Skip to content

feat: add stats/incr/nanewstdev #6099

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
171 changes: 171 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanewstdev/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# incrnanewstdev

> Compute an [exponentially weighted standard deviation][moving-average] incrementally, ignoring `NaN` values.

<section class="intro">

An [exponentially weighted variance][moving-average] can be defined recursively as

<!-- <equation class="equation" label="eq:exponentially_weighted_variance" align="center" raw="S_n = \begin{cases} 0 & \textrm{if}\ n = 0 \\ (1 - \alpha) (S_{n-1} + \alpha(x_n - \mu_{n-1})^2) & \textrm{if}\ n > 0 \end{cases}" alt="Recursive definition for computing an exponentially weighted variance."> -->

```math
S_n = \begin{cases} 0 & \textrm{if}\ n = 0 \\ (1 - \alpha) (S_{n-1} + \alpha(x_n - \mu_{n-1})^2) & \textrm{if}\ n > 0 \end{cases}
```

<!-- <div class="equation" align="center" data-raw-text="S_n = \begin{cases} 0 &amp; \textrm{if}\ n = 0 \\ (1 - \alpha) (S_{n-1} + \alpha(x_n - \mu_{n-1})^2) &amp; \textrm{if}\ n &gt; 0 \end{cases}" data-equation="eq:exponentially_weighted_variance">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@b6bfc5be3086b5ddfeed2311afee7c9201fbdcbb/lib/node_modules/@stdlib/stats/incr/nanewstdev/docs/img/equation_exponentially_weighted_variance.svg" alt="Recursive definition for computing an exponentially weighted variance.">
<br>
</div> -->

<!-- </equation> -->

where `μ` is the [exponentially weighted mean][@stdlib/stats/incr/ewmean]. The [exponentially weighted standard deviation][moving-average] is the square root of the [exponentially weighted variance][moving-average].

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var incrnanewstdev = require( '@stdlib/stats/incr/nanewstdev' );
```

#### incrnanewstdev( alpha )

Returns an accumulator `function` which incrementally computes an [exponentially weighted standard deviation][moving-average], where `alpha` is a smoothing factor between `0` and `1`, ignoring `NaN` values.

```javascript
var accumulator = incrnanewstdev( 0.5 );
```

#### accumulator( \[x] )

If provided an input value `x`, the accumulator function returns an updated standard deviation. If not provided an input value `x`, the accumulator function returns the current standard deviation.

```javascript
var accumulator = incrnanewstdev( 0.5 );

var s = accumulator();
// returns null

s = accumulator( 2.0 );
// returns 0.0

s = accumulator( 1.0 );
// returns 0.5

s = accumulator( NaN );
// returns 0.5

s = accumulator( 3.0 );
// returns ~0.83

s = accumulator();
// returns ~0.83
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- Input values are **not** type checked.If non-numeric inputs are possible, but you are advised to type check and handle accordingly **before** passing the value to the accumulator function.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var incrnanewstdev = require( '@stdlib/stats/incr/nanewstdev' );

var accumulator;
var s;
var v;
var i;

// Initialize an accumulator:
accumulator = incrnanewstdev( 0.5 );

// For each simulated datum, update the exponentially weighted standard deviation...
for ( i = 0; i < 100; i++ ) {
v = (randu() < 0.1) ? NaN : randu() * 100.0;
s = accumulator( v );
}
console.log( accumulator() );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

* * *

## See Also

- <span class="package-name">[`@stdlib/stats/incr/ewvariance`][@stdlib/stats/incr/ewvariance]</span><span class="delimiter">: </span><span class="description">compute an exponentially weighted variance incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/mstdev`][@stdlib/stats/incr/mstdev]</span><span class="delimiter">: </span><span class="description">compute a moving corrected sample standard deviation incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/stdev`][@stdlib/stats/incr/stdev]</span><span class="delimiter">: </span><span class="description">compute a corrected sample standard deviation incrementally.</span>

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[moving-average]: https://en.wikipedia.org/wiki/Moving_average

[@stdlib/stats/incr/ewmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/ewmean

<!-- <related-links> -->

[@stdlib/stats/incr/ewvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/ewvariance

[@stdlib/stats/incr/mstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/mstdev

[@stdlib/stats/incr/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/stdev

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var pkg = require( './../package.json' ).name;
var incrnanewstdev = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var f;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
f = incrnanewstdev( 0.5 );
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
}
b.toc();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanewstdev( 0.5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( i );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
37 changes: 37 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanewstdev/docs/repl.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@

{{alias}}( α )
Returns an accumulator function which incrementally computes an
exponentially weighted standard deviation, where α is a smoothing factor
between 0 and 1, ignoring `NaN` values.

If provided a value, the accumulator function returns an updated standard
deviation. If not provided a value, the accumulator function returns the
current standard deviation.

Parameters
----------
α: number
Smoothing factor (value between 0 and 1).

Returns
-------
acc: Function
Accumulator function.

Examples
--------
> var accumulator = {{alias}}( 0.5 );
> var s = accumulator()
null
> s = accumulator( 2.0 )
0.0
> s = accumulator( NaN )
0.0
> s = accumulator( -5.0 )
3.5
> s = accumulator()
3.5

See Also
--------

Loading