Նորմալ բաշխում
Հավանականությունների տեսությունում Նորմալ (կամ Գաուսյան, Գաուսի, Լապլաս֊Գաուսի) բաշխումը իրական արժեք ունեցող պատահական մեծության համար հավանականության բաշխման տեսակ է։ Բաշխման խտության ֆունկցիան ունի հետևյալ տեսքը՝
պարամետրը բաշխման միջինն է կամ մաթեմատիկական սպասումը, իսկ պարամետրը՝ ստանդարտ շեղումը[1]։ Բաշխման դիսպերսիան հավասար է [2]։
Նորմալ բաշխումները կարևոր նշանակություն ունեն վիճակագրությունում և հաճախ կիրառվում են բնական և հասարակական գիտություններում՝ իրական արժեք ունեցող անհայտ պատահական մեծությունները նկարագրելու համար[3][4]։ Այս բաշխումների կարևորությունը մասմաբ պայմանավորված է կենտրոնական սահմանային թեորեմով։ Ըստ այս թեորեմի՝ վերջավոր միջին և դիսպերսիա ունեցող պատահական մեծության ընտրույթների միջինը պատահական մեծություն է, որի բաշխումը զուգամիտում է նորմալ բաշխման, երբ ընտրույթների քանակը ձգտում է անվերջության։ Հետևաբար, ֆիզիկական մեծությունների, որոնք բազմաթիվ անկախ պրոցեսների գումար են, ինչպես օրինակ չափումների սխալը, հաճախ ունենում են գրեթե նորմալ բաշխում[5]։
Բացի դա, նորմալ բաշխումը ունի որոշ բացառիկ հատկություններ, որոնք կարևոր են անալիտիկ ուսումնասիրություններում։ Օրինակ, նորմալ շեղումների ֆիքսված բազմության կամայական գծային կոմբինացիան նորմալ շեղում է։ Շատ արդյունքներ և մեթոդներ, ինչպես օրինակ անորոշության տարածումը կամ փոքրագույն քառակուսիների մեթոդ, հնարավոր է անալիտիկորեն դուրս բերել, երբ համապատասխան փոփոխական նորմալ բաշխված է։
Սահմանումներ
[խմբագրել | խմբագրել կոդը]Ստանդարտ նորմալ բաշխում
[խմբագրել | խմբագրել կոդը]Նորմալ բաշխման ամենապարզ տարբերակը հայտնի է ստանդարտ նորմալ բաշխում անվամբ։ Սա այն մասնավոր դեպքն է, երբ , և այն տրված է հավանականության խտություն հետևյալ ֆունկցիայով՝
Այս արտահայտության մեջ արտադրիչը ապահովում է, որ ամբողջ առանցքի նկատմամբ ֆունկցիայի ինտեգրալը հավասար է մեկի[Ն 1]։ Ցուցիչում արտադրիչի առկայությունը ապահովում է միավոր դիսպերսիան և հետևաբար՝ ստանդարտ շեղումը։ Այս ֆունկցիան սիմետրիկ է կետի շուրջ, որտեղ է ստանում է իր առավելագույն արժեքը՝ , իսկ և կետերը ֆունկցիայի շրջման կետերն են։
Ստանդարտ նորմալ բաշխման սահմանման վերաբերյալ հակասություն կա։ Ըստ Կառլ Գաուսի սահմանման՝ ստանդարտ նորմալ բաշխումը ունի դիսպերսիա, այսինքն՝
- ։
Իսկ ըստ Սթիվեն Սթիգլերի սահմանման[6]՝ ստանդարտ նորմալ բաշխման դիսպերսիան հավասար է , այլ կերպ ասած՝
- ։
Ընդհանուր նորմալ բաշխում
[խմբագրել | խմբագրել կոդը]Կամայական նորմալ բաշխում ստանդարտ նորմալ բաշխման ձևափոխված տարբերակ է, որի տիրույթ ձգվել է անգամ (ստանդարտ շեղումը) և տեղափոխվել -ով (միջին արժեքը)՝
Հավանականության խտության ֆունկցիան պետք է բազմապատկվի -ով, որպեսզի ինտեգրալը 1 մնա։ Եթե պատահական մեծություն ունի ստանդարտ նորմալ բաշխում, ապա -ը կունենա մաթեմատիկական սպասմամբ և ստանդարտ շեղմամբ նորմալ բաշխում։ Նմանապես, եթե և պարամետրերով պատահական մեծություն է, ապա -ը կլինի ստանդարտ նորմալ բաշխում։ Այս ձևափոխությունը կոչվում է -ի ստանդարտացում։
Նշանակում
[խմբագրել | խմբագրել կոդը]Ստանդարտ նորմալ բաշխման հավանականության խտության ֆունկցիան հաճախ նշանակվում է հունարեն (Ֆի) տառով[7]։ Հաճախ կիրառվում է այս տառի այլ տարբերակը՝ -ն։
Նորմալ բաշխումը հաճախ նշանակվում է կամ ձևով[8]։ Այսպիսով, եթե պատահական մեծությունը միջինով և դիսպերսիայով նորմալ բաշխված է, ապա այն գրում են որպես՝
- ։
Այլ պարամետրեր
[խմբագրել | խմբագրել կոդը]Որոշ հեղինակներ բաշխման լայնությունը սահմանելու համար շեղման () կամ դիսպերսիայի () փոխարեն օգտագործում են դիսպերսիայի հակադարձը՝ -ն[9]։ Այս դեպքում բաշխման բանաձևը դառնում է՝
- ։
Ըստ նրանց՝ այս ընտրությունը հաշվարկային առումով առավելություն ունի այն դեպքերում, երբ -ն շատ մոտ է զրոյին և պարզեցնում է բանաձևերը որոշ դեպքերում, օրինակ՝ մի քանի փոփոխականով նորմալ բաշխում ունեցող պատահական մեծությունների Բայեսյան հետևությունը։
Նաև կիրառվում է ստանդարտ շեղման հակադարձը՝ -ը, որի դեպքում խտության բանաձևը ստանում է հետևյալ տեսքը՝
- ։
Ըստ Սթիգլերի՝ այս ներկայացման առավելություններն են պարզ ու հեշտ հիշելի տեսքը և բշխման quantile-ների համար մոտարկման պարզ բանաձևերի հնարավորություն է տալիս։
Նորմալ բաշխումները x և x2 բնական վիճակագրությամբ ու և բնական պարամետրերով ցուցչային ընտանիք են կազմում։
Բաշխման ֆունկցիա
[խմբագրել | խմբագրել կոդը]Ստանդարտ նորմալ բաշխմամբ պատահական մեծության բաշխման ֆունկցիա սովորաբար նշանակվում է հունարեն մեծատառ (Ֆի) տառով և հավասար է հետևյալ ինտեգրալին՝
Կապված սխալի ֆունկցիան ցույց է տալիս հավանականությունը, որ 0 միջինով և 1/2 դիսպերսիայով պատահական մեծության արժեքը կընկնի միջակայքում, այսինքն՝
Այս ինտեգրալները հնարավոր չէ ներկայացնել տարրական ֆունկցիաների միջոցով և սովորաբար կոչվում են հատուկ ֆունկցիաներ։ Սակայն, գոյություն ունեն բազմաթիվ թվային մոտարկումներ։
Այս երկու ֆունկցիաները սերտորեն կապված են, մասնավորապես՝
Ընդհանուր նորմալ բաշխաման համար, որն ունի խտության ֆունկցիա, միջին և դիսպերսիա, բաշխման ֆունկցիան ֆունկցիան ունի հետևյալ տեսքը՝
Ստանդարտ նորմալ բաշխման բաշխման ֆունկցիայի լրացումը՝ -ը, հաճախ կոչվում է Q-ֆունկցիա՝ հատկապես ինժեներական գրականության մեջ[10][11]։ Այն ցույց է տալիս հավանականությունը, որ ստանդարտ նորմալ պատահական մեծության արժեքը կգերազանցի -ին, այսինքն՝ ։ Երբեմն կիրառվում են -ֆունկցիայի այլ սահմանումներ, որոնք բոլորը ֆունկցիայի որևէ ձևափոխություն են[12]։ Ստանդարտ նորմալի բաշխման ֆունկցիայի գրաֆիկը ունի 2-րդ կարգի պտտման համաչափություն (0,1/2) կետի նկատմամբ, այսինքն՝ ։ Բաշխման ֆունկցիայի նախնականը (անորոշ ինտեգրալը) ունի հետևյալ տեսքը՝
Մասերով ինտեգրման միջոցով նորմալ բաշխման բաշպման ֆունկցիան կարելի է արտահայտել շարքի տեսքով՝
- ,
որտեղ -ը կրկնակի ֆակտորիալի նշանն է։
Մեծ x-երի համար բաշխման ֆունկցիայի ասիմպտոտիկ վերլուծումը նույնպես հնարավոր է ստանալ մասերով ինտեգրման միջոցով[13]։
Ստանդարտ շեղում
[խմբագրել | խմբագրել կոդը]Նորմալ բաշխումից վերցված արժեքների մոտ 68 տոկոսը միջինից հեռու են մեկ ստանդարտ շեղումով` σ-ով, մոտ 95 տոկոսը՝ երկու ստանդարտ շեղումով և մոտ 99.7 տոկոսը՝ երեք ստանդարտ շեղումով։ Այս փաստը առավել հայտնի է երեք սիգմայի կանոն կամ 68-95-99.7 կանոն անվամբ։
Ընդհանուր դեպքում հավանականությունը, որ նորմալ բաշխմամբ պատահական մեծության արժեքը կընկնի և միջակայքերում տրվում է հետևյալ բանաձևով՝
- ։
Հետևյալ աղբյուսակում տրված է արժեքների դեպքում ստացվող արդյունքը (12 իմաստալից թվանշանների ճշտությամբ)[14]՝
OEIS | ||||||
---|---|---|---|---|---|---|
1 | 689492137 0.682 | 310507863 0.317 |
|
A178647 | ||
2 | 499736104 0.954 | 500263896 0.045 |
|
A110894 | ||
3 | 300203937 0.997 | 699796063 0.002 |
|
A270712 | ||
4 | 936657516 0.999 | 063342484 0.000 |
| |||
5 | 999426697 0.999 | 000573303 0.000 |
| |||
6 | 999998027 0.999 | 000001973 0.000 |
|
Մեծ -երի համար կարելի է մոտարկել -ով։
Նշումներ
[խմբագրել | խմբագրել կոդը]- ↑ Ապացույցի համար տես Գաուսյան ինտեգրալ
Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ «List of Probability and Statistics Symbols». Math Vault (ամերիկյան անգլերեն). 2020 թ․ ապրիլի 26. Վերցված է 2020 թ․ օգոստոսի 15-ին.
- ↑ Weisstein, Eric W. «Normal Distribution». mathworld.wolfram.com (անգլերեն). Վերցված է 2020 թ․ օգոստոսի 15-ին.
- ↑ Normal Distribution, Gale Encyclopedia of Psychology
- ↑ Casella & Berger (2001, էջ. 102)
- ↑ Lyon, A. (2014). Why are Normal Distributions Normal?, The British Journal for the Philosophy of Science.
- ↑ Stigler (1982)
- ↑ Halperin, Hartley & Hoel (1965, item 7)
- ↑ McPherson (1990, էջ. 110)
- ↑ Bernardo & Smith (2000, էջ. 121)
- ↑ Scott, Clayton; Nowak, Robert (2003 թ․ օգոստոսի 7). «The Q-function». Connexions.
- ↑ Barak, Ohad (2006 թ․ ապրիլի 6). «Q Function and Error Function» (PDF). Tel Aviv University. Արխիվացված է օրիգինալից (PDF) 2009 թ․ մարտի 25-ին.
- ↑ Weisstein, Eric W., "Normal Distribution Function", MathWorld.
- ↑ Կաղապար:AS ref
- ↑ «Wolfram|Alpha: Computational Knowledge Engine». Wolframalpha.com. Վերցված է 2017 թ․ մարտի 3-ին.