Skip to content

feat: add stats/incr/nankurtosis #6109

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 217 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nankurtosis/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# incrnankurtosis

> Compute a [corrected sample excess kurtosis][sample-excess-kurtosis] incrementally, ignoring `NaN` values.

<section class="intro">

The [kurtosis][sample-excess-kurtosis] for a random variable `X` is defined as

<!-- <equation class="equation" label="eq:kurtosis" align="center" raw="\operatorname{Kurtosis}[X] = \mathrm{E}\biggl[ \biggl( \frac{X - \mu}{\sigma} \biggr)^4 \biggr]" alt="Equation for the kurtosis."> -->

```math
\mathop{\mathrm{Kurtosis}}[X] = \mathrm{E}\biggl[ \biggl( \frac{X - \mu}{\sigma} \biggr)^4 \biggr]
```

<!-- <div class="equation" align="center" data-raw-text="\operatorname{Kurtosis}[X] = \mathrm{E}\biggl[ \biggl( \frac{X - \mu}{\sigma} \biggr)^4 \biggr]" data-equation="eq:kurtosis">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/nankurtosis/docs/img/equation_kurtosis.svg" alt="Equation for the kurtosis.">
<br>
</div> -->

<!-- </equation> -->

Using a univariate normal distribution as the standard of comparison, the [excess kurtosis][sample-excess-kurtosis] is the kurtosis minus `3`.

For a sample of `n` values, the [sample excess kurtosis][sample-excess-kurtosis] is

<!-- <equation class="equation" label="eq:sample_excess_kurtosis" align="center" raw="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" alt="Equation for the sample excess kurtosis."> -->

```math
g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}
```

<!-- <div class="equation" align="center" data-raw-text="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" data-equation="eq:sample_excess_kurtosis">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/nankurtosis/docs/img/equation_sample_excess_kurtosis.svg" alt="Equation for the sample excess kurtosis.">
<br>
</div> -->

<!-- </equation> -->

where `m_4` is the sample fourth central moment and `m_2` is the sample second central moment.

The previous equation is, however, a biased estimator of the population excess kurtosis. An alternative estimator which is unbiased under normality is

<!-- <equation class="equation" label="eq:corrected_sample_excess_kurtosis" align="center" raw="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" alt="Equation for the corrected sample excess kurtosis."> -->

```math
G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}
```

<!-- <div class="equation" align="center" data-raw-text="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" data-equation="eq:corrected_sample_excess_kurtosis">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/nankurtosis/docs/img/equation_corrected_sample_excess_kurtosis.svg" alt="Equation for the corrected sample excess kurtosis.">
<br>
</div> -->

<!-- </equation> -->

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var incrnankurtosis = require( '@stdlib/stats/incr/nankurtosis' );
```

#### incrnankurtosis()

Returns an accumulator function which incrementally computes a [corrected sample excess kurtosis][sample-excess-kurtosis], ignoring `NaN` values.

```javascript
var accumulator = incrnankurtosis();
```

#### accumulator( \[x] )

If provided an input value `x`, the accumulator function returns an updated [corrected sample excess kurtosis][sample-excess-kurtosis]. If not provided an input value `x`, the accumulator function returns the current [corrected sample excess kurtosis][sample-excess-kurtosis].

```javascript
var accumulator = incrnankurtosis();

var kurtosis = accumulator( 2.0 );
// returns null

kurtosis = accumulator( 2.0 );
// returns null

kurtosis = accumulator( -4.0 );
// returns null

kurtosis = accumulator( -4.0 );
// returns -6.0

kurtosis = accumulator( NaN );
// returns -6.0
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- Input values are type checked. If non-numaric input are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var incrnankurtosis = require( '@stdlib/stats/incr/nankurtosis' );

var accumulator;
var kurtosis;
var v;
var i;

// Initialize an accumulator:
accumulator = incrnankurtosis();

// For each simulated datum, update the corrected sample excess kurtosis...
for ( i = 0; i < 100; i++ ) {
v = (randu() < 0.2 ) ? NaN : randu() * 100.0; // 20% chance of NaN
kurtosis = accumulator( v );
}
console.log( accumulator() );
```

</section>

<!-- /.examples -->

* * *

<section class="references">

## References

- Joanes, D. N., and C. A. Gill. 1998. "Comparing measures of sample skewness and kurtosis." _Journal of the Royal Statistical Society: Series D (The Statistician)_ 47 (1). Blackwell Publishers Ltd: 183–89. doi:[10.1111/1467-9884.00122][@joanes:1998].

</section>

<!-- /.references -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

* * *

## See Also

- <span class="package-name">[`@stdlib/stats/incr/mean`][@stdlib/stats/incr/mean]</span><span class="delimiter">: </span><span class="description">compute an arithmetic mean incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/skewness`][@stdlib/stats/incr/skewness]</span><span class="delimiter">: </span><span class="description">compute a corrected sample skewness incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/stdev`][@stdlib/stats/incr/stdev]</span><span class="delimiter">: </span><span class="description">compute a corrected sample standard deviation incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/summary`][@stdlib/stats/incr/summary]</span><span class="delimiter">: </span><span class="description">compute a statistical summary incrementally.</span>
- <span class="package-name">[`@stdlib/stats/incr/variance`][@stdlib/stats/incr/variance]</span><span class="delimiter">: </span><span class="description">compute an unbiased sample variance incrementally.</span>

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[sample-excess-kurtosis]: https://en.wikipedia.org/wiki/Kurtosis

[@joanes:1998]: http://onlinelibrary.wiley.com/doi/10.1111/1467-9884.00122/

<!-- <related-links> -->

[@stdlib/stats/incr/mean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/mean

[@stdlib/stats/incr/skewness]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/skewness

[@stdlib/stats/incr/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/stdev

[@stdlib/stats/incr/summary]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/summary

[@stdlib/stats/incr/variance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr/variance

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var pkg = require( './../package.json' ).name;
var incrnankurtosis = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var f;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
f = incrnankurtosis();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
}
b.toc();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnankurtosis();

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( i );
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( v !== v ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading
Loading