Skip to content

Fixes light API for operators with two outputs #45

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOGS.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,11 @@
Change Logs
===========

0.1.3
+++++

* :pr:`45`: fixes light API for operators with two outputs

0.1.2
+++++

Expand Down
39 changes: 39 additions & 0 deletions _unittests/ut_light_api/test_light_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -402,6 +402,45 @@ def test_operator_bool(self):
got = ref.run(None, {"X": a, "Y": b})[0]
self.assertEqualArray(f(a, b), got)

def test_topk(self):
onx = (
start()
.vin("X", np.float32)
.vin("K", np.int64)
.bring("X", "K")
.TopK()
.rename("Values", "Indices")
.vout()
.to_onnx()
)
self.assertIsInstance(onx, ModelProto)
ref = ReferenceEvaluator(onx)
x = np.array([[0, 1, 2, 3], [9, 8, 7, 6]], dtype=np.float32)
k = np.array([2], dtype=np.int64)
got = ref.run(None, {"X": x, "K": k})
self.assertEqualArray(np.array([[3, 2], [9, 8]], dtype=np.float32), got[0])
self.assertEqualArray(np.array([[3, 2], [0, 1]], dtype=np.int64), got[1])

def test_topk_reverse(self):
onx = (
start()
.vin("X", np.float32)
.vin("K", np.int64)
.bring("X", "K")
.TopK(largest=0)
.rename("Values", "Indices")
.vout()
.to_onnx()
)
self.assertIsInstance(onx, ModelProto)
ref = ReferenceEvaluator(onx)
x = np.array([[0, 1, 2, 3], [9, 8, 7, 6]], dtype=np.float32)
k = np.array([2], dtype=np.int64)
got = ref.run(None, {"X": x, "K": k})
self.assertEqualArray(np.array([[0, 1], [6, 7]], dtype=np.float32), got[0])
self.assertEqualArray(np.array([[0, 1], [3, 2]], dtype=np.int64), got[1])


if __name__ == "__main__":
# TestLightApi().test_topk()
unittest.main(verbosity=2)
2 changes: 1 addition & 1 deletion onnx_array_api/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,5 @@
APIs to create ONNX Graphs.
"""

__version__ = "0.1.2"
__version__ = "0.1.3"
__author__ = "Xavier Dupré"
6 changes: 3 additions & 3 deletions onnx_array_api/light_api/_op_var.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def ArgMin(

def AveragePool(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
ceil_mode: int = 0,
count_include_pad: int = 0,
dilations: Optional[List[int]] = None,
Expand Down Expand Up @@ -68,7 +68,7 @@ def Cast(self, saturate: int = 1, to: int = 0) -> "Var":
def Celu(self, alpha: float = 1.0) -> "Var":
return self.make_node("Celu", self, alpha=alpha)

def DepthToSpace(self, blocksize: int = 0, mode: str = b"DCR") -> "Var":
def DepthToSpace(self, blocksize: int = 0, mode: str = "DCR") -> "Var":
return self.make_node("DepthToSpace", self, blocksize=blocksize, mode=mode)

def DynamicQuantizeLinear(
Expand Down Expand Up @@ -137,7 +137,7 @@ def LpNormalization(self, axis: int = -1, p: int = 2) -> "Var":

def LpPool(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
ceil_mode: int = 0,
dilations: Optional[List[int]] = None,
kernel_shape: Optional[List[int]] = None,
Expand Down
45 changes: 25 additions & 20 deletions onnx_array_api/light_api/_op_vars.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ class OpsVars:
Operators taking multiple inputs.
"""

def BitShift(self, direction: str = b"") -> "Var":
def BitShift(self, direction: str = "") -> "Var":
return self.make_node("BitShift", *self.vars_, direction=direction)

def CenterCropPad(self, axes: Optional[List[int]] = None) -> "Var":
Expand Down Expand Up @@ -42,7 +42,7 @@ def Concat(self, axis: int = 0) -> "Var":

def Conv(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
dilations: Optional[List[int]] = None,
group: int = 1,
kernel_shape: Optional[List[int]] = None,
Expand All @@ -66,7 +66,7 @@ def Conv(

def ConvInteger(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
dilations: Optional[List[int]] = None,
group: int = 1,
kernel_shape: Optional[List[int]] = None,
Expand All @@ -90,7 +90,7 @@ def ConvInteger(

def ConvTranspose(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
dilations: Optional[List[int]] = None,
group: int = 1,
kernel_shape: Optional[List[int]] = None,
Expand Down Expand Up @@ -155,7 +155,7 @@ def DeformConv(
def DequantizeLinear(self, axis: int = 1) -> "Var":
return self.make_node("DequantizeLinear", *self.vars_, axis=axis)

def Einsum(self, equation: str = b"") -> "Var":
def Einsum(self, equation: str = "") -> "Var":
return self.make_node("Einsum", *self.vars_, equation=equation)

def Gather(self, axis: int = 0) -> "Var":
Expand All @@ -174,8 +174,8 @@ def Gemm(
def GridSample(
self,
align_corners: int = 0,
mode: str = b"bilinear",
padding_mode: str = b"zeros",
mode: str = "bilinear",
padding_mode: str = "zeros",
) -> "Var":
return self.make_node(
"GridSample",
Expand Down Expand Up @@ -240,7 +240,7 @@ def Mod(self, fmod: int = 0) -> "Var":
return self.make_node("Mod", *self.vars_, fmod=fmod)

def NegativeLogLikelihoodLoss(
self, ignore_index: int = 0, reduction: str = b"mean"
self, ignore_index: int = 0, reduction: str = "mean"
) -> "Var":
return self.make_node(
"NegativeLogLikelihoodLoss",
Expand All @@ -257,12 +257,12 @@ def NonMaxSuppression(self, center_point_box: int = 0) -> "Var":
def OneHot(self, axis: int = -1) -> "Var":
return self.make_node("OneHot", *self.vars_, axis=axis)

def Pad(self, mode: str = b"constant") -> "Var":
def Pad(self, mode: str = "constant") -> "Var":
return self.make_node("Pad", *self.vars_, mode=mode)

def QLinearConv(
self,
auto_pad: str = b"NOTSET",
auto_pad: str = "NOTSET",
dilations: Optional[List[int]] = None,
group: int = 1,
kernel_shape: Optional[List[int]] = None,
Expand Down Expand Up @@ -431,13 +431,13 @@ def Resize(
self,
antialias: int = 0,
axes: Optional[List[int]] = None,
coordinate_transformation_mode: str = b"half_pixel",
coordinate_transformation_mode: str = "half_pixel",
cubic_coeff_a: float = -0.75,
exclude_outside: int = 0,
extrapolation_value: float = 0.0,
keep_aspect_ratio_policy: str = b"stretch",
mode: str = b"nearest",
nearest_mode: str = b"round_prefer_floor",
keep_aspect_ratio_policy: str = "stretch",
mode: str = "nearest",
nearest_mode: str = "round_prefer_floor",
) -> "Var":
axes = axes or []
return self.make_node(
Expand All @@ -456,8 +456,8 @@ def Resize(

def RoiAlign(
self,
coordinate_transformation_mode: str = b"half_pixel",
mode: str = b"avg",
coordinate_transformation_mode: str = "half_pixel",
mode: str = "avg",
output_height: int = 1,
output_width: int = 1,
sampling_ratio: int = 0,
Expand All @@ -480,12 +480,12 @@ def STFT(self, onesided: int = 1) -> "Var":
def Scatter(self, axis: int = 0) -> "Var":
return self.make_node("Scatter", *self.vars_, axis=axis)

def ScatterElements(self, axis: int = 0, reduction: str = b"none") -> "Var":
def ScatterElements(self, axis: int = 0, reduction: str = "none") -> "Var":
return self.make_node(
"ScatterElements", *self.vars_, axis=axis, reduction=reduction
)

def ScatterND(self, reduction: str = b"none") -> "Var":
def ScatterND(self, reduction: str = "none") -> "Var":
return self.make_node("ScatterND", *self.vars_, reduction=reduction)

def Slice(
Expand All @@ -498,13 +498,18 @@ def Slice(

def TopK(self, axis: int = -1, largest: int = 1, sorted: int = 1) -> "Vars":
return self.make_node(
"TopK", *self.vars_, axis=axis, largest=largest, sorted=sorted
"TopK",
*self.vars_,
axis=axis,
largest=largest,
sorted=sorted,
n_outputs=2,
)

def Trilu(self, upper: int = 1) -> "Var":
return self.make_node("Trilu", *self.vars_, upper=upper)

def Upsample(self, mode: str = b"nearest") -> "Var":
def Upsample(self, mode: str = "nearest") -> "Var":
return self.make_node("Upsample", *self.vars_, mode=mode)

def Where(
Expand Down
2 changes: 1 addition & 1 deletion onnx_array_api/light_api/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,8 @@ class OnnxGraph:
This API is meant to be light and allows the description of a graph.

:param opset: main opset version
:param opsets: other opsets as a dictionary
:param is_function: a :class:`onnx.ModelProto` or a :class:`onnx.FunctionProto`
:param opsets: others opsets as a dictionary
"""

def __init__(
Expand Down
Loading