In flowering plants, carotenoid-derived strigolactones (SLs) have dual functions as hormones that... more In flowering plants, carotenoid-derived strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), a previously unidentified SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating that it is ancestral in land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant ...
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ... more The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome...
The Plant journal : for cell and molecular biology, 2015
The development and elongation of active tillers in rice was severely reduced by a lack of cytoso... more The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Alth...
Arabidopsis and rice have demonstrated that strigolactones (SLs) act as hormones that inhibit sho... more Arabidopsis and rice have demonstrated that strigolactones (SLs) act as hormones that inhibit shoot branching. The identifi cation of genes that work downstream of SLs is required for a better understanding of how SLs control the growth of axillary buds. We found that the increased tillering phenotype of fi ne culm1 ( fc1 ) mutants of rice is not rescued by the application of 1 µM GR24, a synthetic SL analog. Treatment with a high concentration of GR24 (10 µM) causes suppression of tiller growth in wild-type plants, but is not effective on fc1 mutants, implying that proper FC1 functioning is required for SLs to inhibit bud growth. Overexpression of FC1 partially rescued d3-2 defects in the tiller growth and plant height. An in situ hybridization analysis showed that FC1 mRNA accumulates in axillary buds, the shoot apical meristem, young leaves, vascular tissues and the tips of crown roots. FC1 mRNA expression was not signifi cantly affected by GR24, suggesting that transcriptional induction may not be the mechanism by which SLs affect FC1 functioning. On the other hand, the expression level of FC1 is negatively regulated by cytokinin treatment. We propose that FC1 acts as an integrator of multiple signaling pathways and is essential to the fi netuning of shoot branching in rice.
Journal of genetics and genomics = Yi chuan xue bao, Jan 20, 2015
Strigolactones (SLs) are a class of plant hormones that control plant development in response to ... more Strigolactones (SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice, mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer in SL deficient or insensitive mutants. SLs are perceived by DWARF14 (D14), which is a member of a small gene family. In this study, we examined the function of another D14 family gene in rice, D14 LIKE (D14L), focusing on mesocotyl growth. The mesocotyls of D14L RNAi lines are longer than those of WT in the dark. This phenotype is enhanced when the D14L RNAi lines are combined with the d14 mutation, suggesting that D14 and D14L work independently to inhibit mesocotyl elongation. This phenotype is alleviated by the exogenous supply of GR24, a synthetic SL, suggesting that D14L is not necessary for SL signaling. D14L mRNA is predominantly expressed in vascular bundles and crown root primordia. Our results suggest that D14L and D14 confer their effects via an SL independent ...
The Plant journal : for cell and molecular biology, 2015
The development and elongation of active tillers in rice was severely reduced by a lack of cytoso... more The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Alth...
The Plant journal : for cell and molecular biology, 2015
The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group ... more The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group of plant hormones that inhibits shoot branching. We isolated a recessive mutant named super apical dormant (sad1-1) from a suppressor screen of d14-1. The growth of tillers (vegetative shoot branches) is suppressed in both the d14-1 sad1-1 double mutant and the sad1-1 single mutant. In addition, the sad1-1 mutant shows pleiotropic defects throughout development. SAD1 encodes an ortholog of RPA34.5, a subunit of RNA polymerase I (Pol I). Consequently, the level of ribosomal RNA (rRNA) is severely reduced in the sad1-1 mutant. These results indicate that proper ribosome function is a prerequisite for normal development in plants. The Arabidopsis ortholog of SAD1 was previously isolated as a Mediator-interacting protein. Here we show that SAD1 interacts physically with the Mediator complex through direct binding with OsMED4, a component of the middle module of the Mediator complex in rice. ...
Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted prod... more Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted products of the 31 Arabidopsis CLE genes, we investigated the CLE peptide function in Arabidopsis and rice. Treatment with some CLE peptides inhibited root elongation in rice as well as in Arabidopsis. It also reduced the size of the shoot apical meristem in Arabidopsis but not in rice. Database searches revealed 47 putative CLE genes in the rice genome and multiple CLE domains in some CLE genes, indicating diverse CLE function in these plants.
The Plant journal : for cell and molecular biology, 2007
Plant architecture is mostly determined by shoot branching patterns. Apical dominance is a well-k... more Plant architecture is mostly determined by shoot branching patterns. Apical dominance is a well-known control mechanism in the development of branching patterns, but little is known regarding its role in monocots such as rice. Here, we show that the concept of apical dominance can be applied to tiller bud outgrowth of rice. In dwarf10 (d10), an enhanced branching mutant of rice, apical dominance can be observed, but the inhibitory effects of the apical meristem was reduced. D10 is a rice ortholog of MAX4/RMS1/DAD1 that encodes a carotenoid cleavage dioxygenase 8 and is supposed to be involved in the synthesis of an unidentified inhibitor of shoot branching. D10 expression predominantly occurs in vascular cells in most organs. Real-time polymerase chain reaction analysis revealed that accumulation of D10 mRNA is induced by exogenous auxin. Moreover, D10 expression is upregulated in six branching mutants, d3, d10, d14, d17, d27 and high tillering dwarf (htd1). No such effects were fou...
The LFY/FLO genes encode plant-specific transcription factors and play major roles in the reprodu... more The LFY/FLO genes encode plant-specific transcription factors and play major roles in the reproductive transition as well as floral development. In this study, we reconstructed the phylogenetic tree of the 49 LFY/FLO homologs from various plant species. The tree clearly shows that the LFY/FLO genes from the eudicots and monocots formed the two monophyletic clusters with very high bootstrap probabilities, respectively. Furthermore, grass LFY/FLO genes have experienced significant acceleration of amino acid replacement rate compared with the eudicot homolog. To test whether grass LFY/FLO genes have a conserved function with those of eudicots, we introduced RFL, a rice LFY homolog, into the Arabidopsis lfy mutant. The RFL gene driven by LFY promoter partially rescued the lfy mutation, suggesting that the functions of LFY and RFL partly overlap. Interestingly, the RFL but not LFY, strongly activated the expression of AP1 and AG, the downstream targets of LFY, even in the vegetative tiss...
The Plant journal : for cell and molecular biology, Jan 3, 2015
Accumulating evidence indicates that FLOWERING LOCUS T (FT) protein is the mobile floral signal f... more Accumulating evidence indicates that FLOWERING LOCUS T (FT) protein is the mobile floral signal florigen. A rice FT homolog, Hd3a, is transported from the phloem to shoot apical cells where it interacts with 14-3-3 proteins and the transcription factor OsFD1 to form a florigen activation complex (FAC) that activates a rice homolog of the floral identity gene APETALLA1. Recent studies showed that florigen has roles in plant development beyond flowering; however, the exact nature of these roles is not well understood. It is not clear whether FT is transported to organs outside the shoot apex and whether FAC formation is required for processes other than flowering. We show here that Hd3a protein accumulated in axillary meristems to promote branching and that FAC formation was required. Analysis of transgenic plants revealed that Hd3a promotes branching through lateral bud outgrowth. Hd3a protein produced in the phloem reached the axillary meristem in the lateral bud, and its transport ...
In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we... more In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we expressed OsMADS3, a rice (Oryza sativa L.) AGAMOUS(AG) ortholog, in rice plants under the control of an Actin1 promoter. As a consequence of the ectopic expression of the OsMADS3, lodicules were homeotically transformed into stamens. In total, the transformation of lodicules to staminoid organs was observed in 18 out of 26 independent transgenic lines. In contrast to the almost complete transformation occurring in lodicules, none of the transgenic plants exhibited any morphological alterations in the palea or the lemma. Our results confirmed the prediction that the lodicule is an equivalent of a dicot petal and that the ABC model can be applied to rice at least for organ specification in lodicules and stamens.
Page 168. 7 Transformation and Regeneration of Rice Protoplasts Thomas K Hodges, Jianying Peng, L... more Page 168. 7 Transformation and Regeneration of Rice Protoplasts Thomas K Hodges, Jianying Peng, Leszek A Lyznik, and David S Koetje Department of Botany and Plant Pathology, Purdue University, USA Rice protoplast ...
Rapid progress in rice genomics is making it possible to undertake detailed structural and functi... more Rapid progress in rice genomics is making it possible to undertake detailed structural and functional comparisons of genes involved in various biological processes among rice and other plant species, such as Arabidopsis. In this review, we summarize the current status of rice genomics. We then select two important areas of research, reproductive development and defense signaling, and compare the functions of rice and orthologous genes in other species involved in these processes. The analysis revealed that apparently orthologous genes can also display divergent functions. Changes in functions and regulation of orthologous genes may represent a basis for diversity among plant species. Such comparative genomics in other plant species will provide important information for future work on the evolution of higher plants.
Inflorescence architecture is one of the most important agronomical traits. Characterization of r... more Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.
The architecture of the rice inflorescence, which is determined mainly by the number and length o... more The architecture of the rice inflorescence, which is determined mainly by the number and length of primary and secondary inflorescence branches, is of importance in both agronomy and developmental biology. The position and number of primary branches are established during the phase transition from vegetative to reproductive growth, and several of the genes identified as participating in this process do so by regulating the meristemic activities of inflorescence. However, little is known about the molecular mechanism that controls inflorescence branch elongation. Here, we report on a novel rice mutant, short panicle1 (sp1), which is defective in rice panicle elongation, and thus leads to the short-panicle phenotype. Gene cloning and characterization indicate that SP1 encodes a putative transporter that belongs to the peptide transporter (PTR) family. This conclusion is based on the findings that SP1 contains a conserved PTR2 domain consisting of 12 transmembrane domains, and that the SP1-GFP fusion protein is localized in the plasma membrane. The SP1 gene is highly expressed in the phloem of the branches of young panicles, which is consistent with the predicted function of SP1 and the sp1 phenotype. Phylogenetic analysis implies that SP1 might be a nitrate transporter. However, neither nitrate transporter activity nor any other compounds transported by known PTR proteins could be detected in either a Xenopus oocyte or yeast system, in our study, suggesting that SP1 may need other component(s) to be able to function as a transporter, or that it transports unknown substrates in the monocotyledonous rice plant.
In flowering plants, carotenoid-derived strigolactones (SLs) have dual functions as hormones that... more In flowering plants, carotenoid-derived strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), a previously unidentified SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating that it is ancestral in land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant ...
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ... more The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome...
The Plant journal : for cell and molecular biology, 2015
The development and elongation of active tillers in rice was severely reduced by a lack of cytoso... more The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Alth...
Arabidopsis and rice have demonstrated that strigolactones (SLs) act as hormones that inhibit sho... more Arabidopsis and rice have demonstrated that strigolactones (SLs) act as hormones that inhibit shoot branching. The identifi cation of genes that work downstream of SLs is required for a better understanding of how SLs control the growth of axillary buds. We found that the increased tillering phenotype of fi ne culm1 ( fc1 ) mutants of rice is not rescued by the application of 1 µM GR24, a synthetic SL analog. Treatment with a high concentration of GR24 (10 µM) causes suppression of tiller growth in wild-type plants, but is not effective on fc1 mutants, implying that proper FC1 functioning is required for SLs to inhibit bud growth. Overexpression of FC1 partially rescued d3-2 defects in the tiller growth and plant height. An in situ hybridization analysis showed that FC1 mRNA accumulates in axillary buds, the shoot apical meristem, young leaves, vascular tissues and the tips of crown roots. FC1 mRNA expression was not signifi cantly affected by GR24, suggesting that transcriptional induction may not be the mechanism by which SLs affect FC1 functioning. On the other hand, the expression level of FC1 is negatively regulated by cytokinin treatment. We propose that FC1 acts as an integrator of multiple signaling pathways and is essential to the fi netuning of shoot branching in rice.
Journal of genetics and genomics = Yi chuan xue bao, Jan 20, 2015
Strigolactones (SLs) are a class of plant hormones that control plant development in response to ... more Strigolactones (SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice, mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer in SL deficient or insensitive mutants. SLs are perceived by DWARF14 (D14), which is a member of a small gene family. In this study, we examined the function of another D14 family gene in rice, D14 LIKE (D14L), focusing on mesocotyl growth. The mesocotyls of D14L RNAi lines are longer than those of WT in the dark. This phenotype is enhanced when the D14L RNAi lines are combined with the d14 mutation, suggesting that D14 and D14L work independently to inhibit mesocotyl elongation. This phenotype is alleviated by the exogenous supply of GR24, a synthetic SL, suggesting that D14L is not necessary for SL signaling. D14L mRNA is predominantly expressed in vascular bundles and crown root primordia. Our results suggest that D14L and D14 confer their effects via an SL independent ...
The Plant journal : for cell and molecular biology, 2015
The development and elongation of active tillers in rice was severely reduced by a lack of cytoso... more The development and elongation of active tillers in rice was severely reduced by a lack of cytosolic glutamine synthetase1;2 (GS1;2), and, to a lesser extent, lack of NADH-glutamate synthase1 in knockout mutants. In situ hybridization using the basal part of wild-type seedlings clearly showed that expression of OsGS1;2 was detected in the phloem companion cells of the nodal vascular anastomoses and large vascular bundles of axillary buds. Accumulation of lignin, visualized using phloroglucin HCl, was also observed in these tissues. The lack of GS1;2 resulted in reduced accumulation of lignin. Re-introduction into the mutants of OsGS1;2 cDNA under the control of its own promoter successfully restored the outgrowth of tillers and lignin deposition to wild-type levels. Transcriptomic analysis using a 5 mm basal region of rice shoots showed that the GS1;2 mutants accumulated reduced amounts of mRNAs for carbon and nitrogen metabolism, including C1 unit transfer in lignin synthesis. Alth...
The Plant journal : for cell and molecular biology, 2015
The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group ... more The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group of plant hormones that inhibits shoot branching. We isolated a recessive mutant named super apical dormant (sad1-1) from a suppressor screen of d14-1. The growth of tillers (vegetative shoot branches) is suppressed in both the d14-1 sad1-1 double mutant and the sad1-1 single mutant. In addition, the sad1-1 mutant shows pleiotropic defects throughout development. SAD1 encodes an ortholog of RPA34.5, a subunit of RNA polymerase I (Pol I). Consequently, the level of ribosomal RNA (rRNA) is severely reduced in the sad1-1 mutant. These results indicate that proper ribosome function is a prerequisite for normal development in plants. The Arabidopsis ortholog of SAD1 was previously isolated as a Mediator-interacting protein. Here we show that SAD1 interacts physically with the Mediator complex through direct binding with OsMED4, a component of the middle module of the Mediator complex in rice. ...
Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted prod... more Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted products of the 31 Arabidopsis CLE genes, we investigated the CLE peptide function in Arabidopsis and rice. Treatment with some CLE peptides inhibited root elongation in rice as well as in Arabidopsis. It also reduced the size of the shoot apical meristem in Arabidopsis but not in rice. Database searches revealed 47 putative CLE genes in the rice genome and multiple CLE domains in some CLE genes, indicating diverse CLE function in these plants.
The Plant journal : for cell and molecular biology, 2007
Plant architecture is mostly determined by shoot branching patterns. Apical dominance is a well-k... more Plant architecture is mostly determined by shoot branching patterns. Apical dominance is a well-known control mechanism in the development of branching patterns, but little is known regarding its role in monocots such as rice. Here, we show that the concept of apical dominance can be applied to tiller bud outgrowth of rice. In dwarf10 (d10), an enhanced branching mutant of rice, apical dominance can be observed, but the inhibitory effects of the apical meristem was reduced. D10 is a rice ortholog of MAX4/RMS1/DAD1 that encodes a carotenoid cleavage dioxygenase 8 and is supposed to be involved in the synthesis of an unidentified inhibitor of shoot branching. D10 expression predominantly occurs in vascular cells in most organs. Real-time polymerase chain reaction analysis revealed that accumulation of D10 mRNA is induced by exogenous auxin. Moreover, D10 expression is upregulated in six branching mutants, d3, d10, d14, d17, d27 and high tillering dwarf (htd1). No such effects were fou...
The LFY/FLO genes encode plant-specific transcription factors and play major roles in the reprodu... more The LFY/FLO genes encode plant-specific transcription factors and play major roles in the reproductive transition as well as floral development. In this study, we reconstructed the phylogenetic tree of the 49 LFY/FLO homologs from various plant species. The tree clearly shows that the LFY/FLO genes from the eudicots and monocots formed the two monophyletic clusters with very high bootstrap probabilities, respectively. Furthermore, grass LFY/FLO genes have experienced significant acceleration of amino acid replacement rate compared with the eudicot homolog. To test whether grass LFY/FLO genes have a conserved function with those of eudicots, we introduced RFL, a rice LFY homolog, into the Arabidopsis lfy mutant. The RFL gene driven by LFY promoter partially rescued the lfy mutation, suggesting that the functions of LFY and RFL partly overlap. Interestingly, the RFL but not LFY, strongly activated the expression of AP1 and AG, the downstream targets of LFY, even in the vegetative tiss...
The Plant journal : for cell and molecular biology, Jan 3, 2015
Accumulating evidence indicates that FLOWERING LOCUS T (FT) protein is the mobile floral signal f... more Accumulating evidence indicates that FLOWERING LOCUS T (FT) protein is the mobile floral signal florigen. A rice FT homolog, Hd3a, is transported from the phloem to shoot apical cells where it interacts with 14-3-3 proteins and the transcription factor OsFD1 to form a florigen activation complex (FAC) that activates a rice homolog of the floral identity gene APETALLA1. Recent studies showed that florigen has roles in plant development beyond flowering; however, the exact nature of these roles is not well understood. It is not clear whether FT is transported to organs outside the shoot apex and whether FAC formation is required for processes other than flowering. We show here that Hd3a protein accumulated in axillary meristems to promote branching and that FAC formation was required. Analysis of transgenic plants revealed that Hd3a promotes branching through lateral bud outgrowth. Hd3a protein produced in the phloem reached the axillary meristem in the lateral bud, and its transport ...
In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we... more In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we expressed OsMADS3, a rice (Oryza sativa L.) AGAMOUS(AG) ortholog, in rice plants under the control of an Actin1 promoter. As a consequence of the ectopic expression of the OsMADS3, lodicules were homeotically transformed into stamens. In total, the transformation of lodicules to staminoid organs was observed in 18 out of 26 independent transgenic lines. In contrast to the almost complete transformation occurring in lodicules, none of the transgenic plants exhibited any morphological alterations in the palea or the lemma. Our results confirmed the prediction that the lodicule is an equivalent of a dicot petal and that the ABC model can be applied to rice at least for organ specification in lodicules and stamens.
Page 168. 7 Transformation and Regeneration of Rice Protoplasts Thomas K Hodges, Jianying Peng, L... more Page 168. 7 Transformation and Regeneration of Rice Protoplasts Thomas K Hodges, Jianying Peng, Leszek A Lyznik, and David S Koetje Department of Botany and Plant Pathology, Purdue University, USA Rice protoplast ...
Rapid progress in rice genomics is making it possible to undertake detailed structural and functi... more Rapid progress in rice genomics is making it possible to undertake detailed structural and functional comparisons of genes involved in various biological processes among rice and other plant species, such as Arabidopsis. In this review, we summarize the current status of rice genomics. We then select two important areas of research, reproductive development and defense signaling, and compare the functions of rice and orthologous genes in other species involved in these processes. The analysis revealed that apparently orthologous genes can also display divergent functions. Changes in functions and regulation of orthologous genes may represent a basis for diversity among plant species. Such comparative genomics in other plant species will provide important information for future work on the evolution of higher plants.
Inflorescence architecture is one of the most important agronomical traits. Characterization of r... more Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.
The architecture of the rice inflorescence, which is determined mainly by the number and length o... more The architecture of the rice inflorescence, which is determined mainly by the number and length of primary and secondary inflorescence branches, is of importance in both agronomy and developmental biology. The position and number of primary branches are established during the phase transition from vegetative to reproductive growth, and several of the genes identified as participating in this process do so by regulating the meristemic activities of inflorescence. However, little is known about the molecular mechanism that controls inflorescence branch elongation. Here, we report on a novel rice mutant, short panicle1 (sp1), which is defective in rice panicle elongation, and thus leads to the short-panicle phenotype. Gene cloning and characterization indicate that SP1 encodes a putative transporter that belongs to the peptide transporter (PTR) family. This conclusion is based on the findings that SP1 contains a conserved PTR2 domain consisting of 12 transmembrane domains, and that the SP1-GFP fusion protein is localized in the plasma membrane. The SP1 gene is highly expressed in the phloem of the branches of young panicles, which is consistent with the predicted function of SP1 and the sp1 phenotype. Phylogenetic analysis implies that SP1 might be a nitrate transporter. However, neither nitrate transporter activity nor any other compounds transported by known PTR proteins could be detected in either a Xenopus oocyte or yeast system, in our study, suggesting that SP1 may need other component(s) to be able to function as a transporter, or that it transports unknown substrates in the monocotyledonous rice plant.
Uploads
Papers by Junko Kyozuka