Skip to content

Bug in AdaBoostRegressor with randomstate #7408

Closed
@StevenLOL

Description

@StevenLOL

Description

Consider following regressor:

xlf1 = Pipeline([('svd', PCA(n_components=pca_n_components)),
                 ('regressor', AdaBoostRegressor(
                     #random_state=random_state,
                     base_estimator=MLPRegressor(random_state=random_state,
                                                 early_stopping=True,
                                                 max_iter=2000),
                     n_estimators=30,
                     learning_rate=0.01)),
                 ])

If set random_state to some value , the performance is worse than just ignore it.
I create a project for this problem here.

By the way there is no much differences when set the LinearSVR as base_estimator.

Expected Results

Actual Results

Versions

Linux-4.4.0-31-generic-x86_64-with-Ubuntu-16.04-xenial
('Python', '2.7.12 (default, Jul 1 2016, 15:12:24) \n[GCC 5.4.0 20160609]')
('NumPy', '1.11.1')
('SciPy', '0.17.0')
('Scikit-Learn', '0.18.dev0')

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions