Skip to content

docs: update namespace table of contents #6876

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 30, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
  • Loading branch information
Planeshifter authored and stdlib-bot committed Apr 30, 2025
commit dd4709779e43f10bb20e441b566d3ae5e796560e
8 changes: 4 additions & 4 deletions lib/node_modules/@stdlib/stats/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,9 +71,9 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
- <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
- <span class="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
- <span class="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
- <span class="signature">[`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
- <span class="signature">[`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
- <span class="signature">[`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
- <span class="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
- <span class="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
- <span class="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function.</span>
Expand Down Expand Up @@ -119,15 +119,15 @@ The namespace contains the following statistical functions:
- <span class="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values.</span>
- <span class="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
- <span class="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
- <span class="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
- <span class="signature">[`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
- <span class="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`ndarray`][@stdlib/stats/base/ndarray]</span><span class="delimiter">: </span><span class="description">base ndarray statistical functions.</span>
- <span class="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function.</span>
- <span class="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array.</span>
- <span class="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
- <span class="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
- <span class="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
- <span class="signature">[`smean( N, x, strideX )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
- <span class="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
Expand Down