Skip to content

Commit f7a3105

Browse files
minjk-blgitbook-bot
authored andcommitted
GITBOOK-28: Classifier
1 parent 53daaf3 commit f7a3105

11 files changed

+154
-0
lines changed

docs/.gitbook/assets/image (153).png

81.8 KB
Loading

docs/.gitbook/assets/image (154).png

67.8 KB
Loading

docs/.gitbook/assets/image (155).png

64.9 KB
Loading

docs/.gitbook/assets/image (156).png

67.8 KB
Loading

docs/.gitbook/assets/image (157).png

75 KB
Loading

docs/.gitbook/assets/image (158).png

82 KB
Loading

docs/.gitbook/assets/image (159).png

80.3 KB
Loading

docs/.gitbook/assets/image (160).png

73.9 KB
Loading

docs/.gitbook/assets/image (161).png

78.8 KB
Loading

docs/.gitbook/assets/image (162).png

88.9 KB
Loading
Lines changed: 154 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,156 @@
11
# 6. Classifier
22

3+
4+
5+
<figure><img src="../.gitbook/assets/image (153).png" alt="" width="211"><figcaption></figcaption></figure>
6+
7+
1. Click on the _**Classifier**_ under the _**Machine Learning**_ category.
8+
9+
10+
11+
<figure><img src="../.gitbook/assets/image (154).png" alt="" width="563"><figcaption></figcaption></figure>
12+
13+
2. _**Model Type**_: Select the Model Type of the classifier you want to use:
14+
* [Logistic Regression](6.-classifier.md#logistic-regression)
15+
* BernoulliNB
16+
* MultinomialNB
17+
* GaussianNB
18+
* [SVC(SupportVectorMachine Classifier)](6.-classifier.md#supportvectormachine-classifier)
19+
* [DecisionTree Classifier](6.-classifier.md#decisiontree-classifier)
20+
* [RandomForest Classifier](6.-classifier.md#randomforest-classifier)
21+
* [GradientBoosting Classifier](6.-classifier.md#gradientboosting-classifier)
22+
* [XGB Classifier](6.-classifier.md#xgb-classifier)
23+
* [LGBM Classifier](6.-classifier.md#lgbm-classifier)
24+
* [CatBoost Classifier](6.-classifier.md#catboost-classifier)
25+
3. _**Allocate to**_: Specify the variable name to assign to the model.
26+
4. _**Code View**_: Preview the generated code.
27+
5. _**Run**_: Execute the code.
28+
29+
30+
31+
***
32+
33+
### Logistic Regression
34+
35+
36+
37+
<figure><img src="../.gitbook/assets/image (155).png" alt="" width="563"><figcaption></figcaption></figure>
38+
39+
1. _**Penalty**_: Specify the regularization method for the model. (l2 / l1 / elasticnet / none)
40+
2. _**C**_: Adjust the regularization strength.
41+
3. _**Random State**_: Set the seed value for the random number generator.
42+
43+
44+
45+
***
46+
47+
### SupportVectorMachine Classifier
48+
49+
50+
51+
<figure><img src="../.gitbook/assets/image (156).png" alt="" width="563"><figcaption></figcaption></figure>
52+
53+
1. _**C**_: C indicates the freedom of the model's regularization. A higher C value makes the model more complex to fit the training data.
54+
2. _**Kernel**_: A function that maps data into higher dimensions. You can control the complexity of the model by selecting the kernel type.
55+
* _**Degree (Poly)**_: Degree determines the degree of the polynomial. A higher degree increases the complexity of the model.
56+
* _**Gamma (Poly, rbf, sigmoid)**_: Gamma adjusts the curvature of the decision boundary. A higher value makes the model fit the training data more closely.
57+
* _**Coef0 (Poly, sigmoid)**_: An additional parameter for the kernel, controlling the offset of the kernel. A higher value makes the model fit the training data more closely.
58+
3. _**Random State**_: Set the seed value for the random number generator.
59+
60+
61+
62+
***
63+
64+
### DecisionTree Classifier
65+
66+
67+
68+
<figure><img src="../.gitbook/assets/image (157).png" alt="" width="563"><figcaption></figcaption></figure>
69+
70+
1. _**Criterion**_: Specify the metric used to select the node split. (squared\_error / friedman\_mse / absolute\_error / Poisson)
71+
2. _**Max Depth**_: Specify the maximum depth of the trees.
72+
3. _**Min Samples Split**_: Specify the minimum number of samples required to split a node to prevent excessive splitting.
73+
4. _**Random State**_: Set the seed value for the random number generator.
74+
75+
76+
77+
***
78+
79+
### RandomForest Classifier
80+
81+
82+
83+
<figure><img src="../.gitbook/assets/image (158).png" alt="" width="563"><figcaption></figcaption></figure>
84+
85+
1. _**N estimators**_: Specify the number of trees to include in the ensemble.
86+
2. _**Criterion**_: Specify the metric used to select the node split. Options include gini / entropy.
87+
3. _**Max Depth**_: Specify the maximum depth of the trees.
88+
4. _**Min Samples Split**_: Specify the minimum number of samples required to split a node to prevent excessive splitting.
89+
5. _**N jobs**_: Specify the number of CPU cores or threads to use during model training for parallel processing.
90+
6. _**Random State**_: Set the seed value for the random number generator.
91+
92+
93+
94+
***
95+
96+
### GradientBoosting Classifier
97+
98+
99+
100+
<figure><img src="../.gitbook/assets/image (159).png" alt="" width="563"><figcaption></figcaption></figure>
101+
102+
1. _**Loss**_: Specify the loss function to be used. Options include deviance / exponential.
103+
2. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected. A large value may lead to non-convergence or overfitting, while a small value may increase training time.
104+
3. _**N estimators**_: Specify the number of trees to include in the ensemble.
105+
4. _**Criterion**_: Specify the metric used to select the node split. (friedman\_mse / squared\_error / mse / mae)
106+
5. _**Random State**_: Set the seed value for the random number generator.
107+
108+
109+
110+
***
111+
112+
### XGB Classifier
113+
114+
115+
116+
<figure><img src="../.gitbook/assets/image (160).png" alt="" width="563"><figcaption></figcaption></figure>
117+
118+
1. _**N estimators**_: Specify the number of trees to include in the ensemble.
119+
2. _**Max Depth**_: Specify the maximum depth of the trees.
120+
3. _**Learning Rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected.
121+
4. _**Gamma**_: Adjust the curvature of the decision boundary. A higher value makes the model fit the training data more closely.
122+
5. _**Random State**_: Set the seed value for the random number generator.
123+
124+
125+
126+
***
127+
128+
### LGBM Classifier
129+
130+
131+
132+
<figure><img src="../.gitbook/assets/image (161).png" alt="" width="563"><figcaption></figcaption></figure>
133+
134+
1. _**Boosting type**_: Specify the boosting method used internally in the algorithm. (gbdt / dart / goss / rf (Random Forest))
135+
2. _**Max Depth**_: Specify the maximum depth of the trees.
136+
3. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected.
137+
4. _**N estimators**_: Specify the number of trees to include in the ensemble.
138+
5. _**Random State**_: Set the seed value for the random number generator.
139+
140+
141+
142+
***
143+
144+
### CatBoost Classifier
145+
146+
147+
148+
<figure><img src="../.gitbook/assets/image (162).png" alt="" width="563"><figcaption></figcaption></figure>
149+
150+
1. _**Learning rate**_: Adjust the contribution of each tree and the degree to which the errors of previous trees are corrected.
151+
2. _**Loss function**_: Specify the loss function to be used. (RMSE / absolute\_error / huber / quantile)
152+
3. _**Task type**_: Specify the hardware used for data processing. (CPU / GPU)
153+
4. _**Max depth**_: Specify the maximum depth of the trees.
154+
5. _**N estimators**_: Specify the number of trees to include in the ensemble.
155+
6. _**Random state**_: Set the seed value for the random number generator.
156+

0 commit comments

Comments
 (0)