LrWAzYRd82mtzc9NY\nRhjki4sL/c3f/I2++OILqzVjFDfML91ykuwZqfFYWFhQLpfT/v6+vff09PhE4kKhoK+//lrZbNYA\ntwfFni327O11r7cOVBAFg6alyY4En4pIJBJqNBrW/UCUcnFxYfQQNL9HxBgQqCeEXZpstyLfigDj\nbD2F6Z/VV1cz6Q1kzEW9BjluKLRQKKTDw0O9ePHClNCPEvepDWlsAHyBKs/uo2ruzdrxPLRWjUYj\ntdttRaNRy6fzDrwrBUntdtuEnIgEJ858AWov+H5JthfFYlEvX760SIe9JdoApFw3d+xTAh5A+RSI\np4HZC77fFzphoIhIodeJSDOZjJ16ODs7q729PXsf7zyQO9Ih/Jk1Jxpjj0KhkJ3FwhRXP7MC+hiQ\nMjMzY0aU96KynPcjZTUYDGy+w+zsrD766CPl8/mJtBgREWviW9LK5bJ2d3f19OlTq0bHWKbTaWWz\nWRtCx7qWSiWrExmNRuaEWUf2jFw0e8b6PXnyRNVqVevr6/rJT35iTg4HEAqFtLq6KmkMdqkRIfV0\ncXFhbBIMkt9rvz4c9+6DC/bCU+YAeOhoP9MAarrZbBr1nU6nJWnC/vh0K1eQNfOAgvsDOq5zcR/2\nmP1lD1jLy8tLff/997p165bVkZ2entp/FGbCGI1GIxWLxYl6FFK7nL5Mpw/1KzBKkiz9ScDo00LU\nsUQiEQMIOEpsG+AdBgzdhSn1jhY7xhqPRqOJeUbICnaRzxFk0I3kmQ1sFWvbarVUrVbV6/VULBa1\nt7dndn12dtb8B62gBJ0AOoAMQM2DDG/PIpGIXr58qRs3bkwUiPoAmCCSNX3T661rKcVJogyeDvdF\nMsvLy1a1m8lk7Jx5hBMh9M4KBcFwr62t2fRDqLDRaKROp2O5ZunKMGFQ/Mmi3kH+WJEMCuRpdE+z\ng7J3d3f17NmziYJTqEkEDAbCKxuGwjM7oGBQOZE6ik8R03A4nkMQjY6Pg/ftUZ7pgeb2Uc7x8bE5\nNmlsxHCazWZTuVzOCkFhcmq1msLhsGq12kTez9eBBNMZr3Px7j6FErynjwg9oGDfcLKeTvSOdzgc\nan193RR2eXnZ5iwkEgljiHK5nEXH/iA2wAM1BbFYTMlkUqenp9ZWTKRHZEi1vZ/xQJTlwRHv2Gg0\nVCgU7FA9GBJSUrlcTh988IE5WdaAveDPRFzfffedvv76az1//twORqLDp9lsqlarqVKpqFarGRDz\nRc8c6EfhpKf/PZOE4wSwX16OJ3qSi/b5dWSQo7bD4bDVcjAVlCFz6D7pIDqoiFJJdfguGeawDIdX\ns0M8VS9pAjADDAEZ6XRa1WpVuVxOR0dHExQ9uoVssf6sCxc2gs/7mojXvXydF07Iyzr3pqWZmQi9\nXk+1Ws3meCQSCQMgAGHSoMGzlobDoRV3E2gw+TISGbfYU7fFns7Pz1v3znA4NIACIGa/cawA+nq9\nbrqEfUHPSbth83wLOzLk7TlOnfv0ej0r6vWABhkB1HDqNOuJbiSTSb169crGkfv6PRgJBswBVLn3\ncDi0zpBIJKJsNmvrMD8/rw8//FCHh4eWHkWG2Gv2+bog1F9vHVMRpKG5PCXNIoLsvPJT8EgHCPck\n2oP+rNVqevXqlbWASeOoZ29vTxsbG0qn0+Zkvv/+ey0vL+vy8tJoPT+Jjbwc0y9xyr4Y0VOMGFqE\nIBaLqdFo6OzsTLlcztaANE6wp9oX5NAvzjpAk/oTLKemxvMJOOuj0WhYNP3+++/rwYMH2t3d1Wef\nfSbpKoUC0uc9PJ2PEu7v79t9qd3wUS9RAQaI6AcWAWXFUF93aIsHJx6oeQYDRxcEfEGGCePL5330\nQgdRo9HQzZs3NTs7q1qtptnZWVsP0gLBol8M2PLyskVnAA2+Y319XSsrK8aQjEYjq1PY3t7W4eGh\n/uzP/syeGXkgndXr9ZTP5w3oUi/B55aXl3Xnzh2TOwCkB/Gj0bjY8cGDB8YWEMVRpMuAIWST+SXM\nMJmamlI2m7XzFm7evKlisWhMTa/XU7PZtFoMitcATzgurn//939XLBbThx9+qI8//tgAM0CrVCpp\nMBioWq3q8PDQhn/546ZTqZRFtjMzMzaErN1u2+AySRP6ik7hPNEtOmP4Dlp3B4PxWRM///nPbdZH\nEEwgfz5dyXdhG2BTPGMaBB2vc+FAubf/fl/EiQ3FfjAUSpJevnxpe+TBF3aFjop8Pm/BBPrI57GT\ntAGj/3RW8PeLiwtju3hXwIAfKwAgwCHDRMBOAHrwH/ybDzI8I+qBp7ehsDCwgf4EWoA3gOL8/Fyt\nVkunp6daXV3V2tqa/vM//1PNZtP0ZGZmxmwCzwgIhWlk77EBMDHYpO3tbdsbmDvWytdnBOvGrnu9\ndaACxOaH+bABLBpKSjU2OS56janghsYNhUITx5BTWQ7lhPGnCjgUChkLEo1GrXDHj14FsfoCNiJb\n37bkaWjPaJAioaCPIqh2u610Oq1SqWRMBSABpUCBvIMEDUuT9QTkyBFSmAaUstPpWFElkQSGcDQa\n2WRO32bb6/XMSEC7n56eajQaqVarTUT4vKef+UEtBxEk++wN8etevjgpyBTxd76D/DEG1wMKjG+Q\nBUDWiLBOT08tNcEgKEnGPMAmUKR6dnZmbWUYAoAGR4VjdCio5NkYgNPr9fTixQs9ffpUH3zwwUSa\nCnkARAJscQAnJye6e/euTeTknaTJMyiQrS+++EIPHz6c6BwpFApGd7OX1BKwTjipfr9vkwYLhYI+\n+eQTxeNxGxbWbDaNtQCYklbxzgXZ4v2//PJLffzxx5ImO3zOz8+tw4MWWMAA9ybFx0mS0ngyJPrP\nsxCoSFfAGXuBE0SGyN2Ti0cGM5mMrZNnx3x6jHfg4t2DICCo49e5WFsCHOwPMiNdndeyublpz4nT\nzefzWlpaMruJQ/d1GZImzgNiPXl+X1js566gZ9D/HkQBePm7lxPvKP1kWYA6a4hcXF5e2tlQgEPS\nM9gn3hfggm1Cv+gEYS988AODNDU1ZYC42WzqX//1Xy3l61Nf6B6t3bAg6LBPu7IXBEN8bmlpSa1W\na8LO8Q7sM/L2ptdbl/7wyuwj2aBycUgLEcPx8bHy+bxVcFMguLy8bAVAtDwxNAp6i0jDdyosLi5K\nktURQEnX63VDvplMxoABdQ9QgShIKBSy+g6MEs4UB0LdRKFQUK/X0+LiomKx2ETelugCoQExe6fm\nFZbcZKfTsQis3++rWq3q6OhIJycnpmyj0Uh/+7d/a5X7tG6hRCgBxVrQcvl83gq3pPGEuWazqeFw\nfHQ1iru7u6vbt2+rXq+r2WwavYwx8A7e55tf5/LpF/7v2Yofkx2cJc5B0oTS+9wk4LRQKFgLZrFY\n1G9/+9sJQHN8fGzDq/b391UoFBQOh1UoFKzaneOMOfArGo0aeMxkMmq1Wur1emo0GrYPyGyhUND9\n+/e1tbVlBcaMuPaRjy/gZOZAJBLRzZs3FYvFjI5GtjGKoVBI9+/f1/37923d0IFaraZMJqNIJKLF\nxUW9++67Wl9fVyaTsdw5+jY/P69SqaTZ2fGZJY8ePdJwOLTaBR/5+v0CGAGiASiA4OnpaT1//tyK\nrL2OjUYjmx0CQGOGgq87guJH1jqdzgStz3dB31N35VlBAhhsAEwNgPKdd95RPB7Xs2fPTO+I1nG0\n/mL9gz/zDtQztNe9fBDm2w9hlEgvTU1NWdHw4uKiksmk8vm8IpGIHfDGFGPWwBfR+2AFQAuohcWV\npFevXimVSpnchkIhS/sxJA/2lntjL3wtQr/fN7Du04IwG5zLgmyxZ9hfWBAYFd7LMxPYUzp+ALl0\nyDUaDTtgjxbbZDKpeDxuQSsFr4zszmazdmCYNAbz1KvxLpVKxea0MCjRA+ijoyOz6575Ariyn//H\nVPzp8rlG/2cUCkSKQPhzK0CRCBIIjlZJSYaCceSgTKrqFxcXraOh2+1qZmZGd+/etRoCgAhsAIyF\ndNVfT26OyIPIlc0nReDfGUZhZmZGmUzGqEKEj/tTUAbC93lTDCPC5KNw3/MNqo1Go+bE/vmf/1kv\nXrwwpYCq4/6+nZYaE2+gMCTsmz+pku4D8p/Q7fwZpeae11EGT2l6gBIshvNG2bNerAn38e8gyboW\nyA8TXfkcJmOsuefs7KwqlYqWlpYsT+xbaaFwYTEkWT873w2gBFgMBuPBUExmzeVykmR5YV8XQeTV\n749nB5BuoMDSd5CwR/1+X1tbW2aYcrmctTDDwpDPhibH8Hv5la4OQ4tGo/rmm290dHSkjY0NA97d\nbtdatL1T8CDCp61YH8BLKpX6QTor6Fh8gS2dDuivJG1tbVknFr/P6aa8T6/XU71et5QkzgxQQmSJ\nI5JkESsMB45PmqTm/eX3zQNbn+aSrpcnh9bHBqFzOB2c6OzsrBYXF23gk9dHbKdPwaJPPh3Av/tD\n5NAz76Rp7T08PNTa2trE/gUPLvQddawlETgpPNg8imoZvAWjSHqE9SWAQhbYRz9DBX1k+icXLDiM\nAcPnWq2W7t69q4cPH5rtpsuDk6/9/iHvpOybzaatNftCqlCSPQ/XwsKCra1n91hH/MKbMlzSWwgq\nWCxPPXs0j4NOJBL2ORaWTUdxiAgZm4ohoAgOJEm0hWDSAoSTaDabOjg4UL1e1+bmprEeVIkz/z4I\nfrwyS1cTPgEYPg/ooxGoQn4XhUXouL9H7r6oiYjQ56ppjyKNwtrS1vr9998rm83a4VNB6pb1g9YH\n9RMt8xkmJHqhpt4AQ+3TDXwHf78uug6mLTCiwTXxOWxf84Gx8dXSPgrzPwcwNJvNieiX9JqfWkkK\nwHf5nJycWMqJ1AaANhQKqVar2R5QsObTWrRvUi/Bu/D9fg4A0Q6pwIODgwkDR9qNvTo6OlKlUrEZ\nDwB1L3cYQ+mqPZs98HVQPEc6nbZzH3x0fHR0ZIV5w+HQRkRTXOcpYBgtadyOXCwWf5DyJGUCOGq3\n2xPyD+idmZkxx8l5LUSf/l0Ae1D5vggVoEVw4Kl6wBbAxQ8p4lmDlwe7AFiAGjbEpw1e9/LFmVzs\nNfvpW2k9yMem+sAFZ4yTJw3E+mMT0StfuMlahsPjgXH+hFuYIH84o08Vk4IATCAPfvAbqbJ+fzwD\nhRkWTAUOFjpTL+NrGHD22DnWwdsW0pedTsemhKbTaSUSCXU6HW1ubtrJqJzfgxxKsnNjYC55ZgJC\n6erUXq9rrDsH6iGzPxac+rqg/2Mq/nQhxL6oKbhARGd+tDSgwxcThUIh1et1pVIpQ8J0ePgRwxQc\n8Zlut6udnR1Tqt3dXcsxUtWezWZtvC/KCDjweWuUDVrOo1+ot4uLCxvrSmeFH8CCEUPwaG+iPSmY\nJ0UpfVsiz5hMJpXL5czYffTRRxqNRmYMcRbQkThEojcMEtQvY21haYhMUCYitb29PbVaLXsnFBcj\n4g3pdZSBffYMg09r+J/zHxGQb0fz98CoEjFRqHd2dqbFxUV98803trdTU1M6OjrSnTt3lMvlJupX\nKKCk2JHTH7e3t/Xpp5+aoT08PFSlUtFnn31mkaKnNX3UGI2Oz8ZoNBpaWVmxtaJroVqt2qmo1AAV\ni0U1m001m01tbGwY8AmHx50Te3t7+t3vfmffCUOWSCSMkn727JkWFhaUSqWUSqUmnIqvKcBg0oZM\n2uPly5daXl5WLpdTLpdTs9lUPp+3YID5CD5/jQ4tLy9reXlZn376qck+R24j9wy2I90IeCLdCUPC\n2SUUJPoqfw51Qm4p5ETuMeA8l+8kmZubsxN5ie5hCAE76K+Xb97T2wsPQHBy15lR4Z+RwARHjDMb\nDod2YJh3RmdnZyqXyza2HcARi8V09+7diRSBTx1ImgBy/Iwi4Ww2q8ePH1sbcr/fVyqVUrFYVL8/\nPg8DW+btC7VXgCTSxn7ejGcnXr58adNRv/vuO2UyGa2vr08wK9I4NUhtxXA4VCKRsIDEp2IZ704D\nwNOnT00/Hjx4oNnZWZVKJf30pz/VcDjuSvJTdWu1mqU8PWDimR8+fKjLy0ttbGxoaWlJ9+/ft33H\nfrGOdBnBHtJN55lf7MX/MRWBi0WXropQvFMgEgDFS7KIh9wm9QKS7HwFz3jgcBH+ubk5ix6hZSXZ\nGQI4Coa5EFVAwXmGwDsmHFWwWIqIzlN6AA9P5wMYACYAF5wX7INH1aR1/H1IFXF0L+tXLpfV6XSU\nzWZteE/wdEIcb9AYErEQhXs6ztOJ5D+5F7SwZwt8TvC6lwcp3It7o2jICaAItgaDFVRib+zPz8+t\nm4C8PAWB4XDY0mWAKgAWlC/53G63q0ajYYPbisWireudO3fM8dBl4NedgkXSbdFoVM+ePbPvHo3G\nLb0cYOdrbJD1ZDKpr776yuZK9Pt97ezs2EhrX4FODUi5XDZWyht8jDxyze/ASgCqjo6OFIlEzHGv\nr6+bHFKgDKisVqsTaavp6Wndvn1bH374oTFCvAspJXLP4XDYgLhPWZFOwSbw78gHtUtEjdIYLJyd\nnRnT5KeOIiMU2uGofcEh3+F1zXcgBa+gffPUNjblukyFNHmOEoAPOcee8a5+wiinlnqZwP6gDx7M\nY9e8jHg6n3o1z75lMhllMhkrhORzvGfw2SXZoW/UpgXrO8LhsHZ2duxcmtnZWR0eHqpYLNq9kE/u\nJ8mCJp8uwrYBBAAdAKbj42PNz89rbW3NgB/j2Xm258+fG+PNe7P/dHadn5+bDkjSysqK6vW6+QZq\n9tA3mB/snXSVMvIB2XVr0/z11oEKn/8KUtdQQiBMT11TeAVybbVaNiOASMNHzz6iIuUAG4FB5nMU\n1lDAhfEC4BDhBfOuGBucky9AJfXii8DOzs7sbA6fYuHPGBuAEQ6b9YDK88ZO+uGAHSKowWBgESJF\neXNzc8rn86YATHXEwEmyZ/UpBw+AoBEBHn52AQ7Zg0XfMXNdhM1aeCXifl6efHqKdZKuUk8YcSh/\nXxeDMjebzYkTFsPhsJrNplZWViZAKt+F8+edycOura2pXC6rXC4rl8tpcXHRcvu0J9N1E2ydI4JN\np9M2GpjzNrwBwyCxDhTRRSIRbW1tmTGG4fCpNIxko9GYoI0BV6wD7ZUYYvQJOQNI0dVETYcH3LCN\nRGHUQGQyGW1sbOju3bsTnUrRaNTmUdB1NRwOtbW1ZTQ27AmsB3U97AltjICvZrMp6epkYupGVlZW\nbCQ334V+SbLUASkxih6RLQKHH6vo/7ELPfIy7GuQruMoWGefBgmm/vg3QCLv5WtoAEKki/kMtjSY\nLvCgCaABqF5dXTWwiQMmdfJj4Ak58XVCvlaF4AEbTVszeoCNxykjF8gzesnzYY+97ZJktpI9J3jY\n+NMREd4vYL92d3dt6ipABtBJK/JwOC5oJ0hmnLckNRoN+zwgBeaIn2Gb/J76AOpNr7cOVCCcwciS\nCCAWi1kOlNPoAAXVatXOm2+1Wrp165YymYwuLi4smkF5POVHFES0PRwOdfPmTVWrVWUyGTvKOJPJ\nWJ6s0+kY0vbpDxSBZ5c0UeDpI08UhtxYpVJRuVxWoVCwugZYCIw2Bg8KjCibCZgerHhjMT8/r1ar\npcPDQ2urGg6HKpVKisViOj091caf5nNI4xQQikENwOzsrHXcoNS+2Mi/MzUjg8HAlMGPBMb4oBQe\nTF6H6vWpMk/D+py8/ywGhuiKXKoki9x8gaBnVjiSnjY1DxSh4pFVHAQ5UtJJnKNB/7p0FTmn02n7\nbL1e19HRkdbW1qwTwV+s2/7+vqrVqqanp+3cDt+/jlx3Oh0dHh5aMSJ1RYBgAPirV68sb8zzI/OD\nwUCVSsUGw/kxy9TtsG6np6emTwwHSyQSarVaE3VDsCyFQkFra2s204O94kh0SfrVr36lSCSihw8f\n6ve//73K5bIODg5UrVY1NzenYrE4wYjhQGgDpiNlenraUpfNZtMAF3vR7/dtL/L5vA2x8g4atqRc\nLms0Go8sZ64HrbPUfRFZ4+B+7PIDmojASa/hPK5zedkHDHgQgHyORiObsDs1NaVMJmPpz5mZGTt5\nk+CM/5g0yenPtEejd7BIgLBkMmnHewO+SDN4fQdYAgp/DGyg69ixaDSqvb09PXz40E6EJkiZmprS\n7u6uisXiREBHgAEjwb77qD+45+FwWDdu3FCtVrP0G92GPt36/PlzNZtNW1NS2n6QGsMTPdiHnRwM\nBjZPCF3o9/t68eKFzV3Z2dmZ8D28m09/vGkK5K0DFUEKPFjFD93uhUCSSxSd/AAAIABJREFUFVKR\nC713757m5ua0sbGhhw8fWgSHYv8/9s7kOc40Oe9PFQqFtVArCiisBAiym2Q3m90TrVm0jEaS5dCM\nDhOSDlKEIhzhCS0RnpMP/h8sHeyDdNRNHl0UoYMkt+3R0lp6erp7enrhCpKNHYVC7VXYCqjNB+iX\nyCqNbBIjh2V6vggGARKo+ur93jfzySefzCRPKMnYD8SE1KWj5CXvivIWsUwikTBNRD+TAAiAOuyn\n//0BbLValm/HeBP9eUEcQMDrEaBhvXaAdfN0niQDLzAizWZTCwsLBl4oGTs4OLChUFKvgep0OjbB\n0otNT09PTYjkHSDPiGiDze7bLvNvPgp81suDRD63j66l3vy8F4F5dgRDhQHmb5+OCAaDKhQKZux8\nZE8k6Zs5+Tz1wcGBiSb9c6NcUpIJAZvNppWX4lx4HfZNuVxWsVjUwcGBwuGwsWs0XvLiP773lSR8\nfkTKNOGhZK3RaCiZTBpgBLh1Oh1LIxB1+gibz8x+4LmkUikb8sUzRhCKpseX23r6nHx+PB7X3//9\n3+vJkyf6/ve/b3trZWWlJ4/faDSstT57CkaMDo7oh2iExT7CCWCkW63ziZo4O+wQei3sCekYQD1O\nluf6gyJ5f/n9HwxeNNfzzuIyF+cLZ+OZB0k954S8P58bcOPBMX+TSqEdOsFDMBi0NvMDAwPWltsH\nE9izgYGBnl41OPizszMD7f3dgT37CvNVq9VUqVSMZYJ9YC8QuPFZfe8gBP0wvoBg7Cf3xd7vdrtW\nOg1Q9QwO+2hwcLBniNiVK1dMyMs+8Po/gk5fgcM54j1eeeUVO49oRPAnBDiwUc8bnPnrhQQVUm/7\nWp8nwpGxoXCkdD+jRAra6e7duyYQBCFLFxvaR3Q4xVgsZgZoeHhY4+PjtmG73W5POoSIBeqVgyjJ\nNip5SNA/B52NGw6fjwWmphuD2n+PbB6fE+bCcXNPHm1DHzOgB+BCeWoikdDU1JQBumKx2KMs/kFO\nG91Jq3XRd4A0DpE+Rj8UCllKgefpDQ2HvZ9ZeNYLhw5I4H7JifLMAQI+LeOjIA86+X9+D30EuhOc\nISPImSlAZMH6s6/oloqRhE4n0goGe0eFkzYoFArWlwEGIhwOK5vN6uDgQI1Gw8SQvqFYMpk0o4Ij\noUKEiZG83/T0tK5du6bT01PTEYyNjen111/XX//1X6tcLhvwJnrzRgtGjH3pnTnPFaEZUR3gExHj\nycmJpQr4+f39fRNF37lzR++//7729vZ0eHioycnJHj0MaT0cPGXZXucknaeNBgYGVCqV7FlwVqnW\nAPBxfgAs7A8udDakgmhRzVoRmfsKAJymv7Bj2AIobp8e/EGVI/+7y7O+PujwAcLBwYHdTygUMpEj\n78k6HRwc2Dk5Pj62VvPValWVSsX2InoGOuxSPQSb59NzXKQmKAn1bEK/zeDfsXMM6qJnxNDQkKLR\nqLFHtKlHR8Tn57n1g2w0HjCBP0hrhX3j92E3YUA7nY4xgp4VJ7XHsyZgGR0dNa0ErQ9YI2x+o9HQ\nF77wBZv8ylrwHL3wnNT9Za8XDlR4B8ah8urf0dFRTUxMGLjgYAcCAWUyGcvVseEODg6stbaPHk9P\nT61VMAAG5J3P53Xjxg11Ouc9BrwQiXzswMCA6TbK5bI5+0gkYumEiYmJnra0VHWgXMbZ01RpeHhY\nb775pk2/AxnjHEGvUI84Y+5dkkXPGEVyyKenp4pEItbWGHCUSqUsqnv8+LGOjo4sbUG/BSJJXxPO\nICeaj/WzQMPDw/az09PTVn7n68M9pYlTeN6IzINEPrNnethHHoB6lojLi55wjPwb/RWY+UL0jEhw\ncnLS9hPgMRgMWkMrHP/4+LjRuogVee4TExPa3983fUQmk9Hh4aEajYZ2d3etnTz7880337Qzsba2\nZvuNVt17e3vmpKSL/Dlt6qG9Q6GQ8vm87t+/r8nJSb3yyisKhUKq1+uqVqvW3wKxJeeHKgpfAYUx\n9uWEnC3Yj5mZGT158sQqhgCmlUpFs7OzFvmi5ZmZmdFv/MZvWBvujY0N6zHBe3EGKLkFNLDWgD1J\nJsCG7ZmYmLB76Ha79nmIHgEEOBmMNWvI1wi9cbQwMkT6ANV/Ko2BPQCMcw8+Z/48gBtAwZ4HVASD\nF6XoBDusGYxbLpezxmboOlhvmkLhxLl3yqWZPprL5ayJoNcgsVf8YDEa4jEdlLRLNBo1sEmK1Au8\nAbYffvih2ef19XXbD6RBOG/xeNycNnaK12Ntj46OrEkdXXSlC8bcBypnZ2dm32Fg2u22lT332zLA\nM4wPADgUCqlWq9ne83qVVqtlKbV79+71TDT2rA3nknN+GX0a1wsHKvyD8A+PRaI0D0Tto1KGOPFA\nQIg4ChYegY6P6mu1moaGhmwgFPQ8UQeRHdQohgIajd9HnMchYmNA5XlKmI0ISIJqbTabFvkSNUkX\nzbVwiryPpB70z8/RWRD2hFInGJFYLKZoNGoRy/7+fo+z9w3DWAMcNmVVNJcplUpmnFlfjAZAgly8\n1zb4lJEHfc+zX8hZc6CIBDhcPlrEwGFsPZAhAsL48jl4H6jhcPh8FDGGEXBBSTC6i3a7bZ0zacNO\nQzUoTR/5IjIEQNL7gj29vb1t00YnJiZ0eHioWCymra0tBYPnczD4nUqlYmCXkunx8XFjPkjZ0dDr\n2rVrisViOjo6MuASDodNKOnTNCjXy+WyVQ+xn/kZzogv89zZ2dHW1paq1ao5zFqtpkAgoGg0aga9\nUqlofHxc2WxWV69eNSElRpUyXSIyjLlfv+PjY3s+7XbbqsFIubF/vbA4HA5rZ2fHKny42Oc8P2wS\njnhwcNBobV9dgM6JyPifMvRe38BZwIle9vKOks/Iuej//8PDQ/ueZ8K94BxxwAAS33cmEokY+PEg\niAmdBDzSRXdRzhtABXBLjyDYYuaK0HUSJsGXai4uLpotrNVqpoND3Nlut7W5ualGo6EbN27YvsT+\nkLputVpms4LBoLa3t80neEGpJGNaSaETVPlhjQSNzWbTGBu0aaReBgYGLJ2ED/BgW7ronbK6uqp4\nPK7d3d0e5sy/FoHdDyPWfOFAhUfjHASfkx8YOO+AeefOHVUqFWujTT6M3DUU7OTkpDkG6DUiaRzZ\n4OCgEomECdimpqaMhuNwYcy5cB7cE8IujA6ODHEYxptDSokgG2J8fFxXr161/C3RFVELh7pUKlk+\nlMjCC5CGhoZUrVaNDkulUlbTjCFdXFw0ivnw8FBPnz7tmWFwfHxsND8iOzYw1RGLi4vGVrD+kmyO\nCCWDvE+lUjHK0Ofi+3PNsFLPemHAiDh4Ta/YZi9g4PneizulXuU0xmNoaKhnVgBgAYdMZUO3ezHd\ndmFhQZJUq9WsLe/g4KCy2ay9BuCTJjlUUtCpstlsKpVKaWhoSO+8847C4bBmZma0sbFh+xswuri4\nqE8++USxWEzVatUU5ESGOPHDw0ONjo72UNnJZFKvv/66gsHz6bEPHz7U+Pi45ufne9Jl/HwkElE6\nnVardd6B89VXX1UweN5cK5/Pq1wum0DNV6wMDQ1pbW1NGxsbunPnjrLZrAECwDZnCFbmpZde0snJ\niVZXV5VKpfTee+/1jFTvdDqamppSLpeztcMxeEbm6OjI0iFEybA0GGE6GK6srFhJKsEI0W48Hu+p\nesnlcmq321pZWVGxWFQul9O1a9d6UgzsRS+o+0GXD4Bwavz+84o0pX9aOwSAgSFF/wHYPTg40MTE\nhLFTgD5P6VNCjtMeGRnRwcFBj/4BWzMyMqK5uTlzeGjW2BONRkPvvPOOKpVKj126d++evve97ykU\nCunGjRtqtVomig2Hw3rjjTeUTqcNlACc0FCQNpB6S3bffvtt0y4QeC0vL1uH2tXVVdO3LS8vm95t\ndnbWzo4P5rA/AACArd8n/CFFSFADk3tycqJ6vW52icCZ/VepVLS8vKwnT570THhGU+EBK4DlMnuG\n64UDFZJ6jL3Pg5Obh4YnPQC69WIZjAoP3Cvt+6MAnM3g4PkIcBwpeS8iVqoggsGgAQKvGyAi822+\n6RaIoO/s7Mxq3zE2AAvAD5vS3yeOmIjKU6kcbL6HGcBZDQ8PWxksGg+qSKB0ORSHh4c2FKnb7SqZ\nTOrs7MwmTAK2EJVCOxJtcJh5fUlW7kXU6LUMHACvi3iei8/sy9rIW/oUCHlJ1o/oEadBbpR9ggNi\nfTG8PEscJ68BqGk0Gvrss8+MxZqZmbF9J8mcHnQx1TYnJycmCqajpiTdv39f4XDY5mkMDw9bxIgT\ngP0aGBjQ1NSU5Ymh5Pks/X0KSC9Eo1Ht7++rUqkoGo0afetbJwPCYKxI9WHg/Nydra2tHkDO+vOM\naN4Vi8VsP3pWCFANIPrSl76kt956y7rZxuNxCyaoKoF98GkL9gDjo33be54PTgODzznlPITDYeVy\nOXt24fB5F1mqeUgLoT1IJpOqVqs9jKLf0z9IH+GBBMwOoBhwADvyrJdnSAEF7Fefd/d6JuzX/Px8\nz2BF7g96XpIJBjnnNHjjmVOJBHimUR57EQDSap03iIpEIhofH9fBwYHq9brC4bBSqZQWFxeVSqUU\nCoWUyWSUyWTsXmFJObPYEV4XMT4p8mazqS9/+cv2zL/97W9bVVqhUFCxWLT0STqd1tbWljKZjFKp\nlGn2+vuN+LX0HYPxA/5Ze8F1q3VeQUjvDVp7s689AwdjNDMzo3v37hljz77gb9b/smkPu88f6rf/\nBV5eXOTz5TAV0WjUnDJOH92AJDuc5ONwml6pe3R0pEgkYoYDWg3ni0reH+anT58aimZzwIzMzs4q\nHo9bL3iEcGxYAAsbwEfQUm+DFxgHAAX/x71gaHAO5NzYnJIs9x4InPefIMrgPf37+2YtCK6SyaT9\nXzAY1NTUlI2KBkH7+nsf1cE6wKywpuVyuUc06b/m+8umP/qBCOvtIxiAF8CMvUZU46MEH+nA3BCd\nY1i9wyCNBWPRarWUTqc1OTlpDBpC2dPTU9Xr9R5jTSUOOoV4PK7T01Ntbm4qn89raWnJSv0SiYSB\nG84KKntJRksPDAzoypUr5hRh4cgvN5tNLS0taXl52UTCJycnNuLdU6h8Tu9siVS3t7fV7Z6PcKaN\ndqPR0N7enu1v1gvWo1arGZD1PQFgFYjGXnvtNd24cUONRkMff/yxlpaWdHZ2pkqlYswabARA0nfZ\nJBXiK3Nw3OPj4wbseDacM4Da6Oio6VpojFcqlXoiQ6JQLyLkGT558qQHvLDn+i+oa5gBolmvPXje\nVEh/xQh2hL1PTt6DCtYA9qJWq9m6+r1VqVQ0OjqqTCZjvYGk3inNrAW6Gv6dr0m/8R4IKrG97HVm\nvaDRQqfCnvGidC/A5kwCwLHxMDHRaFRf+9rXjGE8ODgwLczo6KhyuZx91rm5OWMtsCekKQhccrmc\nBbDsKT9vh+d3dnamfD5vQSlsBr6ClM7Q0JAFF6RQYYY8UPT7ie99YHSZ64WbUkp+y1OIHmCwWaLR\naI+YkX/n9xFtktsCHDAGmajGvwcMA0AAFP4Hf/AH2traUqlUMgQeCASsYVY0GtXBwYHee+89ra6u\nWgnr/Py8ORWoWW94vB6AQwcSJtokskUMyYQ/Nur6+ro++OADPXnyRFtbW/r000+tPTNGf39/39YX\nBsR/dho7ebTLRb01zAd9KxBsTU1NGY2HOHZ8fNxK6vb29pRIJLSxsWFGgWfm839873tEPMuFQSQC\n5d79gfdMBHuMKM5X12CcWHvuhyi72WzqpZdeshHbdCIkzVGv13VycqLXX39dCwsLtn8wFFQejI6O\nqlAoqFar2doBNKamplQoFLSzs6P9/X3Nz89b07CxsTGrMCCFMjQ0pO3tbU1NTenq1asqlUrKZrNa\nWVnR0NCQksmkcrmcbty4obm5uR7h28rKihk28t8MfgNgASjQdfBsKpWK3n//fe3v76ter1sKYnZ2\nVjdu3FC327Xy2H5tEa9Jem5wcFCxWExnZ2dKp9MaHh7Wyy+/rHfeeUf//t//e/3H//gfNTQ0pEwm\no2q1qng8broS2CeeO2lFzicOC6AJWAfYnJ6eWn8AmBEieJop8X5oBqjCqdfrunLlijm0UqlkqZlC\noWCBjyRz1l7XwAVjyJmi3JUghH39PICbFIdn06SLkl/A1uLiokXu3W5XlUpFqVSqp3QfcE2DKEk2\n0dSn8bBjAPpoNKpEImHnFIfHz2SzWf3VX/2V2eJIJGKpl0AgoLm5OU1NTdkz5QzivLGBAGv/WT0L\n6qdEA+RZdwKy/f19ZbNZE5STnuBzUr0F8GSNu92udnd3DWRQLeg73cIsYJeePn1qZw7bRwokl8uZ\nzwqFQlbJAlNO0yyC0H4RLp/teYW9PXvnUr/1L/gi8vMPD+Tl0bpHitBwGJd2u23VCojXRkdHFYvF\nzED4kb/kiZPJpCFR7gEV861bt3Tjxo0eFfjx8bH1EyA1AF352WefmaqdKECSHU42P84X4ZtX7+Jw\nvIGBwh4cHDTAMDExYYNtGE/O55iYmDDQwKHxtCc5yrm5OYXDYVM8+8oYnBBtZREkEYV5UReHgbz0\nxMSESqWSRX+sgWdeYDikC/bmWS8YEowFh7RflAYw8M6SZ4lD8tQpr0O6h/JbUg04LrrooS2RzkuX\naXTTT3VSIUAkQvMqdD67u7va3t6216fCCP0QETNULAYaUAdjh5Hnz8LCgqLRaE9qqF6v9/wOETKf\n3a+rp94LhYKy2azpEDBwfC9JmUxGgUDAQBAUMffrX4vnQqXA66+/rrt372p8fFxvvfWWcrmcOeRc\nLmcNuLwKntREs9m0fXZ8fNyz36ntr9frFjyEQiGbDQRY8PohnGq5XDZtRa1WMwflo0euarVqa8ba\nEKj874ABe44z1b/2z3pxPz6A4Mz3syfsac4tNgYgC2PJ5w2FQkomkz3aM1hh9lAmk1E6nbb3gT2D\njUJ4SDO0VqvVI6LFIRJQwTbzs16cC0il+gqwCJDkXAN20F54wTxgmhlQvgouHA6rVCqZHQbcsHY8\nf19hBSsGo8iz97YfxgaA5NmZk5MTxWIx22eAEGwl9tMzE96uepbqea8XLv0h9ToBnxdkcenLD33K\nZvNT4XjYw8PDSqfT9r0vQaW6YmZmxkAGm1+6yMv92I/9mNFvQ0NDKpfLtiFQLTPfng3VarX04MED\nXb9+3boN9nftw+GgB8nlcspkMmo0GoaY2UDeMAcCAcViMe3s7JiTgmZE3AezgeEYHBxUpVJRs9nU\nzZs3e5gCUkjZbNbqzDE8/EGf4QWR8XjcDp5nC6QLwRKVD5FIRMVisUcw5p05BvQylzcSngbFaPBZ\nAYscav4AbLwh97lTWC5KS30aAaefz+et3NRXD42MjKhWq5lmAMPDa/Jc2+228vm8Njc37f7Q9lDW\nfHJyYh1NfZrMj5UfHx83JwCzhAiNdBBlhMfHx1pdXTWGAJ3E4OCgDg4OeqZtshadznkVSqlUsvdH\n41StVq0nDA21GLtODh3VPSmYYrFo1RnXr1/X2NiYPv30U+3t7enf/Jt/ow8++MBGp29ubur09FRr\na2uan583arvT6ZhzAQAT3fEZABqkgaCcYTFgJvlZL+ZGRNdoNJTNZo3xgN5HvyXJABmVTn4/PSvT\ngOORLtIYl2lk1K8r4t/6+z0gtCT9wb6DvveTP7E3PPt+QEUacWZmpqeXD/secNVoNJTP5/+R3oP1\nJ9WIGJOqO58q9g0HqTbzkTv3A1DkeWH/AQaHh4eW2mX/T05O6qOPPjJwANiBKcZuAKRIzfOzdKTl\nHmio5e8L9gpA8fTpU01OTioWi1kXVw+gsL0+8OR73pd7u6wtlV5AUAEth0P0Aj4MG1QjTgxjsL6+\nrsXFRUOarVbLpiryMzMzM+ZMyetB0yKehAIPh8NKp9PK5/MqFotqNpuKxWJKpVKWh+MgjoyMaHZ2\n1gRuH374oX7lV35Fq6urBkRisZikc+oYA4MB2dzc1P3797W8vGyfyefBPTIfGBjQ3/7t31paCMPN\nWrGhfUkbbWUfPnyoV1991SoxMLatVkuf+9znLL/PRvU6B9rL+ucCuPN51YGBAevPcHp6qsPDQysV\n5EDzGhgc6QJMPs/FemA0/GHjwIHcMV5eLyFdlOASEeKUPZvBepK2oJETOdRms2mpIGjKWCxmHS+l\ni4FIfOZ2u22phkKhoFwuZzQ7zo7nPjU1pUQioU6nY/X2NE0D0OGcKdur1+sqFAomBiW/i1Pg83Q6\nHX3xi1809uPg4MDWxqcsOp2OCoWCpTww9v6e/uIv/sLWgXK8SCSiQqGg69evq9FoaHt7W4eHh8rl\ncrp+/boSiYTV7weDQX3jG9/QF7/4RW1ubupP//RPdfv2bdNERaNRvfTSS9ra2jLBK+eKqJmW0MFg\nUPl8XkNDQzbLAsPrdUBQ8r6CCmfl6WaiVpzFjRs3FI/Hdf/+fWNH6/W61tfXTYPkU2we0P2vLt+M\ninPhmYVnuTxI9gCa+8BmdbtdPX782AILwF6hUNBrr72mQqGgaDSqGzduWOkwzBB7BLqeiD+ZTPY0\nskKHRQDYarX0ne98x9KygAO0QvS54Gxj5xCrDwwM9IDaYDCoUqmko6MjHRwcGGsLK/Hyyy9Lkmks\nPHNBOuLRo0cmMMXGJZNJ6yVzeHio1dVVLS4uGhgDhMBow/hJMoYXO4u9i8Vi1qkWwHl6eqpSqaRk\nMqm9vT1Jsn5H6FeePHliYMmL+AGMXh/jhaSXuV44UAGgkC46SProltKxcrmscDislZUVcxpQxv5h\nHRwc2LwFX+XA4uMU2GwnJyfqdrtWtifJNisCoYGBAU1PT1tpHpQfDEe7fd7u+M/+7M/0F3/xF/qJ\nn/gJLSwsGP3F+xLxYPyOjo60sbFhMxBAvqRbOPTk7UhR8DM4I1/GBK2I7gMkDsr27YABHqFQyD4/\nn7ff2fs8HkwDojkEZ/ze/v6+pQ98ZMJr+/zg8wo1ofMBndwTz47X9zl9n2P2n4XDCnvAPgIUUGUE\nfY6gjYNPeginSuUNzop5GNJFB8epqSmtr68rm82aeNML96BCp6enVavVjElDIAtl7CPkRCKhzc1N\ne1+qE6BwSfNls1lL7UgyESMG2eepT05OVCqVtL6+biKzYDDY07Dpyj+Mb3777beNJclms4rFYpqZ\nmbF8PQr8Tz75RK1WS0tLS2o0GvrZn/1ZLS0t6caNGzo6OtLv/u7vKpPJ2JnMZDLa2NhQMpm0iBs2\nkr9xvgcHB6Y9ATAACjD4OHuqQgB6AH32Dp+R/hhU1khSqVSyoISAxDs7T/+z15718meTaPhZr/4U\nMnvZR7f9jBxgc29vT9FoVI8ePdLExIRR+/ScAFx4zVAgELDKOS+SHhgY0MTEhKVxYbb29/d7wIJ0\n0Q+kVqvpypUrunbtmgUvpEGwZ6SjYHWpHCkWixocHFSxWNTY2JhKpZKVDyMm9sxFt9vVyy+/rFwu\np93dXRO0Yzt4htIF6wFQkGQCU8AnwK3T6RiLCaAjRT4xMWHMLz5hbGxM+Xze9go9hUZGRmyCNOkP\ngKkPorxuwwPIy1wvHKjwFBGbn0ZWfhGj0ajNqsB4Dw8Pa3t7W4ODgyZ6k85znESWHFC6UrLxoUuJ\n+peWlswBEb0DeBiHPjU1ZblzcmZEgqlUSvl8XouLizbBjlwrzgK6DtaEwVtEpJJ68tbBYNCqEL7y\nla/oW9/6llVvwOwALhjYRKSUTCY1Pj5uEQfiwImJCWNlvEIdYybJAJl0IWb0P+udtM+Zj42NqVgs\nqlqt9ohWQdc+cvSiq+cVavp++v3pFVgnohb/nPgenQWRqwcnnkqNRqPmQBKJhEqlUs9AO/6dFN3h\n4aEWFxclnTsfSRZJh8NhK+U8OzsfVnb16lVtbGxYlEmt+9ramjUsC4fD1nI4GAyaqI8IDzEdnzuZ\nTJreA9YuHA7rgw8+MBqcPXV4eKhoNGppBQBMs3nernlvb8/uFzAyMDBg6cCf+Zmf0de//nV99NFH\nlv7hzNFddmtrS9PT01peXtb09LT+6I/+SN///vf1xS9+UZFIRGtra/pP/+k/KRaL2eRR6OGtrS1t\nbGyoVqtZCojUnxffer0D2h6EoAQbpD6k3pkX2B2eEwwmVSD+XCwvL+vx48d25iYnJ431IA3jo2OC\nlme96G0Ds3qZy7MT7D/YL+nCvoyNjdl60UDKV2uEQiFrPEU6jsAF/QL6Ih8s+eCGs4U+AnuATSB4\nOj091Ve/+lV7HyJ+bBbaieHhYcViMT19+tQEzejlNjc3NTU1pVgsZgweQSYt3jkjAwMDunPnjgmq\n6eaKyBcm1tst+lyQesFPsA+Pjo40Ozurhw8fqlwu69q1a5ZWohx3ZGRE+/v7JvwnzdTtXnS7nZyc\ntO6lvq8RNo696tO93ONlrxcOVHi1M4iQKFS66IaZSCR09epVbW1t2eJOTExod3dX165dszwvf/O6\nuVzOapKHhoY0Njama9euWROS3d1dtdvn0xjn5uZM6FmpVDQ4OKitrS1rqXzr1i1jLKLRaE/78LOz\nM92/f19TU1Oq1+taXl42YEHawbMQP/3TP22fm03iNy75+rW1Nb377rsKBM7bkmN0fSMhhufE43HL\nkaJngIn47LPPdHh4qOHhYUUiEXM4GFoOERGv12cMDJw3++p0Ohb9Dg8PWwMcdBnh8PnkTFo++7w8\nVB0Onij5ea/+HKsHO4A1L25ttVpWU0/EIl2wJJ5SlC7of7o9lkol065ks1ljgSRZfwI6Qkoy/Q8G\nbHh42IwE4IOyuU7nfA5Ls9m0ZjfocQqFgtXcR6NR08dQTcK9Xbt2zdaYMulms2kt4j/77DPt7e1Z\nIyccHuJRQC7pi0KhYM9+fn5er776qhKJhIrFojY3N/Xxxx9rYmJCc3NzCgQC+va3v219HXAKjUZD\n6+vrmpubU7vd1re+9S2rEGJkezab1VtvvWX6BED16Oio3evu7q6m/D9+AAAgAElEQVSuXLliAIWo\nkuiOVAwggtRmKBRSNpu1ttFoJLwGCuqedIrvy1IoFMyYU6kSCARMR8P9VKtV7e7uqtlsam9vzwAp\nTvkykSOA93kFzDBM/UGaP2dE0zMzM7p69aqePHmimZkZ+wwA5v39fXPssD90vIQ1hfEArAPIT05O\nTMdGDxAvkOa8AuibzaZu376tZDJpZ49197qKiYkJE3/Pz88rm82aLQBQUFmEAD0cDqtSqdikWva/\nJC0uLioWi+lb3/qWCXp92igQOK/KIf1CE8BAIKB0Oq1qtWr2c2xszPRWS0tLmpqaUqPRsJR9Op3W\n3t6earWa7UH8gmfDh4aGND09rf/23/6bVlZWrJyZ9YJ988Efz+B5ArN/tOcu/Zv/gi/vcDylRFQM\nyGBhqaCg+cza2ppWVlYs38UDki5aDFMPTe6ZLnFErxikSqViB4kNgCHe3d1VJpOxaJ8ceb1eV71e\nt/p2BH7cI0Ib6GtGr/tohCiHDcZmBvTwvky3Y06DF49Jsjx4sVjUwMB5LTTRI6wCAkzQL+WX7XZb\ne3t7RpNCtfNMfLkevx+PxxUKnQ9jK5fLmp2dlXSuI4Fu5Ll5psgfjudB2V7fwXPh/nwazUdK/j76\neynw8/w7qROio1AopOnpaaty4d4Bpfl83tiDaDSqcrls9zk6Ompprvn5eY2Pj2t9fb1nDLiP3iKR\niLEjjUZDt2/ftmfgKWbuh0ip0WhoZGTEwE673bbojEoKryRn/dg/7D32K6wa7auJqm7cuKFoNKp7\n9+5pYWFBH330kV577TVJF04NsNZsNnv0H6VSyQALKYajoyOrtiIlwUwI2jF7gEsTOChk6HUEms1m\n08oVR0dHFY1GDeQAXogAcaAAqlarZQDSdymk+RXgm7w3bBU6AdbJ79PLXFDdz5M24ZnjDH0qz1dw\ncC74AytMpZdvVsW98O/FYtFScD4Fyt6cmJgwAOGdM3vNBxNelJ/JZHTr1i2ztbBRfAbAry+Th/nD\nBrVaLetjQhqRZwK7HYlEjNXjM0YiEa2srGhjY8PAixeRk1qWLqpq2APLy8tqNBrmzEklI9iF6Wk2\nmyaOnpyc1M7OjvU/4WJwIYDnB7ElPnDwInSfervs9cL1qZAuxp/zYD2FB9JOJBLWBAf6H8d+cHCg\ngYEBzc7Oanx8XNPT02q32/roo49UqVRsrDevCZuBAyBPxyGZmpoy+tCXXUnnxoIyVQQ3uVxOpVJJ\ni4uL5nxQm0sXTZc45IxiJm/rq12gc702AocQiURsMl8ymVQ0GlU6nbaoqVqtWikj/TWIsniNYrFo\nRnRvb8+oP+7XK6WZfcDXrDOlr5lMxqpQECtOTk6qVqupVCr1lLf5dQBde8Hls16sKcYJEInxhOnh\nWfdXgUi9+WZ+B7bIK+gxiisrK9ra2jKj126fl9hS3TE3N2cNpZiv0u129eDBA6vqgEWYnp62qYOD\ng4PmDGdnZw1gvPLKK2YsyWvzOfhDKoLP76tEtra29Mknn2hjY6MHrHIG0um0sV6Ad/Y5bADsk28+\n1el0NDk5qenpaZ2enlpXzbt370o6d0I3b940gLC9vW0GstU6nydDWSI9O7yOKhAImH6iXq+bwwek\n04fGK98xqjx/gCTrRVqCqhMcKVUepEf6I3z2JzaGvh3lctn6OkxPT5sN8SJD7MbzaoYATX6vPs+5\nAFTwTPvtKf8+Pj6uTCajwcFB1et1EwtyjqvVqrFyiLMRGmJvaVNeKpVscil2R7oA54i47927Z6kH\nztrnP/95ffGLX+wpQ0arhcOmWgJbxBklQMPpz8/Pm/1Ez1CtVq0SzQscvV1YXl7Wq6++an0jeF6B\nQEDXr19XOp22PUpQgvNnYvHIyIgGBwc1NjZmQNoHOYlEQtFoVCMjI6ZZgbWUpMnJSZvTw7k/Pj62\ntAm+gefpRerYMcDbZa4Xjqnwh4i8lzfwHK5wOGw0P/lfHjJTN6F5T09Ptbe3p6dPnyoUOp/ACAih\nn7ukHoOHvgHjG4lENDw8rPX19Z7cGvMe2Ly5XM4igUePHqnb7eorX/mKRa6UPiIKw1DBDFDyxKbg\nANGkhdLXQCBguWwiUhB5uVw2hMzAH0Sa5KCheok+wuGwNaqpVqvWKhexKPl3Smuhjzm4vsMnDYXS\n6bSJq1gzv/FZQx+FPW9ExmtIF2pujJ13UKRC/M/hLDD27DmMAP9HjhwA6ZtFMf8DOpdIGIeHoQas\nSecCt0KhYPNVUJmznky+JXpHR7G1taVGo2FiWy8+xoHyjNrt86ZWu7u7Wl1dNfaCkj6vEfKtsnEc\nCBc9E0NJGzR1u91WpVKxtOPnP/95FYtFKyXkd4PBoJLJpD1bHD6dJw8PD81hcG8ANdJOOH0iMz47\n0R+pQkr8SFn5PQnzQtUIDsAL5rwOKZFIKJ/P22dAT8AzhBkh8EBXQ7Mlbyc8+3WZy2t7nvVM+D3O\n1e+EAJYAYNI27A+ErujTgsGgCROp2JFkLAJOD8CA/e4XpvPsAJIDAwO6evWqncVgMGgg7/j4WIlE\nwtIDgGsaQqF/QTvhzzj2n/NdrVYNEPLaNNvyVTef+9zn9OmnnxpA8IEH6XRf1YK9RksEi0tamDPF\nGfBgk+CNwBSW+ejoSNvb29b63gMF7LG3ox68XMaOcr1woILLI2wfQbFgbFByZoAK8sKkA7LZrFVv\nYFBJh0Ct8u84BDY2zpcHiQiTHKc/NKBaT3shKOO+SYnwehg/zwj4y9d285rcZzqdVi6Xsw6AmUzG\nGrZwADD+OBSiX7pB0rSLiZuI1XxXuXg8bsJXPiP3Eo1GjYaWLpgHqO6VlRXt7u72DCvDSfvoi9+5\nTC7Qsw08I59eAuz4MlIP2rwGw687kUC32zUjwh4bHR01+vLx48eWZoP6LZVKSqVSxqYxhhvjydRN\nRpqPj48rnU5blOv7XlC6hmOEafDVSVQ7kPpCPLm+vm5DmNgPpEy8GJQZBdwfgIKUIQ6B9fNGixkH\nyWRSb775pr773e/a6zLMr9vt6td+7de0urqqQqFg4sBgMKjV1VUD9R64np6e9sya4Tl4jQI5+na7\nbfogbAepHBgGPgsNsWAF0UIhemUgGq9Bt1RP42N7KAPktbE9/Yaee3xe8Rzs1WXOBUAGkO2rrbgv\nWFDW2msG2A+JRKKHXQEYoxmirBrdA+/tGVpYqf4+C74CJ5PJWHCFkJN94p8rpZU3b960aizsMoPz\nqPDwejOAKrZvbGxMjx49sh4trBW2DZ0ZuglSfpwjghSAeD9YYK2j0aj1bvH7W7roQUJqsX84ZiqV\n0tramhYWFnoAKZ+Nr6WLjqW89w8DYF84UOEpZy4fhXE4I5GIdnZ2ND8/b22kOYTFYtHEWPTO98AD\nOiwejyubzWphYUGdTsciDMrwfJ4XvQQRKblYkDsXNc0bGxvKZDJaXFw03QP3gOEGPXc6HeXzeUnS\n7OysRRi+rjufz5sxZSDT9PS00WYINElhSBcgaGRkRPPz8wY66GMRiURM81Cr1WxS4dTUlLWezWaz\nPWp4DDviQfQdkkyfUSwWFY1G7VkwgpsDzrOFqufzXkZkRH8JT5diBIgMoBD5HP3VINwH37PnuB+c\nxunpqQmuXn/9dX3/+9/vKSemCun4+Fibm5vWz+L69etqt9taW1uzZjpnZ+fzJ9bW1iSdU6exWMzA\nZyKRUKPR0OLiok2TfP311y2HTc4UoRz7mpkhH374YU/KjsiOXC3GfX5+3tp3A+xYV1gYPhPOgGcn\nSRMTE6pWq7pz545mZmZULpc1MTFhKYF0Oq2vf/3rSqfT+vjjj5VIJHT9+nWjvd9++21rce5BHM74\n7OzMui6i5P/ss890584dlUolM/Ck3Xw5HQwf0binhqkA29vb0+PHjw2geC0NDoTolyZRrMvY2Jji\n8bhKpZKJZ1Hwo9HgfS8j0pQutFWSnus1AM2e4fVnwf9/tVrVkydPtLKyolQqZWlc1mFkZMRABOvA\nxb35XkBE3Tg39orXIHgG5fOf/7xeeeUVO3PoO+irQtTPzAxSH9wHJZn0+IFN4FzAuqL1Ghwc1M7O\njmq1mtlzQAN24ODgQLdu3dKHH36o09NTpdNpSx17pg8WHf0IIBobRlXX6uqqgsGgrSuggDWB3cWW\nbW1t6Utf+pIk2f6HCfFdOfl9H0T2A47nvV44UMHFQfDGHmoNh8uoZDoXVqtVTU9PW1lmpVIxI0w1\nAqi70+mYFoBIsF6va3Jy0mgxat199YgHPKBfUgvkGbPZrKUXDg8PLaqXZEyBR+mnp6fGRsCo4Hhw\nFoeHh1YeGI1Glc1mrW+Fp7oRMHGPzIjAaNNnAcO6tbVl+op6va6rV6+q2+0ag8N6QQ3iDGjyVavV\nzGABDBqNhl555RXLJ3pazh8CcoL+OfMaz3oRMZDOYoYBwAKjDKjw4j7PNHFPrDf3wsHkfUhjLCws\n2KE+Pj627qL0EWHfMACPMj32MpqUqakpa3lN7vjw8FA3btyw5+vHT5ODZb08exAKhfTee+8pm81a\n5EIkJcnU854ZA2wEAgHbp/65kErhb2jcs7MzlUolpdNpHR4eKpPJ6PDw0BxsNBpVqVTSzMyM3nrr\nLT18+FD7+/vK5XL6xV/8RZXLZQUCAc3OzqpQKBgg8qCQtffRIs7oo48+sr12+/Ztuyf2LJVfPEue\nNXQ9z80zoewRX7mAY8IeoF3pdDqam5szcM6+5pxy3ngtzr5vkPS/ukhJeSf2PFc/MwJT6DUCnEnA\nRavV0vLysmq1mvL5vLE9sEXJZNKcJ2vNPvN9G9g/XiDdHyj6qabz8/M9KdRut2sABWEs1WOACdIo\nQ0NDqlQqJqoMBC46/QaD57NcPAiiYVytVrPycIA+6RTOwNzcnDY3N7W3t9cTCMLkHB8fq1arSbpo\nAMY6EHhRKUcgQz8NWsBjG/l6cHBQ1WpVk5OT5gdg8jzT6P0jwQB2+TKsmL9eSFDRn3eXetX5HODx\n8XGbgEkZGF0xQ6GLBkwcIGhUaChoXahjHkQgELDDT/QunSNGNA7oNwKBgHWLjEQievz4scbHx7Wy\nsqKPP/7Y0Ha1Wu3pk4HYEdoQ8MPhAHHSEIb/YwokLEUodN7z4qOPPjJqD9qPMqxu93xQEPlp1qNS\nqWh3d1eJRMLWMBAIaGdnx2hiqMDh4fO5FETGODccJWp6+hgkEgl9+OGHisfjNtOEZ4EzJFLxoPF5\n0TWvC0Dzz4X3YG09CwGdz37qP6jsF16Tqgum0PJzvinN0NCQqtWqpUNYF4x2PB5Xq9Uyqp7XpFoH\nXQXgkmgSp+ajTf/6GJ9arWbPmQ6SOE1J5jg9uKMRlteikB8nPzwwMGC6IRwc945DTqVSWl9fN4O5\ns7OjRqOher2up0+fam1tTZ3OeUXL/fv3rRFYPp83ByVddDflvWD3YBEQdTJxVjqfHzI5OWlrBEPJ\n2kgykSkAjbw6zoI1Aoh2u12l02n7XdaEAAAnXalUtLCwYFMt+QystdfyPCugYE9yJi7D4AGk+sXR\nnA+cKWclFotpa2tLCwsLdk4RHodCISvzZUQ5IMB3+8Xe4GABE9hcP7ETYTOzirxW4/DwUDMzMxoe\nPp/nRJv7Tudikiq/Q4oFG7m5uanFxUWFQiED6DRzA0ii4SHtgA3hs+Dcx8fHNTc3p2q1qkwm05Ny\nlM61azThoqQb8DA2NmYB3fDwsObm5oz97XQ6llbjWQPusNcEkF6kCssGsPG6GWwCoBHge5nrhav+\nwNj5yATj70WNN2/eNOU86QdGd8/MzKharWphYcH6y/vox1cMUApILo/cNe2WYTL8dEciP1BkvV7X\n8fGxpqamFAqFdP36dSWTST169EgzMzNKJpM6ODgwlsILl7gfEC/UIIfx9PR8VDabvtFo6LPPPtP0\n9LSOjo5UKBT04MED1Wo1EwRx6AuFgm3yUChkzq5cLmt1ddXahR8dHRldvbm5ad3u/L0CVki14MSm\np6cNxPhx16lUynKWvgzKP1uvROcZX+Yg8DtQp6wfjkK6yHESaXP4uAe+9gAHatMfVPYkJZXU4SM6\nnJyctJbuCNxgIajGIIfPs4nH40omkzaAyefRUd/n83klEgmLIrnP4eFhU9oXi0Wl02mNjY0pl8uZ\nAaLTJMadtb5586ZmZmZ66Hm0NYjbAOik7aB3icoQ3C0sLOgv//Iv9cEHH5gAkmdBZEhKJZfLqVar\naXNzs0ejATjywJDXkGRnlK9DofP+GsViUQcHByoUCmo0GqYjoSSc92WeCfvj5s2b+lf/6l/pxo0b\nCoVCyuVyOjo6MmeLUHxsbMx+B3Zjfn7eqGyAGU3yPHi4rALf70FsxPOcDdas/4KqxyHBqE1NTeno\n6EhvvPGGvvvd76rT6ahSqdhzRNCKXQBoBgIB65nCfeP8iKz7WWcYOkm6du2aDR3MZrM2rA1bRuvz\nVqtl54opzDALgD7SJs1mU+l02vZxs9lULpezPUUKa3p6uiclTRDHdNZ2+7w9/ujoqBKJhJX+s247\nOzsGfNfX1y3NRooUITNdPrGVpDkAqlTUHB8fa2ZmxliS733ve5Zq8/qzfvvptRTez12WrXjhQIV0\nUQ7lqVDpIg81NDSkpaUljY+P6/333zdKm7nzGL+BgYGeSgVJPU4Mmgjjy78dHx+bE/fCm1AoZCI7\nNjUisbOzM+3v76tSqejJkyfWnTMcPp8QCY3oaWveH+oZ1I2zCYfDPToP7vODDz6wA4QhZZNJss5z\n0sXkSTolStLjx4/t3jkglNVCtbFGKJt9Lt+XatGjgwgAFigajero6Ejtdrun1t6LNDF8XkTGWj/r\nhVMCEPg0FYcOCpp79pE6n5HXgbXwh5i9x/MjcqSJTSAQsC6rPCdenxJQIkOfOguHw1ZjT4oK8Sx5\nbNJnqPOJ2imNI43WX2LnxbYIglkTItiXXnrJjCf3hTYBca2vaoG14bUQrNKR8+HDh3ry5IlisZiO\nj4+NQicNhkOTZLof/wxxPoBUHCr36CNv1pUKEZ4TQQGdIQHEVLUQwQOO6H7barW0u7urSCRiKT2Y\nO85arVYzpm5gYEDFYlFXrlyxfPzm5qbdnwfMl7n604A+HfQsF+fJByiska/8gVUgmk8mk1pfX9fw\n8LAxBDRsg6I/Oztvme27CZN68OkyL9AGiGIHsdlofCjj93oBzgKBHf0zAJ+waJIM3BYKBROP8j7l\nctlKoUl/kJIIhULa39+3n8UG0x3Ugw1eF1/APXFGstmsKpWK8vm8nW+eIb5pfHzcAkjOULPZVDab\n1cjIiOLxuFW6rK+vW8DsA+t+ttdX1vm/fwQq/uHyxsU7AB8xEvFFo1HrqAldTLrCdwdEze3pI5yH\nFzJJFw9Nkhk1DgoCMu4JVbEko9MwwIVCwZxJMpk0BsKXzfGZABdUnOAcvZNApFOr1XT37l37Pag8\nHDUGkw6SqPunp6dVrVa1s7Nj9c8gaw4wJXjeQPPZABM0aKJkFKNeLpfNyZBjhnIGkHhE3e/8farr\neQ4DgASD53UZHFivEeD1fUQFTe3TJxgrAB2/C+ir1+saHR21Zk21Ws1EehMTExoeHjY6NBqNmnFl\nL0H5U84GW0VkBzUKYPRgmBH33W5Xe3t71pkS4MJ78Ixx0OxVSvnu3Lljr+kNkXfupGB4fwAKXw8O\nDmpxcVG7u7t69913jQlCnwQIJ7Xi2RKeE4wAThCtkte38BqcR54f94+jYd9y3pmf4UXRHrzm83lj\nf/b29no6GnI+JBmzFAwGbXIne31iYkKNRkP7+/s9Kbbn3cv+8mflMtUfgGn/7Hx/Ew/ycPgEYejP\ncMY4QipBfKMwomgCMO7T5/X5mrPK80EEDCPBpNBKpWJN9NC2AEIoo/eCYlJWiMjpsMnzK5VKpo9J\npVJKp9PW4psUHWvEfudZI9QmoPWfb3R01FIv6DP4XUSf2HrYMtaYz4zPKhQKGhsb08TEhN544w0V\nCgVtbW3Z77JmPE/2hGfhpX9cBXKZ64UDFaQEPMrz+XYOR7fbNfqx3W7bA02n01bZwaJSqschw0j7\nnLUX55Fbg6YmX4eTAoVCXzH0BZqMFAnajO3tbd26dcty1KBdjCGbho0Kxcr9kiNeX1/X9773Pbun\nbvdivDPrIl3kU4nQTk5O9ODBA4ukPKXK+/jud96p+HwujEq73dZrr71mQjgMQrVaVSAQ0E/+5E9q\nc3PTInjWmPf1KS6MA8/HR1TPcnmH450KBs+r3P3h8+/p6WUf4XF/fv9RaomOJp1OW1MyjDACYhgv\nmuLAikgyTQqAo9Pp2D6lDTb3A0VK7xSe1/r6uuWFaXVN9DYxMWHPzVcQAPZisZgWFhYkqcdJE6nx\nvJjSSCqEtRoeHtbk5KS+/OUvK5FI6Pd///ctBQjQOTk5sUZK7AHPIHlNA+eOsw+4wB4kEglbB54N\nzwMtA50c0XXg4L3Q05eW4ozK5bJ1z+T1OQ+UgZMKlGRag9PTU2UyGcViMaue4uxypv85rsuwHZ6Z\nY20Alb6xHX/DfO3v7+tnf/Zndf/+fUUiEY2NjWl3d1cjIyM2CbRWq2ljY8Mmc/Y3ieq305J6gjxa\nwLM3x8fH1Wg0LABiWufu7q6KxaINJEMcDtDAdjDXg/RnsViUdJHebrfbWlhY0NzcnIaHh63SioaA\naG8AUvgG9DjYYR+MkIaHsWJPMLSMdUXYjdbPsxsw0uxff3a+853vKB6PW1m1ZyZ80O11N+w5/Mpl\nU2+X78X5L/TqdwDegEBPeScF6puZmemZwOmVxF7g1k+F04fCI+1gMGitYXEYXvDnKahOp6N6va5S\nqWQHi7kGkswQMhcCA+X1BaQifF4WROvzZxsbG8YmIPqjsoG1Y+OR6oDNIGL2jt1H6uSrvV7Erz1G\nfnh42NA+QMiL0nDaDPmihLQ/9cPveOqO5/Q8l98rvBaGFNbB/5tnpIiafNoDYEOk6qtffOSEEZua\nmlKhULDy4263a2kMyplJXyDsOjw8VKvVsvkpjUbDnqt00ZoZR0Z3TvqUBAIBFYtFFQoFE3XCYHS7\nXVO2h0Ihzc7OqtvtGrgMBAIGmj0N7iNLng/sgu8Gi7MYHh7WlStX9NJLL+no6EjFYtEoYWbOHB8f\nm2CPZ+RTm+wx2CxenzPNTBNSGbFYTNPT07ZXMOTsr6OjI6s+gZ2hTX4qlVIymdTY2JhmZmYUDp/P\npWEs/NjYmA0mYw+wd8izE52jIzg6OrKW3XTo7D+H/xyXj5Sf9fIsASlIz0DyfKHufSRMxMwZmJub\n09jYmKanp3Xr1i2trKxoZWVFCwsLikajFlywX3Du7GO0NwAxAB+BGc8YQCudD2tbWVlROp221Aai\nV19C3Gw2rRso2iVANSwI1SKeySUtjg+A3ebMYY/5Hdht1s2fIYA6+wRwhLYIxplzia8BpHvxN2wQ\nv4u95PIA07Oy/Q39fpg+FS8cqMBo+u52Pnomb1epVDQ7O6u5uTljKaampuxhQ7P6SMhH4ND4RDFQ\nsESHPurAcWOUoVSh6FKplEXxtVqth4GAHtzY2DClu0fQvGYoFFIikTAnjAPBWW9ublp3v0QiYZ+p\n3/CTI6WsEQMyNzdnjZa8RoND6qMYDAO0OA44FDqv86Z8kGhdktLptFKplEKhkD799FOLQkD7Ui+1\nzj34g8vPPM/lGSaiS9/0p5+69FS7dHEwoci9Y+D1fCoOkSrvR0thmp4h9kXg1m63bega3UsxtpIM\nkOJYMXqo0hE5sg9whsfHx0a9k9Mn4oM1wsB6Fkq6EDzz+XECPhXlxcuAD1I/aGi+9KUvaXp6Wltb\nW9bOmxQOkTGfi0iVz+47l/rnyD7jHAJiiMLI05NKJFVEtQoaCgSW1WpVqVTKXq9SqViHRkTeMzMz\nNhWSe/RpFe8sOavxeNwo7pOTE+t7gNHHJv1zXL7Xw/Nc/cCGPYsj8hUvgNDJyUnF43HduHFDzWbT\nOqQSXPG8EomE0um0JicnrYcDZwHAwD2wd71NYT3Zm0xJxT4yeoCpvwguJfVUP1BySiuARCJhuheY\nDfYP4k+YCGY0YecJmrwORNI/Kp/lcxG4sUd9SbR0oWdrNpv2Xr77crvdVrFYNBawXq9raWlJ6+vr\npjXxNskzvNgszy7zMz8soH3h0h9Qtmx4T5PyNcAhk8nYxkylUjo4ONDo6KhRTkRHGEcEROgxECX2\nGy8ifdIbbMhEImF0NEiXA59KpZRKpWxo0cnJiWZnZy2i3dnZ0e7url566SWrX8bQDgwMGEDxho0/\nAwMD+u53v9sDOlDTc0BYIwx6PB5Xu9026pBNzTr0o3EfweN0OUSs8fz8vJLJpCYmJnR0dKSnT5+a\nQ+Qw0dWOQ9IfBfN+OBAOgKf4nne/eNDjIxJfzunvAefjQU1/GoW944EV/09Ek0wm1el09NJLL+nx\n48e2p5rNpjXZgTmQzg0xg61qtZpV7FCZc3p6anohnjs5WgDEwcGBAQ0/pZZ5NojJpqendXJyomw2\na1N4cY5jY2NaWVnR+Pi4NXSiJ0az2exhRHDmg4ODls8eHR3Vp59+ql/91V/V7/3e7+l3fud3jB0g\nHVir1Sz1Rd7ZpwVwJhhMojMfZQUCASvLOz4+No1QtVrVlStXFAye94jwpdJ8BkCOZ4tOTk56aO+F\nhQVr1sbgMZwh99ftns/G4BxDV0Njl0ol7ezsXMLSPfvl9RHPevWn+vxe5nV8qg9nS4+Hl19+WbVa\nTdvb2ybgTiQSxn5B86dSKRtsiAOH5YDRAgSibSN1wPvyjAuFgu1nXhdQm81me8D9+Pi4tra2DMjB\n4i4sLJjWgZRDvV7vAZ4Io8vlsp2lg4MDnZycaGxszOYoeZuChsan0DmbMIE0+6OVPz9HU0AYEmww\n5ajY8OvXr2t5eVkfffSRIpGIpVU8awxY9xIBQIq/t+dNI/fst0v91r/wy+fwcXjeMQwMDGhsbEyS\ntL+/r1AopLW1NSsb4neICsmfMj9jZWXFSiN5L1gBNi6bm7pc6CQAACAASURBVOiGiDcajZpz6HQ6\nZryq1aq2trbskHKAiCTZeLlczhrjUA5FfT2RKmwM4ObBgwdaXl42R8XGZLgXUQbsg3SuI0HhDApH\nzORFPawV7I2P2HFCGFvACyptKD/fqGZpaUk3b97sYQs8MwBg9MBC0qUPAnlxX/bJYYPalS7EoRgJ\nWBy/Duwt/+xZK6ISSf+o6geQGo1GbS0qlYoBwIGB87bZPoqmTJk95N+Hibi0eId5Yn0w0mhqKPdl\nQJEf4U35LNMZqdcnMvfRlk83+lJOnhcOgvLN//pf/6v+5E/+pCdfHolEtLm5qXK53NMngq+pzGAN\nAbPoOHimAORms6l8Pq9kMmkt6WOxmCqVSo/SnsZz4fB5F8/p6WlrVuYjYIC7rwo5OzszCr/dblt3\nSASJ9Fn5v3Vdxjn4FC8g2/8bz9mnm0kfbG9vq9ls2uhwAjnEvgBU0rSs6ejoaM9e9l1FPYNM5Q2B\nHK9NAIidIujheeTzeZVKJeXzeWWzWRUKBUkXDIxPXSNWR5NBAyyYZhgUnzoOhUJ2Lvg3/vbsLXsV\nAAzrTdoDQCHJgptYLGbpjIGBAauW86LTpaUlPX78WENDQ9YkCxvE/SLcJhDj3PJZYFl+xFS4iw3Z\nn2P3grlWq2Wpjo2NDYvu2LwMTiLnubKyomAwqHQ6rddee01nZ2dWy45R9aJEAAB6h1arZSic0rKD\ngwMzwoCc2dlZPXnyxChDNvfMzIyh2nv37unBgwe6f/++TW3M5/P6zne+Y22HS6WS7t27p2KxqO3t\nbduM7XZby8vL2t/f76H5QeAjIyM9ZYCIKjGWHFwoXQCVp8wwON7osFGvXr1qjNDw8LBee+01ffWr\nX9Xs7Ky2t7c1Pj5urcxrtVpP749+fYbXpfBZpMsrlv1ngh3x+8kzE17V7/cZ6+CFhNKFw/WRO+vL\n69+8eVOffvqpZmdnrZ4eDY3fX81m0xpkeZW4B65UIJCL3t/fV71et4ZNRO78Ls2gpAvn3W63rYEZ\nDEehUFAgEND8/LzRxaRt0IL43imeSSL9US6X9ed//ucKBAL6+OOPVavVNDk5qVwuZ2xKKpWyyJ/z\nA6Cgx0Cn07FzC2s3PDxsQmvEyZJs6FgikTAmiM8IgKLfDH09crmcOT/fx+Dg4ED5fF7lclm5XM6c\nl+9F4wdm/XOlMH6Yq18P9CwX4NML+NjrPFuCCOweFRJUdt25c0effPKJdaWky2O1WrUUG/sVZgKG\nB72A17HBUPn0q9dYTUxMWEpqYGCgp812MpnUlStXtLy8rMnJSWNM0UQAXpl6S2qbyopQ6Hwu1Ojo\nqCYmJnR6eqpqtWoTnT0zCdNKunFoaMgAgGc8Hz16pP39fWOxSA8SxLJ3YO/o1AmDB8BPp9P66le/\nqoODA5vmDNPHc/9B4nGfjmFNuX6YffvCgQo2Wj8tLV1Q84ODg8pkMrpy5Yqy2axGR0d1eHioVCpl\n/etJISAsTCQSNs52Z2fHHB6v7xG7f1A+kgZUQKElEgllMhmrNgmHz6dJIs6kU6LfoO12W7dv39bt\n27dN8FUsFs3Z5fN5ra+vW9SHCA4x0cbGhgnUcH4AnlKpZDQx9B0pFJwk0YDU26OBtSfq9/QvazQ7\nO2s5/1qtpitXrqjVaml/f1/lctl6ZuAoiBK9nsUDGA6wdFEuyHN/ngtwxOfxaR0uT7t6AEPU31+R\n48tMWYN+doUoigFi6+vrkmTPGTCG0fW510wmY2vhUxOAG1IQAJROp2MULUaOqI+osdU6b6UMeIFV\nYn2Z6EiTLqKo/jUgoscZkV7J5/Pa2dmx9fOdEDudjrWnBqx4XQkpJ9aUsmMcWyAQMAFltVo1QBWJ\nRIwNxCiHw2FrLuR1DC/q5ffhs14EBtKFU/IBhgfPnjofGhqyacrxeFx//dd/rcnJSQvaYCeprAJA\neO2aF3XjXBE0ej2Ft2E8Q54nQkdeIxKJKBKJWL8H1gO7QsowHo+bLYWdRscQCoUMgJydnc9AOj4+\ntkZx/meYddKv//DBCiXIBLKcYxhI9EceREkX1YhMjA6FQnr11Ve1sbGh3d1dtdttY3N8erg/aOoH\nm/w8v3PZc/HCgQofMXqWwiPubrer6elpXb9+3cbTzs7Oand3V4FAQJOTk1pcXOxxWkRptNPtL70h\n0vUPhd+HokMMSi4bZE7UightamrKJt89evRI8Xhc9XpdN2/eVKPR0L/7d/9OP/dzP6dkMqkHDx5o\naWlJ2WzWtBvNZtOES9S+I+6kpho0DWCgc2AgEND09LRNvYQWg572UR6HGQTuRU04DtYpHo/bCHXY\nlEwmo+9///s9bMDy8rIhf2/wuWfPNgESoVEvkwJh/X0Kw6ew+JweqHqmxP+/Z1KkC4aCy9+XTxt5\nw1yr1bS8vGzpN0/r4vyli86pAA6YB4wRWpVKpWJGhF4i9Xrdur3SfIp1oOyZ6gQMMHu+0+lofn7e\nSq4xkhg/mBCGcRUKBVWrVevAyqjobve82oQU3vT0tAkiYVToaMlaUf6KyLHdbluvEy+0hOVhndjX\n0nkp7ujoqBYXFxWNRpXL5Z7HvPw/eV0GbGNHOb/ShR31ES0Oj/RQs9nUzMyMSqWSPv30U42NjVkQ\nw2wYmoLBxgL62Hu+ZwgO0oMZbDsBGoCDIIh94ns9+JJYUiSwgLAgR0dHSqfTZhfZ06zDycmJEomE\ngVkv0kQPh2AesES6gXOMg5dkwJbKGs446TL2LOlBzhpAv9vtanZ2VicnJ0omkyqVStre3jY9BYDc\ns8icZ2ylL//2gc8PA7RfOFAhXRhvHKGPFNkgkiwHlsvlrLtdpVLRycmJPv30U9tYT548UafTsd7r\ngBOABM4OCg2k60skyYl985vf1C/8wi9odnZWb7/9tiKRiBYXF/Xyyy8rl8tZrXMqldLq6qq63a6N\nKF9fX9dP/dRPKRQK6fHjx1pdXdVP/uRPKpfL2RyEUChkaYZyuax0Oq1gMGiiQDQU0WjU8sw4xGg0\nqrm5OX3ta1/Tz//8z+vzn/+89vb2jL3gM2O00W7gXGiqRG4UxI2TyOfzGhkZ0ebmpr7+9a+rVCrp\n8ePHarfbxoy8+uqryuVyKpfL9vv9F0aC6NzTis97GPx4bp5jP8jodrs9kQTPFGfH1+wzn4fuT6P4\nVAmG0vf3J4+7tLRk02+hj3GY3e55x8pyuWx0MICvWCwqm83q6OjIWAj2PoYKho02xdw7a1qr1Uzz\ngSANgLO8vKyZmRkz4p45Yi2Ytnr//n1997vfVa1WU7lcNtBMGoP+BUwJPj091dWrVzU+Pq6pqSkt\nLS1pbW1NsVhMnU5Hk5OTGh4eVi6X09zcnLrd81bysVhMY2Nj2t/f1/7+vgYGBnTlyhXNzMzo7OzM\n7n1vb0+dznn76Gq1au2W/3+4LqM14nc8Q+ABsAfhsCHtdlupVErNZlOzs7OamZkxu0QpKM2jksmk\n6S7Yv9giKia8JkDqbSbndRX+vqnaGB8f19nZ+byWQqGgnZ0d24e8F4Jm9gkMWLfbNW0SDeYoXUU/\nA+BFJxeNRjU5OSmpN/r3QYh0waYTBHhtRigUMj0HYlOAyNnZmcrlsjHTPJuvfe1revTokba2tiyg\n8P0pCFx4PjxP1o819kw7z/My1wsHKkC4/O3ZBv/vNPC5ffu23n33XXU6HWUyGdsoqJFTqZQKhYJt\nPqg7DhZqcekiBUKqAl2Fry743d/9XX3yySc6ODjQz/3cz+mtt97S8vKy6vW6KpWKhoeHLR2DngBK\nESN6dHSk9957T1/4whf09ttv6+TkRPl8Xq1WSy+//LJVi3ixEmLOmZkZ3bp1SzMzM/roo48UjUZt\ntC+H/d/+23+r69eva2pqSn/1V39lyncikf4DwyFEcDU2Nmb6DL6HXuf7qakpffvb39Zrr72miYkJ\nG/M9Ozurp0+fWurDG5R+lsA7NelCoPe8ERmGyVeC8H68po8cPBvmq4z4nvvyaSAv8PKfA8YF1mBy\nclIbGxs2rpx6eRryYNwxPEQf6AgoSWa/Yjj5jABAz+SR76byCWaCP76r5tLSks2A8blwv56sw+rq\nqg2tQ90+ODhoZdzdbteA0fj4uBllWId6vW4AwutSVlZWdP36dWNU2JdeB1EqlVQul5XP59XpnPeC\nIQqlu6Ika2P8ol80i3rWy+9tolypl/XwDB57irQrTOOdO3eUz+cVDofNjjK3gzNVqVRMZ0ZZPYEI\n6T7uwadaeYbhcLinVJi0IhqYXC5nFTbsAbQcBwcHisVi5qRpEIejh7EkzUdKAr0Pk2epQPHibZ9m\n8AJz6aJaCWE2dgC2l3vkzKLXoZ9Lt3ve+G5+fl5zc3NaXV21WUqAZ9YDm4Fd8mlkf668XXredJm/\nXkhQ4RdR6h2D7um709NTfe5zn9PNmzeNkut2u9rf31cwGNTGxoai0ahNTCSFAf3PhDzAA81MEMnh\nFEdGRjQ/P6+joyP91m/9ln7+539eX/nKV7S1taVCoaCnT59aJ0xJKhaL1hQpFovZ60mye6NZy3vv\nvWfvQ9fAJ0+eKBKJqFQqmRgpFAqpXC7r5s2bSqfT1q2RQxCPx/WFL3xB/+E//Af99E//tBYXF7W4\nuKi/+Zu/sRG9/sAwARD0yz0iTJqdnbX/I0qGwh4eHrY+CJOTk9bUCRCHOttvcp8D9OItb2gukwv0\nvST6D90/xUL0pzT8+/umUP7A+mokDCR7MRQ679/RbrcVj8dtImelUrHoHObHU73sQfpRUHLGc4HW\nhIUAHJD7Zo96PdDo6KiGhoY0OTmpdrutbDbbE51evXrVmA4ciG+U5hX9d+/eNYYFA5lIJOx1MdC3\nbt0y8TSzPgCxCwsLmp2d1cOHDzUwMKDZ2VmNjo7qzTffVD6f18OHDy3vfXZ2ZoCWnD06i2AwaHR4\no9GwXDR9Ul70i5LG57n83gWQYHs8QOFs4EgTiYQ52evXr0s6FyVKMjEuLASpONIWlNziZD0zCFA5\nPDy0LsCcTdhK/7Mwe9gSqjgGB88nlyLmhX3gc5E2rFQqxiZw5gjuOp2O9SIaHBy0Mn9en7XC13DO\nSO9gB2BCaM/v2QzODlV6xWKxp0/L1NSUfvzHf1yFQkH37t0zPd7e3l6PHfN6Mc9OsE79qVx+57LX\nCwcqOAj99Cx/cwA4KA8fPtS7776r9fV1bW1t2aRG+qojHiQiwygzEZLBRmwQXhtWg9wfvQc2NzdV\nLBa1uLioarWqDz/80NImTDMcGhqy0ifKR2nYNTc3Z2WuOGG6IiI2Arm/9tprCgbPhydRyeFnPHz4\n4Yd6+eWXNTY2psePH+uXf/mXdfXqVQWDQb3zzjtaXFzUb/7mb5qiGEfm0w18VioVgsGglfwxUTIY\nPFdYz87O6vr160qn0xaZBgLn3R2HhoaMKYlEIlpfX++h5Vh3/3X/4fCU7PPsl376VuptpoSTBNRw\nCL1D7mdvfMrNiy5x+B5ckK9lcNytW7d0dnZmbY3J7TIynrQQmgqqPTzjQqQFDcx7+4gEA4qynTQP\neV6iJSLFN954wwynV8h7Ff7g4PmQru3tbRONnZ2daXFxUXNzcz2RVjgc1u3bt61jJa2u6aHS6XR0\n7949HRwcWP3/4OCg7t27p2w2q93dXQ0NDRlbwVkDuJKyIyCg10WtVrMulj9M7vj/pet5U4Oe3fX7\nln3DeZPU45TQyoyOjqrRaGhyclK3bt2yJmf1el35fN4YMMSOpBg41/V6XcViUZOTk/YcqXyqVquW\n5sKJA7YBtV7nNDIyYl0+Ycewi4lEQgMDAwZmacp39+5d1et1ffbZZ2bffOkzr0/fGNLC2AX2OAHV\n2tqalUljI+k/g1CTUlA+F+eh2+3qs88+MzaGbrRbW1uWZqTb8e7ubs94AewMl9cWcnnWF2D1o/SH\nuwKBi/JCj3I9Ve/zzN1uV8vLyzYHRJK1g/Wb3EeorVZLiURCkqx8ic0Cavb0cCgUsh73KH7n5ub0\nhS98Qe+9955R29BtVIOcnp4qFotpbm7OJs/x3uTEj4+PDTEnk0kT5pEb906Y6XqUI77xxhvm0H77\nt3/bPv9//s//WX/8x3+sv/3bv9X3vve9nnX0ThfwwKblfekDUK1WNTs7q0gkonq9riv/UNJFf/qP\nP/7YwAoNmqamplQsFvX48eMexOyjIUCABxT91RvPs19Ye88u+CjDpwz4Hc9cSOo5uB40+JywN9Q+\nCsQYYiAnJiZsKiyiLaY2UnZGdQf9VoicSOHg9GGOBgcHVa/X7WsYDPYUYASal7bezKQYHR3Vyy+/\nbD/r9SSe/UPA9uDBA2UyGWWzWaXTacXjcZVKJeu1Mj4+bo3cqGTZ39+3wWoYUtpkE8VS4SSpp5Jl\ndHRU9XrdUkl8HknW5ZFInbk86XTazt6Lfj2vg6D/gWfrfGrQi5h9sIb2ACAL4zQ7O6sPP/xQtVrN\ngp52+7xbbCgUMl0MNpqIHuZDUk+HWMA0nWE9qPesAJ+DFObBwYHq9boxWF6vgPAToCCdp1Yo4QyH\nwzaoj2DDAxoCSS/Ml85t5fb2tp0ZNBmBQMDS3vSlabVaJkImADw+PrYWBO12W9PT02o0GpqbmzMx\nfiwW0+HhYc88K+7Rp674P/+cfSDmdRc/AhX/cLE4P6gsUOodny2dO5N6vW4dCaXeslRywWwqvp+b\nm+tptCLJHCyNh6g5JmdMh7ihoSF9/PHH+vVf/3Vtbm7q/ffft2Ym5PzY4JFIxPKhAwMDevTokdF3\nlMRxGGEqGJZDyoQceSgU0vT0tCHaWCym//7f/7v+9b/+1/r6179upah/+Id/aNUwlDniyFkbDr4/\ntHRFhGImnRMKnTf9isfjKpfL2t7eViqV0uzsrFH9p6eneuWVVxSLxfTuu+/aIfLO2j/j/ojJ5wWf\nh6kgb0yqwKet+OPTPoAOjBeGFuDp9yD33q//IBLwrFowGLRUBmO5I5GIdnZ2LM1xfHxshpY+DtwP\nrAEGDXBA7hhdBeApkUj0GD/uCY0BEx8ZBjY1NaWpqakeoOV1NK1WSxMTExobG9POzo7i8bgxfnNz\nc1pbW1O32zXdRiwW0+Lioq3v1taWiSZjsZh1b0ULFAwGTYDa7XatMygGHxU+zwpmgo6XaJH4U61W\n/78BFJe5cGC+vTT72KcffWqZ83NycmJNrKjwiMfjeuedd5RKpUy3A3vAzCXOhGeXYNGopKDlNvaH\ns8G+xCZxTnwpJ6wILek5U8fHx1ZOn0qlDBgkEgnFYjFrMYC2jaDVsyOwF91u1/YWDQiDwaA1XsNe\nooMqFArWwwKGBiaaPxQP0HxxcHBQt2/f1sLCgh48eGD2PpfL2TkmxdIfVPveI9IF0PA/x/P+kabi\nHy6chI8ifVSLc+ZhE8X3d0+UZGI4RDU4EaJ9VPk8GKIhSqOgrumUGIvFzPitr6/rypUrkqT/8T/+\nh7VbPjw8tMmMOLjDw0Obvre0tGTNiOr1uvWFn56eVq1W0+Lioqanp20gGSkacpxsmFqtplKppJs3\nb+qb3/ymrl69qmKxqP/yX/6L3n//ff3d3/2dHj16ZK2yfc0330Oxh0LnsytmZmasSRIAq9s974VA\nt9JKpaKdnR2dnp6qVCqZqIrmRO+99552dnZsU3va9gfpHXjOPKPLHgYvmPRKdK/a5mu+Z//wfv09\nO3ypsdf0cL9S70hv1gz26+joSLdu3dLu7q4NxMLojo2NWVMnJtfCcsAgUf3B7AxvuGENUMp3u12L\nGnd3d3VycqJarabZ2Vmjp+lhwWfitRgtnc/n9cknn+ju3bs2EjwajWp/f1+ZTEanp6fa29vTj//4\njysWi+nu3bv2sxjrcDhsGiZSL3RqPDw87Ek3/f+Suvi/cSECRvgqXbCFnr3w6TTST+gX0KNRgfbG\nG2/ogw8+sPJT2GAcOcETzhXWA9uDraGcmpbyMBCAD8AEF8zV6Oio2W7K9Pf3900gCjMM64yPIJ3D\nPB2YENr4j4+PG6B48uSJDg8Ptbu7a7qo4+Nju0+fFgdgw9559hHwu729bcFuq9XS/Py8fuzHfkzD\nw8OWTlpcXNTdu3f/EVvjAy0fcHn75VOXXlP2w1wvHKiQ1OOEvFPykSHGnH/DCUgXDsEjZ0m2wTHO\n5XLZVOq8PtEgNdD0jKA0CKQZDAZ15coVnZyc6O2337Z7p9lUp9Mxupv5CkQP0WjU+g10Oh1NT08r\nGo0qk8kYdcfnJI8eiURsYNTBwYH29/c1NjamV199Vd/4xjfUbre1u7urb3/729rc3LR7Jc8OE0HX\nPGhN1MocFMoQfX6TPCXrCLNTLBatU1w0GlW1WtXa2ppRlV6b4A8Izt1Td/7wPA+o8KDAv59nqyih\n9WkXnw7ia/YA/8/n9awKfxPle7A6ODhocyhIh0SjUY2Pj2tvb8+eRb1e1/j4uE225LVwAEdHRwZ2\niUgQF0PvIl7kOTKmGn0LosdMJqNCoWAVIjxT/3zY541GQ0+fPlW3e15zv7S0ZB1fM5mMHj58qFde\neUXDw8NqNBra29vT0tKSJicnrQSO8+R1K5VKxZyVf+8fgYr/c5dn3vy58N/DUHn2yqcocbY0h1pa\nWrKuqthB0gFjY2NW1YSNarVaplcgzcf7A9ApU/VN0kgP+g6dBEJeb8GoAMATQB6WF60STCKO16cU\nsEvNZlP7+/s9lVn1er1nsjO2UZK1ce90zhvM0fUYpgJNCTaN1EulUtEbb7yh4+NjbW5uKhqNam9v\nz1gb/3w84+BTt/7yJe/+Z/t/7nmuFw5UwEJ40MDiwmL8IOXyD+rNjxNpt8+7W6JOp9cDZU9vvvmm\nVW/gKAKBgCFb8nMIztiou7u7SiQSevvtt3XlyhVjUYaGhrSzs2ORGca2Wq3q6OjIhEbJZNIaAdEi\nmR4b1F3jTCRZR9B4PG6pmF/6pV/Sl7/8Zd2/f1+/8zu/o08++cSoY9pIExnA0njhKsYHoEVVSX80\ngrr76OjIaETyhzi0+/fvm4Hwz5NngTHw4MHrH7zu4Vkvz2bhhIl0eE3vyHCqnmr3B5gIGsEtkZcX\nfXY6HWNV+gVTiHYbjYa1MR4cHNTS0pK2t7fVarVMb8NaU+GDAabWnWfHmsTjcVORNxoNi8CgrKWL\n6ZhQxjSHojslgJg9hTZjY2ND2WxW3W7XJlKOjIxoa2tLs7OzarVaunbtmiYmJrS2tqZisahXXnnF\nZhSgC6pWqzatlT0DYII1JG3zo+v/3MU+9Wku6cJh9WvT+D/+5qwzah7Wa2lpSaurqxobG7P+IZ3O\neQ8gfhZxbzwet3bd7Xbb7BAAgb3ebDatyyTAwuvafLOrvf/Z3pn9Rp5e5f+pKm/lcu122b3PdGcy\nk4RkIAlBoGgkhACJWy4IEtzABf8O91xzh+AOgZBAKIACIhlCkp70dPf06n2psmvxXvW7MJ/jp97x\nkHanYfhZ3yO1utuu+i7vcs5znrO8q6vBCmPUCbXl8/moonr06JGePXumTz75JFhh1qCzGOQ+bG5u\nqtvtho6UznTWxsaGOp1O7EH0IaWoOIGEdMijwlbw7JwX9Z3vfEf/9E//pO9///uRq7ayshL7kbnw\n+XNHGh2Uggh+jh78eRI1J15zzf2fFRS1x738507zsCj4PJ8lCRH0m9YOQ73h0Upn3dEwkih74nDQ\nZCh6SgjJ7p+YmFCn04nNhKdWr9dj8mkgRE4G7Z2p/56eno78ivn5eeXzeW1sbOjOnTvRGhePc21t\nLa5x7949SdKDBw/0n//5n3FQ2uzsbCRVEa/n+SWFF0A7ZRJkj4+PI/aHYJQ9xHB4eKibN2+q3W7r\n4OAg3o2OmzBFJK96kqOksYXPhmLMLwKInyXD4TC8El8TvmY8Fum/5zOeL8H6kc4ZGcaP3zGGaQIn\n3jhK3JPOAKMwVuTteE4QTc2Gw2Ekr5Gbw7NCGRcKZ4eUFQqFKJvr9/tqNBpRPkxpJslqOzs7qlQq\nAYTwsEi6o+KnUChE11gvgdvZ2dH6+voYjXxychL5G71eT7dv3x7Lnqdfi4PIjKH4nxcP6bkXDMh2\n1lAaPwOHf+NASGes5PPnz/Xuu+9+CsS2221Vq1X1er1IyqXPBNf0cmjf9yQxttttlcvlCNFKihwM\ngDohAXQZ+qXX66nT6ahareoLX/hChKypzoBppoTaczUIcVBR9IUvfCFKTI+Pzw5Vg7mYnJwMxwD9\n78cheMgeOzAcnp10PRgMdPfuXf3Hf/yH+v2+yuWyms2m/u3f/i2AFX/zrp7j5Wy8J1Z7LgXz8fMA\nCukKMhWe3OcDlsb++Dmo0xP8ACQo70KhoMXFRfV6PTWbzfBKibsPh0M9fvxY169fj1ABmfwc1EWi\nEGd9oIgbjYaeP38eZUUspEKhEC1uDw8PNT8/H93hUMh37txRs9nU3NxcJIYCUDY2NqJMq9/va319\nfezws9HoLKv6937v97S0tKQ///M/16NHj4JC9+6HGDaei254JJIypgAQ8lMYn9TTyefzYYDIJeBA\nrG63O9b/Is1c9tJOn9OLPKdXkTTDHbbhomRL/nY2xHN4XPiMN1pCKfJ7Z0K8+oTadXJquA95OpI0\nPz8f+RTktDAHlB8ThiIefXh4qJ2dHRWLRV27di2oYajf0WgUbBysD+PL87ZarSgHnJub0+zsrNrt\ndjSbyuVyqtVqWlpaisoVmqutrKzEsfesd0pAYVXq9XrEn2FZ/KwZn/dM/ufEy+Hds5XG89XSvcDe\nYW3Nzc1FG3XW6vvvvx9l6pT50oiKI+gB++g0SRECQX+Rb/Ps2TMdHh7GkeOwxTs7O3EGCdeBYYV9\nlhTJ7dPT01FpksudlfETmuWEZ3cqisWi2u12sB901pybmwuQjZGGFcFBdDYTkLO3txcNuzyRm0P2\nPv74YxUKBT1//lx3797VxsaG2u32GJvrOtETyz1cmDKoOE28t+dfvI5cOVAhaczA+M/4m4FzKihN\nQEK5T09P6969e0EzMwkPHz6M8iJCIru7u6pUKtFinVKRBAAAIABJREFUltPsRqOz2mjKrMioHwwG\nWlhY0LNnzzQajfTlL385lCrxNenMgLAhuT6ZwVtbW2HA3bvHKNCGGVqfRZrL5fTlL39Z3/nOdzQ1\nNaU//dM/1fr6uiYnzw4W4ywQPzthamoqThF98uSJ2u22isVivDfGHeoTZshDDNI58MNweE9+xt/j\ns4ALNpqHJnyO0wSty64ZjxV70mW6uVgvPKt/L30+/3cac75IUTtNOjk5qdXV1TiCnL/b7Xbk99Tr\ndd28eTO8kM3NTR0dHUWTKSpxSBq+fv16JBJzoiOVIlyTnBlK7Rh/PElOMp2YmIjWwB9//LEkqdFo\n6M6dOxFCOzw8jHg5VST0KLl+/XqEDBcWFrS4uBgJegBNwLd7xj+Pwsvk1cQpcenTDlpa2eTrmLV4\ncnISLaXr9bqWl5cjf+ftt9/Wt771LT169CgYDcK9a2trqlarwaaWSqVIwITN4/gAqqCWlpbGnLr9\n/f04VAt9NxqNgnWm9wrrifDbtWvXYq/RFwZ9DBDO5886KXOUeqfT0VtvvaVisailpSWdnp5Gbly5\nXI4qEnp34OyRw4G+5HBIwqy53NmJwKenp/rlX/5llctl7e7u6vbt29ra2tLy8nIwSb4fPCfCdQxg\nz6sc/Tue6Pnz5Czlf/ZH/v8SBtRZBkljNdVOq2EE0kkBbNBpjYz6Xq8XSZiOfm/cuBG97im9a7fb\nkXiDhy+d09wsPoAAyh4PEKNB3A+DUalUglakFHZ7ezsy/VHEgBjKtubm5uJAseFwGKiaRLgXL17o\n+vXrQbXzzltbW5EzUSgUoqU2i58SPRA51DtUPOPL3FBtA/XprZOdavX8BAd6HutNmYOLSlD/OwEw\nueflKN6v6yCGTZgyYCgg6Eff3L4WU/rYFTP/Jv/l5cuXWltb03A4DMZqf39fR0dH0c78rbfeivAX\nFRysLSqPiP9SKUNrbk5V9HcjZMfaRMGgqCVFIyLPsbl27VowDTAleGa/8iu/EvT006dPo4kXXTnJ\nkh8Ozw4lo2EbzwVoy+R/XlLQzP6TzhOPvaSb/cDe5ufFYlE7OztxmNjTp0/1ySef6NGjRzo5OdHN\nmzfVbDajdLTdbgeoJPS1srKinZ2d6NvAvY+Pj7W5uRn5BoQ5pPM24w7iqVoiSZl3hI2hOq5cLsfR\n9eShra6uRlVUGjqHHSEciR5EX+ZyuXj+er0eexL7Q54ch1Yy/hzq+MEHH+jx48f68MMP45C9zc3N\n0FOpLvKKDuk8LHxROJd9m4Zufx7QfuWYCowEKJRB9EQ6/x2SGiboWMIXs7Oz2traioS1zc3NCGWw\nwPhcrVbTkydPxpoKQYNB7XN/jnvmtEhKmzhUjEkGzRML9GOBOcCp3+9rc3MznmdxcTESAjHah4eH\najQa6vV6+va3v61vfetbevnypf7yL/8yKL+nT5+q0Wjo6OhI7733XrTSJhsaqt09WXJH8EQmJiYi\ng5sx9axpSUGVe/kTqDut3PHv+cJPwYWHM15FPHSS0utp7DEFMcylI3sHtXyXtYfC8I52TjWi6FwJ\neCvtVqsVIJJxIt4KRUsnSUqB/Vhlqj36/X7kzZCcBpCj8yuAEjDOuxDiks77sgyHwzhx8ebNmwFc\nyMAvlUr64he/qMPDQ3388cdjYRrp/BClfD4fDbfoR4DhAmxkLMX/jrBW3WP13CavGuB3kkLXYKjZ\n2/1+Xzdu3NDh4aE2NjYiT+hrX/uaJiYm9OTJkwCi0lmOGhUSNMvy0umdnZ3o1dNsNlUsFkOXkO8A\n00wuHEccuBHmXCOcOQ5epOR6d3dX+/v7Wl9fVy53dhQCDDTnlRAS51ndKWJ/rq6uBvsH+IF5IUHZ\ne8ygf7797W9rNBrp+9//flRuUQnGuPu/2Y/+N/PkrRW4P3NJaIdxeV3GV7qCoAKDyt9Ol6alQaBp\nR26SomyUmGCtVou4GxNP579arRZlo0zaaHTWDZAGLkws3mC73Y52y8SN9/f3dffu3ciJGA6H0W+i\n2WwGtUcvi7m5uYil5/P5UOR37tzRW2+9pVarNZYkxwmrvqj+6I/+SPfu3dO///u/68/+7M/UaDQi\nr2JhYUGlUil6SPAMZCrD3tDLn/sQ6oFq454AK/fG8ZbJyyDZlTnyMINviM/qmvm6m+Gie7mx9w3q\nZVuevOnrLwUKvnn5DgpHGi/f47skdlEGt7u7q7f+q69Js9nUw4cPY50Wi8VoZtZsNtVoNMaoTvJk\n/Mjkw8NDra+vh+LmgL2NjY3ovNpsNoPGZWy8RwV9M9bW1rS3t6dmsxnU8eLiot5//3397u/+rmZn\nZ/Wtb31L9+/fj2RSQjQwQxgDSXF2AUzLZRJvM3kzkub8YIhZv4QjnBHwUKdT6aPRKCovSDicnJzU\nJ598Euv4137t17S3txe9fHK5XPTswaHB6O3u7kbY98aNGxFS83ANbAn6lw6/9I8gbDAYDPTkyRMd\nHh4GIN/d3dWDBw+i2oNci1arpfn5efX7fW1sbOjp06eamJiIRlqTk5NaX1+PhHbAQbfbjSqQubm5\nYEG2trbUbrejmo98MXTqu+++q4cPH+pHP/qRbt68Gd/x8vQ0sdsdHLdp7LNUJ3mIOQ13vS54v3LV\nH3gz3qqXn3m826l18gw2NzclKcIeeEv1el2bm5sXxhdPTk4CXROmwJOcn5+PmJ90ZlTw5mdnZ6PS\nAbqXZ/RmJ1D+CwsLoWhv3bolSVH/jWcwMzMTbAfJnOQtFAqFaO5C3oPTjeRGkCglnSn36enpaE7k\nvTcODw8jvk7TFsaTsyEkxXeGw+HYoWkg8RcvXkSM3r13xlc6B4pOxfK5lObzMMKrioMY5skNPeWk\nbFK/Pobb+1d4fo5vcs4OQAmgEJg/B7qEh05PTyOnZnt7OxLfPJObigsOZ5qfn9ft27c1OTmpzc1N\n3b9/X/l8PnIyKJubnp7Wzs5OKMytrS3V6/UIV+zv76tWq4VHWCgUxsr4SP70Dq7eJOtHP/pRNF37\n5JNPtLCwoCdPnqharQaL5WAOYAHIgLHJ5H9fPCHRwxyAaAd6nszp9LuzAnjluVxODx48UL1ej/yw\nx48fS5J+4zd+Q9/73vdUr9e1trYWjgj5EcfHx6rX68GuURrPfViT5AjBdB0dHWlubi7CdTTqo08F\n5alUcMDyVqvVYKDJNSKhcnd3NxLoAeY7OztjCe0O6mHhyFujdNSTJ2lyWK/XdevWLT18+FDPnz/X\nO++8o83NTW1vb3+KEcV5kM71pc8BgIH7eFUkzhn78LNCv5eVKwcqJI15faBGp8oZ4ImJiYjlOWVe\nLpej5rhQKERC5Pz8fGTPS9KzZ88kSe+//3545VC5k5NnB2wtLS2p2+1KUpSaYmhA0WzU9fX1aGrE\n6ZQ0g6F6g3v0er2xeuhyuazZ2Vltb29rcnIyQiIzMzMajUa6fv26JEX5VqfTGWtIBaLmdMp+v6/3\n3nsvaEA2G7kU09PTUWsOAj84OIjuofRCcBScImrpXCF5ZUpafcH4eFKSe0aeY3HZHgagc5QQCoF7\n8DtCPQ4CHEjxvMwP75LP54OGJYGXcWAzc09X1H49MtUPDg5UqVQ0HJ41FuJ5We/e/piDicrlst5/\n//2giTudTlCo9KqgMyxdLYfDs0Y9w+HZOS4oGUoBMRhU68C4ETfP5/MaDAa6deuW1tbWIkOdM0QG\ng4GOj88OhwLs0LeEMtc3QcNm8vri4eF0rzmQd1AojYdLpPP299K5E0aC5fr6ur7xjW9oZmZGP/zh\nDzU1NaXf+q3f0oMHD+LkUjx+1gshkPn5+TiegGZw7HuvtBgMBjo4OFCj0YgOtL1eT3t7e5GcCajY\n3t6O/hHNZjNYA1hhKq9g/tCFlMLDFlNVQqdP9g7l2p4k6scxEJK8ffu2lpeXtbGxobt37+r09FTt\ndnuMGXV7BlhjPtA5fM7zzJw5lsb7/3jY1lMDLr12dMXCH77I3fukjMYTkCRFLA7aC8GYjEZnR6FT\nEpXL5eLwLjJ6h8OhPvroo/BoOQ691Wrp2bNnwQRgQKWz8qhut6tGo6FutxsLZHV1NQyzZ1EvLy+r\n2+0GuifW1+l0IuaI54jx8SYvDqw4L+GP//iPNTs7qx/84Af6x3/8x4gL0gPBe2+QBNrr9cLj5iRL\nYvgwGmwYNtJwONTCwkJQltK58nEwhjhI8AVPXoqHIBwkerLSq4pvOKd5iftLip4NKYDwTejhDi8P\n5TuepOmMBvPCPT02TWgMUAKTUCqVtLS0FAm2ntsyGo0CJGxubuqjjz5SPp/X8+fP9ZWvfEVTU1Nq\ntVr6xje+oXfeeUeTk5NaW1vTzs6OJibOzoZhjezt7UUzKsraWDtLS0s6PDyMzq5UR3GY3Gg00g9/\n+MPwDB88eKDV1VUNh8M4VZTcDViZfr8fLco5M4fxzOTzEc8lwrPl/+4AOND3vCZnN9jj7tytrq6q\n3+9H/ti//Mu/6PDwUB988IFqtZqePXsWRpPzL9j/hHQBC+Tl4Cyenp6V8b948SLKVQHNa2trAe6l\n87NiaMeNY0nZNgw0ycM0FvSePlQsYbhp7rWzs6PHjx+HE4mDxum85XJZ7777rprNZoRjcEhevnwZ\n+VEIOoXPoLc8DOW5g64fPbTL/CIe8vp5elVcueoP6VxxY5A8nuQhDB800KWkCEVAWXmvgTRrmFAH\nRogcjenpaS0tLX3qu9wTyl86Ty5dXFwMheuG++TkRLVaTfv7+3ry5IlWVlaUy+UioW1tbS0S63Z2\ndiJsQ4IbZ0Dk8/k42As2BW8QRocDpdg8bJz9/f2o26a3gKToMcDm9NDTtWvXtLi4qPn5+WjzTIY1\n4jknjBHzhIEljMPcuvHl86+btcy4kE3ORuTZAD4wFE7ZswExesy9AyHWBNeGFUMJAApQElwfJov1\nxT1QftI5COIe09PT8TMSwxg3GALAYafTicOVfuEXfkE3b95Uv9/XwsKCJiYmdP36dc3NzUlShN74\nA/AcjUbB3pC8WSicNdMqFAq6d++ebt++HUdMk9AG6GVuUdK8q6TwAgmfZfK/KykjgUfs+s+93DTf\nKQXL6FtnntA9vV5Pz58/12h0dmL0+vq67t+/r6mpKb399ttjyZa9Xk+53Fm5/cLCgtbW1vTixYtg\nMOkwubu7G8yl73HCyew5Et9peEXe297eXjBqhD/YYxhcHL/t7W3t7e3FAWGdTkd7e3t6+vSpXrx4\nodXV1djbhKkx7ktLS/rqV7+qjz76SB9//LF6vV4ALJJDnelxEMH7uHOGOHhAN5IPxRy43sUWoJte\nF1BIV5Cp8GRMBsZPbPMNMTk5qevXrwf13el0JGnsREg/HtepauJxpVJJzWZT7777rlZWVqK1KozG\n7u7uWNMVj8GTAInRePbsme7evRsNWFg0vV5Pg8FApVJJt27d0o0bN4I2G41GUW0hKcDH5ORk/Nz7\nFTSbzQBKf/AHf6CZmRl9+OGH+vu///so7YReB3mXSiUtLCyEB5q2qmUsu92ubt++rd3d3WhkRIta\nNooDMubKy0SdzZHO6TzukVJ1eEGg8MtuBu7PRuWekgIADIfDyG8ATPBcHtfkOVh/nr+DEMpAybnS\nAyBI5+fP8J5UUrCeAHjr6+uSziuWJiYmNDs7G2d3FAoF/eqv/qpu374d8WWql6gcun//fii7ly9f\nRqmqh3vIUCcxGAXHz0qlkg4PD7W4uKjZ2dnItt/d3R0rZQY8lcvloHx5Hg5RIrQEeMrkf19Y376m\n0595ObQ07jQ5a8Fad6PoRp59vL6+ro2NDVUqFV2/fl1PnjxRvV7XN7/5Td26dUu9Xi+SK09PT8Nx\n2tzcVLvd1tOnT8c6SpLr8/z58zhSgQZT5JgdHR1pdXU1mg6ur69rc3NzrLfKj3/842hyRbiX0CN2\ngK6alKESisQpZN0fHR3pxo0b+uY3vxnt658/fx7s3/T0tB4+fBjVVIwr4+yhD3SR2zrP1/JQO2CC\nsU+dL9c1aU7bZeXK5VQ43Ywh8havTt2BkvmONyghjscE8n/i4l6G4yd2uuE8ODgI6pyF7PX7lPfx\nLCwGusuxaTlgp9FoqFwuRyts2AP6DJB7QR95uryRwc/zkensDWckBUgB+JycnARoqlar0VOCmCCe\nqvcPoNfA/v5+xO2Pj4+jyRJ5HDTlkjRmgH0sPLvZE8HYRIy1J2i61/Sq68U7eDJHuVwuEqwIL0kK\nZYMXA/Bk/mEneEbfrJ4QxdqRztkeZ9VYe56fwdoEHMBAuTJAWZMQSxItDAexaRIiJyYm1Gq1tLu7\nq5mZmQg7sH94b/dUDw4OVC6XxxIqaR3MGTQoRcA663ZxcVH3798Prw2wTa4G7I036cnk8xEP6Tkw\nkM5ZhouMEHPnzpxXbLGOpPPcDfb74eGhnj9/Hqct379/X2tra5qfn9fXv/71MOwfffRRsKW+VlZX\nV7WysqJWqxVhkOPjY21sbGhmZiZCuuT3sK8AtLVaTZK0vr4ezOL8/HxU2qHPhsNh5ATBAKKL0NuA\nnomJs8PUisWivva1r4WO+Yd/+AcVi0W9ePFCX//61/Xs2bM4wwSd53qNnzvz4zlnfAY9j351JtV1\nrl/bnTfm5nXlyoEKlDnxJklBP2MQGUCAApPsm4Dv4TlOTU3FRkHpYkxIoiSDuFQqRWtkP26cvAAM\nOpOPt8yCxoCSIT8cDrW4uKilpSU9ffpUpVJJjUYj2h5LipatHPpE4iWVAiQRsaHowoiRYoNhCAlL\neHIQ7WcxRrwPrbml8/yDwWAQ71gonJ0zQQmiswu+gFFigDZH49zLk8U8nntRDPFVhA6hXjrnPT14\nXuZcUpSZkcfg2e+AB8+jcObMwS5MgIMa8ni8HJfa9snJyWgyRt0+IRpizdzLO5WSe7G5uRnAZDgc\n6ktf+lKc39Hv9/Xy5cs4g2E0GkWvEtYI+4Qx47lh4obDYSjtXC4X+4BcGI5xnp+fl3TOCPV6vQAW\neHSv6yVl8mbE2ShPnHV2gt97SCNlLQDKXs3Dd32/+j7O5XL68Y9/HFVMOzs7Wl1d1dTUlJaWllSv\n17W/v6/nz5+HUfWw6Gg00vb2dgAWGrnhjDnbTB8XehJRLk+SPE4XHj57G0ONA+I5YQBwvtdqtfTu\nu+9qZmZGGxsbev78eTAex8fH+tKXvqQPP/xwLGSUhnkdQDCObrfcvnjo2MfW9bSHRpgz9Afv+Lpy\n5UAFi9SVoDROc0NpHx4eRmLO8fFxlNLRgOTg4CAS9Pb39wNYoMgBHTAYbB5J0dueigiP5R0eHoan\nvre3F+EXrwGHIt/e3lav19O9e/ciDAEdzal+uVwuaGSOEz85OWuJjPGjLwZlT9JZlcvOzo7a7bak\n86ZMtHCmcycn9e3u7saC5XnJ7WBTYYRPT0+jDJe52NraknTec8IXOYwSuQTMmYMEjJCzTnhADtIu\nIyQJunLzmKPHLlEgTgOjHDH8sBuetMmaoPkZHk9KH7PRUQ6MJc82GAw0Pz+vFy9e6Jd+6Ze0tLSk\nXq8XSWfMOxVNpVJJq6uroaxgyKhKgimbn5/X7Oysbty4oVarpXa7HQcXvf3221pZWRnLaSHpDU9u\ne3s7rj8ajSLXhxBItVpVq9XS3bt3Yzz4LmuQMyAI9WTy+UpaRoq+Sz1dzw/yUKYnajq4uCinwj/L\n3m632+r3+8rnzyowWq2WhsOh7t+/r+HwrMfLr//6r+vGjRv6wQ9+IEnxO54Pto9qDwf00jkg8AR8\nWBVK5ik5hU3k3Xh2HNHR6OzcHPKSvvCFL6her2t7e1uDwUAffvhhnDSdz+e1sLAQIeOf/vSnY85a\nPp8PXewOUpoTKJ1X11wUDuF5/XM+H8yv53FJl+9KnMqVAxXSecax0+EMMEl3DDadIDEuTu1TMtdo\nNCLzl5AAyo/7QB3zOxLjSGCDLYGO40wQPD3i0eR1SIrDwyhhrVQqYyEbFuDR0ZGuXbsW4GB5eTli\n3N6BESbi+Pg4SgWpFgHNQ0GSHNVut3Xt2rU454RwDeMEBc57SucKp9Pp6MaNG9HlE/bGaX82iisW\nvi+dnyzodB3f97gtgOSylQIpy+BrhXdhnRASAUDxbCgDWBt+Jp1vUBSmV4bwDsRaWSNsfD9dlOvR\nEAvgValUtLKy8qkYN+/BcecclU5l0rNnz+J+U1NTAWJXV1fVarXiFF5fG3yeswrcQ0KJE+bodrtq\ntVqqVquRHV8qlXT9+nWtra3FPiFBmPbfvo4y+fzE84JwnPznrFHmH/Cbes/sEWm8/wx7lb3klT5c\nA8BBk6gvfelLAS6Wl5f1k5/8RCsrK1Fi+sEHH0Qnzo2NDa2trUW+DyEKkvAlRWIzlX0kbcJMAjb4\nm/Awz1woFNRoNCIsTdUePX9WVla0vLys0WikdrsdZ+/QNuDly5djjkzKGkjnJfYpM8tYDofDYFYd\n0KFv0NEpA89nnPlgrvi/A8DLyJUEFR4HTI2WCyi4UqnEouP8jXw+HwrO4+UkM5IvQRUF4YL5+XlV\nKhU9evQo7kl8G8YAD5/rTE1NRf/74XAYHduuX78eiwOqmaROziQhgY/STSovaLpFWRRGCpYFz9qN\nJt4JjEw+n9c777wTjIt0Bio4m4TmSSgCSQFKoBApQZQUCaRsUqcrPTbL3Ph8uvFiY7MRnZW6LFPh\nCsZru73Sw70yQBxj58yYhz+49mcBFIwpc+FUM+Pixpr7Ec9FARLeugh4oXAofyN0wqFGPAuKh+Qy\nDooDKDMOnCoLMGctSYqyYgAEZdoobA7HYx2zPkej8wP23BPL5PMV38+sOUClGyfWDuxa6gy4Z+yJ\nzoDgNP5/0c9YJ/fv31epVNKNGzd07dq16OEzGAz08uVLLS0taXZ2VtVqVQsLC7p161Y0GSQJmYaE\nGF/6ZtARGZ3OHuAcp4mJs2MHaMa1tLSkQqGgL37xi6EvOSfk4OBAjx490v7+foQXl5aW1Gg01Ol0\noneLhzzRG7w/Y+RhxhScMSeE5aXxviDoXdcn7swwxhf97OfZh1eu+sPjse7xsqAZRJBxuVyOZDSP\nnVer1U8ljqH4SISjOoCDkebm5iIfACNeqVSi9t4V/ezsbIQoer1ehFKazaZyubNSo7t37+rtt99W\nr9eLXvfQcKVSSS9fvoz2s3iH9I24d+9egCEOsuHcBqpA/vAP/1C5XE6PHz/Wv/7rv2p2djYMElUC\nL1++DNYBCpHyKhgQ+uVTMYNXw1jRQwNDwgbwckxP5GIDOMhwRebI3tE0QPIyORWg+ZOTk7HOdA4i\nYKO4L3PnFCSsER6WNH4YE79HUfBOnmCFV8g6Yy54FjY7YQbWW7Va1ebmZpSFAT6Ojo50fHwcp+AS\n0mKNk/FOYi0JmCT2jkZnlUUwdzS54j1oOMQ6w2OamDg7Tffp06cajUbBdhQKBW1vbwcDyDp++vRp\neJGA2Syn4vMVN0D8P2UJpfEScEljoFg6d/DcEPraTve5627EY/90ll1bW9PW1pZyuVwcTw7ziuGm\n8+Xe3p7W19c1MTGhTz75RCcnJ+r1etrc3IyKEkmRpExHyxs3boRDxmmj7LetrS0Nh0N98skn2tnZ\n0cuXL6MzKE4VTPZwOAzmBD1KuM8dAHewABFpXx70ADoAmwUQQ1dhBxlfwB/i4IE5wVn4eVgK6Qoy\nFT4Y3qwlTTzC08LY0U7Ym0hhbBBv9uKbB3p4MBiMxQF5BklhtKCi6VUvKcCAtzimixtNiWA0uC/H\nQruX7Ilzm5ubmpmZ0dHRkebn5+NgtHa7Hc/qm5nv4kHjodKjgMZgAApJkcTniUGME0zO4eGhms2m\ntre3NTU1FcwKCVNpclAKAj1m6Alj0sUn6l3WGLEmuJ+XDl/EjMBK+eYl6Yt15Qlp7tkRguKeVOF4\n3oR7aShRgCreUrVajbwDQhqzs7Pq9XpaXFwca4iF58b649yZg4ODMUaJMWZOOA1VUvQGIA+Ce5K7\nsbe3F0CRsdzf349wHT9zII6yheljvTm1m8nnJxgc9oQDBw/b+n51o+f6wKl7N5J896JkTf8uehz9\niZAHB2C4ceNG6DnOEOn3+2MhRprHwdR5aIBcjsFgEHuccO/GxkY8D2EG1jMl3hzUuLW1pW63G+3z\neX53eJwJZSxwYMkZOTk5GbNnDhLQu54nwjxJGgMZzl4wtyk7hEMknR+JnoU//ksYVOLfTBobwjfI\n7OxseGUoWLw7Ehv9ZFCPtXmzED9VjtAACY9Q1zxHsVgMr9ATN+v1elDBkrSzsxOdPKempqL7IPQc\nSprNQrdNqLr19XVNT0+r1WppaWlJz58/D0qbznP5fD6avXiCJDkSg8EgNideNPF8PHL6YkxNTWlx\ncVG53NkBU5wzISn6cwCwSCJkw3uc0ufMQRygx5Vdmjh2WZYCIXTiIRZntdjsDhS8j4QrOum8cx2b\nFUbGn380Go1VbGD08fg9KdQVEkDDy+QAtnTB9FNJiQl3Op04EZfr1mq1eB+UI8qFcQQgeMJeml3u\nAIxEUJ6bOe/3+1paWooKJ6pXACee6HfZvJhM3ry4J+tsma/pNOnSjaRT6r7mpfEE6P8uEZs9xvoH\nYHgzOAfqy8vLcR1yF2BoPczoJfMOKCYmJqJVPUwd3TorlUroK8ITMH4wHzQfdIDOeuZ9XYf4OEvj\nRpy97jlmaVKlh1w9Z851ZBracBY11S08mzO0ryNXDlRInz4OloQhECWgYDAYqNFoxGRg4KGBOAvD\nKV5JUdInnVctsDnw3qGNQbp4e5LiiGomjxCJ90Wg9G9/fz+ekfM6JAUtRzwQQMD96vW6Tk7O2ns/\nevQomr/QyRPWg43DgsIgVSqVsUoCPwhteXk52AiMAuJjtLu7GxUkeAb0fCA0hAHyfAhAH2EnaXyT\n8RnemY2VUqmvIq7sMOSUlgG8eFeqNwAdvs4865rP8HOMK4oLJeEVNIAQ94TI7XBvUDrrW8I5L3fv\n3tXU1JSuXbumjY2NoHCZAyqZmKNms6m1tTX3kZFlAAAgAElEQVQVi8UAanNzc8F6eQkw65k5RcHy\n3Bz9DONAHgXPS85HqVQaY+g4P+fw8DAqWLa2tjQ3NxfPkMnnL2klXQoeHYSzZ9PwhYPR1Hh53pDv\nb/YD4Jy9xrrwsKGvFfbLcDjUy5cvx2h8N6rsNewC4mFIzynwZ+ffMHcwlJ5v4mPjiZY8owNyHydn\nHAD2vI+zmNzDGQjXf35PZ3WdLXKgh45y0JI6SpeRK9emOy2pcSobr8sXMOwClBk5CaBLjKkvTgyg\nTxSgg4lmkmj2REyZWBj10Xj+biTpEzAcDiMrH+ACoOEeLEp+JikqFEajUSBvPwmUcSBxklAMhg/P\nmvdzRgRPGu+VHAHGE4OGUfZYHmdIMBbpRnGEzeZnQ/m7Ov2KMAeXZSqIw/qm59kRTnTlWZwNcwXg\nFLH06W6d/j7OsDAnJMMyHmlFjSs0KNByuayTk5PwoiSN/RtFxZqCAiYG7QwcIMAPgisWi2HsUWYo\n09PT0+hFAdPFGPCc/X5f3W43jkWnVwDjR9KcpCi3y+TzF9Ybc5N6024M3WB7+C/Nb/M97B443/E/\nKehgbaEL2DO+1mCa2Zf8HhbMvXLP5+LZ0CcpSPJ35g8/89bXnjfl7+tOg4eQeHb2HmPDWU2MEyyx\nP8/p6WmMibMVzJHncqXz5jliXNOf04HP68iVS9RM0bDLRVUg5D9Uq9VIQiOWxkl4g8EgUDCTg/fl\nGwhA4Qd43b59W0tLS6GooalYgMTUZ2ZmIrmHcjvCE/TTyOVy2traGvOQiZeXy2W12+3oY0F8kGS8\n4XAYFQ6j0Ug3btzQ7//+72swGGhjY0N/8zd/M0adAZx4R+m8rLLb7apcLo914PR4HtUut27dijHx\n49x7vV6UpbrySr2gixSXe0a+gV9XuB5rg00Iq+PhMg+NsHGZx9STmpmZieugPFIP3L0KwAcKI/Xe\n+D/fAxRwCBI/91ivK91yuRy9TgCCgFh/d+bTQ16c1cG9vGEQFSEotYWFhbFOn4B0QjaU+OHpbWxs\nKJfLBSi+zAmzmfzPSZqDBqCVNAYwU2DqBsr3sO8d379uqJ2FdG8/ZQcuunfKEjr4xunx3/n7pCEJ\n9gFAgfAnjoHneaX2hHdxNoR7oDf8/fg/dgUnxZ1WxtzZTw8b81l3JBg7abwKxMEKAhvEdxnX1wkl\nS1eQqXDP11kKp3b4g3dF6Q9VFp1OR9PT06rVamOliyw6DAaePXkOo9Fo7LyCiYmJ6BnvB2+Rj0BM\nDMDA9Vk0TLQvZHIToOJp0NXtdsMQkGjEsb2wHWQjcx2SP/HWWUQzMzNxBDqI3xvG0LTq4OAgYvEw\nKCxgxgbqvdVqxSbgtEBio84A+Ib0jSedJ1X57/g3wOeyCJvv8ne6mdyz4PN81n+G0uG7GEmUF579\n6enpp5LNuIZvePdqACNO+cKeeP8JL9VLmY3h8KzDqnTeapzkZO/xwbh69QjeFLlB/D7tVeJ08tTU\nVITOmENP3gV4s65OT0/VarUuNXeZ/M9J6tm6kU/BBX87/e9/2KcYL9drbgBdF/i9McaAb8+z8PXG\nWnR2hDXNAXXp9VLwwHOw/5yFxMh72JVnJceOn3N9npMxZT+6nrzIgUr3POPFdTyfy9+F73g/Jp+H\nlO2VNGaPHKi9rlw5UOGDB7JlUh1sSOdJaJx09/LlS/X7/cghIJkn9VZPT0+1t7cXi8s9QpQpC2N1\ndTUOoMGgsDmozqhUKvEzqkZgMMhHQAGzmDiQCYNGiIMzKTBMVGt4uejExMQYmIDNaDabunv3rj74\n4IOx7H+nuzEC0nlegysCKHzeiY09MTERJZDFYjESm9yAA7p8zD105YmEbthTz+ey6yVNkGKMYFdQ\nXq5oMeB+sqZvXsCjpLHrsCZ9DHl2FCDr1dkfV7TkMzA+aUMuSZE340midHmlQc/m5mYYAg9jMRfk\nPRQKhcgJoucF88q1uT9VJRwFvbe3p263q3z+7Kwbco5ogcz8NhqNaPKWyecvrjcxsM4ysAek87WZ\nrlt0oOtkB/3sacCqG1CvwkKPOQOBuIPooCd1PtC9aT4B7+ehEH9P7oWRphUB75EaehhOno1rpvsX\nkIU+d+cGcVDFmMDGOMvCHDijybj7/Dg748/F+wCsmOvXlSsX/nCaK6Xs0kFGMJog2nK5rOFwGOcg\nkPw4HA4jLkyyGhOcxvowfGwEOrYBQGZmZiLOzaYiTsY9ADds4FKpFDHvlZUVHR0dqdfraW5uLk4G\nrVarksZPuZyamtLe3l6UHu7v7+sXf/EX9Zu/+Zva3d3Vd7/7XT148CAYm+9973vRbrbb7Y4lBPX7\n/QBITldK5zkGp6enun37tvL5vJ4/fx4AiryEfD6vdrsdYyiNe+dp3PazQh7uKaR066sKGxlwkSL6\ndK2gxNyD88RIX2fO1rB2nFp02tIVLmvBQ2t+9LL/zsepXC5rNBpFhQdKn8/TTntiYkLz8/OanJzU\n6upqVPrkcrmx0xEJa0mKg5QcbABmWOtzc3NjnuG9e/d08+ZNXb9+XYVCQbdv3x5r0gYwo3Ms4CWT\n/xviaz11yFhbbnwAiO58SZ9u6c3PPPmTv6Xz8AOfcXCdGsJUHAx4OJLf+b+5PvvYnYs0uZRKNhhn\n1xfOUMDAOiOehlg9fMr7uL6WznM1XA+hI3kv/5k7l9L53uXe2Cl0getSvybszEWpAq8qV46pIKHQ\naTqfQN8cbAA3kDAJJCe698gEn56OH8CVz+ej0QoTBaUE3cs9ABCAEEII0GfEnzkq+ujoSHt7e3Hs\n+HA4VK1W0+3bt1Wv1/X2229renpab731lt55551YQNyTP1R1sEErlYoODw+1ubkZ53qsra1pZWUl\nPMZ+v6/BYBBJmeScOMJ3eh2PwoVOcxzeI2nsVD8HBtD67i2kXonfk03oXtNlwx/MA9fAu/cwB2sJ\nhYEngPKDiXDmJFWgTrPyO+7NczgIoDKD98ZL4RqwbKyzbrc7Nl4oKq5JFQjX/MEPfqCNjY3oJMhn\nAbEYfpRUuVxWsVgcSxrzKhXGYX9/X9euXdPMzIw6nU6EPG7duqWpqSnNz89HXg1Jv4DdLJ/i/46k\na9jzgdAB7t0DfFNDzefRb+x3dw64lztm0jlwwcA66HYQ4AYe8VAijhv/B6jjTErn+4Uwn7MnF+kU\nz4Hi+/w8DcE4aGEMcDjY9w6uAAjuIDsjw3XdAfKcDJxYxtjtV/qzlE1iT/48FVhXrqSUgYNOlj77\nyFc2gE8auQK+KDAm/O1Zvm4UJUWYAGPHz6hp9pAA3h45GeRHEPbAgA2HZyV7Tl8TKsFI1Wq1oJ6h\nslj4tGXe3d3VyclZD4rFxcWg7gFDGJejo6PoIZB6w7SkJenTPRfPJ4ERwZPd2NiIhi5eI/7fVWyw\naX28vV9EGu5wT+pVxb0DEnQx6J6D49d3oAGwYO34Rmdz+rkeXiKKIvO1J51TqrATrnz9OTyuTAkz\nANXpYrwTxnMwGKhcLke/Ep4lLeGlUoq8GO7peRZpSR09WgqFglZWVgJw1Wq12AcoQJI9e71eAM9M\n/m8IusrZKmm8Hwy6jwo2gIUbXK7DvvUwinTOSqThCHK0Uq+aewJkPOSRJiR6Eid72VkPPuPMo3v2\nAGdCoWmowEOH/M4dVu7pe1Aaz/vz/DH2o+93Z66lc33Fs3m/JE8wdbuGg+BOCrrDGU8HSB6+vfTa\n0RULf6Qo2eNtaSzMBxlhwTWbzSiVwwukCoQFR7w5n8+P9a1gMiuViubn5yOs4bkXGJ3j4+Mo6SwW\ni2PonFNBh8OzXgKdTke53Fk3TZT2YDBQp9PRzs6OBoNBtMqGrcFIkMzXaDR0enqq3/md31GpVNL9\n+/f113/91+r1eup2u5qdnVWtVlOn04nmYCxCT5ZiUzNmDsJOTk7UarXGOoziUTvociPtHo57/D4n\nKJUUUGBY09DFq4rHWbmOew/+PB6jRWH5Z1A4eF2u3BygoGhQwmkoBO8NBY3ScnaA9UayZrVaDWAw\nGAzCoPMMAJyjoyMtLS1FCK7T6cScct16vR7XhtWCHSHxl/Xg54fU63Vtbm7Ge5K8SxLx2tpaeIFU\ngdBq/ufxjq6SkODqRg9vHX2GbpLGE7u9wgGD5SHaVxVneQEXvjYdaLNGnVFzfZsCff+dJ13y/ICQ\nNEnax4fvuDH3MAL6xHWL6/uUNeGdeTbAhAMgfw+cHQ8DMTcXhUz9ff1nztDwrj6X6f1Ho1Hk4qXO\nCCyr27xU3Ank/zyDs5yvo0eRKxf+SFkCFi3/ZhExKR639lgcnhOKFcMonWfLsqhQ3tI5bUjuA4mf\n/E7S2ILG8x8Ozw4So0ID5M/C49/QU5RtclBTt9sd63zosTWSI7nGtWvXtLCwEE2HhsNh9BK4fft2\nJOMdHh6qVCqNIVrQtKN7aTyTWzpD4+RjeAY14+Bj7+EA3wzOBkjnGd6Owl0ZSa9X/YESAtD4mkk/\n50rB80H4vidt8q6eTc53UwrYwzoOlhwkOyB1BQq1C4MEa+ThFAy2s24zMzNqtVpRjeP5ELARGH3+\nPzU1FaAFYOw9BFCeHs45Pj4ONoKfM47tdjtawF9V4fC/2dlZVSoVzc3NqdFoqFqtRtdHWkczzy4Y\n2jTE52s9NWTExilRvKzXyfU8SRP96XvZDVEa4nWwz2fcwPu69j14keFNwXhqbPmMv6frpzT/gfXq\n75W+t4s7M2kYwh0G7EKq6zwMgq68KOHcAQH/d2dO0pi9cT3l3UWdgeV6qV1kLvnOZXXnZ8mVAxXu\nPUvjCNLRIp9DWGRMEk17GHCUNCEDcg0o00MqlUoYX0IPrkw9Acfp3rm5uUjkdFYDT5A+8u12W71e\nLxIzAT0OPKDbHW2yIIlvw454sujc3Fx4o35MOeWRo9FZG3HGiSxnaHrovnv37oUic8bES858Q0N3\npoyS04jpZkhDXGygy3q77uWx6VxJOWPhikTSmDfI+BN28OugND8rXAZg9fCHx5XxVJ1F4Z50gCV3\nwcEaygqwAxAaDs+SIyn1XVhYiIPGpDOltbOzo16vp7feeiu+R7UO78H7SopW7d44izmihJQTJWEp\neB+vKPq/LrOzsyoWi5qeno5zJnAaaCTHce8wDqxXwotuUDn1mB4ezKvnP2FQnBnzHCVpvIrI/+09\nCC4jqZEDOKI33cNF3HgCptF3Lt6H4aL8JWdEUsYgdUI8TCmdgwEPdzu9z/f85w5+pfHqFeY1ZTv4\nG0bFy8fTsGnq+fN7Z1V8Hziw8BC+Ax2fU0CcM0V81sMbsFY8h7NLntjp7/c6cuVyKhxESOPdF1Hs\n7lUzkI5wKZVbXl6OfvIu/13sl4NnyM1wOTg4+BQIkc7O+bhI3n333QirTExMaHV1Nc7iaLVa6nQ6\nEdLY3NzU/v6+5ufnx5QO8UAU3GAw0Je//GX1+33t7Ozopz/9qVZXVzUcnh15/fLlSzUajUjsI98C\nQ9FsNiUp4un0xJicnFSpVNJoNFKpVFK73Va9Xle73R6Lm0rnJVxsJpSsxwelcTpyNDo/nMsRPN47\nsX0851cVpzp9zXg4xr3w1FgDNNmcPB8ggM3K9d0rckUCdQmrQN8JXztOl7rC63a7mpqa0tbWlhYX\nF6PNO2wWdCn5NIwdVUzdbjcOLisWi9rb24sjn09OTlSr1dRsNvXVr35VDx8+1MnJSRxXzvkwOzs7\nY8nG29vbarVa2t3d1fz8fLSYp7wU5ff06dNXnqufJTQEK5fLMQ/9fn8sgRA2j5wgB4xe0UJok7lx\no5HL5YIVkhQgnHVMczDpnNXkOnyf7+J4nJycRM4RgIWSW2fEHETDJjp7x5pwQ4oxSfXRzxIPL/h+\ncCPloNlza/gMetVpfTdc3hPBvW72IiyN51YB1Bgr9kz6PJ4w6ewwY+WG09kf1kRaPeF9WXgWP6fH\nWQfEc0zYuw7K/f4OPC4KbaUsDO/lOhLh3T20y9/+b2ygzyvvkrK1ryo5SVfqjGFPBPMFLJ13C3Ma\njMHFMLHIMcJZidurCyWvlUpF+Xxe6+vrY5Ue0rkiciTulLl0vqE8RODf8cXvlKMzGq8qnhDLvV2B\nOoLnPvztBgkg51SxJ3wCGi6K6xKOcFoZg85prpyz4q2wHYhhkJrNZiin1dVVnZ6eqlqtjhnM0Wik\nZrMZiZIrKyvhwRDqo4U7iZ+9Xk/Xrl3T3bt39dOf/jTCdJ1OR4uLi9rc3HzjORGUqM7Ozuqtt96K\nKihvxEaTt9FoFOeeuBIFBErj7ZhhIUkIdOPF9zFaKOder6disRiZ+d6hltNWfb3AQrGuqCqAkSiV\nSlFqDhs5HA7VaDSClTw5OYmzWfDqMYj+jhgXvHr2DQnXhEFeVVxvOo3uXjdG1ENlDpzdwPJ7z9Hw\nxGU+72xdauiYQ6fq/f8eunC2wKl/7ut6IgUEXhLquohrez6Djws6wSvDuAaMhjtRfDedz/Rv3tNt\nlutMD7V4Yi1r3/M1eC5ny3gO18VZ9YeJI0JfTGn8EaTIwDOILGTQ7+zsrFqtllZXVwPxk7TGZuXz\ns7Oz4Sk7pU1FBeEFNhI5C9D/ExNnHTjpj0HSJB4heR4cyLW4uCjpjOk4Pj6OjH6S7PBMPIb+8OFD\n/cVf/IU6nY6++93v6m//9m+1srLy2pm+LpOTk5HljxfsBlg6zzxmXtwb903iVCILXRqvb3ejzsa6\nLFPB9TASKBzWDmsjTczyJEX+7zkPHr4BOLjSdWXlnpPfkzXktGR6PWffOHwOLxnlXSgUxnpLVCoV\nDQaDsWPuqfTh4DQo1V6vF+WkT58+1ccff/ypMVxdXf2Z4/zee+9pODxrwFUsFjUYDLSwsKB+v6+t\nra0w0IwPYzIzMxOJw3jzPDOsCExcyijB4gC4CDFizNjjjLEDCFg95oTThVnb7DXWNV1u/bRj1i+/\ngzlivQCqqd4pFotjYT7Gg/t4WJD16WEy32efZXheVQBZvL979m7wPVfB78nnPAHYjawDL2cR2Dse\nFmA8pPE8kvR77un7Z5yR8Hfgd+wnD1P5PKCbPYToXryDOK4H4Gd/0rnWcy74PI5ICo583/vPuaf/\nzdrzuXeGx9eUAyYHQ87Cegj2snLlqj9caWN8vBMlaM5RrHsAPrD8f3p6WtVqVe12W/v7+2OxRRYc\nwAElwfXeeecd7ezsRD0+ClNSNKWan5/X9PR0JF2Cdvf397Wzs6NqtaqnT5+qWq2qVCqpWq0qlzs7\nuhoj+Pbbb+vk5ESNRiPKUwEVeKi9Xk+//du/rVarpRcvXujv/u7v9Pjx47GFSTIZh3+xifysD+mM\nUr9586ZqtVqUM965c0f7+/tqt9va3t7+1Lww1k4ZevwvZQsQ33BOwbo3cJFX8SpCqMLRvINOp3KZ\nP8AFz5R6Jn4tL9F07wbgQF8IV6BOefOuvvlPT0/DAPk9yVvI5XJx5PPe3l4YUQAQ74Vy3NvbGzNK\nUOsegul0OsF6sA7K5XKAEfYN55DU6/Uof6ac+ejoSM1mU6enp7p586Y6nU48I2M4HA4jp8ifBdCR\ntv12w4UiJyQ1GAyixBUDxvj1er2xMEy1Wo2cEKhzWKHUaMLcOGB2MOSOhbMq5XI59iLPybp1JsMB\nDUyRG1MvSXQ2gLXCs6QJeJehsz304QmiFzEE/J914Iwhn3Omkc96vgfg3plC5n84PG8cx3pww5ky\n0jyTAwo8eDfi3lrfD450m4C4/fDcJh977ul6yo9dZ878OVyfMTaMA2Ph5eEOWrgPLDt2zucunS8f\nF9eZfMbn/rJAFLlyoEIaz3ZNDZWj7nQifXJ9UOfm5lQqlSK/oFQqjbWx9pwFDNRoNFKtVlOxWIxO\nhtJ5YyOUHHkKKEEWGgp4Z2dHpVJJe3t7Y3SgdJY5z+bsdrtBweZy54d+oRinp6fVbDZ18+ZNjUYj\ndTod/fM///OnqgKGw2GwFpSDevmaNN4KGgNFYyxKFN1r8sXs3oUra38vvuN5Du7R87uUqfgsb+W/\nExINveeCby7vFcFnPYbL2uH/rthRjKnyBegyJulYoNwwGu7JpIly7sHMzs6GImNd0BOE5lJQzKkn\n4klbPoYoJoxbo9GIM0foq0I/klKpFP8m5ALowGCzVvHSfJ0Nh8N4h2KxqOFwqEqlEuDWQxTugZEn\n4uvMaXY+60aPMA+gI234wz6i2iX1/JxRI7eB72F4uCfUN+sBUOEOkIM1gBVhBd8fvBuG3uP1DgBY\nK+z/14mPu3HiOdMQY+rhOmj2de+OHb93VsW9+osAE59z3exMJ9dOv+f/Zl86CPFTRp3Z8Rw835sO\nMv39eU8HQ64nPJTqYMrBC8/uYyqd56X42nMHg/G76J09f811h4+FgzwHdBmo+C/BO3QF4J5jSjM5\n/e6Twd/D4Vlc8vDwUHNzc/F5OgJKCqCBUiCkgYLd3d0NRezGhPBIvV6PsMbc3FyU7NVqtWBIOK2U\nkz1JBkO5owTpxOk9AFDyd+7cifj3T37yEz19+nSsemF6eloLCwuSzgxUiqRdsY5Go8hwr9VqKpVK\nevHiRdDLvpGlT8dI083o7ESqRJ15cHbADfdnsRw/SxxY8l0UPsYBxeAJTWzmz/LCUOQ8lxs992qh\nfxlXX6epZ5OyGf6uXG96enqsvwn0PnF8qjNOTk4iHwEwyRr12LIrvImJCXU6nQDBrHc8JY5Bd6NN\n5RNrys+6cYNAiepodJbvgZfP6b0kHvvR1tDJnHeT7l8Aio+jg1fWpDMWrG1fuwBtN/IwWJ4LA5Pl\naxVPk/vPzMzEfuUzJHpyr+3tbfX7fUkaKwvlvm5YeF4H4Z587qzaZfeFG2A35hgf9oobJs9ncPDl\njkDKoKThUd8/3neD8fKx5X19vlIdwP9dR3BfGCXABX+4NmPgwNT3oIMk11W+vlOb48AwZVhYYz6v\nzmynyZrOYnoo3q/r/3bQko4nut5B3uvIlQMVvoFShOqI3pWyGwQ+n8aZDg8PQ5my8DCec3NzY1m2\nbDbAARUcuVwuTohkw+/v76vVasVCxrvDw0A5S+dlRZTmcTZIt9tVvV7XYDBQsVgcU+zHx8dqNpuq\nVqtaWlpSt9vVs2fP9OTJk1g8ABTKVunqSbya8cPbPD4+jpANB6AdHR1pa2srFqVvKve8pfFyNX6f\nzhXiTIZ7DY70ETLBL4uwnblyGtNpRmck/PepRyaNN+ly5ce1PKbqoR/30HgPVzwe62XcHIxIZx7h\n/v5+hKtYY4AGlDXXOj091fz8vLa3twNMYfgIOeCJs64ptyZUwDNRrQCTkCp8PP9cLhd5H6enp9ra\n2orPsP5Z6zBhaZkf1TAe+mD8+Ju17Vn2/lwXxcU9tn6RYmb+PG+H6/jaJ7zhjALjTliJdVUqleLa\np6enwfRhUH3ufEzTRD5YKH9uB70Ozn+WeMWJr+d0r/qecADKO7szgqT/9+tz35SxQz+6fuVe/ie9\ntj+zXxuHwYGDgyH/noci3FFA2KP8cdvh93MD7kyhz4+H0/i3j4XvAa7llWbcIw35M4asO59n3xOp\n/nkduXJ9Klgs0vjixePkM9I4KnZDxWfcgHlcS5IajUYoPOhK/w4LBAUvnSkdQAn3BX2St0Cp3uLi\nok5PTyMp072emZmZAA6StLCwENetVCra3d3V9vZ2eEAs4rW1NT148ECPHz/W+vp6bExocs91wINK\nPWaSyhygSWfJon5AmG80xtrnwz281PvwcWZjeLnpRUo/n8+PNYV5VfGch9TYumfKGnJv2PNqHIC4\nAeL3qWfpTIizGw4gnT6HOcBgM34oAe8XUSwWx0I1nnyaUp4eu6cfCe/NWqB1OezB/v6+SqVSdNbE\nUELvQvu6h+g0+O7u7linTf9csViME3UZX5pnwbJIiiZfgCAABOuUNe0skD9L6nF6bki6V5k71rw3\ngPN5w6CgnAH/DhxTZoEjuWFEd3Z2wmFhnmEg3Cg4uGB/+e9ZGx5CvIww/8xnamAw8AAo74TJvvbS\nVv6NwXKqPdW/jJ8zB77PWGfsU97f9xFjzt5jHFND63PIe110HQfjHpL0sDHXZu3zXL7nnL1grgix\nAhzYa94cy1kivse1fbx4/tSxYQ4cyLBP+a6zZ87gX1auHFMhjSNmV+AsbJ+41DNF+Ll7NblcLrwo\nyiddiXEdLyWbm5uL8jXoUUfIExNnR4JLiuz2fr+vvb29aJNdrVYj6XJxcTEQKR7oe++9p42NDd25\nc0cff/yx6vW6qtWqWq2WGo1G5Dmsrq7Gv+v1emwUFi0UNr0EiFXjqXY6nWjwg7e5v7+vra2tqLVP\nyypdfLF6zoB/LqVMU2qScfPruTG+LG2HInaQ5ImMvn7ci+G7jOHp6ekYU+KJZTyn07wI7+/vxSb3\nNYzh5xlZc+5duGJst9vxPGmZHvODwcHwYRw4b8DBCuBGOj9W3SsraGYFgKasmHND8vmzU0wBDVNT\nU+r3+9rc3NT8/HwkdVYqFdVqtfgO/Vdu3Lih2dnZ2AeMLeOTeq4AQGe4+J63L3fjCGgC7LmyhfVz\n4Ovrhp/53mZe0wPnYC8Hg0H0COH0XzfIXuHDz5g/B0kOjH2vuXd7GZaCsfFndiPm12IMfd27IfPP\np0bQwY+zxb53GGMHEM4IpyDc5z316r33iIN/By78zhOHfd/yfwcfDvhcn/n93aAzH66/YBp4Fl+3\nDugcbPEMHq5Nx/si4OQCQHEWxPXW68iVAxW+QH1BuQcqjbdn9lgSclHiEUiVieMaeC4TExNjjAZo\nsFQqjXVeA0SwKJrNpnK5XBxZzSKmvS/5EcfHxyqVSqH0afbjYKRQKGhhYWEsQ51cDAwGip5unxMT\nE3Eqa6VSiednwRUKBXW73UDmAAuS7lCM7h2hXF2hS+Mnxrp3n1KNiDed8U3om8qViCu0V10vTkVL\n58cbY1RRMu79e8UICsoTqZhf39RpWMiNQupl+rp0o+nXdlDM9/gunnzaC8GVONVKAGEHPuwVNwT+\nngBsz3PgmcgZIBQ3Go2iUdvk5GScVhJxlPUAAAqxSURBVPr48WNdu3YtQiKccurs1O7ubuwFQofs\nC9YK8+TsIADBqW5YPs8HYT05WAQgMq4OGPg8lLMDXwy+dJ4AzFzxc+bYnRD3npkf1pKfgeFGxnMX\nfL84O+a60NfrZcXXcaoT3QC5Y+YgzkPS7sQ48HDGzj+fJkz6fLEXGAt3Ntwwsy4c6F10X9aMO4Xp\nvKQ6zcM/vnZ8n6bjx35mDBxAOEhLx8JBcKpT07li7N3u+RpPwaHvBe57WSCKXDlQcRH9zL9T6itN\npPHNkiJep5CIXTLwNN1hUUrjh1Q5NQZiJUY9HJ41u6HvP50JJycnVa1WxxQY4AD6uFarqV6v69mz\nZ6rValpbW9M777yj/f19bW5uhrfNYiLHY3p6OgAFiaHetIoN6Iu63+8HaCKXo9/vq9PpjG0OSWPK\n1Y0N/083iisjfu7GF0kNKt9xytG9/FcRBymO8H0duHJ2Zot15QrhszYk9/BndNDr4yUpkiYxuO5t\nuneaKnYMMM9Ksybp/GwAfzf+z5hCE8OM5HK56N+BoSLUx6FlrItGoxE9U05PT9VqtSIHiHVWqVS0\nt7enRqMRYRTKTqempnTnzh31+/2ojOJMDM6g8VAF+8wNOuPg7BaAxXOf3Jincy0pqk/8826UfJ05\nUHZPHIbTgSJrhvszv+gUZyN8fdGxk2s6GOV6gBDGxSs1HIC+ivh+9HXqxs2NOOvSwbkDshQwOKhi\nnB18u95NGcN076SG2b/j+9T3pT+HG3LGlTnw9/F7oJ9SMON/PNzCuuBZEM9pcDbW92U6Xh5Ck85D\nSynD4WxOCvJ8jn08UifodeTKgQomkAkHgflCTBcek4qi/iyPczQaRfttQhN8HwXtCq5QKESppXTW\nRphFdHBwoGazqenpaW1vb8dx47VaLXpFQBljyA8PD3X9+vXIIscLXFpaUrFY1NzcnCqVipaXl+Mz\nPMfx8bE6nY6Oj4/V7XYjQS+fz2thYeFTninvu7OzM3YGCt5moVCIs098ATpA8LyKVBk7Mk6ZhZRy\n5fepQvLvOZV6GabC142f4ZACIZ7ZvRx/D38mlDdjxpz7emNcPGnTQVKqtLiPA1PWtRsgBCDrh4wR\n+3XvljUrKSh+9oAzJ4QsfJ6r1WoYxm63q0KhEGsSZqzX66ndbkd/lZs3bwYD02q1goVaWFiIzpEk\nmMKczc3NqdfraTAYRIiN3hsweJ7bRJmoJzoyhrAqKPmDg4OYV4BELpeLU1WdSXNaPmUN3Lt1Q5/2\nNnHg7fS6V4aloMUZK9YnIMGTb1MQlHqtl9kXjIkzLG5cU+cMEOoOQZr74/d3L9oBEnvDjS2fSZ0N\nN7geRgDQ+T5yEEkfEWebEA9f+PfcqPu93Zine/kiZ8mBlgNKxgTdyrW9ooPrsEa4hoPFNJzBv339\nOFviIIV3BFS9jh6VriiocKDAInEl7rE5afyY34sUv3uhfIfsdZQJAAOPjOujkDh8iPK+fr+vRqOh\npaUltVotXb9+XUdHR3FqJAu6Xq+rVqsplztLmKP3hKTokEiCZbPZjES9iYkJzc/PR5395uam9vb2\nQung/XHOB0DDwzsob68G4EAlGlw5I8MGcVCVKgkfz3TOXIH4Z9wTcqWcKnEHkK8qGB7fwO5tcH33\nbtPn5D19nUgKyt09Hqd/8Ujc0HGdNNHRr4vhd9DLmKAcaIYzGo2iz0O32x07r4LQDnkKPA/P6LFa\nj++TYMgzYdABmqxHjES5XNZXvvKVKPHE68bgzs/PR07B7OysVldXw2svlUpxneFwqE6nE0yJnysx\nMTGhfr8/Nn/OugEeGCs3KMPhMECKV2VhtLkOnS0dKLN+AZYwmIwTP4Nl8BCaz50bgnR9837pumZ+\nuad3+OWaqQF+VfG1x/95fg8b8P6pIUvXJYxA+nlnl6Rxz93ZH77nzILPtc8LBtMNv4vPEffk+qlD\nxNj7O/NsfCYNJfD9NIzj84Be8Nb57CXXLYiDFH9/D71In2aL0Im8ZwpsuLbPOT/LmIr/knQBedjD\nUSULw2PS0rmi9gXmdDPKhERHMuNzuVyUf7qn5Rsql8upXC5rcXExlA2KDEoXupjQR7PZjC6F9MnI\n5/NxkFilUtHCwoKWl5dVrVa1vb09xtbMzs6qXC7r2bNnmpg4K1OjeqNWq8WR1MfHx6pUKiqXyxHb\nJlSCFwKo2Nvbi7MfGFM2jc9BGvN1VA6z44rI6Tfks0AGBs/DHj5/l1kvbP40UcoViLMOHtbyqgNX\nQPyBrnZWIaWiXYFhnFwx+3p1z4y/PayH0eJ73HtqaipOpOV9eSaMPPPCNXk/QDOsBD0V3Kj6OieX\nA9YNADscDqO9Ns3eMN6e4EuPlNFopGKxqKOjI21vbwdTwdpBAaNcWQc+doChQqEw1s4bZ8DBAYzj\nRRSxU87+h2s4IPW1DPDx9ekerTNebgxdDznjd5H3S+KsHzrHd5xSv8zecOPqz+L605k6/u9G39e7\nl8GmIMIbULFeWX8ORBy8c303yCkb4/PD59kf/hzuZLqxTZ1PfxbmO7Ur7Ev/rgMBBzmAGwcT3mjN\n9aHPJ+MGyOJzMJgpaLgITKJPPuv5UrByGblyB4pdhLYweGww6ZziSRFhSie7d5qGQ+bm5lQul7W9\nvR1Khw3XaDSUz59ViZRKpbETIPv9vmZnZ/XkyZNYfMSh6RGPYs3lzmj5P/mTP9HBwYH+6q/+KtoN\nHx+fH6i0ubmp27dv65NPPtGtW7dUq9WigoT4KgxHtVpVsVhUoVCI8wiWl5eVz5+VMS0vLwd1iVIn\nDLOxsRFJmYwjG8w9JzfWbnxceXqGNWPv1K9v2NQgp6Ern/PLbAgAA3PghsFZF18nPI8nPrmS8c2a\ngtbUeDi7kCp+3tkBAPPi8VlviORUPO9BcuTExFmrdt4XkOCKhKoMkoN5Roxjs9kMFoF7Mx/9fl/1\nej3m5OjoKJI2FxcXlcvltLq6OtaumpLrnZ0dFYvFqHRiXLa2tsY6ndZqtSh1Pjk5iRb6krS7uxvV\nWQDh3d3dYAgxuiQ8ew4D80JJ7czMTFRXOTXvSt3nmfH09ePOSAoyfC05gPHmRv5srH0+B/PhDouv\ne/fkHeS/qnhTq1RP+r/dYHvlletNQAVr2IGH7yc32ryDAyTf+zxDWj6cAgnGms+n+5nP+z50gOg9\ng9weOMDxe6S2x3WCj2Ua+mHu3UFivvxEXcbFnRqvLnJ94H033ElwMMP1fM2w13wtXkauHKjIJJNM\nMskkk0w+H7lyza8yySSTTDLJJJPPRzJQkUkmmWSSSSaZvBHJQEUmmWSSSSaZZPJGJAMVmWSSSSaZ\nZJLJG5EMVGSSSSaZZJJJJm9EMlCRSSaZZJJJJpm8EclARSaZZJJJJplk8kYkAxWZZJJJJplkkskb\nkQxUZJJJJplkkkkmb0QyUJFJJplkkkkmmbwRyUBFJplkkkkmmWTyRiQDFZlkkkkmmWSSyRuRDFRk\nkkkmmWSSSSZvRDJQkUkmmWSSSSaZvBHJQEUmmWSSSSaZZPJGJAMVmWSSSSaZZJLJG5EMVGSSSSaZ\nZJJJJm9EMlCRSSaZZJJJJpm8EclARSaZZJJJJplk8kYkAxWZZJJJJplkkskbkQxUZJJJJplkkkkm\nb0QyUJFJJplkkkkmmbwRyUBFJplkkkkmmWTyRuT/AWbpZTdZ+8IuAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "%pylab inline\n",
+ "metadata": {},
+ "outputs": [],
+ "source": [
"from nilearn.plotting import plot_anat\n",
- "plot_anat('/data/ds102/sub-01/anat/sub-01_T1w.nii.gz', title='original',\n",
- " display_mode='ortho', dim=-1, draw_cross=False, annotate=False)"
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "plot_anat('/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz', title='original',\n",
+ " display_mode='ortho', dim=-1, draw_cross=False, annotate=False);"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"In its simplest form, you can run BET by just specifying the input image and tell it what to name the output image:\n",
"\n",
@@ -85,26 +87,19 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"%%bash\n",
"\n",
- "FILENAME=/data/ds102/sub-01/anat/sub-01_T1w\n",
+ "FILENAME=/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w\n",
"\n",
- "bet ${FILENAME}.nii.gz ${FILENAME}_bet.nii.gz"
+ "bet ${FILENAME}.nii.gz /output/sub-01_ses-test_T1w_bet.nii.gz"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
"Let's take a look at the results:"
]
@@ -112,105 +107,32 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAADeCAYAAACKVPIgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfVuMXOlV9ar77dSpU/fqe7fdY/fYM+PBcTIJSfSPcgEk\nlCAkojBCQkCUh4hHRCQgIeEBEIlAQwQSvJBIECkXHoiSB4RIQgKjyYTMEOZiO47Hbve9uu5Vp6rO\nqdv5H1pr91eemTCZ9Ljb9reklu12dfWpqu98395rr722D4AHDQ0NDQ0NDY2fEf7jvgANDQ0NDQ2N\newM6qNDQ0NDQ0NA4EuigQkNDQ0NDQ+NIoIMKDQ0NDQ0NjSOBDio0NDQ0NDQ0jgQ6qNDQ0NDQ0NA4\nEuigQkNDQ0NDQ+NIEDzuC/hZsbu7i1KpdNyXcezY29vDzMzMcV+GhoaGhsZ9DB/ucvMrz7urL/9I\n4fP5jvsSNDQ0NDTuY+jyh4aGhoaGhsaRQAcVGhoaGhoaGkcCHVRoaGhoaGhoHAl0UHEb1tfX4fP5\n8I1vfOOn+rn/+I//gM/nw4svvnhirklDQ0NDQ+NO4q7v/jhqzMzM4Omnn8ba2tpP9XMXL17E008/\njdOnT79JV6ahoaGhoXGyoYMKBY7jIBqN4u1vf/tP/bOmab6hn9PQ0NDQ0LhXcE+XP77yla/g4Ycf\nRiQSwcLCAv7oj/4Io9EIAPCFL3wBPp8P3//+9/H4448jFovhs5/97KuWGlzXxcc+9jFYloVsNovf\n//3fx5NPPjnVwvlq5Q+fz4e//uu/xh/+4R8in8+jUCjgd3/3d+G6rjxmd3cXv/M7v4NTp04hFovh\nzJkz+MQnPoHBYHAH3iENDQ0NDY2jwz3LVPzbv/0bPvzhD+M3f/M38dnPfhbPP/88PvnJT6JWq+Hv\n/u7v5HFPPPEEPvaxj+FTn/oULMt61ef6+Mc/ji984Qv4sz/7Mzz44IP4/Oc/jy996Uuv6zr+8i//\nEu95z3vwT//0T3j++efxB3/wB1haWsLHP/5xAEC1WkUmk8Ff/dVfIZ1O49q1a/j0pz+NSqWCv//7\nv//Z3wgNDQ0NDY07CO9u/notPPbYY97jjz8+9b2/+Iu/8Px+v7e5uel9/vOf9wB4Tz755NRjbt68\n6QHwvv71r3ue53nVatWLRqPeZz7zGXnMZDLxzp07N/X7v/3tb3sAvBdeeEG+B8B797vfPfX8v/Ir\nv+I99thjr3ndw+HQ++IXv+hFIhHPdd1XvabXwnF/FvpLf+kv/aW/7u+ve7L8MR6P8dxzz+FDH/rQ\n1Pc//OEPYzKZ4Omnn5bv/fIv//JPfK4XXngBjuPggx/8oHzP5/PhAx/4wOu6ll/4hV+Y+ve5c+ew\ntbUl//Y8D08++STOnTuHWCyGUCiE3/iN34DrutjY2Hhdv0NDQ0NDQ+Mk4J4MKqrVKobDIYrF4tT3\n+e96vf6K770W9vb2AAD5fH7q+7f/+7Vwe0klHA7DcRz595NPPonf+73fw6/+6q/ia1/7Gr7//e/j\nb//2bwFg6nEaGhoaGhonHfekpiKXyyEUCmF/f3/q++VyGQCQyWTQ7XYB/N/zMjisrFKpIJPJyPcr\nlcqRXOtXv/pVfOhDH8Kf/umfyvcuX758JM+toaGhoaFxJ3FPMhWBQABvectb8NWvfnXq+1/5ylfg\n9/vxjne843U/18MPP4xoNIqvfe1r8j3P8/D1r3/9SK613+8jEolMfe+LX/zikTy3hoaGhobGncQ9\nyVQAwJ/8yZ/gF3/xF/Hbv/3b+PVf/3W88MIL+OQnP4mPfvSjmJ+ff93Pk81m8dGPfhSf+tSnEAqF\npPuj3W4fyVTQ97///fjc5z6Hxx57DKdPn8YXv/hFXL9+/Wd+Xg0NDQ0NjTuNe5KpAA4Ekl/60pfw\ngx/8AB/4wAdEu/A3f/M3P/VzfeYzn8Fv/dZv4dOf/jSeeOIJFItFfOQjH4Fpmj/zdf7xH/8xnnji\nCXziE5/AE088gXA4jM997nM/8/NqaGhoaGjcafhw0AZy1+Kgk/LO433vex+GwyG+853vHMvvfzUc\nBXOioaGhoaHxRnHPlj+OEt/+9rfxzDPP4OLFixgOh/jyl7+Mb37zm6/QbGhoaGhoaNzP0EHF64Bh\nGPiXf/kX/Pmf/zkcx8EDDzyAL3zhC/i1X/u14740DQ0NDQ2NEwNd/riHoMsfGhoaGhrHiXtWqKmh\noaGhoaFxZ6GDCg0NDQ0NDY0jgQ4qNDQ0NDQ0NI4Ed31Qwdkc9zv0+6ChoaGhcdy464WaGhoaGhoa\nGicDdz1ToaGhoaGhoXEyoIMKDQ0NDQ0NjSOBDio0NDQ0NDQ0jgQ6qNDQ0NDQ0NA4EuigQkNDQ0ND\nQ+NIoIMKDQ0NDY37Am9/+9tx4cKF476Mexq6pVRDQ0ND457H29/+doxGI/kaDAYYDAbIZDIIBoMY\nj8cYDocYj8d46aWXXvfzlkolDAYDjMdjtFotxONxJJNJlMvlN/HVnFzooEJDQ0ND457G//t//w+x\nWAyu66Lb7QI4GMAYCoXgOA6i0Sg8z4PP55Ng44c//OFrPt/FixcBAKPRCJPJBJ7nIRAIYGtrC4Zh\nIJlMwnEcBINB2LaN7e3tO/I6TwJ0UKGhoaGhcc/ife97HzzPg9/vh2EY8DwPzWYTADAYDGAYBgKB\nAAAgkUig2+1id3dXAobLly/Lc73rXe+C3+9HIpFAp9OBbdtIpVJwXRfD4RD9fh+xWAyBQAB+vx+T\nyQTj8RjPPvvssbz240DwuC9AQ0NDQ0PjqPHQQw8hEokIAzEajRCPxzEejxGLxeB5HsLhMCzLEqbB\ndV1Eo1H4/X4Eg0E4jgMAePTRR+Xfk8kE9XodZ8+excLCAhzHQblcxng8xmg0wng8RjAYRCQSQavV\nwmQywerqKq5fv37M78idgRZqamhoaGjcc3AcB/1+H8PhUEodrusKkxAMBuF5ngQdhmFIKYNBRTAY\nxPLy8tRzTiYT+P1+1Ot1eJ4n3wOAeDwOAAgEAhiNRsJY2LZ9HG/BsUAzFRoaGhoa9xSKxSKq1Sr8\nfj+i0Sja7TZM00QmkxEmIRQKwTAMJBIJTCYTOI4D13UlWBiPx/A8D+12G4PBQAKGXq+Hfr8vzx0K\nhTAYDOA4DgzDQCQSweLiIm7dugWfz4d+v49ut4tEIoFgMIhWq3XM786bCx1UaGhoaGjcVXj00Ufl\nAB8Oh+h2u/D5fPD7/RiPxyiXy3BdF/1+Hz6fDwAwmUzQ7XYRiURgWZZ833VdCSB6vR7G47GUS4bD\nIdrtNoLBIIbDobAaLIU0Gg0sLi4iHo9LkJHNZhGPx+G6LkajEfr9vrAklmVhZmYGV69ePc63702F\nDio0NDQ0NE48Ll26JOLHaDQqAstut4vRaIROpwPDMESQGQwGMRqNcP36dczNzWE0GiEYPDjyfD6f\nlDH8fj9CoRC63S5SqRQSiQR2d3fh9/sRj8eRz+cRj8fh8/mQSqUwHA4xmUwwGAwwGo2QSqXQbDYR\nCAQQj8cxOzuLRqMBx3Fg27YEKqlUCjMzM5hMJrh06RIikQhGoxF8Ph++973vHfO7e3TQmgoNDQ0N\njRMPBgUUQSYSCQCQDgvqGvx+vzyWJYtms4l+vy/Cy+FwKD87mUzQbrcxmUyQSCTkKxwOYzAYwOfz\nIZlMIpFICBtCMedwOEQgEMDCwgIymQyy2SwAIBQKyf+5risBSiwWQzQaRSKRgOu68Pl8ck33CjRT\noaGhoaFxonHp0iVhCAKBAMLhMCaTiRhZDYdDjEYjAAfBB4WWk8kE8XhcRJsUYvp8Pun46PV6mEwm\nCIVCU90b9KzIZDKIRqMAIAFAMBhEOByGz+fDeDyeKn+MRiO4rivXyOs1DENKKf1+X5gOBkP3CnRQ\noaGhoaFxIrG2tobBYIBoNIpgMIhcLge/3w/XdQFANBT0meABbRgGBoMBACCbzaLf7yMajSIWiyEe\nj2M4HEophexDIBBAJBJBp9ORQAUAMpkMgIOOjpWVFQlgms0mQqGQdHrwZ0KhEEKhEKLRKGzbRigU\nwsLCApLJJDqdDsbjsfy/z+dDrVa702/rmwpd/tDQ0NDQOJGIRCIwTRO9Xg+JRAKRSES0C8BBUOF5\nnrAT1EnwgOe/DcMQZoF6Cs878H1km2k8HsdgMJCyRDgcRjgchuu6CIVCCAaDiEajSCaTSKfTyGaz\nSKfTCIfDcq1kP1ia8fv90q7K8ovjOMJwBINBZDIZrK2tHc8b/CZABxUaGhoaGicSDAD4Zds2gsEg\n/P7DoyscDovgkj8TDAYRCAQQCAQwmUzk34ZhYDQaIRQKYTweYzweI5PJiEcFDazYIgocWnFzPkg4\nHEYoFIJpmrAsSxiR8XiMZDIpnSQMdAzDmHqeQCCAaDQK0zQBAO12W8or9wK0TbeGhoaGxonCo48+\niuFwCMuyJKMfDAZyoC8vL2M8HqPT6eDmzZsYjUYya4NCzm63OyXqNE0TCwsLU7/H8zzcunULjUYD\nwWAQ1WpVOjzIKszOzgIAYrEY/H6/6CNYkiH7wcCGWo6nn35aAhuWcEajEWZmZhCJRHDjxo0pViSf\nzyORSGB7extPPfXUcbztRwLNVGhoaGhonChQI3E7W2DbtrAJ7KIg+xCNRqVNk4EIg5B0Oi3GV4FA\nAOPxGMCBkRWDDwCYm5uDaZqwbRuVSkXaVT3PkwmmKuPAn2Mw4ff74TiOmGWpAcdgMEA6nRYDLLp8\nskuFJRifz4d3vvOdrwiA7hZooaaGhoaGxolCq9WCYRhSyuCgLmoWbi+DsEWTwQIZi9FohHQ6DdM0\nhWkIBAIyVGx7e1uCFZYsgsEgTNNEMpnE/v6+/Fyn04FlWXAcB+PxGIPBAKZpwjRNKXWwPAIAqVQK\n9Xod4/EY0WgUrusin8+j3W7DcRx0Oh0kk0nE43GUSiVhVCj+pG7kboMuf2hoaGhonChcvHhRmIfh\ncIjhcIh4PA7P85BIJGBZFkKhkAwF48RQOmHSSTORSGBubg6xWExYCtd1Ua1Wsb29LXqIRCIBx3Hk\nQKd/hGVZYvHNyabAAXMSiUQAAKVSCaVSCcCBPwXbVX0+n3hVDAYDmQPSarVQrVYxmUwQiUTkZ4ED\n/4xer4fd3V34fD58+9vfvoPv+tFAMxUaGhoaGicKZCDi8fiU4JFumhwGxgM8mUzCMIyp0gi7O1gS\nYWDC7hB2hrDDAzgILliqYFmlWCyi2WyKZoNlj06ng3A4jEqlAgCYn5+fsgQnIwJAZonwNS0sLMB1\nXdFf8HWwmyWZTKLX693R9/yooIMKDQ0NDY0Tg3PnzsmET8dxxFOCrpQqG0DwcFZ9I8gkjMdjMaai\n1sI0TfT7fTQaDUQiEeTzeRiGgVarhU6nI+zI2bNn8dxzz4kleCKREG3FeDwWM6vNzU3Yto1z584B\ngAQeZCdYGlHni/BaGAxVKhX0ej1hT+5W6KBCQ0NDQ+PEgE6ZnOvBw7nVaqHb7WIymSCbzYrRFYWX\nzPTJFgCHPhZ8Xv5JjYVpmohEItJd0ul0MJlMMBwOMT8/j0qlIv4ULMVQCJpKpeA4Dnq9nrAoBPUc\nZFMcx4Hf70ev1xPtRywWQyQSkdHo1GpwcBmZjbsNOqjQ0NDQ0DgR4BjyXq8nhyvHiwMHh3WlUkE6\nnZbyAmd00JOCTpiDwQChUEgOez4HDa6CwSCKxaIc8p1OB/1+H8FgEMlkEpVKBfV6HaZpvmIQGdtA\nOf+DbAS7VmjERXdNANJBwjbTVCol3SHsanEcR+zGPc/DxYsX8dxzz925D+AIoIOKexhnzpyZsoT1\nPE/ot0qlglarddyXqHGf4NSpU7LR3rhx47gvR+MEolQqwbIsMYLifkVTKmbvsVhsSotg2/bUYe55\nngQTfAzLEJwKmkgkpNsDADqdjpQyAoEAdnZ20Ov1EA6HEY/H8eKLL+Id73iH7Kd8TgBizV0qlRAK\nheA4DjzPQzweR7fblY6VYDCIlZUVOI6DyWQC13Vh2za63a60zkYiEUSjUWE2hsMhVldXcf369WP4\nRN4YdFBxF4O0XSgUmlImE/1+H8lkEuFwWBTNbFUKh8M6qNC4I1hdXZWsbjKZYG1tDVevXj3uy9I4\nYeBkUNVOmzM7WHIwDAOpVEpYALIZFFdS4Ek2gF4QAITNCIVCGAwGUnoYj8diB16v10UoyUFkqVRK\ngh0+L4MT/m7DMMSoiwmc2l5K/wp2poTDYSnL0L6bDAuFqI1GQwSkc3Nz2N7evtMfyRuCDipOOEKh\nEDKZDPL5PBzHkYg1HA4jEokgl8shGAxicXER4/EY3W4X6+vrWFhYEOMX0nKM4hl9p1IpHVhovGlY\nXV3FYDCQrEy1TF5dXZWDYnNz87gvVeMEIBQKySFcKBQwHA5FxMgSQz6fR6FQAHAgwOTB3u/3ZY1x\nOiifix0htNnm//GAp303H9/pdBCJRJBOp4UJWVlZwWAwgGVZSCaTsG1bBJvhcHhKBMrOFJY6yJgE\nAgFhNTzPE7dPVdBJASfbW13Xvev0FQEAnz7ui7jfEYvFEIvFkEqlkMvl0Gq1EI/HEQgEMDs7K0Nr\nWOtjPfCBBx6AYRiiZgYOREiGYcA0TWSzWalHZrNZGchTq9UwHo9RLpfFNEZD42fF6dOnJVOMRqOo\nVqsIBoNwXRfJZBI+n0/WI4ML1qa52VKVr3F/IZVKyShwy7LEcyIWi6FYLGJubg6pVErKCGwHdV1X\ngtO9vT20220xqVLbOjnWXO3KYFkYOEjSYrEYLMsCALz88st4/PHH8b73vQ//+I//iHQ6ja2tLRkA\nFo/HZY9Np9PCsjCYIOugMif8k4yxymRQz+F5nrymSqUiTItpmkin04jH4yc+EdRMxTHCNE34fD7M\nz89LLzWptE6nA8dxYBiGRLMA5E/eVGyz4qKNRqOinqbffCgUQiwWk41crUf6/X6Ypol2u31s74PG\n3Y98Po9WqyUWxWTIKLRjDXsymYgxUTQaxXA4lI2Vqn3S2q+F5eXlKXHecDiE67ool8t35LVqHC3O\nnDkDwzDgOA5s20atVkMqlZJOiclkgmKxCABSsgAgh3Kz2US/38dwOITP5xORZywWk+FhaplEHT7G\n9Tcej+G6LhqNBjY3N5FIJKSD45d+6Zdw9epVccVst9tSQqYIVC2zcC9X7cIdx5nSSjAxDAQCyGaz\nqNfrU50ltm1LmytZCr/fj3a7jUajISZaJxE6qLjDyOVyIgAqlUpSPyMdx4M/HA7Dtm0YhiFUGRcm\ngClhUiwWE6c4Co/Y5gQcBBqsNzJS7/V6IoQaDAbSHhWJRCTA4A1M0VG9Xj+Gd0zjJOHRRx+VwJb9\n9lwvnU5HAmMAMteAtPNgMBANEHvx6XRIzQU3eAYNRCaTQSQSQTablcdxvbquK3qNbDar9Rp3ER55\n5BHE43FZF5PJBPv7+2i327AsC+l0esqumyPD2YXhOI7oybh/hsNhGZXOQLXX60mpJBqNynrh/qse\n3AxCnn32WQQCAfR6PTQaDViWhV6vh42NDViWhbNnzwr7ARwaXFHvwYCDTp7qv9W91fM8GIaBdrst\nOguy1/w3r4llaxpunURom+47AMMwRDS5uLg41WbExc0FmUwmJarudruIRCIIhUJIJpOo1WoYjUa4\ndesW4vE45ubmhBLjwmfETs0Ff5blE7/fj2vXrsHzPJTLZalHqgeA2t60traG8XgsN+hkMkGz2RRF\ntMa9jaWlJeTzefR6PbTbbRnKxJIZ147jOIjH46jVahgMBrJxZrNZWJaFZrMpPfuBQGAqEOZBEolE\nMJlMEIvFMDMzA9d1sbu7C9d1YVkW5ufn4XmeqP0ZgPd6PfEZ6PV6yOVyaLfbUxR5t9vVQfEJQiQS\nQbFYRCaTESZrNBqh1WrJ+ohGozK5k+uJ5YHJZIK9vT3Ytg3XdVGr1WBZFgzDQCgUwsMPPywBKgAJ\nQK5du4bZ2VkUCgUkEgkAhyUKMl9kGkzTxMbGBhYWFmRNq2tbfW7u4SyzOI4j5RCue7auUj8BHAYY\n9LTo9XpoNptyH9AddDAYoNlsCpOzvr4O27aP4ZP7v6GZijcZdICbnZ1FMpmcytxI15F9IEPBQGM8\nHkuJhBEwcBDFUmdBW1ng4Obo9/uymZqmKVEzMRqNEIvF0Ol0kE6n5bGk4ti6BUBueN48ZExY87zb\nWp00Xj8WFhZkEx8Oh5LVAYclONd1ZW2RLiYlzIyP653zGcgmUCBHlT9LfO12G7Ozs7LmwuEw+v0+\nLMsSFo7zHdhyR5aPpT8AQjVHo1ExLmKZTwcXxw+yS9y7yFiFQiGMx2PkcjlEo1EpiwAHQ8YYKDQa\nDfR6PTG7Mk1Tymh8DEtoLPOORiM8++yzuHHjBh5//HFhLABMaSBU3woK5LmP0qmT108tEEvN/X5f\n1i4DBootu92u3Bdcs/yTgUcikZhikxl8q7biHDymg4r7EAsLC0gkEsjlcnIgs8+aG+RwOBRPeVJi\nFF+S5iPFzCwtk8mIcIdZYqfTQa/XE5pvdnZ2yppWnXzH+uRgMBCVcSKRkEOj2WwiGo0im80K5ZhM\nJgEc3Civ5iCncW+AVsRco+PxGK1WS1wFVdqYdWOycNxMWcfmuvI8D7FYTIRx+/v7wlJwEw+Hw9jb\n25MNkzXnbDaLbDYr7X0cwsRuAF4D/07WjtdLBpB/TyQSmJ2d1SzbCQAPZP6dAsjBYIBGo4Fms4lG\noyF7J1lXlizUJIitqOysYAmNAUYoFMKVK1cQjUZh2zb++Z//GaVSCY8++igeffRRCQwYKNBjgkPM\nuE+zDMHAejQayZyOy5cvAzjoXKH9NrVrV69eleCZonq+duqP+D4w2BoMBhLQNxoNCVz29vaQz+dP\nrIZIBxVvIjKZjFixsvQQiUTEtrXT6QgDwc2VugfSxIPBQEoUpHxZi6O3PekzNbNkFkkFNTd69mBz\n/C4pP8MwJNLm4o/H41OjhEnlURyn2uFq3BtIJBKyufPgr9VqoqLnYCbSwKR9SRc7jiNriAEpN38G\nrdTvDIdDGcrUbrdlrVLcRpo4FotJ4AEcbrwE9UYsn/AeAwDbtiVYV2vYt2s2NO48uOd5nodUKgXg\nIKFptVoyirzf70sZmFk8gKlgsVqtSvktFApNMbAsSaiGU2QuaHC1vLwsgnbumwxKer2erGuuM+rc\nRqMRDMPAj370Izz11FOo1+s4d+4cCoUCIpEIHMcRJo4unrlcDoPBALFYDACE/aDeg8EL22Nd18Vg\nMEC/30ckEkGz2YTP50On08GpU6dOpJGc//9+iMYbwfLyMiKRiESr/DtpNrbRMctiVErajjVrbuKk\nkbnZMgqnxkFdmOl0WoIIAFNGMfTStyxLaLZ4PC5lFN5cFBoxS6BymoFJJBKR2ifr3Rymo3F3wjAM\npNNpaatT2/Xo/kfzH64HbtZq6YFlj0gkIoGvqqdQWQRu/swS4/G4bMTA9MHDYIJlDbJ9wKFhEICp\nmrWqJaKFM+8THlAax4Nut4t0Oi0HsG3b2N7ehm3bYj6VTCaRy+WQzWZRLBaFOWPpg8ZR/IxjsZi0\nKbNk0O12ARz6YJA5i8ViaLVaeOqpp7C3tzfVsRSPxxGNRiXIjcVisja73S6Gw6Ho3L72ta/hxo0b\nGI1GaDabwjCzdOF5ntwntVpN7it+fzgcStmEATETUTLNHHZWq9VQLBZhWRbi8fgxf4KvDs1UvEko\nl8twXRfpdBqmaUpUrUbbVPc2Gg25KSiQJG3c6/XQarUQjUbRbDaRTqflIB8Oh9jb20O/35ebod1u\nIxqNIpVKSWDQaDQkS2QtLh6Py3OR6qOIiC2o1GwEAgFhVdSyjM/nw9zcnNTTQ6EQzp49i3K5jLNn\nz+KZZ545zo9A46fE0tKStHmqw5qY1TPjUx0K4/G4dH3wMCdLQeqZjIU60wAA2u02stmsBNqxWEyy\nuG63K+UM/s5utwufz4dKpYJCoSAZJFuoKSS2bVuYlGKxKAEFjbgajQYKhYJoi6rVqmg3NO4c6vU6\ner2eJC/7+/si9m00GhIE0ICqWq0iFArBMAwpd0UiEaysrEyNGGfCxEOXgejc3JwkSaPRSNiAl156\nCS+88AIikQje+973Ynl5WcoqZLVUXVu1WsWVK1dw+fLlKX8VJn1qqzOAKS8WAKjVamg2m+IjBEDO\nCJ/PJyW87e1tEabevHkTnudheXlZ7j+6fbquK7qTkwBtfnXEiMfjsjnSHU0NEGgxy9LGeDyWaHs0\nGkmXBUsXjGA7nY4wDIxSu90uWq2WRMiNRmNqYA2ZEbaNklqjCRYje9b9WOqgMI6RMuvmpBJ5wPT7\nfRiGgUQigXg8LkyI67pwXffE9lFrvDpWVlbkcFbdCrkOWX5jOYMMGoMLrhMGyKZpTk2JVHVF7MXn\nzzMAZoaoCpYnk4kEwxxNrXqvsGRIcXO1WhXGjr8/kUjIWGnbtmFZlhge1et1MY3TRnB3FlwTk8kE\nqVQKtVoN7XYb6XRaSiKGYSCTyYgurF6vi38P2QXqKWZnZ2UNMZilLTa/gIOAliyWKmbf3t4WNoAB\nMk25dnZ28K//+q/4n//5H6yvr8teTXZkNBphfn4eS0tLU50ffr8fe3t70rUSj8fh9/uxv78vnUlq\nNyCD30qlIudDo9HA3NwcwuEwCoWCBDitVmuqFfUkQAcVRwBGxMyY2M9cKpVgGIZoJNiPzI2VbUkc\nKOM4DrLZ7JRWgfayrusikUggm83CNE2ptzFTYx1SXeDcsEn1knJjrzZviHg8Dtd1JZJmsMDAgWpo\nZhR8Pb1eT25gvhbHcdBqtYSy6/V6x/KZaPz0KJVKUxsp2Sh1qBNLEOr/kSFgiYKbJksfzNLI0LFt\nmcEuS3AMIFgaYW07Go2KEVKtVhNGwbIsCRpoxRwIBNBut2EYhrh40nuFa5brlaXHUCgk9svpdBrZ\nbBbAgeBOB8ZvLpjVu66LWCyGzc1N0UUww1f9H9TSL0vBHF9eKBSEVWCpgh0W/X5fErRcLidjxlkm\n5p8MSslklMtlTCYT/OAHP8AzzzyDer0ubAmvh+WM0WiEn//5n0cul5P7g2uaz0kWkNoOrmUyaUz2\n2EKqer+N4qUZAAAgAElEQVTk83lMJhOxCSeDw66qkwIdVPyMUKfhccGPx2PMz89LLzSZAW6yiURi\nqs2TBzVbhGKxmNSS+fzhcBiZTAbZbFZoZlJsw+EQlmVJVMxDoFwui3cFn5uHQjweF9MZANI5wuwz\nmUxKPZCbcTAYlMOBwqh4PI5sNovRaIRerwfbtiUrZPaXTCalrqlx53DhwgVYloVarfaK/zNNE6lU\nCktLSzh9+jROnz4tm7fruqJ6Z7an2hyzh54ZFXDQFUSWjmuQ64w/Rzq72+2Kv0UikcDMzAxM00Q+\nn0cgEMDGxgZc10UkEkG328VgMJA6OjdVv9+P9fV1BINBYdHI3CUSCczPz0vdm1olBgj0M2AgzMmQ\n9EYIBAJTw6F4z/A90Dg6jMdjnDt3Tg7pfD4vIwVmZ2eFmVUniqqCWx7Q6nCwYDAovhfBYFDYU3pg\nDIdDzM3NYWlpCbFYDOVyWZIzrvdKpSJM2n/+53+KwZvqfeH3+7G4uIi3ve1tWFtbw4ULF2QN3S5i\n5/pkOS+Xy+HGjRvo9/vCmti2jclkIkw0X4vf78f8/DwymQwWFxdx/fp1DAYDVKtVSeROkuhYayp+\nBnAELzei8XiMWq0mWgTqDJjZk1pWW+7YicFAQ2UMWPtjXY8mVswKWbZQ6eZqtQrg0BmOrIa6YVKk\nxCyAgQUAOQBU+1rezCzXMKDh5sv6JgMPTvTj43kQnWQXuHsFmUxG/EUoqH3ooYde0UJJBkn9vMka\n0K1SHUTHzC4UCgkTEYvFpkY0s6tJbe+j0BOArBMyD/w7BcLcUBmcdrtd7O7uIhqNinCPZZHBYADT\nNFGpVJBIJMT+m0Oo+NqYAQIHAbUa4JMiJ/PC0geTBODwHmeAEQgEdIB8hHjnO98pTBXXDLUJiURC\nPEX4WXJfYfbOfde2bZimKcGsqoFQPR5Y6uDelMlk8MADD+DmzZsiCOZzcv/l2uRzstRw8eJFZDIZ\n+TeD2n6/j5mZGfH/YQdJt9uV66xUKkgmk9jc3BRWhSJ4Jm2zs7NyHpCVIYNIPQU7VE6SZ4UOKn4G\nxGIx2LaNBx98UBY6D1c1q6EYBzjsSVYXOBclBXGtVkuUztwUM5mMbJ6sA3a7Xdn81I2QZZbZ2Vn5\nnYzAg8GgGMuQAmY7HgOFSCQitUfeWGzrYwTOtixqLrhx88ChHTnr5/F4XAcVbzI4kA7AK1il06dP\n4+WXX5bHMlhstVoSGJJSVtuTWfbg34HD9cTfwzXE7goAolpXy3Fkt6iuZ4bGoJMiTbrE2raNQqGA\ner2OUqkkwYnjONjZ2ZFSSzablUmR1WpV7q1AICDtrcCB6JTrVe0W4P1IdpDvHV/bZDKBaZqIxWKi\nLdGzco4GDNbYLUSXS3accQYS1yG7PiaTiVh5A5D9hwwG2StVswFgyliKbHE6nYbjOKhWq+h2u8I4\nAxB3YZb2yAqvra1Jlx3vBe6J/X5fyi6qERzLaSyfpFIp8WJR5zRxz+S+qTI0/FkmazRH3NnZuXMf\n2v8BHVS8QVAJv7i4KAd9MBjE6dOn5WBmbY/GUaqxCUsa3Hi73S4Mw0Cj0ZAaNOlkdmqQ4fD5fNLj\nr1rMAhC/gEKhIKUTCt8ikYi0SKniuNt99VmmUcG+bdVHg/3anCNimqZkAWwRpELfcRxcunQJw+EQ\nOzs7OsA4YhiGgaWlpanyFz9fqszpV0JzqWaziWq1ihs3boigOJfLyecMHHigUFdDJoNZEzdfZk7U\n4pCqVg2y+HtVF0E10CALwNIKyzOqR4AaOBuGgVqthoWFBRiGAdu2ZS4IszYeTAzwo9GoCIrb7bYc\nKslkUjZuBiNsn93a2sLi4qJkyHSp3dnZ0c6cR4BOpyNUPvenfr+PTCYjpTtabLPjbXl5Gc8++ywK\nhQIajYYcvNwz4/E4ms2msG4AZJR5t9sVNoAMnWVZ0uV248YNYYLp28O9LBQK4ZFHHkGpVJoSYXJP\nBg6dQVWNA7VtLHtwIBgD1FarJS2k6XQawGHyydJGJBIRdmVhYUHui52dnRMnLtY+FW8QHMPLDTwa\njQrtz+yHDoJcpKyTqQYuzJj490QiIe1B3AjpRsiNlQtUxWQyETdNZn+qpwU3bmZnqvU2a5EA5DWx\nrANgyryLrIrassUbUB2iw6wXgFglsxxEIZzG0SGXy00xVTxQeegDB5sbFfXRaBSlUgnLy8sSBDab\nTezu7qJcLosOgZ08DBxJJzPIZAbJ9ZFMJpFMJmFZlnQ08ffxGtguyiCWojhVhc+ODZZEyIDQ84XM\nBLUdXJuxWEweywCXdXfbtkUgyrIiO6J4uJFtiUajUuYwDOMVWgrTNLG8vPwmfqL3B7rdLsLhsIjB\nOTum0WjAcRwkk0np2PnRj36EbreLZrMpLfM8hJnIseynChw5mpz3BEt+1BBRLMpggc+nrjkGptSP\nAQfMQSKRmLLm5mO5x6sus5FIBOVyWc4A3qcsazM4YfmQ82oqlQq2t7fRbDanOvtYQo9EInJfnwRo\noeYbxKVLl8S/IZvNSp2WLpqBQADJZFICArITFBQxGyRDwNZPTqELBAJIpVIolUpCGQcCAVQqFVSr\nVfT7fVSrVezv76NWq6FcLgul5/f7UavVpMYIQDZtitdIb/Owp4kWDYp4nawzUkvB0ko0GhX7caqc\n+bpU0xc12GHWyGx0bm5OMxZHgIceekgO2fF4LMyYagBFjQw/J3ZFsOMhFAqh1+vJ4Vqr1VCv19Fq\ntWRmAcE10Ww2hRKmqp5rhep3VafA4FX1oRgOh6jVarJB3m6/vLW1JVkar8F1XWkzpPpenb9Qq9WQ\ny+XknmJwu7W1Jb+T7pudTkdEpJyb47ouKpUKTNMUYTQDGABTLE2pVHrVIF/jtXH27Flks1ksLS2h\nUCgAgCRCXMcqOwEcdOJ4nodcLicW2FxPi4uLyOVyIsqt1WrSxk/miUkSNUBco6oLsd/vx/b2tpQx\nUqnUlBX9zMwMisWiMLnUEjFgYQmH7AhHpaumbfT7qdfr6HQ6MrOEc07UfbdWq6HT6YjQnu2jLF27\nrivdIydpBpMuf7xBZDIZtNtt0SUAh172arDALI4ZGKliir9UpTI3fR7y+XxeDgRSaI1GA+12W6aS\n2rYtwjoyBz6fTwy1uODz+byI8fh8pOnY/pnNZtFut+X/CL4eZoLxeFz860knq7oRth4yK1DfD4o7\nT5phy90Mrh2KKtW1xC9mg7d3HXHN5vN5RKNR3Lx5UzIplj54yNP3hGuBwlzP85DJZCQgACDlEl4f\nfzaRSEwp1fn7qbaPRqPIZDLw+/3o9XqoVCro9Xoyy4YBKdusAYhfAd0J1Zozy42qXsS2bbkfyB6y\npZVCzFQqJeZ0fO94KKkOnSxxsvyj8X+jWq1iZmZGyhOZTEb2gkqlMsVuxWIxtNttYW2z2ayUvujE\nyUA2Go3KoU1fHzIBDCwNw5DZRvxZev6wW4nmgAw+yGRwj+M+xnuJJlr8eQYs1L0Nh0MUi0XRpAUC\nAaTTaUmo+Npv77ZiOZmBBZ+7Xq/LyHeKlk8SNFPxBnDx4kVYliXZHQMBbk6qzTU3KmoRVOtsRsTs\n7GAt2TCMqbYiVZG8s7Mz5RfBOnEikZChTn6/H61WS9qYyCYAh575nO2g1gWZIbC+qIo1ee2BQAD5\nfH7KeEZVLVMExVZAbvY8bHjjbW1tIZlMYn9//3g+xHsI1WpVbOG5NlQzM/WgV2ccUMzGz3c0GiGd\nTotNPLU41FuobcwqfQxAXAxpCMR7gtQu15nf75ex5HwMyxzj8VgCZtu20W630el00G63sbq6KqI4\ntYOKr5X3B+83BjH8HYPBQLI8dfquOqlyNBoJO5PJZCSDpJMnDwsGVvwey4lkbDR+Mubm5mS9MPgj\n88RsfTQaIZfLyV5Uq9VE9Hv69GnUajXJ/hk0kG3ifcBgkGwxSxOcraHqIoCDz397exsARATJRMzn\n88GyLCwsLEyVONRkioELu//ow8Kgmn4WvV5vqiOQQTJnfJimKYEVR6EzSRgOh1LGUw2wThLjq5mK\nnwKWZcHn86HZbEoJ4OzZs7h69Sr29/cxHA4lsi4Wi1LfU9s/uQly0qLqMhgMBqUmrNLN3IxZMqDx\nCTdvCuhY9tjb20MymcTa2pps6KR9d3d3kcvl0O/3sba2Jmp3AHID84vXytIJAKHdWG9kwMAbmS1V\npAivXLkifdY0Auv1eigUCtja2rrDn+C9C3XWC3BoxObz+bC+vi6fl2maErDy8+bmxM0tEolgb28P\n+/v7osjv9/vI5XLI5/NygNZqNVSrVUSjUTQaDdm8AYiRG1tN+X12CtFCm0EO1zyDaG6qxWIRtm3j\n1q1bOH36tLByXNcMzFmWq9frwjpwrTqOg16vh9XVVQkGfD6fiC85JKrdbiOTyaBQKMhzqo60BClq\nakb4Gqnv0PjJMAxDGAWKIbl+qIE4deoUAoEA9vb2RMRu2zY+8pGPAABu3bol03F9Ph9SqRSazaYE\nuuykYzLEwM91Xel24uwl7s/sGhmPx9JRxO4fJobcxxnI+v3+Kedilr8BiOiTHhSJRAL5fB6maUqr\ntG3bqNfrSCaTME1T7MkLhQJu3Lgha8y2bVlnbL/d2dnBzs6O/L6TAh1UvA5cunQJwWAQ+/v74lzZ\nbrfF86FYLGJnZ2fKz4HZnHr4q+IcNZhg4MGNEjisQaseEuymYCupSlOToaBGgnMTut0uotGolCsA\nyGFDNoIUGgWdDFK4QfJ1MPJXM1EKAbvdrphnBQIBNJtNESVxs2A2zOe43SBG442DWRNb7kipklka\nDofidGrbtng5qF0iXHOBQADFYhHdblc8TdjWx06hYDAotDWnSNq2LWwC1zvXGteo6tSpZnkMSgFM\nsVv0cllfX8etW7ewsrIiQa7Kdqg+BOxy4ftA1i6TyQCAlPFo38xsETgUGPN5OWmSP6cq/YHDCal8\nrzV+MlZXV2VdcOomcBBokBlYX1+Xw5cePvV6HZFIBP/wD/+AfD6PWq0mrDDXJEtp6oHPBIglDerI\nbNuWRK3T6QA4sO7mPsokDzgcUc7SMPdFtW2b+zDZYrWLjz/LEen9fl8Ybs6DAjDlN1EoFMRLhp1I\nfJ3NZhP5fB7JZPJEit51+eN1oFQqiekPa1w0j6JgiAKvdrst/cdq6x0AYSoYLKi+9YyUGSionRPM\nxth+xMObwQsXLyPZTqcjgiFeW6FQmPIOoNMlr1FtS+JNRUEfgxT176QoSQFzymAwGMT6+jr29vak\n5ZXzQfieAAc3ys2bN+/8h3kP4pFHHpHshRsqNyFmbaxPM6BVD/HbPVMYLFJ0y2mOqVRKSiKq6Rp1\nF8Ch/wWpWgruxuOxBMMsIdA4iI8HDruP1L+rHSAMYoCDNcR6Ng+qZrOJubk5EV3SnpnsAzDtisgg\niNfPeSK8d2hZrgqtVS0SAPEeSKVS4rGhfSxeHblcbqoUzJZJCtsXFxeRTqdRLpclAOX7btu2jEan\nDi2fzwsTwUSPASYA6Qjh3suyL9cLcNDW6vP5sL+/LwJiuruypZTBATt+GBCTbWHb/2RyMNCO3VLA\nYambpbRmsyl6C7qFqgPzYrGYmCIysKcbLVuvGaiz+4WTTk8CNFPxE/Cud71LGASakdBOuNlsotvt\nYmdnBysrK6KD2NzcRK1WE0FQLBabmuehKtspPuKmpdaGOfiLmyYPY2ZnVAQnEglREfM5C4WC/B9F\nS7u7uyiVSjKeXGVJVIaDgQkDGQr/VPpPVeP3ej202230+31sbW3JDZpOp6X+yOyPbMhgMBBHOWYJ\nGm8M8Xgc169fl0mN4XBYglquWbbrqR4pNBUCIIO3mJGppRIAEkCSDSGzFQqFUCwWRUdTKpXEJG00\nGqFarQptzeyO9u8ApB3O5/OJEywDER7q1HgwKB0Oh5LBqr+r0+mg1WqJruH69esolUoAgNOnTwOA\n2DlTG8FBTpubmzhz5oyUaQKBgPhYeN7BYDLVeAmABCt+vx+FQmFKvGmaJqLR6IlS5J8EzM3Nia6F\nBzoTHJZOWapjqZkZPQMFeoUAh2wuRZdcS/wcyFRYliVTRAHIPpTNZmUCdKfTQbPZFJ0RR65zn+W6\nqVQqmJubQ7fbRSaTQSQSweLiosxYYjcRBb/UpVGgz0CDr50JJnVu9GdJJpO4cOGClLqZwLFM2Ov1\n4DgO9vf3JdE7KdBBxWvg/PnzIgKiCFHtkSfFSh0EcFBHZsTMv7Nmy42ZWRFru2pAQeMptduCf9Ii\nmdEoOy54EJimKQc8LV5VK1tutmy743OToSBbwVqySkHTfIXvA+eE8PrpW0CXOApVVTqewRJw2HWQ\nSqVw5swZPPvss8fwCd+9yGazIjTjZrO7uwvDMODz+VCr1URMyw2JnwE3W3qPkEXgGuH3gcOZNHQI\n5GFApoK99GTCEomEPEcgEEA2m5WOpE6nI34l1A1xSBjvDa7n7e1t8UFRnV8BiMaH36M2KZVKwTAM\ntFotXL16FbZtY2NjA6urq8ICMjskS0PTK752vkcMwgDI+ufrZXDEEp4q9PT7/eLIqJZ2NA5Aqp/M\nLHDoQkkR5vLyMmzbxubmJvb29rCysiJ7CTsg2IGjatH4GQGvLEOxnMt7QWVJVH8Mih0Z7LIDY2Nj\nQ0qEDDKYOFE7Rt0NNT9cP/yTGg6223MPJiNI221Oz+W1ktF2HEfYivF4LAL3+fl5xGIxXLly5c3/\nAF8ndPnjNbC0tCQKXtXcJJlMvoICTqVSkt0zo+FNw40sGAxKmxIjWWaPpHl5mKvBBACJUEOhEOr1\nugQivEFN05QhXtRS8NoYCAWDh/bcqoKfVK76+9XWQ7WDRVUzj0YjoegovCM9nk6npzpd+HoZZNCY\nxrIsZDIZ5HI5WJZ1ohTMJxk0EGOmFAgEJAti0EptATczMlAsl6kBBmlYVSDMzRc4NEhjZwcDT2Zf\n3W4XMzMzcvDz/7jJJhIJ8U1hQKOOe6awV+02osCSBw7ZBWogVCYNODQiUu8D13WlNZTPSwGrWnMn\nG0edBQBheZgJk8Lm99glxUOF7ztLNAAk09Y4wMzMzNTgQ5Ztue/QoprW6yyJqPbVZJImk4kEnWxr\nV5MX1Ujqdv8IdYQCvSOq1apoglKpFGZmZpDL5eC6LjY3NwFA9jiWwRcWFqSkzHU9GAzQ6/XQarWm\nNBcMfqnh4OuIxWLY3t6W/x8Oh9jf30ej0Zgqu/H1uK4r10pmu9Pp4KWXXjq2z/V26KDiNbC8vDzV\n6sasiBPvMpmM2KUyW2Fmn8vlppz86LSp1qFVpkCtMbL2xxtPpQkDgQAymQzS6TSKxSIWFhawvLyM\nfD6PVqslmxkPDZq1FAoFlEoloQBZB1Rr6qyjk3rmNdyuneANyqy10WjIe0YTJQZhDISAAwq90WiI\nv4ZpmvLeUdzELgKNnwy/34/Z2Vnp4Ein00in07BtG+vr62i328jlctK6mUwmJdshS6R27HS7XXQ6\nnSlXPgoVQ6EQarWaCD5Va3cq2C3Lkufixsm/s3QQj8exsbEhxkVkVRhwslRiWRYmkwNr8UKhIG6e\nfDzvC7WbiiwEGT9OuMzn8ygWi8hmsxLoMFDnY2k6ZNs20uk0arWa3KuhUEjEezz81E2eAR3ZSrV7\nhf9Pqvp+x9ramrQXqwJvsmJkflSNGfUPPKzn5+fFHJCmgEzmOFmXmgZVJ1MqlcTTgns5WeFwOCxa\nCpa8crkc3v3udwub8NJLLwnrvLKygslkgoWFBSkvM0idTCZSClY1cWwnZZAdDAZRq9XwgQ98AFev\nXpUmALbOsnRSr9fFP8MwDDiOg0qlIomc67rY2trCxsbGidLwaJvu1wAXKzdh27bFXIftdPT+ZwlB\nndWxsLCAYrEoh7o67lztCFEFP9wcAUgky8CCmyFV9wwQmBHyEGA9nBlWKpUSMyG+HgZLauByexam\ndmuQVlSNWW7fAPi7mV2qP0eGgze8avtMSpw2tRo/GZytARzan3PeQSqVwsLCghzqzIrUmTHs+GHA\nR9U9v8eNngZSbLtjaYOHOINlwzCkpsu2TlVszBbScDiMubk57O3tidhZ7ZDifUYamwdzMpmU5yRD\nxusge0bGQu3UoLfG/v4+fD4fFhcXxfU2GDxwV+S9TGq52WxKhwDvP27mbN0m00GGhAwmy5zMWNlh\ncpLsk48TfG/4ean+OGRxqUvgn2Tgms2mfP5MQpLJpOw73Ou4xzGYo3mZyhhx3wIgpWAmSplMRubN\nUADJeSTAQdkxl8thbm4OxWIRwOFMJLIjDMTV/Zwj17nHkV3+xje+gV6vh1u3bonQnR0xLBszqaRj\nLIWtZIxvb3c+CdCaitfAU089hfe///2ygTUajamBSQBk8afTaVlAHDjEmh/rZmQ8VI0EN0UGD+rc\nA95Qah2N4Oaqlkp4SPt8PlQqlalWI5/PJ2IoHgpqkMLHqMGE+hpJ6/IGVtsEuWnyQOAoXt7YDFY4\nxIliOt54hmEI5TyZTJDJZPSgptdAsViU4KBcLkvpTa3f82BcX1/HqVOnhJ5VB2Zxbd6uy+l0Opib\nm5t6DNXvXIM8tHu9nhi2MXBgEErGrlarCRvAzblarUpfPuldVaGvBtrB4MGAJYoxmXlyHgnXIa9J\n7XZiUBAKhXDt2rWp4ODVWlH52siaARC3WlLqNOfiZ6GCAYfKmPB33O946KGHRIjLshH3MOBwOjPf\nb+omqGvgWqnX68IK8TPnnxT4srvN8zwpzak+LL1eT4YrkoUqFAool8vwPA+rq6uS9LBcuLq6Ki6c\n9NuhHkntXqJ4meuJTAuvjfsuGRCWSVgy5l6/traGjY0NeX0UknJuDRkXNaGcmZnB7u7uMXy6r4Qu\nf7wG3vve9yIej0t3guM4KJfLEnnSHMXzPDEEYvRMLQZBTQI3OVWvoD6GGRdLFPxdw+EQ+XxeepgB\nSGTPGvPW1pZoN0gvLywsADjokd7d3UU8Hp+yXo5EIqjX63Kos+Z4u5+A6qGh6iTYZqvS2RSK0g+B\ntuL1el06WSKRCAqFgjAuzBh5OOmOkGksLy9jdnYWuVwOmUwGiUQCrVYLu7u7yOfzUqZiiYyOpZz8\nCBwEDN1uF/1+H91uV/Q9LHdx89rd3ZXMjkJKPl71BFBZEDUwvnnzpuhtWDOmyK7X6yEajaJer2Nj\nYwOlUkl+Py2/KS7lmqAglfNMqHFiNwgDFlWQHI/HJWDg5suMrtvtotVqyYwTBkJka5jJskZPIR1/\nV7fbxfz8/BSTR8aF9yMPEQrt7mfX2DNnzsDzPFQqFSQSCdFBcGQ3kyG/349ms4lOp4NOp4NCoSD7\nRCgUkrIoP0ufzyfPpba7899kXWdmZuQz5aE/Ho/RarUkCI3FYjh79iweeeQRfOtb3wJwsL9tbGzg\nv/7rv/DQQw/h3LlzeOSRR4Qx4LrnOuO+SHaOk5n7/T5SqdRUoK6Wu2k9znKe4zi4ceOGiFpnZmaQ\nSqVES8H7kgE22ULXddFqtY7nQ74NOqh4FVy4cEFoVx6EXETMdjjMiG1ApPSAQ6aBh7CqLeBGx2gW\nwNTNoPb7BwIBXL16FZcvXxZaGzj0mmfA4ff7xXGNvfrpdFr8BShAUoOGcDiMW7du4Qc/+AH29/fF\nEpe1cdUAhj/LQwiAvCdqyxQj+FqtJi6G9Xpd6usMQOjfrw7QYW83rWq13fEB5ufnpcxBVmEymYgZ\nENchxzpzPTSbTWQyGWGzOCCLtX5u6szqAEhQwBKZYRjibcFuJpXJYhDIx7PXPpvNIpFIoN1uS62b\nbdI+n0+EuQyGACCfz4snBrNEgmwGy4sMPPheMFPk46gtImNA2jkQOLBepiCT2bFpmlMdJsyiVRbP\ndV1pgeb8ErWrSm3DZiDEAySVSqFWq93JZXNisLy8jP39fdHecB1zf+n3+5JxMylSE5elpSWcPXsW\n1WoV8XhcWEy1dMrPW923AAgjwecjG0YWifovJlAMtLe2tiT4NgwD586dk6CZZQnu8ao+jfuYqrNQ\nRzYAhyPNW62WMI8sK3OPpMtxOp0WF+J+vy9BPF+r6icTDAY1U3FScf78ecn4aGfcaDSkcyGfzyOf\nz8MwDORyuakpohRzsjTAjZBBBTcpsgzcOLlIVSFkPB7Hc889JzfEd7/7XdTrdTzwwAMSlVerVZTL\nZezv74tt+ObmJorFIsLhMOr1ukS1pMKBA9bl6aefxjPPPINkMonTp09PucFxgfM1MbpXb3geVmRU\nuGknEgmkUimkUikJRMjiFAoFzM3NyaFiWZZkGbSi7ff7uvyhgJ4j3NTohBmLxbC1tYXz589PUan1\neh2e58l7zM4kCjszmYyYTnHjZF2ZAQODPm5aiUQCpmlODVbiYU2fFQrfVOfWwWAgWTrHoasCyf39\nfTiOg3q9jv39fZmye+rUKRQKhakvUt4qO8FWwF6vJ7+f5RPSzQx61VKjz+eTwIcbv9oxwo2fmz1L\nluwQocaEWio1sOafTBx47y8uLmJnZ+eOrZuTgNnZWfmsuYa417GExRk0DD4ZzPLw3N7exv/+7//C\n8zzRVlALQS2RKnxnxs/DXGXX+BkyEGQSA0B0MI7j4C1veQuef/55nD9/Hmtra1L65WN4H6gdf0wC\nWS7jfkZtkTodlewyA9l+v49WqyX7LgARjKpJXSaTgWVZSCaTmJ2dxfz8/NTAyWg0KmWm44Qu+N0G\nbix+v19U9AQpudFoJBuvKi5TSxfUWLD15/Z6GxkMbmqq2MbvP3ApLJVKUvd++eWXsb29jXK5LJT3\nwsICDMNAo9GQRdnv96XUsbKyIpu52l76zW9+E+vr61haWsLKyoqophlQkAkBDuudjO5ZxlF1F7yh\n+L6pXh7sBgDwCotjUt/MNNXyisYh6PLHoI+qc8/zhJ0YDodoNpsS3FG4yc8FgIh7+X4ze2Jgx+yP\ngTEDD7ab0t6Yn384HEaz2ZTDPBgMotPpyLrgeh8Oh+h2u1NMCgNIy7KwvLwsanpqQFRWjd4oqvsg\n2WItVb8AACAASURBVAAGBKqZFwB5TyhSBiBrjAEyAxBeL//d6XSQyWSmSpK8H2hxztcRDAalPZYZ\nMg8QPh/FoAsLC9KeeK9DFS0yEKYGgeyYquuaTCbCXLJ8FI/HUavVRDTJ1mLg0BOkUCiI66TKLnW7\nXbG/pn4oEomIYFN9LO8ZelY0Gg1ks9mpFlfuUzS0Ug97Bhgsu9DXh1o6dYCYGuR2Oh00Go2ptbK1\ntSUl4Xg8LqUUdTAkO6RYLuF9apom4vH4sXcb6aDiNrC2CxxsIMViUQIBVThUKpWm2tmAQ7tjCtwA\nSMavPjc3bkbP6s8Dh4cIM0DLspDL5bC3t4cf/vCHOHPmDBYWFhCPx5HP55FIJFCtVuE4DtbW1uTm\nY5QNHAQH7XYbV69excbGBsbjMU6dOjVl5006UA18VE8LtYVP9TTg91UTGt5AxWJRWht5c3MCZr/f\nl4CDz3u7cc39jAsXLmBvb29Kb0J9TafTQbFYFPEaN2u2j7J8NxgMxEqeAW+z2ZTnAyAmbwwqVZMy\nVTlPJorZnmoSxDqzWr5jSzVNg9SAdTwe4/z586IVUX0F1JHqXBOqYZu6OZ8+fVoObXoOkAbmZsvM\nlS3hLFHwGilCHQwGEoR3Oh05TPjeUtPEdcyDjIckS6QU7amtk3zv7hcUCgUpdzIAbTQaoj1Ru3QY\nBFMrxDLs4uKiBAwsK1BbEwwGZXIun4frmw6s6lpmgsdkjt/jXkeNBe8BCsi5vnm48zNVfS4YZJMR\nUbveaBvA4JJBaigUwvr6upwZgUAAL730krxfXGP0JeI9yLOJ16qazTWbTZkvcpzQQcVtYCSotpJy\nERSLRaRSqSn9BNuZAIhtKifwUZmbyWRkQ+r3+8hms1I2Yf2MGx8XfCwWw+LiInZ3d1Gv17G8vIzJ\nZIIrV67g+vXrCIVCuHjxIkqlEhYXFzE3NydZvtrm5nke9vf38dRTTwE4mFNAsyLSdK1WCw8++KCw\nKbyZVA0Jb1gebAyWVAqc81DYcufz+WCapmR9tm2LmKhSqciGzPe10WicKLvZ40a/30exWMQDDzwg\nTAX1CXzvnn/+eTz22GPSajcYDERnwY2QWgT6UajDjABIaaPdbssmnUwmpZOk3W5Ldkban11AXC8s\nAVJkS0dL4GADzOVy0o63uLiIbDYr2hm1jMaaNTtDuP5Y0uh2uxI4UcvBqaWJRAKFQgGzs7OyRmn7\nTPaAATTXb7/fl/vONE3U63VEo1G89a1vxQsvvCClT5rGMRgmpQ1giunY29tDLpeTshXLSmRX7gdE\nIhHkcjkRZQMH75FlWXAcB9VqVeysTdMUq/dkMimamAcffBCnTp3CxsaG6GyWlpak/EAxLkXn/D7L\nAZlMBr1eT9YHr0P1wWEZhWsNgATdXO8McJkMsqVTLXeo658Bs8peMKhX9ReNRgORSATValVK1W99\n61tx7do1WJaFbreLy5cvy5rlczLp43XQ92dra0vmOameRccBHVTcBqqBG40GEokEbNvG/Pw8AIiR\nD3AYhTIr4QddrVZl+iHriWpLXK/XEwElqTNVqMNaMXBwc/KGs20bZ86cEZMUwzCwu7uLH//4x5ib\nm8O5c+ekLMJscWtrCzdv3pQJeYy6adylDqchHc6bmuwDb1hS2OqEPQBTSnvgsL5MdoObODNm3iC8\noYBD90LWWDnb4X7G2toa/H6/CAtN05QNq9PpSLkqEomgUqng9OnTInz0PE/8QPgZssTFg5F1Ya4/\nshZqayc/K5bYKNpkAEwKmWu30WigWq2Kec/y8rKwaQsLC+JuyQCC9w0DGmZ49IMBICJjshw0E+Ja\nzmazQpkbhiEtg6y1R6NR1Go1DAYD6d7qdrtIpVJStiGTEAgExJY/Ho/jwoUL+O///m8JQsiW0N6Z\nHTc8qBqNBpaXlyVDZubabDaRSqWOdaO/kyArBhx68gCQLh7uJZyNBBzsGxxASAZib28Ptm2LiyVw\nOCCMmhUGa7S6VpkpMklkCXht/Hx4jXyewWAgjqxkMchWURCsBg00vFKDYD4f1wYTS7UEx/LjrVu3\nRCtlWRZefvllCQpuTzJ5zbxOMiDAwV6bzWan2nSPEzqouA2kXSnmcRwH6XRaFqaq8lYXC8fWqrM8\nuKlw+hyHhPFnVBMeHuL8PgCxVKYwlDW+0WiEdrstVOv29jbG4zFWV1fFt6DX62F9fV2iaGavbFEi\nzcZrIbug1pt5LX6/H/V6XSYHqn4VvKEjkQjK5TICgYC0svL9IY2uGsRwABonTqomL+wcuJ/BwUk0\nBgMgwSk3KsMwMD8/j06ngxs3bmB1dVVKE6pmgvMueCgy0FDFw6RxGUyQ8qdwkcEmA1E1U1JbAymq\njEajOHfunBzwfA0MZjqdjnzGXEt8Th46rBc7jjO1ofNnQqGQuInG43EUCgUAkACK7AO7ZuhNQBaD\nBwNr3mq57+rVq3j88cdRrVaxv78v7ATLNBwoNhqNUK/Xpwa5MdhiWYSBjdoSfi+DAQBLEFw7/Gwz\nmYyICtfX1xEMHowQYPfPZDLBD3/4Qwk0d3d3kc1mJdjkvslWVLVEC0BKAKoeZjKZCOsFQEpV1CJw\nbwIwlTiqLC33Mgaj6kwRBsrqmcDkiPec6kZLzRNboyeTiVy3agCnWtWrNgVkoTlKPZfLSccdgKmu\nmDsNHVTchuvXr+Phhx/G9va2DChivz9pMLW1LhwOSzDBTEoV/dCMpdPpYGdnR9qTeONxKh4fx4UK\nHAYXAETsOT8/L4/NZrO4efMmNjc38XM/93OYnZ3Fd7/7XSwuLmJ2dha2baPdbsvkO27OzEZ5c6hK\ned6o/B43W94Yg8EAW1tbSKfTyOfzcqPTqItteul0GjMzM6LwBw59Oejjkc/nYVmWZMl8f++XjO4n\ngaOU6/W6UKDqhhUMBlEqlTAajbC3t4f19XU4jiOmTOl0Gs1mE81mE2fPnkWn00E2m5XNmZ8FnfyY\n6e3v7yOTyQh1y6DXNE3s7u6iXC7jgQceEPdBbtgUjwaDhzMwRqORHPDXrl1DpVIRnwiq/DnjIZPJ\nSAbI+6bT6eDFF1+U5+IGu7+/L4cADyWyDaFQCOfPn8fKyorcp2Rczpw5I4fLSy+9JPoK4HDgEw+t\n7e1tfPnLX8YHP/hBKQPx8bFYDOvr6zhz5gwAiC2/6qUQDodRqVTg8/lk/yiVSidCnf9mg94mLDkw\nOeIAN4owl5eXUSqVcOvWLayvr+Phhx+Ww1UtbQ0GA+n8INiSrnZeqK3vLJEwyFY1NOoXO/1Y2gUg\nZRneE9zjGJjSclsVq5ONUe3qKVbnrA/gMHnz+XzCQlNvMhwOkUwmsb29LV1T9EpaWVmRhJKsrmma\nqFQqMmWYwTOF+8cF3VL6Krh69SpmZ2el04M3AhclAMnQ2A5FtzO1i4E/EwqFZMAM9Rp0I+SmzOyf\nbAEXrNp3rZYjSAezXsfI+1vf+pZQf/V6HcViccrBjhswo2teM7UQfI2MlBn8qCUctve1221hQCgs\n4ubO9sHNzU3ZGHhzsh+dMx0YlLRaLYm+j1tsdJw4e/Ysksmk+EiQxSEDwQCOY8GpVwGAcrksJQDX\ndVGv17G0tCRsGW3k+Vmp1vPNZlO0MWp3Er/29/fxnve8R+ZpkKJVxbVqdscW1ytXruB73/sednZ2\nsLu7K94p5XJZNB6cqur3+6VUx6CA651sh2reRl8TdpZMJhPUajU52FSlPO8jlnH6/f5UQMyyEA+G\ner2O4fBgfgmDcx5SDPJYFuHPAZDf1+/34TiOlB9TqRS2t7fv5FI6FhiGgcXFRcRiMdEzTCYTmcGi\ntnd6noeZmRm539lOyv2XbCaFs1xfZNa4t6nlV7bsc90yIOCfZMAoIAcOvUh44FNLQXb41dpWAUzt\nlWqiSVGnyrSpba5cV+rQPwASxNy8eVOGqalddwAk2KcpncpqchAfz6PjgA4qXgPqTAOK3AKBgJhM\nqYIyLkgeyKqokeyF4ziYm5sTCpmiRrWjQm3f5IYNQKg21q5VBTUj1maziR//+MfiXdFoNLC6ugoA\nknWScWDGq3Z1cINmjVL93cwCWHtnYMGgiQwHb3Qq4zkAR2VCyL6QvqSOg06ctPNm98z9iLm5OXGw\nZO2fGRLf83Q6LXQpxWClUmnKII0tcCyJ9ft9CSDZmcFMjxthNpuVdU/HVE5xTKfTOH/+vOgJqOng\n+uDGyvvje9/7Hp5//nm8/PLLqNfrGI1G6PV6Uz4t1GJww6fgFDhktNi5xPuKJTJu9BRdMtN0XVf0\nHcVicSp45/q2LEu6Mer1uvxuZoMsczQaDbzlLW/BrVu3RLRKnwW2SjKoVw8YtgBWq1UEg0HxbLgf\ngop0Og3TNKVdkswsM2omHqqmKxqNYmdnR4Jevo8sNdu2jVwuN2X+pLanUqvDpE3ds6jL4aHMgI8a\nH7IHfCzXVCQSEWEy98fb9RNqSZHfAyBBO3BoVggcdm2w/bvVakliSt3Z9evXpSxXr9dlnVJDwbJz\nuVyeukdYmmFZ8bgYXx1U3IZsNiujb+nEZ9u2bMKk0qhIpyiNdBoX0nB4MHSMmwsDCAByUHCjZ6sR\na48UwQGHhwN/npE1I1dG181mU4KM2dlZLCwsTP1elWlhBwHLFRRP8UDg66YvAcVm7Obge8DDh6N4\naWbFAKPVasmhxyyO4lQGSqxNAwcdIePxGJubm8cWZZ8ErK6uikNlLpeD3++XQUemaaJQKCCdTsOy\nLOzs7IiWYX5+HrlcDsViETMzM5ibm0M2m8W1a9ewt7cnzIZqbKZqZ5jVsxxBl9fd3V3Mz8/jXe96\nF4DDIJc/x5LdZDJBp9PBd77zHfz7v/87dnZ2ZD1YloVYLAbLsoRJY5bGjXBrawuXL1/Gzs6O1M1p\ncsQOFX6/0+nIfci1QtGwqst48cUXsbm5iVAoBMuyAEA2eAo9OSzQdV1ks1m5F3iPpFIpNJtNCcqY\ngTLjJCOhtgAyMWDXCwP7YrGIvb29O72k7iiy2ay07abTadEQZDIZKYNQgMz1xzXhuq60RqrGVslk\nEq7rolgsotlsyt4XCASQSqXQ7/fFk4QDt/jcDIBVsSW71ihmBiCJI4NitQxNZ2A1eODvYmBEDR0D\ndQYr6iwSdSzB9evXZR2rQT3v87W1NZimiX6/j0ajIcEWr5OMIpM1snFch2Q/7jR0UKGAnvR+vx+5\nXE4YBdJeACQzu3TpkrTQ8VD0+XxTY6YrlYpQWMyuisWiUHxc1PxZtk7xdzAYoM6AQYtqpsIMjQd+\nq9WacrLj5sebgQEDMwD1tfEmBA4PC/5OZpXMhPm7Oc+B18MSDrMMteyjWn1zroRaWnIcB41GQw6F\n+xEPPfSQ0Lqe58khxx59WkqzvEZNTjqdlnXDbI+lCc5ZoVCY5RGVigYOhbUsDVAM1mw2RQTMeq5a\nrmMA7HkevvOd7+DKlSvyvHRTpDUzA1feK7y/VF+BRqMhXhNsh+UaG4/H4uNCWpplShoicZ35/X4R\nU/Z6Payurk4xcFyjlmVJcEvKnSW4dDqNjY0NCcS4xtkhxQCL2SrLIdRg8X3hY4LB4D3vrGlZFlqt\nltjIM5HhpFt+VjwQySSREWDiAUACBgYmt69XdrNxb1PLySzLsvyqfp/BAFs0yWqQmeaog8lkImUS\nmsDRKp4GVaq4nXsZmRLutdzT+DtqtRo6nY7cR4FAAHt7e3jHO94hTrRk1YLBoIiRY7GYJBp8/9TX\n7ff70Wg00O12pwwV7yR0UKGADIXneVL+GA6HKJVK4jIYDodhGIb0F9u2jZs3b4qSl4uI3Rr8wMkY\ncGEZhjHlkqZON+XiIAOiurexxKDSverCZAbIjRI41GIAh9NIScOpPfoqRRwMBtFoNBAKHYypTqVS\nGA6H6HQ6EjixM4FBx9WrV7Gzs4Nut4vd3V3s7e1JuxQ3k263i3a7jY2NDaEhueHu7u6i2WzeNyr5\nVwNHddOPgdoBHub1eh2NRgOVSgX9fl/8SUKhEOr1OjY3N7Gzs4NGoyHvIzdtUvgMnHkwqyUEUqv8\n+5UrV5DNZvG2t71NuoW4TmgxzAP/qaeewgsvvAAAUsbgADsexrSsLpVKYpU9Ozsrj6XXRigUktJZ\nNpvFYDCAZVlyD9FaXNVXcHNnoKraavf7fZk0yXXLwykQCKBUKuHHP/6xlGNGoxEymQzW19dx7tw5\nea8ASLuoOrWYBw0/M7VNVe3EAXBiZjS8WSgWiyiVSigWiwgEAsjn88hms9je3ka1WkWtVkO9XhfR\nKn1MeHDS/CqVSsm64Do1/397b/Ib+XVef5+q4lTFmovFmexZzZZkDW7Hkm3lZzhSDCM7J4vAgLMK\nAgTZZOFNlu8fkUWALLOJESRAACdODESKLdmG5UjW0OlBzXkosua5ikMV+S6Yz9O32nZsx5TY6r4H\nENzugaxi3e+9557nPOeJx5XL5cz0GQqFNDs7a3ucq7xx8WE/o9xKmYG1hMIASR8dHdVHH32kbDar\ner2u6elpSTLF9WEDPcqWGyLIGmavxcSLF4LyB56ejY0NbWxs6M6dO5JkEftcJOLxuEWdQ8IJrOP7\nQLr5+Z6X2hv81X/lyQElCTwQMNF4PK5YLGbSFBsaKW/UCTEJIVORR8E8BPrxaVHDTwCJ4JbIAnVb\nVwl1YbGyMbKZudIcDxFSoyS7oSHdselRhzs4OLDyDAcODBsC4sZ5t1oti1rGac1BVCgUVC6XjVnT\nHYMpb29vT5OTk9YWyS3WfX1PMqampmwGihu+5k6T5feJ8O12u3rvvfe0trZmZQHIHSa4brerlZUV\nVavVgeQ/PmvMvByGeC3W19ctBIrPnw3bNU+urKxY++j4+Liazabq9brdVFFSXFWLdY6xLRKJaGFh\nwUh2sVjU5uamHTaQWzeJkQ1V0sDtDVnYbZXlMCH4C5ke2bjRaKjVapmXZGRkxMKaJA0kLBIPLj1w\n/7tlSUydfB9pUA18nMH+MjExYX6EcDg80LHR7XZVKBS0tbWlra0t8wbRWYb3RnqQf0OWRC6Xs/VP\nMi9GX5RZLniUG9w4eTwMGDHd+TUQ7Gq1aqZQ18vB//IssG+jdrgZGK5ygindVdv29vaMUHBxTKVS\nA+uZlFeUGtfwyeUTsoKqcp77qN/BHbBA2MA46DEywqZZiNTCqBVKsgwIkvquX79ufdDcCN2sCzcv\n3j3okVd5XWyWdJ2gnLjpiigkSHLuhstGTh0SEuF2ltChwYHDAwKDh/Bw62u1Wibh5fN5/eEf/qF+\n7/d+T5LshlEul5XP560mTTIkRI1NnofgSfZSSNKrr75qGf54cghTYw0xHwD5ttfrqVgsqtPpaGZm\nxjYlSl31et2Cho6Pj7W5ualut6tYLGZtdW62Beux0WgomUyqXC7r1q1bVv+FvKLMhUIhbW1tWWvq\n2NiYTSiVZDc4Nl38CqiBdE64hDyZTJoZdWdnZ6A0mEwmB94fI7Bd3xJkwW3ZpqPAbQtE6XBbBOls\nwfjH2oegu5kq7gHCAeZ2b6EMuq/rcQekLRQKqVKpqN1uG0GVZCmU0oPDmVRIgsrwYGFYZ/13Oh0r\nk6IQuHsVawC1CtWAcqtbrpI0UI7h8yMJ9v79+/b9AD4KtzzL73Gp4mvx+iXZZTQYDKrZbCoQCNgg\nyH6/r+npaT333HNaWloyAjw5OWkKeDAYNLWCQXiUwZvNpnZ2duyZo7vuvOBzKhy0221VKhXNzMyY\nQoCMSo2aW9jc3Jwlr9G2iXscn0G/39edO3d06dIlSaeLL51Oa35+3hgmuRfJZNKMoKgMKCZsYkND\nQzZhEvbrhr6Mjo6ahwHDkduKh8eCh554Y+m0do1cHgwG7WFyI8jZxCE8mNv29vbU7Xb1H//xHwqH\nw3rttddskBq3BSRiOg+Q8TBEcXt+FBLhzgMvvfSSkQli1D/66CNJsoOq0+lobW1Nu7u7eu2116xe\nvLGxoZ2dHb388stm6mS8N0Q5GAwqm82asfedd97R/v6+XnrpJW1ubmpiYsIOyE6no0KhYNNir127\npmKxqO985zv63d/9XdvkuHGtr6/rJz/5iZLJpLa2tuxGRetmMBi0zAbKgRBnlDJeKySXm9zOzo5S\nqZS+973v6fOf/7yCwaAN2mPDRi3AFEyA0NjYmLLZrG7cuKHZ2Vml0+mBGjgDpm7cuKFEIqHbt2/b\nLbXT6VhegiTNzMyYCkfLHkoct1H3ffV6Pa2trWlqasoGuYVCIb3zzjuf9NL6xHF0dGRx5fz/RqOh\nbDarmZkZ84cRcIZK0Gq11Ol0tLu7q8nJSWWzWfOd4QUiMyQcDtvAR1Q1CBxlOjxvkkzVgDA/TBQg\nl3fu3LF2Tsp25JDQnYevDKWZtcT6djtNJNm+FggEBsobtEFHo1EjE/jueE8uCYfM1Ot1K1P++Mc/\n1vDwsGZnZzUzM2N+pvPsnvOkwgGtR3yQsD63Q4PFwhhaSXaDkmSBQ5JsZgIbO3Kg286JhExHhaQB\nEyasF2maIVHujWhkZMSSKSFDgMOfBE1Jdht1/w5fS3oQyAXhgFyxAbh5/pL01FNP6c6dO3b77Pf7\nRrJc0xWGVaRmshG4JVNSetLw9NNPKxAIaHx83ALQ2Jj4vW63a+WEsbEx5fN569oplUpGeFEQuDmN\njo4qlUpZtDetfDdv3lQ+n9fKyoqy2az29vYsX4TAN4xmdIHgm8GA2e/3tb29bd4HyiyBQMBuY4Sb\nYQ51vQmoF3xtDuRms2n+HUab12o1zc7O6vLly4rFYvZvM5mMZXIwoXFkZMS6C37/939fs7OzA6oO\nh0smk9GNGzd06dIlbWxsaHNz08omkswoR1aLexvmP0ohKHwQJVQbt50QEvS4g04fSebLmpmZMZme\nvQg1jqwJSOHx8bGRt6eeesr2Y/aTdrut+fl5U5fYP13fGmUTDLTsYa6KwDPGfhkMBm32C6UQfDjS\nA3MvXxsVxFW63LIgyjNrEpX5+Pg0BXljY0PXr1/XtWvXzBQcj8etrAFxgMTymigL5nI5awFnjtS1\na9e0sbFh4VnnAU8qHkKj0VCj0bA0Nul0CBeHbigUsts6aoKrAFQqFVMw9vb2LFEtmUzaZuhmA0Bi\nMOy4B7lriJMGJ3m6EiuHO7IgZQVqfW4rFQud7+GWeSSZa1mSESEeJNfzgd8kGo3qc5/7nKrVqmX1\np1IpZTIZM3QyL6RcLtt7paZaq9WMyT+pHR/c6NkgUZmIPw8EArYuCZ6ipEHtOJvNGukcGRlRoVCw\n/nZu9W7rJ34bCDObHmFl7rhqFCvipnu9nprN5gCRpaTGQSrJ1qlb0ur1ejY+nbwHbpa08rkbKZ6d\nbrer+/fva3FxUaHQ6ewbWr1pN52dnTUTXiaT0cTEhE26ZM3z3l599VVTB9988039y7/8i428dtvF\n3bZREhW5JPDzhPwjffP76XTaSlgcio87UKjwcPEzzufzWlxctBZ2OmEmJydNNQiFQkYqIQoYw/mc\n2acODg6szRry5+5hEEE3JIsOM7qFXBwfn6a+0gFYKpVsqB5E3lVSWReu4ZesFQ54LpSMSqDEXS6X\nVSqV9NnPftZSQ6enp+1SQJl6Y2NjgNTyM7l165bNkJqfn7dzpNfrmb/tPOFJxUMoFAqKRCIqFou6\nePGiPRzSqQoB62Qi3MHBgfkmSNZDzpdkznQWs3to4LGYmJiwwBI3OtvtHuHrUh6RZBIfykO329Xa\n2ppu3Lih/f19iz7GtyDJDghuoTwo3CD5vUgkYr3OSMl8T8asDw8P686dO1pdXVWpVNLNmzfV7/ct\nfnt/f1/lcnlgUiQ3umg0ahtIKpVSq9V67Pv3fxkwX7kemH6/b8oOCsDk5KRlAEDuJNkNLpvNWrDO\n1taWksmkzQah7kxHkSQjuu+//77q9bqpGxBbOol2d3c1Pj5uNz1u6Rzm8XhchULBfDKsETpUILK8\nNkg3Gz2AIFP6gGSjfC0vL+vChQuSZAc8WShEePM1OciRxZPJpC5fvqynn35awWDQMgK2trb0+uuv\nq1wua2JiwvxP1N55TigrHh+fpmgyHn17e1tDQ0NW53ZzA6RTbxEzGZ6EeTZk1QSDQaVSqYFSQygU\nGjCt075LHkU6nbYJz7VazTIrXJUiGo0qHA4bYUbF5VLHfsWe9XBnhKuIoj6fnJzohz/8oXq9nhYX\nF410ULra29vTpUuXjDy6xmDelyQjGAS8cfGjbZpxCZRUxsfHlU6nLbiL13rnzh17L91uV8Vi0Tpl\nIpGILl++bOUazp1wOKxcLmc/78nJyXNTKzyp+AWgJoUrnN+jV5lOB9g2hjUMN0ifkiz3HzadSCQ0\nPDw8MHeADZF/45YwMMJhNnO7TdgwYcDMVqhWq4rH43aAI5txULk5AWwArVbLyI+kAZMZPwMYseuA\npsb51FNPmeKB+uGyeB58yhv8f/IA3O6GJw0PkztKVsitkC/+HjcxSAhud8oO/X5fe3t76vV6tpH1\neqeDr+r1uoLBoObn580Ls76+bkSFLg3W98NDvdxwNP6+dEp48Mvg30gmk8rn8wMDwXifSMjc7vhz\n1AvWJbkAR0dHNr+GDI9+v69Go6FyuWyvEzNqu93W3t6eRkdHzatCyisti/V6XcvLyzo5OVEikTBJ\nHcKP+gAgGPw5zzyKnfteMIOiWKC+bG9vn8sa+6TgqmEnJ6ehbBDEeDxuJECSXZDcNmXaz2nZhSTQ\n2UHnE/sKwxP5nqjIw8PDNsLcnemBXw0i3+v1tLGxYWbodrutfD5v5DqRSKhardplUnqwDwK+L2Qk\nEAjYfurm+gwNDdnEVTqi8JxBKPAeHRwcWOkvEAhoenrajM0Y8jEtRyIRLS8v23PGezsveFLxECAM\ntD/Bkum4YBEgj7qs+fj4WNPT06pWq8rlcpZQyGGLsQdvgiSr37kHtfRgwJHbg+9KqNSwqevV63Vt\nbW1ZiA//lhYrFrEk2wD5OpRHWIxubdBN3uR1crBID1qe+Jqub4KDzp3Et7+/b6yb74cZ70lpxbNU\nzQAAIABJREFUt3Px7LPP2iZDOYMOBcAkQkgga5PDf2jodBBbs9m0FtPR0VG1Wi3dvXtXzz33nPr9\nvur1uh2qxWJRW1tbFlHNmucAR01jk2SNuAQA82ir1dLCwoIpafTQLyws6Ic//KE++ugj84ZwYHAw\n85nTxcSv3YwBJOxoNKq5uTmFQiFtbm4qGAwqn8/bYc7zidF4ZGTEYpDxTdBR8tZbb1l7LaUgclTw\nnXDYQdzJpcAPJD3oAIE0QLZ4RiDWPBePO3iPXF6CwaCpuux1kkxFcr0QqAaE5UWjUfOlsX9AqPk+\ntGFC9kjlpMuM7ib+fqlUUqlUGggeLJfL9syRaeKuBzpYUBzc3BHOBpRiPn/+o+MEpZhsCcgOhKLV\napkfr1Kp2KyZWCw2kLnR6/U0Pj6uVCpl5fdCoWCEH0PneRrePalwQMsYJi4OcMoWtI6yqNlQMH7h\nYqfHnmhrGC+tcCx+ukbq9bqZ7h6+tUEQpAe1QhYpN7dAIGBjyefn53Xxf6b/MZQKGZlFx8OJM5oN\nG0MghwoPBJLh2NiYhSqFQiHt7Ozo6tWrJnnOzc0pmUyq1WpZ6YSR2JArpqzmcjlFIhHduHFDr776\nqn72s589keUPPAbpdFrFYtGmLxJrXCgUrHzBxoxHp9ls2ucmSVtbW1YqefrppyWddkb84Ac/UCQS\n0fz8vOLxuDY3N80zMTMzY8ZiSebrIEfF7Qri9dLdIclKeC+++KKV2cgkOTo60uLiohYWFmwtSrIM\nmK2tLXOys8mTcPhw3//R0ZEWFhZ0+fJlra6uWvZJr9dTKpWy0mMwGFQul9PY2JiNzH711Vf1r//6\nr/rmN7+pH/zgB9rY2FCn07EJqalUypTD8fFxe/8cZIzgDgaD1raHGkLrNO/tww8/1NDQkMnShGjR\nkfK4A78Ne+PW1pZNpHWj/VFnG42GJcCy9ggUCwaD1kHikjsuObTmU14rFApaXV3VxsaGEbtr164N\neNWGh0/jwAuFgvb29rS3t6dms2l7PPs0eSW0l37/+9/XwsKCnnnmGVMMOp2Oda3wPExPT6tQKKjd\nbhvRhoy7hnVKI5gxMWFLp5etubk5W1cQHkonbujhvXv3zNuEiul6K85jMKMnFQ5wvyeTSetKgFgw\nBwNpixsPN3fAw8SYaUKDuEWxwDmkKUm43Rfc6N0ZHRg06/W6tWa2221TCqampjQ5OamFhQUbosSD\nyUA0DHoPGzNRFKQHEi/yN4dGIpGwGF3X+InBj58H9fRarWalFG6eSJ30/PP6qtXqE1Fv/kW4e/eu\nbt68qcPDQ5skOjExocnJSfX7fRvENTk5aT3uhPK45s5Go2GtexyWKFzpdNo8LNxqCB2bmJiwHAFG\nMR8fP5hzg3LCjZBNDgK8v7+v2dlZI8Nu2TAUCmlhYUGSLBQLXw031rGxMfNzUEqkzOfmqQQCAa2v\nr2txcVH1el2BQGCgHx/JGHWw0+no6OhIL730ku7du6fXXntNP/7xj7W9vW0bLZkbvB6MgpBv1EWk\ncdQciBA36mazaeu63+/b7RLSg5/iSchg4bPh/fN7BwcHFlDFRYsSH0Z4SsSHh4cD04/xe6HM0R7K\n95FkCiipnRDZbrerxcVFm3sDkXn99de1u7urVCqlb3zjG/b9APt8vV7XT37yE+XzeUukzWQylnjJ\n3k5+zK1bt8w8uru7q1gsZvNPeA8QCVe5Ym/s9XpKJpOmdLjhgCjPqDyMNGD/RlVESTuvrIqApMd/\npf+aeOGFF4xYPLxxS7INlSAS0s+Q9zGV0RnBgey2oiJ9wbx7vZ75ElBKXEc+zJNfw6oZwoTJ5/j4\nWPl8XsFgUHNzc7ao+B7u+2BRc5Oi/hkIBMxkxG2McdjEQdfrdeXzeVUqFfOI4LSv1+va3d01NYOo\n2OHhYbt9U47h59VoNEyWX15ePp8P/hHBCy+8oFKppGvXrkmSEYWpqSnrJMAku7i4aKZADJqrq6uW\nOInClEgklMvl1Gg0tL6+burDzZs37XZYLBb13nvv6Ytf/KIODg40MzOjN954Q81m0zYyyhMY7fDA\nLCws6JVXXrGWVQzJZK+w0bHxUp44Pj7W7u6uueTL5bJJuaw5asR0VEBEbt68qffee8/KLBz0bKip\nVMrmH6CUzM3N6fXXX7eprWR2QJBQHvi5uRkr3EghRPiiOPCQ7JHTGRSIusS0zkAg8ETkVMzOzioc\nDluIGCWjVCpl+yMHHhcUt8RLmTeVSimVSkl6MBSMSw0k5OjoSO+++64+/PBDNRoNM3S6XXQjIyOa\nnp7W9evXLdF4aWlJc3Nztj4B64HyHioaLcm3bt1SPp9Xr9fTpUuX1Gq1BjwXEJlqtarLly9rdnbW\nWmAhy7SNo1pDwCg3MxtKks0s4Szq9U4H/BWLRUkPlEIU6VarZc/VeU0p9UqFA9QDDkFuXK4piLIH\n7JPoYbd/mf+PyYj6GbcdtyY3PHw6swEFg/IGix3GiirBf9QKWfgQBVoLXSMnISoYIXlQWMQEsCBr\n85BhKKV2Pj09rU6nY0yaUs/09LSGh4d1+/ZtC3Q5Pj6dWHnhwgVj3Lxv2r+QMLmhPuk4PDzUwcGB\nbt++bTXp69ev200d1YDbNCUl92bCZ8av6VCALJTLZfu8JVl2ADdq2vao10oPYrzdvnz8F3Nzc6ZW\nMZOAf8vBQVcEzxKvm9eAckIZByLOMwOpZo0XCgU1Gg0lEgkLI3IN0Pl83hTEa9euKZPJaG1tTdPT\n09Yu6pr7KJtguOO1u7dAfBH4rACHD2qH21nlKpgQnicBbt4MhI8OGMjCwcGB5ftANCGvkqxbjHWw\nv79vJWL2RNStDz74QJVKxdQPDPN411BvWTOZTMY64yhrQUI4xCEwqLy81meeeUZLS0uqVCq2b6+v\nrw+sDQap3b59W8FgcECVxZDqGn7ZByH8vG+eE8AFk1A6N3cDAs4l8bxUCsmTigHwAbKJQRI6nY6N\nK+eApsXu+PhY5XLZanWuDMrGxmEdjUZVrVbtIC0Wi/bA7O7uamdnRxcvXhxIInTzKGiTcmtq7i3J\nNXnC+mmdglDw2skTCAQC9v0ODw+tvs50SaQ8SQNGTGRqbsudTsc6C6RTQjI5OWkPJj8TXh8peRwo\nPChPMlgvmLHow2ctYUiDmEFu2Zy4AdGme3h4qI8++kjtdluRSEQzMzNGJjlIuWExQZLyAaSVqHVu\nQ9yWGo2Gbt68qfn5ecsawauDIkYGBXVg988g6rQN8vvZbHYgxwLSC/kZGRnR3t6eHQiQ8EQiIelU\nCWSaajwe18WLF5XP57W8vGxliWazaQc/r4EDiZIOZRl+TaAYN1Y3/wUV0C1vYC6lNELw1pMAzMQQ\nYMpid+7csc6bw8NDpVIpLSwsGNF0PxP2Nkl2ULs/Z9fYiTpGWYWsESLf8Y5NT08rm83apQmyS6nM\n/dr4EvB38NxADDOZjJaXlwc61vBHkRHTaDT09ttva25uTpOTk7Z3c7lkzT9MoPGDsBZ5Hul2QpGQ\nZCGDdMSwxsbHx88tSNCTiv/BSy+9ZB/K/v6+pqamFIvFzBBGUBPM+/bt2/ZveSgWFhZsUBaLjT71\nnZ0dC1GhZksiJw9Fv9/X5uam1YYvXbpkdTYWTr1et9Y91ALMZD/+8Y918+ZNXbhwwW6VeCooa3Az\n4Ha7srJitXa3ZYpD6qmnnhqYDul2CsCwT05OVCwW7XZM3fDk5MTieiFd0gPfCQ8uG8qTjvX1dYXD\nYf3O7/yOhoaG7LNikyE9D3k9GAxqbW1NExMTpkgNDw8rkUjoww8/VKVS0cTEhBKJhBYWFjQ9PT1Q\nN5ZktV+UqkajoY2NDT3//POqVqs2GIx8iM3NTTsopqamrDPFnfOBbwdPjruRQrIPDw+1tbWlu3fv\nqlgsKhwO65VXXlG329XS0pJlm+AhQg2g5h4Oh1WpVDQ3N2frGkMlo7Dj8bh6vZ6+853vqNPp6I//\n+I9tk2ZWigumUfK88zXo7ggEAkacS6WSbfSs+3A4rHw+PzDgj/wRyn5PAvDqMOSKshmdGVNTU3az\n5/JElxhr5/j42HxArs/HNSOOjIxoe3vbyB4dH0NDQ2o0GtZe/Ud/9EeanZ21mz2KGZczPsNf1gXH\n149EIjbFtNVq6fOf/7zee+89W9cQVogkl8DV1VUNDQ3p5ZdfHiAujUZjYMgelwcIM+ULFEdUMLw8\n+/v7Vo4uFAqmHpK4e17wpOJ/QJwqSZrHx8fm7KbfmfkELBZubhzsjMl1g6R6vZ6Wl5d1584d9Xo9\nLSwsKJ1Om9JxcnJi4VfcBrnJt1ot6/PmAdzb27OyCze1w8ND5XI5C5AilhhG3mq1bNId/z8Siej+\n/fvWQsfG7WYPuF0a5NFDLlAkKBNhYuVhIuKcjhe39ZGfD90hvN8nHWyUroRO6enk5ETRaFTpdFqN\nRsMUC1IwFxYW7Hayu7tr00Hb7bZmZ2fV7XbVarWsM8ltkSYkJx6Pm68gHo9bO184HFY2m9XIyIhW\nVlbMD7O6umoyM7dJ15CMmuUSUvIHer3TCY2EG7XbbSvb0NFRLBbthshGzkwOiMzu7q6mpqascwTj\nKAmvmCQhsbdu3bLWUAgQ2RS46FGLJJl5FvJLR1c8HjfiwfvHpyTJfEkcdkj/TwJQMl11FG9FKBSy\nls5er6eJiYmBn3cwGFQymbQsEggHB72reA4PD2tra8tIttuyymc2Pj6ubDb7cyZMSDjqKwTQ3Yfc\nhEsCCPEScQHjPaFoXLp0SblczsoxPGuYKt3zxVVwUUrcVlnWI1korvrC6+aihqrHr88TnlT8D0ZH\nR1WpVGwxIwsPDw+bJIsCAWtmg2SzgHW7t7RAIKD333/fAqHq9boNjaIfvtfrGRlB9Wi1WiqVSgqF\nQspkMmo0GtZi5X5//svn8woEAta1IskMRriU3cx6DD/cxCjboEpIsrAq6p8YsCizQArcwVAQs2q1\nauEs7m2V24BrLkJpedLBLYSfIZ8Jfhv64FGpcMCjrh0dHZkky+bcbDY1NzdnZDQSiZhKxc2P0CG+\nFrI1n10qlbKBWm6vPmUITHmu2didicDtkMPFVf7YUDFucrt182E6nY7VwDFQ8z06nY5lbczMzGhk\nZEQffPCBbty4oWeffVZ/+7d/a+/npz/96UA4Ee25bMKuAZD6NGuVECKeKcqZKEr87CBPbqomP+e7\nd++ez8L6hMGhNzU1ZXsYl7SxsTFVKhU7qFnz/Owp1SWTSVNp3UMXA/vh4aHK5bJ2d3dtv2LfY+2d\nnJxYZxKmXMoOeCb4mvg6UHghDa5pk/eGEiVJFy9e1Pe+9z0dHR3ZpF28E3g+6FSilIaHA9VNkv39\nZrOpVqtlHhS6u+joCofDluTMz6Xf72tubk75fF6dTsdygM4LIUn/37m+gkcE6+vrqtVqymQytvjc\nWw4TDlmULnOOx+PKZDLKZrMDpQw2LRb25OSkLl68qF6vZ7Iu5AC3bqPRMIZPKAosHjZN3zeM9/j4\nNNqVssTly5eVzWbNHMmtAZnuzTff1Pvvv6+5uTkb0+7W5jh02FQ5AN566y0LEnK7WSiFVKtVexho\nY4R9c4ugTo2hDt8A6s2T7q04OTmx1k78Lcjvh4eHKpVKajabNnBpYmJCMzMz6nQ6+vDDD60+zA2a\n/vaFhQVls1lTxvAPoHakUimbgEvLr3TaDri0tGSSMfHWoVBIV69etcP26tWrdphCqvk3bJhszgzv\nIrzt5OREsVhM+XzenO0fffSRisWilTympqb01FNP6erVq+bdODk50fPPP2/rNZfL6eLFi/r7v/97\nvfbaa9rd3TU1Lp1Om4FwZmZGzzzzzED5YmxszORxyD1+I26Mw8PDRr5QJvCzkKrJZwgZ4lBi4uyT\nACLL+/2+UqmUES9u5Vym+MzoVmDdDA8PKx6PW0mB9mj2XTwtP/vZz8wz5CaYoqj+wR/8gT73uc/Z\n4ewqH3zGpKmi1EKCCalyvWoQBPZR9sCpqSmtrKyo1WpZ+TcWi1nuhCTLJlpYWDCFmjjx0dFRffDB\nB6pWq6pUKkYsUCtHRkaUz+dt3k4mkzEyQbAXF1wGD54nvFLhgGjrSqVit3I8DPl8XhcuXBjwWaBQ\nMI8BjwA92SzQYrFoh3QsFtPExIQdGLShYuzClc7Gvr6+rnK5rN/93d9VqVQywxh9/9FoVIVCQaVS\nSYlEQq1WS/l83rwdbtjV0NCQyuWydW8gb6fTaWtVdM1QHBhs2oVCQZ1ORy+//PIA4z84OFAsFhuY\nD0E2PV0DuOzdDTudTlty5Hm1Pz1qiMfjKhaLVkIgAI2SVL1et+4NiCCemIWFBa2trZmiRQhRvV7X\n5cuXbQ02Gg3FYjGVSiUdHZ1OOZ2cnFQkEtG9e/eUyWS0vb1tn32pVLK1Ewo9mDfAgX/t2jU1m00L\n5+HzpQTQ7XYtWI2Ns9VqmbkMNeyFF17QzZs39Xd/93dGiHZ3d5VIJOxWOjk5qVdffVXdble3b9/W\nycmJvvWtbykUCum5556z+PF/+Id/0He/+12TqvGFEKZEqJEk25A5cMLhsEqlkilF3W7XjKC0zdLd\nhGcCkzPvlRtot9vVzs7OJ7yKzhccxCg+3LJRekulkilC2Wx2oIU3nU5renra9lf2E9fYzX65u7ur\n4+Nja/OHuFSrVX3ta1/T/Py8Wq2WDTVjXbI2+dyXl5fVaDS0s7OjQOB0TsyFCxfsPfDZU7bjksRr\nY/1/73vfM/9DLBazdmz2PH4uKBUQWrpLTk5OTLGl3FYqlcwsz1pst9t2zvB+8N09Cr4dTyocVCoV\nDQ0NWdCQG9LEoUcst9s3zI2MDxanOnWvZrOpWq1mhwCDnnZ2dn4uVphF0e+fjpX+sz/7M8ViMS0v\nL5tU57YTBoNBu91Xq1VFIhHt7e3phRde0MnJ6RAbN/GNmy7kpF6v20NP3Q4WDHNncJQr+yEDQk5C\noZBmZ2fV6XTUbDbVaDTsocT0xO0Zo93x8bHS6bTq9foj8TA8CsjlclpaWjIfT61WU6vVssm5Jycn\nthG3223V63WlUikjBblczlQG1kuj0bBDdHR0VOPj4+aEhzSQB8CagfSyZqXTw+LSpUuKx+MWJYx0\njdrGQQLZpExzcHCger1ut36UOcpm3Ebx/TCng81/b29P+/v7unPnjp5//nmNj4/rxo0b+qd/+ie9\n9957+upXv6pMJqMf/ehH+tM//VMj3XhLCIvb3t7W0tKStra27Od76dIl28SRrKUH6ZD8PHlGMWrS\n9UT5EaKNHE9+zZOGVqulqakpSbLSKnsA5AKVyvVnLSwsWA4KFxaUTsqm/HxLpZIpAXwPFN1AIKDr\n16+bOuBmibA3l8tllctlMyZT9lteXtbVq1f1wx/+UJOTk4rFYrp+/bq1PEMYeW3s/Tdu3FChUNC9\ne/cGSjuU1vCF8DpRgFHP8GrgVyItmQA8t0W73W6bKRmyxXlE2eY84cOvfgnm5+fN9DU7O6tAIKD5\n+XkNDQ2pUqmoUChYDY/FnkqlzNB4cnJiCYRra2tmZmRxLi4u2sCY8fFx8ybAPDE0TUxMKBQKqd1u\n65VXXrGNlhphKBRSq9XS66+/rkAgoOeee85aOWG+yOmpVErf/va31e/3bapkNps1+RB5kJr28fGx\nFhcXjbgwJZP3IsnkOZdMoY5Q6+cBo1SDohMKhXT//n27QZNU+iQEBP0qXL16Va1WS3Nzc6rX61a3\n5+eHuoRfhnbLtbU1+3Pq1/v7++b9icVimpmZsW6lcDhsqa90N6RSKa2srCgajSqVSml1dVUnJydK\np9PWMdTr9VQul5XNZvWZz3zGYu3p7uAAYfOjxdPtHCqXy7p3757y+bzK5bK+9rWvWVx7KBT6jR3s\nFy9eVLFY1Oc//3lVKhUtLS3p3/7t3/S5z31Ozz33nL773e9KejBJk6AjFDsOt2AwaDMYiNPvdrtK\nJpPq9/s2MLBSqWhxcdFul0dHp3NPqKEXCoUnspyXTCY1OztrFzQ3lVg67YgjjZiDEoWLywe//7Dp\nMBwOq9lsan19XW+88Yb9OzA2Nqb/9//+nxYXF82ASffU8fFpQODOzo4N2ZNkpcC1tbWBXKHZ2Vkb\nAOZ2qS0uLpp6QBmEC9Rf//VfW9eUW14bHx/Xiy++qOvXrw90uBCoxkUMQkocAORjbW1NknTp0iVF\no1HzE6FOHB0dmUq9u7v7MX66vxreU/FLwKjbbDarVCqlSCSiS5cuaWdnR/l83sY6U+smC2J2dtZy\nBljs+Xx+IAwGkxz1NWp+TDsl+rXf71tLJr30GOVcl3C/39f8/LxmZmaUSCQGVBSk8h/84AeWZ18s\nFhWPx03Gbrfb5nqGKB0dHSmbzZpcPDY2pmw2q9HRUe3s7Gh9fV2lUknJZNKkOfrEy+WyLXCmpjLu\nmv5zDHvlctkeLjItHvdJjr8OKpWK+QCkB23LzLUIhUJKp9Pa29szNeHk5MSkVNoq6b7odru6cuWK\ntbvxNcl14AbFTZAbkHR6E5yamlIymbTab6vVsvS/bDZrORcoF3x9Ei/pbKEjhKCtbDZraZwoYtTJ\nf1PUajU988wzWltbU7vd1v379zU/P2/ue9Q46tkQHElWsuN2yGt2Z4ogMxPnTe3fnWbMZxAMBrW1\ntfVbr4NPK2KxmKkTqKvdbtdKoO40U5RRdz9lT3XTiPnZ0/Wxvr5uv4citrS0pOeff96eG74PZkyG\n9tF6yqWHcC1MpKRtoiSz70ajUSvdSBpI+OQSR7sx+zSXxAsXLiidTg94KvB1xONxI/FM1HXj7iWp\nUCio2+2q0WhYdwlppZwXnEvnCU8qfgny+byWlpaUSCQ0NTWlTCajDz/8UKurq7p//76azaYtNBYB\nhkwMizDhVCplNTVKCjh9k8mkSc+YfFKplJnb0um07t27p6WlJS0uLtoG7I4w53CmZodLGNm3WCzq\n4sWLeuutt7Szs6P5+XnFYjElEgmNjIyY05p/d3JyooWFBUWjUX344YfK5/PK5/PWV33v3j2rxzeb\nTdsIOKxu376tQqFgQTBEL+dyORUKBSMdu7u7ljrKTdmrFA9Qr9ctUrjVaumjjz5SKpXS/v6+Jicn\nrcWU7hmChfb39zU/P28EgXa3hYUFI55EKLOG2JglmbGOG/3BwYHu37+vu3fv2oAobm7SqULA95Ye\ntGTSYtputy2ki+FJ+IeCwaCWlpZ09+5d3bhxQ//8z//8W/3M9vb21G631Wq11O12VSgUtL29bW1/\nDGqjLEfJL51O2/NKmBaDAzE7o8B0Oh0zZUKIIWJuPP55u/DPC6hYqVTKIs47nY5ND0XBrNfrqtVq\nqtfrZlDsdDp2297b2zMl1A3pI/dnZWXFFLyhoSF98Ytf1Be+8AUrAeDTcAe5pVIpzc7OWted2wWF\n54eJuslkUiMjIzY7JJFI2HRgyCYEAeJy6dIlMx27XStzc3N67rnnrC2UvdkF5RH+l04tDJiof9ls\nVqurq5JkZIn3wfiE84QnFf8Ltre3bQrnxsaGzV4YHR01XwLzP9ioqtWqha7w59T83BYj5Di3f5uD\nnulyPISlUkmLi4uSZA5q/AnU9Wi1elg2xBshaYCJc2hkMpmByNhAIGCeklwuZ0oDCksikbAZI81m\n0xQRcu+Hh4etjYxSDjdiyh9kciDJw/Dj8bhyudz5fNiPMDY3N1Uul5VOp63zgFkXExMTZlQ7Ojoy\ng1i/39fk5KRlnXQ6Hbv9k5sAKUQhk2RGYdL9SqWS3n//fas/h8Nhu9lR9rpy5Yr9PuuaEp0kM52y\nFl1vDgrA66+/ri984Qv60Y9+9LH8DBkYhRJHmYLX4Eafc4Dh+XA7BdjwKfOxvrk0DA0N6f79+08s\noXAxMTGhra2tgcObrhja1Llg4BEiLRJFA5WA8iz7Wq1W097e3sDU0i9/+csD+yvlFnw+biYJzwN+\nH/YoRq676ZZ4b5rNps18Qh3g67rqMG3/uVzO1vr09LTm5+fttfLeIBeQd1fJ5Xlhv3dzkg4PDzU9\nPW2GUc4efnbnCU8qfgUWFha0vLysjz76SPfu3VOtVrM2OOK7JycnTWKmPYoSCDeibrerer1uNx0W\nBvVvWlSpoeG0z+fzCoVCmpqaUjabVbVaNRLgljhcBYOF6/ZvM853bW1NiURiIEyJ5EBeazgcVqPR\n0O7urr1ubnjcPpCCKfNQvuH7cfNFtndDwtwMD36P0KTzrgc+yuh2u5qfn7fabrVaNX8EhxumOLw6\n/F4kErGx3JJMbWAGB5sqitHx8bHW1ta0urpqt0iIImFPkMyLFy+a4gFpcL0TkHDAa+LADoVC2tvb\n082bNyWdtnefNcigicfjptRMTk6aX4L37iYe0jrIbZjSDX6AYrGoer1ulwdJT1Tr6K8C+xYXJX6e\nRPoXCoVfWD7lcgS5gxCyPwWDQe3t7Vl5qdvtam5uTi+++OLAnuQeyAAz/sHBgV1u8DXQdcdnTwx+\nu91WqVSy/RrFCnUCYswzIZ2S2Hfeecf2wMuXL9tlzW1vJTfFjd/v9/uWY4G3gueFZE1+FpKsQ6zR\naKjT6Zx7OvGTZ03+DfHGG2/83O8xIY6ZHrlczmRQbjIc0u12W3t7e9atgbeiVCpZoFCtVrN68u7u\nrm3E7m1wenpaOzs71looydQFWkwlWR4FE0BHR0eNFNRqNWWzWSudlEol2ywJ2+LBwVhJ3ZzbAv9f\nkhYXF62rgHZZQm4k2aFFh0ilUlG9XlcymVS5XP74PrTHGPfu3ZMkffnLX1a/39c777yjfr9vZQ26\nlaLRqHZ2djQ5OWmzNZaWlhSJRMxHQ93W9Q8Eg6ejod94442BFECSOCEBzG+Yn5+3mTds6BBHzLeQ\nHkoEkiwfBUl3cXHRCO/HBVoHNzc3TdmLRCIaHx+3YXyULWl1dW+sqG0P7wleXft5oFxlMhlJsjZO\n91DlMoFyipqBZ4FOO3dmUCgU0sHBgWZnZ3XhwgWtr6/ra1/7mm7cuGEJpnROQW5pG6XYV9uqAAAd\nY0lEQVQFOBaLaW5uznwQkiwEjQOevCJmzTCj6eTkdA5IIpHQ+++/by2l7swSLlXf/OY39e677+r2\n7dtKpVKmcPDeJZmfDSIECYG4j4yMaGZmRru7u5Y0urKyYvt0NpvV0NCQ1tfX7fJ63vCk4rdAp9NR\ntVo1cw2bD7Ha3PJ5UDioOaSpPTM/gShiJMJms2mH9rPPPjsg47HxoUggLUoPzKAMSaIdFsm7WCwq\nnU6bPE7gVqPRsBHUtH3WarWBKNqHXdqoI0yP5MHhvVYqFR0eHmpnZ8fKQp5Q/PagDY0Np1gsDnQh\nXL582YaScYviM4vFYlanRtVC/drZ2dG9e/dsiBiEAfXCrfnSw++GW1EGwFhM7ZrWZl4fEvXh4aGS\nyaQWFhZseNnHCSLJ3UyDubk5Uyy4LWIcRqmQTp+fDz744GN9fY8LyPKAqGIadhMkQ6GQdar1+301\nm00rW7DWpMGkTNf3s7CwoKGhIc3NzQ3EwkN4af3c3t5WvV43AoEqnMlktLe3Z4ZHysju8DvIJIQF\nUl6v120vLpfLmp6eNlMlHVDBYFAvvvii+v2+Zmdnfy5Iq1wuW0IsE1RRFbkYUjYkGDAQCGhmZkbF\nYtGSN93yy6OAR+NVfIpB/c015bC4y+Wy1bE5/N26G9MdKXlIp/W/crmsXq+nfD5vRpyJiQlVKhVT\nRPi7bnQtLnd6vam9h0IhK5uwEG/cuKF6va53333XTGrcRHO5nIaHhy2HgHZCZlHgbqc2yvti2NKz\nzz6rVqul7e1tra+v21AhNgeP3w4zMzOmPtGyB6mjDLa9va1sNmtmxFqtZm2nEFjakt2WtO9///sm\nteLVYDM/ODgwRc0tnwFIJpugK8PS/cPfOzo6nbXBwL1r166pUql8Yl4Et45eLpfttbux3BwSlDPP\nu1b9aQLkUpLtT5Tu8OZw8KLKutHurj+MKbHtdnsgu2JmZsYSjSlhHR0dWQYFw/QajYZdwNz4b7ot\n9vb27Ovcu3dPs7Ozpia4REB6MNa9Wq3as9FsNi1RlRZSVNrx8XFduHDBCAJ5KdFo1BQuOomYSeOW\nsEkfpbRIvHw2m7XvRUnm/9Ix9XHAeyp+SxSLRU1MTNhmSDDR8fGxDUCKRqP2H4lt0WjUDGyk/rmS\nVzgcNlWAcsjU1JTd5DjIMeUNDQ1ZPzVfgz77cDislZUVvf3226rVanrllVe0u7urH/3oR9bZQdmE\nw4ObaDKZVDqdViaTUafTsQcQmf0nP/mJvf52u62TkxO9/fbb2tzcVKlUsq/tN+Szwc2bNzU7O6u9\nvT2Le+fWPTc3p1QqZWYyym8bGxu2sR8cHGh9fd3IRyaTMQ/P2tqa3Sapfx8fPxh85BoxQ6GQrly5\nopmZGSuluEFGbP6QDwZxMeQJYsH6vX79ut59913duXPHgrc+biB/dzodFYtFlUolK9ER0V+r1VSr\n1dRoNB6ZTfvTgqOjI+syQtJ3b/zMynD9CMxXQQ3NZrO2r+F34JCn3OeS3mazqXw+b2Ws4eFh5fN5\nI9f4uIhbpzzC5Q0VDzUYxQQPGZetarVqXW1EubO2IdOUkYn8lmRD88gv4ue0t7dnJL9ardqsp3a7\nbSmtPOftdtvOCNQ1UkrP208heVJxJsjn8yb1ptPpgZsgHRowStgtdbRYLKZCoWDJm6gByWRyoPbL\nAwpcJzQkgr/Hn9NZ0uv19M4776hSqZjZBwMeN0vme+D14BChF59oXB6KUqlkLaG8LzYDpkMid3uc\nHVgDvV5PyWTS0kjHx8c1MTGhw8NDI7PcyJhfwyhwSCqpk/v7+6rVagMTOSGB3CQfJrjBYFA3btyw\nuO5IJGKeA8acsyFT/+VroJbQurqwsKBut6v//u//1sbGxs+NJPf4dMLdg9xZQYTntdtta2vHc4NJ\nUdJA9D9lNHJFKP/iy0AJrtfrdvHC10EWBmsTJY4pn7QcVyoVxeNxC5VCXYNIrKys6OTkxDpBSExF\nVTk4ODBPEHszJlSMmZCi0dFRKxfT4dJqtVQulzU1NWWqC2oaagblFsgEZwlpyo/CuANPKs4IdETQ\nthkOh81pTFcEcdksaDwYuVzO5L/NzU2T1qrVqpUUmPlw4cKFgZhYN56VvAEOEzb1SqWiW7du2cJk\nvskvQzQatdbCZDKp0dFR65Wmc+X+/fsql8uq1+umjiSTSWvT8srE2eO1114bIAXJZNK8L7TPNZtN\n1et1xWIxxeNxG+DGjYlyGB0L+Fw2NzetbIEi4aa7soFj1K3ValYvRhWBODysVmBwc2drEO4ViUT0\nxS9+UW+//bZu3bqlarV67n32HmeHo6MjCwjDd8aByHrikMU4S8bJ8PCwTYJl/UiyhGG8GhBoPGOo\nDhzIHNpudwWXtWAwqEKhoEAgYGbNer2u6elpmwpcq9W0vb1txvyxsTGbyot3Dl8DRCYUCllZnLIa\ne7Tb9k8Jm04TUjXxoFCG5AJIKz7PGgbSZrP5SJg0JR/T/bGAcJT9/X1Fo1ElEgnNzs6aE54e92q1\nqtXVVRvrTFDVL0IqlVIgENArr7yiubk5k5rdtLejoyNNTExoZWVFmUxGpVJJGxsbllD4m8q3Fy5c\nMMcx6gRSsZeCP3m8/PLLikajajabAy3E0un6QG2SZGUJpGJ69GOxmK1PAsz6/b7y+bwymYwFRBFD\nT4x1r9ezGPZOp6OJiQl96UtfsnyVbrdr0jWkli4TNmfIT7FY1NjYmBYXF/X1r39dkUhEf/Inf6IP\nPvjgkdkYPc4WV69elXSqtHHzPjk5MU8QHRlcuDBsQhjIBIH4MocF4kAsOurw2tqa0um05ubmbI+k\nXHh0dKRUKmXx9ih10umFand310oUjUZDCwsLNm48k8lYqRdTZ6fTsVZOxiEQW8/z584KwTeCEbjf\n72t3d9cM80dHR9apR4cWFztJplCEQiEVCgW12+1HKg7eGzU/BuBJgKHWajUrEzCg6OTkRMVi0dz7\nvwrIW6urq1ZbY8gMExVrtZpu3rypf//3f1c4HLY0QTpQflMwcQ91Azycx+/xyYD6P5suxklaPPP5\nvJVFqGEjy+KXcSOLG42GZmZmtLKyMtDdgWeCWybGYeRsOkjIdnBvkPw7boP8mtfJJnt4eKgLFy4o\nkUjopz/9qe7du2eGO4/HD3RrYHyla4hyKkoYpTEIBYorZTo398YNHuN5wKO2uLiow8NDFYtF84Ox\n/uiSY41CUDCe37t3zy5SCwsLGh8ftxIfF0Im66IMj4yM2ERdxg1QJuT90yqLYszzhIqBFwoCxRiE\nTCZjpWRKkHhQjo+Pz33U+cPwpOJjApvj4eGhLQoc5fv7+4rH40qn06pWq7/21wwGg+azmJ2dVTab\nlSQ1Gg2trq7q61//ujKZjKamprS2tmadF/9XErC8vKxnnnlGJycn2t3dNTXF17zPB0xlHB0d1ezs\nrJEANl6CgVAlUBbGx8fVaDTMc0EWhbthM7uDlmZuSLVaTVNTUzbPgFyLqakpk4/ZnHktbuwxGQRu\nTX1oaEjRaFSZTEYrKyt666231G63PzGDpscnD8oe+AI4bBlxEI1G7RJGCy/kllAsjI9uNDWdIvgk\nuLzNz88rGAxaazR/Hg6HjQzzLPDv2u22isWilfsWFhZsBgidU0ycJmmY7oyDgwN1u11TYiA7xARw\nEeC1Q+Ih3ZLMl9ZoNDQ2NqZoNKpSqaSTk5OBvA7UGbJ/3O6URwG+/PEJIhqN6hvf+Ia++tWvKhqN\n6i//8i9/4wS+p59+2oaC4dUIBAL69re/ra985Sv6i7/4C/3sZz+zjIyJiQn913/918fxdjzOAV/6\n0pcs40GStZZGo1E1Gg3t7+8rkUhY2mWz2bSYdUpxwWBQH374oSYmJmyWAW2T/Doej+vo6EhbW1s2\nA2Rzc9Mih5eWlpRKpUzBYOPlBjk0NGQZJ8jC+/v7CofDymQyVvZ78803tbW1ZYTJ4/FEJBLRc889\np1gspvn5+QFCindHejDyHGJMxxyqG8QDciDJWjhv376tlZUVhcNhffazn9X4+LjK5bI2Nzd1cHBg\nE5ch4JCUg4MD84PduXNHQ0NDev755wdmLGWzWY2MjKjVaqlerxupwB9BKZqgQtKU8T7QNktJEKUB\nhZHRByghpNAyX6RQKFiSJ2MNIBWPGrxR8xPE4eGh3nnnHT399NOSThfiL0rs/N9ANDAbtXRapvir\nv/orxeNxfetb3xowgz6qC8/j/4atrS1tbm4qmUxaBwVmr0qlYp0grVbLkk0PDg6UTqetlXN/f99u\ncHSEEKBGfZv2uaOjI9XrdTNXBoNBzc3NWbAWrcjSgwFOyLp8TUx0qBVDQ0O6deuW7ty5Y+qKVyke\nbwQCAUvzpUWUeTJ0ilGKoAWdaHg3aA/CQcs7KsPY2JjK5bKVT2hZjcfjFrNdq9XMuHnr1i11u12b\nAcNz0Wg0BmZqQEAoaaAuMKMEBQNT6fT0tMXeu+ZSN/oddYT/Dg8PVSqVjORIp9kVqVTKjKUQJMIE\n+/2+6vW6EatHCb788QkDRn4WIEFROp1R8ud//ucKBAIWcIWp0uPxA0QgGo3ahkjqKZ0byMedTke1\nWs2mwTYaDSMORFHTXscMAr6mdDovgTkKyWRSiURCh4eH1ktPqcSVd3G0ExPv5lb84z/+owqFgi5e\nvKjh4eGPZdaHx6MF2or39/e1u7trhzK3ctYLhySjAOgYoisJdSMYDJq6Jp0mpaZSKVMM3O63mZkZ\nhcNh65A4OjrSlStXzN9RLBa1tbWlkZERI8y7u7umTFy8eHHgIocBmlAqIrp7vZ62t7eVTqeVTCZN\ndXE7OSjFkAezu7trhPrw8NBKRLFYTO12W/F4XKOjo9rY2LBW07W1NYv3fhThScVjhL/5m7+RJF25\ncsUCYDweT9y7d09LS0s2/I0yBG52Sda5QQ0YpSIYDNotDfMaNzJuTgTrnJycDLT5kVmCURNjGRum\nW/elDo6nY2trS/v7+yoWi4pEIrp79+55/gg9PmHgHyNYDCIhPZgdREcHxHVsbMwmfeIdoHvCDetj\nwJY7S4M21lQqZfNoJicnB6boBgIBxeNxpVIpbW9vS3oQB85Y9pmZGVvnlCAg1czFoXODch/vjWcR\n5Q4vB++ZMiYt+/1+38LmeD5RKoi/p2TzqMKTiscQKysr5/0SPD4BjI+Pq9lsmkkM7wM98t1uV8Vi\n0VzibNL04qdSqYEk1k6nY7345EugXCBDSw8G2UFOqAVDHugAYcPsdDpaXV1VqVQyx7wvyT152NjY\nMMVgenraSnfSqSLByIPx8XEzPxLl7XYmSbJDG/WA0gizMhgoJj0ovcRiMUtxRR3goJ+YmLB5Jaxt\nSnaoB+RQkE0xNjZms5OI+eZ9ADpVIOuYmPk9ypVHR0cWnMgz+nAuBwGKrkL9KMIbNT08PsVYWlqy\n+G0MYYRZId9SM3bDqTCKDQ8P66mnnlIikbB2U8pntD3jqO/1erp586YlJJI9Qb04EolYy+vo6Kje\nfPNNraysWGuyh4ckfeUrX5F0at7MZrMWdFWv1+3gZuLxwyF/lUrFYuHj8bgdyMwUWV1dVbVa1eXL\nl5VKpTQ+Pm6HOTHhbiDVwcGBKRmYMCORiHnRRkZGTN2QpGeeecbKJhijq9WqxZFfuXLFZnxgLmUa\n79bWlkKhkNLp9M95mZg/Q3mEQDBaRn9T7915wisVHh6fYlBCeP75540M9Pt967nnhvSL4A5AwizH\nbREvBDVrd2YDpQ02fUiKJJvQKMnmkvjODg8X3W7XRoHj66FFUpJln1Bqw4NQrVa1vb2tfr+vycnJ\ngYnIbqw85ToMnbSL7u/va29vz4zB/X5fU1NT9j1do/LKyop1njBTIx6PD0zq5VmjRJHJZOx1tFot\nex2BQED5fF6dTsdKNrx2Wmqnp6clyQaY8e8Iuvs0wZMKD4/HAO+//7792u36+N/gDtRyI4SpHxMa\nVCwWTbLlZgjIHSCaHZmY+QSeUHg8DDcIkNh/Jij3ej0juqhh5D3k83nzFGDqJFCKLqJkMmnlusPD\nQ5tJQxAWM0dCoZAWFxetLELU9cTEhK31QCBgyhtlQUD5gtELmJPd8iNkZ2xsTLVazXwh5GuEw2Eb\nIimdEhF8GKgVEJFPE3xLqYfHYwZ6238VqEen02klEgmTitnQhoaGFAwGlcvlNDY2ppdfftkChJjI\niBPebfc7Pj7W7du3bQqjh4eL3d1dNZtNDQ0NqV6vq1Ao2FqBTOAjSCaTNleJQYWsPUputC3TIk1H\nFF8HzwWo1+v67Gc/q2QyqVQqZcGEkix0anJy0nxFxHqHw2GlUilJp5136+vrFm7ILBBeiyTrbNnf\n31cul1Oz2bRyIT6kQCCg3d1dbW9vq1gsqlAoGOGic6/RaNiQtE8DvFLh4fEEA1mZsJ7h4WGrM1cq\nFevo4M9RN9zgIiKSM5mMQqGQlpeXzYDn4fGLQN4OcdyYE1HX3HAspuSy1srlshYWFpTP53V0dKTx\n8XEryUmn00nxDpECy2iEbrdrORSxWMxyMYrFomq1mj7zmc9Y6XBsbExTU1M254h8CVI+MZHG43EL\nyXLTYyVZ+TASiVjKMu2uBFwRpkXeBqMRMIJ+2qLrPanw8HiCcXR0ZJ0YjG1GpcCsxmbOLZI5Bq1W\ny26DExMTkk4zLWKxmG7evOmTXD3+VxweHurw8NDGjUNS3aRLSm0kTVJew3tQKpVsnlIymbT8Cjo0\nmJF0fHysRCKhcrmsTCajZDJpbc6SLDqeg50uFXJY6BJhdkgwGLR0WnxG0unzRNIm0druNFJUPSa1\nNhoNHR8fq16vWzIts3uq1ar9+acJnlR4eDzh6Ha72tnZsXHk3K7u3r2rixcvqtFoqN/vD7TR9Xq9\ngcyLSCSio6Mjvf766xobG9N3v/vdc35XHp8WNBoNzc7OSpJ5F+joIEL7+PjYWj7Hx8dVLBYtoRI1\n4/Lly0qn0wPzNtyUyqGhIV26dMkCtdLptJkuc7mc5UNgdHZVCNo5ycUYGRlRJpOxZM9gMKh6va5c\nLmdke2ZmRpFIxFpZ4/G4crmcstmsTf2dmJiwNlPCwXK5nDqdjnXEuB6mTwM8qfDw8JD0gFxIUj6f\nlyRLu0SWxazGZt7r9RSJRFSr1ZTP521qrofHbwJKBnhzmPJJJ5GrELD2JNlhzDyM8fFxy6fg77jk\nAhJM5xMzc4aGhixxc3h4WJ1OR6OjoxZHTwmG1lRUO9dk2Ww2VSgUrKyTyWTMAIpKwd9Hqdjf31cm\nk7F2WnwmhGZ92lQKyRs1PTw8fg3s7+9ra2tLV69e1eHhoZVEuFnduXNHe3t7NqLZw+M3AQmtTBCd\nnJzU8PCwmSzHx8dt6BatnZIsjh6jJm2aIyMjarfbajQa2tnZsWTZSqViXoxYLGbtpfgaKFNkMhnr\nIoHoUAKEnECEtre31el0tLm5qWg0qng8ruHhYa2srNg8k1arpVqtZr6l0dFRy4Zh9kcgELBhY3Ss\nfBrhlQoPD49fG3R70HLXbrfVarUsgtnD4/8C5H5SMvk1Zsj9/X0lk0mVy2VruTw8PBxo39zf37eA\nq4ODA21vbw+MXMfbUKvVFIvFrIWTrImRkRElk0kjMmNjY5Jk8dz4OQKBgJk1q9WqDg8Plc/ntbe3\np6WlJTN5Hh0daWdnR+FwWMlk0ogCiZvFYlGJRMKUj0qlom63q2q1at0on0Z4pcLDw+PXxsbGhjY3\nN7W+vq5Lly6pWq0qEAj42G2P3wr7+/uWBjs2NmbkwjVHMn+GnAs6QshIIV8CD0SlUlGtVlM4HLY5\nG5ALYrWPj4+Vy+UseAsjsjurIx6P24RSSZZ02W63VS6Xtb6+rt3dXc3NzSkSidhrbbfbNnskGo0q\nFotZoNzo6Ki1b5fLZTNtjo6OqlAonOdH8VvDkwoPD4//E9bX120cs4fHbwsGakkPQtVKpZIqlYr2\n9/eVSCQUDoctbG1kZETNZtOI7dTUlJLJpHVPEKo1MjKibDZrGRYc3MFgUKOjo1aeYNAdg8dI9CyX\ny8rlcgP/hrIJ49IvXbpkZAhFot1uK51OWzv20NCQwuGwtXFDmLrdriqVira3t3VycvKpHwTpyx8e\nHh4eHo8EDg4O1Gw2zR+RSqU0NjZmN/x4PG55FNJp5kM4HNbExISZO8mBwM8wNTVlJQdUiGAwaKPF\n3WmlmDxROkiUrdfrFqdNFwht1YlEwgylkux7SzJ/RCqV0v7+vpVUJKlWq9ngv1wup/Hx8ceijOhJ\nhYeHh4fHIwPCsGq1mgKBgPkRGo2GOp2OotGohoeHzXtw5coVjY6OanR01EaP46XAG4EhkrwKd9op\nxstEImFqCIP06OhAASEJk2CtXq83MJUUtYVppb1eT5lMRu1221pb+Z7kUxweHg5M9f20w5MKDw8P\nD49HCpTUKpWKdXdMTU0pkUio3++bqfHChQtKJBKmaGBwpHOCsCk3TCqVSlmeBb4L5nSkUil1Oh1V\nKhXt7OwoFovpxo0bFmZF5kSpVNLe3p7NCxkZGVEkEtH09LS63a4Fd0EgarWaSqWStbeOjo6qVqvZ\nCPbHCZ5UeHh4eHg8knAjqslMuXLliqrVqmZnZy39st1u2wHNQD38Cvv7+xZiVa1WVSqVNDo6qoOD\nAyMAtJDmcjlFo1GVSiVNT0+bwkEXCkoEo88ZxBcOhy2aPhwO29wQd8x6KBRSsVjU6Oiotre3P9kf\n5CcITyo8PDw8PD41WFlZkSTNz8+r3+9rb2/P/gy/BV0bbhJnIpFQqVTS+vq6rly5okKhoHa7ra2t\nLYvrXlpa0urqqubm5mz6aDqd1vHxsWq1mtLptKkgvV7PppoyXA9lQpLNDPnP//xPXblyxYLl+P3H\nFQFJn665qh4eHh4eHjpVJYjeZigZ4VlDQ0NqtVra2trSyMiIpqamVK/X1Wq1VCgUzGtx9+7dX/i1\nv/KVr1gLKmPQk8mkDg8P1el0tLy8rOnpaaVSKRtnToZLp9PRBx988An/NB4NeKXCw8PDw+NTiWaz\nqXw+r3A4rPn5eZsbUqlUFIlEzLTJCPJOp2Mmzl9VgiDBk7htgt8wWXa7XfV6PRsgVqvVFAqF1O/3\ntby8/An9BB49eKXCw8PDw+NTj0gkon6/r1gspsXFRYvSzufzGhkZUTgc1vvvv/8bf91nn33WJoge\nHBxYkBbzcTwG4UmFh4eHh8djhUgkouPjYzNd/rYYHR21lE8SPg8ODs7glT5+8KTCw8PDw8PD40wQ\nPO8X4OHh4eHh4fF4wJMKDw8PDw8PjzOBJxUeHh4eHh4eZwJPKjw8PDw8PDzOBJ5UeHh4eHh4eJwJ\nPKnw8PDw8PDwOBN4UuHh4eHh4eFxJvCkwsPDw8PDw+NM4EmFh4eHh4eHx5nAkwoPDw8PDw+PM4En\nFR4eHh4eHh5nAk8qPDw8PDw8PM4EnlR4eHh4eHh4nAk8qfDw8PDw8PA4E3hS4eHh4eHh4XEm8KTC\nw8PDw8PD40zgSYWHh4eHh4fHmcCTCg8PDw8PD48zgScVHh4eHh4eHmcCTyo8PDw8PDw8zgSeVHh4\neHh4eHicCTyp8PDw8PDw8DgTeFLh4eHh4eHhcSbwpMLDw8PDw8PjTOBJhYeHh4eHh8eZwJMKDw8P\nDw8PjzOBJxUeHh4eHh4eZwJPKjw8PDw8PDzOBJ5UeHh4eHh4eJwJPKnw8PDw8PDwOBN4UuHh4eHh\n4eFxJvCkwsPDw8PDw+NM4EmFh4eHh4eHx5nAkwoPDw8PDw+PM4EnFR4eHh4eHh5nAk8qPDw8PDw8\nPM4EnlR4eHh4eHh4nAk8qfDw8PDw8PA4E3hS4eHh4eHh4XEm8KTCw8PDw8PD40zgSYWHh4eHh4fH\nmcCTCg8PDw8PD48zgScVHh4eHh4eHmcCTyo8PDw8PDw8zgSeVHh4eHh4eHicCTyp8PDw8PDw8DgT\neFLh4eHh4eHhcSbwpMLDw8PDw8PjTOBJhYeHh4eHh8eZwJMKDw8PDw8PjzOBJxUeHh4eHh4eZwJP\nKjw8PDw8PDzOBJ5UeHh4eHh4eJwJPKnw8PDw8PDwOBN4UuHh4eHh4eFxJvCkwsPDw8PDw+NM8P8D\nkegZZcr3SvUAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plot_anat('/data/ds102/sub-01/anat/sub-01_T1w_bet.nii.gz', title='original',\n",
- " display_mode='ortho', dim=-1, draw_cross=False, annotate=False)"
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plot_anat('/output/sub-01_ses-test_T1w_bet.nii.gz', title='original',\n",
+ " display_mode='ortho', dim=-1, draw_cross=False, annotate=False);"
]
},
{
"cell_type": "markdown",
- "metadata": {
- "deletable": true,
- "editable": true
- },
+ "metadata": {},
"source": [
- "Perfect! Exactly what we want. Hmm... what else could we want from BET? Well, it's actually a fairly complicated program. As is the case for all FSL binaries, just call it with no arguments to see all its options."
+ "Perfect! Exactly what we want. Hmm... what else could we want from BET? Well, it's actually a fairly complicated program. As is the case for all FSL binaries, just call it with the help flag `-h` to see all its options."
]
},
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": false,
- "deletable": true,
- "editable": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Usage: bet