Skip to content

MNT Revert "MNT Don't validate error messages when strict mode is off" #18481

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 30 additions & 34 deletions sklearn/utils/estimator_checks.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,17 +67,6 @@
CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']


def _assert_raises(exp_type, strict_mode, func, *args, msg=None):
"""Assert exp_type is raised when calling func(*args)

The error message is validated if strict mode is True.
"""
if strict_mode:
assert_raises_regex(exp_type, msg, func, *args)
else:
assert_raises(exp_type, func, *args)


def _yield_checks(estimator):
name = estimator.__class__.__name__
tags = estimator._get_tags()
Expand Down Expand Up @@ -168,9 +157,18 @@ def check_supervised_y_no_nan(name, estimator_orig, strict_mode=True):
y = np.full(10, np.inf)
y = _enforce_estimator_tags_y(estimator, y)

errmsg = ("Input contains NaN, infinity or a value too large for "
r"dtype\('float64'\).")
_assert_raises(ValueError, strict_mode, estimator.fit, X, y, msg=errmsg)
errmsg = "Input contains NaN, infinity or a value too large for " \
"dtype('float64')."
try:
estimator.fit(X, y)
except ValueError as e:
if str(e) != errmsg:
raise ValueError("Estimator {0} raised error as expected, but "
"does not match expected error message"
.format(name))
else:
raise ValueError("Estimator {0} should have raised error on fitting "
"array y with NaN value.".format(name))


def _yield_regressor_checks(regressor):
Expand Down Expand Up @@ -977,17 +975,16 @@ def check_dtype_object(name, estimator_orig, strict_mode=True):
if hasattr(estimator, "transform"):
estimator.transform(X)

msg = "Unknown label type"
try:
estimator.fit(X, y.astype(object))
except Exception as e:
if strict_mode and "Unknown label type" not in str(e):
if "Unknown label type" not in str(e):
raise

if 'string' not in tags['X_types']:
X[0, 0] = {'foo': 'bar'}
msg = "argument must be a string.* number"
_assert_raises(TypeError, strict_mode, estimator.fit, X, y, msg=msg)
assert_raises_regex(TypeError, msg, estimator.fit, X, y)
else:
# Estimators supporting string will not call np.asarray to convert the
# data to numeric and therefore, the error will not be raised.
Expand All @@ -1002,8 +999,8 @@ def check_complex_data(name, estimator_orig, strict_mode=True):
X = X.reshape(-1, 1)
y = np.random.sample(10) + 1j * np.random.sample(10)
estimator = clone(estimator_orig)
msg = "Complex data not supported"
_assert_raises(ValueError, strict_mode, estimator.fit, X, y, msg=msg)
assert_raises_regex(ValueError, "Complex data not supported",
estimator.fit, X, y)


@ignore_warnings
Expand Down Expand Up @@ -1209,14 +1206,12 @@ def check_fit2d_1sample(name, estimator_orig, strict_mode=True):

msgs = ["1 sample", "n_samples = 1", "n_samples=1", "one sample",
"1 class", "one class"]

try:
estimator.fit(X, y)
except ValueError as e:
if strict_mode and all(msg not in repr(e) for msg in msgs):
raise AssertionError(
"The error message should contain one of the following "
f"patterns: {', '.join(msgs)}."
) from e
if all(msg not in repr(e) for msg in msgs):
raise e


@ignore_warnings
Expand Down Expand Up @@ -1245,14 +1240,12 @@ def check_fit2d_1feature(name, estimator_orig, strict_mode=True):
set_random_state(estimator, 1)

msgs = ["1 feature(s)", "n_features = 1", "n_features=1"]

try:
estimator.fit(X, y)
except ValueError as e:
if strict_mode and all(msg not in repr(e) for msg in msgs):
raise AssertionError(
"The error message should contain one of the following "
f"patterns: {', '.join(msgs)}."
) from e
if all(msg not in repr(e) for msg in msgs):
raise e


@ignore_warnings
Expand Down Expand Up @@ -1533,7 +1526,7 @@ def check_estimators_empty_data_messages(name, estimator_orig,
y = _enforce_estimator_tags_y(e, np.array([1, 0, 1]))
msg = (r"0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* "
"is required.")
_assert_raises(ValueError, strict_mode, e.fit, X_zero_features, y, msg=msg)
assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y)


@ignore_warnings(category=FutureWarning)
Expand Down Expand Up @@ -2928,9 +2921,9 @@ def check_classifiers_regression_target(name, estimator_orig,

X = X + 1 + abs(X.min(axis=0)) # be sure that X is non-negative
e = clone(estimator_orig)
msg = 'Unknown label type: '
if not e._get_tags()["no_validation"]:
msg = 'Unknown label type: '
_assert_raises(ValueError, strict_mode, e.fit, X, y, msg=msg)
assert_raises_regex(ValueError, msg, e.fit, X, y)


@ignore_warnings(category=FutureWarning)
Expand Down Expand Up @@ -3009,8 +3002,11 @@ def check_fit_non_negative(name, estimator_orig, strict_mode=True):
X = np.array([[-1., 1], [-1., 1]])
y = np.array([1, 2])
estimator = clone(estimator_orig)
msg = "Negative values in data passed to"
_assert_raises(ValueError, strict_mode, estimator.fit, X, y, msg=msg)
if strict_mode:
assert_raises_regex(ValueError, "Negative values in data passed to",
estimator.fit, X, y)
else: # Don't check error message if strict mode is off
assert_raises(ValueError, estimator.fit, X, y)


def check_fit_idempotent(name, estimator_orig, strict_mode=True):
Expand Down
36 changes: 0 additions & 36 deletions sklearn/utils/tests/test_estimator_checks.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,6 @@
from sklearn.utils.estimator_checks import check_no_attributes_set_in_init
from sklearn.utils.estimator_checks import check_classifier_data_not_an_array
from sklearn.utils.estimator_checks import check_regressor_data_not_an_array
from sklearn.utils.estimator_checks import check_fit2d_1sample
from sklearn.utils.estimator_checks import check_fit2d_1feature
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.estimator_checks import check_outlier_corruption
from sklearn.utils.fixes import np_version, parse_version
Expand Down Expand Up @@ -665,37 +663,3 @@ def test_xfail_ignored_in_check_estimator():
# Make sure checks marked as xfail are just ignored and not run by
# check_estimator(), but still raise a warning.
assert_warns(SkipTestWarning, check_estimator, NuSVC())


def test_check_fit2d_1sample():

class MyEst(SVC):
# raises a bad error message when only 1 sample is passed
def fit(self, X, y):
if X.shape[0] == 1:
raise ValueError("non informative error message")

assert_raises_regex(
AssertionError,
"The error message should contain one of the following",
check_fit2d_1sample,
'estimator_name',
MyEst()
)


def test_check_fit2d_1feature():

class MyEst(SVC):
# raises a bad error message when only 1 feature is passed
def fit(self, X, y):
if X.shape[1] == 1:
raise ValueError("non informative error message")

assert_raises_regex(
AssertionError,
"The error message should contain one of the following",
check_fit2d_1feature,
'estimator_name',
MyEst()
)