-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
ENH Adds TargetEncoder #25334
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ENH Adds TargetEncoder #25334
Conversation
Do we want to have |
To have a encoder that works for both classification and regression I think we'd have to detect the type of problem based on the vaules of I think the way this works is that when performing the change from "categories" to "encoded categories" After reading the code and example once my big picture thoughts are:
What is your plan? Is it ready to go or does it need more tweaking? |
|
What can the |
From the dev meeting, we thought that could put aside the multiclass on the side for the moment and support binary classification and regression. We need to make sure that the name of the encoder reflects that but we don't have to support all possible classification and regression problems at first. I will make a review having those points in mind. |
Since |
I agree. Having one encoder for all types of problems is nicer than having to choose. My question was "Why not take the dirty_cat implementation of |
Here are the key differences between this PR and dirty_cat's version:
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import TargetRegressorEncoder
from dirty_cat import TargetEncoder as DirtyCatTargetEncoder
import numpy as np
rng = np.random.default_rng()
n_samples, n_features = 500_000, 20
X = rng.integers(0, high=30, size=(n_samples, n_features))
y = rng.standard_normal(size=n_samples) %%timeit
_ = TargetRegressorEncoder().fit_transform(X, y)
# 3.37 s ± 132 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
_ = DirtyCatTargetEncoder().fit_transform(X, y)
# 9.9 s ± 220 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) This PR is faster even when it's |
It's mostly to decide on how we want to extend the API for classification targets. Currently, this PR is the minimum requirement for regression targets. The core computation in this PR can be extended to classification without too much trouble.
I do not like how import numpy as np
from sklearn.utils.multiclass import type_of_target
type_of_target(np.asarray([1.0] * 10 + [2.0] * 30 + [4.0] * 10 + [5.0]))
# 'multiclass' I prefer two more explicit options:
I went with option 1 in this PR, but I am okay with either option. For option 2, I am +0.5 on having a |
After thinking about it a little more, I am okay with just inferring the target type with
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good to me. Based on test_target_encoding_for_linear_regression
I think we need to do the nested cross-val by default and break the usual fit_transform
<=> fit + transform
implicit equivalence of other scikit-learn estimators. In particular, I don't see how to compute the "real" training accuracy: to do so we would need a fit_score
method on pipelines (which could be a good idea by the way to save some redundant computation, but this is a digression).
Anyways, I don't see any other way around, and to me the protection against catastrophic overfitting caused by noisy high-cardinality categorical features outweighs the potentially surprising (but well documented) behavior of fit_transform
.
I think both are useful. I have not seen an example similar to your test case that demonstrates why the internal validation is useful. In a follow up PR, we can convert the test into a pitfall style example and link it in the docstring for |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Spotted another typo in the inline comment of the new test.
@lorentzenchr @betatim @glemaitre any more feedback? @jovan-stojanovic you might be interested in the new test: I checked that dirty_cat's |
@thomasjpfan I had a devil inspired idea at coffee: we could store a weakref to the traininset set at fit time to detect if the Still the weakref hack could still lead to surprising behaviors. For instance, while the following would work: X_train = load_dataset_from_disk()
X_trans_1 = target_transformer.fit_transform(X_train)
X_trans_2 = target_transformer.transform(X_train)
np.assert_allclose(X_trans_1, X_trans_2) this seemingly innocuous variation would fail: X_train = load_dataset_from_disk()
X_trans_1 = target_transformer.fit_transform(X_train)
X_train = load_dataset_from_disk()
X_trans_2 = target_transformer.transform(X_train)
np.assert_allclose(X_trans_1, X_trans_2) so overall, I am not 100% sure the weakref hack would be a usability improvement or not. Feel free to pretend that you haven't read this comment and not reply. I would perfectly understand. |
Another pitfall I discovered when experimenting with this PR: If you have a mix of informative and non-informative categorical features (e.g. However if you use the raw target encoded values of I see two possible solutions:
preprocessor = ColumnTransformer(
[
(
"categorical",
make_pipeline(TargetEncoder(), StandardScaler(shared_mean=True, shared_scale=True),
["f_i", "f_u"],
),
],
remainder=StandardScaler(),
) Option EDIT: we should probably do Even if we decide would also be I just wanted to brain-dump this here so that we can think about it when we work on a pitfall example for /cc @jovan-stojanovic who might also be interested for dirty_cat. |
I think it borders on being too magical. For example, if the data is sliced the same way or copied, the references are not the same: import numpy as np
import weakref
X = np.random.randn(10, 10)
X1 = X[:4]
X2 = X[:4]
X3 = X1.copy()
X1_ref = weakref.ref(X1)
assert X1 is X1_ref()
assert X2 is not X1_ref()
assert X3 is not X1_ref() For reference, cuML's TargetEncoder holds the training data and checks all the values.
At one point, I had something similar implemented in #17323 as the default. I think it's reasonable to use a scaled version of the target for encoding purposes. |
Yes, some MNIST pixels reach a value of 250 after rescaling (see Details below), which is quite out of distribution for a unit-norm Normal distribution. We should add a warning when some outputs of
Yes, this is a big limitation of import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler
mnist = fetch_openml("mnist_784", as_frame=False, parser="pandas")
X, y = mnist.data, mnist.target
X_scaled = StandardScaler().fit_transform(X)
max_values = X_scaled.max(axis=0)
fig, ax = plt.subplots()
image = ax.imshow(max_values.reshape(28, 28), cmap=plt.get_cmap("viridis", 6),
norm=LogNorm())
ax.set(xticks=[], yticks=[], title="Maximum value of each scaled MNIST feature")
fig.colorbar(image)
plt.show() |
Let's keep that in mind for a follow-up PR. But it we want to make it the default (which would probably be helpful), we should probably do that before the 1.3 release. |
Note that we could use a weakref + a concrete value check. But even that would feel to complex/magical. +0.5 for keeping the code as it is. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I have only one nitpick.
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
Merged! Thank you very much @thomasjpfan! |
Just an idea: For detection of the training set during |
The checks need to happen before encoding on the categorical variables. We could store the per feature category counts instead. Maybe with a few random probe records that contain several features with infrequent categories. |
The checks need to happen before encoding on the categorical variables. We could store the per feature category counts instead. Maybe with a few random probe records. But this would be quite catastrophic in case of false positives. |
Now I see the difficulty. Maybe it is good enough as is. In principle, we would need to detect every single row of the training set and that’s the responsibility of the user, isn‘t it. |
Whoop whoop! Nice work! |
Pretty nice addition, thanks for this. A small question: According to the >>> from sklearn.preprocessing import TargetEncoder
>>> from sklearn.utils._tags import _safe_tags
>>> _safe_tags(TargetEncoder())['requires_y']
False |
Co-authored-by: Andreas Mueller <t3kcit@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Jovan Stojanovic <62058944+jovan-stojanovic@users.noreply.github.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
* MAINT Clean deprecated losses in (hist) gradient boosting for 1.3 (scikit-learn#25834) * MAINT Clean deprecation of normalize in calibration_curve for 1.3 (scikit-learn#25833) * BLD Clean command removes generated from cython templates (scikit-learn#25839) * PERF Implement `PairwiseDistancesReduction` backend for `KNeighbors.predict_proba` (scikit-learn#24076) Signed-off-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * MAINT Added Parameter Validation for datasets.make_circles (scikit-learn#25848) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MNT use a single job by default with sphinx build (scikit-learn#25836) * BLD Generate warning automatically for templated cython files (scikit-learn#25842) * MAINT parameter validation for sklearn.datasets.fetch_lfw_people (scikit-learn#25820) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameters validation for metrics.fbeta_score (scikit-learn#25841) * TST add global_random_seed fixture to sklearn/covariance/tests/test_robust_covariance.py (scikit-learn#25821) * MAINT Parameter validation for linear_model.orthogonal_mp (scikit-learn#25817) * TST activate common tests for TSNE (scikit-learn#25374) * CI Update lock files (scikit-learn#25849) * MAINT Added Parameter Validation for metrics.mean_gamma_deviance (scikit-learn#25853) * MAINT Parameters validation for feature_selection.mutual_info_regression (scikit-learn#25850) * MAINT parameter validation metrics.class_likelihood_ratios (scikit-learn#25863) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Ensure disjoint interval constraints (scikit-learn#25797) * MAINT Parameters validation for utils.gen_batches (scikit-learn#25864) * TST use global_random_seed in test_dict_vectorizer.py (scikit-learn#24533) * TST use global_random_seed in test_pls.py (scikit-learn#24526) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * TST use global_random_seed in test_gpc.py (scikit-learn#24600) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * DOC Fix overlapping plot axis in bench_sample_without_replacement.py (scikit-learn#25870) * MAINT Use contiguous memoryviews in _random.pyx (scikit-learn#25871) * MAINT parameter validation sklearn.datasets.fetch_lfw_pair (scikit-learn#25857) * MAINT Parameters validation for metrics.classification_report (scikit-learn#25868) * Empty commit * DOC fix docstring dtype parameter in OrdinalEncoder (scikit-learn#25877) * MAINT Clean up depreacted "log" loss of SGDClassifier for 1.3 (scikit-learn#25865) * ENH Adds TargetEncoder (scikit-learn#25334) Co-authored-by: Andreas Mueller <t3kcit@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Jovan Stojanovic <62058944+jovan-stojanovic@users.noreply.github.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * CI make it possible to cancel running Azure jobs (scikit-learn#25876) * MAINT Clean-up deprecated if_delegate_has_method for 1.3 (scikit-learn#25879) * MAINT Parameter validation for tree.export_text (scikit-learn#25867) * DOC impact of `tol` for solvers in RidgeClassifier (scikit-learn#25530) * MAINT Parameters validation for metrics.hinge_loss (scikit-learn#25880) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for metrics.ndcg_score (scikit-learn#25885) * ENH KMeans initialization account for sample weights (scikit-learn#25752) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * TST use global_random_seed in sklearn/tests/test_dummy.py (scikit-learn#25884) * DOC improve calibration user guide (scikit-learn#25687) * ENH Support for sparse matrices added to `sklearn.metrics.silhouette_samples` (scikit-learn#24677) Co-authored-by: Sahil Gupta <sahil@Sahils-MBP.lan> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * MAINT validate_params for plot_tree (scikit-learn#25882) Co-authored-by: Itay <itayvegh@gmail.com> * MAINT add missing space in error message in SVM (scikit-learn#25913) * FIX Adds requires_y tag to TargetEncoder (scikit-learn#25917) * MAINT Consistent cython types continued (scikit-learn#25810) * TST Speed-up common tests of DictionaryLearning (scikit-learn#25892) * TST Speed-up test_dbscan_optics_parity (scikit-learn#25893) * ENH add np.nan option for zero_division in precision/recall/f-score (scikit-learn#25531) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * MAINT Parameters validation for datasets.make_low_rank_matrix (scikit-learn#25901) * MAINT Parameter validation for metrics.cluster.adjusted_mutual_info_score (scikit-learn#25898) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * TST Speed-up test_partial_dependence.test_output_shape (scikit-learn#25895) Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * MAINT Parameters validation for datasets.make_regression (scikit-learn#25899) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for metrics.mean_squared_log_error (scikit-learn#25924) * TST Use global_random_seed in tests/test_naive_bayes.py (scikit-learn#25890) * TST add global_random_seed fixture to sklearn/datasets/tests/test_covtype.py (scikit-learn#25904) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameters validation for datasets.make_multilabel_classification (scikit-learn#25920) * Fixed feature mapping typo (scikit-learn#25934) * MAINT switch to newer codecov uploader (scikit-learn#25919) Co-authored-by: Loïc Estève <loic.esteve@ymail.com> * TST Speed-up test suite when using pytest-xdist (scikit-learn#25918) * DOC update license year to 2023 (scikit-learn#25936) * FIX Remove spurious feature names warning in IsolationForest (scikit-learn#25931) * TST fix unstable test_newrand_set_seed (scikit-learn#25940) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Clean-up deprecated max_features="auto" in trees/forests/gb (scikit-learn#25941) * MAINT LogisticRegression informative error msg when penaly=elasticnet and l1_ratio is None (scikit-learn#25925) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Clean-up remaining SGDClassifier(loss="log") (scikit-learn#25938) * FIX Fixes pandas extension arrays in check_array (scikit-learn#25813) * FIX Fixes pandas extension arrays with objects in check_array (scikit-learn#25814) * CI Disable pytest-xdist in pylatest_pip_openblas_pandas build (scikit-learn#25943) * MAINT remove deprecated call to resources.content (scikit-learn#25951) * DOC note on calibration impact on ranking (scikit-learn#25900) * Remove loguniform fix, use scipy.stats instead (scikit-learn#24665) Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * MAINT Fix broken links in cluster.dbscan module (scikit-learn#25958) * DOC Fix lars Xy shape (scikit-learn#25952) * ENH Add drop_intermediate parameter to metrics.precision_recall_curve (scikit-learn#24668) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * FIX improve error message when computing NDCG with a single document (scikit-learn#25672) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * MAINT introduce _get_response_values and _check_response_methods (scikit-learn#23073) Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Extend message for large sparse matrices support (scikit-learn#25961) Co-authored-by: Meekail Zain <34613774+Micky774@users.noreply.github.com> * MAINT Parameters validation for datasets.make_gaussian_quantiles (scikit-learn#25959) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.d2_tweedie_score (scikit-learn#25975) * MAINT Parameters validation for datasets.make_hastie_10_2 (scikit-learn#25967) * MAINT Parameters validation for preprocessing.minmax_scale (scikit-learn#25962) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for datasets.make_checkerboard (scikit-learn#25955) * MAINT Parameters validation for datasets.make_biclusters (scikit-learn#25945) * MAINT Parameters validation for datasets.make_moons (scikit-learn#25971) * DOC replace deviance by loss in docstring of GradientBoosting (scikit-learn#25968) * MAINT Fix broken link in feature_selection/_univariate_selection.py (scikit-learn#25984) * DOC Update model_persistence.rst to fix skops example (scikit-learn#25993) Co-authored-by: adrinjalali <adrin.jalali@gmail.com> * DOC Specified meaning for max_patches=None in extract_patches_2d (scikit-learn#25996) * DOC document that last step is never cached in pipeline (scikit-learn#25995) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * FIX SequentialFeatureSelector throws IndexError when cv is a generator (scikit-learn#25973) * ENH Adds infrequent categories support to OrdinalEncoder (scikit-learn#25677) Co-authored-by: Tim Head <betatim@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Andreas Mueller <t3kcit@gmail.com> * MAINT make plot_digits_denoising deterministic by fixing random state (scikit-learn#26004) * DOC improve example of PatchExtractor (scikit-learn#26002) * MAINT Parameters validation for datasets.make_friedman2 (scikit-learn#25986) * MAINT Parameters validation for datasets.make_friedman3 (scikit-learn#25989) * MAINT Parameters validation for datasets.make_sparse_uncorrelated (scikit-learn#26001) * MAINT Parameters validation for datasets.make_spd_matrix (scikit-learn#26003) * MAINT Parameters validation for datasets.make_sparse_spd_matrix (scikit-learn#26009) * DOC Added the meanings of default=None for PatchExtractor parameters (scikit-learn#26005) * MAINT remove unecessary check covered by parameter validation framework (scikit-learn#26014) * MAINT Consistent cython types from _typedefs (scikit-learn#25942) Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> * MAINT Parameters validation for datasets.make_swiss_roll (scikit-learn#26020) * MAINT Parameters validation for datasets.make_s_curve (scikit-learn#26022) * MAINT Parameters validation for datasets.make_blobs (scikit-learn#25983) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * DOC fix SplineTransformer include_bias docstring (scikit-learn#26018) * ENH RocCurveDisplay add option to plot chance level (scikit-learn#25987) * DOC show from_estimator and from_predictions for Displays (scikit-learn#25994) * EXA Fix rst in plot_partial_dependence (scikit-learn#26028) * CI Adds coverage to docker jobs on Azure (scikit-learn#26027) Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * API Replace `n_iter` in `Bayesian Ridge` and `ARDRegression` (scikit-learn#25697) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * CLN Make _NumPyAPIWrapper naming consistent to _ArrayAPIWrapper (scikit-learn#26039) * CI disable coverage on Windows to keep CI times reasonable (scikit-learn#26052) * DOC Use Scientific Python Plausible instance for analytics (scikit-learn#25547) * MAINT Parameters validation for sklearn.preprocessing.scale (scikit-learn#26036) * MAINT Parameters validation for sklearn.metrics.pairwise.haversine_distances (scikit-learn#26047) * MAINT Parameters validation for sklearn.metrics.pairwise.laplacian_kernel (scikit-learn#26048) * MAINT Parameters validation for sklearn.metrics.pairwise.linear_kernel (scikit-learn#26049) * MAINT Parameters validation for sklearn.metrics.silhouette_samples (scikit-learn#26053) * MAINT Parameters validation for sklearn.preprocessing.add_dummy_feature (scikit-learn#26058) * Added Parameter Validation for metrics.cluster.normalized_mutual_info_score() (scikit-learn#26060) * DOC Typos in HistGradientBoosting documentation (scikit-learn#26057) * TST add global_random_seed fixture to sklearn/datasets/tests/test_rcv1.py (scikit-learn#26043) * MAINT Parameters validation for sklearn.metrics.pairwise.cosine_similarity (scikit-learn#26006) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * ENH Adds isdtype to Array API wrapper (scikit-learn#26029) * MAINT Parameters validation for sklearn.metrics.silhouette_score (scikit-learn#26054) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * FIX fix spelling mistake in _NumPyAPIWrapper (scikit-learn#26064) * CI ignore more non-library Python files in codecov (scikit-learn#26059) * MAINT Parameters validation for sklearn.metrics.pairwise.cosine_distances (scikit-learn#26046) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Introduce BinaryClassifierCurveDisplayMixin (scikit-learn#25969) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * ENH Forces shape to be tuple when using Array API's reshape (scikit-learn#26030) Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Tim Head <betatim@gmail.com> * MAINT Parameters validation for sklearn.metrics.pairwise.paired_euclidean_distances (scikit-learn#26073) * MAINT Parameters validation for sklearn.metrics.pairwise.paired_manhattan_distances (scikit-learn#26074) * MAINT Parameters validation for sklearn.metrics.pairwise.paired_cosine_distances (scikit-learn#26075) * MAINT Parameters validation for sklearn.preprocessing.binarize (scikit-learn#26076) * MAINT Parameters validation for metrics.explained_variance_score (scikit-learn#26079) * DOC use correct template name for displays (scikit-learn#26081) * MAINT Parameters validation for sklearn.preprocessing.maxabs_scale (scikit-learn#26077) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.preprocessing.label_binarize (scikit-learn#26078) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT parameter validation for d2_absolute_error_score (scikit-learn#26066) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameter validation for roc_auc_score (scikit-learn#26007) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameters validation for sklearn.preprocessing.normalize (scikit-learn#26069) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameter validation for metrics.cluster.fowlkes_mallows_score (scikit-learn#26080) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameters validation for compose.make_column_transformer (scikit-learn#25897) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * MAINT Parameters validation for sklearn.metrics.pairwise.polynomial_kernel (scikit-learn#26070) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.pairwise.rbf_kernel (scikit-learn#26071) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.pairwise.sigmoid_kernel (scikit-learn#26072) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Param validation: constraint for numeric missing values (scikit-learn#26085) * FIX Adds support for negative values in categorical features in gradient boosting (scikit-learn#25629) Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Tim Head <betatim@gmail.com> * MAINT Fix C warning in Cython module splitting.pyx (scikit-learn#26051) * MNT Updates _isotonic.pyx to use memoryviews instead of `cnp.ndarray` (scikit-learn#26068) * FIX Fixes memory regression for inspecting extension arrays (scikit-learn#26106) * PERF set openmp to use only physical cores by default (scikit-learn#26082) * MNT Update black to 23.3.0 (scikit-learn#26110) * MNT Adds black commit to git-blame-ignore-revs (scikit-learn#26111) * MAINT Parameters validation for sklearn.metrics.pair_confusion_matrix (scikit-learn#26107) * MAINT Parameters validation for sklearn.metrics.mean_poisson_deviance (scikit-learn#26104) * DOC Use notebook style in plot_lof_outlier_detection.py (scikit-learn#26017) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * MAINT utils._fast_dict uses types from utils._typedefs (scikit-learn#26025) * DOC remove sparse-matrix for `y` in ElasticNet (scikit-learn#26127) * ENH add exponential loss (scikit-learn#25965) * MAINT Parameters validation for sklearn.preprocessing.robust_scale (scikit-learn#26086) * MAINT Parameters validation for sklearn.datasets.fetch_rcv1 (scikit-learn#26126) * MAINT Parameters validation for sklearn.metrics.adjusted_rand_score (scikit-learn#26134) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.calinski_harabasz_score (scikit-learn#26135) * MAINT Parameters validation for sklearn.metrics.davies_bouldin_score (scikit-learn#26136) * MAINT: remove `from numpy.math cimport` statements (scikit-learn#26143) * MAINT Parameters validation for sklearn.inspection.permutation_importance (scikit-learn#26145) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.cluster.homogeneity_completeness_v_measure (scikit-learn#26137) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.rand_score (scikit-learn#26138) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * DOC update comment in metrics/tests/test_classification.py (scikit-learn#26150) * CI small cleanup of Cirrus CI test script (scikit-learn#26168) * MAINT remove deprecated is_categorical_dtype (scikit-learn#26156) * DOC Add skforecast to related projects page (scikit-learn#26133) Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * FIX Keeps namedtuple's class when transform returns a tuple (scikit-learn#26121) * DOC corrected letter case for better readability in sklearn/metrics/_classification.py / (scikit-learn#26169) * MAINT Parameters validation for sklearn.preprocessing.power_transform (scikit-learn#26142) * FIX `roc_auc_score` now uses `y_prob` instead of `y_pred` (scikit-learn#26155) * MAINT Parameters validation for sklearn.datasets.load_iris (scikit-learn#26177) * MAINT Parameters validation for sklearn.datasets.load_diabetes (scikit-learn#26166) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.datasets.load_breast_cancer (scikit-learn#26165) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.metrics.cluster.entropy (scikit-learn#26162) * MAINT Parameters validation for sklearn.datasets.fetch_species_distributions (scikit-learn#26161) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * ASV Fix tol in SGDRegressorBenchmark (scikit-learn#26146) Co-authored-by: jeremie du boisberranger <jeremiedbb@yahoo.fr> * MNT use api.openml.org URLs for fetch_openml (scikit-learn#26171) * MAINT Parameters validation for sklearn.utils.resample (scikit-learn#26139) * MAINT make it explicit that additive_chi2_kernel does not accept sparse matrix (scikit-learn#26178) * MNT fix circleci link in README.rst (scikit-learn#26183) * CI Fix circleci artifact redirector action (scikit-learn#26181) * GOV introduce rights for groups as discussed in SLEP019 (scikit-learn#25753) Co-authored-by: Julien <git@jjerphan.xyz> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * MAINT Parameters validation for sklearn.neighbors.sort_graph_by_row_values (scikit-learn#26173) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * FIX improve convergence criterion for LogisticRegression(penalty="l1", solver='liblinear') (scikit-learn#25214) Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * MAINT Fix several typos in src and doc files (scikit-learn#26187) * PERF fix overhead of _rescale_data in LinearRegression (scikit-learn#26207) * ENH add Huber loss (scikit-learn#25966) * MAINT Refactor GraphicalLasso and graphical_lasso (scikit-learn#26033) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Cython linting (scikit-learn#25861) * DOC Add JupyterLite button in example gallery (scikit-learn#25887) * MAINT Parameters validation for sklearn.covariance.ledoit_wolf_shrinkage (scikit-learn#26200) * MAINT Parameters validation for sklearn.datasets.load_linnerud (scikit-learn#26199) * MAINT Parameters validation for sklearn.datasets.load_wine (scikit-learn#26196) * DOC Added redirect to Provost paper + minor refactor (scikit-learn#26223) * MAINT Parameter Validation for `covariance.graphical_lasso` (scikit-learn#25053) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.datasets.load_digits (scikit-learn#26195) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.preprocessing.quantile_transform (scikit-learn#26144) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.model_selection.cross_validate (scikit-learn#26129) Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> * DOC Adds TargetEncoder example explaining the internal CV (scikit-learn#26185) Co-authored-by: Tim Head <betatim@gmail.com> * spelling mistake corrected in documentation for script `plot_document_clustering.py` (scikit-learn#26228) Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * FIX possible UnboundLocalError in fetch_openml (scikit-learn#26236) * ENH Adds PyTorch support to LinearDiscriminantAnalysis (scikit-learn#25956) Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Tim Head <betatim@gmail.com> * MNT Use fixed version of Pyodide (scikit-learn#26247) * MNT Reset transform_output default in example to fix doc build build (scikit-learn#26269) * DOC Update example plot_nearest_centroid.py (scikit-learn#26263) * MNT reduce JupyterLite build size (scikit-learn#26246) * DOC term -> meth in GradientBoosting (scikit-learn#26225) * MNT speed-up html-noplot build (scikit-learn#26245) Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * MNT Use copy=False when creating DataFrames (scikit-learn#26272) * MAINT Parameters validation for sklearn.model_selection.permutation_test_score (scikit-learn#26230) * MAINT Parameters validation for sklearn.datasets.clear_data_home (scikit-learn#26259) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.datasets.load_files (scikit-learn#26203) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.datasets.get_data_home (scikit-learn#26260) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * DOC Fix y-axis plot labels in permutation test score example (scikit-learn#26240) * MAINT cython-lint ignores asv_benchmarks (scikit-learn#26282) * MAINT Parameter validation for metrics.cluster._supervised (scikit-learn#26258) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * DOC Improve docstring for tol in SequentialFeatureSelector (scikit-learn#26271) * MAINT Parameters validation for sklearn.datasets.load_sample_image (scikit-learn#26226) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * DOC Consistent param type for pos_label (scikit-learn#26237) * DOC Minor grammar fix to imputation docs (scikit-learn#26283) * MAINT Parameters validation for sklearn.calibration.calibration_curve (scikit-learn#26198) Co-authored-by: jeremie du boisberranger <jeremiedbb@yahoo.fr> * MAINT Parameters validation for sklearn.inspection.partial_dependence (scikit-learn#26209) Co-authored-by: jeremie du boisberranger <jeremiedbb@yahoo.fr> * MAINT Parameters validation for sklearn.model_selection.validation_curve (scikit-learn#26229) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MAINT Parameters validation for sklearn.model_selection.learning_curve (scikit-learn#26227) Co-authored-by: jeremie du boisberranger <jeremiedbb@yahoo.fr> * MNT Remove deprecated pandas.api.types.is_sparse (scikit-learn#26287) * CI Use Trusted Publishers for uploading wheels to PyPI (scikit-learn#26249) * MAINT Parameters validation for sklearn.metrics.pairwise.manhattan_distances (scikit-learn#26122) * PERF revert openmp use in csr_row_norms (scikit-learn#26275) * MAINT Parameters validation for metrics.check_scoring (scikit-learn#26041) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> * MNT Improve error message when checking classification target is of a non-regression type (scikit-learn#26281) Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * DOC fix link to User Guide encoder_infrequent_categories (scikit-learn#26309) * MNT remove unused args in _predict_regression_tree_inplace_fast_dense (scikit-learn#26314) * ENH Adds missing value support for trees (scikit-learn#23595) Co-authored-by: Tim Head <betatim@gmail.com> Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> * CLN Clean up logic in validate_data and cast_to_ndarray (scikit-learn#26300) * MAINT refactor scorer using _get_response_values (scikit-learn#26037) Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com> * DOC Add HGBDT to "see also" section of random forests (scikit-learn#26319) Co-authored-by: ArturoAmorQ <arturo.amor-quiroz@polytechnique.edu> Co-authored-by: Tim Head <betatim@gmail.com> * MNT Bump Github Action labeler version to use newer Node (scikit-learn#26302) * FIX thresholds should not exceed 1.0 with probabilities in `roc_curve` (scikit-learn#26194) Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * ENH Allow for appropriate dtype us in `preprocessing.PolynomialFeatures` for sparse matrices (scikit-learn#23731) Co-authored-by: Aleksandr Kokhaniukov <alexander.kohanyukov@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> * DOC Fix minor typo (scikit-learn#26327) * MAINT bump minimum version for pytest (scikit-learn#26184) Co-authored-by: Loïc Estève <loic.esteve@ymail.com> Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> * DOC fix return type in isotonic_regression (scikit-learn#26332) * FIX fix available_if for MultiOutputRegressor.partial_fit (scikit-learn#26333) Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> * FIX make pipeline pass check_estimator (scikit-learn#26325) * FEA Add multiclass support to `average_precision_score` (scikit-learn#24769) Co-authored-by: Geoffrey <geoffrey.bolmier@gmail.com> Co-authored-by: gbolmier <geoffrey.bolmier@volvocars.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> --------- Signed-off-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> Co-authored-by: Meekail Zain <34613774+Micky774@users.noreply.github.com> Co-authored-by: Julien Jerphanion <git@jjerphan.xyz> Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org> Co-authored-by: zeeshan lone <56621467+still-learning-ev@users.noreply.github.com> Co-authored-by: jeremiedbb <jeremiedbb@yahoo.fr> Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com> Co-authored-by: Shiva chauhan <103742975+Shivachauhan17@users.noreply.github.com> Co-authored-by: AymericBasset <45051041+AymericBasset@users.noreply.github.com> Co-authored-by: Maren Westermann <maren.westermann@gmail.com> Co-authored-by: Nishu Choudhary <51842539+choudharynishu@users.noreply.github.com> Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> Co-authored-by: Loïc Estève <loic.esteve@ymail.com> Co-authored-by: Benedek Harsanyi <80836204+hbenedek@users.noreply.github.com> Co-authored-by: Pooja Subramaniam <poojas2086@gmail.com> Co-authored-by: Rushil Desai <rushildesai01@gmail.com> Co-authored-by: Xiao Yuan <yuanx749@gmail.com> Co-authored-by: Omar Salman <omar.salman@arbisoft.com> Co-authored-by: 2357juan <29247195+2357juan@users.noreply.github.com> Co-authored-by: Théophile Baranger <39696928+tbaranger@users.noreply.github.com> Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com> Co-authored-by: Andreas Mueller <t3kcit@gmail.com> Co-authored-by: Jovan Stojanovic <62058944+jovan-stojanovic@users.noreply.github.com> Co-authored-by: Rahil Parikh <75483881+rprkh@users.noreply.github.com> Co-authored-by: Bharat Raghunathan <bharatraghunthan9767@gmail.com> Co-authored-by: Sortofamudkip <wishyutp0328@gmail.com> Co-authored-by: Gleb Levitski <36483986+glevv@users.noreply.github.com> Co-authored-by: Christian Lorentzen <lorentzen.ch@gmail.com> Co-authored-by: Ashwin Mathur <97467100+awinml@users.noreply.github.com> Co-authored-by: Sahil Gupta <sahil@Sahils-MBP.lan> Co-authored-by: Veghit <itay.vegh@gmail.com> Co-authored-by: Itay <itayvegh@gmail.com> Co-authored-by: precondition <57645186+precondition@users.noreply.github.com> Co-authored-by: Marc Torrellas Socastro <marc.torsoc@gmail.com> Co-authored-by: Dominic Fox <dominicjfox2@gmail.com> Co-authored-by: futurewarning <36329275+futurewarning@users.noreply.github.com> Co-authored-by: Yao Xiao <108576690+Charlie-XIAO@users.noreply.github.com> Co-authored-by: Joey Ortiz <orangesherbet0@gmail.com> Co-authored-by: Tim Head <betatim@gmail.com> Co-authored-by: Christian Veenhuis <veenhuis@gmail.com> Co-authored-by: adienes <51664769+adienes@users.noreply.github.com> Co-authored-by: Dave Berenbaum <dave.berenbaum@gmail.com> Co-authored-by: Lene Preuss <lene.preuss@gmail.com> Co-authored-by: A.H.Mansouri <83764851+A-H-Mansoury@users.noreply.github.com> Co-authored-by: Boris Feld <lothiraldan@gmail.com> Co-authored-by: Carla J <ca.jancik@gmail.com> Co-authored-by: windiana42 <61181806+windiana42@users.noreply.github.com> Co-authored-by: mdarii <dariimaxim@gmail.com> Co-authored-by: murezzda <47388020+murezzda@users.noreply.github.com> Co-authored-by: Peter Piontek <piontek0@gmail.com> Co-authored-by: John Pangas <swiftyxswaggy@outlook.com> Co-authored-by: Dmitry Nesterov <76070534+dmitrylala@users.noreply.github.com> Co-authored-by: Yuchen Zhou <72342196+ROMEEZHOU@users.noreply.github.com> Co-authored-by: Ekaterina Butyugina <102963496+ekaterinabutyugina@users.noreply.github.com> Co-authored-by: Jiawei Zhang <jiawei.zhang@nyu.edu> Co-authored-by: Ansam Zedan <86729068+ansamz@users.noreply.github.com> Co-authored-by: genvalen <genvalen@protonmail.com> Co-authored-by: farhan khan <86480450+BabaYaga1221@users.noreply.github.com> Co-authored-by: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> Co-authored-by: Jiawei Zhang <jz4721@nyu.edu> Co-authored-by: Ralf Gommers <ralf.gommers@gmail.com> Co-authored-by: Jessicakk0711 <106110789+Jessicakk0711@users.noreply.github.com> Co-authored-by: Ankur Singh <singankur28@gmail.com> Co-authored-by: Seoeun(Sun☀️) Hong <75988952+seoeunHong@users.noreply.github.com> Co-authored-by: Nightwalkx <74856680+xi-jiajun@users.noreply.github.com> Co-authored-by: VIGNESH D <35656793+dvignesh1995@users.noreply.github.com> Co-authored-by: Vincent-violet <130581473+Vincent-violet@users.noreply.github.com> Co-authored-by: Elabonga Atuo <elabongaatuo@gmail.com> Co-authored-by: Tom Dupré la Tour <tom.dupre-la-tour@m4x.org> Co-authored-by: André Pedersen <andrped94@gmail.com> Co-authored-by: Ashish Dutt <ashish.dutt8@gmail.com> Co-authored-by: Phil <philsupertramp@users.noreply.github.com> Co-authored-by: Stanislav (Stanley) Modrak <44023416+smith558@users.noreply.github.com> Co-authored-by: hujiahong726 <52920842+hujiahong726@users.noreply.github.com> Co-authored-by: James Dean <24254612+AcylSilane@users.noreply.github.com> Co-authored-by: ArturoAmorQ <arturo.amor-quiroz@polytechnique.edu> Co-authored-by: Aleksandr Kokhaniukov <alexander.kohanyukov@gmail.com> Co-authored-by: c-git <43485962+c-git@users.noreply.github.com> Co-authored-by: annegnx <64203599+annegnx@users.noreply.github.com> Co-authored-by: Geoffrey <geoffrey.bolmier@gmail.com> Co-authored-by: gbolmier <geoffrey.bolmier@volvocars.com>
Reference Issues/PRs
Closes #5853
Closes #9614
Supersedes #17323
Fixes or at least related to #24967
What does this implement/fix? Explain your changes.
This PR implements a target encoder which uses CV during
fit_transform
to prevent the target from leaking.transform
uses the the target encoding from all the training data. This means thatfit_transform()
!=fit().transform()
.The implementation uses Cython to learn the encoding which provides a 10x speed up compared to using a pure Python+NumPy approach. Cython is required because many encodings are learn during cross validation in
fit_transform
.Any other comments?
The implementation uses the same scheme as cuML's TargetEncoder, which they used to win Recsys2020.