Skip to content

MAINT fix remaining failures with scikit-learn 1.2 #947

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions imblearn/metrics/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,3 +205,8 @@ def pairwise(self, X, Y=None):
distance_matrix(proba_feature_X, proba_feature_Y, p=self.k) ** self.r
)
return distance

def _more_tags(self):
return {
"requires_positive_X": True, # X should be encoded with OrdinalEncoder
}
11 changes: 10 additions & 1 deletion imblearn/tests/test_docstring_parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,20 @@
from sklearn.utils._testing import _get_func_name
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.estimator_checks import _enforce_estimator_tags_y
from sklearn.utils.estimator_checks import _enforce_estimator_tags_x

try:
from sklearn.utils.estimator_checks import _enforce_estimator_tags_x
except ImportError:
# scikit-learn >= 1.2
from sklearn.utils.estimator_checks import (
_enforce_estimator_tags_X as _enforce_estimator_tags_x,
)
from sklearn.utils.estimator_checks import _construct_instance
from sklearn.utils.deprecation import _is_deprecated

import imblearn
from imblearn.base import is_sampler
from imblearn.utils.estimator_checks import _set_checking_parameters
from imblearn.utils.testing import all_estimators


Expand Down Expand Up @@ -183,6 +191,7 @@ def test_fit_docstring_attributes(name, Estimator):
est = _construct_compose_pipeline_instance(Estimator)
else:
est = _construct_instance(Estimator)
_set_checking_parameters(est)

X, y = make_classification(
n_samples=20,
Expand Down
2 changes: 1 addition & 1 deletion imblearn/utils/estimator_checks.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def _set_checking_parameters(estimator):
if name == "ClusterCentroids":
estimator.set_params(
voting="soft",
estimator=KMeans(random_state=0, algorithm="full", n_init=1),
estimator=KMeans(random_state=0, algorithm="lloyd", n_init=1),
)
if name == "KMeansSMOTE":
estimator.set_params(kmeans_estimator=12)
Expand Down