-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
BENCH threading scalability of Hist Gradient Boosting #18382
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
from time import time | ||
import argparse | ||
import os | ||
from pprint import pprint | ||
|
||
import numpy as np | ||
from threadpoolctl import threadpool_limits | ||
import sklearn | ||
from sklearn.model_selection import train_test_split | ||
# To use this experimental feature, we need to explicitly ask for it: | ||
from sklearn.experimental import enable_hist_gradient_boosting # noqa | ||
from sklearn.ensemble import HistGradientBoostingRegressor | ||
from sklearn.ensemble import HistGradientBoostingClassifier | ||
from sklearn.datasets import make_classification | ||
from sklearn.datasets import make_regression | ||
from sklearn.ensemble._hist_gradient_boosting.utils import ( | ||
get_equivalent_estimator) | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--n-leaf-nodes', type=int, default=31) | ||
parser.add_argument('--n-trees', type=int, default=10) | ||
parser.add_argument('--lightgbm', action="store_true", default=False, | ||
help='also benchmark lightgbm') | ||
parser.add_argument('--xgboost', action="store_true", default=False, | ||
help='also benchmark xgboost') | ||
parser.add_argument('--catboost', action="store_true", default=False, | ||
help='also benchmark catboost') | ||
parser.add_argument('--learning-rate', type=float, default=.1) | ||
parser.add_argument('--problem', type=str, default='classification', | ||
choices=['classification', 'regression']) | ||
parser.add_argument('--loss', type=str, default='default') | ||
parser.add_argument('--missing-fraction', type=float, default=0) | ||
parser.add_argument('--n-classes', type=int, default=2) | ||
parser.add_argument('--n-samples', type=int, default=int(1e6)) | ||
parser.add_argument('--n-features', type=int, default=100) | ||
parser.add_argument('--max-bins', type=int, default=255) | ||
|
||
parser.add_argument('--print-params', action="store_true", default=False) | ||
parser.add_argument('--random-sample-weights', action="store_true", | ||
default=False, | ||
help="generate and use random sample weights") | ||
parser.add_argument('--plot', action="store_true", default=False, | ||
help='show a plot results') | ||
parser.add_argument('--plot-filename', default=None, | ||
help='filename to save the figure to disk') | ||
args = parser.parse_args() | ||
|
||
n_samples = args.n_samples | ||
n_leaf_nodes = args.n_leaf_nodes | ||
n_trees = args.n_trees | ||
lr = args.learning_rate | ||
max_bins = args.max_bins | ||
|
||
|
||
print("Data size: %d samples train, %d samples test." | ||
% (n_samples, n_samples)) | ||
print(f"n_features: {args.n_features}") | ||
|
||
|
||
def get_estimator_and_data(): | ||
if args.problem == 'classification': | ||
X, y = make_classification(args.n_samples * 2, | ||
n_features=args.n_features, | ||
n_classes=args.n_classes, | ||
n_clusters_per_class=1, | ||
n_informative=args.n_features // 2, | ||
random_state=0) | ||
return X, y, HistGradientBoostingClassifier | ||
elif args.problem == 'regression': | ||
X, y = make_regression(args.n_samples_max * 2, | ||
n_features=args.n_features, random_state=0) | ||
return X, y, HistGradientBoostingRegressor | ||
|
||
|
||
X, y, Estimator = get_estimator_and_data() | ||
if args.missing_fraction: | ||
mask = np.random.binomial(1, args.missing_fraction, size=X.shape).astype( | ||
bool) | ||
X[mask] = np.nan | ||
|
||
if args.random_sample_weights: | ||
sample_weight = np.random.rand(len(X)) * 10 | ||
else: | ||
sample_weight = None | ||
|
||
if sample_weight is not None: | ||
(X_train_, X_test_, y_train_, y_test_, | ||
sample_weight_train_, _) = train_test_split( | ||
X, y, sample_weight, test_size=0.5, random_state=0) | ||
else: | ||
X_train_, X_test_, y_train_, y_test_ = train_test_split( | ||
X, y, test_size=0.5, random_state=0) | ||
sample_weight_train_ = None | ||
|
||
|
||
sklearn_est = Estimator( | ||
learning_rate=lr, | ||
max_iter=n_trees, | ||
max_bins=max_bins, | ||
max_leaf_nodes=n_leaf_nodes, | ||
early_stopping=False, | ||
random_state=0, | ||
verbose=0, | ||
) | ||
loss = args.loss | ||
if args.problem == 'classification': | ||
if loss == 'default': | ||
# loss='auto' does not work with get_equivalent_estimator() | ||
loss = 'binary_crossentropy' if args.n_classes == 2 else \ | ||
'categorical_crossentropy' | ||
else: | ||
# regression | ||
if loss == 'default': | ||
loss = 'least_squares' | ||
sklearn_est.set_params(loss=loss) | ||
|
||
|
||
if args.print_params: | ||
print("scikit-learn") | ||
pprint(sklearn_est.get_params()) | ||
|
||
for libname in ["lightgbm", "xgboost", "catboost"]: | ||
if getattr(args, libname): | ||
print(libname) | ||
est = get_equivalent_estimator(sklearn_est, lib=libname) | ||
pprint(est.get_params()) | ||
|
||
|
||
def one_run(n_threads, n_samples): | ||
X_train = X_train_[:n_samples] | ||
X_test = X_test_[:n_samples] | ||
y_train = y_train_[:n_samples] | ||
y_test = y_test_[:n_samples] | ||
if sample_weight is not None: | ||
sample_weight_train = sample_weight_train_[:n_samples] | ||
else: | ||
sample_weight_train = None | ||
assert X_train.shape[0] == n_samples | ||
assert X_test.shape[0] == n_samples | ||
print("Fitting a sklearn model...") | ||
tic = time() | ||
est = sklearn.base.clone(sklearn_est) | ||
|
||
with threadpool_limits(n_threads, user_api="openmp"): | ||
est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
sklearn_fit_duration = time() - tic | ||
tic = time() | ||
sklearn_score = est.score(X_test, y_test) | ||
sklearn_score_duration = time() - tic | ||
print("score: {:.4f}".format(sklearn_score)) | ||
print("fit duration: {:.3f}s,".format(sklearn_fit_duration)) | ||
print("score duration: {:.3f}s,".format(sklearn_score_duration)) | ||
|
||
lightgbm_score = None | ||
lightgbm_fit_duration = None | ||
lightgbm_score_duration = None | ||
if args.lightgbm: | ||
print("Fitting a LightGBM model...") | ||
lightgbm_est = get_equivalent_estimator(est, lib='lightgbm') | ||
lightgbm_est.set_params(num_threads=n_threads) | ||
|
||
tic = time() | ||
lightgbm_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
lightgbm_fit_duration = time() - tic | ||
tic = time() | ||
lightgbm_score = lightgbm_est.score(X_test, y_test) | ||
lightgbm_score_duration = time() - tic | ||
print("score: {:.4f}".format(lightgbm_score)) | ||
print("fit duration: {:.3f}s,".format(lightgbm_fit_duration)) | ||
print("score duration: {:.3f}s,".format(lightgbm_score_duration)) | ||
|
||
xgb_score = None | ||
xgb_fit_duration = None | ||
xgb_score_duration = None | ||
if args.xgboost: | ||
print("Fitting an XGBoost model...") | ||
xgb_est = get_equivalent_estimator(est, lib='xgboost') | ||
xgb_est.set_params(nthread=n_threads) | ||
|
||
tic = time() | ||
xgb_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
xgb_fit_duration = time() - tic | ||
tic = time() | ||
xgb_score = xgb_est.score(X_test, y_test) | ||
xgb_score_duration = time() - tic | ||
print("score: {:.4f}".format(xgb_score)) | ||
print("fit duration: {:.3f}s,".format(xgb_fit_duration)) | ||
print("score duration: {:.3f}s,".format(xgb_score_duration)) | ||
|
||
cat_score = None | ||
cat_fit_duration = None | ||
cat_score_duration = None | ||
if args.catboost: | ||
print("Fitting a CatBoost model...") | ||
cat_est = get_equivalent_estimator(est, lib='catboost') | ||
cat_est.set_params(thread_count=n_threads) | ||
|
||
tic = time() | ||
cat_est.fit(X_train, y_train, sample_weight=sample_weight_train) | ||
cat_fit_duration = time() - tic | ||
tic = time() | ||
cat_score = cat_est.score(X_test, y_test) | ||
cat_score_duration = time() - tic | ||
print("score: {:.4f}".format(cat_score)) | ||
print("fit duration: {:.3f}s,".format(cat_fit_duration)) | ||
print("score duration: {:.3f}s,".format(cat_score_duration)) | ||
|
||
return (sklearn_score, sklearn_fit_duration, sklearn_score_duration, | ||
lightgbm_score, lightgbm_fit_duration, lightgbm_score_duration, | ||
xgb_score, xgb_fit_duration, xgb_score_duration, | ||
cat_score, cat_fit_duration, cat_score_duration) | ||
|
||
|
||
max_threads = os.cpu_count() | ||
n_threads_list = [2 ** i for i in range(8) if (2 ** i) < max_threads] | ||
n_threads_list.append(max_threads) | ||
|
||
sklearn_scores = [] | ||
sklearn_fit_durations = [] | ||
sklearn_score_durations = [] | ||
lightgbm_scores = [] | ||
lightgbm_fit_durations = [] | ||
lightgbm_score_durations = [] | ||
xgb_scores = [] | ||
xgb_fit_durations = [] | ||
xgb_score_durations = [] | ||
cat_scores = [] | ||
cat_fit_durations = [] | ||
cat_score_durations = [] | ||
|
||
for n_threads in n_threads_list: | ||
print(f"n_threads: {n_threads}") | ||
( | ||
sklearn_score, | ||
sklearn_fit_duration, | ||
sklearn_score_duration, | ||
lightgbm_score, | ||
lightgbm_fit_duration, | ||
lightgbm_score_duration, | ||
xgb_score, | ||
xgb_fit_duration, | ||
xgb_score_duration, | ||
cat_score, | ||
cat_fit_duration, | ||
cat_score_duration | ||
) = one_run(n_threads, n_samples) | ||
|
||
for scores, score in ( | ||
(sklearn_scores, sklearn_score), | ||
(sklearn_fit_durations, sklearn_fit_duration), | ||
(sklearn_score_durations, sklearn_score_duration), | ||
(lightgbm_scores, lightgbm_score), | ||
(lightgbm_fit_durations, lightgbm_fit_duration), | ||
(lightgbm_score_durations, lightgbm_score_duration), | ||
(xgb_scores, xgb_score), | ||
(xgb_fit_durations, xgb_fit_duration), | ||
(xgb_score_durations, xgb_score_duration), | ||
(cat_scores, cat_score), | ||
(cat_fit_durations, cat_fit_duration), | ||
(cat_score_durations, cat_score_duration)): | ||
scores.append(score) | ||
|
||
|
||
if args.plot or args.plot_filename: | ||
import matplotlib.pyplot as plt | ||
import matplotlib | ||
|
||
fig, axs = plt.subplots(2, figsize=(12, 12)) | ||
|
||
label = f"sklearn {sklearn.__version__}" | ||
axs[0].plot(n_threads_list, sklearn_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, sklearn_score_durations, label=label) | ||
|
||
if args.lightgbm: | ||
import lightgbm | ||
label = f'LightGBM {lightgbm.__version__}' | ||
axs[0].plot(n_threads_list, lightgbm_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, lightgbm_score_durations, label=label) | ||
|
||
if args.xgboost: | ||
import xgboost | ||
label = f'XGBoost {xgboost.__version__}' | ||
axs[0].plot(n_threads_list, xgb_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, xgb_score_durations, label=label) | ||
|
||
if args.catboost: | ||
import catboost | ||
label = f'CatBoost {catboost.__version__}' | ||
axs[0].plot(n_threads_list, cat_fit_durations, label=label) | ||
axs[1].plot(n_threads_list, cat_score_durations, label=label) | ||
|
||
for ax in axs: | ||
ax.set_xscale('log') | ||
ax.set_xlabel('n_threads') | ||
ax.set_ylabel('duration (s)') | ||
ax.set_ylim(0, None) | ||
ax.set_xticks(n_threads_list) | ||
ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) | ||
ax.legend(loc='best') | ||
|
||
axs[0].set_title('fit duration (s)') | ||
axs[1].set_title('score duration (s)') | ||
|
||
title = args.problem | ||
if args.problem == 'classification': | ||
title += ' n_classes = {}'.format(args.n_classes) | ||
fig.suptitle(title) | ||
|
||
plt.tight_layout() | ||
|
||
if args.plot_filename: | ||
plt.savefig(args.plot_filename) | ||
|
||
if args.plot: | ||
plt.show() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should this just be
args.n_samples
?(I don't even remember why I did that on the older benchmark)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
train / test split?