|
1 | 1 | # 6. Classifier
|
2 | 2 |
|
3 |
| - |
4 |
| - |
5 |
| -<figure><img src="../.gitbook/assets/image (153).png" alt="" width="211"><figcaption></figcaption></figure> |
| 3 | +<figure><img src="../.gitbook/assets/image (341).png" alt="" width="512"><figcaption></figcaption></figure> |
6 | 4 |
|
7 | 5 | 1. Click on the _**Classifier**_ under the _**Machine Learning**_ category.
|
8 | 6 |
|
9 |
| - |
10 |
| - |
11 |
| -<figure><img src="../.gitbook/assets/image (154).png" alt="" width="563"><figcaption></figcaption></figure> |
| 7 | +<figure><img src="../.gitbook/assets/image (342).png" alt="" width="563"><figcaption></figcaption></figure> |
12 | 8 |
|
13 | 9 | 2. _**Model Type**_: Select the Model Type of the classifier you want to use:
|
14 | 10 | * [Logistic Regression](6.-classifier.md#logistic-regression)
|
|
32 | 28 |
|
33 | 29 | ### Logistic Regression
|
34 | 30 |
|
35 |
| - |
36 |
| - |
37 |
| -<figure><img src="../.gitbook/assets/image (155).png" alt="" width="563"><figcaption></figcaption></figure> |
| 31 | +<figure><img src="../.gitbook/assets/image (343).png" alt="" width="563"><figcaption></figcaption></figure> |
38 | 32 |
|
39 | 33 | 1. _**Penalty**_: Specify the regularization method for the model. (l2 / l1 / elasticnet / none)
|
40 | 34 | 2. _**C**_: Adjust the regularization strength.
|
|
46 | 40 |
|
47 | 41 | ### SupportVectorMachine Classifier
|
48 | 42 |
|
49 |
| - |
50 |
| - |
51 |
| -<figure><img src="../.gitbook/assets/image (156).png" alt="" width="563"><figcaption></figcaption></figure> |
| 43 | +<figure><img src="../.gitbook/assets/image (344).png" alt=""><figcaption></figcaption></figure> |
52 | 44 |
|
53 | 45 | 1. _**C**_: C indicates the freedom of the model's regularization. A higher C value makes the model more complex to fit the training data.
|
54 | 46 | 2. _**Kernel**_: A function that maps data into higher dimensions. You can control the complexity of the model by selecting the kernel type.
|
55 |
| - * _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model. |
56 |
| - * _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely. |
57 |
| - * _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely. |
58 |
| -3. _**Random State**_: Set the seed value for the random number generator. |
| 47 | +3. _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model. |
| 48 | +4. _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely. |
| 49 | +5. _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely. |
| 50 | +6. _**Random State**_: Set the seed value for the random number generator. |
59 | 51 |
|
60 | 52 |
|
61 | 53 |
|
62 | 54 | ***
|
63 | 55 |
|
64 | 56 | ### DecisionTree Classifier
|
65 | 57 |
|
66 |
| - |
67 |
| - |
68 |
| -<figure><img src="../.gitbook/assets/image (157).png" alt="" width="563"><figcaption></figcaption></figure> |
| 58 | +<figure><img src="../.gitbook/assets/image (345).png" alt="" width="563"><figcaption></figcaption></figure> |
69 | 59 |
|
70 | 60 | 1. _**Criterion**_: Specify the metric used to select the node split. (squared\_error / friedman\_mse / absolute\_error / Poisson)
|
71 | 61 | 2. _**Max Depth**_: Specify the maximum depth of the trees.
|
|
78 | 68 |
|
79 | 69 | ### RandomForest Classifier
|
80 | 70 |
|
81 |
| - |
82 |
| - |
83 |
| -<figure><img src="../.gitbook/assets/image (158).png" alt="" width="563"><figcaption></figcaption></figure> |
| 71 | +<figure><img src="../.gitbook/assets/image (346).png" alt="" width="563"><figcaption></figcaption></figure> |
84 | 72 |
|
85 | 73 | 1. _**N estimators**_: Specify the number of trees to include in the ensemble.
|
86 | 74 | 2. _**Criterion**_: Specify the metric used to select the node split. Options include gini / entropy.
|
|
95 | 83 |
|
96 | 84 | ### GradientBoosting Classifier
|
97 | 85 |
|
98 |
| - |
99 |
| - |
100 |
| -<figure><img src="../.gitbook/assets/image (159).png" alt="" width="563"><figcaption></figcaption></figure> |
| 86 | +<figure><img src="../.gitbook/assets/image (347).png" alt="" width="563"><figcaption></figcaption></figure> |
101 | 87 |
|
102 | 88 | 1. _**Loss**_: Specify the loss function to be used. Options include deviance / exponential.
|
103 | 89 | 2. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. A large value may lead to non-convergence or overfitting, while a small value may increase training time.
|
|
111 | 97 |
|
112 | 98 | ### XGB Classifier
|
113 | 99 |
|
114 |
| - |
115 |
| - |
116 |
| -<figure><img src="../.gitbook/assets/image (160).png" alt="" width="563"><figcaption></figcaption></figure> |
| 100 | +<figure><img src="../.gitbook/assets/image (348).png" alt="" width="563"><figcaption></figcaption></figure> |
117 | 101 |
|
118 | 102 | 1. _**N estimators**_: Specify the number of trees to include in the ensemble.
|
119 | 103 | 2. _**Max Depth**_: Specify the maximum depth of the trees.
|
|
127 | 111 |
|
128 | 112 | ### LGBM Classifier
|
129 | 113 |
|
130 |
| - |
131 |
| - |
132 |
| -<figure><img src="../.gitbook/assets/image (161).png" alt="" width="563"><figcaption></figcaption></figure> |
| 114 | +<figure><img src="../.gitbook/assets/image (349).png" alt="" width="563"><figcaption></figcaption></figure> |
133 | 115 |
|
134 | 116 | 1. _**Boosting type**_: Specify the boosting method used internally in the algorithm. (gbdt / dart / goss / rf (Random Forest))
|
135 | 117 | 2. _**Max Depth**_: Specify the maximum depth of the trees.
|
|
143 | 125 |
|
144 | 126 | ### CatBoost Classifier
|
145 | 127 |
|
146 |
| - |
147 |
| - |
148 |
| -<figure><img src="../.gitbook/assets/image (162).png" alt="" width="563"><figcaption></figcaption></figure> |
| 128 | +<figure><img src="../.gitbook/assets/image (350).png" alt="" width="563"><figcaption></figcaption></figure> |
149 | 129 |
|
150 | 130 | 1. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected.
|
151 | 131 | 2. _**Loss function**_: Specify the loss function to be used. (RMSE / absolute\_error / huber / quantile)
|
|
0 commit comments