Chenopodium pallidicaule
Chenopodium pallidicaule | |
---|---|
Chenopodium pallidicaule growing in the Atuncolla District near Sillustani, Juliaca, Peru, at an altitude of approximately 3,900 metres | |
Scientific classification | |
Kingdom: | |
(unranked): | |
(unranked): | |
(unranked): | |
Order: | |
Family: | |
Subfamily: | |
Genus: | |
Species: |
C. pallidicaule
|
Binomial name | |
Chenopodium pallidicaule Aellen
|
Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).
Chenopodium pallidicaule, known as qañiwa, qañawa or qañawi (Quechua,[1][2][3] hispanicized spellings cañihua, canihua, cañahua, cañahui, also kaniwa, kañiwa) is a species of goosefoot, similar in character and uses to the closely related quinoa (Chenopodium quinoa).
Qañiwa is native to the Andean region, with more than 200 varieties, and it has been farmed in the Altiplano for millennia. As a crop, qañiwa has important beneficial characteristics, including tolerance of high mountain conditions, high protein content, high antioxidant capacity and phenolic content[4][5] and a lack of the saponins which complicate quinoa use.
Contents
Botanical description
Qañiwa is a herbaceous and annual plant.[6][7] This species is diploid with a chromosome number of 2n = 18.[8] There are two types of this species, which differ in their branching.The lasta type shows high branching, whereas the saguia type is characterized by few branching and its more erected growth.[9] The plant grows to 20–60 cm high and is therefore shorter than its close relative quinoa.
Qañiwa also vary from quinoa in its inflorescence and its flower traits.[6] The inflorescences are situated on the terminal and axillar cimas.[9] The flowers are small and without petals.[9] There are three different types of flower. Hermaphrodite consists of both the stamen and the pistils. Another flower type are the pistillate flowers, which have pistils, but no stamens. The third type of flower are male sterile flowers.[9]
The fruits are small and dark, which contain brown or black seed with a diameter of 0.5 to 1.5 mm.[9] The fruits are deciduous, which means that the seeds are lost spontaneously and are then dispersed.[9] Once maturation is reached, the plant stem and leaves change in colour to yellow, red, green or purple.[6][9]
Cultivation
Qañiwa is a half-domesticated plant from the Highlands of Bolivia and Peru,[10] cultivated as a pseudo-cereal crop for its seeds.[11] Both seeds and leaves are edible.[12]
The plant was often cultivated in South-America in the past. More than 200 varieties are known in Bolivia, but only twenty are still in use. Most farmers are cultivating just one of them.[13]
Environmental requirements
Qañiwa is highly adapted to the Andean climate and therefore cold-resistant in all growth stages. Adult plants are also resistant to night frosts.[12] In vegetative stage, the plant may survive until –10 °C, flowers until –3 °C [11] and is growing until temperatures up to 28 °C at sufficient humidity.[14]
Qañiwa can be grown from 1500 m up to 4400 m, but is rarely cultivated below 3800 m. The plant has resistance to strong winds, heavy rainfalls, most pests and diseases and even prolonged drought periods.[11][12] Rainfall from 500 to 800 mm during the growing season makes irrigation unnecessary.[12] The plant dislikes shade, maritime exposure or excess humidity.[12] Qañiwa can be grown on any kind of moderately fertile soil, including shallow, acid, alkaline or saline soils.[11][12]
Plant development
As an annual crop, qañiwa reaches maturity in 95 to 150 days, depending on variety.[11] Germinating starts at soil temperatures of 5 °C. Flowering happens from July to October at temperatures around 10 °C and ripening from August to October at 15 °C.[12]
Harvesting and post-harvesting
Qañiwa has to be harvested at colour change,[14] before full maturation, to prevent high yield losses due to seed scattering.[11] The crop has to be cut, dried and treshed. Treshing can occur by hand or using a wheat tresher.[14] Papery husks enclose the seeds and have to be washed and rubbed away.[12] Average seed yield is 400 – 900 kg/ha in traditional cropping systems. In intensive systems, yields of 2–3 t can be obtained.[11] 1000–kernel weight is only 480 mg, compared to 1900 mg - 4000 mg of quinoa.[15]
Potential and risks
Qañiwa is a forgotten crop. Once widely used in the Andes, qañiwa has been replaced by other crops as millet. Today it has only significance at higher altitudes, where neither quinoa nor millet can grow.[16] In analogy to the success of quinoa and the increasing demand for it in western countries,[17] qañiwa has a growing market potential. It can be well grown in cool climate or mountainous regions. The crop was experimentally produced in Finland and showed good results.[14] The risk of outcrossing is very small, as qañiwa is self-pollinating.[15] The risk of becoming invasive remains, since the broad establishment of other chenopodium species is recorded.[18][19] The selection of convenient varieties is required if cultivation shall be expanded. The most important breeding aims are the reduction of seed scattering and increased seed size.[14][20]
Nutrition
Nutritional status
The indigenous Andean food crops, quinoa (Chenopodium quinoa), kiwicha (Amaranthus caudatus) and qañiwa have a remarkably high nutritional value.[21] They are especially good sources of proteins, calcium, iron and health-promoting bioactive compounds such as flavonoids. Their protein, calcium, zinc and iron content is higher than that of more widely commercialized cereals and since they are gluten-free, they can be consumed by those who suffer from coeliac disease.[22][23]
The protein content (15.3%) of qañiwa grain is significantly higher than that of quinoa and kiwicha and qañiwa's protein quality is remarkably good.[22][24] The amino acid's composition is nutritionally well-balanced, with an adequate level of essential amino acids, and the nutritional value of qañiwa proteins is equivalent to that of milk proteins, which allows it to substitute animal proteins.[21][22][24] The lipids consist mainly of unsaturated fatty acids, which has various physiological functions such as the maintenance of cell membrane fluidity.[21][22] Thus, for the inhabitants of the Altiplano, qañiwa is an extremely important crop and a main source of calories. The grain has further nutritional benefits. First, unlike quinoa, qañiwa contains a much lower amount of the bitter tasting saponins what makes it more tasty and convenient for consumption since it can be used directly as food without washing.[24] Second, this crop has a high dietary fibre content which have beneficial health effects such as improving the digestion and reducing the level of cholesterol in the blood.[21] Third, qañiwa grain is an notable source of phenolic compound (phenols) and its antioxidant activity is high, both of which has important health effects.[24]
Use
Qañiwa can easily be milled to flour and can be prepared further as a toasted qañiwa flour called kañiwaco.[21][24] Kañiwaco has a nutty-taste and can be mixed with water and milk for a breakfast meal. Since it is rich in calories and proteins, local people take it on long travels. Additionally, qañiwa flour can be used for a lot of other purposes such as bread-making, pastry-making and noodle-making. Some varieties of qañiwa can even be included in sweets, snacks and weaning food mixtures.[24]
The cooking and extrusion technology tests have already shown successful results in several countries. This technology present numerous advantages such as low cost, simple operation, moderate production volume, minimum auxiliary equipment, versatility, good sanitary conditions and easy management.[25] Results from a study demonstrated that the initial moisture content of 12% was optimal to obtain an extrudate with good physicochemical characteristics (e.g. degree of gelatinization, sectional expansion index, water absorption index, water solubility index and density). Thus, the food industry should assess this ingredient (extrudate of qañiwa) because of its functional properties and high nutrient content.[24] Additionally, roasting does not significantly affect the dialyzability of nutritionally valuable minerals in qañiwa. Boiling, however, was found to increase zinc, iron and calcium dialyzability.[23]
Importance for food security
Qañiwa is an important crop for food security in the Andean region. In some parts of this area, there are serious nutritional problems. The most affected group are families in rural areas, which has limited access to commodities due to a lack of income. On top of that, there are every once in a while severe shortage of food due to natural disasters such as droughts. Under these conditions, it is essential for peasants to rely on easily accessible foodstuffs and crops that are well adapted to the harsh weather conditions. Qañiwa is both easily accessible and resistant, so when all other crops fail, qañiwa still succeed to provide food and income for highland farmers.[21]
However, even if Andean crops have been an important part of the Latin American diet a long way back, there is a modern tendency to replace native crops with imported food products which are cheaper but of lower quality. This tendency threatens the competitiveness of native crop production and they might completely lose their market with time. In order to alleviate these problems, new food-processing technologies and products are being developed to encourage companies to process native Andean crops and to increase their consumption as well as open up larger markets.[21]
See also
Reference list
- ↑ Teofilo Laime Ajacopa, Diccionario Bilingüe Iskay simipi yuyayk'ancha, La Paz, 2007 (Quechua-Spanish dictionary)
- ↑ Diccionario Quechua - Español - Quechua, Academía Mayor de la Lengua Quechua, Gobierno Regional Cusco, Cusco 2005 (Quechua-Spanish dictionary)
- ↑ babylon.com/
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ http://www.springerlink.com/content/r687263w16457842/
- ↑ 6.0 6.1 6.2 Gade, Daniel W. (1970). "Ethnbotany of canihua (Chenopodium pallidicaule), Rustic Seed Crop of the Altiplano". Economic Botany 23: 55–61.
- ↑ Heiser, Jr., Charles B.; Nelson, David C. (1974). "On the origin of the cultivated chenopods". Genetics 78: 503–505.
- ↑ Wilson, H.D (1980). "Artificial hybridization among species of Chenopodium sect. Chenopodium". Syst. Bot. 5: 253–263.
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Hemandez, Esteban J. (1994). Neglected crops:1492 from a different perspective. Rome: FAO. ISBN 92-5-103217-3.
- ↑ Tapia ME & Fries AM (2007). Guía de campo de los cultivos Andinos, Origen de las plantas cultivadas en los Andes, Chapt. I. Eds.: FAO & ANPE-PERU, Rome & Lima. ISBN 978-92-5-305682-8. http://www.fao.org/docrep/010/ai185s/ai185s01.pdf.
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 FAO (2007). Ecocrop – Chenopodium pallidicaule, Data sheet. http://ecocrop.fao.org/ecocrop/srv/en/cropView?id=4494.
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Plants For A Future (2007). Chenopodium pallidicaule. http://www.pfaf.org/user/Plant.aspx?LatinName=Chenopodium+pallidicaule.
- ↑ Bioversity International (2013). Creating markets for orphan crops, Bioversity International supports marketing link in food value chain. CGIAR.
- ↑ 14.0 14.1 14.2 14.3 14.4 Global Facilitation Unit for Underutilized Species (n.d.). CAÑIHUA (Chenopodium pallidicaule), Enabling deployment of underutilized species. CGIAR. http://www.underutilized-species.org/species/brochures/Canihua.pdf
- ↑ 15.0 15.1 Simmonds NW (1965). The Grain Chenopods of the Tropical American Highlands. Vol. 19 (Iss. 3). pp. 223 – 235, Economic Botany. Springer.
- ↑ Lieberei R, Reisdorff C & Franke W (2012). Nutzpflanzen. pp. 89–99. Thieme, Stuttgart. ISBN 978-3-13-530408-3.
- ↑ Quinoa. (2015, November 9). In Wikipedia, The Free Encyclopedia. Retrieved 13:38, November 14, 2015, from https://en.wikipedia.org/w/index.php?title=Quinoa&oldid=689879298
- ↑ Chenopodium. (2015, November 2). In Wikipedia, The Free Encyclopedia. Retrieved 14:27, November 14, 2015, from https://en.wikipedia.org/w/index.php?title=Chenopodium&oldid=688718365
- ↑ Lauber K, Wagner G, Gygax A & Eggenberg S (2014). Flora Helvetica. pp. 594–600. Haupt, Bern. ISBN 978-3-258-07700-0.
- ↑ Becker H (2011). Pflanzenzüchtung. pp. 10–11. Ulmer, Stuttgart. ISBN 978-3-8252-3558-1.
- ↑ 21.0 21.1 21.2 21.3 21.4 21.5 21.6 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 22.0 22.1 22.2 22.3 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 23.0 23.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 24.0 24.1 24.2 24.3 24.4 24.5 24.6 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
External links
Wikimedia Commons has media related to Chenopodium pallidicaule. |