Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions doc/whats_new/v1.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,14 @@ Changelog
:mod:`sklearn.gaussian_process`
...............................

- |Fix| `predict` and `sample_y` methods of
:class:`sklearn.gaussian_process.GaussianProcessRegressor` now return
arrays of the correct shape in single-target and multi-target cases, and for
both `normalize_y=False` and `normalize_y=True`.
:pr:`22199` by :user:`Guillaume Lemaitre <glemaitre>`,
:user:`Aidar Shakerimoff <AidarShakerimoff>` and
:user:`Tenavi Nakamura-Zimmerer <Tenavi>`.

- |Fix| :class:`gaussian_process.GaussianProcessClassifier` raises
a more informative error if `CompoundKernel` is passed via `kernel`.
:pr:`22223` by :user:`MarcoM <marcozzxx810>`.
Expand Down
16 changes: 11 additions & 5 deletions sklearn/gaussian_process/_gpr.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,8 +239,9 @@ def fit(self, X, y):
y = (y - self._y_train_mean) / self._y_train_std

else:
self._y_train_mean = np.zeros(1)
self._y_train_std = 1
shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1
self._y_train_mean = np.zeros(shape=shape_y_stats)
self._y_train_std = np.ones(shape=shape_y_stats)

if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]:
if self.alpha.shape[0] == 1:
Expand Down Expand Up @@ -394,6 +395,10 @@ def predict(self, X, return_std=False, return_cov=False):
# undo normalisation
y_mean = self._y_train_std * y_mean + self._y_train_mean

# if y_mean has shape (n_samples, 1), reshape to (n_samples,)
if y_mean.ndim > 1 and y_mean.shape[1] == 1:
y_mean = np.squeeze(y_mean, axis=1)

# Alg 2.1, page 19, line 5 -> v = L \ K(X_test, X_train)^T
V = solve_triangular(
self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False
Expand All @@ -407,7 +412,6 @@ def predict(self, X, return_std=False, return_cov=False):
y_cov = np.outer(y_cov, self._y_train_std ** 2).reshape(
*y_cov.shape, -1
)

# if y_cov has shape (n_samples, n_samples, 1), reshape to
# (n_samples, n_samples)
if y_cov.shape[2] == 1:
Expand Down Expand Up @@ -475,8 +479,10 @@ def sample_y(self, X, n_samples=1, random_state=0):
y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
else:
y_samples = [
rng.multivariate_normal(y_mean[:, i], y_cov, n_samples).T[:, np.newaxis]
for i in range(y_mean.shape[1])
rng.multivariate_normal(
y_mean[:, target], y_cov[..., target], n_samples
).T[:, np.newaxis]
for target in range(y_mean.shape[1])
]
y_samples = np.hstack(y_samples)
return y_samples
Expand Down
120 changes: 100 additions & 20 deletions sklearn/gaussian_process/tests/test_gpr.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
from sklearn.gaussian_process.kernels import DotProduct, ExpSineSquared
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
from sklearn.exceptions import ConvergenceWarning

from sklearn.utils._testing import (
assert_array_less,
assert_almost_equal,
Expand Down Expand Up @@ -361,12 +360,17 @@ def test_y_multioutput():
assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)

# Standard deviation and covariance do not depend on output
assert_almost_equal(y_std_1d, y_std_2d)
assert_almost_equal(y_cov_1d, y_cov_2d)
for target in range(y_2d.shape[1]):
assert_almost_equal(y_std_1d, y_std_2d[..., target])
assert_almost_equal(y_cov_1d, y_cov_2d[..., target])

y_sample_1d = gpr.sample_y(X2, n_samples=10)
y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0])

assert y_sample_1d.shape == (5, 10)
assert y_sample_2d.shape == (5, 2, 10)
# Only the first target will be equal
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0, :])

# Test hyperparameter optimization
for kernel in kernels:
Expand Down Expand Up @@ -546,8 +550,6 @@ def test_bound_check_fixed_hyperparameter():
GaussianProcessRegressor(kernel=kernel).fit(X, y)


# FIXME: we should test for multitargets as well. However, GPR is broken:
# see: https://github.com/scikit-learn/scikit-learn/pull/19706
@pytest.mark.parametrize("kernel", kernels)
def test_constant_target(kernel):
"""Check that the std. dev. is affected to 1 when normalizing a constant
Expand All @@ -568,6 +570,26 @@ def test_constant_target(kernel):
# set atol because we compare to zero
assert_allclose(np.diag(y_cov), 0.0, atol=1e-9)

# Test multi-target data
n_samples, n_targets = X.shape[0], 2
rng = np.random.RandomState(0)
y = np.concatenate(
[
rng.normal(size=(n_samples, 1)), # non-constant target
np.full(shape=(n_samples, 1), fill_value=2), # constant target
],
axis=1,
)

gpr.fit(X, y)
Y_pred, Y_cov = gpr.predict(X, return_cov=True)

assert_allclose(Y_pred[:, 1], 2)
assert_allclose(np.diag(Y_cov[..., 1]), 0.0, atol=1e-9)

assert Y_pred.shape == (n_samples, n_targets)
assert Y_cov.shape == (n_samples, n_samples, n_targets)


def test_gpr_consistency_std_cov_non_invertible_kernel():
"""Check the consistency between the returned std. dev. and the covariance.
Expand Down Expand Up @@ -654,31 +676,89 @@ def test_gpr_predict_error():
gpr.predict(X, return_cov=True, return_std=True)


def test_y_std_with_multitarget_normalized():
"""Check the proper normalization of `y_std` and `y_cov` in multi-target scene.
@pytest.mark.parametrize("normalize_y", [True, False])
@pytest.mark.parametrize("n_targets", [None, 1, 10])
def test_predict_shapes(normalize_y, n_targets):
"""Check the shapes of y_mean, y_std, and y_cov in single-output
(n_targets=None) and multi-output settings, including the edge case when
n_targets=1, where the sklearn convention is to squeeze the predictions.

Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/17394
https://github.com/scikit-learn/scikit-learn/issues/18065
https://github.com/scikit-learn/scikit-learn/issues/22174
"""
rng = np.random.RandomState(1234)

n_samples, n_features, n_targets = 12, 10, 6
n_features, n_samples_train, n_samples_test = 6, 9, 7

X_train = rng.randn(n_samples, n_features)
y_train = rng.randn(n_samples, n_targets)
X_test = rng.randn(n_samples, n_features)
y_train_shape = (n_samples_train,)
if n_targets is not None:
y_train_shape = y_train_shape + (n_targets,)

# Generic kernel
kernel = WhiteKernel(1.0, (1e-1, 1e3)) * C(10.0, (1e-3, 1e3))
# By convention single-output data is squeezed upon prediction
y_test_shape = (n_samples_test,)
if n_targets is not None and n_targets > 1:
y_test_shape = y_test_shape + (n_targets,)

model = GaussianProcessRegressor(
kernel=kernel, n_restarts_optimizer=10, alpha=0.1, normalize_y=True
)
X_train = rng.randn(n_samples_train, n_features)
X_test = rng.randn(n_samples_test, n_features)
y_train = rng.randn(*y_train_shape)

model = GaussianProcessRegressor(normalize_y=normalize_y)
model.fit(X_train, y_train)

y_pred, y_std = model.predict(X_test, return_std=True)
_, y_cov = model.predict(X_test, return_cov=True)

assert y_pred.shape == (n_samples, n_targets)
assert y_std.shape == (n_samples, n_targets)
assert y_cov.shape == (n_samples, n_samples, n_targets)
assert y_pred.shape == y_test_shape
assert y_std.shape == y_test_shape
assert y_cov.shape == (n_samples_test,) + y_test_shape


@pytest.mark.parametrize("normalize_y", [True, False])
@pytest.mark.parametrize("n_targets", [None, 1, 10])
def test_sample_y_shapes(normalize_y, n_targets):
"""Check the shapes of y_samples in single-output (n_targets=0) and
multi-output settings, including the edge case when n_targets=1, where the
sklearn convention is to squeeze the predictions.

Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/22175
"""
rng = np.random.RandomState(1234)

n_features, n_samples_train = 6, 9
# Number of spatial locations to predict at
n_samples_X_test = 7
# Number of sample predictions per test point
n_samples_y_test = 5

y_train_shape = (n_samples_train,)
if n_targets is not None:
y_train_shape = y_train_shape + (n_targets,)

# By convention single-output data is squeezed upon prediction
if n_targets is not None and n_targets > 1:
y_test_shape = (n_samples_X_test, n_targets, n_samples_y_test)
else:
y_test_shape = (n_samples_X_test, n_samples_y_test)

X_train = rng.randn(n_samples_train, n_features)
X_test = rng.randn(n_samples_X_test, n_features)
y_train = rng.randn(*y_train_shape)

model = GaussianProcessRegressor(normalize_y=normalize_y)

# FIXME: before fitting, the estimator does not have information regarding
# the number of targets and default to 1. This is inconsistent with the shape
# provided after `fit`. This assert should be made once the following issue
# is fixed:
# https://github.com/scikit-learn/scikit-learn/issues/22430
# y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
# assert y_samples.shape == y_test_shape

model.fit(X_train, y_train)

y_samples = model.sample_y(X_test, n_samples=n_samples_y_test)
assert y_samples.shape == y_test_shape