|
1 | 1 | # 6. Classifier
|
2 | 2 |
|
| 3 | + |
| 4 | + |
| 5 | +<figure><img src="../.gitbook/assets/image (153).png" alt="" width="211"><figcaption></figcaption></figure> |
| 6 | + |
| 7 | +1. Click on the _**Classifier**_ under the _**Machine Learning**_ category. |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +<figure><img src="../.gitbook/assets/image (154).png" alt="" width="563"><figcaption></figcaption></figure> |
| 12 | + |
| 13 | +2. _**Model Type**_: Select the Model Type of the classifier you want to use: |
| 14 | + * [Logistic Regression](6.-classifier.md#logistic-regression) |
| 15 | + * BernoulliNB |
| 16 | + * MultinomialNB |
| 17 | + * GaussianNB |
| 18 | + * [SVC(SupportVectorMachine Classifier)](6.-classifier.md#supportvectormachine-classifier) |
| 19 | + * [DecisionTree Classifier](6.-classifier.md#decisiontree-classifier) |
| 20 | + * [RandomForest Classifier](6.-classifier.md#randomforest-classifier) |
| 21 | + * [GradientBoosting Classifier](6.-classifier.md#gradientboosting-classifier) |
| 22 | + * [XGB Classifier](6.-classifier.md#xgb-classifier) |
| 23 | + * [LGBM Classifier](6.-classifier.md#lgbm-classifier) |
| 24 | + * [CatBoost Classifier](6.-classifier.md#catboost-classifier) |
| 25 | +3. _**Allocate to**_: Specify the variable name to assign to the model. |
| 26 | +4. _**Code View**_: Preview the generated code. |
| 27 | +5. _**Run**_: Execute the code. |
| 28 | + |
| 29 | + |
| 30 | + |
| 31 | +*** |
| 32 | + |
| 33 | +### Logistic Regression |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | +<figure><img src="../.gitbook/assets/image (155).png" alt="" width="563"><figcaption></figcaption></figure> |
| 38 | + |
| 39 | +1. _**Penalty**_: Specify the regularization method for the model. (l2 / l1 / elasticnet / none) |
| 40 | +2. _**C**_: Adjust the regularization strength. |
| 41 | +3. _**Random State**_: Set the seed value for the random number generator. |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | +*** |
| 46 | + |
| 47 | +### SupportVectorMachine Classifier |
| 48 | + |
| 49 | + |
| 50 | + |
| 51 | +<figure><img src="../.gitbook/assets/image (156).png" alt="" width="563"><figcaption></figcaption></figure> |
| 52 | + |
| 53 | +1. _**C**_: C indicates the freedom of the model's regularization. A higher C value makes the model more complex to fit the training data. |
| 54 | +2. _**Kernel**_: A function that maps data into higher dimensions. You can control the complexity of the model by selecting the kernel type. |
| 55 | + * _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model. |
| 56 | + * _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely. |
| 57 | + * _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely. |
| 58 | +3. _**Random State**_: Set the seed value for the random number generator. |
| 59 | + |
| 60 | + |
| 61 | + |
| 62 | +*** |
| 63 | + |
| 64 | +### DecisionTree Classifier |
| 65 | + |
| 66 | + |
| 67 | + |
| 68 | +<figure><img src="../.gitbook/assets/image (157).png" alt="" width="563"><figcaption></figcaption></figure> |
| 69 | + |
| 70 | +1. _**Criterion**_: Specify the metric used to select the node split. (squared\_error / friedman\_mse / absolute\_error / Poisson) |
| 71 | +2. _**Max Depth**_: Specify the maximum depth of the trees. |
| 72 | +3. _**Min Samples Split**_: Specify the minimum number of samples required to split a node to prevent excessive splitting. |
| 73 | +4. _**Random State**_: Set the seed value for the random number generator. |
| 74 | + |
| 75 | + |
| 76 | + |
| 77 | +*** |
| 78 | + |
| 79 | +### RandomForest Classifier |
| 80 | + |
| 81 | + |
| 82 | + |
| 83 | +<figure><img src="../.gitbook/assets/image (158).png" alt="" width="563"><figcaption></figcaption></figure> |
| 84 | + |
| 85 | +1. _**N estimators**_: Specify the number of trees to include in the ensemble. |
| 86 | +2. _**Criterion**_: Specify the metric used to select the node split. Options include gini / entropy. |
| 87 | +3. _**Max Depth**_: Specify the maximum depth of the trees. |
| 88 | +4. _**Min Samples Split**_: Specify the minimum number of samples required to split a node to prevent excessive splitting. |
| 89 | +5. _**N jobs**_: Specify the number of CPU cores or threads to use during model training for parallel processing. |
| 90 | +6. _**Random State**_: Set the seed value for the random number generator. |
| 91 | + |
| 92 | + |
| 93 | + |
| 94 | +*** |
| 95 | + |
| 96 | +### GradientBoosting Classifier |
| 97 | + |
| 98 | + |
| 99 | + |
| 100 | +<figure><img src="../.gitbook/assets/image (159).png" alt="" width="563"><figcaption></figcaption></figure> |
| 101 | + |
| 102 | +1. _**Loss**_: Specify the loss function to be used. Options include deviance / exponential. |
| 103 | +2. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. A large value may lead to non-convergence or overfitting, while a small value may increase training time. |
| 104 | +3. _**N estimators**_: Specify the number of trees to include in the ensemble. |
| 105 | +4. _**Criterion**_: Specify the metric used to select the node split. (friedman\_mse / squared\_error / mse / mae) |
| 106 | +5. _**Random State**_: Set the seed value for the random number generator. |
| 107 | + |
| 108 | + |
| 109 | + |
| 110 | +*** |
| 111 | + |
| 112 | +### XGB Classifier |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | +<figure><img src="../.gitbook/assets/image (160).png" alt="" width="563"><figcaption></figcaption></figure> |
| 117 | + |
| 118 | +1. _**N estimators**_: Specify the number of trees to include in the ensemble. |
| 119 | +2. _**Max Depth**_: Specify the maximum depth of the trees. |
| 120 | +3. _**Learning Rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. |
| 121 | +4. _**Gamma**_: Adjust the curvature of the decision boundary. A higher value makes the model fit the training data more closely. |
| 122 | +5. _**Random State**_: Set the seed value for the random number generator. |
| 123 | + |
| 124 | + |
| 125 | + |
| 126 | +*** |
| 127 | + |
| 128 | +### LGBM Classifier |
| 129 | + |
| 130 | + |
| 131 | + |
| 132 | +<figure><img src="../.gitbook/assets/image (161).png" alt="" width="563"><figcaption></figcaption></figure> |
| 133 | + |
| 134 | +1. _**Boosting type**_: Specify the boosting method used internally in the algorithm. (gbdt / dart / goss / rf (Random Forest)) |
| 135 | +2. _**Max Depth**_: Specify the maximum depth of the trees. |
| 136 | +3. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. |
| 137 | +4. _**N estimators**_: Specify the number of trees to include in the ensemble. |
| 138 | +5. _**Random State**_: Set the seed value for the random number generator. |
| 139 | + |
| 140 | + |
| 141 | + |
| 142 | +*** |
| 143 | + |
| 144 | +### CatBoost Classifier |
| 145 | + |
| 146 | + |
| 147 | + |
| 148 | +<figure><img src="../.gitbook/assets/image (162).png" alt="" width="563"><figcaption></figcaption></figure> |
| 149 | + |
| 150 | +1. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. |
| 151 | +2. _**Loss function**_: Specify the loss function to be used. (RMSE / absolute\_error / huber / quantile) |
| 152 | +3. _**Task type**_: Specify the hardware used for data processing. (CPU / GPU) |
| 153 | +4. _**Max depth**_: Specify the maximum depth of the trees. |
| 154 | +5. _**N estimators**_: Specify the number of trees to include in the ensemble. |
| 155 | +6. _**Random state**_: Set the seed value for the random number generator. |
| 156 | + |
0 commit comments