Entity alignment is to find identical entities in different knowledge graphs. Although embedding-... more Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semisupervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semisupervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange the optimal order that can maximize the overall performance of multiple aligners. The cycle-teaching process can break the limitations of each model's learning capability and reduce the noise in new training data, leading to improved performance. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed cycle-teaching framework, which significantly outperforms the state-of-the-art models when the training data is insufficient and the new entity alignment has much noise.
Proceedings of the AAAI Conference on Artificial Intelligence
Entity alignment is to find identical entities in different knowledge graphs. Although embedding-... more Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semi-supervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semi-supervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange...
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining
Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. P... more Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. Previous attempts at entity alignment have explored different KG structures, such as neighborhood-based and path-based contexts, to learn entity embeddings, but they are limited in capturing the multi-context features. Moreover, most approaches directly utilize the embedding similarity to determine entity alignment without considering the global interaction among entities and relations. In this work, we propose an Informed Multicontext Entity Alignment (IMEA) model to address these issues. In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts, and design holistic reasoning to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality. The alignment evidence obtained from holistic reasoning is further injected back into the Transformer via the proposed soft label editing to inform embedding learning. Experimental results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.
Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entit... more Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entities in a knowledge base (KB). Although global ED models usually outperform local models by collectively linking mentions based on the topical coherence assumption, they may still incur incorrect entity assignment when a document contains multiple topics. Therefore, we propose a Locally-Global model (LoG) for ED which extracts global features locally, i.e., among a limited number of neighboring mentions, to combine the respective superiority of both models. In particular, we derive mention neighbors according to the syntactic distance on a dependency parse tree, and propose a tree connection method CoSimTC to measure the cross-tree distance between mentions. We also recognize the importance of keywords in a document for collective entity disambiguation, which reveal the central topic information of the document. Hence, we propose a keyword extraction method Sent2Word to detect keywords of each document. Furthermore, we extend the Graph Attention Network (GAT) to integrate both local and global features to produce a discriminative representation for each candidate entity. Our experimental results on six widely-adopted public datasets demonstrate better performance compared with state-of-the-art ED approaches. The high efficiency of the LoG model further verifies its feasibility in practice.
Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entit... more Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entities in a knowledge base (KB). Although global ED model usually outperforms local model by collectively linking mentions based on the topical coherence assumption, it may still incur incorrect entity assignment when a document contains multiple topics. Therefore, we propose to extract global features locally, i.e., among a limited number of neighbouring mentions, to combine the respective superiority of both models. In particular, we derive mention neighbours according to the syntactic distance on a dependency parse tree, and propose a tree connection method CoSimTC to measure the cross-tree distance between mentions. Besides, we extend the Graph Attention Network (GAT) to integrate both local and global features to produce a discriminative representation for each candidate entity. Our experimental results on five widely-adopted public datasets demonstrate better performance compared with state-of-the-art approaches.
Entity alignment is to find identical entities in different knowledge graphs. Although embedding-... more Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semisupervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semisupervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange the optimal order that can maximize the overall performance of multiple aligners. The cycle-teaching process can break the limitations of each model's learning capability and reduce the noise in new training data, leading to improved performance. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed cycle-teaching framework, which significantly outperforms the state-of-the-art models when the training data is insufficient and the new entity alignment has much noise.
Proceedings of the AAAI Conference on Artificial Intelligence
Entity alignment is to find identical entities in different knowledge graphs. Although embedding-... more Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semi-supervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semi-supervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange...
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining
Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. P... more Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. Previous attempts at entity alignment have explored different KG structures, such as neighborhood-based and path-based contexts, to learn entity embeddings, but they are limited in capturing the multi-context features. Moreover, most approaches directly utilize the embedding similarity to determine entity alignment without considering the global interaction among entities and relations. In this work, we propose an Informed Multicontext Entity Alignment (IMEA) model to address these issues. In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts, and design holistic reasoning to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality. The alignment evidence obtained from holistic reasoning is further injected back into the Transformer via the proposed soft label editing to inform embedding learning. Experimental results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.
Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entit... more Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entities in a knowledge base (KB). Although global ED models usually outperform local models by collectively linking mentions based on the topical coherence assumption, they may still incur incorrect entity assignment when a document contains multiple topics. Therefore, we propose a Locally-Global model (LoG) for ED which extracts global features locally, i.e., among a limited number of neighboring mentions, to combine the respective superiority of both models. In particular, we derive mention neighbors according to the syntactic distance on a dependency parse tree, and propose a tree connection method CoSimTC to measure the cross-tree distance between mentions. We also recognize the importance of keywords in a document for collective entity disambiguation, which reveal the central topic information of the document. Hence, we propose a keyword extraction method Sent2Word to detect keywords of each document. Furthermore, we extend the Graph Attention Network (GAT) to integrate both local and global features to produce a discriminative representation for each candidate entity. Our experimental results on six widely-adopted public datasets demonstrate better performance compared with state-of-the-art ED approaches. The high efficiency of the LoG model further verifies its feasibility in practice.
Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entit... more Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entities in a knowledge base (KB). Although global ED model usually outperforms local model by collectively linking mentions based on the topical coherence assumption, it may still incur incorrect entity assignment when a document contains multiple topics. Therefore, we propose to extract global features locally, i.e., among a limited number of neighbouring mentions, to combine the respective superiority of both models. In particular, we derive mention neighbours according to the syntactic distance on a dependency parse tree, and propose a tree connection method CoSimTC to measure the cross-tree distance between mentions. Besides, we extend the Graph Attention Network (GAT) to integrate both local and global features to produce a discriminative representation for each candidate entity. Our experimental results on five widely-adopted public datasets demonstrate better performance compared with state-of-the-art approaches.
Uploads
Papers by Kexuan Xin