Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions doc/datasets/twenty_newsgroups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ which is fast to train and achieves a decent F-score::
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.88213592402729568

(The example :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py` shuffles
(The example :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` shuffles
the training and test data, instead of segmenting by time, and in that case
multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what's going on inside this classifier?)
Expand Down Expand Up @@ -215,4 +215,4 @@ the ``--filter`` option to compare the results.

* :ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py`

* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
2 changes: 1 addition & 1 deletion doc/modules/clustering.rst
Original file line number Diff line number Diff line change
Expand Up @@ -271,7 +271,7 @@ small, as shown in the example and cited reference.
* :ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`: Comparison of KMeans and
MiniBatchKMeans

* :ref:`sphx_glr_auto_examples_text_document_clustering.py`: Document clustering using sparse
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering using sparse
MiniBatchKMeans

* :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py`
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/decomposition.rst
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@ compensating for LSA's erroneous assumptions about textual data.

.. topic:: Examples:

* :ref:`sphx_glr_auto_examples_text_document_clustering.py`
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`

.. topic:: References:

Expand Down
4 changes: 2 additions & 2 deletions doc/modules/feature_extraction.rst
Original file line number Diff line number Diff line change
Expand Up @@ -657,12 +657,12 @@ In particular in a **supervised setting** it can be successfully combined
with fast and scalable linear models to train **document classifiers**,
for instance:

* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`

In an **unsupervised setting** it can be used to group similar documents
together by applying clustering algorithms such as :ref:`k_means`:

* :ref:`sphx_glr_auto_examples_text_document_clustering.py`
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`

Finally it is possible to discover the main topics of a corpus by
relaxing the hard assignment constraint of clustering, for instance by
Expand Down
2 changes: 1 addition & 1 deletion doc/modules/feature_selection.rst
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ alpha parameter, the fewer features selected.

.. topic:: Examples:

* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`: Comparison
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`: Comparison
of different algorithms for document classification including L1-based
feature selection.

Expand Down
2 changes: 1 addition & 1 deletion doc/modules/linear_model.rst
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ its ``coef_`` member::
.. topic:: Examples:

* :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py`
* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`


Ridge Complexity
Expand Down
6 changes: 3 additions & 3 deletions doc/modules/model_evaluation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -565,7 +565,7 @@ false negatives and true positives as follows::
for an example of using a confusion matrix to classify
hand-written digits.

* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of using a confusion matrix to classify text
documents.

Expand Down Expand Up @@ -598,7 +598,7 @@ and inferred labels::
for an example of classification report usage for
hand-written digits.

* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of classification report usage for text
documents.

Expand Down Expand Up @@ -749,7 +749,7 @@ binary classification and multilabel indicator format.

.. topic:: Examples:

* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of :func:`f1_score` usage to classify text
documents.

Expand Down
2 changes: 1 addition & 1 deletion doc/modules/sgd.rst
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,7 @@ matrix format as defined in `scipy.sparse.csr_matrix

.. topic:: Examples:

- :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
- :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`

Complexity
==========
Expand Down
2 changes: 1 addition & 1 deletion doc/tutorial/text_analytics/working_with_text_data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -554,7 +554,7 @@ upon the completion of this tutorial:
:class:`CountVectorizer`.

* If you don't have labels, try using
:ref:`Clustering <sphx_glr_auto_examples_text_document_clustering.py>`
:ref:`Clustering <sphx_glr_auto_examples_text_plot_document_clustering.py>`
on your problem.

* If you have multiple labels per document, e.g categories, have a look
Expand Down
2 changes: 1 addition & 1 deletion doc/whats_new/older_versions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1273,7 +1273,7 @@ Examples

- new examples using some of the mlcomp datasets:
``sphx_glr_auto_examples_mlcomp_sparse_document_classification.py`` (since removed) and
:ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`

- Many more examples. `See here
<http://scikit-learn.org/stable/auto_examples/index.html>`_
Expand Down