-
-
Notifications
You must be signed in to change notification settings - Fork 26.2k
[MRG + 1] 10 more examples fixed with matplotlib 2.0 updates #9030
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MRG + 1] 10 more examples fixed with matplotlib 2.0 updates #9030
Conversation
added the old-new plots for the current circleCI build. |
besides plot_voting_decision_regions new looks always better
|
@agramfort - i'm sorry could you point me to the example which you are referring to? |
forget it for my previous comment. But plot_agglomerative_clustering and plot_kmeans_assumptions look better before. When dots are small putting a black border makes everything almost black. |
@agramfort - i found the new ones a bit cleaner. But I see you point. I've pushed a new commit with changes. i'm good with both. i'll update the plots here once the builds are complete. |
CircleCI is giving this error - "Your build output is too large to display in the browser. Only the first 400000 characters are displayed." I tried searching couldn't find much. @agramfort, @amueller - any thoughts for the reason? |
LGTM |
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) | ||
|
||
plt.cla() | ||
ax = plt.subplot(2, 2, fignum, projection='3d', |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
which matplotlib version does this require?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
actually 1.5 requires this. Issue was that I wasn't importing Axes3D because it wasn't being used directly. But I found later that this projection=3d requires Axes3D imported. So it worked after adding that import. All good now.
Can you fix the conflicts? This would be nice to have in 0.19 |
Never mind I fixed it myself ;) Let's wait for CIs. Meanwhile @amueller can we merge it? |
@raghavrv if it has your +1 you can merge, circle and travis are green |
Thanks a lot @aarshayj :) |
thanks @raghavrv! I'll take care of the CIs on my end in future PRs :) |
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts #9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
…learn#9030) * examples/covariance/plot_outlier_detection.py - matplotlib2.0 update * examples/cluster/plot_kmeans_silhouette_analysis.py - matplotlib2.0 update * examples/cluster/plot_birch_vs_minibatchkmeans.py - matplotlib2.0 + pep8 fix * examples/cluster/plot_cluster_iris.py - matplotlib2.0 update * examples/cluster/plot_agglomerative_clustering.py - matplotlib2.0 update * examples/cluster/plot_ward_structured_vs_unstructured.py - matplotlib2.0 update * examples/cluster/plot_kmeans_assumptions.py - matplotlib2.0 update * examples/classification/plot_lda_qda.py - matplotlib2.0 + pep8 fix * examples/calibration/plot_calibration.py - matplotlib2.0 update * examples/plot_johnson_lindenstrauss_bound.py - matplotlib2.0 update * flake8 changes * reversing changes for plot_kmeans_assumptions & plot_agglomerative_clustering * cluster/plot_cluster_iris.py - major fixes * examples/cluster/plot_cluster_iris.py - flake8 fix * examples/cluster/plot_cluster_iris.py - 3d projection error fix * cluster/plot_cluster_iris.py - elevation and azimuth setting
Use 4 plots instead of one so that unsupervised_learning.rst can show png separately. Partially reverts scikit-learn#9030. Minor changes for consistent labeling.
10 more examples updated with matplotlib 2.0 updates.
Fixes issue #8364
The old and new plots will be posted soon after circleCI build completes.