Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, i... more Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphog... more Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a “quaternary nuclear localization sequence (NLS)”, i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ i...
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, i... more Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphog... more Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a “quaternary nuclear localization sequence (NLS)”, i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ i...
Uploads
Papers by Jakub Turlik