Skip to content

MAINT Use scipy.sparse.isspmatrix_* #26420

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 8 additions & 3 deletions sklearn/model_selection/tests/test_split.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,12 @@
import pytest
import re
import numpy as np
from scipy.sparse import coo_matrix, csc_matrix, csr_matrix
from scipy.sparse import (
coo_matrix,
csc_matrix,
csr_matrix,
isspmatrix_csr,
)
from scipy import stats
from scipy.special import comb
from itertools import combinations
Expand Down Expand Up @@ -1327,8 +1332,8 @@ def test_train_test_split_sparse():
for InputFeatureType in sparse_types:
X_s = InputFeatureType(X)
X_train, X_test = train_test_split(X_s)
assert isinstance(X_train, csr_matrix)
assert isinstance(X_test, csr_matrix)
assert isspmatrix_csr(X_train)
assert isspmatrix_csr(X_test)


def test_train_test_split_mock_pandas():
Expand Down
6 changes: 3 additions & 3 deletions sklearn/preprocessing/tests/test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -1851,7 +1851,7 @@ def test_normalizer_l1():
X_norm = normalizer = Normalizer(norm="l2", copy=False).transform(X)

assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
assert sparse.isspmatrix_csr(X_norm)

X_norm = toarray(X_norm)
for i in range(3):
Expand Down Expand Up @@ -1898,7 +1898,7 @@ def test_normalizer_l2():
X_norm = normalizer = Normalizer(norm="l2", copy=False).transform(X)

assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
assert sparse.isspmatrix_csr(X_norm)

X_norm = toarray(X_norm)
for i in range(3):
Expand Down Expand Up @@ -1946,7 +1946,7 @@ def test_normalizer_max():
X_norm = normalizer = Normalizer(norm="l2", copy=False).transform(X)

assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
assert sparse.isspmatrix_csr(X_norm)

X_norm = toarray(X_norm)
for i in range(3):
Expand Down
12 changes: 6 additions & 6 deletions sklearn/preprocessing/tests/test_polynomial.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,7 +625,7 @@ def test_polynomial_features_csc_X(deg, include_bias, interaction_only, dtype):
Xt_csc = est.fit_transform(X_csc.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))

assert isinstance(Xt_csc, sparse.csc_matrix)
assert sparse.isspmatrix_csc(Xt_csc)
assert Xt_csc.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csc.A, Xt_dense)

Expand All @@ -652,7 +652,7 @@ def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype):
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype, copy=False))

assert isinstance(Xt_csr, sparse.csr_matrix)
assert sparse.isspmatrix_csr(Xt_csr)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)

Expand Down Expand Up @@ -711,7 +711,7 @@ def test_polynomial_features_csr_X_floats(deg, include_bias, interaction_only, d
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))

assert isinstance(Xt_csr, sparse.csr_matrix)
assert sparse.isspmatrix_csr(Xt_csr)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)

Expand Down Expand Up @@ -742,7 +742,7 @@ def test_polynomial_features_csr_X_zero_row(zero_row_index, deg, interaction_onl
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)

assert isinstance(Xt_csr, sparse.csr_matrix)
assert sparse.isspmatrix_csr(Xt_csr)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)

Expand All @@ -763,7 +763,7 @@ def test_polynomial_features_csr_X_degree_4(include_bias, interaction_only):
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)

assert isinstance(Xt_csr, sparse.csr_matrix)
assert sparse.isspmatrix_csr(X_csr)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)

Expand Down Expand Up @@ -791,7 +791,7 @@ def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only):
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)

assert isinstance(Xt_csr, sparse.csr_matrix)
assert sparse.isspmatrix_csr(Xt_csr)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)

Expand Down
4 changes: 2 additions & 2 deletions sklearn/tree/_splitter.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ from cython cimport final

import numpy as np

from scipy.sparse import csc_matrix
from scipy.sparse import isspmatrix_csc

from ._utils cimport log
from ._utils cimport rand_int
Expand Down Expand Up @@ -1041,7 +1041,7 @@ cdef class SparsePartitioner:
DTYPE_t[::1] feature_values,
const unsigned char[::1] feature_has_missing,
):
if not isinstance(X, csc_matrix):
if not isspmatrix_csc(X):
raise ValueError("X should be in csc format")

self.samples = samples
Expand Down
5 changes: 3 additions & 2 deletions sklearn/tree/_tree.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ cnp.import_array()

from scipy.sparse import issparse
from scipy.sparse import csr_matrix
from scipy.sparse import isspmatrix_csr

from ._utils cimport safe_realloc
from ._utils cimport sizet_ptr_to_ndarray
Expand Down Expand Up @@ -876,7 +877,7 @@ cdef class Tree:
"""Finds the terminal region (=leaf node) for each sample in sparse X.
"""
# Check input
if not isinstance(X, csr_matrix):
if not isspmatrix_csr(X):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))

Expand Down Expand Up @@ -1004,7 +1005,7 @@ cdef class Tree:
"""Finds the decision path (=node) for each sample in X."""

# Check input
if not isinstance(X, csr_matrix):
if not isspmatrix_csr(X):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))

Expand Down
4 changes: 2 additions & 2 deletions sklearn/utils/extmath.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def row_norms(X, squared=False):
The row-wise (squared) Euclidean norm of X.
"""
if sparse.issparse(X):
if not isinstance(X, sparse.csr_matrix):
if not sparse.isspmatrix_csr(X):
X = sparse.csr_matrix(X)
norms = csr_row_norms(X)
else:
Expand Down Expand Up @@ -425,7 +425,7 @@ def randomized_svd(
>>> U.shape, s.shape, Vh.shape
((3, 2), (2,), (2, 4))
"""
if isinstance(M, (sparse.lil_matrix, sparse.dok_matrix)):
if sparse.isspmatrix_lil(M) or sparse.isspmatrix_dok(M):
warnings.warn(
"Calculating SVD of a {} is expensive. "
"csr_matrix is more efficient.".format(type(M).__name__),
Expand Down
6 changes: 3 additions & 3 deletions sklearn/utils/multiclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@
import warnings

from scipy.sparse import issparse
from scipy.sparse import dok_matrix
from scipy.sparse import lil_matrix
from scipy.sparse import isspmatrix_dok
from scipy.sparse import isspmatrix_lil

import numpy as np

Expand Down Expand Up @@ -179,7 +179,7 @@ def is_multilabel(y):
return False

if issparse(y):
if isinstance(y, (dok_matrix, lil_matrix)):
if isspmatrix_dok(y) or isspmatrix_lil(y):
y = y.tocsr()
labels = xp.unique_values(y.data)
return (
Expand Down
26 changes: 13 additions & 13 deletions sklearn/utils/sparsefuncs.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
"""
_raise_error_wrong_axis(axis)

if isinstance(X, sp.csr_matrix):
if sp.isspmatrix_csr(X):
if axis == 0:
return _csr_mean_var_axis0(
X, weights=weights, return_sum_weights=return_sum_weights
Expand All @@ -112,7 +112,7 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
return _csc_mean_var_axis0(
X.T, weights=weights, return_sum_weights=return_sum_weights
)
elif isinstance(X, sp.csc_matrix):
elif sp.isspmatrix_csc(X):
if axis == 0:
return _csc_mean_var_axis0(
X, weights=weights, return_sum_weights=return_sum_weights
Expand Down Expand Up @@ -187,7 +187,7 @@ def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=Non
"""
_raise_error_wrong_axis(axis)

if not isinstance(X, (sp.csr_matrix, sp.csc_matrix)):
if not (sp.isspmatrix_csr(X) or sp.isspmatrix_csc(X)):
_raise_typeerror(X)

if np.size(last_n) == 1:
Expand Down Expand Up @@ -234,9 +234,9 @@ def inplace_column_scale(X, scale):
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
Array of precomputed feature-wise values to use for scaling.
"""
if isinstance(X, sp.csc_matrix):
if sp.isspmatrix_csc(X):
inplace_csr_row_scale(X.T, scale)
elif isinstance(X, sp.csr_matrix):
elif sp.isspmatrix_csr(X):
inplace_csr_column_scale(X, scale)
else:
_raise_typeerror(X)
Expand All @@ -256,9 +256,9 @@ def inplace_row_scale(X, scale):
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
Array of precomputed sample-wise values to use for scaling.
"""
if isinstance(X, sp.csc_matrix):
if sp.isspmatrix_csc(X):
inplace_csr_column_scale(X.T, scale)
elif isinstance(X, sp.csr_matrix):
elif sp.isspmatrix_csr(X):
inplace_csr_row_scale(X, scale)
else:
_raise_typeerror(X)
Expand Down Expand Up @@ -372,9 +372,9 @@ def inplace_swap_row(X, m, n):
n : int
Index of the row of X to be swapped.
"""
if isinstance(X, sp.csc_matrix):
if sp.isspmatrix_csc(X):
inplace_swap_row_csc(X, m, n)
elif isinstance(X, sp.csr_matrix):
elif sp.isspmatrix_csr(X):
inplace_swap_row_csr(X, m, n)
else:
_raise_typeerror(X)
Expand All @@ -400,9 +400,9 @@ def inplace_swap_column(X, m, n):
m += X.shape[1]
if n < 0:
n += X.shape[1]
if isinstance(X, sp.csc_matrix):
if sp.isspmatrix_csc(X):
inplace_swap_row_csr(X, m, n)
elif isinstance(X, sp.csr_matrix):
elif sp.isspmatrix_csr(X):
inplace_swap_row_csc(X, m, n)
else:
_raise_typeerror(X)
Expand Down Expand Up @@ -501,7 +501,7 @@ def min_max_axis(X, axis, ignore_nan=False):
maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
Feature-wise maxima.
"""
if isinstance(X, (sp.csr_matrix, sp.csc_matrix)):
if sp.isspmatrix_csr(X) or sp.isspmatrix_csc(X):
if ignore_nan:
return _sparse_nan_min_max(X, axis=axis)
else:
Expand Down Expand Up @@ -610,7 +610,7 @@ def csc_median_axis_0(X):
median : ndarray of shape (n_features,)
Median.
"""
if not isinstance(X, sp.csc_matrix):
if not sp.isspmatrix_csc(X):
raise TypeError("Expected matrix of CSC format, got %s" % X.format)

indptr = X.indptr
Expand Down