Skip to content

feat: add C ndarray interface and refactor implementation for stats/base/dmeanvarpn #5030

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 9 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
166 changes: 141 additions & 25 deletions lib/node_modules/@stdlib/stats/base/dmeanvarpn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,21 +122,19 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **strideX**: index increment for `x`.
- **strideX**: stride length for `x`.
- **out**: output [`Float64Array`][@stdlib/array/float64] for storing results.
- **strideOut**: index increment for `out`.
- **strideOut**: stride length for `out`.

The `N` and `stride` parameters determine which elements are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var out = new Float64Array( 2 );
var N = floor( x.length / 2 );

var v = dmeanvarpn( N, 1, x, 2, out, 1 );
var v = dmeanvarpn( 4, 1, x, 2, out, 1 );
// returns <Float64Array>[ 1.25, 6.25 ]
```

Expand All @@ -146,17 +144,14 @@ Note that indexing is relative to the first index. To introduce an offset, use [

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var out0 = new Float64Array( 4 );
var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

var N = floor( x0.length / 2 );

var v = dmeanvarpn( N, 1, x1, 2, out1, 1 );
var v = dmeanvarpn( 4, 1, x1, 2, out1, 1 );
// returns <Float64Array>[ 1.25, 6.25 ]
```

Expand All @@ -179,17 +174,15 @@ The function has the following additional parameters:
- **offsetX**: starting index for `x`.
- **offsetOut**: starting index for `out`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameters support indexing semantics based on a starting index. For example, to calculate the [mean][arithmetic-mean] and [variance][variance] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on a starting index. For example, to calculate the [mean][arithmetic-mean] and [variance][variance] for every other element in `x` starting from the second element

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var out = new Float64Array( 4 );
var N = floor( x.length / 2 );

var v = dmeanvarpn.ndarray( N, 1, x, 2, 1, out, 2, 1 );
var v = dmeanvarpn.ndarray( 4, 1, x, 2, 1, out, 2, 1 );
// returns <Float64Array>[ 0.0, 1.25, 0.0, 6.25 ]
```

Expand All @@ -215,22 +208,16 @@ var v = dmeanvarpn.ndarray( N, 1, x, 2, 1, out, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var dmeanvarpn = require( '@stdlib/stats/base/dmeanvarpn' );

var out;
var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );

out = new Float64Array( 2 );
var out = new Float64Array( 2 );
dmeanvarpn( x.length, 1, x, 1, out, 1 );
console.log( out );
```
Expand All @@ -239,6 +226,135 @@ console.log( out );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dmeanvarpn.h"
```

#### stdlib_strided_dmeanvarpn( N, correction, \*X, strideX, \*Out, strideOut )

Computes the [mean][arithmetic-mean] and [variance][variance] of a double-precision floating-point strided array using a two-pass algorithm.

```c
const double x[] = { 1.0, -2.0, 2.0 };
double out[] = { 0.0, 0.0 }

stdlib_strided_dmeanvarpn( 3, 1.0, x, 1, out, 1 );
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **Out**: `[out] double*` output array.
- **strideOut**: `[in] CBLAS_INT` stride length for `Out`.

```c
double stdlib_strided_dmeanvarpn( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, double *Out, const CBLAS_INT strideOut );
```

#### stdlib_strided_dmeanvarpn( N, correction, \*X, strideX, offsetX, \*Out, strideOut, offsetOut )

Computes the [mean][arithmetic-mean] and [variance][variance] of a double-precision floating-point strided array using a two-pass algorithm and alternative indexing semantics.

```c
const double x[] = { 1.0, -2.0, 2.0 };
double out[] = { 0.0, 0.0 }

stdlib_strided_dmeanvarpn_ndarray( 3, 1.0, x, 1, 0, out, 1, 0 );
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
- **Out**: `[out] double*` output array.
- **strideOut**: `[in] CBLAS_INT` stride length for `Out`.
- **offsetOut**: `[in] CBLAS_INT` starting index for `Out`.

```c
double stdlib_strided_dmeanvarpn_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, double *Out, const CBLAS_INT strideOut, const CBLAS_INT offsetOut );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dmeanvarpn.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

// Create an output array:
double out[] = { 0.0, 0.0 };

// Specify the number of elements:
const int N = 4;

// Specify the stride lengths:
const int strideX = 2;
const int strideOut = 1;

// Compute the mean and variance:
stdlib_strided_dmeanvarpn( N, 1.0, x, strideX, out, strideOut );

// Print the result:
printf( "sample mean: %lf\n", out[ 0 ] );
printf( "sample variance: %lf\n", out[ 1 ] );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

* * *

<section class="references">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,21 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dmeanvarpn = require( './../lib/dmeanvarpn.js' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
Expand All @@ -39,15 +46,8 @@ var dmeanvarpn = require( './../lib/dmeanvarpn.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var out;
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
out = new Float64Array( 2 );
var out = new Float64Array( 2 );
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
Expand All @@ -36,6 +36,9 @@ var dmeanvarpn = tryRequire( resolve( __dirname, './../lib/dmeanvarpn.native.js'
var opts = {
'skip': ( dmeanvarpn instanceof Error )
};
var options = {
'dtype': 'float64'
};


// FUNCTIONS //
Expand All @@ -48,15 +51,8 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var out;
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
out = new Float64Array( 2 );
var out = new Float64Array( 2 );
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,21 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dmeanvarpn = require( './../lib/ndarray.js' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
Expand All @@ -39,15 +46,8 @@ var dmeanvarpn = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var out;
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
out = new Float64Array( 2 );
var out = new Float64Array( 2 );
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
Expand All @@ -36,6 +36,9 @@ var dmeanvarpn = tryRequire( resolve( __dirname, './../lib/ndarray.native.js' )
var opts = {
'skip': ( dmeanvarpn instanceof Error )
};
var options = {
'dtype': 'float64'
};


// FUNCTIONS //
Expand All @@ -48,15 +51,8 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var out;
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
out = new Float64Array( 2 );
var out = new Float64Array( 2 );
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Loading