Skip to content
36 changes: 18 additions & 18 deletions sklearn/linear_model/_perceptron.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,25 +12,25 @@ class Perceptron(BaseSGDClassifier):
Parameters
----------

penalty : None, 'l2' or 'l1' or 'elasticnet'
The penalty (aka regularization term) to be used. Defaults to None.
penalty : {'l2','l1','elasticnet'}, default=None
The penalty (aka regularization term) to be used.

alpha : float
alpha : float, default=0.0001
Constant that multiplies the regularization term if regularization is
used. Defaults to 0.0001
used.

fit_intercept : bool
fit_intercept : bool, default=True
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered. Defaults to True.
data is assumed to be already centered.

max_iter : int, optional (default=1000)
max_iter : int, default=1000
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
:meth:`partial_fit` method.

.. versionadded:: 0.19

tol : float or None, optional (default=1e-3)
tol : float, default=1e-3
The stopping criterion. If it is not None, the iterations will stop
when (loss > previous_loss - tol).

Expand All @@ -39,20 +39,20 @@ class Perceptron(BaseSGDClassifier):
shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.

verbose : integer, default=0
verbose : int, default=0
The verbosity level

eta0 : double
Constant by which the updates are multiplied. Defaults to 1.
eta0 : double, default=1
Constant by which the updates are multiplied.

n_jobs : int or None, optional (default=None)
n_jobs : int, default=None
The number of CPUs to use to do the OVA (One Versus All, for
multi-class problems) computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.

random_state : int, RandomState instance or None, optional, default None
random_state : int, RandomState instance, default=None
The seed of the pseudo random number generator to use when shuffling
the data. If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number
Expand Down Expand Up @@ -80,7 +80,7 @@ class Perceptron(BaseSGDClassifier):

.. versionadded:: 0.20

class_weight : dict, {class_label: weight} or "balanced" or None, optional
class_weight : dict, {class_label: weight} or "balanced", default=None
Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes
Expand All @@ -97,18 +97,18 @@ class Perceptron(BaseSGDClassifier):

Attributes
----------
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
n_features]
coef_ : ndarray of shape = [1, n_features] if n_classes == 2 else \
[n_classes, n_features]
Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
intercept_ : ndarray of shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.

n_iter_ : int
The actual number of iterations to reach the stopping criterion.
For multiclass fits, it is the maximum over every binary fit.

classes_ : array of shape (n_classes,)
classes_ : ndarray of shape (n_classes,)
The unique classes labels.

t_ : int
Expand Down
Loading