Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions sklearn/ensemble/_forest.py
Original file line number Diff line number Diff line change
Expand Up @@ -1217,7 +1217,8 @@ class RandomForestClassifier(ForestClassifier):
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
new forest. See :term:`Glossary <warm_start>` and
:ref:`gradient_boosting_warm_start` for details.

class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
default=None
Expand Down Expand Up @@ -1593,7 +1594,8 @@ class RandomForestRegressor(ForestRegressor):
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
new forest. See :term:`Glossary <warm_start>` and
:ref:`gradient_boosting_warm_start` for details.

ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
Expand Down Expand Up @@ -1914,7 +1916,8 @@ class ExtraTreesClassifier(ForestClassifier):
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
new forest. See :term:`Glossary <warm_start>` and
:ref:`gradient_boosting_warm_start` for details.

class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
default=None
Expand Down Expand Up @@ -2281,7 +2284,8 @@ class ExtraTreesRegressor(ForestRegressor):
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
new forest. See :term:`Glossary <warm_start>` and
:ref:`gradient_boosting_warm_start` for details.

ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
Expand Down Expand Up @@ -2556,7 +2560,8 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
new forest. See :term:`Glossary <warm_start>` and
:ref:`gradient_boosting_warm_start` for details.

Attributes
----------
Expand Down