Skip to content

Add an export to convert an onnx graph into light API code #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOGS.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Change Logs
0.1.3
+++++

* :pr:`46`: adds an export to convert an onnx graph into light API code
* :pr:`45`: fixes light API for operators with two outputs

0.1.2
Expand Down
2 changes: 1 addition & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -141,4 +141,4 @@ The euclidean distance looks like the following:
The library is released on
`pypi/onnx-array-api <https://pypi.org/project/onnx-array-api/>`_
and its documentation is published at
`(Numpy) Array API for ONNX <https://sdpython.github.io/doc/onnx-array-api/dev/>`_.
`APIs to create ONNX Graphs <https://sdpython.github.io/doc/onnx-array-api/dev/>`_.
44 changes: 39 additions & 5 deletions _doc/api/light_api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,33 +2,67 @@
onnx_array_api.light_api
========================


Main API
========

start
=====
+++++

.. autofunction:: onnx_array_api.light_api.start

translate
+++++++++

.. autofunction:: onnx_array_api.light_api.translate

Classes for the Light API
=========================

OnnxGraph
=========
+++++++++

.. autoclass:: onnx_array_api.light_api.OnnxGraph
:members:

BaseVar
=======
+++++++

.. autoclass:: onnx_array_api.light_api.var.BaseVar
:members:

Var
===
+++

.. autoclass:: onnx_array_api.light_api.Var
:members:
:inherited-members:

Vars
====
++++

.. autoclass:: onnx_array_api.light_api.Vars
:members:
:inherited-members:

Classes for the Translater
==========================

Emitter
+++++++

.. autoclass:: onnx_array_api.light_api.translate.Emitter
:members:

EventType
+++++++++

.. autoclass:: onnx_array_api.light_api.translate.EventType
:members:

Translater
++++++++++

.. autoclass:: onnx_array_api.light_api.translate.Translater
:members:

12 changes: 10 additions & 2 deletions _doc/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@ The objective is to speed up the implementation of converter libraries.
CHANGELOGS
license

**Numpy API**
Numpy API
+++++++++

Sources available on
`github/onnx-array-api <https://github.com/sdpython/onnx-array-api>`_.
Expand Down Expand Up @@ -109,7 +110,8 @@ Sources available on
res = jitted_myloss(x, y)
print(to_dot(jitted_myloss.get_onnx()))

**Light API**
Light API
+++++++++

.. runpython::
:showcode:
Expand All @@ -135,3 +137,9 @@ Sources available on
)

print(onnx_simple_text_plot(model))


Older versions
++++++++++++++

* `0.1.2 <../v0.1.2/index.html>`_
131 changes: 131 additions & 0 deletions _unittests/ut_light_api/test_translate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import unittest
from textwrap import dedent
import numpy as np
from onnx import ModelProto, TensorProto
from onnx.defs import onnx_opset_version
from onnx.reference import ReferenceEvaluator
from onnx_array_api.ext_test_case import ExtTestCase
from onnx_array_api.light_api import start, translate

OPSET_API = min(19, onnx_opset_version() - 1)


class TestTranslate(ExtTestCase):
def test_exp(self):
onx = start(opset=19).vin("X").Exp().rename("Y").vout().to_onnx()
self.assertIsInstance(onx, ModelProto)
self.assertIn("Exp", str(onx))
ref = ReferenceEvaluator(onx)
a = np.arange(10).astype(np.float32)
got = ref.run(None, {"X": a})[0]
self.assertEqualArray(np.exp(a), got)

code = translate(onx)
expected = dedent(
"""
(
start(opset=19)
.vin('X', elem_type=TensorProto.FLOAT)
.bring('X')
.Exp()
.rename('Y')
.bring('Y')
.vout(elem_type=TensorProto.FLOAT)
.to_onnx()
)"""
).strip("\n")
self.assertEqual(expected, code)

onx2 = (
start(opset=19)
.vin("X", elem_type=TensorProto.FLOAT)
.bring("X")
.Exp()
.rename("Y")
.bring("Y")
.vout(elem_type=TensorProto.FLOAT)
.to_onnx()
)
ref = ReferenceEvaluator(onx2)
a = np.arange(10).astype(np.float32)
got = ref.run(None, {"X": a})[0]
self.assertEqualArray(np.exp(a), got)

def test_transpose(self):
onx = (
start(opset=19)
.vin("X")
.reshape((-1, 1))
.Transpose(perm=[1, 0])
.rename("Y")
.vout()
.to_onnx()
)
self.assertIsInstance(onx, ModelProto)
self.assertIn("Transpose", str(onx))
ref = ReferenceEvaluator(onx)
a = np.arange(10).astype(np.float32)
got = ref.run(None, {"X": a})[0]
self.assertEqualArray(a.reshape((-1, 1)).T, got)

code = translate(onx)
expected = dedent(
"""
(
start(opset=19)
.vin('X', elem_type=TensorProto.FLOAT)
.bring('X', 'r')
.Reshape()
.rename('r0_0')
.bring('r0_0')
.Transpose(perm=[1, 0])
.rename('Y')
.bring('Y')
.vout(elem_type=TensorProto.FLOAT)
.to_onnx()
)"""
).strip("\n")
self.assertEqual(expected, code)

def test_topk_reverse(self):
onx = (
start(opset=19)
.vin("X", np.float32)
.vin("K", np.int64)
.bring("X", "K")
.TopK(largest=0)
.rename("Values", "Indices")
.vout()
.to_onnx()
)
self.assertIsInstance(onx, ModelProto)
ref = ReferenceEvaluator(onx)
x = np.array([[0, 1, 2, 3], [9, 8, 7, 6]], dtype=np.float32)
k = np.array([2], dtype=np.int64)
got = ref.run(None, {"X": x, "K": k})
self.assertEqualArray(np.array([[0, 1], [6, 7]], dtype=np.float32), got[0])
self.assertEqualArray(np.array([[0, 1], [3, 2]], dtype=np.int64), got[1])

code = translate(onx)
expected = dedent(
"""
(
start(opset=19)
.vin('X', elem_type=TensorProto.FLOAT)
.vin('K', elem_type=TensorProto.INT64)
.bring('X', 'K')
.TopK(axis=-1, largest=0, sorted=1)
.rename('Values', 'Indices')
.bring('Values')
.vout(elem_type=TensorProto.FLOAT)
.bring('Indices')
.vout(elem_type=TensorProto.FLOAT)
.to_onnx()
)"""
).strip("\n")
self.assertEqual(expected, code)


if __name__ == "__main__":
# TestLightApi().test_topk()
unittest.main(verbosity=2)
44 changes: 43 additions & 1 deletion onnx_array_api/light_api/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
from typing import Dict, Optional
from onnx import ModelProto
from .model import OnnxGraph
from .translate import Translater
from .var import Var, Vars


Expand Down Expand Up @@ -34,8 +36,48 @@ def start(
from onnx_array_api.light_api import start

onx = (
start().vin("X").vin("Y").bring("X", "Y").Add().rename("Z").vout().to_onnx()
start()
.vin("X")
.vin("Y")
.bring("X", "Y")
.Add()
.rename("Z")
.vout()
.to_onnx()
)
print(onx)
"""
return OnnxGraph(opset=opset, opsets=opsets, is_function=is_function)


def translate(proto: ModelProto, single_line=False) -> str:
"""
Translates an ONNX proto into a code using :ref:`l-light-api`
to describe the ONNX graph.

:param proto: model to translate
:param single_line: as a single line or not
:return: code

.. runpython::
:showcode:

from onnx_array_api.light_api import start, translate

onx = (
start()
.vin("X")
.reshape((-1, 1))
.Transpose(perm=[1, 0])
.rename("Y")
.vout()
.to_onnx()
)
code = translate(onx)
print(code)
"""
tr = Translater(proto)
rows = tr.export()
if single_line:
return ".".join(rows)
return "".join(["(\n ", "\n .".join(rows), "\n)"])
2 changes: 1 addition & 1 deletion onnx_array_api/light_api/annotations.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
ELEMENT_TYPE_NAME = {
getattr(TensorProto, k): k
for k in dir(TensorProto)
if isinstance(getattr(TensorProto, k), int)
if isinstance(getattr(TensorProto, k), int) and "_" not in k
}

_type_numpy = {
Expand Down
Loading