Skip to content

MAINT validate parameter in KernelPCA #24020

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jul 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 40 additions & 7 deletions sklearn/decomposition/_kernel_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
# License: BSD 3 clause

import numpy as np
import numbers
from numbers import Integral, Real
from scipy import linalg
from scipy.sparse.linalg import eigsh

Expand All @@ -14,8 +14,8 @@
from ..utils.validation import (
check_is_fitted,
_check_psd_eigenvalues,
check_scalar,
)
from ..utils._param_validation import Interval, StrOptions
from ..utils.deprecation import deprecated
from ..exceptions import NotFittedError
from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
Expand All @@ -42,8 +42,8 @@ class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato
n_components : int, default=None
Number of components. If None, all non-zero components are kept.

kernel : {'linear', 'poly', \
'rbf', 'sigmoid', 'cosine', 'precomputed'}, default='linear'
kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'} \
or callable, default='linear'
Kernel used for PCA.

gamma : float, default=None
Expand Down Expand Up @@ -239,6 +239,40 @@ class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato
(1797, 7)
"""

_parameter_constraints = {
"n_components": [
Interval(Integral, 1, None, closed="left"),
None,
],
"kernel": [
StrOptions({"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"}),
callable,
],
"gamma": [
Interval(Real, 0, None, closed="left"),
None,
],
"degree": [Interval(Integral, 0, None, closed="left")],
"coef0": [Interval(Real, None, None, closed="neither")],
"kernel_params": [dict, None],
"alpha": [Interval(Real, 0, None, closed="left")],
"fit_inverse_transform": ["boolean"],
"eigen_solver": [StrOptions({"auto", "dense", "arpack", "randomized"})],
"tol": [Interval(Real, 0, None, closed="left")],
"max_iter": [
Interval(Integral, 1, None, closed="left"),
None,
],
"iterated_power": [
Interval(Integral, 0, None, closed="left"),
StrOptions({"auto"}),
],
"remove_zero_eig": ["boolean"],
"random_state": ["random_state"],
"copy_X": ["boolean"],
"n_jobs": [None, Integral],
}

def __init__(
self,
n_components=None,
Expand Down Expand Up @@ -313,7 +347,6 @@ def _fit_transform(self, K):
if self.n_components is None:
n_components = K.shape[0] # use all dimensions
else:
check_scalar(self.n_components, "n_components", numbers.Integral, min_val=1)
n_components = min(K.shape[0], self.n_components)

# compute eigenvectors
Expand Down Expand Up @@ -343,8 +376,6 @@ def _fit_transform(self, K):
random_state=self.random_state,
selection="module",
)
else:
raise ValueError("Unsupported value for `eigen_solver`: %r" % eigen_solver)

# make sure that the eigenvalues are ok and fix numerical issues
self.eigenvalues_ = _check_psd_eigenvalues(
Expand Down Expand Up @@ -416,6 +447,8 @@ def fit(self, X, y=None):
self : object
Returns the instance itself.
"""
self._validate_params()

if self.fit_inverse_transform and self.kernel == "precomputed":
raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.")
X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X)
Expand Down
28 changes: 0 additions & 28 deletions sklearn/decomposition/tests/test_kernel_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,12 +67,6 @@ def histogram(x, y, **kwargs):
assert X_pred2.shape == X_pred.shape


def test_kernel_pca_invalid_solver():
"""Check that kPCA raises an error if the solver parameter is invalid"""
with pytest.raises(ValueError):
KernelPCA(eigen_solver="unknown").fit(np.random.randn(10, 10))


def test_kernel_pca_invalid_parameters():
"""Check that kPCA raises an error if the parameters are invalid

Expand Down Expand Up @@ -204,16 +198,6 @@ def test_kernel_pca_n_components():
assert shape == (2, c)


@pytest.mark.parametrize("n_components", [-1, 0])
def test_kernal_pca_too_few_components(n_components):
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
kpca = KernelPCA(n_components=n_components)
msg = "n_components.* must be >= 1"
with pytest.raises(ValueError, match=msg):
kpca.fit(X_fit)


def test_remove_zero_eig():
"""Check that the ``remove_zero_eig`` parameter works correctly.

Expand Down Expand Up @@ -326,18 +310,6 @@ def test_kernel_pca_precomputed_non_symmetric(solver):
assert_array_equal(kpca.eigenvalues_, kpca_c.eigenvalues_)


def test_kernel_pca_invalid_kernel():
"""Tests that using an invalid kernel name raises a ValueError

An invalid kernel name should raise a ValueError at fit time.
"""
rng = np.random.RandomState(0)
X_fit = rng.random_sample((2, 4))
kpca = KernelPCA(kernel="tototiti")
with pytest.raises(ValueError):
kpca.fit(X_fit)


def test_gridsearch_pipeline():
"""Check that kPCA works as expected in a grid search pipeline

Expand Down
1 change: 0 additions & 1 deletion sklearn/tests/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,6 @@ def test_estimators_do_not_raise_errors_in_init_or_set_params(Estimator):
"HashingVectorizer",
"Isomap",
"IterativeImputer",
"KernelPCA",
"LabelPropagation",
"LabelSpreading",
"Lars",
Expand Down