Skip to content

ENH add categorical_encoder param to SMOTENC #1000

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 16 additions & 1 deletion doc/whats_new/v0.11.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,5 +9,20 @@ Changelog
Compatibility
.............

- Maintenance release for be compatible with scikit-learn >= 1.3.0.
- Maintenance release for being compatible with scikit-learn >= 1.3.0.
:pr:`999` by :user:`Guillaume Lemaitre <glemaitre>`.

Enhancements
............

- :class:`~imblearn.over_sampling.SMOTENC` now accepts a parameter `categorical_encoder`
allowing to specify a :class:`~sklearn.preprocessing.OneHotEncoder` with custom
parameters.
:pr:`1000` by :user:`Guillaume Lemaitre <glemaitre>`.

Deprecation
...........

- The fitted attribute `ohe_` in :class:`~imblearn.over_sampling.SMOTENC` is deprecated
and will be removed in version 0.13. Use `categorical_encoder_` instead.
:pr:`1000` by :user:`Guillaume Lemaitre <glemaitre>`.
47 changes: 39 additions & 8 deletions imblearn/over_sampling/_smote/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

import numpy as np
from scipy import sparse
from sklearn.base import clone
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.utils import _safe_indexing, check_array, check_random_state
from sklearn.utils.sparsefuncs_fast import (
Expand Down Expand Up @@ -393,6 +394,11 @@ class SMOTENC(SMOTE):
- mask array of shape (n_features, ) and ``bool`` dtype for which
``True`` indicates the categorical features.

categorical_encoder : estimator, default=None
One-hot encoder used to encode the categorical features. If `None`, a
:class:`~sklearn.preprocessing.OneHotEncoder` is used with default parameters
apart from `handle_unknown` which is set to 'ignore'.

{sampling_strategy}

{random_state}
Expand Down Expand Up @@ -431,6 +437,13 @@ class SMOTENC(SMOTE):
ohe_ : :class:`~sklearn.preprocessing.OneHotEncoder`
The one-hot encoder used to encode the categorical features.

.. deprecated:: 0.11
`ohe_` is deprecated in 0.11 and will be removed in 0.13. Use
`categorical_encoder_` instead.

categorical_encoder_ : estimator
The encoder used to encode the categorical features.

categorical_features_ : ndarray of shape (n_cat_features,), dtype=np.int64
Indices of the categorical features.

Expand Down Expand Up @@ -514,12 +527,17 @@ class SMOTENC(SMOTE):
_parameter_constraints: dict = {
**SMOTE._parameter_constraints,
"categorical_features": ["array-like"],
"categorical_encoder": [
HasMethods(["fit_transform", "inverse_transform"]),
None,
],
}

def __init__(
self,
categorical_features,
*,
categorical_encoder=None,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
Expand All @@ -532,6 +550,7 @@ def __init__(
n_jobs=n_jobs,
)
self.categorical_features = categorical_features
self.categorical_encoder = categorical_encoder

def _check_X_y(self, X, y):
"""Overwrite the checking to let pass some string for categorical
Expand Down Expand Up @@ -603,17 +622,19 @@ def _fit_resample(self, X, y):
else:
dtype_ohe = np.float64

self.ohe_ = OneHotEncoder(handle_unknown="ignore", dtype=dtype_ohe)
if hasattr(self.ohe_, "sparse_output"):
# scikit-learn >= 1.2
self.ohe_.set_params(sparse_output=True)
if self.categorical_encoder is None:
self.categorical_encoder_ = OneHotEncoder(
handle_unknown="ignore", dtype=dtype_ohe
)
else:
self.ohe_.set_params(sparse=True)
self.categorical_encoder_ = clone(self.categorical_encoder)

# the input of the OneHotEncoder needs to be dense
X_ohe = self.ohe_.fit_transform(
X_ohe = self.categorical_encoder_.fit_transform(
X_categorical.toarray() if sparse.issparse(X_categorical) else X_categorical
)
if not sparse.issparse(X_ohe):
X_ohe = sparse.csr_matrix(X_ohe, dtype=dtype_ohe)

# we can replace the 1 entries of the categorical features with the
# median of the standard deviation. It will ensure that whenever
Expand All @@ -636,7 +657,7 @@ def _fit_resample(self, X, y):
# reverse the encoding of the categorical features
X_res_cat = X_resampled[:, self.continuous_features_.size :]
X_res_cat.data = np.ones_like(X_res_cat.data)
X_res_cat_dec = self.ohe_.inverse_transform(X_res_cat)
X_res_cat_dec = self.categorical_encoder_.inverse_transform(X_res_cat)

if sparse.issparse(X):
X_resampled = sparse.hstack(
Expand Down Expand Up @@ -695,7 +716,7 @@ def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps):
all_neighbors = nn_data[nn_num[rows]]

categories_size = [self.continuous_features_.size] + [
cat.size for cat in self.ohe_.categories_
cat.size for cat in self.categorical_encoder_.categories_
]

for start_idx, end_idx in zip(
Expand All @@ -714,6 +735,16 @@ def _generate_samples(self, X, nn_data, nn_num, rows, cols, steps):

return X_new

@property
def ohe_(self):
"""One-hot encoder used to encode the categorical features."""
warnings.warn(
"'ohe_' attribute has been deprecated in 0.11 and will be removed "
"in 0.13. Use 'categorical_encoder_' instead.",
FutureWarning,
)
return self.categorical_encoder_


@Substitution(
sampling_strategy=BaseOverSampler._sampling_strategy_docstring,
Expand Down
54 changes: 52 additions & 2 deletions imblearn/over_sampling/_smote/tests/test_smote_nc.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,11 +8,20 @@

import numpy as np
import pytest
import sklearn
from scipy import sparse
from sklearn.datasets import make_classification
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.fixes import parse_version

from imblearn.over_sampling import SMOTENC
from imblearn.utils.estimator_checks import (
_set_checking_parameters,
check_param_validation,
)

sklearn_version = parse_version(sklearn.__version__)


def data_heterogneous_ordered():
Expand Down Expand Up @@ -182,8 +191,7 @@ def test_smotenc_pandas():
smote = SMOTENC(categorical_features=categorical_features, random_state=0)
X_res_pd, y_res_pd = smote.fit_resample(X_pd, y)
X_res, y_res = smote.fit_resample(X, y)
# FIXME: we should use to_numpy with pandas >= 0.25
assert_array_equal(X_res_pd.values, X_res)
assert_array_equal(X_res_pd.to_numpy(), X_res)
assert_allclose(y_res_pd, y_res)


Expand Down Expand Up @@ -240,3 +248,45 @@ def test_smote_nc_with_null_median_std():
# check that the categorical feature is not random but correspond to the
# categories seen in the minority class samples
assert X_res[-1, -1] == "C"


def test_smotenc_categorical_encoder():
"""Check that we can pass our own categorical encoder."""

# TODO: only use `sparse_output` when sklearn >= 1.2
param = "sparse" if sklearn_version < parse_version("1.2") else "sparse_output"

X, y, categorical_features = data_heterogneous_unordered()
smote = SMOTENC(categorical_features=categorical_features, random_state=0)
smote.fit_resample(X, y)

assert getattr(smote.categorical_encoder_, param) is True

encoder = OneHotEncoder()
encoder.set_params(**{param: False})
smote.set_params(categorical_encoder=encoder).fit_resample(X, y)
assert smote.categorical_encoder is encoder
assert smote.categorical_encoder_ is not encoder
assert getattr(smote.categorical_encoder_, param) is False


# TODO(0.13): remove this test
def test_smotenc_deprecation_ohe_():
"""Check that we raise a deprecation warning when using `ohe_`."""
X, y, categorical_features = data_heterogneous_unordered()
smote = SMOTENC(categorical_features=categorical_features, random_state=0)
smote.fit_resample(X, y)

with pytest.warns(FutureWarning, match="'ohe_' attribute has been deprecated"):
smote.ohe_


def test_smotenc_param_validation():
"""Check that we validate the parameters correctly since this estimator requires
a specific parameter.
"""
categorical_features = [0]
smote = SMOTENC(categorical_features=categorical_features, random_state=0)
name = smote.__class__.__name__
_set_checking_parameters(smote)
check_param_validation(name, smote)