Welcome to DSA-Python-InDepth! π This repository provides a comprehensive deep dive into Data Structures and Algorithms (DSA) using Python, covering fundamental concepts, advanced techniques, and optimized implementations.
This repo is designed to help programmers, students, and coding enthusiasts master DSA in Python with:
- Detailed Explanations of each data structure and algorithm
- Python Implementations with optimized code
- Time & Space Complexity Analysis
- Practice Problems and solutions
- Best Practices & Interview Tips
π The repository is organized as follows:
π¦ dsa-python-indepth
βββ π data_structures
β βββ arrays.py
β βββ linked_list.py
β βββ stack.py
β βββ queue.py
β βββ hash_table.py
β βββ binary_tree.py
β βββ graph.py
β βββ heap.py
β
βββ π algorithms
β βββ sorting
β β βββ bubble_sort.py
β β βββ merge_sort.py
β β βββ quick_sort.py
β β βββ heap_sort.py
β βββ searching
β β βββ linear_search.py
β β βββ binary_search.py
β βββ recursion
β β βββ fibonacci.py
β β βββ factorial.py
β βββ dynamic_programming
β β βββ knapsack.py
β β βββ longest_common_subsequence.py
β βββ graph_algorithms
β β βββ dijkstra.py
β β βββ bfs.py
β β βββ dfs.py
β βββ greedy
β β βββ job_scheduling.py
β βββ backtracking
β βββ n_queens.py
β βββ sudoku_solver.py
β
βββ π practice_problems
β βββ leetcode
β βββ hackerrank
β βββ codeforces
β
βββ README.md
βββ CONTRIBUTING.md
- Arrays & Strings
- Linked Lists (Singly & Doubly)
- Stacks & Queues
- Hash Tables
- Trees (Binary, BST, AVL, Trie, etc.)
- Graphs (Adjacency List, Adjacency Matrix)
- Heaps (Min Heap, Max Heap)
- Sorting (Bubble, Merge, Quick, Heap Sort, etc.)
- Searching (Linear, Binary Search, etc.)
- Recursion & Backtracking
- Greedy Algorithms
- Dynamic Programming (DP)
- Graph Algorithms (DFS, BFS, Dijkstra, Floyd-Warshall, etc.)
- Divide & Conquer Techniques
- Clone the repository
git clone https://github.com/your-username/dsa-python-indepth.git cd dsa-python-indepth
- Explore different data structures and algorithms in the respective folders.
- Run Python scripts to test implementations.
- Solve practice problems and improve problem-solving skills.
We welcome contributions! Feel free to:
- Fix bugs or optimize existing code.
- Add new algorithms or data structures.
- Solve and contribute practice problems.
- Improve documentation.
π Check the CONTRIBUTING.md file for guidelines.
If you find this repository helpful, give it a β and follow for updates!
π§ Feel free to reach out via GitHub Issues for questions and suggestions.
Happy Coding! π