Skip to content

[MRG +1] ColumnTransformer: store evaluated function column specifier during fit #12107

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 39 additions & 27 deletions sklearn/compose/_column_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,20 +211,29 @@ def set_params(self, **kwargs):
self._set_params('_transformers', **kwargs)
return self

def _iter(self, X=None, fitted=False, replace_strings=False):
"""Generate (name, trans, column, weight) tuples
def _iter(self, fitted=False, replace_strings=False):
"""
Generate (name, trans, X_subset, weight, column) tuples.

If fitted=True, use the fitted transformers, else use the
user specified transformers updated with converted column names
and potentially appended with transformer for remainder.

"""
if fitted:
transformers = self.transformers_
else:
transformers = self.transformers
# interleave the validated column specifiers
transformers = [
(name, trans, column) for (name, trans, _), column
in zip(self.transformers, self._columns)
]
# add transformer tuple for remainder
if self._remainder[2] is not None:
transformers = chain(transformers, [self._remainder])
get_weight = (self.transformer_weights or {}).get

for name, trans, column in transformers:
sub = None if X is None else _get_column(X, column)

if replace_strings:
# replace 'passthrough' with identity transformer and
# skip in case of 'drop'
Expand All @@ -235,7 +244,7 @@ def _iter(self, X=None, fitted=False, replace_strings=False):
elif trans == 'drop':
continue

yield (name, trans, sub, get_weight(name))
yield (name, trans, column, get_weight(name))

def _validate_transformers(self):
if not self.transformers:
Expand All @@ -257,6 +266,17 @@ def _validate_transformers(self):
"specifiers. '%s' (type %s) doesn't." %
(t, type(t)))

def _validate_column_callables(self, X):
"""
Converts callable column specifications.
"""
columns = []
for _, _, column in self.transformers:
if callable(column):
column = column(X)
columns.append(column)
self._columns = columns

def _validate_remainder(self, X):
"""
Validates ``remainder`` and defines ``_remainder`` targeting
Expand All @@ -274,7 +294,7 @@ def _validate_remainder(self, X):

n_columns = X.shape[1]
cols = []
for _, _, columns in self.transformers:
for columns in self._columns:
cols.extend(_get_column_indices(X, columns))
remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None

Expand Down Expand Up @@ -320,35 +340,32 @@ def get_feature_names(self):

def _update_fitted_transformers(self, transformers):
# transformers are fitted; excludes 'drop' cases
transformers = iter(transformers)
fitted_transformers = iter(transformers)
transformers_ = []

transformer_iter = self.transformers
if self._remainder[2] is not None:
transformer_iter = chain(transformer_iter, [self._remainder])

for name, old, column in transformer_iter:
for name, old, column, _ in self._iter():
if old == 'drop':
trans = 'drop'
elif old == 'passthrough':
# FunctionTransformer is present in list of transformers,
# so get next transformer, but save original string
next(transformers)
next(fitted_transformers)
trans = 'passthrough'
else:
trans = next(transformers)
trans = next(fitted_transformers)
transformers_.append((name, trans, column))

# sanity check that transformers is exhausted
assert not list(transformers)
assert not list(fitted_transformers)
self.transformers_ = transformers_

def _validate_output(self, result):
"""
Ensure that the output of each transformer is 2D. Otherwise
hstack can raise an error or produce incorrect results.
"""
names = [name for name, _, _, _ in self._iter(replace_strings=True)]
names = [name for name, _, _, _ in self._iter(fitted=True,
replace_strings=True)]
for Xs, name in zip(result, names):
if not getattr(Xs, 'ndim', 0) == 2:
raise ValueError(
Expand All @@ -366,9 +383,9 @@ def _fit_transform(self, X, y, func, fitted=False):
try:
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(clone(trans) if not fitted else trans,
X_sel, y, weight)
for _, trans, X_sel, weight in self._iter(
X=X, fitted=fitted, replace_strings=True))
_get_column(X, column), y, weight)
for _, trans, column, weight in self._iter(
fitted=fitted, replace_strings=True))
except ValueError as e:
if "Expected 2D array, got 1D array instead" in str(e):
raise ValueError(_ERR_MSG_1DCOLUMN)
Expand Down Expand Up @@ -419,8 +436,9 @@ def fit_transform(self, X, y=None):
sparse matrices.

"""
self._validate_remainder(X)
self._validate_transformers()
self._validate_column_callables(X)
self._validate_remainder(X)

result = self._fit_transform(X, y, _fit_transform_one)

Expand Down Expand Up @@ -545,9 +563,6 @@ def _get_column(X, key):
can use any hashable object as key).

"""
if callable(key):
key = key(X)

# check whether we have string column names or integers
if _check_key_type(key, int):
column_names = False
Expand Down Expand Up @@ -589,9 +604,6 @@ def _get_column_indices(X, key):
"""
n_columns = X.shape[1]

if callable(key):
key = key(X)

if _check_key_type(key, int):
if isinstance(key, int):
return [key]
Expand Down
4 changes: 4 additions & 0 deletions sklearn/compose/tests/test_column_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -873,6 +873,8 @@ def func(X):
remainder='drop')
assert_array_equal(ct.fit_transform(X_array), X_res_first)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == [0]

pd = pytest.importorskip('pandas')
X_df = pd.DataFrame(X_array, columns=['first', 'second'])
Expand All @@ -886,3 +888,5 @@ def func(X):
remainder='drop')
assert_array_equal(ct.fit_transform(X_df), X_res_first)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == ['first']