Skip to content

Commit 614fd28

Browse files
minjk-blgitbook-bot
authored andcommitted
GITBOOK-72: Classifier
1 parent a709ac5 commit 614fd28

11 files changed

+14
-34
lines changed

docs/.gitbook/assets/image (341).png

237 KB
Loading

docs/.gitbook/assets/image (342).png

46.3 KB
Loading

docs/.gitbook/assets/image (343).png

61.1 KB
Loading

docs/.gitbook/assets/image (344).png

61.2 KB
Loading

docs/.gitbook/assets/image (345).png

70.3 KB
Loading

docs/.gitbook/assets/image (346).png

76.8 KB
Loading

docs/.gitbook/assets/image (347).png

77.6 KB
Loading

docs/.gitbook/assets/image (348).png

68.2 KB
Loading

docs/.gitbook/assets/image (349).png

73.8 KB
Loading

docs/.gitbook/assets/image (350).png

82.8 KB
Loading

docs/machine-learning/6.-classifier.md

Lines changed: 14 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,10 @@
11
# 6. Classifier
22

3-
4-
5-
<figure><img src="../.gitbook/assets/image (153).png" alt="" width="211"><figcaption></figcaption></figure>
3+
<figure><img src="../.gitbook/assets/image (341).png" alt="" width="512"><figcaption></figcaption></figure>
64

75
1. Click on the _**Classifier**_ under the _**Machine Learning**_ category.
86

9-
10-
11-
<figure><img src="../.gitbook/assets/image (154).png" alt="" width="563"><figcaption></figcaption></figure>
7+
<figure><img src="../.gitbook/assets/image (342).png" alt="" width="563"><figcaption></figcaption></figure>
128

139
2. _**Model Type**_: Select the Model Type of the classifier you want to use:
1410
* [Logistic Regression](6.-classifier.md#logistic-regression)
@@ -32,9 +28,7 @@
3228

3329
### Logistic Regression
3430

35-
36-
37-
<figure><img src="../.gitbook/assets/image (155).png" alt="" width="563"><figcaption></figcaption></figure>
31+
<figure><img src="../.gitbook/assets/image (343).png" alt="" width="563"><figcaption></figcaption></figure>
3832

3933
1. _**Penalty**_: Specify the regularization method for the model. (l2 / l1 / elasticnet / none)
4034
2. _**C**_: Adjust the regularization strength.
@@ -46,26 +40,22 @@
4640

4741
### SupportVectorMachine Classifier
4842

49-
50-
51-
<figure><img src="../.gitbook/assets/image (156).png" alt="" width="563"><figcaption></figcaption></figure>
43+
<figure><img src="../.gitbook/assets/image (344).png" alt=""><figcaption></figcaption></figure>
5244

5345
1. _**C**_: C indicates the freedom of the model's regularization. A higher C value makes the model more complex to fit the training data.
5446
2. _**Kernel**_: A function that maps data into higher dimensions. You can control the complexity of the model by selecting the kernel type.
55-
* _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model.
56-
* _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely.
57-
* _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely.
58-
3. _**Random State**_: Set the seed value for the random number generator.
47+
3. _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model.
48+
4. _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely.
49+
5. _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely.
50+
6. _**Random State**_: Set the seed value for the random number generator.
5951

6052

6153

6254
***
6355

6456
### DecisionTree Classifier
6557

66-
67-
68-
<figure><img src="../.gitbook/assets/image (157).png" alt="" width="563"><figcaption></figcaption></figure>
58+
<figure><img src="../.gitbook/assets/image (345).png" alt="" width="563"><figcaption></figcaption></figure>
6959

7060
1. _**Criterion**_: Specify the metric used to select the node split. (squared\_error / friedman\_mse / absolute\_error / Poisson)
7161
2. _**Max Depth**_: Specify the maximum depth of the trees.
@@ -78,9 +68,7 @@
7868

7969
### RandomForest Classifier
8070

81-
82-
83-
<figure><img src="../.gitbook/assets/image (158).png" alt="" width="563"><figcaption></figcaption></figure>
71+
<figure><img src="../.gitbook/assets/image (346).png" alt="" width="563"><figcaption></figcaption></figure>
8472

8573
1. _**N estimators**_: Specify the number of trees to include in the ensemble.
8674
2. _**Criterion**_: Specify the metric used to select the node split. Options include gini / entropy.
@@ -95,9 +83,7 @@
9583

9684
### GradientBoosting Classifier
9785

98-
99-
100-
<figure><img src="../.gitbook/assets/image (159).png" alt="" width="563"><figcaption></figcaption></figure>
86+
<figure><img src="../.gitbook/assets/image (347).png" alt="" width="563"><figcaption></figcaption></figure>
10187

10288
1. _**Loss**_: Specify the loss function to be used. Options include deviance / exponential.
10389
2. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. A large value may lead to non-convergence or overfitting, while a small value may increase training time.
@@ -111,9 +97,7 @@
11197

11298
### XGB Classifier
11399

114-
115-
116-
<figure><img src="../.gitbook/assets/image (160).png" alt="" width="563"><figcaption></figcaption></figure>
100+
<figure><img src="../.gitbook/assets/image (348).png" alt="" width="563"><figcaption></figcaption></figure>
117101

118102
1. _**N estimators**_: Specify the number of trees to include in the ensemble.
119103
2. _**Max Depth**_: Specify the maximum depth of the trees.
@@ -127,9 +111,7 @@
127111

128112
### LGBM Classifier
129113

130-
131-
132-
<figure><img src="../.gitbook/assets/image (161).png" alt="" width="563"><figcaption></figcaption></figure>
114+
<figure><img src="../.gitbook/assets/image (349).png" alt="" width="563"><figcaption></figcaption></figure>
133115

134116
1. _**Boosting type**_: Specify the boosting method used internally in the algorithm. (gbdt / dart / goss / rf (Random Forest))
135117
2. _**Max Depth**_: Specify the maximum depth of the trees.
@@ -143,9 +125,7 @@
143125

144126
### CatBoost Classifier
145127

146-
147-
148-
<figure><img src="../.gitbook/assets/image (162).png" alt="" width="563"><figcaption></figcaption></figure>
128+
<figure><img src="../.gitbook/assets/image (350).png" alt="" width="563"><figcaption></figcaption></figure>
149129

150130
1. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected.
151131
2. _**Loss function**_: Specify the loss function to be used. (RMSE / absolute\_error / huber / quantile)

0 commit comments

Comments
 (0)