Manuals by Salah A. Youssef
Contents
1. Introduction 7
1.1. The eras of mycotoxins 8
1.2. Recent Headlines 12
1.3. Global ac... more Contents
1. Introduction 7
1.1. The eras of mycotoxins 8
1.2. Recent Headlines 12
1.3. Global action to counteract mycotoxins 13
1.4. Recent Mycotoxins conferences 16
2. Mycotoxicosis in domestic animals 18
2.1. Mycotoxicosis in bovines 18
2.1.1. Mycotoxins in milk and dairy products 19
2.1.2. Mycotoxins in bovine feeds 29
2.1.3. Reports of mycotoxins in bovines 37
2.2. Mycotoxicosis in sheep and goats 107
2.2.1. Synopsis on mycotoxins in sheep and goats 107
2.2.2. Reports 110
2.3. Mycotoxicosis in equines 127
2.3.1. Equine fumonisin toxicosis 127
2.3.2. Equine deoxynivalenol toxicosis 137
2.3.3. Equine Stachybotryotoxicosis 143
2.3.4. Equine zearalenone toxicosis 148
2.3.5. Equine aflatoxicosis 152
2.3.6. Equine ochratoxicosis 155
2.4. Mycotoxicosis in camels 160
2.5. Mycotoxicosis in pigs 166
2.6. Mycotoxicosis in cats and dogs 205
2.7. Mycotoxicosis in rabbits 220
3. Mycotoxicosis in poultry 243
3.1. Aflatoxicosis 243
3.2. Ochratoxicosis 296
3.3. Sterigmatocystin toxicosis 356
3.4. Cyclopiazonic acid toxicosis 366
3.5. Citrinin toxicosis 378
3.6. Penicillic acid toxicosis 395
3.7. Fusariotoxicosis 399
3.7.1. Deoxynivalenol (DON) toxicosis 399
3.7.2. Fumonisin toxicosis 433
3.7.3. Moniliformin toxicosis 468
3.7.4. T-2 toxicosis 482
3.7.5. Zearalenone toxicosis 507
3.7.6. Fusaric acid (FA) toxicosis 523
3.8. Oosporein Toxicosis (Avian gout) 528
3.9. Avian ergotism 531
4. Mycotoxicosis in fishes 539
4.1. Effects of mycotoxins 539
4.2. Aflatoxicosis 541
4.3. Sterigmatocystin toxicosis 567
4.4. Ochratoxicosis 568
4.5. Fumonisins toxicosis 571
4.6. Deoxynivalenol toxicosis 575
4.7. T-2 toxicosis 580
4.8. Moniliformin toxicosis 582
4.9. Zearalenone toxicosis 584
4.10. Enniatins (ENs) and beauvericin (BEA) toxicosis 586
5. Detection of mycotoxicosis
6. Control of mycotoxicosis
Papers by Salah A. Youssef
Journal of Veterinary Science, Jun 30, 2013
A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lea... more A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lead intoxication. The intoxicated goats had increased serum concentrations of liver enzymes (alanine aminotransferase and γ-glutamyl transferase), blood urea nitrogen, and reactivated δ-aminolevulinic acid dehydratase compared to the controls. Following intravenous amoxicillin (10 mg/kg bw) in control and lead-intoxicated goats, elimination half-lives were 4.14 and 1.26 h, respectively. The volumes of distribution based on the terminal phase were 1.19 and 0.38 L/kg, respectively, and those at steady-state were 0.54 and 0.18 L/kg, respectively. After intramuscular (IM) amoxicillin (10 mg/kg bw) in lead-intoxicated goats and control animals, the absorption, distribution, and elimination of the drug were more rapid in lead-intoxicated goats than the controls. Peak serum concentrations of 21.89 and 12.19 μg/mL were achieved at 1 h and 2 h, respectively, in lead-intoxicated and control goats. Amoxicillin bioavailability in the lead-intoxicated goats decreased 20% compared to the controls. After amoxicillin, more of the drug was excreted in the urine from lead-intoxicated goats than the controls. Our results suggested that lead intoxication in goats increases the rate of amoxicillin absorption after IM administration and distribution and elimination. Thus, lead intoxication may impair the therapeutic effectiveness of amoxicillin.
Journal of Veterinary Science, 2013
A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lea... more A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lead intoxication. The intoxicated goats had increased serum concentrations of liver enzymes (alanine aminotransferase and γ-glutamyl transferase), blood urea nitrogen, and reactivated δ-aminolevulinic acid dehydratase compared to the controls. Following intravenous amoxicillin (10 mg/kg bw) in control and lead-intoxicated goats, elimination half-lives were 4.14 and 1.26 h, respectively. The volumes of distribution based on the terminal phase were 1.19 and 0.38 L/kg, respectively, and those at steady-state were 0.54 and 0.18 L/kg, respectively. After intramuscular (IM) amoxicillin (10 mg/kg bw) in lead-intoxicated goats and control animals, the absorption, distribution, and elimination of the drug were more rapid in lead-intoxicated goats than the controls. Peak serum concentrations of 21.89 and 12.19 μg/mL were achieved at 1 h and 2 h, respectively, in lead-intoxicated and control goats. Amoxicillin bioavailability in the lead-intoxicated goats decreased 20% compared to the controls. After amoxicillin, more of the drug was excreted in the urine from lead-intoxicated goats than the controls. Our results suggested that lead intoxication in goats increases the rate of amoxicillin absorption after IM administration and distribution and elimination. Thus, lead intoxication may impair the therapeutic effectiveness of amoxicillin.
Uploads
Manuals by Salah A. Youssef
1. Introduction 7
1.1. The eras of mycotoxins 8
1.2. Recent Headlines 12
1.3. Global action to counteract mycotoxins 13
1.4. Recent Mycotoxins conferences 16
2. Mycotoxicosis in domestic animals 18
2.1. Mycotoxicosis in bovines 18
2.1.1. Mycotoxins in milk and dairy products 19
2.1.2. Mycotoxins in bovine feeds 29
2.1.3. Reports of mycotoxins in bovines 37
2.2. Mycotoxicosis in sheep and goats 107
2.2.1. Synopsis on mycotoxins in sheep and goats 107
2.2.2. Reports 110
2.3. Mycotoxicosis in equines 127
2.3.1. Equine fumonisin toxicosis 127
2.3.2. Equine deoxynivalenol toxicosis 137
2.3.3. Equine Stachybotryotoxicosis 143
2.3.4. Equine zearalenone toxicosis 148
2.3.5. Equine aflatoxicosis 152
2.3.6. Equine ochratoxicosis 155
2.4. Mycotoxicosis in camels 160
2.5. Mycotoxicosis in pigs 166
2.6. Mycotoxicosis in cats and dogs 205
2.7. Mycotoxicosis in rabbits 220
3. Mycotoxicosis in poultry 243
3.1. Aflatoxicosis 243
3.2. Ochratoxicosis 296
3.3. Sterigmatocystin toxicosis 356
3.4. Cyclopiazonic acid toxicosis 366
3.5. Citrinin toxicosis 378
3.6. Penicillic acid toxicosis 395
3.7. Fusariotoxicosis 399
3.7.1. Deoxynivalenol (DON) toxicosis 399
3.7.2. Fumonisin toxicosis 433
3.7.3. Moniliformin toxicosis 468
3.7.4. T-2 toxicosis 482
3.7.5. Zearalenone toxicosis 507
3.7.6. Fusaric acid (FA) toxicosis 523
3.8. Oosporein Toxicosis (Avian gout) 528
3.9. Avian ergotism 531
4. Mycotoxicosis in fishes 539
4.1. Effects of mycotoxins 539
4.2. Aflatoxicosis 541
4.3. Sterigmatocystin toxicosis 567
4.4. Ochratoxicosis 568
4.5. Fumonisins toxicosis 571
4.6. Deoxynivalenol toxicosis 575
4.7. T-2 toxicosis 580
4.8. Moniliformin toxicosis 582
4.9. Zearalenone toxicosis 584
4.10. Enniatins (ENs) and beauvericin (BEA) toxicosis 586
5. Detection of mycotoxicosis
6. Control of mycotoxicosis
Papers by Salah A. Youssef
1. Introduction 7
1.1. The eras of mycotoxins 8
1.2. Recent Headlines 12
1.3. Global action to counteract mycotoxins 13
1.4. Recent Mycotoxins conferences 16
2. Mycotoxicosis in domestic animals 18
2.1. Mycotoxicosis in bovines 18
2.1.1. Mycotoxins in milk and dairy products 19
2.1.2. Mycotoxins in bovine feeds 29
2.1.3. Reports of mycotoxins in bovines 37
2.2. Mycotoxicosis in sheep and goats 107
2.2.1. Synopsis on mycotoxins in sheep and goats 107
2.2.2. Reports 110
2.3. Mycotoxicosis in equines 127
2.3.1. Equine fumonisin toxicosis 127
2.3.2. Equine deoxynivalenol toxicosis 137
2.3.3. Equine Stachybotryotoxicosis 143
2.3.4. Equine zearalenone toxicosis 148
2.3.5. Equine aflatoxicosis 152
2.3.6. Equine ochratoxicosis 155
2.4. Mycotoxicosis in camels 160
2.5. Mycotoxicosis in pigs 166
2.6. Mycotoxicosis in cats and dogs 205
2.7. Mycotoxicosis in rabbits 220
3. Mycotoxicosis in poultry 243
3.1. Aflatoxicosis 243
3.2. Ochratoxicosis 296
3.3. Sterigmatocystin toxicosis 356
3.4. Cyclopiazonic acid toxicosis 366
3.5. Citrinin toxicosis 378
3.6. Penicillic acid toxicosis 395
3.7. Fusariotoxicosis 399
3.7.1. Deoxynivalenol (DON) toxicosis 399
3.7.2. Fumonisin toxicosis 433
3.7.3. Moniliformin toxicosis 468
3.7.4. T-2 toxicosis 482
3.7.5. Zearalenone toxicosis 507
3.7.6. Fusaric acid (FA) toxicosis 523
3.8. Oosporein Toxicosis (Avian gout) 528
3.9. Avian ergotism 531
4. Mycotoxicosis in fishes 539
4.1. Effects of mycotoxins 539
4.2. Aflatoxicosis 541
4.3. Sterigmatocystin toxicosis 567
4.4. Ochratoxicosis 568
4.5. Fumonisins toxicosis 571
4.6. Deoxynivalenol toxicosis 575
4.7. T-2 toxicosis 580
4.8. Moniliformin toxicosis 582
4.9. Zearalenone toxicosis 584
4.10. Enniatins (ENs) and beauvericin (BEA) toxicosis 586
5. Detection of mycotoxicosis
6. Control of mycotoxicosis