Journal of Mathematical Analysis and Applications, 2014
This paper is concerned with a scalar nonlinear convolution equation which appears naturally in t... more This paper is concerned with a scalar nonlinear convolution equation which appears naturally in the theory of traveling waves for monostable evolution models. First, we prove that each bounded positive solution of the convolution equation should either be asymptotically separated from zero or it should converge (exponentially) to zero. This dichotomy principle is then used to establish a general theorem guaranteeing the uniform persistence and existence of semi-wavefront solutions to the convolution equation. Finally, we apply our abstract results to several well-studied classes of evolution equations with asymmetric non-local and non-monotone response. We show that, contrary to the symmetric case, these equations can possess at the same time the stationary, the expansion and the extinction waves.
Journal of Mathematical Analysis and Applications, 2014
In this note, we present a monostable delayed reaction-diffusion equation with the unimodal birth... more In this note, we present a monostable delayed reaction-diffusion equation with the unimodal birth function which admits only non-monotone wavefronts. Moreover, these fronts are either eventually monotone (in particular, such is the minimal wave) or slowly oscillating. Hence, for the Mackey-Glass type diffusive equations, we answer affirmatively the question about the existence of non-monotone non-oscillating wavefronts. As it was recently established by Hasik et al. and Ducrot et al., the same question has a negative answer for the KPP-Fisher equation with a single delay.
Journal of Mathematical Analysis and Applications, 2014
This paper is concerned with a scalar nonlinear convolution equation which appears naturally in t... more This paper is concerned with a scalar nonlinear convolution equation which appears naturally in the theory of traveling waves for monostable evolution models. First, we prove that each bounded positive solution of the convolution equation should either be asymptotically separated from zero or it should converge (exponentially) to zero. This dichotomy principle is then used to establish a general theorem guaranteeing the uniform persistence and existence of semi-wavefront solutions to the convolution equation. Finally, we apply our abstract results to several well-studied classes of evolution equations with asymmetric non-local and non-monotone response. We show that, contrary to the symmetric case, these equations can possess at the same time the stationary, the expansion and the extinction waves.
Journal of Mathematical Analysis and Applications, 2014
In this note, we present a monostable delayed reaction-diffusion equation with the unimodal birth... more In this note, we present a monostable delayed reaction-diffusion equation with the unimodal birth function which admits only non-monotone wavefronts. Moreover, these fronts are either eventually monotone (in particular, such is the minimal wave) or slowly oscillating. Hence, for the Mackey-Glass type diffusive equations, we answer affirmatively the question about the existence of non-monotone non-oscillating wavefronts. As it was recently established by Hasik et al. and Ducrot et al., the same question has a negative answer for the KPP-Fisher equation with a single delay.
Uploads
Papers by Carlos Gomez