-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
Simplify code of gallery example comparing different manifold methods #15949
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
659076d
444fa1e
4afdac2
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,6 +23,8 @@ | |
|
||
print(__doc__) | ||
|
||
from collections import OrderedDict | ||
from functools import partial | ||
from time import time | ||
|
||
import matplotlib.pyplot as plt | ||
|
@@ -39,81 +41,43 @@ | |
n_neighbors = 10 | ||
n_components = 2 | ||
|
||
# Create figure | ||
fig = plt.figure(figsize=(15, 8)) | ||
plt.suptitle("Manifold Learning with %i points, %i neighbors" | ||
fig.suptitle("Manifold Learning with %i points, %i neighbors" | ||
% (1000, n_neighbors), fontsize=14) | ||
|
||
|
||
# Add 3d scatter plot | ||
ax = fig.add_subplot(251, projection='3d') | ||
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) | ||
ax.view_init(4, -72) | ||
|
||
methods = ['standard', 'ltsa', 'hessian', 'modified'] | ||
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] | ||
|
||
for i, method in enumerate(methods): | ||
# Set-up manifold methods | ||
LLE = partial(manifold.LocallyLinearEmbedding, | ||
n_neighbors, n_components, eigen_solver='auto') | ||
|
||
methods = OrderedDict() | ||
methods['LLE'] = LLE(method='standard') | ||
methods['LTSA'] = LLE(method='ltsa') | ||
methods['Hessian LLE'] = LLE(method='hessian') | ||
methods['Modified LLE'] = LLE(method='modified') | ||
methods['Isomap'] = manifold.Isomap(n_neighbors, n_components) | ||
methods['MDS'] = manifold.MDS(n_components, max_iter=100, n_init=1) | ||
methods['SE'] = manifold.SpectralEmbedding(n_components=n_components, | ||
n_neighbors=n_neighbors) | ||
methods['t-SNE'] = manifold.TSNE(n_components=n_components, init='pca', | ||
random_state=0) | ||
|
||
# Plot results | ||
for i, (label, method) in enumerate(methods.items()): | ||
t0 = time() | ||
Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, | ||
eigen_solver='auto', | ||
method=method).fit_transform(X) | ||
Y = method.fit_transform(X) | ||
t1 = time() | ||
print("%s: %.2g sec" % (methods[i], t1 - t0)) | ||
|
||
ax = fig.add_subplot(252 + i) | ||
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) | ||
print("%s: %.2g sec" % (label, t1 - t0)) | ||
ax = fig.add_subplot(2, 5, 2 + i + (i > 3)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think we should move to the more modern plt.subplots and iterate over the array of axes while we are cleaning up. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, I agree and adjusted the axes accordingly. Since the figure includes one 3d axis I had to remove and re-add that axis or is there another solution? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Forgot about this. Don't know, sorry There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Okay, no problem, then let's keep the former axes definitions. |
||
ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
ax.set_title("%s (%.2g sec)" % (label, t1 - t0)) | ||
ax.xaxis.set_major_formatter(NullFormatter()) | ||
ax.yaxis.set_major_formatter(NullFormatter()) | ||
plt.axis('tight') | ||
|
||
t0 = time() | ||
Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) | ||
t1 = time() | ||
print("Isomap: %.2g sec" % (t1 - t0)) | ||
ax = fig.add_subplot(257) | ||
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
plt.title("Isomap (%.2g sec)" % (t1 - t0)) | ||
ax.xaxis.set_major_formatter(NullFormatter()) | ||
ax.yaxis.set_major_formatter(NullFormatter()) | ||
plt.axis('tight') | ||
|
||
|
||
t0 = time() | ||
mds = manifold.MDS(n_components, max_iter=100, n_init=1) | ||
Y = mds.fit_transform(X) | ||
t1 = time() | ||
print("MDS: %.2g sec" % (t1 - t0)) | ||
ax = fig.add_subplot(258) | ||
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
plt.title("MDS (%.2g sec)" % (t1 - t0)) | ||
ax.xaxis.set_major_formatter(NullFormatter()) | ||
ax.yaxis.set_major_formatter(NullFormatter()) | ||
plt.axis('tight') | ||
|
||
|
||
t0 = time() | ||
se = manifold.SpectralEmbedding(n_components=n_components, | ||
n_neighbors=n_neighbors) | ||
Y = se.fit_transform(X) | ||
t1 = time() | ||
print("SpectralEmbedding: %.2g sec" % (t1 - t0)) | ||
ax = fig.add_subplot(259) | ||
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) | ||
ax.xaxis.set_major_formatter(NullFormatter()) | ||
ax.yaxis.set_major_formatter(NullFormatter()) | ||
plt.axis('tight') | ||
|
||
t0 = time() | ||
tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) | ||
Y = tsne.fit_transform(X) | ||
t1 = time() | ||
print("t-SNE: %.2g sec" % (t1 - t0)) | ||
ax = fig.add_subplot(2, 5, 10) | ||
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) | ||
plt.title("t-SNE (%.2g sec)" % (t1 - t0)) | ||
ax.xaxis.set_major_formatter(NullFormatter()) | ||
ax.yaxis.set_major_formatter(NullFormatter()) | ||
plt.axis('tight') | ||
ax.axis('tight') | ||
|
||
plt.show() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This dict will only be iterated in deterministic order in cython >= 3.6. I'm not certain if we are ready to rely upon that yet.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Right, do you think the collections.OrderedDict I added is fine here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, that seems a reasonable solution for now!