Taylorator Makes Mischief On The Airwaves

[Stephen] recently wrote in to share his experiments with using the LimeSDR mini to conduct a bit of piracy on the airwaves, and though we can’t immediately think of a legitimate application for spamming the full FM broadcast band simultaneously, we can’t help but be fascinated by the technique. Called the Taylorator, as it was originally intended to carpet bomb the dial with the collected works of Taylor Swift on every channel, the code makes for some interesting reading if you’re interested in the transmission-side of software defined radio (SDR).

The write-up talks about the logistics of FM modulation, and how quickly the computational demands stack up when you’re trying to push out 100 different audio streams at once. It takes a desktop-class CPU to pull it off in real-time, and eats up nearly 4 GB of RAM.

You could use this project to play a different episode of the Hackaday Podcast on every FM channel at once, but we wouldn’t recommend it. As [Stephen] touches on at the end of the post, this is almost certainly illegal no matter where you happen to live. That said, if you keep the power low enough so as not to broadcast anything beyond your home lab, it’s unlikely anyone will ever find out.

Continue reading “Taylorator Makes Mischief On The Airwaves”

Setting The Stage For Open Source Sonar Development

At Hackaday, we see community-driven open source development as the great equalizer. Whether it’s hardware or software —  if there’s some megacorp out there trying to sell you something, you should have the option to go with a comparable open source version. Even if the commercial offering is objectively superior, it’s important that open source alternatives always exist, or else its the users themselves that end up becoming the product before too long.

So we were particularly excited when [Neumi] wrote in to share his Open Echo project, as it contains some very impressive work towards democratizing the use of sonar. Over the years we’ve seen a handful of underwater projects utilize sonar in some form or another, but they have always simply read the data from a commercial, and generally expensive, unit. But Open Echo promises to delete the middle-man, allowing for cheaper and more flexible access to bathymetric data.

Continue reading “Setting The Stage For Open Source Sonar Development”

Brick Layer Post-Processor, Promising Stronger 3D Prints, Now Available

Back in November we first brought you word of a slicing technique by which the final strength of 3D printed parts could be considerably improved by adjusting the first layer height of each wall so that subsequent layers would interlock like bricks. It was relatively easy to implement, didn’t require anything special on the printer to accomplish, and testing showed it was effective enough to pursue further. Unfortunately, there was some patent concerns, and it seemed like nobody wanted to be the first to step up and actually implement the feature.

Well, as of today, [Roman Tenger] has decided to answer the call. As explained in the announcement video below, the company that currently holds the US patent for this tech hasn’t filed a European counterpart, so he feels he’s in a fairly safe spot compared to other creators in the community. We salute his bravery, and wish him nothing but the best of luck should any lawyer come knocking.

So how does it work? Right now the script supports PrusaSlicer and OrcaSlicer, and the installation is the same in both cases — just download the Python file, and go into your slicer’s settings under “Post-Processing Scripts” and enter in its path. As of right now you’ll have to provide the target layer height as an option to the script, but we’re willing to bet that’s going to be one of the first things that gets improved as the community starts sending in pull requests for the GPL v3 licensed script.

There was a lot of interest in this technique when we covered it last, and we’re very excited to see an open source implementation break cover. Now that it’s out in the wild, we’d love to hear about it in the comments if you try it out.

Continue reading “Brick Layer Post-Processor, Promising Stronger 3D Prints, Now Available”

An Instant Gratification Game Boy Printer

When the Game Boy Printer was released back in 1998, being able to produce a hard-copy of your Pokémon diploma or your latest Game Boy Camera snapshot at the touch of a button was was pretty slick indeed. But in our modern paperless society, the GB Printer somehow sticks out as even more archaic than the other add-on’s for Nintendo’s iconic handheld. Even among the folks who are still proudly playing the games that support the Printer, nobody actually wants to print anything out — although that doesn’t mean they don’t want to see the images.

The TinyGB Printer, developed by [Raphaël BOICHOT] and [Brian KHUU], could be considered something of a Game Boy Non-Printer. Powered by the RP2040 Zero development board, this open source hardware device plugs into your Game Boy and is picked up by all the games as a legitimate Printer. But instead of cranking out a little slip of thermal paper once you hit the button, the image is displayed in all its 240×240 glory on a 1.3 inch TFT display mounted to the top of the board.

Continue reading “An Instant Gratification Game Boy Printer”

Putting Cheap Motorcycle Tachometers To Work

With so much data being thrown at our eyeballs these days, it’s worryingly easy for the actually important stuff to slip by occasionally. So when [Liam Jackson] wanted a way to visualize the number of test failures popping up in the continuous integration system at work, he went with a novel but effective solution — universal motorcycle tachometers.

It turns out these little gauges can be had for under $10 a piece from the usual overseas retailers, and are very easy to drive with a microcontroller. As [Liam] explains, all you need to do other than providing them with 12 volts, is feed them a PWM signal. Even though the gauges are designed for a 12 V system, they apparently don’t have any problem responding to the 5 V logic level from the Arduino’s pins.

As for the frequency he says that 1,000 RPM corresponds to 16.66 Hz, so you can just multiply up from there to show whatever number you wish. That said, [Liam] warns that the gauges draw several hundred milliamps once the needle gets into the two digit range, so keep that in mind. Conveniently, those number happen to be in red anyway…

For his particular application, [Liam] put three of the gauges together to create a very handsome dashboard. If you want to recreate his setup exactly he’s made the STLs available for the gauge cluster housing. Note the small OLED at the center, this offers a way to show a bit more context than the three analog gauges alone can express, especially if you’ve got an application where you might be switching between multiple data sources.

Over the years we’ve seen several projects that repurposed analog gauges of various types, often for showing computer performance, but they generally involved having to drive the galvanometers directly. That these tachometers can simply be fed a simple digital signal should make implementing them into your project much easier.

JTAG & SWD Debugging On The Pi Pico

[Surya Chilukuri] writes in to share JTAGprobe — a fork of the official Raspberry Pi debugprobe firmware that lets you use the low-cost microcontroller development board for JTAG and SWD debugging just by flashing the provided firmware image.

We’ve seen similar projects in the past, but they’ve required some additional code running on the computer to bridge the gap between the Pico and your debugging software of choice. But [Surya] says this project works out of the box with common tools such as OpenOCD and pyOCD.

As we’ve cautioned previously, remember that the Pi Pico is only a 3.3 V device. JTAG and SWD don’t have set voltages, so in the wild you could run into logic levels from 1.2 V all the way to 5.5 V. While being able to use a bare Pico as a debugger is a neat trick, adding in a level shifter would be a wise precaution.

Looking to get even more use out of those Pi Picos you’ve got in the parts bin? How about using it to sniff USB?

Fighting To Keep Bluetooth Thermometers Hackable

Back in 2020, we first brought you word of the Xiaomi LYWSD03MMC — a Bluetooth Low Energy (BLE) temperature and humidity sensor that could be had from the usual sources for just a few dollars each. Capable of being powered by a single CR2032 battery for up to a year, the devices looked extremely promising for DIY smart home projects. There was only one problem, you needed to use Xiaomi’s app to read the data off of the things.

Enter [Aaron Christophel], who created an open source firmware for these units that could easily be flashed using a web-based tool from a smartphone in BLE range and opened up all sorts of advanced features. The firmware started getting popular, and a community developed around it. Everyone was happy. So naturally, years later, Xiaomi wants to put a stop to it.

Continue reading “Fighting To Keep Bluetooth Thermometers Hackable”