-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Fix part numbering in README #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Thanks for the patch! It's the small things like this that add up to a great scala experience. I hate to do this, but I need to make sure you've signed a CLA for scala: http://www.scala-lang.org/sites/default/files/contributor_agreement.pdf If you haven't could you sign a copy and email it to the address listed on the CLA? Let me know when that's done and I'll merge the commit.
|
axel22
referenced
this pull request
in axel22/scala-github
Feb 3, 2012
This change resolves some issues with ParCtrie splitters and their `remaining` method, which currently evaluates the size of the Ctrie. Since this is still not done lazily, nor in parallel, it has a certain cost, which is unacceptable. Change #1: The `shouldSplitFurther` method is by default implemented by calling the `remaining` method. This method now forwards the call to the same method in the splitter which is by default implemented in the same way as before, but can be overridden by custom collections such as the ParCtrie. Change #2: ParCtrie splitter now has a `level` member which just counts how many times the method has been split. This information is used to override the default `shouldSplitFurther` implementation. Change #3: The tasks and splitters rely heavily on the `remaining` method in the splitter for most operations. There is an additional method called `isRemainingCheap` which returns true by default, but can be overridden by custom collections such as the `Ctrie`.
namin
referenced
this pull request
in namin/scala
Mar 6, 2012
Add refinedType to object ClassManifest
retronym
referenced
this pull request
in retronym/scala
May 22, 2012
Yin and yang would be pleased: A fix in two parts. 1. Use the name of the imported symbol, rather than the alias, in the generated Select(qual, name) tree. 2. Do the opposite in isQualifyingImplicit, which performs one part of the shadowing check. But there is still work to do. The second part of the shadowing check, nonImplicitSynonymInScope, fails to notice this case (irrespective of aliased imports). // Expecting shadowing #2. Alas, none is cast! object Test1 { object A { implicit val x: Int = 1 } import A.x def x: Int = 0 implicitly[Int] } I'm hitching the residual problem to SI-4270's wagon.
retronym
referenced
this pull request
in retronym/scala
May 22, 2012
Yin and yang would be pleased: A fix in two parts. 1. Use the name of the imported symbol, rather than the alias, in the generated `Select(qual, name)` tree. 2. Do the opposite in `isQualifyingImplicit`, which performs one part of the shadowing check. But there is still work to do. The second part of the shadowing check, `nonImplicitSynonymInScope`, fails to notice this case (irrespective of aliased imports). // Expecting shadowing #2. Alas, none is cast! object Test1 { object A { implicit val x: Int = 1 } import A.x def x: Int = 0 implicitly[Int] } I'm hitching the residual problem to SI-4270's wagon.
Blaisorblade
pushed a commit
to Blaisorblade/scala
that referenced
this pull request
Jun 19, 2012
At this commit ant test-opt has two test failures: test/files/pos/javaReadsSigs [FAILED] test/files/run/t4238 [FAILED] Fix for wrong bytecode in forwarders. This took me so long to figure out I can't even tell you. Partly because there were two different bugs, one which only arose for trait forwarders and one for mirror class forwarders, and every time I'd make one set of tests work another set would start failing. The runtime failures associated with these bugs were fairly well hidden because you usually have to go through java to encounter them: scala doesn't pay that much attention to generic signatures, so they can be wrong and scala might still generate correct code. But java is not so lucky. Bug scala#1) During mixin composition, classes which extend traits receive forwarders to the implementations. An attempt was made to give these the correct info (in method "cloneBeforeErasure") but it was prone to giving the wrong answer, because: the key attribute which the forwarder must capture is what the underlying method will erase to *where the implementation is*, not how it appears to the class which contains it. That means the signature of the forwarder must be no more precise than the signature of the inherited implementation unless additional measures will be taken. This subtle difference will put on an unsubtle show for you in test run/t3452.scala. trait C[T] trait Search[M] { def search(input: M): C[Int] = null } object StringSearch extends Search[String] { } StringSearch.search("test"); // java // java.lang.NoSuchMethodError: StringSearch.search(Ljava/lang/String;)LC; Before/after this commit: < signature search (Ljava/lang/String;)LC<Ljava/lang/Object;>; --- > signature search (Ljava/lang/Object;)LC<Ljava/lang/Object;>; Bug scala#2) The same principle is at work, at a different location. During genjvm, objects without declared companion classes are given static forwarders in the corresponding class, e.g. object Foo { def bar = 5 } which creates these classes (taking minor liberties): class Foo$ { static val MODULE$ = new Foo$ ; def bar = 5 } class Foo { static def bar = Foo$.MODULE$.bar } In generating these, genjvm circumvented the usual process whereby one creates a symbol and gives it an info, preferring to target the bytecode directly. However generic signatures are calculated from symbol info (in this case reusing the info from the module class.) Lacking even the attempt which was being made in mixin to "clone before erasure", we would have runtime failures of this kind: abstract class Foo { type T def f(x: T): List[T] = List() } object Bar extends Foo { type T = String } Bar.f(""); // java // java.lang.NoSuchMethodError: Bar.f(Ljava/lang/String;)Lscala/collection/immutable/List; Before/after this commit: < signature f (Ljava/lang/String;)Lscala/collection/immutable/List<Ljava/lang/String;>; --- > signature f (Ljava/lang/Object;)Lscala/collection/immutable/List<Ljava/lang/Object;>; Closes SI-3452.
VladUreche
referenced
this pull request
in VladUreche/scala
Jul 2, 2012
- fixed the AnyRef linking (SI-5780) - added tooltips to implicit conversions in diagrams - fixed the intermittent dot error where node images would be left out (dot is not reliable at all -- with all the mechanisms in place to fail gracefully, we still get dot errors crawling their way into diagrams - and that usually means no diagram generated, which is the most appropriate way to fail, I think...)
odersky
added a commit
to odersky/scala
that referenced
this pull request
Jul 14, 2012
odersky
added a commit
that referenced
this pull request
Jul 19, 2012
adriaanm
pushed a commit
that referenced
this pull request
Aug 7, 2012
…ull-request Ultimate reflection pull request #2
non
added a commit
to non/scala
that referenced
this pull request
Aug 16, 2012
Lots of people get tripped up on this, and right now the only way to test code that uses companion objects in the REPL is to use :paste, which is infuriating when the data is already available in a file. Arguably this should be a patch to modify how :load works, but I'm not sure how many people depend on :load to work as "replay" versus the functionality I'm adding here. I can imagine four courses of action: 1. Merge this branch as-is 2. Replace the existing :load with :file 3. Same as scala#2 but rename :load to :replay, and :file to :load 4. Reject this patch I'm open to any of those except scala#4.
xeno-by
added a commit
that referenced
this pull request
Sep 27, 2012
Turns importer caches into fully weak hash maps, and also applies manual cleanup to toolboxes every time they are used. It's not enough, because reflection-mem-typecheck test is still leaking at a rate of ~100kb per typecheck, but it's much better than it was before. We'll fix the rest later, after 2.10.0-final. For more information, see https://issues.scala-lang.org/browse/SI-6412 and http://groups.google.com/group/scala-internals/browse_thread/thread/eabcf3d406dab8b2 In comparison with b403c1d, the original commit that implemented the fix, this one doesn't crash tests. The problem with the original commit was that it called tryFixup() before updating the cache, leading to stack overflows.
gkossakowski
added a commit
that referenced
this pull request
Sep 27, 2012
SI-6412 alleviates leaks in toolboxes, attempt #2
Merged
TiarkRompf
referenced
this pull request
in TiarkRompf/scala
Feb 12, 2013
more permissive scrutinee types in virt pattern matching
retronym
added a commit
that referenced
this pull request
Feb 12, 2014
Swathes of important logic are duplicated between `findMember` and `findMembers` after they separated on grounds of irreconcilable differences about how fast they should run: d905558 Variation #10 to optimze findMember fcb0c01 Attempt #9 to opimize findMember. 71d2ceb Attempt #8 to opimize findMember. 77e5692 Attempty #7 to optimize findMember 275115e Fixing problem that caused fingerprints to fail in e94252e Attemmpt #6 to optimize findMember 73e61b8 Attempt #5 to optimize findMember. 04f0b65 Attempt #4 to optimize findMember 0e3c70f Attempt #3 to optimize findMember 41f4497 Attempt #2 to optimize findMember 1a73aa0 Attempt #1 to optimize findMember This didn't actually bear fruit, and the intervening years have seen the implementations drift. Now is the time to reunite them under the banner of `FindMemberBase`. Each has a separate subclass to customise the behaviour. This is primarily used by `findMember` to cache member types and to assemble the resulting list of symbols in an low-allocation manner. While there I have introduced some polymorphic calls, the call sites are only bi-morphic, and our typical pattern of compilation involves far more `findMember` calls, so I expect that JIT will keep the virtual call cost to an absolute minimum. Test results have been updated now that `findMembers` correctly excludes constructors and doesn't inherit privates. Coming up next: we can actually fix SI-7475!
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 12, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 12, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 14, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 14, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 14, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
xeno-by
added a commit
to xeno-by/scala
that referenced
this pull request
Feb 14, 2014
As per discussion at https://groups.google.com/forum/#!topic/scala-internals/nf_ooEBn6-k, this commit introduces the new c.enclosingOwner API that is going to serve two purposes: 1) provide a better controlled alternative to c.enclosingTree, 2) enable low-level tinkering with owner chains without having to cast to compiler internals. This solution is not ideal, because: 1) symbols are much more than I would like to expose about enclosing lexical contexts (after the aforementioned discussion I’m no longer completely sure whether exposing nothing is the right thing to do, but exposing symbol completers is definitely something that should be avoided), 2) we shouldn’t have to do that low-level stuff in the first place. However, let’s face the facts. This change represents both an improvement over the state of the art wrt #1 and a long-awaited capability wrt scala#2. I think this pretty much warrants its place in trunk in the spirit of gradual, evolutionary development of reflection API.
retronym
added a commit
that referenced
this pull request
Feb 16, 2014
[Parts of this patch and some of the commentary are from @paulp] This took me so long to figure out I can't even tell you. Partly because there were two different bugs, one which only arose for trait forwarders and one for mirror class forwarders, and every time I'd make one set of tests work another set would start failing. The runtime failures associated with these bugs were fairly well hidden because you usually have to go through java to encounter them: scala doesn't pay that much attention to generic signatures, so they can be wrong and scala might still generate correct code. But java is not so lucky. Bug #1) During mixin composition, classes which extend traits receive forwarders to the implementations. An attempt was made to give these the correct info (in method "cloneBeforeErasure") but it was prone to giving the wrong answer, because: the key attribute which the forwarder must capture is what the underlying method will erase to *where the implementation is*, not how it appears to the class which contains it. That means the signature of the forwarder must be no more precise than the signature of the inherited implementation unless additional measures will be taken. This subtle difference will put on an unsubtle show for you in test run/t3452.scala. trait C[T] trait Search[M] { def search(input: M): C[Int] = null } object StringSearch extends Search[String] { } StringSearch.search("test"); // java // java.lang.NoSuchMethodError: StringSearch.search(Ljava/lang/String;)LC; The principled thing to do here would be to create a pair of methods in the host class: a mixin forwarder with the erased signature `(String)C[Int]`, and a bridge method with the same erased signature as the trait interface facet. But, this turns out to be pretty hard to retrofit onto the current setup of Mixin and Erasure, mostly due to the fact that mixin happens after erasure which has already taken care of bridging. For a future, release, we should try to move all bridging after mixin, and pursue this approach. But for now, what can we do about `LinkageError`s for Java clients? This commit simply checks if the pre-erasure method signature that we generate for the trait forward erases identically to that of the interface method. If so, we can be precise. If not, we emit the erased signature as the generic signature. Bug #2) The same principle is at work, at a different location. During genjvm, objects without declared companion classes are given static forwarders in the corresponding class, e.g. object Foo { def bar = 5 } which creates these classes (taking minor liberties): class Foo$ { static val MODULE$ = new Foo$ ; def bar = 5 } class Foo { static def bar = Foo$.MODULE$.bar } In generating these, genjvm circumvented the usual process whereby one creates a symbol and gives it an info, preferring to target the bytecode directly. However generic signatures are calculated from symbol info (in this case reusing the info from the module class.) Lacking even the attempt which was being made in mixin to "clone before erasure", we would have runtime failures of this kind: abstract class Foo { type T def f(x: T): List[T] = List() } object Bar extends Foo { type T = String } Bar.f(""); // java // java.lang.NoSuchMethodError: Bar.f(Ljava/lang/String;)Lscala/collection/immutable/List; Before/after this commit: < signature f (Ljava/lang/String;)Lscala/collection/immutable/List<Ljava/lang/String;>; --- > signature f (Ljava/lang/Object;)Lscala/collection/immutable/List<Ljava/lang/Object;>; This takes the warning count for compiling collections under `-Ycheck:jvm` from 1521 to 26.
adriaanm
pushed a commit
that referenced
this pull request
Mar 28, 2014
blueprint CSS layout modified to 18-column from 24-column, spacing between paragraphs reduced by 1em
retronym
added a commit
to retronym/community-builds
that referenced
this pull request
May 10, 2014
- Explicitly use scala/scala#2.11.x as the git ref for Scala - Remove the GenBCode configuration. It has drifted out of date an we need to take another pass at it, hopefully finding a means to avoid duplication with the regular dbuild.
This was referenced Mar 1, 2015
retronym
added a commit
that referenced
this pull request
Apr 10, 2015
Under `-Ydelambdafy:method`, a public, static accessor method is created to expose the private method containing the body of the lambda. Currently this accessor method has its parameters in the same order structure as those of the lambda body method. What is this order? There are three categories of parameters: 1. lambda parameters 2. captured parameters (added by lambdalift) 3. self parameters (added to lambda bodies that end up in trait impl classes by mixin, and added unconditionally to the static accessor method.) These are currently emitted in order #3, #1, #2. Here are examples of the current behaviour: BEFORE (trait): ``` % cat sandbox/test.scala && scalac-hash v2.11.5 -Ydelambdafy:method sandbox/test.scala && javap -private -classpath . 'Test$class' trait Member; class Capture; trait LambdaParam trait Test { def member: Member def foo { val local = new Capture (arg: LambdaParam) => "" + arg + member + local } } Compiled from "test.scala" public abstract class Test$class { public static void foo(Test); private static final java.lang.String $anonfun$1(Test, LambdaParam, Capture); public static void $init$(Test); public static final java.lang.String accessor$1(Test, LambdaParam, Capture); } ``` BEFORE (class): ``` % cat sandbox/test.scala && scalac-hash v2.11.5 -Ydelambdafy:method sandbox/test.scala && javap -private -classpath . Test trait Member; class Capture; trait LambdaParam abstract class Test { def member: Member def foo { val local = new Capture (arg: LambdaParam) => "" + arg + member + local } } Compiled from "test.scala" public abstract class Test { public abstract Member member(); public void foo(); private final java.lang.String $anonfun$1(LambdaParam, Capture); public Test(); public static final java.lang.String accessor$1(Test, LambdaParam, Capture); } ``` Contrasting the class case with Java: ``` % cat sandbox/Test.java && javac -d . sandbox/Test.java && javap -private -classpath . Test public abstract class Test { public static class Member {}; public static class Capture {}; public static class LambaParam {}; public static interface I { public abstract Object c(LambaParam arg); } public abstract Member member(); public void test() { Capture local = new Capture(); I i1 = (LambaParam arg) -> "" + member() + local; } } Compiled from "Test.java" public abstract class Test { public Test(); public abstract Test$Member member(); public void test(); private java.lang.Object lambda$test$0(Test$Capture, Test$LambaParam); } ``` We can see that in Java 8 lambda parameters come after captures. If we want to use Java's LambdaMetafactory to spin up our anoymous FunctionN subclasses on the fly, our ordering must change. I can see three options for change: 1. Adjust `LambdaLift` to always prepend captured parameters, rather than appending them. I think we could leave `Mixin` as it is, it already prepends the self parameter. This would result a parameter ordering, in terms of the list above: #3, #2, #1. 2. More conservatively, do this just for methods known to hold lambda bodies. This might avoid needlessly breaking code that has come to depend on our binary encoding. 3. Adjust the parameters of the accessor method only. The body of this method can permute params before calling the lambda body method. This commit implements option #2. In also prototyped #1, and found it worked so long as I limited it to non-constructors, to sidestep the need to make corresponding changes elsewhere in the compiler to avoid the crasher shown in the enclosed test case, which was minimized from a bootstrap failure from an earlier a version of this patch. We would need to defer option #1 to 2.12 in any case, as some of these lifted methods are publicied by the optimizer, and we must leave the signatures alone to comply with MiMa. I've included a test that shows this in all in action. However, that is currently disabled, as we don't have a partest category for tests that require Java 8.
retronym
added a commit
that referenced
this pull request
Aug 10, 2015
The log messages intented to chronicle implicit search were always being filtered out by virtue of the fact that the the tree passed to `printTyping` was already typed, (e.g. with an implicit MethodType.) This commit enabled printing in this case, although it still filters out trees that are deemed unfit for typer tracing, such as `()`. In the context of implicit search, this happens to filter out the noise of: ``` | | | [search #2] start `()`, searching for adaptation to pt=Unit => Foo[Int,Int] (silent: value <local Test> in Test) implicits disabled | | | [search #3] start `()`, searching for adaptation to pt=(=> Unit) => Foo[Int,Int] (silent: value <local Test> in Test) implicits disabled | | | \-> <error> ``` ... which I think is desirable. The motivation for this fix was to better display the interaction between implicit search and type inference. For instance: ``` class Foo[A, B] class Test { implicit val f: Foo[Int, String] = ??? def t[A, B](a: A)(implicit f: Foo[A, B]) = ??? t(1) } ``` ```` % scalac -Ytyper-debug sandbox/instantiate.scala ... | |-- t(1) BYVALmode-EXPRmode (site: value <local Test> in Test) | | |-- t BYVALmode-EXPRmode-FUNmode-POLYmode (silent: value <local Test> in Test) | | | [adapt] [A, B](a: A)(implicit f: Foo[A,B])Nothing adapted to [A, B](a: A)(implicit f: Foo[A,B])Nothing | | | \-> (a: A)(implicit f: Foo[A,B])Nothing | | |-- 1 BYVALmode-EXPRmode-POLYmode (site: value <local Test> in Test) | | | \-> Int(1) | | solving for (A: ?A, B: ?B) | | solving for (B: ?B) | | [search #1] start `[A, B](a: A)(implicit f: Foo[A,B])Nothing` inferring type B, searching for adaptation to pt=Foo[Int,B] (silent: value <local Test> in Test) implicits disabled | | [search #1] considering f | | [adapt] f adapted to => Foo[Int,String] based on pt Foo[Int,B] | | [search #1] solve tvars=?B, tvars.constr= >: String <: String | | solving for (B: ?B) | | [search #1] success inferred value of type Foo[Int,=?String] is SearchResult(Test.this.f, TreeTypeSubstituter(List(type B),List(String))) | | |-- [A, B](a: A)(implicit f: Foo[A,B])Nothing BYVALmode-EXPRmode (site: value <local Test> in Test) | | | \-> Nothing | | [adapt] [A, B](a: A)(implicit f: Foo[A,B])Nothing adapted to [A, B](a: A)(implicit f: Foo[A,B])Nothing | | \-> Nothing ```
retronym
added a commit
to retronym/community-builds
that referenced
this pull request
Mar 20, 2016
This was necessary to get a community build working with the scala/scala#5003. It is likely that after this change, people will need to rebase branches on scala/scala#2.12.x before running them through the community build. Alternatively, they could trigger the community build with community-builds/64063200, rather than 64063200#2.12.x.
adriaanm
pushed a commit
that referenced
this pull request
Aug 22, 2016
Top level modules in Scala currently desugar as: ``` class C; object O extends C { toString } ``` ``` public final class O$ extends C { public static final O$ MODULE$; public static {}; Code: 0: new #2 // class O$ 3: invokespecial #12 // Method "<init>":()V 6: return private O$(); Code: 0: aload_0 1: invokespecial #13 // Method C."<init>":()V 4: aload_0 5: putstatic #15 // Field MODULE$:LO$; 8: aload_0 9: invokevirtual #21 // Method java/lang/Object.toString:()Ljava/lang/String; 12: pop 13: return } ``` The static initalizer `<clinit>` calls the constructor `<init>`, which invokes superclass constructor, assigns `MODULE$= this`, and then runs the remainder of the object's constructor (`toString` in the example above.) It turns out that this relies on a bug in the JVM's verifier: assignment to a static final must occur lexically within the <clinit>, not from within `<init>` (even if the latter is happens to be called by the former). I'd like to move the assignment to <clinit> but that would change behaviour of "benign" cyclic references between modules. Example: ``` package p1; class CC { def foo = O.bar}; object O {new CC().foo; def bar = println(1)}; // Exiting paste mode, now interpreting. scala> p1.O 1 ``` This relies on the way that we assign MODULE$ field after the super class constructors are finished, but before the rest of the module constructor is called. Instead, this commit removes the ACC_FINAL bit from the field. It actually wasn't behaving as final at all, precisely the issue that the stricter verifier now alerts us to. ``` scala> :paste -raw // Entering paste mode (ctrl-D to finish) package p1; object O // Exiting paste mode, now interpreting. scala> val O1 = p1.O O1: p1.O.type = p1.O$@ee7d9f1 scala> scala.reflect.ensureAccessible(p1.O.getClass.getDeclaredConstructor()).newInstance() res0: p1.O.type = p1.O$@64cee07 scala> O1 eq p1.O res1: Boolean = false ``` We will still achieve safe publication of the assignment to other threads by virtue of the fact that `<clinit>` is executed within the scope of an initlization lock, as specified by: https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5 Fixes scala/scala-dev#SD-194
retronym
added a commit
that referenced
this pull request
Oct 16, 2016
Manually tested with: ``` % cat sandbox/test.scala package p { object X { def f(i: Int) = ??? ; def f(s: String) = ??? } object Main { val res = X.f(3.14) } } % qscalac -Ytyper-debug sandbox/test.scala |-- p EXPRmode-POLYmode-QUALmode (site: package <root>) | \-> p.type |-- object X BYVALmode-EXPRmode (site: package p) | |-- super EXPRmode-POLYmode-QUALmode (silent: <init> in X) | | |-- this EXPRmode (silent: <init> in X) | | | \-> p.X.type | | \-> p.X.type | |-- def f BYVALmode-EXPRmode (site: object X) | | |-- $qmark$qmark$qmark EXPRmode (site: method f in X) | | | \-> Nothing | | |-- Int TYPEmode (site: value i in X) | | | \-> Int | | |-- Int TYPEmode (site: value i in X) | | | \-> Int | | \-> [def f] (i: Int)Nothing | |-- def f BYVALmode-EXPRmode (site: object X) | | |-- $qmark$qmark$qmark EXPRmode (site: method f in X) | | | \-> Nothing | | |-- String TYPEmode (site: value s in X) | | | [adapt] String is now a TypeTree(String) | | | \-> String | | |-- String TYPEmode (site: value s in X) | | | [adapt] String is now a TypeTree(String) | | | \-> String | | \-> [def f] (s: String)Nothing | \-> [object X] p.X.type |-- object Main BYVALmode-EXPRmode (site: package p) | |-- X.f(3.14) EXPRmode (site: value res in Main) | | |-- X.f BYVALmode-EXPRmode-FUNmode-POLYmode (silent: value res in Main) | | | |-- X EXPRmode-POLYmode-QUALmode (silent: value res in Main) | | | | \-> p.X.type | | | \-> (s: String)Nothing <and> (i: Int)Nothing | | |-- 3.14 BYVALmode-EXPRmode (silent: value res in Main) | | | \-> Double(3.14) | | [search #1] start `<?>`, searching for adaptation to pt=Double => String (silent: value res in Main) implicits disabled | | [search #2] start `<?>`, searching for adaptation to pt=(=> Double) => String (silent: value res in Main) implicits disabled | | [search #3] start `<?>`, searching for adaptation to pt=Double => Int (silent: value res in Main) implicits disabled | | 1 implicits in companion scope | | [search #4] start `<?>`, searching for adaptation to pt=(=> Double) => Int (silent: value res in Main) implicits disabled | | 1 implicits in companion scope | | second try: <error> and 3.14 | | [search #5] start `p.X.type`, searching for adaptation to pt=p.X.type => ?{def f(x$1: ? >: Double(3.14)): ?} (silent: value res in Main) implicits disabled | | [search #6] start `p.X.type`, searching for adaptation to pt=(=> p.X.type) => ?{def f(x$1: ? >: Double(3.14)): ?} (silent: value res in Main) implicits disabled sandbox/test.scala:4: error: overloaded method value f with alternatives: (s: String)Nothing <and> (i: Int)Nothing cannot be applied to (Double) val res = X.f(3.14) ^ ```
nicolasstucki
pushed a commit
to nicolasstucki/scala
that referenced
this pull request
Dec 15, 2016
…cklist Fix issues in dotty blacklist
jvican
added a commit
to jvican/scala
that referenced
this pull request
Mar 24, 2017
The following commit message is a squash of several commit messages. - This is the 1st commit message: Add position to stub error messages Stub errors happen when we've started the initialization of a symbol but key information of this symbol is missing (the information cannot be found in any entry of the classpath not sources). When this error happens, we better have a good error message with a position to the place where the stub error came from. This commit goes into this direction by adding a `pos` value to `StubSymbol` and filling it in in all the use sites (especifically `UnPickler`). This commit also changes some tests that test stub errors-related issues. Concretely, `t6440` is using special Partest infrastructure and doens't pretty print the position, while `t5148` which uses the conventional infrastructure does. Hence the difference in the changes for both tests. - This is the commit message scala#2: Add partest infrastructure to test stub errors `StubErrorMessageTest` is the friend I introduce in this commit to help state stub errors. The strategy to test them is easy and builds upon previous concepts: we reuse `StoreReporterDirectTest` and add some methods that will compile the code and simulate a missing classpath entry by removing the class files from the class directory (the folder where Scalac compiles to). This first iteration allow us to programmatically check that stub errors are emitted under certain conditions. - This is the commit message scala#3: Improve contents of stub error message This commit does three things: * Keep track of completing symbol while unpickling First, it removes the previous `symbolOnCompletion` definition to be more restrictive/clear and use only positions, since only positions are used to report the error (the rest of the information comes from the context of the `UnPickler`). Second, it adds a new variable called `lazyCompletingSymbol` that is responsible for keeping a reference to the symbol that produces the stub error. This symbol will usually (always?) come from the classpath entries and therefore we don't have its position (that's why we keep track of `symbolOnCompletion` as well). This is the one that we have to explicitly use in the stub error message, the culprit so to speak. Aside from these two changes, this commit modifies the existing tests that are affected by the change in the error message, which is more precise now, and adds new tests for stub errors that happen in complex inner cases and in return type of `MethodType`. * Check that order of initialization is correct With the changes introduced previously to keep track of position of symbols coming from source files, we may ask ourselves: is this going to work always? What happens if two symbols the initialization of two symbols is intermingled and the stub error message gets the wrong position? This commit adds a test case and modifications to the test infrastructure to double check empirically that this does not happen. Usually, this interaction in symbol initialization won't happen because the `UnPickler` will lazily load all the buckets necessary for a symbol to be truly initialized, with the pertinent addresses from which this information has to be deserialized. This ensures that this operation is atomic and no other symbol initialization can happen in the meantime. Even though the previous paragraph is the feeling I got from reading the sources, this commit creates a test to double-check it. My attempt to be better safe than sorry. * Improve contents of the stub error message This commit modifies the format of the previous stub error message by being more precise in its formulation. It follows the structured format: ``` s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath. |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'. ``` This format has the advantage that is more readable and explicit on what's happening. First, we report what is missing. Then, why it was required. Hopefully, people working on direct dependencies will find the new message friendlier. Having a good test suite to check the previously added code is important. This commit checks that stub errors happen in presence of well-known and widely used Scala features. These include: * Higher kinded types. * Type definitions. * Inheritance and subclasses. * Typeclasses and implicits. - This is the commit message scala#4: Use `lastTreeToTyper` to get better positions The previous strategy to get the last user-defined position for knowing what was the root cause (the trigger) of stub errors relied on instrumenting `def info`. This instrumentation, while easy to implement, is inefficient since we register the positions for symbols that are already completed. However, we cannot do it only for uncompleted symbols (!hasCompleteInfo) because the positions won't be correct anymore -- definitions using stub symbols (val b = new B) are for the compiler completed, but their use throws stub errors. This means that if we initialize symbols between a definition and its use, we'll use their positions instead of the position of `b`. To work around this we use `lastTreeToTyper`. We assume that stub errors will be thrown by Typer at soonest. The benefit of this approach is better error messages. The positions used in them are now as concrete as possible since they point to the exact tree that **uses** a symbol, instead of the one that **defines** it. Have a look at `StubErrorComplexInnerClass` for an example. This commit removes the previous infrastructure and replaces it by the new one. It also removes the fields positions from the subclasses of `StubSymbol`s. - This is the commit message scala#5: Keep track of completing symbols Make sure that cycles don't happen by keeping track of all the symbols that are being completed by `completeInternal`. Stub errors only need the last completing symbols, but the whole stack of symbols may be useful to reporting other error like cyclic initialization issues. I've added this per Jason's suggestion. I've implemented with a list because `remove` in an array buffer is linear. Array was not an option because I would need to resize it myself. I think that even though list is not as efficient memory-wise, it probably doesn't matter since the stack will usually be small. - This is the commit message scala#6: Remove `isPackage` from `newStubSymbol` Remove `isPackage` since in 2.12.x its value is not used.
jvican
added a commit
to jvican/scala
that referenced
this pull request
Mar 24, 2017
The following commit message is a squash of several commit messages. - This is the 1st commit message: Add position to stub error messages Stub errors happen when we've started the initialization of a symbol but key information of this symbol is missing (the information cannot be found in any entry of the classpath not sources). When this error happens, we better have a good error message with a position to the place where the stub error came from. This commit goes into this direction by adding a `pos` value to `StubSymbol` and filling it in in all the use sites (especifically `UnPickler`). This commit also changes some tests that test stub errors-related issues. Concretely, `t6440` is using special Partest infrastructure and doens't pretty print the position, while `t5148` which uses the conventional infrastructure does. Hence the difference in the changes for both tests. - This is the commit message scala#2: Add partest infrastructure to test stub errors `StubErrorMessageTest` is the friend I introduce in this commit to help state stub errors. The strategy to test them is easy and builds upon previous concepts: we reuse `StoreReporterDirectTest` and add some methods that will compile the code and simulate a missing classpath entry by removing the class files from the class directory (the folder where Scalac compiles to). This first iteration allow us to programmatically check that stub errors are emitted under certain conditions. - This is the commit message scala#3: Improve contents of stub error message This commit does three things: * Keep track of completing symbol while unpickling First, it removes the previous `symbolOnCompletion` definition to be more restrictive/clear and use only positions, since only positions are used to report the error (the rest of the information comes from the context of the `UnPickler`). Second, it adds a new variable called `lazyCompletingSymbol` that is responsible for keeping a reference to the symbol that produces the stub error. This symbol will usually (always?) come from the classpath entries and therefore we don't have its position (that's why we keep track of `symbolOnCompletion` as well). This is the one that we have to explicitly use in the stub error message, the culprit so to speak. Aside from these two changes, this commit modifies the existing tests that are affected by the change in the error message, which is more precise now, and adds new tests for stub errors that happen in complex inner cases and in return type of `MethodType`. * Check that order of initialization is correct With the changes introduced previously to keep track of position of symbols coming from source files, we may ask ourselves: is this going to work always? What happens if two symbols the initialization of two symbols is intermingled and the stub error message gets the wrong position? This commit adds a test case and modifications to the test infrastructure to double check empirically that this does not happen. Usually, this interaction in symbol initialization won't happen because the `UnPickler` will lazily load all the buckets necessary for a symbol to be truly initialized, with the pertinent addresses from which this information has to be deserialized. This ensures that this operation is atomic and no other symbol initialization can happen in the meantime. Even though the previous paragraph is the feeling I got from reading the sources, this commit creates a test to double-check it. My attempt to be better safe than sorry. * Improve contents of the stub error message This commit modifies the format of the previous stub error message by being more precise in its formulation. It follows the structured format: ``` s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath. |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'. ``` This format has the advantage that is more readable and explicit on what's happening. First, we report what is missing. Then, why it was required. Hopefully, people working on direct dependencies will find the new message friendlier. Having a good test suite to check the previously added code is important. This commit checks that stub errors happen in presence of well-known and widely used Scala features. These include: * Higher kinded types. * Type definitions. * Inheritance and subclasses. * Typeclasses and implicits. - This is the commit message scala#4: Use `lastTreeToTyper` to get better positions The previous strategy to get the last user-defined position for knowing what was the root cause (the trigger) of stub errors relied on instrumenting `def info`. This instrumentation, while easy to implement, is inefficient since we register the positions for symbols that are already completed. However, we cannot do it only for uncompleted symbols (!hasCompleteInfo) because the positions won't be correct anymore -- definitions using stub symbols (val b = new B) are for the compiler completed, but their use throws stub errors. This means that if we initialize symbols between a definition and its use, we'll use their positions instead of the position of `b`. To work around this we use `lastTreeToTyper`. We assume that stub errors will be thrown by Typer at soonest. The benefit of this approach is better error messages. The positions used in them are now as concrete as possible since they point to the exact tree that **uses** a symbol, instead of the one that **defines** it. Have a look at `StubErrorComplexInnerClass` for an example. This commit removes the previous infrastructure and replaces it by the new one. It also removes the fields positions from the subclasses of `StubSymbol`s. - This is the commit message scala#5: Keep track of completing symbols Make sure that cycles don't happen by keeping track of all the symbols that are being completed by `completeInternal`. Stub errors only need the last completing symbols, but the whole stack of symbols may be useful to reporting other error like cyclic initialization issues. I've added this per Jason's suggestion. I've implemented with a list because `remove` in an array buffer is linear. Array was not an option because I would need to resize it myself. I think that even though list is not as efficient memory-wise, it probably doesn't matter since the stack will usually be small. - This is the commit message scala#6: Remove `isPackage` from `newStubSymbol` Remove `isPackage` since in 2.12.x its value is not used.
jvican
added a commit
to jvican/scala
that referenced
this pull request
Mar 24, 2017
The following commit message is a squash of several commit messages. - This is the 1st commit message: Add position to stub error messages Stub errors happen when we've started the initialization of a symbol but key information of this symbol is missing (the information cannot be found in any entry of the classpath not sources). When this error happens, we better have a good error message with a position to the place where the stub error came from. This commit goes into this direction by adding a `pos` value to `StubSymbol` and filling it in in all the use sites (especifically `UnPickler`). This commit also changes some tests that test stub errors-related issues. Concretely, `t6440` is using special Partest infrastructure and doens't pretty print the position, while `t5148` which uses the conventional infrastructure does. Hence the difference in the changes for both tests. - This is the commit message scala#2: Add partest infrastructure to test stub errors `StubErrorMessageTest` is the friend I introduce in this commit to help state stub errors. The strategy to test them is easy and builds upon previous concepts: we reuse `StoreReporterDirectTest` and add some methods that will compile the code and simulate a missing classpath entry by removing the class files from the class directory (the folder where Scalac compiles to). This first iteration allow us to programmatically check that stub errors are emitted under certain conditions. - This is the commit message scala#3: Improve contents of stub error message This commit does three things: * Keep track of completing symbol while unpickling First, it removes the previous `symbolOnCompletion` definition to be more restrictive/clear and use only positions, since only positions are used to report the error (the rest of the information comes from the context of the `UnPickler`). Second, it adds a new variable called `lazyCompletingSymbol` that is responsible for keeping a reference to the symbol that produces the stub error. This symbol will usually (always?) come from the classpath entries and therefore we don't have its position (that's why we keep track of `symbolOnCompletion` as well). This is the one that we have to explicitly use in the stub error message, the culprit so to speak. Aside from these two changes, this commit modifies the existing tests that are affected by the change in the error message, which is more precise now, and adds new tests for stub errors that happen in complex inner cases and in return type of `MethodType`. * Check that order of initialization is correct With the changes introduced previously to keep track of position of symbols coming from source files, we may ask ourselves: is this going to work always? What happens if two symbols the initialization of two symbols is intermingled and the stub error message gets the wrong position? This commit adds a test case and modifications to the test infrastructure to double check empirically that this does not happen. Usually, this interaction in symbol initialization won't happen because the `UnPickler` will lazily load all the buckets necessary for a symbol to be truly initialized, with the pertinent addresses from which this information has to be deserialized. This ensures that this operation is atomic and no other symbol initialization can happen in the meantime. Even though the previous paragraph is the feeling I got from reading the sources, this commit creates a test to double-check it. My attempt to be better safe than sorry. * Improve contents of the stub error message This commit modifies the format of the previous stub error message by being more precise in its formulation. It follows the structured format: ``` s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath. |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'. ``` This format has the advantage that is more readable and explicit on what's happening. First, we report what is missing. Then, why it was required. Hopefully, people working on direct dependencies will find the new message friendlier. Having a good test suite to check the previously added code is important. This commit checks that stub errors happen in presence of well-known and widely used Scala features. These include: * Higher kinded types. * Type definitions. * Inheritance and subclasses. * Typeclasses and implicits. - This is the commit message scala#4: Use `lastTreeToTyper` to get better positions The previous strategy to get the last user-defined position for knowing what was the root cause (the trigger) of stub errors relied on instrumenting `def info`. This instrumentation, while easy to implement, is inefficient since we register the positions for symbols that are already completed. However, we cannot do it only for uncompleted symbols (!hasCompleteInfo) because the positions won't be correct anymore -- definitions using stub symbols (val b = new B) are for the compiler completed, but their use throws stub errors. This means that if we initialize symbols between a definition and its use, we'll use their positions instead of the position of `b`. To work around this we use `lastTreeToTyper`. We assume that stub errors will be thrown by Typer at soonest. The benefit of this approach is better error messages. The positions used in them are now as concrete as possible since they point to the exact tree that **uses** a symbol, instead of the one that **defines** it. Have a look at `StubErrorComplexInnerClass` for an example. This commit removes the previous infrastructure and replaces it by the new one. It also removes the fields positions from the subclasses of `StubSymbol`s. - This is the commit message scala#5: Keep track of completing symbols Make sure that cycles don't happen by keeping track of all the symbols that are being completed by `completeInternal`. Stub errors only need the last completing symbols, but the whole stack of symbols may be useful to reporting other error like cyclic initialization issues. I've added this per Jason's suggestion. I've implemented with a list because `remove` in an array buffer is linear. Array was not an option because I would need to resize it myself. I think that even though list is not as efficient memory-wise, it probably doesn't matter since the stack will usually be small. - This is the commit message scala#6: Remove `isPackage` from `newStubSymbol` Remove `isPackage` since in 2.12.x its value is not used.
jvican
added a commit
to jvican/scala
that referenced
this pull request
Mar 24, 2017
The following commit message is a squash of several commit messages. - This is the 1st commit message: Add position to stub error messages Stub errors happen when we've started the initialization of a symbol but key information of this symbol is missing (the information cannot be found in any entry of the classpath not sources). When this error happens, we better have a good error message with a position to the place where the stub error came from. This commit goes into this direction by adding a `pos` value to `StubSymbol` and filling it in in all the use sites (especifically `UnPickler`). This commit also changes some tests that test stub errors-related issues. Concretely, `t6440` is using special Partest infrastructure and doens't pretty print the position, while `t5148` which uses the conventional infrastructure does. Hence the difference in the changes for both tests. - This is the commit message scala#2: Add partest infrastructure to test stub errors `StubErrorMessageTest` is the friend I introduce in this commit to help state stub errors. The strategy to test them is easy and builds upon previous concepts: we reuse `StoreReporterDirectTest` and add some methods that will compile the code and simulate a missing classpath entry by removing the class files from the class directory (the folder where Scalac compiles to). This first iteration allow us to programmatically check that stub errors are emitted under certain conditions. - This is the commit message scala#3: Improve contents of stub error message This commit does three things: * Keep track of completing symbol while unpickling First, it removes the previous `symbolOnCompletion` definition to be more restrictive/clear and use only positions, since only positions are used to report the error (the rest of the information comes from the context of the `UnPickler`). Second, it adds a new variable called `lazyCompletingSymbol` that is responsible for keeping a reference to the symbol that produces the stub error. This symbol will usually (always?) come from the classpath entries and therefore we don't have its position (that's why we keep track of `symbolOnCompletion` as well). This is the one that we have to explicitly use in the stub error message, the culprit so to speak. Aside from these two changes, this commit modifies the existing tests that are affected by the change in the error message, which is more precise now, and adds new tests for stub errors that happen in complex inner cases and in return type of `MethodType`. * Check that order of initialization is correct With the changes introduced previously to keep track of position of symbols coming from source files, we may ask ourselves: is this going to work always? What happens if two symbols the initialization of two symbols is intermingled and the stub error message gets the wrong position? This commit adds a test case and modifications to the test infrastructure to double check empirically that this does not happen. Usually, this interaction in symbol initialization won't happen because the `UnPickler` will lazily load all the buckets necessary for a symbol to be truly initialized, with the pertinent addresses from which this information has to be deserialized. This ensures that this operation is atomic and no other symbol initialization can happen in the meantime. Even though the previous paragraph is the feeling I got from reading the sources, this commit creates a test to double-check it. My attempt to be better safe than sorry. * Improve contents of the stub error message This commit modifies the format of the previous stub error message by being more precise in its formulation. It follows the structured format: ``` s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath. |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'. ``` This format has the advantage that is more readable and explicit on what's happening. First, we report what is missing. Then, why it was required. Hopefully, people working on direct dependencies will find the new message friendlier. Having a good test suite to check the previously added code is important. This commit checks that stub errors happen in presence of well-known and widely used Scala features. These include: * Higher kinded types. * Type definitions. * Inheritance and subclasses. * Typeclasses and implicits. - This is the commit message scala#4: Use `lastTreeToTyper` to get better positions The previous strategy to get the last user-defined position for knowing what was the root cause (the trigger) of stub errors relied on instrumenting `def info`. This instrumentation, while easy to implement, is inefficient since we register the positions for symbols that are already completed. However, we cannot do it only for uncompleted symbols (!hasCompleteInfo) because the positions won't be correct anymore -- definitions using stub symbols (val b = new B) are for the compiler completed, but their use throws stub errors. This means that if we initialize symbols between a definition and its use, we'll use their positions instead of the position of `b`. To work around this we use `lastTreeToTyper`. We assume that stub errors will be thrown by Typer at soonest. The benefit of this approach is better error messages. The positions used in them are now as concrete as possible since they point to the exact tree that **uses** a symbol, instead of the one that **defines** it. Have a look at `StubErrorComplexInnerClass` for an example. This commit removes the previous infrastructure and replaces it by the new one. It also removes the fields positions from the subclasses of `StubSymbol`s. - This is the commit message scala#5: Keep track of completing symbols Make sure that cycles don't happen by keeping track of all the symbols that are being completed by `completeInternal`. Stub errors only need the last completing symbols, but the whole stack of symbols may be useful to reporting other error like cyclic initialization issues. I've added this per Jason's suggestion. I've implemented with a list because `remove` in an array buffer is linear. Array was not an option because I would need to resize it myself. I think that even though list is not as efficient memory-wise, it probably doesn't matter since the stack will usually be small. - This is the commit message scala#6: Remove `isPackage` from `newStubSymbol` Remove `isPackage` since in 2.12.x its value is not used.
jvican
added a commit
to jvican/scala
that referenced
this pull request
Mar 24, 2017
The following commit message is a squash of several commit messages. - This is the 1st commit message: Add position to stub error messages Stub errors happen when we've started the initialization of a symbol but key information of this symbol is missing (the information cannot be found in any entry of the classpath not sources). When this error happens, we better have a good error message with a position to the place where the stub error came from. This commit goes into this direction by adding a `pos` value to `StubSymbol` and filling it in in all the use sites (especifically `UnPickler`). This commit also changes some tests that test stub errors-related issues. Concretely, `t6440` is using special Partest infrastructure and doens't pretty print the position, while `t5148` which uses the conventional infrastructure does. Hence the difference in the changes for both tests. - This is the commit message scala#2: Add partest infrastructure to test stub errors `StubErrorMessageTest` is the friend I introduce in this commit to help state stub errors. The strategy to test them is easy and builds upon previous concepts: we reuse `StoreReporterDirectTest` and add some methods that will compile the code and simulate a missing classpath entry by removing the class files from the class directory (the folder where Scalac compiles to). This first iteration allow us to programmatically check that stub errors are emitted under certain conditions. - This is the commit message scala#3: Improve contents of stub error message This commit does three things: * Keep track of completing symbol while unpickling First, it removes the previous `symbolOnCompletion` definition to be more restrictive/clear and use only positions, since only positions are used to report the error (the rest of the information comes from the context of the `UnPickler`). Second, it adds a new variable called `lazyCompletingSymbol` that is responsible for keeping a reference to the symbol that produces the stub error. This symbol will usually (always?) come from the classpath entries and therefore we don't have its position (that's why we keep track of `symbolOnCompletion` as well). This is the one that we have to explicitly use in the stub error message, the culprit so to speak. Aside from these two changes, this commit modifies the existing tests that are affected by the change in the error message, which is more precise now, and adds new tests for stub errors that happen in complex inner cases and in return type of `MethodType`. * Check that order of initialization is correct With the changes introduced previously to keep track of position of symbols coming from source files, we may ask ourselves: is this going to work always? What happens if two symbols the initialization of two symbols is intermingled and the stub error message gets the wrong position? This commit adds a test case and modifications to the test infrastructure to double check empirically that this does not happen. Usually, this interaction in symbol initialization won't happen because the `UnPickler` will lazily load all the buckets necessary for a symbol to be truly initialized, with the pertinent addresses from which this information has to be deserialized. This ensures that this operation is atomic and no other symbol initialization can happen in the meantime. Even though the previous paragraph is the feeling I got from reading the sources, this commit creates a test to double-check it. My attempt to be better safe than sorry. * Improve contents of the stub error message This commit modifies the format of the previous stub error message by being more precise in its formulation. It follows the structured format: ``` s"""|Symbol '${name.nameKind} ${owner.fullName}.$name' is missing from the classpath. |This symbol is required by '${lazyCompletingSymbol.kindString} ${lazyCompletingSymbol.fullName}'. ``` This format has the advantage that is more readable and explicit on what's happening. First, we report what is missing. Then, why it was required. Hopefully, people working on direct dependencies will find the new message friendlier. Having a good test suite to check the previously added code is important. This commit checks that stub errors happen in presence of well-known and widely used Scala features. These include: * Higher kinded types. * Type definitions. * Inheritance and subclasses. * Typeclasses and implicits. - This is the commit message scala#4: Use `lastTreeToTyper` to get better positions The previous strategy to get the last user-defined position for knowing what was the root cause (the trigger) of stub errors relied on instrumenting `def info`. This instrumentation, while easy to implement, is inefficient since we register the positions for symbols that are already completed. However, we cannot do it only for uncompleted symbols (!hasCompleteInfo) because the positions won't be correct anymore -- definitions using stub symbols (val b = new B) are for the compiler completed, but their use throws stub errors. This means that if we initialize symbols between a definition and its use, we'll use their positions instead of the position of `b`. To work around this we use `lastTreeToTyper`. We assume that stub errors will be thrown by Typer at soonest. The benefit of this approach is better error messages. The positions used in them are now as concrete as possible since they point to the exact tree that **uses** a symbol, instead of the one that **defines** it. Have a look at `StubErrorComplexInnerClass` for an example. This commit removes the previous infrastructure and replaces it by the new one. It also removes the fields positions from the subclasses of `StubSymbol`s. - This is the commit message scala#5: Keep track of completing symbols Make sure that cycles don't happen by keeping track of all the symbols that are being completed by `completeInternal`. Stub errors only need the last completing symbols, but the whole stack of symbols may be useful to reporting other error like cyclic initialization issues. I've added this per Jason's suggestion. I've implemented with a list because `remove` in an array buffer is linear. Array was not an option because I would need to resize it myself. I think that even though list is not as efficient memory-wise, it probably doesn't matter since the stack will usually be small. - This is the commit message scala#6: Remove `isPackage` from `newStubSymbol` Remove `isPackage` since in 2.12.x its value is not used.
joshlemer
referenced
this pull request
in joshlemer/scala
Dec 2, 2018
# This is the 1st commit message: Optimize BitSet#min and max for case of Ordering.Int # This is the commit message #2: Fix buggy bitset min and max implementations
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.